WorldWideScience

Sample records for brain hemodynamic responses

  1. Intraoperative brain hemodynamic response assessment with real-time hyperspectral optical imaging (Conference Presentation)

    Science.gov (United States)

    Laurence, Audrey; Pichette, Julien; Angulo-Rodríguez, Leticia M.; Saint Pierre, Catherine; Lesage, Frédéric; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frédéric

    2016-03-01

    Following normal neuronal activity, there is an increase in cerebral blood flow and cerebral blood volume to provide oxygenated hemoglobin to active neurons. For abnormal activity such as epileptiform discharges, this hemodynamic response may be inadequate to meet the high metabolic demands. To verify this hypothesis, we developed a novel hyperspectral imaging system able to monitor real-time cortical hemodynamic changes during brain surgery. The imaging system is directly integrated into a surgical microscope, using the white-light source for illumination. A snapshot hyperspectral camera is used for detection (4x4 mosaic filter array detecting 16 wavelengths simultaneously). We present calibration experiments where phantoms made of intralipid and food dyes were imaged. Relative concentrations of three dyes were recovered at a video rate of 30 frames per second. We also present hyperspectral recordings during brain surgery of epileptic patients with concurrent electrocorticography recordings. Relative concentration maps of oxygenated and deoxygenated hemoglobin were extracted from the data, allowing real-time studies of hemodynamic changes with a good spatial resolution. Finally, we present preliminary results on phantoms obtained with an integrated spatial frequency domain imaging system to recover tissue optical properties. This additional module, used together with the hyperspectral imaging system, will allow quantification of hemoglobin concentrations maps. Our hyperspectral imaging system offers a new tool to analyze hemodynamic changes, especially in the case of epileptiform discharges. It also offers an opportunity to study brain connectivity by analyzing correlations between hemodynamic responses of different tissue regions.

  2. Abnormal hemodynamic response to forepaw stimulation in rat brain after cocaine injection

    Science.gov (United States)

    Chen, Wei; Park, Kicheon; Choi, Jeonghun; Pan, Yingtian; Du, Congwu

    2015-03-01

    Simultaneous measurement of hemodynamics is of great importance to evaluate the brain functional changes induced by brain diseases such as drug addiction. Previously, we developed a multimodal-imaging platform (OFI) which combined laser speckle contrast imaging with multi-wavelength imaging to simultaneously characterize the changes in cerebral blood flow (CBF), oxygenated- and deoxygenated- hemoglobin (HbO and HbR) from animal brain. Recently, we upgraded our OFI system that enables detection of hemodynamic changes in response to forepaw electrical stimulation to study potential brain activity changes elicited by cocaine. The improvement includes 1) high sensitivity to detect the cortical response to single forepaw electrical stimulation; 2) high temporal resolution (i.e., 16Hz/channel) to resolve dynamic variations in drug-delivery study; 3) high spatial resolution to separate the stimulation-evoked hemodynamic changes in vascular compartments from those in tissue. The system was validated by imaging the hemodynamic responses to the forepaw-stimulations in the somatosensory cortex of cocaine-treated rats. The stimulations and acquisitions were conducted every 2min over 40min, i.e., from 10min before (baseline) to 30min after cocaine challenge. Our results show that the HbO response decreased first (at ~4min) followed by the decrease of HbR response (at ~6min) after cocaine, and both did not fully recovered for over 30min. Interestingly, while CBF decreased at 4min, it partially recovered at 18min after cocaine administration. The results indicate the heterogeneity of cocaine's effects on vasculature and tissue metabolism, demonstrating the unique capability of optical imaging for brain functional studies.

  3. Exploring diazepam's effect on hemodynamic responses of mouse brain tissue by optical spectroscopic imaging.

    Science.gov (United States)

    Abookasis, David; Shochat, Ariel; Nesher, Elimelech; Pinhasov, Albert

    2014-07-01

    In this study, a simple duel-optical spectroscopic imaging apparatus capable of simultaneously determining relative changes in brain oxy-and deoxy-hemoglobin concentrations was used following administration of the anxiolytic compound diazepam in mice with strong dominant (Dom) and submissive (Sub) behavioral traits. Three month old mice (n = 30) were anesthetized and after 10 min of baseline imaging, diazepam (1.5 mg/kg) was administered and measurements were taken for 80 min. The mouse head was illuminated by white light based LED's and diffused reflected light passing through different channels, consisting of a bandpass filter and a CCD camera, respectively, was collected and analyzed to measure the hemodynamic response. This work's major findings are threefold: first, Dom and Sub animals showed statistically significant differences in hemodynamic response to diazepam administration. Secondly, diazepam was found to more strongly affect the Sub group. Thirdly, different time-series profiles were observed post-injection, which can serve as a possible marker for the groups' differentiation. To the best of our knowledge, this is the first report on the effects of an anxiolytic drug on brain hemodynamic responses in mice using diffused light optical imaging. PMID:25071958

  4. CMOS Image Sensor and System for Imaging Hemodynamic Changes in Response to Deep Brain Stimulation.

    Science.gov (United States)

    Zhang, Xiao; Noor, Muhammad S; McCracken, Clinton B; Kiss, Zelma H T; Yadid-Pecht, Orly; Murari, Kartikeya

    2016-06-01

    Deep brain stimulation (DBS) is a therapeutic intervention used for a variety of neurological and psychiatric disorders, but its mechanism of action is not well understood. It is known that DBS modulates neural activity which changes metabolic demands and thus the cerebral circulation state. However, it is unclear whether there are correlations between electrophysiological, hemodynamic and behavioral changes and whether they have any implications for clinical benefits. In order to investigate these questions, we present a miniaturized system for spectroscopic imaging of brain hemodynamics. The system consists of a 144 ×144, [Formula: see text] pixel pitch, high-sensitivity, analog-output CMOS imager fabricated in a standard 0.35 μm CMOS process, along with a miniaturized imaging system comprising illumination, focusing, analog-to-digital conversion and μSD card based data storage. This enables stand alone operation without a computer, nor electrical or fiberoptic tethers. To achieve high sensitivity, the pixel uses a capacitive transimpedance amplifier (CTIA). The nMOS transistors are in the pixel while pMOS transistors are column-parallel, resulting in a fill factor (FF) of 26%. Running at 60 fps and exposed to 470 nm light, the CMOS imager has a minimum detectable intensity of 2.3 nW/cm(2) , a maximum signal-to-noise ratio (SNR) of 49 dB at 2.45 μW/cm(2) leading to a dynamic range (DR) of 61 dB while consuming 167 μA from a 3.3 V supply. In anesthetized rats, the system was able to detect temporal, spatial and spectral hemodynamic changes in response to DBS. PMID:26357405

  5. Hemodynamic response imaging: a potential tool for the assessment of angiogenesis in brain tumors.

    Directory of Open Access Journals (Sweden)

    Dafna Ben Bashat

    Full Text Available Blood oxygenation level dependence (BOLD imaging under either hypercapnia or hyperoxia has been used to study neuronal activation and for assessment of various brain pathologies. We evaluated the benefit of a combined protocol of BOLD imaging during both hyperoxic and hypercapnic challenges (termed hemodynamic response imaging (HRI. Nineteen healthy controls and seven patients with primary brain tumors were included: six with glioblastoma (two newly diagnosed and four with recurrent tumors and one with atypical-meningioma. Maps of percent signal intensity changes (ΔS during hyperoxia (carbogen; 95%O2+5%CO2 and hypercapnia (95%air+5%CO2 challenges and vascular reactivity mismatch maps (VRM; voxels that responded to carbogen with reduced/absent response to CO2 were calculated. VRM values were measured in white matter (WM and gray matter (GM areas of healthy subjects and used as threshold values in patients. Significantly higher response to carbogen was detected in healthy subjects, compared to hypercapnia, with a GM/WM ratio of 3.8 during both challenges. In patients with newly diagnosed/treatment-naive tumors (n = 3, increased response to carbogen was detected with substantially increased VRM response (compared to threshold values within and around the tumors. In patients with recurrent tumors, reduced/absent response during both challenges was demonstrated. An additional finding in 2 of 4 patients with recurrent glioblastoma was a negative response during carbogen, distant from tumor location, which may indicate steal effect. In conclusion, the HRI method enables the assessment of blood vessel functionality and reactivity. Reference values from healthy subjects are presented and preliminary results demonstrate the potential of this method to complement perfusion imaging for the detection and follow up of angiogenesis in patients with brain tumors.

  6. Measuring brain hemodynamic changes in a songbird: responses to hypercapnia measured with functional MRI and near-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vignal, C; Mathevon, N [ENES EA 3988, Universite Jean Monnet, Saint-Etienne (France); Boumans, T; Verhoye, M; Audekerke, J van; Linden, A van der [Bio-Imaging Laboratory, University of Antwerp, Antwerp (Belgium); Montcel, B; Ramstein, S; Mottin, S [Hubert Curien CNRS UMR 5516, Universite Jean Monnet, Saint-Etienne (France)], E-mail: Clementine.Vignal@univ-st-etienne.fr

    2008-05-21

    Songbirds have been evolved into models of choice for the study of the cerebral underpinnings of vocal communication. Nevertheless, there is still a need for in vivo methods allowing the real-time monitoring of brain activity. Functional Magnetic Resonance Imaging (fMRI) has been applied in anesthetized intact songbirds. It relies on blood oxygen level-dependent (BOLD) contrast revealing hemodynamic changes. Non-invasive near-infrared spectroscopy (NIRS) is based on the weak absorption of near-infrared light by biological tissues. Time-resolved femtosecond white laser NIRS is a new probing method using real-time spectral measurements which give access to the local variation of absorbing chromophores such as hemoglobins. In this study, we test the efficiency of our time-resolved NIRS device in monitoring physiological hemodynamic brain responses in a songbird, the zebra finch (Taeniopygia guttata), using a hypercapnia event (7% inhaled CO{sub 2}). The results are compared to those obtained using BOLD fMRI. The NIRS measurements clearly demonstrate that during hypercapnia the blood oxygen saturation level increases (increase in local concentration of oxyhemoglobin, decrease in deoxyhemoglobin concentration and total hemoglobin concentration). Our results provide the first correlation in songbirds of the variations in total hemoglobin and oxygen saturation level obtained from NIRS with local BOLD signal variations.

  7. Dual-wavelength laser speckle imaging for monitoring brain metabolic and hemodynamic response to closed head traumatic brain injury in mice

    Science.gov (United States)

    Kofman, Itamar; Abookasis, David

    2015-10-01

    ) monitor brain hemodynamic and metabolic response to neuroprotective drug treatment.

  8. Assessment of sexual orientation using the hemodynamic brain response to visual sexual stimuli

    DEFF Research Database (Denmark)

    Ponseti, Jorge; Granert, Oliver; Jansen, Olav;

    2009-01-01

    INTRODUCTION: The assessment of sexual orientation is of importance to the diagnosis and treatment of sex offenders and paraphilic disorders. Phallometry is considered gold standard in objectifying sexual orientation, yet this measurement has been criticized because of its intrusiveness and limited...... response patterns of the brain to sexual stimuli contained sufficient information to predict individual sexual orientation with high accuracy. These results suggest that fMRI-based classification methods hold promise for the diagnosis of paraphilic disorders (e.g., pedophilia)....

  9. Hemodynamic findings in patients with brain stroke

    OpenAIRE

    Siebert, Janusz; Gutknecht, Piotr; Molisz, Andrzej; Trzeciak, Bartosz; Nyka, Walenty

    2012-01-01

    Introduction Standard procedures carried out at a stroke department in patients after a cerebral event may prove insufficient for monitoring hemodynamic indices. Impedance cardiography enables hemodynamic changes to be monitored non-invasively. The aim of the work was to describe hemodynamic parameters in patients with acute phase of ischemic and hemorrhagic stroke and to analyse the correlation between the type of hemodynamic response and long-term prognosis. Material and methods The 45 cons...

  10. Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses

    DEFF Research Database (Denmark)

    Lauritzen, Martin; Mathiesen, Claus; Schaefer, Katharina;

    2012-01-01

    Brain's electrical activity correlates strongly to changes in cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO(2)). Subthreshold synaptic processes correlate better than the spike rates of principal neurons to CBF, CMRO(2) and positive BOLD signals. Stimulation...... metabolic and vascular control explains the gap between the stimulation-induced rises in CMRO(2) and CBF, and in turn the BOLD signal. Activity-dependent rises in CBF and CMRO(2) vary within and between brain regions due to differences in ATP turnover and Ca(2+)-dependent mechanisms. Nerve cells produce and...... release vasodilators that evoke positive BOLD signals, while the mechanisms that control negative BOLD signals by activity-dependent vasoconstriction are less well understood. Activation of both excitatory and inhibitory neurons produces rises in CBF and positive BOLD signals, while negative BOLD signals...

  11. Inter-subject correlation of brain hemodynamic responses during watching a movie: localization in space and frequency

    Directory of Open Access Journals (Sweden)

    Jukka-Pekka Kauppi

    2010-03-01

    Full Text Available Cinema is a promising naturalistic stimulus that enables, for instance, elicitation of robust emotions during functional magnetic resonance imaging (fMRI. Inter-subject correlation (ISC has been used as a model-free analysis method to map the highly complex hemodynamic responses that are evoked during watching a movie. Here, we extended the ISC analysis to frequency domain using wavelet analysis combined with non-parametric permutation methods for making voxel-wise statistical inferences about frequency-band specific ISC. We applied these novel analysis methods to a dataset collected in our previous study where 12 subjects watched an emotionally engaging movie “Crash” during fMRI scanning. Our results suggest that several regions within the frontal and temporal lobes show ISC predominantly at low frequency bands, whereas visual cortical areas exhibit ISC also at higher frequencies. It is possible that these findings relate to recent observations of a cortical hierarchy of temporal receptive windows, or that the types of events processed in temporal and prefrontal cortical areas (e.g., social interactions occur over longer time periods than the stimulus features processed in the visual areas. Software tools to perform frequency-specific ISC analysis, together with a visualization application, are available as open source Matlab code.

  12. Optical imaging of neural and hemodynamic brain activity

    Science.gov (United States)

    Schei, Jennifer Lynn

    Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic

  13. MRI quantitative hemodynamic evaluation of the brain

    NARCIS (Netherlands)

    De Vis, J.B.; Mali, W.P.T.M.; Hendrikse, J.; Petersen, E.T.

    2015-01-01

    The cerebral blood flow (CBF) or the delivery of nutrients to the brain tissue is essential for the viability of brain cells and is a necessity for the human body to perform physical and mental activities. Both under-and overperfusion of the brain tissue can cause substantial harm wherefore the CBF

  14. Cardiovascular and hemodynamic contribution to brain aging

    NARCIS (Netherlands)

    Sabayan, Behnam

    2014-01-01

    In summary, chapter 1 of this thesis provides a background on the demographic, biologic and cardiovascular aspects of brain aging. Chapter 2 shows that higher blood pressure is associated with lower cognitive decline in very old age. Findings of Chapter 3 indicate that higher blood pressure is assoc

  15. Esmolol vs. nitroglycerin: attenuating hemodynamic response to laryngoscopy and intubation

    Directory of Open Access Journals (Sweden)

    Cassie Held

    2016-01-01

    Full Text Available Hemodynamic response to laryngoscopy and intubation is a common occurrence with the potential for harmful effects. Many drugs have been utilized throughout the years to attenuate this response with mixed results. This review compares the efficacy of two drugs, esmolol and nitroglycerin, in attenuating hemodynamic response to laryngoscopy and intubation. A systematic review was performed compiling all previous studies detailing the efficacy of esmolol in comparison to nitroglycerin for this purpose. Esmolol was found to consistently attenuate hemodynamic responses of blood pressure and heart rate with greater efficacy than nitroglycerin, and is thus recommended over nitroglycerin for use in this role.

  16. Self-reported tolerance influences prefrontal cortex hemodynamics and affective responses.

    Science.gov (United States)

    Tempest, Gavin; Parfitt, Gaynor

    2016-02-01

    The relationship between cognitive and sensory processes in the brain contributes to the regulation of affective responses (pleasure-displeasure). Exercise can be used to manipulate sensory processes (by increasing physiological demand) in order to examine the role of dispositional traits that may influence an individual's ability to cognitively regulate these responses. With the use of near infrared spectroscopy, in this study we examined the influence of self-reported tolerance upon prefrontal cortex (PFC) hemodynamics and affective responses. The hemodynamic response was measured in individuals with high or low tolerance during an incremental exercise test. Sensory manipulation was standardized against metabolic processes (ventilatory threshold [VT] and respiratory compensation point [RCP]), and affective responses were recorded. The results showed that the high-tolerance group displayed a larger hemodynamic response within the right PFC above VT (which increased above RCP). The low-tolerance group showed a larger hemodynamic response within the left PFC above VT. The high-tolerance group reported a more positive/less negative affective response above VT. These findings provide direct neurophysiological evidence of differential hemodynamic responses within the PFC that are associated with tolerance in the presence of increased physiological demands. This study supports the role of dispositional traits and previous theorizing into the underlying mechanisms (cognitive vs. sensory processes) of affective responses. PMID:26337703

  17. Esmolol vs. nitroglycerin: attenuating hemodynamic response to laryngoscopy and intubation

    OpenAIRE

    Cassie Held

    2016-01-01

    Hemodynamic response to laryngoscopy and intubation is a common occurrence with the potential for harmful effects. Many drugs have been utilized throughout the years to attenuate this response with mixed results. This review compares the efficacy of two drugs, esmolol and nitroglycerin, in attenuating hemodynamic response to laryngoscopy and intubation. A systematic review was performed compiling all previous studies detailing the efficacy of esmolol in comparison to nitroglycerin for this pu...

  18. Bayesian estimation of the hemodynamic response function in functional MRI

    Science.gov (United States)

    Marrelec, G.; Benali, H.; Ciuciu, P.; Poline, J.-B.

    2002-05-01

    Functional MRI (fMRI) is a recent, non-invasive technique allowing for the evolution of brain processes to be dynamically followed in various cognitive or behavioral tasks. In BOLD fMRI, what is actually measured is only indirectly related to neuronal activity through a process that is still under investigation. A convenient way to analyze BOLD fMRI data consists of considering the whole brain as a system characterized by a transfer response function, called the Hemodynamic Response Function (HRF). Precise and robust estimation of the HRF has not been achieved yet: parametric methods tend to be robust but require too strong constraints on the shape of the HRF, whereas non-parametric models are not reliable since the problem is badly conditioned. We therefore propose a full Bayesian, non-parametric method that makes use of basic but relevant a priori knowledge about the underlying physiological process to make robust inference about the HRF. We show that this model is very robust to decreasing signal-to-noise ratio and to the actual noise sampling distribution. We finally apply the method to real data, revealing a wide variety of HRF shapes.

  19. Hemodynamic Response Alteration As a Function of Task Complexity and Expertise—An fNIRS Study in Jugglers

    OpenAIRE

    Carius, Daniel; Andrä, Christian; Clauß, Martina; Ragert, Patrick; Bunk, Michael; Mehnert, Jan

    2016-01-01

    Detailed knowledge about online brain processing during the execution of complex motor tasks with a high motion range still remains elusive. The aim of the present study was to investigate the hemodynamic responses within sensorimotor networks as well as in visual motion area during the execution of a complex visuomotor task such as juggling. More specifically, we were interested in how far the hemodynamic response as measured with functional near infrared spectroscopy (fNIRS) adapts as a fun...

  20. ANALYSIS OF PAIN HEMODYNAMIC RESPONSE USING NEAR-INFRARED SPECTROSCOPY (NIRS

    Directory of Open Access Journals (Sweden)

    Raul Fernandez Rojas

    2015-04-01

    Full Text Available Despite recent advances in brain research, understanding the various signals for pain and pain intensities in the brain cortex is still a complex task due to temporal and spatial variations of brain haemodynamics. In this paper we have investigated pain based on cerebral hemodynamics via near-infrared spectroscopy (NIRS. This study presents a pain stimulation experiment that uses three acupuncture manipulation techniques to safely induce pain in healthy subjects. Acupuncture pain response was presented and Haemodynamic pain signal analysis showed the presence of dominant channels and their relationship among surrounding channels, which contribute the further pain research area.

  1. Acute hemodynamic response to vasodilators in primary pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Kulkarni H

    1996-01-01

    Full Text Available Acute hemodynamic effects of high flow oxygen (O2 inhalation, sublingual isosorbide dinitrate (ISDN, intravenous aminophylline (AMN and sublingual nifedipine (NIF were studied in 32 patients with primary pulmonary hypertension (PPH. In 30 out of 32 patients the basal ratio of pulmonary to systemic vascular resistance (Rp/Rs was > 0.5 (mean = 0.77 +/- 0.20. Oxygen caused significant decrease in the mean resistance ratio to 0.68 +/- 0.20 (p = 0.005. ISDN, AMN and NIF caused increase in the resistance ratio to 0.79 +/- 0.26; 0.78 +/- 0.26; and 0.80 +/- 0.23 respectively. O2, ISDN, AMN and NIF caused a fall of Rp/Rs in 21 (65.6%, 10 (31.2%, 10(31.2% and 9(28.1% patients respectively. Thus, of the four drugs tested high flow O2 inhalation resulted in fall of Rp/Rs in two thirds of patients whereas ISDN, AMN and NIF caused a mean rise in Rp/Rs. One third of patients did respond acutely to the latter three drugs. Acute hemodynamic studies are useful before prescribing vasodilators in patients with PPH since more of the commonly used drugs like ISDN, AMN, NIF could have detrimental hemodynamic responses in some patients. However, great caution should be exercised before performing hemodynamic study as the procedure has definite mortality and morbidity.

  2. Two-dimensional optical tomography of hemodynamic changes in a preterm infant brain

    Institute of Scientific and Technical Information of China (English)

    Feng Gao; Yuan Xue; Huijuan Zhao; Takashi Kusaka; Masanori Ueno; Yukio Yamada

    2007-01-01

    Our preliminary results on two-dimensional (2D) optical tomographic imaging of hemodynamic changes in a preterm infant brain are reported. We use the established 16-channel time-correlated single photon counting system for the detection and generalized pulse spectrum technique based algorithm for the image reconstruction. The experiments demonstrate that diffuse optical tomography may be a potent means for investigating brain functions and neural development of infant brains in the perinatal period.

  3. Two-dimensional optical tomography of hemodynamic changes in a preterm infant brain

    Science.gov (United States)

    Gao, Feng; Xue, Yuan; Zhao, Huijuan; Kusaka, Takashi; Ueno, Masanori; Yamada, Yukio

    2007-08-01

    Our preliminary results on two-dimensional (2D) optical tomographic imaging of hemodynamic changes in a preterm infant brain are reported. We use the established 16-channel time-correlated single photon counting system for the detection and generalized pulse spectrum technique based algorithm for the image reconstruction. The experiments demonstrate that diffuse optical tomography may be a potent means for investigating brain functions and neural development of infant brains in the perinatal period.

  4. Hemodynamic Responses to Head and Neck Cooling

    Science.gov (United States)

    Ku, Yu-Tsuan E.; Carbo, Jorge E.; Montgomery, Leslie D.; Webbon, Bruce W.

    1994-01-01

    Personal thermoregulatory systems which provide head and neck cooling are used in the industrial and aerospace environments to alleviate thermal stress. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objective of this study was to measure the scalp temperature and circulatory responses during use of one commercially available thermal control system. The Life Support Systems, Inc. Mark VII portable cooling system and a liquid cooling helmet were used in this study. Two EEG electrodes and one skin temperature transducer were placed on the anterior midline of the scalp to measure the scalp blood and temperature. Blood flow was measured using a bipolar impedance rheograph. Ten subjects, seated in an upright position at normal room temperature, were tested at high, medium, moderate, moderate-low and low coolant temperatures. Scalp blood flow was recorded continuously using a computer data acquisition system with a sampling frequency of 200 Hz. Scalp temperature and cooling helmet Inlet temperature was logged periodically during the test period. This study quantifies the effect of head cooling upon scalp temperature and blood flow. These data may also be used to select operational specifications of the head cooling system for biomedical applications such as the treatment of migraine headaches, scalp cooling during chemotherapy, and cooling of multiple sclerosis patients.

  5. Hemodynamic response alteration as a function of task complexity and expertise - An fNIRS study in jugglers

    Directory of Open Access Journals (Sweden)

    Daniel eCarius

    2016-03-01

    Full Text Available Detailed knowledge about online brain processing during the execution of complex motor tasks with a high motion range still remains elusive. The aim of the present study was to investigate the hemodynamic responses within sensorimotor networks as well as in visual motion area during the execution of a complex visuomotor task such as juggling. More specifically, we were interested in how far the hemodynamic response as measured with functional near infrared spectroscopy (fNIRS adapts as a function of task complexity and the level of the juggling expertise. We asked expert jugglers to perform different juggling tasks with different levels of complexity such as a 2-ball juggling, 3- and 5-ball juggling cascades. We here demonstrate that expert jugglers show an altered neurovascular response with increasing task complexity, since a 5-ball juggling cascade showed enhanced hemodynamic responses for oxy-Hb as compared to less complex tasks such as a 3- or 2- ball juggling pattern. Moreover, correlations between the hemodynamic response and the level of the juggling expertise during the 5-ball juggling cascade, acquired by cinematographic video analysis, revealed only a non-significant trend in M1, indicating that a higher level of expertise might be associated with lower hemodynamic responses.

  6. Hemodynamic Response Alteration As a Function of Task Complexity and Expertise-An fNIRS Study in Jugglers.

    Science.gov (United States)

    Carius, Daniel; Andrä, Christian; Clauß, Martina; Ragert, Patrick; Bunk, Michael; Mehnert, Jan

    2016-01-01

    Detailed knowledge about online brain processing during the execution of complex motor tasks with a high motion range still remains elusive. The aim of the present study was to investigate the hemodynamic responses within sensorimotor networks as well as in visual motion area during the execution of a complex visuomotor task such as juggling. More specifically, we were interested in how far the hemodynamic response as measured with functional near infrared spectroscopy (fNIRS) adapts as a function of task complexity and the level of the juggling expertise. We asked expert jugglers to perform different juggling tasks with different levels of complexity such as a 2-ball juggling, 3- and 5-ball juggling cascades. We here demonstrate that expert jugglers show an altered neurovascular response with increasing task complexity, since a 5-ball juggling cascade showed enhanced hemodynamic responses for oxygenated hemoglobin as compared to less complex tasks such as a 3- or 2-ball juggling pattern. Moreover, correlations between the hemodynamic response and the level of the juggling expertise during the 5-ball juggling cascade, acquired by cinematographic video analysis, revealed only a non-significant trend in primary motor cortex, indicating that a higher level of expertise might be associated with lower hemodynamic responses. PMID:27064925

  7. Hemodynamic Response Alteration As a Function of Task Complexity and Expertise—An fNIRS Study in Jugglers

    Science.gov (United States)

    Carius, Daniel; Andrä, Christian; Clauß, Martina; Ragert, Patrick; Bunk, Michael; Mehnert, Jan

    2016-01-01

    Detailed knowledge about online brain processing during the execution of complex motor tasks with a high motion range still remains elusive. The aim of the present study was to investigate the hemodynamic responses within sensorimotor networks as well as in visual motion area during the execution of a complex visuomotor task such as juggling. More specifically, we were interested in how far the hemodynamic response as measured with functional near infrared spectroscopy (fNIRS) adapts as a function of task complexity and the level of the juggling expertise. We asked expert jugglers to perform different juggling tasks with different levels of complexity such as a 2-ball juggling, 3- and 5-ball juggling cascades. We here demonstrate that expert jugglers show an altered neurovascular response with increasing task complexity, since a 5-ball juggling cascade showed enhanced hemodynamic responses for oxygenated hemoglobin as compared to less complex tasks such as a 3- or 2-ball juggling pattern. Moreover, correlations between the hemodynamic response and the level of the juggling expertise during the 5-ball juggling cascade, acquired by cinematographic video analysis, revealed only a non-significant trend in primary motor cortex, indicating that a higher level of expertise might be associated with lower hemodynamic responses. PMID:27064925

  8. [Hemodynamic response to cotton allergen exposure in the industrial environment].

    Science.gov (United States)

    Bakuleva, N S; Usol'tsev, B G; Orlova, O A

    1983-03-01

    The methods of functional diagnosis (mechanocardiography, rheoencephalography) were used to examine the responses of the central and craniocerebral hemodynamics to inhalations of specific cotton allergens in female workers of a textile factory with different grades of sensitization. It was discovered that both the initial level and response pattern on the part of the cardiovascular system and craniocerebral circulation depend to a certain measure on the level of background reactivity. The data obtained enable prognosing the status of the cardiovascular system and taking measures aimed at its correction in subjects sensitized to cotton dust, who continue working in cotton industry. PMID:6830989

  9. Multi-parametric imaging of cerebral hemodynamic and metabolic response followed by ischemic injury

    Science.gov (United States)

    Qin, Jia; Shi, Lei; Dziennis, Suzan; Wang, Ruikang K.

    2014-02-01

    We use rodent parietal cortex as a model system and utilize a synchronized dual wavelength laser speckle imaging (SDW-LSCI) technique to explore the hemodynamic response of infarct and penumbra to a brain injury (middle cerebral artery occlusion (MCAO) model). The SDW-LSCI system is able to take snapshots rapidly (maximum 500 Hz) over the entire brain surface, providing key information about the hemodynamic response, in terms of which it may be used to elucidate evolution of penumbra region from onsite to 90 min of MCAO. Changes in flow are quantified as to the flow experiencing physical occlusions of the MCA normalized to that of baseline. Furthermore, the system is capable of providing information as to the changes of the concentration of oxygenated, (HbO) deoxygenated (Hb), and total hemoglobin (HbT) in the cortex based on the spectral characteristics of HbO and Hb. We observe that the oxygenation variations in the four regions are detectable and distinct. Combining the useful information, four regions of interest (ROI), infarct, penumbra, reduced flow and contralateral portions in the brain upon ischemic injury may be differentiated. Implications of our results are discussed with respect to current understanding of the mechanisms underlying MCAO. We anticipate that SDW-LSCI holds promise for rapid and large field of view localization of ischemic injury.

  10. Hemodynamic responses to orotracheal intubation with a video laryngoscope

    Directory of Open Access Journals (Sweden)

    Shahnaz Shayeghi

    2007-10-01

    Full Text Available Background: Differences in airway anatomy make the potential for technical airway difficulties greater in infants than in
    teenagers or adults. Endotracheal intubation by direct vision using a laryngoscope is frequently associated with an increase
    in arterial blood pressure and heart rate. In different studies, the time to intubation with a video laryngoscope was
    longer than with direct laryngoscopy using Macintosh, and this longer duration may be accompanied by more hemodynamic
    responses.
    METHODS: Sixty-four infants who were scheduled for elective surgery requiring general anesthesia with orotracheal
    intubation were randomly assigned to intubation by direct laryngoscopy using a Macintosh size 1 blade or to intubation
    using a video laryngoscope. Systolic and diastolic blood pressures, heart rate and oxygen saturation were recorded at the
    following time points: (1 before induction, (2 after induction and before intubation, and (3 1 minute and (4 5 minutes
    after intubation.
    RESULTS: No significant differences were found either between the two groups or among the different study periods.
    The duration for laryngoscopy and intubation with a video laryngoscope was 20.87 ± 7.95 seconds (mean ± standard
    deviation and that with Macintosh was 15.41 ± 4.1 seconds (P < 0.01.
    CONCLUSIONS: Similar hemodynamic responses in both groups suggest that laryngoscopy and intubation with a video
    laryngoscope, although with longer duration and therefore resulting in more stimulation, has no significant effect on
    hemodynamic status and oxygen saturation in infants.
    KEY WORDS: Video laryngoscope, laryngoscopy, blood pressure, heart rate

  11. Amplitude variability over trials in hemodynamic responses in adolescents with ADHD

    DEFF Research Database (Denmark)

    Sørensen, L; Eichele, T; van Wageningen, H;

    2016-01-01

    variable response times. In this study, we asked whether ADHD IIV in reaction time on a commonly-used test of attention might be related to variation in hemodynamic responses (HRs) observed trial-to-trial. Based on previous studies linking IIV to regions within the "default mode" network (DMN), we...... levels were more complex. Performance IIV correlated significantly with variability of HRs in both networks. These results suggest that assessment of trial-to-trial HR variability in ADHD provides information beyond that detectable through analysis of behavioral data and average brain activation levels......It has been suggested that intra-individual variability (IIV) in performance on attention and other cognitive tasks might be a cognitive endophenotype in individuals with ADHD. Despite robust IIV findings in behavioral data, only sparse data exist on how what type of brain dysfunction underlies...

  12. Hemodynamic responses to functional activation accessed by optical imaging

    Science.gov (United States)

    Ni, Songlin; Li, Pengcheng; Yang, Yuanyuan; Lv, Xiaohua; Luo, Qingming

    2006-01-01

    A multi-wavelength light-emitting diode (LED) and laser diode (LD) based optical imaging system was developed to visualize the changes in cerebral blood flow, oxygenation following functional activation simultaneously in rodent cortex. The 2-D blood flow image was accessed by laser speckle contrast imaging, and the spectroscopic imaging of intrinsic signal was used for the calculation of oxyhemoglobin (HbO), deoxyhemoglobin (Hb) and total hemoglobin (HbT) concentration. The combination of spectroscopic imaging and laser speckle contrast imaging provides the capability to simultaneously investigate the spatial and temporal blood flow and hemoglobin concentration changes with high resolution, which may lead to a better understanding of the coupling between neuronal activation and vascular responses. The optical imaging system been built is compact and convenient to investigators. And it is reliable to acquire raw data. In present study, the hemodynamic responses to cortical spreading depression (CSD) in parietal cortex of ~-chloralose/urethan anesthetized rats were demonstrated.

  13. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    Science.gov (United States)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a

  14. Use of lignocaine or nitroglycerine for blunting of hemodynamic stress response during electroconvulsive therapy

    Directory of Open Access Journals (Sweden)

    Muhammad Umar Zahoor

    2014-01-01

    Conclusion: NTG provided more hemodynamic stability in post-ECT period as compared to lignocaine which only prevented a surge in HR without any effect on MAP. We conclude that NTG can safely be instituted for anaesthesia in ECT patients for prevention of hemodynamic stress response.

  15. Imaging hemodynamic changes in preterm infant brains with two-dimensional diffuse optical tomography

    Science.gov (United States)

    Gao, Feng; Ma, Yiwen; Yang, Fang; Zhao, Huijuan; Jiang, Jingying; Kusaka, Takashi; Ueno, Masanori; Yamada, Yukio

    2008-02-01

    We present our preliminary results on two-dimensional (2-D) optical tomographic imaging of hemodynamic changes of two preterm infant brains in different ventilation settings conditions. The investigations use the established two-wavelength, 16-channel time-correlated single photon counting system for the detection, and the generalized pulse spectrum technique based algorithm for the image reconstruction. The experiments demonstrate that two-dimensional diffuse optical tomography may be a potent and relatively simple way of investigating the functions and neural development of infant brains in the perinatal period.

  16. Increased sensitivity of fast BOLD fMRI with a subject-specific hemodynamic response function and application to epilepsy.

    Science.gov (United States)

    Proulx, Sébastien; Safi-Harb, Mouna; Levan, Pierre; An, Dongmei; Watanabe, Satsuki; Gotman, Jean

    2014-06-01

    Activation detection in functional Magnetic Resonance Imaging (fMRI) typically assumes the hemodynamic response to neuronal activity to be invariant across brain regions and subjects. Reports of substantial variability of the morphology of blood-oxygenation-level-dependent (BOLD) responses are accumulating, suggesting that the use of a single generic model of the expected response in general linear model (GLM) analyses does not provide optimal sensitivity due to model misspecification. Relaxing assumptions of the model can limit the impact of hemodynamic response function (HRF) variability, but at a cost on model parsimony. Alternatively, better specification of the model could be obtained from a priori knowledge of the HRF of a given subject, but the effectiveness of this approach has only been tested on simulation data. Using fast BOLD fMRI, we characterized the variability of hemodynamic responses to a simple event-related auditory-motor task, as well as its effect on activation detection with GLM analyses. We show the variability to be higher between subjects than between regions and variation in different regions to correlate from one subject to the other. Accounting for subject-related variability by deriving subject-specific models from responses to the task in some regions lead to more sensitive detection of responses in other regions. We applied the approach to epilepsy patients, where task-derived patient-specific models provided additional information compared to the use of a generic model for the detection of BOLD responses to epileptiform activity identified on scalp electro-encephalogram (EEG). This work highlights the importance of improving the accuracy of the model for detecting neuronal activation with fMRI, and the fact that it can be done at no cost to model parsimony through the acquisition of independent a priori information about the hemodynamic response. PMID:24582920

  17. Attenuation of hemodynamic responses to laryngoscopy and endotracheal intubation by intravenous esmolol

    Directory of Open Access Journals (Sweden)

    Gurudatta KN

    2014-06-01

    Conclusion: We conclude that esmolol in a dose of 100 mg given 2 minute before induction is highly effective in attenuation hemodynamic response to laryngoscopy and intubation. [Int J Res Med Sci 2014; 2(3.000: 866-871

  18. Effect of fiberoptic bronchoscope compared with direct laryngoscope on hemodynamic responses to orotracheal intubation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-hua; XUE Fu-shan; LI Ping; SUN Hai-yan; LIU Kun-peng; XU Ya-chao; LIU Yi; SUN Hai-tao

    2007-01-01

    @@ Fiberoptic bronchoscope (FOB) is an important instrument for respiratory, disorder examination and difficult airway management.1 The fiberoptic intubation can avoid the mechanical stimulus to oropharyngolaryngeal structures thereby it is likely to attenuate hemodynamic responses during orotracheal intubation.

  19. Low-dose esmolol: hemodynamic response to endotracheal intubation in normotensive patients

    OpenAIRE

    Lakshmanappa, Suresh; Suryanarayana, Venkatesh G; Alore, Ashley; Sathees B. Chandra

    2012-01-01

    Abstract Purpose: Endotracheal intubation is a frequently utilized and highly invasive component of anesthesia that is often accompanied by potentially harmful hemodynamic pressor responses. The purpose of this study was to investigate the efficiency of a single pre-induction 1 mg/kg bolus injection of esmolol for attenuating these hemodynamic responses to endotracheal intubation in normotensive patients. Material and methods: The study was composed of 100 randomly selected male and fe...

  20. Blind Source Separation of Hemodynamics from Magnetic Resonance Perfusion Brain Images Using Independent Factor Analysis

    Directory of Open Access Journals (Sweden)

    Yen-Chun Chou

    2010-01-01

    Full Text Available Perfusion magnetic resonance brain imaging induces temporal signal changes on brain tissues, manifesting distinct blood-supply patterns for the profound analysis of cerebral hemodynamics. We employed independent factor analysis to blindly separate such dynamic images into different maps, that is, artery, gray matter, white matter, vein and sinus, and choroid plexus, in conjunction with corresponding signal-time curves. The averaged signal-time curve on the segmented arterial area was further used to calculate the relative cerebral blood volume (rCBV, relative cerebral blood flow (rCBF, and mean transit time (MTT. The averaged ratios for rCBV, rCBF, and MTT between gray and white matters for normal subjects were congruent with those in the literature.

  1. Changes in cerebral hemodynamics in patients with posttraumatic diffuse brain swelling after external intraventricular drainage

    Institute of Scientific and Technical Information of China (English)

    Kefei Chen; Jirong Dong; Tian Xia; Chunlei Zhang; Wei Zhao; Qinyi Xu; Xuejian Cai

    2015-01-01

    Purpose: To investigate the changes of cerebral hemodynamics pre-and post-ventricular drainage in patients with posttraumatic acute diffuse brain swelling.Methods: Twenty-four cases of traumatic diffuse brain swelling were analyzed retrospectively.Patients in nonsurgical group were treated by medicine therapy.Patients in surgical group were treated by external ventricular drainage plus medicine therapy.The first CT perfusion scan was completed within 4 -5 h after trauma and scanned again after 7 days.The changes of perfusion parameters in area-of-interest in two groups were analyzed and compared before and after treatment.Result: Compared with the nonsurgical group, the value of cerebral blood volume, cerebral blood flow and mean transit time in bilateral frontal temporopadetal grey matter, basal ganglia, cerebellum, and brain stem at pre-and post-therapy were increased significantly (p < 0.05) in surgical group, and consequently the prognosis of patients undergoing surgery was also better than that of nonsurgical group.Conclusion: External ventricular drainage can improve cerebral perfusion and increase survival quality for the patients with posttraumatic acute diffuse brain swelling.

  2. Comparison of hemodynamic responses to dexmedetomidine versus esmolol in patients undergoing beating heart surgery

    OpenAIRE

    Mohamed Abdel Rahman Salem M.D,* Mostafa Elhamamsy M.D

    2001-01-01

    adrenergic agonists decrease sympathetic tone with ensuing attenuation of neuroendocrine and hemodynamic responses to anesthesia and surgery. Also, administration of beta -adrenergic antagonists contributes to prophylaxis against hypertension, tachycardia and myocardial ischemia and myocardial protection during cardiac surgery. The effects of dexmedetomidine (DEX), a highly specific alpha -adrenergic agonist, on these responses have not yet been fully reported in patients undergoing cardiac s...

  3. Detecting the Subtle Shape Differences in Hemodynamic Responses at the Group Level

    Directory of Open Access Journals (Sweden)

    Gang eChen

    2015-10-01

    Full Text Available The nature of the hemodynamic response (HDR is still not fully understood due to the multifaceted processes involved. Aside from the overall amplitude, the response may vary across cognitive states, tasks, brain regions, and subjects with respect to characteristics such as rise and fall speed, peak duration, undershoot shape, and overall duration. Here we demonstrate that the fixed-shape or adjusted-shape methods may fail to detect some shape subtleties. In contrast, the estimated-shape method (ESM through multiple basis functions can provide the opportunity to identify some subtle shape differences and achieve higher statistical power at both individual and group levels. Previously, some dimension reduction approaches focused on the peak magnitude, or made inferences based on the area under the curve or interaction, which can lead to potential misidentifications. By adopting a generic framework of multivariate modeling (MVM, we showcase a hybrid approach that is validated by simulations and real data. Unlike the few analyses that were limited to main effect, two- or three-way interactions, we extend the approach to an inclusive platform that is more adaptable than the conventional GLM, achieving a practical equipoise among representation, false positive control, statistical power, and modeling flexibility.

  4. Immediate hemodynamic response to furosemide in patients undergoing chronic hemodialysis.

    Science.gov (United States)

    Schmieder, R E; Messerli, F H; deCarvalho, J G; Husserl, F E

    1987-01-01

    To evaluate the effect of furosemide on cardiovascular hemodynamics in patients with end-stage renal failure, we studied ten patients undergoing hemodialysis three times a week. Arterial pressure, heart rate, and cardiac output (indocyanine green dye) were measured in triplicate; total peripheral resistance and central blood volume were calculated by standard formulas. Hemodynamics were determined at baseline and 5, 10, 15, and 30 minutes after intravenous (IV) bolus injection of furosemide 60 mg. Furosemide produced a decrease in central blood volume of -13% +/- 2.2% from pretreatment values (P less than .01) that was most pronounced five minutes after injection, together with a fall in cardiac output (from 6.76 +/- 0.59 to 6.17 +/- 0.52 L/min, P less than .10). Stroke volume decreased with a maximum fall occurring after 15 minutes (from 84 +/- 7 to 79 +/- 7 mL/min, P less than .05), and total peripheral resistance increased (from 15.8 +/- 2.1 to 17.8 +/- 2.3 units, P less than .05) after furosemide. Arterial pressure and heart rate did not change. The decrease in central blood volume reflects a shift of the total blood volume from the cardiopulmonary circulation to the periphery, suggesting dilation of the peripheral venous bed. Thus, even in patients undergoing hemodialysis, furosemide acutely decreases left ventricular preload by venous dilation and should therefore prove to be beneficial in acute volume overload.

  5. Deconvolution of dynamic dual photon microscopy images of cerebral microvasculature to assess the hemodynamic status of the brain

    Science.gov (United States)

    Mehrabian, Hatef; Lindvere, Liis; Stefanovic, Bojana; Martel, Anne L.

    2011-03-01

    Assessing the hemodynamic status of the brain and its variations in response to stimulations is required to understand the local cerebral circulatory mechanisms. Dynamic contrast enhanced imaging of cerebral microvasculature provides information that can be used in understanding physiology of cerebral diseases. Bolus tracking is used to extract characteristic parameters that quantify local cerebral blood flow. However, post-processing of the data is needed to segment the field of view (FOV) and to perform deconvolution to remove the effects of input bolus profile and the path it travels to reach the imaging window. Finding the arterial input function (AIF) and dealing with the ill-posedness of deconvolution system make this process are the main challenges. We propose using ICA to segment the FOV and to extract a local AIF as well as the venous output function that is required for deconvolution. This also helps to stabilize the system as ICA suppresses noise efficiently. Tikhoniv regularization (with L-curve analysis to find the best regularization parameter) is used to make the system stable. In-vivo dynamic 2PLSM images of a rat brain in two conditions (when the animal is at rest and when it is stimulated) are used in this study. The experimental along with the simulation studies provided promising results that demonstrate the feasibility and importance of performing deconvolution.

  6. Pros and cons of using the informed basis set to account for hemodynamic response variability with developmental data

    Directory of Open Access Journals (Sweden)

    Fabien Cignetti

    2016-07-01

    Full Text Available Conventional analysis of functional magnetic resonance imaging (fMRI data using the general linear model (GLM employs a neural model convolved with a canonical hemodynamic response function (HRF peaking 5s after stimulation. Incorporation of a further basis function, namely the canonical HRF temporal derivative, accounts for delays in the hemodynamic response to neural activity. A population that may benefit from this flexible approach is children whose hemodynamic response is not yet mature. Here, we examined the effects of using the set based on the canonical HRF plus its temporal derivative on both first- and second-level GLM analyses, through simulations and using developmental data (an fMRI dataset on proprioceptive mapping in children and adults. Simulations of delayed fMRI first-level data emphasized the benefit of carrying forward to the second-level a derivative boost that combines derivative and nonderivative beta estimates. In the experimental data, second-level analysis using a paired t-test showed increased mean amplitude estimate (i.e., increased group contrast mean in several brain regions related to proprioceptive processing when using the derivative boost compared to using only the nonderivative term. This was true especially in children. However, carrying forward to the second-level the individual derivative boosts had adverse consequences on random-effects analysis that implemented one-sample t-test, yielding increased between-subject variance, thus affecting group-level statistic. Boosted data also presented a lower level of smoothness that had implication for the detection of group average activation. Imposing soft constraints on the derivative boost by limiting the time-to-peak range of the modelled response within a specified range (i.e., 4-6s mitigated these issues. These findings support the notion that there are pros and cons to using the informed basis set with developmental data.

  7. Pros and Cons of Using the Informed Basis Set to Account for Hemodynamic Response Variability with Developmental Data

    Science.gov (United States)

    Cignetti, Fabien; Salvia, Emilie; Anton, Jean-Luc; Grosbras, Marie-Hélène; Assaiante, Christine

    2016-01-01

    Conventional analysis of functional magnetic resonance imaging (fMRI) data using the general linear model (GLM) employs a neural model convolved with a canonical hemodynamic response function (HRF) peaking 5 s after stimulation. Incorporation of a further basis function, namely the canonical HRF temporal derivative, accounts for delays in the hemodynamic response to neural activity. A population that may benefit from this flexible approach is children whose hemodynamic response is not yet mature. Here, we examined the effects of using the set based on the canonical HRF plus its temporal derivative on both first- and second-level GLM analyses, through simulations and using developmental data (an fMRI dataset on proprioceptive mapping in children and adults). Simulations of delayed fMRI first-level data emphasized the benefit of carrying forward to the second-level a derivative boost that combines derivative and nonderivative beta estimates. In the experimental data, second-level analysis using a paired t-test showed increased mean amplitude estimate (i.e., increased group contrast mean) in several brain regions related to proprioceptive processing when using the derivative boost compared to using only the nonderivative term. This was true especially in children. However, carrying forward to the second-level the individual derivative boosts had adverse consequences on random-effects analysis that implemented one-sample t-test, yielding increased between-subject variance, thus affecting group-level statistic. Boosted data also presented a lower level of smoothness that had implication for the detection of group average activation. Imposing soft constraints on the derivative boost by limiting the time-to-peak range of the modeled response within a specified range (i.e., 4–6 s) mitigated these issues. These findings support the notion that there are pros and cons to using the informed basis set with developmental data. PMID:27471441

  8. A 12-week resistance training program elicits positive changes in hemodynamic responses in the elderly

    OpenAIRE

    Cinthya Campos Salazar; Norbel Román Garita

    2009-01-01

    The aim of the study was to determine the effect of a resistance training program in hemodynamic responses and adaptations in 60 yr. old elderly. Volunteers were 60 healthy-elderly who underwent a training program 3 times/wk. for 12 wk. Participants were randomly assigned to either a control group, an exercise group who trained at 30% intensity of 5 maximal repetitions (5RM) (30% of 5RM) or an exercise group at an intensity of 70% (70% of 5RM). Hemodynamic variables measured were mean arteria...

  9. Comparison of hemodynamic responses to dexmedetomidine versus esmolol in patients undergoing beating heart surgery

    Directory of Open Access Journals (Sweden)

    Mohamed Abdel Rahman Salem M.D,* Mostafa Elhamamsy M.D

    2001-09-01

    Full Text Available adrenergic agonists decrease sympathetic tone with ensuing attenuation of neuroendocrine and hemodynamic responses to anesthesia and surgery. Also, administration of beta -adrenergic antagonists contributes to prophylaxis against hypertension, tachycardia and myocardial ischemia and myocardial protection during cardiac surgery. The effects of dexmedetomidine (DEX, a highly specific alpha -adrenergic agonist, on these responses have not yet been fully reported in patients undergoing cardiac surgery. Esmolol (ESM is a cardioselective, short-acting -blocking agent. Previous studies have established the effectiveness of esmolol in the reduction of hemodynamic responses during anesthetic induction. Aim: The study of hemodynamic responses of dexmedetomidine and esmolol and their effects on the anesthetic requirements during anesthesia in beating heart surgery. Methods: Forty patients scheduled for elective beating heart surgery received a !thereaf"#$%!&'" end of surgery in the ESM group. Total intravenous anesthesia using fentanyl, cisatracurium a"( -* +of surgery. Hemodynamics measured included heart rate, mean arterial pressure, filling pressures, cardiac index, systemic and pulmonary vascular resistances. The incidence of hypotension, hypertension, tachycardia, bradycardia, dysrhythmias, ST segment changes, total anesthetics requirements, muscle rigidity and postoperative shivering were recorded. Results: #$%",-.&/ 0*! 0 ! l/min/m ( 1 ! + 2

  10. Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers.

    Science.gov (United States)

    Son, Taeyoon; Wang, Benquan; Thapa, Damber; Lu, Yiming; Chen, Yanjun; Cao, Dingcai; Yao, Xincheng

    2016-08-01

    Blood flow changes are highly related to neural activities in the retina. It has been reported that neural activity increases when flickering light stimulation of the retina is used. It is known that blood flow changes with flickering light stimulation can be altered in patients with vascular disease and that measurement of flicker-induced vasodilatation is an easily applied tool for monitoring functional microvascular alterations. However, details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood due to the limitation of existing techniques. In this study, flickering light stimulation was applied to mouse retinas to investigate stimulus evoked hemodynamic responses in individual retinal layers. A spectral domain optical coherence tomography (OCT) angiography imaging system was developed to provide dynamic mapping of hemodynamic responses in the ganglion cell layer, inner plexiform layer, outer plexiform layer and choroid layer before, during and after flickering light stimulation. Experimental results showed hemodynamic responses with different magnitudes and time courses in individual retinal layers. We anticipate that the dynamic OCT angiography of stimulus evoked hemodynamic responses can greatly foster the study of neurovascular coupling mechanisms in the retina, promising new biomarkers for retinal disease detection and diagnosis. PMID:27570706

  11. Modeling the hemodynamic response in fMRI using smooth FIR filters

    DEFF Research Database (Denmark)

    Goutte, Cyril; Nielsen, Finn Årup; Hansen, Lars Kai

    2000-01-01

    -parameters using the evidence framework, or sampling using a Markov Chain Monte Carlo (MCMC) approach. The authors present a comparison of their model with standard hemodynamic response kernels on simulated data, and perform a full analysis of data acquired during an experiment involving visual stimulation....

  12. Variability in prefrontal hemodynamic response during exposure to repeated self-selected music excerpts, a near-infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Saba Moghimi

    Full Text Available Music-induced brain activity modulations in areas involved in emotion regulation may be useful in achieving therapeutic outcomes. Clinical applications of music may involve prolonged or repeated exposures to music. However, the variability of the observed brain activity patterns in repeated exposures to music is not well understood. We hypothesized that multiple exposures to the same music would elicit more consistent activity patterns than exposure to different music. In this study, the temporal and spatial variability of cerebral prefrontal hemodynamic response was investigated across multiple exposures to self-selected musical excerpts in 10 healthy adults. The hemodynamic changes were measured using prefrontal cortex near infrared spectroscopy and represented by instantaneous phase values. Based on spatial and temporal characteristics of these observed hemodynamic changes, we defined a consistency index to represent variability across these domains. The consistency index across repeated exposures to the same piece of music was compared to the consistency index corresponding to prefrontal activity from randomly matched non-identical musical excerpts. Consistency indexes were significantly different for identical versus non-identical musical excerpts when comparing a subset of repetitions. When all four exposures were compared, no significant difference was observed between the consistency indexes of randomly matched non-identical musical excerpts and the consistency index corresponding to repetitions of the same musical excerpts. This observation suggests the existence of only partial consistency between repeated exposures to the same musical excerpt, which may stem from the role of the prefrontal cortex in regulating other cognitive and emotional processes.

  13. Attenuation of hemodynamic responses to laryngoscopy and endotracheal intubation by intravenous esmolol

    OpenAIRE

    Gurudatta KN; Kiran Mallappa; Ravindra GL

    2014-01-01

    Background: Sympathetic response associated with laryngoscopy and endotracheal intubation is a potential cause for a number of complications especially in patients with cardio-vascular compromise. The aim of our study was to evaluate and study the efficiency of intravenous esmolol in the attenuation of hemodynamic response to laryngoscopy and intubation in normotensive individuals. Methods: 100 surgical patients of either sex of physical status ASA I/II were randomly divided into 2 groups....

  14. Biological characteristics of the cerebral venous system and its hemodynamic response to intracranial hypertension

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; WANG Xi-ming; LUAN Li-ming; CHAO Bao-ting; PANG Bo; SONG Hui; PANG Qi

    2012-01-01

    Background The role of the cerebral venous system (CVS) in intracranial pressure (ICP) regulation remains largely unclear.In the present study,the interaction between ICP and the cerebral venous system and its possible mechanism were investigated with respect to the biological characteristics of the cerebral venous system and its hemodynamic response under increased ICP.@@Methods We created intracranial hypertension animal model,measured and calculated the venous flow velocity and diameter of the outflow terminal of the CVS with color ultrasonic system and recorded the vascular morphology by 3-dimensional anatomical microscopy.Patients who suffered from raised ICP underwent MRI and digital subtraction angiography (DSA) examination to show the length in the vertical direction of the wall of the bridging vein representing the diameter value.Pathological autopsy was performed from bodies of patients who had died from non-cerebral causes to observe the juncture part between the venous sinuses and tributary vertical brain veins.@@Results Under increased ICP conditions,venous drainage through the outlet cuff segment,a unique structure between the bridge vein and sinus,was obstructed and in turn venous blood became congested.Therefore,the increased blood volume worsened the pre-existing ICP according to the well-accepted theory regarding volume-pressure relationship.This phenomenon was described as concurrent “Venogenic intracranial hypertension”,which is characterized by intracranial venous blood stasis responsive to and together with the original increased ICP.@@Conclusions The existence of this special pathophysiological process is prevalent,rather than rare,in various intracranial disorders.This finding would definitely provide new insight into the area of cerebral venous system research.

  15. Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury

    Science.gov (United States)

    Zhou, Chao; Eucker, Stephanie A.; Durduran, Turgut; Yu, Guoqiang; Ralston, Jill; Friess, Stuart H.; Ichord, Rebecca N.; Margulies, Susan S.; Yodh, Arjun G.

    2009-05-01

    We used a nonimpact inertial rotational model of a closed head injury in neonatal piglets to simulate the conditions following traumatic brain injury in infants. Diffuse optical techniques, including diffuse reflectance spectroscopy and diffuse correlation spectroscopy (DCS), were used to measure cerebral blood oxygenation and blood flow continuously and noninvasively before injury and up to 6 h after the injury. The DCS measurements of relative cerebral blood flow were validated against the fluorescent microsphere method. A strong linear correlation was observed between the two techniques (R=0.89, p<0.00001). Injury-induced cerebral hemodynamic changes were quantified, and significant changes were found in oxy- and deoxy-hemoglobin concentrations, total hemoglobin concentration, blood oxygen saturation, and cerebral blood flow after the injury. The diffuse optical measurements were robust and also correlated well with recordings of vital physiological parameters over the 6-h monitoring period, such as mean arterial blood pressure, arterial oxygen saturation, and heart rate. Finally, the diffuse optical techniques demonstrated sensitivity to dynamic physiological events, such as apnea, cardiac arrest, and hypertonic saline infusion. In total, the investigation corraborates potential of the optical methods for bedside monitoring of pediatric and adult human patients in the neurointensive care unit.

  16. The comparison of the effects of dexmedetomidine, fentanyl and esmolol on prevention of hemodynamic response to intubation

    OpenAIRE

    Nermin Gogus; Belgin Akan; Nurten Serger; Mustafa Baydar

    2014-01-01

    Background and objectives: Laryngoscopy and intubation can cause hemodynamic response. Various medications may be employed to control that response. In this study, we aimed to compare the effects of dexmedetomidine, fentanyl and esmolol on hemodynamic response. Methods: Ninety elective surgery patients who needed endotracheal intubation who were in American Society of Anesthesiology I–II group and ages between 21 and 65 years were included in that prospective, randomized, double-blind study...

  17. Exercise-based cardiac rehabilitation improves hemodynamic responses after coronary artery bypass graft surgery

    OpenAIRE

    Ghashghaei, Fatemeh Esteki; Sadeghi, Masoumeh; Marandi, Seyed Mohammad; Ghashghaei, Samira Esteki

    2012-01-01

    BACKGROUND: Cardiovascular disorders are an important public health problem worldwide. They are also the leading cause of mortality and morbidity. Therefore, American Heart Association proposed cardiac rehabilitation program as an essential part of care for cardiac patients to improve functional capacity. The aim of this study was to evaluate the effectiveness of cardiac rehabilitation program on functional status and some hemodynamic responses in patients after coronary artery bypass graft (...

  18. Prolonged hemodynamic response during incidental facial emotion processing in inter-episode bipolar I disorder

    OpenAIRE

    Rosenfeld, Ethan S.; Godfrey D. Pearlson; Sweeney, John A.; Tamminga, Carol A.; Keshavan, Matcheri S; Nonterah, Camilla; Stevens, Michael C.

    2014-01-01

    This fMRI study examined whether hemodynamic responses to affectively-salient stimuli were abnormally prolonged in remitted bipolar disorder, possibly representing a novel illness biomarker. A group of 18 DSM-IV bipolar I-diagnosed adults in remission and a demographically-matched control group performed an event-related fMRI gender-discrimination task in which face stimuli had task-irrelevant neutral, happy or angry expressions designed to elicit incidental emotional processing. Participants...

  19. Reduced Prefrontal Cortex Hemodynamic Response in Adults with Methamphetamine Induced Psychosis: Relevance for Impulsivity.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Yamamuro

    Full Text Available Patients with methamphetamine abuse/dependence often exhibit high levels of impulsivity, which may be associated with the structural abnormalities and functional hypoactivities observed in the frontal cortex of these subjects. Although near-infrared spectroscopy (NIRS is a simple and non-invasive method for characterizing the clinical features of various psychiatric illnesses, few studies have used NIRS to directly investigate the association between prefrontal cortical activity and inhibitory control in patients with methamphetamine-induced psychosis (MAP. Using a 24-channel NIRS system, we compared hemodynamic responses during the Stroop color-word task in 14 patients with MAP and 21 healthy controls matched for age, sex and premorbid IQ. In addition, we used the Barrett Impulsivity Scale-11 (BIS-11 to assess impulsivity between subject groups. The MAP group exhibited significantly less activation in the anterior and frontopolar prefrontal cortex accompanied by lower Stroop color-word task performance, compared with controls. Moreover, BIS-11 scores were significantly higher in the MAP group, and were negatively correlated with the hemodynamic responses in prefrontal cortex. Our data suggest that reduced hemodynamic responses in the prefrontal cortex might reflect higher levels of impulsivity in patients with MAP, providing new insights into disrupted inhibitory control observed in MAP.

  20. Effect of uninostril yoga breathing on brain hemodynamics: A functional near-infrared spectroscopy study

    Science.gov (United States)

    Singh, Karamjit; Bhargav, Hemant; Srinivasan, TM

    2016-01-01

    Objectives: To measure the effect of the right and left nostril yoga breathing on frontal hemodynamic responses in 32 right handed healthy male subjects within the age range of 18–35 years (23.75 ± 4.14 years). Materials and Methods: Each subject practiced right nostril yoga breathing (RNYB), left nostril yoga breathing (LNYB) or breath awareness (BA) (as control) for 10 min at the same time of the day for three consecutive days, respectively. The sequence of intervention was assigned randomly. The frontal hemodynamic response in terms of changes in the oxygenated hemoglobin (oxyHb), deoxygenated hemoglobin (deoxyHb), and total hemoglobin (totalHb or blood volume) concentration was tapped for 5 min before (pre) and 10 min during the breathing practices using a 16 channel functional near-infrared system (FNIR100-ACK-W, BIOPAC Systems, Inc., U.S.A.). Average of the eight channels on each side (right and left frontals) was obtained for the two sessions (pre and during). Data was analyzed using SPSS version 10.0 through paired and independent samples t-test. Results: Within group comparison showed that during RNYB, oxyHb levels increased significantly in the left prefrontal cortex (PFC) as compared to the baseline (P = 0.026). LNYB showed a trend towards significance for reduction in oxyHb in the right hemisphere (P = 0.057). Whereas BA caused significant reduction in deoxyHb (P = 0.023) in the left hemisphere. Between groups comparison revealed that oxyHb and blood volume in the left PFC increased significantly during RNYB as compared to BA (oxyHb: P =0.012; TotalHb: P =0.017) and LNYB (oxyHb: P =0.024; totalHb: P =0.034). Conclusion: RNYB increased oxygenation and blood volume in the left PFC as compared to BA and LNYB. This supports the relationship between nasal cycle and ultradian rhythm of cerebral dominance and suggests a possible application of uninostril yoga breathing in the management of psychopathological states which show lateralized cerebral

  1. Prospective randomized study to compare between intravenous dexmedetomidine and esmolol for attenuation of hemodynamic response to endotracheal intubation

    OpenAIRE

    Selvaraj, Venkatesh; Manoharan, Karthik Raj

    2016-01-01

    Background: Esmolol has an established role in attenuation of hemodynamic response to laryngoscopy and endotracheal intubation. We studied the effect of dexmedetomidine compared to that of esmolol in this study. Aim: To study the role of dexmedetomidine in attenuation of hemodynamic response to laryngoscopy and oral endotracheal intubation compared to that of esmolol hydrochloride in patients posted for elective surgery under general anesthesia. Study Design: Prospective randomized study doub...

  2. Hemodynamic and neuroendocrine responses to changes in sodium intake in compensated heart failure

    DEFF Research Database (Denmark)

    Damgaard, Morten; Norsk, Peter; Gustafsson, Finn;

    2006-01-01

    Patients with untreated heart failure (HF) exhibit a blunted hemodynamic and neuroendocrine response to a high sodium intake, leading to excessive sodium and water retention. However, it is not known whether this is the case for patients with compensated HF receiving angiotensin-converting enzyme....... In conclusion, high sodium intake was tolerated without any excessive sodium and water retention in medically treated patients with compensated HF. The observation that high sodium intake improves cardiac performance, induces peripheral vasodilatation, and suppresses the release of vasoconstrictor hormones does......-state conditions, hemodynamic and neuroendocrine examinations were performed at rest and during bicycle exercise. In seated HF patients, high sodium intake increased body weight (1.6 +/- 0.4%), plasma volume (9 +/- 2%), cardiac index (14 +/- 6%), and stroke volume index (21 +/- 5%), whereas mean arterial pressure...

  3. Hemodynamic and neuroendocrine responses to changes in sodium intake in compensated heart failure

    DEFF Research Database (Denmark)

    Damgaard, Morten; Norsk, Peter; Gustafsson, Finn;

    2005-01-01

    Patients with untreated heart failure (HF) exhibit a blunted hemodynamic and neuroendocrine response to a high sodium intake, leading to excessive sodium and water retention. However, it is not known whether this is the case for patients with compensated HF receiving angiotensin-converting enzyme....... In conclusion, high sodium intake was tolerated without any excessive sodium and water retention in medically treated patients with compensated HF. The observation that high sodium intake improves cardiac performance, induces peripheral vasodilatation, and suppresses the release of vasoconstrictor hormones does......-state conditions, hemodynamic and neuroendocrine examinations were performed at rest and during bicycle exercise. In seated HF patients, high sodium intake increased body weight (1.6 +/- 0.4%), plasma volume (9 +/- 2%), cardiac index (14 +/- 6%), and stroke volume index (21 +/- 5%), whereas mean arterial pressure...

  4. Empirical Evaluation of Visual Fatigue from Display Alignment Errors Using Cerebral Hemodynamic Responses

    Directory of Open Access Journals (Sweden)

    Hanniebey D. Wiyor

    2013-01-01

    Full Text Available The purpose of this study was to investigate the effect of stereoscopic display alignment errors on visual fatigue and prefrontal cortical tissue hemodynamic responses. We collected hemodynamic data and perceptual ratings of visual fatigue while participants performed visual display tasks on 8 ft × 6 ft NEC LT silver screen with NEC LT 245 DLP projectors. There was statistical significant difference between subjective measures of visual fatigue before air traffic control task (BATC and after air traffic control task (ATC 3, (P<0.05. Statistical significance was observed between left dorsolateral prefrontal cortex oxygenated hemoglobin (l DLPFC-HbO2, left dorsolateral prefrontal cortex deoxygenated hemoglobin (l DLPFC-Hbb, and right dorsolateral prefrontal cortex deoxygenated hemoglobin (r DLPFC-Hbb on stereoscopic alignment errors (P<0.05. Thus, cortical tissue oxygenation requirement in the left hemisphere indicates that the effect of visual fatigue is more pronounced in the left dorsolateral prefrontal cortex.

  5. A 12-week resistance training program elicits positive changes in hemodynamic responses in the elderly

    Directory of Open Access Journals (Sweden)

    Cinthya Campos Salazar

    2009-03-01

    Full Text Available The aim of the study was to determine the effect of a resistance training program in hemodynamic responses and adaptations in 60 yr. old elderly. Volunteers were 60 healthy-elderly who underwent a training program 3 times/wk. for 12 wk. Participants were randomly assigned to either a control group, an exercise group who trained at 30% intensity of 5 maximal repetitions (5RM (30% of 5RM or an exercise group at an intensity of 70% (70% of 5RM. Hemodynamic variables measured were mean arterial pressure (MAP, calculated before and immediately after the training session, and rate pressure product (RPP, estimated once a month and before and after finishing the program. Results indicated that resistance exercise training at 30% and 70% of 5RM, with a total exercise work of 872.7 and 890.9 kg did not elicited cardiovascular risks for the elderly. A 12-wk resistance exercise training reduced the cardiovascular strain as shown by the RPP (~16% and the MAP (~9%, with no adverse effects throughout the program. Unfortunately, all the hemodynamic benefits were reverted 6 days following completion of the program. In conclusion, a healthy elderly population must perform resistance training exercises to significantly reduce the cardiovascular stress. We suggest to conduct further research that looks into different exercise intensities in longer program duration and to determine the mechanisms responsible for the deleterious effects of the detraining by using physiological, biochemical and biomechanical variables.

  6. Comparison of hemodynamic response to tracheal intubation with Macintosh and McCoy laryngoscopes

    Directory of Open Access Journals (Sweden)

    Mehtab A Haidry

    2013-01-01

    Full Text Available Background: Use of McCoy blade laryngoscope avoids the lifting force in the vallecula and theoretically should lead to a lower hemodynamic response related to laryngoscopy and tracheal intubation. The available literature on the topic is conflicting. Materials and Methods: We studied the hemodynamic response to laryngoscopy and tracheal intubation in 60 ASA 1 AND 2 adult patients using either Macintosh or McCoy laryngoscopes. The change in systolic, diastolic, mean arterial pressure, and heart rate (HR was observed for 10 min post intubation. Arrhythmias and ST changes were also observed. Results: The maximum change in HR was 18.7% in the Macintosh and 7.7% in the McCoy group, and in systolic arterial pressure was 22.9% in the Macintosh and 10.3% in the McCoy group. This difference between groups was significant ( P < 0.0001. The change lasted for a lesser duration in the McCoy group. No arrhythmias or ST changes were observed in either group. Conclusion: Hemodynamic changes with use of McCoy laryngoscope were lesser in magnitude and of shorter duration.

  7. Assessment of pedophilia using hemodynamic brain response to sexual stimuli

    DEFF Research Database (Denmark)

    Ponseti, Jorge; Granert, Oliver; Jansen, Olav;

    2012-01-01

    Accurately assessing sexual preference is important in the treatment of child sex offenders. Phallometry is the standard method to identify sexual preference; however, this measure has been criticized for its intrusiveness and limited reliability....

  8. Hemodynamic responses to mental stress during salt loading

    DEFF Research Database (Denmark)

    Gefke, Maria; Christensen, Niels Juel; Bech, Per;

    2016-01-01

    PURPOSE: The purpose was to examine whether prolonged moderate stress associated with a student exam would increase the blood pressure response to a salt load in young healthy normotensive individuals. METHODS: Ten healthy young subjects were examined at two different occasions in random order (i......) during preparation for a medical exam (prolonged stress) and (ii) outside the exam period (low stress). All subjects consumed a controlled diet for 3 days with low- or high-salt content in randomized order. The subjective stress was measured by Spielberger's State-Trait Anxiety Inventory-Scale, SCL...... Symptom Checklist for stress and the Visual Analogue Scale. On each level of stress, 24-h ambulatory blood pressure and cardiac output (CO) were measured. Furthermore, plasma norepinephrine (NE), epinephrine (E) and plasma renin activity (PRA) were measured. RESULTS: Twenty-four-hour ABP, 24-h heart rate...

  9. The Pentax airway scope versus the Macintosh laryngoscope: Comparison of hemodynamic responses and concentrations of plasma norepinephrine to tracheal intubation

    OpenAIRE

    Lee, Heeseung

    2013-01-01

    Background The Pentax Airway Scope (AWS) is a video laryngoscope designed to facilitate tracheal intubation with a high-resolution image. The Pentax AWS has been reported to cause less hemodynamic stress than the Macintosh laryngoscope. The aims of this study are to investigate the differences in hemodynamic responses and norepinephrine concentrations to tracheal intubation between procedures using he Pentax AWS and the Macintosh laryngoscope. Methods Forty patients (American Society of Anest...

  10. Comparison of the efficacy of dexmedetomidine and esmolol in the treatment of increased hemodynamic response during the recovery period

    OpenAIRE

    GÜNAY, Hülya; Moğol, Elif Başağan; Kaya, Fatma Nur; Türker, Gürkan; Yavaşcaoğlu, Belgin; Ahun, Filiz; Bebek, Ayşe Neslihan; Yeniaydoğmuş, Tuba

    2012-01-01

    Objectives: Our aim was to compare effectiveness of esmolol and dexmedetomidine in the treatment of increased hemodynamic response during anesthesia recovery period. Materials and methods: 60 ASA I-II patients whom scheduled for elective surgery with endotracheal intubation were randomized before extubation according to their hemodynamic parameters that were increased 20% of their baseline values in order to receive 1mg/kg esmolol (Group Esmolol, n= 30) or 0.5 µg/kg dexmedetomid...

  11. Comparative study of hemodynamic responses to orotracheal intubation with intubating laryngeal mask airway and direct laryngoscope

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-hua; XUE Fu-shan; SUN Hai-yan; LI Cheng-wen; SUN Hai-tao; LI Ping; LIU Kun-peng

    2006-01-01

    Background Intubating laryngeal mask airway (ILMA) offers a new approach for orotracheal intubation and is expected to produce less cardiovascular stress responses. However, the available studies provide inconsistent results. The purpose of this study was to identify whether there is a clinically relevant difference in hemodynamic responses to orotracheal intubation by using ILMA and direct laryngoscope (DLS).Methods A total of 53 adult patients, ASA physical status Ⅰ-Ⅱ, scheduled for elective plastic surgery under general anesthesia requiring the orotracheal intubation, were randomly allocated to either DLS or ILMA groups.After a standard intravenous anesthesia induction, orotracheal intubation was performed. Noninvasive blood pressure and heart rate were recorded before (baseline values) and after anesthesia induction (post-induction values), at intubation and every minute for the first 5 minutes after intubation. The data were analyzed using Chisquare test, paired and unpaired Student's t test, and repeated-measures analysis of variance as appropriate.Results The mean intubation time in the ILMA group was longer than that in the DLS group (P<0.05). The blood pressure and heart rate increased significantly after intubation in the two groups compared to the postinduction values (P<0.05), but the maximum value of blood pressure during the observation did not exceed the baseline value, while the maximum value of heart rate was higher than the baseline (P<0.05). During the observation, there were no significant differences in blood pressure and heart rate among each time point and in the maximum values between the two groups.Conclusions Orotracheal intubations by using ILMA and DLS produce similar hemodynamic response. ILMA has no advantage in attenuating the hemodynamic responses to orotracheal intubation compared with DLS.

