WorldWideScience

Sample records for brain hemodynamic responses

  1. Fetal brain activity and hemodynamic response to a vibroacoustic stimulus.

    Science.gov (United States)

    Fulford, Jonathan; Vadeyar, Shantala H; Dodampahala, Sanani H; Ong, Stephen; Moore, Rachel J; Baker, Philip N; James, David K; Gowland, Penny

    2004-06-01

    Previous studies have demonstrated the practicality of using functional magnetic resonance imaging (fMRI) techniques to assess fetal brain activity. The purpose of this study was to compare the fetal hemodynamic response to that of the adult. Seventeen pregnant subjects, all of whom were at more than 36 weeks gestation were scanned while the fetus was exposed to a vibroacoustic stimulus. Thirteen adult subjects were scanned with an equivalent acoustic stimulus. Of the fetal subjects, two could not be analyzed due to technical problems, eight did not show significant activation, and seven showed significant activation. In all cases, activation was localized within the temporal region. Measures of fetal hemodynamic responses revealed an average time to peak (ttp) of 7.36 +/- 0.94 sec and an average percentage change of 2.67 +/- 0.93%. In contrast, activation was detected in 5 of 13 adults with an average ttp of 6.54 +/- 0.54 sec and an average percentage change of 1.02 +/- 0.40%. The measurement of changes in the fetal hemodynamic response may be important in assessing compromised pregnancies. Copyright 2004 Wiley-Liss, Inc.

  2. BRAD: Software for BRain Activity Detection from hemodynamic response

    Czech Academy of Sciences Publication Activity Database

    Pidnebesna, Anna; Tomeček, David; Hlinka, Jaroslav

    2018-01-01

    Roč. 156, March (2018), s. 113-119 ISSN 0169-2607 R&D Projects: GA ČR GA13-23940S; GA ČR GA17-01251S; GA ČR GA13-23940S Grant - others:GA MŠk(CZ) LO1611 Institutional support: RVO:67985807 Keywords : deconvolution methods * functional magnetic resonance imaging * hemodynamic response * neuronal activity estimation * Wiener filtering Subject RIV: JC - Computer Hardware ; Software Impact factor: 2.503, year: 2016

  3. Depth-resolved optical imaging of hemodynamic response in mouse brain with microcirculatory beds

    Science.gov (United States)

    Jia, Yali; Nettleton, Rosemary; Rosenberg, Mara; Boudreau, Eilis; Wang, Ruikang K.

    2011-03-01

    Optical hemodynamic imaging employed in pre-clinical studies with high spatial and temporal resolution is significant to unveil the functional activities of brain and the mechanism of internal or external stimulus effects in diverse pathological conditions and treatments. Most current optical systems only resolve hemodynamic changes within superficial macrocirculatory beds, such as laser speckle contrast imaging; or only provide vascular structural information within microcirculatory beds, such as multi-photon microscopy. In this study, we introduce a hemodynamic imaging system based on Optical Micro-angiography (OMAG) which is capable of resolving and quantifying 3D dynamic blood perfusion down to microcirculatory level. This system can measure the optical phase shifts caused by moving blood cells in microcirculation. Here, the utility of OMAG was demonstrated by monitoring the hemodynamic response to alcohol administration in mouse prefrontal cortex. Our preliminary results suggest that the spatiotemporal tracking of cerebral micro-hemodynamic using OMAG can be successfully applied to the mouse brain and reliably distinguish between vehicle and alcohol stimulation experiment.

  4. Hemodynamic responses in rat brain during transcranial direct current stimulation: a functional near-infrared spectroscopy study

    OpenAIRE

    Han, Chang-Hee; Song, Hyuna; Kang, Yong-Guk; Kim, Beop-Min; Im, Chang-Hwan

    2014-01-01

    In the present study, we monitored hemodynamic responses in rat brains during transcranial direct current stimulation (tDCS) using functional near-infrared spectroscopy (fNIRS). Seven rats received transcranial anodal stimulation with 200 μA direct current (DC) on their right barrel cortex for 10 min. The concentration changes of oxygenated hemoglobin (oxy-Hb) were continuously monitored during stimulation (10 min) and after stimulation (20 min). The trend of hemodynamic response changes was ...

  5. Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study

    Science.gov (United States)

    Lee, Seungduk; Lee, Mina; Koh, Dalkwon; Kim, Beop-Min; Choi, Jee Hyun

    2010-05-01

    We applied near-infrared spectroscopy (NIRS) and electroencephalography (EEG) simultaneously on the mouse brain and investigated the hemodynamic response to epileptic episodes under pharmacologically driven seizure. γ-butyrolactone (GBL) and 4-aminopyridine (4-AP) were applied to induce absence and tonic-clonic seizures, respectively. The epileptic episodes were identified from the single-channel EEG, and the corresponding hemodynamic changes in different regions of the brain were characterized by multichannel frequency-domain NIRS. Our results are the following: (i) the oxyhemoglobin level increases in the case of GBL-treated mice but not 4-AP-treated mice compared to the predrug state; (ii) the dominant response to each absence seizure is a decrease in deoxyhemolobin; (iii) the phase shift between oxy- and deoxyhemoglobin reduces in GBL-treated mice but no 4-AP-treated mice; and (iv) the spatial correlation of hemodynamics increased significantly in 4-AP-treated mice but not in GBL-treated mice. Our results shows that spatiotemporal tracking of cerebral hemodynamics using NIRS can be successfully applied to the mouse brain in conjunction with electrophysiological recording, which will support the study of molecular, cellular, and network origin of neurovascular coupling in vivo.

  6. Hemodynamic responses in rat brain during transcranial direct current stimulation: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Han, Chang-Hee; Song, Hyuna; Kang, Yong-Guk; Kim, Beop-Min; Im, Chang-Hwan

    2014-06-01

    In the present study, we monitored hemodynamic responses in rat brains during transcranial direct current stimulation (tDCS) using functional near-infrared spectroscopy (fNIRS). Seven rats received transcranial anodal stimulation with 200 μA direct current (DC) on their right barrel cortex for 10 min. The concentration changes of oxygenated hemoglobin (oxy-Hb) were continuously monitored during stimulation (10 min) and after stimulation (20 min). The trend of hemodynamic response changes was modeled using linear regression, and the relationship between incremental and decremental rates of oxy-Hb was investigated by correlation analysis. Our results showed that the oxy-Hb concentration was almost linearly increased and decreased during and after stimulation, respectively. In addition, a significant negative correlation (p < 0.05) was found between the rate of increase of oxy-Hb during stimulation and the rate of decrease of oxy-Hb after stimulation, indicating that the recovery time after tDCS may not depend on the total amount of hemodynamic changes in the stimulated brain area. Our results also demonstrated considerable individual variability in the rate of change of hemodynamic responses even with the same direct current dose to identical brain regions. This suggests that individual differences in tDCS after-effects may originate from intrinsic differences in the speed of DC stimulation "uptake" rather than differences in the total capacity of DC uptake, and thus the stimulation parameters may need to be customized for each individual in order to maximize tDCS after-effects.

  7. Dual-wavelength laser speckle imaging for monitoring brain metabolic and hemodynamic response to closed head traumatic brain injury in mice

    Science.gov (United States)

    Kofman, Itamar; Abookasis, David

    2015-10-01

    ) monitor brain hemodynamic and metabolic response to neuroprotective drug treatment.

  8. Frontal Lobe Hemodynamic Responses to Painful Stimulation: A Potential Brain Marker of Nociception.

    Science.gov (United States)

    Aasted, Christopher M; Yücel, Meryem A; Steele, Sarah C; Peng, Ke; Boas, David A; Becerra, Lino; Borsook, David

    2016-01-01

    The purpose of this study was to use functional near-infrared spectroscopy (fNIRS) to examine patterns of both activation and deactivation that occur in the frontal lobe in response to noxious stimuli. The frontal lobe was selected because it has been shown to be activated by noxious stimuli in functional magnetic resonance imaging studies. The brain region is located behind the forehead which is devoid of hair, providing a relative ease of placement for fNIRS probes on this area of the head. Based on functional magnetic resonance imaging studies showing blood-oxygenation-level dependent changes in the frontal lobes, we evaluated functional near-infrared spectroscopy measures in response to two levels of electrical pain in awake, healthy human subjects (n = 10; male = 10). Each subject underwent two recording sessions separated by a 30-minute resting period. Data collected from 7 subjects were analyzed, containing a total of 38/36 low/high intensity pain stimuli for the first recording session and 27/31 pain stimuli for the second session. Our results show that there is a robust and significant deactivation in sections of the frontal cortices. Further development and definition of the specificity and sensitivity of the approach may provide an objective measure of nociceptive activity in the brain that can be easily applied in the surgical setting.

  9. Assessment of sexual orientation using the hemodynamic brain response to visual sexual stimuli.

    Science.gov (United States)

    Ponseti, Jorge; Granert, Oliver; Jansen, Olav; Wolff, Stephan; Mehdorn, Hubertus; Bosinski, Hartmut; Siebner, Hartwig

    2009-06-01

    The assessment of sexual orientation is of importance to the diagnosis and treatment of sex offenders and paraphilic disorders. Phallometry is considered gold standard in objectifying sexual orientation, yet this measurement has been criticized because of its intrusiveness and limited reliability. To evaluate whether the spatial response pattern to sexual stimuli as revealed by a change in blood oxygen level-dependent (BOLD) signal can be used for individual classification of sexual orientation. We used a preexisting functional MRI (fMRI) data set that had been acquired in a nonclinical sample of 12 heterosexual men and 14 homosexual men. During fMRI, participants were briefly exposed to pictures of same-sex and opposite-sex genitals. Data analysis involved four steps: (i) differences in the BOLD response to female and male sexual stimuli were calculated for each subject; (ii) these contrast images were entered into a group analysis to calculate whole-brain difference maps between homosexual and heterosexual participants; (iii) a single expression value was computed for each subject expressing its correspondence to the group result; and (iv) based on these expression values, Fisher's linear discriminant analysis and the kappa-nearest neighbor classification method were used to predict the sexual orientation of each subject. Sensitivity and specificity of the two classification methods in predicting individual sexual orientation. Both classification methods performed well in predicting individual sexual orientation with a mean accuracy of >85% (Fisher's linear discriminant analysis: 92% sensitivity, 85% specificity; kappa-nearest neighbor classification: 88% sensitivity, 92% specificity). Despite the small sample size, the functional response patterns of the brain to sexual stimuli contained sufficient information to predict individual sexual orientation with high accuracy. These results suggest that fMRI-based classification methods hold promise for the diagnosis

  10. Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses

    DEFF Research Database (Denmark)

    Lauritzen, Martin; Mathiesen, Claus; Schaefer, Katharina

    2012-01-01

    Brain's electrical activity correlates strongly to changes in cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO(2)). Subthreshold synaptic processes correlate better than the spike rates of principal neurons to CBF, CMRO(2) and positive BOLD signals. Stimulation-induced ri......Brain's electrical activity correlates strongly to changes in cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO(2)). Subthreshold synaptic processes correlate better than the spike rates of principal neurons to CBF, CMRO(2) and positive BOLD signals. Stimulation......-induced rises in CMRO(2) are controlled by the ATP turnover, which depends on the energy used to fuel the Na,K-ATPase to reestablish ionic gradients, while stimulation-induced CBF responses to a large extent are controlled by mechanisms that depend on Ca(2+) rises in neurons and astrocytes. This dichotomy...... and release vasodilators that evoke positive BOLD signals, while the mechanisms that control negative BOLD signals by activity-dependent vasoconstriction are less well understood. Activation of both excitatory and inhibitory neurons produces rises in CBF and positive BOLD signals, while negative BOLD signals...

  11. Mapping of the brain hemodynamic responses to sensorimotor stimulation in a rodent model: A BOLD fMRI study.

    Science.gov (United States)

    Boussida, Salem; Traoré, Amidou S; Durif, Franck

    2017-01-01

    Blood Oxygenation Level Dependent functional MRI (BOLD fMRI) during electrical paw stimulation has been widely used in studies aimed at the understanding of the somatosensory network in rats. However, despite the well-established anatomical connections between cortical and subcortical structures of the sensorimotor system, most of these functional studies have been concentrated on the cortical effects of sensory electrical stimulation. BOLD fMRI study of the integration of a sensorimotor input across the sensorimotor network requires an appropriate methodology to elicit functional activation in cortical and subcortical areas owing to the regional differences in both neuronal and vascular architectures between these brain regions. Here, using a combination of low level anesthesia, long pulse duration of the electrical stimulation along with improved spatial and temporal signal to noise ratios, we provide a functional description of the main cortical and subcortical structures of the sensorimotor rat brain. With this calibrated fMRI protocol, unilateral non-noxious sensorimotor electrical hindpaw stimulation resulted in robust positive activations in the contralateral sensorimotor cortex and bilaterally in the sensorimotor thalamus nuclei, whereas negative activations were observed bilaterally in the dorsolateral caudate-putamen. These results demonstrate that, once the experimental setup allowing necessary spatial and temporal signal to noise ratios is reached, hemodynamic changes related to neuronal activity, as preserved by the combination of a soft anesthesia with a soft muscle relaxation, can be measured within the sensorimotor network. Moreover, the observed responses suggest that increasing pulse duration of the electrical stimulus adds a proprioceptive component to the sensory input that activates sensorimotor network in the brain, and that these activation patterns are similar to those induced by digits paw's movements. These findings may find application in

  12. Mapping of the brain hemodynamic responses to sensorimotor stimulation in a rodent model: A BOLD fMRI study.

    Directory of Open Access Journals (Sweden)

    Salem Boussida

    Full Text Available Blood Oxygenation Level Dependent functional MRI (BOLD fMRI during electrical paw stimulation has been widely used in studies aimed at the understanding of the somatosensory network in rats. However, despite the well-established anatomical connections between cortical and subcortical structures of the sensorimotor system, most of these functional studies have been concentrated on the cortical effects of sensory electrical stimulation. BOLD fMRI study of the integration of a sensorimotor input across the sensorimotor network requires an appropriate methodology to elicit functional activation in cortical and subcortical areas owing to the regional differences in both neuronal and vascular architectures between these brain regions. Here, using a combination of low level anesthesia, long pulse duration of the electrical stimulation along with improved spatial and temporal signal to noise ratios, we provide a functional description of the main cortical and subcortical structures of the sensorimotor rat brain. With this calibrated fMRI protocol, unilateral non-noxious sensorimotor electrical hindpaw stimulation resulted in robust positive activations in the contralateral sensorimotor cortex and bilaterally in the sensorimotor thalamus nuclei, whereas negative activations were observed bilaterally in the dorsolateral caudate-putamen. These results demonstrate that, once the experimental setup allowing necessary spatial and temporal signal to noise ratios is reached, hemodynamic changes related to neuronal activity, as preserved by the combination of a soft anesthesia with a soft muscle relaxation, can be measured within the sensorimotor network. Moreover, the observed responses suggest that increasing pulse duration of the electrical stimulus adds a proprioceptive component to the sensory input that activates sensorimotor network in the brain, and that these activation patterns are similar to those induced by digits paw's movements. These findings may

  13. Traumatic Brain Injury Creates Biphasic Systemic Hemodynamic and Organ Blood Flow Responses in Rats

    Science.gov (United States)

    1990-01-01

    dura and was secured to the bone and the screws with dental acrylic. The rats were returned to their cages and allowed to recover for 24 h. The...throughout the observation period in our study. Since sympathetic vasoconstrictor fibers are distributed unevenly to all segments of the circulation...There are more sympathetic vasoconstrictor fibers in the kidneys, spleen, and digestive system than in the heart and the brain (Guyton, 1986

  14. Assessment of sexual orientation using the hemodynamic brain response to visual sexual stimuli

    DEFF Research Database (Denmark)

    Ponseti, Jorge; Granert, Oliver; Jansen, Olav

    2009-01-01

    's linear discriminant analysis and the kappa-nearest neighbor classification method were used to predict the sexual orientation of each subject. MEAN OUTCOME MEASURE: Sensitivity and specificity of the two classification methods in predicting individual sexual orientation. RESULTS: Both classification...... methods performed well in predicting individual sexual orientation with a mean accuracy of >85% (Fisher's linear discriminant analysis: 92% sensitivity, 85% specificity; kappa-nearest neighbor classification: 88% sensitivity, 92% specificity). CONCLUSION: Despite the small sample size, the functional...... reliability. AIM: To evaluate whether the spatial response pattern to sexual stimuli as revealed by a change in blood oxygen level-dependent (BOLD) signal can be used for individual classification of sexual orientation. METHODS: We used a preexisting functional MRI (fMRI) data set that had been acquired...

  15. Inter-subject correlation of brain hemodynamic responses during watching a movie: localization in space and frequency

    Directory of Open Access Journals (Sweden)

    Jukka-Pekka Kauppi

    2010-03-01

    Full Text Available Cinema is a promising naturalistic stimulus that enables, for instance, elicitation of robust emotions during functional magnetic resonance imaging (fMRI. Inter-subject correlation (ISC has been used as a model-free analysis method to map the highly complex hemodynamic responses that are evoked during watching a movie. Here, we extended the ISC analysis to frequency domain using wavelet analysis combined with non-parametric permutation methods for making voxel-wise statistical inferences about frequency-band specific ISC. We applied these novel analysis methods to a dataset collected in our previous study where 12 subjects watched an emotionally engaging movie “Crash” during fMRI scanning. Our results suggest that several regions within the frontal and temporal lobes show ISC predominantly at low frequency bands, whereas visual cortical areas exhibit ISC also at higher frequencies. It is possible that these findings relate to recent observations of a cortical hierarchy of temporal receptive windows, or that the types of events processed in temporal and prefrontal cortical areas (e.g., social interactions occur over longer time periods than the stimulus features processed in the visual areas. Software tools to perform frequency-specific ISC analysis, together with a visualization application, are available as open source Matlab code.

  16. Fixation-related FMRI analysis in the domain of reading research: using self-paced eye movements as markers for hemodynamic brain responses during visual letter string processing.

    Science.gov (United States)

    Richlan, Fabio; Gagl, Benjamin; Hawelka, Stefan; Braun, Mario; Schurz, Matthias; Kronbichler, Martin; Hutzler, Florian

    2014-10-01

    The present study investigated the feasibility of using self-paced eye movements during reading (measured by an eye tracker) as markers for calculating hemodynamic brain responses measured by functional magnetic resonance imaging (fMRI). Specifically, we were interested in whether the fixation-related fMRI analysis approach was sensitive enough to detect activation differences between reading material (words and pseudowords) and nonreading material (line and unfamiliar Hebrew strings). Reliable reading-related activation was identified in left hemisphere superior temporal, middle temporal, and occipito-temporal regions including the visual word form area (VWFA). The results of the present study are encouraging insofar as fixation-related analysis could be used in future fMRI studies to clarify some of the inconsistent findings in the literature regarding the VWFA. Our study is the first step in investigating specific visual word recognition processes during self-paced natural sentence reading via simultaneous eye tracking and fMRI, thus aiming at an ecologically valid measurement of reading processes. We provided the proof of concept and methodological framework for the analysis of fixation-related fMRI activation in the domain of reading research. © The Author 2013. Published by Oxford University Press.

  17. Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates

    DEFF Research Database (Denmark)

    De Vis, Jill B; Alderliesten, Thomas; Hendrikse, Jeroen

    2016-01-01

    Perinatal disturbances of brain hemodynamics can have a detrimental effect on the brain's parenchyma with consequently adverse neurodevelopmental outcome. Noninvasive, reliable tools to evaluate the neonate's brain hemodynamics are scarce. Advances in magnetic resonance imaging have provided new...

  18. Review: hemodynamic response to carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Penney, D.G.

    1988-04-01

    Historically, and at present, carbon monoxide is a major gaseous poison responsible for widespread morbidity and mortality. From threshold to maximal nonlethal levels, a variety of cardiovascular changes occur, both immediately and in the long term, whose homeostatic function it is to renormalize tissue oxygen delivery. However, notwithstanding numerous studies over the past century, the literature remains equivocal regarding the hemodynamic responses in animals and humans, although CO hypoxia is clearly different in several respects from hypoxic hypoxia. Factors complicating interpretation of experimental findings include species, CO dose level and rate, route of CO delivery, duration, level of exertion, state of consciousness, and anesthetic agent used. Augmented cardiac output usually observed with moderate COHb may be compromised in more sever poisoning for the same reasons, such that regional or global ischemia result. The hypotension usually seen in most animal studies is thought to be a primary cause of CNS damage resulting from acute CO poisoning, yet the exact mechanism(s) remains unproven in both animals and humans, as does the way in which CO produces hypotension. This review briefly summarizes the literature relevant to the short- and long-term hemodynamic responses reported in animals and humans. It concludes by presenting an overview using data from a single species in which the most complete work has been done to date.

  19. Metabolic and hemodynamic evaluation of brain metastases from small cell lung cancer with positron emission tomography

    DEFF Research Database (Denmark)

    Lassen, U; Andersen, P; Daugaard, G

    1998-01-01

    Brain metastases from small cell lung cancer respond to chemotherapy, but response duration is short and the intracerebral concentration of chemotherapy may be too low because of the characteristics of the blood-brain barrier. Positron emission tomography has been applied in a variety of tumors...... for studies of metabolic and hemodynamic features. This study was performed to determine regional cerebral metabolic rate of glucose (rCMRglu), regional cerebral blood flow (rCBF), and regional cerebral blood volume (rCBV) in brain metastases from small cell lung cancer and the surrounding brain. Tumor r......CMRglu, rCBF, and rCBV exerted a broad variability, but were higher than the corresponding values in white matter and higher than or similar to those of gray matter. Tumor rCMRglu and rCBF were highly correlated (P

  20. Real-time hemodynamic response and mitochondrial function changes with intracarotid mannitol injection

    Science.gov (United States)

    Joshi, Shailendra; Singh-Moon, Rajinder; Wang, Mei; Bruce, Jeffrey N.; Bigio, Irving J.; Mayevsky, Avraham

    2014-01-01

    Disruption of blood brain barrier (BBB) is used to enhance chemotherapeutic drug delivery. The purpose of this study was to understand the time course of hemodynamic and metabolic response to intraarterial (IA) mannitol infusions in order to optimize the delivery of drugs for treating brain tumors. Principal results We compared hemodynamic response, EEG changes, and mitochondrial function as judged by relative changes in tissue NADH concentrations, after intracarotid (IC) infusion of equal volumes of normal saline and mannitol in our rabbit IC drug delivery model. We observed significantly greater, though transient, hyperemic response to IC infusion of mannitol compared to normal saline. Infusion of mannitol also resulted in a greater increase in tissue NADH concentrations relative to the baseline. These hemodynamic, and metabolic changes returned to baseline within 5 min of mannitol injection. Conclusion Significant, though transient, changes in blood flow and brain metabolism occur with IA mannitol infusion. The observed transient hyperemia would suggest that intravenous (IV) chemotherapy should be administered either just before, or concurrent with IA mannitol injections. On the other hand, IA chemotherapy should be delayed until the peak hyperemic response has subsided. PMID:24440631

  1. Characteristics of Hemodynamic Disorders in Patients with Severe Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Ryta E. Rzheutskaya

    2012-01-01

    Full Text Available Purpose. To define specific features of central hemodynamic parameter changes in patients with isolated severe traumatic brain injury (STBI and in patients with clinically established brain death and to determine the required course of treatment for their correction. Data and Research Methods. A close study of central hemodynamic parameters was undertaken. The study involved 13 patients with isolated STBI (group STBI and 15 patients with isolated STBI and clinically established brain death (group STBI-BD. The parameters of central hemodynamics were researched applying transpulmonary thermodilution. Results. In the present study, various types of hemodynamic reaction (normodynamic, hyperdynamic, and hypodynamic were identified in patients with isolated STBI in an acute period of traumatic disease. Hyperdynamic type of blood circulation was not observed in patients with isolated STBI and clinically established brain death. Detected hemodynamic disorders led to the correction of the ongoing therapy under the control of central hemodynamic parameters. Conclusions. Monitoring of parameters of central hemodynamics allows to detect the cause of disorders, to timely carry out the required correction, and to coordinate infusion, inotropic, and vasopressor therapy.

  2. Postural effects on hemodynamic response to interpersonal interaction.

    Science.gov (United States)

    Waldstein, S R; Neumann, S A; Merrill, J A

    1998-05-01

    Laboratory studies of stress-induced cardiovascular reactivity have been conducted predominantly with participants in a seated posture. This procedure may contribute to limited laboratory-field generalization of cardiovascular response. The present study examined hemodynamic adjustments underlying pressor responses, in addition to heart rate and systolic time intervals, during seated and standing role-played, interpersonal interaction in 60 young adults. Irrespective of gender or race, blood pressure responses to the seated and standing interactions were comparable. However, seated interactions yielded a significantly greater increase in heart rate, shortened preejection period and decreased stroke index as compared to standing. Alternatively, interacting while standing yielded a significantly increased left ventricular ejection time and total peripheral resistance in comparison to sitting. These results suggest that hemodynamic adjustments during stressful interpersonal interaction vary as a function of posture, with somewhat greater cardiac influences apparent while seated and a more pronounced vascular response while standing.

  3. Reliability of oscillometric central hemodynamic responses to an orthostatic challenge.

    Science.gov (United States)

    Stoner, Lee; Bonner, Chantel; Credeur, Daniel; Lambrick, Danielle; Faulkner, James; Wadsworth, Daniel; Williams, Michelle A

    2015-08-01

    Monitoring central hemodynamic responses to an orthostatic challenge may provide important insight into autonomic nervous system function. Oscillometric pulse wave analysis devices have recently emerged, presenting clinically viable options for investigating central hemodynamic properties. The purpose of the current study was to determine whether oscillometric pulse wave analysis can be used to reliably (between-day) assess central blood pressure and central pressure augmentation (augmentation index) responses to a 5 min orthostatic challenge (modified tilt-table). Twenty healthy adults (26.4 y (SD 5.2), 55% F, 24.7 kg/m(2) (SD 3.8)) were tested on 3 different mornings in the fasted state, separated by a maximum of 7 days. Central hemodynamic variables were assessed on the left arm using an oscillometric device. Repeated measures analysis of variance indicated a significant main effect of the modified tilt-table for all central hemodynamic variables (P blood pressure increased by 2.3 (CI: 4.4, 0.16) mmHg, and augmentation index decreased by an absolute - 5.3%, (CI: -2.7, -7.9%). The intra-class correlation coefficient values for central diastolic pressure (0.83-0.86), central systolic blood pressure (0.80-0.87) and AIx (0.79-0.82) were above the 0.75 criterion in both the supine and tilted positions, indicating excellent between-day reliability. Central hemodynamic responses to an orthostatic challenge can be assessed with acceptable between-day reliability using oscillometric pulse wave analysis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Acute hemodynamic response to vasodilators in primary pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Kulkarni H

    1996-01-01

    Full Text Available Acute hemodynamic effects of high flow oxygen (O2 inhalation, sublingual isosorbide dinitrate (ISDN, intravenous aminophylline (AMN and sublingual nifedipine (NIF were studied in 32 patients with primary pulmonary hypertension (PPH. In 30 out of 32 patients the basal ratio of pulmonary to systemic vascular resistance (Rp/Rs was > 0.5 (mean = 0.77 +/- 0.20. Oxygen caused significant decrease in the mean resistance ratio to 0.68 +/- 0.20 (p = 0.005. ISDN, AMN and NIF caused increase in the resistance ratio to 0.79 +/- 0.26; 0.78 +/- 0.26; and 0.80 +/- 0.23 respectively. O2, ISDN, AMN and NIF caused a fall of Rp/Rs in 21 (65.6%, 10 (31.2%, 10(31.2% and 9(28.1% patients respectively. Thus, of the four drugs tested high flow O2 inhalation resulted in fall of Rp/Rs in two thirds of patients whereas ISDN, AMN and NIF caused a mean rise in Rp/Rs. One third of patients did respond acutely to the latter three drugs. Acute hemodynamic studies are useful before prescribing vasodilators in patients with PPH since more of the commonly used drugs like ISDN, AMN, NIF could have detrimental hemodynamic responses in some patients. However, great caution should be exercised before performing hemodynamic study as the procedure has definite mortality and morbidity.

  5. Posttraumatic refractory intracranial hypertension and brain herniation syndrome: cerebral hemodynamic assessment before decompressive craniectomy.

    Science.gov (United States)

    Bor-Seng-Shu, Edson; Paiva, Wellingson Silva; Figueiredo, Eberval G; Fujimoto, Yasunori; de Andrade, Almir Ferreira; Fonoff, Erich Talamoni; Teixeira, Manoel Jacobsen

    2013-01-01

    The pathophysiology of traumatic brain swelling remains little understood. An improved understanding of intracranial circulatory process related to brain herniation may have treatment implications. To investigate the cerebral hemodynamic changes associated with brain herniation syndrome due to traumatic brain swelling. Nineteen head-injured patients with evidence of refractory intracranial hypertension and transtentorial herniation were prospectively studied. Cerebral hemodynamic assessment by transcranial Doppler (TCD) ultrasonography was performed prior to decompressive craniectomy. Patients and their cerebral hemispheres were classified according to TCD-hemodynamic patterns, and the data correlated with neurological status, midline shift on CT scan, and Glasgow outcome scale scores at 6 months after injury. A wide variety of cerebral hemodynamic findings were observed. Ten patients (52.7%) presented with cerebral oligoemia, 3 patients (15.8%) with cerebral hyperemia, and 6 patients with nonspecific circulatory pattern. Circulatory disturbances were more frequently found in the side of maximal cerebral swelling than in the opposite side. Pulsatility index (PI) values suggested that ICP varied from acceptable to considerably high; patients with increased PI, indicating higher microvascular resistance. No correlation was found between cerebral hemodynamic findings and outcome. There is a marked heterogeneity of cerebral hemodynamic disturbances among patients with brain herniation syndrome.

  6. Posttraumatic Refractory Intracranial Hypertension and Brain Herniation Syndrome: Cerebral Hemodynamic Assessment before Decompressive Craniectomy

    Directory of Open Access Journals (Sweden)

    Edson Bor-Seng-Shu

    2013-01-01

    Full Text Available Background. The pathophysiology of traumatic brain swelling remains little understood. An improved understanding of intracranial circulatory process related to brain herniation may have treatment implications. Objective. To investigate the cerebral hemodynamic changes associated with brain herniation syndrome due to traumatic brain swelling. Methods. Nineteen head-injured patients with evidence of refractory intracranial hypertension and transtentorial herniation were prospectively studied. Cerebral hemodynamic assessment by transcranial Doppler (TCD ultrasonography was performed prior to decompressive craniectomy. Patients and their cerebral hemispheres were classified according to TCD-hemodynamic patterns, and the data correlated with neurological status, midline shift on CT scan, and Glasgow outcome scale scores at 6 months after injury. Results. A wide variety of cerebral hemodynamic findings were observed. Ten patients (52.7% presented with cerebral oligoemia, 3 patients (15.8% with cerebral hyperemia, and 6 patients with nonspecific circulatory pattern. Circulatory disturbances were more frequently found in the side of maximal cerebral swelling than in the opposite side. Pulsatility index (PI values suggested that ICP varied from acceptable to considerably high; patients with increased PI, indicating higher microvascular resistance. No correlation was found between cerebral hemodynamic findings and outcome. Conclusions. There is a marked heterogeneity of cerebral hemodynamic disturbances among patients with brain herniation syndrome.

  7. Prolonged hemodynamic response during incidental facial emotion processing in inter-episode bipolar I disorder.

    Science.gov (United States)

    Rosenfeld, Ethan S; Pearlson, Godfrey D; Sweeney, John A; Tamminga, Carol A; Keshavan, Matcheri S; Nonterah, Camilla; Stevens, Michael C

    2014-03-01

    This fMRI study examined whether hemodynamic responses to affectively-salient stimuli were abnormally prolonged in remitted bipolar disorder, possibly representing a novel illness biomarker. A group of 18 DSM-IV bipolar I-diagnosed adults in remission and a demographically-matched control group performed an event-related fMRI gender-discrimination task in which face stimuli had task-irrelevant neutral, happy or angry expressions designed to elicit incidental emotional processing. Participants' brain activation was modeled using a "fully informed" SPM5 basis set. Mixed-model ANOVA tested for diagnostic group differences in BOLD response amplitude and shape within brain regions-of-interest selected from ALE meta-analysis of previous comparable fMRI studies. Bipolar-diagnosed patients had a generally longer duration and/or later-peaking hemodynamic response in amygdala and numerous prefrontal cortex brain regions. Data are consistent with existing models of bipolar limbic hyperactivity, but the prolonged frontolimbic response more precisely details abnormalities recognized in previous studies. Prolonged hemodynamic responses were unrelated to stimulus type, task performance, or degree of residual mood symptoms, suggesting an important novel trait vulnerability brain dysfunction in bipolar disorder. Bipolar patients also failed to engage pregenual cingulate and left orbitofrontal cortex-regions important to models of automatic emotion regulation-while engaging a delayed dorsolateral prefrontal cortex response not seen in controls. These results raise questions about whether there are meaningful relationships between bipolar dysfunction of specific ventromedial prefrontal cortex regions believed to automatically regulate emotional reactions and the prolonged responses in more lateral aspects of prefrontal cortex.

  8. Coronary hemodynamic responses during local hemodilution in canine hearts

    Energy Technology Data Exchange (ETDEWEB)

    Crystal, G.J. (Illinois Masonic Medical Center, Chicago (USA))

    1988-03-01

    To evaluate the effect of hemodilution per se on coronary hemodynamics, experiments were performed in 36 anesthetized, open-chest dogs whose left anterior descending coronary artery (LAD) was perfused selectively with either normal arterial blood or arterial blood diluted with lactated Ringer solution. LAD blood flow (CBF) was measured with an electromagnetic flowmeter and its transmural distribution assessed with 15-{mu}m radioactive microspheres. With perfusion pressure normal, graded hemodilution caused progressive, transmurally uniform increases in CBF that showed an nonlinear relationship to inflow hematocrit. Increased peak reactive hyperemic flow and decreased dilator reserve ratio indicated that both reduced viscosity and vasodilation contributed to increased CBF during hemodilution. Hypotension alone reduced CBF, with greater effect in the subendocardium. Additional hemodilution returned CBF to normotensive value, but relative subendocardial hypoperfusion persisted. The present study provides fundamental information on effects of hemodilution on coronary hemodynamics without the systemic responses that complicated previous studies utilizing whole body exchange transfusions.

  9. Photoacoustic microscopy of cerebral hemodynamic and oxygen-metabolic responses to anesthetics

    Science.gov (United States)

    Cao, Rui; Li, Jun; Ning, Bo; Sun, Naidi; Wang, Tianxiong; Zuo, Zhiyi; Hu, Song

    2017-02-01

    General anesthetics are known to have profound effects on cerebral hemodynamics and neuronal activities. However, it remains a challenge to directly assess anesthetics-induced hemodynamic and oxygen-metabolic changes from the true baseline under wakefulness at the microscopic level, due to the lack of an enabling technology for high-resolution functional imaging of the awake mouse brain. To address this challenge, we have developed head-restrained photoacoustic microscopy (PAM), which enables simultaneous imaging of the cerebrovascular anatomy, total concentration and oxygen saturation of hemoglobin (CHb and sO2), and blood flow in awake mice. From these hemodynamic measurements, two important metabolic parameters, oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen (CMRO2), can be derived. Side-by-side comparison of the mouse brain under wakefulness and anesthesia revealed multifaceted cerebral responses to isoflurane, a volatile anesthetic widely used in preclinical research and clinical practice. Key observations include elevated cerebral blood flow (CBF) and reduced oxygen extraction and metabolism.

  10. Hemodynamic Response Alterations in Sensorimotor Areas as a Function of Barbell Load Levels during Squatting: An fNIRS Study.

    Science.gov (United States)

    Kenville, Rouven; Maudrich, Tom; Carius, Daniel; Ragert, Patrick

    2017-01-01

    Functional near-infrared spectroscopy (fNIRS) serves as a promising tool to examine hemodynamic response alterations in a sports-scientific context. The present study aimed to investigate how brain activity within the human motor system changes its processing in dependency of different barbell load conditions while executing a barbell squat (BS). Additionally, we used different fNIRS probe configurations to identify and subsequently eliminate potential exercise induced systemic confounders such as increases in extracerebral blood flow. Ten healthy, male participants were enrolled in a crossover design. Participants performed a BS task with random barbell load levels (0% 1RM (1 repetition maximum), 20% 1RM and 40% 1RM for a BS) during fNIRS recordings. Initially, we observed global hemodynamic response alterations within and outside the human motor system. However, short distance channel regression of fNIRS data revealed a focalized hemodynamic response alteration within bilateral superior parietal lobe (SPL) for oxygenated hemoglobin (HbO2) and not for deoxygenated hemoglobin (HHb) when comparing different load levels. These findings indicate that the previously observed load/force-brain relationship for simple and isolated movements is also present in complex multi-joint movements such as the BS. Altogether, our results show the feasibility of fNIRS to investigate brain processing in a sports-related context. We suggest for future studies to incorporate short distance channel regression of fNIRS data to reduce the likelihood of false-positive hemodynamic response alterations during complex whole movements.

  11. Gender affects sympathetic and hemodynamic response to postural stress

    Science.gov (United States)

    Shoemaker, J. K.; Hogeman, C. S.; Khan, M.; Kimmerly, D. S.; Sinoway, L. I.

    2001-01-01

    We tested the hypothesis that differences in sympathetic reflex responses to head-up tilt (HUT) between males (n = 9) and females (n = 8) were associated with decrements in postural vasomotor responses in women. Muscle sympathetic nerve activity (MSNA; microneurography), heart rate, stroke volume (SV; Doppler), and blood pressure (Finapres) were measured during a progressive HUT protocol (5 min at each of supine, 20 degrees, 40 degrees, and 60 degrees ). MSNA and hemodynamic responses were also measured during the cold pressor test (CPT) to examine nonbaroreflex neurovascular control. SV was normalized to body surface area (SV(i)) to calculate the index of cardiac output (Q(i)), and total peripheral resistance (TPR). During HUT, heart rate increased more in females versus males (P gender-specific autonomic responses to cardiovascular stress. The different MSNA response to postural stress between genders may contribute importantly to decrements in blood pressure control during HUT in females.

  12. Increased hippocampal, thalamic, and prefrontal hemodynamic response to an urban noise stimulus in schizophrenia.

    Science.gov (United States)

    Tregellas, Jason R; Ellis, Jamey; Shatti, Shireen; Du, Yiping P; Rojas, Donald C

    2009-03-01

    People with schizophrenia often have difficulty ignoring unimportant noises in the environment. While experimental measures of sensory gating have yielded insight into neurobiological mechanisms related to this deficit, the degree to which these measures reflect the real-world experience of people with schizophrenia is unknown. The goal of this study was to develop a clinically relevant sensory gating paradigm and to assess differences in brain hemodynamic responses during the task in schizophrenia. Thirty-five participants, including 18 outpatients with schizophrenia and 17 healthy comparison subjects, underwent scanning on a 3-T MR system while passively listening to an "urban white noise" stimulus, a mixture of common sounds simulating a busy urban setting, including multiple conversations and events recorded from a neighborhood gathering, music, and talk radio. P50 evoked responses from a typical paired-click sensory gating task also were measured. Listening to the urban white noise stimulus produced robust activation of the auditory pathway in all participants. Activation was observed in the bilateral primary and secondary auditory cortices, medial geniculate nuclei, and inferior colliculus. Greater activation was observed in the schizophrenia patients relative to the comparison subjects in the hippocampus, thalamus, and prefrontal cortex. Higher P50 test/conditioning ratios also were observed in the schizophrenia patients. These evoked responses correlated with hemodynamic responses in the hippocampus and the prefrontal cortex. The finding of greater activation of the hippocampus, thalamus, and prefrontal cortex during a sensory gating task with high face validity further supports the involvement of these brain regions in gating deficits in schizophrenia. This link is strengthened by the observed correlation between evoked responses in the paired-click paradigm and hemodynamic responses in a functional MRI sensory gating paradigm.

  13. HEMODYNAMIC AND LACTIC ACID RESPONSES TO PROPRIOCEPTIVE NEUROMUSCULAR FACILITATION EXERCISE

    Directory of Open Access Journals (Sweden)

    Zuhal Gültekin

    2006-09-01

    Full Text Available The hemodynamic and metabolic responses to proprioceptive neuromuscular facilitation (PNF exercise were examined in 32 male university students (aged 19-28 years. Ten repetitions of PNF exercises were applied to the subjects' dominant upper extremities in the following order: as an agonist pattern flexion, adduction and external rotation; and as an antagonist pattern extension, abduction and internal rotation. Heart rate (HR, systolic blood pressure (SBP, diastolic blood pressure (DBP, double product (DP, and blood lactate concentration (La were determined before, immediately after, and at 1st, 3rd, and 5th minutes after PNF exercise. A one-way ANOVA with repeated measures indicated significant differences in HR, SBP, DBP, DP and La immediately after PNF exercise. HR increased from 81 (±10 to 108 (±15 b·min-1 (p < 0.01, SBP increased from 117 (±10 to 125 (±11 mmHg (p < 0.01, DBP increased from 71 (±10 to 75 (±8 mmHg (p < 0.01, DP increased from 96 (±16 to 135 (±24 (p < 0.01, and La increased from 0.69 (±0.31 to 3.99 (±14.63 mmol·L-1 (p < 0.01. Thus PNF exercise resulted in increased hemodynamic responses and blood lactate concentration that indicate a high strain on the cardiovascular system and anaerobic metabolism in healthy subjects

  14. Clinical predictive factors of sildenafil response: a penile hemodynamic study.

    Science.gov (United States)

    Elhanbly, S M; Elkholy, A A-M; Alghobary, M; Abou Al-Ghar, M

    2015-03-01

    Phosphodiestrase-5 inhibitors are an important line of treatment for erectile dysfunction (ED). To detect the clinical and hemodynamic predictors of sildenafil response, we conducted this study on 124 Egyptian men with ED. All patients were evaluated by thorough history and clinical assessment with measurement of the abridged international index of erectile function-5 (IIEF-5) score. All patients were then subjected to intracavernosal injection (ICI) of trimix and pharmaco-penile duplex ultrasonography (PPDU). Patients were then classified into sildenafil responders and non-responders after six consecutive doses of 100 mg sildenafil. On doing the binary logistic stepwise regression analysis, only ED duration, IIEF-5 score, and response to ICI were the significant independent predictors of sildenafil response. These three parameters together correctly predicted the sildenafil response by 81.5% (p value <0.001). With the receiver operator characteristic curve analysis, the cut-off value of ED duration was 2.5 years and it was 14 for the IIEF-5 score. These findings indicate that ED duration, the IIEF-5 score and response to ICI are more significant predictors of sildenafil response than the more expensive and time-consuming PPDU testing. © 2015 American Society of Andrology and European Academy of Andrology.

  15. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    Science.gov (United States)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a

  16. Mapping cell-specific functional connections in the mouse brain using ChR2-evoked hemodynamics (Conference Presentation)

    Science.gov (United States)

    Bauer, Adam Q.; Kraft, Andrew; Baxter, Grant A.; Bruchas, Michael; Lee, Jin-Moo; Culver, Joseph P.

    2017-02-01

    Functional magnetic resonance imaging (fMRI) has transformed our understanding of the brain's functional organization. However, mapping subunits of a functional network using hemoglobin alone presents several disadvantages. Evoked and spontaneous hemodynamic fluctuations reflect ensemble activity from several populations of neurons making it difficult to discern excitatory vs inhibitory network activity. Still, blood-based methods of brain mapping remain powerful because hemoglobin provides endogenous contrast in all mammalian brains. To add greater specificity to hemoglobin assays, we integrated optical intrinsic signal(OIS) imaging with optogenetic stimulation to create an Opto-OIS mapping tool that combines the cell-specificity of optogenetics with label-free, hemoglobin imaging. Before mapping, titrated photostimuli determined which stimulus parameters elicited linear hemodynamic responses in the cortex. Optimized stimuli were then scanned over the left hemisphere to create a set of optogenetically-defined effective connectivity (Opto-EC) maps. For many sites investigated, Opto-EC maps exhibited higher spatial specificity than those determined using spontaneous hemodynamic fluctuations. For example, resting-state functional connectivity (RS-FC) patterns exhibited widespread ipsilateral connectivity while Opto-EC maps contained distinct short- and long-range constellations of ipsilateral connectivity. Further, RS-FC maps were usually symmetric about midline while Opto-EC maps displayed more heterogeneous contralateral homotopic connectivity. Both Opto-EC and RS-FC patterns were compared to mouse connectivity data from the Allen Institute. Unlike RS-FC maps, Thy1-based maps collected in awake, behaving mice closely recapitulated the connectivity structure derived using ex vivo anatomical tracer methods. Opto-OIS mapping could be a powerful tool for understanding cellular and molecular contributions to network dynamics and processing in the mouse brain.

  17. Assessment of Cerebral Hemodynamics in Traumatic Brain Injury

    Science.gov (United States)

    2006-11-01

    haemorrhage, and 6 with subarach- noid hemorrhage from ruptured aneurysm . There were 4 cases of cerebral contusions and a single case of traumatic...B. Goldstein, 2003: Significance of Intracranial Pressure Pulse Morphology in Pediatric Traumatic Brain Injury. IEEE, 2491-2494. Anile, C., H. D

  18. Use of lignocaine or nitroglycerine for blunting of hemodynamic stress response during electroconvulsive therapy

    Directory of Open Access Journals (Sweden)

    Muhammad Umar Zahoor

    2014-01-01

    Conclusion: NTG provided more hemodynamic stability in post-ECT period as compared to lignocaine which only prevented a surge in HR without any effect on MAP. We conclude that NTG can safely be instituted for anaesthesia in ECT patients for prevention of hemodynamic stress response.

  19. Amplitude variability over trials in hemodynamic responses in adolescents with ADHD

    DEFF Research Database (Denmark)

    Sørensen, L; Eichele, T; van Wageningen, H

    2016-01-01

    levels were more complex. Performance IIV correlated significantly with variability of HRs in both networks. These results suggest that assessment of trial-to-trial HR variability in ADHD provides information beyond that detectable through analysis of behavioral data and average brain activation levels...... variable response times. In this study, we asked whether ADHD IIV in reaction time on a commonly-used test of attention might be related to variation in hemodynamic responses (HRs) observed trial-to-trial. Based on previous studies linking IIV to regions within the "default mode" network (DMN), we...... predicted that adolescents with ADHD would have higher HR variability in the DMN compared with controls, and this in turn would be related to behavioral IIV. We also explored the influence of social anxiety on HR variability in ADHD as means to test whether higher arousal associated with high trait anxiety...

  20. Inter- and intra-individual covariations of hemodynamic and oscillatory gamma responses in the human cortex

    Directory of Open Access Journals (Sweden)

    Tino Zaehle

    2009-06-01

    Full Text Available The time course of local field potentials displaying typical discharge frequencies in the gamma frequency range highly correlates with the BOLD signal in response to rotating checkerboard stimuli in animals. In humans, oscillatory gamma-band responses (GBRs show strong inter-individual variations in frequency and amplitude but considerable intra-individual reliability indicating that individual gamma activity reflects a personal trait. While the functional role of these GBRs is still debated, investigations combining EEG–fMRI measurements provide a tool to obtain further insights into the underlying functional architecture of the human brain and will shed light onto the understanding of the dynamic relation between the BOLD signal and the properties of the electrical activity recorded on the scalp. We investigated the relation between the hemodynamic response and evoked gamma-band response (eGBR to visual stimulation. We tested the hypothesis that the amplitude of human eGBRs and BOLD responses covary intra-individually as a function of stimulation as well as inter-individually as a function of gamma-trait. 17 participants performed visual discrimination tasks during separate EEG and fMRI recordings. Results revealed that visual stimuli that evoked high GBRs also elicited strong BOLD responses in the human V1/V2 complex. Furthermore, inter-individual variations of BOLD responses to visual stimuli in the bilateral primary (Area 17 and secondary (Area V5/MT visual cortex and the right hippocampal formation were correlated with the individual gamma-trait of the subjects. The present study further supports the notion that neural oscillations in the gamma frequency range are involved in the cascade of neural processes that underlie the hemodynamic responses measured with fMRI.

  1. Physiological Aging Influence on Brain Hemodynamic Activity during Task-Switching: A fNIRS Study

    Directory of Open Access Journals (Sweden)

    Roberta Vasta

    2018-01-01

    Full Text Available Task-switching (TS paradigm is a well-known validated tool useful for exploring the neural substrates of cognitive control, in particular the activity of the lateral and medial prefrontal cortex. This work is aimed at investigating how physiological aging influences hemodynamic response during the execution of a color-shape TS paradigm. A multi-channel near infrared spectroscopy (fNIRS was used to measure hemodynamic activity in 27 young (30.00 ± 7.90 years and 11 elderly participants (57.18 ± 9.29 years healthy volunteers (55% male, age range: (19–69 years during the execution of a TS paradigm. Two holders were placed symmetrically over the left/right hemispheres to record cortical activity [oxy-(HbO and deoxy-hemoglobin (HbR concentration] of the dorso-lateral prefrontal cortex (DLPFC, the dorsal premotor cortex (PMC, and the dorso-medial part of the superior frontal gyrus (sFG. TS paradigm requires participants to repeat the same task over a variable number of trials, and then to switch to a different task during the trial sequence. A two-sample t-test was carried out to detect differences in cortical responses between groups. Multiple linear regression analysis was used to evaluate the impact of age on the prefrontal neural activity. Elderly participants were significantly slower than young participants in both color- (p < 0.01, t = −3.67 and shape-single tasks (p = 0.026, t = −2.54 as well as switching (p = 0.026, t = −2.41 and repetition trials (p = 0.012, t = −2.80. Differences in cortical activation between groups were revealed for HbO mean concentration of switching task in the PMC (p = 0.048, t = 2.94. In the whole group, significant increases of behavioral performance were detected in switching trials, which positively correlated with aging. Multivariate regression analysis revealed that the HbO mean concentration of switching task in the PMC (p = 0.01, β = −0.321 and of shape single-task in the sFG (p = 0.003, β = 0

  2. Comparison of hemodynamic responses to static and dynamic exercise.

    Science.gov (United States)

    Bezucha, G R; Lenser, M C; Hanson, P G; Nagle, F J

    1982-12-01

    Eight healthy male adults (25-34 yr) were studied to compare hemodynamic responses to static exercise (30% MVC in leg extension), static-dynamic exercise (one-arm cranking, 66 and 79% VO2 max-arm), and dynamic exercise (two-leg cycling, 58 and 82% VOmax-legs). Leg extension (LE) strength was measured by a spring scale. Cranking and cycling were performed on a Quinton bicycle ergometer. VO2 was measured using an automated open-circuit system. Heart rate (HR) was monitored from a CM-5 ECG lead, and arterial pressure (Pa) was measured from an indwelling brachial artery catheter. Cardiac output (Q) was measured using a CO2-rebreathing procedure. Total peripheral resistance (TPR) was calculated using the mean arterial pressure (Pa) as the systemic pressure gradient. In 30% LE, a significant (P less than 0.05) Pa increase occurred (pressor response) mediated primarily by an increase in Q. One-arm cranking and two-leg cycling at similar relative VO2 demands resulted in nearly identical increases in Pa due to different contributions of Q and TPR. Q and the arteriovenous O2 difference varied as a function of VO2 regardless of the mode of exercise (static or dynamic). On the other hand, the HR response, which accounted for increased Q in the exercises containing a static component, and Pa varied with mode of exercise. Any generalized scheme of cardiovascular control during exercise must account for the potential influence of dynamic and static components of the exercise.

  3. Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo

    DEFF Research Database (Denmark)

    Lind, Barbara Lykke; Brazhe, Alexey; Jessen, Sanne Barsballe

    2013-01-01

    Increased neuron and astrocyte activity triggers increased brain blood flow, but controversy exists over whether stimulation-induced changes in astrocyte activity are rapid and widespread enough to contribute to brain blood flow control. Here, we provide evidence for stimulus-evoked Ca(2+) elevat...... brief Ca(2+) responses with a rapid onset in vivo, fast enough to initiate hemodynamic responses or influence synaptic activity.......Increased neuron and astrocyte activity triggers increased brain blood flow, but controversy exists over whether stimulation-induced changes in astrocyte activity are rapid and widespread enough to contribute to brain blood flow control. Here, we provide evidence for stimulus-evoked Ca(2......+) elevations with rapid onset and short duration in a large proportion of cortical astrocytes in the adult mouse somatosensory cortex. Our improved detection of the fast Ca(2+) signals is due to a signal-enhancing analysis of the Ca(2+) activity. The rapid stimulation-evoked Ca(2+) increases identified...