  12. Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina.

    Science.gov (United States)

    Riva, Charles E; Logean, Eric; Falsini, Benedetto

    2005-03-01

    The retina and optic nerve are both optically accessible parts of the central nervous system. They represent, therefore, highly valuable tissues for studies of the intrinsic physiological mechanism postulated more than 100 years ago by Roy and Sherrington, by which neural activity is coupled to blood flow and metabolism. This article describes a series of animal and human studies that explored the changes in hemodynamics and oxygenation in the retina and optic nerve in response to increased neural activity, as well as the mechanisms underlying these changes. It starts with a brief review of techniques used to assess changes in neural activity, hemodynamics, metabolism and tissue concentration of various potential mediators and modulators of the coupling. We then review: (a) the characteristics of the flicker-induced hemodynamical response in different regions of the eye, starting with the optic nerve, the region predominantly studied; (b) the effect of varying the stimulus parameters, such as modulation depth, frequency, luminance, color ratio, area of stimulation, site of measurement and others, on this response; (c) data on activity-induced intrinsic reflectance and functional magnetic resonance imaging signals from the optic nerve and retina. The data undeniably demonstrate that visual stimulation is a powerful modulator of retinal and optic nerve blood flow. Exploring the relationship between vasoactivity and metabolic changes on one side and corresponding neural activity changes on the other confirms the existence of a neurovascular/neurometabolic coupling in the neural tissue of the eye fundus and reveals that the mechanism underlying this coupling is complex and multi-factorial. The importance of fully exploiting the potential of the activity-induced vascular changes in the assessment of the pathophysiology of ocular diseases motivated studies aimed at identifying potential mediators and modulators of the functional hyperemia, as well as conditions

  13. Hemodynamic segmentation of brain perfusion images with delay and dispersion effects using an expectation-maximization algorithm.

    Directory of Open Access Journals (Sweden)

    Chia-Feng Lu

    Full Text Available Automatic identification of various perfusion compartments from dynamic susceptibility contrast magnetic resonance brain images can assist in clinical diagnosis and treatment of cerebrovascular diseases. The principle of segmentation methods was based on the clustering of bolus transit-time profiles to discern areas of different tissues. However, the cerebrovascular diseases may result in a delayed and dispersed local perfusion and therefore alter the hemodynamic signal profiles. Assessing the accuracy of the segmentation technique under delayed/dispersed circumstance is critical to accurately evaluate the severity of the vascular disease. In this study, we improved the segmentation method of expectation-maximization algorithm by using the results of hierarchical clustering on whitened perfusion data as initial parameters for a mixture of multivariate Gaussians model. In addition, Monte Carlo simulations were conducted to evaluate the performance of proposed method under different levels of delay, dispersion, and noise of signal profiles in tissue segmentation. The proposed method was used to classify brain tissue types using perfusion data from five normal participants, a patient with unilateral stenosis of the internal carotid artery, and a patient with moyamoya disease. Our results showed that the normal, delayed or dispersed hemodynamics can be well differentiated for patients, and therefore the local arterial input function for impaired tissues can be recognized to minimize the error when estimating the cerebral blood flow. Furthermore, the tissue in the risk of infarct and the tissue with or without the complementary blood supply from the communicating arteries can be identified.

  14. Hemodynamic Changes during a Deep Inspiration Maneuver Predict Fluid Responsiveness in Spontaneously Breathing Patients

    Directory of Open Access Journals (Sweden)

    Sébastien Préau

    2012-01-01

    Full Text Available Objective. We hypothesized that the hemodynamic response to a deep inspiration maneuver (DIM indicates fluid responsiveness in spontaneously breathing (SB patients. Design. Prospective study. Setting. ICU of a general hospital. Patients. Consecutive nonintubated patients without mechanical ventilation, considered for volume expansion (VE. Intervention. We assessed hemodynamic status at baseline and after VE. Measurements and Main Results. We measured radial pulse pressure (PP using an arterial catheter and peak velocity of femoral artery flow (VF using continuous Doppler. Changes in PP and VF induced by a DIM (ΔPPdim and ΔVFdim were calculated in 23 patients. ΔPPdim and ΔVFdim ≥12% predicted responders to VE with sensitivity of 90% and specificity of 100%. Conclusions. In a restricted population of SB patients with severe sepsis or acute pancreatitis, ΔPPdim and ΔVFdim are accurate indices for predicting fluid responsiveness. These results should be confirmed in a larger population before validating their use in current practice.

  15. Body position does not affect the hemodynamic response to venous air embolism in dogs

    Science.gov (United States)

    Mehlhorn, U.; Burke, E. J.; Butler, B. D.; Davis, K. L.; Katz, J.; Melamed, E.; Morris, W. P.; Allen, S. J.

    1994-01-01

    Current therapy for massive venous air embolism (VAE) includes the use of the left lateral recumbent (LLR) position. This recommendation is based on animal studies, conducted 50 yr ago, which looked primarily at survival. Little is known, however, about the concomitant hemodynamic response after VAE in various body positions. The purpose of this study was to investigate the hemodynamic and cardiovascular changes in various body positions after VAE. Twenty-two mechanically ventilated supine mongrel dogs received a venous air infusion of 2.5 mL/kg at a rate of 5 mL/s. One minute after the infusion, 100% oxygen ventilation was commenced and the body position of the dogs was changed to either the LLR (n = 6), the LLR with the head 10 degrees down (LLR-10 degrees; n = 6) or the right lateral recumbent (RLR; n = 5) position. Five dogs were maintained in the supine position (SUP; n = 5). One dog died in every group except in the SUP group, where all the dogs recovered. There were no significant differences among the various body positions in terms of heart rate, mean arterial pressure, pulmonary artery pressure, central venous pressure, left ventricular end-diastolic pressure, or cardiac output. The acute hemodynamic changes occurring during the first 5-15 min after VAE recovered to 80% of control within 60 min. Our data suggest that body repositioning does not influence the cardiovascular response to VAE. Specifically, our data do not support the recommendation of repositioning into the LLR position for the treatment of VAE.

  16. Relationship between prefrontal hemodynamic responses and quality of life differs between melancholia and non-melancholic depression.

    Science.gov (United States)

    Tsujii, Noa; Mikawa, Wakako; Tsujimoto, Emi; Akashi, Hiroyuki; Adachi, Toru; Kirime, Eiji; Shirakawa, Osamu

    2016-07-30

    This study aimed to determine whether quality of life (QOL) reflects specific functional abnormalities of frontotemporal hemodynamic responses in melancholia. We recruited 30 patients with major depressive disorder (MDD) with melancholic features (MDD-MF), 52 with non-melancholic features (MDD-NMF), and 68 healthy control subjects who were matched for age, sex ratio, and years of education. QOL was assessed using the Medical Outcomes Study 36-item Short-Form Health Survey (SF-36), and regional hemodynamic responses during a verbal fluency task were monitored with near-infrared spectroscopy (NIRS). Patients with MDD-MF scored significantly lower than those with MDD-NMF on the role emotional domain of SF-36. Both MDD patient groups exhibited lower hemodynamic responses in the frontotemporal regions than the control group. Hemodynamic responses in the frontotemporal regions were significantly smaller in patients with MDD-MF than in those with MDD-NMF. The role emotional domain of patients with MDD-MF was significantly and positively correlated with hemodynamic responses in the prefrontal region, whereas that of patients with MDD-NMF revealed no significant correlation. In conclusion, our results indicate that patients with MDD-MF exhibit qualitatively distinct prefrontal dysfunction patterns associated with emotional role functioning compared with patients with MDD-NMF. PMID:27259838

  17. Functional photoacoustic micro-imaging of cerebral hemodynamic changes in single blood vessels after photo-induced brain stroke

    Science.gov (United States)

    Liao, Lun-De; Chen, You-Yin; Lin, Chin-Teng; Li, Meng-Lin

    2013-03-01

    Studying the functional hemodynamic roles of individual cerebral cortical arterioles in maintaining both the structure and function of cortical regions during and after brain stroke in small animals is an important issue. Recently, functional photoacoustic microscopy (fPAM) has been proved as a reliable imaging technique to probe the total hemoglobin concentration (HbT), cerebral blood volume (CBV) and hemoglobin oxygen saturation (SO2) in single cerebral blood vessels of rats. Here, we report the application of fPAM associated with electrophysiology recordings to investigating functional hemodynamic changes in single cortical arterioles of rats with electrical forepaw stimulation after photo-induced ischemic stroke. Because of the weak optical focusing nature of our fPAM system, photo-induced ischemic stroke targeting single cortical arterioles can be easily conducted with simple adaptation. Functional HbT, CBV and SO2 changes associated with the induced stroke in selected arterioles from the anterior cerebral artery system were imaged with 36 x 65-μm spatial resolution. Experimental results showed that after photo-occlusion of a single arteriole, the functional changes of nearby arterioles in cerebral cortex only can be observed immediately after the stroke. After a few minutes of stroke onset, there are no significant functional changes under the forepaw stimulation, suggesting that alternate blood flow routes are not actively recruited. The fPAM with electrophysiology recordings complements existing imaging techniques and has the potential to offer a favorable tool for explicitly studying cerebral hemodynamics in small animal models of photo-indcued ischemic stroke.

  18. Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo

    DEFF Research Database (Denmark)

    Lind, Barbara Lykke; Brazhe, Alexey; Jessen, Sanne Barsballe;

    2013-01-01

    in astrocyte somas, processes, and end-feet preceded local vasodilatation. Fast Ca(2+) responses in both neurons and astrocytes correlated with synaptic activity, but only the astrocytic responses correlated with the hemodynamic shifts. These data establish that a large proportion of cortical astrocytes have...

  19. Efficacy of the Valsalva Maneuver on Needle Projection Pain and Hemodynamic Responses During Spinal Puncture

    Directory of Open Access Journals (Sweden)

    Sussan Soltani Mohammadi, Amin Ghasemi Pajand, Gita Shoeibi

    2011-01-01

    Full Text Available This study evaluated the efficacy of the valsalva maneuver that can induce baroreceptor activation and nociception, on needle projection pain and hemodynamic responses associated with spinal puncture. Ninety adults, ASA physical status I and II undergoing elective surgeries were included. Patients were randomized into three equal groups. Group I (C: control; Group II (B: ball; pressed a rubber ball (attention-diverting method; Group III (V: valsalva; blew into sphygmomanometer tubing and hold the mercury column up to 30 mm Hg for a period of at least 20s. Spinal needle projection pain was graded using numeric rating scale (NRS: 1-10, where scales of 1-3 were rated as mild, 4-6 as moderate, and > 6 as severe. Blood pressure and heart rate, five minutes before the procedure, during the spinal puncture and first and third minutes after that, were also recorded. Significant reduction in NRS was observed in the valsalva group compared with the control and the ball groups (p=0.001. There were statistical but no significant clinical differences in mean arterial blood pressure and heart rates between the study groups (P=0.008 and P=0.016 respectively. In conclusion valsalva maneuver can decrease the skin puncture pain associated with spinal needle projection while observing hemodynamic changes.

  20. Insulin sensitivity and hemodynamic responses to insulin in Wistar-Kyoto and spontaneously hypertensive rats.

    Science.gov (United States)

    Pître, M; Nadeau, A; Bachelard, H

    1996-10-01

    The insulin-mediated vasodilator effect has been proposed as an important physiological determinant of insulin action on glucose disposal in normotensive humans. The present study was designed to further examine the acute regional hemodynamic effects of insulin in different vascular beds and to explore the relationships between insulin vascular effects and insulin sensitivity during euglycemic hyperinsulinemic clamps in conscious normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). The rats were instrumented with intravascular catheters and pulsed Doppler flow probes to measure blood pressure, heart rate, and regional blood flows. In WKY rats, the euglycemic infusion of insulin (4 and 16 mU.kg-1.min-1) causes vasodilations in renal and hindquarter vascular beds but no changes in mean blood pressure, heart rate, or superior mesenteric vascular conductance. In contrast, in SHR, the same doses of insulin produce vasoconstrictions in superior mesenteric and hindquarter vascular beds and, at high doses, increase blood pressure. Moreover, at the lower dose of insulin tested, we found a reduction in the insulin sensitivity index in the SHR compared with the WKY rats. The present findings provide further evidence for an association between insulin sensitivity and insulin-mediated hemodynamic responses.

  1. Age-related changes in brain hemodynamics; A calibrated MRI study

    DEFF Research Database (Denmark)

    De Vis, J B; Hendrikse, J; Bhogal, A;

    2015-01-01

    INTRODUCTION: Blood oxygenation-level dependent (BOLD) magnetic resonance imaging signal changes in response to stimuli have been used to evaluate age-related changes in neuronal activity. Contradictory results from these types of experiments have been attributed to differences in cerebral blood....... A dual-echo pseudocontinuous arterial spin labeling (ASL) sequence was performed during normocapnic, hypercapnic, and hyperoxic breathing challenges. Whole brain and regional gray matter values of CBF, ASL cerebrovascular reactivity (CVR), BOLD CVR, oxygen extraction fraction (OEF), and CMRO2 were...... could potentially be explained by differences in EtCO2 . Regional CMRO2 was lower in older subjects. BOLD studies should take this into account when investigating age-related changes in neuronal activity....

  2. Brief report: the effects of the menstrual cycle on the hemodynamic response to laryngoscopy and tracheal intubation.

    Science.gov (United States)

    Hanci, Volkan; Yurtlu, Serhan; Hakimoglu, Sedat; Yilmaz, Mensure; Ayoglu, Hilal; Basaran, Mustafa; Erdogan, Gülay; Okyay, Rahsan Dilek; Turan, Isil Ozkoçak

    2010-08-01

    We designed this study to determine the effect of the menstrual cycle on the hemodynamic response to tracheal intubation (TI). Sixty-two ASA I women who were either in the follicular phase (group F, n = 31) or luteal phase (group L, n = 31) of their menstrual cycle were included in the study. Patients received propofol and rocuronium for intubation. Hemodynamic variables were recorded before administration of the IV anesthetic, as well as after TI. Rate pressure products were calculated. Groups were similar in terms of demographic data. Rate pressure products values at the first minute after TI were significantly increased in group L than were those in group F (P < 0.001). We conclude that the phase of the menstrual cycle is an important factor in the hemodynamic response to TI. PMID:20584874

  3. EFFECTS OF ALFENTANIL AND ESMOLOL ON HEMODYNAMIC AND CATECHOLMINE RESPONSE TO TRACHEAL INTUBATION

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Objective.To compare the effects of alfentanil and esmolol on hemodynamic and catecholamine response to tracheal intubation.Methods.hiry-five adult patients were randomly allocated to one of three groups,Grup A(control group),Group B(esmolol group)and Group C(alfentanil group).The patients received either 2 mg/kg esmolol(inGroup B)or 30 μg/kg alfentanil(in GroupC)before intubation.Tracheal intubation was performed with 4 mg/kg thiopental and 0.1 mg/kg vecuronium and 3% isoflurane.Systolic blood pressure(SBP),diastolic blood pressure(BP),mean blood pressure(MBP),heart rate(HR),norepinephrine(NE),epinephrine(E)and dopamine(DA)were measured before and after intubation.Results.The control group had a baeline SBP of 149±23 mmHg while Groups B,C had a baseline SBP of 148±23,and 150±21mmHg,respectively(P>0.05).Three min after tracheal intubation,the control group SBP increased to 160±30 mmHg and Group B remained at the baseline level,14±5 mmHg,and Group C significantly decreased to 91±22 mmHg(P<0.01).Two min after intubation HR in Group B increased significantly but 3 min after intubation HR in Groups B and C were significantly lower than that of contrl group(P<0.05).NE in Groups A and B increased significantly to 5.75±3.51 and 6.75±3.30 nmol/L 3 min after intubation(P<0.01).In Group C,3 min after intubation NE was not significantly differnt from the basline but E decreased significantly(P<0.01).Conclusion.2 ?g/kg esmolol can moerate the hemodynamic response to tracheal intubation to a certain extent and 30μg/kg alfentanil can completely attenuate the hemodynamic and catecholamine responses.

  4. Categorization of the hemodynamic response to hemodialysis: the importance of baroreflex sensitivity.

    Science.gov (United States)

    Chesterton, Lindsay J; Selby, Nicholas M; Burton, James O; Fialova, Jana; Chan, Cian; McIntyre, Chris W

    2010-01-01

    Intradialytic hypotension (IDH) remains an important cause of morbidity and mortality in hemodialysis (HD) patients. The baroreflex arc is under autonomic control and regulates blood pressure. This study aimed to investigate the contribution of impaired baroreflex sensitivity (BRS) to the pathophysiology of IDH. Thirty-four chronic HD (12 IDH-prone, 22 IDH-resistant) patients underwent BRS measurement during HD with relative blood volume monitoring. During analysis, patients were separated into four age-matched groups according to resting BRS>or=4.5 ms/mmHg and hemodynamic stability. Resting BRS was extremely heterogenous (geometric mean BRS 5.78+/-1.41 [range 1.76-41.41] ms/mmHg). Relative blood volume reduction was well matched in all groups (mean reduction in relative blood volume for all patients -6.74%+/-0.86%, P>0.05). Thirty-seven episodes of IDH occurred in the IDH prone, reduced BRS group. Patients with impaired resting BRS and prone to IDH had markedly different responses to HD as compared to the preserved BRS group, but the total peripheral resistance response was significantly lower than in the IDH-resistant patients (15.9%+/-2.1% vs. 42.4%+/-3.0%, respectively, P<0.001). In those patients prone to IDH and with impaired resting BRS, percentage reduction in cardiac output at the end of HD highly correlated with reduction in relative blood volume (r=0.94, P=0.006). Hypotension during dialysis may be an important source of recurrent cardiac injury and early recognition of those patients prone to relative symptomatic and asymptomatic hypotension remains important. Impaired resting BRS and recognition of a suboptimal peripheral pressor response, appear to predict those patients most likely to undergo hemodynamic instability and may assist in the pursuit of this elusive goal.

  5. EFFECTS OF ALFENTANIL AND ESMOLOL ON HEMODYNAMIC AND CATECHOLAMINE RESPONSE TO TRACHEAL INTUBATION

    Institute of Scientific and Technical Information of China (English)

    龚志毅; 罗爱伦

    1999-01-01

    Objective. To compare the effects of alfentanil and esmolol on hemodynamic and catecholamine responsee to tracheal intubation.Mahods. Thirty-five adult patients were randomly allocated to one of three groups, Group A (control group), Group B (esmolol groap) and Group C (alfentanil group). The patients received either 2 mg/kg esmolol (in Group B) or 30μg/kg alfentanil (in Group C) before intulmtion. Tracheal intubation was performed with 4 mg/kg thiopental and 0. 1 mg/kg vecuronium and 3% isoflurane. Systolic blood pressure(SBP), diastolic blood pressure (DBP), mean blood pressure (MBP), heart rate (HR), norepinephrine(NE),epinephrine(E) and dopamine (DA) were measured before and after intubtttion.Results.The control group had a baseline SBP of 149±23 mmHg while Groups B,C had a baseline SBP of 148±23,and 150±21mmHg,respectively(P>0.05),Three min after tracheal intubation,the control group SBP increased to 160±30mmHg and Group B remained at the baseline level ,147±5mmHg,and Goup C significantly decreased to 91±22mmHg(P<0.01).Two min after intubation HR in Group B increased significantly but 3 min after intubation HR in Groups B and C were significantly lower than that of control group(P<0.05).NE in Groups A and B increased significatly to 5.75±3.51 and 6.75±3.30nmol/L 3 min after intubation(P<0.01).In Group C,3min after intubation NE was not significantly different from the baseline but E becreased significantly(P<0.01).Conclusion.2mg/kg esmolol can moderate the hemodynamic response to tracheal intubation to a certain extent and 30μg/kg alfentanil can completely attenuate the hemodynamic and catecholamine responses.

  6. Cerebral hemodynamic changes of mild traumatic brain injury at the acute stage.

    Directory of Open Access Journals (Sweden)

    Hardik Doshi

    Full Text Available Mild traumatic brain injury (mTBI is a significant public health care burden in the United States. However, we lack a detailed understanding of the pathophysiology following mTBI and its relation to symptoms and recovery. With advanced magnetic resonance imaging (MRI, we can investigate brain perfusion and oxygenation in regions known to be implicated in symptoms, including cortical gray matter and subcortical structures. In this study, we assessed 14 mTBI patients and 18 controls with susceptibility weighted imaging and mapping (SWIM for blood oxygenation quantification. In addition to SWIM, 7 patients and 12 controls had cerebral perfusion measured with arterial spin labeling (ASL. We found increases in regional cerebral blood flow (CBF in the left striatum, and in frontal and occipital lobes in patients as compared to controls (p = 0.01, 0.03, 0.03 respectively. We also found decreases in venous susceptibility, indicating increases in venous oxygenation, in the left thalamostriate vein and right basal vein of Rosenthal (p = 0.04 in both. mTBI patients had significantly lower delayed recall scores on the standardized assessment of concussion, but neither susceptibility nor CBF measures were found to correlate with symptoms as assessed by neuropsychological testing. The increased CBF combined with increased venous oxygenation suggests an increase in cerebral blood flow that exceeds the oxygen demand of the tissue, in contrast to the regional hypoxia seen in more severe TBI. This may represent a neuroprotective response following mTBI, which warrants further investigation.

  7. Hemodynamic response based mixture model to estimate micro- and macro-vasculature contributions in functional MRI

    CERN Document Server

    Singh, Manbir; Sungkarat, Witaya; Zhou, Yongxia

    2003-01-01

    A multi-componet model reflecting the temporal characteristics of micro- and macro-vasculature hemodynamic responses was used to fit the time-course of voxels in functional MRI (fMRI). The number of relevant components, the latency of the first component, the time- separation among the components, their relative amplitude and possible interpretation in terms of partial volume contributions of micro- and macro-components to the time-course data were investigated. Analysis of a reversing checkerboard experiment revealed that there was no improvement in the filing beyond two components. Using a two-component model, the fractional abundances of the micro- and macro-vasculature were estimated in individual voxels. These results suggest the potential of a mixture-model approach to mitigate partial volume effects and separate contributions of vascular components within a voxel in fMRI.

  8. [The effects of premedication on induction doses of propofol and hemodynamic responses during induction].

    Science.gov (United States)

    Kodaka, M; Okamoto, Y; Kakoi, H; Ishizuka, I; Miyao, H; Kawasaki, J; Kawazoe, T

    1997-10-01

    We chose five sedatives for premedication and investigated the effect of these drugs on the induction doses of propofol. One hundred patients were allocated into one of five groups of 20. These groups consisted of control group (C) given only atropine 0.5 mg i.m.; CL group (plus clonidine 0.15 mg orally); H group (plus hydroxyzine 25 mg i.m.); M group (plus midazolam 3 mg i.m.) and D group (plus diazepam 10 mg orally). The induction dose was measured using loss of count technique. Arterial pressure and heart rate were measured, before and after propofol induction as well as after intubation. We also calculated rate pressure products (RPP) at each point. The induction doses were significantly lower in M-group than those in C-group. On the other hand, in hemodynamic responses, RPP was unchanged in any groups after propofol induction and after the intubation. Both propofol and midazolam have been known to have a depressive effect on the central nervous system via GABA-A receptor-mediated inhibition, although the exact receptor for propofol is unknown. We thought, therefore, that when the interaction occurred, both midazolam and propofol had the same effect on the GABA-A receptor and increased chloride ion flux through the channels. Hydroxyzine and clonidine, however, do not share a common receptor or exert effect on the GABA-A receptor. We consider that this was one of the reasons why induction doses of both H and CL group could not decrease significantly. We concluded that midazolam 3 mg decreased propofol induction dose significantly. Both midazolam 3 mg and clonidine 0.15 mg decreased RPP before induction and hemodynamic responses to induction and intubation were stable. PMID:9369050

  9. Comparison of intraoperative brain condition, hemodynamics and postoperative recovery between desflurane and sevoflurane in patients undergoing supratentorial craniotomy

    Directory of Open Access Journals (Sweden)

    Surya Kumar Dube

    2015-01-01

    Full Text Available Background: Post operative recovery has been reported to be faster with desflurane than sevoflurane anesthesia in previous studies. The use of desflurane is often criticized in neurosurgery due to the concerns of cerebral vasodilation and increase in ICP and studies comparing desflurane and sevoflurane in neurosurgey are scarce. So we compared the intraoperative brain condition, hemodynamics and postoperative recovery in patients undergoing elective supratentorial craniotomy receiving either desflurane or sevoflurane. Materials and Methods: Fifty three patients between 18-60yr undergoing elective supratentorial craniotomy receiving N 2 O and oxygen (60%:40% and 0.8-1.2 MAC of either desflurane or sevoflurane were randomized to group S (Sevoflurane or group D (Desflurane. Subdural intra cranial pressure (ICP was measured and brain condition was assessed.. Emergence time, tracheal extubation time and recovery time were recorded. Cognitive behavior was evaluated with Short Orientation Memory Concentration Test (SOMCT and neurological outcome (at the time of discharge was assessed using Glasgow Outcome Score (GOS between the two groups. Results: The emergence time [Group D 7.4 ± 2.7 minutes vs. Group S 7.8 ± 3.7 minutes; P = 0.65], extubation time [Group D 11.8 ± 2.8 minutes vs. Group S 12.9 ± 4.9 minutes; P = 0.28] and recovery time [Group D 16.4 ± 2.6 minutes vs. Group S 17.1 ± 4.8 minutes; P = 0.50] were comparable between the two groups. There was no difference in ICP [Group D; 9.1 ± 4.3 mmHg vs. Group S; 10.9 ± 4.2 mmHg; P = 0.14] and brain condition between the two groups. Both groups had similar post-operative complications, hospital and ICU stay and GOS. Conclusion: In patients undergoing elective supratentorial craniotomy both sevoflurane and desflurane had similar intra-operative brain condition, hemodynamics and post operative recovery profile.

  10. EFFECT OF PREOPERATIVE INTRAVENOUS CLONIDINE ON HEMODYNAMIC RESPONSE DURING LAPAROSCOPIC SURGERIES

    Directory of Open Access Journals (Sweden)

    Sreeraghu

    2014-02-01

    noticed in the control group. CONCLUSION: From this study, we conclude that int ravenous clonidine 2mcg/kg, given 15 min prior to induction provides stable hemodynamics and protection against stress response to intubation and carbon dioxide insufflation in patients undergoing laparoscopic surgeries. Clonidine provides the added advant ages of reduction in postoperative complications of nausea, vomiting and shivering

  11. Time course of the hemodynamic responses to aortic depressor nerve stimulation in conscious spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Durand, M.T.; Mota, A.L. [Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Barale, A.R. [Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG (Brazil); Castania, J.A.; Fazan, R. Jr.; Salgado, H.C. [Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-03-16

    The time to reach the maximum response of arterial pressure, heart rate and vascular resistance (hindquarter and mesenteric) was measured in conscious male spontaneously hypertensive (SHR) and normotensive control rats (NCR; Wistar; 18-22 weeks) subjected to electrical stimulation of the aortic depressor nerve (ADN). The parameters of stimulation were 1 mA intensity and 2 ms pulse length applied for 5 s, using frequencies of 10, 30, and 90 Hz. The time to reach the hemodynamic responses at different frequencies of ADN stimulation was similar for SHR (N = 15) and NCR (N = 14); hypotension = NCR (4194 ± 336 to 3695 ± 463 ms) vs SHR (3475 ± 354 to 4494 ± 300 ms); bradycardia = NCR (1618 ± 152 to 1358 ± 185 ms) vs SHR (1911 ± 323 to 1852 ± 431 ms), and the fall in hindquarter vascular resistance = NCR (6054 ± 486 to 6550 ± 847 ms) vs SHR (4849 ± 918 to 4926 ± 646 ms); mesenteric = NCR (5574 ± 790 to 5752 ± 539 ms) vs SHR (5638 ± 648 to 6777 ± 624 ms). In addition, ADN stimulation produced baroreflex responses characterized by a faster cardiac effect followed by a vascular effect, which together contributed to the decrease in arterial pressure. Therefore, the results indicate that there is no alteration in the conduction of the electrical impulse after the site of baroreceptor mechanical transduction in the baroreflex pathway (central and/or efferent) in conscious SHR compared to NCR.

  12. Insulin mediated hemodynamic responses in spontaneous hypertensive rats (SHRs): effect of chromosome 4 gene transfer.

    Science.gov (United States)

    Rao, Sumangala P; McRae, Crystal; Lapanowski, Karen; Churchill, Monique; Kurtz, Theodore W; Dunbar, Joseph C

    2003-02-01

    The spontaneous hypertensive rat (SHR) is a widely studied model of essential hypertension and has been reported to exhibit alterations in carbohydrate and lipid metabolism. Genetic linkage studies implicated that SHR carries deletion variant of Cd36 gene of chromosome 4, the gene that encodes fatty acid transporter. Thus it could be possible that primary genetic defect in SHR is compromised tissue utilization of fatty acid that would form the basis for the pathogenesis of hyperinsulinemia, insulin resistance and insulin-mediated responses. We measured both the hemodynamic and metabolic responses to insulin in SHR in comparison with the chromosome congenic spontaneous hypertensive rats (cSHRs) (rats in which piece of chromosome 4 containing wild type Cd36 was integrated into the SHR genome). A bolus infusion of insulin increased iliac conductance and decreased blood pressure in Wistar Kyoto (WKY) rats. However, in SHR insulin did not reduce blood pressure as in WKY but after about 15 min it significantly enhanced blood pressure and reduced iliac conductance. Whereas in cSHR insulin did not reduce blood pressure as in WKY rats. However, pressor responses to insulin were eliminated by chromosome 4 gene transfer. Glucose clearance was significantly slower in both SHR and cSHR. Glucose tolerance test revealed that SHR are hyperinsulinemic and insulin resistant. These findings indicate that transfer of segment of chromosome 4 from Brown Norway rats onto spontaneous hypertensive background eliminates hyperinsulinemia and pressor effects of insulin.

  13. Time course of the hemodynamic responses to aortic depressor nerve stimulation in conscious spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    The time to reach the maximum response of arterial pressure, heart rate and vascular resistance (hindquarter and mesenteric) was measured in conscious male spontaneously hypertensive (SHR) and normotensive control rats (NCR; Wistar; 18-22 weeks) subjected to electrical stimulation of the aortic depressor nerve (ADN). The parameters of stimulation were 1 mA intensity and 2 ms pulse length applied for 5 s, using frequencies of 10, 30, and 90 Hz. The time to reach the hemodynamic responses at different frequencies of ADN stimulation was similar for SHR (N = 15) and NCR (N = 14); hypotension = NCR (4194 ± 336 to 3695 ± 463 ms) vs SHR (3475 ± 354 to 4494 ± 300 ms); bradycardia = NCR (1618 ± 152 to 1358 ± 185 ms) vs SHR (1911 ± 323 to 1852 ± 431 ms), and the fall in hindquarter vascular resistance = NCR (6054 ± 486 to 6550 ± 847 ms) vs SHR (4849 ± 918 to 4926 ± 646 ms); mesenteric = NCR (5574 ± 790 to 5752 ± 539 ms) vs SHR (5638 ± 648 to 6777 ± 624 ms). In addition, ADN stimulation produced baroreflex responses characterized by a faster cardiac effect followed by a vascular effect, which together contributed to the decrease in arterial pressure. Therefore, the results indicate that there is no alteration in the conduction of the electrical impulse after the site of baroreceptor mechanical transduction in the baroreflex pathway (central and/or efferent) in conscious SHR compared to NCR

  14. Near-infrared spectroscopic imaging of stimulus-related hemodynamic responses on the neonatal auditory cortices

    Science.gov (United States)

    Kotilahti, Kalle; Nissila, Ilkka; Makela, Riikka; Noponen, Tommi; Lipiainen, Lauri; Gavrielides, Nasia; Kajava, Timo; Huotilainen, Minna; Fellman, Vineta; Merilainen, Pekka; Katila, Toivo

    2005-04-01

    We have used near-infrared spectroscopy (NIRS) to study hemodynamic auditory evoked responses on 7 full-term neonates. Measurements were done simultaneously above both auditory cortices to study the distribution of speech and music processing between hemispheres using a 16-channel frequency-domain instrument. The stimulation consisted of 5-second samples of music and speech with a 25-second silent interval. In response to stimulation, a significant increase in the concentration of oxygenated hemoglobin ([HbO2]) was detected in 6 out of 7 subjects. The strongest responses in [HbO2] were seen near the measurement location above the ear on both hemispheres. The mean latency of the maximum responses was 9.42+/-1.51 s. On the left hemisphere (LH), the maximum amplitude of the average [HbO2] response to the music stimuli was 0.76+/- 0.38 μ M (mean+/-std.) and to the speech stimuli 1.00+/- 0.45 μ+/- μM. On the right hemisphere (RH), the maximum amplitude of the average [HbO2] response was 1.29+/- 0.85 μM to the music stimuli and 1.23+/- 0.93 μM to the speech stimuli. The results indicate that auditory information is processed on both auditory cortices, but LH is more concentrated to process speech than music information. No significant differences in the locations and the latencies of the maximum responses relative to the stimulus type were found.

  15. Ketamine modulates fetal hemodynamic and endocrine responses to umbilical cord occlusion.

    Science.gov (United States)

    Zarate, Miguel A; Chang, Eileen I; Antolic, Andrew; Wood, Charles E

    2016-09-01

    Umbilical cord occlusion (UCO) is a hypoxic insult that has been used to model birth asphyxia and umbilical cord compression in utero. UCO triggers vigorous neural and endocrine responses that include increased plasma ACTH and cortisol concentrations, increased blood pressure (BP), and decreased heart rate (HR). We have previously reported that ketamine, a noncompetitive N-methyl-D-aspartate receptor antagonist, can modify the fetal hemodynamic and ACTH responses to ventilatory hypoxia and cerebral ischemia-reperfusion. We performed the present experiments to test the hypothesis that ketamine has similar effects on the neuroendocrine and cardiovascular responses to UCO Fetal sheep were chronically catheterized at gestational day 125. Ketamine (3 mg/kg) was administered intravenously to the fetus 10 min prior to the insult. UCO was induced for 30 min by reducing the umbilical vein blood flow until fetal PaO2 levels were reduced from 17 ± 1 to 11 ± 1 mm Hg. UCO produced an initial increase on fetal BP in both control and ketamine groups (P = 0.018 time), followed by a decrease in the control group, but values remained higher with ketamine. HR decreased after UCO (P = 0.041 stimulus*time) in both groups, but the reduction was greater initially in control compared to ketamine groups. Fetal PaCO2 levels increased after UCO (P ketamine groups. UCO significantly decreased fetal pH values (P ketamine group. Ketamine delayed the cortisol responses to UCO (P ketamine augmented the cardiovascular response to UCO, but did not alter the ACTH response to UCO. PMID:27597770

  16. Hemodynamic and ventilatory response to different levels of hypoxia and hypercapnia in carotid body-denervated rats

    Directory of Open Access Journals (Sweden)

    João Paulo J. Sabino

    2013-01-01

    Full Text Available OBJECTIVE: Chemoreceptors play an important role in the autonomic modulation of circulatory and ventilatory responses to changes in arterial O2 and/or CO2. However, studies evaluating hemodynamic responses to hypoxia and hypercapnia in rats have shown inconsistent results. Our aim was to evaluate hemodynamic and respiratory responses to different levels of hypoxia and hypercapnia in conscious intact or carotid body-denervated rats. METHODS: Male Wistar rats were submitted to bilateral ligature of carotid body arteries (or sham-operation and received catheters into the left femoral artery and vein. After two days, each animal was placed into a plethysmographic chamber and, after baseline measurements of respiratory parameters and arterial pressure, each animal was subjected to three levels of hypoxia (15, 10 and 6% O2 and hypercapnia (10% CO2. RESULTS: The results indicated that 15% O2 decreased the mean arterial pressure and increased the heart rate (HR in both intact (n = 8 and carotid body-denervated (n = 7 rats. In contrast, 10% O2did not change the mean arterial pressure but still increased the HR in intact rats, and it decreased the mean arterial pressure and increased the heart rate in carotid body-denervated rats. Furthermore, 6% O2 increased the mean arterial pressure and decreased the HR in intact rats, but it decreased the mean arterial pressure and did not change the HR in carotid body-denervated rats. The 3 levels of hypoxia increased pulmonary ventilation in both groups, with attenuated responses in carotid body-denervated rats. Hypercapnia with 10% CO2 increased the mean arterial pressure and decreased HR similarly in both groups. Hypercapnia also increased pulmonary ventilation in both groups to the same extent. CONCLUSION: This study demonstrates that the hemodynamic and ventilatory responses varied according to the level of hypoxia. Nevertheless, the hemodynamic and ventilatory responses to hypercapnia did not depend on the

  17. Novel method to classify hemodynamic response obtained using multi-channel fNIRS measurements into two groups: Exploring the combinations of channels

    Directory of Open Access Journals (Sweden)

    Hiroko eIchikawa

    2014-07-01

    Full Text Available Near-infrared spectroscopy (NIRS in psychiatric studies has widely demonstrated that cerebral hemodynamics differs among psychiatric patients. Recently we found that children with attention attention-deficit / hyperactivity disorder (ADHD and children with autism spectrum disorders (ASD showed different hemodynamic responses to their own mother’s face. Based on this finding, we may be able to classify their hemodynamic data into two those groups and predict which diagnostic group an unknown participant belongs to. In the present study, we proposed a novel statistical method for classifying the hemodynamic data of these two groups. By applying a support vector machine (SVM, we searched the combination of measurement channels at which the hemodynamic response differed between the two groups; ADHD and ASD. The SVM found the optimal subset of channels in each data set and successfully classified the ADHD data from the ASD data. For the 24-dimentional hemodynamic data, two optimal subsets classified the hemodynamic data with 84% classification accuracy while the subset contains all 24 channels classified with 62% classification accuracy. These results indicate the potential application of our novel method for classifying the hemodynamic data into two groups and revealing the combinations of channels that efficiently differentiate the two groups.

  18. Effect of hemorrhage rate on early hemodynamic responses in conscious sheep.

    Science.gov (United States)

    Scully, Christopher G; Daluwatte, Chathuri; Marques, Nicole R; Khan, Muzna; Salter, Michael; Wolf, Jordan; Nelson, Christina; Salsbury, John; Enkhbaatar, Perenlei; Kinsky, Michael; Kramer, George C; Strauss, David G

    2016-04-01

    Physiological compensatory mechanisms can mask the extent of hemorrhage in conscious mammals, which can be further complicated by individual tolerance and variations in hemorrhage onset and duration. We assessed the effect of hemorrhage rate on tolerance and early physiologic responses to hemorrhage in conscious sheep. Eight Merino ewes (37.4 ± 1.1 kg) were subjected to fast (1.25 mL/kg/min) and slow (0.25 mL/kg/min) hemorrhages separated by at least 3 days. Blood was withdrawn until a drop in mean arterial pressure (MAP) of >30 mmHg and returned at the end of the experiment. Continuous monitoring includedMAP, central venous pressure, pulmonary artery pressure, pulse oximetry, and tissue oximetry. Cardiac output by thermodilution and arterial blood samples were also measured. The effects of fast versus slow hemorrhage rates were compared for total volume of blood removed and stoppage time (whenMAP Estimated blood volume removed whenMAPdropped 30 mmHg was 27.0 ± 4.2% (mean ± standard error) in the slow and 27.3 ± 3.2% in the fast hemorrhage (P = 0.47, pairedttest between rates). Pressure and tissue oximetry responses were similar between hemorrhage rates. Heart rate increased at earlier levels of blood loss during the fast hemorrhage, but hemorrhage rate was not a significant factor for individual hemorrhage tolerance or hemodynamic responses. In 5/16 hemorrhages MAP stopping criteria was reached with blood volume removed. This study presents the physiological responses leading up to a significant drop in blood pressure in a large conscious animal model and how they are altered by the rate of hemorrhage. PMID:27044850

  19. Applying dynamic parameters to predict hemodynamic response to volume expansion in spontaneously breathing patients with septic shock.

    Science.gov (United States)

    Lanspa, Michael J; Grissom, Colin K; Hirshberg, Eliotte L; Jones, Jason P; Brown, Samuel M

    2013-02-01

    Volume expansion is a mainstay of therapy in septic shock, although its effect is difficult to predict using conventional measurements. Dynamic parameters, which vary with respiratory changes, appear to predict hemodynamic response to fluid challenge in mechanically ventilated, paralyzed patients. Whether they predict response in patients who are free from mechanical ventilation is unknown. We hypothesized that dynamic parameters would be predictive in patients not receiving mechanical ventilation. This is a prospective, observational, pilot study. Patients with early septic shock and who were not receiving mechanical ventilation received 10-mL/kg volume expansion (VE) at their treating physician's discretion after initial resuscitation in the emergency department. We used transthoracic echocardiography to measure vena cava collapsibility index and aortic velocity variation before VE. We used a pulse contour analysis device to measure stroke volume variation (SVV). Cardiac index was measured immediately before and after VE using transthoracic echocardiography. Hemodynamic response was defined as an increase in cardiac index 15% or greater. Fourteen patients received VE, five of whom demonstrated a hemodynamic response. Vena cava collapsibility index and SVV were predictive (area under the curve = 0.83, 0.92, respectively). Optimal thresholds were calculated: vena cava collapsibility index, 15% or greater (positive predictive value, 62%; negative predictive value, 100%; P = 0.03); SVV, 17% or greater (positive predictive value 100%, negative predictive value 82%, P = 0.03). Aortic velocity variation was not predictive. Vena cava collapsibility index and SVV predict hemodynamic response to fluid challenge patients with septic shock who are not mechanically ventilated. Optimal thresholds differ from those described in mechanically ventilated patients.

  20. Association between catechol-O-methyltrasferase Val108/158Met genotype and prefrontal hemodynamic response in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Ryu Takizawa

    Full Text Available BACKGROUND: "Imaging genetics" studies have shown that brain function by neuroimaging is a sensitive intermediate phenotype that bridges the gap between genes and psychiatric conditions. Although the evidence of association between functional val108/158met polymorphism of the catechol-O-methyltransferase gene (COMT and increasing risk for developing schizophrenia from genetic association studies remains to be elucidated, one of the most topical findings from imaging genetics studies is the association between COMT genotype and prefrontal function in schizophrenia. The next important step in the translational approach is to establish a useful neuroimaging tool in clinical settings that is sensitive to COMT variation, so that the clinician could use the index to predict clinical response such as improvement in cognitive dysfunction by medication. Here, we investigated spatiotemporal characteristics of the association between prefrontal hemodynamic activation and the COMT genotype using a noninvasive neuroimaging technique, near-infrared spectroscopy (NIRS. METHODOLOGY/PRINCIPAL FINDINGS: Study participants included 45 patients with schizophrenia and 60 healthy controls matched for age and gender. Signals that are assumed to reflect regional cerebral blood volume were monitored over prefrontal regions from 52-channel NIRS and compared between two COMT genotype subgroups (Met carriers and Val/Val individuals matched for age, gender, premorbid IQ, and task performance. The [oxy-Hb] increase in the Met carriers during the verbal fluency task was significantly greater than that in the Val/Val individuals in the frontopolar prefrontal cortex of patients with schizophrenia, although neither medication nor clinical symptoms differed significantly between the two subgroups. These differences were not found to be significant in healthy controls. CONCLUSIONS/SIGNIFICANCE: These data suggest that the prefrontal NIRS signals can noninvasively detect the impact

  1. Effect of recombinant human brain natriuretic peptide combined with sodium nitroprusside therapy on hemodynamics and cardiac in patients with acute decompensated heart failure

    Institute of Scientific and Technical Information of China (English)

    Qiao-Li Xing; Xian-Hong Ma; Lu Wang

    2016-01-01

    Objective:To evaluate the effect of recombinant human brain natriuretic peptide combined with sodium nitroprusside therapy on hemodynamics and cardiac function levels in patients with acute decompensated heart failure.Methods:A total of 118 patients with acute decompensated heart failure were randomly divided into observation group and the control group (n=59). Control group received clinical conventional therapy for heart failure, observation group received recombinant human brain natriuretic peptide combined with sodium nitroprusside therapy, and the differences in hemodynamics, cardiac function and circulation factor levels were compared between two groups after 12 hours of treatment. Results: After 12 hours of treatment, central venous pressure, right atrial pressure and pulmonary capillary wedge pressure values as well as circulating blood IL-6, hsCRP, ST2, NT-proBNP and cTnⅠlevels of observation group were lower than those of control group, and left heart GLS, GCS, GSRs, GSRe, GSRa, ROT and ROTR levels were higher than those of control group (P<0.05).Conclusions:Recombinant human brain natriuretic peptide combined with sodium nitroprusside therapy for patients with acute decompensated heart failure has significant advantages in optimizing hemodynamics, cardiac function and other aspects.

  2. Cerebral Hemodynamic Responses During Dynamic Posturography: Analysis with a Multichannel Near-Infrared Spectroscopy System.

    Science.gov (United States)

    Takakura, Hiromasa; Nishijo, Hisao; Ishikawa, Akihiro; Shojaku, Hideo

    2015-01-01

    To investigate cortical roles in standing balance, cortical hemodynamic activity was recorded from the right hemisphere using near-infrared spectroscopy (NIRS) while subjects underwent the sensory organization test (SOT) protocol that systematically disrupts sensory integration processes (i.e., somatosensory or visual inputs or both). Eleven healthy men underwent the SOT during NIRS recording. Group statistical analyses were performed based on changes in oxygenated hemoglobin concentration in 10 different cortical regions of interest and on a general linear analysis with NIRS statistical parametric mapping. The statistical analyses indicated significant activation in the right frontal operculum (f-Op), right parietal operculum (p-Op), and right superior temporal gyrus (STG), right posterior parietal cortex (PPC), right dorsal and ventral premotor cortex (PMC), and the supplementary motor area (SMA) under various conditions. The activation patterns in response to specific combinations of SOT conditions suggested that (1) f-Op, p-Op, and STG are essential for sensory integration when standing balance is perturbed; (2) the SMA is involved in the execution of volitional action and establishment of new motor programs to maintain postural balance; and (3) the PPC and PMC are involved in the updating and computation of spatial reference frames during instances of sensory conflict between vestibular and visual information. PMID:26635574

  3. Hemodynamic and ADH responses to central blood volume shifts in cardiac-denervated humans

    Science.gov (United States)

    Convertino, V. A.; Thompson, C. A.; Benjamin, B. A.; Keil, L. C.; Savin, W. M.; Gordon, E. P.; Haskell, W. L.; Schroeder, J. S.; Sandler, H.

    1990-01-01

    Hemodynamic responses and antidiuretic hormone (ADH) were measured during body position changes designed to induce blood volume shifts in ten cardiac transplant recipients to assess the contribution of cardiac and vascular volume receptors in the control of ADH secretion. Each subject underwent 15 min of a control period in the seated posture, then assumed a lying posture for 30 min at 6 deg head down tilt (HDT) followed by 20 min of seated recovery. Venous blood samples and cardiac dimensions (echocardiography) were taken at 0 and 15 min before HDT, 5, 15, and 30 min of HDT, and 5, 15, and 30 min of seated recovery. Blood samples were analyzed for hematocrit, plasma osmolality, plasma renin activity (PRA), and ADH. Resting plasma volume (PV) was measured by Evans blue dye and percent changes in PV during posture changes were calculated from changes in hematocrit. Heart rate (HR) and blood pressure (BP) were recorded every 2 min. Results indicate that cardiac volume receptors are not the only mechanism for the control of ADH release during acute blood volume shifts in man.

  4. In Vivo Measurements of Blood Hemodynamics in Rat Brain using Diffuse Optical Tomography and Diffuse Correlation Spectroscopy

    Science.gov (United States)

    Durduran, Turgut

    2002-03-01

    Cerebral blood flow (CBF), blood volume (CBV) and tissue averaged blood oxygen saturation (Y_t) are measurable quantities at the basis of functional neuroimaging techniques. The coupling of CBF, CBV and Yt affect the cerebral metabolic rate of oxygen utilization (CMRO_2) and is not yet well understood. CMRO2 is generally estimated from the measured quantities using physiological models. Near infrared spectroscopy and tomography (DOT) are important new methods to measure the temporal evolution of CBV and Yt with low spatial resolution. Diffuse correlation spectroscopy (DCS) can also be used to measure temporal and spatial variations of CBF. DOT and DCS allow minimally-invasive measurements with intact skull. I will present experiments on many physiological models such as hypercapnia, hypoxia, focal ischemia, cortical spreading depression and forepaw stimulation where all three quantities are measured simultaneously. The theoretical background for DOT and DCS measurements and basic image reconstruction as applicable to studies of brain hemodynamics will be outlined. State of the art instrumentation and its ongoing development will be presented. Finally, our spectroscopic and tomographic results from animal models will be shown in detail.

  5. A COMPARATIVE STUDY OF INTRAVENOUS MAGNESIUM SULFATE AND ESMOLOL IN ATTENUATING HEMODYNAMIC RESPONSE TO LARYNGOSCOPY AND INTUBATION

    Directory of Open Access Journals (Sweden)

    Aasim

    2014-08-01

    Full Text Available : AIMS AND OBJECTIVES: To compare the effect of intravenous Magnesium sulfate and Esmolol in attenuating the hemodynamic response to laryngoscopy and endo-tracheal intubation. METHODS: A prospective study was conducted with sixty ASA (American society of Anesthesiologists grade I and II patients undergoing elective surgery under general anesthesia who were selected to receive Esmolol hydrochloride 1.5 mg/kg or Magnesium sulfate 50 mg/kg randomly. Heart rate and blood pressure recording were done pre-intubation, immediately after intubation and at 2 minutes and 5 minutes after intubation. RESULTS: There was a significant rise in heart rate in Group M as compared to Group E (P<0.05. No significant difference in mean arterial pressure was seen in both groups. CONCLUSION: Esmolol is a better agent to attenuate hemodynamic response to laryngoscopy and intubation than magnesium sulfate as it attenuates the rise in both heart rate and blood pressure.

  6. Hemodynamic responses to endotracheal intubation performed with video and direct laryngoscopy in patients scheduled for major cardiac surgery

    OpenAIRE

    Sarkılar, Gamze; Sargın, Mehmet; Sarıtaş, Tuba Berra; Borazan, Hale; Gök, Funda; Kılıçaslan, Alper; Otelcioğlu, Şeref

    2015-01-01

    This study aims to compare the hemodynamic responses to endotracheal intubation performed with direct and video laryngoscope in patients scheduled for cardiac surgery and to assess the airway and laryngoscopic characteristics. One hundred ten patients were equally allocated to either direct Macintosh laryngoscope (n = 55) or indirect Macintosh C-MAC video laryngoscope (n = 55). Systolic, diastolic, and mean arterial pressure, and heart rate were recorded prior to induction anesthesia, and imm...

  7. Attenuation of Hemodynamic Responses to Laryngoscopy and Tracheal Intubation: Propacetamol versus Lidocaine—A Randomized Clinical Trial

    OpenAIRE

    Ali Kord Valeshabad; Omid Nabavian; Keramat Nourijelyani; Hadi Kord; Hossein Vafainejad; Reza Kord Valeshabad; Ali Reza Feili; Mehdi Rezaei; Hamed Darabi; Mohammad Koohkan; Poorya Golbinimofrad; Samira Jafari

    2014-01-01

    The purpose of this study is to assess the effects of propacetamol on attenuating hemodynamic responses subsequent laryngoscopy and tracheal intubation compared to lidocaine. In this randomized clinical trial, 62 patients with the American Anesthesiologists Society (ASA) class I/II who required laryngoscopy and tracheal intubation for elective surgery were assigned to receive propacetamol 2 g/I.V./infusion (group P) or lidocaine 1.5 mg/kg (group L) prior to laryngoscopy. Systolic and diastoli...

  8. A COMPARATIVE STUDY OF INTRAVENOUS MAGNESIUM SULFATE AND ESMOLOL IN ATTENUATING HEMODYNAMIC RESPONSE TO LARYNGOSCOPY AND INTUBATION

    OpenAIRE

    Aasim; Syama Sundara; Venkatesh,

    2014-01-01

    : AIMS AND OBJECTIVES: To compare the effect of intravenous Magnesium sulfate and Esmolol in attenuating the hemodynamic response to laryngoscopy and endo-tracheal intubation. METHODS: A prospective study was conducted with sixty ASA (American society of Anesthesiologists) grade I and II patients undergoing elective surgery under general anesthesia who were selected to receive Esmolol hydrochloride 1.5 mg/kg or Magnesium sulfate 50 mg/kg randomly. Heart rate and blood pres...

  9. Effects of Esmolol on Hemodynamic Responses to Laryngoscopy and Tracheal Intubation in Diabetic Versus Non-Diabetic Patients

    OpenAIRE

    TAŞYÜZ, Taner

    2007-01-01

    Aim: We aimed to investigate the efficiency of esmolol, a short-acting ß-blocker, in preventing the hemodynamic response to laryngoscopy and endotracheal intubation in diabetic patients. Materials and Methods: Eighty diabetic or non-diabetic patients with ASA physical status I-II scheduled for noncardiac surgery were included in this study. They were divided randomly into 4 groups (Non-diabetic control: NDC, Non-diabetic esmolol: NDE, Diabetic control: DC, Diabetic esmolol: DE). Blood gluco...

  10. Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise

    Directory of Open Access Journals (Sweden)

    Takashi eTarumi

    2014-01-01

    Full Text Available Alzheimer disease (AD and cerebrovascular disease often coexist with advanced age. Mounting evidence indicates that the presence of vascular disease and its risk factors increase the risk of AD, suggesting a potential overlap of the underlying pathophysiological mechanisms. In particular, atherosclerosis, endothelial dysfunction, and stiffening of central elastic arteries have been shown to associate with AD. Currently, there are no effective treatments for the cure and prevention of AD. Vascular risk factors are modifiable via either pharmacological or lifestyle intervention. In this regard, habitual aerobic exercise is increasingly recognized for its benefits on brain structure and cognitive function. Considering the well-established benefits of regular aerobic exercise on vascular health, exercise-related improvements in brain structure and cognitive function may be mediated by vascular adaptations. In this review, we will present the current evidence for the physiological mechanisms by which vascular health alters the structural and functional integrity of the aging brain and how improvements in vascular health, via regular aerobic exercise, potentially benefits cognitive function.

  11. Hemodynamic response to Interictal Epileptiform Discharges addressed by personalized EEG-fNIRS recordings

    Directory of Open Access Journals (Sweden)

    Giovanni ePellegrino

    2016-03-01

    Full Text Available Objective: We aimed at studying the hemodynamic response (HR to Interictal Epileptic Discharges (IEDs using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG and functional Near InfraRed Spectroscopy (fNIRS recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (7 patients, followed by oxy-hemoglobin decreases (6 patients. HR was lateralized in 6 patients and lasted from 8.5 to 30s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result. The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30s. Conclusions: i EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; ii cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function iii the HR is often bilateral and lasts up to 30s.

  12. Hemodynamic responses to continuous versus pulsatile mechanical unloading of the failing left ventricle.

    Science.gov (United States)

    Bartoli, Carlo R; Giridharan, Guruprasad A; Litwak, Kenneth N; Sobieski, Michael; Prabhu, Sumanth D; Slaughter, Mark S; Koenig, Steven C

    2010-01-01

    Debate exists regarding the merits and limitations of continuous versus pulsatile flow mechanical circulatory support. To characterize the hemodynamic differences between each mode of support, we investigated the acute effects of continuous versus pulsatile unloading of the failing left ventricle in a bovine model. Heart failure was induced in male calves (n = 14). During an acute study, animals were instrumented through thoracotomy for hemodynamic measurement. A continuous flow (n = 8) and/or pulsatile flow (n = 8) left ventricular assist device (LVAD) was implanted and studied during maximum support ( approximately 5 L/min) and moderate support ( approximately 2-3 L/min) modes. Pulse pressure (PP), surplus hemodynamic energy (SHE), and (energy equivalent pressure [EEP]/mean aortic pressure (MAP) - 1) x 100% were derived to characterize hemodynamic energy profiles during the different support modes. Standard hemodynamic parameters of cardiac performance were also derived. Data were analyzed by repeated measures one-way analysis of variance within groups and unpaired Student's t-tests across groups. During maximum and moderate continuous unloading, PP, SHE, and (EEP/MAP - 1) x 100% were significantly decreased compared with baseline and compared with pulsatile unloading. As a result, continuous unloading significantly altered left ventricular peak systolic pressure, aortic systolic and diastolic pressure, +/-dP/dt, and rate x pressure product, whereas pulsatile unloading preserved a normal profile of physiologic values. As continuous unloading increased, the pressure-volume relationship collapsed, and the aortic valve remained closed. In contrast, as pulsatile unloading increased, a comparable decrease in left ventricular volumes was noted. However, a normal range of left ventricular pressures was preserved. Continuous unloading deranged the physiologic profile of myocardial and vascular hemodynamic energy utilization, whereas pulsatile unloading preserved more

  13. Reduced dorsolateral prefrontal cortical hemodynamic response in adult obsessive-compulsive disorder as measured by near-infrared spectroscopy during the verbal fluency task

    Directory of Open Access Journals (Sweden)

    Hirosawa R

    2013-07-01

    Full Text Available Rikuei Hirosawa,1 Jin Narumoto,1 Yuki Sakai,1 Seiji Nishida,2 Takuya Ishida,1 Takashi Nakamae,1 Yuichi Takei,3 Kenji Fukui1 1Department of Psychiatry, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, 2Maizuru Medical Center, Kyoto, 3Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan Background: Near-infrared spectroscopy has helped our understanding of the neurobiological mechanisms of psychiatric disorders and has advantages including noninvasiveness, lower cost, and ease of use compared with other imaging techniques, like functional magnetic resonance imaging. The verbal fluency task is the most common and well established task used to assess cognitive activation during near-infrared spectroscopy. Recent functional neuroimaging studies have shown that the orbitofrontal cortex and other brain regions, including the dorsolateral prefrontal cortex, may play important roles in the pathophysiology of obsessive-compulsive disorder (OCD. This study aimed to evaluate hemodynamic responses in the dorsolateral prefrontal cortex in patients with OCD using near-infrared spectroscopy during the verbal fluency task and to compare these with dorsolateral prefrontal cortex responses in healthy controls. Methods: Twenty patients with OCD and 20 controls matched for age, gender, handedness, and estimated intelligence quotient participated in this study. The verbal fluency task was used to elicit near-infrared spectroscopic activation and consisted of a 30-second pre-task, followed by three repetitions of a 20-second verbal fluency task (total 60 seconds, followed by a 70-second post-task period. The near-infrared spectroscopy experiment was conducted on the same day as surveys of obsessive-compulsive symptoms, depression, and anxiety. Z-scores for changes in the concentration of oxygenated hemoglobin were compared between the OCD patients and controls in 14 channels set over the

  14. Cognition and Hemodynamics

    OpenAIRE

    Novak, Vera

    2012-01-01

    The relationship between cerebral hemodynamics and cognitive performance has increasingly become recognized as a major challenge in clinical practice for older adults. Both diabetes and hypertension worsen brain perfusion and are major risk factors for cerebrovascular disease, stroke and dementia. Cerebrovascular reserve has emerged as a potential biomarker for monitoring pressure–perfusion–cognition relationships. Endothelial dysfunction and inflammation, microvascular disease, and mascrovas...

  15. The hemodynamic response of the alpha rhythm: an EEG/fMRI study.

    NARCIS (Netherlands)

    J.C. de Munck; S.I. Goncalves; L. Huijboom; J.P. Kuijer; P.J. Pouwels; R.M. Heethaar; F.H. Lopes da Silva

    2007-01-01

    EEG was recorded during fMRI scanning of 16 normal controls in resting condition with eyes closed. Time variations of the occipital alpha band amplitudes were correlated to the fMRI signal variations to obtain insight into the hemodynamic correlates of the EEG alpha activity. Contrary to earlier stu

  16. Hemodynamic and respiratory responses to microinjection of ATP into the intermediate and caudal NTS of awake rats.

    Science.gov (United States)

    Antunes, Vagner R; Bonagamba, Leni G H; Machado, Benedito H

    2005-01-25

    The nucleus tractus solitarii (NTS) is the site of integration of the peripheral chemoreceptor afferents in the brainstem. Previous studies from our laboratory have shown that microinjection of ATP into the intermediate NTS produced increases in arterial pressure and bradycardia. In the present study, we evaluated the hemodynamic and respiratory responses to microinjection of ATP into the intermediate and caudal commissural NTS. In the same group of rats the responses were compared with cardiorespiratory responses to chemoreflex activation (KCN, i.v.). The data show that microinjection of ATP into the intermediate NTS produced pressor and bradycardic responses similar to those observed in response to chemoreflex activation but apnoea instead of tachypnoea. Microinjection of ATP into caudal commissural NTS produced increase in arterial pressure and tachypnoea similar to the chemoreflex but a minor bradycardia. The data show that microinjection of ATP into different sub-regions of the NTS produces a diverse pattern of hemodynamic and respiratory responses and suggest the involvement of this purine in the neurotransmission of the cardiovascular reflex in the NTS.

  17. Law, Responsibility, and the Brain

    Science.gov (United States)

    Mobbs, Dean; Lau, Hakwan C.; Jones, Owen D.; Frith, Chris D.

    In perhaps the first attempt to link the brain to mental illness, Hippocrates elegantly wrote that it is the brain that makes us mad or delirious. Epitomizing one of the fundamental assumptions of contemporary neuroscience, Hippocrates' words resonate far beyond the classic philosophical puzzle of mind and body and posit that our behavior, no matter how monstrous, lies at the mercy of our brain's integrity. While clinicopathological observations have long pointed to several putative neurobiological systems as important in antisocial and violent criminal behavior, recent advances in brain-imaging have the potential to provide unparalleled insight. Consequently, brain-imaging studies have reinvigorated the neurophilosophical and legal debate of whether we are free agents in control of our own actions or mere prisoners of a biologically determined brain. In this chapter, we review studies pointing to brain dysfunction in criminally violent individuals and address a range of philosophical and practical issues concerning the use of brainimaging in court. We finally lay out several guidelines for its use in the legal system.

  18. Blood oxygenation level-dependent (BOLD)-based techniques for the quantification of brain hemodynamic and metabolic properties - theoretical models and experimental approaches.

    Science.gov (United States)

    Yablonskiy, Dmitriy A; Sukstanskii, Alexander L; He, Xiang

    2013-08-01

    The quantitative evaluation of brain hemodynamics and metabolism, particularly the relationship between brain function and oxygen utilization, is important for the understanding of normal human brain operation, as well as the pathophysiology of neurological disorders. It can also be of great importance for the evaluation of hypoxia within tumors of the brain and other organs. A fundamental discovery by Ogawa and coworkers of the blood oxygenation level-dependent (BOLD) contrast opened up the possibility to use this effect to study brain hemodynamic and metabolic properties by means of MRI measurements. Such measurements require the development of theoretical models connecting the MRI signal to brain structure and function, and the design of experimental techniques allowing MR measurements to be made of the salient features of theoretical models. In this review, we discuss several such theoretical models and experimental methods for the quantification of brain hemodynamic and metabolic properties. The review's main focus is on methods for the evaluation of the oxygen extraction fraction (OEF) based on the measurement of the blood oxygenation level. A combination of the measurement of OEF and the cerebral blood flow (CBF) allows an evaluation to be made of the cerebral metabolic rate of oxygen consumption (CMRO2 ). We first consider in detail the magnetic properties of blood - magnetic susceptibility, MR relaxation and theoretical models of the intravascular contribution to the MR signal under different experimental conditions. We then describe a 'through-space' effect - the influence of inhomogeneous magnetic fields, created in the extravascular space by intravascular deoxygenated blood, on the formation of the MR signal. Further, we describe several experimental techniques taking advantage of these theoretical models. Some of these techniques - MR susceptometry and T2 -based quantification of OEF - utilize the intravascular MR signal. Another technique

  19. Hemodynamic responses in human multisensory and auditory association cortex to purely visual stimulation

    Directory of Open Access Journals (Sweden)

    Baumann Simon

    2007-02-01

    Full Text Available Abstract Background Recent findings of a tight coupling between visual and auditory association cortices during multisensory perception in monkeys and humans raise the question whether consistent paired presentation of simple visual and auditory stimuli prompts conditioned responses in unimodal auditory regions or multimodal association cortex once visual stimuli are presented in isolation in a post-conditioning run. To address this issue fifteen healthy participants partook in a "silent" sparse temporal event-related fMRI study. In the first (visual control habituation phase they were presented with briefly red flashing visual stimuli. In the second (auditory control habituation phase they heard brief telephone ringing. In the third (conditioning phase we coincidently presented the visual stimulus (CS paired with the auditory stimulus (UCS. In the fourth phase participants either viewed flashes paired with the auditory stimulus (maintenance, CS- or viewed the visual stimulus in isolation (extinction, CS+ according to a 5:10 partial reinforcement schedule. The participants had no other task than attending to the stimuli and indicating the end of each trial by pressing a button. Results During unpaired visual presentations (preceding and following the paired presentation we observed significant brain responses beyond primary visual cortex in the bilateral posterior auditory association cortex (planum temporale, planum parietale and in the right superior temporal sulcus whereas the primary auditory regions were not involved. By contrast, the activity in auditory core regions was markedly larger when participants were presented with auditory stimuli. Conclusion These results demonstrate involvement of multisensory and auditory association areas in perception of unimodal visual stimulation which may reflect the instantaneous forming of multisensory associations and cannot be attributed to sensation of an auditory event. More importantly, we are able

  20. Flexibly combined optical microangiography and dual-wavelength laser speckle system for comprehensive imaging of hemodynamic and metabolic responses

    Science.gov (United States)

    Shi, Lei; Qin, Jia; An, Lin; Wang, Ruikang K.

    2014-03-01

    We have proposed and developed a multi-modal non-invasive biomedical optical imager. It was combined from the subsystems of optical microangiography and dual-wavelength laser speckle contrast imaging. The system was designed to maintain the performances of both subsystems. It was capable of simultaneously imaging the hemodynamic and metabolic responses in tissue environment in vivo. To achieve such requirements, we utilized unique optical setup, such as paired dichroic mirrors to compensate dispersion, additional relay lens to increase working distance and translational sample probe to freely select imaging area and focal plane. The multi-functionality of the system was demonstrated in an investigation of hemodynamic and metabolic responses on an acute wound healing model in mouse pinna in vivo. The microvasculature, blood flow and hemoglobin concentration from millimeter down to capillary level were comprehensively visualized. The captured instantaneous responses to wound onset differed greatly between localized areas; after that blood flow had a rebalance tendency, and hemoglobin concentration dynamically recovered to baseline situation.

  1. Effects of race and sex on cerebral hemodynamics, oxygen delivery and blood flow distribution in response to high altitude

    Science.gov (United States)

    Liu, Jie; Liu, Yang; Ren, Li-Hua; Li, Li; Wang, Zhen; Liu, Shan-Shan; Li, Su-Zhi; Cao, Tie-Sheng

    2016-08-01

    To assess racial, sexual, and regional differences in cerebral hemodynamic response to high altitude (HA, 3658 m). We performed cross-sectional comparisons on total cerebral blood flow (TCBF = sum of bilateral internal carotid and vertebral arterial blood flows = QICA + QVA), total cerebrovascular resistance (TCVR), total cerebral oxygen delivery (TCOD) and QVA/TCBF (%), among six groups of young healthy subjects: Tibetans (2-year staying) and Han (Han Chinese) at sea level, Han (2-day, 1-year and 5-year) and Tibetans at HA. Bilateral ICA and VA diameters and flow velocities were derived from duplex ultrasonography; and simultaneous measurements of arterial pressure, oxygen saturation, and hemoglobin concentration were conducted. Neither acute (2-day) nor chronic (>1 year) responses showed sex differences in Han, except that women showed lower TCOD compared with men. Tibetans and Han exhibited different chronic responses (percentage alteration relative to the sea-level counterpart value) in TCBF (-17% vs. 0%), TCVR (22% vs. 12%), TCOD (0% vs. 10%) and QVA/TCBF (0% vs. 2.4%, absolute increase), with lower resting TCOD found in SL- and HA-Tibetans. Our findings indicate racial but not sex differences in cerebral hemodynamic adaptations to HA, with Tibetans (but not Han) demonstrating an altitude-related change of CBF distribution.

  2. Effects of race and sex on cerebral hemodynamics, oxygen delivery and blood flow distribution in response to high altitude

    Science.gov (United States)

    Liu, Jie; Liu, Yang; Ren, Li-Hua; Li, Li; Wang, Zhen; Liu, Shan-Shan; Li, Su-Zhi; Cao, Tie-Sheng

    2016-08-01

    To assess racial, sexual, and regional differences in cerebral hemodynamic response to high altitude (HA, 3658 m). We performed cross-sectional comparisons on total cerebral blood flow (TCBF = sum of bilateral internal carotid and vertebral arterial blood flows = QICA + QVA), total cerebrovascular resistance (TCVR), total cerebral oxygen delivery (TCOD) and QVA/TCBF (%), among six groups of young healthy subjects: Tibetans (2-year staying) and Han (Han Chinese) at sea level, Han (2-day, 1-year and 5-year) and Tibetans at HA. Bilateral ICA and VA diameters and flow velocities were derived from duplex ultrasonography; and simultaneous measurements of arterial pressure, oxygen saturation, and hemoglobin concentration were conducted. Neither acute (2-day) nor chronic (>1 year) responses showed sex differences in Han, except that women showed lower TCOD compared with men. Tibetans and Han exhibited different chronic responses (percentage alteration relative to the sea-level counterpart value) in TCBF (‑17% vs. 0%), TCVR (22% vs. 12%), TCOD (0% vs. 10%) and QVA/TCBF (0% vs. 2.4%, absolute increase), with lower resting TCOD found in SL- and HA-Tibetans. Our findings indicate racial but not sex differences in cerebral hemodynamic adaptations to HA, with Tibetans (but not Han) demonstrating an altitude-related change of CBF distribution.

  3. Effects of race and sex on cerebral hemodynamics, oxygen delivery and blood flow distribution in response to high altitude.

    Science.gov (United States)

    Liu, Jie; Liu, Yang; Ren, Li-Hua; Li, Li; Wang, Zhen; Liu, Shan-Shan; Li, Su-Zhi; Cao, Tie-Sheng

    2016-01-01

    To assess racial, sexual, and regional differences in cerebral hemodynamic response to high altitude (HA, 3658 m). We performed cross-sectional comparisons on total cerebral blood flow (TCBF = sum of bilateral internal carotid and vertebral arterial blood flows = QICA + QVA), total cerebrovascular resistance (TCVR), total cerebral oxygen delivery (TCOD) and QVA/TCBF (%), among six groups of young healthy subjects: Tibetans (2-year staying) and Han (Han Chinese) at sea level, Han (2-day, 1-year and 5-year) and Tibetans at HA. Bilateral ICA and VA diameters and flow velocities were derived from duplex ultrasonography; and simultaneous measurements of arterial pressure, oxygen saturation, and hemoglobin concentration were conducted. Neither acute (2-day) nor chronic (>1 year) responses showed sex differences in Han, except that women showed lower TCOD compared with men. Tibetans and Han exhibited different chronic responses (percentage alteration relative to the sea-level counterpart value) in TCBF (-17% vs. 0%), TCVR (22% vs. 12%), TCOD (0% vs. 10%) and QVA/TCBF (0% vs. 2.4%, absolute increase), with lower resting TCOD found in SL- and HA-Tibetans. Our findings indicate racial but not sex differences in cerebral hemodynamic adaptations to HA, with Tibetans (but not Han) demonstrating an altitude-related change of CBF distribution. PMID:27503416

  4. Hemodynamic responses in amygdala and hippocampus distinguish between aversive and neutral cues during Pavlovian fear conditioning in behaving rats.