  4. Electrophysiological and hemodynamic mismatch responses in rats listening to human speech syllables.

    Science.gov (United States)

    Mahmoudzadeh, Mahdi; Dehaene-Lambertz, Ghislaine; Wallois, Fabrice

    2017-01-01

    Speech is a complex auditory stimulus which is processed according to several time-scales. Whereas consonant discrimination is required to resolve rapid acoustic events, voice perception relies on slower cues. Humans, right from preterm ages, are particularly efficient to encode temporal cues. To compare the capacities of preterms to those observed in other mammals, we tested anesthetized adult rats by using exactly the same paradigm as that used in preterm neonates. We simultaneously recorded neural (using ECoG) and hemodynamic responses (using fNIRS) to series of human speech syllables and investigated the brain response to a change of consonant (ba vs. ga) and to a change of voice (male vs. female). Both methods revealed concordant results, although ECoG measures were more sensitive than fNIRS. Responses to syllables were bilateral, but with marked right-hemispheric lateralization. Responses to voice changes were observed with both methods, while only ECoG was sensitive to consonant changes. These results suggest that rats more effectively processed the speech envelope than fine temporal cues in contrast with human preterm neonates, in whom the opposite effects were observed. Cross-species comparisons constitute a very valuable tool to define the singularities of the human brain and species-specific bias that may help human infants to learn their native language.

  5. Electrophysiological and hemodynamic mismatch responses in rats listening to human speech syllables.

    Directory of Open Access Journals (Sweden)

    Mahdi Mahmoudzadeh

    Full Text Available Speech is a complex auditory stimulus which is processed according to several time-scales. Whereas consonant discrimination is required to resolve rapid acoustic events, voice perception relies on slower cues. Humans, right from preterm ages, are particularly efficient to encode temporal cues. To compare the capacities of preterms to those observed in other mammals, we tested anesthetized adult rats by using exactly the same paradigm as that used in preterm neonates. We simultaneously recorded neural (using ECoG and hemodynamic responses (using fNIRS to series of human speech syllables and investigated the brain response to a change of consonant (ba vs. ga and to a change of voice (male vs. female. Both methods revealed concordant results, although ECoG measures were more sensitive than fNIRS. Responses to syllables were bilateral, but with marked right-hemispheric lateralization. Responses to voice changes were observed with both methods, while only ECoG was sensitive to consonant changes. These results suggest that rats more effectively processed the speech envelope than fine temporal cues in contrast with human preterm neonates, in whom the opposite effects were observed. Cross-species comparisons constitute a very valuable tool to define the singularities of the human brain and species-specific bias that may help human infants to learn their native language.

  6. Electrophysiological and hemodynamic mismatch responses in rats listening to human speech syllables

    Science.gov (United States)

    Dehaene-Lambertz, Ghislaine; Wallois, Fabrice

    2017-01-01

    Speech is a complex auditory stimulus which is processed according to several time-scales. Whereas consonant discrimination is required to resolve rapid acoustic events, voice perception relies on slower cues. Humans, right from preterm ages, are particularly efficient to encode temporal cues. To compare the capacities of preterms to those observed in other mammals, we tested anesthetized adult rats by using exactly the same paradigm as that used in preterm neonates. We simultaneously recorded neural (using ECoG) and hemodynamic responses (using fNIRS) to series of human speech syllables and investigated the brain response to a change of consonant (ba vs. ga) and to a change of voice (male vs. female). Both methods revealed concordant results, although ECoG measures were more sensitive than fNIRS. Responses to syllables were bilateral, but with marked right-hemispheric lateralization. Responses to voice changes were observed with both methods, while only ECoG was sensitive to consonant changes. These results suggest that rats more effectively processed the speech envelope than fine temporal cues in contrast with human preterm neonates, in whom the opposite effects were observed. Cross-species comparisons constitute a very valuable tool to define the singularities of the human brain and species-specific bias that may help human infants to learn their native language. PMID:28291832

  7. Variability in prefrontal hemodynamic response during exposure to repeated self-selected music excerpts, a near-infrared spectroscopy study.

    Science.gov (United States)

    Moghimi, Saba; Schudlo, Larissa; Chau, Tom; Guerguerian, Anne-Marie

    2015-01-01

    Music-induced brain activity modulations in areas involved in emotion regulation may be useful in achieving therapeutic outcomes. Clinical applications of music may involve prolonged or repeated exposures to music. However, the variability of the observed brain activity patterns in repeated exposures to music is not well understood. We hypothesized that multiple exposures to the same music would elicit more consistent activity patterns than exposure to different music. In this study, the temporal and spatial variability of cerebral prefrontal hemodynamic response was investigated across multiple exposures to self-selected musical excerpts in 10 healthy adults. The hemodynamic changes were measured using prefrontal cortex near infrared spectroscopy and represented by instantaneous phase values. Based on spatial and temporal characteristics of these observed hemodynamic changes, we defined a consistency index to represent variability across these domains. The consistency index across repeated exposures to the same piece of music was compared to the consistency index corresponding to prefrontal activity from randomly matched non-identical musical excerpts. Consistency indexes were significantly different for identical versus non-identical musical excerpts when comparing a subset of repetitions. When all four exposures were compared, no significant difference was observed between the consistency indexes of randomly matched non-identical musical excerpts and the consistency index corresponding to repetitions of the same musical excerpts. This observation suggests the existence of only partial consistency between repeated exposures to the same musical excerpt, which may stem from the role of the prefrontal cortex in regulating other cognitive and emotional processes.

  8. Hemodynamic stress response during laparoscopic cholecystectomy: Effect of two different doses of intravenous clonidine premedication

    Directory of Open Access Journals (Sweden)

    Deepshikha C Tripathi

    2011-01-01

    Full Text Available Background : Clonidine has emerged as an attractive premedication desirable in laparoscopic surgery wherein significant hemodynamic stress response is seen. The minimum safe and effective dose of intravenous clonidine to attenuate the hemodynamic stress response during laparoscopic surgery has however not yet been determined. Materials and Methods : This prospective, randomized, double-blind controlled study was conducted on 90 adults of ASA physical status I and II, scheduled for laparoscopic cholecystectomy under general anesthesia. Patients were randomized to one of the three groups (n= 30. Group I received 100 ml of normal saline, while groups II and III received 1 μg/ kg and 2 μg/ kg of clonidine respectively, intravenous, in 100 ml of normal saline along. All patients received glycopyrrolate 0.004 mg/kg and tramadol 1.5 mg/kg intravenously, 30 min before induction. Hemodynamic variables (heart rate, systolic, diastolic, mean arterial pressure, SpO2, and sedation score were recorded at specific timings. MAP above 20% from baseline was considered significant and treated with nitroglycerine. Results : In group I, there was a significant increase in hemodynamic variables during intubation pneumoperitoneum and extubation (P<0.001. Clonidine given 1 μg/kg intravenous attenuated hemodynamic stress response to pneumoperitoneum (P<0.05, but not that associated with intubation and extubation. Clonidine 2 μg/kg intravenous prevented hemodynamic stress response to pneumoperitoneum and that associated with intubation and extubation (P<0.05. As against 14 and 2 patients in groups I and II respectively, no patient required nitroglycerine infusion in group III. Conclusions : Clonidine, 2 μg/ kg intravenously, 30 min before induction is safe and effective in preventing the hemodynamic stress response during laparoscopic cholecystectomy.

  9. Immediate hemodynamic response to furosemide in patients undergoing chronic hemodialysis.

    Science.gov (United States)

    Schmieder, R E; Messerli, F H; deCarvalho, J G; Husserl, F E

    1987-01-01

    To evaluate the effect of furosemide on cardiovascular hemodynamics in patients with end-stage renal failure, we studied ten patients undergoing hemodialysis three times a week. Arterial pressure, heart rate, and cardiac output (indocyanine green dye) were measured in triplicate; total peripheral resistance and central blood volume were calculated by standard formulas. Hemodynamics were determined at baseline and 5, 10, 15, and 30 minutes after intravenous (IV) bolus injection of furosemide 60 mg. Furosemide produced a decrease in central blood volume of -13% +/- 2.2% from pretreatment values (P less than .01) that was most pronounced five minutes after injection, together with a fall in cardiac output (from 6.76 +/- 0.59 to 6.17 +/- 0.52 L/min, P less than .10). Stroke volume decreased with a maximum fall occurring after 15 minutes (from 84 +/- 7 to 79 +/- 7 mL/min, P less than .05), and total peripheral resistance increased (from 15.8 +/- 2.1 to 17.8 +/- 2.3 units, P less than .05) after furosemide. Arterial pressure and heart rate did not change. The decrease in central blood volume reflects a shift of the total blood volume from the cardiopulmonary circulation to the periphery, suggesting dilation of the peripheral venous bed. Thus, even in patients undergoing hemodialysis, furosemide acutely decreases left ventricular preload by venous dilation and should therefore prove to be beneficial in acute volume overload.

  10. Detecting the Subtle Shape Differences in Hemodynamic Responses at the Group Level

    Directory of Open Access Journals (Sweden)

    Gang eChen

    2015-10-01

    Full Text Available The nature of the hemodynamic response (HDR is still not fully understood due to the multifaceted processes involved. Aside from the overall amplitude, the response may vary across cognitive states, tasks, brain regions, and subjects with respect to characteristics such as rise and fall speed, peak duration, undershoot shape, and overall duration. Here we demonstrate that the fixed-shape or adjusted-shape methods may fail to detect some shape subtleties. In contrast, the estimated-shape method (ESM through multiple basis functions can provide the opportunity to identify some subtle shape differences and achieve higher statistical power at both individual and group levels. Previously, some dimension reduction approaches focused on the peak magnitude, or made inferences based on the area under the curve or interaction, which can lead to potential misidentifications. By adopting a generic framework of multivariate modeling (MVM, we showcase a hybrid approach that is validated by simulations and real data. Unlike the few analyses that were limited to main effect, two- or three-way interactions, we extend the approach to an inclusive platform that is more adaptable than the conventional GLM, achieving a practical equipoise among representation, false positive control, statistical power, and modeling flexibility.

  11. The Teaching and the Learning Brain: A Cortical Hemodynamic Marker of Teacher-Student Interactions in the Socratic Dialog

    Science.gov (United States)

    Holper, Lisa; Goldin, Andrea P.; Shalom, Diego E.; Battro, Antonio M.; Wolf, Martin; Sigman, Mariano

    2013-01-01

    The study aimed to step into two-person (teacher-student) educational neuroscience. We describe a physiological marker of cortical hemodynamic correlates involved in teacher-student interactions during performance of a classical teaching model, the Socratic dialog. We recorded prefrontal brain activity during dialog execution simultaneously in…

  12. The analysis of solutions behaviour of Van der Pol Duffing equation describing local brain hemodynamics

    Science.gov (United States)

    Cherevko, A. A.; Bord, E. E.; Khe, A. K.; Panarin, V. A.; Orlov, K. J.

    2017-10-01

    This article proposes the generalized model of Van der Pol — Duffing equation for describing the relaxation oscillations in local brain hemodynamics. This equation connects the velocity and pressure of blood flow in cerebral vessels. The equation is individual for each patient, since the coefficients are unique. Each set of coefficients is built based on clinical data obtained during neurosurgical operation in Siberian Federal Biomedical Research Center named after Academician E. N. Meshalkin. The equation has solutions of different structure defined by the coefficients and right side. We investigate the equations for different patients considering peculiarities of their vessel systems. The properties of approximate analytical solutions are studied. Amplitude-frequency and phase-frequency characteristics are built for the small-dimensional solution approximations.

  13. Task-related changes in cortical synchronization are spatially coincident with the hemodynamic response.

    Science.gov (United States)

    Singh, Krish D; Barnes, Gareth R; Hillebrand, Arjan; Forde, Emer M E; Williams, Adrian L

    2002-05-01

    Using group functional Magnetic Resonance Imaging (fMRI) and group Magnetoencephalography (MEG) we studied two cognitive paradigms: A language task involving covert letter fluency and a visual task involving biological motion direction discrimination. The MEG data were analyzed using an adaptive beam-former technique known as Synthetic Aperture Magnetometry (SAM), which provides continuous 3-D images of cortical power changes. These images were spatially normalized and averaged across subjects to provide a group SAM image in the same template space as the group fMRI data. The results show that frequency-specific, task-related changes in cortical synchronization, detected using MEG, match those areas of the brain showing an evoked cortical hemodynamic response with fMRI. The majority of these changes were event-related desynchronizations (ERDs) in the 5-10 Hz and 15-25 Hz frequency ranges. Our study demonstrates how SAM, spatial normalization, and intersubject averaging enable group MEG studies to be performed. SAM analysis also allows the MEG experiment to have exactly the same task design as the corresponding fMRI experiment. This new analysis framework represents an important advance in the use of MEG as a cognitive neuroimaging technique and also allows mutual cross-validation with fMRI. 2002 Elsevier Science (USA).

  14. Comparison of gabapentin, pregabalin and placebo as premedication for attenuation of hemodynamic response to laryngoscopy and endotracheal intubation

    Directory of Open Access Journals (Sweden)

    Alireza Mahoori

    2017-08-01

    Conclusion: Oral gabapentin premedication is effective for control of hemodynamic pressor response of laryngoscopy and tracheal intubation. The study data showed that the pregabalin have the same effect. Pregabalin and gabapentin are both useful and safe for control of hemodynamic pressor response as premedication.

  15. Pros and cons of using the informed basis set to account for hemodynamic response variability with developmental data

    Directory of Open Access Journals (Sweden)

    Fabien Cignetti

    2016-07-01

    Full Text Available Conventional analysis of functional magnetic resonance imaging (fMRI data using the general linear model (GLM employs a neural model convolved with a canonical hemodynamic response function (HRF peaking 5s after stimulation. Incorporation of a further basis function, namely the canonical HRF temporal derivative, accounts for delays in the hemodynamic response to neural activity. A population that may benefit from this flexible approach is children whose hemodynamic response is not yet mature. Here, we examined the effects of using the set based on the canonical HRF plus its temporal derivative on both first- and second-level GLM analyses, through simulations and using developmental data (an fMRI dataset on proprioceptive mapping in children and adults. Simulations of delayed fMRI first-level data emphasized the benefit of carrying forward to the second-level a derivative boost that combines derivative and nonderivative beta estimates. In the experimental data, second-level analysis using a paired t-test showed increased mean amplitude estimate (i.e., increased group contrast mean in several brain regions related to proprioceptive processing when using the derivative boost compared to using only the nonderivative term. This was true especially in children. However, carrying forward to the second-level the individual derivative boosts had adverse consequences on random-effects analysis that implemented one-sample t-test, yielding increased between-subject variance, thus affecting group-level statistic. Boosted data also presented a lower level of smoothness that had implication for the detection of group average activation. Imposing soft constraints on the derivative boost by limiting the time-to-peak range of the modelled response within a specified range (i.e., 4-6s mitigated these issues. These findings support the notion that there are pros and cons to using the informed basis set with developmental data.

  16. Regional and systemic hemodynamic responses following the creation of a murine arteriovenous fistula

    Science.gov (United States)

    Kang, Lu; Yamada, Satsuki; Hernandez, Melissa C.; Croatt, Anthony J.; Grande, Joseph P.; Juncos, Julio P.; Vercellotti, Gregory M.; Hebbel, Robert P.; Katusic, Zvonimir S.; Terzic, Andre

    2011-01-01

    The study of hemodynamic alterations following the creation of an arteriovenous fistula (AVF) is relevant to vascular adaptive responses and hemodialysis access dysfunction. This study examined such alterations in a murine AVF created by anastomosing the carotid artery to the jugular vein. AVF blood flow was markedly increased due to reduced AVF vascular resistance. Despite such markedly increased basal blood flow, AVF blood flow further increased in response to acetylcholine. This AVF model exhibited increased cardiac output and decreased systemic vascular resistance; the kidney, in contrast, exhibited decreased blood flow and increased vascular resistance. Augmentation in AVF blood flow was attended by increased arterial heme oxygenase-1 (HO-1) mRNA and protein expression, the latter localized to smooth muscle cells of the AVF artery; AVF blood flow was substantially reduced in HO-1−/− mice compared with HO-1+/+ mice. Finally, in a murine model of a representative disease known to exhibit impaired hemodynamic responses (sickle cell disease), the creation of an AVF was attended by decreased AVF flow and impaired AVF function. We conclude that this AVF model exhibits markedly increased AVF blood flow, a vasodilatory reserve capacity, increased cardiac output, decreased renal blood flow, and a dependency on intact hemodynamic responses, in general, and HO-1 expression, in particular, in achieving and maintaining AVF blood flow. We suggest that these findings support the utility of this model in investigating the basis for and the consequences of hemodynamic stress, including shear stress, and the pathobiology of hemodialysis AVF dysfunction. PMID:21697243

  17. Effects of magnesium sulfate on hemodynamic response to carbon dioxide pneumoperitoneum in patients undergoing laparoscopic cholecystectomy

    OpenAIRE

    Paul, Suhrita; Biswas, Pabitra; Bhattacharjee, Dhurjoti Prosad; Sengupta, Janmejoy

    2013-01-01

    Introduction: Carbon dioxide pneumoperitoneum (PP) for laparoscopic surgery increases arterial pressure, heart rate, and systemic vascular resistance. In this randomized, double blind, prospective clinical study; we investigated the efficacy of magnesium sulfate to prevent adverse hemodynamic response associated with PP in patients undergoing laparoscopic cholecystectomy. Materials and Methods: Sixty patients, of either sex (18-65 years of age), undergoing elective laparoscopic cholecystectom...

  18. Self-reported social functioning and prefrontal hemodynamic responses during a cognitive task in schizophrenia.

    Science.gov (United States)

    Pu, Shenghong; Nakagome, Kazuyuki; Itakura, Masashi; Yamanashi, Takehiko; Sugie, Takuya; Miura, Akehiko; Satake, Takahiro; Iwata, Masaaki; Nagata, Izumi; Kaneko, Koichi

    2015-10-30

    Impaired social functioning is a characteristic of schizophrenia that affects patients' quality of life. The aim of the study was to assess prefrontal hemodynamic responses during a cognitive task and establish its influence on psychiatric symptoms, cognitive function, global functioning, and self-reported social functioning in patients with schizophrenia. Thirty-three patients with schizophrenia and 30 age-and sex-matched healthy controls participated in the study. We measured hemodynamic responses in the prefrontal and superior temporal cortical surface areas with 52-channel near-infrared spectroscopy (NIRS) during a verbal fluency task (VFT). Self-reported social functioning was assessed using the Social Functioning Scale (SFS). Regional hemodynamic responses were significantly smaller in the prefrontal and temporal regions in subjects with schizophrenia than in the controls, and prefrontal hemodynamic responses during the VFT showed a strong correlation with SFS total scores. These results suggest an association between self-reported social functioning and prefrontal activation in subjects with schizophrenia. The present study provides evidence that NIRS imaging could be helpful in understanding the neural basis of social functioning. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Variability in prefrontal hemodynamic response during exposure to repeated self-selected music excerpts, a near-infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Saba Moghimi

    Full Text Available Music-induced brain activity modulations in areas involved in emotion regulation may be useful in achieving therapeutic outcomes. Clinical applications of music may involve prolonged or repeated exposures to music. However, the variability of the observed brain activity patterns in repeated exposures to music is not well understood. We hypothesized that multiple exposures to the same music would elicit more consistent activity patterns than exposure to different music. In this study, the temporal and spatial variability of cerebral prefrontal hemodynamic response was investigated across multiple exposures to self-selected musical excerpts in 10 healthy adults. The hemodynamic changes were measured using prefrontal cortex near infrared spectroscopy and represented by instantaneous phase values. Based on spatial and temporal characteristics of these observed hemodynamic changes, we defined a consistency index to represent variability across these domains. The consistency index across repeated exposures to the same piece of music was compared to the consistency index corresponding to prefrontal activity from randomly matched non-identical musical excerpts. Consistency indexes were significantly different for identical versus non-identical musical excerpts when comparing a subset of repetitions. When all four exposures were compared, no significant difference was observed between the consistency indexes of randomly matched non-identical musical excerpts and the consistency index corresponding to repetitions of the same musical excerpts. This observation suggests the existence of only partial consistency between repeated exposures to the same musical excerpt, which may stem from the role of the prefrontal cortex in regulating other cognitive and emotional processes.

  20. Comparative study of intravenously administered clonidine and magnesium sulfate on hemodynamic responses during laparoscopic cholecystectomy

    Directory of Open Access Journals (Sweden)

    Nand Kishore Kalra

    2011-01-01

    Full Text Available Background: Both magnesium and clonidine are known to inhibit catecholamine and vasopressin release and attenuate hemodynamic response to pneumoperitoneum. This randomized, double blinded, placebo controlled study has been designed to assess which agent attenuates hemodynamic stress response to pneumoperitoneum better. Materials and Methods: 120 patients undergoing elective laparoscopic cholecystectomy were randomized into 4 groups of 30 each. Group K patients received 50 ml normal saline over a period of 15 min after induction and before pneumoperitoneum, group M patients received 50 mg/kg of magnesium sulfate in normal saline (total volume 50 ml over same time duration. Similarly group C1 patients received 1 μg/kg clonidine and group C2 1.5 μg/kg clonidine respectively in normal saline (total volume 50 ml. Blood pressure and heart rate were recorded before induction (baseline value, at the end of infusions and every 5 min after pneumoperitoneum. Statistical Analysis: Paired t test was used for intra-group comparison and ANOVA for inter-group comparison. Results: Systolic blood pressure was significantly higher in control group as compared to all other groups during pneumoperitoneum. On comparing patients in group M and group C1, no significant difference in systolic BP was found at any time interval. Patients in group C2 showed best control of systolic BP. As compared to group M and group C1, BP was significantly lower at 10, 30 and 40 min post pneumoperitoneum. No significant episodes of hypotension were found in any of the groups. Extubation time and time to response to verbal command like eye opening was significantly longer in group M as compared to other groups. Conclusion: Administration of magnesium sulfate or clonidine attenuates hemodynamic response to pneumoperitoneum. Although magnesium sulfate 50 mg/kg produces hemodynamic stability comparable to clonidine 1 μg/kg, clonidine in doses of 1.5μg/kg blunts the hemodynamic response

  1. Cardiovascular and hemodynamic responses to adapted physical exercises in very old adults.

    Science.gov (United States)

    Panzarino, Michele; Gravina, Angela; Carosi, Veronica; Crobeddu, Patrizio; Tiroli, Alessia; Lombardi, Roberto; D'Ottavio, Stefano; Galante, Alberto; Legramante, Jacopo M

    2017-06-01

    Aging is characterized by a physiological reduction in physical activity, which is inversely correlated with survival. Aim of the present study is to evaluate the cardiovascular, central hemodynamic and autonomic responses to a single bout of adapted physical exercise in octogenarian subjects. We studied cardiovascular, hemodynamic and autonomic responses to adapted physical activity in 33 subjects by a noninvasive methodology (Nexfin ® , Edwards Lifesciences Corporation). Our octogenarians presented a significant increase in mean arterial pressure (p exercise, while both are reduced during the early recovery phase. Central hemodynamic showed a significant increase in stroke volume (p exercise. Our data demonstrate that in very old people adapted physical activity is able to activate cardiovascular system and to induce a postexercise hypotension similarly to adults. The baroreflex control of sinus node seems to contribute in the physiological mechanism of these cardiovascular adaptations. In very old people, physical activity induces cardiovascular and hemodynamic responses not significantly different from those induced in adult even though some cautions particularly in the early recovery phase after exercise should be exercised.

  2. Reduced Prefrontal Hemodynamic Response in Adult Attention-Deficit/Hyperactivity Disorder as Measured by Near-Infrared Spectroscopy.

    Science.gov (United States)

    Ueda, Shotaro; Ota, Toyosaku; Iida, Junzo; Yamamuro, Kazuhiko; Yoshino, Hiroki; Kishimoto, Naoko; Kishimoto, Toshifumi

    2018-02-06

    Recent developments in near-infrared spectroscopy have enabled non-invasive clarification of brain functions in psychiatric disorders. In pediatric attention-deficit/hyperactivity disorder, reduced prefrontal hemodynamic responses have been observed with near-infrared spectroscopy repeatedly. However, there are few studies of adult attention-deficit/hyperactivity disorder by multi-channel near-infrared spectroscopy. Therefore, in this study, we used multi-channel near-infrared spectroscopy to examine the characteristics of prefrontal hemodynamic responses during the Stroop color-word task in adult attention-deficit/hyperactivity disorder patients and in age- and sex-matched control subjects. Twelve treatment-naïve adults with attention-deficit/hyperactivity disorder and 12 age- and sex-matched healthy control subjects participated in the present study after giving consent. We used 24-channel near-infrared spectroscopy to measure the oxyhemoglobin changes at the frontal lobes of participants during the Stroop color-word task. We compared the oxyhemoglobin changes between adults with attention-deficit/hyperactivity disorder and control subjects by t-tests with Bonferroni correction. During the Stroop color-word task, the oxyhemoglobin changes observed in the attention-deficit/hyperactivity disorder group were significantly smaller than those in the control group in channels 11, 16, 18, 21, 22, 23 and 24, correspond to the prefrontal cortex. At channels 16, 21, 23 and 24 of the attention-deficit/hyperactivity disorder group, there were negative correlations between the symptomatic severity and the oxy-Hb changes. The present study suggests that adults with attention-deficit/hyperactivity disorder have reduced prefrontal hemodynamic response as measured by near-infrared spectroscopy. This article is protected by copyright. All rights reserved.

  3. Concurrent OCT imaging of stimulus evoked retinal neural activation and hemodynamic responses

    Science.gov (United States)

    Son, Taeyoon; Wang, Benquan; Lu, Yiming; Chen, Yanjun; Cao, Dingcai; Yao, Xincheng

    2017-02-01

    It is well established that major retinal diseases involve distortions of the retinal neural physiology and blood vascular structures. However, the details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood. In this study, a multi-modal optical coherence tomography (OCT) imaging system was developed to enable concurrent imaging of retinal neural activity and vascular hemodynamics. Flicker light stimulation was applied to mouse retinas to evoke retinal neural responses and hemodynamic changes. The OCT images were acquired continuously during the pre-stimulation, light-stimulation, and post-stimulation phases. Stimulus-evoked intrinsic optical signals (IOSs) and hemodynamic changes were observed over time in blood-free and blood regions, respectively. Rapid IOSs change occurred almost immediately after stimulation. Both positive and negative signals were observed in adjacent retinal areas. The hemodynamic changes showed time delays after stimulation. The signal magnitudes induced by light stimulation were observed in blood regions and did not show significant changes in blood-free regions. These differences may arise from different mechanisms in blood vessels and neural tissues in response to light stimulation. These characteristics agreed well with our previous observations in mouse retinas. Further development of the multimodal OCT may provide a new imaging method for studying how retinal structures and metabolic and neural functions are affected by age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and other diseases, which promises novel noninvasive biomarkers for early disease detection and reliable treatment evaluations of eye diseases.

  4. Modeling the hemodynamic response in fMRI using smooth FIR filters

    DEFF Research Database (Denmark)

    Goutte, Cyril; Nielsen, Finn Årup; Hansen, Lars Kai

    2000-01-01

    -parametric approach based on finite impulse response (FIR) filters. In order to cope with the increase in the number of degrees of freedom, the authors introduce a Gaussian process prior on the filter parameters. They show how to carry on the analysis by incorporating prior knowledge on the filters, optimizing hyper......Modeling the hemodynamic response in functional magnetic resonance (fMRI) experiments is an important aspect of the analysis of functional neuroimages. This has been done in the past using parametric response function, from a limited family. In this contribution, the authors adopt a semi......-parameters using the evidence framework, or sampling using a Markov Chain Monte Carlo (MCMC) approach. The authors present a comparison of their model with standard hemodynamic response kernels on simulated data, and perform a full analysis of data acquired during an experiment involving visual stimulation....

  5. The Changes in the Hemodynamic Activity of the Brain during Motor Imagery Training with the Use of Brain-Computer Interface

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Silchenko, A.V.; Tintěra, J.; Rydlo, J.

    2016-01-01

    Roč. 42, č. 1 (2016), s. 1-12 ISSN 0362-1197 R&D Projects: GA MŠk ED1.1.00/02.0070 Grant - others:GA MŠk(CZ) EE.2.3.20.0073 Institutional support: RVO:67985807 Keywords : brain-computer interface * motor imagery * hemodynamic activity * brain plasticity * functional MRI Subject RIV: IN - Informatics, Computer Science

  6. Hemodynamic responses are reduced with aerobic compared with resistance blood flow restriction exercise.

    Science.gov (United States)

    May, Anthony K; Brandner, Christopher R; Warmington, Stuart A

    2017-02-01

    The hemodynamics of light-load exercise with an applied blood-flow restriction (BFR) have not been extensively compared between light-intensity, BFR, and high-intensity forms of both resistance and aerobic exercise in the same participant population. Therefore, the purpose of this study was to use a randomized crossover design to examine the hemodynamic responses to resistance and aerobic BFR exercise in comparison with a common high-intensity and light-intensity non-BFR exercise. On separate occasions participants completed a leg-press (resistance) or treadmill (aerobic) trial. Each trial comprised a light-intensity bout (LI) followed by a light-intensity bout with BFR (80% resting systolic blood pressure (LI+BFR)), then a high-intensity bout (HI). To characterize the hemodynamic response, measures of cardiac output, stroke volume, heart rate and blood pressure were taken at baseline and exercise for each bout. Exercising hemodynamics for leg-press LI+BFR most often resembled those for HI and were greater than LI (e.g. for systolic blood pressure LI+BFR = 152 ± 3 mmHg; HI = 153 ± 3; LI = 143 ± 3 P exercising hemodynamics for treadmill LI+BFR most often resembled those for LI and were lower than HI (e.g. for systolic pressure LI+BFR = 124 ± 2 mmHg; LI = 123 ± 2; HI = 140 ± 3 P aerobic (walking) BFR exercise suggests this mode of BFR exercise may be preferential for chronic use to develop muscle size and strength, and other health benefits in certain clinical populations that are contraindicated to heavy-load resistance exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  7. Quantitative assessment of hemodynamic and structural characteristics of in vivo brain tissue using total diffuse reflectance spectrum measured in a non-contact fashion.

    Science.gov (United States)

    Song, Yinchen; Garcia, Sarahy; Frometa, Yisel; Ramella-Roman, Jessica C; Soltani, Mohammad; Almadi, Mohamed; Riera, Jorge J; Lin, Wei-Chiang

    2017-01-01

    Here we present a new methodology that investigates the intrinsic structural and hemodynamic characteristics of in vivo brain tissue, in a non-contact fashion, and can be easily incorporated in an intra-operative environment. Within this methodology, relative total diffuse reflectance spectra (RTD(λ)) were acquired from targets using a hybrid spectroscopy imaging system. A spectral interpretation algorithm was subsequently applied to RTD(λ) to retrieve optical properties related to the compositional and structural characteristics of each target. Estimation errors of the proposed methodology were computationally evaluated using a Monte Carlo simulation model for photon migration under various conditions. It was discovered that this new methodology could handle moderate noise and achieve very high accuracy, but only if the refractive index of the target is known. The accuracy of the technique was also validated using a series of tissue phantom studies, and consistent and accurate estimates of μs'(λ)/μa(λ) were obtained from all the phantoms tested. Finally, a small-scale animal study was conducted to demonstrate the clinical utility of the reported method, wherein a forepaw stimulation model was utilized to induce transient hemodynamic responses in somatosensory cortices. With this approach, significant stimulation-related changes (p < 0.001) in cortical hemodynamic and structural characteristics were successfully measured.

  8. Fusion of fNIRS and fMRI data: identifying when and where hemodynamic signals are changing in human brains.

    Science.gov (United States)

    Yuan, Zhen; Ye, Jongchul

    2013-01-01

    In this study we implemented a new imaging method to fuse functional near infrared spectroscopy (fNIRS) measurements and functional magnetic resonance imaging (fMRI) data to reveal the spatiotemporal dynamics of the hemodynamic responses with high spatiotemporal resolution across the brain. We evaluated this method using multimodal data acquired from human right finger tapping tasks. And we found the proposed method is able to clearly identify from the linked components of fMRI and fNIRS where and when the hemodynamic signals are changing. In particular, the estimated associations between fNIRS and fMRI will be displayed as time varying spatial fMRI maps along with the fNIRS time courses. In addition, the joint components between fMRI and fNIRS are combined together to generate full spatiotemporal "snapshots" and movies, which provides an excellent way to examine the dynamic interplay between hemodynamic fNIRS and fMRI measurements.

  9. Brain hemodynamic activity during viewing and re-viewing of comedy movies explained by experienced humor.

    Science.gov (United States)

    Jääskeläinen, Iiro P; Pajula, Juha; Tohka, Jussi; Lee, Hsin-Ju; Kuo, Wen-Jui; Lin, Fa-Hsuan

    2016-06-21

    Humor is crucial in human social interactions. To study the underlying neural processes, three comedy clips were shown twice to 20 volunteers during functional magnetic resonance imaging (fMRI). Inter-subject similarities in humor ratings, obtained immediately after fMRI, explained inter-subject correlation of hemodynamic activity in right frontal pole and in a number of other brain regions. General linear model analysis also indicated activity in right frontal pole, as well as in additional cortical areas and subcortically in striatum, explained by humorousness. The association of the right frontal pole with experienced humorousness is a novel finding, which might be related to humor unfolding over longer time scales in the movie clips. Specifically, frontal pole has been shown to exhibit longer temporal receptive windows than, e.g., sensory areas, which might have enabled processing of humor in the clips based on holding information and reinterpreting that in light of new information several (even tens of) seconds later. As another novel finding, medial and lateral prefrontal areas, frontal pole, posterior-inferior temporal areas, posterior parietal areas, posterior cingulate, striatal structures and amygdala showed reduced activity upon re-viewing of the clips, suggesting involvement in processing of humor related to novelty of the comedic events.

  10. Low-dose esmolol: hemodynamic response to endotracheal intubation in normotensive patients

    Directory of Open Access Journals (Sweden)

    Suresh Lakshmanappa

    2012-06-01

    Full Text Available Abstract Purpose: Endotracheal intubation is a frequently utilized and highly invasive component of anesthesia that is often accompanied by potentially harmful hemodynamic pressor responses. The purpose of this study was to investigate the efficiency of a single pre-induction 1 mg/kg bolus injection of esmolol for attenuating these hemodynamic responses to endotracheal intubation in normotensive patients. Material and methods: The study was composed of 100 randomly selected male and female patients between the ages of 18 and 60 that were scheduled for elective surgery and belonged to ASA grade I or II. Two minutes prior to intubation the control group received 10 mL of saline (n=50 and the experimental group received an injection of esmolol 1 mg/kg diluted to 10 mL (n=50. Heart rate (HR, systolic blood pressure (SBP, diastolic blood pressure (DBP, mean arterial pressure (MAP, and rate pressure product (RPP were compared to basal values before receiving medication (T-0, during pre-induction (T-1, induction (T-2, intubation (T-3, and post-intubation at 1 (T-4, 3 (T-6, 5 (T-8, and 10 (T-13 minutes. Results: Esmolol significantly attenuated the hemodynamic responses to endotracheal intubation at the majority of measured points. Attenuation of HR (10.8%, SBP (7.04%, DBP (3.99%, MAP (5%, and RPP (16.9% was observed in the esmolol group when compared to the control group values. Conclusions: A single pre-induction 1 mg/kg bolus injection of esmolol successfully attenuated the hemodynamic pressor response in normotensive patients. A significant attenuation of heart rate, systolic blood pressure, diastolic blood pressure and mean arterial pressure was observed at the majority of measured time points in the esmolol administered group compared to the control group. [J Contemp Med 2012; 2(2.000: 69-76

  11. Whipple’s Disease-Associated Pulmonary Hypertension with Positive Vasodilator Response Despite Severe Hemodynamic Derangements

    Directory of Open Access Journals (Sweden)

    Salah Najm

    2011-01-01

    Full Text Available Pulmonary hypertension (PH associated with Whipple’s disease (WD-PH is extremely rare, and the underlying pathophysiological processes are incompletely understood. Alterations in hemodynamics can be severe, with right ventricular (RV dysfunction being common. A case involving a 23-year-old man with WD-PH who exhibited a dramatic vasodilator response during right heart catheterization despite severely altered pulmonary hemodynamics and concomitant RV dysfunction is reported. While the patient’s symptoms responded poorly to treatment with nifedipine and sildenafil, significant improvement in dyspnea, RV dysfunction and pulmonary pressures were noted following antibiotic therapy. The present report highlights that despite severely elevated pulmonary artery pressures and RV dysfunction in WD-PH patients, a highly significant vasodilator response and dramatic improvement with antibiotic therapy may be observed. Furthermore, the case highlights the phenomenon of PH in the setting of inflammation, suggesting that adequate control of the inflammatory response can be accompanied by a marked improvement in hemodynamics in certain types of PH.

  12. Optimal measurements of hemodynamic response latency in fNIRS using the jackknife approach.

    Science.gov (United States)

    Maheux, Manon; Bisaillon-Sicotte, Étienne; Tabrizi, Shirin; Armony, Jorge L; Lina, Jean-Marc; Jolicoeur, Pierre

    2017-01-01

    Functional near-infrared spectroscopy (fNIRS) permits measurements of changes in the concentration of oxygenated and deoxygenated hemoglobin, typically with a higher sampling rate than with other imaging methods based on the hemodynamic response. We examined the potential of the fNIRS technique to estimate variations in the latency of hemodynamic responses to experimental events and sought optimal methods to maximize the reliability and reproducibility of latency effects. We used Monte Carlo simulations using subsamples of real fNIRS measures to estimate the statistical power of different approaches (such as fixed threshold, percent of peak, fractional-area latency, for both individual-subject estimates and estimates from jackknife averages) to detect a known simulated latency shift. The simulations used measures of hemodynamic responses in the temporal lobe from two groups of young adult participants who listened to auditory stimuli, one with a blocked presentation design and one with an event-related design. We estimated the relative sensitivity of different latency measures and approaches to the measurement of latency effects of different magnitudes using realistic noise and signal-to-noise characteristics. In general, the jackknife approach provided the greatest statistical power to detect a known latency shift, without inflation of Type I error. © 2016 Society for Psychophysiological Research.

  13. Social cognition and prefrontal hemodynamic responses during a working memory task in schizophrenia.

    Science.gov (United States)

    Pu, Shenghong; Nakagome, Kazuyuki; Yamada, Takeshi; Itakura, Masashi; Yamanashi, Takehiko; Yamada, Sayaka; Masai, Mieko; Miura, Akihiko; Yamauchi, Takahira; Satake, Takahiro; Iwata, Masaaki; Nagata, Izumi; Roberts, David L; Kaneko, Koichi

    2016-03-01

    Social cognition is an important determinant of functional impairment in schizophrenia, but its relationship with the prefrontal functional abnormalities associated with the condition is still unclear. The present study aimed to explore the relationship between social cognition and prefrontal function in patients with schizophrenia using 52-channel near-infrared spectroscopy (NIRS). Twenty-six patients with schizophrenia and 26 age-, gender-, and intelligence quotient-matched healthy controls (HCs) participated in the study. Hemodynamic responses in the prefrontal and superior temporal cortical regions were assessed during a working memory task using NIRS. Social cognition was assessed using the Social Cognition Screening Questionnaire (SCSQ). The observed hemodynamic responses were significantly reduced in the lateral prefrontal cortex (PFC), the frontopolar cortex, and temporal regions in subjects with schizophrenia compared to HCs. Additionally, lateral PFC hemodynamic responses assessed during the working memory task demonstrated a strong positive correlation with the SCSQ theory of mind (ToM) subscale score even after controlling for working memory performance. These results suggest that ToM integrity is closely related to lateral PFC functional abnormalities found in patients with schizophrenia. In addition, this study provides evidence to suggest that NIRS could be used to identify biomarkers of social cognition function in subjects with schizophrenia.

  14. Cerebral Hemodynamic Effects of Acute Hyperoxia and Hyperventilation after Severe Traumatic Brain Injury

    Science.gov (United States)

    Rangel-Castilla, Leonardo; Lara, Lucia Rivera; Gopinath, Shankar; Swank, Paul R.; Valadka, Alex

    2010-01-01

    Abstract The purpose of this study was to examine the effects of hyperventilation or hyperoxia on cerebral hemodynamic parameters over time in patients with severe traumatic brain injury (TBI). We prospectively studied 186 patients with severe TBI. CO2 and O2 reactivity tests were conducted twice a day on days 1–5 and once daily on days 6–10 after injury. During hyperventilation there was a significant decrease in intracranial pressure (ICP), mean arterial pressure (MAP), jugular venous oxygen saturation (Sjvo2), brain tissue Po2 (Pbto2), and flow velocity (FV). During hyperoxia there was an increase in Sjvo2 and Pbto2, and a small but consistent decrease in ICP, end-tidal carbon dioxide (etco2), partial arterial carbon dioxide pressure (Paco2), and FV. Brain tissue oxygen reactivity during the first 12 h after injury averaged 19.7 ± 3.0%, and slowly decreased over the next 7 days. The autoregulatory index (ARI; normal = 5.3 ± 1.3) averaged 2.2 ± 1.5 on day 1 post-injury, and gradually improved over the 10 days of monitoring. The ARI significantly improved during hyperoxia, by an average of 0.4 ± 1.8 on the left, and by 0.5 ± 1.8 on the right. However, the change in ARI with hyperoxia was much smaller than that observed with hyperventilation. Hyperventilation increased ARI by an average of 1.3 ± 1.9 on the left, and 1.5 ± 2.0 on the right. Pressure autoregulation, as assessed by dynamic testing, was impaired in these head-injured patients. Acute hyperoxia significantly improved pressure autoregulation, although the effect was smaller than that induced by hyperventilation. The very small change in Paco2 induced by hyperoxia does not appear to explain this finding. Rather, the vasoconstriction induced by acute hyperoxia may allow the cerebral vessels to respond better to transient hypotension. Further studies are needed to define the clinical significance of these observations. PMID:20684672

  15. Hemodynamic responses to mental stress during salt loading.

    Science.gov (United States)

    Gefke, Maria; Christensen, Niels Juel; Bech, Per; Frandsen, Erik; Damgaard, Morten; Asmar, Ali; Norsk, Peter

    2017-11-01

    The purpose was to examine whether prolonged moderate stress associated with a student exam would increase the blood pressure response to a salt load in young healthy normotensive individuals. Ten healthy young subjects were examined at two different occasions in random order (i) during preparation for a medical exam (prolonged stress) and (ii) outside the exam period (low stress). All subjects consumed a controlled diet for 3 days with low- or high-salt content in randomized order. The subjective stress was measured by Spielberger's State-Trait Anxiety Inventory-Scale, SCL Symptom Checklist for stress and the Visual Analogue Scale. On each level of stress, 24-h ambulatory blood pressure and cardiac output (CO) were measured. Furthermore, plasma norepinephrine (NE), epinephrine (E) and plasma renin activity (PRA) were measured. Twenty-four-hour ABP, 24-h heart rate, CO as well as plasma levels of NE, E and PRA remained unchanged by changes in stress level. Day-night reduction in SAP was significantly larger during moderate stress and high-salt intake; however, no significant difference was observed during daytime and night-time. Individual increase in mental stress correlated significantly with an individual decrease in PRA (SCL-17, r = -0·80, Pstress over a period of time in young healthy normotensive individuals does not lead to changes in 24-h ABP. However, the augmented reduction in day-to-night systolic blood pressure during high-salt intake and moderate stress may indicate that stress affects blood pressure regulation. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  16. Empirical Evaluation of Visual Fatigue from Display Alignment Errors Using Cerebral Hemodynamic Responses

    Directory of Open Access Journals (Sweden)

    Hanniebey D. Wiyor

    2013-01-01

    Full Text Available The purpose of this study was to investigate the effect of stereoscopic display alignment errors on visual fatigue and prefrontal cortical tissue hemodynamic responses. We collected hemodynamic data and perceptual ratings of visual fatigue while participants performed visual display tasks on 8 ft × 6 ft NEC LT silver screen with NEC LT 245 DLP projectors. There was statistical significant difference between subjective measures of visual fatigue before air traffic control task (BATC and after air traffic control task (ATC 3, (P<0.05. Statistical significance was observed between left dorsolateral prefrontal cortex oxygenated hemoglobin (l DLPFC-HbO2, left dorsolateral prefrontal cortex deoxygenated hemoglobin (l DLPFC-Hbb, and right dorsolateral prefrontal cortex deoxygenated hemoglobin (r DLPFC-Hbb on stereoscopic alignment errors (P<0.05. Thus, cortical tissue oxygenation requirement in the left hemisphere indicates that the effect of visual fatigue is more pronounced in the left dorsolateral prefrontal cortex.

  17. Effects of magnesium sulfate on hemodynamic response to carbon dioxide pneumoperitoneum in patients undergoing laparoscopic cholecystectomy.

    Science.gov (United States)

    Paul, Suhrita; Biswas, Pabitra; Bhattacharjee, Dhurjoti Prosad; Sengupta, Janmejoy

    2013-01-01

    Carbon dioxide pneumoperitoneum (PP) for laparoscopic surgery increases arterial pressure, heart rate, and systemic vascular resistance. In this randomized, double blind, prospective clinical study; we investigated the efficacy of magnesium sulfate to prevent adverse hemodynamic response associated with PP in patients undergoing laparoscopic cholecystectomy. Sixty patients, of either sex (18-65 years of age), undergoing elective laparoscopic cholecystectomy were randomly allocated in one of the two groups containing 30 patients each. Group M received magnesium sulfate 30 mg/kg intravenously as a bolus before PP. Group C received same volume of 0.9% saline. Mean arterial pressure and heart rate were significantly less throughout the period of pneumoperitoneum in patients of group M. Intravenous labetalol was required in 40% (12 out of 30) of the patients in group C to control intraoperative hypertension and it was clinically significant in comparison to group M. Magnesium sulfate administered before PP attenuates adverse hemodynamic response and provides hemodynamic stability during PP created for laparoscopic surgery.

  18. A 12-week resistance training program elicits positive changes in hemodynamic responses in the elderly

    Directory of Open Access Journals (Sweden)

    Cinthya Campos Salazar

    2009-03-01

    Full Text Available The aim of the study was to determine the effect of a resistance training program in hemodynamic responses and adaptations in 60 yr. old elderly. Volunteers were 60 healthy-elderly who underwent a training program 3 times/wk. for 12 wk. Participants were randomly assigned to either a control group, an exercise group who trained at 30% intensity of 5 maximal repetitions (5RM (30% of 5RM or an exercise group at an intensity of 70% (70% of 5RM. Hemodynamic variables measured were mean arterial pressure (MAP, calculated before and immediately after the training session, and rate pressure product (RPP, estimated once a month and before and after finishing the program. Results indicated that resistance exercise training at 30% and 70% of 5RM, with a total exercise work of 872.7 and 890.9 kg did not elicited cardiovascular risks for the elderly. A 12-wk resistance exercise training reduced the cardiovascular strain as shown by the RPP (~16% and the MAP (~9%, with no adverse effects throughout the program. Unfortunately, all the hemodynamic benefits were reverted 6 days following completion of the program. In conclusion, a healthy elderly population must perform resistance training exercises to significantly reduce the cardiovascular stress. We suggest to conduct further research that looks into different exercise intensities in longer program duration and to determine the mechanisms responsible for the deleterious effects of the detraining by using physiological, biochemical and biomechanical variables.

  19. fNIRS derived hemodynamic signals and electrodermal responses in a sequential risk-taking task.

    Science.gov (United States)

    Holper, Lisa; ten Brincke, Robert H W; Wolf, Martin; Murphy, Ryan O

    2014-04-04

    The study measured cortical hemodynamic signals and peripheral correlates of decision makers during a dynamic risky task, the Just One More task (JOM), in which the risky decision entails choosing whether to incrementally increase accumulated earnings at the risk of ruin (going bust ending up with nothing). Twenty subjects participated in multiple instantiations of this task in which the probability of ruin and size of the stakes varied. Physiological correlates were simultaneously quantified by functional near-infrared spectroscopy (fNIRS) over dorsolateral prefrontal cortex (DLPFC) and electrodermal activity (EDA). First, in the task decision phase (i.e., when subjects are contemplating options before making a choice) probability of ruin had a dissociating effect on fNIRS and EDA. fNIRS derived DLPFC hemodynamic signals reflected a subjective value signal, correlating positively with individual risk attitude. Contrary, EDA reflected the probability of ruin in terms of a common affective measure, irrespective of individuals׳ risk attitude. Second, during the task outcome phase (i.e., the time after subjects have made a choice and observed the outcomes) fNIRS and EDA revealed opposite patterns. While fNIRS derived DLPFC hemodynamic signals were larger in response to gains, EDA signals were larger in response to losses; both patterns were statistically independent of individual risk attitude. Lastly, fNIRS derived DLPFC hemodynamic signals in the decision phase correlated positively with the mean round earnings, providing a measure of the quality of the individual decision-making performance. Together with the positive correlation with individual risk attitude, our findings indicate that fNIRS signals, but not EDA, could be taken as a useful method for studying individual risk attitude and task performance in dynamic risky decision-making. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Assessment of pedophilia using hemodynamic brain response to sexual stimuli

    DEFF Research Database (Denmark)

    Ponseti, Jorge; Granert, Oliver; Jansen, Olav

    2012-01-01

    Accurately assessing sexual preference is important in the treatment of child sex offenders. Phallometry is the standard method to identify sexual preference; however, this measure has been criticized for its intrusiveness and limited reliability....

  1. Hemodynamic quantification in brain arteriovenous malformations with time-resolved spin-labeled magnetic resonance angiography.

    Science.gov (United States)

    Raoult, Hélène; Bannier, Elise; Maurel, Pierre; Neyton, Clément; Ferré, Jean-Christophe; Schmitt, Peter; Barillot, Christian; Gauvrit, Jean-Yves

    2014-08-01

    Unenhanced time-resolved spin-labeled magnetic resonance angiography enables hemodynamic quantification in arteriovenous malformations (AVMs). Our purpose was to identify quantitative parameters that discriminate among different AVM components and to relate hemodynamic patterns with rupture risk. Sixteen patients presenting with AVMs (7 women, 9 men; mean age 37.1±15.9 years) were assigned to the high rupture risk or low rupture risk group according to anatomic AVM characteristics and rupture history. High temporal resolution (magnetic resonance angiography was performed on a 3-T MR system. After dedicated image processing, hemodynamic quantitative parameters were computed. T tests were used to compare quantitative parameters among AVM components, between the high rupture risk and low rupture risk groups, and between the hemorrhagic and nonhemorrhagic groups. Among the quantitative parameters, time-to-peak (Pmagnetic resonance angiography allows AVM-specific combined anatomic and quantitative analysis of AVM hemodynamics. © 2014 American Heart Association, Inc.

  2. Effect of Lower Body Compression Garments on Hemodynamics in Response to Running Session

    Directory of Open Access Journals (Sweden)

    Tomas Venckūnas

    2014-01-01

    Full Text Available Purpose. Compression garments are often worn during exercise and allegedly have ergogenic and/or physiological effects. In this study, we compared hemodynamics and running performance while wearing compression and loose-fit breeches. We hypothesized that in neutral-warm environment compression breeches impair performance by diminishing body cooling via evaporative sweat loss and redistributing blood from active musculature to skin leading to a larger rise in body temperature and prolonging recovery of hemodynamics after exercise. Methods. Changes in hemodynamics (leg blood flow, heart rate, and blood pressure during orthoclinostatic test, calf muscle tissue oxygenation, and skin and core temperatures were measured in response to 30 min running (simulation of aerobic training session followed by maximal 400 m sprint (evaluation of running performance in recreationally active females (25.1±4.2 yrs; 63.0±8.6 kg wearing compression or loose-fit breeches in randomized fashion. Results. Wearing compression breeches resulted in larger skin temperature rise under the garment during exercise and recovery (by about 1°C, P 85%, while core temperature dynamics and other measured parameters including circulation, running performance, and sensations were similar compared to wearing loose-fit breeches (P>0.05. Conclusion. Compared with loose-fit breeches, compression breeches have neither positive nor negative physiological and performance effects for females running in thermoneutral environment.