    Science.gov (United States)

    McHugh, Stephen B; Marques-Smith, Andre; Li, Jennifer; Rawlins, J N P; Lowry, John; Conway, Michael; Gilmour, Gary; Tricklebank, Mark; Bannerman, David M

    2013-02-01

    Lesion and electrophysiological studies in rodents have identified the amygdala and hippocampus (HPC) as key structures for Pavlovian fear conditioning, but human functional neuroimaging studies have not consistently found activation of these structures. This could be because hemodynamic responses cannot detect the sparse neuronal activity proposed to underlie conditioned fear. Alternatively, differences in experimental design or fear levels could account for the discrepant findings between rodents and humans. To help distinguish between these alternatives, we used tissue oxygen amperometry to record hemodynamic responses from the basolateral amygdala (BLA), dorsal HPC (dHPC) and ventral HPC (vHPC) in freely-moving rats during the acquisition and extinction of conditioned fear. To enable specific comparison with human studies we used a discriminative paradigm, with one auditory cue [conditioned stimulus (CS)+] that was always followed by footshock, and another auditory cue (CS-) that was never followed by footshock. BLA tissue oxygen signals were significantly higher during CS+ than CS- trials during training and early extinction. In contrast, they were lower during CS+ than CS- trials by the end of extinction. dHPC and vHPC tissue oxygen signals were significantly lower during CS+ than CS- trials throughout extinction. Thus, hemodynamic signals in the amygdala and HPC can detect the different patterns of neuronal activity evoked by threatening vs. neutral stimuli during fear conditioning. Discrepant neuroimaging findings may be due to differences in experimental design and/or fear levels evoked in participants. Our methodology offers a way to improve translation between rodent models and human neuroimaging.

  5. Differences in the Pattern of Hemodynamic Response to Self-Face and Stranger-Face Images in Adolescents with Anorexia Nervosa: A Near-Infrared Spectroscopic Study.

    Directory of Open Access Journals (Sweden)

    Takeshi Inoue

    Full Text Available There have been no reports concerning the self-face perception in patients with anorexia nervosa (AN. The purpose of this study was to compare the neuronal correlates of viewing self-face images (i.e. images of familiar face and stranger-face images (i.e. images of an unfamiliar face in female adolescents with and without AN. We used near-infrared spectroscopy (NIRS to measure hemodynamic responses while the participants viewed full-color photographs of self-face and stranger-face. Fifteen females with AN (mean age, 13.8 years and 15 age- and intelligence quotient (IQ-matched female controls without AN (mean age, 13.1 years participated in the study. The responses to photographs were compared with the baseline activation (response to white uniform blank. In the AN group, the concentration of oxygenated hemoglobin (oxy-Hb significantly increased in the right temporal area during the presentation of both the self-face and stranger-face images compared with the baseline level. In contrast, in the control group, the concentration of oxy-Hb significantly increased in the right temporal area only during the presentation of the self-face image. To our knowledge the present study is the first report to assess brain activities during self-face and stranger-face perception among female adolescents with AN. There were different patterns of brain activation in response to the sight of the self-face and stranger-face images in female adolescents with AN and controls.

  6. Comparison of hemodynamic and metabolic stress responses caused by endotracheal tube and Proseal laryngeal mask airway in laparoscopic cholecystectomy

    Directory of Open Access Journals (Sweden)

    Handan Güleç

    2012-01-01

    Full Text Available Background: We aimed to compare hemodynamic and endocrine alterations caused by stress response due to Proseal laryngeal mask airway and endotracheal tube usage in laparoscopic cholecystectomy. Materials and Methods: Sixty-three ASA I-II patients scheduled for elective laparoscopic cholecystectomy were included in the study. Patients were randomly allocated into two groups of endotracheal tube and Proseal laryngeal mask airway. Standard general anaesthesia was performed in both groups with the same drugs in induction and maintenance of anaesthesia. After anaesthesia induction and 20 minutes after CO 2 insufflations, venous blood samples were obtained for measuring adrenalin, noradrenalin, dopamine and cortisol levels. Hemodynamic and respiratory parameters were recorded at the 1 st , 5 th , 15 th , 30 th and 45 th minutes after the insertion of airway devices. Results: No statistically significant differences in age, body mass index, gender, ASA physical status, and operation time were found between the groups (p > 0.05. Changes in hemodynamic and respiratory parameters were not statistically significant when compared between and within groups (p > 0.05. Although no statistically significant differences were observed between and within groups when adrenalin, noradrenalin and dopamine values were compared, serum cortisol levels after CO 2 insufflation in PLMA group were significantly lower than the ETT group (p = 0.024. When serum cortisol levels were compared within groups, cortisol levels 20 minutes after CO 2 insufflation were significantly higher (46.1 (9.5-175.7 and 27.0 (8.3-119.4 in the ETT and PLMA groups, respectively than cortisol levels after anaesthesia induction (11.3 (2.8-92.5 and 16.6 (4.4-45.4 in the ETT and PLMA groups, respectively in both groups (p = 0.001. Conclusion: PLMA usage is a suitable, effective and safe alternative to ETT in laparoscopic cholecystectomy patients with lower metabolic stress.

  7. Attenuation of Hemodynamic Responses to Intubation by Gabapentin in Coronary Artery Bypass Surgery: a Randomized Clinical Trial.

    Science.gov (United States)

    Marashi, Seyed Mojtaba; Saeedinia, Seyed Mostafa; Sadeghi, Mostafa; Movafegh, Ali; Marashi, Shaqayeq

    2015-12-01

    A varieties of medications have been suggested to prevent hemodynamic instabilities following laryngoscopy and endotracheal intubation. This study was conducted to determine the beneficial effects of gabapentin on preventing hemodynamic instabilities associated with intubation in patients who were a candidate for coronary artery bypass surgery (CABG). This double blinded randomized, parallel group clinical trial was carried out on 58 normotensive patients scheduled for elective CABG under general anesthesia with endotracheal intubation in Shariati Hospital. Patients were randomly allocated to two groups of 29 patients that received 1200 mg of gabapentin in two dosages (600 mg, 8 hours before anesthesia induction and 600 mg, 2 hours before anesthesia induction) as gabapentin group or received talc powder as placebo (placebo group). Heart rate, mean arterial pressure, systolic and diastolic blood pressure were measured immediately before intubation, during intubation, immediately after intubation, 1 and 2 minutes after tracheal intubation. Inter-group comparisons significantly showed higher systolic and diastolic blood pressure, mean arterial pressure and heart rate immediately before intubation, during intubation, immediately after intubation, 1 and 2 minutes after tracheal intubation in the placebo group in comparison to gabapentin group. The median of anxiety verbal analog scale (VAS) at the pre-induction room in gabapentin and placebo groups were 2 and 4, respectively that was significantly lower in the former group (P. value =0.04 ); however, regarding median of pain score no difference was observed between them (P. value =0.07). Gabapentin (1200 mg) given preoperatively can effectively attenuate the hemodynamic response to laryngoscopy, intubation and also reduce preoperative related anxiety in patients who were a candidate for CABG.

  8. Autoimmune Responses to Brain Following Stroke

    OpenAIRE

    Becker, Kyra

    2012-01-01

    This review provides a synthesis of the work done by our laboratory that demonstrates the presence of cellular immune responses directed towards brain antigens in animals following experimental stroke as well as in patients following ischemic stroke. These responses include both antigenspecific Th1(+) responses, which are associated with worse stroke outcome, and antigen-specific Treg responses, which are associated with better stroke outcome. The likelihood of developing a detrimental Th1(+)...

  9. The effects of healthy aging on cerebral hemodynamic responses to posture change

    International Nuclear Information System (INIS)

    Aging is associated with an increased incidence of orthostatic hypotension, impairment of the baroreceptor reflex and lower baseline cerebral blood flow. The effect of aging on cerebrovascular autoregulation, however, remains to be fully elucidated. We used a novel optical instrument to assess microvascular cerebral hemodynamics in the frontal lobe cortex of 60 healthy subjects ranging from ages 20–78. Diffuse correlation spectroscopy (DCS) and near-infrared spectroscopy (NIRS) were used to measure relative cerebral blood flow (rCBF), total hemoglobin concentration (THC), oxyhemoglobin concentration (HbO2) and deoxyhemoglobin concentration (Hb). Cerebral hemodynamics were monitored for 5 min at each of the following postures: head-of-bed 30°, supine, standing and supine. Supine-to-standing posture change caused significant declines in rCBF, THC and HbO2, and an increase in Hb, across the age continuum (p < 0.01). Healthy aging did not alter postural changes in frontal cortical rCBF (p = 0.23) and was associated with a smaller magnitude of decline in HbO2 (p < 0.05) during supine-to-standing posture change. We conclude that healthy aging does not alter postural changes in frontal cortical perfusion

  10. Dopaminergic drugs in congestive heart failure: hemodynamic and neuroendocrine responses to ibopamine, dopamine, and dihydroergotoxine.

    Science.gov (United States)

    Metra, M; Missale, C; Spano, P F; Cas, L D

    1995-05-01

    Ibopamine has hemodynamic and neurohumoral effects potentially useful for the treatment of congestive heart failure (CHF), but its mechanism of action is not completely clear. To evaluate the role of dopaminergic receptor stimulation in the hemodynamic and neurohumoral activity of ibopamine, we compared the effects of ibopamine, 100 mg orally (p.o.) with those of the dopamine 2, 4, and 6 micrograms/kg/min intravenously (i.v.) and of the DA2 agonist dihydroergotoxine 6 micrograms/kg i.v. in 13 patients with chronic CHF [left ventricular ejection fraction (LVEF) index (CI) with a 23 and 25% increase in stroke volume (SV) and stroke work indexes (SWI), respectively, and an 18% reduction in systemic vascular resistance (SVR). Similar changes were observed after DA infused at the doses of 2 and 4 micrograms/kg/min, whereas with the dose of 6 micrograms/kg/min heart rate (HR) increased by 23% and SV index (SVI) did not change further. Dihydroergotoxine administration induced only a significant 9% decrease in mean arterial pressure (MAP), with a 13% reduction in SVR.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7630152

  11. Photic memory for executive brain responses

    OpenAIRE

    Chellappa, Sarah Laxhmi; Ly, Julien; Meyer, Christelle; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Phillips, Christophe; Cooper, Howard; Vandewalle, Gilles

    2014-01-01

    Light is a powerful stimulant for human alertness and cognition that can be easily administered to improve performance or counteract the negative impact of sleepiness, even during the day. Here, we show that prior exposure to longer wavelength light (orange), relative to shorter wavelength (blue), enhances the subsequent impact of light on executive brain responses. These findings emphasize the importance of light for human cognitive brain function and constitute compelling evidence in favor ...

  12. Attenuation of Hemodynamic Responses to Laryngoscopy and Tracheal Intubation: Propacetamol versus Lidocaine—A Randomized Clinical Trial

    Science.gov (United States)

    Kord Valeshabad, Ali; Nabavian, Omid; Nourijelyani, Keramat; Kord, Hadi; Vafainejad, Hossein; Kord Valeshabad, Reza; Reza Feili, Ali; Rezaei, Mehdi; Darabi, Hamed; Koohkan, Mohammad; Golbinimofrad, Poorya; Jafari, Samira

    2014-01-01

    The purpose of this study is to assess the effects of propacetamol on attenuating hemodynamic responses subsequent laryngoscopy and tracheal intubation compared to lidocaine. In this randomized clinical trial, 62 patients with the American Anesthesiologists Society (ASA) class I/II who required laryngoscopy and tracheal intubation for elective surgery were assigned to receive propacetamol 2 g/I.V./infusion (group P) or lidocaine 1.5 mg/kg (group L) prior to laryngoscopy. Systolic and diastolic blood pressures (SBP, DBP), mean arterial pressure (MAP), and heart rate (HR) were recorded at baseline, before laryngoscopy and within nine minutes after intubation. In both groups P and L, MAP increased after laryngoscopy and the changes were statistically significant (P Propacetamol 2 gr one hour prior intubation attenuates heart rate responses after laryngoscopy but is not effective to prevent acute alterations in blood pressure after intubation. PMID:24822063

  13. Attenuation of Hemodynamic Responses to Laryngoscopy and Tracheal Intubation: Propacetamol versus Lidocaine-A Randomized Clinical Trial.

    Science.gov (United States)

    Kord Valeshabad, Ali; Nabavian, Omid; Nourijelyani, Keramat; Kord, Hadi; Vafainejad, Hossein; Kord Valeshabad, Reza; Reza Feili, Ali; Rezaei, Mehdi; Darabi, Hamed; Koohkan, Mohammad; Golbinimofrad, Poorya; Jafari, Samira

    2014-01-01

    The purpose of this study is to assess the effects of propacetamol on attenuating hemodynamic responses subsequent laryngoscopy and tracheal intubation compared to lidocaine. In this randomized clinical trial, 62 patients with the American Anesthesiologists Society (ASA) class I/II who required laryngoscopy and tracheal intubation for elective surgery were assigned to receive propacetamol 2 g/I.V./infusion (group P) or lidocaine 1.5 mg/kg (group L) prior to laryngoscopy. Systolic and diastolic blood pressures (SBP, DBP), mean arterial pressure (MAP), and heart rate (HR) were recorded at baseline, before laryngoscopy and within nine minutes after intubation. In both groups P and L, MAP increased after laryngoscopy and the changes were statistically significant (P Propacetamol 2 gr one hour prior intubation attenuates heart rate responses after laryngoscopy but is not effective to prevent acute alterations in blood pressure after intubation. PMID:24822063

  14. Prefrontal hemodynamic responses and the degree of flow experience among occupational therapy students during their performance of a cognitive task

    Directory of Open Access Journals (Sweden)

    Kazuki Hirao

    2014-09-01

    Full Text Available Purpose: Although flow experience is positively associated with motivation to learn, the biological basis of flow experience is poorly understood. Accumulation of evidence on the underlying brain mechanisms related to flow is necessary for a deeper understanding of the motivation to learn. The purpose of this study is to investigate the relationship between flow experience and brain function using near-infrared spectroscopy (NIRS during the performance of a cognitive task. Methods: Sixty right-handed occupational therapy (OT students participated in this study. These students performed a verbal fluency test (VFT while 2-channel NIRS was used to assess changes in oxygenated hemoglobin concentration (oxygenated hemoglobin [oxy-Hb] in the prefrontal cortex. Soon after that, the OT students answered the flow questionnaire (FQ to assess the degree of flow experience during the VFT. Results: Average oxy-Hb in the prefrontal cortex had a significant negative correlation with the satisfaction scores on the FQ. Conclusion: Satisfaction during the flow experience correlated with prefrontal hemodynamic suppression. This finding may assist in understanding motivation to learn and related flow experience.

  15. MR Perfusion-derived Hemodynamic Parametric Response Mapping of Bevacizumab Efficacy in Recurrent Glioblastoma.

    Science.gov (United States)

    Kickingereder, Philipp; Radbruch, Alexander; Burth, Sina; Wick, Antje; Heiland, Sabine; Schlemmer, Heinz-Peter; Wick, Wolfgang; Bendszus, Martin; Bonekamp, David

    2016-05-01

    Purpose To better understand the effect of bevacizumab therapy on tumor blood flow and oxygenation status in patients with recurrent glioblastoma. Materials and Methods Retrospective data evaluation was approved by the local ethics committee of the University of Heidelberg (ethics approval number, S-320/2012), and informed consent was waived. A total of 71 patients who received a diagnosis of recurrent glioblastoma underwent conventional anatomic magnetic resonance (MR) imaging and dynamic susceptibility contrast material-enhanced MR imaging at baseline and at the first follow-up examination after initiation of bevacizumab therapy. Parametric response maps (PRMs) were created with multistep (nonlinear) registration of patients' post- to pretreatment images and voxel-wise subtraction between Gaussian-normalized relative cerebral blood volume (nrCBV) and Gaussian-normalized relative cerebral blood flow (nrCBF) maps. Intratumor voxels were stratified as being increased (PRM[+]) or decreased (PRM[-]) if they exceeded a threshold that represented the 95% confidence interval in the normal-appearing brain. Correlation with progression-free and overall survival was performed with Cox proportional hazards models. Results The risks for disease progression and death significantly increased with (a) higher baseline nrCBV (hazard ratio [HR] = 1.86, P reversal of the biologic behavior and relative prognosis of these tumors does not occur. (©) RSNA, 2015 Online supplemental material is available for this article. PMID:26579564

  16. Functional imaging of hemodynamic stimulus response in the rat retina with ultrahigh-speed spectral / Fourier domain OCT

    Science.gov (United States)

    Choi, WooJhon; Baumann, Bernhard; Clermont, Allen C.; Feener, Edward P.; Boas, David A.; Fujimoto, James G.

    2013-03-01

    Measuring retinal hemodynamics in response to flicker stimulus is important for investigating pathophysiology in small animal models of diabetic retinopathy, because a reduction in the hyperemic response is thought to be one of the earliest changes in diabetic retinopathy. In this study, we investigated functional imaging of retinal hemodynamics in response to flicker stimulus in the rat retina using an ultrahigh speed spectral / Fourier domain OCT system at 840nm with an axial scan rate of 244kHz. At 244kHz the nominal axial velocity range that could be measured without phase wrapping was +/-37.7mm/s. Pulsatile total retinal arterial blood flow as a function of time was measured using an en face Doppler approach where a 200μm × 200μm area centered at the central retinal artery was repeatedly raster scanned at a volume acquisition rate of 55Hz. Three-dimensional capillary imaging was performed using speckle decorrelation which has minimal angle dependency compared to other angiography techniques based on OCT phase information. During OCT imaging, a flicker stimulus could be applied to the retina synchronously by inserting a dichroic mirror in the imaging interface. An acute transient increase in total retinal blood flow could be detected. At the capillary level, an increase in the degree of speckle decorrelation in capillary OCT angiography images could also be observed, which indicates an increase in the velocity of blood at the capillary level. This method promises to be useful for the investigation of small animal models of ocular diseases.

  17. The comparison of the effects of dexmedetomidine, fentanyl and esmolol on prevention of hemodynamic response to intubation

    Directory of Open Access Journals (Sweden)

    Nermin Gogus

    2014-09-01

    Full Text Available Background and objectives: Laryngoscopy and intubation can cause hemodynamic response. Various medications may be employed to control that response. In this study, we aimed to compare the effects of dexmedetomidine, fentanyl and esmolol on hemodynamic response. Methods: Ninety elective surgery patients who needed endotracheal intubation who were in American Society of Anesthesiology I–II group and ages between 21 and 65 years were included in that prospective, randomized, double-blind study. Systolic, diastolic, mean arterial pressures, heart rates at the time of admittance at operation room were recorded as basal measurements. The patients were randomized into three groups: Group I (n = 30 received 1 μg/kg dexmedetomidine with infusion in 10 min, Group II (n = 30 received 2 μg/kg fentanyl, Group III received 2 mg/kg esmolol 2 min before induction. The patients were intubated in 3 min. Systolic, diastolic, mean arterial pressures and heart rates were measured before induction, before intubation and 1, 3, 5, 10 min after intubation. Results: When basal levels were compared with the measurements of the groups, it was found that 5 and 10 min after intubation heart rate in Group I and systolic, diastolic, mean arterial pressures in Group III were lower than other measurements (p < 0.05. Conclusions: Dexmedetomidine was superior in the prevention of tachycardia. Esmolol prevented sytolic, diastolic, mean arterial pressure increases following intubation. We concluded that further studies are needed in order to find a strategy that prevents the increase in systemic blood pressure and heart rate both.

  18. Hemodynamic Support in Sepsis

    Directory of Open Access Journals (Sweden)

    Fatih Yildiz

    2014-04-01

    Full Text Available Sepsis is called systemic inflammatory response syndrome due to infection. When added to organs failure and perfusion abnormality is defined in severe sepsis, Hypotension that do not respond to fluid therapy is as defined septic shock. Fluid resuscitation is a most important parts of the treatment in patients with septic shock. Ongoing hypotension that despite of the adequate fluid therapy, vasopressor support initiation is required. Sepsis and septic shock, hemodynamic support is often understood as the hemodynamic support. The different approaches to the development of methods to track and objective comes up. Patients with severe sepsis and septic shock should be follow in the intensive care unit and rapid fluid replacement and effectual hemodynamic support should be provided.

  19. Hemodynamic response characteristics of healthy people to changes in meteorological and geomagnetic factors in the north

    Science.gov (United States)

    Zenchenko, T. A.; Varlamova, N. G.

    2015-12-01

    This paper analyzes the influence of variations in meteorological and geomagnetic factors on hemodynamic parameters (HP) in 27 healthy volunteers who are residents of Syktyvkar (daily monitoring of blood pressure (BP) and heart rate (HR) and stroke and cardiac output for the period from December 1, 2003, to December 31, 2004). It is shown that temperature variations and geomagnetic activity level (GMA) make the greatest impact on HP changes (85 and 48% cases, respectively). The BP level increases with decreasing temperature and with increasing levels of GMA. The sensitivity of systolic and diastolic blood pressure to the meteorological and geomagnetic factors is approximately twice as high as the sensitivity of other HP to them. The individual values of seasonal changes in BP parameters are 4-9 mmHg for systolic blood pressure and 3-6 mmHg for diastolic blood pressure. The estimates of the characteristics of meteorological and geomagnetic sensitivity in residents of northern latitudes are in good agreement with the results obtained by us earlier for other climatic zones and geomagnetic conditions, logically complementing and enhancing the common space-time picture of the reactions of the human body to external impacts.

  20. Hemodynamic Responses on Prefrontal Cortex Related to Meditation and Attentional Task

    Directory of Open Access Journals (Sweden)

    Singh eDeepeshwar

    2015-02-01

    Full Text Available Recent neuroimaging studies state that meditation increases regional cerebral blood flow (rCBF in the prefrontal cortex (PFC. The present study employed functional near infrared spectroscopy (fNIRS to evaluate the relative hemodynamic changes in prefrontal cortex during a cognitive task. Twenty-two healthy male volunteers with ages between 18 and 30 years (group mean age ± SD; 22.9 ± 4.6 years performed a color-word stroop task before and after 20 minutes of meditation and random thinking. Repeated measures ANOVA was performed followed by a post-hoc analysis with Bonferroni adjustment for multiple comparisons between the mean values of ‘During’ and ‘Post’ with ‘Pre’ state. During meditation there was an increased in oxy-hemoglobin (∆HbO and total hemoglobin (∆THC concentration with reduced deoxy-hemoglobin (∆HbR concentration over the right prefrontal cortex (rPFC, whereas in random thinking there was increased ∆HbR with reduced total hemoglobin concentration on the rPFC. The mean reaction time was shorter in stroop color word task with reduced ∆THC after meditation, suggestive of improved performance and efficiency in task related to attention. Our findings demonstrated that meditation increased cerebral oxygenation and enhanced performance, which was associated with prefrontal cortex activation.

  1. Magnetic resonance imaging in assessment of treatment response of gamma knife for brain tumors

    Institute of Scientific and Technical Information of China (English)

    GAO Xiao; ZHANG Xue-ning; ZHANG Yun-ting; YU Chun-shui; XU De-sheng

    2011-01-01

    Objective To review the applications of magnetic resonance imaging (MRI) techniques in assessing treatment response to gamma knife radiosurgery for brain tumors.Data sources Published articles about assessing treatment response to gamma knife radiosurgery for brain tumors were selected using PubMed. The search terms were "MRI", "gamma knife" and "brain tumors".Study selection Articles regarding the MRI techniques using for early assessment of treatment response of gamma knife were selected.Results MRI techniques, especially diffusion weighted imaging, perfusion weighted imaging, magnetic resonance spectroscopy, are useful for early assessment of treatment response of gamma knife by detecting the hemodynamic, metabolic, and cellular alterations. Moreover, they can also provide important information on prognosis.Conclusions Diffusion weighted imaging, perfusion weighted imaging and magnetic resonance spectroscopy can provide early assessment of treatment response of gamma knife for brain tumors, and also information of tumor progression or recurrence earlier than conventional MRI. But there are still many questions to be answered which should be based on the development and advancement of MRI and related disciplines.

  2. Modeling hemodynamic responses in auditory cortex at 1.5 T using variable duration imaging acoustic noise.

    Science.gov (United States)

    Hu, Shuowen; Olulade, Olumide; Castillo, Javier Gonzalez; Santos, Joseph; Kim, Sungeun; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2010-02-15

    A confound for functional magnetic resonance imaging (fMRI), especially for auditory studies, is the presence of imaging acoustic noise generated mainly as a byproduct of rapid gradient switching during volume acquisition and, to a lesser extent, the radiofrequency transmit. This work utilized a novel pulse sequence to present actual imaging acoustic noise for characterization of the induced hemodynamic responses and assessment of linearity in the primary auditory cortex with respect to noise duration. Results show that responses to brief duration (46 ms) imaging acoustic noise is highly nonlinear while responses to longer duration (>1 s) imaging acoustic noise becomes approximately linear, with the right primary auditory cortex exhibiting a higher degree of nonlinearity than the left for the investigated noise durations. This study also assessed the spatial extent of activation induced by imaging acoustic noise, showing that the use of modeled responses (specific to imaging acoustic noise) as the reference waveform revealed additional activations in the auditory cortex not observed with a canonical gamma variate reference waveform, suggesting an improvement in detection sensitivity for imaging acoustic noise-induced activity. Longer duration (1.5 s) imaging acoustic noise was observed to induce activity that expanded outwards from Heschl's gyrus to cover the superior temporal gyrus as well as parts of the middle temporal gyrus and insula, potentially affecting higher level acoustic processing.

  3. Role of Chemoreceptor Activation in Hemodynamic Responses to Electrical Stimulation of the Carotid Sinus in Conscious Rats.

    Science.gov (United States)

    Katayama, Pedro L; Castania, Jaci A; Dias, Daniel P M; Patel, Kaushik P; Fazan, Rubens; Salgado, Helio C

    2015-09-01

    Electric carotid baroreflex activation has been used to treat patients with resistant hypertension. It is hypothesized that, in conscious rats, combined activation of carotid baro- and chemoreceptors afferences attenuates the reflex hypotension. Rats were divided into 4 groups: (1) control group, with unilateral denervation of the right carotid chemoreceptors; (2) chemoreceptor denervation group, with bilateral ligation of the carotid body artery; (3) baroreceptor denervation group, with unilateral denervation of the left carotid baroreceptors and right carotid chemoreceptors; and (4) carotid bifurcation denervation group, with denervation of the left carotid baroreceptors and chemoreceptors, plus denervation of the right carotid chemoreceptors. Animals were subjected to 4 rounds of electric stimulation (5 V, 1 ms), with 15, 30, 60, and 90 Hz applied randomly for 20 s. Electric stimulation caused greater hypotensive responses in the chemoreceptor denervation group than in the control group, at 60 Hz (-37 versus -19 mm Hg) and 90 Hz (-33 versus -19 mm Hg). The baroreceptor denervation group showed hypertensive responses at all frequencies of stimulation. In contrast, the carotid sinus denervation group showed no hemodynamic responses. The control group presented no changes in heart rate, whereas the chemoreceptor denervation group and the baroreceptor denervation group showed bradycardic responses. These data demonstrate that carotid chemoreceptor activation attenuates the reflex hypotension caused by combined electric stimulation of the carotid sinus and the carotid sinus nerve in conscious rats. These findings may provide useful insight for clinical studies using baroreflex activation therapy in resistant hypertension and heart failure.

  4. Image-based modeling of the hemodynamics in cerebral arterial trees

    Science.gov (United States)

    Mut, Fernando; Wright, Susan; Putman, Christopher; Ascoli, Giorgio; Cebral, Juan

    2009-02-01

    Knowledge of the hemodynamics in normal arterial trees of the brain is important to better understand the mechanisms responsible for the initiation and progression of cerebrovascular diseases. Information about the baseline values of hemodynamic variables such as velocity magnitudes, swirling flows, wall shear stress, pressure drops, vascular resistances, etc. is important for characterization of the normal hemodynamics and comparison with pathological states such as aneurysms and stenoses. This paper presents image-based computational hemodynamics models of cerebral arterial trees constructed from magnetic resonance angiography (MRA) images. The construction of large models of cerebral arterial trees is challenging because of the following main reasons: a) it is necessary to acquire high resolution angiographic images covering the entire brain, b) it is necessary to construct topologically correct and geometrically accurate watertight models of the vasculature, and c) the models typically result in large computational grids which make the calculations computationally demanding. This paper presents a methodology to model the hemodynamics in the brain arterial network that combines high resolution MRA at 3T, a vector representation of the vascular structures based on semi-manual segmentation, and a novel algorithm to solve the incompressible flow equations efficiently in tubular geometries. These techniques make the study of the hemodynamics in the cerebral arterial network practical.

  5. Left ventricular assist device weaning: hemodynamic response and relationship to stroke volume and rate reduction protocols.

    Science.gov (United States)

    Slaughter, Mark S; Sobieski, Michael A; Koenig, Steven C; Pappas, Patrokolos S; Tatooles, Antone J; Silver, Marc A

    2006-01-01

    Clinical evidence of myocardial recovery in a small cohort of patients supported with a left ventricular assist device (LVAD) has been reported. Development of an optimal LVAD weaning protocol is needed for these patients to sustain recovery after device explant. In this study, we tested the hypothesis that LVAD stroke volume reduction produces a steady-state mechanical reloading of left ventricular (LV) pressures and volumes compared with LVAD rate reduction that results in transient mechanical reloading of the heart due to beat-to-beat variation in LV pressures and volumes. The relationship of LVAD flow to LVAD stroke volume and systolic interval over a range of LVAD rates (60, 80, 100, 120, and 140 bpm) was validated in a mock circulatory flow loop. In six acute experiments, calves were implanted with a pneumatic paracorporeal LVAD (PVAD, Thoratec, Pleasanton, CA). The PVAD was operated asynchronously in the auto volume mode (full decompression) for 30 minutes to establish a baseline control condition. The calf hearts were then mechanically reloaded by LVAD rate reduction (80, 60, and 40 bpm) or LVAD stroke volume reduction (100, 120, and 140 bpm) protocols consisting of 30 minutes of support at each LVAD beat rate. The order of weaning protocols was randomized with a 30-minute recovery period (LVAD volume mode to fully decompress heart allowing it to rest) between protocols to enable return to baseline control state. Aortic pressure and flow, LV pressure and volume, pulmonary artery flow, and LVAD flow waveforms were recorded for each test condition. The LVAD stroke volume reduction protocol produced steady-state mechanical reloading compared with VAD rate reduction that resulted in transient LV mechanical reloading. This distinction is due to differences in their temporal relationships between LVAD and LV filling and emptying cycles. The acute hemodynamic benefit of LVAD stroke volume reduction was greater reduction in LV end-diastolic pressure and increase in

  6. BRAIN STEM EVOKED RESPONSE AUDIOMETRY A REVIEW

    Directory of Open Access Journals (Sweden)

    Balasubramanian Thiagarajan

    2015-01-01

    Full Text Available Brain stem evoked response audiometry (BERA is a useful objective assessment of hearing. Major advantage of this procedure is its ability to test even infants in whom conventional audiometry may not be useful. This investigation can be used as a screening test for deafness in high risk infants. Early diagnosis and rehabilitation will reduce disability in these children. This article attempts to review the published literature on this subject.

  7. Auditory brain-stem responses in syphilis.

    OpenAIRE

    Rosenhall, U; Roupe, G

    1981-01-01

    Analysis of auditory brain-stem electrical responses (BSER) provides an effective means of detecting lesions in the auditory pathways. In the present study the wave patterns were analysed in 11 patients with secondary or latent syphilis with no clinical symptoms referrable to the central nervous system and in two patients with congenital syphilis and general paralysis. Decreased amplitudes and prolonged latencies occurred frequently in patients with secondary and with advanced syphilis. This ...

  8. Attenuation of Hemodynamic Responses to Laryngoscopy and Tracheal Intubation: Propacetamol versus Lidocaine—A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Ali Kord Valeshabad

    2014-01-01

    Full Text Available The purpose of this study is to assess the effects of propacetamol on attenuating hemodynamic responses subsequent laryngoscopy and tracheal intubation compared to lidocaine. In this randomized clinical trial, 62 patients with the American Anesthesiologists Society (ASA class I/II who required laryngoscopy and tracheal intubation for elective surgery were assigned to receive propacetamol 2 g/I.V./infusion (group P or lidocaine 1.5 mg/kg (group L prior to laryngoscopy. Systolic and diastolic blood pressures (SBP, DBP, mean arterial pressure (MAP, and heart rate (HR were recorded at baseline, before laryngoscopy and within nine minutes after intubation. In both groups P and L, MAP increased after laryngoscopy and the changes were statistically significant (P<0.001. There were significant changes of HR in both groups after intubation (P<0.02, but the trend of changes was different between two groups (P<0.001. In group L, HR increased after intubation and its change was statistically significant within 9 minutes after intubation (P<0.001, while in group P, HR remained stable after intubation (P=0.8. Propacetamol 2 gr one hour prior intubation attenuates heart rate responses after laryngoscopy but is not effective to prevent acute alterations in blood pressure after intubation.

  9. Frontal hemodynamic responses to high frequency yoga breathing in schizophrenia: A functional near infrared spectroscopy (fNIRS study

    Directory of Open Access Journals (Sweden)

    Hemant eBhargav

    2014-03-01

    Full Text Available Frontal hemodynamic responses to high frequency yoga breathing technique - Kapalabhati (KB was compared between patients of schizophrenia (n =18; 14 males, 4 females and age-gender and education matched healthy subjects (n=18; 14 males, 4 females using functional near-infrared spectroscopy (fNIRS.The diagnosis was confirmed by a psychiatrist using DSM IV. All patients except one received atypical anti-psychotics (one was on typical. They had obtained a stabilized state as evidenced by a steady unchanged medication from their psychiatrist for past 3 months or longer. They learned KB, among other yoga procedures, in the yoga retreat. KB was practiced at the rate of 120 times per minute for 1minute (min. Healthy subjects who were freshly learning yoga too were taught KB. Both the groups had no previous exposure to KB practice and the training was achieved over 2 weeks. A chest pressure transducer was used to monitor the frequency and intensity of the practice objectively. The frontal hemodynamic response in terms of the oxygenated hemoglobin (oxyHb, deoxygenated hemoglobin (deoxyHb and total hemoglobin or blood volume (totalHb concentration was tapped for 5 min before, 1min during and for 5 min after KB.This was obtained in quiet room using a 16 channel functional near-infrared system (FNIR100-ACK-W, BIOPAC Systems, Inc, USA. Average of the eight channels for each side (right and left frontals was obtained for the three sessions. The changes in the levels of oxyHb, deoxyHb and blood volume for the three sessions were compared between the two groups using Independent samples t test.Within group comparison showed that increase in bilateral oxyHb and totalHb from the baseline was highly significant in healthy controls during KB (right oxyHb, p = 0.00; left oxyHb, p= 0.00 and right totalHb, p = 0.01; left totalHb, p = 0.00, whereas schizophrenia patients did not show any significant changes in the same on both the sides. On the other hand

  10. Visfatin induces sickness responses in the brain.

    Directory of Open Access Journals (Sweden)

    Byong Seo Park

    Full Text Available BACKGROUND/OBJECTIVE: Visfatin, also known as nicotiamide phosphoribosyltransferase or pre-B cell colony enhancing factor, is a pro-inflammatory cytokine whose serum level is increased in sepsis and cancer as well as in obesity. Here we report a pro-inflammatory role of visfatin in the brain, to mediate sickness responses including anorexia, hyperthermia and hypoactivity. METHODOLOGY: Rats were intracerebroventricularly (ICV injected with visfatin, and changes in food intake, body weight, body temperature and locomotor activity were monitored. Real-time PCR was applied to determine the expressions of pro-inflammatory cytokines, proopiomelanocortin (POMC and prostaglandin-synthesizing enzymes in their brain. To determine the roles of cyclooxygenase (COX and melanocortin in the visfatin action, rats were ICV-injected with visfatin with or without SHU9119, a melanocortin receptor antagonist, or indomethacin, a COX inhibitor, and their sickness behaviors were evaluated. PRINCIPAL FINDINGS: Administration of visfatin decreased food intake, body weight and locomotor activity and increased body temperature. Visfatin evoked significant increases in the levels of pro-inflammatory cytokines, prostaglandin-synthesizing enzymes and POMC, an anorexigenic neuropeptide. Indomethacin attenuated the effects of visfatin on hyperthermia and hypoactivity, but not anorexia. Further, SHU9119 blocked visfatin-induced anorexia but did not affect hyperthermia or hypoactivity. CONCLUSIONS: Visfatin induced sickness responses via regulation of COX and the melanocortin pathway in the brain.

  11. The acute effects of the thermogenic supplement Meltdown on energy expenditure, fat oxidation, and hemodynamic responses in young, healthy males

    Directory of Open Access Journals (Sweden)

    Cooke Matt

    2008-12-01

    post-exercise states without any adverse hemodynamic responses associated with maximal exercise.

  12. Comparison of bolus and continuous infusion of esmolol on hemodynamic response to laryngoscopy, endotracheal intubation and sternotomy in coronary artery bypass graft

    OpenAIRE

    Esra Mercanooglu Efe; Basak Atabey Bilgin; Zekeriyya Alanoglu; Murat Akbaba; Cigdem Denker

    2014-01-01

    BACKGROUND AND OBJECTIVE: The aim of this randomized, prospective and double blinded study is to investigate effects of different esmolol use on hemodynamic response of laryngoscopy, endotracheal intubation and sternotomy in coronary artery bypass graft surgery. METHODS: After approval of local ethics committee and patients' written informed consent, 45 patients were randomized into three groups equally. In Infusion Group; from 10 min before intubation up to 5th minute after sternotomy, ...

  13. The effect of different doses of esmolol on hemodynamic, bispectral index and movement response during orotracheal intubation: prospective, randomized, double-blind study

    OpenAIRE

    Mensure Yılmaz Çakırgöz; Aydın Taşdöğen; Çimen Olguner; Hülya Korkmaz; Ertuğrul Öğün; Burak Küçükebe; Esra Duran

    2014-01-01

    Objective: A prospective, randomized and double-blind study was planned to identify the optimum dose of esmolol infusion to suppress the increase in bispectral index values and the movement and hemodynamic responses to tracheal intubation. Materials and methods: One hundred and twenty patients were randomly allocated to one of three groups in a double-blind fashion. 2.5 mg kg-1 propofol was administered for anesthesia induction. After loss of consciousness, and before administration of 0.6 ...

  14. Brain Activity in Response to Visual Symmetry

    Directory of Open Access Journals (Sweden)

    Marco Bertamini

    2014-12-01

    Full Text Available A number of studies have explored visual symmetry processing by measuring event related potentials and neural oscillatory activity. There is a sustained posterior negativity (SPN related to the presence of symmetry. There is also functional magnetic resonance imaging (MRI activity in extrastriate visual areas and in the lateral occipital complex. We summarise the evidence by answering six questions. (1 Is there an automatic and sustained response to symmetry in visual areas? Answer: Yes, and this suggests automatic processing of symmetry. (2 Which brain areas are involved in symmetry perception? Answer: There is an extended network from extrastriate areas to higher areas. (3 Is reflection special? Answer: Reflection is the optimal stimulus for a more general regularity-sensitive network. (4 Is the response to symmetry independent of view angle? Answer: When people classify patterns as symmetrical or random, the response to symmetry is view-invariant. When people attend to other dimensions, the network responds to residual regularity in the image. (5 How are brain rhythms in the two hemispheres altered during symmetry perception? Answer: Symmetry processing (rather than presence produces more alpha desynchronization in the right posterior regions. Finally, (6 does symmetry processing produce positive affect? Answer: Not in the strongest sense, but behavioural measures reveal implicit positive evaluation of abstract symmetry.

  15. Monitoring hemodynamic and morphologic responses to closed head injury in a mouse model using orthogonal diffuse near-infrared light reflectance spectroscopy

    Science.gov (United States)

    Abookasis, David; Shochat, Ariel; Mathews, Marlon S.

    2013-04-01

    The authors' aim is to assess and quantitatively measure brain hemodynamic and morphological variations during closed-head injury (CHI) in mice using orthogonal diffuse near-infrared reflectance spectroscopy (o-DRS). CHI is a type of injury to the head that does not penetrate the skull. Usually, it is caused by mechanical blows to the head and frequently occurs in traffic accidents, falls, and assaults. Measurements of brain optical properties, namely absorption and reduced scattering coefficients in the wavelength range from 650 to 1000 nm were carried out by employing different source-detector distance and locations to provide depth sensitivity on an intact scalp over the duration of the whole experiment. Furthermore, alteration in both cortical hemodynamics and morphologic markers, i.e., scattering power and amplitude properties were derived. CHI was induced in anesthetized male mice by a weight-drop model using ˜50 g cylindrical metal falling from a height of 90 cm onto the intact scalp producing an impact of 4500 g cm. With respect to baseline, difference in brain physiological properties was observed following injury up to 1 h post-trauma. Additionally, the reduced scattering spectral shapes followed Mie scattering theory was quantified and clearly shows changes in both scattering amplitude and power from baseline indicating structural variations likely from evolving cerebral edema during CHI. We further demonstrate high correlation between scattering amplitude and scattering power, with more than 20% difference in slope in comparison to preinjury. This result indicates the possibility of using the slope also as a marker for detection of structural changes. Finally, experiments investigating brain function during the first 20 min postinjury were conducted and changes in chromophore concentrations and scattering were observed. Overall, our experiments demonstrate the potential of using the proposed technique as a valuable quantitative noninvasive tool for

  16. Emotional, Neurohormonal, and Hemodynamic Responses to Mental Stress in Tako-Tsubo Cardiomyopathy

    NARCIS (Netherlands)

    Smeijers, Loes; Szabo, Balazs M.; van Dammen, Lotte; Wonnink, Wally; Jakobs, Bernadette S.; Bosch, Jos A.; Kop, Willem J.

    2015-01-01

    Tako-Tsubo cardiomyopathy (TTC) is characterized by apical ballooning of the left ventricle and symptoms and signs mimicking acute myocardial infarction. The high catecholamine levels in the acute phase of TTC and common emotional triggers suggest a dysregulated stress response system. This study ex

  17. Emotional, Neurohormonal and Hemodynamic Responses to Mental Stress in Tako-Tsubo Cardiomyopathy

    NARCIS (Netherlands)

    Smeijers, Loes; Szabó, Bálasz; van Dammen, Lotte; Wonnink, Wally; Jakobs, Bernadette; Bosch, Jos; Kop, Willem

    2015-01-01

    Tako-Tsubo cardiomyopathy (TTC) is characterized by apical ballooning of the left ventricle and symptoms and signs mimicking acute myocardial infarction. The high catecholamine levels int the acute phase of TTC and common emotional triggers suggest a dysregulated stress response system. This study e

  18. Emotional, neurohormonal and hemodynamic responses to mental stress in Tako-Tsubo cardiomyopathy

    NARCIS (Netherlands)

    L. Smeijers; B.M. Szabó; L. van Dammen; W. Wonnink; B.S. Jakobs; J.A. Bosch; W.J. Kop

    2015-01-01

    Tako-Tsubo cardiomyopathy (TTC) is characterized by apical ballooning of the left ventricle and symptoms and signs mimicking acute myocardial infarction. The high catecholamine levels in the acute phase of TTC and common emotional triggers suggest a dysregulated stress response system. This study ex

  19. Comparison of the efficacy of dexmedetomidine and esmolol in the treatment of increased hemodynamic response during the recovery period

    Directory of Open Access Journals (Sweden)

    Ayşe Neslihan Bebek

    2012-03-01

    Full Text Available Objectives: Our aim was to compare effectiveness of esmololand dexmedetomidine in the treatment of increasedhemodynamic response during anesthesia recovery period.Materials and methods: 60 ASA I-II patients whomscheduled for elective surgery with endotracheal intubationwere randomized before extubation according to theirhemodynamic parameters that were increased 20% oftheir baseline values in order to receive 1mg/kg esmolol(Group Esmolol, n= 30 or 0.5 μg/kg dexmedetomidine(Group Dexmedetomidine, n= 30. Heart rate (HR, systolicand diastolic blood pressures (SBP,DBP, peripheral oxygensaturation (SpO2, end tidal carbon dioxide (ETCO2values, extubation time, recovery time were recorded. Theduration till having pain requiring analgesic was recordedand cognitive functions were evaluated with short memoryorientation concentration test at 20th and 50th minutes.Results: After drug, HR reductions were significant at allperiods in group Dexmedetomidine (Z2-Z10: p<0.001,Z11:p=0.001, Z12, p=0.006. In group DexmedetomidineSBP value was high at 3rd min after drug (p<0.001, andSBP values were lower in all periods before and after extubation(Z6- Z10: p<0.001, Z11: p=0.02, Z12: p=0.04.In group Dexmedetomidine DBP value was higher at 1stmin after drug (p=0.001, DBP values were lower at 10thmin after drug and before extubation (p= 0.045, p=0.001.The duration of pain requiring analgesic and recoveryperiod were longer in dexmedetomidine group (p<0.001,p<0.001.Conclusions: Although esmolol and dexmedetotimidineattenuated hemodynamic response during recovery period,dexmedetotimidine was more effective in hemodynamicstabilization and the duration of pain requiring analgesicwas longer. Esmolol provided faster recovery time. JClin Exp Invest 2012; 3(1: 53-60

  20. Effects of forearm bier block with bretylium on the hemodynamic and metabolic responses to handgrip

    Science.gov (United States)

    Lee, F.; Shoemaker, J. K.; McQuillan, P. M.; Kunselman, A. R.; Smith, M. B.; Yang, Q. X.; Smith, H.; Gray, K.; Sinoway, L. I.

    2000-01-01

    We tested the hypothesis that a reduction in sympathetic tone to exercising forearm muscle would increase blood flow, reduce muscle acidosis, and attenuate reflex responses. Subjects performed a progressive, four-stage rhythmic handgrip protocol before and after forearm bier block with bretylium as forearm blood flow (Doppler) and metabolic (venous effluent metabolite concentration and (31)P-NMR indexes) and autonomic reflex responses (heart rate, blood pressure, and sympathetic nerve traffic) were measured. Bretylium inhibits the release of norepinephrine at the neurovascular junction. Bier block increased blood flow as well as oxygen consumption in the exercising forearm (P bier block (6.41 +/- 0.08 vs. 6.20 +/- 0.06; P bier block. The results support the conclusion that sympathetic stimulation to muscle during exercise not only limits muscle blood flow but also appears to limit anaerobiosis and H(+) release, presumably through a preferential recruitment of oxidative fibers.

  1. Efficacy of esmolol administration at different time intervals in attenuating hemodynamic response to tracheal intubation

    Directory of Open Access Journals (Sweden)

    S K Singhal

    2010-01-01

    Full Text Available Background: Laryngoscopy and endotracheal intubation are known to cause increase in both arterial blood pressure and heart rate. Several strategies have been evolved to blunt the haemodynamic response to tracheal intubation but each method has its own advantages and disadvantages. Esmolol, a cardio selective Beta -1 blocking drug, can alleviate some of these problems. Esmolol, when administered parenterally, exhibits rapid onset and a short duration of action due to its rapid clearance by red blood cell esterases. Hence we conducted the present study to evaluate the efficacy and optimum time of single bolus esmolol administration in attenuating hypertensive- tachycardiac response to laryngoscopy and tracheal intubation. Materials and Methods: The randomized double blind prospective study was conducted in 60 patients, in the age group of 20-40 years, of both sexes, belonging to American Society of Anaesthesiologists (ASA physical status class I or II and scheduled for elective surgery requiring endotracheal intubation and general anaesthesia. The efficacy and optimum time of single bolus esmolol administration in attenuating hypertensive - tachycardiac response to laryngoscopy and tracheal intubation was evaluated. Patients in group I (n=20 received bolus administration of injection esmolol 1.5 mg/kg intravenously (iv 90 seconds before intubation; in group II (n=20 three minutes before intubation and in group III (n=20 six minutes before intubation. Results: There was no clinical and statistically significant variation in heart rate in group I and II at different time intervals of the study period but in group III heart rate increased significantly one minute after tracheal intubation. (P0.05 Conclusion: To conclude, single intravenous bolus dose of esmolol (1.5 mg/kg is safe and more effective in attenuating haemodynamic response to laryngoscopy and tracheal intubation when administered three minutes prior to intubation.

  2. Efficacy of esmolol administration at different time intervals in attenuating hemodynamic response to tracheal intubation

    OpenAIRE

    S.K. Singhal; Naveen Malhotra; Kiranpreet Kaur; Dharmender Dhaiya

    2010-01-01

    Background: Laryngoscopy and endotracheal intubation are known to cause increase in both arterial blood pressure and heart rate. Several strategies have been evolved to blunt the haemodynamic response to tracheal intubation but each method has its own advantages and disadvantages. Esmolol, a cardio selective Beta -1 blocking drug, can alleviate some of these problems. Esmolol, when administered parenterally, exhibits rapid onset and a short duration of action due to its rapid clearance by red...

  3. Promoting Motor Function by Exercising the Brain

    OpenAIRE

    Stephane Perrey

    2013-01-01

    Exercise represents a behavioral intervention that enhances brain health and motor function. The increase in cerebral blood volume in response to physical activity may be responsible for improving brain function. Among the various neuroimaging techniques used to monitor brain hemodynamic response during exercise, functional near-infrared spectroscopy could facilitate the measurement of task-related cortical responses noninvasively and is relatively robust with regard to the subjects’ motion. ...

  4. Effect of hemorrhage rate on early hemodynamic responses in conscious sheep

    OpenAIRE

    Scully, Christopher G.; Daluwatte, Chathuri; Marques, Nicole R.; Khan, Muzna; Salter, Michael; Wolf, Jordan; Nelson, Christina; Salsbury, John; Enkhbaatar, Perenlei; Kinsky, Michael; Kramer, George C.; Strauss, David G

    2016-01-01

    Abstract Physiological compensatory mechanisms can mask the extent of hemorrhage in conscious mammals, which can be further complicated by individual tolerance and variations in hemorrhage onset and duration. We assessed the effect of hemorrhage rate on tolerance and early physiologic responses to hemorrhage in conscious sheep. Eight Merino ewes (37.4 ± 1.1 kg) were subjected to fast (1.25 mL/kg/min) and slow (0.25 mL/kg/min) hemorrhages separated by at least 3 days. Blood was withdrawn until...

  5. The involvement of nitric oxide in the hemodynamic and metabolic activities of the brain and small intestine

    Science.gov (United States)

    Tolmasov, M.; Barbiro-Michaely, E.; Mayevsky, A.

    2009-02-01

    Nitric oxide is a mediator in many physiological processes including vasodilatation of blood vessels, neurotransmission and prevention of platelet aggregation. It has also a role in the pathophysiology of sepsis, hemorrhagic shock, various traumatic events and critical conditions involved with circulatory abnormalities. The last one is accompanied by blood flow redistribution and is considered to be the putative cause of altered oxygen metabolism in various pathophysiological conditions. The present study tested the involvement of NO in the brain as a vital organ versus the small intestine, a less vital organ using the non-specific nitric oxide synthase inhibitor L-NAME and exogenous NO donor - nitrite. The parameters that were simultaneously monitored in both organs included mean arterial blood pressure (MAP), tissue blood flow (TBF), using laser Doppler flowmetery and NADH fluorescence using the fluorometric technique. Three groups were tested. Group 1 - L-NAME +nitrite, group 2 - control L-NAME and group 3 - control nitrite. Following LNAME, MAP significantly increased and remained elevated through the entire experiment. TBF decreased in both organs with full recovery in the brain and no recovery in the intestine, whereas NADH showed no significant changes. Nitrite alone had no significant effect on the parameters in any of the organs. In group 1 the infusion of nitrite decreased the level of elevated MAP earlier induced by L-NAME. Nitrite also recovered the reduced TBF in the brain whereas it had no beneficial effect on intestinal blood flow indicating for its regulatory role in the brain but not in the intestine.

  6. The effects of dexmedetomidine on hemodynamic responses to tracheal ntubation in hypertensive patients: A comparison with esmolol and sufentanyl

    Directory of Open Access Journals (Sweden)

    Hale Yarkan Uysal

    2012-01-01

    Full Text Available Background: Hypertension and tachycardia caused by tracheal intubation can be detrimental in hypertensive patients. This study was conducted in order to compare the effects of dexmedetomidine on hemodynamic response to tracheal intubation in hypertensive patients with esmolol and sufentanyl. Methods: Sixty hypertensive patients scheduled for noncardiac surgery under general anesthesia were randomly as-signed to receive one of the three drugs before induction of anesthesia. Groups I, II, and III respectively received esmo-lol (100 mg dexmedetomidine (1 μg/kg and sufentanyl (0.25 μg/kg. Heart Rate (HR, systolic (SAP and diastolic (DAP arterial pressures were recorded before drug administration (baseline; T1, after drug administration (T2, after induction of anesthesia (T3, immediately after intubation (T4 and 3, 5 and 10 minutes after intubation (T5, T6, and T7, respectively. The mean percentage variations from T1 to T4 were calculated for all variables (HR, SAP and DAP. Thiopental dose, onset time of vecuronium and intubation time were also assessed. Results: No differences were observed between the three groups regarding demographic data (p > 0.05. Median thi-opental dose was significantly lower in Group II (325 mg; range: 250-500 compared to Group I (425 mg; range: 325-500; p < 0.01 and Group III (375 mg; range: 275-500; p = 0.02. The onset time of vecuronium was longest in Group I (245.2 ± 63 s vs. 193.9 ± 46.6 s and 205.5 ± 43.5 s; p < 0.01 and p < 0.05. In Group I, HR significantly decreased after drug administration compared to baseline (83.8 ± 20.4 vs. 71.7 ± 14.8; p = 0.002. Compared to the baseline (90.4 ± 8.4, DAP decreased after induction and remained below baseline values at T5, T6 and T7 (71.3 ± 12.8, 76.2 ± 10.7, 68.9 ± 10.8 and 62.1 ± 8.7, respectively; p < 0.05 in Group II. According to the mean percen-tage variation, a significant reduction in HR was assessed in Group II compared to Group III (-13.4 ± 17.6% vs. 11

  7. Electromyographic, cerebral and muscle hemodynamic responses during intermittent, isometric contractions of the biceps brachii at three submaximal intensities

    Directory of Open Access Journals (Sweden)

    Yagesh eBhambhani

    2014-06-01

    Full Text Available This study examined the electromyographic, cerebral and muscle hemodynamic responses during intermittent isometric contractions of biceps brachii at 20%, 40% and 60% of maximal voluntary contraction (MVC. Eleven volunteers completed two minutes of intermittent isometric contractions (12/min at an elbow angle of 90° interspersed with three minutes rest between intensities in systematic order. Surface electromyography (EMG was recorded from the right biceps brachii and near infrared spectroscopy (NIRS was used to simultaneously measure left prefrontal and right biceps brachii oxyhemoglobin (HbO2, deoxyhemoglobin (HHb and total hemoglobin (Hbtot. Transcranial Doppler ultrasound was used to measure middle cerebral artery velocity (MCAv bilaterally. Finger photoplethysmography was used to record beat-to-beat blood pressure and heart rate. EMG increased with force output from 20% to 60% MVC (P0.05. MCAv increased from rest to exercise but was not different among intensities (P>0.05. Force output correlated with the root mean square EMG and changes in muscle HbO2 (P0.05 at all three intensities. Force output declined by 8% from the 1st to the 24th contraction only at 60% MVC and was accompanied by systematic increases in RMS, cerebral HbO2 and Hbtot with a levelling off in muscle HbO2 and Hbtot. These changes were independent of alterations in mean arterial pressure. Since cerebral blood flow and oxygenation were elevated at 60% MVC, we attribute the development of fatigue to reduced muscle oxygen availability rather than impaired central n

  8. Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo.

    Directory of Open Access Journals (Sweden)

    Shengxiang Zhang

    2007-05-01

    Full Text Available In vivo two-photon microscopy was used to image in real time dendrites and their spines in a mouse photothrombotic stroke model that reduced somatosensory cortex blood flow in discrete regions of cortical functional maps. This approach allowed us to define relationships between blood flow, cortical structure, and function on scales not previously achieved with macroscopic imaging techniques. Acute ischemic damage to dendrites was triggered within 30 min when blood flow over >0.2 mm(2 of cortical surface was blocked. Rapid damage was not attributed to a subset of clotted or even leaking vessels (extravasation alone. Assessment of stroke borders revealed a remarkably sharp transition between intact and damaged synaptic circuitry that occurred over tens of mum and was defined by a transition between flowing and blocked vessels. Although dendritic spines were normally ~13 microm from small flowing vessels, we show that intact dendritic structure can be maintained (in areas without flowing vessels by blood flow from vessels that are on average 80 microm away. Functional imaging of intrinsic optical signals associated with activity-evoked hemodynamic responses in somatosensory cortex indicated that sensory-induced changes in signal were blocked in areas with damaged dendrites, but were present ~400 microm away from the border of dendritic damage. These results define the range of influence that blood flow can have on local cortical fine structure and function, as well as to demonstrate that peri-infarct tissues can be functional within the first few hours after stroke and well positioned to aid in poststroke recovery.

  9. Monitoring changes in hemodynamics following optogenetic stimulation

    Science.gov (United States)

    Frye, Seth

    The brain is composed of billions of neurons, all of which connected through a vast network. After years of study and applications of different technologies and techniques, there are still more questions than answers when it comes to the fundamental functions of the brain. This project aims to provide a new tool which can be used to gain a better understanding of the fundamental mechanisms that govern neurological processes inside the brain. In order for neural networks to operate, blood has to be supplied through neighboring blood vessels. As such, the increase or decrease in the blood supply has been used as an indicator of neural activity. The neural activity and blood supply relationship is known as neural vasculature coupling. Monitoring the hemodynamics is used as an indicator of neurological activity, but the causal relationship is an area of current research. Gaining a better understanding of the coupling of neural activity and the surrounding vasculature provides a more accurate methodology to evaluate regional neural activity. The new optical technology applied in this project provides a set of tools to both stimulate and monitor this coupling relationship. Optogenetics provides the capability of stimulating neural activity using specific wavelengths of light. Essentially this tool allows for the direct stimulation of networks of neurons by simply shining one color of light onto the brain. Optical Coherence Tomography (OCT), another new optical technology applied in this project, can record volumetric images of blood vessels and flow using only infrared light. The combination of the two optical technologies is then capable of stimulating neural activity and monitoring the hemodynamic response inside the brain using only light. As a result of this project we have successfully demonstrated the capability of both stimulating and imaging the brain using new optical technologies. The optical stimulation of neural activity has evoked a direct hemodynamic effect

  10. Effect of parameter variations on the hemodynamic response under rotary blood pump assistance.

    Science.gov (United States)

    Lim, Einly; Dokos, Socrates; Salamonsen, Robert F; Rosenfeldt, Franklin L; Ayre, Peter J; Lovell, Nigel H

    2012-05-01

    Numerical models, able to simulate the response of the human cardiovascular system (CVS) in the presence of an implantable rotary blood pump (IRBP), have been widely used as a predictive tool to investigate the interaction between the CVS and the IRBP under various operating conditions. The present study investigates the effect of alterations in the model parameter values, that is, cardiac contractility, systemic vascular resistance, and total blood volume on the efficiency of rotary pump assistance, using an optimized dynamic heart-pump interaction model previously developed in our laboratory based on animal experimental measurements obtained from five canines. The effect of mean pump speed and the circulatory perturbations on left and right ventricular pressure volume loops, mean aortic pressure, mean cardiac output, pump assistance ratio, and pump flow pulsatility from both the greyhound experiments and model simulations are demonstrated. Furthermore, the applicability of some of the previously proposed control parameters, that is, pulsatility index (PI), gradient of PI with respect to pump speed, pump differential pressure, and aortic pressure are discussed based on our observations from experimental and simulation results. It was found that previously proposed control strategies were not able to perform well under highly varying circulatory conditions. Among these, control algorithms which rely on the left ventricular filling pressure appear to be the most robust as they emulate the Frank-Starling mechanism of the heart. PMID:22489771

  11. Effects of chronic dietary nitrate supplementation on the hemodynamic response to dynamic exercise.

    Science.gov (United States)

    Lee, Jae-Seok; Stebbins, Charles L; Jung, Eunji; Nho, Hosung; Kim, Jong-Kyung; Chang, Myoung-Jei; Choi, Hyun-Min

    2015-09-01

    While acute treatment with beetroot juice (BRJ) containing nitrate (NO3 (-)) can lower systolic blood pressure (SBP), afterload, and myocardial O2 demand during submaximal exercise, effects of chronic supplementation with BRJ (containing a relatively low dose of NO3 (-), 400 mg) on cardiac output (CO), SBP, total peripheral resistance (TPR), and the work of the heart in response to dynamic exercise are not known. Thus, in 14 healthy males (22 ± 1 yr), we compared effects of 15 days of both BRJ and nitrate-depleted beetroot juice (NDBRJ) supplementation on plasma concentrations of NOx (NO3 (-)/NO2 (-)), SBP, diastolic blood pressure (DBP), mean arterial pressure (MAP), CO, TPR, and rate pressure product (RPP) at rest and during progressive cycling exercise. Endothelial function was also assessed via flow-mediated dilation (FMD). BRJ supplementation increased plasma NOx from 83.8 ± 13.8 to 167.6 ± 13.2 μM. Compared with NDBRJ, BRJ reduced SBP, DBP, MAP, and TPR at rest and during exercise (P < 0.05). In addition, RPP was decreased during exercise, while CO was increased, but only at rest and the 30% workload (P < 0.05). BRJ enhanced FMD-induced increases in brachial artery diameter (pre: 12.3 ± 1.6%; post: 17.8 ± 1.9%). We conclude that 1) chronic supplementation with BRJ lowers blood pressure and vascular resistance at rest and during exercise and attenuates RPP during exercise and 2) these effects may be due, in part, to enhanced endothelium-induced vasodilation in contracting skeletal muscle. Findings suggest that BRJ can act as a dietary nutraceutical capable of enhancing O2 delivery and reducing work of the heart, such that exercise can be performed at a given workload for a longer period of time before the onset of fatigue. PMID:26084693

  12. Hemodynamic responses of the caudal artery to toxic tall fescue in beef heifers.

    Science.gov (United States)

    Aiken, G E; Kirch, B H; Strickland, J R; Bush, L P; Looper, M L; Schrick, F N

    2007-09-01

    Color Doppler ultrasonography was used to compare blood flow characteristics in the caudal artery of heifers fed diets with endophyte (Neotyphodium coenophialum) infected (E+) or noninfected (E-) tall fescue seed. Eighteen crossbred (Angus x Brangus) heifers were assigned to 6 pens and were fed chopped alfalfa hay for 5 d and chopped alfalfa hay plus a concentrate that contained E-tall fescue seed for 9 d during an adjustment period. An 11-d experimental period followed, with animals in 3 pens fed chopped alfalfa hay plus a concentrate with E+ seed and those in the other 3 pens fed chopped hay plus concentrate with E E- seed. Color Doppler ultrasound measurements (caudal artery area, peak systolic velocity, end diastolic velocity, mean velocity, heart rate, stroke volume, and flow rate) and serum prolactin were monitored during the adjustment (baseline measures) and during the experimental period. Three baseline measures were collected on d 3, 5, and 6 during the adjustment period for comparison to post E+ seed exposure. Statistical analyses compared the proportionate differences between baseline and response at 4, 28, 52, 76, 100, 172, and 268 h from initial feeding of E+ seed. Serum prolactin concentrations on both diets were lower (P 0.10) to the baseline for 172 and 268 h measures. Blood flow in E+ heifers was consistently lower than the baseline from 4 (P 0.10) from baseline measures during the experimental period. Results indicated that onset of toxicosis was within 4 h of cattle exposure to E+ tall fescue and is related to vasoconstriction and reduction in heart rate. PMID:17526671

  13. Hemodynamic responses to psychological stress: Comparison of normotensive and hypertensive persons using an ambulatory ventricular function monitor

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.Z.; Dimsdale, J.E.; Moore, R.H.; Barlai-Kovach, M.; Newell, J.; McKusick, K.A.; Boucher, C.A.; Strauss, H.W.

    1985-05-01

    The development of a portable device for measuring ventricular function allows assessment of hemodynamic responses under a wide range of circumstances. The authors compared the effects of standardized psychological stress (PS) on an index of left ventricular ejection fraction (EFI), systolic blood pressure (SBP) and plasma norepinephrine level (NE) in 6 normotensive (N, mean BP = 121/77 +- 12/8) and six hypertensive (H, mean BP = 137/95 +- 6/6) subjects. PS included 4 minutes of mental arithmetic and a 16 minute psychiatric interview. The interview focused on life stresses such as marital and family discord, job dissatisfaction, monetary insufficiency, health concerns, and bereavement. Changes in EFI, SBP, and NE (..delta.. EFI, ..delta.. SBP, ..delta.. NE) and in their log transformed variances (..delta.. log(var)) were compared to those occurring during a 20 minute period of standarized rest (R) which consisted on listening to relaxing music. Compared to R, all 12 subjects had a significant pressor response to PS (p less than or equal to .05, range = 6 to 29mmHg). There was an increase in mean EFI in 3 N (p less than or equal to .05, range = 0.5 to 2.7) and 3 H (p less than or equal to .05, range = 1.7 to 4.4) and a decrease in 1 N (p less than or equal to .05, -2.3) and 1 H (p less than or equal to .05, -2.3). Mean NE increased in 4 N (p less than or equal to .05, range 110 to 563 pg/ml) and 6 H (p less than or equal to .05, range = 136 to 525 pg/ml). The authors conclude that (1) in both N and H, PS induces significant responses in EFI which varies in direction despite near uniform increases in SBP and NE, and (2) hypertensive persons have a greater change in variability in EFI during PS than do normotensive persons despite equivalent changes in SBP and NE.

  14. Assessment of Cerebral Hemodynamic Changes in Pediatric Patients with Moyamoya Disease Using Probabilistic Maps on Analysis of Basal/Acetazolamide Stress Brain Perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Young; Lee, Jae Sung; Kim, Seung Ki; Wang, Kyu Chang; Cho, Byung Kyu; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2008-06-15

    To evaluate the hemodynamic changes and the predictive factors of the clinical outcome in pediatric patients with moyamoya disease, we analyzed pre/post basal/acetazolamide stress brain perfusion SPECT with automated volume of interest (VOIs) method. Total fifty six (M:F=33:24, age 6.7{+-}3.2 years) pediatric patients with moyamoya disease, who underwent basal/acetazolamide stress brain perfusion SPECT within 6 before and after revascularization surgery (encephalo-duro-arterio-synangiosis (EDAS) with frontal encephalo-galeo-synangiosis (EGS) and EDAS only followed on contralateral hemisphere), and followed-up more than 6 months after post-operative SPECT, were included. A mean follow-up period after post-operative SPECT was 33{+-}21 months. Each patient's SPECT image was spatially normalized to Korean template with the SPM2. For the regional count normalization, the count of pons was used as a reference region. The basal/acetazolamide-stressed cerebral blood flow (CBF), the cerebral vascular reserve index (CVRI), and the extent of area with significantly decreased basal/acetazolamide- stressed rCBF than age-matched normal control were evaluated on both medial frontal, frontal, parietal, occipital lobes, and whole brain in each patient's images. The post-operative clinical outcome was assigned as good, poor according to the presence of transient ischemic attacks and/or fixed neurological deficits by pediatric neurosurgeon. In a paired t-test, basal/acetazolamide-stressed rCBF and the CVRI were significantly improved after revascularization (p<0.05). The significant difference in the pre-operative basal/acetazolamide-stressed rCBF and the CVRI between the hemispheres where EDAS with frontal EGS was performed and their contralateral counterparts where EDAS only was done disappeared after operation (p<0.05). In an independent student t-test, the pre-operative basal rCBF in the medial frontal gyrus, the post-operative CVRI in the frontal lobe and the parietal

  15. SvO(2)-guided resuscitation for experimental septic shock: effects of fluid infusion and dobutamine on hemodynamics, inflammatory response, and cardiovascular oxidative stress.

    Science.gov (United States)

    Rosário, André Loureiro; Park, Marcelo; Brunialti, Milena Karina; Mendes, Marialice; Rapozo, Marjorie; Fernandes, Denise; Salomão, Reinaldo; Laurindo, Francisco Rafael; Schettino, Guilherme Paula; Azevedo, Luciano Cesar P

    2011-12-01

    The pathogenetic mechanisms associated to the beneficial effects of mixed venous oxygen saturation (SvO(2))-guided resuscitation during sepsis are unclear. Our purpose was to evaluate the effects of an algorithm of SvO(2)-driven resuscitation including fluids, norepinephrine and dobutamine on hemodynamics, inflammatory response, and cardiovascular oxidative stress during a clinically resembling experimental model of septic shock. Eighteen anesthetized and catheterized pigs (35-45 kg) were submitted to peritonitis by fecal inoculation (0.75 g/kg). After hypotension, antibiotics were administered, and the animals were randomized to two groups: control (n = 9), with hemodynamic support aiming central venous pressure 8 to 12 mmHg, urinary output 0.5 mL/kg per hour, and mean arterial pressure greater than 65 mmHg; and SvO(2) (n = 9), with the goals above, plus SvO(2) greater than 65%. The interventions lasted 12 h, and lactated Ringer's and norepinephrine (both groups) and dobutamine (SvO(2) group) were administered. Inflammatory response was evaluated by plasma concentration of cytokines, neutrophil CD14 expression, oxidant generation, and apoptosis. Oxidative stress was evaluated by plasma and myocardial nitrate concentrations, myocardial and vascular NADP(H) oxidase activity, myocardial glutathione content, and nitrotyrosine expression. Mixed venous oxygen saturation-driven resuscitation was associated with improved systolic index, oxygen delivery, and diuresis. Sepsis induced in both groups a significant increase on IL-6 concentrations and plasma nitrate concentrations and a persistent decrease in neutrophil CD14 expression. Apoptosis rate and neutrophil oxidant generation were not different between groups. Treatment strategies did not significantly modify oxidative stress parameters. Thus, an approach aiming SvO(2) during sepsis improves hemodynamics, without any significant effect on inflammatory response and oxidative stress. The beneficial effects associated

  16. Comparison of the efficacy of esmolol and lidocaine in the control of hemodynamic response associated with intubation: A randomized controlled trial

    OpenAIRE

    Tolga Ergönenç; Jalan Şerbetçigil; Uğur Uzun; Ali Dirik; Gülşen Bican

    2013-01-01

    Objectives: The purpose of this randomized study is tocompare the effects of esmolol and lidocaine in the controlof hemodynamic response caused by endotrachealintubation.Methods: In this study, 40 patients with ASA I-II physicalstatus and between the ages of 19 and 76 were includedand randomly divided into two groups. In the Group E (n =20), iv bolus injection of 1.5 mg/kg esmolol, in the GroupL (n = 20), iv bolus injection of 1.5 mg/kg 2% lidocainewere given with iv bolus injection in 30 sec...

  17. Premedication effect of dexmedetomidine and alfentanil on seizure time, recovery duration, and hemodynamic responses in electroconvulsive therapy

    Directory of Open Access Journals (Sweden)

    Esmail Moshiri

    2016-01-01

    Full Text Available Introduction: Electroconvulsive therapy (ECT is an effective treatment for many mental disorders, especially severe and persistent depression, bipolar disorder, and schizophrenia. The aim of this study is to compare the effect of dexmedetomidine and alfentanil on agitation, satisfaction, seizure duration, and patients hemodynamic after ECT. Materials and Methods: In a three phase crossover randomized clinical trial, 75 patients aged between 18 and 50 years and candidate for ECT were enrolled and assigned into three groups (25 patients in each group. All patients, respectively, took premedication of dexmedetomidine, alfentanil, or saline in three consecutive phases. Patients received 0.5 μg/kg dexmedetomidine, 10 μg/kg alfentanil or normal saline intravenously, 10 min before induction. Finally, seizure and recovery duration, satisfaction and agitation score, and hemodynamic parameters were evaluated. Results: There was no significant difference about seizure duration, agitation score, and hemodynamic parameters between groups but recovery duration was significantly lower in the control group than dexmedetomidine (P = 0.016 and alfentanil group (P = 0.0001. Patients′ satisfaction was significantly higher in intervention groups (alfentanil and dexmedetomidine groups (P = 0.0001. Conclusion: Given the equal effects of alfentanil and dexmedetomidine, it seems that choosing one of these two drugs for premedication of patients undergoing ECT is appropriate. Drug choice is influenced by numerous factors such as accessibility of each drug and the dominance of anesthesiologist and psychiatrist.

  18. Diffusion Based Modeling of Human Brain Response to External Stimuli

    CERN Document Server

    Namazi, Hamidreza

    2012-01-01

    Human brain response is the overall ability of the brain in analyzing internal and external stimuli in the form of transferred energy to the mind/brain phase-space and thus, making the proper decisions. During the last decade scientists discovered about this phenomenon and proposed some models based on computational, biological, or neuropsychological methods. Despite some advances in studies related to this area of the brain research there was less effort which have been done on the mathematical modeling of the human brain response to external stimuli. This research is devoted to the modeling of human EEG signal, as an alert state of overall human brain activity monitoring, due to receiving external stimuli, based on fractional diffusion equation. The results of this modeling show very good agreement with the real human EEG signal and thus, this model can be used as a strong representative of the human brain activity.