  3. Age-dependent NOC/oFQ contribution to impaired hypotensive cerebral hemodynamics after brain injury.

    Science.gov (United States)

    Armstead, William M

    2002-10-01

    Previous studies have observed that the newly described opioid, nociceptin/orphanin FQ (NOC/oFQ), contributed to age dependent reductions in cerebral blood flow (CBF) and pial artery diameter after fluid percussion brain injury (FPI). Unrelated studies have noted a similar age dependency in impaired hypotensive cerebral autoregulation after FPI. This study was designed to compare the role of NOC/oFQ in impaired hypotensive cerebral autoregulation after FPI in newborn and juvenile pigs equipped with a closed cranial window. Ten minutes of hemorrhagic hypotension (10-15 mL blood/kg) decreased mean arterial blood pressure uniformly in both groups ( approximately 44%). In the newborn, hypotensive pial artery dilation was blunted within 1 h of FPI but partially protected by pretreatment with the NOC/oFQ antagonist, [F/G] NOC/oFQ (1-13) NH(2) (1 mg/kg, i.v.) (34 +/- 1 vs. 8 +/- 1 vs. 20 +/- 2% for sham control, FPI, and FPI-[F/G] NOC/oFQ (1-13) NH(2), respectively). CBF was reduced during normotension by FPI, further reduced by hypotension, but both were partially protected by this antagonist in the newborn (63 +/- 4, 34 +/- 2, and 20 +/- 2 vs. 65 +/- 4, 47 +/- 2, and 29 +/- 2 mL/min.100 g for normotension, normotension-FPI and hypotension-FPI in the absence and presence of [F/G] NOC/oFQ (1-13) NH(2), respectively). In contrast, blunted hypotensive pial artery dilation was protected significantly less by this NOC/oFQ antagonist in the juvenile (32 +/- 2 vs. 7 +/- 2 vs. 13 +/- 2% for sham control, FPI and FPI-NOC/oFQ antagonist, respectively). Similarly, [F/G] NOC/oFQ (1-13) NH(2) had less protective effect on normotensive and hypotensive CBF values post FPI in the juvenile. These data indicate that NOC/oFQ contributes to impaired hypotensive cerebral hemodynamics following brain injury in an age-dependent manner.

  4. Hemodynamic responses to single sessions of aerobic exercise and resistance exercise in pregnancy.

    Science.gov (United States)

    Petrov Fieril, Karolina; Glantz, Anna; Fagevik Olsen, Monika

    2016-09-01

    Previous research on maternal hemodynamic responses to a single exercise session during pregnancy is sparse, especially considering immediate responses to resistance exercise. The aim of the study was to examine blood pressure, heart rate, body temperature, and Rating of Perceived Exertion in healthy pregnant women during single sessions of continuous submaximal exercise in pregnancy week 21. A cross-over design was used. Twenty healthy pregnant women from four prenatal clinics in Gothenburg, Sweden, were included. On day 1, the women did 30 min of aerobic exercise and on day 3 they did 30 min of resistance exercise. Blood pressure, heart rate, and Rating of Perceived Exertion were measured after 15 and 30 min of exercise. After 15 and 30 min of exercise, there was a significant increase in systolic blood pressure and heart rate (p exercise (p = 0.01) than resistance exercise (p = 0.03). Resistance exercise was perceived as more intense than aerobic exercise after 15 min (p = 0.02) and 30 min (p = 0.001) of exercise. Five minutes after completing the exercise, blood pressure quickly reverted to normal although heart rate was still increased (p = 0.001). There was no correlation between heart rate and Rating of Perceived Exertion (rs  = 0.05-0.43). Maternal hemodynamic responses were essentially the same, regardless of whether the exercise was submaximal aerobic or resistance exercise, although resistance exercise was perceived as more intense. Aerobic and resistance exercise corresponding to "somewhat hard" seems to have no adverse effect with regard to maternal hemodynamic responses in healthy pregnancy. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.

  5. Assessment of cerebral hemodynamics to acetazolamide using brain perfusion SPECT in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy.

    Science.gov (United States)

    Park, Soon-Ah; Yang, Chung-Yong; Choi, See-Sung; Kim, Woo Hyoung

    2011-02-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary microangiopathy caused by mutations in the Notch3 gene located on chromosome 19, leading to 4 cardinal features with aura, cerebrovascular ischemic events, mood disturbances, and dementia. Acetazolamide (ACZ) has been promoted as a drug to determine cerebral hemodynamics, including cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) in patients with cerebrovascular disease. In CADASIL patients with small-vessel disease, ACZ may be possible to increase CBF. We present that reduced CBF was dramatically improved after administration of ACZ on Tc-99m ECD brain perfusion SPECT in a CADASIL patient.

  6. Impaired cardiac contractility response to hemodynamic stress in S100A1-deficient mice.

    Science.gov (United States)

    Du, Xiao-Jun; Cole, Timothy J; Tenis, Nora; Gao, Xiao-Ming; Köntgen, Frank; Kemp, Bruce E; Heierhorst, Jörg

    2002-04-01

    Ca(2+) signaling plays a central role in cardiac contractility and adaptation to increased hemodynamic demand. We have generated mice with a targeted deletion of the S100A1 gene coding for the major cardiac isoform of the large multigenic S100 family of EF hand Ca(2+)-binding proteins. S100A1(-/-) mice have normal cardiac function under baseline conditions but have significantly reduced contraction rate and relaxation rate responses to beta-adrenergic stimulation that are associated with a reduced Ca(2+) sensitivity. In S100A1(-/-) mice, basal left-ventricular contractility deteriorated following 3-week pressure overload by thoracic aorta constriction despite a normal adaptive hypertrophy. Surprisingly, heterozygotes also had an impaired response to acute beta-adrenergic stimulation but maintained normal contractility in response to chronic pressure overload that coincided with S100A1 upregulation to wild-type levels. In contrast to other genetic models with impaired cardiac contractility, loss of S100A1 did not lead to cardiac hypertrophy or dilation in aged mice. The data demonstrate that high S100A1 protein levels are essential for the cardiac reserve and adaptation to acute and chronic hemodynamic stress in vivo.

  7. Voluntary Modulation of Hemodynamic Responses in Swallowing Related Motor Areas: A Near-Infrared Spectroscopy-Based Neurofeedback Study.

    Directory of Open Access Journals (Sweden)

    Silvia Erika Kober

    Full Text Available In the present study, we show for the first time that motor imagery of swallowing, which is defined as the mental imagination of a specific motor act without overt movements by muscular activity, can be successfully used as mental strategy in a neurofeedback training paradigm. Furthermore, we demonstrate its effects on cortical correlates of swallowing function. Therefore, N = 20 healthy young adults were trained to voluntarily increase their hemodynamic response in swallowing related brain areas as assessed with near-infrared spectroscopy (NIRS. During seven training sessions, participants received either feedback of concentration changes in oxygenated hemoglobin (oxy-Hb group, N = 10 or deoxygenated hemoglobin (deoxy-Hb group, N = 10 over the inferior frontal gyrus (IFG during motor imagery of swallowing. Before and after the training, we assessed cortical activation patterns during motor execution and imagery of swallowing. The deoxy-Hb group was able to voluntarily increase deoxy-Hb over the IFG during imagery of swallowing. Furthermore, swallowing related cortical activation patterns were more pronounced during motor execution and imagery after the training compared to the pre-test, indicating cortical reorganization due to neurofeedback training. The oxy-Hb group could neither control oxy-Hb during neurofeedback training nor showed any cortical changes. Hence, successful modulation of deoxy-Hb over swallowing related brain areas led to cortical reorganization and might be useful for future treatments of swallowing dysfunction.

  8. Corrected near infrared spectroscopy, C-NIRS: An optical system for extracting hemodynamic signatures unique to the brain

    Science.gov (United States)

    Saager, Rolf B.

    We propose a method, dubbed Corrected Near Infrared Spectroscopy (C-NIRS), to isolate absorption trends confined to the lower layer of a two-layer turbid medium, as is desired in near-infrared spectroscopy (NIRS) of cerebral hemodynamics. The theory behind the operation of this method has been developed and discussed. Several two-layer Monte-Carlo simulations of NIRS time series were generated using a physiologically relevant range of optical properties. Initial results show that by measuring absorption trends at two source-detector separations and performing a least-squares fit of one to the other, processed signals strongly resemble the simulated absorption properties unique to the bottom-layer. Through this approach, it has been demonstrated that fitting coefficients can be estimated without any a priori knowledge of the optical properties present in the model. An analytical approximation for the least squares coefficient provides physical insight into the nature of errors and suggests ways to reduce them. Next, a multi-detector, continuous wave, near infrared spectroscopy system has been developed to examine whether the hemodynamics of the scalp and brain in adults contain significant layer-like hemodynamic trends. NIRS measurements were made using contrasting geometries, one with four detectors equidistant from a source 33 mm away, and one with detectors collinear with the source (5-33 mm away). When NIRS time series were acquired over the prefrontal cortex from resting adults using both geometries, variations among the time series were consistent with a substantially homogeneous two-layer model ( p brain over that offered by established cw NIRS methods. There are many additional avenues where this research can be advanced even further. Some of these future directions are considered.

  9. [The Changes in the Hemodynamic Activity of the Brain during Moroe Imagery Training with the Use of Brain-Computer Interface].

    Science.gov (United States)

    Frolov, A A; Husek, D; Silchenko, A V; Tintera, Y; Rydlo, J

    2016-01-01

    With the use of functional MRI (fMRI), we studied the changes in brain hemodynamic activity of healthy subjects during motor imagery training with the use brain-computer interface (BCI), which is based on the recognition of EEG patterns of imagined movements. ANOVA dispersion analysis showed there are 14 areas of the brain where statistically sgnificant changes were registered. Detailed analysis of the activity in these areas before and after training (Student's and Mann-Whitney tests) reduced the amount of areas with significantly changed activity to five; these are Brodmann areas 44 and 45, insula, middle frontal gyrus, and anterior cingulate gyrus. We suggest that these changes are caused by the formation of memory traces of those brain activity patterns which are most accurately recognized by BCI classifiers as correspondent with limb movements. We also observed a tendency of increase in the activity of motor imagery after training. The hemodynamic activity in all these 14 areas during real movements was either approximatly the same or significantly higher than during motor imagery; activity during imagined leg movements was higher that that during imagined arm movements, except for the areas of representation of arms.

  10. MSCT PERFUSION IN ASSESSMENT OF BRAIN HEMODYNAMICS AND IN ANALYSIS OF SURGICAL TREATMENT RESULTS IN PATIENTS WITH CHRONIC BRAIN ISHEMIA

    Directory of Open Access Journals (Sweden)

    A. V. Basarboliev

    2014-01-01

    Full Text Available Background: Stenoses of the brachiocephalic arteries (BCA are ones of the main causes of ischemic defects of cerebral circulation. From the end of the former century to the current time, the surgical cerebral revascularization in steno-occlusive BCA disturbances occupies the topical place in prevention of acute brain circulation defects. Carotid endarterectomy (CEAE remains till now a basic method of surgical revascularization. As a result of chronic hypoperfusion, autoregulation of the cerebral circulation can be disturbed with a persistent capillary dilatation which enables development of hyperperfusion syndrome after surgical intervention. Aim: A quantitative assessment of the cerebral tissue perfusion disturbances depending on the variants of the brachiocephalic vessels lesions before and after surgical reconstructions as well as revealing possible prerequisites for hyperperfusion syndrome development during preoperative multislice computed tomography (MSCT perfusion. Materials and methods: The results of examination and treatment of 65 patients (mean age 64.2±5.0 years with chronic cerebrovascular IV stage insufficiency were analyzed as well as the hemodynamically significant lesion of the inner carotid arteries. CEAE was planned for all patients. All patients underwent cerebral MSCT angiography and MSCT perfusion in preoperative and early postoperative periods. Results: The majority of patients in preoperative period showed decrease of perfusion parameters at the side of the most expressed defects. The mean circulation deficiency varied from 12 to 15%. Improvement of circulation at the side of surgical intervention formed, on the average, about 12%. The best outcome was noted in patients with bilateral stenoses of the inner carotid arteries (ICA. In one case, in critical unilateral ICA stenosis in preoperative period, MSCT perfusion demonstrated persisting dilatation of the small cerebral arteries of the disturbed hemisphere which led to

  11. Hemodynamic segmentation of brain perfusion images with delay and dispersion effects using an expectation-maximization algorithm.

    Directory of Open Access Journals (Sweden)

    Chia-Feng Lu

    Full Text Available Automatic identification of various perfusion compartments from dynamic susceptibility contrast magnetic resonance brain images can assist in clinical diagnosis and treatment of cerebrovascular diseases. The principle of segmentation methods was based on the clustering of bolus transit-time profiles to discern areas of different tissues. However, the cerebrovascular diseases may result in a delayed and dispersed local perfusion and therefore alter the hemodynamic signal profiles. Assessing the accuracy of the segmentation technique under delayed/dispersed circumstance is critical to accurately evaluate the severity of the vascular disease. In this study, we improved the segmentation method of expectation-maximization algorithm by using the results of hierarchical clustering on whitened perfusion data as initial parameters for a mixture of multivariate Gaussians model. In addition, Monte Carlo simulations were conducted to evaluate the performance of proposed method under different levels of delay, dispersion, and noise of signal profiles in tissue segmentation. The proposed method was used to classify brain tissue types using perfusion data from five normal participants, a patient with unilateral stenosis of the internal carotid artery, and a patient with moyamoya disease. Our results showed that the normal, delayed or dispersed hemodynamics can be well differentiated for patients, and therefore the local arterial input function for impaired tissues can be recognized to minimize the error when estimating the cerebral blood flow. Furthermore, the tissue in the risk of infarct and the tissue with or without the complementary blood supply from the communicating arteries can be identified.

  12. Relation between the neuronal and hemodynamic response in the lesioned rat spinal cord following peripheral nerve stimulation

    Science.gov (United States)

    Dubeau, S.; Beaumont, E.; Lesage, F.

    2009-02-01

    In this study, we explore the hemodynamic response in the lesioned rat spinal cord following peripheral nerve stimulation. Oxy and deoxy hemoglobin were measured (using a four color LED multispectral intrinsic optical imaging system) simultaneously with blood flow (laser speckle measurement). Both optical and electrophysiological data are compared spatially and against stimulation strength. When compared with non-lesioned animals, the hemodynamic response is seen to display significant differences exhibiting increased initial dip and decreased blood drain following stimulation. The origin of the difference is observed to be due to the vascular nature of the injury. The distinct hemodynamic responses may have a strong impact on General Linear Model based fMRI studies of spinal cord lesions due to the difficulty in separating vascular effects from neuronal plasticity following injury.

  13. Non-parametric temporal modeling of the hemodynamic response function via a liquid state machine.

    Science.gov (United States)

    Avesani, Paolo; Hazan, Hananel; Koilis, Ester; Manevitz, Larry M; Sona, Diego

    2015-10-01

    Standard methods for the analysis of functional MRI data strongly rely on prior implicit and explicit hypotheses made to simplify the analysis. In this work the attention is focused on two such commonly accepted hypotheses: (i) the hemodynamic response function (HRF) to be searched in the BOLD signal can be described by a specific parametric model e.g., double-gamma; (ii) the effect of stimuli on the signal is taken to be linearly additive. While these assumptions have been empirically proven to generate high sensitivity for statistical methods, they also limit the identification of relevant voxels to what is already postulated in the signal, thus not allowing the discovery of unknown correlates in the data due to the presence of unexpected hemodynamics. This paper tries to overcome these limitations by proposing a method wherein the HRF is learned directly from data rather than induced from its basic form assumed in advance. This approach produces a set of voxel-wise models of HRF and, as a result, relevant voxels are filterable according to the accuracy of their prediction in a machine learning framework. This approach is instantiated using a temporal architecture based on the paradigm of Reservoir Computing wherein a Liquid State Machine is combined with a decoding Feed-Forward Neural Network. This splits the modeling into two parts: first a representation of the complex temporal reactivity of the hemodynamic response is determined by a universal global "reservoir" which is essentially temporal; second an interpretation of the encoded representation is determined by a standard feed-forward neural network, which is trained by the data. Thus the reservoir models the temporal state of information during and following temporal stimuli in a feed-back system, while the neural network "translates" this data to fit the specific HRF response as given, e.g. by BOLD signal measurements in fMRI. An empirical analysis on synthetic datasets shows that the learning process can

  14. Effects of different levels of end-expiratory pressure on hemodynamic, respiratory mechanics and systemic stress response during laparoscopic cholecystectomy.

    Science.gov (United States)

    Sen, Oznur; Erdogan Doventas, Yasemin

    General anesthesia causes reduction of functional residual capacity. And this decrease can lead to atelectasis and intrapulmonary shunting in the lung. In this study we want to evaluate the effects of 5 and 10cmH2O PEEP levels on gas exchange, hemodynamic, respiratory mechanics and systemic stress response in laparoscopic cholecystectomy. American Society of Anesthesiologist I-II physical status 43 patients scheduled for laparoscopic cholecystectomy were randomly selected to receive external PEEP of 5cmH2O (PEEP 5 group) or 10cmH2O PEEP (PEEP 10 group) during pneumoperitoneum. Basal hemodynamic parameters were recorded, and arterial blood gases (ABG) and blood sampling were done for cortisol, insulin and glucose level estimations to assess the systemic stress response before induction of anesthesia. Thirty minutes after the pneumoperitoneum, the respiratory and hemodynamic parameters were recorded again and ABG and sampling for cortisol, insulin, and glucose levels were repeated. Lastly hemodynamic parameters were recorded; ABG analysis and sampling for stress response levels were taken after 60minutes from extubation. There were no statistical differences between the two groups about hemodynamic and respiratory parameters except mean airway pressure (Pmean). Pmean, compliance and PaO2; pH values were higher in 'PEEP 10 group'. Also, PaCO2 values were lower in 'PEEP 10 group'. No differences were observed between insulin and lactic acid levels in the two groups. But postoperative cortisol level was significantly lower in 'PEEP 10 group'. Ventilation with 10cmH2O PEEP increases compliance and oxygenation, does not cause hemodynamic and respiratory complications and reduces the postoperative stress response. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. [Effects of different levels of end-expiratory pressure on hemodynamic, respiratory mechanics and systemic stress response during laparoscopic cholecystectomy].

    Science.gov (United States)

    Sen, Oznur; Erdogan Doventas, Yasemin

    General anesthesia causes reduction of functional residual capacity. And this decrease can lead to atelectasis and intrapulmonary shunting in the lung. In this study we want to evaluate the effects of 5 and 10cmH2O PEEP levels on gas exchange, hemodynamic, respiratory mechanics and systemic stress response in laparoscopic cholecystectomy. American Society of Anesthesiologist I-II physical status 43 patients scheduled for laparoscopic cholecystectomy were randomly selected to receive external PEEP of 5cmH2O (PEEP 5 group) or 10cmH2O PEEP (PEEP 10 group) during pneumoperitoneum. Basal hemodynamic parameters were recorded, and arterial blood gases (ABG) and blood sampling were done for cortisol, insulin and glucose level estimations to assess the systemic stress response before induction of anesthesia. Thirty minutes after the pneumoperitoneum, the respiratory and hemodynamic parameters were recorded again and ABG and sampling for cortisol, insulin, and glucose levels were repeated. Lastly hemodynamic parameters were recorded; ABG analysis and sampling for stress response levels were taken after 60minutes from extubation. There were no statistical differences between the two groups about hemodynamic and respiratory parameters except mean airway pressure (Pmean). Pmean, compliance and PaO2; pH values were higher in 'PEEP 10 group'. Also, PaCO2 values were lower in 'PEEP 10 group'. No differences were observed between insulin and lactic acid levels in the two groups. But postoperative cortisol level was significantly lower in 'PEEP 10 group'. Ventilation with 10cmH2O PEEP increases compliance and oxygenation, does not cause hemodynamic and respiratory complications and reduces the postoperative stress response. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  16. Hemodynamic response based mixture model to estimate micro- and macro-vasculature contributions in functional MRI

    CERN Document Server

    Singh, Manbir; Sungkarat, Witaya; Zhou, Yongxia

    2003-01-01

    A multi-componet model reflecting the temporal characteristics of micro- and macro-vasculature hemodynamic responses was used to fit the time-course of voxels in functional MRI (fMRI). The number of relevant components, the latency of the first component, the time- separation among the components, their relative amplitude and possible interpretation in terms of partial volume contributions of micro- and macro-components to the time-course data were investigated. Analysis of a reversing checkerboard experiment revealed that there was no improvement in the filing beyond two components. Using a two-component model, the fractional abundances of the micro- and macro-vasculature were estimated in individual voxels. These results suggest the potential of a mixture-model approach to mitigate partial volume effects and separate contributions of vascular components within a voxel in fMRI.

  17. GATA4 mediates activation of the B-type natriuretic peptide gene expression in response to hemodynamic stress.

    Science.gov (United States)

    Marttila, M; Hautala, N; Paradis, P; Toth, M; Vuolteenaho, O; Nemer, M; Ruskoaho, H

    2001-11-01

    To identify the mechanisms that couple hemodynamic stress to alterations in cardiac gene expression, DNA constructs containing the rat B-type natriuretic peptide (BNP) promoter were injected into the myocardium of rats, which underwent bilateral nephrectomy or were sham-operated. Ventricular BNP mRNA levels were induced about 4-fold; and the BNP reporter construct containing the proximal 2200 bp, 5-fold, in response to 1-d nephrectomy. Deletion of sequences between bp -2200 and -114 did not affect basal or inducible activity of the BNP promoter. An activator protein-1-like site and two tandem GATA elements are located within this 114-bp sequence. Both deletion and mutation of the AP-1-like motif decreased basal activity but did not abolish the response to nephrectomy. In contrast, mutation or deletion of -90 bp GATA-sites abrogated the response to hemodynamic stress. The importance of these GATA elements to BNP promoter activation was further confirmed by the corresponding 38-bp oligonucleotide conferring hemodynamic stress responsiveness to a minimal BNP promoter. In gel mobility shift assays, nephrectomy increased left ventricular BNP GATA4 binding activity significantly. In conclusion, GATA elements are necessary and sufficient to confer transcriptional activation of BNP gene in response to hemodynamic stress.

  18. Cerebral hemodynamic changes of mild traumatic brain injury at the acute stage.

    Directory of Open Access Journals (Sweden)

    Hardik Doshi

    Full Text Available Mild traumatic brain injury (mTBI is a significant public health care burden in the United States. However, we lack a detailed understanding of the pathophysiology following mTBI and its relation to symptoms and recovery. With advanced magnetic resonance imaging (MRI, we can investigate brain perfusion and oxygenation in regions known to be implicated in symptoms, including cortical gray matter and subcortical structures. In this study, we assessed 14 mTBI patients and 18 controls with susceptibility weighted imaging and mapping (SWIM for blood oxygenation quantification. In addition to SWIM, 7 patients and 12 controls had cerebral perfusion measured with arterial spin labeling (ASL. We found increases in regional cerebral blood flow (CBF in the left striatum, and in frontal and occipital lobes in patients as compared to controls (p = 0.01, 0.03, 0.03 respectively. We also found decreases in venous susceptibility, indicating increases in venous oxygenation, in the left thalamostriate vein and right basal vein of Rosenthal (p = 0.04 in both. mTBI patients had significantly lower delayed recall scores on the standardized assessment of concussion, but neither susceptibility nor CBF measures were found to correlate with symptoms as assessed by neuropsychological testing. The increased CBF combined with increased venous oxygenation suggests an increase in cerebral blood flow that exceeds the oxygen demand of the tissue, in contrast to the regional hypoxia seen in more severe TBI. This may represent a neuroprotective response following mTBI, which warrants further investigation.

  19. Does the renin-angiotensin system determine the renal and systemic hemodynamic response to sodium in patients with essential hypertension?

    NARCIS (Netherlands)

    vanPaassen, P; deZeeuw, D; Navis, G; deJong, PE

    Many patients with essential hypertension respond to a high dietary sodium intake with a rise in blood pressure. Experimental evidence suggests that the renal hemodynamic response to sodium determines, at least partially, this rise in blood pressure. Our aim was to clarify the role of the

  20. [Effect of Oral Rehydration Therapy before General Anesthesia on Satisfaction, Stress Response, and Hemodynamics in Surgical Patients for Laparoscopic Colectomy].

    Science.gov (United States)

    Inoda, Ayako; Nagata, Hirofumi; Otsuka, Koki; Suzuki, Kenji

    2015-03-01

    The recommended intake of clear liquids until 2 hours before surgery is reportedly safe and effective. We investigated whether oral rehydration therapy before surgery had improved satisfaction, stress response, and hemodynamics in patients during perioperative period. Patients scheduled to undergo laparoscopic colectomy were enrolled and randomly divided into 2 groups. The oral rehydration therapy (ORT) group (29 cases) was allowed to drink clear liquids until 2 hours before anesthesia induction and the control group (29 cases) fasted from 21 : 00 the night before surgery. All patients entered the operating room at 8: 40. Patient satisfaction was examined after admission to the operating room. The volume and pH of gastric fluid were measured after anesthetic induction. The serum concentrations of cortisol and catecholamine were measured as stress response indicators after anesthetic induction and at the completion of surgery. Intraoperative hemodynamics was also recorded. There were no differences in patient satisfaction, stress response, and hemodynamics between the 2 groups. Intraoperative urine volume was significantly larger in the ORT group. Vomiting and aspiration were not observed in any patient Oral rehydration therapy until 2 hours before surgery seemed safe but did not improve satisfaction, stress response, and hemodynamics in perioperative patients.

  1. Hemodynamic responses during and after multiple sets of stretching exercises performed with and without the Valsalva maneuver

    Directory of Open Access Journals (Sweden)

    Tainah P. Lima

    2015-05-01

    Full Text Available OBJECTIVE: This study investigated the acute hemodynamic responses to multiple sets of passive stretching exercises performed with and without the Valsalva maneuver. METHODS: Fifteen healthy men aged 21 to 29 years with poor flexibility performed stretching protocols comprising 10 sets of maximal passive unilateral hip flexion, sustained for 30 seconds with equal intervals between sets. Protocols without and with the Valsalva maneuver were applied in a random counterbalanced order, separated by 48-hour intervals. Hemodynamic responses were measured by photoplethysmography pre-exercise, during the stretching sets, and post-exercise. RESULTS: The effects of stretching sets on systolic and diastolic blood pressure were cumulative until the fourth set in protocols performed with and without the Valsalva maneuver. The heart rate and rate pressure product increased in both protocols, but no additive effect was observed due to the number of sets. Hemodynamic responses were always higher when stretching was performed with the Valsalva maneuver, causing an additional elevation in the rate pressure product. CONCLUSIONS: Multiple sets of unilateral hip flexion stretching significantly increased blood pressure, heart rate, and rate pressure product values. A cumulative effect of the number of sets occurred only for systolic and diastolic blood pressure, at least in the initial sets of the stretching protocols. The performance of the Valsalva maneuver intensified all hemodynamic responses, which resulted in significant increases in cardiac work during stretching exercises.

  2. Delay in Renal Hemodynamic Response to a Meat Meal in Severe Obesity.

    Science.gov (United States)

    Anastasio, Pietro; Viggiano, Davide; Zacchia, Miriam; Altobelli, Claudia; Capasso, Giovambattista; Gaspare De Santo, Natale

    2017-01-01

    Little information is available about the tubular functions and the renal adjustments that take place in obese subjects after a protein meal. How the excess fat may affect renal response to dietary proteins is currently only partially understood. This paper aims to address (i) whether severe obesity, in the absence of other comorbidities, is responsible of kidney dysfunction at either the glomerular or the tubular level and (ii) whether it compromises renal adaptations to a large protein meal. Twenty-eight obese subjects without albuminuria, along with 20 control subjects, age and gender matched, have been studied. The glomerular filtration rate (GFR; inulin clearance), renal plasma flow (p-aminohippurate clearance), the proximal tubular function (lithium clearance), the fractional excretion of sodium (FPRNa) have been measured at the basal level (steady state) and after a protein meal (perturbation). Under steady state conditions, filtration fraction, proximal tubular sodium handling and the FPRNa were not significantly different in non proteinuric obese subjects compared with controls. However, a protein meal led to a delayed glomerular hyperfiltration in obese patients compared with controls. This study shows that obese patients, in the absence of significant comorbidities, have a normal proximal tubule Na+ absorption at basal; conversely, these subjects showed a different response to a protein meal compared with normal subjects in terms of changes of GFR. Overall, these results suggest that the modified hemodynamic response to a protein meal might be the earliest hallmark of future kidney dysfunction in obese subjects. © 2017 S. Karger AG, Basel.

  3. In vivo measure of neonate brain optical properties and hemodynamic parameters by time-domain near-infrared spectroscopy.

    Science.gov (United States)

    Spinelli, Lorenzo; Zucchelli, Lucia; Contini, Davide; Caffini, Matteo; Mehler, Jacques; Fló, Ana; Ferry, Alissa L; Filippin, Luca; Macagno, Francesco; Cattarossi, Luigi; Torricelli, Alessandro

    2017-10-01

    By exploiting a multichannel portable instrument for time-domain near-infrared spectroscopy (TD-NIRS), we characterized healthy neonates' brains in term of optical properties and hemodynamic parameters. In particular, we assessed the absolute values of the absorption and reduced scattering coefficients at two wavelengths, together with oxy-, deoxy- and total hemoglobin concentrations, and the blood oxygen saturation of the neonates' brains. In this study, 33 healthy full-term neonates were tested, obtaining the following median values: 0.28 and [Formula: see text] for [Formula: see text] at 690 and 820 nm, respectively; 5.8 and [Formula: see text] for [Formula: see text] at 690 and 820 nm, respectively; [Formula: see text] for [Formula: see text]; [Formula: see text] for [Formula: see text]; [Formula: see text] for [Formula: see text]; 72% for [Formula: see text]. In general, the agreement of these values with the sparse existing literature appears not always consistent. These findings demonstrate the first measurements of optical properties of the healthy neonate brain using TD-NIRS and show the need for clarification of optical properties across methods and populations.

  4. Decomposition of Near-Infrared Spectroscopy Signals Using Oblique Subspace Projections: Applications in Brain Hemodynamic Monitoring.

    Science.gov (United States)

    Caicedo, Alexander; Varon, Carolina; Hunyadi, Borbala; Papademetriou, Maria; Tachtsidis, Ilias; Van Huffel, Sabine

    2016-01-01

    Clinical data is comprised by a large number of synchronously collected biomedical signals that are measured at different locations. Deciphering the interrelationships of these signals can yield important information about their dependence providing some useful clinical diagnostic data. For instance, by computing the coupling between Near-Infrared Spectroscopy signals (NIRS) and systemic variables the status of the hemodynamic regulation mechanisms can be assessed. In this paper we introduce an algorithm for the decomposition of NIRS signals into additive components. The algorithm, SIgnal DEcomposition base on Obliques Subspace Projections (SIDE-ObSP), assumes that the measured NIRS signal is a linear combination of the systemic measurements, following the linear regression model y = Ax + ϵ. SIDE-ObSP decomposes the output such that, each component in the decomposition represents the sole linear influence of one corresponding regressor variable. This decomposition scheme aims at providing a better understanding of the relation between NIRS and systemic variables, and to provide a framework for the clinical interpretation of regression algorithms, thereby, facilitating their introduction into clinical practice. SIDE-ObSP combines oblique subspace projections (ObSP) with the structure of a mean average system in order to define adequate signal subspaces. To guarantee smoothness in the estimated regression parameters, as observed in normal physiological processes, we impose a Tikhonov regularization using a matrix differential operator. We evaluate the performance of SIDE-ObSP by using a synthetic dataset, and present two case studies in the field of cerebral hemodynamics monitoring using NIRS. In addition, we compare the performance of this method with other system identification techniques. In the first case study data from 20 neonates during the first 3 days of life was used, here SIDE-ObSP decoupled the influence of changes in arterial oxygen saturation from the

  5. Time course of the hemodynamic responses to aortic depressor nerve stimulation in conscious spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Durand, M.T.; Mota, A.L. [Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Barale, A.R. [Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG (Brazil); Castania, J.A.; Fazan, R. Jr.; Salgado, H.C. [Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-03-16

    The time to reach the maximum response of arterial pressure, heart rate and vascular resistance (hindquarter and mesenteric) was measured in conscious male spontaneously hypertensive (SHR) and normotensive control rats (NCR; Wistar; 18-22 weeks) subjected to electrical stimulation of the aortic depressor nerve (ADN). The parameters of stimulation were 1 mA intensity and 2 ms pulse length applied for 5 s, using frequencies of 10, 30, and 90 Hz. The time to reach the hemodynamic responses at different frequencies of ADN stimulation was similar for SHR (N = 15) and NCR (N = 14); hypotension = NCR (4194 ± 336 to 3695 ± 463 ms) vs SHR (3475 ± 354 to 4494 ± 300 ms); bradycardia = NCR (1618 ± 152 to 1358 ± 185 ms) vs SHR (1911 ± 323 to 1852 ± 431 ms), and the fall in hindquarter vascular resistance = NCR (6054 ± 486 to 6550 ± 847 ms) vs SHR (4849 ± 918 to 4926 ± 646 ms); mesenteric = NCR (5574 ± 790 to 5752 ± 539 ms) vs SHR (5638 ± 648 to 6777 ± 624 ms). In addition, ADN stimulation produced baroreflex responses characterized by a faster cardiac effect followed by a vascular effect, which together contributed to the decrease in arterial pressure. Therefore, the results indicate that there is no alteration in the conduction of the electrical impulse after the site of baroreceptor mechanical transduction in the baroreflex pathway (central and/or efferent) in conscious SHR compared to NCR.

  6. Mood modulates auditory laterality of hemodynamic mismatch responses during dichotic listening.

    Directory of Open Access Journals (Sweden)

    Lisa Schock

    Full Text Available Hemodynamic mismatch responses can be elicited by deviant stimuli in a sequence of standard stimuli even during cognitive demanding tasks. Emotional context is known to modulate lateralized processing. Right-hemispheric negative emotion processing may bias attention to the right and enhance processing of right-ear stimuli. The present study examined the influence of induced mood on lateralized pre-attentive auditory processing of dichotic stimuli using functional magnetic resonance imaging (fMRI. Faces expressing emotions (sad/happy/neutral were presented in a blocked design while a dichotic oddball sequence with consonant-vowel (CV syllables in an event-related design was simultaneously administered. Twenty healthy participants were instructed to feel the emotion perceived on the images and to ignore the syllables. Deviant sounds reliably activated bilateral auditory cortices and confirmed attention effects by modulation of visual activity. Sad mood induction activated visual, limbic and right prefrontal areas. A lateralization effect of emotion-attention interaction was reflected in a stronger response to right-ear deviants in the right auditory cortex during sad mood. This imbalance of resources may be a neurophysiological correlate of laterality in sad mood and depression. Conceivably, the compensatory right-hemispheric enhancement of resources elicits increased ipsilateral processing.

  7. Efficacy of oropharyngeal lidocaine instillation on hemodynamic responses to orotracheal intubation.

    Science.gov (United States)

    Sun, Hsiao-Lun; Wu, Tzong-Jeng; Ng, Chen-Chuan; Chien, Chih-Cheng; Huang, Chi-Cheng; Chie, Wei-Chu

    2009-03-01

    To determine whether oropharyngeal instillation of lidocaine after anesthetic induction modifies the hemodynamic response to intubation. Prospective, randomized, double-blind, placebo-controlled study. Operating room of a university hospital. 56 ASA physical status I and II adult patients scheduled for elective surgery requiring orotracheal intubation and general anesthesia. Patients were randomized to receive oropharyngeal instillation with either 5 mL 2% lidocaine (n = 28, lidocaine group) or 5 mL normal saline (n = 28, control group) 45 seconds after anesthetic induction bolus. Orotracheal intubation was attempted three minutes later. Systolic (SBP), diastolic (DBP), mean arterial pressure (MAP), and heart rate (HR) were recorded at baseline, just before intubation, and for three minutes postintubation at one-minute intervals. Occurrence of adverse events such as arrhythmias, ischemic changes in electrocardiography, and bronchospasm after intubation were also documented. All postintubation values of SBP, DBP, MAP, and HR were significantly lower in the lidocaine group than the control group (P < 0.01). In both groups, postintubation HRs were significantly higher than baseline values (P < 0.05). More patients (P < 0.001) became hypertensive postintubation in the control group (14/28, 50%) than the lidocaine group (2/28, 7%). Oropharyngeal instillation of lidocaine for three minutes before intubation attenuates the cardiovascular responses to intubation.

  8. Hemodynamic Response to Upper Airway Obstruction in Hypertensive and Normotensive Pregnant Women

    Directory of Open Access Journals (Sweden)

    John Reid

    2016-01-01

    Full Text Available Background. Mild obstructive sleep apnea is common in pregnancy and may have an exacerbating role in gestational hypertension, although currently the interaction between these two diseases is uncertain. Methods. We analyzed 43 pregnant subjects, 28 with gestational hypertension (GH and 15 with normal healthy pregnancy, by level I polysomnography. Additionally, diastolic and systolic blood pressure changes in response to obstructive respiratory events were measured by noninvasive beat-by-beat monitoring. We also assessed a subgroup (n=27 of women with respiratory disturbance indexes <5, for blood pressure responses to very subtle obstructive respiratory disturbances (“airflow reductions”. Results. The mean ± standard deviation respiratory disturbance index of our 28 GH women and 15 healthy pregnant women was 10.1±9.9 mmHg and 3.0±3.8 mmHg, respectively. Systolic and diastolic pressure responses to these events were 30.1±12.8 mmHg and 16.0±6.1 mmHg for GH women and 29.1±14.2 mmHg and 14.3±7.7 mmHg for healthy women. For the 27 women in whom we assessed for airflow reduction events, the hemodynamic responses were 27.1±12.3 mmHg systolic and 14.4±6.7 mmHg diastolic. Interpretation. Upper airway obstructive events of any severity are associated with a substantial transient blood pressure response in both healthy pregnant and GH women. Whether or not these events have a clinically significant impact on women with GH remains uncertain.

  9. Hemodynamic and ventilatory response to different levels of hypoxia and hypercapnia in carotid body-denervated rats

    Directory of Open Access Journals (Sweden)

    João Paulo J. Sabino

    2013-01-01

    Full Text Available OBJECTIVE: Chemoreceptors play an important role in the autonomic modulation of circulatory and ventilatory responses to changes in arterial O2 and/or CO2. However, studies evaluating hemodynamic responses to hypoxia and hypercapnia in rats have shown inconsistent results. Our aim was to evaluate hemodynamic and respiratory responses to different levels of hypoxia and hypercapnia in conscious intact or carotid body-denervated rats. METHODS: Male Wistar rats were submitted to bilateral ligature of carotid body arteries (or sham-operation and received catheters into the left femoral artery and vein. After two days, each animal was placed into a plethysmographic chamber and, after baseline measurements of respiratory parameters and arterial pressure, each animal was subjected to three levels of hypoxia (15, 10 and 6% O2 and hypercapnia (10% CO2. RESULTS: The results indicated that 15% O2 decreased the mean arterial pressure and increased the heart rate (HR in both intact (n = 8 and carotid body-denervated (n = 7 rats. In contrast, 10% O2did not change the mean arterial pressure but still increased the HR in intact rats, and it decreased the mean arterial pressure and increased the heart rate in carotid body-denervated rats. Furthermore, 6% O2 increased the mean arterial pressure and decreased the HR in intact rats, but it decreased the mean arterial pressure and did not change the HR in carotid body-denervated rats. The 3 levels of hypoxia increased pulmonary ventilation in both groups, with attenuated responses in carotid body-denervated rats. Hypercapnia with 10% CO2 increased the mean arterial pressure and decreased HR similarly in both groups. Hypercapnia also increased pulmonary ventilation in both groups to the same extent. CONCLUSION: This study demonstrates that the hemodynamic and ventilatory responses varied according to the level of hypoxia. Nevertheless, the hemodynamic and ventilatory responses to hypercapnia did not depend on the

  10. Acute hemodynamic responses following a training session with active video game in wheelchair

    Directory of Open Access Journals (Sweden)

    Raphael José Perrier Melo

    2016-04-01

    Full Text Available Aimed:This study aimed to analyze the hemodynamic responses during an active game session (VGA with the use of a wheelchair. Method: Twelve subjects (6 men and 6 women (24 ± 3.98 years; 22.6 ± 2.17 kg / m2 , apparently healthy (PAR-Q, not wheelchair users. Rest measures for heart rate (HR: bpm, blood pressure (BP;mmHg and calculation of double product (DP; mmHg/bpm were taken following the anthropometric assessment. Subsequently, they performed a session of Kinect Sports Boxing game for 15 minutes. The variables HR, BP and DP were measured at rest, during and after the session. Data was analyzed using the Friedman’s test with Dunn’s post hoc test for no parametric data to compare pre, during and post session. Values of p<0.05 were accepted as significant. Results: Immediately post session data showed significant increases in HR, SBP and DP for both men (HR: 68.00 ± 8.99 vs 105.17 ± 22.55; PAS: 123.67 ± 68 vs 134.17 ± 8.23; DP = 8446.00 ± 1453.54 vs 3628.76 ± 14217.50 and women (HR: 68.00 ± 8.00 vs 126.00 ± 20.44; PAS: 100.33 ± 8.82 vs 113.17 ± 9.15; DP: 6.843 ± 1160.36 vs 3597.45 ± 14 405. Similarly, after the experimental session were observed significant decreases in HR, SBP and DP compared to the immediately post session, for both boys and for girls. (HR: 74.67 ± 9.46 vs 105.17 ± 22.55; SBP: 121 ± 5.62 vs 134.17 ± 8.23; SD: 9066.50 ± 1449.98 vs 14217.50 ± 3628.76 and for women (HR: 76.83 ± 9.02 vs 126.00 ± 20.44; PAS: 100.67 ± 3.01 vs 113.17 ± 9.15; DP= 7745.33 ± 1025.34 vs 3597.45 ± 14.405. Conclusion: The practice of VGAs contributes to increased hemodynamic demands, being a safe alternative in the period of rehabilitation and training for athletes using wheelchair.

  11. Hemodynamic responses to small muscle mass exercise in heart failure patients with reduced ejection fraction

    Science.gov (United States)

    Barrett-O'Keefe, Zachary; Lee, Joshua F.; Berbert, Amanda; Witman, Melissa A. H.; Nativi-Nicolau, Jose; Stehlik, Josef; Richardson, Russell S.

    2014-01-01

    To better understand the mechanisms responsible for exercise intolerance in heart failure with reduced ejection fraction (HFrEF), the present study sought to evaluate the hemodynamic responses to small muscle mass exercise in this cohort. In 25 HFrEF patients (64 ± 2 yr) and 17 healthy, age-matched control subjects (64 ± 2 yr), mean arterial pressure (MAP), cardiac output (CO), and limb blood flow were examined during graded static-intermittent handgrip (HG) and dynamic single-leg knee-extensor (KE) exercise. During HG exercise, MAP increased similarly between groups. CO increased significantly (+1.3 ± 0.3 l/min) in the control group, but it remained unchanged across workloads in HFrEF patients. At 15% maximum voluntary contraction (MVC), forearm blood flow was similar between groups, while HFrEF patients exhibited an attenuated increase at the two highest intensities compared with controls, with the greatest difference at the highest workload (352 ± 22 vs. 492 ± 48 ml/min, HFrEF vs. control, 45% MVC). During KE exercise, MAP and CO increased similarly across work rates between groups. However, HFrEF patients exhibited a diminished leg hyperemic response across all work rates, with the most substantial decrement at the highest intensity (1,842 ± 64 vs. 2,675 ± 81 ml/min; HFrEF vs. control, 15 W). Together, these findings indicate a marked attenuation in exercising limb perfusion attributable to impairments in peripheral vasodilatory capacity during both arm and leg exercise in patients with HFrEF, which likely plays a role in limiting exercise capacity in this patient population. PMID:25260608

  12. Association between catechol-O-methyltrasferase Val108/158Met genotype and prefrontal hemodynamic response in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Ryu Takizawa

    Full Text Available BACKGROUND: "Imaging genetics" studies have shown that brain function by neuroimaging is a sensitive intermediate phenotype that bridges the gap between genes and psychiatric conditions. Although the evidence of association between functional val108/158met polymorphism of the catechol-O-methyltransferase gene (COMT and increasing risk for developing schizophrenia from genetic association studies remains to be elucidated, one of the most topical findings from imaging genetics studies is the association between COMT genotype and prefrontal function in schizophrenia. The next important step in the translational approach is to establish a useful neuroimaging tool in clinical settings that is sensitive to COMT variation, so that the clinician could use the index to predict clinical response such as improvement in cognitive dysfunction by medication. Here, we investigated spatiotemporal characteristics of the association between prefrontal hemodynamic activation and the COMT genotype using a noninvasive neuroimaging technique, near-infrared spectroscopy (NIRS. METHODOLOGY/PRINCIPAL FINDINGS: Study participants included 45 patients with schizophrenia and 60 healthy controls matched for age and gender. Signals that are assumed to reflect regional cerebral blood volume were monitored over prefrontal regions from 52-channel NIRS and compared between two COMT genotype subgroups (Met carriers and Val/Val individuals matched for age, gender, premorbid IQ, and task performance. The [oxy-Hb] increase in the Met carriers during the verbal fluency task was significantly greater than that in the Val/Val individuals in the frontopolar prefrontal cortex of patients with schizophrenia, although neither medication nor clinical symptoms differed significantly between the two subgroups. These differences were not found to be significant in healthy controls. CONCLUSIONS/SIGNIFICANCE: These data suggest that the prefrontal NIRS signals can noninvasively detect the impact

  13. Novel method to classify hemodynamic response obtained using multi-channel fNIRS measurements into two groups: Exploring the combinations of channels

    Directory of Open Access Journals (Sweden)

    Hiroko eIchikawa

    2014-07-01

    Full Text Available Near-infrared spectroscopy (NIRS in psychiatric studies has widely demonstrated that cerebral hemodynamics differs among psychiatric patients. Recently we found that children with attention attention-deficit / hyperactivity disorder (ADHD and children with autism spectrum disorders (ASD showed different hemodynamic responses to their own mother’s face. Based on this finding, we may be able to classify their hemodynamic data into two those groups and predict which diagnostic group an unknown participant belongs to. In the present study, we proposed a novel statistical method for classifying the hemodynamic data of these two groups. By applying a support vector machine (SVM, we searched the combination of measurement channels at which the hemodynamic response differed between the two groups; ADHD and ASD. The SVM found the optimal subset of channels in each data set and successfully classified the ADHD data from the ASD data. For the 24-dimentional hemodynamic data, two optimal subsets classified the hemodynamic data with 84% classification accuracy while the subset contains all 24 channels classified with 62% classification accuracy. These results indicate the potential application of our novel method for classifying the hemodynamic data into two groups and revealing the combinations of channels that efficiently differentiate the two groups.

  14. Hemodynamic Response to Interictal Epileptiform Discharges Addressed by Personalized EEG-fNIRS Recordings.

    Science.gov (United States)

    Pellegrino, Giovanni; Machado, Alexis; von Ellenrieder, Nicolas; Watanabe, Satsuki; Hall, Jeffery A; Lina, Jean-Marc; Kobayashi, Eliane; Grova, Christophe

    2016-01-01

    We aimed at studying the hemodynamic response (HR) to Interictal Epileptic Discharges (IEDs) using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG) and functional Near InfraRed Spectroscopy (fNIRS) recordings. The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF) and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (seven patients), followed by oxy-hemoglobin decreases (six patients). HR was lateralized in six patients and lasted from 8.5 to 30 s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result). The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30 s. (i) EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; (ii) cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function (iii) the HR is often bilateral and lasts up to 30 s.

  15. Hemodynamic Response to Interictal Epileptiform Discharges Addressed by Personalized EEG-fNIRS Recordings

    Science.gov (United States)

    Pellegrino, Giovanni; Machado, Alexis; von Ellenrieder, Nicolas; Watanabe, Satsuki; Hall, Jeffery A.; Lina, Jean-Marc; Kobayashi, Eliane; Grova, Christophe

    2016-01-01

    Objective: We aimed at studying the hemodynamic response (HR) to Interictal Epileptic Discharges (IEDs) using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG) and functional Near InfraRed Spectroscopy (fNIRS) recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF) and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (seven patients), followed by oxy-hemoglobin decreases (six patients). HR was lateralized in six patients and lasted from 8.5 to 30 s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result). The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30 s. Conclusions: (i) EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; (ii) cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function (iii) the HR is often bilateral and lasts up to 30 s. PMID:27047325

  16. Hemodynamic response to Interictal Epileptiform Discharges addressed by personalized EEG-fNIRS recordings

    Directory of Open Access Journals (Sweden)

    Giovanni ePellegrino

    2016-03-01

    Full Text Available Objective: We aimed at studying the hemodynamic response (HR to Interictal Epileptic Discharges (IEDs using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG and functional Near InfraRed Spectroscopy (fNIRS recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (7 patients, followed by oxy-hemoglobin decreases (6 patients. HR was lateralized in 6 patients and lasted from 8.5 to 30s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result. The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30s. Conclusions: i EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; ii cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function iii the HR is often bilateral and lasts up to 30s.

  17. Localization of Brain Electrical Activity Sources and Hemodynamic Activity Foci during Motor Imagery

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Mokienko, O.; Bobrov, P.; Chernikova, L.; Konovalov, R.

    2014-01-01

    Roč. 40, č. 3 (2014), s. 273-283 ISSN 0362-1197 Grant - others:GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Program:ED Institutional support: RVO:67985807 Keywords : brain computer interface * independent component analysis * EEG pattern classification * motor imagery * inverse EEG problem Subject RIV: IN - Informatics, Computer Science

  18. Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise

    Directory of Open Access Journals (Sweden)

    Takashi eTarumi

    2014-01-01

    Full Text Available Alzheimer disease (AD and cerebrovascular disease often coexist with advanced age. Mounting evidence indicates that the presence of vascular disease and its risk factors increase the risk of AD, suggesting a potential overlap of the underlying pathophysiological mechanisms. In particular, atherosclerosis, endothelial dysfunction, and stiffening of central elastic arteries have been shown to associate with AD. Currently, there are no effective treatments for the cure and prevention of AD. Vascular risk factors are modifiable via either pharmacological or lifestyle intervention. In this regard, habitual aerobic exercise is increasingly recognized for its benefits on brain structure and cognitive function. Considering the well-established benefits of regular aerobic exercise on vascular health, exercise-related improvements in brain structure and cognitive function may be mediated by vascular adaptations. In this review, we will present the current evidence for the physiological mechanisms by which vascular health alters the structural and functional integrity of the aging brain and how improvements in vascular health, via regular aerobic exercise, potentially benefits cognitive function.

  19. Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise

    Science.gov (United States)

    Tarumi, Takashi; Zhang, Rong

    2014-01-01

    Alzheimer disease (AD) and cerebrovascular disease often coexist with advanced age. Mounting evidence indicates that the presence of vascular disease and its risk factors increase the risk of AD, suggesting a potential overlap of the underlying pathophysiological mechanisms. In particular, atherosclerosis, endothelial dysfunction, and stiffening of central elastic arteries have been shown to associate with AD. Currently, there are no effective treatments for the cure and prevention of AD. Vascular risk factors are modifiable via either pharmacological or lifestyle intervention. In this regard, habitual aerobic exercise is increasingly recognized for its benefits on brain structure and cognitive function. Considering the well-established benefits of regular aerobic exercise on vascular health, exercise-related improvements in brain structure and cognitive function may be mediated by vascular adaptations. In this review, we will present the current evidence for the physiological mechanisms by which vascular health alters the structural and functional integrity of the aging brain and how improvements in vascular health, via regular aerobic exercise, potentially benefits cognitive function. PMID:24478719

  20. Hematological and Hemodynamic Responses to Acute and Short-Term Creatine Nitrate Supplementation

    Directory of Open Access Journals (Sweden)

    Ryan L. Dalton

    2017-12-01

    Full Text Available In a double-blind, crossover, randomized and placebo-controlled trial; 28 men and women ingested a placebo (PLA, 3 g of creatine nitrate (CNL, and 6 g of creatine nitrate (CNH for 6 days. Participants repeated the experiment with the alternate supplements after a 7-day washout. Hemodynamic responses to a postural challenge, fasting blood samples, and bench press, leg press, and cycling time trial performance and recovery were assessed. Data were analyzed by univariate, multivariate, and repeated measures general linear models (GLM. No significant differences were found among treatments for hemodynamic responses, clinical blood markers or self-reported side effects. After 5 days of supplementation, one repetition maximum (1RM bench press improved significantly for CNH (mean change, 95% CI; 6.1 [3.5, 8.7] kg but not PLA (0.7 [−1.6, 3.0] kg or CNL (2.0 [−0.9, 4.9] kg, CNH, p = 0.01. CNH participants also tended to experience an attenuated loss in 1RM strength during the recovery performance tests following supplementation on day 5 (PLA: −9.3 [−13.5, −5.0], CNL: −9.3 [−13.5, −5.1], CNH: −3.9 [−6.6, −1.2] kg, p = 0.07. After 5 days, pre-supplementation 1RM leg press values increased significantly, only with CNH (24.7 [8.8, 40.6] kg, but not PLA (13.9 [−15.7, 43.5] or CNL (14.6 [−0.5, 29.7]. Further, post-supplementation 1RM leg press recovery did not decrease significantly for CNH (−13.3 [−31.9, 5.3], but did for PLA (−30.5 [−53.4, −7.7] and CNL (−29.0 [−49.5, −8.4]. CNL treatment promoted an increase in bench press repetitions at 70% of 1RM during recovery on day 5 (PLA: 0.4 [−0.8, 1.6], CNL: 0.9 [0.35, 1.5], CNH: 0.5 [−0.2, 0.3], p = 0.56, greater leg press endurance prior to supplementation on day 5 (PLA: −0.2 [−1.6, 1.2], CNL: 0.9 [0.2, 1.6], CNH: 0.2 [−0.5, 0.9], p = 0.25 and greater leg press endurance during recovery on day 5 (PLA: −0.03 [−1.2, 1.1], CNL: 1.1 [0.3, 1.9], CNH: 0.4 [−0

  1. Pre-clinical longitudinal monitoring of hemodynamic response to anti-vascular chemotherapy by hybrid diffuse optics.

    Science.gov (United States)

    Farzam, Parisa; Johansson, Johannes; Mireles, Miguel; Jiménez-Valerio, Gabriela; Martínez-Lozano, Mar; Choe, Regine; Casanovas, Oriol; Durduran, Turgut

    2017-05-01

    The longitudinal effect of an anti-vascular endothelial growth factor receptor 2 (VEGFR-2) antibody (DC 101) therapy on a xenografted renal cell carcinoma (RCC) mouse model was monitored using hybrid diffuse optics. Two groups of immunosuppressed male nude mice (seven treated, seven controls) were measured. Tumor microvascular blood flow, total hemoglobin concentration and blood oxygenation were investigated as potential biomarkers for the monitoring of the therapy effect twice a week and were related to the final treatment outcome. These hemodynamic biomarkers have shown a clear differentiation between two groups by day four. Moreover, we have observed that pre-treatment values and early changes in hemodynamics are highly correlated with the therapeutic outcome demonstrating the potential of diffuse optics to predict the therapy response at an early time point.

  2. Effect of Clonidine on Hemodynamic Responses During Laparoscopic Cholecystectomy: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Zhang, Yi; Zhang, Xi; Wang, Yu; Zhang, Jiefeng

    2017-10-01

    Clonidine might be beneficial to the patients undergoing laparoscopic cholecystectomy. This meta-analysis focused on the influence of clonidine on hemodynamic responses in patients undergoing laparoscopic cholecystectomy. We searched several databases including PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases. This meta-analysis included randomized controlled trials regarding the influence of clonidine versus placebo on laparoscopic cholecystectomy. The primary outcomes were mean arterial pressure (MAP) and heart rate (HR) at pneumoperitoneum. The random-effect model was applied for this study. Compared with control intervention, clonidine intervention was found to significantly reduce the MAP at pneumoperitoneum [standard mean difference=-2.58; 95% confidence interval (CI),-4.63 to -0.53; P=0.01), HR at pneumoperitoneum (standard mean difference=-3.67; 95% CI, -6.57 to -0.76; P=0.01), MAP at intubation (standard mean difference=-2.40; 95% CI, -4.75 to -0.06; P=0.04), HR at intubation (standard mean difference=-3.39; 95% CI, -5.75 to -1.02; P=0.005), propofol requirement (standard mean difference=-2.25; 95% CI, -4.01 to -0.48; P=0.01), as well as postoperative nausea and vomiting (risk ratio, 0.35; 95% CI, 0.19-0.63; P=0.0005). Compared with control intervention, clonidine intervention was found to significantly reduce MAP and HR at pneumoperitoneum and intubation, propofol requirement, as well as postoperative nausea and vomiting in patients undergoing laparoscopic cholecystectomy.

  3. Hemodynamic responses to endotracheal intubation performed with video and direct laryngoscopy in patients scheduled for major cardiac surgery.

    Science.gov (United States)

    Sarkılar, Gamze; Sargın, Mehmet; Sarıtaş, Tuba Berra; Borazan, Hale; Gök, Funda; Kılıçaslan, Alper; Otelcioğlu, Şeref

    2015-01-01

    This study aims to compare the hemodynamic responses to endotracheal intubation performed with direct and video laryngoscope in patients scheduled for cardiac surgery and to assess the airway and laryngoscopic characteristics. One hundred ten patients were equally allocated to either direct Macintosh laryngoscope (n = 55) or indirect Macintosh C-MAC video laryngoscope (n = 55). Systolic, diastolic, and mean arterial pressure, and heart rate were recorded prior to induction anesthesia, and immediately and two minutes after intubation. Airway characteristics (modified Mallampati, thyromental distance, sternomental distance, mouth opening, upper lip bite test, Wilson risk sum score), mask ventilation, laryngoscopic characteristics (Cormack-Lehane, percentage of glottic opening), intubation time, number of attempts, external pressure application, use of stylet and predictors of difficult intubation (modified Mallampati grade 3-4, thyromental distance Cormack-Lehane grade 3-4) were recorded. Hemodynamic parameters were similar between the groups at all time points of measurement. Airway characteristics and mask ventilation were no significant between the groups. The C-MAC video laryngoscope group had better laryngoscopic view as assessed by Cormack-Lehane and percentage of glottic view, and a longer intubation time. Number of attempts, external pressure, use of stylet, and difficult intubation parameters were similar. Endotracheal intubation performed with direct Macintosh laryngoscope or indirect Macintosh C-MAC video laryngoscope causes similar and stable hemodynamic responses.

  4. Multifractals Properties on the Near Infrared Spectroscopy of Human Brain Hemodynamic

    Directory of Open Access Journals (Sweden)

    Truong Quang Dang Khoa

    2012-01-01

    Full Text Available Nonlinear physics presents us with a perplexing variety of complicated fractal objects and strange sets. Naturally one wishes to characterize the objects and describe the events occurring on them. Moreover, most time series found in “real-life” applications appear quite noisy. Therefore, at almost every point in time, they cannot be approximated either by the Taylor series or by the Fourier series of just a few terms. Many experimental time series have fractal features and display singular behavior, the so-called singularities. The multifractal spectrum quantifies the degree of fractals in the processes generating the time series. A novel definition is proposed called full-width Hölder exponents that indicate maximum expansion of multifractal spectrum. The obtained results have demonstrated the multifractal structure of near-infrared spectroscopy time series and the evidence for brain imagery activities.

  5. Hemodynamic and neuroendocrine responses to changes in sodium intake in compensated heart failure

    DEFF Research Database (Denmark)

    Damgaard, Morten; Norsk, Peter; Gustafsson, Finn

    2006-01-01

    was unchanged. Therefore, the total peripheral resistance decreased by 10 +/- 4%. Similar hemodynamic changes were observed during an incremental bicycle exercise test. Plasma concentrations of angiotensin II and norepinephrine were suppressed, whereas plasma pro-B-type natriuretic peptide remained unchanged...

  6. Hemodynamic and neuroendocrine responses to changes in sodium intake in compensated heart failure

    DEFF Research Database (Denmark)

    Damgaard, Morten; Norsk, Peter; Gustafsson, Finn

    2005-01-01

    was unchanged. Therefore, the total peripheral resistance decreased by 10 +/- 4%. Similar hemodynamic changes were observed during an incremental bicycle exercise test. Plasma concentrations of angiotensin II and norepinephrine were suppressed, whereas plasma pro-B-type natriuretic peptide remained unchanged...

  7. The efficacy of labetalol vs dexmedetomidine for attenuation of hemodynamic stress response to laryngoscopy and endotracheal intubation.

    Science.gov (United States)

    El-Shmaa, Nagat S; El-Baradey, Ghada F

    2016-06-01

    To assess the effectiveness of labetalol vs dexmedetomidine for attenuation of hemodynamic stress response to laryngoscopy and endotracheal intubation. Prospective, randomized, controlled, observer-blinded study. This study was carried out in Tanta University Hospital. Ninety patients of both sexes; American Society of Anesthesiologists physical status I and II; age range from 20 to 60 years; scheduled for elective surgery under general anesthesia. Patients were divided into 3 groups (30 each). Group A received 1 μg/kg of dexmedetomidine as intravenous (IV) infusion, group B received labetalol 0.25mg/kg IV, and group C received 10mL saline IV. The groups were compared for heart rate (HR), mean arterial pressure (MAP), and rate pressure product (RPP). Hemodynamic parameters were recorded during the preinduction; after induction; at intubation; and at 1, 3, 5, 10, and 15minutes. The primary outcomes were hemodynamic changes (HR, MBP, and RPP), and the secondary outcome was propofol dose requirement for induction of general anaesthesia. Significant decrease (P labetalol without any deleterious effects. Furthermore, dexmedetomidine decreases dose of propofol for induction of anesthesia as guided by bispectral index. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Reduced dorsolateral prefrontal cortical hemodynamic response in adult obsessive-compulsive disorder as measured by near-infrared spectroscopy during the verbal fluency task

    Directory of Open Access Journals (Sweden)

    Hirosawa R

    2013-07-01

    Full Text Available Rikuei Hirosawa,1 Jin Narumoto,1 Yuki Sakai,1 Seiji Nishida,2 Takuya Ishida,1 Takashi Nakamae,1 Yuichi Takei,3 Kenji Fukui1 1Department of Psychiatry, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, 2Maizuru Medical Center, Kyoto, 3Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan Background: Near-infrared spectroscopy has helped our understanding of the neurobiological mechanisms of psychiatric disorders and has advantages including noninvasiveness, lower cost, and ease of use compared with other imaging techniques, like functional magnetic resonance imaging. The verbal fluency task is the most common and well established task used to assess cognitive activation during near-infrared spectroscopy. Recent functional neuroimaging studies have shown that the orbitofrontal cortex and other brain regions, including the dorsolateral prefrontal cortex, may play important roles in the pathophysiology of obsessive-compulsive disorder (OCD. This study aimed to evaluate hemodynamic responses in the dorsolateral prefrontal cortex in patients with OCD using near-infrared spectroscopy during the verbal fluency task and to compare these with dorsolateral prefrontal cortex responses in healthy controls. Methods: Twenty patients with OCD and 20 controls matched for age, gender, handedness, and estimated intelligence quotient participated in this study. The verbal fluency task was used to elicit near-infrared spectroscopic activation and consisted of a 30-second pre-task, followed by three repetitions of a 20-second verbal fluency task (total 60 seconds, followed by a 70-second post-task period. The near-infrared spectroscopy experiment was conducted on the same day as surveys of obsessive-compulsive symptoms, depression, and anxiety. Z-scores for changes in the concentration of oxygenated hemoglobin were compared between the OCD patients and controls in 14 channels set over the

  9. Experimental Cerebral Malaria Pathogenesis—Hemodynamics at the Blood Brain Barrier

    Science.gov (United States)

    Nacer, Adéla; Movila, Alexandru; Sohet, Fabien; Girgis, Natasha M.; Gundra, Uma Mahesh; Loke, P'ng; Daneman, Richard; Frevert, Ute

    2014-01-01

    Cerebral malaria claims the lives of over 600,000 African children every year. To better understand the pathogenesis of this devastating disease, we compared the cellular dynamics in the cortical microvasculature between two infection models, Plasmodium berghei ANKA (PbA) infected CBA/CaJ mice, which develop experimental cerebral malaria (ECM), and P. yoelii 17XL (PyXL) infected mice, which succumb to malarial hyperparasitemia without neurological impairment. Using a combination of intravital imaging and flow cytometry, we show that significantly more CD8+ T cells, neutrophils, and macrophages are recruited to postcapillary venules during ECM compared to hyperparasitemia. ECM correlated with ICAM-1 upregulation on macrophages, while vascular endothelia upregulated ICAM-1 during ECM and hyperparasitemia. The arrest of large numbers of leukocytes in postcapillary and larger venules caused microrheological alterations that significantly restricted the venous blood flow. Treatment with FTY720, which inhibits vascular leakage, neurological signs, and death from ECM, prevented the recruitment of a subpopulation of CD45hi CD8+ T cells, ICAM-1+ macrophages, and neutrophils to postcapillary venules. FTY720 had no effect on the ECM-associated expression of the pattern recognition receptor CD14 in postcapillary venules suggesting that endothelial activation is insufficient to cause vascular pathology. Expression of the endothelial tight junction proteins claudin-5, occludin, and ZO-1 in the cerebral cortex and cerebellum of PbA-infected mice with ECM was unaltered compared to FTY720-treated PbA-infected mice or PyXL-infected mice with hyperparasitemia. Thus, blood brain barrier opening does not involve endothelial injury and is likely reversible, consistent with the rapid recovery of many patients with CM. We conclude that the ECM-associated recruitment of large numbers of activated leukocytes, in particular CD8+ T cells and ICAM+ macrophages, causes a severe restriction in

  10. Age-related changes in brain hemodynamics; A calibrated MRI study

    NARCIS (Netherlands)

    De Vis, J B; Hendrikse, J; Bhogal, A; Adams, A; Kappelle, L J; Petersen, E T

    2015-01-01

    INTRODUCTION: Blood oxygenation-level dependent (BOLD) magnetic resonance imaging signal changes in response to stimuli have been used to evaluate age-related changes in neuronal activity. Contradictory results from these types of experiments have been attributed to differences in cerebral blood

  11. Metabolic changes assessed by MRS accurately reflect brain function during drug-induced epilepsy in mice in contrast to fMRI-based hemodynamic readouts.

    Science.gov (United States)

    Seuwen, Aline; Schroeter, Aileen; Grandjean, Joanes; Rudin, Markus

    2015-10-15

    Functional proton magnetic resonance spectroscopy (1H-MRS) enables the non-invasive assessment of neural activity by measuring signals arising from endogenous metabolites in a time resolved manner. Proof-of-principle of this approach has been demonstrated in humans and rats; yet functional 1H-MRS has not been applied in mice so far, although it would be of considerable interest given the many genetically engineered models of neurological disorders established in this species only. Mouse 1H-MRS is challenging as the high demands on spatial resolution typically result in long data acquisition times not commensurable with functional studies. Here, we propose an approach based on spectroscopic imaging in combination with the acquisition of the free induction decay to maximize signal intensity. Highly resolved metabolite maps have been recorded from mouse brain with 12 min temporal resolution. This enabled monitoring of metabolic changes following the administration of bicuculline, a GABA-A receptor antagonist. Changes in levels of metabolites involved in energy metabolism (lactate and phosphocreatine) and neurotransmitters (glutamate) were investigated in a region-dependent manner and shown to scale with the bicuculline dose. GABAergic inhibition induced spectral changes characteristic for increased neurotransmitter turnover and oxidative stress. In contrast to metabolic readouts, BOLD and CBV fMRI responses did not scale with the bicuculline dose indicative of the failure of neurovascular coupling. Nevertheless fMRI measurements supported the notion of increased oxidative stress revealed by functional MRS. Hence, the combined analysis of metabolic and hemodynamic changes in response to stimulation provides complementary insight into processes associated with neural activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Using patient-specific hemodynamic response function in epileptic spike analysis of human epilepsy: a study based on EEG-fNIRS.

    Science.gov (United States)

    Peng, Ke; Nguyen, Dang Khoa; Vannasing, Phetsamone; Tremblay, Julie; Lesage, Frédéric; Pouliot, Philippe

    2016-02-01

    Functional near-infrared spectroscopy (fNIRS) can be combined with electroencephalography (EEG) to continuously monitor the hemodynamic signal evoked by epileptic events such as seizures or interictal epileptiform discharges (IEDs, aka spikes). As estimation methods assuming a canonical shape of the hemodynamic response function (HRF) might not be optimal, we sought to model patient-specific HRF (sHRF) with a simple deconvolution approach for IED-related analysis with EEG-fNIRS data. Furthermore, a quadratic term was added to the model to account for the nonlinearity in the response when IEDs are frequent. Prior to analyzing clinical data, simulations were carried out to show that the HRF was estimable by the proposed deconvolution methods under proper conditions. EEG-fNIRS data of five patients with refractory focal epilepsy were selected due to the presence of frequent clear IEDs and their unambiguous focus localization. For each patient, both the linear sHRF and the nonlinear sHRF were estimated at each channel. Variability of the estimated sHRFs was seen across brain regions and different patients. Compared with the SPM8 canonical HRF (cHRF), including these sHRFs in the general linear model (GLM) analysis led to hemoglobin activations with higher statistical scores as well as larger spatial extents on all five patients. In particular, for patients with frequent IEDs, nonlinear sHRFs were seen to provide higher sensitivity in activation detection than linear sHRFs. These observations support using sHRFs in the analysis of IEDs with EEG-fNIRS data. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Age-related changes in brain hemodynamics; A calibrated MRI study

    DEFF Research Database (Denmark)

    De Vis, J B; Hendrikse, J; Bhogal, A

    2015-01-01

    INTRODUCTION: Blood oxygenation-level dependent (BOLD) magnetic resonance imaging signal changes in response to stimuli have been used to evaluate age-related changes in neuronal activity. Contradictory results from these types of experiments have been attributed to differences in cerebral blood...... could potentially be explained by differences in EtCO2 . Regional CMRO2 was lower in older subjects. BOLD studies should take this into account when investigating age-related changes in neuronal activity....... flow (CBF) and cerebral metabolic rate of oxygen (CMRO2 ). To clarify the effects of these physiological parameters, we investigated the effect of age on baseline CBF and CMRO2 . MATERIALS AND METHODS: Twenty young (mean ± sd age, 28 ± 3 years), and 45 older subjects (66 ± 4 years) were investigated...

  14. Attenuation of the hemodynamic response to laryngoscopy and tracheal intubation with fentanyl, lignocaine nebulization, and a combination of both: A randomized controlled trial.

    Science.gov (United States)

    Kumar, Abhyuday; Seth, Anita; Prakash, Smita; Deganwa, Mangilal; Gogia, Anoop Raj

    2016-01-01

    The present study was undertaken to compare and evaluate the efficacy of intravenous (IV) fentanyl and lignocaine airway nebulization and a combination of both in attenuating the hemodynamic response to laryngoscopy and tracheal intubation. Ninety-six patients of either sex aged between 18 and 65 years of age, belonging to the American Society of Anesthesiologists (ASA) health status Classes I and II, undergoing elective surgery requiring general anesthesia with endotracheal intubation were included in the study. Patients were randomly divided into three groups. Group F received IV fentanyl 2 μg/kg, Group L received nebulization with 3 mg/kg of 4% lignocaine, and Group FL received both nebulization with 3 mg/kg of 4% lignocaine and IV fentanyl 2 μg/kg before intubation. Hemodynamic parameters were noted before and immediately after induction, 1 min after intubation, and every minute after intubation for 10 min. Hemodynamic response to laryngoscopy and intubation was not completely abolished in any of the groups. Nebulized lignocaine was least effective in attenuating hemodynamic response to intubation, and hemodynamic parameters were significantly high after intubation as compared to other groups. Fentanyl alone or in combination with nebulized lignocaine was most effective, and Group F and Group FL were comparable. The maximum increase in mean blood pressure after intubation from baseline in Groups F, L, and FL was 7.4%, 14.6%, and 5.4%, respectively. In our study, IV fentanyl 2 μg/kg administered 5 min before induction was found to be the most effective in attenuating the hemodynamic response. There was no advantage to the use of nebulized lignocaine in attenuating the hemodynamic response to laryngoscopy and intubation.

  15. Cerebrospinal fluid enhancement on fluid attenuated inversion recovery images after carotid artery stenting with neuroprotective balloon occlusions: hemodynamic instability and blood-brain barrier disruption.

    Science.gov (United States)

    Ogami, Ryo; Nakahara, Toshinori; Hamasaki, Osamu; Araki, Hayato; Kurisu, Kaoru

    2011-10-01

    A rare complication of carotid artery stenting (CAS), prolonged reversible neurological symptoms with delayed cerebrospinal fluid (CSF) space enhancement on fluid attenuated inversion recovery (FLAIR) images, is associated with blood-brain barrier (BBB) disruption. We prospectively identified patients who showed CSF space enhancement on FLAIR images. Nineteen patients-5 acute-phase and 14 scheduled-underwent 21 CAS procedures. Balloon catheters were navigated across stenoses, angioplasty was performed using a neuroprotective balloon, and stents were placed with after dilation under distal balloon protection. CSF space hyperintensity or obscuration on FLAIR after versus before CAS indicated CSF space enhancement. Correlations with clinical factors were examined. CSF space was enhanced on FLAIR in 12 (57.1%) cases. Postprocedural CSF space enhancement was significantly related to age, stenosis rate, acute-stage procedure, and total occlusion time. All acute-stage CAS patients showed delayed enhancement. Only age was associated with delayed CSF space enhancement in scheduled CAS patients. Ischemic intolerance for severe carotid artery stenosis and temporary neuroprotective balloon occlusion, causing reperfusion injury, seem to be the main factors that underlie BBB disruption with delayed CSF space enhancement shortly after CAS, rather than sudden poststenting hemodynamic change. Our results suggest that factors related to hemodynamic instability or ischemic intolerance seem to be associated with post-CAS BBB vulnerability. Patients at risk for hemodynamic instability or with ischemic intolerance, which decrease BBB integrity, require careful management to prevent intracranial hemorrhagic and other post-CAS complications.

  16. Trans-cranial infrared laser stimulation induces hemodynamic and metabolic response measured by broadband near infrared spectroscopy in vivo on human forehead (Conference Presentation)

    Science.gov (United States)

    Wang, Xinlong; Nalawade, Sahil Sunil; Reddy, Divya Dhandapani; Tian, Fenghua; Gonzalez-Lima, F.; Liu, Hanli

    2017-02-01

    Transcranial infrared laser stimulation (TILS) uses infrared light (lasers or LEDs) for nondestructive and non-thermal photobiomodulation on the human brain. Although TILS has shown its beneficial effects to a variety of neurological and psychological conditions, its physiological mechanism remains unknown. Cytochrome-c-oxidase (CCO), the last enzyme in the electron transportation chain, is proposed to be the primary photoacceptor of this infrared laser. In this study, we wish to validate this proposed mechanism. We applied 8 minutes in vivo TILS on the right forehead of 11 human participants with a 1064-nm laser. Broad-band near infrared spectroscopy (bb-NIRS) from 740-900nm was also employed near the TILS site to monitor hemodynamic and metabolic responses during the stimulation and 5-minute recovery period. For rigorous comparison, we also performed similar 8-min bb-NIR measurements under placebo conditions. A multi-linear regression analysis based on the modified Beer-Lambert law was performed to estimate concentration changes of oxy-hemoglobin (Δ[HbO]), deoxy-hemoglobin (Δ[Hb]), and cytochrome-c-oxidase (Δ[CCO]). We found that TILS induced significant increases of [CCO], [HbO] and a decrease of [Hb] with dose-dependent manner as compared with placebo treatments. Furthermore, strong linear relationships or interplays between [CCO] versus [HbO] and [CCO] versus [Hb] induced by TILS were observed in vivo for the first time. These relationships have clearly revealed close coupling/relationship between the hemodynamic oxygen supply and blood volume versus up-regulation of CCO induced by photobiomodulation. Our results demonstrate the tremendous potential of bb-NIRS as a non-invasive in vivo means to study photobiomodulation mechanisms and perform treatment evaluations of TILS.

  17. The timeline of blood pressure changes and hemodynamic responses during an experimental noise exposure.

    Science.gov (United States)

    Paunović, Katarina; Jakovljević, Branko; Stojanov, Vesna

    2018-02-16

    Noise exposure increases blood pressure and peripheral vascular resistance in both genders in an experimental setting, as previously reported by the authors. The aim of this re-analysis was to present the minute-by-minute timeline of blood pressure changes and hemodynamic events provoked by traffic noise in the young and healthy adults. The experiment consisted of three 10-min phases: rest in quiet conditions before noise (Leq = 40 dBA), exposure to recorded road-traffic noise (Leq = 89 dBA), and rest in quiet conditions after noise (Leq = 40 dBA). Participants' blood pressure, heart rate, and hemodynamic parameters (cardiac index and total peripheral resistance index) were concurrently measured with a thoracic bioimpedance device. The raw beat-to-beat data were collected from 112 participants, i.e., 82 women and 30 men, aged 19-32 years. The timeline of events was created by splitting each experimental phase into ten one-minute intervals (30 intervals in total). Four statistical models were fitted to answer the six study questions what is happening from one minute to another during the experiment. Blood pressure decreased during quiet phase before noise, increased in the first minute of noise exposure and then decreased gradually toward the end of noise exposure, and continued to decline to baseline values after noise exposure. The cardiac index showed a gradual decrease throughout the experiment, whereas total vascular resistance increased steadily during and after noise exposure. The timeline of events in this 30-min experiment provides insight into the hemodynamic processes underlying the changes of blood pressure before, during and after noise exposure. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Applications of a novel hemodynamic model to functional brain studies with fNIRS and fMRI

    Science.gov (United States)

    Kainerstorfer, Jana M.; Pierro, Michele L.; Hallacoglu, Bertan; Sassaroli, Angelo; Fantini, Sergio

    2013-03-01

    We report time-domain applications of a new hemodynamic model by Fantini [1] that yields analytic expressions for signals that are measurable with hemodynamic-based neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI). We show how the model can be used to predict the perturbations in cerebral blood volume (CBV), blood flow (CBF), and metabolic rate of oxygen (CMRO2) that account for the initial dip and post-stimulus undershoot that have been reported in the fMRI and fNIRS literature. Furthermore, we have used data from the literature to perform a comparison between measured fNIRS and fMRI signals and the corresponding signals predicted by the new hemodynamic model. Results showed an excellent agreement between the model predictions and the reported measured data.

  19. Comparison of hemodynamic and metabolic stress responses caused by endotracheal tube and Proseal laryngeal mask airway in laparoscopic cholecystectomy

    Directory of Open Access Journals (Sweden)

    Handan Güleç

    2012-01-01

    Full Text Available Background: We aimed to compare hemodynamic and endocrine alterations caused by stress response due to Proseal laryngeal mask airway and endotracheal tube usage in laparoscopic cholecystectomy. Materials and Methods: Sixty-three ASA I-II patients scheduled for elective laparoscopic cholecystectomy were included in the study. Patients were randomly allocated into two groups of endotracheal tube and Proseal laryngeal mask airway. Standard general anaesthesia was performed in both groups with the same drugs in induction and maintenance of anaesthesia. After anaesthesia induction and 20 minutes after CO 2 insufflations, venous blood samples were obtained for measuring adrenalin, noradrenalin, dopamine and cortisol levels. Hemodynamic and respiratory parameters were recorded at the 1 st , 5 th , 15 th , 30 th and 45 th minutes after the insertion of airway devices. Results: No statistically significant differences in age, body mass index, gender, ASA physical status, and operation time were found between the groups (p > 0.05. Changes in hemodynamic and respiratory parameters were not statistically significant when compared between and within groups (p > 0.05. Although no statistically significant differences were observed between and within groups when adrenalin, noradrenalin and dopamine values were compared, serum cortisol levels after CO 2 insufflation in PLMA group were significantly lower than the ETT group (p = 0.024. When serum cortisol levels were compared within groups, cortisol levels 20 minutes after CO 2 insufflation were significantly higher (46.1 (9.5-175.7 and 27.0 (8.3-119.4 in the ETT and PLMA groups, respectively than cortisol levels after anaesthesia induction (11.3 (2.8-92.5 and 16.6 (4.4-45.4 in the ETT and PLMA groups, respectively in both groups (p = 0.001. Conclusion: PLMA usage is a suitable, effective and safe alternative to ETT in laparoscopic cholecystectomy patients with lower metabolic stress.

  20. Differences in the Pattern of Hemodynamic Response to Self-Face and Stranger-Face Images in Adolescents with Anorexia Nervosa: A Near-Infrared Spectroscopic Study.

    Science.gov (United States)

    Inoue, Takeshi; Sakuta, Yuiko; Shimamura, Keiichi; Ichikawa, Hiroko; Kobayashi, Megumi; Otani, Ryoko; Yamaguchi, Masami K; Kanazawa, So; Kakigi, Ryusuke; Sakuta, Ryoichi

    2015-01-01

    There have been no reports concerning the self-face perception in patients with anorexia nervosa (AN). The purpose of this study was to compare the neuronal correlates of viewing self-face images (i.e. images of familiar face) and stranger-face images (i.e. images of an unfamiliar face) in female adolescents with and without AN. We used near-infrared spectroscopy (NIRS) to measure hemodynamic responses while the participants viewed full-color photographs of self-face and stranger-face. Fifteen females with AN (mean age, 13.8 years) and 15 age- and intelligence quotient (IQ)-matched female controls without AN (mean age, 13.1 years) participated in the study. The responses to photographs were compared with the baseline activation (response to white uniform blank). In the AN group, the concentration of oxygenated hemoglobin (oxy-Hb) significantly increased in the right temporal area during the presentation of both the self-face and stranger-face images compared with the baseline level. In contrast, in the control group, the concentration of oxy-Hb significantly increased in the right temporal area only during the presentation of the self-face image. To our knowledge the present study is the first report to assess brain activities during self-face and stranger-face perception among female adolescents with AN. There were different patterns of brain activation in response to the sight of the self-face and stranger-face images in female adolescents with AN and controls.

  1. Differences in the Pattern of Hemodynamic Response to Self-Face and Stranger-Face Images in Adolescents with Anorexia Nervosa: A Near-Infrared Spectroscopic Study.

    Directory of Open Access Journals (Sweden)

    Takeshi Inoue

    Full Text Available There have been no reports concerning the self-face perception in patients with anorexia nervosa (AN. The purpose of this study was to compare the neuronal correlates of viewing self-face images (i.e. images of familiar face and stranger-face images (i.e. images of an unfamiliar face in female adolescents with and without AN. We used near-infrared spectroscopy (NIRS to measure hemodynamic responses while the participants viewed full-color photographs of self-face and stranger-face. Fifteen females with AN (mean age, 13.8 years and 15 age- and intelligence quotient (IQ-matched female controls without AN (mean age, 13.1 years participated in the study. The responses to photographs were compared with the baseline activation (response to white uniform blank. In the AN group, the concentration of oxygenated hemoglobin (oxy-Hb significantly increased in the right temporal area during the presentation of both the self-face and stranger-face images compared with the baseline level. In contrast, in the control group, the concentration of oxy-Hb significantly increased in the right temporal area only during the presentation of the self-face image. To our knowledge the present study is the first report to assess brain activities during self-face and stranger-face perception among female adolescents with AN. There were different patterns of brain activation in response to the sight of the self-face and stranger-face images in female adolescents with AN and controls.

  2. Variability of hemodynamic responses to acute digitalization in chronic cardiac failure due to cardiomyopathy and coronary artery disease.

    Science.gov (United States)

    Cohn, K; Selzer, A; Kersh, E S; Karpman, L S; Goldschlager, N

    1975-04-01

    Eight patients with chronic congestive heart failure (four with cardiomyopathy and four with ischemic heart disease) underwent hemodynamic studies during acute administration of digoxin, given intravenously in two 0-5 mg doses 2 hours apart. Observations were made before administration of digitalis (control period) and serially therafter for 4 hours after the first dose. Resting mean cardiac index and pulmonary arterial wedge pressure were as follows: 2.0 liters/min per m2 and 23 mm Hg (control period); 2.1 and 24 (at 1 hour); 2.0 and 23 (at 2 hours); 2.7 and 19 (at 3 hours); and 2.3 and 20 (at 4 hours). Exercise responses of mean cardiac index and pulmonary arterial wedge pressure in five patients were: 3.1 liters/min per m2 and 36 mm Hg (control period); 3.2 and 33 (at 1 hour); 3.2 and 28 (at 2 hours); 3.1 and 27 (at.3 hours); and 3.4 and 31 (at 4 hours). The pulmonary arterial wedge pressure remained elevated during exercise in all cases. Arrhythmias were seen in five patients after administration of 0.5 mg of digoxin. Hemodynamic improvement at 4 hours involving both reduced filling pressure and increased blood flow was observed in only two patients at rest and in one additional patient during exercise. Acute deterioration of cardiac function (elevated pulmonary arterial wedge pressure of decreased cardiac index) occurred 30 minutes after administration of digoxin in four patients, concomitantly with increased systemic resistance. In six patients, a peak hemodynamic effect appeared 1 to 1 1/2 hours after administration of digoxin, with partial or total loss of initial benefit by 2 and 4 hours. In previously performed studies observations have seldom exceeded 1 hour; the results of this 4 hour study suggest that, in patients with cardiomyopathy or coronary artery disease and chronic congestive heart failure, acute digitalization does not necessarily lead to consistent, marked or lasting hemodynamic improvement. Thus, current concepts of the use of digitalis is

  3. Effect of stellate ganglion block on hemodynamics and stress responses during CO2-pneumoperitoneum in elderly patients.

    Science.gov (United States)

    Chen, Yong-Quan; Xie, Yu-Yizi; Wang, Bin; Jin, Xiao-Ju

    2017-02-01

    Elderly patients undergoing elective laparoscopic cholecystectomy (LC) were given right stellate ganglion block (RSGB) to observe its effects on the hemodynamics and stress response during carbon dioxide (CO2)-pneumoperitoneum. A randomized, single-blinded, and placebo-controlled study. University-affiliated teaching hospital. Sixty patients (aged 65-78years; weight, 45-75kg; American Society of Anesthesiologists (ASA) physical status classification, class I or II) undergoing elective LC. Right stellate ganglion block was performed via C7 access using 10mL of 1% lidocaine in all patients. The patients' heart rate (HR) and mean arterial pressure (MAP) were recorded before the block (T0), 5min following pneumoperitoneum (T1), 30min following pneumoperitoneum (T2), 5min following the deflation of pneumoperitoneum (T3), and upon completion of the surgery (T4). Additionally, the concentrations of epinephrine (E), norepinephrine (NE) and cortisol (COR) were detected in arterial blood at each time point by enzyme-linked immunosorbent assay. For control group, the MAP and RPP (RPP=SBP×HR) were significantly elevated at T1~3 (Pblock can reduce blood catecholamines during CO2-pneumoperitoneum to maintain perioperative hemodynamic stability and prevent adverse cardiovascular events in elderly patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Prefrontal hemodynamic responses and the degree of flow experience among occupational therapy students during their performance of a cognitive task

    Directory of Open Access Journals (Sweden)

    Kazuki Hirao

    2014-09-01

    Full Text Available Purpose: Although flow experience is positively associated with motivation to learn, the biological basis of flow experience is poorly understood. Accumulation of evidence on the underlying brain mechanisms related to flow is necessary for a deeper understanding of the motivation to learn. The purpose of this study is to investigate the relationship between flow experience and brain function using near-infrared spectroscopy (NIRS during the performance of a cognitive task. Methods: Sixty right-handed occupational therapy (OT students participated in this study. These students performed a verbal fluency test (VFT while 2-channel NIRS was used to assess changes in oxygenated hemoglobin concentration (oxygenated hemoglobin [oxy-Hb] in the prefrontal cortex. Soon after that, the OT students answered the flow questionnaire (FQ to assess the degree of flow experience during the VFT. Results: Average oxy-Hb in the prefrontal cortex had a significant negative correlation with the satisfaction scores on the FQ. Conclusion: Satisfaction during the flow experience correlated with prefrontal hemodynamic suppression. This finding may assist in understanding motivation to learn and related flow experience.

  5. Nonlinear hemodynamic responses in human epilepsy: a multimodal analysis with fNIRS-EEG and fMRI-EEG.

    Science.gov (United States)

    Pouliot, Philippe; Tremblay, Julie; Robert, Manon; Vannasing, Phetsamone; Lepore, Franco; Lassonde, Maryse; Sawan, Mohamad; Nguyen, Dang Khoa; Lesage, Frédéric

    2012-03-15

    Functional magnetic resonance imaging (fMRI) combined with electroencephalography (fMRI-EEG) is a neuroimaging technique based on the blood oxygenation level dependent (BOLD) signal which has been shown to be useful in the study of epilepsy for the localization of the epileptogenic focus. Functional near-infrared spectroscopy (fNIRS) combined with EEG (fNIRS-EEG) is another imaging technique based on the measurement of oxygenated and deoxygenated hemoglobin with complementary clinical potential in epilepsy, for continuous patient monitoring, language lateralization, and focus localization. In this work fMRI-EEG and fNIRS-EEG are used to quantify nonlinear hemodynamic responses in three cases of human refractory focal epilepsy, by using the Volterra kernel expansion up to second order. Prior to analyzing real data, extensive simulations are carried out to show that nonlinearities are estimable. The Volterra methodology is then applied to multimodal data recorded from 3 epileptic patients selected for their frequent spiking activity. Care is taken to account for variability of hemodynamic responses due to other causes than Volterra nonlinearities. Statistically significant nonlinearities are observed for all patients and all modalities. Good concordance between fNIRS and fMRI is found for both the amplitude of the Volterra responses, and, with limitations, in the localization of the epileptic focus and regions of inverted responses (negative BOLD signals). In one patient, Volterra nonlinearities allowed epileptic focus identification with fMRI, while analyses without nonlinearities failed to see it. In simulations when nonlinearities were included, analysis without Volterra nonlinearities performed poorly. These two observations suggest routinely checking for nonlinearities in functional imaging of patients presenting with frequent spikes. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Transdermal glyceryl trinitrate (nitroglycerin in healthy persons: acute effects on skin temperature and hemodynamic orthostatic response

    Directory of Open Access Journals (Sweden)

    Eva Maria Augusta Boeckh Haebisch

    Full Text Available In order to find an explanation for individual reactions to transdermal glyceryl trinitrate (GTN we studied the skin temperature and hemodynamic reactions in 63 healthy persons. The data were obtained before and after the application of GTN and Glycerin (GL placebo patches, during one hour. The skin temperature was measured on both forearms, the local (left sided and systemic (right sided reaction on GTN was related to the skin fold and the calculated body fat content. The bilateral rise of skin temperature and its duration was higher and longer in obese than in lean persons mainly in obese women. The UV induced thermo and the later photothermoreaction (Erythema was reduced on the left forearm after the application of GTN and GL patches. The observed hemodynamic GTN effect confirmed known postural reactions, such as decreased arterial pressure (ΔmAP = -2.9%, increased heart rate (ΔHR = +7,4% and QTc prolongation (ΔQTc = +4,9% in upright position. An adverse drug effect with increased mean blood pressure (ΔmAP = +12% and increased heart rate (ΔHR = + 10.4% mainly in supine position was observed in 11 % of the participants, but only in men. Such a reaction was already described by Murell, 1879. Individual GTN effects were analyzed and related to habits and family history. In male smokers and in persons with hypertensive and diabetic close relatives, the hypotensive GTN effect was accentuated in supine position. In the upright position the group with hypertensives in the family presented a moderate hypotensive reaction without secondary tachycardia and the smokers presented only a slightly increased heart rate. Our observations suggest that individual reactions to transdermal glyceryl trinitrate (GTN with its active component nitric oxide (NO depends on physiological conditions, related to endogenous vasoactive substances, mainly the interaction with EDRF (the endogenous NO and the activity of the Renin-Angiotensin System.

  7. Effect of mild hypocapnia on hemodynamic and bispectral index responses to tracheal intubation during propofol anesthesia in children.

    Science.gov (United States)

    Kwak, Hyun Jeong; Kim, Ji Young; Lee, Kyung Cheon; Kim, Hong Soon; Kim, Jong Yeop

    2015-02-01

    The purpose of this study was to investigate the effect of mild hypocapnia on hypertension and arousal response after tracheal intubation in children during propofol anesthesia. Forty-four children, American Society of Anesthesiologists physical status I-II patients, aged 3-9 years were randomly allocated to either the normocapnia group [end-tidal carbon dioxide tension (ETCO2=35 mmHg, n=22)] or the hypocapnia group (ETCO2=25 mmHg, n=22). Anesthesia was induced with propofol 2.5 mg/kg. Five minutes after the administration of rocuronium 0.6 mg/kg, laryngoscopy was attempted. The mean arterial pressure (MAP), heart rate (HR), SpO2 and bispectral index (BIS) were measured during induction and intubation periods. The maximal change in the BIS with tracheal intubation (ΔBIS) was defined as the difference between the baseline value and the maximal value within the first 5 min after intubation. Before tracheal intubation, the change in BIS over time was not different between the groups. After tracheal intubation, the changes in the MAP, HR and BIS over time were not significantly different between the groups. The mean value±SD of ΔBIS was 5.7±5.2 and 7.4±5.5 in the normocapnia and hypocapnia groups, respectively, without any intergroup difference. This study showed that mild hypocapnia did not attenuate hemodynamic and BIS responses to tracheal intubation in children during propofol anesthesia. Our results suggested that hyperventilation has no beneficial effect on hemodynamic and arousal responses to tracheal intubation in children.

  8. Seasonality in human cognitive brain responses.

    Science.gov (United States)

    Meyer, Christelle; Muto, Vincenzo; Jaspar, Mathieu; Kussé, Caroline; Lambot, Erik; Chellappa, Sarah L; Degueldre, Christian; Balteau, Evelyne; Luxen, André; Middleton, Benita; Archer, Simon N; Collette, Fabienne; Dijk, Derk-Jan; Phillips, Christophe; Maquet, Pierre; Vandewalle, Gilles

    2016-03-15

    Daily variations in the environment have shaped life on Earth, with circadian cycles identified in most living organisms. Likewise, seasons correspond to annual environmental fluctuations to which organisms have adapted. However, little is known about seasonal variations in human brain physiology. We investigated annual rhythms of brain activity in a cross-sectional study of healthy young participants. They were maintained in an environment free of seasonal cues for 4.5 d, after which brain responses were assessed using functional magnetic resonance imaging (fMRI) while they performed two different cognitive tasks. Brain responses to both tasks varied significantly across seasons, but the phase of these annual rhythms was strikingly different, speaking for a complex impact of season on human brain function. For the sustained attention task, the maximum and minimum responses were located around summer and winter solstices, respectively, whereas for the working memory task, maximum and minimum responses were observed around autumn and spring equinoxes. These findings reveal previously unappreciated process-specific seasonality in human cognitive brain function that could contribute to intraindividual cognitive changes at specific times of year and changes in affective control in vulnerable populations.

  9. Central Hemodynamics for Management of Arteriosclerotic Diseases.

    Science.gov (United States)

    Hashimoto, Junichiro

    2017-08-01

    Arteriosclerosis, particularly aortosclerosis, is the most critical risk factor associated with cardiovascular, cerebrovascular, and renal diseases. The pulsatile hemodynamics in the central aorta consists of blood pressure, flow, and stiffness and substantially differs from the peripheral hemodynamics in muscular arteries. Arteriosclerotic changes with age appear earlier in the elastic aorta, and age-dependent increases in central pulse pressure are more marked than those apparent from brachial pressure measurement. Central pressure can be affected by lifestyle habits, metabolic disorders, and endocrine and inflammatory diseases in a manner different from brachial pressure. Central pulse pressure widening due to aortic stiffening increases left ventricular afterload in systole and reduces coronary artery flow in diastole, predisposing aortosclerotic patients to myocardial hypertrophy and ischemia. The widened pulse pressure is also transmitted deep into low-impedance organs such as the brain and kidney, causing microvascular damage responsible for lacunar stroke and albuminuria. In addition, aortic stiffening increases aortic blood flow reversal, which can lead to retrograde embolic stroke and renal function deterioration. Central pressure has been shown to predict cardiovascular events in most previous studies and potentially serves as a surrogate marker for intervention. Quantitative and comprehensive evaluation of central hemodynamics is now available through various noninvasive pressure/flow measurement modalities. This review will focus on the clinical usefulness and mechanistic rationale of central hemodynamic measurements for cardiovascular risk management.

  10. Impact of pacing site on QRS duration and its relationship to hemodynamic response in cardiac resynchronization therapy for congestive heart failure.

    Science.gov (United States)

    Derval, Nicolas; Bordachar, Pierre; Lim, Han S; Sacher, Frederic; Ploux, Sylvain; Laborderie, Julien; Steendijk, Paul; Deplagne, Antoine; Ritter, Philippe; Garrigue, Stephane; Denis, Arnaud; Hocini, Mélèze; Haissaguerre, Michel; Clementy, Jacques; Jaïs, Pierre

    2014-09-01

    Recent studies have demonstrated that left ventricular (LV) pacing site is a critical parameter in optimizing cardiac resynchronization therapy (CRT). The present study evaluates the effect of pacing from different LV locations on QRS duration (QRSd) and their relationship to acute hemodynamic response in congestive heart failure patients. Thirty-five patients with nonischemic dilated cardiomyopathy and left bundle branch block referred for CRT device implantation were studied. Eleven predetermined LV pacing sites were systematically assessed in random order: epicardial: coronary sinus (CS); endocardial: basal and mid-cavity (septal, anterior, lateral, and inferior), apex, and the endocardial site facing the CS pacing site. For each patient QRSd and +dP/dtmax during baseline (AAI) and DDD LV pacing at 2 atrioventricular delays were compared. Response to CRT was significantly better in patients with wider baseline QRSd (≥150 milliseconds). Hemodynamic response was inversely correlated to increase of QRSd during LV pacing (short atrioventricular [AV] delay: r = 0.44, P site of shortest QRSd significantly improved +dP/dtmax (+18 ± 25%, P response and that LV pacing location was a primary determinant of paced QRSd. Although QRSd did not predict the maximum hemodynamic response, our results confirm the link between electrical activation and hemodynamic response of the LV during CRT. © 2014 Wiley Periodicals, Inc.

  11. Auditory brain-stem responses in adrenomyeloneuropathy.

    Science.gov (United States)

    Grimes, A M; Elks, M L; Grunberger, G; Pikus, A M

    1983-09-01

    We studied three patients with adrenomyeloneuropathy. Complete audiologic assessment was obtained: two patients showed unimpaired peripheral hearing and one showed a mild high-frequency hearing loss. Auditory brain-stem responses were abnormal in both ears of all subjects, with one subject showing no response above wave I, and the other two having significant wave I to III and wave III to V interval prolongations. We concluded that auditory brain-stem response testing provides a simple, valid, reliable method for demonstrating neurologic abnormality in adrenomyeloneuropathy even prior to evidence of clinical signs.

  12. Effects of remifentanil combined with propofol anesthesia on IL-1β, IL-6, TNF-α and hemodynamics in patients with brain surgery

    Directory of Open Access Journals (Sweden)

    Qian Shen

    2017-08-01

    Full Text Available Objective: To observe clinical application of remifentanil combined with propofol anesthesia and fentanyl combined with propofol anesthesia in patients with brain surgery, and analyze the change of hemodynamics and serum IL-1β, IL-6 and TNF-α before and after operation. Methods: A total of 90 cases of patients with brain surgery were randomly divided into control group and observation group according to lottery. The control group was given fentanyl combined with propofol anesthesia and the observation group was given remifentanil combined with propofol anesthesia, other combined anesthetic drug was same in both groups. Hemodynamics of all subjects before tracheal intubation (T1, after tracheal intubation (T2, when shin incision (T3 and when extubation (T4 and serum IL-1β, IL-6 and TNF-α before and after surgery 24 hours were measured. Results: There was no significant difference in hemodynamic indexes of all patients in both groups at T1. At T2, T3 and T4, heart rate (HR and mean arterial pressure (MAP of the observation group were significantly lower than those in the control group at same period, however blood oxygen saturation (SpO2 was higher than that in the control group at corresponding period, it was significant difference. At T2, T3 and T4, observation indexes HR and MAP of the control group were significantly higher than those at T1, while SpO2 was significantly lower than T1, there was statistical significant difference. While there was no significant difference in HR, MAP and SpO2 in observation group at T1, T2, T3 and T4. There was no significant differences in serum IL-1β, IL-6 and TNF-α levels between the control group and the observation group before surgery. After 24 h of operation, the levels of IL-1β, IL-6 and TNF-α in both groups were higher than those before operation; Moreover levels of IL-1β, IL-6 and TNF-α in observation group were significantly lower than those in the control group at same period after 24 h of

  13. Photic memory for executive brain responses

    OpenAIRE

    Chellappa,Sarah Laxhmi; Ly, Julien; Meyer, Christelle; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Phillips, Christophe; Cooper, Howard,; Vandewalle, Gilles

    2014-01-01

    Light is a powerful stimulant for human alertness and cognition that can be easily administered to improve performance or counteract the negative impact of sleepiness, even during the day. Here, we show that prior exposure to longer wavelength light (orange), relative to shorter wavelength (blue), enhances the subsequent impact of light on executive brain responses. These findings emphasize the importance of light for human cognitive brain function and constitute compelling evidence in favor ...

  14. Evolution of Hemodynamic and Functional Human Kidney Graft Dose Response to Dopamine Using an Implantable Doppler Device.

    Science.gov (United States)

    Bataille, Aurélien; Payen, Didier; Villiers, Stéphane; Chazalet, Jean-Jacques; Jacob, Laurent

    2016-04-01

    The relation between dopamine infusion and renal hemodynamics and function has not been studied in renal allografts during early recovery. We analyzed the dose response of dopamine infusion on renal blood flow and function in human kidney transplant recipients at reperfusion and during early graft recovery. Phasic and mean renal blood flow was measured by the pulsed Doppler technique using implantable Doppler microprobes in contact with the graft artery. Systemic and renal parameters were recorded on dopamine infusion (0, 3, 5, and 10 μg·kg⁻¹·min⁻¹) immediately after transplant (day 0) in 13 patients and at day 6 in 7/13 patients with early graft recovery. Results are expressed as median and interquartile range between the 25th and 75th percentiles. At day 0, 3 μg·kg⁻¹·min⁻¹) dopamine did not increase mean renal blood flow over baseline (580 mL/min [219-663 mL/min] vs 542 mL/min [207-686 mL/min]; P = .84). There was an absence of effect with higher dopamine doses, whereas cardiac output, heart rate, and systolic and mean arterial pressure were significantly increased. Urinary sodium excretion, creatinine clearance, and urine output increased dose dependently, with a positive correlation between the increase in urine output and mean arterial pressure (r = 0.48, P < .001). At day 6, 3 μg·kg⁻¹·min⁻¹ dopamine increased mean renal blood flow over baseline (318 mL/min [234-897 mL/min] vs 191 mL/min [173-706 mL/min]; P = .016), with no further increase at higher doses. Immediately after transplant, kidney grafts with ischemic-reperfusion injury are fully dilated and do not respond to dopamine. The specific renal effects observed are due to systemic hemodynamic status. Vascular responsiveness to a "renal dopamine dose" returns on graft recovery.

  15. Hemodynamics of Cerebral Aneurysms

    Science.gov (United States)

    Sforza, Daniel M.; Putman, Christopher M.; Cebral, Juan Raul

    2009-01-01

    The initiation and progression of cerebral aneurysms are degenerative processes of the arterial wall driven by a complex interaction of biological and hemodynamic factors. Endothelial cells on the artery wall respond physiologically to blood-flow patterns. In normal conditions, these responses are associated with nonpathological tissue remodeling and adaptation. The combination of abnormal blood patterns and genetics predisposition could lead to the pathological formation of aneurysms. Here, we review recent progress on the basic mechanisms of aneurysm formation and evolution, with a focus on the role of hemodynamic patterns.