  19. Hemodynamics of brain arteriovenous malformation: clinical measurement and theoretical analysis%脑动静脉畸形血流动力学分析

    Institute of Scientific and Technical Information of China (English)

    王大明; 凌锋; 孙树津; 严宗毅; 张洋

    2008-01-01

    目的 报告脑动静脉畸形(arteriovenous malformation, AVM)血流动力学参数的临床实测与理论分析结果,探讨其变化的原因和意义.方法 对37例脑AVM患者和同期15例非心脑血管病患者的大脑前、中和后动脉的阻力、压力、流速、流量、直径和血管壁面切应力进行测量或测算及统计处理.并以电学和优化原理进行推导和解释.结果 病例组参与脑AVM供血的动脉与未参与供血的动脉相比,流速加快,流量增大,压力降低;病例组参与脑AVM供血的动脉与对照组的同名动脉相比,阻力降低,直径增粗,血管壁面切应力趋向守恒;上述变化可由电学原理推导证明或优化理论解释.结论 动静脉直接交通足脑AVM低阻力的结构基础,并导致AVM血管高流速和流量,而参与脑AVM供血的动脉直径增粗和血管壁面切应力趋向守恒是遵循能耗优化普遍性原理的适应性改变.%Objective To report the hemodynamic parameter values of brain arteriovenous malformation (AVM) obtainning by clinical measurement and theoretical deduction, and to explore the cause of those changes. Method The parameter data including vessel resistance, pressure, flow velocity, flow rate, diameter and vessel wall shear stress at the A1, M1 and P1 segment respective of the anterior, middle and posterior cerebral artery (ACA-A1, MCA-M1 and PCA-P1) were measured or calculated to the brain AVM group (a series of 37 consecutive cases) and normal control group (15 contemporaneous cases without any cardio- and brain vascular disease), all the above data were analyzed statistically and farther verifying or deducing were done with the principle of electricity and minimum work. Results The statistical analysis on the data of those arteries supplied AVM verse un-supplied or verse normal control indicated that vessel resistance and blood pressure were decreased, flow velocity and flow rate increased, arterial diameter enhanced, but vessel wall

  20. Functional MRI of food-induced brain responses

    OpenAIRE

    Smeets, P.A.M.

    2006-01-01

    The ultimate goal of this research was to find central biomarkers of satiety, i.e., physiological measures in the brain that relate to subjectively rated appetite, actual food intake, or both. This thesis describes the changes in brain activity in response to food stimuli as measured by functional MRI, with a focus on the hypothalamus. The hypothalamus is a brain area of particular interest because of its central role in the regulation of food intake. Two earlier studies showed that one long ...

  1. Effect of sevoflurane versus propofol-based anesthesia on the hemodynamic response and recovery characteristics in patients undergoing microlaryngeal surgery

    Directory of Open Access Journals (Sweden)

    Neerja Bharti

    2012-01-01

    Full Text Available Background: This randomized study was conducted to compare the hemodynamic changes and emergence characteristics of sevoflurane versus propofol anesthesia for microlaryngeal surgery. Methods: Forty adult patients undergoing microlaryngoscopy were randomly allocated into two groups. In propofol group, anesthesia was induced with 2-3 mg/kg propofol and maintained with propofol infusion 50-200 μg/kg/h. In sevoflurane group induction was carried out with 5-8% sevoflurane and maintained with sevoflurane in nitrous oxide and oxygen. The propofol and sevoflurane concentrations were adjusted to maintain the bispectral index of 40-60. All patients received fentanyl 2 μg/kg before induction and succinylcholine 2 mg/kg to facilitate tracheal intubation. The hemodynamic changes during induction and suspension laryngoscopy were compared. In addition, the emergence time, time to extubation, and recovery were assessed. Results: The changes in heart rate were comparable. The mean arterial pressure was significantly lower after induction and higher at insertion of operating laryngoscope in propofol group as compared to sevoflurane group. More patients in propofol group had episodes of hypotension and hypertension than sevoflurane group. The emergence time, extubation times, and recovery time were similar in both groups. Conclusion: We found that sevoflurane showed advantage over propofol in respect of intraoperative cardiovascular stability without increasing recovery time.

  2. Brain Responses Differ to Faces of Mothers and Fathers

    Science.gov (United States)

    Arsalidou, Marie; Barbeau, Emmanuel J.; Bayless, Sarah J.; Taylor, Margot J.

    2010-01-01

    We encounter many faces each day but relatively few are personally familiar. Once faces are familiar, they evoke semantic and social information known about the person. Neuroimaging studies demonstrate differential brain activity to familiar and non-familiar faces; however, brain responses related to personally familiar faces have been more rarely…

  3. Functional MRI of food-induced brain responses

    NARCIS (Netherlands)

    Smeets, P.A.M.

    2006-01-01

    The ultimate goal of this research was to find central biomarkers of satiety, i.e., physiological measures in the brain that relate to subjectively rated appetite, actual food intake, or both. This thesis describes the changes in brain activity in response to food stimuli as measured by functional M

  4. Benevolent sexism alters executive brain responses.

    Science.gov (United States)

    Dardenne, Benoit; Dumont, Muriel; Sarlet, Marie; Phillips, Christophe; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Salmon, Eric; Maquet, Pierre; Collette, Fabienne

    2013-07-10

    Benevolence is widespread in our societies. It is defined as considering a subordinate group nicely but condescendingly, that is, with charity. Deleterious consequences for the target have been reported in the literature. In this experiment, we used functional MRI (fMRI) to identify whether being the target of (sexist) benevolence induces changes in brain activity associated with a working memory task. Participants were confronted by benevolent, hostile, or neutral comments before and while performing a reading span test in an fMRI environment. fMRI data showed that brain regions associated previously with intrusive thought suppression (bilateral, dorsolateral, prefrontal, and anterior cingulate cortex) reacted specifically to benevolent sexism compared with hostile sexism and neutral conditions during the performance of the task. These findings indicate that, despite being subjectively positive, benevolence modifies task-related brain networks by recruiting supplementary areas likely to impede optimal cognitive performance. PMID:23660680

  5. Benevolent sexism alters executive brain responses.

    Science.gov (United States)

    Dardenne, Benoit; Dumont, Muriel; Sarlet, Marie; Phillips, Christophe; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Salmon, Eric; Maquet, Pierre; Collette, Fabienne

    2013-07-10

    Benevolence is widespread in our societies. It is defined as considering a subordinate group nicely but condescendingly, that is, with charity. Deleterious consequences for the target have been reported in the literature. In this experiment, we used functional MRI (fMRI) to identify whether being the target of (sexist) benevolence induces changes in brain activity associated with a working memory task. Participants were confronted by benevolent, hostile, or neutral comments before and while performing a reading span test in an fMRI environment. fMRI data showed that brain regions associated previously with intrusive thought suppression (bilateral, dorsolateral, prefrontal, and anterior cingulate cortex) reacted specifically to benevolent sexism compared with hostile sexism and neutral conditions during the performance of the task. These findings indicate that, despite being subjectively positive, benevolence modifies task-related brain networks by recruiting supplementary areas likely to impede optimal cognitive performance.

  6. Brain response abnormalities during verbal learning among patients with schizophrenia

    OpenAIRE

    Eyler, Lisa T; Jeste, Dilip V.; Brown, Gregory G.

    2007-01-01

    Patients with schizophrenia often show verbal learning deficits that have been linked to the pathophysiology of the disorder and result in functional impairment. This study examined the biological basis of these deficits by comparing the brain response of patients with schizophrenia (n=17) to that of healthy comparison participants (n=14) during a verbal paired-associates learning task using functional magnetic resonance imaging (fMRI). Brain response during new word learning was examined wit...

  7. The response of circulating brain natriuretic peptide to academic stress in college students.

    Science.gov (United States)

    Amir, Offer; Sagiv, Moran; Eynon, Nir; Yamin, Chen; Rogowski, Ori; Gerzy, Yishay; Amir, Ruthie E

    2010-01-01

    Brain natriuretic peptide (BNP), a cardiac peptide, has been implicated in the regulation of hypothalamic-pituitary-adrenocortical (HPA) responses to psychological stressors. The influence of academic stress on circulating concentration of the N-terminal fragment of BNP precursor (NT-proBNP), and in relation to the stress hormone (cortisol) response was studied in 170 college students undergoing major examinations. Just prior to the examination, we measured self-estimated stress level, systolic, and diastolic blood pressure (SBP, DBP), heart rate (HR), plasma levels of cortisol, and NT-proBNP. These parameters were compared to the participants' baseline measurements, taken at the same hour of a different 'control day', without a major examination to induce stress. Hemodynamic variables (SBP, DBP, and HR) increased on the examination day compared with baseline values ( p stress was marked by a significant decrease in plasma NT-proBNP concentration (-40%, p stress and the NT-proBNP reduction ( p = 0.02). In response to academic stress, the plasma cortisol elevation was accompanied by a marked reduction in plasma NT-proBNP level. These data may indicate that mental stress entails an interface between the HPA axis and the peripheral natriuretic peptide system, leading to reciprocating changes in circulating levels of the corresponding hormones.

  8. The Teenage Brain: The Stress Response and the Adolescent Brain

    OpenAIRE

    Romeo, Russell D.

    2013-01-01

    Adolescence is a time of many psychosocial and physiological changes. One such change is how an individual responds to stressors. Specifically, adolescence is marked by significant shifts in hypothalamic-pituitary-adrenal (HPA) axis reactivity, resulting in heightened stress-induced hormonal responses. It is presently unclear what mediates these changes in stress reactivity and what impacts they may have on an adolescent individual. However, stress-sensitive limbic and corti...

  9. A STUDY ON COMPARISON OF INTRAVENOUS DEXMEDETOMIDINE WITH INTRAVENOUS FENTANYL FOR SUPPRESSION OF HEMODYNAMIC RESPONSES TO LARYNGOSCOPY AND ENDOTRACHEAL INTUBATION DURING GENERAL ANAESTHESIA

    Directory of Open Access Journals (Sweden)

    Nidhi D Patel

    2015-06-01

    Full Text Available Background: Laryngoscopy and intubation is the Gold standard for airway management but this evokes a stress response which is exhibited in the form of changes in heart rate, blood pressure and arrhythmias. This study was prospective, randomized, double blind study to determine whether the fentanyl 2 and micro;g/Kg or dexmedetomidine 1 and micro;g/Kg would decrease the attenuation of hemodynamic response during laryngoscopy and tracheal intubation during general anaesthesia. Methodology: The patients were randomly allocated into two groups. In Group D cases (n=30 received injection Dexmedetomidine 1 and micro;g/kg diluted to 10ml NS IV over 10min using syringe pump prior to intubation and 5ml of NS 5 min. prior to intubation. In Group F cases (n=30 received 2 and micro;g/kg diluted to 5ml NS 5min. prior to intubation and 20ml NS in infusion pump over 10 min., prior to intubation. Results: The age and weight of the cases in both the groups are comparable. It was observed that mean HR increased in both groups D and F immediately after endotracheal intubation. The systolic blood pressure was highly significant in group F as compared to group D during laryngoscopy and intubation, 1, 3, 5 and 10 min after intubation (p<0.000. Ramsay sedation score was and #8805; 4 in all patients in group D and was and #8804; 3 in group F. Dexmedetomidine has higher sedation score but no respiratory depression. Conclusion: We concluded that dexmedetomidine in dose 1 and micro;gm/kg i.v. is more effective in attenuating the hemodynamic pressor responses to laryngoscopy and intubation than Inj. Fentanyl 2 and micro;gm/kg i.v. when given as pre-medicant without significant side effects. [Natl J Med Res 2015; 5(2.000: 127-131

  10. Occupational exposure in hemodynamic

    International Nuclear Information System (INIS)

    This paper has an objective to perform a radiometric survey at a hemodynamic service. Besides, it was intended to evaluate the effective dose of health professionals and to provide data which can contribute with minimization of exposures during the realization of hemodynamic procedure. The radiometric survey was realized in the real environment of work simulating the conditions of a hemodynamic study with a ionization chamber

  11. Simultaneous EEG-fMRI in patients with Unverricht-Lundborg disease: event-related desynchronization/synchronization and hemodynamic response analysis.

    Science.gov (United States)

    Visani, Elisa; Minati, Ludovico; Canafoglia, Laura; Gilioli, Isabella; Salvatoni, Lucia; Varotto, Giulia; Fazio, Patrik; Aquino, Domenico; Bruzzone, Maria Grazia; Franceschetti, Silvana; Panzica, Ferruccio

    2010-01-01

    We performed simultaneous acquisition of EEG-fMRI in seven patients with Unverricht-Lundborg disease (ULD) and in six healthy controls using self-paced finger extension as a motor task. The event-related desynchronization/synchronization (ERD/ERS) analysis showed a greater and more diffuse alpha desynchronization in central regions and a strongly reduced post-movement beta-ERS in patients compared with controls, suggesting a significant dysfunction of the mechanisms regulating active movement and movement end. The event-related hemodynamic response obtained from fMRI showed delayed BOLD peak latency in the contralateral primary motor area suggesting a less efficient activity of the neuronal populations driving fine movements, which are specifically impaired in ULD. PMID:20111730

  12. In-vivo optical imaging and spectroscopy of cerebral hemodynamics

    Science.gov (United States)

    Zhou, Chao

    Functional optical imaging techniques, such as diffuse optical imaging and spectroscopy and laser speckle imaging (LSI), were used in research and clinical settings to measure cerebral hemodynamics. In this thesis, theoretical and experimental developments of the techniques and their in-vivo applications ranging from small animals to adult humans are demonstrated. Near infrared diffuse optical techniques non-invasively measure hemoglobin concentrations, blood oxygen saturation (diffuse reflectance spectroscopy, DRS) and blood flow (diffuse correlation spectroscopy, DCS) in deep tissues, e.g. brain. A noise model was derived for DCS measurements. Cerebral blood flow (CBF) measured with DCS was validated with arterial-spin-labeling MRI. Three-dimensional CBF tomography was obtained during cortical spreading depression from a rat using the optimized diffuse correlation tomographic method. Cerebral hemodynamics in newborn piglets after traumatic brain injury were continuously monitored optically for six hours to demonstrate the feasibility of using diffuse optical techniques as bedside patient monitors. Cerebral autoregulation in piglets and human stroke patients was demonstrated to be non-invasively assessable via the continuous DCS measurement. Significant differences of CBF responses to head-of-bead maneuvers were observed between the peri- and contra-infarct hemispheres in human stroke patients. A significant portion of patient population showed paradoxical CBF responses, indicating the importance of individualized stroke management. The development of a speckle noise model revealed the source of noise for LSI. LSI was then applied to study the acute functional recovery of the rat brain following transient brain ischemia. The spatial and temporal cerebral blood flow responses to functional stimulation were statistically quantified. The area of activation, and the temporal response to stimulation were found significantly altered by the ischemic insult, while the

  13. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice.

    Directory of Open Access Journals (Sweden)

    Ralph Timaru-Kast

    Full Text Available After traumatic brain injury (TBI elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months and old (21 months male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2% compared to young (0%. This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral

  14. Dexmedetomidine as an adjunct to anesthetic induction to attenuate hemodynamic response to endotracheal intubation in patients undergoing fast-track CABG

    Directory of Open Access Journals (Sweden)

    Menda Ferdi

    2010-01-01

    Full Text Available During induction of general anesthesia hypertension and tachycardia caused by tracheal intubation may lead to cardiac ischemia and arrhythmias. In this prospective, randomized study, dexmedetomidine has been used to attenuate the hemodynamic response to endotracheal intubation with low dose fentanyl and etomidate in patients undergoing myocardial revascularization receiving beta blocker treatment. Thirty patients undergoing myocardial revascularization received in a double blind manner, either a saline placebo or a dexmedetomidine infusion (1 µg/kg before the anesthesia induction. Heart rate (HR and blood pressure (BP were monitored at baseline, after placebo or dexmedetomidine infusion, after induction of general anesthesia, one, three and five minutes after endotracheal intubation. In the dexmedetomidine (DEX group systolic (SAP, diastolic (DAP and mean arterial pressures (MAP were lower at all times in comparison to baseline values; in the placebo (PLA group SAP, DAP and MAP decreased after the induction of general anesthesia and five minutes after the intubation compared to baseline values. This decrease was not significantly different between the groups. After the induction of general anesthesia, the drop in HR was higher in DEX group compared to PLA group. One minute after endotracheal intubation, HR significantly increased in PLA group while, it decreased in the DEX group. The incidence of tachycardia, hypotension and bradycardia was not different between the groups. The incidence of hypertension requiring treatment was significantly greater in the PLA group. It is concluded that dexmedetomidine can safely be used to attenuate the hemodynamic response to endotracheal intubation in patients undergoing myocardial revascularization receiving beta blockers.

  15. Comparison of the efficacy of esmolol and lidocaine in the control of hemodynamic response associated with intubation: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Tolga Ergönenç

    2013-03-01

    Full Text Available Objectives: The purpose of this randomized study is tocompare the effects of esmolol and lidocaine in the controlof hemodynamic response caused by endotrachealintubation.Methods: In this study, 40 patients with ASA I-II physicalstatus and between the ages of 19 and 76 were includedand randomly divided into two groups. In the Group E (n =20, iv bolus injection of 1.5 mg/kg esmolol, in the GroupL (n = 20, iv bolus injection of 1.5 mg/kg 2% lidocainewere given with iv bolus injection in 30 seconds. All patientsreceived the same anesthetic technique. Systolicblood pressure (SBP, diastolic blood pressure (DBPand mean blood pressure (MBP and heart rate measurementswere done at specified times and recorded. Recordswere assessed by an anesthesiologist blinded towhich drug is applied.Results: There was no difference between the groupsin demographic data (p>0.05. In both groups, with theimplementation of the study drug, systolic blood pressure,diastolic blood pressure and mean arterial blood pressuredecreased compared to controls, this reduction was lowerin Group E than Group L. In Group L, SBP values of 1.5and 7 minutes were higher than Group E (p <0.05. InGroup L, DBP and MBP values of 1.5 and 3.5 minuteswere higher than Group E (p <0.05.Conclusion: In conclusion, 1.5 mg/kg esmolol or 1.5 mg/kg lidocaine administered prior to induction were not superiorto each other regarding suppression of hemodynamicresponses to intubation. J Clin Exp Invest 2013; 4(1: 20-27Key words: Esmolol, lidocaine, intubation, hemodynamic response

  16. Immunologic, hemodynamic, and adrenal incompetence in cirrhosis

    DEFF Research Database (Denmark)

    Risør, Louise Madeleine; Bendtsen, Flemming; Møller, Søren

    2015-01-01

    dysfunction, but is not responsive to volume expansion. Recent research indicates that development of hepatic nephropathy represents a continuous spectrum of functional and structural dysfunction and may be precipitated by the inherent immunologic, adrenal, and hemodynamic incompetence in cirrhosis. New...... research explores several new markers of renal dysfunction that may replace serum creatinine in the future and give new insight on the hepatic nephropathy. Our understanding of the pathophysiological mechanisms causing the immunologic, adrenal, and hemodynamic incompetence, and the impact on renal...

  17. Brain Responses during the Anticipation of Dyspnea.

    Science.gov (United States)

    Stoeckel, M Cornelia; Esser, Roland W; Gamer, Matthias; Büchel, Christian; von Leupoldt, Andreas

    2016-01-01

    Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea. PMID:27648309

  18. Brain Responses during the Anticipation of Dyspnea

    Science.gov (United States)

    Stoeckel, M. Cornelia; Esser, Roland W.; Büchel, Christian

    2016-01-01

    Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea.

  19. Individual classification of ADHD children by right prefrontal hemodynamic responses during a go/no-go task as assessed by fNIRS

    Directory of Open Access Journals (Sweden)

    Yukifumi Monden

    2015-01-01

    Full Text Available While a growing body of neurocognitive research has explored the neural substrates associated with attention deficit hyperactive disorder (ADHD, an objective biomarker for diagnosis has not been established. The advent of functional near-infrared spectroscopy (fNIRS, which is a noninvasive and unrestrictive method of functional neuroimaging, raised the possibility of introducing functional neuroimaging diagnosis in young ADHD children. Previously, our fNIRS-based measurements successfully visualized the hypoactivation pattern in the right prefrontal cortex during a go/no-go task in ADHD children compared with typically developing control children at a group level. The current study aimed to explore a method of individual differentiation between ADHD and typically developing control children using multichannel fNIRS, emphasizing how spatial distribution and amplitude of hemodynamic response are associated with inhibition-related right prefrontal dysfunction. Thirty ADHD and thirty typically developing control children underwent a go/no-go task, and their cortical hemodynamics were assessed using fNIRS. We explored specific regions of interest (ROIs and cut-off amplitudes for cortical activation to distinguish ADHD children from control children. The ROI located on the border of inferior and middle frontal gyri yielded the most accurate discrimination. Furthermore, we adapted well-formed formulae for the constituent channels of the optimized ROI, leading to improved classification accuracy with an area under the curve value of 85% and with 90% sensitivity. Thus, the right prefrontal hypoactivation assessed by fNIRS would serve as a potentially effective biomarker for classifying ADHD children at the individual level.

  20. Hemodynamic Responses of Unfit Healthy Women at a Training Session with Nintendo Wii: A Possible Impact on the General Well-Being

    Science.gov (United States)

    Monteiro-Junior, Renato S; Figueiredo, Luiz F; Conceição, Isabel; Carvalho, Carolina; Lattari, Eduardo; Mura, Gioia; Machado, Sérgio; da Silva, Elirez B

    2014-01-01

    Aims: The purpose of this study was assess the effect of a training session with Nintendo Wii® on the hemodynamic responses of healthy women not involved in regular physical exercise. Method: Twenty-five healthy unfit women aged 28 ± 6 years played for 10 minutes the game Free Run (Wii Fit Plus). The resting heart rate (RHR), systolic and diastolic blood pressures (SBP and DBP), and double (rate-pressure) product (DP) were measured before and after activity. The HR during the activity (exercise heart rate, EHR) was measured every minute. Results: A statistically significant difference was observed between the RHR (75 ± 9 bpm) and the mean EHR (176 ± 15 bpm) (P < 0.001). The EHR remained in the target zone for aerobic exercise until the fifth minute of activity, which coincided with the upper limit of the aerobic zone (80% heart rate reserve (HRR) + RHR) from the sixth to tenth minute. The initial (110 ± 8 mmHg) and final (145 ± 17 mmHg) SBP (P < 0.01) were significantly different, as were the initial (71 ± 8 mmHg) and final (79 ± 9 mmHg) DBP (P < 0.01). A statistically significant difference was observed between the pre- (8.233 ± 1.141 bpm-mmHg) and post-activity (25.590 ± 4.117 bpm-mmHg) DP (P < 0.01). Conclusion: Physical exercise while playing Free Run sufficed to trigger acute hemodynamic changes in healthy women who were not engaged in regular physical exercise. PMID:25614754

  1. Fetal Inflammatory Response and Brain Injury in the Preterm Newborn

    OpenAIRE

    Malaeb, Shadi; Dammann, Olaf

    2009-01-01

    Preterm birth can be caused by intrauterine infection and maternal/fetal inflammatory responses. Maternal inflammation (chorioamnionitis) is often followed by a systemic fetal inflammatory response characterized by elevated levels of pro-inflammatory cytokines in the fetal circulation. The inflammation signal is likely transmitted across the blood-brain barrier, and initiates a neuroinflammatory response. Microglial activation has a central role in this process, and triggers excitotoxic, infl...

  2. Comparison of nifedipine gastrointestinal therapeutic system and atenolol on antianginal efficacies and exercise hemodynamic responses in stable angina pectoris.

    Science.gov (United States)

    Wallace, W A; Wellington, K L; Chess, M A; Liang, C S

    1994-01-01

    A gastrointestinal therapeutic system (GITS) of nifedipine has been developed to provide a once-daily dosing, and predictable, relatively constant plasma concentrations. This study compared the antianginal efficacy of nifedipine GITS with a once-a-day beta-receptor blocker, atenolol. Seventeen patients with documented coronary artery disease and stable stress-induced angina pectoris were studied during a 2-week, single-blind, placebo baseline phase and a 12-week randomized, double-blind, active drug crossover efficacy phase, using the bicycle exercise test and ambulatory electrocardiographic recordings. Patients exercised significantly longer with nifedipine GITS (883 +/- 47 seconds) and atenolol (908 +/- 44 seconds) than with placebo (794 +/- 41 seconds). Nifedipine GITS reduced systolic blood pressure at all stages of exercise compared with placebo but, because heart rate tended to increase more during nifedipine therapy, there was no difference in rate-pressure products between the placebo and nifedipine GITS periods. In contrast, atenolol reduced heart rate, systolic blood pressure and rate-pressure product during exercise compared with placebo. Whereas left ventricular ejection fractions (by radionuclide angiocardiography) increased with exercise, the maximal increase was smaller with atenolol than with placebo and nifedipine. The net increase in left ventricular ejection fraction at the end of exercise was greater with nifedipine than with placebo or atenolol. Ambulatory electrocardiograms showed only a small number of ischemic events. Neither nifedipine GITS nor atenolol reduced the number of ischemic events or total duration of ST-segment deviations significantly. It is concluded that nifedipine GITS is as effective an antianginal agent as atenolol, but the hemodynamic effects of the 2 agents differ.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8279372

  3. Impaired regional hemodynamic response in schizophrenia during multiple prefrontal activation tasks: a two-channel near-infrared spectroscopy study.

    Science.gov (United States)

    Ikezawa, Koji; Iwase, Masao; Ishii, Ryouhei; Azechi, Michiyo; Canuet, Leonides; Ohi, Kazutaka; Yasuda, Yuka; Iike, Naomi; Kurimoto, Ryu; Takahashi, Hidetoshi; Nakahachi, Takayuki; Sekiyama, Ryuji; Yoshida, Tetsuhiko; Kazui, Hiroaki; Hashimoto, Ryota; Takeda, Masatoshi

    2009-03-01

    In schizophrenia, dysfunction of the prefrontal cortex (PFC), regarded as a core feature of the disease, has been investigated by different neuroimaging methods. Near infrared spectroscopy (NIRS), a novel neurophysiological method, is being increasingly used in the investigation of frontal dysfunction in schizophrenia. However, NIRS measurements during multiple frontal activation tasks have been rarely reported. The purpose of this study was to compare hemodynamic changes in the PFC between patients with schizophrenia and healthy controls during four different types of frontal lobe tasks using a 2-channel NIRS system. Thirty patients with schizophrenia and thirty age- and gender-matched healthy controls were enrolled in this study. In both groups, changes in oxygenated hemoglobin concentration (Delta[oxyHb]) at the bilateral forehead were measured during Verbal fluency test letter version (VFT-letter), VFT category version, Tower of Hanoi (TOH), the Sternberg and Stroop tasks. Regarding Delta[oxyHb] in PFC, a diagnosis group effect was found for VFT-letter and TOH. Significant negative correlation was found between left Delta[oxyHb] during TOH and negative and cognitive symptom scores in schizophrenia patients. Right Delta[oxyHb] during TOH also showed significant negative correlation with cognitive symptoms scores. No significant correlation between Delta[oxyHb] and clinical characteristics were observed during VFT-letter. These findings suggest that among a battery of frontal lobe tasks administered to schizophrenia patients, VFT-letter and TOH are more sensitive to detect PFC activation, as indicated by Delta[oxyHb] using a 2-channel NIRS. Taken together, these findings and those of previous neuroimaging studies suggest that VFT-letter and TOH might represent possible candidate physiological markers of prefrontal dysfunction in schizophrenia, though extensive testing in clinical settings will be necessary. PMID:19157786

  4. Global genetic variations predict brain response to faces.

    Science.gov (United States)

    Dickie, Erin W; Tahmasebi, Amir; French, Leon; Kovacevic, Natasa; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun; Büchel, Christian; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Gallinat, Juergen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Lawrence, Claire; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Nichols, Thomas; Lathrop, Mark; Loth, Eva; Pausova, Zdenka; Rietschel, Marcela; Smolka, Michal N; Ströhle, Andreas; Toro, Roberto; Schumann, Gunter; Paus, Tomáš

    2014-08-01

    Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼ 500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximum likelihood (GREML), we related this global genetic variance to that in the brain response to facial expressions, as assessed with functional magnetic resonance imaging (fMRI) in a community-based sample of adolescents (n = 1,620). Brain response to facial expressions was measured in 25 regions constituting a face network, as defined previously. In 9 out of these 25 regions, common genetic variance explained a significant proportion of phenotypic variance (40-50%) in their response to ambiguous facial expressions; this was not the case for angry facial expressions. Across the network, the strength of the genotype-phenotype relationship varied as a function of the inter-individual variability in the number of functional connections possessed by a given region (R(2) = 0.38, p<0.001). Furthermore, this variability showed an inverted U relationship with both the number of observed connections (R2 = 0.48, p<0.001) and the magnitude of brain response (R(2) = 0.32, p<0.001). Thus, a significant proportion of the brain response to facial expressions is predicted by common genetic variance in a subset of regions constituting the face network. These regions show the highest inter-individual variability in the number of connections with other network nodes, suggesting that the genetic model captures variations across the adolescent brains in co-opting these regions into the face network.

  5. Global genetic variations predict brain response to faces.

    Directory of Open Access Journals (Sweden)

    Erin W Dickie

    2014-08-01

    Full Text Available Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼ 500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximum likelihood (GREML, we related this global genetic variance to that in the brain response to facial expressions, as assessed with functional magnetic resonance imaging (fMRI in a community-based sample of adolescents (n = 1,620. Brain response to facial expressions was measured in 25 regions constituting a face network, as defined previously. In 9 out of these 25 regions, common genetic variance explained a significant proportion of phenotypic variance (40-50% in their response to ambiguous facial expressions; this was not the case for angry facial expressions. Across the network, the strength of the genotype-phenotype relationship varied as a function of the inter-individual variability in the number of functional connections possessed by a given region (R(2 = 0.38, p<0.001. Furthermore, this variability showed an inverted U relationship with both the number of observed connections (R2 = 0.48, p<0.001 and the magnitude of brain response (R(2 = 0.32, p<0.001. Thus, a significant proportion of the brain response to facial expressions is predicted by common genetic variance in a subset of regions constituting the face network. These regions show the highest inter-individual variability in the number of connections with other network nodes, suggesting that the genetic model captures variations across the adolescent brains in co-opting these regions into the face network.

  6. Hemodynamic Response to Featural Changes in the Occipital and Inferior Temporal Cortex in Infants: A Preliminary Methodological Exploration

    Science.gov (United States)

    Wilcox, Teresa; Bortfeld, Heather; Woods, Rebecca; Wruck, Eric; Boas, David A.

    2008-01-01

    Over the past 30 years researchers have learned a great deal about the development of object processing in infancy. In contrast, little is understood about the neural mechanisms that underlie this capacity, in large part because there are few techniques available to measure brain functioning in human infants. The present research examined the…

  7. Reduced Prefrontal Hemodynamic Response in Pediatric Obsessive-Compulsive Disorder as Measured by Near-Infrared Spectroscopy

    Science.gov (United States)

    Ota, Toyosaku; Iida, Junzo; Sawada, Masayuki; Suehiro, Yuko; Yamamuro, Kazuhiko; Matsuura, Hiroki; Tanaka, Shohei; Kishimoto, Naoko; Negoro, Hideki; Kishimoto, Toshifumi

    2013-01-01

    Recent developments in near-infrared spectroscopy (NIRS) have enabled non-invasive clarification of brain functions in psychiatric disorders. Functional neuroimaging studies of patients with obsessive-compulsive disorder (OCD) have suggested that the frontal cortex and subcortical structures may play a role in the pathophysiology of the disorder.…

  8. Regional genome transcriptional response of adult mouse brain to hypoxia

    Directory of Open Access Journals (Sweden)

    Lu Aigang

    2011-10-01

    Full Text Available Abstract Background Since normal brain function depends upon continuous oxygen delivery and short periods of hypoxia can precondition the brain against subsequent ischemia, this study examined the effects of brief hypoxia on the whole genome transcriptional response in adult mouse brain. Result Pronounced changes of gene expression occurred after 3 hours of hypoxia (8% O2 and after 1 hour of re-oxygenation in all brain regions. The hypoxia-responsive genes were predominantly up-regulated in hindbrain and predominantly down-regulated in forebrain - possibly to support hindbrain survival functions at the expense of forebrain cognitive functions. The up-regulated genes had a significant role in cell survival and involved both shared and unshared signaling pathways among different brain regions. Up-regulation of transcriptional signaling including hypoxia inducible factor, insulin growth factor (IGF, the vitamin D3 receptor/retinoid X nuclear receptor, and glucocorticoid signaling was common to many brain regions. However, many of the hypoxia-regulated target genes were specific for one or a few brain regions. Cerebellum, for example, had 1241 transcripts regulated by hypoxia only in cerebellum but not in hippocampus; and, 642 (54% had at least one hepatic nuclear receptor 4A (HNF4A binding site and 381 had at least two HNF4A binding sites in their promoters. The data point to HNF4A as a major hypoxia-responsive transcription factor in cerebellum in addition to its known role in regulating erythropoietin transcription. The genes unique to hindbrain may play critical roles in survival during hypoxia. Conclusion Differences of forebrain and hindbrain hypoxia-responsive genes may relate to suppression of forebrain cognitive functions and activation of hindbrain survival functions, which may coordinately mediate the neuroprotection afforded by hypoxia preconditioning.

  9. Brain Connectivity Predicts Placebo Response across Chronic Pain Clinical Trials

    Science.gov (United States)

    Tétreault, Pascal; Mansour, Ali; Vachon-Presseau, Etienne; Schnitzer, Thomas J.; Apkarian, A. Vania

    2016-01-01

    Placebo response in the clinical trial setting is poorly understood and alleged to be driven by statistical confounds, and its biological underpinnings are questioned. Here we identified and validated that clinical placebo response is predictable from resting-state functional magnetic-resonance-imaging (fMRI) brain connectivity. This also led to discovering a brain region predicting active drug response and demonstrating the adverse effect of active drug interfering with placebo analgesia. Chronic knee osteoarthritis (OA) pain patients (n = 56) underwent pretreatment brain scans in two clinical trials. Study 1 (n = 17) was a 2-wk single-blinded placebo pill trial. Study 2 (n = 39) was a 3-mo double-blinded randomized trial comparing placebo pill to duloxetine. Study 3, which was conducted in additional knee OA pain patients (n = 42), was observational. fMRI-derived brain connectivity maps in study 1 were contrasted between placebo responders and nonresponders and compared to healthy controls (n = 20). Study 2 validated the primary biomarker and identified a brain region predicting drug response. In both studies, approximately half of the participants exhibited analgesia with placebo treatment. In study 1, right midfrontal gyrus connectivity best identified placebo responders. In study 2, the same measure identified placebo responders (95% correct) and predicted the magnitude of placebo’s effectiveness. By subtracting away linearly modeled placebo analgesia from duloxetine response, we uncovered in 6/19 participants a tendency of duloxetine enhancing predicted placebo response, while in another 6/19, we uncovered a tendency for duloxetine to diminish it. Moreover, the approach led to discovering that right parahippocampus gyrus connectivity predicts drug analgesia after correcting for modeled placebo-related analgesia. Our evidence is consistent with clinical placebo response having biological underpinnings and shows that the method can also reveal that active

  10. Prefrontal Hemodynamic Changes Associated with Subjective Sense of Occlusal Discomfort

    Directory of Open Access Journals (Sweden)

    Yumie Ono

    2015-01-01

    Full Text Available We used functional near-infrared spectroscopy to measure prefrontal brain activity accompanying the physical sensation of oral discomfort that arose when healthy young-adult volunteers performed a grinding motion with mild occlusal elevation (96 μm. We simultaneously evaluated various forms of occlusal discomfort using the visual analogue scale (VAS and hemodynamic responses to identify the specific prefrontal activity that occurs with increased occlusal discomfort. The Oxy-Hb responses of selected channels in the bilateral frontopolar and dorsolateral prefrontal cortices increased in participants who reported increased severity of occlusal discomfort, while they decreased in those who reported no change or decreased occlusal discomfort during grinding. Moreover, the cumulative values of Oxy-Hb response in some of these channels were statistically significant predictive factors for the VAS scores. A generalized linear model analysis of Oxy-Hb signals in a group of participants who reported increased discomfort further indicated significant cerebral activation in the right frontopolar and dorsolateral prefrontal cortices that overlapped with the results of correlation analyses. Our results suggest that the increased hemodynamic responses in the prefrontal area reflect the top-down control of attention and/or self-regulation against the uncomfortable somatosensory input, which could be a possible marker to detect the subjective sense of occlusal discomfort.

  11. Global genetic variations predict brain response to faces

    DEFF Research Database (Denmark)

    Dickie, Erin W; Tahmasebi, Amir; French, Leon;

    2014-01-01

    Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼ 500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximu...

  12. Infants' brain responses to speech suggest analysis by synthesis.

    Science.gov (United States)

    Kuhl, Patricia K; Ramírez, Rey R; Bosseler, Alexis; Lin, Jo-Fu Lotus; Imada, Toshiaki

    2014-08-01

    Historic theories of speech perception (Motor Theory and Analysis by Synthesis) invoked listeners' knowledge of speech production to explain speech perception. Neuroimaging data show that adult listeners activate motor brain areas during speech perception. In two experiments using magnetoencephalography (MEG), we investigated motor brain activation, as well as auditory brain activation, during discrimination of native and nonnative syllables in infants at two ages that straddle the developmental transition from language-universal to language-specific speech perception. Adults are also tested in Exp. 1. MEG data revealed that 7-mo-old infants activate auditory (superior temporal) as well as motor brain areas (Broca's area, cerebellum) in response to speech, and equivalently for native and nonnative syllables. However, in 11- and 12-mo-old infants, native speech activates auditory brain areas to a greater degree than nonnative, whereas nonnative speech activates motor brain areas to a greater degree than native speech. This double dissociation in 11- to 12-mo-old infants matches the pattern of results obtained in adult listeners. Our infant data are consistent with Analysis by Synthesis: auditory analysis of speech is coupled with synthesis of the motor plans necessary to produce the speech signal. The findings have implications for: (i) perception-action theories of speech perception, (ii) the impact of "motherese" on early language learning, and (iii) the "social-gating" hypothesis and humans' development of social understanding.

  13. Cooperative dynamics in auditory brain response

    CERN Document Server

    Kwapien, J; Liu, L C; Ioannides, A A

    1998-01-01

    Simultaneous estimates of the activity in the left and right auditory cortex of five normal human subjects were extracted from Multichannel Magnetoencephalography recordings. Left, right and binaural stimulation were used, in separate runs, for each subject. The resulting time-series of left and right auditory cortex activity were analysed using the concept of mutual information. The analysis constitutes an objective method to address the nature of inter-hemispheric correlations in response to auditory stimulations. The results provide a clear evidence for the occurrence of such correlations mediated by a direct information transport, with clear laterality effects: as a rule, the contralateral hemisphere leads by 10-20ms, as can be seen in the average signal. The strength of the inter-hemispheric coupling, which cannot be extracted from the average data, is found to be highly variable from subject to subject, but remarkably stable for each subject.

  14. Encephalic hemodynamic phases in subarachnoid hemorrhage: how to improve the protective effect in patient prognoses

    Directory of Open Access Journals (Sweden)

    Marcelo de Lima Oliveira

    2015-01-01

    Full Text Available Subarachnoid hemorrhage is frequently associated with poor prognoses. Three different hemodynamic phases were identified during subarachnoid hemorrhage: oligemia, hyperemia, and vasospasm. Each phase is associated with brain metabolic changes. In this review, we correlated the hemodynamic phases with brain metabolism and potential treatment options in the hopes of improving patient prognoses.

  15. Encephalic hemodynamic phases in subarachnoid hemorrhage:how to improve the protective effect in patient prognoses

    Institute of Scientific and Technical Information of China (English)

    Marcelo de Lima Oliveira; Daniel Silva de Azevedo; Milena Krajnyk de Azevedo; Ricardo de Carvalho Nogueira; Manoel Jacobsen Teixeira; Edson Bor-Seng-Shu

    2015-01-01

    Subarachnoid hemorrhage is frequently associated with poor prognoses. Three different hemo-dynamic phases were identified during subarachnoid hemorrhage: oligemia, hyperemia, and vasospasm. Each phase is associated with brain metabolic changes. In this review, we correlated the hemodynamic phases with brain metabolism and potential treatment options in the hopes of improving patient prognoses.

  16. An Exploration of the Effect of Hemodynamic Changes Due to Normal Aging on the fNIRS Response to Semantic Processing of Words

    Directory of Open Access Journals (Sweden)

    Mahnoush eAmiri

    2014-12-01

    Full Text Available Like other neuroimaging techniques assessing cerebral blood oxygenation, near-infrared spectroscopy (NIRS has been applied in many neurocognitive studies. With NIRS, neural activation can be explored indirectly via hemodynamic changes in the imaged region. In studies of aging, changes in baseline physiology and brain anatomy confound NIRS measures seeking to investigate age-related changes in neuronal activity. The field is thus hampered by the complexity of the aging process itself, and statistical inferences from functional data acquired by optical imaging techniques must be interpreted with care. Multimodal integration of NIRS with both structural and baseline physiological assessments is crucial to avoid misinterpreting neuroimaging signals. In this study, a combination of two different optical techniques, anatomical MRI and Arterial Spin Labeling (ASL was used to investigate age-related changes in activation during a lexical-semantic processing task. Quantitative analysis revealed decreased baseline oxyhemoglobin and cerebral blood flow in the older adults. Using baseline physiology measures as regressors in the investigation of functional concentration changes when doing analyses of variance, we found significant changes in task-induced areas of activity. In the right hemisphere, more significant age-related activity was observed around the junction of the inferior frontal gyrus and inferior precentral sulcus, along with engagement of Wernicke’s area. In the left hemisphere, the degree and extent of frontal activation, including the dorsolateral prefrontal cortex and inferior frontal gyrus, differed between age groups. Measuring background physiological differences and using their values as regressors in statistical analyses allowed a more appropriate, age-corrected understanding of the functional differentiations between age groups. Age-corrected baselines are thus essential to investigate which components of the NIRS signal are altered

  17. Blood pressure and renal hemodynamic responses to acute angiotensin II infusion are enhanced in a female mouse model of systemic lupus erythematosus

    OpenAIRE

    Venegas-Pont, Marcia; Mathis, Keisa W.; Iliescu, Radu; Ray, William H.; Glover, Porter H.; Ryan, Michael J.

    2011-01-01

    Inflammation and immune system dysfunction contributes to the development of cardiovascular and renal disease. Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disorder that carries a high risk for both renal and cardiovascular disease. While hemodynamic changes that may contribute to increased cardiovascular risk have been reported in humans and animal models of SLE, renal hemodynamics have not been widely studied. The renin-angiotensin system (RAS) plays a central rol...

  18. Dexmedetomidine versus esmolol to attenuate the hemodynamic response to laryngoscopy and tracheal intubation: A randomized double-blind clinical study

    OpenAIRE

    Reddy, Siddareddigari Velayudha; Balaji, Donthu; Ahmed, Shaik Nawaz

    2014-01-01

    Context: Sympathoadrenal response to laryngoscopy and tracheal intubation manifests as transient, but distinct tachycardia and hypertension. Aims: The objective of this study is to compare the clinical effects of dexmedetomidine with esmolol and control in attenuating the presser response during laryngoscopy. Settings and Design: A randomized, prospective, double-blind, controlled study. Subjects and Methods: We studied consented, 90 adult, American Society of Anesthesiologists physical statu...

  19. The effect of different doses of esmolol on hemodynamic, bispectral index and movement response during orotracheal intubation: prospective, randomized, double-blind study

    Directory of Open Access Journals (Sweden)

    Mensure Yılmaz Çakırgöz

    2014-12-01

    Full Text Available Objective: A prospective, randomized and double-blind study was planned to identify the optimum dose of esmolol infusion to suppress the increase in bispectral index values and the movement and hemodynamic responses to tracheal intubation. Materials and methods: One hundred and twenty patients were randomly allocated to one of three groups in a double-blind fashion. 2.5 mg kg-1 propofol was administered for anesthesia induction. After loss of consciousness, and before administration of 0.6 mg kg-1 rocuronium, a tourniquet was applied to one arm and inflated to 50 mm Hg greater than systolic pressure. The patients were divided into 3 groups; 1 mg kg-1 h-1 esmolol was given as the loading dose and in Group Es50 50 μg kg-1 min-1, in Group Es150 150 μg kg-1 min-1, and in Group Es250 250 μg kg-1 min-1 esmolol infusion was started. Five minutes after the esmolol has been begun, the trachea was intubated; gross movement within the first minute after orotracheal intubation was recorded. Results: Incidence of movement response and the ΔBIS max values were comparable in Group Es250 and Group Es150, but these values were significantly higher in Group Es50 than in the other two groups. In all three groups in the 1st minute after tracheal intubation heart rate and mean arterial pressure were significantly higher compared to values from before intubation (p < 0.05. In the study period there was no significant difference between the groups in terms of heart rate and mean arterial pressure. Conclusion: In clinical practise we believe that after 1 mg kg-1 loading dose, 150 μg kg-1 min-1 iv esmolol dose is sufficient to suppress responses to tracheal intubation without increasing side effects.

  20. Comparison of hemodynamic responses to laryngoscopy and intubation with Truview PCD TM , McGrath ® and Macintosh laryngoscope in patients undergoing coronary artery bypass grafting: A randomized prospective study

    Directory of Open Access Journals (Sweden)

    Deepak K Tempe

    2016-01-01

    Full Text Available Context: We hypothesized that reduced oropharyngolaryngeal stimulation with video laryngoscopes would attenuate hemodynamic response to laryngoscopy and intubation. Aim: Comparison of hemodynamic response to laryngoscopy and intubation with video laryngoscopes and Macintosh (MC laryngoscope. Setting and Design: Superspecialty tertiary care public hospital; prospective, randomized control study. Methods: Sixty adult patients undergoing elective coronary artery bypass grafting (CABG were randomly allocated to three groups of 20 each: MC, McGrath (MG, and Truview (TV. Hemodynamic parameters were serially recorded before and after intubation. Laryngoscopic grade, laryngoscopy, and tracheal intubation time, ST segment changes, and intra-/post-operative complications were also recorded and compared between groups. Statistical Analysis: SPSS version 17 was used, and appropriate tests applied. P < 0.05 was considered significant. Results: Heart rate and diastolic arterial pressure increased at 0 and 1 min of intubation in all the three groups (P < 0.05 while mean arterial pressure increased at 0 min in the MG and TV groups and at 1 min in all three groups (P < 0.05. A significant increase in systolic arterial pressure was only observed in TV group at 1 min (P < 0.05. These hemodynamic parameters returned to baseline by 3 min of intubation in all the groups. The intergroup comparisons of all hemodynamic parameters were not significant at any time of observation. Highest intubation difficulty score was observed with MC (2.16 ± 1.86 as compared with MG (0.55 ± 0.88 and TV (0.42 ± 0.83 groups (P = 0.003 and P = 0.001, respectively. However, duration of laryngoscopy and intubation was significantly less in MC (36.68 ± 16.15 s as compared with MG (75.25 ± 30.94 s and TV (60.47 ± 27.45 s groups (P = 0.000 and 0.003, respectively. Conclusions: Video laryngoscopes did not demonstrate any advantage in terms of hemodynamic response in patients with normal

  1. Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses.

    Science.gov (United States)

    Sperdin, Holger F; Spierer, Lucas; Becker, Robert; Michel, Christoph M; Landis, Theodor

    2015-04-01

    Subliminal perception is strongly associated to the processing of meaningful or emotional information and has mostly been studied using visual masking. In this study, we used high density 256-channel EEG coupled with an liquid crystal display (LCD) tachistoscope to characterize the spatio-temporal dynamics of the brain response to visual checkerboard stimuli (Experiment 1) or blank stimuli (Experiment 2) presented without a mask for 1 ms (visible), 500 µs (partially visible), and 250 µs (subliminal) by applying time-wise, assumption-free nonparametric randomization statistics on the strength and on the topography of high-density scalp-recorded electric field. Stimulus visibility was assessed in a third separate behavioral experiment. Results revealed that unmasked checkerboards presented subliminally for 250 µs evoked weak but detectable visual evoked potential (VEP) responses. When the checkerboards were replaced by blank stimuli, there was no evidence for the presence of an evoked response anymore. Furthermore, the checkerboard VEPs were modulated topographically between 243 and 296 ms post-stimulus onset as a function of stimulus duration, indicative of the engagement of distinct configuration of active brain networks. A distributed electrical source analysis localized this modulation within the right superior parietal lobule near the precuneus. These results show the presence of a brain response to submillisecond unmasked subliminal visual stimuli independently of their emotional saliency or meaningfulness and opens an avenue for new investigations of subliminal stimulation without using visual masking. PMID:25487054

  2. Advanced hemodynamic monitoring: principles and practice in neurocritical care.

    Science.gov (United States)

    Lazaridis, Christos

    2012-02-01

    Advanced hemodynamic monitoring is necessary for many patients with acute brain and/or spinal cord injury. Optimizing cerebral and systemic physiology requires multi-organ system function monitoring. Hemodynamic manipulations are cardinal among interventions to regulate cerebral perfusion pressure and cerebral blood flow. The pulmonary artery catheter is not any more the sole tool available; less invasive and potentially more accurate methodologies have been developed and employed in the operating room and among diverse critically ill populations. These include transpulmonary thermodilution, arterial pressure pulse contour, and waveform analysis and bedside critical care ultrasound. A thorough understanding of hemodynamics and of the available monitoring modalities is an essential skill for the neurointensivist.

  3. Paradoxical effects of brain death and associated trauma on rat mesenteric microcirculation: an intravital microscopic study

    OpenAIRE

    Rafael Simas; Paulina Sannomiya; José Walber M. C Cruz; Cristiano de Jesus Correia; Fernando Luiz Zanoni; Maurício Kase; Laura Menegat; Isaac Azevedo Silva; Moreira, Luiz Felipe P.

    2012-01-01

    OBJECTIVE: Experimental findings support clinical evidence that brain death impairs the viability of organs for transplantation, triggering hemodynamic, hormonal, and inflammatory responses. However, several of these events could be consequences of brain death–associated trauma. This study investigated microcirculatory alterations and systemic inflammatory markers in brain-dead rats and the influence of the associated trauma. METHOD: Brain death was induced using intracranial balloon inflatio...

  4. Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination

    Science.gov (United States)

    Abookasis, David; Lay, Christopher C.; Mathews, Marlon S.; Linskey, Mark E.; Frostig, Ron D.; Tromberg, Bruce J.

    2009-03-01

    We describe a technique that uses spatially modulated near-infrared (NIR) illumination to detect and map changes in both optical properties (absorption and reduced scattering parameters) and tissue composition (oxy- and deoxyhemoglobin, total hemoglobin, and oxygen saturation) during acute ischemic injury in the rat barrel cortex. Cerebral ischemia is induced using an open vascular occlusion technique of the middle cerebral artery (MCA). Diffuse reflected NIR light (680 to 980 nm) from the left parietal somatosensory cortex is detected by a CCD camera before and after MCA occlusion. Monte Carlo simulations are used to analyze the spatial frequency dependence of the reflected light to predict spatiotemporal changes in the distribution of tissue absorption and scattering properties in the brain. Experimental results from seven rats show a 17+/-4.7% increase in tissue concentration of deoxyhemoglobin and a 45+/-3.1, 23+/-5.4, and 21+/-2.2% decrease in oxyhemoglobin, total hemoglobin concentration and cerebral tissue oxygen saturation levels, respectively, 45 min following induction of cerebral ischemia. An ischemic index (Iisch=ctHHb/ctO2Hb) reveals an average of more then twofold contrast after MCAo. The wavelength-dependence of the reduced scattering (i.e., scatter power) decreased by 35+/-10.3% after MCA occlusion. Compared to conventional CCD-based intrinsic signal optical imaging (ISOI), the use of structured illumination and model-based analysis allows for generation of separate maps of light absorption and scattering properties as well as tissue hemoglobin concentration. This potentially provides a powerful approach for quantitative monitoring and imaging of neurophysiology and metabolism with high spatiotemporal resolution.

  5. Regional Brain Responses in Nulliparous Women to Emotional Infant Stimuli

    OpenAIRE

    Montoya, Jessica L.; Nicole Landi; Hedy Kober; Worhunsky, Patrick D.; Rutherford, Helena J. V.; W Einar Mencl; Mayes, Linda C.; POTENZA, MARC N.

    2012-01-01

    Infant cries and facial expressions influence social interactions and elicit caretaking behaviors from adults. Recent neuroimaging studies suggest that neural responses to infant stimuli involve brain regions that process rewards. However, these studies have yet to investigate individual differences in tendencies to engage or withdraw from motivationally relevant stimuli. To investigate this, we used event-related fMRI to scan 17 nulliparous women. Participants were presented with novel infan...

  6. Comparison of Dexmedetomidine and Esmolol for Attenuation of Hemodynamic Responses to Laryngoscopy and Tracheal Intubation in Hypertensive Patients

    OpenAIRE

    Özkan, Ahmet Selim; Bombacı, Elif

    2013-01-01

    Aim: During general anesthesia, control of the airway is often provided with endotracheal intubation, as a result, larynx and trachea are stimulated and plasma concentrations of noradrenaline and adrenaline are increased. This increase in blood pressure and heart rate causing arrhythmias and has a negative impact on myocardial oxygen delivery and consumption. Many drugs used for the prevention response to increased sympathic activity in blood pressure and heart rate. It was aimed to evaluate ...

  7. Common resting brain dynamics indicate a possible mechanism underlying zolpidem response in severe brain injury

    OpenAIRE

    Williams, Shawniqua; Conte, Mary; Goldfine, Andrew; Noirhomme, Quentin; Gosseries, Olivia; Thonnard, Marie; Beattie, Bradley; Hersh, Jennifer; Katz, Douglas; Victor, Jonathan; Laureys, Steven; Schiff, Nicholas

    2013-01-01

    eLife digest Some individuals who experience severe brain damage are left with disorders of consciousness. While they can appear to be awake, these individuals lack awareness of their surroundings and cannot respond to events going on around them. Few treatments are available, but a minority of patients show striking improvements in speech, alertness and movement in response to the sleeping pill zolpidem. Although the idea of a sleeping pill increasing consciousness is paradoxical, it is poss...

  8. EFFECTS OF PREANESTHETIC SINGLE DOSE INTRAVENOUS DEXMEDETOMIDINE VERSUS FENTANYL ON HEMODYNAMIC RESPONSE TO ENDOTRACHEAL INTUBATION-A CLINICAL COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Chandita

    2015-12-01

    Full Text Available INTRODUCTION Many pharmacological agents have been evaluated in regards to their efficacy of blunting the adverse cardiovascular response to laryngoscopy and tracheal intubation. The aim of this study was to evaluate the efficacy of dexmedetomidine compared to fentanyl in blunting the haemodynamic response to laryngoscopy and intubation. METHOD Sixty patients were randomly allocated into two groups (30 patients in each group. The group D received intravenously 1 µgm/kg dexmedetomidine infusion and group F received 2µgm/kg fentanyl infusion. The study drugs were prepared in an identical looking container and were infused fifteen minutes prior to induction of anaesthesia. The study drugs were infused over a period of ten minutes and all the patients underwent a similar anaesthetics technique. Heart rate (HR and blood pressure (systolic, diastolic and mean blood pressure were noted at baseline, at the end of infusion of the study drugs, after induction of anaesthesia, immediately after laryngoscopy and intubation and at 1, 3, 5, 7 and 10 minutes after laryngoscopy and intubation. RESULTS HR significantly decreased in the group D when compared to group F immediately after study drug infusion and there was statistically significant reduction in heart rate for up to 5 min after intubation in both the groups. Although HR increased after intubation in both the groups, the magnitude was lower in the group D. In both the groups, laryngoscopy and intubation led to an increase in systolic, diastolic and mean arterial pressure; the magnitude was lower in the group D. CONCLUSION Dexmeditomidine (1µ/kg attenuates these untoward responses of laryngoscopy and intubation more effectively than fentanyl (2 µ/kg when administered as bolus dose in the pre-induction period of general anaesthesia.

  9. Sex-Steroid Hormone Manipulation Reduces Brain Response to Reward

    DEFF Research Database (Denmark)

    Macoveanu, Julian; Henningsson, Susanne; Pinborg, Anja;

    2016-01-01

    Mood disorders are twice as frequent in women than in men. Risk mechanisms for major depression include adverse responses to acute changes in sex-steroid hormone levels, eg, postpartum in women. Such adverse responses may involve an altered processing of rewards. Here, we examine how women...... to map regional brain activity related to the magnitude of risk during choice and to monetary reward. The GnRHa intervention caused a net reduction in ovarian sex steroids (estradiol and testosterone) and increased depression symptoms. Compared with placebo, GnRHa reduced amygdala's reactivity to...

  10. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    Science.gov (United States)

    Yao, Junjie; Xia, Jun; Maslov, Konstantin; Avanaki, Mohammadreza R. N.; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2013-03-01

    To control the overall action of the body, brain consumes a large amount of energy in proportion to its volume. In humans and many other species, the brain gets most of its energy from oxygen-dependent metabolism of glucose. An abnormal metabolic rate of glucose and/or oxygen usually reflects a diseased status of brain, such as cancer or Alzheimer's disease. We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively unmixed by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. The glucose response amplitude was about half that of the hemodynamic response. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area showed a clear vascular pattern and spread about twice as wide as that of the glucose response. The PACT of mouse brain metabolism was validated by high-resolution open-scalp OR-PAM and fluorescence imaging. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism.

  11. Effects of race and sex on blood pressure and hemodynamic stress response as a function of the menstrual cycle.

    Science.gov (United States)

    Ahwal; Mills; Kalshan; Nelesen

    1997-08-01

    OBJECTIVE: To examine the influence of race and sex on responses to cardiovascular stress during two menstrual cycle phases. METHODS: Subjects were exposed to two stressors, a mirror star-tracing task and a speaking task. Blood pressure, heart rate, and impedance cardiography measures of reactivity were recorded. Women were examined both during the follicular and during the luteal phase of their menstrual cycle with men matched for the number of days between testing sessions (approximately 6 weeks). The subjects were 33 black and white women and 37 black and white men who were healthy, normotensive, and not being administered medication. RESULTS: For black women, the reactivity of the diastolic blood pressure (DBP) to the speaking task was less in the luteal phase than it was in the follicular phase, whereas for white women (and men) there was no difference between the two phases (testing sessions) (P rate reactivities in both menstrual phases than did men (P speak, black and white women had greater DBP reactivities than did men; however, their DBP responses were attenuated during the luteal phase compared with the follicular phase (P influence this phenomenon. PMID:10234110

  12. Modulation of untruthful responses with noninvasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Shirley eFecteau

    2013-02-01

    Full Text Available Deceptive abilities have long been studied in relation to personality traits. More recently, studies explored the neural substrates associated with deceptive skills suggesting a critical role of the prefrontal cortex. Here we investigated whether noninvasive brain stimulation over the dorsolateral prefrontal cortex (DLPFC could modulate generation of untruthful responses about subject’s personal life across contexts (i.e., deceiving on guilt-free questions on daily activities; generating previously memorized lies about past experience; and producing spontaneous lies about past experience, as well as across modality responses (verbal and motor responses. Results reveal that real, but not sham, transcranial direct current stimulation (tDCS over the DLPFC can reduce response latency for untruthful over truthful answers across contexts and modality responses. Also, contexts of lies seem to incur a different hemispheric laterality. These findings add up to previous studies demonstrating that it is possible to modulate some processes involved in generation of untruthful answers by applying noninvasive brain stimulation over the DLPFC and extend these findings by showing a differential hemispheric contribution of DLPFCs according to contexts.

  13. Signaling the Unfolded Protein Response in primary brain cancers.

    Science.gov (United States)

    Le Reste, Pierre-Jean; Avril, Tony; Quillien, Véronique; Morandi, Xavier; Chevet, Eric

    2016-07-01

    The Unfolded Protein Response (UPR) is an adaptive cellular program used by eukaryotic cells to cope with protein misfolding stress in the Endoplasmic Reticulum (ER). During tumor development, cancer cells are facing intrinsic (oncogene activation) and extrinsic (limiting nutrient or oxygen supply; exposure to chemotherapies) challenges, with which they must cope to survive. Primary brain tumors are relatively rare but deadly and present a significant challenge in the determination of risk factors in the population. These tumors are inherently difficult to cure because of their protected location in the brain. As such surgery, radiation and chemotherapy options carry potentially lasting patient morbidity and incomplete tumor cure. Some of these tumors, such as glioblastoma, were reported to present features of ER stress and to depend on UPR activation to sustain growth, but to date there is no clear general representation of the ER stress status in primary brain tumors. In this review, we describe the key molecular mechanisms controlling the UPR and their implication in cancers. Then we extensively review the literature reporting the status of ER stress in various primary brain tumors and discuss the potential impact of such observation on patient stratification and on the possibility of developing appropriate targeted therapies using the UPR as therapeutic target. PMID:27016056

  14. Temporally shifted hemodynamic response model helps to extract acupuncture-induced functional magnetic resonance imaging blood oxygenation-level dependent activities

    Institute of Scientific and Technical Information of China (English)

    Tsung-Jung Ho; Jeng-Ren Duann; Chun-Ming Chen; Jeon-Hor Chen; Wu-Chung Shen; Tung-Wu Lu; Jan-Ray Liao; Zen-Pin Lin; Kuo-Ning Shaw; Jaung-Geng Lin

    2009-01-01

    Background The onsets of needling sensation introduced by acupuncture stimulus can vary widely from subject to subject.This should be explicitly accounted for by the model blood oxygenation-level dependent (BOLD) time course used in general linear model (GLM) analysis to obtain more consistent across-subject group results.However,in standard GLM analysis,the model BOLD time course obtained by convolving a canonical hemodynamic response function with an experimental paradigm time course is assumed identical across subjects.Although some added-on properties to the model BOLD time course,such as temporal and dispersion derivatives,may be used to account for different BOLD response onsets,they can only account for the BOLD onset deviations to the extent of less than one repetition time (TR).Methods In this study,we explicitly manipulated the onsets of model BOLD time course by shifting it with-2,-1,or 1 TR and used these temporally shifted BOLD model to analyze the functional magnetic resonance imaging (fMRI) data obtained from three acupuncture fMRI experiments with GLM analysis.One involved acupuncture stimulus on left ST42acupoint and the other two on left GB40 and left BL64 acupoints.Results The model BOLD time course with temporal shifts,in addition to temporal and dispersion derivatives,could result in better statistical power of the data analysis in terms of the average correlation coefficients between the used BOLD models and extracted BOLD responses from individual subject data and the T-values of the activation clusters in the grouped random effects.Conclusions The GLM analysis with ordinary BOLD model failed to catch the large variability of the onsets of the BOLD responses associated with the acupuncture needling sensation.Shifts in time with more than a TR on model BOLD time course might be required to better extract the acupuncture stimulus-induced BOLD activities from individual fMRI data.

  15. Comparison of bolus and continuous infusion of esmolol on hemodynamic response to laryngoscopy, endotracheal intubation and sternotomy in coronary artery bypass graft

    Directory of Open Access Journals (Sweden)

    Esra Mercanooglu Efe

    2014-07-01

    Full Text Available BACKGROUND AND OBJECTIVE: The aim of this randomized, prospective and double blinded study is to investigate effects of different esmolol use on hemodynamic response of laryngoscopy, endotracheal intubation and sternotomy in coronary artery bypass graft surgery. METHODS: After approval of local ethics committee and patients' written informed consent, 45 patients were randomized into three groups equally. In Infusion Group; from 10 min before intubation up to 5th minute after sternotomy, 0.5 mg/kg/min esmolol infusion, in Bolus Group; 2 min before intubation and sternotomy 1.5 mg/kg esmolol IV bolus and in Control Group; %0.9 NaCl was administered. All demographic parameters were recorded. Heart rate and blood pressure were recorded before infusion up to anesthesia induction in every minute, during endotracheal intubation, every minute for 10 minutes after endotracheal intubation and before, during and after sternotomy at first and fifth minutes. RESULTS: While area under curve (AUC (SAP × time was being found more in Group B and C than Group I, AUC (SAP × T int and T st and AUC (SAP × T2 was found more in Group B and C than Group I (p < 0.05. Moreover AUC (HR × T st was found less in Group B than Group C but no significant difference was found between Group B and Group I. CONCLUSION: This study highlights that esmolol infusion is more effective than esmolol bolus administration on controlling systolic arterial pressure during endotracheal intubation and sternotomy in CABG surgery.

  16. Is 'bipolar disorder' the brain's autopoietic response to schizophrenia?

    Science.gov (United States)

    Llewellyn, Sue

    2009-10-01

    Evidence is accumulating that schizophrenia and bipolar disorder are related conditions. This paper proposes a particular form of relatedness. If 'schizophrenia' is a mind/brain 'trapped' between waking and dreaming, in a disordered in-between state, then bipolar 'disorder' could actually be an attempt to restore order. The mind/brain is a self-producing, self-organizing system. Autopoiesis applies to such systems. Neuromodulation accomplishes self-organization in the mind/brain. If schizophrenia is a state in-between waking and dreaming, characterized by aminergic/cholinergic interpenetration and dopaminergic imbalance then bipolar 'disorder' could be a modulatory response. This autopoietic reaction may take the form of either aminergic hyperactivity aimed at producing a purer waking state, (precipitating mania in the waking state), or cholinergic hyperactivity aimed at producing a purer dreaming state, (producing depression in the waking state), or both, resulting in rapid cycling bipolar disorder. Thus bipolar activity may be an autopoietic response aimed at restoring differentiation to the in-between state of schizophrenia. PMID:19589644

  17. Relationship between duration of brain death and hemodynamic (in)stability on progressive dysfunction and increased immunologic activation of donor kidneys

    NARCIS (Netherlands)

    van der Hoeven, JAB; Molema, G; Ter Horst, GJ; Freund, RL; Wiersema, J; van Schilfgaarde, R; Leuvenink, HGD; Ploeg, RJ

    2003-01-01

    Background. Consistent difference in graft survival after renal transplantation has been shown when cadaveric transplants are compared to the living related donor situation, in favor of the latter. Recently, evidence has been put forward that brain death has significant effects on the donor organ qu

  18. Central and peripheral hemodynamics in exercising humans

    DEFF Research Database (Denmark)

    Calbet, J A L; González-Alonso, J; Helge, J W;

    2015-01-01

    In humans, arm exercise is known to elicit larger increases in arterial blood pressure (BP) than leg exercise. However, the precise regulation of regional vascular conductances (VC) for the distribution of cardiac output with exercise intensity remains unknown. Hemodynamic responses were assessed...

  19. Obesity and renal hemodynamics

    NARCIS (Netherlands)

    Bosma, R. J.; Krikken, J. A.; van der Heide, J. J. Homan; de Jong, P. E.; Navis, G. J.

    2006-01-01

    Obesity is a risk factor for renal damage in native kidney disease and in renal transplant recipients. Obesity is associated with several renal risk factors such as hypertension and diabetes that may convey renal risk, but obesity is also associated with an unfavorable renal hemodynamic profile inde

  20. Effects of high-sucrose feeding on insulin resistance and hemodynamic responses to insulin in spontaneously hypertensive rats.

    Science.gov (United States)

    Mélançon, Sébastien; Bachelard, Hélène; Badeau, Mylène; Bourgoin, Frédéric; Pitre, Maryse; Larivière, Richard; Nadeau, André

    2006-06-01

    This study was designed to investigate the effects of a sucrose diet on vascular and metabolic actions of insulin in spontaneously hypertensive rats (SHR). Male SHR were randomized to receive a sucrose or regular chow diet for 4 wk. Age-matched, chow-fed Wistar-Kyoto (WKY) rats were used as normotensive control. In a first series of experiments, the three groups of rats had pulsed Doppler flow probes and intravascular catheters implanted to determine blood pressure, heart rate, and blood flows. Insulin sensitivity was assessed during a euglycemic hyperinsulinemic clamp performed in conscious rats. In a second series of experiments, new groups of rats were used to examine glucose transport activity in isolated muscles and to determine endothelial nitric oxide synthase (eNOS) protein expression in muscles and endothelin content in vascular tissues. Sucrose feeding was shown to markedly enhance the pressor response to insulin and its hindquarter vasoconstrictor effect when compared with chow-fed SHR. A reduction in eNOS protein content in muscle, but no change in vascular endothelin-1 protein, was noted in sucrose-fed SHR when compared with WKY rats, but these changes were not different from those noted in chow-fed SHR. Similar reductions in insulin-stimulated glucose transport were observed in soleus muscles from both groups of SHR when compared with WKY rats. In extensor digitorum longus muscles, a significant reduction in insulin-stimulated glucose transport was only seen in sucrose-fed rats when compared with the other two groups. Environmental factors, that is, high intake of simple sugars, could possibly potentiate the genetic predisposition in SHR to endothelial dysfunction and insulin resistance.

  1. Hemodynamic and autonomic nervous system responses to mixed meal ingestion in healthy young and old subjects and dysautonomic patients with postprandial hypotension

    Science.gov (United States)

    Lipsitz, L. A.; Ryan, S. M.; Parker, J. A.; Freeman, R.; Wei, J. Y.; Goldberger, A. L.

    1993-01-01

    BACKGROUND. Although postprandial hypotension is a common cause of falls and syncope in elderly persons and in patients with autonomic insufficiency, the pathophysiology of this disorder remains unknown. METHODS AND RESULTS. We examined the hemodynamic, splanchnic blood pool, plasma norepinephrine (NE), and heart rate (HR) power spectra responses to a standardized 400-kcal mixed meal in 11 healthy young (age, 26 +/- 5 years) and nine healthy elderly (age, 80 +/- 5 years) subjects and 10 dysautonomic patients with symptomatic postprandial hypotension (age, 65 +/- 16 years). Cardiac and splanchnic blood pools were determined noninvasively by radionuclide scans, and forearm vascular resistance was determined using venous occlusion plethysmography. In healthy young and old subjects, splanchnic blood volume increased, but supine blood pressure remained unchanged after the meal. In both groups, HR increased and systemic vascular resistance remained stable. Forearm vascular resistance and cardiac index increased after the meal in elderly subjects, whereas these responses were highly variable and of smaller magnitude in the young. Young subjects demonstrated postprandial increases in low-frequency HR spectral power, representing cardiac sympatho-excitation, but plasma NE remained unchanged. In elderly subjects, plasma NE increased after the meal but without changes in the HR power spectrum. Patients with dysautonomia had a large postprandial decline in blood pressure associated with no change in forearm vascular resistance, a fall in systemic vascular resistance, and reduction in left ventricular end diastolic volume index. HR increased in these patients but without changes in plasma NE or the HR power spectrum. CONCLUSIONS. 1) In healthy elderly subjects, the maintenance of blood pressure homeostasis after food ingestion is associated with an increase in HR, forearm vascular resistance, cardiac index, and plasma NE. In both young and old, systemic vascular resistance is

  2. Hormonal contraceptives, menstrual cycle and brain response to faces

    DEFF Research Database (Denmark)

    Marecková, Klara; Perrin, Jennifer S; Nawaz Khan, Irum;

    2014-01-01

    fusiform face area (FFA) in women taking oral contraceptives (vs freely cycling women) and during mid-cycle (vs menstruation) in both groups. Mean blood oxygenation level-dependent response in both left and right FFA increased as function of the duration of OC use. Next, this relationship between the use......Both behavioral and neuroimaging evidence support a female advantage in the perception of human faces. Here we explored the possibility that this relationship may be partially mediated by female sex hormones by investigating the relationship between the brain's response to faces and the use of oral...... contraceptives, as well as the phase of the menstrual cycle. First, functional magnetic resonance images were acquired in 20 young women [10 freely cycling and 10 taking oral contraception (OC)] during two phases of their cycle: mid-cycle and menstruation. We found stronger neural responses to faces in the right...