  16. Hemodynamic Support in Sepsis

    Directory of Open Access Journals (Sweden)

    Fatih Yildiz

    2014-04-01

    Full Text Available Sepsis is called systemic inflammatory response syndrome due to infection. When added to organs failure and perfusion abnormality is defined in severe sepsis, Hypotension that do not respond to fluid therapy is as defined septic shock. Fluid resuscitation is a most important parts of the treatment in patients with septic shock. Ongoing hypotension that despite of the adequate fluid therapy, vasopressor support initiation is required. Sepsis and septic shock, hemodynamic support is often understood as the hemodynamic support. The different approaches to the development of methods to track and objective comes up. Patients with severe sepsis and septic shock should be follow in the intensive care unit and rapid fluid replacement and effectual hemodynamic support should be provided.

  17. Hemodynamic responses to strength exercise with blood flow restriction during different phases of the menstrual cycle

    Directory of Open Access Journals (Sweden)

    Gabriel Rodrigues Neto

    2017-12-01

    Full Text Available The present study aimed to determine the influence of low-load (LL resistance exercise (RE with blood flow restriction (BFR on systolic blood pressure (SBP, diastolic blood pressure (DBP, mean blood pressure (MBP, heart rate (HR, double product (DP and oxygen saturation (SpO2 during the phases of the menstrual cycle (MC. Thirty untrained women were randomly and proportionally divided into three groups: HI = high-intensity exercises (80% of one-repetition maximum (1RM; LL = low-load exercises (20% of 1RM; and LL+BFR = LL exercises combined with BFR. The exercise sessions were performed during the 3rd-4th days (follicular phase, 16th day (ovulatory phase and the 24th-26th days (luteal phase of the MC. Before and immediately after the exercises, SBP, DBP, HR and SpO2 were evaluated. We observed an increase in SBP, HR and DP in the three phases of the MC for all groups (p 0.05. There was a significant effect of the MC phases on HR and DP (p < 0.05. We conclude that the three groups exhibited increased SBP, HR and DP; however, SpO2 was not different. Furthermore, groups LL and LL+BFR exhibited greater increases in hemodynamics, and the MC phases seem to influence only HR and DP.

  18. Hemodynamic Responses on Prefrontal Cortex Related to Meditation and Attentional Task

    Directory of Open Access Journals (Sweden)

    Singh eDeepeshwar

    2015-02-01

    Full Text Available Recent neuroimaging studies state that meditation increases regional cerebral blood flow (rCBF in the prefrontal cortex (PFC. The present study employed functional near infrared spectroscopy (fNIRS to evaluate the relative hemodynamic changes in prefrontal cortex during a cognitive task. Twenty-two healthy male volunteers with ages between 18 and 30 years (group mean age ± SD; 22.9 ± 4.6 years performed a color-word stroop task before and after 20 minutes of meditation and random thinking. Repeated measures ANOVA was performed followed by a post-hoc analysis with Bonferroni adjustment for multiple comparisons between the mean values of ‘During’ and ‘Post’ with ‘Pre’ state. During meditation there was an increased in oxy-hemoglobin (∆HbO and total hemoglobin (∆THC concentration with reduced deoxy-hemoglobin (∆HbR concentration over the right prefrontal cortex (rPFC, whereas in random thinking there was increased ∆HbR with reduced total hemoglobin concentration on the rPFC. The mean reaction time was shorter in stroop color word task with reduced ∆THC after meditation, suggestive of improved performance and efficiency in task related to attention. Our findings demonstrated that meditation increased cerebral oxygenation and enhanced performance, which was associated with prefrontal cortex activation.

  19. A Near-Infrared Spectroscopy Study on Cortical Hemodynamic Responses to Normal and Whispered Speech in 3- to 7-Year-Old Children

    Science.gov (United States)

    Remijn, Gerard B.; Kikuchi, Mitsuru; Yoshimura, Yuko; Shitamichi, Kiyomi; Ueno, Sanae; Tsubokawa, Tsunehisa; Kojima, Haruyuki; Higashida, Haruhiro; Minabe, Yoshio

    2017-01-01

    Purpose: The purpose of this study was to assess cortical hemodynamic response patterns in 3- to 7-year-old children listening to two speech modes: normally vocalized and whispered speech. Understanding whispered speech requires processing of the relatively weak, noisy signal, as well as the cognitive ability to understand the speaker's reason for…

  20. Hemodynamic response after injection of local anesthetics with or without adrenaline in adult Nigerian subjects undergoing simple tooth extraction

    Directory of Open Access Journals (Sweden)

    Olutayo James

    2015-01-01

    Full Text Available Objective: This study was conducted to determine the changes in the blood pressure (BP and the pulse rate (PR of normotensive patients having dental extraction under the administration of 2% lignocaine local anesthetic with or without adrenaline. Materials and Methods: This prospective study was carried out on 325 consecutive normotensive patients who presented at the exodontia clinic of the Lagos University Teaching Hospital (LUTH, Lagos, Yoruba State, Nigeria from December 2004 to August 2005 for simple tooth extraction. The patients were randomly allocated into two groups according to the type of anesthetic solution employed. Group A had tooth extraction done under the administration of 2% lignocaine with adrenaline (1:80,000 while group B had tooth extraction done under the administration of 2% lignocaine local anesthetic without vasoconstrictor (plain lignocaine. Each patient had single tooth extracted. The following parameters were monitored in each of the surgical interventions: systolic blood pressure (SBP, diastolic blood pressure (DBP, and PR. Measurements were taken in the waiting room before surgery, during the surgery after local anesthesia, during tooth extraction, and 15 min after tooth extraction. Results: The sample consisted of 176 females and 149 males. Age range of the patients was 18-89 years with the mean age of 35.08 ± 15.60 years. The hemodynamic responses to lignocaine with adrenaline (1:80,000 and plain lignocaine essentially follow the same pattern in the study. There was no statistically significant difference between the measured parameters in the two groups after the administration of local anesthetics. Conclusion: This study, therefore, shows that there was no difference in the hemodynamic changes observed with the use of lignocaine with adrenaline or plain lignocaine during a simple tooth extraction in healthy adults.

  1. Computer program for analysis of hemodynamic response to head-up tilt test

    Science.gov (United States)

    Świątek, Eliza; Cybulski, Gerard; Koźluk, Edward; Piątkowska, Agnieszka; Niewiadomski, Wiktor

    2014-11-01

    The aim of this work was to create a computer program, written in the MATLAB environment, which enables the visualization and analysis of hemodynamic parameters recorded during a passive tilt test using the CNS Task Force Monitor System. The application was created to help in the assessment of the relationship between the values and dynamics of changes of the selected parameters and the risk of orthostatic syncope. The signal analysis included: R-R intervals (RRI), heart rate (HR), systolic blood pressure (sBP), diastolic blood pressure (dBP), mean blood pressure (mBP), stroke volume (SV), stroke index (SI), cardiac output (CO), cardiac index (CI), total peripheral resistance (TPR), total peripheral resistance index (TPRI), ventricular ejection time (LVET) and thoracic fluid content (TFC). The program enables the user to visualize waveforms for a selected parameter and to perform smoothing with selected moving average parameters. It allows one to construct the graph of means for any range, and the Poincare plot for a selected time range. The program automatically determines the average value of the parameter before tilt, its minimum and maximum value immediately after changing positions and the times of their occurrence. It is possible to correct the automatically detected points manually. For the RR interval, it determines the acceleration index (AI) and the brake index (BI). It is possible to save calculated values to an XLS with a name specified by user. The application has a user-friendly graphical interface and can run on a computer that has no MATLAB software.

  2. Stress Response, Brain Noradrenergic System and Cognition.

    Science.gov (United States)

    Winklewski, Pawel J; Radkowski, Marek; Wszedybyl-Winklewska, Magdalena; Demkow, Urszula

    2017-01-01

    Locus coeruleus is a critical component of the brain noradrenergic system. The brain noradrenergic system provides the neural substrate for the architecture supporting the interaction with, and navigation through, an external world complexity. Changes in locus coeruleus tonic and phasic activity and the interplay between norepinephrine and α1- and α2-adrenoceptors in the prefrontal cortex are the key elements of this sophisticated architecture. In this narrative review we discuss how the brain noradrenergic system is affected by increased exposure to corticotropin-releasing hormone triggered by stress response. In particular, we present the mechanisms responsible for thinking inflexibility often observed under highly stressful conditions. Finally, the main directions for future research are highlighted.

  3. Hemodynamic Response of the Supplementary Motor Area during Locomotor Tasks with Upright versus Horizontal Postures in Humans

    Directory of Open Access Journals (Sweden)

    Arito Yozu

    2016-01-01

    Full Text Available To understand cortical mechanisms related to truncal posture control during human locomotion, we investigated hemodynamic responses in the supplementary motor area (SMA with quadrupedal and bipedal gaits using functional near-infrared spectroscopy in 10 healthy adults. The subjects performed three locomotor tasks where the degree of postural instability varied biomechanically, namely, hand-knee quadrupedal crawling (HKQuad task, upright quadrupedalism using bilateral Lofstrand crutches (UpQuad task, and typical upright bipedalism (UpBi task, on a treadmill. We measured the concentration of oxygenated hemoglobin (oxy-Hb during the tasks. The oxy-Hb significantly decreased in the SMA during the HKQuad task, whereas it increased during the UpQuad task. No significant responses were observed during the UpBi task. Based on the degree of oxy-Hb responses, we ranked these locomotor tasks as UpQuad > UpBi > HKQuad. The order of the different tasks did not correspond with postural instability of the tasks. However, qualitative inspection of oxy-Hb time courses showed that oxy-Hb waveform patterns differed between upright posture tasks (peak-plateau-trough pattern for the UpQuad and UpBi tasks and horizontal posture task (downhill pattern for the HKQuad task. Thus, the SMA may contribute to the control of truncal posture accompanying locomotor movements in humans.

  4. Hemodynamic improvement of anterior cerebral artery territory perfusion induced by bifrontal encephalo(periosteal) synangiosis in pediatric patients with moyamoya disease: a study with brain perfusion SPECT.

    Science.gov (United States)

    Song, Yoo Sung; Oh, So Won; Kim, Yu Keong; Kim, Seung-Ki; Wang, Kyu-Chang; Lee, Dong Soo

    2012-01-01

    The reinforcement of the anterior cerebral artery (ACA) territory perfusion is important for the future intellectual functioning of pediatric moyamoya disease (MMD) patients. To evaluate the hemodynamic improvement of the ACA territory, bifrontal encephalogaleo-(periosteal)synangiosis [EG(P)S] combined with encephaloduroarteriosynangiosis (EDAS) was compared with EDAS alone in pediatric MMD patients using brain perfusion SPECT. Among 36 patients (M:F = 16:20; mean age, 9.5 ± 3.0 years) who were surgically treated for MMD, EDAS was performed in 17 patients, and EDAS with bifrontal EG(P)S in 19 patients. Hemodynamic parameters consisting of basal cerebral perfusion, acetazolamide-challenge stress perfusion, and cerebrovascular reserve index were estimated using brain perfusion SPECT and probabilistic perfusion maps for the ACA and middle cerebral artery (MCA) territories. Cerebral angiography was performed to confirm revascularization. Both the EDAS only (p = 0.04) and EDAS with EG(P)S group (p territory. The EDAS with EG(P)S group had significant improvements, not only in basal perfusion of the ipsilateral ACA territory (p = 0.03) but also in the cerebrovascular reserve of the bilateral ACA territories (p territory in both the EDAS only and EDAS with EG(P)S group, and in the ipsilateral ACA territory in the EDAS with EG(P)S group on the postoperative cerebral angiography. EDAS with bifrontal EG(P)S induces significant improvements in the ACA and MCA territories, while EDAS generates significant improvements in the MCA territory only.

  5. Comparison of i-gel™ and laryngeal mask airway Classic™ in terms of ease of insertion and hemodynamic response: A randomized observational study.

    Science.gov (United States)

    Pratheeba, N; Ramya, G S; Ranjan, R V; Remadevi, R

    2016-01-01

    Laryngeal mask airway (LMA) Classic™ has an inflatable cuff while i-gel™ has a noninflatable cuff made of thermoplastic elastomer. To compare ease of insertion, number, and duration of insertion attempts among the two device. Secondary objectives were to evaluate the hemodynamic response and SpO2 during device insertion and during maintenance of general anesthesia. This study was conducted as randomized observational study in a teaching hospital. One hundred American Society of Anesthesiologists I and II, patients posted for surgery under general anesthesia were divided in two groups of fifty each. LMA Classic™ and i-gel™. Ease of insertion, duration of insertion, hemodynamic data, and episodes of hypoxia during insertion, 1, 3 and 5 min for 30 min, during removal and 1 min after removal. Descriptive analyses were expressed as a mean ± standard deviation. Independent t-test used for parametric data, Chi-square test for nonparametric data and hemodynamic data were analyzed using repeated measures ANOVA to find statistical difference within the groups. Devices were easy to insert, the mean duration of insertion attempts was 15.92 ± 1.62 s in the i-gel™ group, while it was 26.06 ± 5.12 s in the LMA Classic™ group, was statistically significant (P = 0.0001). Successful and shorter duration of insertion, with less hemodynamic response makes i-gel™ a suitable alternative to LMA Classic™ during general anesthesia.

  6. Frontal hemodynamic responses to high frequency yoga breathing in schizophrenia: A functional near infrared spectroscopy (fNIRS study

    Directory of Open Access Journals (Sweden)

    Hemant eBhargav

    2014-03-01

    Full Text Available Frontal hemodynamic responses to high frequency yoga breathing technique - Kapalabhati (KB was compared between patients of schizophrenia (n =18; 14 males, 4 females and age-gender and education matched healthy subjects (n=18; 14 males, 4 females using functional near-infrared spectroscopy (fNIRS.The diagnosis was confirmed by a psychiatrist using DSM IV. All patients except one received atypical anti-psychotics (one was on typical. They had obtained a stabilized state as evidenced by a steady unchanged medication from their psychiatrist for past 3 months or longer. They learned KB, among other yoga procedures, in the yoga retreat. KB was practiced at the rate of 120 times per minute for 1minute (min. Healthy subjects who were freshly learning yoga too were taught KB. Both the groups had no previous exposure to KB practice and the training was achieved over 2 weeks. A chest pressure transducer was used to monitor the frequency and intensity of the practice objectively. The frontal hemodynamic response in terms of the oxygenated hemoglobin (oxyHb, deoxygenated hemoglobin (deoxyHb and total hemoglobin or blood volume (totalHb concentration was tapped for 5 min before, 1min during and for 5 min after KB.This was obtained in quiet room using a 16 channel functional near-infrared system (FNIR100-ACK-W, BIOPAC Systems, Inc, USA. Average of the eight channels for each side (right and left frontals was obtained for the three sessions. The changes in the levels of oxyHb, deoxyHb and blood volume for the three sessions were compared between the two groups using Independent samples t test.Within group comparison showed that increase in bilateral oxyHb and totalHb from the baseline was highly significant in healthy controls during KB (right oxyHb, p = 0.00; left oxyHb, p= 0.00 and right totalHb, p = 0.01; left totalHb, p = 0.00, whereas schizophrenia patients did not show any significant changes in the same on both the sides. On the other hand

  7. The acute effects of the thermogenic supplement Meltdown on energy expenditure, fat oxidation, and hemodynamic responses in young, healthy males

    Directory of Open Access Journals (Sweden)

    Cooke Matt

    2008-12-01

    post-exercise states without any adverse hemodynamic responses associated with maximal exercise.

  8. Mind Over Matter: The Brain's Response to Marijuana

    Science.gov (United States)

    ... Brain's Response to Marijuana The Brain's Response to Marijuana Print Hi, my name is Sara Bellum. Welcome ... issue, we'll investigate the fascinating facts about marijuana. You may have heard it called pot, weed, ...

  9. Association of Type D personality with the autonomic and hemodynamic response to the cold pressor test

    NARCIS (Netherlands)

    Kupper, N.; Pelle, A.J.M.; Denollet, J.

    2013-01-01

    Mechanisms relating Type D personality to poor health are largely unknown, with autonomic nervous system function being a candidate. This study examined the physiologic response to cold stress. Undergraduates (N = 101, 84% female) underwent a cold pressor test. An electrocardiogram, impedance

  10. Effects of a brief Valsalva manoeuvre on hemodynamic response to strength exercises.

    Science.gov (United States)

    Niewiadomski, Wiktor; Pilis, Wiesław; Laskowska, Dorota; Gąsiorowska, Anna; Cybulski, Gerard; Strasz, Anna

    2012-03-01

    Strength training is a recommended measure against loss of strength and muscle mass because of age- or illness-induced inactivity. Strength exercises may impose heavy cardiovascular load by increasing heart rate and blood pressure. To increase strength efficiently, a heavy load has to be applied; this, however, leads to a spontaneous Valsalva manoeuvre, which additionally raises blood pressure. Avoidance of this manoeuvre is recommended. If the additional rise in arterial blood pressure caused by Valsalva manoeuvre is smaller than intrathoracic or intracranial pressures during this manoeuvre, Valsalva manoeuvre may actually protect arteries located in the thorax and in the brain by diminishing transmural pressure acting across these vessels. Effect of controlled breathing or brief Valsalva manoeuvre on arterial pressure at rest and during knee extension against 15-repetition maximum resistance was evaluated. In 12 healthy young men blood pressure was measured continuously and non-invasively, knee angle, speed of respiratory air or mouth pressure (MP) were continuously registered. Each combination of respiratory and exercise manoeuvres was repeated six times, for every of last three repetitions peak and trough systolic and diastolic pressure were determined. Strength exercises elevated peak pressures more than trough pressures, systolic more than diastolic. Valsalva manoeuvre increased only peak systolic and peak diastolic pressure. This increase was in average lesser than MP, thus rendering an argument in favour of protective role of brief Valsalva manoeuvre because of decline in transmural pressure acting on thoracic and possibly cerebral arteries. However, there was strong individual variability, and in few instances, arterial pressure increased because of brief Valsalva manoeuvre more than MP; thus in some subjects, the manoeuvre might enhance transmural pressure acting on thorax arteries. © 2011 The Authors. Clinical Physiology and Functional Imaging © 2011

  11. [Evaluation of the hemodynamic and endocrino-metabolic response to tracheal intubation in patients anesthetized with thiopental or propofol].

    Science.gov (United States)

    Polo-Garvín, A; García-Sánchez, M J; Perán, F; Almazán, A

    1993-01-01

    To compare the effects of thiopental and propofol on hemodynamic and metabolic endocrine response to laryngoscopy and intubation. We selected two homogeneous groups of 14 healthy patients premedicated with midazolam i.m. (0.07 mg/kg). Induction was with diazepam (0.1 mg/kg), fentanyl (2 micrograms/kg), atropine 0.5 mg and thiopental or propofol (4-6.5 mg/kg and 1.5-2.5 mg/kg, respectively). Parameters recorded were direct arterial pressure, baseline heart rate, and heart rate after induction and at 2 and 5 minutes after intubation. We measured adrenaline (A), noradrenaline (NA), dopamine (Da), glucagon, beta-endorphines, ACTH, cortisol, glucose and amino acids in the baseline and post-intubation blood samples. We observed a significant increase (p < 0.05) in systolic and diastolic arterial pressure after intubation (10% and 22% respectively) in the thiopental group as compared with the propofol group. With both induction agents, heart rate was higher than baseline values at the three times (p < 0.001). In the thiopental group heart rate was higher after intubation than after induction (p < 0.05). Cortisol fell after intubation in the propofol group (p < 0.05); no other hormonal differences were observed. Hyperglycemia (p < 0.0001) was similar for both groups, while in the propofol group there were significant decreases in several amino acids. Propofol has a greater mitigating effect on the hyperdynamic response to intubation in healthy patients. For the two induction agents we measured no significant differences in stress hormone levels, apart from the drop in cortisol with propofol. We observed a change in energy-producing metabolites.

  12. Effect of hemorrhage rate on early hemodynamic responses in conscious sheep

    OpenAIRE

    Scully, Christopher G.; Daluwatte, Chathuri; Marques, Nicole R.; Khan, Muzna; Salter, Michael; Wolf, Jordan; Nelson, Christina; Salsbury, John; Enkhbaatar, Perenlei; Kinsky, Michael; Kramer, George C.; Strauss, David G.

    2016-01-01

    Abstract Physiological compensatory mechanisms can mask the extent of hemorrhage in conscious mammals, which can be further complicated by individual tolerance and variations in hemorrhage onset and duration. We assessed the effect of hemorrhage rate on tolerance and early physiologic responses to hemorrhage in conscious sheep. Eight Merino ewes (37.4???1.1?kg) were subjected to fast (1.25?mL/kg/min) and slow (0.25?mL/kg/min) hemorrhages separated by at least 3?days. Blood was withdrawn until...

  13. Frontal hemodynamic responses to high frequency yoga breathing in schizophrenia: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Bhargav, Hemant; Nagendra, H R; Gangadhar, B N; Nagarathna, Raghuram

    2014-01-01

    Frontal hemodynamic responses to high frequency yoga breathing technique, Kapalabhati (KB), were compared between patients of schizophrenia (n = 18; 14 males, 4 females) and age, gender, and education matched healthy subjects (n = 18; 14 males, 4 females) using functional near-infrared spectroscopy. The diagnosis was confirmed by a psychiatrist using DSM-IV. All patients except one received atypical antipsychotics (one was on typical). They had obtained a stabilized state as evidenced by a steady unchanged medication from their psychiatrist for the past 3 months or longer. They learned KB, among other yoga procedures, in a yoga retreat. KB was practiced at the rate of 120 times/min for 1 min. Healthy subjects who were freshly learning yoga too were taught KB. Both the groups had no previous exposure to KB practice and the training was carried out over 2 weeks. A chest pressure transducer was used to monitor the frequency and intensity of the practice objectively. The frontal hemodynamic response in terms of the oxygenated hemoglobin (oxyHb), deoxygenated hemoglobin (deoxyHb), and total hemoglobin (totalHb) or blood volume concentration was tapped for 5 min before, 1 min during, and for 5 min after KB. This was obtained in a quiet room using a 16-channel functional near-infrared system (FNIR100-ACK-W, BIOPAC Systems, Inc., USA). The average of the eight channels for each side (right and left frontals) was obtained for the three sessions. The changes in the levels of oxyHb, deoxyHb, and blood volume for the three sessions were compared between the two groups using independent samples t-test. Within group comparison showed that the increase in bilateral oxyHb and totalHb from the baseline was highly significant in healthy controls during KB (right oxyHb, p = 0.00; left oxyHb, p = 0.00 and right totalHb, p = 0.01; left totalHb, p = 0.00), whereas schizophrenia patients did not show any significant changes in the same on both the

  14. Monitoring hemodynamic and morphologic responses to closed head injury in a mouse model using orthogonal diffuse near-infrared light reflectance spectroscopy

    Science.gov (United States)

    Abookasis, David; Shochat, Ariel; Mathews, Marlon S.

    2013-04-01

    The authors' aim is to assess and quantitatively measure brain hemodynamic and morphological variations during closed-head injury (CHI) in mice using orthogonal diffuse near-infrared reflectance spectroscopy (o-DRS). CHI is a type of injury to the head that does not penetrate the skull. Usually, it is caused by mechanical blows to the head and frequently occurs in traffic accidents, falls, and assaults. Measurements of brain optical properties, namely absorption and reduced scattering coefficients in the wavelength range from 650 to 1000 nm were carried out by employing different source-detector distance and locations to provide depth sensitivity on an intact scalp over the duration of the whole experiment. Furthermore, alteration in both cortical hemodynamics and morphologic markers, i.e., scattering power and amplitude properties were derived. CHI was induced in anesthetized male mice by a weight-drop model using ˜50 g cylindrical metal falling from a height of 90 cm onto the intact scalp producing an impact of 4500 g cm. With respect to baseline, difference in brain physiological properties was observed following injury up to 1 h post-trauma. Additionally, the reduced scattering spectral shapes followed Mie scattering theory was quantified and clearly shows changes in both scattering amplitude and power from baseline indicating structural variations likely from evolving cerebral edema during CHI. We further demonstrate high correlation between scattering amplitude and scattering power, with more than 20% difference in slope in comparison to preinjury. This result indicates the possibility of using the slope also as a marker for detection of structural changes. Finally, experiments investigating brain function during the first 20 min postinjury were conducted and changes in chromophore concentrations and scattering were observed. Overall, our experiments demonstrate the potential of using the proposed technique as a valuable quantitative noninvasive tool for

  15. Multi-timescale measurements of brain responses in visual cortex during functional stimulation using time-resolved spectroscopy

    Science.gov (United States)

    Lebid, Solomiya; O'Neill, Raymond; Markham, Charles; Ward, Tomás; Coyle, Shirley

    2005-06-01

    Studies of neurovascular coupling (hemodynamic changes and neuronal activation) in the visual cortex using a time-domain single photon counting system have been undertaken. The system operates in near infrared (NIR) range of spectrum and allows functional brain monitoring to be done non-invasively. The detection system employs a photomultiplier and multi-channel scaler to detect and record emerging photons with sub-microsecond resolution (the effective collection time per curve point is ~ 200 ns). Localisation of the visual evoked potentials in the brain was done using knowledge obtained from electroencephalographic (EEG) studies and previous frequency-domain optical NIR spectroscopic systems. The well-known approach of visual stimulation of the human brain, which consists of an alternating black and white checkerboard pattern used previously for the EEG study of neural responses, is applied here. The checkerboard pattern is synchronized with the multi-channel scaler system and allows the analysis of time variation in back-scattered light, at different stimulation frequencies. Slow hemodynamic changes in the human brain due to Hb-HbO2 changes in the blood flow were observed, which is evidence of the system's capability to monitor these changes. Monocular visual tests were undertaken and compared with those done with an EEG system. In some subjects a fast optical response on a time scale commensurate with the neural activity associated with the visual cortex was detected. Future work will concentrate on improved experimental protocols and apparatus to confirm the existence of this important physiological signal.

  16. Effect of parameter variations on the hemodynamic response under rotary blood pump assistance.

    Science.gov (United States)

    Lim, Einly; Dokos, Socrates; Salamonsen, Robert F; Rosenfeldt, Franklin L; Ayre, Peter J; Lovell, Nigel H

    2012-05-01

    Numerical models, able to simulate the response of the human cardiovascular system (CVS) in the presence of an implantable rotary blood pump (IRBP), have been widely used as a predictive tool to investigate the interaction between the CVS and the IRBP under various operating conditions. The present study investigates the effect of alterations in the model parameter values, that is, cardiac contractility, systemic vascular resistance, and total blood volume on the efficiency of rotary pump assistance, using an optimized dynamic heart-pump interaction model previously developed in our laboratory based on animal experimental measurements obtained from five canines. The effect of mean pump speed and the circulatory perturbations on left and right ventricular pressure volume loops, mean aortic pressure, mean cardiac output, pump assistance ratio, and pump flow pulsatility from both the greyhound experiments and model simulations are demonstrated. Furthermore, the applicability of some of the previously proposed control parameters, that is, pulsatility index (PI), gradient of PI with respect to pump speed, pump differential pressure, and aortic pressure are discussed based on our observations from experimental and simulation results. It was found that previously proposed control strategies were not able to perform well under highly varying circulatory conditions. Among these, control algorithms which rely on the left ventricular filling pressure appear to be the most robust as they emulate the Frank-Starling mechanism of the heart. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. Hemodynamic parameters of the isolated dog kidney as determined by a frequency response method.

    Science.gov (United States)

    Sato, T; Shirataka, M; Ikeda, N; Vega, D; Yamashiro, S M; Grodins, F S

    1980-01-01

    The isolated kidney of the dog was perfused with autologous blood through an oxygenator. Responses of arterial input pressure (PI), venous pressure (PV), and venous flow (UV) were measured during sinusoidal forcing of arterial inflow (UA) at 5 to 1,000 cpm superimposed on a steady-state flow level. Pre- (RA) and postglomerular (REV) resistances, and compliances of artery (CA) and glomeruli (CG) were estimated based on a network model and using the Bode diagram of gains PI/UA, UV/UA. The data were evaluated by the least square method with a digital computer. The mean values of the parameters normalized for the average weight of the kidney (64.5g) were: CA = 0.0027 ml/mmHg, CG = 0.088, RA = 0.45 mmHg . min/ml, and REV = 0.35. Mean arterial pressure (PA) and glomerular pressure (PG) were 111 and 50 mmHg, respectively. The regression lines of PG against PA were significantly different at high and low PA, this being taken as a manifestation of autoregulation of the renal circulation. PG values were less than those given by the classical study of Winton but close to those recently obtained on mutants rats with a direct puncture method by Brenner et al. It is concluded that the present study has given an experimental background with which we may continuously estimate, under more intact conditions, circulatory parameter values by monitoring pressures and flows which respond to external perturbations.

  18. Baseline Hemodynamics and Response to Contrast Media During Diagnostic Cardiac Catheterization Predict Adverse Events in Heart Failure Patients.

    Science.gov (United States)

    Denardo, Scott J; Vock, David M; Schmalfuss, Carsten M; Young, Gregory D; Tcheng, James E; O'Connor, Christopher M

    2016-07-01

    Contrast media administered during cardiac catheterization can affect hemodynamic variables. However, little is documented about the effects of contrast on hemodynamics in heart failure patients or the prognostic value of baseline and changes in hemodynamics for predicting subsequent adverse events. In this prospective study of 150 heart failure patients, we measured hemodynamics at baseline and after administration of iodixanol or iopamidol contrast. One-year Kaplan-Meier estimates of adverse event-free survival (death, heart failure hospitalization, and rehospitalization) were generated, grouping patients by baseline measures of pulmonary capillary wedge pressure (PCWP) and cardiac index (CI), and by changes in those measures after contrast administration. We used Cox proportional hazards modeling to assess sequentially adding baseline PCWP and change in CI to 5 validated risk models (Seattle Heart Failure Score, ESCAPE [Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness], CHARM [Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity], CORONA [Controlled Rosuvastatin Multinational Trial in Heart Failure], and MAGGIC [Meta-Analysis Global Group in Chronic Heart Failure]). Median contrast volume was 109 mL. Both contrast media caused similarly small but statistically significant changes in most hemodynamic variables. There were 39 adverse events (26.0%). Adverse event rates increased using the composite metric of baseline PCWP and change in CI (Pcontrast correlated with the poorest prognosis. Adding both baseline PCWP and change in CI to the 5 risk models universally improved their predictive value (P≤0.02). In heart failure patients, the administration of contrast causes small but significant changes in hemodynamics. Calculating baseline PCWP with change in CI after contrast predicts adverse events and increases the predictive value of existing models. Patients with elevated baseline PCWP and

  19. The effects of dexmedetomidine on hemodynamic responses to tracheal ntubation in hypertensive patients: A comparison with esmolol and sufentanyl

    Directory of Open Access Journals (Sweden)

    Hale Yarkan Uysal

    2012-01-01

    Full Text Available Background: Hypertension and tachycardia caused by tracheal intubation can be detrimental in hypertensive patients. This study was conducted in order to compare the effects of dexmedetomidine on hemodynamic response to tracheal intubation in hypertensive patients with esmolol and sufentanyl. Methods: Sixty hypertensive patients scheduled for noncardiac surgery under general anesthesia were randomly as-signed to receive one of the three drugs before induction of anesthesia. Groups I, II, and III respectively received esmo-lol (100 mg dexmedetomidine (1 μg/kg and sufentanyl (0.25 μg/kg. Heart Rate (HR, systolic (SAP and diastolic (DAP arterial pressures were recorded before drug administration (baseline; T1, after drug administration (T2, after induction of anesthesia (T3, immediately after intubation (T4 and 3, 5 and 10 minutes after intubation (T5, T6, and T7, respectively. The mean percentage variations from T1 to T4 were calculated for all variables (HR, SAP and DAP. Thiopental dose, onset time of vecuronium and intubation time were also assessed. Results: No differences were observed between the three groups regarding demographic data (p > 0.05. Median thi-opental dose was significantly lower in Group II (325 mg; range: 250-500 compared to Group I (425 mg; range: 325-500; p < 0.01 and Group III (375 mg; range: 275-500; p = 0.02. The onset time of vecuronium was longest in Group I (245.2 ± 63 s vs. 193.9 ± 46.6 s and 205.5 ± 43.5 s; p < 0.01 and p < 0.05. In Group I, HR significantly decreased after drug administration compared to baseline (83.8 ± 20.4 vs. 71.7 ± 14.8; p = 0.002. Compared to the baseline (90.4 ± 8.4, DAP decreased after induction and remained below baseline values at T5, T6 and T7 (71.3 ± 12.8, 76.2 ± 10.7, 68.9 ± 10.8 and 62.1 ± 8.7, respectively; p < 0.05 in Group II. According to the mean percen-tage variation, a significant reduction in HR was assessed in Group II compared to Group III (-13.4 ± 17.6% vs. 11

  20. Pulmonary hemodynamic responses to in utero ventilation in very immature fetal sheep

    Directory of Open Access Journals (Sweden)

    Allison Beth J

    2010-08-01

    Full Text Available Abstract Background The onset of ventilation at birth decreases pulmonary vascular resistance (PVR resulting in a large increase in pulmonary blood flow (PBF. As the large cross sectional area of the pulmonary vascular bed develops late in gestation, we have investigated whether the ventilation-induced increase in PBF is reduced in immature lungs. Methods Surgery was performed in fetal sheep at 105 d GA (n = 7; term ~147 d to insert an endotracheal tube, which was connected to a neonatal ventilation circuit, and a transonic flow probe was placed around the left pulmonary artery. At 110 d GA, fetuses (n = 7 were ventilated in utero (IUV for 12 hrs while continuous measurements of PBF were made, fetuses were allowed to develop in utero for a further 7 days following ventilation. Results PBF changes were highly variable between animals, increasing from 12.2 ± 6.6 mL/min to a maximum of 78.1 ± 23.1 mL/min in four fetuses after 10 minutes of ventilation. In the remaining three fetuses, little change in PBF was measured in response to IUV. The increases in PBF measured in responding fetuses were not sustained throughout the ventilation period and by 2 hrs of IUV had returned to pre-IUV control values. Discussion and conclusion Ventilation of very immature fetal sheep in utero increased PBF in 57% of fetuses but this increase was not sustained for more than 2 hrs, despite continuing ventilation. Immature lungs can increase PBF during ventilation, however, the present studies show these changes are transient and highly variable.

  1. An efficient multi-stage algorithm for full calibration of the hemodynamic model from BOLD signal responses

    KAUST Repository

    Zambri, Brian

    2017-02-22

    We propose a computational strategy that falls into the category of prediction/correction iterative-type approaches, for calibrating the hemodynamic model introduced by Friston et al. (2000). The proposed method is employed to estimate consecutively the values of the biophysiological system parameters and the external stimulus characteristics of the model. Numerical results corresponding to both synthetic and real functional Magnetic Resonance Imaging (fMRI) measurements for a single stimulus as well as for multiple stimuli are reported to highlight the capability of this computational methodology to fully calibrate the considered hemodynamic model. This article is protected by copyright. All rights reserved.

  2. Dataset for: An efficient multi-stage algorithm for full calibration of the hemodynamic model from BOLD signal responses

    KAUST Repository

    Djellouli, Rabia

    2017-01-01

    We propose a computational strategy that falls into the category of prediction/correction iterative-type approaches, for calibrating the hemodynamic model introduced by Friston et al. (2000). The proposed method is employed to estimate consecutively the values of the biophysiological system parameters and the external stimulus characteristics of the model. Numerical results corresponding to both synthetic and real functional Magnetic Resonance Imaging (fMRI) measurements for a single stimulus as well as for multiple stimuli are reported to highlight the capability of this computational methodology to fully calibrate the considered hemodynamic model.

  3. Electromyographic, cerebral and muscle hemodynamic responses during intermittent, isometric contractions of the biceps brachii at three submaximal intensities

    Directory of Open Access Journals (Sweden)

    Yagesh eBhambhani

    2014-06-01

    Full Text Available This study examined the electromyographic, cerebral and muscle hemodynamic responses during intermittent isometric contractions of biceps brachii at 20%, 40% and 60% of maximal voluntary contraction (MVC. Eleven volunteers completed two minutes of intermittent isometric contractions (12/min at an elbow angle of 90° interspersed with three minutes rest between intensities in systematic order. Surface electromyography (EMG was recorded from the right biceps brachii and near infrared spectroscopy (NIRS was used to simultaneously measure left prefrontal and right biceps brachii oxyhemoglobin (HbO2, deoxyhemoglobin (HHb and total hemoglobin (Hbtot. Transcranial Doppler ultrasound was used to measure middle cerebral artery velocity (MCAv bilaterally. Finger photoplethysmography was used to record beat-to-beat blood pressure and heart rate. EMG increased with force output from 20% to 60% MVC (P0.05. MCAv increased from rest to exercise but was not different among intensities (P>0.05. Force output correlated with the root mean square EMG and changes in muscle HbO2 (P0.05 at all three intensities. Force output declined by 8% from the 1st to the 24th contraction only at 60% MVC and was accompanied by systematic increases in RMS, cerebral HbO2 and Hbtot with a levelling off in muscle HbO2 and Hbtot. These changes were independent of alterations in mean arterial pressure. Since cerebral blood flow and oxygenation were elevated at 60% MVC, we attribute the development of fatigue to reduced muscle oxygen availability rather than impaired central n

  4. Electromyographic, cerebral, and muscle hemodynamic responses during intermittent, isometric contractions of the biceps brachii at three submaximal intensities

    Science.gov (United States)

    Bhambhani, Yagesh; Fan, Jui-Lin; Place, Nicolas; Rodriguez-Falces, Javier; Kayser, Bengt

    2014-01-01

    This study examined the electromyographic, cerebral and muscle hemodynamic responses during intermittent isometric contractions of biceps brachii at 20, 40, and 60% of maximal voluntary contraction (MVC). Eleven volunteers completed 2 min of intermittent isometric contractions (12/min) at an elbow angle of 90° interspersed with 3 min rest between intensities in systematic order. Surface electromyography (EMG) was recorded from the right biceps brachii and near infrared spectroscopy (NIRS) was used to simultaneously measure left prefrontal and right biceps brachii oxyhemoglobin (HbO2), deoxyhemoglobin (HHb), and total hemoglobin (Hbtot). Transcranial Doppler ultrasound was used to measure middle cerebral artery velocity (MCAv) bilaterally. Finger photoplethysmography was used to record beat-to-beat blood pressure and heart rate. EMG increased with force output from 20 to 60% MVC (P MVC (P MVC (P MVC (P > 0.05). MCAv increased from rest to exercise but was not different among intensities (P > 0.05). Force output correlated with the root mean square EMG and changes in muscle HbO2 (P 0.05) at all three intensities. Force output declined by 8% from the 1st to the 24th contraction only at 60% MVC and was accompanied by systematic increases in RMS, cerebral HbO2 and Hbtot with a leveling off in muscle HbO2 and Hbtot. These changes were independent of alterations in mean arterial pressure. Since cerebral blood flow and oxygenation were elevated at 60% MVC, we attribute the development of fatigue to reduced muscle oxygen availability rather than impaired central neuronal activation. PMID:24966837

  5. Initiation of resuscitation with high tidal volumes causes cerebral hemodynamic disturbance, brain inflammation and injury in preterm lambs.

    Directory of Open Access Journals (Sweden)

    Graeme R Polglase

    Full Text Available AIMS: Preterm infants can be inadvertently exposed to high tidal volumes (V(T in the delivery room, causing lung inflammation and injury, but little is known about their effects on the brain. The aim of this study was to compare an initial 15 min of high V(T resuscitation strategy to a less injurious resuscitation strategy on cerebral haemodynamics, inflammation and injury. METHODS: Preterm lambs at 126 d gestation were surgically instrumented prior to receiving resuscitation with either: 1 High V(T targeting 10-12 mL/kg for the first 15 min (n = 6 or 2 a protective resuscitation strategy (Prot V(T, consisting of prophylactic surfactant, a 20 s sustained inflation and a lower initial V(T (7 mL/kg; n = 6. Both groups were subsequently ventilated with a V(T 7 mL/kg. Blood gases, arterial pressures and carotid blood flows were recorded. Cerebral blood volume and oxygenation were assessed using near infrared spectroscopy. The brain was collected for biochemical and histologic assessment of inflammation, injury, vascular extravasation, hemorrhage and oxidative injury. Unventilated controls (UVC; n = 6 were used for comparison. RESULTS: High V(T lambs had worse oxygenation and required greater ventilatory support than Prot V(T lambs. High V(T resulted in cerebral haemodynamic instability during the initial 15 min, adverse cerebral tissue oxygenation index and cerebral vasoparalysis. While both resuscitation strategies increased lung and brain inflammation and oxidative stress, High V(T resuscitation significantly amplified the effect (p = 0.014 and p<0.001. Vascular extravasation was evident in the brains of 60% of High V(T lambs, but not in UVC or Prot V(T lambs. CONCLUSION: High V(T resulted in greater cerebral haemodynamic instability, increased brain inflammation, oxidative stress and vascular extravasation than a Prot V(T strategy. The initiation of resuscitation targeting Prot V(T may reduce the severity of brain injury in preterm neonates.

  6. Angiotensin II type 1 receptors and systemic hemodynamic and renal responses to stress and altered blood volume in conscious rabbits

    Directory of Open Access Journals (Sweden)

    Tony B. Xu

    2011-07-01

    Full Text Available We examined how systemic blockade of type 1 angiotensin (AT1- receptors affects reflex control of the circulation and the kidney. In conscious rabbits, the effects of candesartan on responses of systemic and renal hemodynamics and renal excretory function to acute hypoxia, mild hemorrhage and plasma volume expansion were tested. Candesartan reduced resting mean arterial pressure (MAP, -8 ± 2% without significantly altering cardiac output (CO, increased renal blood flow (RBF, +38 ± 9% and reduced renal vascular resistance (RVR, -32 ± 6%. Glomerular filtration rate (GFR was not significantly altered but sodium excretion (UNa+V increased four-fold. After vehicle treatment, hypoxia (10% inspired O2 for 30 min did not significantly alter MAP or CO, but reduced HR (-17 ± 6%, increased RVR (+33 ± 16% and reduced GFR (-46 ± 16% and UNa+V (-41 ± 17%. Candesartan did not significantly alter these responses. After vehicle treatment, plasma volume expansion increased CO (+35 ± 7%, reduced total peripheral resistance (TPR, -26 ± 5%, increased RBF (+62 ± 23% and reduced RVR (-32 ± 9%, but did not significantly alter MAP or HR. It also increased UNa+V (803 ± 184% yet reduced GFR (-47 ± 9%. Candesartan did not significantly alter these responses. After vehicle treatment, mild hemorrhage did not significantly alter MAP but increased HR (+16 ± 3%, reduced CO (-16 ± 4% and RBF (-18 ± 6%, increased TPR (+18 ± 4% and tended to increase RVR (+18 ± 9%, P = 0.1, but had little effect on GFR or UNa+V. But after candesartan treatment MAP fell during hemorrhage (-19 ± 1%, while neither TPR nor RVR increased, and GFR (-64 ± 18% and UNa+V (-83 ± 10% fell. AT1-receptor activation supports MAP and GFR during hypovolemia. But AT1-receptors appear to play little role in the renal vasoconstriction, hypofiltration and antinatriuresis accompanying hypoxia, or the systemic and renal vasodilatation and natriuresis accompanying plasma volume expansion.

  7. The involvement of nitric oxide in the hemodynamic and metabolic activities of the brain and small intestine

    Science.gov (United States)

    Tolmasov, M.; Barbiro-Michaely, E.; Mayevsky, A.

    2009-02-01

    Nitric oxide is a mediator in many physiological processes including vasodilatation of blood vessels, neurotransmission and prevention of platelet aggregation. It has also a role in the pathophysiology of sepsis, hemorrhagic shock, various traumatic events and critical conditions involved with circulatory abnormalities. The last one is accompanied by blood flow redistribution and is considered to be the putative cause of altered oxygen metabolism in various pathophysiological conditions. The present study tested the involvement of NO in the brain as a vital organ versus the small intestine, a less vital organ using the non-specific nitric oxide synthase inhibitor L-NAME and exogenous NO donor - nitrite. The parameters that were simultaneously monitored in both organs included mean arterial blood pressure (MAP), tissue blood flow (TBF), using laser Doppler flowmetery and NADH fluorescence using the fluorometric technique. Three groups were tested. Group 1 - L-NAME +nitrite, group 2 - control L-NAME and group 3 - control nitrite. Following LNAME, MAP significantly increased and remained elevated through the entire experiment. TBF decreased in both organs with full recovery in the brain and no recovery in the intestine, whereas NADH showed no significant changes. Nitrite alone had no significant effect on the parameters in any of the organs. In group 1 the infusion of nitrite decreased the level of elevated MAP earlier induced by L-NAME. Nitrite also recovered the reduced TBF in the brain whereas it had no beneficial effect on intestinal blood flow indicating for its regulatory role in the brain but not in the intestine.

  8. Exercise hemodynamics during extended continuous flow left ventricular assist device support: the response of systemic cardiovascular parameters and pump performance

    NARCIS (Netherlands)

    Martina, Jerson; Jonge, Nicolaas; Rutten, Marcel; Kirkels, J. Hans; Klöpping, Corinne; Rodermans, Ben; Sukkel, Eveline; Hulstein, Nelienke; Mol, Bas; Lahpor, Jaap

    2013-01-01

    Patients on continuous flow left ventricular assist devices (cf-LVADs) are able to return to an active lifestyle and perform all sorts of physical activities. This study aims to evaluate exercise hemodynamics in patients with a HeartMate II cf-LVAD (HM II). Thirty (30) patients underwent a bicycle

  9. Comparison of thermal and hemodynamic responses in skin and muscles to heating with electric and magnetic field

    Directory of Open Access Journals (Sweden)

    Karmen Glažar

    2015-06-01

    Full Text Available 12.00 Introduction: It has been shown that sufficient amount of energy provided by electromagnetic diathermy induces the increase of skin temperature and underlying tissues. However, scarce information is available on the differences in responses initiated by various techniques of diathermy. The goal of the present study was to compare thermal and hemodynamic responses of the skin and underlying muscles of the forearm to diathermy applied with electric (EF or magnetic field (MF. Methods: Eleven healthy volunteers participated in the study. On two separate occasions, they randomly received 20-minut diathermy with EF or with MF. Skin and tympanic temperature, and heart rate were measured. Further, kinetics of muscle oxyhemoglobin and deoxyhemoglobin kinetics were obtained. Thermal perception and thermal comfort were noted through the application of EF and MF. Results: The skin temperature increased similarly during the administration of EF and MF, by ~ 8.0 ± 1.3°C on both occasions. The thermal perception was more intense during the application of EF. Accordingly, the thermal comfort during the application of EF was perceived as less comfortable as compared with MF. During MF the increase in minute muscle blood flow and oxygen consumption was for ~ 42 % higher compared to the heating with EF. Conclusion: Although the increase in skin temperature was similar between EF and MF, the application of diathermy with MF was perceived more comfortable by the participants. Furthermore, the increase in minute muscle blood flow and oxygen consumption was higher in MF compared with EF. Thus, when muscle is the target tissue for physical therapy, a diathermy with magnetic field is the technique of choice. Normal 0 21 false false false SL X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Navadna tabela"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso

  10. Effects of lidocaine and magnesium sulfate in attenuating hemodynamic response to tracheal intubation: single-center, prospective, double-blind, randomized study.

    Science.gov (United States)

    Mendonça, Fabricio Tavares; de Queiroz, Lucas Macedo da Graça Medeiros; Guimarães, Cristina Carvalho Rolim; Xavier, Alexandre Cordeiro Duarte

    Hemodynamic response to airway stimuli is a common phenomenon and its management is important to reduce the systemic repercussions. The objective of this study is to compare the efficacy of intravenous magnesium sulfate versus lidocaine on this reflex hemodynamics after laryngoscopy and tracheal intubation. This single-center, prospective, double-blind, randomized study evaluated 56 patients ASA 1 or 2, aged 18-65 years, scheduled for elective surgeries under general anesthesia with intubation. The patients were allocated into two groups: Group F received 30mg·kg -1 of magnesium sulphate and Group L, 2mg·kg -1 of lidocaine, continuous infusion, immediately before the anesthetic induction. Blood pressure (BP), heart rate (HR), and bispectral index (BIS) were measured in both groups at six different times related to administration of the study drugs. In both groups there was an increase in HR and BP after laryngoscopy and intubation, compared to baseline. Group M showed statistically significant increase in the values of systolic and diastolic blood pressure after intubation, which was clinically unimportant. There was no difference in the BIS values between groups. Among patients receiving magnesium sulfate, three (12%) had high blood pressure versus only one among those receiving lidocaine (4%), with no statistical difference. Magnesium sulfate and lidocaine have good efficacy and safety for hemodynamic management in laryngoscopy and intubation. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Evaluation of cerebral metabolism in patients with unilateral carotid stenosis by proton MR spectroscopy: a correlative study with cerebral hemodynamics by acetazolamide stress brain perfusion SPECT (acz-SPECT)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Seung; Kim, Geun Eun; Lee, Jeong Hee; Kim, Do Gyun; Kim, Sang Tae; Lee, Hee Kyung [College of Medicine, Ulsan Univ., Seoul (Korea, Republic of)

    2001-07-01

    Carotid stenosis may lead not only to cerebral hemodynamic compromise but also cerebral metabolic changes without overt infarction. To investigate the brain metabolic changes as a result of hemodynamic compromise in pts with carotid stenosis, we compared the changes in metabolism of the gray and white matter detected by proton MRS with cortical hemodynamics measured by Acz-SPECT. We prospectively studied symptomatic 18 pts (M/F=15/3, mean ages: 64.4y) with unilateral carotid stenosis. All pts underwent Acz-SPECT and MRS with 3 days. rCBF and rCVR of MCA territory were assessed by Acz-SPECT. Hemodynamic compromise was graded as stage 0 (normal rCBF and rCVR), stage 1 (normal rCBF and reduced rCVR), and stage 2( reduced rCBF and rCVR). Brain metabolism was assessed by measuring the peaks of N-acetyl aspartate (NAA), choline (Cho), and the sum of creatine and phosphocreatine (Cr) from noninfarcted white matter in the both centrum semiovales and gray matter in both MCA territories. On Acz-SPECT, 7 pts showed stage 2 were significantly lower than in pts with stage 0 (p<0.01). The asymmetric ratio of NAA/Cr in pts with state 2 was also significantly lower than in pts with stage 1(p<0.05). The asymmetric ratio of Cho/Cr was increased as hemodynamic stage increased but the differences were not statistically significant among 3 stages. In cortical gray matter, the asymmetric ratios of NAA/Cho and NAA/Cr were decreased statistically significant among 3 stages. In cortical gray matter, the asymmetric ratios of NAA/Cho and NAA/Cr were decreased and that of Cho/Cr was increased as hemodynamic stage increased. However, these differences were not statistically significant among 3 stages. The asymmetric ratios of NAA/Cho of centrum semiovale in pts with reduced rCBF and/or reduced rCVR were lower than in pts with normal perfusion. Our results indicate the metabolic changes detected by proton MRS in patients with carotid stenosis reflect a hemodynamic compromised state.

  12. The association of N-terminal pro-brain-type natriuretic peptide with hemodynamics and functional capacity in therapy-naive precapillary pulmonary hypertension: results from a cohort study.

    Science.gov (United States)

    Berghaus, T M; Kutsch, J; Faul, C; von Scheidt, W; Schwaiblmair, M

    2017-12-04

    N-terminal pro-brain-type natriuretic peptide (NT-proBNP) is currently used as a surrogate marker for disease severity in pulmonary hypertension (PH). However, NT-proBNP tends to have a high variability and may insufficiently correlate with hemodynamics and exercise capacity. To investigate the association of NT-proBNP with hemodynamics and cardio-pulmonary exercise testing (CPET) in 84 therapy-naive patients with precapillary PH. NT-proBNP levels were significantly correlated with hemodynamics and CPET parameters except for cardiac index, diffusion capacity, PaO2 at peak exercise, and peak minute ventilation. NT-proBNP correlated best with hemodynamics and CPET in women and patients >65 years. NT-proBNP correlated better with CPET in pulmonary arterial hypertension compared to chronic thromboembolic PH (CTEPH). NT-proBNP is associated with disease severity in precapillary PH. The association might be age- and gender-dependent. NT-proBNP may insufficiently correlate with disease severity in CTEPH, possibly due to comorbidity.