  3. Hemodynamic responses and upper airway morbidity following tracheal intubation in patients with hypertension: conventional laryngoscopy versus an intubating laryngeal mask airway

    Directory of Open Access Journals (Sweden)

    Elif Bengi Sener

    2012-01-01

    Full Text Available OBJECTIVES: We compared hemodynamic responses and upper airway morbidity following tracheal intubation via conventional laryngoscopy or intubating laryngeal mask airway in hypertensive patients. METHODS: Forty-two hypertensive patients received a conventional laryngoscopy or were intubated with a intubating laryngeal mask airway. Anesthesia was induced with propofol, fentanyl, and cis-atracurium. Measurements of systolic and diastolic blood pressures, heart rate, rate pressure product, and ST segment changes were made at baseline, preintubation, and every minute for the first 5 min following intubation. The number of intubation attempts, the duration of intubation, and airway complications were recorded. RESULTS: The intubation time was shorter in the conventional laryngoscopy group than in the intubating laryngeal mask airway group (16.33 ± 10.8 vs. 43.04±19.8 s, respectively (p<0.001. The systolic and diastolic blood pressures in the intubating laryngeal mask airway group were higher than those in the conventional laryngoscopy group at 1 and 2 min following intubation (p<0.05. The rate pressure product values (heart rate x systolic blood pressure at 1 and 2 min following intubation in the intubating laryngeal mask airway group (15970.90 ± 3750 and 13936.76 ± 2729, respectively were higher than those in the conventional laryngoscopy group (13237.61 ± 3413 and 11937.52 ± 3160, respectively (p<0.05. There were no differences in ST depression or elevation between the groups. The maximum ST changes compared with baseline values were not significant between the groups (conventional laryngoscopy group: 0.328 mm versus intubating laryngeal mask airway group: 0.357 mm; p = 0.754. The number and type of airway complications were similar between the groups. CONCLUSION: The intense and repeated oropharyngeal and tracheal stimulation resulting from intubating laryngeal mask airway induces greater pressor responses than does stimulation resulting from

  4. Heart function and hemodynamics

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930469 The effects of different ventricular pac-ing rates on cardiac hemodynamics and theirclinical significance.WEI Meng(魏盟),et al.Zhongshan Hosp,Shanghai Med Univ,Shanghai,200032.Shanghai Med J 1993;16(3):125—126.Changes of hemodynamics were investigated in26 patients at ventricular pacing rate of 60 to120,and 160 bpm.Effects of increasing ventricu-lar pacing rate on EF which were determined bygated blood pool scintigraphy were also studiedin another 11 patients.It is concluded that:1)inpatients with normal cardiac function as well asmost patients with cardiac insufficiency,the rela-tion of CO with increasing pacing rate can be il-

  5. Psychopathic traits modulate brain responses to drug cues in incarcerated offenders

    Directory of Open Access Journals (Sweden)

    Lora M Cope

    2014-02-01

    Full Text Available Recent neuroscientific evidence indicates that psychopathy is associated with abnormal function and structure in limbic and paralimbic areas. Psychopathy and substance use disorders are highly comorbid, but clinical experience suggests that psychopaths abuse drugs for different reasons than non-psychopaths, and that psychopaths do not typically experience withdrawal and craving upon becoming incarcerated. These neurobiological abnormalities may be related to psychopaths’ different motivations for – and symptoms of – drug use. This study examined the modulatory effect of psychopathic traits on the neurobiological craving response to pictorial drug stimuli. Drug-related pictures and neutral pictures were presented and rated by participants while hemodynamic activity was monitored using functional magnetic resonance imaging. These data were collected at two correctional facilities in New Mexico using the Mind Research Network mobile magnetic resonance imaging system. The sample comprised 137 incarcerated adult males and females (93 females with histories of substance dependence. The outcome of interest was the relation between psychopathy scores (using the Hare Psychopathy Checklist-Revised and hemodynamic activity associated with viewing drug-related pictures versus neutral pictures. There was a negative association between psychopathy scores and hemodynamic activity for viewing drug-related cues in the anterior cingulate, posterior cingulate, hippocampus, amygdala, caudate, globus pallidus, and parts of the prefrontal cortex. Psychopathic traits modulate the neurobiological craving response and suggest that individual differences are important for understanding and treating substance abuse.

  6. Reduced brain activation in violent adolescents during response inhibition.

    Science.gov (United States)

    Qiao, Yi; Mei, Yi; Du, XiaoXia; Xie, Bin; Shao, Yang

    2016-01-01

    Deficits in inhibitory control have been linked to aggression and violent behaviour. This study aimed to observe whether violent adolescents show different brain activation patterns during response inhibition and to ascertain the roles these brain regions play. A self-report method and modified overt aggression scale (MOAS) were used to evaluate violent behaviour. Functional magnetic resonance imaging was performed in 22 violent adolescents and 17 matched healthy subjects aged 12 to 18 years. While scanning, a go/no-go task was performed. Between-group comparisons revealed that activation in the bilateral middle and superior temporal gyrus, hippocampus, and right orbitofrontal area (BA11) regions were significantly reduced in the violent group compared with the control group. Meanwhile, the violent group had more widespread activation in the prefrontal cortex than that observed in the control group. Activation of the prefrontal cortex in the violent group was widespread but lacking in focus, failing to produce intensive activation in some functionally related regions during response inhibition. PMID:26888566

  7. Group-level impacts of within- and between-subject hemodynamic variability in fMRI.

    Science.gov (United States)

    Badillo, Solveig; Vincent, Thomas; Ciuciu, Philippe

    2013-11-15

    Inter-subject fMRI analyses have specific issues regarding the reliability of the results concerning both the detection of brain activation patterns and the estimation of the underlying dynamics. Among these issues lies the variability of the hemodynamic response function (HRF), that is usually accounted for using functional basis sets in the general linear model context. Here, we use the joint detection-estimation approach (JDE) (Makni et al., 2008; Vincent et al., 2010) which combines regional nonparametric HRF inference with spatially adaptive regularization of activation clusters to avoid global smoothing of fMRI images. We show that the JDE-based inference brings a significant improvement in statistical sensitivity for detecting evoked activity in parietal regions. In contrast, the canonical HRF associated with spatially adaptive regularization is more sensitive in other regions, such as motor cortex. This different regional behavior is shown to reflect a larger discrepancy of HRF with the canonical model. By varying parallel imaging acceleration factor, SNR-specific region-based hemodynamic parameters (activation delay and duration) were extracted from the JDE inference. Complementary analyses highlighted their significant departure from the canonical parameters and the strongest between-subject variability that occurs in the parietal region, irrespective of the SNR value. Finally, statistical evidence that the fluctuation of the HRF shape is responsible for the significant change in activation detection performance is demonstrated using paired t-tests between hemodynamic parameters inferred by GLM and JDE. PMID:23735261

  8. The shopping brain: math anxiety modulates brain responses to buying decisions.

    Science.gov (United States)

    Jones, William J; Childers, Terry L; Jiang, Yang

    2012-01-01

    Metacognitive theories propose that consumers track fluency feelings when buying, which may have biological underpinnings. We explored this using event-related potential (ERP) measures as twenty high-math anxiety (High MA) and nineteen low-math anxiety (Low MA) consumers made buying decisions for promoted (e.g., 15% discount) and non-promoted products. When evaluating prices, ERP correlates of higher perceptual and conceptual fluency were associated with buys, however only for High MA females under no promotions. In contrast, High MA females and Low MA males demonstrated greater FN400 amplitude, associated with enhanced conceptual processing, to prices of buys relative to non-buys under promotions. Concurrent late positive component (LPC) differences under no promotions suggest discrepant retrieval processes during price evaluations between consumer groups. When making decisions to buy or not, larger (smaller) P3, sensitive to outcome responses in the brain, was associated with buying for High MA females (Low MA females) under promotions, an effect also present for males under no promotions. Thus, P3 indexed decisions to buy differently between anxiety groups, but only for promoted items among females and for no promotions among males. Our findings indicate that perceptual and conceptual processes interact with anxiety and gender to modulate brain responses during consumer choices.

  9. Regional brain responses in nulliparous women to emotional infant stimuli.

    Directory of Open Access Journals (Sweden)

    Jessica L Montoya

    Full Text Available Infant cries and facial expressions influence social interactions and elicit caretaking behaviors from adults. Recent neuroimaging studies suggest that neural responses to infant stimuli involve brain regions that process rewards. However, these studies have yet to investigate individual differences in tendencies to engage or withdraw from motivationally relevant stimuli. To investigate this, we used event-related fMRI to scan 17 nulliparous women. Participants were presented with novel infant cries of two distress levels (low and high and unknown infant faces of varying affect (happy, sad, and neutral in a randomized, counter-balanced order. Brain activation was subsequently correlated with scores on the Behavioral Inhibition System/Behavioral Activation System scale. Infant cries activated bilateral superior and middle temporal gyri (STG and MTG and precentral and postcentral gyri. Activation was greater in bilateral temporal cortices for low- relative to high-distress cries. Happy relative to neutral faces activated the ventral striatum, caudate, ventromedial prefrontal, and orbitofrontal cortices. Sad versus neutral faces activated the precuneus, cuneus, and posterior cingulate cortex, and behavioral activation drive correlated with occipital cortical activations in this contrast. Behavioral inhibition correlated with activation in the right STG for high- and low-distress cries relative to pink noise. Behavioral drive correlated inversely with putamen, caudate, and thalamic activations for the comparison of high-distress cries to pink noise. Reward-responsiveness correlated with activation in the left precentral gyrus during the perception of low-distress cries relative to pink noise. Our findings indicate that infant cry stimuli elicit activations in areas implicated in auditory processing and social cognition. Happy infant faces may be encoded as rewarding, whereas sad faces activate regions associated with empathic processing. Differences

  10. Regional brain responses in nulliparous women to emotional infant stimuli.

    Science.gov (United States)

    Montoya, Jessica L; Landi, Nicole; Kober, Hedy; Worhunsky, Patrick D; Rutherford, Helena J V; Mencl, W Einar; Mayes, Linda C; Potenza, Marc N

    2012-01-01

    Infant cries and facial expressions influence social interactions and elicit caretaking behaviors from adults. Recent neuroimaging studies suggest that neural responses to infant stimuli involve brain regions that process rewards. However, these studies have yet to investigate individual differences in tendencies to engage or withdraw from motivationally relevant stimuli. To investigate this, we used event-related fMRI to scan 17 nulliparous women. Participants were presented with novel infant cries of two distress levels (low and high) and unknown infant faces of varying affect (happy, sad, and neutral) in a randomized, counter-balanced order. Brain activation was subsequently correlated with scores on the Behavioral Inhibition System/Behavioral Activation System scale. Infant cries activated bilateral superior and middle temporal gyri (STG and MTG) and precentral and postcentral gyri. Activation was greater in bilateral temporal cortices for low- relative to high-distress cries. Happy relative to neutral faces activated the ventral striatum, caudate, ventromedial prefrontal, and orbitofrontal cortices. Sad versus neutral faces activated the precuneus, cuneus, and posterior cingulate cortex, and behavioral activation drive correlated with occipital cortical activations in this contrast. Behavioral inhibition correlated with activation in the right STG for high- and low-distress cries relative to pink noise. Behavioral drive correlated inversely with putamen, caudate, and thalamic activations for the comparison of high-distress cries to pink noise. Reward-responsiveness correlated with activation in the left precentral gyrus during the perception of low-distress cries relative to pink noise. Our findings indicate that infant cry stimuli elicit activations in areas implicated in auditory processing and social cognition. Happy infant faces may be encoded as rewarding, whereas sad faces activate regions associated with empathic processing. Differences in motivational

  11. Noninvasive, in vivo imaging of the mouse brain using photoacoustic microscopy

    OpenAIRE

    Stein, Erich W.; Maslov, Konstantin; Wang, Lihong V.

    2009-01-01

    Noninvasive, high resolution imaging of mouse brain activity is poised to provide clinically translatable insights into human neurological disease progression. Toward noninvasive imaging of brain activity through the hemodynamic response, the dark-field photoacoustic microscopy (PAM) technique was enhanced to image the cortex vasculature of the mouse brain in vivo using endogenous hemoglobin contrast. Specifically, the PAM system was redesigned to efficiently collect photoacoustic waves origi...

  12. Promoting motor function by exercising the brain.

    Science.gov (United States)

    Perrey, Stephane

    2013-01-01

    Exercise represents a behavioral intervention that enhances brain health and motor function. The increase in cerebral blood volume in response to physical activity may be responsible for improving brain function. Among the various neuroimaging techniques used to monitor brain hemodynamic response during exercise, functional near-infrared spectroscopy could facilitate the measurement of task-related cortical responses noninvasively and is relatively robust with regard to the subjects' motion. Although the components of optimal exercise interventions have not been determined, evidence from animal and human studies suggests that aerobic exercise with sufficiently high intensity has neuroprotective properties and promotes motor function. This review provides an insight into the effect of physical activity (based on endurance and resistance exercises) on brain function for producing movement. Since most progress in the study of brain function has come from patients with neurological disorders (e.g., stroke and Parkinson's patients), this review presents some findings emphasizing training paradigms for restoring motor function. PMID:24961309

  13. Effects of Emotional Stimuli on Cardiovascular Responses in Patients with Essential Hypertension Based on Brain/Behavioral Systems

    OpenAIRE

    Mohammadreza Taban Sadeghi; Hossein Namdar; Shahram Vahedi; Naser Aslanabadi; Davoud Ezzati; Babak Sadeghi

    2013-01-01

    Introduction: Effects of emotional stimuli on hemodynamics in patients with essential hypertension based on brain/behavioral systems have not been studied broadly. Methods: Eighty five essential hypertensive male patients who had completed Carver-White BIS/BAS scale were enrolled to the study. Later, 25 BIS and 25 BAS patients were selected and their blood pressure and heart rate were recorded prior to stimuli induction. Participants were then exposed to stressor pictures. After that, 15 m...

  14. Hemodynamic signal changes accompanying execution and imagery of swallowing in patients with dysphagia: A multiple single-case near-infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Silvia Erika Kober

    2015-07-01

    Full Text Available In the present multiple case study we examined hemodynamic changes in the brain in response to motor execution (ME and motor imagery (MI of swallowing in dysphagia patients compared to healthy matched controls using near-infrared spectroscopy (NIRS. Two stroke patients with cerebral lesions in the right hemisphere, two stroke patients with lesions in the brainstem and two neurologically healthy control subjects actively swallowed saliva (ME and mentally imagined to swallow saliva (MI in a randomized order while changes in concentration of oxygenated hemoglobin (oxy-Hb and deoxygenated hemoglobin (deoxy-Hb were assessed. In line with recent findings in healthy young adults, MI and ME of swallowing led to the strongest NIRS signal change in the inferior frontal gyrus in stroke patients as well as in healthy elderly. We found differences in the topographical distribution and time course of the hemodynamic response in dependence on lesion location. Dysphagia patients with lesions in the brainstem showed bilateral hemodynamic signal changes in the inferior frontal gyrus during active swallowing comparable to healthy controls. In contrast, dysphagia patients with cerebral lesions in the right hemisphere showed more unilateral activation patterns during swallowing. Furthermore, patients with cerebral lesions showed a prolonged time course of the hemodynamic response during MI and ME of swallowing compared to healthy controls and patients with brainstem lesions. Brain activation patterns associated with ME and MI of swallowing were largely comparable, especially for changes in deoxy-Hb. Hence, the present results provide new evidence regarding timing and topographical distribution of the hemodynamic response during ME and MI of swallowing in dysphagia patients and may have practical impact on future dysphagia treatment.

  15. Statins and cerebral hemodynamics

    Science.gov (United States)

    Giannopoulos, Sotirios; Katsanos, Aristeidis H; Tsivgoulis, Georgios; Marshall, Randolph S

    2012-01-01

    HMG-CoA reductase inhibitors (statins) are associated with improved stroke outcome. This observation has been attributed in part to the palliative effect of statins on cerebral hemodynamics and cerebral autoregulation (CA), which are mediated mainly through the upregulation of endothelium nitric oxide synthase (eNOS). Several animal studies indicate that statin pretreatment enhances cerebral blood flow after ischemic stroke, although this finding is not further supported in clinical settings. Cerebral vasomotor reactivity, however, is significantly improved after long-term statin administration in most patients with severe small vessel disease, aneurysmal subarachnoid hemorrhage, or impaired baseline CA. PMID:22929438

  16. Strongly compromised inflammatory response to brain injury in interleukin-6-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Moos, T; Carrasco, J;

    1999-01-01

    response in the brain following disruption of the blood-brain barrier (BBB), we examined the effects of a focal cryo injury to the fronto-parietal cortex in interleukin-6-deficient (IL-6-/-) and normal (IL-6+/+) mice. In IL-6+/+ mice, brain injury resulted in the appearance of brain macrophages......-monocytes and activation of glial cells following brain injury with disrupted BBB. Furthermore, our results suggest IL-6 is important for neuroprotection and the induction of GM-CSF and MT expression. The opposing effect of IL-6 on MT-I+II and MT-III levels in the damaged brain suggests MT isoform-specific functions....

  17. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  18. Effect of etomidate and propofol induction on hemodynamic and endocrine response in patients undergoing coronary artery bypass grafting/mitral valve and aortic valve replacement surgery on cardiopulmonary bypass

    Directory of Open Access Journals (Sweden)

    Ram Prasad Kaushal

    2015-01-01

    Full Text Available Introduction: The concerns for induction of anaesthesia in patients undergoing cardiac surgery include hemodynamic stability, attenuation of stress response and maintenance of balance between myocardial oxygen demand and supply. Various Intravenous anaesthetic agents like Thiopentone, Etomidate, Propofol, Midazolam, and Ketamine have been used for anesthetizing patients for cardiac surgeries. However, many authors have expressed concerns regarding induction with thiopentone, midazolam and ketamine. Hence, Propofol and Etomidate are preferred for induction in these patients. However, these two drugs have different characteristics. Etomidate is preferred for patients with poor left ventricular (LV function as it provides stable cardiovascular profile. But there are concerns about reduction in adrenal suppression and serum cortisol levels. Propofol, on the other hand may cause a reduction in systemic vascular resistance and subsequent hypotension. Thus, this study was conducted to compare induction with these two agents in cardiac surgeries. Methods: Baseline categorical and continuous variables were compared using Fisher′s exact test and student′s t test respectively. Hemodynamic variables were compared using student′s t test for independent samples. The primary outcome (serum cortisol and blood sugar of the study was compared using Wilcoxon Rank Sum test. The P value less than 0.05 was considered significant. Results: Etomidate provides more stable hemodynamic parameters as compared to Propofol. Propofol causes vasodilation and may result in drop of systematic BP. Etomidate can therefore be safely used for induction in patients with good LV function for CABG/MVR/AVR on CPB without serious cortisol suppression lasting more than twenty-four hours.

  19. Brain responses in evaluating feedback stimuli with a social dimension

    Directory of Open Access Journals (Sweden)

    Yuan eZhang

    2012-02-01

    Full Text Available Previous studies on outcome evaluation and performance monitoring using gambling or simple cognitive tasks have identified two components of event-related potentials (ERPs that are particularly relevant to the neural responses to decision outcome. The feedback-related negativity (FRN, typically occurring 200-300 ms post-onset of feedback stimuli, encodes mainly the valence of outcome while the P300, which is the most positive peak between 200-600 ms, is found to be related to various aspects of outcome evaluation. This study investigated the extent which neural correlates of outcome evaluation involving complex feedback stimuli (i.e., female faces are similar to those revealed for simplex feedback. We asked participants to judge the attractiveness of blurred faces and then showed them unblurred faces as (implicit feedback of their performance. The FRN effect can be identified by the ERP waveforms, albeit in a delayed 300-380 ms time window, with faces inconsistent with the initial judgment eliciting more negative-going responses than faces consistent with the judgment. However, the ERP waveforms did not show the typical pattern of P300 responses. With the principal component analysis (PCA, a clear pattern of P300 effects were revealed, with the P300 being more positive to faces consistent with the initial judgment than to faces inconsistent with the judgment and more positive to attractive faces than to unattractive ones. The feedback consistency effect on either the FRN or the P300 was unaffected by the attractiveness of the feedback faces. These findings suggest that brain responses involved in processing complex feedback stimuli with a social dimension are generally similar to those involved in processing simplex feedback stimuli in gambling or cognitive tasks, although appropriate means of data analysis are needed to reveal the typical ERP effects that may have been masked by sophisticated cognitive (and emotional processes for complex

  20. Hemodynamic Traveling Waves in Human Visual Cortex

    OpenAIRE

    Kevin M Aquino; Schira, Mark M.; P A Robinson; Drysdale, Peter M.; Michael Breakspear

    2012-01-01

    Functional MRI (fMRI) experiments rely on precise characterization of the blood oxygen level dependent (BOLD) signal. As the spatial resolution of fMRI reaches the sub-millimeter range, the need for quantitative modelling of spatiotemporal properties of this hemodynamic signal has become pressing. Here, we find that a detailed physiologically-based model of spatiotemporal BOLD responses predicts traveling waves with velocities and spatial ranges in empirically observable ranges. Two measurabl...

  1. Acute effects of ingesting Java Fit™ energy extreme functional coffee on resting energy expenditure and hemodynamic responses in male and female coffee drinkers

    Directory of Open Access Journals (Sweden)

    Willoughby Darryn S

    2007-10-01

    Full Text Available Abstract Background The purpose of this study was to examine the effects of a functional coffee beverage containing additional caffeine, green tea extracts, niacin and garcinia cambogia to regular coffee to determine the effects on resting energy expenditure (REE and hemodynamic variables. Methods Subjects included five male (26 ± 2.1 y, 97.16 ± 10.05 kg, 183.89 ± 6.60 cm and five female (28.8 ± 5.3 y, 142.2 ± 12.6 lbs regular coffee drinkers. Subjects fasted for 10 hours and were assessed for 1 hour prior (PRE and 3 hours following 1.5 cups of coffee ingestion [JavaFit™ Energy Extreme (JF ~400 mg total caffeine; Folgers (F ~200 mg total caffeine] in a double-blind, crossover design. REE, resting heart rate (RHR, and systolic (SBP and diastolic (DBP blood pressure was assessed at PRE and 1, 2, and 3-hours post coffee ingestion. Data were analyzed by three-factor repeated measures ANOVA (p Results JF trial resulted in a significant main effect for REE (p 2 (p Conclusion Results from this study suggest that JavaFit™ Energy Extreme coffee is more effective than Folgers regular caffeinated coffee at increasing REE in regular coffee drinkers for up to 3 hours following ingestion without any adverse hemodynamic effects.

  2. Detection and Characterization of Single-Trial fMRI BOLD Responses : Paradigm Free Mapping

    NARCIS (Netherlands)

    Gaudes, Cesar Caballero; Petridou, Natalia; Dryden, Ian L.; Bai, Li; Francis, Susan T.; Gowland, Penny A.

    2011-01-01

    This work presents a novel method of mapping the brain's response to single stimuli in space and time without prior knowledge of the paradigm timing: paradigm free mapping (PFM). This method is based on deconvolution of the hemodynamic response from the voxel time series assuming a linear response a

  3. Brain development and predation: plastic responses depend on evolutionary history

    OpenAIRE

    Gonda, Abigél; Välimäki, Kaisa; Herczeg, Gábor; Merilä, Juha

    2011-01-01

    Although the brain is known to be a very plastic organ, the effects of common ecological interactions like predation or competition on brain development have remained largely unexplored. We reared nine-spined sticklebacks (Pungitius pungitius) from two coastal marine (predation-adapted) and two isolated pond (competition-adapted) populations in a factorial experiment, manipulating perceived predatory risk and food supply to see (i) if the treatments affected brain development and (ii) if ther...

  4. Cerebral hemodynamics in migraine

    DEFF Research Database (Denmark)

    Hachinski, V C; Olesen, Jes; Norris, J W;

    1977-01-01

    Clinical and angiographic findings in migraine are briefly reviewed in relation to cerebral hemodynamic changes shown by regional cerebral blood flow (rCBF) studies. Three cases of migraine studied by the intracarotid xenon 133 method during attacks are reported. In classic migraine, with typical...... prodromal symptoms, a decrease in cerebral blood flow has been demonstrated during the aura. Occasionally, this flow decrease persists during the headache phase. In common migraine, where such prodromata are not seen, a flow decrease has not been demonstrated. During the headache phase of both types...... of migraine, rCBF has usually been found to be normal or in the high range of normal values. The high values may represent postischemic hyperemia, but are probably more frequently secondary to arousal caused by pain. Thus, during the headache phase rCBF may be subnormal, normal or high. These findings do...

  5. Brain response to prosodic boundary cues depends on boundary position

    Directory of Open Access Journals (Sweden)

    Julia eHolzgrefe

    2013-07-01

    Full Text Available Prosodic information is crucial for spoken language comprehension and especially for syntactic parsing, because prosodic cues guide the hearer’s syntactic analysis. The time course and mechanisms of this interplay of prosody and syntax are not yet well understood. In particular, there is an ongoing debate whether local prosodic cues are taken into account automatically or whether they are processed in relation to the global prosodic context in which they appear. The present study explores whether the perception of a prosodic boundary is affected by its position within an utterance. In an event-related potential (ERP study we tested if the brain response evoked by the prosodic boundary differs when the boundary occurs early in a list of three names connected by conjunctions (i.e., after the first name as compared to later in the utterance (i.e., after the second name. A closure positive shift (CPS — marking the processing of a prosodic phrase boundary — was elicited only for stimuli with a late boundary, but not for stimuli with an early boundary. This result is further evidence for an immediate integration of prosodic information into the parsing of an utterance. In addition, it shows that the processing of prosodic boundary cues depends on the previously processed information from the preceding prosodic context.

  6. Effect of Mobile Phone-Induced Electromagnetic Field on Brain Hemodynamics and Human Stem Cell Functioning: Possible Mechanistic Link to Cancer Risk and Early Diagnostic Value of Electronphotonic Imaging.

    Science.gov (United States)

    Bhargav, Hemant; Srinivasan, T M; Varambally, S; Gangadhar, B N; Koka, Prasad

    2015-01-01

    The mobile phones (MP) are low power radio devices which work on electromagnetic fields (EMFs), in the frequency range of 900-1800 MHz. Exposure to MPEMFs may affect brain physiology and lead to various health hazards including brain tumors. Earlier studies with positron emission tomography (PET) have found alterations in cerebral blood flow (CBF) after acute exposure to MPEMFs. It is widely accepted that DNA double-strand breaks (DSBs) and their misrepair in stem cells are critical events in the multistage origination of various leukemia and tumors, including brain tumors such as gliomas. Both significant misbalance in DSB repair and severe stress response have been triggered by MPEMFs and EMFs from cell towers. It has been shown that stem cells are most sensitive to microwave exposure and react to more frequencies than do differentiated cells. This may be important for cancer risk assessment and indicates that stem cells are the most relevant cellular model for validating safe mobile communication signals. Recently developed technology for recording the human bio-electromagnetic (BEM) field using Electron photonic Imaging (EPI) or Gas Discharge Visualisation (GDV) technique provides useful information about the human BEM. Studies have recorded acute effects of Mobile Phone Electromagnetic Fields (MPEMFs) using EPI and found quantifiable effects on human BEM field. Present manuscript reviews evidences of altered brain physiology and stem cell functioning due to mobile phone/cell tower radiations, its association with increased cancer risk and explores early diagnostic value of EPI imaging in detecting EMF induced changes on human BEM.

  7. Prediction of human errors by maladaptive changes in event-related brain networks

    NARCIS (Netherlands)

    Eichele, T.; Debener, S.; Calhoun, V.D.; Specht, K.; Engel, A.K.; Hugdahl, K.; Cramon, D.Y. von; Ullsperger, M.

    2008-01-01

    Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional Mill and applying independent component analysis followed by deconvolution of hemodynamic responses, we

  8. Active microwave computed brain tomography: the response to a challenge.

    Science.gov (United States)

    Almirall, H; Broquetas, A; Jofre, L

    1991-02-01

    The potential application of active microwave techniques to brain imaging is studied by numerical simulations and experimentally using a recently developed cylindrical microwave scanner. The potential advantages and limitations of this method in static and dynamic brain imaging are presented and compared with other imaging techniques. PMID:2062119

  9. Mind Over Matter: The Brain's Response to Drugs. Teacher's Guide.

    Science.gov (United States)

    National Inst. on Drug Abuse (DHHS/PHS), Rockville, MD.

    This teacher's guide aims to develop an understanding among students grades 5 through 9 of the physical reality of drug use. Contents include: (1) "Brain Anatomy"; (2) "Nerve Cells and Neurotransmission"; (3) "Effects of Drugs on the Brain"; (4) "Marijuana"; (5) "Opiates"; (6) "Inhalants"; (7) "Hallucinogens"; (8) "Steroids"; (9) "Stimulants";…

  10. A Response to the Legitimacy of Brain Death in Islam.

    Science.gov (United States)

    Rady, Mohamed Y; Verheijde, Joseph L

    2016-08-01

    Brain death is a novel construct of death for the procurement of transplantable organs. Many authoritative Islamic organizations and governments have endorsed brain death as true death for organ donation. Many commentators have reiterated the misconception that the Quranic text does not define death. We respond by clarifying: (1) the Quran does define death as biologic disintegration and clearly distinguishes it from the dying process, (2) brain death belongs scientifically within the spectrum of neurologic disorders of consciousness and should not be confused with death, and (3) religious and legal discord about brain death has grown in jurisdictions worldwide. We urge for public transparency and truthfulness about brain death and the accommodation and respect of religious objection to the determination of death by neurologic criteria.

  11. A Response to the Legitimacy of Brain Death in Islam.

    Science.gov (United States)

    Rady, Mohamed Y; Verheijde, Joseph L

    2016-08-01

    Brain death is a novel construct of death for the procurement of transplantable organs. Many authoritative Islamic organizations and governments have endorsed brain death as true death for organ donation. Many commentators have reiterated the misconception that the Quranic text does not define death. We respond by clarifying: (1) the Quran does define death as biologic disintegration and clearly distinguishes it from the dying process, (2) brain death belongs scientifically within the spectrum of neurologic disorders of consciousness and should not be confused with death, and (3) religious and legal discord about brain death has grown in jurisdictions worldwide. We urge for public transparency and truthfulness about brain death and the accommodation and respect of religious objection to the determination of death by neurologic criteria. PMID:27010462

  12. A novel approach to calibrate the Hemodynamic Model using functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Khoram, Nafiseh

    2016-01-21

    Background The calibration of the hemodynamic model that describes changes in blood flow and blood oxygenation during brain activation is a crucial step for successfully monitoring and possibly predicting brain activity. This in turn has the potential to provide diagnosis and treatment of brain diseases in early stages. New Method We propose an efficient numerical procedure for calibrating the hemodynamic model using some fMRI measurements. The proposed solution methodology is a regularized iterative method equipped with a Kalman filtering-type procedure. The Newton component of the proposed method addresses the nonlinear aspect of the problem. The regularization feature is used to ensure the stability of the algorithm. The Kalman filter procedure is incorporated here to address the noise in the data. Results Numerical results obtained with synthetic data as well as with real fMRI measurements are presented to illustrate the accuracy, robustness to the noise, and the cost-effectiveness of the proposed method. Comparison with Existing Method(s) We present numerical results that clearly demonstrate that the proposed method outperforms the Cubature Kalman Filter (CKF), one of the most prominent existing numerical methods. Conclusion We have designed an iterative numerical technique, called the TNM-CKF algorithm, for calibrating the mathematical model that describes the single-event related brain response when fMRI measurements are given. The method appears to be highly accurate and effective in reconstructing the BOLD signal even when the measurements are tainted with high noise level (as high as 30%).

  13. Study on brain hemodynamics function according to data of rheoencephalography during multimodality treatment of oncologic patients with the use of general controlled artificial hyperthermia with hyperglycemia or with large insulin doses

    International Nuclear Information System (INIS)

    For the first time the effect of single and multiple treatments of artificial hyperthermia (AHT) with hyperglycemia (HG) or with large insulin doses on cerebral circulation of oncologic patients is studied. Cerebral hemodynamics was studied by rheoencephalography. The conclusion is made about the unidirectional AHT effect regardless of the bacrground used. 5 refs.; 4 tabs

  14. The golden beauty: brain response to classical and renaissance sculptures.

    Science.gov (United States)

    Di Dio, Cinzia; Macaluso, Emiliano; Rizzolatti, Giacomo

    2007-01-01

    Is there an objective, biological basis for the experience of beauty in art? Or is aesthetic experience entirely subjective? Using fMRI technique, we addressed this question by presenting viewers, naïve to art criticism, with images of masterpieces of Classical and Renaissance sculpture. Employing proportion as the independent variable, we produced two sets of stimuli: one composed of images of original sculptures; the other of a modified version of the same images. The stimuli were presented in three conditions: observation, aesthetic judgment, and proportion judgment. In the observation condition, the viewers were required to observe the images with the same mind-set as if they were in a museum. In the other two conditions they were required to give an aesthetic or proportion judgment on the same images. Two types of analyses were carried out: one which contrasted brain response to the canonical and the modified sculptures, and one which contrasted beautiful vs. ugly sculptures as judged by each volunteer. The most striking result was that the observation of original sculptures, relative to the modified ones, produced activation of the right insula as well as of some lateral and medial cortical areas (lateral occipital gyrus, precuneus and prefrontal areas). The activation of the insula was particularly strong during the observation condition. Most interestingly, when volunteers were required to give an overt aesthetic judgment, the images judged as beautiful selectively activated the right amygdala, relative to those judged as ugly. We conclude that, in observers naïve to art criticism, the sense of beauty is mediated by two non-mutually exclusive processes: one based on a joint activation of sets of cortical neurons, triggered by parameters intrinsic to the stimuli, and the insula (objective beauty); the other based on the activation of the amygdala, driven by one's own emotional experiences (subjective beauty).

  15. Time-varying modeling of cerebral hemodynamics.

    Science.gov (United States)

    Marmarelis, Vasilis Z; Shin, Dae C; Orme, Melissa; Rong Zhang

    2014-03-01

    The scientific and clinical importance of cerebral hemodynamics has generated considerable interest in their quantitative understanding via computational modeling. In particular, two aspects of cerebral hemodynamics, cerebral flow autoregulation (CFA) and CO2 vasomotor reactivity (CVR), have attracted much attention because they are implicated in many important clinical conditions and pathologies (orthostatic intolerance, syncope, hypertension, stroke, vascular dementia, mild cognitive impairment, Alzheimer's disease, and other neurodegenerative diseases with cerebrovascular components). Both CFA and CVR are dynamic physiological processes by which cerebral blood flow is regulated in response to fluctuations in cerebral perfusion pressure and blood CO2 tension. Several modeling studies to date have analyzed beat-to-beat hemodynamic data in order to advance our quantitative understanding of CFA-CVR dynamics. A confounding factor in these studies is the fact that the dynamics of the CFA-CVR processes appear to vary with time (i.e., changes in cerebrovascular characteristics) due to neural, endocrine, and metabolic effects. This paper seeks to address this issue by tracking the changes in linear time-invariant models obtained from short successive segments of data from ten healthy human subjects. The results suggest that systemic variations exist but have stationary statistics and, therefore, the use of time-invariant modeling yields "time-averaged models" of physiological and clinical utility.

  16. On the characterization of single-event related brain activity from functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Khoram, Nafiseh

    2014-08-01

    We propose an efficient numerical technique for calibrating the mathematical model that describes the singleevent related brain response when fMRI measurements are given. This method employs a regularized Newton technique in conjunction with a Kalman filtering procedure. We have applied this method to estimate the biophysiological parameters of the Balloon model that describes the hemodynamic brain responses. Illustrative results obtained with both synthetic and real fMRI measurements are presented. © 2014 IEEE.

  17. The human brain response to dental pain relief.

    Science.gov (United States)

    Meier, M L; Widmayer, S; Abazi, J; Brügger, M; Lukic, N; Lüchinger, R; Ettlin, D A

    2015-05-01

    Local anesthesia has made dental treatment more comfortable since 1884, but little is known about associated brain mechanisms. Functional magnetic resonance imaging is a modern neuroimaging tool widely used for investigating human brain activity related to sensory perceptions, including pain. Most brain regions that respond to experimental noxious stimuli have recently been found to react not only to nociception alone, but also to visual, auditory, and other stimuli. Thus, presumed functional attributions have come under scrutiny regarding selective pain processing in the brain. Evidently, innovative approaches are warranted to identify cerebral regions that are nociceptive specific. In this study, we aimed at circumventing known methodological confounders by applying a novel paradigm in 14 volunteers: rather than varying the intensity and thus the salience of painful stimuli, we applied repetitive noxious dental stimuli at constant intensity to the left mandibular canine. During the functional magnetic resonance imaging paradigm, we suppressed the nociceptive barrage by a mental nerve block. Brain activity before and after injection of 4% articaine was compared intraindividually on a group level. Dental pain extinction was observed to correspond to activity reduction in a discrete region of the left posterior insular cortex. These results confirm previous reports demonstrating that direct electrical stimulation of this brain region-but not of others-evokes bodily pain sensations. Hence, our investigation adds further evidence to the notion that the posterior insula plays a unique role in nociceptive processing. PMID:25691071

  18. A Bayesian model of category-specific emotional brain responses.

    Science.gov (United States)

    Wager, Tor D; Kang, Jian; Johnson, Timothy D; Nichols, Thomas E; Satpute, Ajay B; Barrett, Lisa Feldman

    2015-04-01

    Understanding emotion is critical for a science of healthy and disordered brain function, but the neurophysiological basis of emotional experience is still poorly understood. We analyzed human brain activity patterns from 148 studies of emotion categories (2159 total participants) using a novel hierarchical Bayesian model. The model allowed us to classify which of five categories--fear, anger, disgust, sadness, or happiness--is engaged by a study with 66% accuracy (43-86% across categories). Analyses of the activity patterns encoded in the model revealed that each emotion category is associated with unique, prototypical patterns of activity across multiple brain systems including the cortex, thalamus, amygdala, and other structures. The results indicate that emotion categories are not contained within any one region or system, but are represented as configurations across multiple brain networks. The model provides a precise summary of the prototypical patterns for each emotion category, and demonstrates that a sufficient characterization of emotion categories relies on (a) differential patterns of involvement in neocortical systems that differ between humans and other species, and (b) distinctive patterns of cortical-subcortical interactions. Thus, these findings are incompatible with several contemporary theories of emotion, including those that emphasize emotion-dedicated brain systems and those that propose emotion is localized primarily in subcortical activity. They are consistent with componential and constructionist views, which propose that emotions are differentiated by a combination of perceptual, mnemonic, prospective, and motivational elements. Such brain-based models of emotion provide a foundation for new translational and clinical approaches. PMID:25853490

  19. Improved Detection of Time Windows of Brain Responses in Fmri Using Modified Temporal Clustering Analysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Temporal clustering analysis (TCA) has been proposed recently as a method to detect time windows of brain responses in functional MRI (fMRI) studies when the timing and location of the activation are completely unknown. Modifications to the TCA technique are introduced in this report to further improve the sensitivity in detecting brain activation.

  20. Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects.

    Science.gov (United States)

    Le, Myphuong T; Frye, Reginald F; Rivard, Christopher J; Cheng, Jing; McFann, Kim K; Segal, Mark S; Johnson, Richard J; Johnson, Julie A

    2012-05-01

    It is unclear whether high-fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared with sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- vs sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hours. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Fructose area under the curve and maximum concentration, dose-normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared with sucrose-sweetened beverages. Compared with sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects.

  1. Swimming exercise changes hemodynamic responses evoked by blockade of excitatory amino receptors in the rostral ventrolateral medulla in spontaneously hypertensive rats.

    Science.gov (United States)

    Ogihara, Cristiana A; Schoorlemmer, Gerhardus H M; Lazari, Maria de Fátima M; Giannocco, Gisele; Lopes, Oswaldo U; Colombari, Eduardo; Sato, Monica A

    2014-01-01

    Exercise training reduces sympathetic activity in hypertensive humans and rats. We hypothesized that the swimming exercise would change the neurotransmission in the rostral ventrolateral medulla (RVLM), a key region involved in sympathetic outflow, and hemodynamic control in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. Bilateral injections of kynurenic acid (KYN) were carried out in the RVLM in sedentary- (S-) or exercised- (E-) SHR and WKY rats submitted to swimming for 6 weeks. Rats were α-chloralose anesthetized and artificially ventilated, with Doppler flow probes around the lower abdominal aorta and superior mesenteric artery. Injections into the RVLM were made before and after i.v. L-NAME (nitric oxide synthase, NOS, inhibitor). Injections of KYN into the RVLM elicited a major vasodilation in the hindlimb more than in the mesenteric artery in E-SHR compared to S-SHR, but similar decrease in arterial pressure was observed in both groups. Injections of KYN into the RVLM after i.v. L-NAME attenuated the hindlimb vasodilation evoked by KYN and increased the mesenteric vasodilation in E-SHR. Swimming exercise can enhance the hindlimb vasodilation mediated by peripheral NO release, reducing the activation of neurons with EAA receptors in the RVLM in SHR. PMID:24696852

  2. Swimming Exercise Changes Hemodynamic Responses Evoked by Blockade of Excitatory Amino Receptors in the Rostral Ventrolateral Medulla in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Cristiana A. Ogihara

    2014-01-01

    Full Text Available Exercise training reduces sympathetic activity in hypertensive humans and rats. We hypothesized that the swimming exercise would change the neurotransmission in the rostral ventrolateral medulla (RVLM, a key region involved in sympathetic outflow, and hemodynamic control in spontaneously hypertensive rats (SHR and Wistar-Kyoto (WKY rats. Bilateral injections of kynurenic acid (KYN were carried out in the RVLM in sedentary- (S- or exercised- (E- SHR and WKY rats submitted to swimming for 6  weeks. Rats were α-chloralose anesthetized and artificially ventilated, with Doppler flow probes around the lower abdominal aorta and superior mesenteric artery. Injections into the RVLM were made before and after i.v. L-NAME (nitric oxide synthase, NOS, inhibitor. Injections of KYN into the RVLM elicited a major vasodilation in the hindlimb more than in the mesenteric artery in E-SHR compared to S-SHR, but similar decrease in arterial pressure was observed in both groups. Injections of KYN into the RVLM after i.v. L-NAME attenuated the hindlimb vasodilation evoked by KYN and increased the mesenteric vasodilation in E-SHR. Swimming exercise can enhance the hindlimb vasodilation mediated by peripheral NO release, reducing the activation of neurons with EAA receptors in the RVLM in SHR.

  3. Altered Brain Response to Drinking Glucose and Fructose in Obese Adolescents.

    Science.gov (United States)

    Jastreboff, Ania M; Sinha, Rajita; Arora, Jagriti; Giannini, Cosimo; Kubat, Jessica; Malik, Saima; Van Name, Michelle A; Santoro, Nicola; Savoye, Mary; Duran, Elvira J; Pierpont, Bridget; Cline, Gary; Constable, R Todd; Sherwin, Robert S; Caprio, Sonia

    2016-07-01

    Increased sugar-sweetened beverage consumption has been linked to higher rates of obesity. Using functional MRI, we assessed brain perfusion responses to drinking two commonly consumed monosaccharides, glucose and fructose, in obese and lean adolescents. Marked differences were observed. In response to drinking glucose, obese adolescents exhibited decreased brain perfusion in brain regions involved in executive function (prefrontal cortex [PFC]) and increased perfusion in homeostatic appetite regions of the brain (hypothalamus). Conversely, in response to drinking glucose, lean adolescents demonstrated increased PFC brain perfusion and no change in perfusion in the hypothalamus. In addition, obese adolescents demonstrated attenuated suppression of serum acyl-ghrelin and increased circulating insulin level after glucose ingestion; furthermore, the change in acyl-ghrelin and insulin levels after both glucose and fructose ingestion was associated with increased hypothalamic, thalamic, and hippocampal blood flow in obese relative to lean adolescents. Additionally, in all subjects there was greater perfusion in the ventral striatum with fructose relative to glucose ingestion. Finally, reduced connectivity between executive, homeostatic, and hedonic brain regions was observed in obese adolescents. These data demonstrate that obese adolescents have impaired prefrontal executive control responses to drinking glucose and fructose, while their homeostatic and hedonic responses appear to be heightened. Thus, obesity-related brain adaptations to glucose and fructose consumption in obese adolescents may contribute to excessive consumption of glucose and fructose, thereby promoting further weight gain. PMID:27207544

  4. Cerebral hemodynamics and functional prognosis in hydrocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Osamu; Nishikawa, Michio; Watanabe, Shu; Yamakawa, Hiroyasu; Kinoshita, Yoshimasa; Uno, Akira; Handa, Hajime (Hamamatsu Rosai Hospital, Shizuoka (Japan))

    1989-11-01

    The functional outcome of cerebral hemodynamics in the chronic stage of juvenile hydrocephalus was determined using single photon emission computed tomography (SPECT). Five patients including three with aqueductal stenosis, one with post-meningitic hydrocephalus, and one case with hydrocephalus having developed after repair of a huge occipital encephalocele. Early images of cerebral blood flow (CBF) were obtained 25 minutes after intravenous injection of 123-I-iodoamphetamine (IMP), and late images were scanned 3 hours later. Cerebral blood volume (CBV) was also measured using {sup 99m}Tc in three patients. Twenty cases with adult communicating hydrocephalus were also investigated from the point of view of shunt effectiveness. Although there was no remarkable change in the cerebrovascular bed in the juvenile cases, CBF of the remnant brain parenchyma was good irrespective of the degree of ventricular dilatation. There was a periventricular-related IMP uptake in each case; however, it somehow matched the ventricular span. Functional outcome one to 23 years after the initial shunt operation was good in every case, despite multiple shunt revisions. Redistribution on late images had no bearing on clinical states. In adult cases, 8 patients with effective shunting demonstrated a relatively localized periventricular low perfusion, with preoperative increased cerebrospinal fluid (CSF) pressure. On the contrary, 12 patients with no improvement with or without ventricular-reduced IMP uptake, despite low CSF pressure. The present study indicates that periventricular hemodynamics may play an important role in cerebral function compromised by hydrocephalus. (J.P.N.).

  5. Local Modulation of Human Brain Responses by Circadian Rhythmicity and Sleep Debt

    OpenAIRE

    Muto, V.; Jaspar, M; Meyer, C.; Kussé, C; Chellappa, SL; Degueldre, C.; Balteau, E.; Shaffii-Le Bourdiec, A; Luxen, A; Middleton, B; Archer, SN; Phillips, C.; Collette, F.; Vandewalle, G; Dijk, D

    2016-01-01

    Human performance results from an interaction between circadian rhythmicity and homeostatic sleep pressure. Whether and how this interaction is represented at the regional brain level is not established. We quantified changes in brain responses to a sustained-attention task during 13 functional magnetic resonance imaging (fMRI) sessions scheduled across the circadian cycle during 42h of wakefulness and following recovery sleep, in 33 healthy participants. Cortical responses showed significant...

  6. Language and the newborn brain: Does prenatal language experience shape the neonate neural response to speech?

    OpenAIRE

    LillianMay; KristaByers-Heinlein; JuditGervain

    2011-01-01

    Previous research has shown that by the time of birth, the neonate brain responds specially to the native language when compared to acoustically similar non-language stimuli. In the current study, we use Near Infrared Spectroscopy to ask how prenatal language experience might shape the brain response to language in newborn infants. To do so, we examine the neural response of neonates when listening to familiar versus unfamiliar language, as well as to non-linguistic backwards language. T...

  7. Evaluation of intra ocular pressure and hemodynamic change following intubation with Maccoy, Macintosh and Video laryngoscope

    OpenAIRE

    Hamid Khosro Zamiri; Mehrdad Noroozi; Siavash Moradi; Mohammad Shabani; Ali Sharifi; Mohammad Ali Haghbin

    2013-01-01

    Background & Objective: The induction of anesthesia, laryngoscopy and endotracheal intubation can be associated with adverse hemodynamic response and increased intraocular pressure. The aim of this study was to evaluate intraocular pressure and hemodynamic changes after laryngoscopy and endotracheal intubation with three methods of laryngoscopy (Macintosh, Maccoy and Video laryngoscope).Materials & Methods: One hundred and eighty patients with American Society of Anesthesiology (ASA) classifi...

  8. Fractional Diffusion Based Modelling and Prediction of Human Brain Response to External Stimuli

    Directory of Open Access Journals (Sweden)

    Hamidreza Namazi

    2015-01-01

    Full Text Available Human brain response is the result of the overall ability of the brain in analyzing different internal and external stimuli and thus making the proper decisions. During the last decades scientists have discovered more about this phenomenon and proposed some models based on computational, biological, or neuropsychological methods. Despite some advances in studies related to this area of the brain research, there were fewer efforts which have been done on the mathematical modeling of the human brain response to external stimuli. This research is devoted to the modeling and prediction of the human EEG signal, as an alert state of overall human brain activity monitoring, upon receiving external stimuli, based on fractional diffusion equations. The results of this modeling show very good agreement with the real human EEG signal and thus this model can be used for many types of applications such as prediction of seizure onset in patient with epilepsy.

  9. Evolving concepts of hemodynamic monitoring for critically ill patients

    Directory of Open Access Journals (Sweden)

    Olfa Hamzaoui

    2015-01-01

    Full Text Available The last decades have been characterized by a continuous evolution of hemodynamic monitoring techniques from intermittent toward continuous and real-time measurements and from an invasive towards a less invasive approach. The latter approach uses ultrasounds and pulse contour analysis techniques that have been developed over the last 15 years. During the same period, the concept of prediction of fluid responsiveness has also been developed and dynamic indices such as pulse pressure variation, stroke volume variation, and the real-time response of cardiac output to passive leg raising or to end-expiration occlusion, can be easily obtained and displayed with the minimally invasive techniques. In this article, we review the main hemodynamic monitoring devices currently available with their respective advantages and drawbacks. We also present the current viewpoint on how to choose a hemodynamic monitoring device in the most severely ill patients and especially in patients with circulatory shock.

  10. Blood flow responses to mild-intensity exercise in ectopic vs. orthotopic prostate tumors; dependence upon host tissue hemodynamics and vascular reactivity.

    Science.gov (United States)

    Garcia, Emmanuel; Becker, Veronika G C; McCullough, Danielle J; Stabley, John N; Gittemeier, Elizabeth M; Opoku-Acheampong, Alexander B; Sieman, Dietmar W; Behnke, Bradley J

    2016-07-01

    Given the critical role of tumor O2 delivery in patient prognosis and the rise in preclinical exercise oncology studies, we investigated tumor and host tissue blood flow at rest and during exercise as well as vascular reactivity using a rat prostate cancer model grown in two transplantation sites. In male COP/CrCrl rats, blood flow (via radiolabeled microspheres) to prostate tumors [R3327-MatLyLu cells injected in the left flank (ectopic) or ventral prostate (orthotopic)] and host tissue was measured at rest and during a bout of mild-intensity exercise. α-Adrenergic vasoconstriction to norepinephrine (NE: 10(-9) to 10(-4) M) was determined in arterioles perforating the tumors and host tissue. To determine host tissue exercise hyperemia in healthy tissue, a sham-operated group was included. Blood flow was lower at rest and during exercise in ectopic tumors and host tissue (subcutaneous adipose) vs. the orthotopic tumor and host tissue (prostate). During exercise, blood flow to the ectopic tumor significantly decreased by 25 ± 5% (SE), whereas flow to the orthotopic tumor increased by 181 ± 30%. Maximal vasoconstriction to NE was not different between arterioles from either tumor location. However, there was a significantly higher peak vasoconstriction to NE in subcutaneous adipose arterioles (92 ± 7%) vs. prostate arterioles (55 ± 7%). Establishment of the tumor did not alter host tissue blood flow from either location at rest or during exercise. These data demonstrate that blood flow in tumors is dependent on host tissue hemodynamics and that the location of the tumor may critically affect how exercise impacts the tumor microenvironment and treatment outcomes. PMID:27125846

  11. A Response: All "Thinking" Paths Lead to the Brain.

    Science.gov (United States)

    Hart, Leslie A.

    1986-01-01

    Assails schools for rushing into the thinking skills approach without examining advances in cognitive science, artificial intelligence, neuropsychology, and other brain-related disciplines. Blames the classroom situation itself for forcing teachers into counterproductive, direct teaching methods that don't work. Asserts the need for…

  12. Glial response to 17β-estradiol in neonatal rats with excitotoxic brain injury.

    Science.gov (United States)

    Pansiot, Julien; Pham, Hoa; Dalous, Jeremie; Chevenne, Didier; Colella, Marina; Schwendimann, Leslie; Fafouri, Assia; Mairesse, Jérôme; Moretti, Raffaella; Schang, Anne-Laure; Charriaut-Marlangue, Christiane; Gressens, Pierre; Baud, Olivier

    2016-08-01

    White-matter injury is the most common cause of the adverse neurodevelopmental outcomes observed in preterm infants. Only few options exist to prevent perinatal brain injury associated to preterm delivery. 17β-estradiol (E2) is the predominant estrogen in circulation and has been shown to be neuroprotective in vitro and in vivo. However, while E2 has been found to modulate inflammation in adult models of brain damage, how estrogens influence glial cells response in the developing brain needs further investigations. Using a model of ibotenate-induced brain injury, we have refined the effects of E2 in the developing brain. E2 provides significant neuroprotection both in the cortical plate and the white matter in neonatal rats subjected to excitotoxic insult mimicking white matter and cortical damages frequently observed in very preterm infants. E2 promotes significant changes in microglial phenotypes balance in response to brain injury and the acceleration of oligodendrocyte maturation. Maturational effects of E2 on myelination process were observed both in vivo and in vitro. Altogether, these data demonstrate that response of glial cells to E2 could be responsible for its neuroprotective properties in neonatal excitotoxic brain injury. PMID:27222132

  13. Acetylcholinesterase loosens the brain's cholinergic anti-inflammatory response and promotes epileptogenesis

    Directory of Open Access Journals (Sweden)

    Yehudit eGnatek

    2012-05-01

    Full Text Available Recent studies show a key role of brain inflammation in epilepsy. However, the mechanisms controlling brain immune response are only partly understood. In the periphery, acetylcholine (ACh release by the vagus nerve restrains inflammation by inhibiting the activation of leukocytes. Recent reports suggested a similar anti-inflammatory effect for ACh in the brain. Since brain cholinergic dysfunction are documented in epileptic animals, we explored changes in brain cholinergic gene expression and associated immune response during pilocarpine-induced epileptogenesis. Levels of acetylcholinesterase (AChE and inflammatory markers were measured using real-time RT-PCR, in-situ hybridization and immunostaining in wild type (WT and transgenic mice over-expressing the "synaptic" splice variant AChE-S (TgS. One month following pilocarpine, mice were video-monitored for spontaneous seizures. To test directly the effect of ACh on the brain's innate immune response, cytokines expression levels were measured in acute brain slices treated with cholinergic agents. We report a robust upregulation of AChE as early as 48 hrs following pilocarpine-induced status epilepticus (SE. AChE was expressed in hippocampal neurons, microglia and endothelial cells but rarely in astrocytes. TgS mice overexpressing AChE showed constitutive increased microglial activation, elevated levels of pro-inflammatory cytokines 48 hrs after SE and accelerated epileptogenesis compared to their WT counterparts. Finally we show a direct, muscarine-receptor dependant, nicotine-receptor independent anti-inflammatory effect of ACh in brain slices maintained ex vivo. Our work demonstrates for the first time, that ACh directly suppresses brain innate immune response and that AChE up-regulation after SE is associated with enhanced immune response, facilitating the epileptogenic process. Our results highlight the cholinergic system as a potential new target for the prevention of seizures and epilepsy.

  14. Sub-band denoising and spline curve fitting method for hemodynamic measurement in perfusion MRI

    Science.gov (United States)

    Lin, Hong-Dun; Huang, Hsiao-Ling; Hsu, Yuan-Yu; Chen, Chi-Chen; Chen, Ing-Yi; Wu, Liang-Chi; Liu, Ren-Shyan; Lin, Kang-Ping

    2003-05-01

    In clinical research, non-invasive MR perfusion imaging is capable of investigating brain perfusion phenomenon via various hemodynamic measurements, such as cerebral blood volume (CBV), cerebral blood flow (CBF), and mean trasnit time (MTT). These hemodynamic parameters are useful in diagnosing brain disorders such as stroke, infarction and periinfarct ischemia by further semi-quantitative analysis. However, the accuracy of quantitative analysis is usually affected by poor signal-to-noise ratio image quality. In this paper, we propose a hemodynamic measurement method based upon sub-band denoising and spline curve fitting processes to improve image quality for better hemodynamic quantitative analysis results. Ten sets of perfusion MRI data and corresponding PET images were used to validate the performance. For quantitative comparison, we evaluate gray/white matter CBF ratio. As a result, the hemodynamic semi-quantitative analysis result of mean gray to white matter CBF ratio is 2.10 +/- 0.34. The evaluated ratio of brain tissues in perfusion MRI is comparable to PET technique is less than 1-% difference in average. Furthermore, the method features excellent noise reduction and boundary preserving in image processing, and short hemodynamic measurement time.

  15. Thrombospondin 2-null mice display an altered brain foreign body response to polyvinyl alcohol sponge implants

    Energy Technology Data Exchange (ETDEWEB)

    Tian Weiming; Kyriakides, Themis R, E-mail: themis.kyriakides@yale.ed [Vascular Biology and Therapeutics Program, Departments of Pathology and Biomedical Engineering, Yale University, New Haven, CT 06519 (United States)

    2009-02-15

    Thrombospondin (TSP)-2 is a matricellular protein that participates in the processes of tissue repair and the foreign body response. In addition, TSP2 has been shown to influence synaptogenesis and recovery of the brain following stroke. In the present study we investigated the response following the implantation of polyvinyl alcohol (PVA) sponges in the brain. PVA sponges were implanted into the brain cortex of wild type and TSP2-null mice for a period of 4 and 8 weeks and the response was analyzed by histochemistry and quantitative immunohistochemistry. TSP2 expression was detected in the interstices of the sponge and co-localized with the extracellular matrix and astrocytes. PVA sponge invasion in TSP2-null mice was characterized by dense deposition of extracellular matrix and increased invasion of reactive astrocytes and macrophages/microglia. Furthermore, the angiogenic response was elevated and the detection of mouse serum albumin (MSA) in the brain cortex indicated excessive vessel leakage, suggesting that TSP2 plays a role in the repair/maintenance of the blood brain barrier. Finally, immunostaining demonstrated an increase in the levels of matrix metalloproteinase (MMP)-2 and MMP-9. Taken together, our observations support a role for TSP2 as critical determinant of the brain response to biomaterials.

  16. Brain size affects the behavioural response to predators in female guppies (Poecilia reticulata).

    Science.gov (United States)

    van der Bijl, Wouter; Thyselius, Malin; Kotrschal, Alexander; Kolm, Niclas

    2015-08-01

    Large brains are thought to result from selection for cognitive benefits, but how enhanced cognition leads to increased fitness remains poorly understood. One explanation is that increased cognitive ability results in improved monitoring and assessment of predator threats. Here, we use male and female guppies (Poecilia reticulata), artificially selected for large and small brain size, to provide an experimental evaluation of this hypothesis. We examined their behavioural response as singletons, pairs or shoals of four towards a model predator. Large-brained females, but not males, spent less time performing predator inspections, an inherently risky behaviour. Video analysis revealed that large-brained females were further away from the model predator when in pairs but that they habituated quickly towards the model when in shoals of four. Males stayed further away from the predator model than females but again we found no brain size effect in males. We conclude that differences in brain size affect the female predator response. Large-brained females might be able to assess risk better or need less sensory information to reach an accurate conclusion. Our results provide experimental support for the general idea that predation pressure is likely to be important for the evolution of brain size in prey species.

  17. MicroRNA responses to focal cerebral ischemia in male and female mouse brain

    Directory of Open Access Journals (Sweden)

    Theresa Ann Lusardi

    2014-02-01

    Full Text Available Stroke occurs with greater frequency in men than in women across diverse ethnic backgrounds and nationalities. Work from our lab and others have revealed a sex-specific sensitivity to cerebral ischemia whereby males exhibit a larger extent of brain damage resulting from an ischemic event compared to females. Previous studies revealed that microRNA (miRNA expression is regulated by cerebral ischemia in males; however, no studies to date have examined the effect of ischemia on miRNA responses in females. Thus, we examined miRNA responses in male and female brain in response to cerebral ischemia using miRNA arrays. These studies revealed that in male and female brains, ischemia leads to both a universal miRNA response as well as a sexually distinct response to challenge. Target prediction analysis of the miRNAs increased in male or female ischemic brain reveal sex-specific differences in gene targets and protein pathways. These data support that the mechanisms underlying sexually dimorphic responses to cerebral ischemia includes distinct changes in miRNAs in male and female brain, in addition to a miRNA signature response to ischemia that is common to both.

  18. Mechanical response of infant brain to manually inflicted shaking.

    Science.gov (United States)

    Couper, Z; Albermani, F

    2010-01-01

    Shaken baby syndrome (SBS) is a contentious issue on both biomechanical and medical fronts, primarily due to a lack of understanding of the loading-injury relationship of infant shaking and the parameters that are deterministic to its nature. In order to address this lack, a finite element (FE) representation of a three month infant head was developed to apply kinematics derived from physical testing with an anthropomorphic infant surrogate. The FE mesh was derived from a three-dimensional geometric basis, allowing for mesh size grading in regions of high importance, and future patient-specific adaptation. Cerebrospinal fluid (CSF) was represented through static pressure equilibration in combination with a locally based squeezing resistance. The results of the simulation indicate that anteroposterior shaking will lead to specific patterns of brain matter motion, increased likelihood of focal axonal injury at contact locations and deep brain structures, and a capacity for the development of subdural hematomas (SDH) due to rupture of central bridging veins.

  19. Pedophilic brain potential responses to adult erotic stimuli.

    Science.gov (United States)

    Knott, Verner; Impey, Danielle; Fisher, Derek; Delpero, Emily; Fedoroff, Paul

    2016-02-01

    Cognitive mechanisms associated with the relative lack of sexual interest in adults by pedophiles are poorly understood and may benefit from investigations examining how the brain processes adult erotic stimuli. The current study used event-related brain potentials (ERP) to investigate the time course of the explicit processing of erotic, emotional, and neutral pictures in 22 pedophilic patients and 22 healthy controls. Consistent with previous studies, early latency anterior ERP components were highly selective for erotic pictures. Although the ERPs elicited by emotional stimuli were similar in patients and controls, an early frontal positive (P2) component starting as early as 185 ms was significantly attenuated and slow to onset in pedophilia, and correlated with a clinical measure of cognitive distortions. Failure of rapid attentional capture by erotic stimuli suggests a relative reduction in early processing in pedophilic patients which may be associated with relatively diminished sexual interest in adults. PMID:26683083

  20. Brain response to visual sexual stimuli in homosexual pedophiles

    Science.gov (United States)

    Schiffer, Boris; Krueger, Tillmann; Paul, Thomas; de Greiff, Armin; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Gizewski, Elke

    2008-01-01

    Objective The neurobiological mechanisms of deviant sexual preferences such as pedophilia are largely unknown. The objective of this study was to analyze whether brain activation patterns of homosexual pedophiles differed from those of a nonpedophile homosexual control group during visual sexual stimulation. Method A consecutive sample of 11 pedophile forensic inpatients exclusively attracted to boys and 12 age-matched homosexual control participants from a comparable socioeconomic stratum underwent functional magnetic resonance imaging during a visual sexual stimulation procedure that used sexually stimulating and emotionally neutral photographs. Sexual arousal was assessed according to a subjective rating scale. Results In contrast to sexually neutral pictures, in both groups sexually arousing pictures having both homosexual and pedophile content activated brain areas known to be involved in processing visual stimuli containing emotional content, including the occipitotemporal and prefrontal cortices. However, during presentation of the respective sexual stimuli, the thalamus, globus pallidus and striatum, which correspond to the key areas of the brain involved in sexual arousal and behaviour, showed significant activation in pedophiles, but not in control subjects. Conclusions Central processing of visual sexual stimuli in homosexual pedophiles seems to be comparable to that in nonpedophile control subjects. However, compared with homosexual control subjects, activation patterns in pedophiles refer more strongly to subcortical regions, which have previously been discussed in the context of processing reward signals and also play an important role in addictive and stimulus-controlled behaviour. Thus future studies should further elucidate the specificity of these brain regions for the processing of sexual stimuli in pedophilia and should address the generally weaker activation pattern in homosexual men. PMID:18197269

  1. Nonlinear extension of a hemodynamic linear model for coherent hemodynamics spectroscopy.

    Science.gov (United States)

    Sassaroli, Angelo; Kainerstorfer, Jana M; Fantini, Sergio

    2016-01-21

    In this work, we are proposing an extension of a recent hemodynamic model (Fantini, 2014a), which was developed within the framework of a novel approach to the study of tissue hemodynamics, named coherent hemodynamics spectroscopy (CHS). The previous hemodynamic model, from a signal processing viewpoint, treats the tissue microvasculature as a linear time-invariant system, and considers changes of blood volume, capillary blood flow velocity and the rate of oxygen diffusion as inputs, and the changes of oxy-, deoxy-, and total hemoglobin concentrations (measured in near infrared spectroscopy) as outputs. The model has been used also as a forward solver in an inversion procedure to retrieve quantitative parameters that assess physiological and biological processes such as microcirculation, cerebral autoregulation, tissue metabolic rate of oxygen, and oxygen extraction fraction. Within the assumption of "small" capillary blood flow velocity oscillations the model showed that the capillary and venous compartments "respond" to this input as low pass filters, characterized by two distinct impulse response functions. In this work, we do not make the assumption of "small" perturbations of capillary blood flow velocity by solving without approximations the partial differential equation that governs the spatio-temporal behavior of hemoglobin saturation in capillary and venous blood. Preliminary comparison between the linear time-invariant model and the extended model (here identified as nonlinear model) are shown for the relevant parameters measured in CHS as a function of the oscillation frequency (CHS spectra). We have found that for capillary blood flow velocity oscillations with amplitudes up to 10% of the baseline value (which reflect typical scenarios in CHS), the discrepancies between CHS spectra obtained with the linear and nonlinear models are negligible. For larger oscillations (~50%) the linear and nonlinear models yield CHS spectra with differences within typical

  2. Fuel not fun: Reinterpreting attenuated brain responses to reward in obesity.

    Science.gov (United States)

    Kroemer, Nils B; Small, Dana M

    2016-08-01

    There is a well-established literature linking obesity to altered dopamine signaling and brain response to food-related stimuli. Neuroimaging studies frequently report enhanced responses in dopaminergic regions during food anticipation and decreased responses during reward receipt. This has been interpreted as reflecting anticipatory "reward surfeit", and consummatory "reward deficiency". In particular, attenuated response in the dorsal striatum to primary food rewards is proposed to reflect anhedonia, which leads to overeating in an attempt to compensate for the reward deficit. In this paper, we propose an alternative view. We consider brain response to food-related stimuli in a reinforcement-learning framework, which can be employed to separate the contributions of reward sensitivity and reward-related learning that are typically entangled in the brain response to reward. Consequently, we posit that decreased striatal responses to milkshake receipt reflect reduced reward-related learning rather than reward deficiency or anhedonia because reduced reward sensitivity would translate uniformly into reduced anticipatory and consummatory responses to reward. By re-conceptualizing reward deficiency as a shift in learning about subjective value of rewards, we attempt to reconcile neuroimaging findings with the putative role of dopamine in effort, energy expenditure and exploration and suggest that attenuated brain responses to energy dense foods reflect the "fuel", not the fun entailed by the reward. PMID:27085908

  3. Natural variation in maternal sensitivity is reflected in maternal brain responses to infant stimuli.

    Science.gov (United States)

    Elmadih, Alya; Wan, Ming Wai; Downey, Darragh; Elliott, Rebecca; Swain, James E; Abel, Kathryn M

    2016-10-01

    Increasing evidence suggests that discrete neural networks that mediate emotion processing are activated when mothers respond to infant's images or cries. Accumulating data also indicate that natural variation in maternal caregiving behavior is related to maternal oxytocin (OT) levels. However, brain activation to infant cues has not been studied comparing mothers at disparate ends of the "maternal sensitivity" spectrum. Based on observed mother-infant play interaction at 4-6 months postpartum in 80 antenatally recruited mothers, 15 mothers with the highest sensitivity (HSMs) and 15 mothers with the lowest sensitivity (LSMs) were followed at 7-9 months using functional magnetic resonance imaging (fMRI) to examine brain responses to viewing videos of their "own" versus an "unknown" infant in 3 affect states (neutral, happy, and sad). Plasma OT measurements were taken from mothers following play interactions with their infant. Compared with LSMs, HSMs showed significantly greater brain activation in right superior temporal gyrus (STG) in response to own versus unknown neutral infant and to own happy versus neutral control. Changes in brain activation were significantly negatively correlated with plasma OT responses in HSMs mothers. Conversely, compared with HSMs, LSMs showed no significant activation difference in response to own infant separately or in contrast to unknown infant. Activation of STG may index sensitive maternal response to own infant stimuli. Sensitive parenting may have its unique profile in relation to brain responses which can act as biomarkers for future intervention studies that enhance sensitivity of maternal care. (PsycINFO Database Record PMID:27513806

  4. Anatomical Atlas-Guided Diffuse Optical Tomography of Brain Activation

    OpenAIRE

    Custo, Anna; Boas, David A.; Tsuzuki, Daisuke; Dan, Ippeita; Mesquita, Rickson; Fischl, Bruce; Grimson, W. Eric L.; Wells, Williams

    2009-01-01

    We describe a neuro imaging protocol that utilizes an anatomical atlas of the human head to guide Diffuse optical tomography of human brain activation. The protocol is demonstrated by imaging the hemodynamic response to median nerve stimulation in three healthy subjects, and comparing the images obtained using a head atlas with the images obtained using the subject-specific head anatomy. The results indicate that using the head atlas anatomy it is possible to reconstruct the location of the b...

  5. Brain responses to odor mixtures with sub-threshold components

    Directory of Open Access Journals (Sweden)

    Thomas eHummel

    2013-10-01

    Full Text Available Although most odorants we encounter in daily life are mixtures of several chemical substances, we still lack significant information on how we perceive and how the brain processes mixtures of odorants. We aimed to investigate the processing of odor mixtures using behavioral measures and functional magnetic resonance imaging (fMRI. The odor mixture contained a target odor (ambroxan in a concentration at which it could be perceived by half of the subjects (sensitive group; the other half could not perceive the odor (insensitive group. In line with previous findings on multi-component odor mixtures, both groups of subjects were not able to distinguish a complex odor mixture containing or not containing the target odor. However, sensitive subjects had stronger activations than insensitive subjects in chemosensory processing areas such as the insula when exposed to the mixture containing the target odor. Furthermore, the sensitive group exhibited larger brain activations when presented with the odor mixture containing the target odor compared to the odor mixture without the target odor; this difference was smaller, though present for the insensitive group. In conclusion, we show that a target odor presented within a mixture of odors can influence brain activations although on a psychophysical level subjects are not able to distinguish the mixture with and without the target. On the practical side these results suggest that the addition of a certain compound to a mixture of odors may not be detected on a cognitive level; however, this additional odor may significantly change the cerebral processing of this mixture. In this context, FMRI offers unique possibilities to look at the subliminal effects of odors.

  6. Affective-Motivational Brain Responses to Direct Gaze in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Kylliainen, Anneli; Wallace, Simon; Coutanche, Marc N.; Leppanen, Jukka M.; Cusack, James; Bailey, Anthony J.; Hietanen, Jari K.

    2012-01-01

    Background: It is unclear why children with autism spectrum disorders (ASD) tend to be inattentive to, or even avoid eye contact. The goal of this study was to investigate affective-motivational brain responses to direct gaze in children with ASD. To this end, we combined two measurements: skin conductance responses (SCR), a robust arousal…

  7. Dietary melatonin alters uterine artery hemodynamics in pregnant holstein heifers

    Science.gov (United States)

    The objective was to examine uterine artery hemodynamics and maternal serum profiles in pregnant heifers supplemented with dietary melatonin (MEL) or no supplementation (CON). In addition, melatonin receptor–mediated responses in steroid metabolism were examined using a bovine endometrial epithelial...

  8. A sliding mode observer for hemodynamic characterization under modeling uncertainties

    KAUST Repository

    Zayane, Chadia

    2014-06-01

    This paper addresses the case of physiological states reconstruction in a small region of the brain under modeling uncertainties. The misunderstood coupling between the cerebral blood volume and the oxygen extraction fraction has lead to a partial knowledge of the so-called balloon model describing the hemodynamic behavior of the brain. To overcome this difficulty, a High Order Sliding Mode observer is applied to the balloon system, where the unknown coupling is considered as an internal perturbation. The effectiveness of the proposed method is illustrated through a set of synthetic data that mimic fMRI experiments.

  9. Repeated BOLD-fMRI imaging of deep brain stimulation responses in rats.

    Science.gov (United States)

    Chao, Tzu-Hao Harry; Chen, Jyh-Horng; Yen, Chen-Tung

    2014-01-01

    Functional magnetic resonance imaging (fMRI) provides a picture of the global spatial activation pattern of the brain. Interest is growing regarding the application of fMRI to rodent models to investigate adult brain plasticity. To date, most rodent studies used an electrical forepaw stimulation model to acquire fMRI data, with α-chloralose as the anesthetic. However, α-chloralose is harmful to animals, and not suitable for longitudinal studies. Moreover, peripheral stimulation models enable only a limited number of brain regions to be studied. Processing between peripheral regions and the brain is multisynaptic, and renders interpretation difficult and uncertain. In the present study, we combined the medetomidine-based fMRI protocol (a noninvasive rodent fMRI protocol) with chronic implantation of an MRI-compatible stimulation electrode in the ventroposterior (VP) thalamus to repetitively sample thalamocortical responses in the rat brain. Using this model, we scanned the forebrain responses evoked by the VP stimulation repeatedly of individual rats over 1 week. Cortical BOLD responses were compared between the 2 profiles obtained at day1 and day8. We discovered reproducible frequency- and amplitude-dependent BOLD responses in the ipsilateral somatosensory cortex (S1). The S1 BOLD responses during the 2 sessions were conserved in maximal response amplitude, area size (size ratio from 0.88 to 0.91), and location (overlap ratio from 0.61 to 0.67). The present study provides a long-term chronic brain stimulation protocol for studying the plasticity of specific neural circuits in the rodent brain by BOLD-fMRI. PMID:24825464

  10. Repeated BOLD-fMRI imaging of deep brain stimulation responses in rats.

    Directory of Open Access Journals (Sweden)

    Tzu-Hao Harry Chao

    Full Text Available Functional magnetic resonance imaging (fMRI provides a picture of the global spatial activation pattern of the brain. Interest is growing regarding the application of fMRI to rodent models to investigate adult brain plasticity. To date, most rodent studies used an electrical forepaw stimulation model to acquire fMRI data, with α-chloralose as the anesthetic. However, α-chloralose is harmful to animals, and not suitable for longitudinal studies. Moreover, peripheral stimulation models enable only a limited number of brain regions to be studied. Processing between peripheral regions and the brain is multisynaptic, and renders interpretation difficult and uncertain. In the present study, we combined the medetomidine-based fMRI protocol (a noninvasive rodent fMRI protocol with chronic implantation of an MRI-compatible stimulation electrode in the ventroposterior (VP thalamus to repetitively sample thalamocortical responses in the rat brain. Using this model, we scanned the forebrain responses evoked by the VP stimulation repeatedly of individual rats over 1 week. Cortical BOLD responses were compared between the 2 profiles obtained at day1 and day8. We discovered reproducible frequency- and amplitude-dependent BOLD responses in the ipsilateral somatosensory cortex (S1. The S1 BOLD responses during the 2 sessions were conserved in maximal response amplitude, area size (size ratio from 0.88 to 0.91, and location (overlap ratio from 0.61 to 0.67. The present study provides a long-term chronic brain stimulation protocol for studying the plasticity of specific neural circuits in the rodent brain by BOLD-fMRI.

  11. Mapping brain response to pain in fibromyalgia patients using temporal analysis of FMRI.

    Directory of Open Access Journals (Sweden)

    Jesus Pujol

    Full Text Available BACKGROUND: Nociceptive stimuli may evoke brain responses longer than the stimulus duration often partially detected by conventional neuroimaging. Fibromyalgia patients typically complain of severe pain from gentle stimuli. We aimed to characterize brain response to painful pressure in fibromyalgia patients by generating activation maps adjusted for the duration of brain responses. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-seven women (mean age: 47.8 years were assessed with fMRI. The sample included nine fibromyalgia patients and nine healthy subjects who received 4 kg/cm(2 of pressure on the thumb. Nine additional control subjects received 6.8 kg/cm(2 to match the patients for the severity of perceived pain. Independent Component Analysis characterized the temporal dynamics of the actual brain response to pressure. Statistical parametric maps were estimated using the obtained time courses. Brain response to pressure (18 seconds consistently exceeded the stimulus application (9 seconds in somatosensory regions in all groups. fMRI maps following such temporal dynamics showed a complete pain network response (sensory-motor cortices, operculo-insula, cingulate cortex, and basal ganglia to 4 kg/cm(2 of pressure in fibromyalgia patients. In healthy subjects, response to this low intensity pressure involved mainly somatosensory cortices. When matched for perceived pain (6.8 kg/cm(2, control subjects showed also comprehensive activation of pain-related regions, but fibromyalgia patients showed significantly larger activation in the anterior insula-basal ganglia complex and the cingulate cortex. CONCLUSIONS/SIGNIFICANCE: The results suggest that data-driven fMRI assessments may complement conventional neuroimaging for characterizing pain responses and that enhancement of brain activation in fibromyalgia patients may be particularly relevant in emotion-related regions.

  12. Obesity and the Role of Short Duration Submaximal Work on Cardiovascular and Cerebral Hemodynamics

    OpenAIRE

    Cavuoto, Lora A.; Maikala, Rammohan V.

    2016-01-01

    The objective of this study was to compare gas exchange, cardiac and cerebral hemodynamic responses between 10 non-obese and 10 obese men during submaximal work. With the increasing prevalence of obesity, there is a need to understand the impact of obesity on work-induced responses. Participants completed a step-wise incremental cycling until they reached 60% of their age-predicted maximum heart rate. Gas exchange, cardiac and pre-frontal cortex hemodynamic responses were simultaneously measu...

  13. Sensation Seeking Predicts Brain Responses in the Old-New Task: Converging Multimodal Neuroimaging Evidence

    OpenAIRE

    Lawson, Adam L.; Liu, Xun; Joseph, Jane; Vagnini, Victoria L.; Kelly, Thomas H.; Jiang, Yang

    2012-01-01

    Novel images and message content enhance visual attention and memory for high sensation seekers, but the neural mechanisms associated with this effect are unclear. To investigate the individual differences in brain responses to new and old (studied) visual stimuli, we utilized Event-related Potentials (ERP) and functional Magnetic Resonance Imaging (fMRI) measures to examine brain reactivity among high and low sensation seekers during a classic old-new memory recognition task. Twenty low and ...

  14. CacyBP/SIP as a regulator of transcriptional responses in brain cells

    OpenAIRE

    Kilanczyk, Ewa; Filipek, Anna; Hetman, Michal

    2014-01-01

    The Calcyclin-Binding Protein/Siah-1-Interacting Protein (CacyBP/SIP) is highly expressed in the brain and was shown to regulate the β-catenin-driven transcription in thymocytes. Therefore, it was investigated whether in brain cells CacyBP/SIP might play a role as a transcriptional regulator. In BDNF- or forskolin-stimulated rat primary cortical neurons, overexpression of CacyBP/SIP enhanced transcriptional activity of the cAMP-response element (CRE). In addition, overexpressed...

  15. Exploring the motivational brain: effects of implicit power motivation on brain activation in response to facial expressions of emotion.

    Science.gov (United States)

    Schultheiss, Oliver C; Wirth, Michelle M; Waugh, Christian E; Stanton, Steven J; Meier, Elizabeth A; Reuter-Lorenz, Patricia

    2008-12-01

    This study tested the hypothesis that implicit power motivation (nPower), in interaction with power incentives, influences activation of brain systems mediating motivation. Twelve individuals low (lowest quartile) and 12 individuals high (highest quartile) in nPower, as assessed per content coding of picture stories, were selected from a larger initial participant pool and participated in a functional magnetic resonance imaging study during which they viewed high-dominance (angry faces), low-dominance (surprised faces) and control stimuli (neutral faces, gray squares) under oddball-task conditions. Consistent with hypotheses, high-power participants showed stronger activation in response to emotional faces in brain structures involved in emotion and motivation (insula, dorsal striatum, orbitofrontal cortex) than low-power participants.

  16. A study of brain MRI findings and clinical response of bladder empting failure in brain bladder

    Energy Technology Data Exchange (ETDEWEB)

    Miyakoda, Keiichi (Yamashina Aiseikai Hospital, Kyoto (Japan)); Watanabe, Kousuke

    1993-02-01

    In 45 patients (38 males and 7 females; average age:78 years) with brain bladder, who did not have any peripheral neuropathies and spinal disturbance, cerebral findings of MRI (1.5 T) T[sub 2] enhanced image were analyzed in comparison with those of 7 control patients with normal urination after BPH operations. Patients with neurogenic bladder were divided into three groups as follows: 33 patients with a chief complaint of urinary disturbance (Group I), 9 patients with urinary incontinence (Group II) and 3 patients with balanced bladder (Group III). High frequency of lacune (24%) of the globus pallidus and low signalling of the corpus striatum (30%) was found in Group I patients, but low frequency in other Group patients and control patients. Furthermore, pathologic changes with various grades in the globus pallidus were observed in 91% of Group I patients. In the treatment of urinary disturbance, a high improvement rate of micturition disorder (77%) was obtained in patients treated with a combination of dantrolene and TURp (TUIbn for females). However, patients who had clear lacune of the globus pallidus showed the low improvement rate. It should be possible that the globus pallidus contributes to control the movement of the external sphincter and the pelvic base muscles as well as other striated muscles. Moreover, lacune was rarely found in the urination center of the brain-stem on MRI. (author).

  17. Local modulation of human brain responses by circadian rhythmicity and sleep debt.

    Science.gov (United States)

    Muto, Vincenzo; Jaspar, Mathieu; Meyer, Christelle; Kussé, Caroline; Chellappa, Sarah L; Degueldre, Christian; Balteau, Evelyne; Shaffii-Le Bourdiec, Anahita; Luxen, André; Middleton, Benita; Archer, Simon N; Phillips, Christophe; Collette, Fabienne; Vandewalle, Gilles; Dijk, Derk-Jan; Maquet, Pierre

    2016-08-12

    Human performance is modulated by circadian rhythmicity and homeostatic sleep pressure. Whether and how this interaction is represented at the regional brain level has not been established. We quantified changes in brain responses to a sustained-attention task during 13 functional magnetic resonance imaging sessions scheduled across the circadian cycle, during 42 hours of wakefulness and after recovery sleep, in 33 healthy participants. Cortical responses showed significant circadian rhythmicity, the phase of which varied across brain regions. Cortical responses also significantly decreased with accrued sleep debt. Subcortical areas exhibited primarily a circadian modulation that closely followed the melatonin profile. These findings expand our understanding of the mechanisms involved in maintaining cognition during the day and its deterioration during sleep deprivation and circadian misalignment. PMID:27516598

  18. Effect of lighting conditions on brain network complexity associated with response learning.

    Science.gov (United States)

    Fidalgo, Camino; Conejo, Nélida M; González-Pardo, Héctor; Arias, Jorge L

    2013-10-25

    Several studies have reported the brain regions involved in response learning. However, there is discrepancy regarding the lighting conditions in the experimental setting (i.e. under dark or light conditions). In this regard, it would be relevant to know if the presence/absence of visual cues in the environment has any effect in the brain networks involved in a response learning task. Animals were trained in a water T-maze under two different lighting conditions (light versus dark). All subjects reached the learning criterion of 80% correct arm choices. Quantitative cytochrome oxidase (CO) histochemistry was used as a metabolic brain mapping technique. Our results show that the ventral hippocampus and the parietal cortex are associated with the acquisition of a response learning task regardless of lighting conditions. In addition, when the same task is run in the dark, widespread recruitment of structures involving cortical, limbic and striatal regions was found. PMID:24084195

  19. The effects of age, sex, and hormones on emotional conflict-related brain response during adolescence.

    Science.gov (United States)

    Cservenka, Anita; Stroup, Madison L; Etkin, Amit; Nagel, Bonnie J

    2015-10-01

    While cognitive and emotional systems both undergo development during adolescence, few studies have explored top-down inhibitory control brain activity in the context of affective processing, critical to informing adolescent psychopathology. In this study, we used functional magnetic resonance imaging to examine brain response during an Emotional Conflict (EmC) Task across 10-15-year-old youth. During the EmC Task, participants indicated the emotion of facial expressions, while disregarding emotion-congruent and incongruent words printed across the faces. We examined the relationships of age, sex, and gonadal hormones with brain activity on Incongruent vs. Congruent trials. Age was negatively associated with middle frontal gyrus activity, controlling for performance and movement confounds. Sex differences were present in occipital and parietal cortices, and were driven by activation in females, and deactivation in males to Congruent trials. Testosterone was negatively related with frontal and striatal brain response in males, and cerebellar and precuneus response in females. Estradiol was negatively related with fronto-cerebellar, cingulate, and precuneus brain activity in males, and positively related with occipital response in females. To our knowledge, this is the first study reporting the effects of age, sex, and sex steroids during an emotion-cognition task in adolescents. Further research is needed to examine longitudinal development of emotion-cognition interactions and deviations in psychiatric disorders in adolescence.

  20. Comprehensive cognitive and cerebral hemodynamic evaluation after cranioplasty

    Directory of Open Access Journals (Sweden)

    Coelho F

    2014-05-01

    Full Text Available Fernanda Coelho,1 Arthur Maynart Oliveira,2 Wellingson Silva Paiva,2 Fabio Rios Freire,1 Vanessa Tome Calado,1 Robson Luis Amorim,2 Iuri Santana Neville,2 Almir Ferreira de Andrade,2 Edson Bor-Seng-Shu,3 Renato Anghinah,1 Manoel Jacobsen Teixeira21Neurorehabilitation Group, Division of Neurology, 2Division of Neurosurgery, 3Neurosonology and Cerebral Hemodynamics Group, University of São Paulo Medical School, São Paulo, BrazilAbstract: Decompressive craniectomy is an established procedure to lower intracranial pressure and can save patients' lives. However, this procedure is associated with delayed cognitive decline and cerebral hemodynamics complications. Studies show the benefits of cranioplasty beyond cosmetic aspects, including brain protection, and functional and cerebrovascular aspects, but a detailed description of the concrete changes following this procedure are lacking. In this paper, the authors report a patient with trephine syndrome who underwent cranioplasty; comprehensive cognitive and cerebral hemodynamic evaluations were performed prior to and following the cranioplasty. The discussion was based on a critical literature review.Keywords: cranioplasty, decompressive craniotomy, perfusion CT, traumatic brain injury, cognition, neuropsychological test

  1. A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction

    OpenAIRE

    Fusco, Salvatore; Ripoli, Cristian; Podda, Maria Vittoria; Ranieri, Sofia Chiatamone; Leone, Lucia; Toietta, Gabriele; McBurney, Michael W.; Schütz, Günther; Riccio, Antonella; Grassi, Claudio; Galeotti, Tommaso; Pani, Giovambattista

    2011-01-01

    Calorie restriction delays brain senescence and prevents neurodegeneration, but critical regulators of these beneficial responses other than the NAD+-dependent histone deacetylase Sirtuin-1 (Sirt-1) are unknown. We report that effects of calorie restriction on neuronal plasticity, memory and social behavior are abolished in mice lacking cAMP responsive-element binding (CREB)-1 in the forebrain. Moreover, CREB deficiency drastically reduces the expression of Sirt-1 and the induction of genes r...

  2. Effect of glutamate on inflammatory responses of intestine and brain after focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Lei Xu; Jie Sun; Ran Lu; Qing Ji; Jian-Guo Xu

    2005-01-01

    AIM: To study the modulation of glutamate on post-ischemic intestinal and cerebral inflammatory responses in a ischemic and excitotoxic rat model.METHODS: Adult male rats were subjected to bilateral carotid artery occlusion for 15 min and injection of monosodium glutamate intraperitoneally, to decapitate them at selected time points. Tumor necrosis factor alpha (TNF-α) level and nuclear factor kappa B (NF-κB) activity were determined by enzyme-linked immunosorbant assay (ELISA) and electrophoretic mobility shift assay (EMSA), respectively.Hemodynamic parameters were monitored continuously during the whole process of cerebral ischemia and reperfusion.RESULTS: Monosodium glutamate (MSG) treated rats displayed statistically significant high levels of TNF-α in cerebral and intestinal tissuess within the first 6 h of ischemia. The rats with cerebral ischemia showed a minor decrease of TNF-α production in cerebral and intestinal tissuess. The rats with cerebral ischemia and treated with MSG displayed statistically significant low levels of TNF-α in cerebral and intestinal tissues. These results correlated significantly with NF-κB production calculated at the same intervals. During experiment, the mean blood pressure and heart rates in all groups were stable.CONCLUSION: Glutamate is involved in the mechanism of intestinal and cerebral inflammation responses. The effects of glutamate on cerebral and intestinal inflammatory responses after ischemia are up-regulated at the transcriptional level,through the NF-κB signal transduction pathway.

  3. Real-time, whole-brain, temporally resolved pressure responses in translational head impact.

    Science.gov (United States)

    Zhao, Wei; Ji, Songbai

    2016-02-01

    Theoretical debate still exists on the role of linear acceleration ( a lin) on the risk of brain injury. Recent injury metrics only consider head rotational acceleration ( a rot) but not a lin, despite that real-world on-field head impacts suggesting a lin significantly improves a concussion risk function. These controversial findings suggest a practical challenge in integrating theory and real-world experiment. Focusing on tissue-level mechanical responses estimated from finite-element (FE) models of the human head, rather than impact kinematics alone, may help address this debate. However, the substantial computational cost incurred (runtime and hardware) poses a significant barrier for their practical use. In this study, we established a real-time technique to estimate whole-brain a lin-induced pressures. Three hydrostatic atlas pressures corresponding to translational impacts (referred to as 'brain print') along the three major axes were pre-computed. For an arbitrary a lin profile at any instance in time, the atlas pressures were linearly scaled and then superimposed to estimate whole-brain responses. Using 12 publically available, independently measured or reconstructed real-world a lin profiles representative of a range of impact/injury scenarios, the technique was successfully validated (except for one case with an extremely short impulse of approx. 1 ms). The computational cost to estimate whole-brain pressure responses for an entire a lin profile was less than 0.1 s on a laptop versus typically hours on a high-end multicore computer. These findings suggest the potential of the simple, yet effective technique to enable future studies to focus on tissue-level brain responses, rather than solely relying on global head impact kinematics that have plagued early and contemporary brain injury research to date.

  4. Genetic effects on source level evoked and induced oscillatory brain responses in a visual oddball task.

    Science.gov (United States)

    Antonakakis, Marios; Zervakis, Michalis; van Beijsterveldt, Catharina E M; Boomsma, Dorret I; De Geus, Eco J C; Micheloyannis, Sifis; Smit, Dirk J A

    2016-02-01

    Stimuli in simple oddball target detection paradigms cause evoked responses in brain potential. These responses are heritable traits, and potential endophenotypes for clinical phenotypes. These stimuli also cause responses in oscillatory activity, both evoked responses phase-locked to stimulus presentation and phase-independent induced responses. Here, we investigate whether phase-locked and phase-independent oscillatory responses are heritable traits. Oscillatory responses were examined in EEG recordings from 213 twin pairs (91 monozygotic and 122 dizygotic twins) performing a visual oddball task. After group Independent Component Analysis (group-ICA) and time-frequency decomposition, individual differences in evoked and induced oscillatory responses were compared between MZ and DZ twin pairs. Induced (phase-independent) oscillatory responses consistently showed the highest heritability (24-55%) compared to evoked (phase-locked) oscillatory responses and spectral energy, which revealed lower heritability at 1-35.6% and 4.5-32.3%, respectively. Since the phase-independent induced response encodes functional aspects of the brain response to target stimuli different from evoked responses, we conclude that the modulation of ongoing oscillatory activity may serve as an additional endophenotype for behavioral phenotypes and psychiatric genetics.

  5. The response of the brain tissue to DNA double strand breaks

    International Nuclear Information System (INIS)

    Double-strand breaks (DSB) are the most deleterious form of DNA damage after ionizing radiation, the response of the brain tissue to DNA damage is related to the developmental dynamics of this system. Homology recombination is particularly important for proliferating cells, while non-homologous end joining is critical for differentiating cells. Defects in the related factors to DNA damage pathway underpin many human genopathy with neuropathology. Reviewed the signal conduction system involved in the DNA DSB response and human neuropathology genopathy related to DNA DSB factors deficiencies in the brain cells. (authors)

  6. Time evolution and hemodynamics of cerebral aneurysms

    Science.gov (United States)

    Sforza, Daniel M.; Putman, Christopher; Tateshima, Satoshi; Viñuela, Fernando; Cebral, Juan

    2011-03-01

    Cerebral aneurysm rupture is a leading cause of hemorrhagic strokes. Because they are being more frequently diagnosed before rupture and the prognosis of subarachnoid hemorrhage is poor, clinicians are often required to judge which aneurysms are prone to progression and rupture. Unfortunately, the processes of aneurysm initiation, growth and rupture are not well understood. Multiple factors associated to these processes have been identified. Our goal is to investigate two of them, arterial hemodynamics (using computational fluid dynamics) and the peri-aneurysmal environment, by studying a group of growing cerebral aneurysms that are followed longitudinally in time. Six patients with unruptured untreated brain aneurysms which exhibited growth during the observation period were selected for the study. Vascular models of each aneurysm at each observation time were constructed from the corresponding computed tomography angiography (CTA) images. Subsequently, models were aligned, and geometrical differences quantified. Blood flow was modeled with the 3D unsteady incompressible Navier-Stokes equation for a Newtonian fluid, and wall shear stress distribution and flow patterns were calculated and visualized. Analysis of the simulations and changes in geometry revealed asymmetric growth patterns and suggests that areas subject to vigorous flows, i.e. relative high wall shear stress and concentrated streamlines patterns; correspond to regions of aneurysm growth. Furthermore, in some cases the geometrical evolution of aneurysms is clearly affected by contacts with bone structures and calcifications in the wall, and as a consequence the hemodynamics is greatly modified. Thus, in these cases the peri-aneurysmal environment must be considered when analyzing aneurysm evolution.

  7. Finite element modeling of human brain response to football helmet impacts.

    Science.gov (United States)

    Darling, T; Muthuswamy, J; Rajan, S D

    2016-10-01

    The football helmet is used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. While the current helmet design methodology may be adequate for reducing linear acceleration of the head and minimizing TBI, it however has had less effect in minimizing mTBI. The objectives of this study are (a) to develop and validate a coupled finite element (FE) model of a football helmet and the human body, and (b) to assess responses of different regions of the brain to two different impact conditions - frontal oblique and crown impact conditions. The FE helmet model was validated using experimental results of drop tests. Subsequently, the integrated helmet-human body FE model was used to assess the responses of different regions of the brain to impact loads. Strain-rate, strain, and stress measures in the corpus callosum, midbrain, and brain stem were assessed. Results show that maximum strain-rates of 27 and 19 s(-1) are observed in the brain-stem and mid-brain, respectively. This could potentially lead to axonal injuries and neuronal cell death during crown impact conditions. The developed experimental-numerical framework can be used in the study of other helmet-related impact conditions. PMID:26867124

  8. Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states.

    Science.gov (United States)

    Lecrux, C; Hamel, E

    2016-10-01

    Brain imaging techniques that use vascular signals to map changes in neuronal activity, such as blood oxygenation level-dependent functional magnetic resonance imaging, rely on the spatial and temporal coupling between changes in neurophysiology and haemodynamics, known as 'neurovascular coupling (NVC)'. Accordingly, NVC responses, mapped by changes in brain haemodynamics, have been validated for different stimuli under physiological conditions. In the cerebral cortex, the networks of excitatory pyramidal cells and inhibitory interneurons generating the changes in neural activity and the key mediators that signal to the vascular unit have been identified for some incoming afferent pathways. The neural circuits recruited by whisker glutamatergic-, basal forebrain cholinergic- or locus coeruleus noradrenergic pathway stimulation were found to be highly specific and discriminative, particularly when comparing the two modulatory systems to the sensory response. However, it is largely unknown whether or not NVC is still reliable when brain states are altered or in disease conditions. This lack of knowledge is surprising since brain imaging is broadly used in humans and, ultimately, in conditions that deviate from baseline brain function. Using the whisker-to-barrel pathway as a model of NVC, we can interrogate the reliability of NVC under enhanced cholinergic or noradrenergic modulation of cortical circuits that alters brain states.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  9. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    International Nuclear Information System (INIS)

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author)

  10. Endogenous neurogenic cell response in the mature mammalian brain following traumatic injury.

    Science.gov (United States)

    Sun, Dong

    2016-01-01

    In the mature mammalian brain, new neurons are generated throughout life in the neurogenic regions of the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus. Over the past two decades, extensive studies have examined the extent of adult neurogenesis in the SVZ and DG, the role of the adult generated new neurons in normal brain function and the underlying mechanisms regulating the process of adult neurogenesis. The extent and the function of adult neurogenesis under neuropathological conditions have also been explored in varying types of disease models in animals. Increasing evidence has indicated that these endogenous neural stem/progenitor cells may play regenerative and reparative roles in response to CNS injuries or diseases. This review will discuss the potential functions of adult neurogenesis in the injured brain and will describe the recent development of strategies aimed at harnessing this neurogenic capacity in order to repopulate and repair the injured brain following trauma. PMID:25936874

  11. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    Directory of Open Access Journals (Sweden)

    Rick O Gilmore

    Full Text Available Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction at three different speeds (2, 4, and 8 deg/s. Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood.

  12. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    Science.gov (United States)

    Gilmore, Rick O; Thomas, Amanda L; Fesi, Jeremy

    2016-01-01

    Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG) responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction) at three different speeds (2, 4, and 8 deg/s). Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood. PMID:27326860

  13. 5-HTTLPR differentially predicts brain network responses to emotional faces

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Grady, Cheryl L; Madsen, Martin K;

    2015-01-01

    resonance imaging in 76 healthy adults. We observed robust increased response to emotional faces in the amygdala, hippocampus, caudate, fusiform gyrus, superior temporal sulcus and lateral prefrontal and occipito-parietal cortices. We observed dissociation between 5-HTTLPR groups such that LA LA individuals...

  14. A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction.

    Science.gov (United States)

    Fusco, Salvatore; Ripoli, Cristian; Podda, Maria Vittoria; Ranieri, Sofia Chiatamone; Leone, Lucia; Toietta, Gabriele; McBurney, Michael W; Schütz, Günther; Riccio, Antonella; Grassi, Claudio; Galeotti, Tommaso; Pani, Giovambattista

    2012-01-10

    Calorie restriction delays brain senescence and prevents neurodegeneration, but critical regulators of these beneficial responses other than the NAD(+)-dependent histone deacetylase Sirtuin-1 (Sirt-1) are unknown. We report that effects of calorie restriction on neuronal plasticity, memory and social behavior are abolished in mice lacking cAMP responsive-element binding (CREB)-1 in the forebrain. Moreover, CREB deficiency drastically reduces the expression of Sirt-1 and the induction of genes relevant to neuronal metabolism and survival in the cortex and hippocampus of dietary-restricted animals. Biochemical studies reveal a complex interplay between CREB and Sirt-1: CREB directly regulates the transcription of the sirtuin in neuronal cells by binding to Sirt-1 chromatin; Sirt-1, in turn, is recruited by CREB to DNA and promotes CREB-dependent expression of target gene peroxisome proliferator-activated receptor-γ coactivator-1α and neuronal NO Synthase. Accordingly, expression of these CREB targets is markedly reduced in the brain of Sirt KO mice that are, like CREB-deficient mice, poorly responsive to calorie restriction. Thus, the above circuitry, modulated by nutrient availability, links energy metabolism with neurotrophin signaling, participates in brain adaptation to nutrient restriction, and is potentially relevant to accelerated brain aging by overnutrition and diabetes. PMID:22190495

  15. Brain responses to acupuncture stimulation in the prosthetic hand of an amputee patient.

    Science.gov (United States)

    Lee, In-Seon; Jung, Won-Mo; Lee, Ye-Seul; Wallraven, Christian; Chae, Younbyoung

    2015-10-01

    This report describes the brain responses to acupuncture in an upper limb amputee patient. A 62-year-old male had previously undergone a lower left arm amputation following an electrical accident. Using functional MRI, we investigated brain responses to acupuncture stimulation in the aforementioned amputee under three conditions: (a) intact hand, (b) prosthetic hand (used by the patient), and (c) fake fabric hand. The patient described greater de qi sensation when he received acupuncture stimulation in his prosthetic hand compared to a fake hand, with both stimulations performed in a similar manner. We found enhanced brain activation in the insula and sensorimotor cortex in response to acupuncture stimulation in the amputee's prosthetic hand, while there was only minimal activation in the visual cortex in response to acupuncture stimulation in a fake hand. The enhanced brain responses to acupuncture stimulation of the patient's prosthetic hand might be derived from cortical reorganisation, as he has been using his prosthetic hand for over 40 years. Our findings suggest the possible use of acupuncture stimulation in a prosthetic hand as an enhanced sensory feedback mechanism, which may represent a new treatment approach for phantom limb pain.

  16. Physical exercise and brain responses to images of high-calorie food.

    Science.gov (United States)

    Killgore, William D S; Kipman, Maia; Schwab, Zachary J; Tkachenko, Olga; Preer, Lily; Gogel, Hannah; Bark, John S; Mundy, Elizabeth A; Olson, Elizabeth A; Weber, Mareen

    2013-12-01

    Physical exercise has many health benefits, including improved cardiovascular fitness, lean muscle development, increased metabolism, and weight loss, as well as positive effects on brain functioning and cognition. Recent evidence suggests that regular physical exercise may also affect the responsiveness of reward regions of the brain to food stimuli. We examined whether the total number of minutes of self-reported weekly physical exercise was related to the responsiveness of appetite and food reward-related brain regions to visual presentations of high-calorie and low-calorie food images during functional MRI. Second, we examined whether such responses would correlate with self-reported food preferences. While undergoing scanning, 37 healthy adults (22 men) viewed images of high-calorie and low-calorie foods and provided desirability ratings for each food image. The correlation between exercise minutes per week and brain responses to the primary condition contrast (high-calorie>low-calorie) was evaluated within the amygdala, insula, and medial orbitofrontal cortex, brain regions previously implicated in responses to food images. Higher levels of exercise were significantly correlated with lower responsiveness within the medial orbitofrontal cortex and left insula to high-calorie foods. Furthermore, activation of these regions was positively correlated with preference ratings for high-calorie foods, particularly those with a savory flavor. These findings suggest that physical exercise may be associated with reduced activation in food-responsive reward regions, which are in turn associated with reduced preferences for unhealthy high-calorie foods. Physical exercise may confer secondary health benefits beyond its primary effects on cardiovascular fitness and energy expenditure.

  17. Chronic monitoring of cortical hemodynamics in behaving, freely-moving rats using a miniaturized head-mounted optical microscope

    Science.gov (United States)

    Sigal, Iliya; Gad, Raanan; Koletar, Margaret; Ringuette, Dene; Stefanovic, Bojana; Levi, Ofer

    2016-03-01

    Growing interest within the neurophysiology community in assessing healthy and pathological brain activity in animals that are awake and freely-behaving has triggered the need for optical systems that are suitable for such longitudinal studies. In this work we report label-free multi-modal imaging of cortical hemodynamics in the somatosensory cortex of awake, freely-behaving rats, using a novel head-mounted miniature optical microscope. The microscope employs vertical cavity surface emitting lasers (VCSELs) at three distinct wavelengths (680 nm, 795 nm, and 850 nm) to provide measurements of four hemodynamic markers: blood flow speeds, HbO, HbR, and total Hb concentration, across a > 2 mm field of view. Blood flow speeds are extracted using Laser Speckle Contrast Imaging (LSCI), while oxygenation measurements are performed using Intrinsic Optical Signal Imaging (IOSI). Longitudinal measurements on the same animal are made possible over the course of > 6 weeks using a chronic window that is surgically implanted into the skull. We use the device to examine changes in blood flow and blood oxygenation in superficial cortical blood vessels and tissue in response to drug-induced absence-like seizures, correlating motor behavior with changes in blood flow and blood oxygenation in the brain.

  18. Hemodynamic Changes in Blood Donors

    Directory of Open Access Journals (Sweden)

    M Rafiei

    2004-07-01

    Full Text Available Introduction: Everyday, millions of people around the world go through phlebotomy, either to donate blood or for therapeutic intention. The most important worrisome adverse effects are hemodynamic alterations. In this study, hemodynamic changes following blood donation were assessed. Methods & Materials: Three hundred laborers who donated blood voluntarily were enrolled in this study. Blood pressure (BP and pulse rate were measured before the procedure, ten minutes afterwards, and one week following phlebotomy. Hemoglobin (Hgb and hematocrit (Hct were also determined prior to and one week after phlebotomy. Finally, results before and after donation were compared with each other. Results: 242 volunteers had normal BP and 58 were hypertensive. The mean systolic blood pressures (SBP before phlebotomy, ten minutes after the procedure, and one week later were 120, 117, and 122 mmHg, respectively. During the same periods of time, the mean of diastolic blood pressures (DBP were 77 , 78 and 78 mmHg , in order , while pulse rates on average were 80 , 82 and 76 beats/minute . None of the aforementioned changes were clinically significant. After one week, Hgb decreased by about 0.3 g/dl (P<0.001 and Hct declined on average of 1.7 (P<0.001. Forty six individuals had high DBP and one week after donation, their DBP was reduced by 7 mmHg. Age, body mass index and smoking did not have any significant effect on hemodynamic status. Conclusion: Hemodynamic changes in healthy blood donors were not clinically significant. It seems that DBP drops desirably in hypertensive individuals. This needs to be evaluated more carefully in future studies.

  19. Tunicamycin-induced unfolded protein response in the developing mouse brain

    International Nuclear Information System (INIS)

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific

  20. Tunicamycin-induced unfolded protein response in the developing mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiping; Wang, Xin [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Ke, Zun-Ji [Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203 (China); Comer, Ashley L.; Xu, Mei; Frank, Jacqueline A. [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Zhang, Zhuo; Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Luo, Jia, E-mail: jialuo888@uky.edu [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States)

    2015-03-15

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific.

  1. Impact of Intra-Extracranial Hemodynamics on Cerebral Ischemia by Arterial Hypertension (Part 2

    Directory of Open Access Journals (Sweden)

    Alexander G. Kruglov, PhD, ScD

    2012-06-01

    Full Text Available The association between hemodynamic and biochemical parameters of cerebral blood flow have been studied in man, using mathematical methods of statistics. The values have been obtained through catheterization using a probe jammed at the level of the bulb of the superior jugular vein. Relationships with central hemodynamic parameters have been evaluated, including the right atrium, the right ventricle, and the left ventricle, as well as with pressure and biochemical values of the arterial bed. Data have been acquired in patients with stable arterial hypertension. Analysis of all relationship between hemodynamic and biochemical parameters has shown that the uniform hemodynamic zone: Sin.P. – SJV – SEV – the right atrium, normally participates in regulation of gaseous exchange in the human brain depending on the minimum pressure on the way of outflow from the brain. In stable arterial hypertension, this type of regulation is lost. On the basis of the results of this study, it has been concluded that blood viscosity is normally a primary controlled parameter of homeostasis. In stable arterial hypertension, homeostatic control of factors determining rheological and thrombogenic properties of blood, as well as participating in the development of brain ischemic conditions is lost. This increases risk of disturbances in central hemodynamics.

  2. Vasopressin V1 receptors contribute to hemodynamic and sympathoinhibitory responses evoked by stimulation of adenosine A2a receptors in NTS.

    Science.gov (United States)

    Scislo, Tadeusz J; O'Leary, Donal S

    2006-05-01

    Activation of adenosine A2a receptors in the nucleus of the solitary tract (NTS) decreases mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas increases in preganglionic adrenal sympathetic nerve activity (pre-ASNA) occur, a pattern similar to that observed during hypotensive hemorrhage. Central vasopressin V1 receptors may contribute to posthemorrhagic hypotension and bradycardia. Both V1 and A2a receptors are densely expressed in the NTS, and both of these receptors are involved in cardiovascular control; thus they may interact. The responses elicited by NTS A2a receptors are mediated mostly via nonglutamatergic mechanisms, possibly via release of vasopressin. Therefore, we investigated whether blockade of NTS V1 receptors alters the autonomic response patterns evoked by stimulation of NTS A2a receptors (CGS-21680, 20 pmol/50 nl) in alpha-chloralose-urethane anesthetized male Sprague-Dawley rats. In addition, we compared the regional sympathetic responses to microinjections of vasopressin (0.1-100 ng/50 nl) into the NTS. Blockade of V1 receptors reversed the normal decreases in MAP into increases (-95.6 +/- 28.3 vs. 51.4 +/- 15.7 integralDelta%), virtually abolished the decreases in HR (-258.3 +/- 54.0 vs. 18.9 +/- 57.8 integralDeltabeats/min) and RSNA (-239.3 +/- 47.4 vs. 15.9 +/- 36.1 integralDelta%), and did not affect the increases in pre-ASNA (279.7 +/- 48.3 vs. 233.1 +/- 54.1 integralDelta%) evoked by A2a receptor stimulation. The responses partially returned toward normal values approximately 90 min after the blockade. Microinjections of vasopressin into the NTS evoked dose-dependent decreases in HR and RSNA and variable MAP and pre-ASNA responses with a tendency toward increases. We conclude that the decreases in MAP, HR, and RSNA in response to NTS A2a receptor stimulation may be mediated via release of vasopressin from neural terminals in the NTS. The differential effects of NTS V1 and A2a receptors on

  3. Brain connectivity reflects human aesthetic responses to music.

    Science.gov (United States)

    Sachs, Matthew E; Ellis, Robert J; Schlaug, Gottfried; Loui, Psyche

    2016-06-01

    Humans uniquely appreciate aesthetics, experiencing pleasurable responses to complex stimuli that confer no clear intrinsic value for survival. However, substantial variability exists in the frequency and specificity of aesthetic responses. While pleasure from aesthetics is attributed to the neural circuitry for reward, what accounts for individual differences in aesthetic reward sensitivity remains unclear. Using a combination of survey data, behavioral and psychophysiological measures and diffusion tensor imaging, we found that white matter connectivity between sensory processing areas in the superior temporal gyrus and emotional and social processing areas in the insula and medial prefrontal cortex explains individual differences in reward sensitivity to music. Our findings provide the first evidence for a neural basis of individual differences in sensory access to the reward system, and suggest that social-emotional communication through the auditory channel may offer an evolutionary basis for music making as an aesthetically rewarding function in humans. PMID:26966157

  4. Prostaglandin E2 in Brain-mediated Illness Responses

    OpenAIRE

    Elander, Louise

    2010-01-01

    We are unceasingly exposed to potentially harmful microorganisms. The battle against threatening infectious agents includes activation of both the innate and of the adaptive immune systems. Illness responses are elicited and include inflammation, fever, decreased appetite, lethargy and increased sensitivity to painful stimuli in order to defeat invaders. While many of these signs of disease are controlled by the central nervous system, it has remained an enigma how signals from the peripheral...

  5. Brain responses in evaluating feedback stimuli with a social dimension

    OpenAIRE

    Zhang, Yuan; Li, Xiang; Qian, Xing; ZHOU Xiaolin

    2012-01-01

    Previous studies on outcome evaluation and performance monitoring using gambling or simple cognitive tasks have identified two event-related potential (ERP) components that are particularly relevant to the neural responses to decision outcome. The feedback-related negativity (FRN), typically occurring 200–300 ms post-onset of feedback stimuli, encodes mainly the valence of outcome while the P300, which is the most positive peak between 200–600 ms, is related to various aspects of outcome eval...

  6. Brain responses in evaluating feedback stimuli with a social dimension

    OpenAIRE

    Yuan eZhang; Xiang eLi; Xing eQian; Xiaolin eZhou

    2012-01-01

    Previous studies on outcome evaluation and performance monitoring using gambling or simple cognitive tasks have identified two components of event-related potentials (ERPs) that are particularly relevant to the neural responses to decision outcome. The feedback-related negativity (FRN), typically occurring 200-300 ms post-onset of feedback stimuli, encodes mainly the valence of outcome while the P300, which is the most positive peak between 200-600 ms, is found to be related to various aspect...

  7. Hemodynamic and Light-Scattering Changes of Rat Spinal Cord and Primary Somatosensory Cortex in Response to Innocuous and Noxious Stimuli

    Directory of Open Access Journals (Sweden)

    Ji-Wei He

    2015-09-01

    Full Text Available Neuroimaging technologies with an exceptional spatial resolution and noninvasiveness have become a powerful tool for assessing neural activity in both animals and humans. However, the effectiveness of neuroimaging for pain remains unclear partly because the neurovascular coupling during pain processing is not completely characterized. Our current work aims to unravel patterns of neurovascular parameters in pain processing. A novel fiber-optic method was used to acquire absolute values of regional oxy- (HbO and deoxy-hemoglobin concentrations, oxygen saturation rates (SO2, and the light-scattering coefficients from the spinal cord and primary somatosensory cortex (SI in 10 rats. Brief mechanical and electrical stimuli (ranging from innocuous to noxious intensities as well as a long-lasting noxious stimulus (formalin injection were applied to the hindlimb under pentobarbital anesthesia. Interhemispheric comparisons in the spinal cord and SI were used to confirm functional activation during sensory processing. We found that all neurovascular parameters showed stimulation-induced changes; however, patterns of changes varied with regions and stimuli. Particularly, transient increases in HbO and SO2 were more reliably attributed to brief stimuli, whereas a sustained decrease in SO2 was more reliably attributed to formalin. Only the ipsilateral SI showed delayed responses to brief stimuli. In conclusion, innocuous and noxious stimuli induced significant neurovascular responses at critical centers (e.g., the spinal cord and SI along the somatosensory pathway; however, there was no single response pattern (as measured by amplitude, duration, lateralization, decrease or increase that was able to consistently differentiate noxious stimuli. Our results strongly suggested that the neurovascular response patterns differ between brief and long-lasting noxious stimuli, and can also differ between the spinal cord and SI. Therefore, a use of multiple

  8. Opiate-induced changes in brain adenosine levels and narcotic drug responses.

    Science.gov (United States)

    Wu, M; Sahbaie, P; Zheng, M; Lobato, R; Boison, D; Clark, J D; Peltz, G

    2013-01-01

    We have very little information about the metabolomic changes that mediate neurobehavioral responses, including addiction. It was possible that opioid-induced metabolomic changes in brain could mediate some of the pharmacodynamic effects of opioids. To investigate this, opiate-induced brain metabolomic responses were profiled using a semi-targeted method in C57BL/6 and 129Sv1 mice, which exhibit extreme differences in their tendency to become opiate dependent. Escalating morphine doses (10-40 mg/kg) administered over a 4-day period selectively induced a twofold decrease (pOpiate-induced changes in brain adenosine levels may explain many important neurobehavioral features associated with opiate addiction and withdrawal.

  9. Comparison of Brain Activation in Response to Two Dimensional and Three Dimensional On-Line Games

    Science.gov (United States)

    Song, Woo Hyun; Shim, Hyung Jin

    2013-01-01

    Objective The present study assessed the difference in the brain activity of professional gamers (excessive players, but not addicts) in response to playing a 3-dimensional online game with an improved interface. Methods Twenty-three StarCraft I pro gamers and 16 StarCraft II pro gamers were recruited at Chung Ang University Medical Center. Brain activity in response to StarCraft I or II cues was assessed with a 1.5 Tesla Espree MRI scanner. Results StarCraft I pro gamers showed significantly greater activity in 4 clusters in response to the video game cues compared to StarCraft II pro gamers: right superior frontal gyrus, right medial frontal gyrus, right occipital lobe, and left medial frontal gyrus. StarCraft II pro gamers showed significantly greater activity in 3 clusters in response to the video game cues compared to StarCraft I pro gamers: left middle frontal gyrus, left temporal fusiform gyrus and left cerebellum. Discussion This is the first study to show the difference in brain activity between gamers playing either a 2-dimensional or 3-dimensional online game. Current brain imaging studies may confirm the pro gamers' experience when playing StarCraft II, a 3-dimensional game with an improved interface, relative to playing StarCraft I. PMID:23798958

  10. Predictive value of brain perfusion SPECT for ketamine response in hyperalgesic fibromyalgia

    International Nuclear Information System (INIS)

    Ketamine has been used successfully in various proportions of fibromyalgia (FM) patients. However, the response to this specific treatment remains largely unpredictable. We evaluated brain SPECT perfusion before treatment with ketamine, using voxel-based analysis. The objective was to determine the predictive value of brain SPECT for ketamine response. Seventeen women with FM (48 ± 11 years; ACR criteria) were enrolled in the study. Brain SPECT was performed before any change was made in therapy in the pain care unit. We considered that a patient was a good responder to ketamine if the VAS score for pain decreased by at least 50% after treatment. A voxel-by-voxel group analysis was performed using SPM2, in comparison to a group of ten healthy women matched for age. The VAS score for pain was 81.8 ± 4.2 before ketamine and 31.8 ± 27.1 after ketamine. Eleven patients were considered ''good responders'' to ketamine. Responder and non-responder subgroups were similar in terms of pain intensity before ketamine. In comparison to responding patients and healthy subjects, non-responding patients exhibited a significant reduction in bilateral perfusion of the medial frontal gyrus. This cluster of hypoperfusion was highly predictive of non-response to ketamine (positive predictive value 100%, negative predictive value 91%). Brain perfusion SPECT may predict response to ketamine in hyperalgesic FM patients. (orig.)

  11. Predictive value of brain perfusion SPECT for ketamine response in hyperalgesic fibromyalgia

    Energy Technology Data Exchange (ETDEWEB)

    Guedj, Eric; Cammilleri, Serge; Colavolpe, Cecile; Taieb, David; Laforte, Catherine de; Mundler, Olivier [Centre Hospitalo-Universitaire de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Assistance Publique des Hopitaux de Marseille, Marseille Cedex 5 (France); Niboyet, Jean [Clinique La Phoceanne, Unite d' Etude et de Traitement de la Douleur, Marseille (France)

    2007-08-15

    Ketamine has been used successfully in various proportions of fibromyalgia (FM) patients. However, the response to this specific treatment remains largely unpredictable. We evaluated brain SPECT perfusion before treatment with ketamine, using voxel-based analysis. The objective was to determine the predictive value of brain SPECT for ketamine response. Seventeen women with FM (48 {+-} 11 years; ACR criteria) were enrolled in the study. Brain SPECT was performed before any change was made in therapy in the pain care unit. We considered that a patient was a good responder to ketamine if the VAS score for pain decreased by at least 50% after treatment. A voxel-by-voxel group analysis was performed using SPM2, in comparison to a group of ten healthy women matched for age. The VAS score for pain was 81.8 {+-} 4.2 before ketamine and 31.8 {+-} 27.1 after ketamine. Eleven patients were considered ''good responders'' to ketamine. Responder and non-responder subgroups were similar in terms of pain intensity before ketamine. In comparison to responding patients and healthy subjects, non-responding patients exhibited a significant reduction in bilateral perfusion of the medial frontal gyrus. This cluster of hypoperfusion was highly predictive of non-response to ketamine (positive predictive value 100%, negative predictive value 91%). Brain perfusion SPECT may predict response to ketamine in hyperalgesic FM patients. (orig.)

  12. Assessing paedophilia based on the haemodynamic brain response to face images

    DEFF Research Database (Denmark)

    Ponseti, Jorge; Granert, Oliver; Van Eimeren, Thilo;

    2016-01-01

    that human face processing is tuned to sexual age preferences. This observation prompted us to test whether paedophilia can be inferred based on the haemodynamic brain responses to adult and child faces. METHODS: Twenty-four men sexually attracted to prepubescent boys or girls (paedophiles) and 32 men...... stimuli to paedophiles....

  13. USING DIFFERENTIAL REINFORCEMENT TO DECREASE ACADEMIC RESPONSE LATENCIES OF AN ADOLESCENT WITH ACQUIRED BRAIN INJURY

    OpenAIRE

    Heinicke, Megan R; Carr, James E; Mozzoni, Michael P

    2009-01-01

    The present study investigated the effects of contingency-specifying rules and a token economy to decrease the latency to comply with academic instructions by a 16-year-old girl with acquired brain injury. Results showed that treatment was successful in reducing academic response latencies. These results replicate previous research in which differential reinforcement was used to decrease slow responding to academic tasks.

  14. Using Differential Reinforcement to Decrease Academic Response Latencies of an Adolescent with Acquired Brain Injury

    Science.gov (United States)

    Heinicke, Megan R.; Carr, James E.; Mozzoni, Michael P.

    2009-01-01

    The present study investigated the effects of contingency-specifying rules and a token economy to decrease the latency to comply with academic instructions by a 16-year-old girl with acquired brain injury. Results showed that treatment was successful in reducing academic response latencies. These results replicate previous research in which…

  15. The Acute Inflammatory Response in Trauma / Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects

    OpenAIRE

    R, Namas; A, Ghuma; L, Hermus; R, Zamora; DO Okonkwo; TR, Billiar; Y, Vodovotz

    2009-01-01

    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI). Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherently detrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and rege...

  16. Inflammatory cytokines in the brain: does the CNS shape immune responses?

    DEFF Research Database (Denmark)

    Owens, T; Renno, T; Taupin, V;

    1994-01-01

    Immune responses in the central nervous system (CNS) have traditionally been regarded as representing the intrusion of an unruly, ill-behaved mob of leukocytes into the well-ordered and organized domain of thought and reason. However, results accumulated over the past few years suggest that, far ...... may be subverted to autoimmunity, they suggest that the study of inflammatory autoimmune disease in the brain may shed light on the ability of the local environment to regulate immune responses....

  17. Biphasic modeling of brain tumor biomechanics and response to radiation treatment.

    Science.gov (United States)

    Angeli, Stelios; Stylianopoulos, Triantafyllos

    2016-06-14

    Biomechanical forces are central in tumor progression and response to treatment. This becomes more important in brain cancers where tumors are surrounded by tissues with different mechanical properties. Existing mathematical models ignore direct mechanical interactions of the tumor with the normal brain. Here, we developed a clinically relevant model, which predicts tumor growth accounting directly for mechanical interactions. A three-dimensional model of the gray and white matter and the cerebrospinal fluid was constructed from magnetic resonance images of a normal brain. Subsequently, a biphasic tissue growth theory for an initial tumor seed was employed, incorporating the effects of radiotherapy. Additionally, three different sets of brain tissue properties taken from the literature were used to investigate their effect on tumor growth. Results show the evolution of solid stress and interstitial fluid pressure within the tumor and the normal brain. Heterogeneous distribution of the solid stress exerted on the tumor resulted in a 35% spatial variation in cancer cell proliferation. Interestingly, the model predicted that distant from the tumor, normal tissues still undergo significant deformations while it was found that intratumoral fluid pressure is elevated. Our predictions relate to clinical symptoms of brain cancers and present useful tools for therapy planning. PMID:27086116

  18. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure

    KAUST Repository

    Baud, Maxime O.

    2016-05-03

    © 2016 European Sleep Research Society. Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment.

  19. Mapping brain response to social stress in rodents with c-fos expression: a review.

    Science.gov (United States)

    Martinez, M; Calvo-Torrent, A; Herbert, J

    2002-02-01

    Social defeat is an important event in the life of many animals, and forms part of the process of social control. Adapting to social defeat is thus an intrinsic part of social "homeostasis", and mal-adaptation may have pathological sequelae. Experimental models of social defeat (e.g. inter-male aggression) have existed for many years. However, very few studies have investigated the changes in brain activity in male animals exposed to the social stress of being defeated by another conspecific male, and in all these studies the expression of the immediate-early gene c-fos has been used as the marker of neuronal activity. In general, the results obtained inform that many areas of the brain, especially those involved in the general stress response, increase their activity when animals are exposed to an acute defeat. However, when animals are defeated repeatedly over many consecutive days, the level of activation of the brain shows different patterns of adaptation depending on the brain areas (varying from complete habituation to persistent activation). Discrepancies between studies may be due to differences in the experimental procedure. On the other hand, further research has to be conducted in order to understand what these changes in the brain activity mean in relation to the other stress responses to social defeat. Furthermore, knowing that the corresponding protein products of many immediate-early genes are transcription factors that can promote or inhibit the expression of target genes, research following this approach is also necessary.

  20. Fetal Magnetoencephalography--Achievements and Challenges in the Study of Prenatal and Early Postnatal Brain Responses: A Review

    Science.gov (United States)

    Sheridan, Carolin J.; Matuz, Tamara; Draganova, Rossitza; Eswaran, Hari; Preissl, Hubert

    2010-01-01

    Fetal magnetoencephalography (fMEG) is the only non-invasive method for investigating evoked brain responses and spontaneous brain activity generated by the fetus "in utero". Fetal auditory as well as visual-evoked fields have been successfully recorded in basic stimulus-response studies. Moreover, paradigms investigating precursors for cognitive…

  1. Monitoring Detrusor Oxygenation and Hemodynamics Noninvasively during Dysfunctional Voiding

    Directory of Open Access Journals (Sweden)

    Andrew J. Macnab

    2012-01-01

    Full Text Available The current literature indicates that lower urinary tract symptoms (LUTSs related to benign prostatic hyperplasia (BPH have a heterogeneous pathophysiology. Pressure flow studies (UDSs remain the gold standard evaluation methodology for such patients. However, as the function of the detrusor muscle depends on its vasculature and perfusion, the underlying causes of LUTS likely include abnormalities of detrusor oxygenation and hemodynamics, and available treatment options include agents thought to act on the detrusor smooth muscle and/or vasculature. Hence, near infrared spectroscopy (NIRS, an established optical methodology for monitoring changes in tissue oxygenation and hemodynamics, has relevance as a means of expanding knowledge related to the pathophysiology of BPH and potential treatment options. This methodological report describes how to conduct simultaneous NIRS monitoring of detrusor oxygenation and hemodynamics during UDS, outlines the clinical implications and practical applications of NIRS, explains the principles of physiologic interpretation of NIRS voiding data, and proposes an exploratory hypothesis that the pathophysiological causes underlying LUTS include detrusor dysfunction due to an abnormal hemodynamic response or the onset of oxygen debt during voiding.

  2. Investigation of neural correlates between perception of pain and hemodynamic response measured in the pre-frontal cortex using functional near infra-red spectroscopy

    Science.gov (United States)

    Krishnamurthy, Venkatagiri

    Perception of pain is multi-dimensional, comprising three major psychological dimensions: sensory-discriminative, motivational-affective and cognitive-evaluative. This dissertation study investigates the cognitive evaluation of pain, by acquiring functional Near Infra-Red Spectroscopic (fNIRS) measurements from the prefrontal cortex (PFC) areas, during mechanical and thermal pain stimulation induced on the subject's volar forearm. Clustered-wise analysis on the oxy-hemoglobin (HbO) response from specific PFC areas was followed by categorizing the resulting HbO response into early (0.1--12sec) and late (12.1--25sec) phases. For each respective phase, regression analysis was carried between the HbO-derived parameters and behaviorally measured pain rating. The major findings of this study include: (1) across both 41°C and 48°C thermal stimulation, significant DeltaHbO deactivation was observed during the late phase, in the left hemispheric (LH) anterior PFC (aPFC) or Brodmann area 10 (BA 10). (2) Significant correlates of pain rating were observed in the LH prefrontal areas: (a) under mechanical stimulation, early phase HbO-derived peak intensity (PI) from LH aPFC correlated with the pain rating. (b) Under both 41°C and 48°C thermal stimulation, late phase HbO-derived PI from the LH dorsolateral PFC (DLPFC or BA 46) showed correlation with the pain rating. (3) The significant correlates observed from the right hemispheric (RH) PFC were: (a) under mechanical stimulation, early phase HbO-derived FWHM from the RH aPFC correlated with the pain rating. (b) Under 41°C thermal stimulation, late phase HbO-derived PI from the RH DLPFC area correlated with the pain rating. (4) The late phase HbO-derived time to peak from LH aPFC reflected cognitive discrimination of two different pain levels (41°C and 48°C). The observed trend for DeltaHbO activation and deactivation could possibly be due to synaptic-induced vasodilation and vasoconstriction leading to increased or

  3. Magnetic-stimulation-related physiological artifacts in hemodynamic near-infrared spectroscopy signals.

    Directory of Open Access Journals (Sweden)

    Tiina Näsi

    Full Text Available Hemodynamic responses evoked by transcranial magnetic stimulation (TMS can be measured with near-infrared spectroscopy (NIRS. This study demonstrates that cerebral neuronal activity is not their sole contributor. We compared bilateral NIRS responses following brain stimulation to those from the shoulders evoked by shoulder stimulation and contrasted them with changes in circulatory parameters. The left primary motor cortex of ten subjects was stimulated with 8-s repetitive TMS trains at 0.5, 1, and 2 Hz at an intensity of 75% of the resting motor threshold. Hemoglobin concentration changes were measured with NIRS on the stimulated and contralateral hemispheres. The photoplethysmograph (PPG amplitude and heart rate were recorded as well. The left shoulder of ten other subjects was stimulated with the same protocol while the hemoglobin concentration changes in both shoulders were measured. In addition to PPG amplitude and heart rate, the pulse transit time was recorded. The brain stimulation reduced the total hemoglobin concentration (HbT on the stimulated and contralateral hemispheres. The shoulder stimulation reduced HbT on the stimulated shoulder but increased it contralaterally. The waveforms of the HbT responses on the stimulated hemisphere and shoulder correlated strongly with each other (r = 0.65-0.87. All circulatory parameters were also affected. The results suggest that the TMS-evoked NIRS signal includes components that do not result directly from cerebral neuronal activity. These components arise from local effects of TMS on the vasculature. Also global circulatory effects due to arousal may affect the responses. Thus, studies involving TMS-evoked NIRS responses should be carefully controlled for physiological artifacts and effective artifact removal methods are needed to draw inferences about TMS-evoked brain activity.

  4. Effect of three different dosages of magnesium sulfate on attenuating hemodynamic responses after electroconvulsive therapy: a randomized, double-blind, placebo-controlled trial

    International Nuclear Information System (INIS)

    Objective: The purpose of this randomized, double-blind, placebo-controlled crossover study was to compare the efficacy of three different dosages of MgSO/sub 4/ administration (10, 20, and 30 mg/kg) versus placebo on attenuation of cardiovascular response to electroconvulsive therapy (ECT). Methodology: Thirty-five adult patients scheduled for 8 ECT sessions were randomly assigned to be allocated twice into one of the four study groups: MgSO/sub 4/ 10 mg/kg (M10), MgSO/sub 4/ 20 mg/ kg (M20), MgSO/sub 4/ 30 mg/kg (M30), and placebo control (P). Systolic (SAP), diastolic (DAP) and mean arterial pressure (MAP) and heart rate (HR) were recorded at 0, 1, 3, and 10 minutes after termination of ECT-induced seizures. Duration of electroencephalographs (EEGs) and motor seizures and peak HR during convulsions were also recorded. Results: Changes in SAP, DAP, and MAP were significantly attenuated at 0, one, and three minutes after ECT in groups M20 and M30 compared with group P (P< 0.05). Peak HR changes were significantly less in groups M20 and M30 compared with groups M10 and P (P< 0.05). Duration of motor and EEG seizure activity was not significantly different among the four groups. Conclusion: Administration of either 20 or 30 mg/kg MgSO/sub 4/ significantly attenuated increased blood pressure and peak HR after ECT without decreasing seizure duration. (author)

  5. Pain in chronic pancreatitis: a salutogenic mechanism or a maladaptive brain response?

    Science.gov (United States)

    Fregni, Felipe; Pascual-Leone, Alvaro; Freedman, Steven D

    2007-01-01

    Pain in chronic pancreatitis is frequently refractory to medical and even surgical treatment. This refractoriness leads us to believe that a pancreas-independent, brain-mediated mechanism must be responsible. If so, several scenarios are worth considering. First, chronic pain could be the consequence of undesirable neuroplastic changes, by which pathology becomes established and causes disability. Alternatively, pain may be linked to the salutogenic (from salutogenesis, the Latin word for health and well-being) central nervous system response (we defined 'salutogenic response' as the specific modulation of the immune system induced by brain activity changes) to promote healing of the injured viscera. If so, chronic pain could index the ongoing nervous system attempt to promote healing. In this review, we discuss (1) the mechanisms of pain in chronic pancreatitis; (2) potential brain-related salutogenic mechanisms, and (3) the potential relationship of these two factors to the disease status. Furthermore, we consider these aspects in light of a new approach to treat visceral pain: transcranial magnetic stimulation, a noninvasive method of brain stimulation. PMID:17898531

  6. Hemodynamic and neural responses to renal denervation of the nerve to the clipped kidney by cryoablation in two-kidney, one-clip hypertensive rats.

    Science.gov (United States)

    Rossi, Noreen F; Pajewski, Russell; Chen, Haiping; Littrup, Peter J; Maliszewska-Scislo, Maria

    2016-01-15

    Renal artery stenosis is increasing in prevalence. Angioplasty plus stenting has not proven to be better than medical management. There has been a reluctance to use available denervation methodologies in this condition. We studied conscious, chronically instrumented, two-kidney, one-clip (2K-1C) Goldblatt rats, a model of renovascular hypertension, to test the hypothesis that renal denervation by cryoablation (cryo-DNX) of the renal nerve to the clipped kidney decreases mean arterial pressure (MAP), plasma and tissue ANG II, and contralateral renal sympathetic nerve activity (RSNA). Five-week-old male Sprague-Dawley rats underwent sham (ShC) or right renal artery clipping (2K-1C), placement of telemetry transmitters, and pair-feeding with a 0.4% NaCl diet. After 6 wk, rats were randomly assigned to cryo-DNX or sham cryotreatment (sham DNX) of the renal nerve to the clipped kidney. MAP was elevated in 2K-1C and decreased significantly in both ShC cryo-DNX and 2K-1C cryo-DNX. Tissue norepinephrine was ∼85% lower in cryo-DNX kidneys. Plasma ANG II was higher in 2K-1C sham DNX but not in 2K-1C cryo-DNX vs ShC. Renal tissue ANG II in the clipped kidney decreased after cryo-DNX. Baseline integrated RSNA of the unclipped kidney was threefold higher in 2K-1C versus ShC and decreased in 2K-1C cryo-DNX to values similar to ShC. Maximum reflex response of RSNA to baroreceptor unloading in 2K-1C was lower after cryo-DNX. Thus, denervation by cryoablation of the renal nerve to the clipped kidney decreases not only MAP but also plasma and renal tissue ANG II levels and RSNA to the contralateral kidney in conscious, freely moving 2K-1C rats.

  7. Dynamic brain mapping of behavior change: tracking response initiation and inhibition to changes in reinforcement rate.

    Science.gov (United States)

    Schlund, Michael W; Magee, Sandy; Hudgins, Caleb D

    2012-10-01

    Adaptive behavior change is supported by executive control processes distributed throughout a prefrontal-striatal-parietal network. Yet, the temporal dynamics of regions in the network have not been characterized. Using functional magnetic resonance imaging (fMRI), we tracked changes brain activation while subjects initiated and inhibited responding in accordance with changes in reinforcement rate. During imaging, subjects completed a free-operant task that involved repeated transitions between fixed-ratio reinforcement and extinction (RF:EXT), where reinforcement rate decreased and responding was inhibited, and between extinction and fixed-ratio reinforcement (EXT:RF), where reinforcement rate increased and responding was initiated. Our whole-brain temporal assessment revealed that transitions which required initiating and inhibiting responding prompted positive phasic responses in a prefrontal-parietal network, the insula and thalamus. However, response initiation prompted by an increase in reinforcement rate during the EXT:RF transition elicited positive phasic responses in reward-sensitive striatal regions. Furthermore, response inhibition prompted by a decrease in reinforcement rate during the RF:EXT transition elicited negative phasic responses in ventral frontal regions sensitive to value and contingency. Our findings highlight the temporal dynamics of a brain network that supports behavioral changes (initiation and inhibition) resulting from changes in local reinforcement rates.

  8. Computer Controlled Switching Device for Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    J. Tauchmanová

    2007-01-01

    Full Text Available This paper has two goals. The practical part deals with the design of a computer controlled switching device for an external stimulator for deep brain stimulation. The switching device is used during investigations with functional magnetic resonance for controlling signals leading to the deep brain stimulation (DBS electrode in the patient's brain. The motivation for designing this device was improve measured data quality and to enable new types of experiments.The theoretical part reports on early attempts to approach the problem of modeling and localizing the neural response of the human brain as a system identification and estimation task. The parametric identification method and real fMRI data are used for modeling the hemodynamic response.The project is in cooperation with 1st Faculty of Medicine, Charles University in Prague and Na Homolce hospital in Prague.

  9. Gender Differences in Human Single Neuron Responses to Male Emotional Faces

    OpenAIRE

    Morgan eNewhoff; Treiman, David M.; Smith, Kris A.; Steinmetz, Peter N.

    2015-01-01

    Well-documented differences in the psychology and behavior of men and women have spurred extensive exploration of gender's role within the brain, particularly regarding emotional processing. While neuroanatomical studies clearly show differences between the sexes, the functional effects of these differences are less understood. Neuroimaging studies have shown inconsistent locations and magnitudes of gender differences in brain hemodynamic responses to emotion. To better understand the neuroph...

  10. Gender differences in human single neuron responses to male emotional faces

    OpenAIRE

    Newhoff, Morgan; Treiman, David M.; Smith, Kris A.; Steinmetz, Peter N.

    2015-01-01

    Well-documented differences in the psychology and behavior of men and women have spurred extensive exploration of gender's role within the brain, particularly regarding emotional processing. While neuroanatomical studies clearly show differences between the sexes, the functional effects of these differences are less understood. Neuroimaging studies have shown inconsistent locations and magnitudes of gender differences in brain hemodynamic responses to emotion. To better understand the neuroph...

  11. Effect of oculomotor rehabilitation on accommodative responsivity in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Preethi Thiagarajan, BS Optom, MS, PhD

    2014-03-01

    Full Text Available Accommodative dysfunction is a common oculomotor sequelae of mild traumatic brain injury (mTBI. This study evaluated a range of dynamic (objective and static (subjective measures of accommodation in 12 nonstrabismic individuals with mTBI and near vision-related symptoms before and after oculomotor training (OMT and placebo (P training (6 wk, two sessions per week, 3 h of training each. Following OMT, the dynamics of accommodation improved markedly. Clinically, there was a significant increase in the maximum accommodative amplitude both monocularly and binocularly. In addition, the near vision symptoms reduced along with improved visual attention. None of the measures were found to change significantly following P training. These results provide evidence for a significant positive effect of the accommodatively based OMT on accommodative responsivity. Such improvement is suggestive of oculomotor learning, demonstrating considerable residual brain-visual system plasticity in the adult compromised brain.

  12. Untangling the Effect of Head Acceleration on Brain Responses to Blast Waves.

    Science.gov (United States)

    Mao, Haojie; Unnikrishnan, Ginu; Rakesh, Vineet; Reifman, Jaques

    2015-12-01

    Multiple injury-causing mechanisms, such as wave propagation, skull flexure, cavitation, and head acceleration, have been proposed to explain blast-induced traumatic brain injury (bTBI). An accurate, quantitative description of the individual contribution of each of these mechanisms may be necessary to develop preventive strategies against bTBI. However, to date, despite numerous experimental and computational studies of bTBI, this question remains elusive. In this study, using a two-dimensional (2D) rat head model, we quantified the contribution of head acceleration to the biomechanical response of brain tissues when exposed to blast waves in a shock tube. We compared brain pressure at the coup, middle, and contre-coup regions between a 2D rat head model capable of simulating all mechanisms (i.e., the all-effects model) and an acceleration-only model. From our simulations, we determined that head acceleration contributed 36-45% of the maximum brain pressure at the coup region, had a negligible effect on the pressure at the middle region, and was responsible for the low pressure at the contre-coup region. Our findings also demonstrate that the current practice of measuring rat brain pressures close to the center of the brain would record only two-thirds of the maximum pressure observed at the coup region. Therefore, to accurately capture the effects of acceleration in experiments, we recommend placing a pressure sensor near the coup region, especially when investigating the acceleration mechanism using different experimental setups. PMID:26458125

  13. Brain responses in 4-month-old infants are already language specific.

    Science.gov (United States)

    Friederici, Angela D; Friedrich, Manuela; Christophe, Anne

    2007-07-17

    Language is the most important faculty that distinguishes humans from other animals. Infants learn their native language fast and effortlessly during the first years of life, as a function of the linguistic input in their environment. Behavioral studies reported the discrimination of melodic contours [1] and stress patterns [2, 3] in 1-4-month-olds. Behavioral [4, 5] and brain measures [6-8] have shown language-independent discrimination of phonetic contrasts at that age. Language-specific discrimination, however, has been reported for phonetic contrasts only for 6-12-month-olds [9-12]. Here we demonstrate language-specific discrimination of stress patterns in 4-month-old German and French infants by using electrophysiological brain measures. We compare the processing of disyllabic words differing in their rhythmic structure, mimicking German words being stressed on the first syllable, e.g., pápa/daddy[13], and French ones being stressed on the second syllable, e.g., papá/daddy. Event-related brain potentials reveal that experience with German and French differentially affects the brain responses of 4-month-old infants, with each language group displaying a processing advantage for the rhythmic structure typical in its native language. These data indicate language-specific neural representations of word forms in the infant brain as early as 4 months of age. PMID:17583508

  14. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task

    Directory of Open Access Journals (Sweden)

    Carl-Johan Boraxbekk

    2015-07-01

    Full Text Available Objective: It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods: 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Results: Episodic memory performance improved significantly (p = 0.010 after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA. Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Conclusions: Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity.

  15. Methodology to assess response to stereotactic irradiation in lesions of the brain stem

    International Nuclear Information System (INIS)

    Purpose/Objective: Magnetic resonance image changes were measured at various time points after patients were treated with stereotactic irradiation to brain lesions in and around the brain stem. Results were correlated with the dose of ionizing radiation given to the same anatomical region. The methodology was developed to assess its utility in predicting brain stem injury and lesion response to high-dose, single-fraction radiation treatments. Materials and Methods: We developed a computerized system for spatially correlating and analyzing changes in T1 weighted, gadolinium enhanced, 3-D magnetic resonance (MR) image sets at multiple time points after treatment with stereotactic brain irradiation. Using this system, we were able to compare post-treatment with pre-treatment images used for computerized treatment planning. The treatment planning image sets contained the dose-volume information for each treatment. The measured quantities included pixel value, size of enhanced region, and dose point value. Twelve patients, having a minimum follow-up after radiosurgery of 6 months and brain lesions of various types, were selected for review: 1 glioma, 4 juvenile pilocytic astrocytomas, 1 cavernous hemangioma, 1 ependymoma, 1 primitive neuroectodermal tumor, 1 meningioma, and 3 metastases. Patient ages ranged from 3 to 59 years at time of treatment. The prescription doses to the lesions ranged from 12 to 20 Gy. The severity and duration of complications were noted for each. Results: Image intensity changes were measured and correlated with dose on a pixel-by-pixel basis in order to plot the time course of the changes. The estimate of spatial accuracy for locating the dose and voxel of tissue was within 2 mm. The sequelae of radiologic changes to irradiation were mixed. We observed increases as well as decreases in the density of the irradiated region with time after treatment which depended on the patient. One patient had nearly complete disappearance of the enhancing

  16. Bench-to-bedside review: An approach to hemodynamic monitoring - Guyton at the bedside

    OpenAIRE

    Magder, Sheldon

    2012-01-01

    Hemodynamic monitoring is used to identify deviations from hemodynamic goals and to assess responses to therapy. To accomplish these goals one must understand how the circulation is regulated. In this review I begin with an historical review of the work of Arthur Guyton and his conceptual understanding of the circulation and then present an approach by which Guyton's concepts can be applied at the bedside. Guyton argued that cardiac output and central venous pressure are determined by the int...

  17. The rate of training response to aerobic exercise affects brain function of rats.

    Science.gov (United States)

    Marton, Orsolya; Koltai, Erika; Takeda, Masaki; Mimura, Tatsuya; Pajk, Melitta; Abraham, Dora; Koch, Lauren Gerard; Britton, Steven L; Higuchi, Mitsuru; Boldogh, Istvan; Radak, Zsolt

    2016-10-01

    There is an increasing volume of data connecting capacity to respond to exercise training with quality of life and aging. In this study, we used a rat model in which animals were selectively bred for low and high gain in running distance to test t whether genetic segregation for trainability is associated with brain function and signaling processes in the hippocampus. Rats selected for low response (LRT) and high response training (HRT) were randomly divided into control or exercise group that trained five times a week for 30 min per day for three months at 70% VO2max. All four groups had similar running distance before training. With training, HRT rats showed significantly greater increases in VO2max and running distance than LRT rats (p brain-derived neurotrophic factor (BDNF), ratio of phospho and total cAMP-response element binding protein (CREB), and apoptotic index, also showed significant differences between LRT and HRT groups. These findings suggest that aerobic training responses are not localized to skeletal muscle, but differently involve signaling processes in the brain of LRT and HRT rats. PMID:27262284

  18. Extended-release naltrexone modulates brain response to drug cues in abstinent heroin-dependent patients.

    Science.gov (United States)

    Langleben, Daniel D; Ruparel, Kosha; Elman, Igor; Loughead, James W; Busch, Elliot L; Cornish, James; Lynch, Kevin G; Nuwayser, Elie S; Childress, Anna R; O'Brien, Charles P

    2014-03-01

    Drug cues play an important role in relapse to drug use. Naltrexone is an opioid antagonist that is used to prevent relapse in opioid dependence. Central opioidergic pathways may be implicated in the heightened drug cue-reactivity, but the effects of the opioid receptors' blockade on the brain responses to drug cues in opioid dependence are unknown. To pursue this question, we studied 17 abstinent i.v. heroin users with brain functional magnetic resonance imaging (fMRI) during exposure to visual heroin-related cues and matched neutral images before and 10-14 days after an injection of extended-release naltrexone (XRNTX). Whole brain analysis of variance of fMRI data showed main effect of XRNTX in the medial frontal gyrus, precentral gyrus, cuneus, precuneus, caudate and the amygdala. fMRI response was decreased in the amygdala, cuneus, caudate and the precentral gyrus and increased in the medial frontal gyrus and the precuneus. Higher plasma levels of naltrexone's major metabolite, 6-beta-naltrexol, were associated with larger reduction in the fMRI response to drug cues after XRNTX in the precentral, caudate and amygdala clusters. The present data suggest that XRNTX pharmacotherapy of opioid-dependent patients may, respectively, decrease and potentiate prefrontal and limbic cortical responses to drug cues and that this effect might be related to the XRNTX metabolism. Our findings call for further evaluation of the brain fMRI response to drug-related cues and of the 6-beta-naltrexol levels as potential biomarkers of XRNTX therapeutic effects in patients with opioid dependence.