  13. Assessment of Cerebral Hemodynamic Changes in Pediatric Patients with Moyamoya Disease Using Probabilistic Maps on Analysis of Basal/Acetazolamide Stress Brain Perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Young; Lee, Jae Sung; Kim, Seung Ki; Wang, Kyu Chang; Cho, Byung Kyu; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2008-06-15

    To evaluate the hemodynamic changes and the predictive factors of the clinical outcome in pediatric patients with moyamoya disease, we analyzed pre/post basal/acetazolamide stress brain perfusion SPECT with automated volume of interest (VOIs) method. Total fifty six (M:F=33:24, age 6.7{+-}3.2 years) pediatric patients with moyamoya disease, who underwent basal/acetazolamide stress brain perfusion SPECT within 6 before and after revascularization surgery (encephalo-duro-arterio-synangiosis (EDAS) with frontal encephalo-galeo-synangiosis (EGS) and EDAS only followed on contralateral hemisphere), and followed-up more than 6 months after post-operative SPECT, were included. A mean follow-up period after post-operative SPECT was 33{+-}21 months. Each patient's SPECT image was spatially normalized to Korean template with the SPM2. For the regional count normalization, the count of pons was used as a reference region. The basal/acetazolamide-stressed cerebral blood flow (CBF), the cerebral vascular reserve index (CVRI), and the extent of area with significantly decreased basal/acetazolamide- stressed rCBF than age-matched normal control were evaluated on both medial frontal, frontal, parietal, occipital lobes, and whole brain in each patient's images. The post-operative clinical outcome was assigned as good, poor according to the presence of transient ischemic attacks and/or fixed neurological deficits by pediatric neurosurgeon. In a paired t-test, basal/acetazolamide-stressed rCBF and the CVRI were significantly improved after revascularization (p<0.05). The significant difference in the pre-operative basal/acetazolamide-stressed rCBF and the CVRI between the hemispheres where EDAS with frontal EGS was performed and their contralateral counterparts where EDAS only was done disappeared after operation (p<0.05). In an independent student t-test, the pre-operative basal rCBF in the medial frontal gyrus, the post-operative CVRI in the frontal lobe and the parietal

  14. Hemodynamic mechanisms of the attenuated blood pressure response to mental stress after a single bout of maximal dynamic exercise in healthy subjects

    Directory of Open Access Journals (Sweden)

    F.J. Neves

    2012-07-01

    Full Text Available To determine the hemodynamic mechanisms responsible for the attenuated blood pressure response to mental stress after exercise, 26 healthy sedentary individuals (age 29 ± 8 years underwent the Stroop color-word test before and 60 min after a bout of maximal dynamic exercise on a treadmill. A subgroup (N = 11 underwent a time-control experiment without exercise. Blood pressure was continuously and noninvasively recorded by infrared finger photoplethysmography. Stroke volume was derived from pressure signals, and cardiac output and peripheral vascular resistance were calculated. Perceived mental stress scores were comparable between mental stress tests both in the exercise (P = 0.96 and control (P = 0.24 experiments. After exercise, the blood pressure response to mental stress was attenuated (pre: 10 ± 13 vs post: 6 ± 7 mmHg; P 0.05. In conclusion, a single bout of maximal dynamic exercise attenuates the blood pressure response to mental stress in healthy subjects, along with lower stroke volume and cardiac output, denoting an acute modulatory action of exercise on the central hemodynamic response to mental stress.

  15. Deep Ocean Mineral Supplementation Enhances the Cerebral Hemodynamic Response during Exercise and Decreases Inflammation Postexercise in Men at Two Age Levels

    Directory of Open Access Journals (Sweden)

    Ching-Yin Wei

    2017-12-01

    Full Text Available Background: Previous studies have consistently shown that oral supplementation of deep ocean minerals (DOM improves vascular function in animals and enhances muscle power output in exercising humans.Purpose: To examine the effects of DOM supplementation on the cerebral hemodynamic response during physical exertion in young and middle-aged men.Design: Double-blind placebo-controlled crossover studies were conducted in young (N = 12, aged 21.2 ± 0.4 years and middle-aged men (N = 9, aged 46.8 ± 1.4 years. The counter-balanced trials of DOM and Placebo were separated by a 2-week washout period. DOM and Placebo were orally supplemented in drinks before, during, and after cycling exercise. DOM comprises desalinated minerals and trace elements from seawater collected ~618 m below the earth's surface.Methods: Cerebral hemodynamic response (tissue hemoglobin was measured during cycling at 75% VO2max using near infrared spectroscopy (NIRS.Results: Cycling time to exhaustion at 75% VO2max and the associated plasma lactate response were similar between the Placebo and DOM trials for both age groups. In contrast, DOM significantly elevated cerebral hemoglobin levels in young men and, to a greater extent, in middle-aged men compared with Placebo. An increased neutrophil to lymphocyte ratio (NLR was observed in middle-aged men, 2 h after exhaustive cycling, but was attenuated by DOM.Conclusion: Our data suggest that minerals and trace elements from deep oceans possess great promise in developing supplements to increase the cerebral hemodynamic response against a physical challenge and during post-exercise recovery for middle-aged men.

  16. Clinical and hemodynamic improvements after adding ambrisentan to background PDE5i therapy in patients with pulmonary arterial hypertension exhibiting a suboptimal therapeutic response (ATHENA-1).

    Science.gov (United States)

    Shapiro, Shelley; Torres, Fernando; Feldman, Jeremy; Keogh, Anne; Allard, Martine; Blair, Christiana; Gillies, Hunter; Tislow, James; Oudiz, Ronald J

    2017-05-01

    Pulmonary arterial hypertension (PAH) is a condition which may lead to right ventricular failure and premature death. While recent data supports the initial combination of ambrisentan (a selective ERA) and tadalafil (a PDE5i) in functional class II or III patients, there is no published data describing the safety and efficacy of ambrisentan when added to patients currently receiving a PDE5i and exhibiting a suboptimal response. The ATHENA-1 study describes the safety and efficacy of the addition of ambrisentan in this patient population. PAH patients with a suboptimal response to current PDE5i monotherapy were assigned ambrisentan in an open-label fashion and evaluated for up to 48 weeks. Cardiopulmonary hemodynamics (change in PVR as primary endpoint) were evaluated at week 24 and functional parameters and biomarkers were measured through week 48. Time to clinical worsening (TTCW) and survival are also described. Thirty-three subjects were included in the analysis. At week 24, statistically significant improvements in PVR (-32%), mPAP (-11%), and CI (+25%) were observed. Hemodynamic improvements at week 24 were further supported by improvements in the secondary endpoints: 6-min walk distance (+18 m), NT-proBNP (-31%), and maintenance or improvement in WHO FC in 97% of patients. Adverse events were consistent with known effects of ambrisentan. The hemodynamic, functional, and biomarker improvements observed in the ATHENA-1 study suggests that the sequential addition of ambrisentan to patients not having a satisfactory response to established PDE5i monotherapy is a reasonable option. Published by Elsevier Ltd.

  17. Slow spontaneous hemodynamic oscillations during sleep measured with near-infrared spectroscopy

    Science.gov (United States)

    Virtanen, Jaakko; Näsi, Tiina; Noponen, Tommi; Toppila, Jussi; Salmi, Tapani; Ilmoniemi, Risto J.

    2011-07-01

    Spontaneous cerebral hemodynamic oscillations below 100 mHz reflect the level of cerebral activity, modulate hemodynamic responses to tasks and stimuli, and may aid in detecting various pathologies of the brain. Near-infrared spectroscopy (NIRS) is ideally suited for both measuring spontaneous hemodynamic oscillations and monitoring sleep, but little research has been performed to combine these two applications. We analyzed 30 all-night NIRS-electroencephalography (EEG) sleep recordings to investigate spontaneous hemodynamic activity relative to sleep stages determined by polysomnography. Signal power of hemodynamic oscillations in the low-frequency (LF, 40-150 mHz) and very-low-frequency (VLF, 3-40 mHz) bands decreased in slow-wave sleep (SWS) compared to light sleep (LS) and rapid-eye-movement (REM) sleep. No statistically significant (p sleep in line with earlier studies with other modalities. These results increase our knowledge of the physiology of sleep, complement EEG data, and demonstrate the applicability of NIRS to studying spontaneous hemodynamic fluctuations during sleep.

  18. [Clinical characteristics of orthostatic hypertension with hemodynamic response of vasovagal syncope and postural orthostatic tachycardia syndrome in children and adolescents].

    Science.gov (United States)

    Zou, R M; Wang, C; Wu, L J; Luo, X M; Lin, P; Li, F; Xie, Z W

    2016-04-01

    To analyze the clinical characteristics of orthostatic hypertension (OHT) with hemodynamic response of vasovagal syncope (VVS) and postural orthostatic tachycardia syndrome (POTS) in children and adolescents. Children and adolescents admitted to the Second Xiangya Hospital from July 2008 to April 2015 were included, and divided into three groups according to the results of head-up tilt test (HUTT): OHT group, OHT+ VVS group, OHT+ POTS group. The clinical characteristics were analyzed. Totally 629 cases were included, 300 cases in OHT group, 264 cases in OHT+ VVS group and 65 cases in OHT+ POTS group. Syncope and dizziness were the main symptoms of the three groups, and the proportion of patients complaining syncope in OHT+ VVS group was higher than that in OHT group (49.6% vs. 35.7%, χ(2)=11.211, P<0.05) and in OHT+ POTS group (49.6% vs. 27.7%, χ(2)=10.123, P<0.05). Baseline heart rate (HR)((78±14) beat/min vs. (77±12) beat/min, t=2.570, P<0.05), HUTT 3 min HR ((100±14) beat/min vs. (94±13) beat/min, t=17.464, P<0.05) and ΔHR ((22±12) beat/min vs. (17±9) beat/min, t=19.303, P<0.05) were higher in OHT+ VVS group than in OHT group. When compared with OHT group, baseline systolic blood pressure (SBP) ((105±10) mmHg(1 mmHg=0.133 kPa) vs. (103±10) mmHg, t=4.918, P<0.05), HUTT 3 min SBP((114±10) mmHg vs. (113±11) mmHg, t=4.046, P<0.05), baseline diastolic blood pressure (DBP)((64±6) mmHg vs. (63±7) mmHg, t=2.618, P<0.05), HUTT 3 min DBP((78±8) mmHg vs. (77±8) mmHg, t=3.302, P<0.05), HUTT 3 min HR ((107±14) beat/min vs. (94±13) beat/min, t=24.229, P<0.05) and ΔHR ((32±11) beat/min vs. (17±9) beat/min, t=39.146, P<0.05) in OHT+ POTS group were significantly higher, and baseline HR((75±14) beat/min vs. (77±12) beat/min, t=-4.221, P<0.05)in OHT+ POTS group was lower. OHT with higher supine HR, upright HR and HR change is more susceptible to being complicated with VVS, while OHT with higher supine and upright SBP, higher supine and upright DBP and

  19. Childhood moyamoya disease: hemodynamic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tzika, A.A. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Robertson, R.L. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Barnes, P.D. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Vajapeyam, S. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Burrows, P.E. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Treves, S.T. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Scott, R.M. l [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States)

    1997-09-01

    Background. Childhood moyamoya disease is a rare progressive cerebrovascular disease. Objective. To evaluate cerebral hemodynamics using dynamic Gd-DTPA-enhanced imaging in children with moyamoya disease. Materials and methods. Eight children (2-11 years of age) with the clinical and angiographic findings typical of moyamoya disease, before and/or after surgical intervention (pial synangiosis), underwent conventional MR imaging (MRI) and hemodynamic MR imaging (HMRI). HMRI used a spoiled gradient-echo with low flip angle (10 deg) and long TE (TR/TE = 24/15 ms) to minimize T 1 effects and emphasize T 2{sup *} weighting. Raw and calculated hemodynamic images were reviewed. Three-dimensional time-of-flight MR angiography (MRA) and perfusion brain single photon emission computed tomography (SPECT) were also performed. Results. Abnormal hemodynamic maps resulting from vascular stenosis or occlusion and basal collaterals were observed in six patient studies. HMRI depicted perfusion dynamics of affected cerebrovascular territories, detected cortical perfusion deficits, and complemented conventional MRI and MRA. HMRI findings were consistent with those of catheter angiography and perfusion SPECT. Conclusion. Our preliminary experience suggests that HMRI may be of value in the preoperative and postoperative evaluation of surgical interventions in moyamoya disease. (orig.). With 4 figs., 3 tabs.

  20. In-vitro investigation of the hemodynamic responses of the cerebral, coronary and renal circulations with a rotary blood pump installed in the descending aorta.

    Science.gov (United States)

    Rezaienia, M A; Paul, G; Avital, E J; Mozafari, S; Rothman, M; Korakianitis, T

    2017-02-01

    This study investigates the hemodynamic responses of the cardiovascular system when a rotary blood pump is operating in the descending aorta, with a focus on the cerebral, coronary and renal autoregulation, using our in-house cardiovascular emulator. Several improvements have been made from our previous studies. A novel coronary system was developed to replicate the native coronary perfusion. Three pinch valves actuated by stepper motors were used to simulate the regional autoregulation systems of the native cerebral, coronary and renal circulations. A rotary pump was installed in the descending aorta, in series with the heart, and the hemodynamic responses of the cardiovascular system were investigated with a focus on cerebral, coronary and renal circulation over a wide range of pump rotor speeds. Experiments were performed twice, once with the autoregulation systems active and once with the autoregulation systems inactive, to reflect that there will be some impairment of autoregulatory systems in a patient with heart failure. It was shown that by increasing the rotor speed to 3000 rpm, the cardiac output was improved from 2.9 to 4.1 L/min as a result of an afterload reduction induced by the pressure drop upstream of the pump. The magnitudes of changes in perfusion in the cerebral, coronary and renal circulations were recorded with regional autoregulation systems active and inactive. Copyright © 2016. Published by Elsevier Ltd.

  1. Personality predicts brain responses to cognitive demands.

    Science.gov (United States)

    Kumari, Veena; ffytche, Dominic H; Williams, Steven C R; Gray, Jeffrey A

    2004-11-24

    Eysenck (1981) proposed that the personality dimension of introversion- extraversion (E) reflects individual differences in a cortical arousal system modulated by reticulothalamic- cortical pathways: it is chronically more active in introverts relative to extraverts and influences cognitive performance in interaction with task parameters. A circuit with connections to this system, including the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate (AC) cortex, has been identified in studies applying functional magnetic resonance imaging (fMRI) to a broad range of cognitive tasks. We examined the influence of E, assessed with the Eysenck Personality Questionnaire-Revised (Eysenck and Eysenck, 1991), in fMRI activity during an "n-back" task involving four memory loads (0-, 1-, 2-, and 3-back) and a rest condition in healthy men. To confirm the specificity of E effects, we also examined the effects of neuroticism and psychoticism (P) scores. We observed that, as predicted by Eysenck's model, the higher the E score, the greater the change in fMRI signal from rest to the 3-back condition in the DLPFC and AC. In addition, E scores were negatively associated with resting fMRI signals in the thalamus and Broca's area extending to Wernicke's area, supporting the hypothesized (negative) relationship between E and resting arousal. P scores negatively correlated with resting fMRI signal in the globus pallidus-putamen, extending previous findings of a negative relationship of schizotypy to striatal activity seen with older neuroimaging modalities to fMRI. These observations suggest that individual differences affect brain responses during cognitive activity and at rest and provide evidence for the hypothesized neurobiological basis of personality.

  2. Exercise-induced pulmonary artery hypertension in a patient with compensated cardiac disease: hemodynamic and functional response to sildenafil therapy.

    Science.gov (United States)

    Nikolaidis, Lazaros; Memon, Nabeel; O'Murchu, Brian

    2015-02-01

    We describe the case of a 54-year-old man who presented with exertional dyspnea and fatigue that had worsened over the preceding 2 years, despite a normally functioning bioprosthetic aortic valve and stable, mild left ventricular dysfunction (left ventricular ejection fraction, 0.45). His symptoms could not be explained by physical examination, an extensive biochemical profile, or multiple cardiac and pulmonary investigations. However, abnormal cardiopulmonary exercise test results and a right heart catheterization-combined with the use of a symptom-limited, bedside bicycle ergometer-revealed that the patient's exercise-induced pulmonary artery hypertension was out of proportion to his compensated left heart disease. A trial of sildenafil therapy resulted in objective improvements in hemodynamic values and functional class.

  3. Hemodynamic and metabolic responses of the working heart in relation to the oxygen carrying capacity of the perfusion medium.

    Science.gov (United States)

    Gauduel, Y; Martin, J L; Teisseire, B; Duruble, M; Duvelleroy, M

    1985-12-01

    Hemodynamic and metabolic adaptations of isolated working heart perfused alternatively with normal or low oxygen carrying capacity medium were studied in an experimental model. A step change in arterial oxygen content (1.75 to 15.3 ml O2/100 ml) was followed by a decrease in coronary flow, an increase in aortic flow, external work, myocardial oxygen consumption and efficiency, respectively. Metabolic investigations (steady state values) showed the activities of both glycolysis and the Krebs cycle to increase with the oxygen carrying capacity of the perfusion medium. Within the limits of these aerobic conditions, most of the cardiac changes were reversible. The use of reconstituted blood provides physiological conditions of oxygenation, allows a dynamic equilibrium between oxygen supply and oxygen requirements and maintains a near physiological regulation between cardiac dynamic and metabolic functions. These conclusions stress the importance of optimal O2 carrying capacity of perfusion medium in metabolic studies on isolated working heart.

  4. Functional MRI of food-induced brain responses

    NARCIS (Netherlands)

    Smeets, P.A.M.

    2006-01-01

    The ultimate goal of this research was to find central biomarkers of satiety, i.e., physiological measures in the brain that relate to subjectively rated appetite, actual food intake, or both. This thesis describes the changes in brain activity in response to food stimuli as measured by functional

  5. Age and Vascular Burden Determinants of Cortical Hemodynamics Underlying Verbal Fluency.

    Directory of Open Access Journals (Sweden)

    Sebastian Heinzel

    Full Text Available Aging processes and several vascular burden factors have been shown to increase the risk of dementia including Alzheimer's disease. While pathological alterations in dementia precede diagnosis by many years, reorganization of brain processing might temporarily delay cognitive decline. We hypothesized that in healthy elderly individuals both age-related neural and vascular factors known to be related to the development of dementia impact functional cortical hemodynamics during increased cognitive demands.Vascular burden factors and cortical functional hemodynamics during verbal fluency were assessed in 1052 non-demented elderly individuals (51 to 83 years; cross-sectional data of the longitudinal TREND study using functional near-infrared spectroscopy (fNIRS. The prediction of functional hemodynamic responses by age in multiple regressions and the impact of single and cumulative vascular burden factors including hypertension, diabetes, obesity, smoking and atherosclerosis were investigated.Replicating and extending previous findings we could show that increasing age predicted functional hemodynamics to be increased in right prefrontal and bilateral parietal cortex, and decreased in bilateral inferior frontal junction during phonological fluency. Cumulative vascular burden factors, with hypertension in particular, decreased left inferior frontal junction hemodynamic responses during phonological fluency. However, age and vascular burden factors showed no statistical interaction on functional hemodynamics.Based on these findings, one might hypothesize that increased fronto-parietal processing may represent age-related compensatory reorganization during increased cognitive demands. Vascular burden factors, such as hypertension, may contribute to regional cerebral hypoperfusion. These neural and vascular hemodynamic determinants should be investigated longitudinally and combined with other markers to advance the prediction of future cognitive decline

  6. Multipoint pacing by a left ventricular quadripolar lead improves the acute hemodynamic response to CRT compared with conventional biventricular pacing at any site.

    Science.gov (United States)

    Zanon, Francesco; Baracca, Enrico; Pastore, Gianni; Marcantoni, Lina; Fraccaro, Chiara; Lanza, Daniela; Picariello, Claudio; Aggio, Silvio; Roncon, Loris; Dell'Avvocata, Fabio; Rigatelli, GianLuca; Pacetta, Domenico; Noventa, Franco; Prinzen, Frits W

    2015-05-01

    Response to cardiac resynchronization therapy (CRT) remains challenging. Pacing from multiple sites of the left ventricle (LV) has shown promising results. The purpose of this study was to systematically compare the acute hemodynamic effects of multipoint pacing (MPP) by means of a quadripolar lead with conventional biventricular (BiV) pacing. Twenty-nine patients (23 men; mean age 72 ± 12 years; LV ejection fraction 29% ± 7%; 15 with ischemic cardiomyopathy, 17 with left bundle branch block; mean QRS 183 ± 23 ms) underwent CRT implantation. Per patient, 3.2 ± 1.2 different veins and 6.3 ± 2.4 pacing sites were tested. LV electrical delay (Q-LV) was measured at each location, along with the increase in LV dP/dtmax (maximum rate of rise of LV pressure) obtained by BiV and MPP. The effect of MPP, by means of simultaneous pacing from distal and proximal dipoles, was investigated at all available sites. Overall, 3.2 ± 1.2 different MPP measurements were collected per patient. When all sites were considered, LV dP/dtmax increased from 951 ± 193 mm Hg/s at baseline to 1144 ± 255 and 1178 ± 259 mm Hg/s on BiV and MPP, respectively. When the best site was considered, LV dP/dtmax increased from a baseline value of 942 ± 202 mm Hg/s to 1200 ± 267 mm Hg/s (BiV) and 1231 ± 267 mm Hg/s (MPP). The mean QRS duration at any site during MPP and conventional CRT was 171 ± 18 and 175 ± 16 ms (P = .003), respectively. Compared with BiV pacing at any LV site, MPP yielded a small but consistent increase in hemodynamic response. A correlation between the increase in hemodynamics and Q-LV on MPP was observed for all measurements, including those taken at the best and worst sites. The MPP-induced improvement in contractility was associated with significantly greater narrowing of the QRS complex than conventional BiV pacing. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  7. Benevolent sexism alters executive brain responses.

    Science.gov (United States)

    Dardenne, Benoit; Dumont, Muriel; Sarlet, Marie; Phillips, Christophe; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Salmon, Eric; Maquet, Pierre; Collette, Fabienne

    2013-07-10

    Benevolence is widespread in our societies. It is defined as considering a subordinate group nicely but condescendingly, that is, with charity. Deleterious consequences for the target have been reported in the literature. In this experiment, we used functional MRI (fMRI) to identify whether being the target of (sexist) benevolence induces changes in brain activity associated with a working memory task. Participants were confronted by benevolent, hostile, or neutral comments before and while performing a reading span test in an fMRI environment. fMRI data showed that brain regions associated previously with intrusive thought suppression (bilateral, dorsolateral, prefrontal, and anterior cingulate cortex) reacted specifically to benevolent sexism compared with hostile sexism and neutral conditions during the performance of the task. These findings indicate that, despite being subjectively positive, benevolence modifies task-related brain networks by recruiting supplementary areas likely to impede optimal cognitive performance.

  8. [Hemodynamic changes in hypoglycemic shock].

    Science.gov (United States)

    Gutiérrez, C; Piza, R; Chousleb, A; Hidalgo, M A; Ortigosa, J L

    1977-01-01

    Severe hypoglycemia may be present in seriously ill patients; if it is not corrected opportunely a series of neuroendocrinal mechanisms take place aimed at correcting metabolic alterations. These mechanisms can produce hemodynamic alterations as well. Nine mongrel dogs were studied with continuous registration of: blood pressure, central venous pressure, cardiac frequency, respiratory frequency, electrocardiogram and first derivative (Dp/Dt). Six dogs received crystalline (fast acting) insuline intravenously (group 1). After hemodynamic changes were registered hypoglycemia was corrected with 50 per cent glucose solution. Complementary insuline doses were administered to three dogs (group 2); in this group hypoglycemia was not corrected. In group 1 during hypoglycemia there was an increase in blood pressure, central venous pressure, cardiac frequency, respiratory frequency and Dp/Dt, and changes in QT and T wave on the EKG; these changes were partially reversible after hypoglycemia was corrected. The above mentioned alterations persisted in group 2, breathing became irregular irregular and respiratory arrest supervened. It can be inferred that the hemodynamic response to hypoglycemia is predominantly adrenergic. The role of catecolamines, glucocorticoides, glucagon, insuline, cyclic AMP in metabolic and hemodynamic alterations consecutive to hypoglycemia are discussed.

  9. Dexmedetomidine as an adjunct to anesthetic induction to attenuate hemodynamic response to endotracheal intubation in patients undergoing fast-track CABG

    Directory of Open Access Journals (Sweden)

    Menda Ferdi

    2010-01-01

    Full Text Available During induction of general anesthesia hypertension and tachycardia caused by tracheal intubation may lead to cardiac ischemia and arrhythmias. In this prospective, randomized study, dexmedetomidine has been used to attenuate the hemodynamic response to endotracheal intubation with low dose fentanyl and etomidate in patients undergoing myocardial revascularization receiving beta blocker treatment. Thirty patients undergoing myocardial revascularization received in a double blind manner, either a saline placebo or a dexmedetomidine infusion (1 µg/kg before the anesthesia induction. Heart rate (HR and blood pressure (BP were monitored at baseline, after placebo or dexmedetomidine infusion, after induction of general anesthesia, one, three and five minutes after endotracheal intubation. In the dexmedetomidine (DEX group systolic (SAP, diastolic (DAP and mean arterial pressures (MAP were lower at all times in comparison to baseline values; in the placebo (PLA group SAP, DAP and MAP decreased after the induction of general anesthesia and five minutes after the intubation compared to baseline values. This decrease was not significantly different between the groups. After the induction of general anesthesia, the drop in HR was higher in DEX group compared to PLA group. One minute after endotracheal intubation, HR significantly increased in PLA group while, it decreased in the DEX group. The incidence of tachycardia, hypotension and bradycardia was not different between the groups. The incidence of hypertension requiring treatment was significantly greater in the PLA group. It is concluded that dexmedetomidine can safely be used to attenuate the hemodynamic response to endotracheal intubation in patients undergoing myocardial revascularization receiving beta blockers.

  10. A comparative clinical study of dexmedetomidine versus placebo to attenuate hemodynamic response to endotracheal intubation in patients undergoing off pump coronary arterial bypass grafting

    Directory of Open Access Journals (Sweden)

    Soniya R Sulhyan

    2014-01-01

    Full Text Available Context: Direct laryngoscopy and endotracheal intubation are the most stressful periods during induction of anesthesia. These events can lead to hypertension, tachycardia, arrhythmias and myocardial ischaemia. Aims: (1 To evaluate the haemodynamic response to laryngoscopy and endotracheal intubation with a single preinduction infusion of dexmedetomidine (DEX 1 μg/kg over a 10 min period, (2 To assess the incidence of side effects, that is, rebound hypertension, bradycardia and hypotension etc., associated with the use of DEX. Settings and Design: This was a prospective, double-blind, parallel group randomized clinical trial of DEX (1 μg/kg before anesthetic induction to study the attenuation of hemodynamic response to endotracheal intubation in 60 adult patients undergoing elective off pump coronary arterial bypass grafting. Materials and Methods: Patients were randomly allocated to receive either DEX (DEX group, n = 30 or 0.9% normal saline (PLA group, n = 30. Hemodynamic variables were recorded at baseline (Abbreviated as TB, after completion of drug infusion (Abbreviated as TC, 3 min after induction and immediately before intubation (T0, at the 1 st (T1, 3 rd (T3 and 5 th (T5 min after intubation. Statistical Analysis Used: The data are presented as mean ± standard deviation. Demographic data were analysed by Student′s t-test between the two groups. Analysis of variance for repeated measures f-test was used to analyze changes over time. A P < 0.05 was considered as significant and P < 0.01 or 0.001 was considered as highly significant. Results: All the hemodynamic variables were comparable in both groups at baseline. Heart rate values were statistically significantly lower in the DEX group at TC and highly statistically significantly lower at T1, T3 and T5 values. Systolic blood pressure values were statistically significantly lower in the DEX group at T0 and highly statistically significantly lower at T1, T3 and T5. Diastolic blood

  11. The response of circulating brain natriuretic peptide to academic stress in college students.

    Science.gov (United States)

    Amir, Offer; Sagiv, Moran; Eynon, Nir; Yamin, Chen; Rogowski, Ori; Gerzy, Yishay; Amir, Ruthie E

    2010-01-01

    Brain natriuretic peptide (BNP), a cardiac peptide, has been implicated in the regulation of hypothalamic-pituitary-adrenocortical (HPA) responses to psychological stressors. The influence of academic stress on circulating concentration of the N-terminal fragment of BNP precursor (NT-proBNP), and in relation to the stress hormone (cortisol) response was studied in 170 college students undergoing major examinations. Just prior to the examination, we measured self-estimated stress level, systolic, and diastolic blood pressure (SBP, DBP), heart rate (HR), plasma levels of cortisol, and NT-proBNP. These parameters were compared to the participants' baseline measurements, taken at the same hour of a different 'control day', without a major examination to induce stress. Hemodynamic variables (SBP, DBP, and HR) increased on the examination day compared with baseline values ( p stress was marked by a significant decrease in plasma NT-proBNP concentration (-40%, p stress and the NT-proBNP reduction ( p = 0.02). In response to academic stress, the plasma cortisol elevation was accompanied by a marked reduction in plasma NT-proBNP level. These data may indicate that mental stress entails an interface between the HPA axis and the peripheral natriuretic peptide system, leading to reciprocating changes in circulating levels of the corresponding hormones.

  12. Response of the brain to enrichment

    Directory of Open Access Journals (Sweden)

    MARIAN C. DIAMOND

    2001-06-01

    Full Text Available Before 1960, the brain was considered by scientists to be immutable, subject only to genetic control. In the early sixties, however, investigators were seriously speculating that environmental influences might be capable of altering brain structure. By 1964, two research laboratories proved that the morphology and chemistry or physiology of the brain could be experientially altered (Bennett et al. 1964, Hubel and Wiesel 1965. Since then, the capacity of the brain to respond to environmental input, specifically "enrichment,'' has become an accepted fact among neuroscientists, educators and others. In fact, the demonstration that environmental enrichment can modify structural components of the rat brain at any age altered prevailing presumptions about the brain's plasticity (Diamond et al. 1964, Diamond 1988. The cerebral cortex, the area associated with higher cognitive processing, is more receptive than other parts of the brain to environmental enrichment. The message is clear: Although the brain possesses a relatively constant macrostructural organization, the ever-changing cerebral cortex, with its complex microarchitecture of unknown potential, is powerfully shaped by experiences before birth, during youth and, in fact, throughout life. It is essential to note that enrichment effects on the brain have consequences on behavior. Parents, educators, policy makers, and individuals can all benefit from such knowledge.Antes de 1960, os cientistas consideravam o encéfalo como imutável, sujeito apenas ao controle genético. Entretanto, no início dos anos 60, alguns pesquisadores especulavam seriamente que influências ambientais podiam ser capazes de alterar a estrutura cerebral. Por volta de 1964, dois laboratórios de pesquisa demonstraram que a morfologia e a química ou a fisiologia do cérebro poderia ser modificada pela experiência (Bennett et al. 1964, Hubel e Wiesel 1965. Desde então, a capacidade do cérebro a responder para responder a

  13. Motor planning and performance in transitive and intransitive gesture execution and imagination: Does EEG (RP) activity predict hemodynamic (fNIRS) response?

    Science.gov (United States)

    Balconi, Michela; Cortesi, Livia; Crivelli, Davide

    2017-05-01

    The interplay between neural structures and processes underlying motor planning and proper movement initiation and guidance is still a matter of debate. The present study aimed at investigating cortical correlates of motor planning and production when execution and imagery of real-life gestures are performed, with an additional focus on potential specificities of meaningful transitive/intransitive gestures. Electrophysiological (Readiness Potential - RP) and functional near-infrared spectroscopy (fNIRS) measures were analyzed to investigate the relationship between processes supporting action planning, execution and imagination. Participants were instructed to observe videos presenting various gestures and then to execute or to imagine them. We observed comparable RP before gesture execution and imagination, with a "facilitation effect" of transitive gestures in particular for imagination. Further, while the supplementary motor regions showed similar O 2 Hb profiles during both execution and imagination of transitive/intransitive gestures, premotor and posterior parietal areas showed specificities respectively for execution processes and transitive gesture execution. Finally, regression analyses showed that RP amplitude is a predictive factor of subsequent hemodynamic brain activity during action production. Such predictive role was modulated by both task and gesture type factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Altruistic behavior: mapping responses in the brain

    Science.gov (United States)

    Filkowski, Megan M; Cochran, R Nick; Haas, Brian W

    2016-01-01

    Altruism is an important social construct related to human relationships and the way many interpersonal and economic decisions are made. Recent progress in social neuroscience research shows that altruism is associated with a specific pattern of brain activity. The tendency to engage in altruistic behaviors is associated with greater activity within limbic regions such as the nucleus accumbens and anterior cingulate cortex in addition to cortical regions such as the medial prefrontal cortex and temporoparietal junction. Here, we review existing theoretical models of altruism as well as recent empirical neuroimaging research demonstrating how altruism is processed within the brain. This review not only highlights the progress in neuroscience research on altruism but also shows that there exist several open questions that remain unexplored. PMID:28580317

  15. Brain Responses during the Anticipation of Dyspnea

    OpenAIRE

    M Cornelia Stoeckel; Esser, Roland W; Matthias Gamer; Christian Büchel; Andreas von Leupoldt

    2016-01-01

    Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipa...

  16. Individual classification of ADHD children by right prefrontal hemodynamic responses during a go/no-go task as assessed by fNIRS

    Directory of Open Access Journals (Sweden)

    Yukifumi Monden

    2015-01-01

    Full Text Available While a growing body of neurocognitive research has explored the neural substrates associated with attention deficit hyperactive disorder (ADHD, an objective biomarker for diagnosis has not been established. The advent of functional near-infrared spectroscopy (fNIRS, which is a noninvasive and unrestrictive method of functional neuroimaging, raised the possibility of introducing functional neuroimaging diagnosis in young ADHD children. Previously, our fNIRS-based measurements successfully visualized the hypoactivation pattern in the right prefrontal cortex during a go/no-go task in ADHD children compared with typically developing control children at a group level. The current study aimed to explore a method of individual differentiation between ADHD and typically developing control children using multichannel fNIRS, emphasizing how spatial distribution and amplitude of hemodynamic response are associated with inhibition-related right prefrontal dysfunction. Thirty ADHD and thirty typically developing control children underwent a go/no-go task, and their cortical hemodynamics were assessed using fNIRS. We explored specific regions of interest (ROIs and cut-off amplitudes for cortical activation to distinguish ADHD children from control children. The ROI located on the border of inferior and middle frontal gyri yielded the most accurate discrimination. Furthermore, we adapted well-formed formulae for the constituent channels of the optimized ROI, leading to improved classification accuracy with an area under the curve value of 85% and with 90% sensitivity. Thus, the right prefrontal hypoactivation assessed by fNIRS would serve as a potentially effective biomarker for classifying ADHD children at the individual level.

  17. Individual classification of ADHD children by right prefrontal hemodynamic responses during a go/no-go task as assessed by fNIRS.

    Science.gov (United States)

    Monden, Yukifumi; Dan, Ippeita; Nagashima, Masako; Dan, Haruka; Uga, Minako; Ikeda, Takahiro; Tsuzuki, Daisuke; Kyutoku, Yasushi; Gunji, Yuji; Hirano, Daisuke; Taniguchi, Takamichi; Shimoizumi, Hideo; Watanabe, Eiju; Yamagata, Takanori

    2015-01-01

    While a growing body of neurocognitive research has explored the neural substrates associated with attention deficit hyperactive disorder (ADHD), an objective biomarker for diagnosis has not been established. The advent of functional near-infrared spectroscopy (fNIRS), which is a noninvasive and unrestrictive method of functional neuroimaging, raised the possibility of introducing functional neuroimaging diagnosis in young ADHD children. Previously, our fNIRS-based measurements successfully visualized the hypoactivation pattern in the right prefrontal cortex during a go/no-go task in ADHD children compared with typically developing control children at a group level. The current study aimed to explore a method of individual differentiation between ADHD and typically developing control children using multichannel fNIRS, emphasizing how spatial distribution and amplitude of hemodynamic response are associated with inhibition-related right prefrontal dysfunction. Thirty ADHD and thirty typically developing control children underwent a go/no-go task, and their cortical hemodynamics were assessed using fNIRS. We explored specific regions of interest (ROIs) and cut-off amplitudes for cortical activation to distinguish ADHD children from control children. The ROI located on the border of inferior and middle frontal gyri yielded the most accurate discrimination. Furthermore, we adapted well-formed formulae for the constituent channels of the optimized ROI, leading to improved classification accuracy with an area under the curve value of 85% and with 90% sensitivity. Thus, the right prefrontal hypoactivation assessed by fNIRS would serve as a potentially effective biomarker for classifying ADHD children at the individual level.

  18. Reduced Prefrontal Hemodynamic Response in Pediatric Obsessive-Compulsive Disorder as Measured by Near-Infrared Spectroscopy

    Science.gov (United States)

    Ota, Toyosaku; Iida, Junzo; Sawada, Masayuki; Suehiro, Yuko; Yamamuro, Kazuhiko; Matsuura, Hiroki; Tanaka, Shohei; Kishimoto, Naoko; Negoro, Hideki; Kishimoto, Toshifumi

    2013-01-01

    Recent developments in near-infrared spectroscopy (NIRS) have enabled non-invasive clarification of brain functions in psychiatric disorders. Functional neuroimaging studies of patients with obsessive-compulsive disorder (OCD) have suggested that the frontal cortex and subcortical structures may play a role in the pathophysiology of the disorder.…

  19. Immune responses at brain barriers and implications for brain development and neurological function in later life

    Directory of Open Access Journals (Sweden)

    Helen B. Stolp

    2013-08-01

    Full Text Available For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognised that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signalling, or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signalling at the brain barriers that may be an important part of the body’s response to damage or infection. This signalling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation–induced barrier dysfunction for brain development and subsequent neurological function are also discussed.

  20. The immune response of the human brain to abdominal surgery

    DEFF Research Database (Denmark)

    Forsberg, Anton; Cervenka, Simon; Jonsson Fagerlund, Malin

    2017-01-01

    OBJECTIVE: Surgery launches a systemic inflammatory reaction that reaches the brain and associates with immune activation and cognitive decline. Although preclinical studies have in part described this systemic-to-brain signaling pathway, we lack information on how these changes appear in humans....... This study examines the short- and long-term impact of abdominal surgery on the human brain immune system by positron emission tomography (PET) in relation to blood immune reactivity, plasma inflammatory biomarkers, and cognitive function. METHODS: Eight males undergoing prostatectomy under general...... to change in [(11) C]PBR28 binding (p = 0.027). INTERPRETATION: This study translates preclinical data on changes in the brain immune system after surgery to humans, and suggests an interplay between the human brain and the inflammatory response of the peripheral innate immune system. These findings may...

  1. Functional Magnetic Resonance Imaging of Cerebral Hemodynamic Responses to Pain Following Thoracic Thrust Manipulation in Individuals With Neck Pain: A Randomized Trial.

    Science.gov (United States)

    Sparks, Cheryl L; Liu, Wen C; Cleland, Joshua A; Kelly, Joseph P; Dyer, Sarah J; Szetela, Kathryn M; Elliott, James M

    The purpose of this study was to examine whether cerebral activation in response to noxious mechanical stimuli varies with thrust manipulation (TM) when compared with sham manipulation (SM) as measured by blood oxygenation level-dependent functional magnetic resonance imaging. Twenty-four volunteers (67% female) with complaints of acute or subacute mechanical (nontraumatic) neck pain satisfied eligibility requirements and agreed to participate. Participants were randomized to receive TM to the thoracic spine or SM, and then underwent functional magnetic resonance scanning while receiving noxious stimuli before and after TM or SM. An 11-point numeric pain rating scale was administered pre- and postmanipulation for neck pain and to determine perceptions of pain intensity with respect to neck pain and mechanical stimuli. Blood oxygenation level-dependent functional magnetic resonance imaging recorded the cerebral hemodynamic response to the mechanical stimuli. Imaging revealed significant group differences, with those individuals in the manipulation group exhibiting increased areas of activation (postmanipulation) in the insular and somatosensory cortices and individuals in the sham group exhibiting greater areas of activation in the precentral gyrus, supplementary motor area, and cingulate cortices (P < .05). However, between-group differences on the numeric pain rating scale for mechanical stimuli and for self-reported neck pain were not statistically significant. This study provides preliminary level 2b evidence suggesting cortical responses in patients with nontraumatic neck pain may vary between thoracic TM and a sham comparator. Copyright © 2017. Published by Elsevier Inc.

  2. Mouse brain responses to charged particle radiation

    Science.gov (United States)

    Nelson, Gregory; Nelson, Gregory; Chang, Polly; Favre, Cecile; Fike, John; Mao, Xiao-Wen; Obenaus, Andre; Pecaut, Michael; Vlkolinsky, Roman; Song, Sheng-Kwei; Spigelman, Igor; Stampanoni, Marco

    CHANGES IN DISEASE LATENCY AND HOMEOSTASIS: 1) APP23 transgenic mice exhibit many of the pathological features of Alzheimer's Disease, and the disease progression is continuous over several months. Electrophysiological measurements have shown that disease-related decreases in synaptic efficacy occur earlier in irradiated APP23 animals. 2) Using vascular polymer cast technology combined with micro-tomographic imaging, microvasculature changes following irradiation have been detected and are consistent with loss of vessels and an increased spacing between them. The time course of vessel changes to control and irradiated animals is being constructed. 3) In order to assess the ability of the brain to respond to external environmental shocks and restore orderly normal function (homeostasis), we apply a controlled septic shock by treating animals with lipopolysaccharide (LPS). We find that in irradiated animals, the patterns of electrophysiological changes associated with reactions to lipopolysaccharide (LPS) are complex and unlike those of either LPS or irradiation alone. They further suggest that the brain continues to remodel for up to 6 months following radiation. This is consistent with the idea that irradiation may potentiate the risks from late secondary insults.

  3. Brain Responses during the Anticipation of Dyspnea

    Directory of Open Access Journals (Sweden)

    M. Cornelia Stoeckel

    2016-01-01

    Full Text Available Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea.

  4. Brain Responses during the Anticipation of Dyspnea.

    Science.gov (United States)

    Stoeckel, M Cornelia; Esser, Roland W; Gamer, Matthias; Büchel, Christian; von Leupoldt, Andreas

    2016-01-01

    Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea.

  5. Early adversity and brain response to faces in young adulthood.

    Science.gov (United States)

    Lieslehto, Johannes; Kiviniemi, Vesa; Mäki, Pirjo; Koivukangas, Jenni; Nordström, Tanja; Miettunen, Jouko; Barnett, Jennifer H; Jones, Peter B; Murray, Graham K; Moilanen, Irma; Paus, Tomáš; Veijola, Juha

    2017-09-01

    Early stressors play a key role in shaping interindividual differences in vulnerability to various psychopathologies, which according to the diathesis-stress model might relate to the elevated glucocorticoid secretion and impaired responsiveness to stress. Furthermore, previous studies have shown that individuals exposed to early adversity have deficits in emotion processing from faces. This study aims to explore whether early adversities associate with brain response to faces and whether this association might associate with the regional variations in mRNA expression of the glucocorticoid receptor gene (NR3C1). A total of 104 individuals drawn from the Northern Finland Brith Cohort 1986 participated in a face-task functional magnetic resonance imaging (fMRI) study. A large independent dataset (IMAGEN, N = 1739) was utilized for reducing fMRI data-analytical space in the NFBC 1986 dataset. Early adversities were associated with deviant brain response to fearful faces (MANCOVA, P = 0.006) and with weaker performance in fearful facial expression recognition (P = 0.01). Glucocorticoid receptor gene expression (data from the Allen Human Brain Atlas) correlated with the degree of associations between early adversities and brain response to fearful faces (R2  = 0.25, P = 0.01) across different brain regions. Our results suggest that early adversities contribute to brain response to faces and that this association is mediated in part by the glucocorticoid system. Hum Brain Mapp 38:4470-4478, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. The movement time analyser task investigated with functional near infrared spectroscopy: an ecologic approach for measuring hemodynamic response in the motor system.

    Science.gov (United States)

    Vasta, Roberta; Cerasa, Antonio; Gramigna, Vera; Augimeri, Antonio; Olivadese, Giuseppe; Pellegrino, Giovanni; Martino, Iolanda; Machado, Alexis; Cai, Zhengchen; Caracciolo, Manuela; Grova, Christophe; Quattrone, Aldo

    2017-04-01

    Movement time analyzer (MTA) is an objective instrument to evaluate the degree of motor impairment as well as to investigate the dopaminergic drug effect in Parkinson's disease patients. The aim of this study is to validate a new ecologic neuroimaging tool for quantifying MTA-related hemodynamic response of the cortical motor system by means of functional near-infrared spectroscopy (fNIRS). 11 right-handed healthy volunteers (six male and five female, age range 27-64 years) were studied with fNIRS and functional magnetic resonance imaging (fMRI) while performing MTA task for each hand. MTA performance was better for the dominant hand and younger participants. Both fNIRS and fMRI analyses revealed MTA-related increase of haemoglobin levels in the primary motor and premotor cortices contralateral to the moving hand. This response progressively increased with aging. These findings supported the translation of fNIRS-based MTA behavioural tool in clinical practice.

  7. Functional brain network modularity predicts response to cognitive training after brain injury.

    Science.gov (United States)

    Arnemann, Katelyn L; Chen, Anthony J-W; Novakovic-Agopian, Tatjana; Gratton, Caterina; Nomura, Emi M; D'Esposito, Mark

    2015-04-14

    We tested the value of measuring modularity, a graph theory metric indexing the relative extent of integration and segregation of distributed functional brain networks, for predicting individual differences in response to cognitive training in patients with brain injury. Patients with acquired brain injury (n = 11) participated in 5 weeks of cognitive training and a comparison condition (brief education) in a crossover intervention study design. We quantified the measure of functional brain network organization, modularity, from functional connectivity networks during a state of tonic attention regulation measured during fMRI scanning before the intervention conditions. We examined the relationship of baseline modularity with pre- to posttraining changes in neuropsychological measures of attention and executive control. The modularity of brain network organization at baseline predicted improvement in attention and executive function after cognitive training, but not after the comparison intervention. Individuals with higher baseline modularity exhibited greater improvements with cognitive training, suggesting that a more modular baseline network state may contribute to greater adaptation in response to cognitive training. Brain network properties such as modularity provide valuable information for understanding mechanisms that influence rehabilitation of cognitive function after brain injury, and may contribute to the discovery of clinically relevant biomarkers that could guide rehabilitation efforts. © 2015 American Academy of Neurology.

  8. Distinctive responses of brain tumor cells to TLR2 ligands.

    Science.gov (United States)

    Yoon, Hee Jung; Jeon, Sae-Bom; Koh, Han Seok; Song, Jae-Young; Kim, Sang Soo; Kim, In-Hoo; Park, Eun Jung

    2015-05-01

    Malignant brain tumor mass contains significant numbers of infiltrating glial cells that may intimately interact with tumor cells and influence cancer treatments. Understanding of characteristic discrepancies between normal GLIA and tumor cells would, therefore, be valuable for improving anticancer therapeutics. Here, we report distinct differences in toll-like receptors (TLR)-2-mediated responses between normal glia and primary brain tumor cell lines. We found that tyrosine phosphorylation of STAT1 by TLR2 ligands and its downstream events did not occur in mouse, rat, or human brain tumor cell lines, but were markedly induced in normal primary microglia and astrocytes. Using TLR2-deficient, interferon (IFN)-γ-deficient, and IFNγ-receptor-1-deficient mice, we revealed that the impaired phosphorylation of STAT1 might be linked with defective TLR2 system in tumor cells, and that a TLR2-dependent pathway, not IFNγ-receptor machinery, might be critical for tyrosine STAT1 phosphorylation by TLR2 ligands. We also found that TLR2 and its heterodimeric partners, TLR1 and 6, on brain tumor cells failed to properly respond to TLR2 ligands, and representative TLR2-dependent cellular events, such as inflammatory responses and cell death, were not detected in brain tumor cells. Similar results were obtained in in vitro and in vivo experiments using orthotopic mouse and rat brain tumor models. Collectively, these results suggest that primary brain tumor cells may exhibit a distinctive dysfunction of TLR2-associated responses, resulting in abnormal signaling and cellular events. Careful targeting of this distinctive property could serve as the basis for effective therapeutic approaches against primary brain tumors. © 2015 Wiley Periodicals, Inc.

  9. Fitter Women Did Not Have Attenuated Hemodynamic Responses to Psychological Stress Compared with Age-Matched Women with Lower Levels of Fitness.

    Directory of Open Access Journals (Sweden)

    Sisitha U Jayasinghe

    Full Text Available According to the 'cross stressor adaptation hypothesis', regular exercise acts as a buffer against the detrimental effects of stress. Nevertheless, evidence that higher levels of cardiorespiratory fitness moderate hemodynamic responses to acute psychological stress is inconclusive, especially in women. Women aged 30-50 years (in the mid-follicular phase of the menstrual cycle with higher (n = 17 and lower (n = 17 levels of fitness were subjected to a Trier Social Stress Test (TSST. Continuous, non-invasive measurements were made of beat-to-beat, systolic blood pressure (SBP, diastolic blood pressure (DBP, mean arterial pressure (MAP, heart rate (HR, stroke volume (SV, cardiac output (CO, left ventricular ejection time (LVET, maximum slope, pulse interval (PI and total peripheral resistance (TPR. Maximal oxygen consumption was significantly (p<0.001 higher in the 'higher fit' women. Lower fit women had higher fasting glucose, resting heart rate, waist to hip ratios and elevated serum triglyceride and cholesterol/ HDL ratios compared with higher fit women (p<0.05 for all. While all measured parameters (for both groupsdisplayed significant (p<0.001 responses to the TSST, only HR, PI and LVET differed significantly between higher and lower fit women (p<0.001 for all with the higher fit women having the larger response in each case. It was also found that higher fit women had significantly shorter time to recovery for maximum slope compared with the lower fit women. These findings provide little support for the notion that higher levels of cardiorespiratory fitness result in lower cardiovascular responsivity to psychological stress in women but may indicate that lower fit women have blunted responses to stress.

  10. Brain stem auditory evoked responses in human infants and adults

    Science.gov (United States)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  11. Behavioural and brain responses related to Internet search and memory.