  19. Estradiol levels modulate brain activity and negative responses to psychosocial stress across the menstrual cycle.

    Science.gov (United States)

    Albert, Kimberly; Pruessner, Jens; Newhouse, Paul

    2015-09-01

    Although ovarian hormones are thought to have a potential role in the well-known sex difference in mood and anxiety disorders, the mechanisms through which ovarian hormone changes contribute to stress regulation are not well understood. One mechanism by which ovarian hormones might impact mood regulation is by mediating the effect of psychosocial stress, which often precedes depressive episodes and may have mood consequences that are particularly relevant in women. In the current study, brain activity and mood response to psychosocial stress was examined in healthy, normally cycling women at either the high or low estradiol phase of the menstrual cycle. Twenty eight women were exposed to the Montreal Imaging Stress Task (MIST), with brain activity determined through functional magnetic resonance imaging, and behavioral response assessed with subjective mood and stress measures. Brain activity responses to psychosocial stress differed between women in the low versus high estrogen phase of the menstrual cycle: women with high estradiol levels showed significantly less deactivation in limbic regions during psychosocial stress compared to women with low estradiol levels. Additionally, women with higher estradiol levels also had less subjective distress in response to the MIST than women with lower estradiol levels. The results of this study suggest that, in normally cycling premenopausal women, high estradiol levels attenuate the brain activation changes and negative mood response to psychosocial stress. Normal ovarian hormone fluctuations may alter the impact of psychosocially stressful events by presenting periods of increased vulnerability to psychosocial stress during low estradiol phases of the menstrual cycle. This menstrual cycle-related fluctuation in stress vulnerability may be relevant to the greater risk for affective disorder or post-traumatic stress disorder in women.

  20. Brain Fingerprinting

    Directory of Open Access Journals (Sweden)

    Ravi Kumar

    2012-12-01

    Full Text Available Brain Fingerprinting is a scientific technique to determine whether or not specific information is stored in an individual's brain by measuring a electrical brain wave response to Word, phrases, or picture that are presented on computer screen. Brain Fingerprinting is a controversial forensic science technique that uses electroencephalography (EEG to determine whether specific information is stored in a subject's brain.

  1. Brain Fingerprinting

    Directory of Open Access Journals (Sweden)

    ravi kumar

    2012-12-01

    Full Text Available Brain Fingerprinting is a scientific technique to determine whether or not specific information is stored in an individual's brain by measuring a electrical brain wave response to Word, phrases, or picture that are presented on computer screen. Brain Fingerprinting is a controversial forensic science technique that uses electroencephalograph y (EEG to determine whether specific information is stored in a subject's brain

  2. Effects of L-glutamine supplementation on maternal and fetal hemodynamics in gestating ewes exposed to alcohol.

    Science.gov (United States)

    Sawant, Onkar B; Ramadoss, Jayanth; Hankins, Gary D; Wu, Guoyao; Washburn, Shannon E

    2014-08-01

    Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75-2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal L-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. L-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid-base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, L-glutamine supplementation mitigates alcohol-induced acid-base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy.

  3. Task-invariant brain responses to the social value of faces.

    Science.gov (United States)

    Todorov, Alexander; Said, Christopher P; Oosterhof, Nikolaas N; Engell, Andrew D

    2011-10-01

    In two fMRI experiments (n = 44) using tasks with different demands-approach-avoidance versus one-back recognition decisions-we measured the responses to the social value of faces. The face stimuli were produced by a parametric model of face evaluation that reduces multiple social evaluations to two orthogonal dimensions of valence and power [Oosterhof, N. N., & Todorov, A. The functional basis of face evaluation. Proceedings of the National Academy of Sciences, U.S.A., 105, 11087-11092, 2008]. Independent of the task, the response within regions of the occipital, fusiform, and lateral prefrontal cortices was sensitive to the valence dimension, with larger responses to low-valence faces. Additionally, there were extensive quadratic responses in the fusiform gyri and dorsal amygdala, with larger responses to faces at the extremes of the face valence continuum than faces in the middle. In all these regions, participants' avoidance decisions correlated with brain responses, with faces more likely to be avoided evoking stronger responses. The findings suggest that both explicit and implicit face evaluation engage multiple brain regions involved in attention, affect, and decision making.

  4. Optical tomography of the neonatal brain

    Energy Technology Data Exchange (ETDEWEB)

    Hebden, Jeremy C. [University College London, Department of Medical Physics and Bioengineering, London (United Kingdom); Austin, Topun [University College London, Department of Paediatrics and Child Health, London (United Kingdom)

    2007-11-15

    A new method of assessing neurological function and pathology in the newborn infant is being developed based on the transmission of near-infrared light across the brain. Absorption by blood over a range of wavelengths reveals a strong dependency on oxygenation status, and measurements of transmitted light enable the spatial variation in the concentrations of the oxygenated and de-oxygenated forms of hemoglobin to be derived. Optical tomography has so far provided static three-dimensional maps of blood volume and oxygenation as well as dynamic images revealing the brain's response to sensory stimulation and global hemodynamic changes. The imaging modality is being developed as a safe and non-invasive tool that can be utilized at the cotside in intensive care. Optical tomography of the healthy infant brain is also providing a means of studying neurophysiological processes during early development and the potential consequences of prematurity. (orig.)

  5. Cannabinoid Signaling and Neuroinflammatory Diseases: A Melting pot for the Regulation of Brain Immune Responses.

    Science.gov (United States)

    Chiurchiù, Valerio; Leuti, Alessandro; Maccarrone, Mauro

    2015-06-01

    The concept of the central nervous system (CNS) as an immune-privileged site, essentially due to the presence of the blood brain barrier, appears to be overly simplistic. Indeed, within healthy CNS immune activities are permitted and are required for neuronal function and host defense, not only due to the presence of the resident innate immune cells of the brain, but also by virtue of a complex cross-talk of the CNS with peripheral immune cells. Nonetheless, long-standing and persisting neuroinflammatory responses are most often detrimental and characterize several neuroinflammatory diseases, including multiple sclerosis, Alzheimer's disease and amyotrophic lateral sclerosis. A growing body of evidence suggests that Cannabis sativa-derived phytocannabinoids, as well as synthetic cannabinoids, are endowed with significant immunoregulatory and anti-inflammatory properties, both in peripheral tissues and in the CNS, through the activation of cannabinoid receptors. In this review, the immunomodulatory effects of cannabinoid signaling on the most relevant brain immune cells will be discussed. In addition, the impact of cannabinoid regulation on the overall integration of the manifold brain immune responses will also be highlighted, along with the implication of these compounds as potential agents for the management of neuroinflammatory disorders. PMID:25601726

  6. Gene expression changes in female zebrafish (Danio rerio) brain in response to acute exposure to methylmercury

    Science.gov (United States)

    Richter, Catherine A.; Garcia-Reyero, Natàlia; Martyniuk, Chris; Knoebl, Iris; Pope, Marie; Wright-Osment, Maureen K.; Denslow, Nancy D.; Tillitt, Donald E.

    2011-01-01

    Methylmercury (MeHg) is a potent neurotoxicant and endocrine disruptor that accumulates in aquatic systems. Previous studies have shown suppression of hormone levels in both male and female fish, suggesting effects on gonadotropin regulation in the brain. The gene expression profile in adult female zebrafish whole brain induced by acute (96 h) MeHg exposure was investigated. Fish were exposed by injection to 0 or 0.5(mu or u)g MeHg/g. Gene expression changes in the brain were examined using a 22,000-feature zebrafish microarray. At a significance level of pdevelopment and function, as well as lipid metabolism and molecular transport. These results support the involvement of oxidative stress and effects on protein structure in the mechanism of action of MeHg in the female brain. Future studies will compare the gene expression profile induced in response to MeHg with that induced by other toxicants and will investigate responsive genes as potential biomarkers of MeHg exposure.

  7. Dose-response relationships using brain-computer interface technology impact stroke rehabilitation.

    Science.gov (United States)

    Young, Brittany M; Nigogosyan, Zack; Walton, Léo M; Remsik, Alexander; Song, Jie; Nair, Veena A; Tyler, Mitchell E; Edwards, Dorothy F; Caldera, Kristin; Sattin, Justin A; Williams, Justin C; Prabhakaran, Vivek

    2015-01-01

    Brain-computer interfaces (BCIs) are an emerging novel technology for stroke rehabilitation. Little is known about how dose-response relationships for BCI therapies affect brain and behavior changes. We report preliminary results on stroke patients (n = 16, 11 M) with persistent upper extremity motor impairment who received therapy using a BCI system with functional electrical stimulation of the hand and tongue stimulation. We collected MRI scans and behavioral data using the Action Research Arm Test (ARAT), 9-Hole Peg Test (9-HPT), and Stroke Impact Scale (SIS) before, during, and after the therapy period. Using anatomical and functional MRI, we computed Laterality Index (LI) for brain activity in the motor network during impaired hand finger tapping. Changes from baseline LI and behavioral scores were assessed for relationships with dose, intensity, and frequency of BCI therapy. We found that gains in SIS Strength were directly responsive to BCI therapy: therapy dose and intensity correlated positively with increased SIS Strength (p ≤ 0.05), although no direct relationships were identified with ARAT or 9-HPT scores. We found behavioral measures that were not directly sensitive to differences in BCI therapy administration but were associated with concurrent brain changes correlated with BCI therapy administration parameters: therapy dose and intensity showed significant (p ≤ 0.05) or trending (0.05 stroke rehabilitation, therapy frequency may be less important than dose and intensity.

  8. Brain ischemia changes the long term response to antidepressant drugs in mice.

    Science.gov (United States)

    Deplanque, Dominique; Venna, Venugopal Reddy; Bordet, Régis

    2011-06-01

    Depression is a frequent but often unrecognized and under treated complication of stroke that has scarcely been investigated in animal models particularly regarding treatment issues. Using the Forced Swim Test (FST) and testing spontaneous motor activity, we studied whether a transient focal cerebral ischemia modifies mice behaviours and antidepressant drug effects. We first evaluated whether FST realized 2 days or 1 week after brain reperfusion may be routinely used in male Swiss mice previously submitted to a 15, 30 or 60-min transient occlusion of the right middle cerebral artery. We then evaluated behavioural changes up to 5 weeks in mice previously submitted to a 15-min ischemia. Behaviours according to the administration of imipramine or fluvoxamine at 1 and 5 weeks after a 15-min ischemia were finally evaluated. Transient ischemia was associated with a decrease in immobility in the FST performed 2 days after reperfusion while no changes were observed in 1 and 5 weeks post-ischemia groups. Changes were related neither to brain ischemia duration nor to infarct volume. At both 1 and 5 weeks after brain ischemia, a dramatic decrease in the antidepressant response to imipramine related to a decrease in climbing behaviour was observed while the effects of fluvoxamine were improved through an increase in both climbing and swimming. Behaviours in the FST were unrelated to any spontaneous motor activity changes. Responses to anti-depressant drugs are strongly modified in mice previously submitted to brain ischemia. Present results underline that not all antidepressant drugs are appropriate after ischemic stroke.

  9. Principal component analysis of the cytokine and chemokine response to human traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Adel Helmy

    Full Text Available There is a growing realisation that neuro-inflammation plays a fundamental role in the pathology of Traumatic Brain Injury (TBI. This has led to the search for biomarkers that reflect these underlying inflammatory processes using techniques such as cerebral microdialysis. The interpretation of such biomarker data has been limited by the statistical methods used. When analysing data of this sort the multiple putative interactions between mediators need to be considered as well as the timing of production and high degree of statistical co-variance in levels of these mediators. Here we present a cytokine and chemokine dataset from human brain following human traumatic brain injury and use principal component analysis and partial least squares discriminant analysis to demonstrate the pattern of production following TBI, distinct phases of the humoral inflammatory response and the differing patterns of response in brain and in peripheral blood. This technique has the added advantage of making no assumptions about the Relative Recovery (RR of microdialysis derived parameters. Taken together these techniques can be used in complex microdialysis datasets to summarise the data succinctly and generate hypotheses for future study.

  10. Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants.

    Science.gov (United States)

    Lin, Pei-Yi; Roche-Labarbe, Nadege; Dehaes, Mathieu; Carp, Stefan; Fenoglio, Angela; Barbieri, Beniamino; Hagan, Katherine; Grant, P Ellen; Franceschini, Maria Angela

    2013-01-01

    Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are reflected by corresponding changes in cerebral oxygen metabolism (CMRO₂). Thus, measures of CMRO₂ are reflective of neuronal viability and provide critical diagnostic information, making CMRO₂ an ideal target for bedside measurement of brain health. Brain-imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) yield measures of cerebral glucose and oxygen metabolism, but these techniques require the administration of radionucleotides, so they are used in only the most acute cases. Continuous-wave near-infrared spectroscopy (CWNIRS) provides non-invasive and non-ionizing radiation measures of hemoglobin oxygen saturation (SO₂) as a surrogate for cerebral oxygen consumption. However, SO₂ is less than ideal as a surrogate for cerebral oxygen metabolism as it is influenced by both oxygen delivery and consumption. Furthermore, measurements of SO₂ are not sensitive enough to detect brain injury hours after the insult, because oxygen consumption and delivery reach equilibrium after acute transients. We investigated the possibility of using more sophisticated NIRS optical methods to quantify cerebral oxygen metabolism at the bedside in healthy and brain-injured newborns. More specifically, we combined the frequency-domain NIRS (FDNIRS) measure of SO2 with the diffuse correlation spectroscopy (DCS) measure of blood flow index (CBFi) to yield an index of CMRO₂ (CMRO₂i). With the combined FDNIRS/DCS system we are able to quantify cerebral metabolism and hemodynamics. This represents an improvement over CWNIRS for detecting brain health, brain

  11. Flexible multivariate hemodynamics fMRI data analyses and simulations with PyHRF

    Directory of Open Access Journals (Sweden)

    Thomas eVincent

    2014-04-01

    Full Text Available As part of fMRI data analysis, the pyhrf package provides a set of tools for addressing the two main issues involved in intra-subject fMRI data analysis: (i the localization of cerebral regions that elicit evoked activity and (ii the estimation of activation dynamics also known as Hemodynamic Response Function (HRF recovery. To tackle these two problems, pyhrf implements the Joint Detection-Estimation framework~(JDE which recovers parcel-level HRFs and embeds an adaptive spatio-temporal regularization scheme of activation maps. With respect to the sole detection issue~(i, the classical voxelwise GLM procedure is also available through nipy, whereas Finite Impulse Response~(FIR and temporally regularized FIR models are concerned with HRF estimation~(ii and are specifically implemented in pyhrf. Several parcellation tools are also integrated such as spatial and functional clustering. Parcellations may be used for spatial averaging prior to FIR/RFIR analysis or to specify the spatial support of the HRF estimates in the JDE approach. These analysis procedures can be applied either to volumic data sets or to data projected onto the cortical surface. For validation purpose, this package is shipped with artificial and real fMRI data sets, which are used in this paper to compare the outcome of the different available approaches. The artificial fMRI data generator is also described to illustrate how to simulate different activation configurations, HRF shapes or nuisance components. To cope with the high computational needs for inference, pyhrf handles distributing computing by exploiting cluster units as well as multi-core machines. Finally, a dedicated viewer is presented, which handles $n$-dimensional images and provides suitable features to explore whole brain hemodynamics~(time series, maps, ROI mask overlay.

  12. Effect of oculomotor rehabilitation on vergence responsivity in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Preethi Thiagarajan, BS Optom, MS, PhD

    2013-12-01

    Full Text Available A range of dynamic and static vergence responses were evaluated in 12 individuals with mild traumatic brain injury (age: 29 +/– 3 yr having near vision symptoms. All measures were performed in a crossover design before and after oculomotor training (OMT and placebo (P training. Following OMT, peak velocity for both convergence and divergence increased significantly. Increased peak velocity was significantly correlated with increased clinically based vergence prism flipper rate. Steady-state response variability for convergence reduced significantly following OMT. The maximum amplitude of convergence, relative fusional amplitudes, and near stereoacuity improved significantly. In addition, symptoms reduced significantly, and visual attention improved markedly. None of the measures were found to change significantly following P training. The significant improvement in most aspects of vergence eye movements following OMT demonstrates considerable residual brain plasticity via oculomotor learning. The improved vergence affected positively on nearwork-related symptoms and visual attention.

  13. Hippocampal Neurogenesis and the Brain Repair Response to Brief Stereotaxic Insertion of a Microneedle

    Directory of Open Access Journals (Sweden)

    Shijie Song

    2013-01-01

    Full Text Available We tested the hypothesis that transient microinjury to the brain elicits cellular and humoral responses that stimulate hippocampal neurogenesis. Brief stereotaxic insertion and removal of a microneedle into the right hippocampus resulted in (a significantly increased expression of granulocyte-colony stimulating factor (G-CSF, the chemokine MIP-1a, and the proinflammatory cytokine IL12p40; (b pronounced activation of microglia and astrocytes; and (c increase in hippocampal neurogenesis. This study describes immediate and early humoral and cellular mechanisms of the brain’s response to microinjury that will be useful for the investigation of potential neuroprotective and deleterious effects of deep brain stimulation in various neuropsychiatric disorders.

  14. Dose-response testing of peptides by hippocampal brain slice recording.

    Science.gov (United States)

    Phillips, M I; Palovcik, R A

    1989-01-01

    The brain slice chamber described offers a method of studying, with intracellular electrodes, the relationship of response to dose of peptides. By raising the level of the slices 1 mm above the level of flowing perfusion medium, we can test substances in known concentrations, free from artifacts, during long duration, stable intracellular recordings. Manipulation of Ca2+/Mg2+ ratios in the medium can help to define synaptic and second messenger mediation of the responses. The addition of substances to the perfusion medium in this system could be combined with iontophoresis and/or micropressure techniques. Pathways in the slices may also be stimulated electrically and analyzed for the involvement of various synaptic transmitters. The results with the method so far show distinct differences among the peptides studied. Thus, there are several advantages to this method in establishing the physiological role of peptides in the brain.

  15. DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses.

    Science.gov (United States)

    Vialou, Vincent; Robison, Alfred J; Laplant, Quincey C; Covington, Herbert E; Dietz, David M; Ohnishi, Yoshinori N; Mouzon, Ezekiell; Rush, Augustus J; Watts, Emily L; Wallace, Deanna L; Iñiguez, Sergio D; Ohnishi, Yoko H; Steiner, Michel A; Warren, Brandon L; Krishnan, Vaishnav; Bolaños, Carlos A; Neve, Rachael L; Ghose, Subroto; Berton, Olivier; Tamminga, Carol A; Nestler, Eric J

    2010-06-01

    In contrast with the many studies of stress effects on the brain, relatively little is known about the molecular mechanisms of resilience, the ability of some individuals to escape the deleterious effects of stress. We found that the transcription factor DeltaFosB mediates an essential mechanism of resilience in mice. Induction of DeltaFosB in the nucleus accumbens, an important brain reward-associated region, in response to chronic social defeat stress was both necessary and sufficient for resilience. DeltaFosB induction was also required for the standard antidepressant fluoxetine to reverse behavioral pathology induced by social defeat. DeltaFosB produced these effects through induction of the GluR2 AMPA glutamate receptor subunit, which decreased the responsiveness of nucleus accumbens neurons to glutamate, and through other synaptic proteins. Together, these findings establish a previously unknown molecular pathway underlying both resilience and antidepressant action. PMID:20473292

  16. Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods

    Science.gov (United States)

    Durduran, Turgut

    Diffuse optical techniques were used to measure hemodynamics of tissues non-invasively. Spectroscopy and tomography of the brain, muscle and implanted tumors were carried out in animal models and humans. Two qualitatively different methods, diffuse optical tomography and diffuse correlation tomography, were hybridized permitting simultaneous measurement of total hemoglobin concentration, blood oxygen saturation and blood flow. This combination of information was processed further to derive estimates of oxygen metabolism (e.g. CMRO 2) in tissue. The diffuse correlation measurements of blood flow were demonstrated in human tissues, for the first time, demonstrating continous, non-invasive imaging of oxygen metabolism in large tissue volumes several centimeters below the tissue surface. The bulk of these investigations focussed on cerebral hemodynamics. Extensive validation of this methodology was carried out in in vivo rat brain models. Three dimensional images of deep tissue hemodynamics in middle cerebral artery occlusion and cortical spreading depression (CSD) were obtained. CSD hemodynamics were found to depend strongly on partial pressure of carbon dioxide. The technique was then adapted for measurement of human brain. All optical spectroscopic measurements of CMRO2 during functional activation were obtained through intact human skull non-invasively. Finally, a high spatio-temporal resolution measurement of cerebral blood flow due to somatosensory cortex activation following electrical forepaw stimulation in rats was carried out with laser speckle flowmetry. New analysis methods were introduced for laser speckle flowmetry. In other organs, deep tissue hemodynamics were measured on human calf muscle during exercise and cuff-ischemia and were shown to have some clinical utility for peripheral vascular disease. In mice tumor models, the measured hemodynamics were shown to be predictive of photodynamic therapy efficacy, again suggesting promise of clinical utility

  17. Carcinoma cells misuse the host tissue damage response to invade the brain

    OpenAIRE

    Chuang, Han-Ning; van Rossum, Denise; Sieger, Dirk; Siam, Laila; Klemm, Florian; Bleckmann, Annalen; Bayerlová, Michaela; Farhat, Katja; Scheffel, Jörg; Schulz, Matthias; Dehghani, Faramarz; Stadelmann, Christine; Hanisch, Uwe-Karsten; Binder, Claudia; Pukrop, Tobias

    2013-01-01

    The metastatic colonization of the brain by carcinoma cells is still barely understood, in particular when considering interactions with the host tissue. The colonization comes with a substantial destruction of the surrounding host tissue. This leads to activation of damage responses by resident innate immune cells to protect, repair, and organize the wound healing, but may distract from tumoricidal actions. We recently demonstrated that microglia, innate immune cells of the CNS, assist carci...

  18. Brain responses to repeated visual experience among low and high sensation seekers: role of boredom susceptibility

    OpenAIRE

    Jiang, Yang; Lianekhammy, Joann; Lawson, Adam; Guo, Chunyan; ynam, Donald; Joseph, Jane E.; Gold, Brian T.; Kelly, Thomas H.

    2009-01-01

    To better understand individual differences in sensation seeking and its components, including boredom susceptibility and experience seeking, we examined brain responses of high and low sensation seekers during repeated visual experience. Individuals scoring in the top and bottom quartiles from a college-aged population on the Brief Sensation-Seeking Scale (BSSS) participated in an event-related potentials (ERPs) experiment. Line drawings of common objects were randomly intermixed and present...

  19. Response inhibition in children with and without ADHD after traumatic brain injury

    OpenAIRE

    Ornstein, Tisha J.; Psych, C.; Max, Jeffrey E.; Schachar, Russell; Dennis, Maureen; Barnes, Marcia; Ewing-Cobbs, Linda; Levin, Harvey S.

    2012-01-01

    Children with attention-deficit/hyperactivity disorder (ADHD) and traumatic brain injury (TBI) show deficient response inhibition. ADHD itself is a common consequence of TBI, known as secondary ADHD (S-ADHD). Similarity in inhibitory control in children with TBI, S-ADHD, and ADHD would implicate impaired frontostriatal systems; however, it is first necessary to delineate similarities and differences in inhibitory control in these conditions. We compared performance of children with ADHD and t...

  20. MicroRNA responses to focal cerebral ischemia in male and female mouse brain

    OpenAIRE

    Lusardi, Theresa A; Murphy, Stephanie J.; Phillips, Jay I.; Chen, Yingxin; Catherine M Davis; Young, Jennifer M.; Thompson, Simon J.; Saugstad, Julie A

    2014-01-01

    Stroke occurs with greater frequency in men than in women across diverse ethnic backgrounds and nationalities. Work from our lab and others have revealed a sex-specific sensitivity to cerebral ischemia whereby males exhibit a larger extent of brain damage resulting from an ischemic event compared to females. Previous studies revealed that microRNA (miRNA) expression is regulated by cerebral ischemia in males; however, no studies to date have examined the effect of ischemia on miRNA responses ...

  1. Managing health worker migration: a qualitative study of the Philippine response to nurse brain drain

    Directory of Open Access Journals (Sweden)

    Dimaya Roland M

    2012-12-01

    Full Text Available Abstract Background The emigration of skilled nurses from the Philippines is an ongoing phenomenon that has impacted the quality and quantity of the nursing workforce, while strengthening the domestic economy through remittances. This study examines how the development of brain drain-responsive policies is driven by the effects of nurse migration and how such efforts aim to achieve mind-shifts among nurses, governing and regulatory bodies, and public and private institutions in the Philippines and worldwide. Methods Interviews and focus group discussions were conducted to elicit exploratory perspectives on the policy response to nurse brain drain. Interviews with key informants from the nursing, labour and immigration sectors explored key themes behind the development of policies and programmes that respond to nurse migration. Focus group discussions were held with practising nurses to understand policy recipients’ perspectives on nurse migration and policy. Results Using the qualitative data, a thematic framework was created to conceptualize participants’ perceptions of how nurse migration has driven the policy development process. The framework demonstrates that policymakers have recognised the complexity of the brain drain phenomenon and are crafting dynamic policies and programmes that work to shift domestic and global mindsets on nurse training, employment and recruitment. Conclusions Development of responsive policy to Filipino nurse brain drain offers a glimpse into a domestic response to an increasingly prominent global issue. As a major source of professionals migrating abroad for employment, the Philippines has formalised efforts to manage nurse migration. Accordingly, the Philippine paradigm, summarised by the thematic framework presented in this paper, may act as an example for other countries that are experiencing similar shifts in healthcare worker employment due to migration.

  2. Violence: heightened brain attentional network response is selectively muted in Down syndrome

    OpenAIRE

    Anderson, Jeffrey S.; Treiman, Scott M.; Ferguson, Michael A.; Nielsen, Jared A.; Edgin, Jamie O.; Dai, Li; Gerig, Guido; Korenberg, Julie R.

    2015-01-01

    Background The ability to recognize and respond appropriately to threat is critical to survival, and the neural substrates subserving attention to threat may be probed using depictions of media violence. Whether neural responses to potential threat differ in Down syndrome is not known. Methods We performed functional MRI scans of 15 adolescent and adult Down syndrome and 14 typically developing individuals, group matched by age and gender, during 50 min of passive cartoon viewing. Brain activ...

  3. Diet-Induced Weight Loss alters Functional Brain Responses during an Episodic Memory Task

    OpenAIRE

    Boraxbekk, Carl-Johan; Stomby, Andreas; Ryberg, Mats; Lindahl, Bernt; Larsson, Christel; Nyberg, Lars; Olsson, Tommy

    2015-01-01

    Objective: It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods: 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 mon...

  4. Physical attractiveness and sex as modulatory factors of empathic brain responses to pain

    OpenAIRE

    Kamila Jankowiak Siuda; Krystyna eRymarczyk; Łukasz eŻurawski; Katarzyna eJednoróg; Artur eMarchewka

    2015-01-01

    Empathy is a process that comprises affective sharing, imagining, and understanding the emotions and mental states of others. The brain structures involved in empathy for physical pain include the anterior insula (AI), and the anterior cingulate cortex (ACC). High empathy may lead people to undertake pro-social behaviour. It is important to understand how this process can be changed, and what factors these empathic responses depend on. Physical attractiveness is a major social and evolutiona...

  5. Physical attractiveness and sex as modulatory factors of empathic brain responses to pain

    OpenAIRE

    Jankowiak-Siuda, Kamila; Rymarczyk, Krystyna; Żurawski, Łukasz; Jednoróg, Katarzyna; Marchewka, Artur

    2015-01-01

    Empathy is a process that comprises affective sharing, imagining, and understanding the emotions and mental states of others. The brain structures involved in empathy for physical pain include the anterior insula (AI), and the anterior cingulate cortex (ACC). High empathy may lead people to undertake pro-social behavior. It is important to understand how this process can be changed, and what factors these empathic responses depend on. Physical attractiveness is a major social and evolutional ...

  6. Sex differences in synaptic plasticity in stress-responsive brain regions following chronic variable stress

    OpenAIRE

    Carvalho-Netto, Eduardo F.; Myers, Brent; Jones, Kenneth; Solomon, Matia B.; Herman, James P.

    2011-01-01

    Increased stress responsiveness is implicated in the etiology of mood and anxiety disorders, including depression and post-traumatic stress disorder. Additionally, stress-related affective disorders have a higher incidence in women than men. Chronic stress in rodents produces numerous neuromorphological changes in a variety of limbic brain regions. Here, we examined the sex-dependent differences in presynaptic innervation of the paraventricular nucleus of the hypothalamus (PVN), prefrontal co...

  7. From stimuli to motor responses : Decoding rules and decision mechanisms in the human brain

    OpenAIRE

    Bode, S

    2010-01-01

    In a dynamically changing environment, we are constantly required to flexibly react to stimuli. It is therefore necessary to adapt behaviour to environmental cues, as well as to successfully perceive relevant stimuli. The present work addressed the question of which brain areas form the basis for task preparation and decisions along the processing chain from stimuli to responses. It combined functional magnetic resonance imaging with multivariate pattern classification to search for the encod...

  8. Brain functional near infrared spectroscopy in human infants : cerebral cortical haemodynamics coupled to neuronal activation in response to sensory stimulation

    OpenAIRE

    Bartocci, Marco

    2006-01-01

    The assessment of cortical activation in the neonatal brain is crucial in the study of brain development, as it provides precious information for how the newborn infant processes external or internal stimuli. Thus far functional studies of neonates aimed to assess cortical responses to certain external stimuli are very few, due to the lack of suitable techniques to monitor brain activity of the newborn. Near Infrared Spectroscopy (NIRS) has been found to be suitable for func...

  9. The effect of combined hormonal contraceptives use on brain reactivity during response inhibition.

    Science.gov (United States)

    Gingnell, Malin; Bannbers, Elin; Engman, Jonas; Frick, Andreas; Moby, Lena; Wikström, Johan; Sundström-Poromaa, Inger

    2016-04-01

    Objectives Cognitive control, which can be described as the ability to moderate impulses, has not previously been investigated in users of combined hormonal contraception (CHC). Given the suggested modulatory role of ovarian steroids in prefrontal dopaminergic function, which in turn taps into cognitive control, this randomised, double-blinded, placebo-controlled oral contraceptive trial set out to investigate the brain activity pattern during response inhibition in CHC users. Methods Thirty-four women were randomised to one treatment cycle with a levonorgestrel-containing CHC or placebo. The women performed a Go/NoGo task to measure brain activity during response inhibition by use of event-related functional magnetic resonance imaging (fMRI) prior to and during the CHC/placebo treatment cycle. Results No differences between CHC and placebo users in number of correct inhibitions were found during treatment, but only women on CHC significantly improved their performance between the baseline and treatment assessments. During the treatment cycle CHC users displayed decreased activity in the right middle frontal gyrus in comparison with placebo users. No other significant activations were evident between treatment groups or within groups. Conclusion Overall, CHC use had marginal effects on brain activity during response inhibition. If anything, the findings of the study may suggest reduced effort or increased efficiency in maintaining orbitofrontal cortex inhibitory cognitive control when using a combined oral contraceptive. PMID:26291330

  10. Brain Mechanisms Underlying Urge Incontinence and its Response to Pelvic Floor Muscle Training

    Science.gov (United States)

    Griffiths, Derek; Clarkson, Becky; Tadic, Stasa D.; Resnick, Neil M.

    2016-01-01

    Purpose Urge urinary incontinence is a major problem, especially in the elderly, and to our knowledge the underlying mechanisms of disease and therapy are unknown. We used biofeedback assisted pelvic floor muscle training and functional brain imaging (functional magnetic resonance imaging) to investigate cerebral mechanisms, aiming to improve the understanding of brain-bladder control and therapy. Materials and Methods Before receiving biofeedback assisted pelvic floor muscle training functionally intact, older community dwelling women with urge urinary incontinence as well as normal controls underwent comprehensive clinical and bladder diary evaluation, urodynamic testing and brain functional magnetic resonance imaging. Evaluation was repeated after pelvic floor muscle training in those with urge urinary incontinence. Functional magnetic resonance imaging was done to determine the brain reaction to rapid bladder filling with urgency. Results Of 65 subjects with urge urinary incontinence 28 responded to biofeedback assisted pelvic floor muscle training with 50% or greater improvement of urge urinary incontinence frequency on diary. However, responders and nonresponders displayed 2 patterns of brain reaction. In pattern 1 in responders before pelvic floor muscle training the dorsal anterior cingulate cortex and the adjacent supplementary motor area were activated as well as the insula. After the training dorsal anterior cingulate cortex/supplementary motor area activation diminished and there was a trend toward medial prefrontal cortex deactivation. In pattern 2 in nonresponders before pelvic floor muscle training the medial prefrontal cortex was deactivated, which changed little after the training. Conclusions In older women with urge urinary incontinence there appears to be 2 patterns of brain reaction to bladder filling and they seem to predict the response and nonresponse to biofeedback assisted pelvic floor muscle training. Moreover, decreased cingulate

  11. MicroRNA: Small RNA mediators of the brains genomic response to environmental stress.

    Science.gov (United States)

    Hollins, Sharon L; Cairns, Murray J

    2016-08-01

    The developmental processes that establish the synaptic architecture of the brain while retaining capacity for activity-dependent remodeling, are complex and involve a combination of genetic and epigenetic influences. Dysregulation of these processes can lead to problems with neural circuitry which manifest in humans as a range of neurodevelopmental syndromes, such as schizophrenia, bipolar disorder and fragile X mental retardation. Recent studies suggest that prenatal, postnatal and intergenerational environmental factors play an important role in the aetiology of stress-related psychopathology. A number of these disorders have been shown to display epigenetic changes in the postmortem brain that reflect early life experience. These changes affect the regulation of gene expression though chromatin remodeling (transcriptional) and post-transcriptional influences, especially small noncoding microRNA (miRNA). These dynamic and influential molecules appear to play an important function in both brain development and its adaption to stress. In this review, we examine the role of miRNA in mediating the brain's response to both prenatal and postnatal environmental perturbations and explore how stress- induced alterations in miRNA expression can regulate the stress response via modulation of the immune system. Given the close relationship between environmental stress, miRNA, and brain development/function, we assert that miRNA hold a significant position at the molecular crossroads between neural development and adaptations to environmental stress. A greater understanding of the dynamics that mediate an individual's predisposition to stress-induced neuropathology has major human health benefits and is an important area of research. PMID:27317386

  12. Predictive value of brain perfusion SPECT for rTMS response in pharmacoresistant depression

    International Nuclear Information System (INIS)

    The aim of this study was to determine the predictive value of whole-brain voxel-based regional cerebral blood flow (rCBF) for repetitive transcranial magnetic stimulation (rTMS) response in patients with pharmacoresistant depression. Thirty-three right-handed patients who met DSM-IV criteria for major depressive disorder (unipolar or bipolar depression) were included before rTMS. rTMS response was defined as at least 50% reduction in the baseline Beck Depression Inventory scores. The predictive value of 99mTc-ethyl cysteinate dimer (ECD) single photon emission computed tomography (SPECT) for rTMS response was studied before treatment by comparing rTMS responders to non-responders at voxel level using Statistical Parametric Mapping (SPM) (p 0.10). In comparison to responders, non-responders showed significant hypoperfusions (p < 0.001, uncorrected) in the left medial and bilateral superior frontal cortices (BA10), the left uncus/parahippocampal cortex (BA20/BA35) and the right thalamus. The area under the curve for the combination of SPECT clusters to predict rTMS response was 0.89 (p < 0.001). Sensitivity, specificity, positive predictive value and negative predictive value for the combination of clusters were: 94, 73, 81 and 92%, respectively. This study shows that, in pharmacoresistant depression, pretreatment rCBF of specific brain regions is a strong predictor for response to rTMS in patients with homogeneous demographic/clinical features. (orig.)

  13. Spatial and Temporal Brain Responses to Noxious Heat Thermal Stimuli in Burning Mouth Syndrome.

    Science.gov (United States)

    Shinozaki, T; Imamura, Y; Kohashi, R; Dezawa, K; Nakaya, Y; Sato, Y; Watanabe, K; Morimoto, Y; Shizukuishi, T; Abe, O; Haji, T; Tabei, K; Taira, M

    2016-09-01

    Burning mouth syndrome (BMS) is an idiopathic orofacial pain condition. Although the pathophysiology of BMS is not clearly understood, central and peripheral neuropathic mechanisms are thought to be involved. The authors compared brain response to noxious heat stimuli in 16 right-handed women with primary BMS and 15 sex- and age-matched right-handed healthy female controls. A thermal stimulus sequence of 32 °C to 40 °C to 32 °C to 49 °C was repeated 4 times in a cycle. Warm and noxious heat stimuli were delivered with a Peltier thermode placed on the right palm or right lower lip for 32 s each in a session. Functional magnetic resonance imaging data were obtained by recording echoplanar images with a block design. Statistical Parametric Mapping 8 software was used to analyze the data. Patients and controls both reported feeling more pain during palm stimulation than during lip stimulation. Repetition of noxious heat stimulus on the lower lip but not on the palm induced habituation in brain activity in the cingulate cortex without reduction in pain perception. Multiple regression analysis revealed a correlation between perceived pain intensity and suppression of brain activity in the anterior cingulate cortex when the repeated thermal sequence was applied at the lower lip. Furthermore, the response of the parahippocampal area differed in BMS patients and controls when the same repeated thermal sequence was applied at the palm. The authors' findings indicate that BMS patients show specific brain responses due to impaired function of the central and peripheral nervous systems (clinical trial registration: UMIN000015002). PMID:27302878

  14. SU-E-QI-12: Morphometry Based Measurements of the Structural Response to Whole Brain Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, D; Castillo, R; Castillo, E; Guerrero, T [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: Although state of the art radiation therapy techniques for treating intracranial malignancies have eliminated acute brain injury, cognitive impairment occurs in 50–90% of patients who survive >6mo post irradiation. Quantitative characterization of therapy response is needed to facilitate therapeutic strategies to minimize radiation induced cognitive impairment [1]. Deformation based morphometry techniques [2, 3] are presented as a quantitative imaging biomarker of therapy response in patients receiving whole brain radiation for treating medulloblastoma. Methods: Post-irradiation magnetic resonance imaging (MRI) data sets were retrospectively analyzed in N=15 patients, >60 MR image datasets. As seen in Fig 1(a), volume changes at multiple time points post-irradiation were quantitatively measured in the cerebrum and ventricles with respect to pre-irradiation MRI. A high resolution image Template, was registered to the pre-irradiation MRI of each patient to create a brain atlas for the cerebrum, cerebellum, and ventricles. Skull stripped images for each patient were registered to the initial pre-treatment scan. Average volume changes in the labeled regions were measured using the determinant of the displacement field Jacobian. Results: Longitudinal measurements, Fig 1(b-c), show a negative correlation p=.06, of the cerebral volume change with the time interval from irradiation. A corresponding positive correlation, p=.01, between ventricular volume change and time interval from irradiation is seen. One sample t-test for correlations were computed using a Spearman method. An average decrease in cerebral volume, p=.08, and increase in ventricular volume, p<.001, was observed. The radiation dose was seen directly proportional to the induced volume changes in the cerebrum, r=−.44, p<.001, Fig 1(d). Conclusion: Results indicate that morphometric monitoring of brain tissue volume changes may potentially be used to quantitatively assess toxicity and response to

  15. Promoting Motor Function by Exercising the Brain

    Directory of Open Access Journals (Sweden)

    Stephane Perrey

    2013-01-01

    Full Text Available Exercise represents a behavioral intervention that enhances brain health and motor function. The increase in cerebral blood volume in response to physical activity may be responsible for improving brain function. Among the various neuroimaging techniques used to monitor brain hemodynamic response during exercise, functional near-infrared spectroscopy could facilitate the measurement of task-related cortical responses noninvasively and is relatively robust with regard to the subjects’ motion. Although the components of optimal exercise interventions have not been determined, evidence from animal and human studies suggests that aerobic exercise with sufficiently high intensity has neuroprotective properties and promotes motor function. This review provides an insight into the effect of physical activity (based on endurance and resistance exercises on brain function for producing movement. Since most progress in the study of brain function has come from patients with neurological disorders (e.g., stroke and Parkinson’s patients, this review presents some findings emphasizing training paradigms for restoring motor function.

  16. Brain 5-HT deficiency increases stress vulnerability and impairs antidepressant responses following psychosocial stress.

    Science.gov (United States)

    Sachs, Benjamin D; Ni, Jason R; Caron, Marc G

    2015-02-24

    Brain serotonin (5-HT) deficiency and exposure to psychosocial stress have both been implicated in the etiology of depression and anxiety disorders, but whether 5-HT deficiency influences susceptibility to depression- and anxiety-like phenotypes induced by psychosocial stress has not been formally established. Most clinically effective antidepressants increase the extracellular levels of 5-HT, and thus it has been hypothesized that antidepressant responses result from the reversal of endogenous 5-HT deficiency, but this hypothesis remains highly controversial. Here we evaluated the impact of brain 5-HT deficiency on stress susceptibility and antidepressant-like responses using tryptophan hydroxylase 2 knockin (Tph2KI) mice, which display 60-80% reductions in brain 5-HT. Our results demonstrate that 5-HT deficiency leads to increased susceptibility to social defeat stress (SDS), a model of psychosocial stress, and prevents the fluoxetine (FLX)-induced reversal of SDS-induced social avoidance, suggesting that 5-HT deficiency may impair antidepressant responses. In light of recent clinical and preclinical studies highlighting the potential of inhibiting the lateral habenula (LHb) to achieve antidepressant and antidepressant-like responses, we also examined whether LHb inhibition could achieve antidepressant-like responses in FLX-insensitive Tph2KI mice subjected to SDS. Our data reveal that using designer receptors exclusively activated by designer drugs (DREADDs) to inhibit LHb activity leads to reduced SDS-induced social avoidance behavior in both WT and Tph2KI mice. This observation provides additional preclinical evidence that inhibiting the LHb might represent a promising alternative therapeutic approach under conditions in which selective 5-HT reuptake inhibitors are ineffective.

  17. Relations between peripheral and brain serotonin measures and behavioural responses in a novelty test in pigs.

    Science.gov (United States)

    Ursinus, Winanda W; Bolhuis, J Elizabeth; Zonderland, Johan J; Rodenburg, T Bas; de Souza, Adriana S; Koopmanschap, Rudie E; Kemp, Bas; Korte-Bouws, Gerdien A H; Korte, S Mechiel; van Reenen, Cornelis G

    2013-06-13

    Pigs differ in their behavioural responses towards environmental challenges. Individual variation in maladaptive responses such as tail biting, may partly originate from underlying biological characteristics related to (emotional) reactivity to challenges and serotonergic system functioning. Assessing relations between behavioural responses and brain and blood serotonin parameters may help in understanding susceptibility to the development of maladaptive responses. The objective of the current study was, therefore, to assess the relationship between the pigs' serotonergic parameters measured in both blood and brain, and the behaviour of pigs during a novelty test. Pigs (n=31) were subjected to a novelty test at 11weeks of age, consisting of 5-min novel environment exposure after which a novel object (a bucket) was introduced for 5min. Whole blood serotonin, platelet serotonin level, and platelet serotonin uptake were determined at 13weeks of age. Levels of serotonin, its metabolite and serotonin turnover were determined at 19weeks of age in the frontal cortex, hypothalamus and hippocampus. The behaviour of the pigs was different during exposure to a novel object compared to the novel environment only, with more fear-related behaviours exhibited during novel object exposure. Platelet serotonin level and brain serotonergic parameters in the hippocampus were interrelated. Notably, the time spent exploring the test arena was significantly correlated with both platelet serotonin level and right hippocampal serotonin activity (turnover and concentration). In conclusion, the existence of an underlying biological trait - possibly fearfulness - may be involved in the pig's behavioural responses toward environmental challenges, and this is also reflected in serotonergic parameters. PMID:23685231

  18. Transcriptomic responses in mouse brain exposed to chronic excess of the neurotransmitter glutamate

    Directory of Open Access Journals (Sweden)

    Pal Ranu

    2010-06-01

    Full Text Available Abstract Background Increases during aging in extracellular levels of glutamate (Glu, the major excitatory neurotransmitter in the brain, may be linked to chronic neurodegenerative diseases. Little is known about the molecular responses of neurons to chronic, moderate increases in Glu levels. Genome-wide gene expression in brain hippocampus was examined in a unique transgenic (Tg mouse model that exhibits moderate Glu hyperactivity throughout the lifespan, the neuronal Glutamate dehydrogenase (Glud1 mouse, and littermate 9 month-old wild type mice. Results Integrated bioinformatic analyses on transcriptomic data were used to identify bio-functions, pathways and gene networks underlying neuronal responses to increased Glu synaptic release. Bio-functions and pathways up-regulated in Tg mice were those associated with oxidative stress, cell injury, inflammation, nervous system development, neuronal growth, and synaptic transmission. Increased gene expression in these functions and pathways indicated apparent compensatory responses offering protection against stress, promoting growth of neuronal processes (neurites and re-establishment of synapses. The transcription of a key gene in the neurite growth network, the kinase Ptk2b, was significantly up-regulated in Tg mice as was the activated (phosphorylated form of the protein. In addition to genes related to neurite growth and synaptic development, those associated with neuronal vesicle trafficking in the Huntington's disease signalling pathway, were also up-regulated. Conclusions This is the first study attempting to define neuronal gene expression patterns in response to chronic, endogenous Glu hyperactivity at brain synapses. The patterns observed were characterized by a combination of responses to stress and stimulation of nerve growth, intracellular transport and recovery.

  19. Eye movement related brain responses to emotional scenes during free viewing

    Science.gov (United States)

    Simola, Jaana; Torniainen, Jari; Moisala, Mona; Kivikangas, Markus; Krause, Christina M.

    2013-01-01

    Emotional stimuli are preferentially processed over neutral stimuli. Previous studies, however, disagree on whether emotional stimuli capture attention preattentively or whether the processing advantage is dependent on allocation of attention. The present study investigated attention and emotion processes by measuring brain responses related to eye movement events while 11 participants viewed images selected from the International Affective Picture System (IAPS). Brain responses to emotional stimuli were compared between serial and parallel presentation. An “emotional” set included one image with high positive or negative valence among neutral images. A “neutral” set comprised four neutral images. The participants were asked to indicate which picture—if any—was emotional and to rate that picture on valence and arousal. In the serial condition, the event-related potentials (ERPs) were time-locked to the stimulus onset. In the parallel condition, the ERPs were time-locked to the first eye entry on an image. The eye movement results showed facilitated processing of emotional, especially unpleasant information. The EEG results in both presentation conditions showed that the LPP (“late positive potential”) amplitudes at 400–500 ms were enlarged for the unpleasant and pleasant pictures as compared to neutral pictures. Moreover, the unpleasant scenes elicited stronger responses than pleasant scenes. The ERP results did not support parafoveal emotional processing, although the eye movement results suggested faster attention capture by emotional stimuli. Our findings, thus, suggested that emotional processing depends on overt attentional resources engaged in the processing of emotional content. The results also indicate that brain responses to emotional images can be analyzed time-locked to eye movement events, although the response amplitudes were larger during serial presentation. PMID:23970856

  20. Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord

    Science.gov (United States)

    Ersen, Ali; Elkabes, Stella; Freedman, David S.; Sahin, Mesut

    2015-02-01

    Objective. Microelectrodes implanted in the central nervous system (CNS) often fail in long term implants due to the immunological tissue response caused by tethering forces of the connecting wires. In addition to the tethering effect, there is a mechanical stress that occurs at the device-tissue interface simply because the microelectrode is a rigid body floating in soft tissue and it cannot reshape itself to comply with changes in the surrounding tissue. In the current study we evaluated the scar tissue formation to tetherless devices with two significantly different geometries in the rat brain and spinal cord in order to investigate the effects of device geometry. Approach. One of the implant geometries resembled the wireless, floating microstimulators that we are currently developing in our laboratory and the other was a (shank only) Michigan probe for comparison. Both electrodes were implanted into either the cervical spinal cord or the motor cortices, one on each side. Main results. The most pronounced astroglial and microglial reactions occurred within 20 μm from the device and decreased sharply at larger distances. Both cell types displayed the morphology of non-activated cells past the 100 μm perimeter. Even though the aspect ratios of the implants were different, the astroglial and microglial responses to both microelectrode types were very mild in the brain, stronger and yet limited in the spinal cord. Significance. These observations confirm previous reports and further suggest that tethering may be responsible for most of the tissue response in chronic implants and that the electrode size has a smaller contribution with floating electrodes. The electrode size may be playing primarily an amplifying role to the tethering forces in the brain whereas the size itself may induce chronic response in the spinal cord where the movement of surrounding tissues is more significant.

  1. Use of frontal lobe hemodynamics as reinforcement signals to an adaptive controller.

    Directory of Open Access Journals (Sweden)

    Marcello M DiStasio

    Full Text Available Decision-making ability in the frontal lobe (among other brain structures relies on the assignment of value to states of the animal and its environment. Then higher valued states can be pursued and lower (or negative valued states avoided. The same principle forms the basis for computational reinforcement learning controllers, which have been fruitfully applied both as models of value estimation in the brain, and as artificial controllers in their own right. This work shows how state desirability signals decoded from frontal lobe hemodynamics, as measured with near-infrared spectroscopy (NIRS, can be applied as reinforcers to an adaptable artificial learning agent in order to guide its acquisition of skills. A set of experiments carried out on an alert macaque demonstrate that both oxy- and deoxyhemoglobin concentrations in the frontal lobe show differences in response to both primarily and secondarily desirable (versus undesirable stimuli. This difference allows a NIRS signal classifier to serve successfully as a reinforcer for an adaptive controller performing a virtual tool-retrieval task. The agent's adaptability allows its performance to exceed the limits of the NIRS classifier decoding accuracy. We also show that decoding state desirabilities is more accurate when using relative concentrations of both oxyhemoglobin and deoxyhemoglobin, rather than either species alone.

  2. Branding and a child's brain: an fMRI study of neural responses to logos.

    Science.gov (United States)

    Bruce, Amanda S; Bruce, Jared M; Black, William R; Lepping, Rebecca J; Henry, Janice M; Cherry, Joseph Bradley C; Martin, Laura E; Papa, Vlad B; Davis, Ann M; Brooks, William M; Savage, Cary R

    2014-01-01

    Branding and advertising have a powerful effect on both familiarity and preference for products, yet no neuroimaging studies have examined neural response to logos in children. Food advertising is particularly pervasive and effective in manipulating choices in children. The purpose of this study was to examine how healthy children's brains respond to common food and other logos. A pilot validation study was first conducted with 32 children to select the most culturally familiar logos, and to match food and non-food logos on valence and intensity. A new sample of 17 healthy weight children were then scanned using functional magnetic resonance imaging. Food logos compared to baseline were associated with increased activation in orbitofrontal cortex and inferior prefrontal cortex. Compared to non-food logos, food logos elicited increased activation in posterior cingulate cortex. Results confirmed that food logos activate some brain regions in children known to be associated with motivation. This marks the first study in children to examine brain responses to culturally familiar logos. Considering the pervasiveness of advertising, research should further investigate how children respond at the neural level to marketing. PMID:22997054

  3. Branding and a child's brain: an fMRI study of neural responses to logos.

    Science.gov (United States)

    Bruce, Amanda S; Bruce, Jared M; Black, William R; Lepping, Rebecca J; Henry, Janice M; Cherry, Joseph Bradley C; Martin, Laura E; Papa, Vlad B; Davis, Ann M; Brooks, William M; Savage, Cary R

    2014-01-01

    Branding and advertising have a powerful effect on both familiarity and preference for products, yet no neuroimaging studies have examined neural response to logos in children. Food advertising is particularly pervasive and effective in manipulating choices in children. The purpose of this study was to examine how healthy children's brains respond to common food and other logos. A pilot validation study was first conducted with 32 children to select the most culturally familiar logos, and to match food and non-food logos on valence and intensity. A new sample of 17 healthy weight children were then scanned using functional magnetic resonance imaging. Food logos compared to baseline were associated with increased activation in orbitofrontal cortex and inferior prefrontal cortex. Compared to non-food logos, food logos elicited increased activation in posterior cingulate cortex. Results confirmed that food logos activate some brain regions in children known to be associated with motivation. This marks the first study in children to examine brain responses to culturally familiar logos. Considering the pervasiveness of advertising, research should further investigate how children respond at the neural level to marketing.

  4. Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia

    Directory of Open Access Journals (Sweden)

    R.L. Figueira

    2016-01-01

    Full Text Available Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC. This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group: 1 preterm control (PTC, 2 preterm ventilated (PTV, 3 preterm asphyxiated (PTA, 4 preterm asphyxiated and ventilated (PTAV, 5 term control (TC, 6 term ventilated (TV, 7 term asphyxiated (TA, and 8 term asphyxiated and ventilated (TAV. We measured body, brain, and intestine weights and respective ratios [(BW, (BrW, (IW, (BrW/BW and (IW/BW]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus and intestine (jejunum/ileum tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP. IW was lower in the TA than in the other terms (P<0.05, and the IW/BW ratio was lower in the TA than in the TAV (P<0.005. PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex and TA (cortex/hippocampus (P<0.005. I-FABP was higher in PTAV (P<0.005 and TA (ileum (P<0.05. I-FABP expression was increased in PTAV subgroup (P<0.0001. Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers.

  5. Brain Circuitry Supporting Multi-Organ Autonomic Outflow in Response to Nausea.

    Science.gov (United States)

    Sclocco, Roberta; Kim, Jieun; Garcia, Ronald G; Sheehan, James D; Beissner, Florian; Bianchi, Anna M; Cerutti, Sergio; Kuo, Braden; Barbieri, Riccardo; Napadow, Vitaly

    2016-02-01

    While autonomic outflow is an important co-factor of nausea physiology, central control of this outflow is poorly understood. We evaluated sympathetic (skin conductance level) and cardiovagal (high-frequency heart rate variability) modulation, collected synchronously with functional MRI (fMRI) data during nauseogenic visual stimulation aimed to induce vection in susceptible individuals. Autonomic data guided analysis of neuroimaging data, using a stimulus-based (analysis windows set by visual stimulation protocol) and percept-based (windows set by subjects' ratings) approach. Increased sympathetic and decreased parasympathetic modulation was associated with robust and anti-correlated brain activity in response to nausea. Specifically, greater autonomic response was associated with reduced fMRI signal in brain regions such as the insula, suggesting an inhibitory relationship with premotor brainstem nuclei. Interestingly, some sympathetic/parasympathetic specificity was noted. Activity in default mode network and visual motion areas was anti-correlated with parasympathetic outflow at peak nausea. In contrast, lateral prefrontal cortical activity was anti-correlated with sympathetic outflow during recovery, soon after cessation of nauseogenic stimulation. These results suggest divergent central autonomic control for sympathetic and parasympathetic response to nausea. Autonomic outflow and the central autonomic network underlying ANS response to nausea may be an important determinant of overall nausea intensity and, ultimately, a potential therapeutic target.

  6. Maturation of Sensori-Motor Functional Responses in the Preterm Brain.

    Science.gov (United States)

    Allievi, Alessandro G; Arichi, Tomoki; Tusor, Nora; Kimpton, Jessica; Arulkumaran, Sophie; Counsell, Serena J; Edwards, A David; Burdet, Etienne

    2016-01-01

    Preterm birth engenders an increased risk of conditions like cerebral palsy and therefore this time may be crucial for the brain's developing sensori-motor system. However, little is known about how cortical sensori-motor function matures at this time, whether development is influenced by experience, and about its role in spontaneous motor behavior. We aimed to systematically characterize spatial and temporal maturation of sensori-motor functional brain activity across this period using functional MRI and a custom-made robotic stimulation device. We studied 57 infants aged from 30 + 2 to 43 + 2 weeks postmenstrual age. Following both induced and spontaneous right wrist movements, we saw consistent positive blood oxygen level-dependent functional responses in the contralateral (left) primary somatosensory and motor cortices. In addition, we saw a maturational trend toward faster, higher amplitude, and more spatially dispersed functional responses; and increasing integration of the ipsilateral hemisphere and sensori-motor associative areas. We also found that interhemispheric functional connectivity was significantly related to ex-utero exposure, suggesting the influence of experience-dependent mechanisms. At term equivalent age, we saw a decrease in both response amplitude and interhemispheric functional connectivity, and an increase in spatial specificity, culminating in the establishment of a sensori-motor functional response similar to that seen in adults.

  7. Noninvasive optical evaluation of low frequency oscillations in prefrontal cortex hemodynamics during verbal working memory

    Science.gov (United States)

    Li, Ting; Zhao, Yue; Li, Kai; Sun, Yunlong

    2014-03-01

    The low frequency oscillation (LFO) around 0.1 Hz has been observed recently in cerebral hemodynamic signals during rest/sleep, enhanced breathing, and head- up-tilting, showing that cerebral autoregulation can be accessed by LFOs. However, many brain function researches require direct measurement of LFOs during specified brain function activities. This pilot study explored using near-infrared spectroscopy/imaging (NIRS) to noninvasively and simultaneously detect LFOs of prefrontal cerebral hemodynamics (i.e., oxygenated/deoxygenated/total hemoglobin concentration: △[oxy-Hb]/ △[deoxy-Hb]/ △[tot-Hb]) during N-back visual verbal working memory task. The LFOs were extracted from the measured variables using power spectral analysis. We found the brain activation sites struck clear LFOs while other sites did not. The LFO of △[deoxy-Hb] acted as a negative pike and ranged in (0.05, 0.1) Hz, while LFOs of △[oxy-Hb] and △[tot-Hb] acted as a positive pike and ranged in (0.1, 0.15) Hz. The amplitude difference and frequency lag between △[deoxy-Hb] and △[oxy-Hb]/ △[tot-Hb] produced a more focused and sensitive activation map compare to hemodynamic amplitude-quantified activation maps. This study observed LFOs in brain activities and showed strong potential of LFOs in accessing brain functions.

  8. Metastatic brain cancer: prediction of response to whole-brain helical tomotherapy with simultaneous intralesional boost for metastatic disease using quantitative MR imaging features

    Science.gov (United States)

    Sharma, Harish; Bauman, Glenn; Rodrigues, George; Bartha, Robert; Ward, Aaron

    2014-03-01

    The sequential application of whole brain radiotherapy (WBRT) and more targeted stereotactic radiosurgery (SRS) is frequently used to treat metastatic brain tumors. However, SRS has side effects related to necrosis and edema, and requires separate and relatively invasive localization procedures. Helical tomotherapy (HT) allows for a SRS-type simultaneous infield boost (SIB) of multiple brain metastases, synchronously with WBRT and without separate stereotactic procedures. However, some patients' tumors may not respond to HT+SIB, and would be more appropriately treated with radiosurgery or conventional surgery despite the additional risks and side effects. As a first step toward a broader objective of developing a means for response prediction to HT+SIB, the goal of this study was to investigate whether quantitative measurements of tumor size and appearance (including first- and second-order texture features) on a magnetic resonance imaging (MRI) scan acquired prior to treatment could be used to differentiate responder and nonresponder patient groups after HT+SIB treatment of metastatic disease of the brain. Our results demonstrated that smaller lesions may respond better to this form of therapy; measures of appearance provided limited added value over measures of size for response prediction. With further validation on a larger data set, this approach may lead to a means for prediction of individual patient response based on pre-treatment MRI, supporting appropriate therapy selection for patients with metastatic brain cancer.

  9. Phase lagging model of brain response to external stimuli - modeling of single action potential

    CERN Document Server

    Seetharaman, Karthik; Kulish, Vladimir V

    2012-01-01

    In this paper we detail a phase lagging model of brain response to external stimuli. The model is derived using the basic laws of physics like conservation of energy law. This model eliminates the paradox of instantaneous propagation of the action potential in the brain. The solution of this model is then presented. The model is further applied in the case of a single neuron and is verified by simulating a single action potential. The results of this modeling are useful not only for the fundamental understanding of single action potential generation, but also they can be applied in case of neuronal interactions where the results can be verified against the real EEG signal.

  10. Early changes of auditory brain stem evoked response after radiotherapy for nasopharyngeal carcinoma - a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Lau, S.K.; Wei, W.I.; Sham, J.S.T.; Choy, D.T.K.; Hui, Y. (Queen Mary Hospital, Hong Kong (Hong Kong))

    1992-10-01

    A prospective study of the effect of radiotherapy for nasopharyngeal carcinoma on hearing was carried out on 49 patients who had pure tone, impedance audiometry and auditory brain stem evoked response (ABR) recordings before, immediately, three, six and 12 months after radiotherapy. Fourteen patients complained of intermittent tinnitus after radiotherapy. We found that 11 initially normal ears of nine patients developed a middle ear effusion, three to six months after radiotherapy. There was mixed sensorineural and conductive hearing impairment after radiotherapy. Persistent impairment of ABR was detected immediately after completion of radiotherapy. The waves I-III and I-V interpeak latency intervals were significantly prolonged one year after radiotherapy. The study shows that radiotherapy for nasopharyngeal carcinoma impairs hearing by acting on the middle ear, the cochlea and the brain stem auditory pathway. (Author).

  11. Exposures to conditioned flavours with different hedonic values induce contrasted behavioural and brain responses in pigs.

    Directory of Open Access Journals (Sweden)

    Caroline Clouard

    Full Text Available This study investigated the behavioural and brain responses towards conditioned flavours with different hedonic values in juvenile pigs. Twelve 30-kg pigs were given four three-day conditioning sessions: they received three different flavoured meals paired with intraduodenal (i.d. infusions of 15% glucose (F(Glu, lithium chloride (F(LiCl, or saline (control treatment, F(NaCl. One and five weeks later, the animals were subjected to three two-choice feeding tests without reinforcement to check the acquisition of a conditioned flavour preference or aversion. In between, the anaesthetised pigs were subjected to three (18FDG PET brain imaging coupled with an olfactogustatory stimulation with the conditioned flavours. During conditioning, the pigs spent more time lying inactive, and investigated their environment less after the F(LiCl than the F(NaCl or F(Glu meals. During the two-choice tests performed one and five weeks later, the F(NaCl and F(Glu foods were significantly preferred over the F(LICl food even in the absence of i.d. infusions. Surprisingly, the F(NaCl food was also preferred over the F(Glu food during the first test only, suggesting that, while LiCl i.d. infusions led to a strong flavour aversion, glucose infusions failed to induce flavour preference. As for brain imaging results, exposure to aversive or less preferred flavours triggered global deactivation of the prefrontal cortex, specific activation of the posterior cingulate cortex, as well as asymmetric brain responses in the basal nuclei and the temporal gyrus. In conclusion, postingestive visceral stimuli can modulate the flavour/food hedonism and further feeding choices. Exposure to flavours with different hedonic values induced metabolism differences in neural circuits known to be involved in humans in the characterization of food palatability, feeding motivation, reward expectation, and more generally in the regulation of food intake.

  12. 经颅多普勒超声对脑死亡患者颅内血流动力学的观察%Observation of intracranial hemodynamics in brain death through transcranial doppler ultrasound

    Institute of Scientific and Technical Information of China (English)

    王玉珍; 何奕涛

    2012-01-01

    目的 观察脑死亡患者的脑血流频谱演变过程.方法 采用经颅多普勒超声(TCD)检测脑死亡患者双侧大脑中动脉(MCA)的血流情况.结果 20例临床诊断脑死亡患者的MCA血流速度6~37 cm/s,平均(12.13 ±3.15) cm/s.频谱变化有振荡波(舒张期反向波)、钉子波(收缩期尖小波形)、无血流信号三种TCD特征性频谱,并随病情进展依次出现.20例患者均在出现振荡波频谱后8d内出现心跳不可逆停止,其中有90%(18例)的患者血流频谱出现振荡波-钉子波-无血流信号的演变过程.结论 振荡波、钉子波及血流信号消失这三种规律性演变的特征性TCD血流频谱能辅助脑死亡的诊断.%Objective To observe the evolution process of cerebral blood flow spectrum in brain death by transcranial doppler ultrasound.Methods To detect the blood flow of bilateral middle cerebral artery in brain dead patients by transcranial doppler ultrasound.Results Twenty brain dead patients were collected in the study.The blood flow velocity of middle cerebral artery ranged s from 6 to 37cm/s,and the mean velocity was (12.13 ± 3.15)cm/s.There were three characteristic spectrums which include oscillatory wave (reverse wave in diastolic),nails wave (tip small wave in systolic),no blood flow sign,and they appeared in turn accoerding to worsen of the disease.The heartbeat irreversibly stopped within 8 days after the appearing of oscillatory wave,and ninty percent of the cases had the regular blood flow spectrums of oscillatory wave-nails wave-no blood flow sign.Conclusion The three regularly characteristic transcranial doppler ultrasound blood flow spectrums,which include oscillatory wave,nails wave and no blood flow sign could facilitate the diagnosis of brain death.

  13. Radiation protection in hemodynamics work process: the look of the multidisciplinary team

    International Nuclear Information System (INIS)

    The study was conducted in a hemodynamics service of a public hospital in Florianopolis, SC, Brazil. Qualitative research with the participation of 13 professionals from a multidisciplinary team: doctors, technicians, technologists in radiology and nurses. The research material was extracted from the observations, semi-structured interviews and documentary analysis. The responses were grouped into three categories relating to: training of hemodynamic professionals and the perception of radiological protection in the work process; occupational exposure and safety of the professionals of Hemodynamics; and continuing education in hemodynamic service. Professionals are daily exposed to ionizing radiation, and for being long procedures, lead to high levels of exposure in workers. In hemodynamic services the risk of biological effects are cumulative, because radiodiagnostic procedures include issuing the higher doses of ionizing radiation in which the personnel exposure is critical. The workforce in the service researched mostly consists of technical professionals who reported little knowledge of radiation protection and ionizing radiation and that this issue was not addressed during their training. However, despite mention little knowledge about radiological protection, participants demonstrated understand the biological effects, especially with regard to pathologies caused by frequent exposure without protection to ionizing radiation. These professionals said they have no knowledge of the proper use of radiological protection equipment and the dosimeter, and that the institution does not provide all individual protective equipment required for the procedures performed in the hemodynamic service. Permanent education in hemodynamic service is very important part in the work process, though, cited by participants as little effectiveness in the institution, even when the professionals show interest in the area. Knowledge of the team providing hemodynamic service calls

  14. Effect of iptakalim hydrochloride on hemodynamics

    Institute of Scientific and Technical Information of China (English)

    Qing-leiZHU; HaiWANG; Wen-binXIAO

    2004-01-01

    AIM: To study the effect of iptakalim hydrochloride (Ipt) on hemodynamics. METHODS: Effect of Ipt on hemodynamics were studied in anesthetized nomotensive dogs, conscious nomotensive rats (NTR), and stroke prone spontaneously hypertensive rats (SHRsp), respectively. RESULTS: In pentobarbital anesthetized nomotensive dogs, Ipt at doses of 0.125, 0.25, 0.5,1.0, and 2.0 mg/kg iv could dose-dependently decrease blood pressure (BP), with the decrease of systolic BP equivalent

  15. Invasive hemodynamic monitoring in the postoperative period of cardiac surgery

    Directory of Open Access Journals (Sweden)

    Desanka Dragosavac

    1999-08-01

    Full Text Available OBJETIVE: To assess the hemodynamic profile of cardiac surgery patients with circulatory instability in the early postoperative period (POP. METHODS: Over a two-year period, 306 patients underwent cardiac surgery. Thirty had hemodynamic instability in the early POP and were monitored with the Swan-Ganz catheter. The following parameters were evaluated: cardiac index (CI, systemic and pulmonary vascular resistance, pulmonary shunt, central venous pressure (CVP, pulmonary capillary wedge pressure (PCWP, oxygen delivery and consumption, use of vasoactive drugs and of circulatory support. RESULTS: Twenty patients had low cardiac index (CI, and 10 had normal or high CI. Systemic vascular resistance was decreased in 11 patients. There was no correlation between oxygen delivery (DO2 and consumption (VO2, p=0.42, and no correlation between CVP and PCWP, p=0.065. Pulmonary vascular resistance was decreased in 15 patients and the pulmonary shunt was increased in 19. Two patients with CI < 2L/min/m² received circulatory support. CONCLUSION: Patients in the POP of cardiac surgery frequently have a mixed shock due to the systemic inflammatory response syndrome (SIRS. Therefore, invasive hemodynamic monitoring is useful in handling blood volume, choice of vasoactive drugs, and indication for circulatory support.

  16. Hormonal contraceptives suppress oxytocin-induced brain reward responses to the partner's face.

    Science.gov (United States)

    Scheele, Dirk; Plota, Jessica; Stoffel-Wagner, Birgit; Maier, Wolfgang; Hurlemann, René

    2016-05-01

    The hypothalamic peptide oxytocin (OXT) has been identified as a key modulator of pair-bonding in men, but its effects in women are still elusive. Moreover, there is substantial evidence that hormonal contraception (HC) influences partner preferences and sexual satisfaction, which constitute core domains of OXT function. We thus hypothesized that OXT effects on partner-related behavioral and neural responses could be significantly altered in women using HC. In this functional magnetic resonance imaging study involving 40 pair-bonded women, 21 of whom were using HC, we investigated whether a 24-IU nasal dose of OXT would modulate brain reward responses evoked by the romantic partner's face relative to the faces of familiar and unfamiliar people. Treatment with OXT increased the perceived attractiveness of the partner relative to other men, which was paralleled by elevated responses in reward-associated regions, including the nucleus accumbens. These effects of OXT were absent in women using HC. Our results confirm and extend previous findings in men that OXT interacts with the brain reward system to reinforce partner value representations, indicating a common OXT-dependent mechanism underlying partner attraction in both sexes. This mechanism may be disturbed in women using HC, suggesting that gonadal steroids could alter partner-specific OXT effects. PMID:26722017

  17. Brain activity of adolescents with high functioning autism in response to emotional words and facial emoticons.

    Directory of Open Access Journals (Sweden)

    Doug Hyun Han

    Full Text Available Studies of social dysfunction in patients with autism spectrum disorder (ASD have generally focused on the perception of emotional words and facial affect. Brain imaging studies have suggested that the fusiform gyrus is associated with both the comprehension of language and face recognition. We hypothesized that patients with ASD would have decreased ability to recognize affect via emotional words and facial emoticons, relative to healthy comparison subjects. In addition, we expected that this decreased ability would be associated with altered activity of the fusiform gyrus in patients with ASD. Ten male adolescents with ASDs and ten age and sex matched healthy comparison subjects were enrolled in this case-control study. The diagnosis of autism was further evaluated with the Autism Diagnostic Observation Schedule. Brain activity was assessed using functional magnetic resonance imaging (fMRI in response to emotional words and facial emoticon presentation. Sixty emotional words (45 pleasant words +15 unpleasant words were extracted from a report on Korean emotional terms and their underlying dimensions. Sixty emoticon faces (45 pleasant faces +15 unpleasant faces were extracted and modified from on-line sites. Relative to healthy comparison subjects, patients with ASD have increased activation of fusiform gyrus in response to emotional aspects of words. In contrast, patients with ASD have decreased activation of fusiform gyrus in response to facial emoticons, relative to healthy comparison subjects. We suggest that patients with ASD are more familiar with word descriptions than facial expression as depictions of emotion.

  18. Case Study : Auditory brain responses in a minimally verbal child with autism and cerebral palsy

    Directory of Open Access Journals (Sweden)

    Shu Hui Yau

    2015-06-01

    Full Text Available An estimated 30% of individuals with autism spectrum disorders (ASD remain minimally verbal into late childhood, but research on cognition and brain function in ASD focuses almost exclusively on those with good or only moderately impaired language. Here we present a case study investigating auditory processing of GM, a nonverbal child with ASD and cerebral palsy. At the age of 8 years, GM was tested using magnetoencephalography (MEG whilst passively listening to speech and nonspeech sounds. Where typically developing children and verbal autistic children all demonstrated similar brain responses to speech and nonspeech sounds, GM produced much stronger responses to nonspeech than speech, particularly in the 65 – 165 ms (M50/M100 time window post stimulus onset. GM was retested aged 10 years using electroencephalography (EEG. Consistent with her MEG results, she showed an unusually early and strong response to pure tone stimuli. These results demonstrate both the potential and the feasibility of using MEG and EEG in the study of minimally verbal children with ASD.

  19. Descending brain neurons in the cricket Gryllus bimaculatus (de Geer): auditory responses and impact on walking.

    Science.gov (United States)

    Zorović, Maja; Hedwig, Berthold

    2013-01-01

    The activity of four types of sound-sensitive descending brain neurons in the cricket Gryllus bimaculatus was recorded intracellularly while animals were standing or walking on an open-loop trackball system. In a neuron with a contralaterally descending axon, the male calling song elicited responses that copied the pulse pattern of the song during standing and walking. The accuracy of pulse copying increased during walking. Neurons with ipsilaterally descending axons responded weakly to sound only during standing. The responses were mainly to the first pulse of each chirp, whereas the complete pulse pattern of a chirp was not copied. During walking the auditory responses were suppressed in these neurons. The spiking activity of all four neuron types was significantly correlated to forward walking velocity, indicating their relevance for walking. Additionally, injection of depolarizing current elicited walking and/or steering in three of four neuron types described. In none of the neurons was the spiking activity both sufficient and necessary to elicit and maintain walking behaviour. Some neurons showed arborisations in the lateral accessory lobes, pointing to the relevance of this brain region for cricket audition and descending motor control.

  20. Fast joint detection-estimation of evoked brain activity in event-related fMRI using a variational approach

    OpenAIRE

    Chaari, Lotfi; Vincent, Thomas; Forbes, Florence; Dojat, Michel; Ciuciu, Philippe

    2013-01-01

    International audience In standard within-subject analyses of event-related fMRI data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the socalled region-based Joint Detection-Estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the...