    Science.gov (United States)

    Dong, Guangheng; Potenza, Marc N

    2015-10-01

    The ready availability of data via searches on the Internet has changed how many people seek and perhaps store and recall information, although the brain mechanisms underlying these processes are not well understood. This study investigated brain mechanisms underlying Internet-based vs. non-Internet-based searching. The results showed that Internet searching was associated with lower accuracy in recalling information as compared with traditional book searching. During functional magnetic resonance imaging, Internet searching was associated with less regional brain activation in the left ventral stream, the association area of the temporal-parietal-occipital cortices, and the middle frontal cortex. When comparing novel items with remembered trials, Internet-based searching was associated with higher brain activation in the right orbitofrontal cortex and lower brain activation in the right middle temporal gyrus when facing those novel trials. Brain activations in the middle temporal gyrus were inversely correlated with response times, and brain activations in the orbitofrontal cortex were positively correlated with self-reported search impulses. Taken together, the results suggest that, although Internet-based searching may have facilitated the information-acquisition process, this process may have been performed more hastily and be more prone to difficulties in recollection. In addition, people appear less confident in recalling information learned through Internet searching and that recent Internet searching may promote motivation to use the Internet. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. An Exploration of the Effect of Hemodynamic Changes Due to Normal Aging on the fNIRS Response to Semantic Processing of Words

    Directory of Open Access Journals (Sweden)

    Mahnoush eAmiri

    2014-12-01

    Full Text Available Like other neuroimaging techniques assessing cerebral blood oxygenation, near-infrared spectroscopy (NIRS has been applied in many neurocognitive studies. With NIRS, neural activation can be explored indirectly via hemodynamic changes in the imaged region. In studies of aging, changes in baseline physiology and brain anatomy confound NIRS measures seeking to investigate age-related changes in neuronal activity. The field is thus hampered by the complexity of the aging process itself, and statistical inferences from functional data acquired by optical imaging techniques must be interpreted with care. Multimodal integration of NIRS with both structural and baseline physiological assessments is crucial to avoid misinterpreting neuroimaging signals. In this study, a combination of two different optical techniques, anatomical MRI and Arterial Spin Labeling (ASL was used to investigate age-related changes in activation during a lexical-semantic processing task. Quantitative analysis revealed decreased baseline oxyhemoglobin and cerebral blood flow in the older adults. Using baseline physiology measures as regressors in the investigation of functional concentration changes when doing analyses of variance, we found significant changes in task-induced areas of activity. In the right hemisphere, more significant age-related activity was observed around the junction of the inferior frontal gyrus and inferior precentral sulcus, along with engagement of Wernicke’s area. In the left hemisphere, the degree and extent of frontal activation, including the dorsolateral prefrontal cortex and inferior frontal gyrus, differed between age groups. Measuring background physiological differences and using their values as regressors in statistical analyses allowed a more appropriate, age-corrected understanding of the functional differentiations between age groups. Age-corrected baselines are thus essential to investigate which components of the NIRS signal are altered

  13. Orbitofrontal cortex volume and brain reward response in obesity.

    Science.gov (United States)

    Shott, M E; Cornier, M-A; Mittal, V A; Pryor, T L; Orr, J M; Brown, M S; Frank, G K W

    2015-02-01

    What drives overconsumption of food is poorly understood. Alterations in brain structure and function could contribute to increased food seeking. Recently, brain orbitofrontal cortex (OFC) volume has been implicated in dysregulated eating but little is known how brain structure relates to function. We examined obese (n=18, age=28.7±8.3 years) and healthy control women (n=24, age=27.4±6.3 years) using a multimodal brain imaging approach. We applied magnetic resonance and diffusion tensor imaging to study brain gray and white matter volume as well as white matter (WM) integrity, and tested whether orbitofrontal cortex volume predicts brain reward circuitry activation in a taste reinforcement-learning paradigm that has been associated with dopamine function. Obese individuals displayed lower gray and associated white matter volumes (Pobese individuals in fiber tracts including the external capsule, corona radiata, sagittal stratum, and the uncinate, inferior fronto-occipital, and inferior longitudinal fasciculi. Gray matter volume of the gyrus rectus at the medial edge of the orbitofrontal cortex predicted functional taste reward-learning response in frontal cortex, insula, basal ganglia, amygdala, hypothalamus and anterior cingulate cortex in control but not obese individuals. This study indicates a strong association between medial orbitofrontal cortex volume and taste reinforcement-learning activation in the brain in control but not in obese women. Lower brain volumes in the orbitofrontal cortex and other brain regions associated with taste reward function as well as lower integrity of connecting pathways in obesity (OB) may support a more widespread disruption of reward pathways. The medial orbitofrontal cortex is an important structure in the termination of food intake and disturbances in this and related structures could contribute to overconsumption of food in obesity.

  14. The hemodynamic changes in the human prefrontal cortex during the Flanker and Simon tasks: a fNIRS study

    Science.gov (United States)

    Yuan, Zhen; Lin, Xiaohong

    2016-03-01

    Functional near-infrared spectroscopy (fNIRS) is a low-cost, portable and noninvasive functional neuroimaging technique by measuring the change in the concentrations of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR). The aim of present study is to reveal the different brain activity pattern of adult subjects during the completion of flanker and Simon tasks underlying the congruent and incongruent test conditions so as to identify the basic neural mechanism of inhibitory control in executive function. In the study, we utilized fNIRS to explore the hemodynamic changes in the prefrontal cortex and our imaging results suggested that there were notable differences for the hemodynamic responses between the flank and Simon task. A striking difference is that for the flank task, the increase in the HbO concentration during incongruent trials was larger than that during congruent trials for the channels across middle frontal cortex while for the Simon task, the hemodynamic response was stronger for the congruent condition compared to that from the incongruent one. Interestingly, the hemodynamic response exhibited similar task-related activation in the superior frontal cortex for both the congruent and incongruent conditions. Further, independent component analysis showed that different brain activation patterns were identified to accomplish different inhibitory control tasks underlying the congruent and incongruent conditions.

  15. The effect of different doses of esmolol on hemodynamic, bispectral index and movement response during orotracheal intubation: prospective, randomized, double-blind study

    Directory of Open Access Journals (Sweden)

    Mensure Yılmaz Çakırgöz

    2014-12-01

    Full Text Available Objective: A prospective, randomized and double-blind study was planned to identify the optimum dose of esmolol infusion to suppress the increase in bispectral index values and the movement and hemodynamic responses to tracheal intubation. Materials and methods: One hundred and twenty patients were randomly allocated to one of three groups in a double-blind fashion. 2.5 mg kg-1 propofol was administered for anesthesia induction. After loss of consciousness, and before administration of 0.6 mg kg-1 rocuronium, a tourniquet was applied to one arm and inflated to 50 mm Hg greater than systolic pressure. The patients were divided into 3 groups; 1 mg kg-1 h-1 esmolol was given as the loading dose and in Group Es50 50 μg kg-1 min-1, in Group Es150 150 μg kg-1 min-1, and in Group Es250 250 μg kg-1 min-1 esmolol infusion was started. Five minutes after the esmolol has been begun, the trachea was intubated; gross movement within the first minute after orotracheal intubation was recorded. Results: Incidence of movement response and the ΔBIS max values were comparable in Group Es250 and Group Es150, but these values were significantly higher in Group Es50 than in the other two groups. In all three groups in the 1st minute after tracheal intubation heart rate and mean arterial pressure were significantly higher compared to values from before intubation (p < 0.05. In the study period there was no significant difference between the groups in terms of heart rate and mean arterial pressure. Conclusion: In clinical practise we believe that after 1 mg kg-1 loading dose, 150 μg kg-1 min-1 iv esmolol dose is sufficient to suppress responses to tracheal intubation without increasing side effects.

  16. Cyclic AMP response element binding protein and brain-derived ...

    Indian Academy of Sciences (India)

    Madhu

    The transcription factor cyclic AMP response element binding protein (CREB) and the neurotrophin brain-derived neurotrophic factor (BDNF) are targets of diverse classes of antidepressants and are known to be regulated in animal models and in patients suffering from depression. Given their role in neuronal plasticity, ...

  17. Sugars, Sweet Taste Receptors, and Brain Responses

    Science.gov (United States)

    Lee, Allen A.; Owyang, Chung

    2017-01-01

    Sweet taste receptors are composed of a heterodimer of taste 1 receptor member 2 (T1R2) and taste 1 receptor member 3 (T1R3). Accumulating evidence shows that sweet taste receptors are ubiquitous throughout the body, including in the gastrointestinal tract as well as the hypothalamus. These sweet taste receptors are heavily involved in nutrient sensing, monitoring changes in energy stores, and triggering metabolic and behavioral responses to maintain energy balance. Not surprisingly, these pathways are heavily regulated by external and internal factors. Dysfunction in one or more of these pathways may be important in the pathogenesis of common diseases, such as obesity and type 2 diabetes mellitus. PMID:28672790

  18. Brain injury forces of moderate magnitude elicit the fencing response.

    Science.gov (United States)

    Hosseini, Ario H; Lifshitz, Jonathan

    2009-09-01

    Traumatic brain injury is heterogeneous, both in its induction and ensuing neurological sequelae. In this way, medical care depends on accurately identifying the severity of injury-related forces. Clinically, injury severity is determined by a combination of the Glasgow Coma Scale, length of unconsciousness, posttraumatic amnesia, and persistence of neurological sequelae. In the laboratory, injury severity is gauged by the biomechanical forces and the acute suppression of neurological reflexes. The present communication describes and validates the "fencing response" as an overt indicator of injury force magnitude and midbrain localization to aid in injury identification and classification. Using YouTube, the Internet video database, videos were screened for head injury resulting in unconsciousness and documented for the fencing response. Adult male rats were subjected to midline fluid percussion brain injury at two severities, observed for acute neurological reflexes and the midbrain evaluated histopathologically. Tonic posturing (fencing response) has been observed to precede convulsions in sports injuries at the moment of impact, where extension and flexion of opposite arms occurs despite body position or gravity. Of the 35 videos identified by an impact to the head and period of unconsciousness, 66% showed a fencing response at the moment of impact, regardless of the side of impact, without ensuing convulsion. Similarly, diffuse brain-injured rats demonstrate a fencing response upon injury at moderate (1.9 atm, 39/44 animals) but not mild severity (1.1 atm, 0/19 animals). The proximity of the lateral vestibular nucleus to the cerebellar peduncles makes it vulnerable to mechanical forces that initiate a neurochemical storm to elicit the neuromotor response, disrupt the blood-brain barrier, and alter the nuclear volume. Therefore, the fencing response likely indicates neurological disturbance unique from convulsion associated with mechanical forces of moderate

  19. Hemodynamic responses and upper airway morbidity following tracheal intubation in patients with hypertension: conventional laryngoscopy versus an intubating laryngeal mask airway.

    Science.gov (United States)

    Sener, Elif Bengi; Ustun, Emre; Ustun, Burcu; Sarihasan, Binnur

    2012-01-01

    We compared hemodynamic responses and upper airway morbidity following tracheal intubation via conventional laryngoscopy or intubating laryngeal mask airway in hypertensive patients. Forty-two hypertensive patients received a conventional laryngoscopy or were intubated with a intubating laryngeal mask airway. Anesthesia was induced with propofol, fentanyl, and cis-atracurium. Measurements of systolic and diastolic blood pressures, heart rate, rate pressure product, and ST segment changes were made at baseline, preintubation, and every minute for the first 5 min following intubation. The number of intubation attempts, the duration of intubation, and airway complications were recorded. The intubation time was shorter in the conventional laryngoscopy group than in the intubating laryngeal mask airway group (16.33 ± 10.8 vs. 43.04 ± 19.8 s, respectively) (pmask airway group were higher than those in the conventional laryngoscopy group at 1 and 2 min following intubation (pmask airway group (15970.90 ± 3750 and 13936.76 ± 2729, respectively) were higher than those in the conventional laryngoscopy group (13237.61 ± 3413 and 11937.52 ± 3160, respectively) (pelevation between the groups. The maximum ST changes compared with baseline values were not significant between the groups (conventional laryngoscopy group: 0.328 mm versus intubating laryngeal mask airway group: 0.357 mm; p = 0.754). The number and type of airway complications were similar between the groups. The intense and repeated oropharyngeal and tracheal stimulation resulting from intubating laryngeal mask airway induces greater pressor responses than does stimulation resulting from conventional laryngoscopy in hypertensive patients. As ST changes and upper airway morbidity are similar between the two techniques, conventional laryngoscopy, which is rapid and safe to perform, may be preferred in hypertensive patients with normal airways.

  20. EFFECTS OF PREANESTHETIC SINGLE DOSE INTRAVENOUS DEXMEDETOMIDINE VERSUS FENTANYL ON HEMODYNAMIC RESPONSE TO ENDOTRACHEAL INTUBATION-A CLINICAL COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Chandita

    2015-12-01

    Full Text Available INTRODUCTION Many pharmacological agents have been evaluated in regards to their efficacy of blunting the adverse cardiovascular response to laryngoscopy and tracheal intubation. The aim of this study was to evaluate the efficacy of dexmedetomidine compared to fentanyl in blunting the haemodynamic response to laryngoscopy and intubation. METHOD Sixty patients were randomly allocated into two groups (30 patients in each group. The group D received intravenously 1 µgm/kg dexmedetomidine infusion and group F received 2µgm/kg fentanyl infusion. The study drugs were prepared in an identical looking container and were infused fifteen minutes prior to induction of anaesthesia. The study drugs were infused over a period of ten minutes and all the patients underwent a similar anaesthetics technique. Heart rate (HR and blood pressure (systolic, diastolic and mean blood pressure were noted at baseline, at the end of infusion of the study drugs, after induction of anaesthesia, immediately after laryngoscopy and intubation and at 1, 3, 5, 7 and 10 minutes after laryngoscopy and intubation. RESULTS HR significantly decreased in the group D when compared to group F immediately after study drug infusion and there was statistically significant reduction in heart rate for up to 5 min after intubation in both the groups. Although HR increased after intubation in both the groups, the magnitude was lower in the group D. In both the groups, laryngoscopy and intubation led to an increase in systolic, diastolic and mean arterial pressure; the magnitude was lower in the group D. CONCLUSION Dexmeditomidine (1µ/kg attenuates these untoward responses of laryngoscopy and intubation more effectively than fentanyl (2 µ/kg when administered as bolus dose in the pre-induction period of general anaesthesia.

  1. Altered brain response to others׳ pain in major depressive disorder.

    Science.gov (United States)

    Fujino, Junya; Yamasaki, Nobuyuki; Miyata, Jun; Kawada, Ryosaku; Sasaki, Hitoshi; Matsukawa, Noriko; Takemura, Ariyoshi; Ono, Miki; Tei, Shisei; Takahashi, Hidehiko; Aso, Toshihiko; Fukuyama, Hidenao; Murai, Toshiya

    2014-08-01

    Empathy has a central role in successful interpersonal engagement. Several studies have reported altered empathy in major depressive disorder (MDD), which could lead to interpersonal difficulties. However, the neural basis of altered empathy in the disorder is still largely unknown. To address this, we performed functional magnetic resonance imaging that tested empathy for others׳ pain in MDD patients. Eleven patients with MDD and 11 age-, gender-, handedness-, and education level-matched healthy control subjects were studied. We compared MDD patients and healthy controls for their regional hemodynamic responses to visual perception of videos showing human hands in painful situations. We also assessed subjective pain ratings of the videos in each group. The MDD patients showed lower pain ratings for the painful videos compared with the healthy controls. In addition, the MDD patients showed reduced cerebral activation in the left middle cingulate cortex, and the right somatosensory-related cortices, whereas they showed greater cerebral activation in the left inferior frontal gyrus. We relied on a relatively small sample size and could not exclude effects of medications. These results suggest that in MDD patients the altered neural activations in these regions may be associated with a deficit in the identification of pain in others. This study adds to our understanding of the neural mechanism involved in empathy in MDD. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The usefulness of the ivy sign on fluid-attenuated intensity recovery images in improved brain hemodynamic changes after superficial temporal artery-middle cerebral artery anastomosis in adult patients with moyamoya disease.

    Science.gov (United States)

    Lee, Jung Keun; Yoon, Byul Hee; Chung, Seung Young; Park, Moon Sun; Kim, Seong Min; Lee, Do Sung

    2013-10-01

    MR perfusion and single photon emission computerized tomography (SPECT) are well known imaging studies to evaluate hemodynamic change between prior to and following superficial temporal artery (STA)-middle cerebral artery (MCA) anastomosis in moyamoya disease. But their side effects and invasiveness make discomfort to patients. We evaluated the ivy sign on MR fluid attenuated inversion recovery (FLAIR) images in adult patients with moyamoya disease and compared it with result of SPECT and MR perfusion images. We enrolled twelve patients (thirteen cases) who were diagnosed with moyamoya disease and underwent STA-MCA anastomosis at our medical institution during a period ranging from September of 2010 to December of 2012. The presence of the ivy sign on MR FLAIR images was classified as Negative (0), Minimal (1), and Positive (2). Regions were classified into four territories: the anterior cerebral artery (ACA), the anterior MCA, the posterior MCA and the posterior cerebral artery. Ivy signs on preoperative and postoperative MR FLAIR were improved (8 and 4 in the ACA regions, 13 and 4 in the anterior MCA regions and 19 and 9 in the posterior MCA regions). Like this result, the cerebrovascular reserve (CVR) on SPECT was significantly increased in the sum of CVR in same regions after STA-MCA anastomosis. After STA-MCA anastomosis, ivy signs were decreased in the cerebral hemisphere. As compared with conventional diagnostic modalities such as SPECT and MR perfusion images, the ivy sign on MR FLAIR is considered as a useful indicator in detecting brain hemodynamic changes between preoperatively and postoperatively in adult moyamoya patients.

  3. Effect of sleep quality on hemodynamic response to exercise and heart rate recovery in apparently healthy individuals.

    Science.gov (United States)

    Yuksel, Murat; Yildiz, Abdulkadir; Demir, Melike; Bilik, Mehmet Z; Ozaydogdu, Necdet; Aktan, Adem; Isik, Ferhat; Demir, Suleyman; Yazgan, Umit C; Toprak, Nizamettin

    2014-12-01

    Poor sleep quality has an unfavorable impact on autonomic nervous system activity, especially that of the cardiovascular (CV) system. The heart rate (HR) and blood pressure (BP) at rest and during exercise, along with the heart rate recovery (HRR), were examined in poor sleepers and compared with individuals with good sleep quality. A total of 113 healthy individuals were enrolled to the study. All participants performed treadmill stress testing. Sleep quality of participants was assessed by using the Pittsburgh Sleep Quality Index (PSQI) questionnaire: 48 subjects were categorized as ‘poor sleepers’ (PSQI score > 6 points), and the rest were grouped as ‘good sleepers’. The poor sleepers showed higher resting HR (p exercise (p=0.046) and less HR increase with exercise (chronotropic incompetence) (p=0.002) compared with individuals who reported good sleep quality. In addition, the poor sleepers demonstrated reduced heart rate recovery at the 1st and 3rd minute of recovery (p=0.005 and 0.037, respectively) compared with good sleepers. Multivariate logistic regression analysis revealed that only resting diastolic BP was the independent predictor of HRE. The PSQI score was positively correlated with resting HR; while it was negatively correlated with HR response to exercise, HRR1 and HRR index-1. This cross-sectional study emphasizes the effect of poor sleep quality on unfavorable cardiovascular outcome indicators of the treadmill stress test.

  4. Overweight adolescents’ brain response to sweetened beverages mirrors addiction pathways

    Science.gov (United States)

    Claus, Eric D.; Hudson, Karen A.; Filbey, Francesca M.; Jimenez, Elizabeth Yakes; Lisdahl, Krista M.; Kong, Alberta S.

    2017-01-01

    Many adolescents struggle with overweight/obesity, which exponentially increases in the transition to adulthood. Overweight/obesity places youth at risk for serious health conditions, including type 2 diabetes. In adults, neural substrates implicated in addiction (e.g., orbitofrontal cortex (OFC), striatum, amygdala, and ventral tegmental area) have been found to be relevant to risk for overweight/obesity. In this study, we examined three hypotheses to disentangle the potential overlap between addiction and overweight/obesity processing by examining (1) brain response to high vs. low calorie beverages, (2) the strength of correspondence between biometrics, including body mass index (BMI) and insulin resistance, and brain response and (3) the relationship between a measure of food addiction and brain response using an established fMRI gustatory cue exposure task with a sample of overweight/obese youth (M age = 16.46; M BMI = 33.1). Greater BOLD response was observed across the OFC, inferior frontal gyrus (IFG), nucleus accumbens, right amygdala, and additional frontoparietal and temporal regions in neural processing of high vs. low calorie beverages. Further, BMI scores positively correlated with BOLD activation in the high calorie > low calorie contrast in the right postcentral gyrus and central operculum. Insulin resistance positively correlated with BOLD activation across the bilateral middle/superior temporal gyrus, left OFC, and superior parietal lobe. No relationships were observed between measures of food addiction and brain response. These findings support the activation of parallel addiction-related neural pathways in adolescents’ high calorie processing, while also suggesting the importance of refining conceptual and neurocognitive models to fit this developmental period. PMID:27392791

  5. Overweight adolescents' brain response to sweetened beverages mirrors addiction pathways.

    Science.gov (United States)

    Feldstein Ewing, Sarah W; Claus, Eric D; Hudson, Karen A; Filbey, Francesca M; Yakes Jimenez, Elizabeth; Lisdahl, Krista M; Kong, Alberta S

    2017-08-01

    Many adolescents struggle with overweight/obesity, which exponentially increases in the transition to adulthood. Overweight/obesity places youth at risk for serious health conditions, including type 2 diabetes. In adults, neural substrates implicated in addiction (e.g., orbitofrontal cortex (OFC), striatum, amygdala, and ventral tegmental area) have been found to be relevant to risk for overweight/obesity. In this study, we examined three hypotheses to disentangle the potential overlap between addiction and overweight/obesity processing by examining (1) brain response to high vs. low calorie beverages, (2) the strength of correspondence between biometrics, including body mass index (BMI) and insulin resistance, and brain response and (3) the relationship between a measure of food addiction and brain response using an established fMRI gustatory cue exposure task with a sample of overweight/obese youth (M age = 16.46; M BMI = 33.1). Greater BOLD response was observed across the OFC, inferior frontal gyrus (IFG), nucleus accumbens, right amygdala, and additional frontoparietal and temporal regions in neural processing of high vs. low calorie beverages. Further, BMI scores positively correlated with BOLD activation in the high calorie > low calorie contrast in the right postcentral gyrus and central operculum. Insulin resistance positively correlated with BOLD activation across the bilateral middle/superior temporal gyrus, left OFC, and superior parietal lobe. No relationships were observed between measures of food addiction and brain response. These findings support the activation of parallel addiction-related neural pathways in adolescents' high calorie processing, while also suggesting the importance of refining conceptual and neurocognitive models to fit this developmental period.

  6. Early Changes in QRS Frequency Following Cardiac Resynchronization Predict Hemodynamic Response in Left Bundle Branch Block Patients.

    Science.gov (United States)

    Niebauer, Mark J; Rickard, John; Tchou, Patrick J; Varma, Niraj

    2016-05-01

    QRS characteristics are the cornerstone of patient selection in cardiac resynchronization therapy (CRT) and the presence of left bundle branch block (LBBB) and baseline QRS ≥150 milliseconds portends a good outcome. We previously showed that baseline QRS frequency analysis adds predictive value to LBBB alone and have hypothesized that a change in frequency characteristics following CRT may produce additional predictive value. We examined the QRS frequency characteristics of 182 LBBB patients before and soon after CRT. Patients were assigned to responder and nonresponder groups. Responders were defined by a decrease in left ventricular end-systolic volume (LVESV) ≥15% following CRT. We analyzed the QRS in ECG leads I, AVF, and V3 before and soon after CRT using the discrete Fourier transform algorithm. The percentage of total QRS power within discrete frequency intervals before and after CRT was calculated. The reduction in lead V3 power <10 Hz was the best indicator of response. Baseline QRS width was similar between the responders and nonresponders (162.2 ± 17.2 milliseconds vs. 158 ± 22.1 milliseconds, respectively; P = 0.180). Responders exhibited a greater reduction in QRS power <10 Hz (-17.0 ± 11.9% vs. -6.6 ± 12.5%; P < 0.001) and a significant AUC (0.743; P < 0.001). A ≥8% decline in QRS power <10 Hz produced the best predictive values (PPV = 84%, NPV = 59%). Importantly, when patients with baseline QRS <150 milliseconds were compared, the AUC improved (0.892, P < 0.001). Successful CRT produces a significant reduction in QRS power below 10 Hz, particularly when baseline QRS <150 milliseconds. These results indicate that QRS frequency changes after CRT provide additional predictive value to QRS alone. © 2016 Wiley Periodicals, Inc.

  7. Response-locked brain dynamics of word production.

    Directory of Open Access Journals (Sweden)

    Stéphanie Riès

    Full Text Available The cortical regions involved in the different stages of speech production are relatively well-established, but their spatio-temporal dynamics remain poorly understood. In particular, the available studies have characterized neural events with respect to the onset of the stimulus triggering a verbal response. The core aspect of language production, however, is not perception but action. In this context, the most relevant question may not be how long after a stimulus brain events happen, but rather how long before the production act do they occur. We investigated speech production-related brain activity time-locked to vocal onset, in addition to the common stimulus-locked approach. We report the detailed temporal interplay between medial and left frontal activities occurring shortly before vocal onset. We interpret those as reflections of, respectively, word selection and word production processes. This medial-lateral organization is in line with that described in non-linguistic action control, suggesting that similar processes are at play in word production and non-linguistic action production. This novel view of the brain dynamics underlying word production provides a useful background for future investigations of the spatio-temporal brain dynamics that lead to the production of verbal responses.

  8. Response-locked brain dynamics of word production.

    Science.gov (United States)

    Riès, Stéphanie; Janssen, Niels; Burle, Borís; Alario, F-Xavier

    2013-01-01

    The cortical regions involved in the different stages of speech production are relatively well-established, but their spatio-temporal dynamics remain poorly understood. In particular, the available studies have characterized neural events with respect to the onset of the stimulus triggering a verbal response. The core aspect of language production, however, is not perception but action. In this context, the most relevant question may not be how long after a stimulus brain events happen, but rather how long before the production act do they occur. We investigated speech production-related brain activity time-locked to vocal onset, in addition to the common stimulus-locked approach. We report the detailed temporal interplay between medial and left frontal activities occurring shortly before vocal onset. We interpret those as reflections of, respectively, word selection and word production processes. This medial-lateral organization is in line with that described in non-linguistic action control, suggesting that similar processes are at play in word production and non-linguistic action production. This novel view of the brain dynamics underlying word production provides a useful background for future investigations of the spatio-temporal brain dynamics that lead to the production of verbal responses.

  9. Comparison of bolus and continuous infusion of esmolol on hemodynamic response to laryngoscopy, endotracheal intubation and sternotomy in coronary artery bypass graft

    Directory of Open Access Journals (Sweden)

    Esra Mercanooglu Efe

    2014-07-01

    Full Text Available BACKGROUND AND OBJECTIVE: The aim of this randomized, prospective and double blinded study is to investigate effects of different esmolol use on hemodynamic response of laryngoscopy, endotracheal intubation and sternotomy in coronary artery bypass graft surgery. METHODS: After approval of local ethics committee and patients' written informed consent, 45 patients were randomized into three groups equally. In Infusion Group; from 10 min before intubation up to 5th minute after sternotomy, 0.5 mg/kg/min esmolol infusion, in Bolus Group; 2 min before intubation and sternotomy 1.5 mg/kg esmolol IV bolus and in Control Group; %0.9 NaCl was administered. All demographic parameters were recorded. Heart rate and blood pressure were recorded before infusion up to anesthesia induction in every minute, during endotracheal intubation, every minute for 10 minutes after endotracheal intubation and before, during and after sternotomy at first and fifth minutes. RESULTS: While area under curve (AUC (SAP × time was being found more in Group B and C than Group I, AUC (SAP × T int and T st and AUC (SAP × T2 was found more in Group B and C than Group I (p < 0.05. Moreover AUC (HR × T st was found less in Group B than Group C but no significant difference was found between Group B and Group I. CONCLUSION: This study highlights that esmolol infusion is more effective than esmolol bolus administration on controlling systolic arterial pressure during endotracheal intubation and sternotomy in CABG surgery.

  10. The role of ventilation mode using a laryngeal mask airway during gynecological laparoscopy on lung mechanics, hemodynamic response and blood gas analysis.

    Science.gov (United States)

    Jarahzadeh, Mohammad Hossein; Halvaei, Iman; Rahimi-Bashar, Farshid; Behdad, Shekoufeh; Abbasizadeh Nasrabady, Rouhollah; Yasaei, Elahe

    2016-12-01

    There are two methods for ventilation in gynecological laparoscopy: volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV). To compare the lung mechanics, hemodynamic response and arterial blood gas analysis and gas exchange of two modes of VCV and PCV using laryngeal mask airway (LMA) at different time intervals. Sixty infertile women referred for diagnostic laparoscopy, based on ventilation mode, were randomly divided into two groups of VCV (tidal volume: 10 ml/kg) and PCV. In the PCV group, ventilation was initiated with a peak airway pressure (tidal volume: 10 ml/kg, upper limit: 35 cm H2O). In both groups, the arterial blood samples were taken in several time intervals (5, 10 and 15 min after LMA insertion) for blood gas evaluation. Also the lung mechanics parameters were continuously monitored and were recorded at different time intervals. There were no significant differences for patient's age, weight, height and BMI in two groups. The peak and plateau airway pressure were significantly higher in VCV group compared to PCV group 5 and 10 min after insertion of LMA. PaO2 was significantly higher after 10 and 15 min in VCV group compared to PCV group (p=0.005 and p=0.03, respectively). PaCO2 showed significant increase after 5 min in PCV group, but the differences were not significant after 10 and 15 min in two groups. The end tidal CO2 showed significant increase after 10 and 15 min in VCV compared to PCV group. Both VCV and PCV seem to be suitable for gynecological laparoscopy. However, airway pressures are significantly lower in PCV compared to VCV.

  11. Hemodynamic Profiling in Complicated Pregnancies

    NARCIS (Netherlands)

    J.M.J. Cornette (Jérôme)

    2016-01-01

    textabstractIn order to permit a successful pregnancy outcome, the cardiovascular system must undergo substantial changes. This thesis addresses the hemodynamics in several pregnancy complications. A general overview of normal hemodynamic adaptation to pregnancy is provided . Several techniques of

  12. Simultaneously estimating the task-related and stimulus-evoked components of hemodynamic imaging measurements.

    Science.gov (United States)

    Herman, Max Charles; Cardoso, Mariana M B; Lima, Bruss; Sirotin, Yevgeniy B; Das, Aniruddha

    2017-07-01

    Task-related hemodynamic responses contribute prominently to functional magnetic resonance imaging (fMRI) recordings. They reflect behaviorally important brain states, such as arousal and attention, and can dominate stimulus-evoked responses, yet they remain poorly understood. To help characterize these responses, we present a method for parametrically estimating both stimulus-evoked and task-related components of hemodynamic responses from subjects engaged in temporally predictable tasks. The stimulus-evoked component is modeled by convolving a hemodynamic response function (HRF) kernel with spiking. The task-related component is modeled by convolving a Fourier-series task-related function (TRF) kernel with task timing. We fit this model with simultaneous electrode recordings and intrinsic-signal optical imaging from the primary visual cortex of alert, task-engaged monkeys. With high [Formula: see text], the model returns HRFs that are consistent across experiments and recording sites for a given animal and TRFs that entrain to task timing independent of stimulation or local spiking. When the task schedule conflicts with that of stimulation, the TRF remains locked to the task emphasizing its behavioral origins. The current approach is strikingly more robust to fluctuations than earlier ones and gives consistently, if modestly, better fits. This approach could help parse the distinct components of fMRI recordings made in the context of a task.

  13. Obesity and renal hemodynamics

    NARCIS (Netherlands)

    Bosma, R. J.; Krikken, J. A.; van der Heide, J. J. Homan; de Jong, P. E.; Navis, G. J.

    2006-01-01

    Obesity is a risk factor for renal damage in native kidney disease and in renal transplant recipients. Obesity is associated with several renal risk factors such as hypertension and diabetes that may convey renal risk, but obesity is also associated with an unfavorable renal hemodynamic profile

  14. Physiology of hemodynamic homeostasis

    NARCIS (Netherlands)

    de Hert, Stefan

    2012-01-01

    Homeostasis of hemodynamics refers to the regulation of the blood circulation to meet the demands of the different organ and tissue systems. This homeostasis involves an intimate interaction between peripheral metabolic needs, vascular adaptations to meet these needs and cardiac adaptation to

  15. A low-rank multivariate general linear model for multi-subject fMRI data and a non-convex optimization algorithm for brain response comparison.

    Science.gov (United States)

    Zhang, Tingting; Pham, Minh; Sun, Jianhui; Yan, Guofen; Li, Huazhang; Sun, Yinge; Gonzalez, Marlen Z; Coan, James A

    2017-12-26

    The focus of this paper is on evaluating brain responses to different stimuli and identifying brain regions with different responses using multi-subject, stimulus-evoked functional magnetic resonance imaging (fMRI) data. To jointly model many brain voxels' responses to designed stimuli, we present a new low-rank multivariate general linear model (LRMGLM) for stimulus-evoked fMRI data. The new model not only is flexible to characterize variation in hemodynamic response functions (HRFs) across different regions and stimulus types, but also enables information "borrowing" across voxels and uses much fewer parameters than typical nonparametric models for HRFs. To estimate the proposed LRMGLM, we introduce a new penalized optimization function, which leads to temporally and spatially smooth HRF estimates. We develop an efficient optimization algorithm to minimize the optimization function and identify the voxels with different responses to stimuli. We show that the proposed method can outperform several existing voxel-wise methods by achieving both high sensitivity and specificity. We apply the proposed method to the fMRI data collected in an emotion study, and identify anterior dACC to have different responses to a designed threat and control stimuli. Copyright © 2017. Published by Elsevier Inc.

  16. Sex-Steroid Hormone Manipulation Reduces Brain Response to Reward

    DEFF Research Database (Denmark)

    Macoveanu, Julian; Henningsson, Susanne; Pinborg, Anja

    2016-01-01

    regional brain activity related to the magnitude of risk during choice and to monetary reward. The GnRHa intervention caused a net reduction in ovarian sex steroids (estradiol and testosterone) and increased depression symptoms. Compared with placebo, GnRHa reduced amygdala's reactivity to high monetary...... rewards. There was a positive association between the individual changes in testosterone and changes in bilateral insula response to monetary rewards. Our data provide evidence for the involvement of sex-steroid hormones in reward processing. A blunted amygdala response to rewarding stimuli following...

  17. 5-HTTLPR differentially predicts brain network responses to emotional faces

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Grady, Cheryl L; Madsen, Martin K

    2015-01-01

    The effects of the 5-HTTLPR polymorphism on neural responses to emotionally salient faces have been studied extensively, focusing on amygdala reactivity and amygdala-prefrontal interactions. Despite compelling evidence that emotional face paradigms engage a distributed network of brain regions...... resonance imaging in 76 healthy adults. We observed robust increased response to emotional faces in the amygdala, hippocampus, caudate, fusiform gyrus, superior temporal sulcus and lateral prefrontal and occipito-parietal cortices. We observed dissociation between 5-HTTLPR groups such that LA LA individuals...

  18. Modulation of untruthful responses with noninvasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Shirley eFecteau

    2013-02-01

    Full Text Available Deceptive abilities have long been studied in relation to personality traits. More recently, studies explored the neural substrates associated with deceptive skills suggesting a critical role of the prefrontal cortex. Here we investigated whether noninvasive brain stimulation over the dorsolateral prefrontal cortex (DLPFC could modulate generation of untruthful responses about subject’s personal life across contexts (i.e., deceiving on guilt-free questions on daily activities; generating previously memorized lies about past experience; and producing spontaneous lies about past experience, as well as across modality responses (verbal and motor responses. Results reveal that real, but not sham, transcranial direct current stimulation (tDCS over the DLPFC can reduce response latency for untruthful over truthful answers across contexts and modality responses. Also, contexts of lies seem to incur a different hemispheric laterality. These findings add up to previous studies demonstrating that it is possible to modulate some processes involved in generation of untruthful answers by applying noninvasive brain stimulation over the DLPFC and extend these findings by showing a differential hemispheric contribution of DLPFCs according to contexts.

  19. Hemodynamic effects of ventricular defibrillation

    Science.gov (United States)

    Pansegrau, Donald G.; Abboud, François M.

    1970-01-01

    Hemodynamic responses to ventricular defibrillation were studied in anesthetized dogs. Observations were made on arterial, right atrial and left ventricular end-diastolic pressures, on cardiac output (dye dilution), heart rate, and right atrial electrocardiogram. Ventricular fibrillation was induced electrically with a bipolar electrode catheter placed in the right ventricle. Fibrillation was maintained for 15 or 30 sec and terminated with a 400 w sec capacitor discharge across the thoracic cage. Responses lasted 1-10 min after conversion and included a cholinergic and an adrenergic component. The cholinergic component was characterized by sinus bradycardia, periods of sinus arrest, atrioventricular block, and ventricular premature beats. The adrenergic component included increases in arterial pressure, in cardiac output, and in left ventricular stroke work at a time when left ventricular end-diastolic pressure was normal; there was no change in total peripheral resistance. The pH of arterial blood decreased slightly and pCO2 increased but pO2 and the concentration of lactate were unchanged. Bilateral vagotomy and intravenous administration of atropine blocked the cholinergic component, unmasked a sinus tachycardia, and accentuated the adrenergic component of the response. The latter was blocked by intravenous administration of propranolol and phenoxybenzamine. These responses were related primarily to conversion of ventricular fibrillation rather than to the electrical discharge of countershock because countershock without ventricular fibrillation caused more transient and smaller responses than those observed with defibrillation: furthermore, the hemodynamic effects of defibrillation were augmented by prolongation of the duration of fibrillation. The results suggest that the cholinergic component of the response may be detrimental in that it favors spontaneous recurrence of fibrillation; on the other hand, the adrenergic component may be essential for conversion

  20. Food-induced brain responses and eating behaviour.

    Science.gov (United States)

    Smeets, Paul A M; Charbonnier, Lisette; van Meer, Floor; van der Laan, Laura N; Spetter, Maartje S

    2012-11-01

    The brain governs food intake behaviour by integrating many different internal and external state and trait-related signals. Understanding how the decisions to start and to stop eating are made is crucial to our understanding of (maladaptive patterns of) eating behaviour. Here, we aim to (1) review the current state of the field of 'nutritional neuroscience' with a focus on the interplay between food-induced brain responses and eating behaviour and (2) highlight research needs and techniques that could be used to address these. The brain responses associated with sensory stimulation (sight, olfaction and taste), gastric distension, gut hormone administration and food consumption are the subject of increasing investigation. Nevertheless, only few studies have examined relations between brain responses and eating behaviour. However, the neural circuits underlying eating behaviour are to a large extent generic, including reward, self-control, learning and decision-making circuitry. These limbic and prefrontal circuits interact with the hypothalamus, a key homeostatic area. Target areas for further elucidating the regulation of food intake are: (eating) habit and food preference formation and modification, the neural correlates of self-control, nutrient sensing and dietary learning, and the regulation of body adiposity. Moreover, to foster significant progress, data from multiple studies need to be integrated. This requires standardisation of (neuroimaging) measures, data sharing and the application and development of existing advanced analysis and modelling techniques to nutritional neuroscience data. In the next 20 years, nutritional neuroscience will have to prove its potential for providing insights that can be used to tackle detrimental eating behaviour.

  1. Hemodynamic responses and upper airway morbidity following tracheal intubation in patients with hypertension: conventional laryngoscopy versus an intubating laryngeal mask airway

    Directory of Open Access Journals (Sweden)

    Elif Bengi Sener

    2012-01-01

    Full Text Available OBJECTIVES: We compared hemodynamic responses and upper airway morbidity following tracheal intubation via conventional laryngoscopy or intubating laryngeal mask airway in hypertensive patients. METHODS: Forty-two hypertensive patients received a conventional laryngoscopy or were intubated with a intubating laryngeal mask airway. Anesthesia was induced with propofol, fentanyl, and cis-atracurium. Measurements of systolic and diastolic blood pressures, heart rate, rate pressure product, and ST segment changes were made at baseline, preintubation, and every minute for the first 5 min following intubation. The number of intubation attempts, the duration of intubation, and airway complications were recorded. RESULTS: The intubation time was shorter in the conventional laryngoscopy group than in the intubating laryngeal mask airway group (16.33 ± 10.8 vs. 43.04±19.8 s, respectively (p<0.001. The systolic and diastolic blood pressures in the intubating laryngeal mask airway group were higher than those in the conventional laryngoscopy group at 1 and 2 min following intubation (p<0.05. The rate pressure product values (heart rate x systolic blood pressure at 1 and 2 min following intubation in the intubating laryngeal mask airway group (15970.90 ± 3750 and 13936.76 ± 2729, respectively were higher than those in the conventional laryngoscopy group (13237.61 ± 3413 and 11937.52 ± 3160, respectively (p<0.05. There were no differences in ST depression or elevation between the groups. The maximum ST changes compared with baseline values were not significant between the groups (conventional laryngoscopy group: 0.328 mm versus intubating laryngeal mask airway group: 0.357 mm; p = 0.754. The number and type of airway complications were similar between the groups. CONCLUSION: The intense and repeated oropharyngeal and tracheal stimulation resulting from intubating laryngeal mask airway induces greater pressor responses than does stimulation resulting from

  2. Case study: auditory brain responses in a minimally verbal child with autism and cerebral palsy

    National Research Council Canada - National Science Library

    Yau, Shu H; McArthur, Genevieve; Badcock, Nicholas A; Brock, Jon

    2015-01-01

    .... Where typically developing children and verbal autistic children all demonstrated similar brain responses to speech and nonspeech sounds, GM produced much stronger responses to nonspeech than speech...

  3. Central and regional hemodynamics in prolonged space flights

    Science.gov (United States)

    Gazenko, O. G.; Shulzhenko, E. B.; Turchaninova, V. F.; Egorov, A. D.

    This paper presents the results of measuring central and regional (head, forearm, calf) hemodynamics at rest and during provocative tests by the method of tetrapolar rheography in the course of Salyut-6-Soyuz and Salyut-7-Soyuz missions. The measurements were carried out during short-term (19 man-flights of 7 days in duration) and long-term (21 man-flights of 65-237 days in duration) manned missions. At rest, stroke volume (SV) and cardiac output (CO) as well as heart rate (HR) decreased insignificantly (in short-term flights) or remained essentially unchanged (in long-term flights). In prolonged flights CO increased significantly in response to exercise tests due to an increase in HR and the lack of changes in SV. After exercise tests SV and CO decreased as compared to the preflight level. During lower body negative pressure (LBNP) tests HR and CO were slightly higher than preflight. Changes in regional hemodynamics included a distinct decrease of pulse blood filling (PBF) of the calf, a reduction of the tone of large vessels of the calf and small vessels of the forearm. Head examination (in the region of the internal carotid artery) showed a decrease of PBF of the left hemisphere (during flight months 2-8) and a distinct decline of the tone of small vessels, mainly, in the right hemisphere. During LBNP tests the tone of pre- and postcapillary vessels of the brain returned to normal while PBF of the right and left hemisphere vessels declined. It has been shown that regional circulation variations depend on the area examined and are induced by a rearrangement of total hemodynamics of the human body in microgravity. This paper reviews the data concerning changes in central and regional circulation of men in space flights of different duration.

  4. Individual brain-frequency responses to self-selected music.

    Science.gov (United States)

    Höller, Yvonne; Thomschewski, Aljoscha; Schmid, Elisabeth Verena; Höller, Peter; Crone, Julia Sophia; Trinka, Eugen

    2012-12-01

    Music is a stimulus which may give rise to a wide range of emotional and cognitive responses. Therefore, brain reactivity to music has become a focus of interest in cognitive neuroscience. It is possible that individual preference moderates the effectof music on the brain. In the present study we examined whether there are common effects of listening to music even if each subject in a sample chooses their own piece of music. We invited 18 subjects to bring along their favorite relaxing music, and their favourite stimulating music. Additionally, a condition with tactile stimulation on the foot and a baseline condition (rest) without stimulation were used. The tactile stimulation was chosen to provide a simple, non-auditory condition which would be identical for all subjects. The electroencephalogram was recorded for each of the 3 conditions and during rest. We found responses in the alpha range mainly on parietal and occipital sites that were significant compared to baseline in 13 subjects during relaxing music, 15 subjects during activating music, and 16 subjects during tactile stimulation. Most subjects showed an alpha desynchronization in a lower alpha range followed by a synchronization in an upper frequency range. However, some subjects showed an increase in this area, whereas others showed a decrease only. In addition, many subjects showed reactivity in the beta range. Beta activity was especially increased while listening to activating music and during tactile stimulation in most subjects. We found interindividual differences in the response patterns even though the stimuli provoked comparable subjective emotions (relaxation, activation), and even if the stimulus was the same for all subjects (somatosensory stimulation). We suggest that brain responsivity to music should be examined individually by considering individual characteristics. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Venous hemodynamic changes in lower limb venous disease

    DEFF Research Database (Denmark)

    Lee, Byung Boong; Nicolaides, Andrew N; Myers, Kenneth

    2016-01-01

    There are excellent guidelines for clinicians to manage venous diseases but few reviews to assess their hemodynamic background. Hemodynamic concepts that evolved in the past have largely remained unchallenged in recent decades, perhaps due to their often complicated nature and in part due...... not provide the physiological basis for understanding the hemodynamics of flow, pressure, compliance and resistance. Hemodynamic investigations appear to provide a better correlation with post-treatment clinical outcome and quality of life than ultrasound findings. There is a far better prospect...... for understanding the complete picture of the patient's disability and response to management by combining ultrasound with hemodynamic studies. Accordingly, at the instigation of Dr Angelo Scuderi, the Union Internationale de Phlebologie (UIP) executive board commissioned a large number of experts to assess all...

  6. Neuronal and physiological correlation to hemodynamic resting-state fluctuations in health and disease.

    Science.gov (United States)

    Vazquez, Alberto L; Murphy, Matthew C; Kim, Seong-Gi

    2014-11-01

    Low-frequency, spatially coherent fluctuations present in functional magnetic resonance imaging time series have had a tremendous impact on brain connectomics. This work aims to explore the degree with which hemodynamic connectivity is associated with neuronal, metabolic, and vascular connectivity measures. For this purpose, GCaMP and nontransgenic mice were used to image neuronal activity and oxidative metabolism activity, respectively, along with blood-oxygenation- and cerebral blood volume (CBV)-sensitive hemodynamic changes from the same animals. Although network clusters calculated using either GCaMP (neuronal activity) or optical imaging of intrinsic signal (OIS)-BOLD (blood oxygenation) data did not exhibit strong spatial similarity, the strengths of node-to-node connectivity measured with these modalities were strongly correlated with one another. This finding suggests that hemodynamic connectivity as measured by blood oxygenation measurements, such as functional connectivity magnetic resonance imaging, is a valuable surrogate for the underlying neuronal connectivity. In nontransgenic animals, greater connectivity correlation was observed between tissue oxidative metabolism (flavoprotein autofluorescence imaging [FAI]) and blood oxygenation measurements, suggesting that metabolic contributions to hemodynamic signals are likely responsible for its significant correlation with neuronal connectivity. Lastly, a mouse model of Alzheimer's disease was used to explore the source of decreases in connectivity reported in these mice, a finding that is thought to be associated with amyloid load-driven metabolic decline. The intercluster connectivity measured by metabolic-sensitive measurements (FAI and OIS-BOLD) was maintained while vascular-only signals (OIS-CBV) provided negligible correlation. Therefore, metabolism-sensitive measurements as used in this work are better positioned to capture changes in neuronal connectivity, such that decreases in hemodynamic

  7. How task demands shape brain responses to visual food cues.

    Science.gov (United States)

    Pohl, Tanja Maria; Tempelmann, Claus; Noesselt, Toemme

    2017-06-01

    Several previous imaging studies have aimed at identifying the neural basis of visual food cue processing in humans. However, there is little consistency of the functional magnetic resonance imaging (fMRI) results across studies. Here, we tested the hypothesis that this variability across studies might - at least in part - be caused by the different tasks employed. In particular, we assessed directly the influence of task set on brain responses to food stimuli with fMRI using two tasks (colour vs. edibility judgement, between-subjects design). When participants judged colour, the left insula, the left inferior parietal lobule, occipital areas, the left orbitofrontal cortex and other frontal areas expressed enhanced fMRI responses to food relative to non-food pictures. However, when judging edibility, enhanced fMRI responses to food pictures were observed in the superior and middle frontal gyrus and in medial frontal areas including the pregenual anterior cingulate cortex and ventromedial prefrontal cortex. This pattern of results indicates that task sets can significantly alter the neural underpinnings of food cue processing. We propose that judging low-level visual stimulus characteristics - such as colour - triggers stimulus-related representations in the visual and even in gustatory cortex (insula), whereas discriminating abstract stimulus categories activates higher order representations in both the anterior cingulate and prefrontal cortex. Hum Brain Mapp 38:2897-2912, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Enhanced regional brain metabolic responses to benzodiazepines in cocaine abusers

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.J.; Fowler, J.S. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1997-05-01

    While dopamine (DA) appears to be crucial for cocaine reinforcement, its involvement in cocaine addiction is much less clear. Using PET we have shown persistent reductions in striatal DA D2 receptors (which arc predominantly located on GABA cells) in cocaine abusers. This finding coupled to GABA`s role as an effector for DA led us to investigate if there were GABAergic abnormalities in cocaine abusers. In this study we measured regional brain metabolic responses to lorazepam, to indirectly assess GABA function (benzodiazepines facilitate GABAergic neurotransmission). Methods: The experimental subjects consisted of 12 active cocaine abusers and 32 age matched controls. Each subject underwent two PET FDG scans obtained within 1 week of each other. The first FDG scan was obtained after administration of placebo (3 cc of saline solution) given 40-50 minutes prior to FDG; and the second after administration of lorazepam (30 {mu}g/kg) given 40-50 minutes prior to FDG. The subjects were blind to the drugs received. Results: Lorazepam-induced sleepiness was significantly greater in abusers than in controls (p<0.001). Lorazepam-induced decreases in brain glucose metabolism were significantly larger in cocaine abusers than in controls. Whereas in controls whole brain metabolism decreased 13{+-}7 %, in cocaine abusers it decreased 21{+-}13 % (p < 0.05). Lorazepam-induced decrements in regional metabolism were significantly larger in striatum (p < 0.0 1), thalamus (p < 0.01) and cerebellum (p < 0.005) of cocaine abusers than of controls (ANOVA diagnosis by condition (placebo versus lorazepam) interaction effect). The only brain region for which the absolute metabolic changes-induced by lorazepam in cocaine abusers were equivalent to those in controls was the orbitofrontal cortex. These results document an accentuated sensitivity to benzodiazepines in cocaine abusers which is compatible with disrupted GABAergic function in these patients.

  9. The Influence Of Implementation Brain-Friendly Learning Through The Whole Brain Teaching To Students’ Response and Creative Character In Learning Mathematics

    OpenAIRE

    Winarso, Widodo; Karimah, Siti Asri

    2017-01-01

    This study aims to determine whether the application of brain-friendly learning through whole brain teaching gives a positive effect on the creative character of students, to know the response of the students against the application of brain-friendly learning through whole brain teaching, and to find out if the student response against the application of brain-friendly learning through whole brain teaching correlates positively with the creative character of students in learning mathematics. ...

  10. The use of hemodynamic and cerebral monitoring to study pharmacodynamics in neonates.

    Science.gov (United States)

    Smits, A; Thewissen, L; Dereymaeker, A; Dempsey, E; Caicedo, A; Naulaers, Gunnar

    2017-09-18

    Drugs acting on the cardiovascular and central nervous system often display relatively fast clinical responses, which may differ in neonates compared to children and adults. Introduction of bedside monitoring tools might be of additional value in the pharmacodynamic (PD) assessment of such drugs in neonates. We aim to provide an overview of the frequently used monitoring tools to assess drug effects on the hemodynamic status as well as the cerebral circulation, oxygenation and cerebral metabolism in neonates. The use of blood pressure measurements, heart rate variability, functional echocardiography, near-infrared spectroscopy and (amplitude-integrated) electroencephalography in neonates is discussed, as well as new parameters introduced by these tools. Based on the 'brain circulation model', the hemodynamic effects on the brain and their interplay are summarized. In this model, 3 processes (i.e. blood processes, vascular smooth muscle processes and tissue processes) and 3 mechanisms (i.e. autoregulation, blood flow metabolism coupling and cerebral oxygen balance) are distinguished, which all may be influenced by drug administration. Finally, propofol, sevoflurane, midazolam and inotropes are used as examples of which PD has been studied using the available hemodynamic and/or cerebral monitoring tools. The implementation of (non-)invasive monitoring tools to document hemodynamic and cerebral PD effects in neonates is of relevance both in a neonatal research and intensive clinical care setting. We highlight the need to integrate these tools in future PD research. Furthermore, besides short-term drug effects, long-term outcome of drug therapy in neonates also warrants further attention. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Psychopathic traits modulate brain responses to drug cues in incarcerated offenders

    Directory of Open Access Journals (Sweden)

    Lora M Cope

    2014-02-01

    Full Text Available Recent neuroscientific evidence indicates that psychopathy is associated with abnormal function and structure in limbic and paralimbic areas. Psychopathy and substance use disorders are highly comorbid, but clinical experience suggests that psychopaths abuse drugs for different reasons than non-psychopaths, and that psychopaths do not typically experience withdrawal and craving upon becoming incarcerated. These neurobiological abnormalities may be related to psychopaths’ different motivations for – and symptoms of – drug use. This study examined the modulatory effect of psychopathic traits on the neurobiological craving response to pictorial drug stimuli. Drug-related pictures and neutral pictures were presented and rated by participants while hemodynamic activity was monitored using functional magnetic resonance imaging. These data were collected at two correctional facilities in New Mexico using the Mind Research Network mobile magnetic resonance imaging system. The sample comprised 137 incarcerated adult males and females (93 females with histories of substance dependence. The outcome of interest was the relation between psychopathy scores (using the Hare Psychopathy Checklist-Revised and hemodynamic activity associated with viewing drug-related pictures versus neutral pictures. There was a negative association between psychopathy scores and hemodynamic activity for viewing drug-related cues in the anterior cingulate, posterior cingulate, hippocampus, amygdala, caudate, globus pallidus, and parts of the prefrontal cortex. Psychopathic traits modulate the neurobiological craving response and suggest that individual differences are important for understanding and treating substance abuse.