  1. Leptin Is Associated With Exaggerated Brain Reward and Emotion Responses to Food Images in Adolescent Obesity

    OpenAIRE

    Jastreboff, Ania M.; Lacadie, Cheryl; Seo, Dongju; Kubat, Jessica; Van Name, Michelle A.; Giannini, Cosimo; Savoye, Mary; Constable, R. Todd; Sherwin, Robert S.; Caprio, Sonia; Sinha, Rajita

    2014-01-01

    OBJECTIVE In the U.S., an astonishing 12.5 million children and adolescents are now obese, predisposing 17% of our nation’s youth to metabolic complications of obesity, such as type 2 diabetes (T2D). Adolescent obesity has tripled over the last three decades in the setting of food advertising directed at children. Obese adults exhibit increased brain responses to food images in motivation-reward pathways. These neural alterations may be attributed to obesity-related metabolic changes, which p...

  2. Global brain blood-oxygen level responses to autonomic challenges in obstructive sleep apnea.

    Directory of Open Access Journals (Sweden)

    Paul M Macey

    Full Text Available Obstructive sleep apnea (OSA is accompanied by brain injury, perhaps resulting from apnea-related hypoxia or periods of impaired cerebral perfusion. Perfusion changes can be determined indirectly by evaluation of cerebral blood volume and oxygenation alterations, which can be measured rapidly and non-invasively with the global blood oxygen level dependent (BOLD signal, a magnetic resonance imaging procedure. We assessed acute BOLD responses in OSA subjects to pressor challenges that elicit cerebral blood flow changes, using a two-group comparative design with healthy subjects as a reference. We separately assessed female and male patterns, since OSA characteristics and brain injury differ between sexes. We studied 94 subjects, 37 with newly-diagnosed, untreated OSA (6 female (age mean ± std: 52.1±8.1 yrs; apnea/hypopnea index [AHI]: 27.7±15.6 events/hr and 31 male 54.3±8.4 yrs; AHI: 37.4±19.6 events/hr, and 20 female (age 50.5±8.1 yrs and 37 male (age 45.6±9.2 yrs healthy control subjects. We measured brain BOLD responses every 2 s while subjects underwent cold pressor, hand grip, and Valsalva maneuver challenges. The global BOLD signal rapidly changed after the first 2 s of each challenge, and differed in magnitude between groups to two challenges (cold pressor, hand grip, but not to the Valsalva maneuver (repeated measures ANOVA, p<0.05. OSA females showed greater differences from males in response magnitude and pattern, relative to healthy counterparts. Cold pressor BOLD signal increases (mean ± adjusted standard error at the 8 s peak were: OSA 0.14±0.08% vs. Control 0.31±0.06%, and hand grip at 6 s were: OSA 0.08±0.03% vs. Control at 0.30±0.02%. These findings, indicative of reduced cerebral blood flow changes to autonomic challenges in OSA, complement earlier reports of altered resting blood flow and reduced cerebral artery responsiveness. Females are more affected than males, an outcome which may contribute to the sex

  3. Killing of Brain Tumor Cells by Hypoxia-Responsive Element Mediated Expression of BAX

    Directory of Open Access Journals (Sweden)

    Hangjun Ruan

    1999-11-01

    Full Text Available The presence of radioresistant hypoxic cells in human brain tumors limits the overall effectiveness of conventional fractionated radiation therapy. Tumor-specific therapies that target hypoxic cells are clearly needed. We have investigated the expression of suicide genes under hypoxia by a hypoxia-responsive element (HRE, which can be activated through hypoxia-inducible factor-1 (HIF-1. We transfected plasmids containing multiple copies of HIRE into U-87 MG and U-251 MG-NCI human brain tumor cells and tested their ability to induce LacZ gene expression under anoxia. Gene expression under anoxia versus oxia was increased about 12-fold for U-87 MG cells and about fourfold for U-251 MG-NCI cells. At intermediate hypoxic conditions, increased LacZ gene expression in U-87 MG cells was induced by the plasmid that contained three HREs, but not by the plasmid with two HREs. Lastly, when we placed a suicide gene BAX under the control of HREs, cells transfected with the BAX plasmids were preferentially killed through apoptosis under anoxia. Our studies demonstrate that HRE-regulated gene expression is active in brain tumor cells, and that the amount of increased gene expression obtained is dependent on the cell line, the HIRE copy number, and the degree of hypoxia.

  4. Calcineurin β protects brain after injury by activating the unfolded protein response.

    Science.gov (United States)

    Chen, Yanan; Holstein, Deborah M; Aime, Sofia; Bollo, Mariana; Lechleiter, James D

    2016-10-01

    The Ca(2+)-dependent phosphatase, calcineurin (CN) is thought to play a detrimental role in damaged neurons; however, its role in astrocytes is unclear. In cultured astrocytes, CNβ expression increased after treatment with a sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor, thapsigargin, and with oxygen and glucose deprivation, an in vitro model of ischemia. Similarly, CNβ was induced in astrocytes in vivo in two different mouse models of brain injury - photothrombotic stroke and traumatic brain injury (TBI). Immunoprecipitation and chemical activation dimerization methods pointed to physical interaction of CNβ with the unfolded protein response (UPR) sensor, protein kinase RNA-like endoplasmic reticulum kinase (PERK). In accordance, induction of CNβ resulted in oligomerization and activation of PERK. Strikingly, the presence of a phosphatase inhibitor did not interfere with CNβ-mediated activation of PERK, suggesting a hitherto undiscovered non-enzymatic role for CNβ. Importantly, the cytoprotective function of CNβ was PERK-dependent both in vitro and in vivo. Loss of CNβ in vivo resulted in a significant increase in cerebral damage, and correlated with a decrease in astrocyte size, PERK activity and glial fibrillary acidic protein (GFAP) expression. Taken together, these data reveal a critical role for the CNβ-PERK axis in not only prolonging astrocyte cell survival but also in modulating astrogliosis after brain injury. PMID:27334877

  5. Pre-attentive modulation of brain responses to tones in coloured-hearing synesthetes

    Directory of Open Access Journals (Sweden)

    Jäncke Lutz

    2012-12-01

    Full Text Available Abstract Background Coloured-hearing (CH synesthesia is a perceptual phenomenon in which an acoustic stimulus (the inducer initiates a concurrent colour perception (the concurrent. Individuals with CH synesthesia "see" colours when hearing tones, words, or music; this specific phenomenon suggesting a close relationship between auditory and visual representations. To date, it is still unknown whether the perception of colours is associated with a modulation of brain functions in the inducing brain area, namely in the auditory-related cortex and associated brain areas. In addition, there is an on-going debate as to whether attention to the inducer is necessarily required for eliciting a visual concurrent, or whether the latter can emerge in a pre-attentive fashion. Results By using the EEG technique in the context of a pre-attentive mismatch negativity (MMN paradigm, we show that the binding of tones and colours in CH synesthetes is associated with increased MMN amplitudes in response to deviant tones supposed to induce novel concurrent colour perceptions. Most notably, the increased MMN amplitudes we revealed in the CH synesthetes were associated with stronger intracerebral current densities originating from the auditory cortex, parietal cortex, and ventral visual areas. Conclusions The automatic binding of tones and colours in CH synesthetes is accompanied by an early pre-attentive process recruiting the auditory cortex, inferior and superior parietal lobules, as well as ventral occipital areas.

  6. Effect of skull flexural properties on brain response during dynamic head loading - biomed 2013.

    Science.gov (United States)

    Harrigan, T P; Roberts, J C; Ward, E E; Carneal, C M; Merkle, A C

    2013-01-01

    The skull-brain complex is typically modeled as an integrated structure, similar to a fluid-filled shell. Under dynamic loads, the interaction of the skull and the underlying brain, cerebrospinal fluid, and other tissue produces the pressure and strain histories that are the basis for many theories meant to describe the genesis of traumatic brain injury. In addition, local bone strains are of interest for predicting skull fracture in blunt trauma. However, the role of skull flexure in the intracranial pressure response to blunt trauma is complex. Since the relative time scales for pressure and flexural wave transmission across the skull are not easily separated, it is difficult to separate out the relative roles of the mechanical components in this system. This study uses a finite element model of the head, which is validated for pressure transmission to the brain, to assess the influence of skull table flexural stiffness on pressure in the brain and on strain within the skull. In a Human Head Finite Element Model, the skull component was modified by attaching shell elements to the inner and outer surfaces of the existing solid elements that modeled the skull. The shell elements were given the properties of bone, and the existing solid elements were decreased so that the overall stiffness along the surface of the skull was unchanged, but the skull table bending stiffness increased by a factor of 2.4. Blunt impact loads were applied to the frontal bone centrally, using LS-Dyna. The intracranial pressure predictions and the strain predictions in the skull were compared for models with and without surface shell elements, showing that the pressures in the mid-anterior and mid-posterior of the brain were very similar, but the strains in the skull under the loads and adjacent to the loads were decreased 15% with stiffer flexural properties. Pressure equilibration to nearly hydrostatic distributions occurred, indicating that the important frequency components for typical

  7. Hemodynamic changes in depressive patients

    Institute of Scientific and Technical Information of China (English)

    MA Ying; LI Hui-chun; ZHENG Lei-lei; YU Hua-liang

    2006-01-01

    Objective: This study is aimed at exploring the relationship between hemodynamic changes and depressive and anxious symptom in depression patients. Methods: The cardiac function indices including the left stroke index (LSI), ejection fraction (EF), heart rate (HR), diastolic pressure mean (DPM), systolic pressure mean (SPM), left ventricle end-diastolic volume (LVDV), effective circulating volume (ECV), resistance total mean (RTM) and blood flow smooth degree (BFSD) were determined in 65 patients with major depressive disorders and 31 healthy normal controls. The clinical symptoms were assessed with Hamilton depression scale (HAMD) and Hamilton anxiety scale (HAMA). Results: In patients with depression without anxiety,LSI, EF, LVDV, DPM, SPM, ECV, BFSD were significantly lower than those in controls, while RTM was higher than that in controls. Patients with comorbidity of depression and anxiety showed decreased LVDV, ECV, BFSD, and increased HR in comparison with the controls. The anxiety/somatization factor score positively correlated with LSI, EF, LVDV, but negatively correlated with RTM. There was negative correlation between retardation factor score and DPM, SPM, LVDV. Conclusion: The study indicated that there are noticeable changes in left ventricle preload and afterload, blood pressure, peripheral resistance, and microcirculation in depressive patients, and that the accompanying anxiety makes the changes more complicated.

  8. CADrx for GBM Brain Tumors: Predicting Treatment Response from Changes in Diffusion-Weighted MRI

    Directory of Open Access Journals (Sweden)

    Matthew S. Brown

    2009-11-01

    Full Text Available The goal of this study was to develop a computer-aided therapeutic response (CADrx system for early prediction of drug treatment response for glioblastoma multiforme (GBM brain tumors with diffusion weighted (DW MR images. In conventional Macdonald assessment, tumor response is assessed nine weeks or more post-treatment. However, we will investigate the ability of DW-MRI to assess response earlier, at five weeks post treatment. The apparent diffusion coefficient (ADC map, calculated from DW images, has been shown to reveal changes in the tumor’s microenvironment preceding morphologic tumor changes. ADC values in treated brain tumors could theoretically both increase due to the cell kill (and thus reduced cell density and decrease due to inhibition of edema. In this study, we investigated the effectiveness of features that quantify changes from pre- and post-treatment tumor ADC histograms to detect treatment response. There are three parts to this study: first, tumor regions were segmented on T1w contrast enhanced images by Otsu’s thresholding method, and mapped from T1w images onto ADC images by a 3D region of interest (ROI mapping tool using DICOM header information; second, ADC histograms of the tumor region were extracted from both pre- and five weeks post-treatment scans, and fitted by a two-component Gaussian mixture model (GMM. The GMM features as well as standard histogram-based features were extracted. Finally, supervised machine learning techniques were applied for classification of responders or non-responders. The approach was evaluated with a dataset of 85 patients with GBM under chemotherapy, in which 39 responded and 46 did not, based on tumor volume reduction. We compared adaBoost, random forest and support vector machine classification algorithms, using ten-fold cross validation, resulting in the best accuracy of 69.41% and the corresponding area under the curve (Az of 0.70.

  9. Predictive value of brain perfusion SPECT for rTMS response in pharmacoresistant depression

    Energy Technology Data Exchange (ETDEWEB)

    Richieri, Raphaelle; Lancon, Christophe [Sainte-Marguerite University Hospital, Department of Psychiatry, Marseille (France); La Timone University, EA 3279 - Self-perceived Health Assessment Research Unit, School of Medicine, Marseille (France); Boyer, Laurent [La Timone University, EA 3279 - Self-perceived Health Assessment Research Unit, School of Medicine, Marseille (France); La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Department of Public Health, Marseille (France); Farisse, Jean [Sainte-Marguerite University Hospital, Department of Psychiatry, Marseille (France); Colavolpe, Cecile; Mundler, Olivier [La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Universite de la Mediterranee, Centre Europeen de Recherche en Imagerie Medicale (CERIMED), Marseille (France); Guedj, Eric [La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Universite de la Mediterranee, Centre Europeen de Recherche en Imagerie Medicale (CERIMED), Marseille (France); Hopital de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Marseille Cedex 5 (France)

    2011-09-15

    The aim of this study was to determine the predictive value of whole-brain voxel-based regional cerebral blood flow (rCBF) for repetitive transcranial magnetic stimulation (rTMS) response in patients with pharmacoresistant depression. Thirty-three right-handed patients who met DSM-IV criteria for major depressive disorder (unipolar or bipolar depression) were included before rTMS. rTMS response was defined as at least 50% reduction in the baseline Beck Depression Inventory scores. The predictive value of {sup 99m}Tc-ethyl cysteinate dimer (ECD) single photon emission computed tomography (SPECT) for rTMS response was studied before treatment by comparing rTMS responders to non-responders at voxel level using Statistical Parametric Mapping (SPM) (p < 0.001, uncorrected). Of the patients, 18 (54.5%) were responders to rTMS and 15 were non-responders (45.5%). There were no statistically significant differences in demographic and clinical characteristics (p > 0.10). In comparison to responders, non-responders showed significant hypoperfusions (p < 0.001, uncorrected) in the left medial and bilateral superior frontal cortices (BA10), the left uncus/parahippocampal cortex (BA20/BA35) and the right thalamus. The area under the curve for the combination of SPECT clusters to predict rTMS response was 0.89 (p < 0.001). Sensitivity, specificity, positive predictive value and negative predictive value for the combination of clusters were: 94, 73, 81 and 92%, respectively. This study shows that, in pharmacoresistant depression, pretreatment rCBF of specific brain regions is a strong predictor for response to rTMS in patients with homogeneous demographic/clinical features. (orig.)

  10. Deep brain stimulation and responsiveness of the Persian version of Parkinson's disease questionnaire with 39-items.

    Directory of Open Access Journals (Sweden)

    Gholam Ali Shahidi

    2014-12-01

    Full Text Available Assessment of quality-of-life (QOF as an outcome measure after deep brain stimulation (DBS surgery in patients with Parkinson's disease (PD need a valid, reliable and responsive instrument. The aim of the current study was to determine responsiveness of validated Persian version of PD questionnaire with 39-items (PDQ-39 after DBS surgery in patients with PD.Eleven patients with PD, who were candidate for DBS operation between May 2012 and June 2013 were assessed. PDQ-39 and short-form questionnaire with 36-items (SF-36 were used. To assess responsiveness of PDQ-39 standardized response mean (SRM was used.Mean age was 51.8 (8.8 and all of the patients, but just one were male (10 patients. Mean duration of the disease was 8.7 (2.1 years. Eight patients were categorized as moderate using Hoehn and Yahr (H and Y classification. All patients had a better H and Y score compared with the baseline evaluation (3.09 vs. 0.79. The amount of SRM was above 0.70 for all domains means a large responsiveness for PDQ-39.Persian version of PDQ-39 has an acceptable responsiveness and could be used to assess as an outcome measure to evaluate the effect of therapies on PD.

  11. Titanium oxide (TiO2) nanoparticles in induction of apoptosis and inflammatory response in brain

    International Nuclear Information System (INIS)

    The ever increasing applications of engineered nanoparticles in 21st century cause serious concern about its potential health risks on living being. Regulatory health risk assessment of such particles has become mandatory for the safe use of nanomaterials in consumer products and medicines. In order to study the mechanism underlying the effects of nano-TiO2 (TiO2 nanoparticles) on the brain, wistar rats were administrated intravenously with various doses of nano-TiO2 (21 nm) through the caudal vein, once a week for 4 weeks and different parameters such as bioaccumulation of nano-TiO2, oxidative stress-mediated response, level of inflammatory markers such as NF-κB (p65), HSP 60, p38, nitric oxide, IFN-γ and TNF-α, and level of neurochemicals in brain as well as DNA damage and expression of apoptosis markers (p53, Bax, Bcl-2, and cyto c) were evaluated. Results show that the concentration of nano-TiO2 in the brain increased with increasing the doses of nano-TiO2. Oxidative stress and injury of the brain occurred as nano-TiO2 appeared to trigger a cascade of reactions such as inflammation, lipid peroxidation, decreases the activities of antioxidative enzymes and melatonin level, the reduction of glutamic acid, downregulated levels of acetylcholinesterase activities, and the increase in caspase-3 activity (a biomarker of apoptosis), DNA fragmentation, and apoptosis. It may be concluded that nano-TiO2 induces oxidative stress that leads to activation of inflammatory cytokines and an alteration in the level of neurotransmitters resulted in the induction of mitochondrial-mediated apoptosis

  12. Nearly Complete Response of Brain Metastases from HER2 Overexpressing Breast Cancer with Lapatinib and Capecitabine after Whole Brain Irradiation

    Directory of Open Access Journals (Sweden)

    Esin Oktay

    2013-01-01

    Full Text Available Trastuzumab treatment does not prevent intracranial seeding and is largely ineffective for established central nervous system metastasis in HER2 overexpressing breast cancer patients. Combination therapy of lapatinib and capecitabine may be an effective treatment option for brain metastasis of HER2-positive breast cancer. We report a patient with breast cancer overexpressing HER-2 where brain metastases were successfully treated with radiation and a combination of lapatinib and capecitabine.

  13. Dehydration, hemodynamics and fluid volume optimization after induction of general anesthesia

    OpenAIRE

    Yuhong Li; Rui He; Xiaojiang Ying; Robert G. Hahn

    2014-01-01

    OBJECTIVES: Fluid volume optimization guided by stroke volume measurements reduces complications of colorectal and high-risk surgeries. We studied whether dehydration or a strong hemodynamic response to general anesthesia increases the probability of fluid responsiveness before surgery begins. METHODS: Cardiac output, stroke volu...

  14. Physical attractiveness and sex as modulatory factors of empathic brain responses to pain.

    Science.gov (United States)

    Jankowiak-Siuda, Kamila; Rymarczyk, Krystyna; Żurawski, Łukasz; Jednoróg, Katarzyna; Marchewka, Artur

    2015-01-01

    Empathy is a process that comprises affective sharing, imagining, and understanding the emotions and mental states of others. The brain structures involved in empathy for physical pain include the anterior insula (AI), and the anterior cingulate cortex (ACC). High empathy may lead people to undertake pro-social behavior. It is important to understand how this process can be changed, and what factors these empathic responses depend on. Physical attractiveness is a major social and evolutional cue, playing a role in the formation of interpersonal evaluation. The aim of the study was to determine how attractiveness affects the level of empathy both in relation to self-rated behavior and in terms of activation of specific empathy-related brain regions. Twenty-seven subjects (14 female and 13 male) were studied using functional magnetic resonance imaging (fMRI) method while they were watching short video scenes involving physically more and less attractive men and women who exhibited pain responses. In the absence of behavioral effects in compassion ratings, we observed stronger activation in empathic brain structures (ACC; AI) for less attractive men and for attractive women than for attractive men. Evolutionary psychology studies suggest that beauty is valued more highly in females than males, which might lead observers to empathize more strongly with the attractive woman than the men. Attractive mens' faces are typically associated with enhanced masculine facial characteristics and are considered to possess fewer desirable personality traits compared with feminized faces. This could explain why more empathy was shown to less attractive men. In conclusion, the study showed that the attractiveness and sex of a model are important modulators of empathy for pain. PMID:26441569

  15. Physical attractiveness and sex as modulatory factors of empathic brain responses to pain.

    Science.gov (United States)

    Jankowiak-Siuda, Kamila; Rymarczyk, Krystyna; Żurawski, Łukasz; Jednoróg, Katarzyna; Marchewka, Artur

    2015-01-01

    Empathy is a process that comprises affective sharing, imagining, and understanding the emotions and mental states of others. The brain structures involved in empathy for physical pain include the anterior insula (AI), and the anterior cingulate cortex (ACC). High empathy may lead people to undertake pro-social behavior. It is important to understand how this process can be changed, and what factors these empathic responses depend on. Physical attractiveness is a major social and evolutional cue, playing a role in the formation of interpersonal evaluation. The aim of the study was to determine how attractiveness affects the level of empathy both in relation to self-rated behavior and in terms of activation of specific empathy-related brain regions. Twenty-seven subjects (14 female and 13 male) were studied using functional magnetic resonance imaging (fMRI) method while they were watching short video scenes involving physically more and less attractive men and women who exhibited pain responses. In the absence of behavioral effects in compassion ratings, we observed stronger activation in empathic brain structures (ACC; AI) for less attractive men and for attractive women than for attractive men. Evolutionary psychology studies suggest that beauty is valued more highly in females than males, which might lead observers to empathize more strongly with the attractive woman than the men. Attractive mens' faces are typically associated with enhanced masculine facial characteristics and are considered to possess fewer desirable personality traits compared with feminized faces. This could explain why more empathy was shown to less attractive men. In conclusion, the study showed that the attractiveness and sex of a model are important modulators of empathy for pain.

  16. Electrical brain responses in language-impaired children reveal grammar-specific deficits.

    Directory of Open Access Journals (Sweden)

    Elisabeth Fonteneau

    Full Text Available BACKGROUND: Scientific and public fascination with human language have included intensive scrutiny of language disorders as a new window onto the biological foundations of language and its evolutionary origins. Specific language impairment (SLI, which affects over 7% of children, is one such disorder. SLI has received robust scientific attention, in part because of its recent linkage to a specific gene and loci on chromosomes and in part because of the prevailing question regarding the scope of its language impairment: Does the disorder impact the general ability to segment and process language or a specific ability to compute grammar? Here we provide novel electrophysiological data showing a domain-specific deficit within the grammar of language that has been hitherto undetectable through behavioural data alone. METHODS AND FINDINGS: We presented participants with Grammatical(G-SLI, age-matched controls, and younger child and adult controls, with questions containing syntactic violations and sentences containing semantic violations. Electrophysiological brain responses revealed a selective impairment to only neural circuitry that is specific to grammatical processing in G-SLI. Furthermore, the participants with G-SLI appeared to be partially compensating for their syntactic deficit by using neural circuitry associated with semantic processing and all non-grammar-specific and low-level auditory neural responses were normal. CONCLUSIONS: The findings indicate that grammatical neural circuitry underlying language is a developmentally unique system in the functional architecture of the brain, and this complex higher cognitive system can be selectively impaired. The findings advance fundamental understanding about how cognitive systems develop and all human language is represented and processed in the brain.

  17. Physical attractiveness and sex as modulatory factors of empathic brain responses to pain

    Directory of Open Access Journals (Sweden)

    Kamila Jankowiak Siuda

    2015-09-01

    Full Text Available Empathy is a process that comprises affective sharing, imagining, and understanding the emotions and mental states of others. The brain structures involved in empathy for physical pain include the anterior insula (AI, and the anterior cingulate cortex (ACC. High empathy may lead people to undertake pro-social behaviour. It is important to understand how this process can be changed, and what factors these empathic responses depend on. Physical attractiveness is a major social and evolutional cue, playing a role in the formation of interpersonal evaluation. The aim of the study was to determine how attractiveness affects the level of empathy both in relation to self-rated behaviour and in terms of activation of specific empathy-related brain regions. Twenty-seven subjects (14 female and 13 male were studied using fMRI method while they were watching short video scenes involving physically more and less attractive men and women who exhibited pain responses. In the absence of behavioural effects in compassion ratings, we observed stronger activation in empathic brain structures (ACC; AI for less attractive men and for attractive women than for attractive men. Evolutionary psychology studies suggest that beauty is valued more highly in females than males, which might lead observers to empathize more strongly with the attractive woman than the men. Attractive mens’ faces are typically associated with enhanced masculine facial characteristics and are considered to possess fewer desirable personality traits compared with feminized faces. This could explain why more empathy was shown to less attractive men. In conclusion, the study showed that the attractiveness and sex of a model are important modulators of empathy for pain.

  18. Estimation of brain activation in response to major and minor scales by fMRI

    International Nuclear Information System (INIS)

    We made fMRI measurements of the brain responses to major and minor scales which are the fundamental elements for making melodies in music. In addition, we used an arpeggio of diminished 7th. For a control stimulus, we provided a sequence of repeated single tones. The ascending scales of 12 major and 12 minor keys were made starting from F no.3 to F4. Each scale was 3 s in duration. A 3 s scan was performed 2-3 s (randomized) after a scale has been finished and repeated every 14 s (sparse time scanning). Typically, major scales activated the left inferior frontal gyrus, minor scales the posterior cingulate gyrus and the diminished arpeggio the left auditory cortex. In general, the left hemisphere was more activated than usually seen in responses to music. (author)

  19. The DNA damage response molecule MCPH1 in brain development and beyond

    Institute of Scientific and Technical Information of China (English)

    Xiaoqian Liu; Zhong-Wei Zhou; Zhao-Qi Wang

    2016-01-01

    Microcephalin (MCPH1) is identified as being responsible for the neurodevelopmental disorder primary microcephaly type 1,which is characterized by a smaller-than-normal brain size and mental retardation.MCPH1 has originally been identified as an important regulator of telomere integrity and of cell cycle control.Genetic and cellular studies show that MCPH1 controls neurogenesis by coordinating the cell cycle and the centrosome cycle and thereby regulating the division mode of neuroprogenitors to prevent the exhaustion of the progenitor pool and thereby microcephaly.In addition to its role in neurogenesis,MCPH1 plays a role in gonad development.MCPH1 also functions as a tumor suppressor in several human cancers as well as in mouse models.Here,we review the role of MCPH1 in DNA damage response,cell cycle control,chromosome condensation and chromatin remodeling.We also summarize the studies on the biological functions of MCPH1 in brain size determination and in pathologies,including infertility and cancer.

  20. The brain response to peripheral insulin declines with age: a contribution of the blood-brain barrier?

    Directory of Open Access Journals (Sweden)

    Tina Sartorius

    Full Text Available It is a matter of debate whether impaired insulin action originates from a defect at the neural level or impaired transport of the hormone into the brain. In this study, we aimed to investigate the effect of aging on insulin concentrations in the periphery and the central nervous system as well as its impact on insulin-dependent brain activity.Insulin, glucose and albumin concentrations were determined in 160 paired human serum and cerebrospinal fluid (CSF samples. Additionally, insulin was applied in young and aged mice by subcutaneous injection or intracerebroventricularly to circumvent the blood-brain barrier. Insulin action and cortical activity were assessed by Western blotting and electrocorticography radiotelemetric measurements.In humans, CSF glucose and insulin concentrations were tightly correlated with the respective serum/plasma concentrations. The CSF/serum ratio for insulin was reduced in older subjects while the CSF/serum ratio for albumin increased with age like for most other proteins. Western blot analysis in murine whole brain lysates revealed impaired phosphorylation of AKT (P-AKT in aged mice following peripheral insulin stimulation whereas P-AKT was comparable to levels in young mice after intracerebroventricular insulin application. As readout for insulin action in the brain, insulin-mediated cortical brain activity instantly increased in young mice subcutaneously injected with insulin but was significantly reduced and delayed in aged mice during the treatment period. When insulin was applied intracerebroventricularly into aged animals, brain activity was readily improved.This study discloses age-dependent changes in insulin CSF/serum ratios in humans. In the elderly, cerebral insulin resistance might be partially attributed to an impaired transport of insulin into the central nervous system.

  1. Effects of unexpected chords and of performer's expression on brain responses and electrodermal activity.

    Directory of Open Access Journals (Sweden)

    Stefan Koelsch

    Full Text Available BACKGROUND: There is lack of neuroscientific studies investigating music processing with naturalistic stimuli, and brain responses to real music are, thus, largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: This study investigates event-related brain potentials (ERPs, skin conductance responses (SCRs and heart rate (HR elicited by unexpected chords of piano sonatas as they were originally arranged by composers, and as they were played by professional pianists. From the musical excerpts played by the pianists (with emotional expression, we also created versions without variations in tempo and loudness (without musical expression to investigate effects of musical expression on ERPs and SCRs. Compared to expected chords, unexpected chords elicited an early right anterior negativity (ERAN, reflecting music-syntactic processing and an N5 (reflecting processing of meaning information in the ERPs, as well as clear changes in the SCRs (reflecting that unexpected chords also elicited emotional responses. The ERAN was not influenced by emotional expression, whereas N5 potentials elicited by chords in general (regardless of their chord function differed between the expressive and the non-expressive condition. CONCLUSIONS/SIGNIFICANCE: These results show that the neural mechanisms of music-syntactic processing operate independently of the emotional qualities of a stimulus, justifying the use of stimuli without emotional expression to investigate the cognitive processing of musical structure. Moreover, the data indicate that musical expression affects the neural mechanisms underlying the processing of musical meaning. Our data are the first to reveal influences of musical performance on ERPs and SCRs, and to show physiological responses to unexpected chords in naturalistic music.

  2. Multisensory stimuli elicit altered oscillatory brain responses at gamma frequencies in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    David B. Stone

    2014-11-01

    Full Text Available Deficits in auditory and visual unisensory responses are well documented in patients with schizophrenia; however, potential abnormalities elicited from multisensory audio-visual stimuli are less understood. Further, schizophrenia patients have shown abnormal patterns in task-related and task-independent oscillatory brain activity, particularly in the gamma frequency band. We examined oscillatory responses to basic unisensory and multisensory stimuli in schizophrenia patients (N = 46 and healthy controls (N = 57 using magnetoencephalography (MEG. Time-frequency decomposition was performed to determine regions of significant changes in gamma band power by group in response to unisensory and multisensory stimuli relative to baseline levels. Results showed significant behavioral differences between groups in response to unisensory and multisensory stimuli. In addition, time-frequency analysis revealed significant decreases and increases in gamma-band power in schizophrenia patients relative to healthy controls, which emerged both early and late over both sensory and frontal regions in response to unisensory and multisensory stimuli. Unisensory gamma-band power predicted multisensory gamma-band power differently by group. Furthermore, gamma-band power in these regions predicted performance in select measures of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS test battery differently by group. These results reveal a unique pattern of task-related gamma-band power in schizophrenia patients relative to controls that may indicate reduced inhibition in combination with impaired oscillatory mechanisms in patients with schizophrenia.

  3. The effect of conditional probability of chord progression on brain response: an MEG study.

    Directory of Open Access Journals (Sweden)

    Seung-Goo Kim

    Full Text Available BACKGROUND: Recent electrophysiological and neuroimaging studies have explored how and where musical syntax in Western music is processed in the human brain. An inappropriate chord progression elicits an event-related potential (ERP component called an early right anterior negativity (ERAN or simply an early anterior negativity (EAN in an early stage of processing the musical syntax. Though the possible underlying mechanism of the EAN is assumed to be probabilistic learning, the effect of the probability of chord progressions on the EAN response has not been previously explored explicitly. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, the empirical conditional probabilities in a Western music corpus were employed as an approximation of the frequencies in previous exposure of participants. Three types of chord progression were presented to musicians and non-musicians in order to examine the correlation between the probability of chord progression and the neuromagnetic response using magnetoencephalography (MEG. Chord progressions were found to elicit early responses in a negatively correlating fashion with the conditional probability. Observed EANm (as a magnetic counterpart of the EAN component responses were consistent with the previously reported EAN responses in terms of latency and location. The effect of conditional probability interacted with the effect of musical training. In addition, the neural response also correlated with the behavioral measures in the non-musicians. CONCLUSIONS/SIGNIFICANCE: Our study is the first to reveal the correlation between the probability of chord progression and the corresponding neuromagnetic response. The current results suggest that the physiological response is a reflection of the probabilistic representations of the musical syntax. Moreover, the results indicate that the probabilistic representation is related to the musical training as well as the sensitivity of an individual.

  4. The Acute Inflammatory Response in Trauma/Hemorrhage and Traumatic Brain Injury : Current State and Emerging Prospects

    NARCIS (Netherlands)

    Namas, R.; Ghuma, A.; Hermus, L.; Zamora, R.; Okonkwo, D. O.; Billiar, T. R.; Vodovotz, Y.

    2009-01-01

    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury

  5. Computational Hemodynamic Simulation of Human Circulatory System under Altered Gravity

    Science.gov (United States)

    Kim. Chang Sung; Kiris, Cetin; Kwak, Dochan

    2003-01-01

    A computational hemodynamics approach is presented to simulate the blood flow through the human circulatory system under altered gravity conditions. Numerical techniques relevant to hemodynamics issues are introduced to non-Newtonian modeling for flow characteristics governed by red blood cells, distensible wall motion due to the heart pulse, and capillary bed modeling for outflow boundary conditions. Gravitational body force terms are added to the Navier-Stokes equations to study the effects of gravity on internal flows. Six-type gravity benchmark problems are originally presented to provide the fundamental understanding of gravitational effects on the human circulatory system. For code validation, computed results are compared with steady and unsteady experimental data for non-Newtonian flows in a carotid bifurcation model and a curved circular tube, respectively. This computational approach is then applied to the blood circulation in the human brain as a target problem. A three-dimensional, idealized Circle of Willis configuration is developed with minor arteries truncated based on anatomical data. Demonstrated is not only the mechanism of the collateral circulation but also the effects of gravity on the distensible wall motion and resultant flow patterns.

  6. Closed-Loop Dynamic Modeling of Cerebral Hemodynamics

    Science.gov (United States)

    Marmarelis, V. Z.; Shin, D. C.; Orme, M. E.; Zhang, R.

    2013-01-01

    The dynamics of cerebral hemodynamics have been studied extensively because of their fundamental physiological and clinical importance. In particular, the dynamic processes of cerebral flow autoregulation and CO2 vasomotor reactivity have attracted broad attention because of their involvement in a host of pathologies and clinical conditions (e.g. hypertension, syncope, stroke, traumatic brain injury, vascular dementia, Alzheimer’s disease, mild cognitive impairment etc.). This raises the prospect of useful diagnostic methods being developed on the basis of quantitative models of cerebral hemodynamics, if cerebral vascular dysfunction can be quantified reliably from data collected within practical clinical constraints. This paper presents a modeling method that utilizes beat-to-beat measurements of mean arterial blood pressure, cerebral blood flow velocity and end-tidal CO2 (collected non-invasively under resting conditions) to quantify the dynamics of cerebral flow autoregulation (CFA) and cerebral vasomotor reactivity (CVMR). The unique and novel aspect of this dynamic model is that it is nonlinear and operates in a closed-loop configuration. PMID:23292615

  7. STAT1 signaling modulates HIV-1–induced inflammatory responses and leukocyte transmigration across the blood-brain barrier

    OpenAIRE

    Chaudhuri, Anathbandhu; Yang, Bo; Gendelman, Howard E; Persidsky, Yuri; Kanmogne, Georgette D.

    2008-01-01

    The relationship among neuroinflammation, blood-brain barrier (BBB) dysfunction, and progressive HIV-1 infection as they affect the onset and development of neuroAIDS is incompletely understood. One possible link is signal transducers and activators of transcription (STATs) pathways. These respond to proinflammatory and regulatory factors and could affect neuroinflammatory responses induced from infected cells and disease-affected brain tissue. Our previous works demonstrated that HIV-1 activ...

  8. Brain responses to nouns, verbs and class-ambiguous words in context.

    Science.gov (United States)

    Federmeier, K D; Segal, J B; Lombrozo, T; Kutas, M

    2000-12-01

    Recent neuropsychological and imaging data have implicated different brain networks in the processing of different word classes, nouns being linked primarily to posterior, visual object-processing regions and verbs to frontal, motor-processing areas. However, as most of these studies have examined words in isolation, the consequences of such anatomically based representational differences, if any, for the processing of these items in sentences remains unclear. Additionally, in some languages many words (e.g. 'drink') are class-ambiguous, i.e. they can play either role depending on context, and it is not yet known how the brain stores and uses information associated with such lexical items in context. We examined these issues by recording event-related potentials (ERPs) in response to unambiguous nouns (e.g. 'beer'), unambiguous verbs (e. g. 'eat'), class-ambiguous words and pseudowords used as nouns or verbs within two types of minimally contrastive sentence contexts: noun-predicting (e.g. 'John wanted THE [target] but.') and verb-predicting ('John wanted TO [target] but.'). Our results indicate that the nature of neural processing for nouns and verbs is a function of both the type of stimulus and the role it is playing. Even when the context completely specifies their role, word class-ambiguous items differ from unambiguous ones over frontal regions by approximately 150 ms. Moreover, whereas pseudowords elicit larger N400s when used as verbs than when used as nouns, unambiguous nouns and ambiguous words used as nouns elicit more frontocentral negativity than unambiguous verbs and ambiguous words used as verbs, respectively. Additionally, unambiguous verbs elicit a left-lateralized, anterior positivity (approximately 200 ms) not observed for any other stimulus type, though only when these items are used appropriately as verbs (i.e. in verb-predicting contexts). In summary, the pattern of neural activity observed in response to lexical items depends on their general

  9. Utility of Functional Hemodynamics and Echocardiography to Aid Diagnosis and Management of Shock.

    Science.gov (United States)

    McGee, William T; Raghunathan, Karthik; Adler, Adam C

    2015-12-01

    The utility of functional hemodynamics and bedside ultrasonography is increasingly recognized as advantageous for both improved diagnosis and management of shock states. In contrast to conventional "static" measures, "dynamic" hemodynamic measures and bedside imaging modalities enhance pathophysiology-based comprehensive understanding of shock states and the response to therapy. The current editions of major textbooks in the primary specialties--in which clinicians routinely encounter patients in shock--including surgery, anesthesia, emergency medicine, and internal medicine continue to incorporate traditional (conventional) descriptions of shock that use well-described (but potentially misleading) intravascular pressures to classify shock states. Reliance on such intravascular pressure measurements is not as helpful as newer "dynamic" functional measures including ultrasonography to both better assess volume responsiveness and biventricular cardiac function. This review thus emphasizes the application of current functional hemodynamics and ultrasonography to the diagnosis and management of shock as a contrast to conventional "static" pressure-based measures.

  10. Hemodynamic correlates of visuomotor motor adaptation by functional Near Infrared Spectroscopy.

    Science.gov (United States)

    Gentili, Rodolphe J; Hadavi, Cyrus; Ayaz, Hasan; Shewokis, Patricia A; Contreras-Vidal, Jose L

    2010-01-01

    The development of rehabilitation engineering technologies such as the design of smart prosthetics necessitates a deep understanding of brain mechanisms engaged in ecological situations when human interact with new tools and/or environments. Thus, we aimed to investigate potential hemodynamic signatures reflecting the level of cognitive-motor performance and/or the internal or mental states of individuals when learning a novel tool with unknown properties. These markers were derived from functional Near Infrared Spectroscopy (fNIR) signals. Our results indicate an increased level of oxy-hemoglobin in prefrontal sensors associated with enhanced kinematics during early compared with late learning. This is consistent with previous neuroimaging studies that revealed a higher contribution of prefrontal areas during early compare to late adaptation learning. These non-invasive functional hemodynamic markers may play a role in bioengineering applications such as smart neuroprosthesis and brain monitoring where adaptive behavior is important. PMID:21095985

  11. The hemodynamic effects of ibopamine, a dopamine congener, in patients with congestive heart failure.

    Science.gov (United States)

    Leier, C V; Ren, J H; Huss, P; Unverferth, D V

    1986-01-01

    Ten patients with congestive heart failure underwent noninvasive and invasive hemodynamic testing before and sequentially after the administration of ibopamine to determine the cardiovascular effects of this oral dopamine congener. Single doses of 200, 400 and 600 mg were administered to all patients and 5 repeated doses of 200 or 400 mg were studied in 8. Hemodynamic effects occurred as early as 30 minutes and lasted up to 4 hours after dosing. In general, ibopamine elicited statistically significant dose-related increases in cardiac output and reductions in the derived resistance of the systemic and pulmonary circulations. A biphasic response in central and peripheral pressures was observed; up to 1 hour after administration, ibopamine elevated mean right and left atrial pressures and pulmonary and systemic arterial pressures with a significant reduction of these measurements beyond 1 hour. It did not alter heart rate. Repeated doses qualitatively affected hemodynamics similar to the initial dose and did not appear to be accompanied by short-term tolerance. While oral ibopamine elicits some favorable hemodynamic effects in humans with cardiac failure, the biphasic hemodynamic response is generally undesirable in the majority of these patients.

  12. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    Science.gov (United States)

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (pmicrowave exposed groups (pmicrowave exposed animal (pmicrowave exposed groups as compared to their corresponding values in sham exposed group (pmicrowave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure.

  13. Unsupervised feature learning improves prediction of human brain activity in response to natural images.

    Directory of Open Access Journals (Sweden)

    Umut Güçlü

    2014-08-01

    Full Text Available Encoding and decoding in functional magnetic resonance imaging has recently emerged as an area of research to noninvasively characterize the relationship between stimulus features and human brain activity. To overcome the challenge of formalizing what stimulus features should modulate single voxel responses, we introduce a general approach for making directly testable predictions of single voxel responses to statistically adapted representations of ecologically valid stimuli. These representations are learned from unlabeled data without supervision. Our approach is validated using a parsimonious computational model of (i how early visual cortical representations are adapted to statistical regularities in natural images and (ii how populations of these representations are pooled by single voxels. This computational model is used to predict single voxel responses to natural images and identify natural images from stimulus-evoked multiple voxel responses. We show that statistically adapted low-level sparse and invariant representations of natural images better span the space of early visual cortical representations and can be more effectively exploited in stimulus identification than hand-designed Gabor wavelets. Our results demonstrate the potential of our approach to better probe unknown cortical representations.

  14. Cellular response of the blood-brain barrier to injury: Potential biomarkers and therapeutic targets for brain regeneration.

    Science.gov (United States)

    Tenreiro, M M; Ferreira, R; Bernardino, L; Brito, M A

    2016-07-01

    Endothelial cells are the main component of the blood-brain barrier (BBB), a vital structure for maintaining brain homeostasis that is seriously disrupted in various neurological pathologies. Therefore, vascular-targeted therapies may bring advantages for the prevention and treatment of brain disorders. In this sense, novel methods to identify and evaluate endothelial damage have been developed and include the detection of circulating endothelial cells, endothelial progenitor cells, endothelial microparticles and exosomes. These cells and cellular structures have been documented in numerous diseases, and increasingly in neurodegenerative disorders, which have led many to assume that they can either be possible biomarkers or tools of repair. Therefore, the purpose of this review is to discuss available data on BBB endothelial damage occurring in two pathologies of the central nervous system, Alzheimer's disease and stroke, which exemplify conditions where chronic and acute vascular damage occur, respectively. The ultimate goal is to identify useful biomarkers and/or therapeutic tools in the healthy and diseased brain that can be used for the treatment of neurodegenerative diseases where BBB permeability and integrity are impaired. PMID:26996728

  15. Post-treatment vascular leakage and inflammatory responses around brain cysts in porcine neurocysticercosis.

    Science.gov (United States)

    Mahanty, Siddhartha; Orrego, Miguel Angel; Mayta, Holger; Marzal, Miguel; Cangalaya, Carla; Paredes, Adriana; Gonzales-Gustavson, Eloy; Arroyo, Gianfranco; Gonzalez, Armando E; Guerra-Giraldez, Cristina; García, Hector H; Nash, Theodore E

    2015-03-01

    Cysticidal treatment of neurocysticercosis, an infection of humans and pig brains with Taenia solium, results in an early inflammatory response directed to cysts causing seizures and focal neurological manifestations. Treatment-induced pericystic inflammation and its association with blood brain barrier (BBB) dysfunction, as determined by Evans blue (EB) extravasation, was studied in infected untreated and anthelmintic-treated pigs. We compared the magnitude and extent of the pericystic inflammation, presence of EB-stained capsules, the level of damage to the parasite, expression of genes for proinflammatory and regulatory cytokines, chemokines, and tissue remodeling by quantitative PCR assays between treated and untreated infected pigs and between EB-stained (blue) and non stained (clear) cysts. Inflammatory scores were higher in pericystic tissues from EB-stained cysts compared to clear cysts from untreated pigs and also from anthelmintic-treated pigs 48 hr and 120 hr after treatment. The degree of inflammation correlated with the severity of cyst wall damage and both increased significantly at 120 hours. Expression levels of the proinflammatory genes for IL-6, IFN-γ, TNF-α were higher in EB-stained cysts compared to clear cysts and unaffected brain tissues, and were generally highest at 120 hr. Additionally, expression of some markers of immunoregulatory activity (IL-10, IL-2Rα) were decreased in EB-stained capsules. An increase in other markers for regulatory T cells (CTLA4, FoxP3) was found, as well as significant increases in expression of two metalloproteases, MMP1 and MMP2 at 48 hr and 120 hr post-treatment. We conclude that the increase in severity of the inflammation caused by treatment is accompanied by both a proinflammatory and a complex regulatory response, largely limited to pericystic tissues with compromised vascular integrity. Because treatment induced inflammation occurs in porcine NCC similar to that in human cases, this model can be used to

  16. Post-treatment vascular leakage and inflammatory responses around brain cysts in porcine neurocysticercosis.

    Directory of Open Access Journals (Sweden)

    Siddhartha Mahanty

    2015-03-01

    Full Text Available Cysticidal treatment of neurocysticercosis, an infection of humans and pig brains with Taenia solium, results in an early inflammatory response directed to cysts causing seizures and focal neurological manifestations. Treatment-induced pericystic inflammation and its association with blood brain barrier (BBB dysfunction, as determined by Evans blue (EB extravasation, was studied in infected untreated and anthelmintic-treated pigs. We compared the magnitude and extent of the pericystic inflammation, presence of EB-stained capsules, the level of damage to the parasite, expression of genes for proinflammatory and regulatory cytokines, chemokines, and tissue remodeling by quantitative PCR assays between treated and untreated infected pigs and between EB-stained (blue and non stained (clear cysts. Inflammatory scores were higher in pericystic tissues from EB-stained cysts compared to clear cysts from untreated pigs and also from anthelmintic-treated pigs 48 hr and 120 hr after treatment. The degree of inflammation correlated with the severity of cyst wall damage and both increased significantly at 120 hours. Expression levels of the proinflammatory genes for IL-6, IFN-γ, TNF-α were higher in EB-stained cysts compared to clear cysts and unaffected brain tissues, and were generally highest at 120 hr. Additionally, expression of some markers of immunoregulatory activity (IL-10, IL-2Rα were decreased in EB-stained capsules. An increase in other markers for regulatory T cells (CTLA4, FoxP3 was found, as well as significant increases in expression of two metalloproteases, MMP1 and MMP2 at 48 hr and 120 hr post-treatment. We conclude that the increase in severity of the inflammation caused by treatment is accompanied by both a proinflammatory and a complex regulatory response, largely limited to pericystic tissues with compromised vascular integrity. Because treatment induced inflammation occurs in porcine NCC similar to that in human cases, this model

  17. Marked response of gliomatosis cerebri to temozolomide and whole brain radiotherapy.

    Science.gov (United States)

    Mattox, Austin K; Lark, Amy L; Adamson, D Cory

    2012-05-01

    Gliomatosis cerebri (GC) represents an unfortunate, rare variant of glioma with a very poor prognosis. Given this lesion's rarity, little information exists on appropriate treatment options. The diffuse, infiltrative nature of GC precludes any surgical resection and limits therapy. Because of the improved survival seen with the use of temozolomide (TMZ) in malignant glioma, a rigorous systematic review of the published literature was performed to ascertain the benefit of TMZ in GC. We identified all GC cases in the literature where there was enough information to ascertain a clear response to a specific chemoradiotherapeutic treatment. In addition to our experience with a recent case, we have identified 61 patients with GC in the published literature who demonstrated a positive radiographic or clinic response after treatment. Statistical analysis of survival was performed by Kaplan-Meier analysis. A positive radiographic and clinical response was seen in patients ranging in age from 4 to 84 years. Overall median survival in patients diagnosed with GC who demonstrated a response after treatment was 25 months, with 1- and 2-year survival rates of 89% and 55%, respectively. The most common treatment regimens for responders included TMZ alone (26.2%), external whole-brain radiotherapy (WBRT) (26.2%), and concomitant TMZ and WBRT (20%). Our patient was treated with concomitant TMZ (150 mg/m(2)/day over 5 days) and WBRT (50 Gy) and has remained with a complete radiographic response after 36 months. In conclusion, patients with GC confirmed by surgical biopsy should be aggressively treated with concomitant TMZ and WBRT, as marked responses have been seen, and this appears to offer overall survival benefit.

  18. Hemodynamic significance of internal carotid artery disease

    DEFF Research Database (Denmark)

    Schroeder, T

    1988-01-01

    cerebral hemodynamics in terms of increased flow through the reconstructed vessel and elimination of pressure gradients. The cerebral blood flow, though remains unchanged in the majority of patients, at least when measured at baseline. Only in those patients with a reduction in perfusion pressure can....... Though unproven, it is reasonable to assume that without surgical intervention, the risk is higher than average for patients with hemodynamic failure. Equally, should there be any postoperative improvement of cerebral blood flow or neurologic deficits, it should be looked for in this group. Thus...... most indirect tests become positive at relatively small pressure gradients. Studies of cerebral blood flow at rest and during cerebral vasodilation makes it possible to identify patients with severe reduction of cerebral perfusion pressure. Such hemodynamic failure of one hemisphere may be identified...

  19. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hua Chiaho, E-mail: Chia-Ho.Hua@stjude.org [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Wu Shengjie [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Chemaitilly, Wassim [Division of Endocrinology, Department of Pediatric Medicine, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Lukose, Renin C.; Merchant, Thomas E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2012-11-15

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  20. Duration of exclusive breastfeeding is associated with differences in infants' brain responses to emotional body expressions.

    Science.gov (United States)

    Krol, Kathleen M; Rajhans, Purva; Missana, Manuela; Grossmann, Tobias

    2014-01-01

    Much research has recognized the general importance of maternal behavior in the early development and programing of the mammalian offspring's brain. Exclusive breastfeeding (EBF) duration, the amount of time in which breastfed meals are the only source of sustenance, plays a prominent role in promoting healthy brain and cognitive development in human children. However, surprisingly little is known about the influence of breastfeeding on social and emotional development in infancy. In the current study, we examined whether and how the duration of EBF impacts the neural processing of emotional signals by measuring electro-cortical responses to body expressions in 8-month-old infants. Our analyses revealed that infants with high EBF experience show a significantly greater neural sensitivity to happy body expressions than those with low EBF experience. Moreover, regression analyses revealed that the neural bias toward happiness or fearfulness differs as a function of the duration of EBF. Specifically, longer breastfeeding duration is associated with a happy bias, whereas shorter breastfeeding duration is associated with a fear bias. These findings suggest that breastfeeding experience can shape the way in which infants respond to emotional signals.

  1. Brain mechanisms that underlie the effects of motivational audiovisual stimuli on psychophysiological responses during exercise.

    Science.gov (United States)

    Bigliassi, Marcelo; Silva, Vinícius B; Karageorghis, Costas I; Bird, Jonathan M; Santos, Priscila C; Altimari, Leandro R

    2016-05-01

    Motivational audiovisual stimuli such as music and video have been widely used in the realm of exercise and sport as a means by which to increase situational motivation and enhance performance. The present study addressed the mechanisms that underlie the effects of motivational stimuli on psychophysiological responses and exercise performance. Twenty-two participants completed fatiguing isometric handgrip-squeezing tasks under two experimental conditions (motivational audiovisual condition and neutral audiovisual condition) and a control condition. Electrical activity in the brain and working muscles was analyzed by use of electroencephalography and electromyography, respectively. Participants were asked to squeeze the dynamometer maximally for 30s. A single-item motivation scale was administered after each squeeze. Results indicated that task performance and situational motivational were superior under the influence of motivational stimuli when compared to the other two conditions (~20% and ~25%, respectively). The motivational stimulus downregulated the predominance of low-frequency waves (theta) in the right frontal regions of the cortex (F8), and upregulated high-frequency waves (beta) in the central areas (C3 and C4). It is suggested that motivational sensory cues serve to readjust electrical activity in the brain; a mechanism by which the detrimental effects of fatigue on the efferent control of working muscles is ameliorated. PMID:26948160

  2. EGFR mutations are associated with favorable intracranial response and progression-free survival following brain irradiation in non-small cell lung cancer patients with brain metastases

    International Nuclear Information System (INIS)

    The presence of epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) is associated with increased radiosensitivity in vitro. However, the results from clinical studies regarding the radiosensitivity in NSCLC with mutant EGFR are inconclusive. We retrospectively analyzed our NSCLC patients who had been regularly followed up by imaging studies after irradiation for brain metastases, and investigated the impact of EGFR mutations on radiotherapy (RT). Forty-three patients with brain metastases treated with RT, together with EGFR mutation status, demographics, smoking history, performance status, recursive partitioning analysis (RPA) class, tumor characteristics, and treatment modalities, were included. Radiological images were taken at 1 to 3 months after RT, and 3 to 6 months thereafter. Radiographic response was evaluated by RECIST criteria version 1.1 according to the intracranial images before and after RT. Log-rank test and Cox regression model were used to correlate EGFR mutation status and other clinical features with intracranial radiological progression-free survival (RPFS) and overall survival (OS). The median follow-up duration was 15 months. Patients with mutant EGFR had higher response rates to brain RT than those with wild-type EGFR (80% vs. 46%; p = 0.037). Logistic regression analysis showed that EGFR mutation status is the only predictor for treatment response (p = 0.032). The median intracranial RPFS was 18 months (95% CI = 8.33-27.68 months). In Cox regression analysis, mutant EGFR (p = 0.025) and lower RPA class (p = 0.026) were associated with longer intracranial RPFS. EGFR mutation status (p = 0.061) and performance status (p = 0.076) had a trend to predict OS. Mutant EGFR in NSCLC patients is an independent prognostic factor for better treatment response and longer intracranial RPFS following RT for brain metastases

  3. EGFR mutations are associated with favorable intracranial response and progression-free survival following brain irradiation in non-small cell lung cancer patients with brain metastases

    Science.gov (United States)

    2012-01-01

    Background The presence of epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) is associated with increased radiosensitivity in vitro. However, the results from clinical studies regarding the radiosensitivity in NSCLC with mutant EGFR are inconclusive. We retrospectively analyzed our NSCLC patients who had been regularly followed up by imaging studies after irradiation for brain metastases, and investigated the impact of EGFR mutations on radiotherapy (RT). Methods Forty-three patients with brain metastases treated with RT, together with EGFR mutation status, demographics, smoking history, performance status, recursive partitioning analysis (RPA) class, tumor characteristics, and treatment modalities, were included. Radiological images were taken at 1 to 3 months after RT, and 3 to 6 months thereafter. Radiographic response was evaluated by RECIST criteria version 1.1 according to the intracranial images before and after RT. Log-rank test and Cox regression model were used to correlate EGFR mutation status and other clinical features with intracranial radiological progression-free survival (RPFS) and overall survival (OS). Results The median follow-up duration was 15 months. Patients with mutant EGFR had higher response rates to brain RT than those with wild-type EGFR (80% vs. 46%; p = 0.037). Logistic regression analysis showed that EGFR mutation status is the only predictor for treatment response (p = 0.032). The median intracranial RPFS was 18 months (95% CI = 8.33-27.68 months). In Cox regression analysis, mutant EGFR (p = 0.025) and lower RPA class (p = 0.026) were associated with longer intracranial RPFS. EGFR mutation status (p = 0.061) and performance status (p = 0.076) had a trend to predict OS. Conclusions Mutant EGFR in NSCLC patients is an independent prognostic factor for better treatment response and longer intracranial RPFS following RT for brain metastases. PMID:23110940

  4. Dynamic change of cerebral hemodynamic after traumatic brain injury in rats following VEGF-165 gene therapy%VEGF-165基因对创伤性脑损伤脑血流动力学影响的实验研究

    Institute of Scientific and Technical Information of China (English)

    刘科; 唐文渊

    2012-01-01

    Objective To study the exogenous vascular endothelial growth factor (VEGF) gene therapy for traumatic brain injury (TB1) in rats by using CT perfusion (CTP) and to probe into the dynamic changes in local cerebral hemodynamic. Methods TBI rat models were established and were randomly divided into 3 groups, that is, TBI + VEGF group, control group, and TBI group. The expressions of VEGF mRNA in injury area were detected by reverse transcription polymerase chain reaction (RT-PCR) at 1 h, 6 h, 24 h, 3 d, 7 d, 14 d after brain injury. CT perfusion (CTP) at different time points was used to monitor the dynamic changes of the cerebral blood flow (CBV), cerebral blood volume (CBF) and other parameters before and after VEGF-165 gene therapy. Results Integral optical density (IOD) levels in TBI + VEGF group were significant higher than that of TBI and vector control group (P<0.05). CTP parameters and false-color image showed that CBF and CBV was increasing in TBI + VEGF group at 24 h after injury, and at 3 d and 7d after injury the cerebral perfusion was significantly higher in TBI + VEGF group than in TBI group (P <0. 05). At 14 d after injury, CBF and CBV began to decrease, but they were still higher than that of TBI group. Conclusion Exogenous VEGF gene can increase the cerebral perfusion after the traumatic brain injury and improve the microcirculation which provides the basis for the recovery of brain tissues.%目的 研究外源性血管内皮细胞生长因子(VEGF)基因治疗大鼠创伤性脑损伤(TBI)后脑灌注的变化,了解其血流动力学改变.方法 创伤性脑损伤大鼠模型建立后随机分为3组:治疗组,质粒对照组,外伤组.通过RT-PCR检测脑伤后1h、6h、24h、3d、7d、14 d VEGF mRNA在损伤局部的表达改变;应用CT灌注像(CTP)研究不同时间脑血流量(CBF)、脑血容量(CBV)等参数在VEGF-165基因治疗前后的动态变化.结果 VEGF-165基因治疗创伤性脑损伤大鼠后经RT-PCR扩增的VEGF mRNA绝对

  5. Time-dependent changes in cerebral blood flow after acetazolamide loading into patients with hemodynamic cerebral ischemia. Relationship to cerebral oxygen metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Masakazu [Iwate Medical Univ., Morioka (Japan). School of Medicine

    2001-10-01

    The aim of this study was to clarify the relationship between time-dependent changes in cerebral blood flow (CBF) after acetazolamide loading and cerebral oxygen metabolism (CMRO{sub 2}). The subjects consisted of 30 patients with severe stenosis or occlusion of either internal carotid, middle cerebral, or vertebro-basilar artery. Regional CBF was measured at the resting state and 6, 16 and 30 minutes after intravenous administration of 1 gram of acetazolamide using the positron emission tomography in combination with the [{sup 15}O] H{sub 2}O bolus-injection method. Prior to CBF study, regional cerebral oxygen extraction fraction (OEF) was measured using the [{sup 15}O] O{sub 2} inhalation method. Regional CMRO{sub 2} was calculated based on CBF and OEF. According to the time-dependent changes in CBF responses to acetazolamide loading, the CBF responses are classified into good response type, paradoxical response type, and poor response type. Good response type (CBF increase rate more than 20% 6 minutes after acetazolamide loading), paradoxical response type (decrease of CBF 6 minutes after acetazolamide loading) and poor response type (CBF increase rate less than 20% 6 minutes after acetazolamide loading) were identified in 39, 11 and 10 areas, respectively. Brain areas with good response type showed normal OEF and normal CMRO{sub 2}. Brain areas with paradoxical response type showed increased OEF and normal CMRO{sub 2}. Brain areas with poor response type showed normal OEF and decreased CMRO{sub 2}. In view of these findings, the writer concludes that sequential measurement of cerebral blood flow (CBF) after acetazolamide loading enables one to know the regional cerebral oxygen metabolic state in patients with hemodynamic ischemia, and CBF should be measured at an early stage after the administration of acetazolamide to accurately detect misery perfusion. (author)

  6. Effects of BURP Maneuver on the Hemodynamics and QT and P Dispersions in ECG in Cardiac Surgery Patients

    OpenAIRE

    DEMİRHAN, A.; BİLGİ, M.; TEKELİOĞLU, Ü. Y.; Akkaya, A; ERDEM, K.; Öztürk, S.; KURT, A. D.; Koçoğlu, H.

    2014-01-01

    Effects of BURP Maneuver on the Hemodynamics and QT and P Dispersions in ECG in Cardiac Surgery PatientsObjective: In this study, we aimed to investigate the possible effects of “backward-upward right-sided pressure” (BURP) maneuver applied during tracheal intubation (TI) in patients who will undergo coronary artery baypas surgery on hemodynamic response and QT dispersion (QTd) and P wave dispersion (Pd).Material and Methods: 40 patients undergoing elective coronary artery bypas graft surgery...

  7. 全脑CT灌注联合血管成像分析单侧颈内动脉闭塞患者脑血流代偿机制%Whole brain perfusion and angiography in the evaluation of hemodynamic compensatory mechanism in unilateral internal carotid occlusion

    Institute of Scientific and Technical Information of China (English)

    朱剑萍; 张洋霖; 濮进敏; 徐勇辉; 孙勇; 刘灿丽

    2014-01-01

    目的:利用全脑CT灌注(CTP)联合CT血管成像(CTA)分析单侧颈内动脉(ICA)闭塞患者的脑血流动力学变化及侧支循环情况。方法对12例单侧ICA闭塞患者行头颅CT平扫、CTP、CTA检查,以5名CTP及20例CTA正常患者的双侧眼动脉、颞浅及枕动脉血管直径作为参考值。分析病变组各灌注参数值的特点及侧支循环代偿情况。结果4例头颅平扫阴性,CBF、CBV、MTT、TTP接近正常,侧支血管代偿良好,双侧眼动脉、颞浅、枕动脉血管直径较正常增粗约62%、64%、50%。8例出现脑梗死,CBF、CBV降低,TTP、MTT延长,侧支血管代偿不良。12例患者Willis环均不完整。结论 CTP联合CTA能很好评估单侧ICA闭塞的脑血流动力学变化及侧支循环情况,在Willis环发育不良的情况下,颅外血管及软、硬脑膜的代偿与其临床转归同样密切相关。%Objective To evaluate cerebral hemodynamic changes and collateral circulation in patients with unilateral internal carotid artery(ICA)occlusion using whole brain CT perfusion(CTP)and CT angiography(CTA).Methods Unenhanced CT,CTP and CTA were performed on 12 patients with unilateral internal carotid occlusion.The mean diameters of the bilateral ophthalmic, superficial temporal and occipital arteries of 5 persons with normal CTP and 20 persons with normal CTA were used as reference standards.The perfusion parameters including cerebral blood flow(CBF),cerebral blood volume(CBV),mean transit time(MTT), and time to peak(TTP)as well as the collateral circulation of 12 patients were analyzed.Results In 4 patients with unilateral ICA occlusion,unenhanced CT was normal.The CBF,CBV,MTT and TTP were close to normal.The collateral blood supply was good with 62%increase in the diameters of bilateral ophthalmic arteries,64%in the superficial temporal arteries and 50%in the occipital arteries compared with reference standards.In 8 patients with cerebral infarction,the CBF

  8. Modeling learning in brain stem and cerebellar sites responsible for VOR plasticity

    Science.gov (United States)

    Quinn, K. J.; Didier, A. J.; Baker, J. F.; Peterson, B. W.

    1998-01-01

    A simple model of vestibuloocular reflex (VOR) function was used to analyze several hypotheses currently held concerning the characteristics of VOR plasticity. The network included a direct vestibular pathway and an indirect path via the cerebellum. An optimization analysis of this model suggests that regulation of brain stem sites is critical for the proper modification of VOR gain. A more physiologically plausible learning rule was also applied to this network. Analysis of these simulation results suggests that the preferred error correction signal controlling gain modification of the VOR is the direct output of the accessory optic system (AOS) to the vestibular nuclei vs. a signal relayed through the cerebellum via floccular Purkinje cells. The potential anatomical and physiological basis for this conclusion is discussed, in relation to our current understanding of the latency of the adapted VOR response.

  9. Color of scents: chromatic stimuli modulate odor responses in the human brain.

    Science.gov (United States)

    Osterbauer, Robert A; Matthews, Paul M; Jenkinson, Mark; Beckmann, Christian F; Hansen, Peter C; Calvert, Gemma A

    2005-06-01

    Color has a profound effect on the perception of odors. For example, strawberry-flavored drinks smell more pleasant when colored red than green and descriptions of the "nose" of a wine are dramatically influenced by its color. Using functional magnetic resonance imaging, we demonstrate a neurophysiological correlate of these cross-modal visual influences on olfactory perception. Subjects were scanned while exposed either to odors or colors in isolation or to color-odor combinations that were rated on the basis of how well they were perceived to match. Activity in caudal regions of the orbitofrontal cortex and in the insular cortex increased progressively with the perceived congruency of the odor-color pairs. These findings demonstrate the neuronal correlates of olfactory response modulation by color cues in brain areas previously identified as encoding the hedonic value of smells. PMID:15689393

  10. Effects of L-glutamine supplementation on maternal and fetal hemodynamics in gestating ewes exposed to alcohol

    OpenAIRE

    Sawant, Onkar B.; Ramadoss, Jayanth; Hankins, Gary D.; Wu, Guoyao; Washburn, Shannon E.

    2014-01-01

    Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75–2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A ...

  11. Verbal labels selectively bias brain responses to high-energy foods.

    Science.gov (United States)

    Toepel, Ulrike; Ohla, Kathrin; Hudry, Julie; le Coutre, Johannes; Murray, Micah M

    2014-02-15

    The influence of external factors on food preferences and choices is poorly understood. Knowing which and how food-external cues impact the sensory processing and cognitive valuation of food would provide a strong benefit toward a more integrative understanding of food intake behavior and potential means of interfering with deviant eating patterns to avoid detrimental health consequences for individuals in the long run. We investigated whether written labels with positive and negative (as opposed to 'neutral') valence differentially modulate the spatio-temporal brain dynamics in response to the subsequent viewing of high- and low-energetic food images. Electrical neuroimaging analyses were applied to visual evoked potentials (VEPs) from 20 normal-weight participants. VEPs and source estimations in response to high- and low- energy foods were differentially affected by the valence of preceding word labels over the ~260-300 ms post-stimulus period. These effects were only observed when high-energy foods were preceded by labels with positive valence. Neural sources in occipital as well as posterior, frontal, insular and cingulate regions were down-regulated. These findings favor cognitive-affective influences especially on the visual responses to high-energetic food cues, potentially indicating decreases in cognitive control and goal-adaptive behavior. Inverse correlations between insular activity and effectiveness in food classification further indicate that this down-regulation directly impacts food-related behavior. PMID:24185017

  12. The Acute Inflammatory Response in Trauma / Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects

    Directory of Open Access Journals (Sweden)

    Y Vodovotz

    2009-01-01

    Full Text Available Traumatic injury/hemorrhagic shock (T/HS elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI. Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherentlydetrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and regeneration. The inflammatory response is driven by cytokines and chemokines and is partiallypropagated by damaged tissue-derived products (Damage-associated Molecular Patterns; DAMP’s.DAMPs perpetuate inflammation through the release of pro-inflammatory cytokines, but may also inhibit anti-inflammatory cytokines. Various animal models of T/HS in mice, rats, pigs, dogs, and nonhumanprimates have been utilized in an attempt to move from bench to bedside. Novel approaches, including those from the field of systems biology, may yield therapeutic breakthroughs in T/HS andTBI in the near future.

  13. Brain responses to audiovisual speech mismatch in infants are associated with individual differences in looking behaviour.

    Science.gov (United States)

    Kushnerenko, Elena; Tomalski, Przemyslaw; Ballieux, Haiko; Ribeiro, Helena; Potton, Anita; Axelsson, Emma L; Murphy, Elizabeth; Moore, Derek G

    2013-11-01

    Research on audiovisual speech integration has reported high levels of individual variability, especially among young infants. In the present study we tested the hypothesis that this variability results from individual differences in the maturation of audiovisual speech processing during infancy. A developmental shift in selective attention to audiovisual speech has been demonstrated between 6 and 9 months with an increase in the time spent looking to articulating mouths as compared to eyes (Lewkowicz & Hansen-Tift. (2012) Proc. Natl Acad. Sci. USA, 109, 1431-1436; Tomalski et al. (2012) Eur. J. Dev. Psychol., 1-14). In the present study we tested whether these changes in behavioural maturational level are associated with differences in brain responses to audiovisual speech across this age range. We measured high-density event-related potentials (ERPs) in response to videos of audiovisually matching and mismatched syllables /ba/ and /ga/, and subsequently examined visual scanning of the same stimuli with eye-tracking. There were no clear age-specific changes in ERPs, but the amplitude of audiovisual mismatch response (AVMMR) to the combination of visual /ba/ and auditory /ga/ was strongly negatively associated with looking time to the mouth in the same condition. These results have significant implications for our understanding of individual differences in neural signatures of audiovisual speech processing in infants, suggesting that they are not strictly related to chronological age but instead associated with the maturation of looking behaviour, and develop at individual rates in the second half of the first year of life.

  14. Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression.

    Science.gov (United States)

    Haile, C N; Murrough, J W; Iosifescu, D V; Chang, L C; Al Jurdi, R K; Foulkes, A; Iqbal, S; Mahoney, J J; De La Garza, R; Charney, D S; Newton, T F; Mathew, S J

    2014-02-01

    Ketamine produces rapid antidepressant effects in treatment-resistant depression (TRD), but the magnitude of response varies considerably between individual patients. Brain-derived neurotrophic factor (BDNF) has been investigated as a biomarker of treatment response in depression and has been implicated in the mechanism of action of ketamine. We evaluated plasma BDNF and associations with symptoms in 22 patients with TRD enrolled in a randomized controlled trial of ketamine compared to an anaesthetic control (midazolam). Ketamine significantly increased plasma BDNF levels in responders compared to non-responders 240 min post-infusion, and Montgomery-Åsberg Depression Rating Scale (MADRS) scores were negatively correlated with BDNF (r=-0.701, p = 0.008). Plasma BDNF levels at 240 min post-infusion were highly negatively associated with MADRS scores at 240 min (r = -0.897, p=.002), 24 h (r = -0.791, p = 0.038), 48 h (r = -0.944, p = 0.001) and 72 h (r = -0.977, p = 0.010). No associations with BDNF were found for patients receiving midazolam. These data support plasma BDNF as a peripheral biomarker relevant to ketamine antidepressant response.

  15. Human brain EEG indices of emotions: delineating responses to affective vocalizations by measuring frontal theta event-related synchronization.

    Science.gov (United States)

    Bekkedal, Marni Y V; Rossi, John; Panksepp, Jaak

    2011-10-01

    At present there is no direct brain measure of basic emotional dynamics from the human brain. EEG provides non-invasive approaches for monitoring brain electrical activity to emotional stimuli. Event-related desynchronization/synchronization (ERD/ERS) analysis, based on power shifts in specific frequency bands, has some potential as a method for differentiating responses to basic emotions as measured during brief presentations of affective stimuli. Although there appears to be fairly consistent theta ERS in frontal regions of the brain during the earliest phases of processing affective auditory stimuli, the patterns do not readily distinguish between specific emotions. To date it has not been possible to consistently differentiate brain responses to emotion-specific affective states or stimuli, and some evidence to suggests the theta ERS more likely measures general arousal processes rather than yielding veridical indices of specific emotional states. Perhaps cortical EEG patterns will never be able to be used to distinguish discrete emotional states from the surface of the brain. The implications and limitations of such approaches for understanding human emotions are discussed. PMID:21596060

  16. Cannabis Abusers Show Hypofrontality and Blunted Brain Responses to a Stimulant Challenge in Females but not in Males.

    Science.gov (United States)

    Wiers, Corinde E; Shokri-Kojori, Ehsan; Wong, Christopher T; Abi-Dargham, Anissa; Demiral, Şükrü B; Tomasi, Dardo; Wang, Gene-Jack; Volkow, Nora D

    2016-09-01

    The extent to which cannabis is deleterious to the human brain is not well understood. Here, we test whether cannabis abusers (CA) have impaired frontal function and reactivity to dopaminergic signaling, which are fundamental to relapse in addiction. We measured brain glucose metabolism using PET and [(18)F]FDG both at baseline (placebo) and after challenge with methylphenidate (MP), a dopamine-enhancing drug, in 24 active CA (50% female) and 24 controls (HC; 50% female). Results show that (i) CA had lower baseline glucose metabolism than HC in frontal cortex including anterior cingulate, which was associated with negative emotionality. (ii) MP increased whole-brain glucose metabolism in HC but not in CA; and group by challenge effects were most profound in putamen, ca