  12. Preservation of electrocortical brain activity during hypoxemia in preterm lambs.

    NARCIS (Netherlands)

    Os, S.H.G. van; Klaessens, J.H.G.M.; Hopman, J.C.W.; Liem, D.; Bor, M. van de

    2003-01-01

    Adequate cerebral perfusion is necessary to preserve cerebral O(2) supply in order to maintain brain cell function. Our aim was to assess the influence of gestational age on the response of cerebral hemodynamics to hypoxemia and to determine thresholds of cerebral O(2) supply for preservation of

  13. Assessment of pain and hemodynamic response in older children undergoing circumcision: comparison of eutectic lidocaine/prilocaine cream and dorsal penile nerve block.

    Science.gov (United States)

    Salgado Filho, Marcello Fonseca; Gonçalves, Hedelberto Barbosa; Pimentel Filho, Lúcio Huebra; Rodrigues, Daniel da Silva; da Silva, Izabela Palitot; Avarese de Figueiredo, André; Bastos Netto, José Murillo

    2013-10-01

    To evaluate whether dorsal penile nerve block (DPNB) or local topical anesthesia (LT) provided better postoperative analgesia and less hemodynamic stimulation during and after circumcision surgery with Plastibell in older children. Forty-one subjects (age: 2-13 years) undergoing circumcision with Plastibell were randomly divided into LT and DPNB groups. Inhalation induction was performed with an 8% end-tidal sevoflurane concentration. In the LT group, a eutectic ointment of 5% lidocaine and 5% prilocaine was applied to the foreskin 1 h before surgery. At 10 min after anesthesia induction, the end-tidal sevoflurane concentration was decreased to 2%. In the other group, a DPNB was performed with 0.5% bupivacaine (1 mg/kg). Heart rate (HR), respiratory rate, mean arterial pressure (MAP), and involuntary movements were evaluated at anesthesia induction (T0), 1 min after DPNB (T1), 1 min after incision (T2), and 1 min after surgery (T3). Pain was evaluated at 1 and 24 h after surgery, and complications were evaluated at 24 h after surgery. The groups were homogeneous with respect to age, weight, glans diameter, penile length, Kayaba classification, and surgical duration. The LT group showed increased HR (p = 0.073) and MAP (p = 0.046) at T2 as compared to T0. No hemodynamic changes were observed in the HPDB group. The LT group showed a higher pain score at 1 h after surgery than the DPNB group, whereas the DPNB group had a higher incidence of hematoma (p = 0.02) at 24 h after surgery. Anesthesia with 5% lidocaine and 5% prilocaine cream during circumcision of older children with Plastibell under general anesthesia with sevoflurane does not provide satisfactory perioperative hemodynamic stability or postoperative analgesia. Copyright © 2012 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  14. Hormonal contraceptives, menstrual cycle and brain response to faces.

    Science.gov (United States)

    Marecková, Klara; Perrin, Jennifer S; Nawaz Khan, Irum; Lawrence, Claire; Dickie, Erin; McQuiggan, Doug A; Paus, Tomás

    2014-02-01

    Both behavioral and neuroimaging evidence support a female advantage in the perception of human faces. Here we explored the possibility that this relationship may be partially mediated by female sex hormones by investigating the relationship between the brain's response to faces and the use of oral contraceptives, as well as the phase of the menstrual cycle. First, functional magnetic resonance images were acquired in 20 young women [10 freely cycling and 10 taking oral contraception (OC)] during two phases of their cycle: mid-cycle and menstruation. We found stronger neural responses to faces in the right fusiform face area (FFA) in women taking oral contraceptives (vs freely cycling women) and during mid-cycle (vs menstruation) in both groups. Mean blood oxygenation level-dependent response in both left and right FFA increased as function of the duration of OC use. Next, this relationship between the use of OC and FFA response was replicated in an independent sample of 110 adolescent girls. Finally in a parallel behavioral study carried out in another sample of women, we found no evidence of differences in the pattern of eye movements while viewing faces between freely cycling women vs those taking oral contraceptives. The imaging findings might indicate enhanced processing of social cues in women taking OC and women during mid-cycle.

  15. Acute effects of ingesting Java Fit™ energy extreme functional coffee on resting energy expenditure and hemodynamic responses in male and female coffee drinkers

    OpenAIRE

    Willoughby Darryn S; Wismann Jennifer; Harvey Travis; Wilborn Colin D; Taylor Lemuel W

    2007-01-01

    Abstract Background The purpose of this study was to examine the effects of a functional coffee beverage containing additional caffeine, green tea extracts, niacin and garcinia cambogia to regular coffee to determine the effects on resting energy expenditure (REE) and hemodynamic variables. Methods Subjects included five male (26 ± 2.1 y, 97.16 ± 10.05 kg, 183.89 ± 6.60 cm) and five female (28.8 ± 5.3 y, 142.2 ± 12.6 lbs) regular coffee drinkers. Subjects fasted for 10 hours and were assessed...

  16. Age and Gender Effects On Auditory Brain Stem Response (ABR

    Directory of Open Access Journals (Sweden)

    Yones Lotfi

    2012-10-01

    Full Text Available Objectives: Auditory Brain Stem Response (ABR is a result of eight nerve and brain stem nuclei stimulation. Several factors may affect the latencies, interpeak latencies and amplitudes in ABR especially sex and age. In this study, age and sex influence on ABR were studied. Methods: This study was performed on 120 cases (60 males and 60 females at Akhavan rehabilitation center of university of welfare and rehabilitation sciences, Tehran, Iran. Cases were divided in three age groups: 18-30, 31-50 and 51-70 years old. Each age group consists of 20 males and 20 females. Age and sex influences on absolute latency of wave I and V, and IPL of I-V were examined. Results: Independent t test showed that females have significantly shorter latency of wave I, V, and IPL I-V latency (P<0.001 than males. Two way ANOVA showed that latency of wave I, V and IPL I-V in 51-70 years old group was significantly higher than 18-30 and 31-50 years old groups (P<0.001 Discussion: According to the results of present study and similar studies, in clinical practice, different norms for older adults and both genders should be established.

  17. Brain Transcriptomic Response to Social Eavesdropping in Zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    João Sollari Lopes

    Full Text Available Public information is widely available at low cost to animals living in social groups. For instance, bystanders may eavesdrop on signaling interactions between conspecifics and use it to adapt their subsequent behavior towards the observed individuals. This social eavesdropping ability is expected to require specialized mechanisms such as social attention, which selects social information available for learning. To begin exploring the genetic basis of social eavesdropping, we used a previously established attention paradigm in the lab to study the brain gene expression profile of male zebrafish (Danio rerio in relation to the attention they paid towards conspecifics involved or not involved in agonistic interactions. Microarray gene chips were used to characterize their brain transcriptomes based on differential expression of single genes and gene sets. These analyses were complemented by promoter region-based techniques. Using data from both approaches, we further drafted protein interaction networks. Our results suggest that attentiveness towards conspecifics, whether interacting or not, activates pathways linked to neuronal plasticity and memory formation. The network analyses suggested that fos and jun are key players on this response, and that npas4a, nr4a1 and egr4 may also play an important role. Furthermore, specifically observing fighting interactions further triggered pathways associated to a change in the alertness status (dnajb5 and to other genes related to memory formation (btg2, npas4b, which suggests that the acquisition of eavesdropped information about social relationships activates specific processes on top of those already activated just by observing conspecifics.

  18. Brain response to traumatic brain injury in wild-type and interleukin-6 knockout mice: a microarray analysis

    DEFF Research Database (Denmark)

    Poulsen, Christian Bjørn; Penkowa, Milena; Borup, Rehannah

    2005-01-01

    Traumatic injury to the brain is one of the leading causes of injury-related death or disability. Brain response to injury is orchestrated by cytokines, such as interleukin (IL)-6, but the full repertoire of responses involved is not well known. We here report the results obtained with microarrays...... in the initial tissue injury and later regeneration of the parenchyma. IL-6 deficiency showed a dramatic effect in the expression of many genes, especially in the 1 day post-lesion timing, which presumably underlies the poor capacity of IL-6 knockout mice to cope with brain damage. The results highlight...

  19. Acute effects of ingesting Java Fit™ energy extreme functional coffee on resting energy expenditure and hemodynamic responses in male and female coffee drinkers

    Science.gov (United States)

    Taylor, Lemuel W; Wilborn, Colin D; Harvey, Travis; Wismann, Jennifer; Willoughby, Darryn S

    2007-01-01

    Background The purpose of this study was to examine the effects of a functional coffee beverage containing additional caffeine, green tea extracts, niacin and garcinia cambogia to regular coffee to determine the effects on resting energy expenditure (REE) and hemodynamic variables. Methods Subjects included five male (26 ± 2.1 y, 97.16 ± 10.05 kg, 183.89 ± 6.60 cm) and five female (28.8 ± 5.3 y, 142.2 ± 12.6 lbs) regular coffee drinkers. Subjects fasted for 10 hours and were assessed for 1 hour prior (PRE) and 3 hours following 1.5 cups of coffee ingestion [JavaFit™ Energy Extreme (JF) ~400 mg total caffeine; Folgers (F) ~200 mg total caffeine] in a double-blind, crossover design. REE, resting heart rate (RHR), and systolic (SBP) and diastolic (DBP) blood pressure was assessed at PRE and 1, 2, and 3-hours post coffee ingestion. Data were analyzed by three-factor repeated measures ANOVA (p effect for REE (p coffee is more effective than Folgers regular caffeinated coffee at increasing REE in regular coffee drinkers for up to 3 hours following ingestion without any adverse hemodynamic effects. PMID:17919327

  20. Acute effects of ingesting Java Fittrade mark energy extreme functional coffee on resting energy expenditure and hemodynamic responses in male and female coffee drinkers.

    Science.gov (United States)

    Taylor, Lemuel W; Wilborn, Colin D; Harvey, Travis; Wismann, Jennifer; Willoughby, Darryn S

    2007-10-05

    The purpose of this study was to examine the effects of a functional coffee beverage containing additional caffeine, green tea extracts, niacin and garcinia cambogia to regular coffee to determine the effects on resting energy expenditure (REE) and hemodynamic variables. Subjects included five male (26 +/- 2.1 y, 97.16 +/- 10.05 kg, 183.89 +/- 6.60 cm) and five female (28.8 +/- 5.3 y, 142.2 +/- 12.6 lbs) regular coffee drinkers. Subjects fasted for 10 hours and were assessed for 1 hour prior (PRE) and 3 hours following 1.5 cups of coffee ingestion [JavaFittrade mark Energy Extreme (JF) ~400 mg total caffeine; Folgers (F) ~200 mg total caffeine] in a double-blind, crossover design. REE, resting heart rate (RHR), and systolic (SBP) and diastolic (DBP) blood pressure was assessed at PRE and 1, 2, and 3-hours post coffee ingestion. Data were analyzed by three-factor repeated measures ANOVA (p effect for REE (p coffee is more effective than Folgers regular caffeinated coffee at increasing REE in regular coffee drinkers for up to 3 hours following ingestion without any adverse hemodynamic effects.

  1. Acute effects of ingesting Java Fit™ energy extreme functional coffee on resting energy expenditure and hemodynamic responses in male and female coffee drinkers

    Directory of Open Access Journals (Sweden)

    Willoughby Darryn S

    2007-10-01

    Full Text Available Abstract Background The purpose of this study was to examine the effects of a functional coffee beverage containing additional caffeine, green tea extracts, niacin and garcinia cambogia to regular coffee to determine the effects on resting energy expenditure (REE and hemodynamic variables. Methods Subjects included five male (26 ± 2.1 y, 97.16 ± 10.05 kg, 183.89 ± 6.60 cm and five female (28.8 ± 5.3 y, 142.2 ± 12.6 lbs regular coffee drinkers. Subjects fasted for 10 hours and were assessed for 1 hour prior (PRE and 3 hours following 1.5 cups of coffee ingestion [JavaFit™ Energy Extreme (JF ~400 mg total caffeine; Folgers (F ~200 mg total caffeine] in a double-blind, crossover design. REE, resting heart rate (RHR, and systolic (SBP and diastolic (DBP blood pressure was assessed at PRE and 1, 2, and 3-hours post coffee ingestion. Data were analyzed by three-factor repeated measures ANOVA (p Results JF trial resulted in a significant main effect for REE (p 2 (p Conclusion Results from this study suggest that JavaFit™ Energy Extreme coffee is more effective than Folgers regular caffeinated coffee at increasing REE in regular coffee drinkers for up to 3 hours following ingestion without any adverse hemodynamic effects.

  2. Modeling Brain Responses in an Arithmetic Working Memory Task

    Science.gov (United States)

    Hamid, Aini Ismafairus Abd; Yusoff, Ahmad Nazlim; Mukari, Siti Zamratol-Mai Sarah; Mohamad, Mazlyfarina; Manan, Hanani Abdul; Hamid, Khairiah Abdul

    2010-07-01

    Functional magnetic resonance imaging (fMRI) was used to investigate brain responses due to arithmetic working memory. Nine healthy young male subjects were given simple addition and subtraction instructions in noise and in quiet. The general linear model (GLM) and random field theory (RFT) were implemented in modelling the activation. The results showed that addition and subtraction evoked bilateral activation in Heschl's gyrus (HG), superior temporal gyrus (STG), inferior frontal gyrus (IFG), supramarginal gyrus (SG) and precentral gyrus (PCG). The HG, STG, SG and PCG activate higher number of voxels in noise as compared to in quiet for addition and subtraction except for IFG that showed otherwise. The percentage of signal change (PSC) in all areas is higher in quiet as compared to in noise. Surprisingly addition (not subtraction) exhibits stronger activation.

  3. Opioid suppression of conditioned anticipatory brain responses to breathlessness.

    Science.gov (United States)

    Hayen, Anja; Wanigasekera, Vishvarani; Faull, Olivia K; Campbell, Stewart F; Garry, Payashi S; Raby, Simon J M; Robertson, Josephine; Webster, Ruth; Wise, Richard G; Herigstad, Mari; Pattinson, Kyle T S

    2017-04-15

    Opioid painkillers are a promising treatment for chronic breathlessness, but are associated with potentially fatal side effects. In the treatment of breathlessness, their mechanisms of action are unclear. A better understanding might help to identify safer alternatives. Learned associations between previously neutral stimuli (e.g. stairs) and repeated breathlessness induce an anticipatory threat response that may worsen breathlessness, contributing to the downward spiral of decline seen in clinical populations. As opioids are known to influence associative learning, we hypothesized that they may interfere with the brain processes underlying a conditioned anticipatory response to breathlessness in relevant brain areas, including the amygdala and the hippocampus. Healthy volunteers viewed visual cues (neutral stimuli) immediately before induction of experimental breathlessness with inspiratory resistive loading. Thus, an association was formed between the cue and breathlessness. Subsequently, this paradigm was repeated in two identical neuroimaging sessions with intravenous infusions of either low-dose remifentanil (0.7ng/ml target-controlled infusion) or saline (randomised). During saline infusion, breathlessness anticipation activated the right anterior insula and the adjacent operculum. Breathlessness was associated with activity in a network including the insula, operculum, dorsolateral prefrontal cortex, anterior cingulate cortex and the primary sensory and motor cortices. Remifentanil reduced breathlessness unpleasantness but not breathlessness intensity. Remifentanil depressed anticipatory activity in the amygdala and the hippocampus that correlated with reductions in breathlessness unpleasantness. During breathlessness, remifentanil decreased activity in the anterior insula, anterior cingulate cortex and sensory motor cortices. Remifentanil-induced reduction in breathlessness unpleasantness was associated with increased activity in the rostral anterior

  4. How Situational Context Impacts Empathic Responses and Brain Activation Patterns

    Directory of Open Access Journals (Sweden)

    Yawei Cheng

    2017-09-01

    Full Text Available Clinical empathy, which is defined as the ability to understand the patient’s experience and feelings from the patient’s perspective, is acknowledged to be an important aspect of quality healthcare. However, how work experience modulates the empathic responses and brain activation patterns in medical professions remains elusive. This fMRI study recruited one hundred female nurses, who varied the length of work experience, and examined how their neural response, functional connectivity, and subjective evaluations of valence and arousal to perceiving another individual in physical pain are modulated by the situational context in which they occur (i.e., in a hospital or at home. Participants with longer hospital terms evaluated pain as less negative in valence and arousal when occurring in a hospital context, but not in a home context. Physical pain perceived in a hospital compared to a home context produced stronger activity in the right temporoparietal junction (rTPJ. The reverse comparison resulted in an increased activity in the insula and anterior midcingulate cortex (aMCC. Mediation analysis indicated that reduced personal accomplishment, a symptom of burnout, breaks down the mediation effect of the putamen on context-dependent valence ratings. Overall, the study demonstrates how situational contexts significantly influence individuals’ empathic processing, and that perceiving reward from patient care protects them from burnout.Highlights-Differences in behavior ratings and brain activations between medical practitioners perceiving others’ pain in a hospital and at home.-Situational contexts significantly influence individual’s empathic processing.-Perceiving rewards from patient care protects medical practitioners from burnout.-Empathy is a flexible phenomenon.

  5. Immunologic, hemodynamic, and adrenal incompetence in cirrhosis

    DEFF Research Database (Denmark)

    Risør, Louise Madeleine; Bendtsen, Flemming; Møller, Søren

    2015-01-01

    Acute kidney injury (AKI) is one of the most severe complications of cirrhosis and is associated with significant morbidity and mortality. Liver fibrosis and liver insufficiency, portal hypertension, systemic vasodilation, and a subsequent hyperdynamic circulation undermine the renal and cardiac...... function, making cirrhotic patients more susceptible to hemodynamic incidents. In addition, the immune system is impaired in cirrhosis, leading to an exaggerated production of vasoactive mediators, and the adrenal cortisol response is insufficient, which causes further impairment of the vascular tonus...

  6. Brain Imaging of Human Sexual Response : Recent Developments and Future Directions

    NARCIS (Netherlands)

    Ruesink, Gerben B; Georgiadis, Janniko R

    2017-01-01

    Purpose of Review: The purpose of this study is to provide a comprehensive summary of the latest developments in the experimental brain study of human sexuality, focusing on brain connectivity during the sexual response. Recent Findings: Stable patterns of brain activation have been established for

  7. Strongly compromised inflammatory response to brain injury in interleukin-6-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Moos, T; Carrasco, J

    1999-01-01

    Injury to the central nervous system (CNS) elicits an inflammatory response involving activation of microglia, brain macrophages, and astrocytes, processes likely mediated by the release of proinflammatory cytokines. In order to determine the role of interleukin-6 (IL-6) during the inflammatory...... response in the brain following disruption of the blood-brain barrier (BBB), we examined the effects of a focal cryo injury to the fronto-parietal cortex in interleukin-6-deficient (IL-6-/-) and normal (IL-6+/+) mice. In IL-6+/+ mice, brain injury resulted in the appearance of brain macrophages...

  8. Brain responses in evaluating feedback stimuli with a social dimension

    Directory of Open Access Journals (Sweden)

    Yuan eZhang

    2012-02-01

    Full Text Available Previous studies on outcome evaluation and performance monitoring using gambling or simple cognitive tasks have identified two components of event-related potentials (ERPs that are particularly relevant to the neural responses to decision outcome. The feedback-related negativity (FRN, typically occurring 200-300 ms post-onset of feedback stimuli, encodes mainly the valence of outcome while the P300, which is the most positive peak between 200-600 ms, is found to be related to various aspects of outcome evaluation. This study investigated the extent which neural correlates of outcome evaluation involving complex feedback stimuli (i.e., female faces are similar to those revealed for simplex feedback. We asked participants to judge the attractiveness of blurred faces and then showed them unblurred faces as (implicit feedback of their performance. The FRN effect can be identified by the ERP waveforms, albeit in a delayed 300-380 ms time window, with faces inconsistent with the initial judgment eliciting more negative-going responses than faces consistent with the judgment. However, the ERP waveforms did not show the typical pattern of P300 responses. With the principal component analysis (PCA, a clear pattern of P300 effects were revealed, with the P300 being more positive to faces consistent with the initial judgment than to faces inconsistent with the judgment and more positive to attractive faces than to unattractive ones. The feedback consistency effect on either the FRN or the P300 was unaffected by the attractiveness of the feedback faces. These findings suggest that brain responses involved in processing complex feedback stimuli with a social dimension are generally similar to those involved in processing simplex feedback stimuli in gambling or cognitive tasks, although appropriate means of data analysis are needed to reveal the typical ERP effects that may have been masked by sophisticated cognitive (and emotional processes for complex

  9. A Two-Part Approach to Examine the Effects of Theacrine (TeaCrine®) Supplementation on Oxygen Consumption, Hemodynamic Responses, and Subjective Measures of Cognitive and Psychometric Parameters.

    Science.gov (United States)

    Ziegenfuss, Tim N; Habowski, Scott M; Sandrock, Jennifer E; Kedia, A William; Kerksick, Chad M; Lopez, Hector L

    2016-05-10

    Theacrine (1,3,7,9-tetramethyluric acid) is a naturally occurring purine alkaloid, present in Camellia assamica variety kucha tea. Using a two-part approach in humans, the impact of theacrine (TeaCrine®, TC) was used to examine subjective dose-response, daily changes in cognitive and psychometric parameters, and changes in gas exchange and vital signs. All indicators were chosen to better ascertain the previously reported animal and human outcomes involving theacrine administration. Part 1 was a randomized, open-label, dose-response investigation in nine healthy participants whereby three participants ingested 400 mg TC per day and six participants ingested 200 mg/day. Participants recorded subjective changes in cognitive, psychometric, and exercise attributes using 150-mm anchored visual analog scale (VAS) before, and 1, 4, and 6 hours after ingestion every day for 7 consecutive days. Part 2 was a randomized, double-blind, placebo-controlled, crossover investigation in 15 healthy subjects in which all participants ingested a single 200 mg dose of TC or Placebo (PLA). Anchored VAS questionnaires were used to detect subjective changes in various aspects of physical and mental energy along with changes in gas exchange and hemodynamic parameters before, and 1, 2, and 3 hours after acute ingestion. Energy, focus, and concentration increased from baseline values in both doses with no dose-response effect. VAS responses in the 200 mg for willingness to exercise, anxiety, motivation to train and libido increased across the measurement period while no such change was seen with the 400 mg dose. After consuming a single 200 mg dose, significant group × time interaction effects were seen for energy, fatigue, and concentration. No changes in resting heart rate, gas exchange, systemic hemodynamics or side effect profiles were noted.

  10. Recovery of stress response coincides with responsiveness to voluntary exercise after traumatic brain injury.

    Science.gov (United States)

    Griesbach, Grace S; Tio, Delia L; Nair, Shyama; Hovda, David A

    2014-04-01

    We have recently shown that there is a heightened stress response after a mild traumatic brain injury (TBI) during the first 2 post-injury weeks. This corresponds to the same post-injury period when exercise does not increase brain-derived neurotrophic factor (BDNF) and autonomic dysfunction becomes evident with exercise. Here we determined stress and autonomic responses to voluntary and forced exercise at a post-injury time window when exercise has been found to elicit beneficial effects. Rats underwent a mild fluid percussion injury and were exercised at post-injury days 28-32 and 35-39. Cardiac and temperature autonomic function were evaluated. Hippocampal tissue was obtained immediately after exercise for analysis of BDNF. In contrast to the sub-acute period, corticosterone and adrenocorticotropic hormone responses to exercise were normalized in the TBI group. Irrespective of injury, forced exercise markedly stimulated the corticotrophic axis and did not increase BDNF. BDNF levels were increased with voluntary exercise in all animals. Rats exposed to forced exercise had lower activity levels during periods of non-exercise. This effect was more pronounced in the TBI rats. Cardiac and temperature autonomic responses to delayed exercise also recuperated. Rats with TBI that underwent forced exercise, however, had higher core body temperatures during experimental manipulations, thus suggesting that exposure to a potent stressor facilitates responsiveness to environmental stimulations.

  11. The brain responses to different frequencies of binaural beat sounds on QEEG at cortical level.

    Science.gov (United States)

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2015-01-01

    Beat phenomenon is occurred when two slightly different frequency waves interfere each other. The beat can also occur in the brain by providing two slightly different frequency waves separately each ear. This is called binaural beat. The brain responses to binaural beat are in discussion process whether the brain side and the brain area. Therefore, this study aims to figure out the brain responses to binaural beat by providing different binaural beat frequencies on 250 carrier tone continuously for 30 minutes to participants and using quantitative electroencephalography (QEEG) to interpret the data. The result shows that different responses appear in different beat frequency. Left hemisphere dominance occur in 3 Hz beat within 15 minutes and 15 Hz beat within 5 minutes. Right hemisphere dominance occurs in 10 Hz beat within 25 minute. 6 Hz beat enhances all area of the brain within 10 minutes. 8 Hz and 25 Hz beats have no clearly responses while 40 Hz beat enhances the responses in frontal lobe. These brain responses can be used for brain modulation application to induce the brain activity in further studies.

  12. Near-infrared spectroscopy assessment of divided visual attention task-invoked cerebral hemodynamics during prolonged true driving

    Science.gov (United States)

    Li, Ting; Zhao, Yue; Sun, Yunlong; Gao, Yuan; Su, Yu; Hetian, Yiyi; Chen, Min

    2015-03-01

    Driver fatigue is one of the leading causes of traffic accidents. It is imperative to develop a technique to monitor fatigue of drivers in real situation. Near-infrared spectroscopy (fNIRS) is now capable of measuring brain functional activity noninvasively in terms of hemodynamic responses sensitively, which shed a light to us that it may be possible to detect fatigue-specified brain functional activity signal. We developed a sensitive, portable and absolute-measure fNIRS, and utilized it to monitor cerebral hemodynamics on car drivers during prolonged true driving. An odd-ball protocol was employed to trigger the drivers' visual divided attention, which is a critical function in safe driving. We found that oxyhemoglobin concentration and blood volume in prefrontal lobe dramatically increased with driving duration (stand for fatigue degree; 2-10 hours), while deoxyhemoglobin concentration increased to the top at 4 hours then decreased slowly. The behavior performance showed clear decrement only after 6 hours. Our study showed the strong potential of fNIRS combined with divided visual attention protocol in driving fatigue degree monitoring. Our findings indicated the fNIRS-measured hemodynamic parameters were more sensitive than behavior performance evaluation.

  13. Effect of Mobile Phone-Induced Electromagnetic Field on Brain Hemodynamics and Human Stem Cell Functioning: Possible Mechanistic Link to Cancer Risk and Early Diagnostic Value of Electronphotonic Imaging.

    Science.gov (United States)

    Bhargav, Hemant; Srinivasan, T M; Varambally, S; Gangadhar, B N; Koka, Prasad

    2015-01-01

    The mobile phones (MP) are low power radio devices which work on electromagnetic fields (EMFs), in the frequency range of 900-1800 MHz. Exposure to MPEMFs may affect brain physiology and lead to various health hazards including brain tumors. Earlier studies with positron emission tomography (PET) have found alterations in cerebral blood flow (CBF) after acute exposure to MPEMFs. It is widely accepted that DNA double-strand breaks (DSBs) and their misrepair in stem cells are critical events in the multistage origination of various leukemia and tumors, including brain tumors such as gliomas. Both significant misbalance in DSB repair and severe stress response have been triggered by MPEMFs and EMFs from cell towers. It has been shown that stem cells are most sensitive to microwave exposure and react to more frequencies than do differentiated cells. This may be important for cancer risk assessment and indicates that stem cells are the most relevant cellular model for validating safe mobile communication signals. Recently developed technology for recording the human bio-electromagnetic (BEM) field using Electron photonic Imaging (EPI) or Gas Discharge Visualisation (GDV) technique provides useful information about the human BEM. Studies have recorded acute effects of Mobile Phone Electromagnetic Fields (MPEMFs) using EPI and found quantifiable effects on human BEM field. Present manuscript reviews evidences of altered brain physiology and stem cell functioning due to mobile phone/cell tower radiations, its association with increased cancer risk and explores early diagnostic value of EPI imaging in detecting EMF induced changes on human BEM.

  14. Neuromagnetic brain responses to words from semantic sub- and supercategories

    Directory of Open Access Journals (Sweden)

    Rockstroh Brigitte

    2005-08-01

    Full Text Available Abstract Background We explored spatio-temporal patterns of cortical activity evoked by written words from super-ordinate and sub-ordinate semantic categories and hoped to find a differential cortical and/or temporal distribution of the brain response depending on the level of the categories. Twenty-three subjects saw 360 words belonging to six sub-ordinate categories (mammals, birds, fish, fruit, flowers, trees within two super-ordinate categories (fauna, flora. Visually evoked magnetic fields were determined from whole-head (148-sensor magnetoencephalography and analyzed in the source space (Minimum Norm Estimate. Results Activity (MNE amplitudes 100–150 ms after stimulus onset in the left occipito-temporal area distinguished super-ordinate categories, while later activity (300–550 ms in the left temporal area distinguished the six sub-ordinate categories. Conclusion Our results document temporally and spatially distinct processing and representation of words according to their categorical information. If further studies can rule out possible confounds then our results may help constructing a theory about the internal structure of entries in the mental lexicon and its access.

  15. Brain response to prosodic boundary cues depends on boundary position

    Directory of Open Access Journals (Sweden)

    Julia eHolzgrefe

    2013-07-01

    Full Text Available Prosodic information is crucial for spoken language comprehension and especially for syntactic parsing, because prosodic cues guide the hearer’s syntactic analysis. The time course and mechanisms of this interplay of prosody and syntax are not yet well understood. In particular, there is an ongoing debate whether local prosodic cues are taken into account automatically or whether they are processed in relation to the global prosodic context in which they appear. The present study explores whether the perception of a prosodic boundary is affected by its position within an utterance. In an event-related potential (ERP study we tested if the brain response evoked by the prosodic boundary differs when the boundary occurs early in a list of three names connected by conjunctions (i.e., after the first name as compared to later in the utterance (i.e., after the second name. A closure positive shift (CPS — marking the processing of a prosodic phrase boundary — was elicited only for stimuli with a late boundary, but not for stimuli with an early boundary. This result is further evidence for an immediate integration of prosodic information into the parsing of an utterance. In addition, it shows that the processing of prosodic boundary cues depends on the previously processed information from the preceding prosodic context.

  16. Mismatch brain response to speech-sound changes in rats

    Directory of Open Access Journals (Sweden)

    Mustak eAhmed

    2011-10-01

    Full Text Available Understanding speech is based on neural representations of individual speech sounds. In humans, such representations are capable of supporting an automatic and memory-based mechanism for auditory change detection, as reflected by the mismatch negativity of event-related potentials. There are also findings of neural representations of speech sounds in animals, but it is not known whether these representations can support the change detection mechanism analogous to that underlying the mismatch negativity in humans. To this end, we presented synthesized spoken syllables to urethane-anesthetized rats while local field potentials were epidurally recorded above their primary auditory cortex. In an oddball condition, a deviant stimulus /ga/ or /ba/ (probability 1:12 for each was rarely and randomly interspersed between frequently presented standard stimulus /da/ (probability 10:12. In an equiprobable condition, 12 syllables, including /da/, /ga/, and /ba/, were presented in a random order (probability 1:12 for each. We found evoked responses of higher amplitude to the deviant /ba/, albeit not to /ga/, relative to the standard /da/ in the oddball condition. Furthermore, the responses to /ba/ were higher in amplitude in the oddball condition than in the equiprobable condition. The findings suggest that anaesthetized rat’s brain can form representations of human speech sounds, and that these representations can support the memory-based change detection mechanism analogous to that underlying the mismatch negativity in humans. Our findings show a striking parallel in speech processing between humans and rodents and may thus pave the way for feasible animal models of memory-based change detection.

  17. Hemodynamic response and effects on myocardial energetics of 3-cyano-2-morpholino-5-(pyrid-4-yl)pyridine (AWD 122-14) in anesthetized minipigs.

    Science.gov (United States)

    Rohde, E; Wiesner, B; Muschick, P

    1993-09-01

    AWD 122-14, a new positive inotropic and vasodilating agent, was investigated in comparison to amrinone, milrinone and dopamine in anesthetized minipigs. AWD 122-14 (1.17.10(-7)-37.5.10(-7) mol/kg) increased dose-dependent left ventricular contractility (LV dp/dtmax) (122x5 +/- 11x3%; ED50 = 8.1x10(-7) to mol/kg). Dopamine (2.64x10(-8)-21x12 x 10(-8) mol/kg) in comparison increased contractility up to 153.1 +/- 44.9% of control value and is about 20 times more potent than AWD 122-14 at the ED50 value and about 10 times more potent at the ED30 value. Amrinone (1.60x10(-6)-16.90x10(-6) mol/kg) and milrinone (1.48x10(-7)-23.70x10(-7) mol/kg) only slightly increased contractility in anesthetized minipigs, but they appear to posses a similar pharmacological profile like AWD 122-14. The hemodynamic effects were associated with an increase in myocardial oxygen consumption (E1: 18.8 +/- 10.0%) due to the marked increases in LV dp/dtmax and heart rate. LVMW was unchanged and LVSW decreased (-29.0 +/- 10.2%) after application of AWD 122-14. The reduction in left ventricular work (LVMW, LVSW) and the increase in myocardial oxygen consumption led to a decrease of left ventricular external mechanical efficiency of the non-failing minipig heart (Etam: -21.1 +/- 9.4%). Additional hemodynamic effects of AWD 122-14 were studied under calcium channel blockade (verapamil, nifedipine). After pretreatment with verapamil the agent (1.17.10(-7)-18.75.10(-7) mol/kg i.v.) increased left ventricular contractility between 42.9 +/- 41.6% and 58.5 +/- 33.3%. After pretreatment with nifedipine the agent induced a dose-dependent increase in LV dp/dtmax between 11.1 +/- 7.7% and 47.8 +/- 23.7%.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Contrasting hemodynamic mechanisms of losartan- vs. atenolol-based antihypertensive treatment

    DEFF Research Database (Denmark)

    Greve, Anders M; Olsen, Michael H; Bella, Jonathan N

    2012-01-01

    Pharmaceutical differences in central hemodynamics might influence cardiac response to antihypertensive treatment despite similar lowering of brachial blood pressure (BP).......Pharmaceutical differences in central hemodynamics might influence cardiac response to antihypertensive treatment despite similar lowering of brachial blood pressure (BP)....

  19. A Response to the Legitimacy of Brain Death in Islam.

    Science.gov (United States)

    Rady, Mohamed Y; Verheijde, Joseph L

    2016-08-01

    Brain death is a novel construct of death for the procurement of transplantable organs. Many authoritative Islamic organizations and governments have endorsed brain death as true death for organ donation. Many commentators have reiterated the misconception that the Quranic text does not define death. We respond by clarifying: (1) the Quran does define death as biologic disintegration and clearly distinguishes it from the dying process, (2) brain death belongs scientifically within the spectrum of neurologic disorders of consciousness and should not be confused with death, and (3) religious and legal discord about brain death has grown in jurisdictions worldwide. We urge for public transparency and truthfulness about brain death and the accommodation and respect of religious objection to the determination of death by neurologic criteria.

  20. A computational model of hemodynamic parameters in cortical capillary networks.

    Science.gov (United States)

    Safaeian, Navid; Sellier, Mathieu; David, Tim

    2011-02-21

    The analysis of hemodynamic parameters and functional reactivity of cerebral capillaries is still controversial. To assess the hemodynamic parameters in the cortical capillary network, a generic model was created using 2D voronoi tessellation in which each edge represents a capillary segment. This method is capable of creating an appropriate generic model of cerebral capillary network relating to each part of the brain cortex because the geometric model is able to vary the capillary density. The modeling presented here is based on morphometric parameters extracted from physiological data of the human cortex. The pertinent hemodynamic parameters were obtained by numerical simulation based on effective blood viscosity as a function of hematocrit and microvessel diameter, phase separation and plasma skimming effects. The hemodynamic parameters of capillary networks with two different densities (consistent with the variation of the morphometric data in the human cortical capillary network) were analyzed. The results show pertinent hemodynamic parameters for each model. The heterogeneity (coefficient variation) and the mean value of hematocrits, flow rates and velocities of the both network models were specified. The distributions of blood flow throughout the both models seem to confirm the hypothesis in which all capillaries in a cortical network are recruited at rest (normal condition). The results also demonstrate a discrepancy of the network resistance between two models, which are derived from the difference in the number density of capillary segments between the models. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Reproducibility assessment of brain responses to visual food stimuli in adults with overweight and obesity.

    Science.gov (United States)

    Drew Sayer, R; Tamer, Gregory G; Chen, Ningning; Tregellas, Jason R; Cornier, Marc-Andre; Kareken, David A; Talavage, Thomas M; McCrory, Megan A; Campbell, Wayne W

    2016-10-01

    The brain's reward system influences ingestive behavior and subsequently obesity risk. Functional magnetic resonance imaging (fMRI) is a common method for investigating brain reward function. This study sought to assess the reproducibility of fasting-state brain responses to visual food stimuli using BOLD fMRI. A priori brain regions of interest included bilateral insula, amygdala, orbitofrontal cortex, caudate, and putamen. Fasting-state fMRI and appetite assessments were completed by 28 women (n = 16) and men (n = 12) with overweight or obesity on 2 days. Reproducibility was assessed by comparing mean fasting-state brain responses and measuring test-retest reliability of these responses on the two testing days. Mean fasting-state brain responses on day 2 were reduced compared with day 1 in the left insula and right amygdala, but mean day 1 and day 2 responses were not different in the other regions of interest. With the exception of the left orbitofrontal cortex response (fair reliability), test-retest reliabilities of brain responses were poor or unreliable. fMRI-measured responses to visual food cues in adults with overweight or obesity show relatively good mean-level reproducibility but considerable within-subject variability. Poor test-retest reliability reduces the likelihood of observing true correlations and increases the necessary sample sizes for studies. © 2016 The Obesity Society.

  2. A novel approach to calibrate the hemodynamic model using functional Magnetic Resonance Imaging (fMRI) measurements.

    Science.gov (United States)

    Khoram, Nafiseh; Zayane, Chadia; Djellouli, Rabia; Laleg-Kirati, Taous-Meriem

    2016-03-15

    The calibration of the hemodynamic model that describes changes in blood flow and blood oxygenation during brain activation is a crucial step for successfully monitoring and possibly predicting brain activity. This in turn has the potential to provide diagnosis and treatment of brain diseases in early stages. We propose an efficient numerical procedure for calibrating the hemodynamic model using some fMRI measurements. The proposed solution methodology is a regularized iterative method equipped with a Kalman filtering-type procedure. The Newton component of the proposed method addresses the nonlinear aspect of the problem. The regularization feature is used to ensure the stability of the algorithm. The Kalman filter procedure is incorporated here to address the noise in the data. Numerical results obtained with synthetic data as well as with real fMRI measurements are presented to illustrate the accuracy, robustness to the noise, and the cost-effectiveness of the proposed method. We present numerical results that clearly demonstrate that the proposed method outperforms the Cubature Kalman Filter (CKF), one of the most prominent existing numerical methods. We have designed an iterative numerical technique, called the TNM-CKF algorithm, for calibrating the mathematical model that describes the single-event related brain response when fMRI measurements are given. The method appears to be highly accurate and effective in reconstructing the BOLD signal even when the measurements are tainted with high noise level (as high as 30%). Published by Elsevier B.V.

  3. A novel approach to calibrate the Hemodynamic Model using functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Khoram, Nafiseh

    2016-01-21

    Background The calibration of the hemodynamic model that describes changes in blood flow and blood oxygenation during brain activation is a crucial step for successfully monitoring and possibly predicting brain activity. This in turn has the potential to provide diagnosis and treatment of brain diseases in early stages. New Method We propose an efficient numerical procedure for calibrating the hemodynamic model using some fMRI measurements. The proposed solution methodology is a regularized iterative method equipped with a Kalman filtering-type procedure. The Newton component of the proposed method addresses the nonlinear aspect of the problem. The regularization feature is used to ensure the stability of the algorithm. The Kalman filter procedure is incorporated here to address the noise in the data. Results Numerical results obtained with synthetic data as well as with real fMRI measurements are presented to illustrate the accuracy, robustness to the noise, and the cost-effectiveness of the proposed method. Comparison with Existing Method(s) We present numerical results that clearly demonstrate that the proposed method outperforms the Cubature Kalman Filter (CKF), one of the most prominent existing numerical methods. Conclusion We have designed an iterative numerical technique, called the TNM-CKF algorithm, for calibrating the mathematical model that describes the single-event related brain response when fMRI measurements are given. The method appears to be highly accurate and effective in reconstructing the BOLD signal even when the measurements are tainted with high noise level (as high as 30%).

  4. Brain’s DNA Repair Response to Neurotoxicants

    Science.gov (United States)

    2007-01-01

    damage, repair, and antioxidant systems in brain regions: a correlative study. Free Radical Biology & Medicine 2000;28(5):779-785. APPENDIX...in the mouse brain. Free Radical Biology and Medicine 33: 292-298;2002 V. Sava et al. 20 [19] Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner...neurotoxicity (Mandir et al., 1999). Neuroprotection against MPTP toxicity was also achieved by treatment of mice with PARP-1 inhibitors (Cosi and Marien , 1999

  5. The Diagnosis and Hemodynamic Monitoring of Circulatory Shock: Current and Future Trends

    Directory of Open Access Journals (Sweden)

    Hendy Adham

    2016-07-01

    Full Text Available Circulatory shock is a complex clinical syndrome encompassing a group of conditions that can arise from different etiologies and presented by several different hemodynamic patterns. If not corrected, cell dysfunction, irreversible multiple organ insufficiency, and death may occur. The four basic types of shock, hypovolemic, cardiogenic, obstructive and distributive, have features similar to that of hemodynamic shock. It is therefore essential, when monitoring hemodynamic shock, to making accurate clinical assessments which will guide and dictate appropriate management therapy. The European Society of Intensive Care has recently made recommendations for monitoring hemodynamic shock. The present paper discusses the issues raised in the new statements, including individualization of blood pressure targets, prediction of fluid responsiveness, and the use of echocardiography as the first means during the initial evaluation of circulatory shock. Also, the place of more invasive hemodynamic monitoring techniques and future trends in hemodynamic and metabolic monitoring in circulatory shock, will be debated.

  6. Differences in brain responses between lean and obese women to a sweetened drink.

    Science.gov (United States)

    Connolly, L; Coveleskie, K; Kilpatrick, L A; Labus, J S; Ebrat, B; Stains, J; Jiang, Z; Tillisch, K; Raybould, H E; Mayer, E A

    2013-07-01

    Ingestion of sweet food is driven by central reward circuits and restrained by endocrine and neurocrine satiety signals. The specific influence of sucrose intake on central affective and reward circuitry and alterations of these mechanisms in the obese are incompletely understood. For this, we hypothesized that (i) similar brain regions are engaged by the stimulation of sweet taste receptors by sucrose and by non-nutrient sweeteners and (ii) during visual food-related cues, obese subjects show greater brain responses to sucrose compared with lean controls. In a double-blind, crossover design, 10 obese and 10 lean healthy females received a sucrose or a non-nutrient sweetened beverage prior to viewing food or neutral images. BOLD signal was measured using a 1.5 Tesla MRI scanner. Viewing food images after ingestion of either drink was associated with engagement of similar brain regions (amygdala, hippocampus, thalamus, anterior insula). Obese differed from lean subjects in behavioral and brain responses rating both beverages as less tasteful and satisfying, yet demonstrating greater brain responses. Obese subjects also showed engagement of an additional brain network (including anterior insula, anterior cingulate, hippocampus, and amygdala) only after sucrose ingestion. Obese subjects had a reduced behavioral hedonic response, yet a greater engagement of affective brain networks, particularly after sucrose ingestion, suggesting that in obese subjects, lingual and gut-derived signaling generate less central hedonic effects than food-related memories in response to visual cues, analogous to response patterns implicated in food addiction. © 2013 John Wiley & Sons Ltd.

  7. Mesothelin-specific Immune Responses Predict Survival of Patients With Brain Metastasis

    Directory of Open Access Journals (Sweden)

    Liu Zhenjiang

    2017-09-01

    Interpretation: This is the first evidence that immune responses to mesothelin serve as a marker of increased overall survival in patients with brain metastases, regardless of the primary tumor origin. Analyses of immunological markers could potentially serve as prognostic markers in patients with brain metastases and help to select patients in need for adjunct, immunological, treatment strategies.

  8. Brain stem evoked response to forward and reversed speech in humans.

    Science.gov (United States)

    Galbraith, Gary C; Amaya, Elizabeth M; de Rivera, Jacinta M Diaz; Donan, Namee M; Duong, Mylien T; Hsu, Jeffrey N; Tran, Kim; Tsang, Lian P

    2004-09-15

    Speech stimuli played in reverse are perceived as unfamiliar and alien-sounding, even though phoneme duration and fundamental voicing frequency are preserved. Although language perception ultimately resides in the neocortex, the brain stem plays a vital role in processing auditory information, including speech. The present study measured brain stem frequency-following responses (FFR) evoked by forward and reverse speech stimuli recorded from electrodes oriented horizontally and vertically to measure signals with putative origins in auditory nerve and rostral brain stem, respectively. The vertical FFR showed increased amplitude due to forward speech. It is concluded that familiar phonological and prosodic properties of forward speech selectively activate central brain stem neurons.

  9. Concussion in professional football: brain responses by finite element analysis: part 9.

    Science.gov (United States)

    Viano, David C; Casson, Ira R; Pellman, Elliot J; Zhang, Liying; King, Albert I; Yang, King H

    2005-11-01

    Brain responses from concussive impacts in National Football League football games were simulated by finite element analysis using a detailed anatomic model of the brain and head accelerations from laboratory reconstructions of game impacts. This study compares brain responses with physician determined signs and symptoms of concussion to investigate tissue-level injury mechanisms. The Wayne State University Head Injury Model (Version 2001) was used because it has fine anatomic detail of the cranium and brain with more than 300,000 elements. It has 15 different material properties for brain and surrounding tissues. The model includes viscoelastic gray and white brain matter, membranes, ventricles, cranium and facial bones, soft tissues, and slip interface conditions between the brain and dura. The cranium of the finite element model was loaded by translational and rotational accelerations measured in Hybrid III dummies from 28 laboratory reconstructions of NFL impacts involving 22 concussions. Brain responses were determined using a nonlinear, finite element code to simulate the large deformation response of white and gray matter. Strain responses occurring early (during impact) and mid-late (after impact) were compared with the signs and symptoms of concussion. Strain concentration "hot spots" migrate through the brain with time. In 9 of 22 concussions, the early strain "hot spots" occur in the temporal lobe adjacent to the impact and migrate to the far temporal lobe after head acceleration. In all cases, the largest strains occur later in the fornix, midbrain, and corpus callosum. They significantly correlated with removal from play, cognitive and memory problems, and loss of consciousness. Dizziness correlated with early strain in the orbital-frontal cortex and temporal lobe. The strain migration helps explain coup-contrecoup injuries. Finite element modeling showed the largest brain deformations occurred after the primary head acceleration. Midbrain strain

  10. Monitoring the Neuroinflammatory Response Following Acute Brain Injury

    Science.gov (United States)

    Thelin, Eric Peter; Tajsic, Tamara; Zeiler, Frederick Adam; Menon, David K.; Hutchinson, Peter J. A.; Carpenter, Keri L. H.; Morganti-Kossmann, Maria Cristina; Helmy, Adel

    2017-01-01

    Traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) are major contributors to morbidity and mortality. Following the initial insult, patients may deteriorate due to secondary brain damage. The underlying molecular and cellular cascades incorporate components of the innate immune system. There are different approaches to assess and monitor cerebral inflammation in the neuro intensive care unit. The aim of this narrative review is to describe techniques to monitor inflammatory activity in patients with TBI and SAH in the acute setting. The analysis of pro- and anti-inflammatory cytokines in compartments of the central nervous system (CNS), including the cerebrospinal fluid and the extracellular fluid, represent the most common approaches to monitor surrogate markers of cerebral inflammatory activity. Each of these compartments has a distinct biology that reflects local processes and the cross-talk between systemic and CNS inflammation. Cytokines have been correlated to outcomes as well as ongoing, secondary injury progression. Alongside the dynamic, focal assay of humoral mediators, imaging, through positron emission tomography, can provide a global in vivo measurement of inflammatory cell activity, which reveals long-lasting processes following the initial injury. Compared to the innate immune system activated acutely after brain injury, the adaptive immune system is likely to play a greater role in the chronic phase as evidenced by T-cell-mediated autoreactivity toward brain-specific proteins. The most difficult aspect of assessing neuroinflammation is to determine whether the processes monitored are harmful or beneficial to the brain as accumulating data indicate a dual role for these inflammatory cascades following injury. In summary, the inflammatory component of the complex injury cascade following brain injury may be monitored using different modalities. Using a multimodal monitoring approach can potentially aid in the development of therapeutics

  11. Inadequate Antioxidative Responses in Kidneys of Brain-Dead Rats.

    Science.gov (United States)

    Hoeksma, Dane; Rebolledo, Rolando A; Hottenrott, Maximilia; Bodar, Yves S; Wiersema-Buist, Janneke J; Van Goor, Harry; Leuvenink, Henri G D

    2017-04-01

    Brain death (BD)-related lipid peroxidation, measured as serum malondialdehyde (MDA) levels, correlates with delayed graft function in renal transplant recipients. How BD affects lipid peroxidation is not known. The extent of BD-induced organ damage is influenced by the speed at which intracranial pressure increases. To determine possible underlying causes of lipid peroxidation, we investigated the renal redox balance by assessing oxidative and antioxidative processes in kidneys of brain-dead rats after fast and slow BD induction. Brain death was induced in 64 ventilated male Fisher rats by inflating a 4.0F Fogarty catheter in the epidural space. Fast and slow inductions were achieved by an inflation speed of 0.45 and 0.015 mL/min, respectively, until BD confirmation. Healthy non-brain-dead rats served as reference values. Brain-dead rats were monitored for 0.5, 1, 2, or 4 hours, after which organs and blood were collected. Increased MDA levels became evident at 2 hours of slow BD induction at which increased superoxide levels, decreased glutathione peroxidase (GPx) activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased plasma creatinine levels were evident. At 4 hours after slow BD induction, superoxide, MDA, and plasma creatinine levels increased further, whereas GPx activity remained decreased. Increased MDA and plasma creatinine levels also became evident after 4 hours fast BD induction. Brain death leads to increased superoxide production, decreased GPx activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased MDA and plasma creatinine levels. These effects were more pronounced after slow BD induction. Modulation of these processes could lead to decreased incidence of delayed graft function.

  12. On the characterization of single-event related brain activity from functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Khoram, Nafiseh

    2014-08-01

    We propose an efficient numerical technique for calibrating the mathematical model that describes the singleevent related brain response when fMRI measurements are given. This method employs a regularized Newton technique in conjunction with a Kalman filtering procedure. We have applied this method to estimate the biophysiological parameters of the Balloon model that describes the hemodynamic brain responses. Illustrative results obtained with both synthetic and real fMRI measurements are presented. © 2014 IEEE.

  13. The synthetic NCAM-derived peptide, FGL, modulates the transcriptional response to traumatic brain injury

    DEFF Research Database (Denmark)

    Pedersen, Martin Volmer; Helweg-Larsen, Rehannah Borup; Nielsen, Finn Cilius

    2008-01-01

    Cerebral responses to traumatic brain injury (TBI) include up- and downregulation of a vast number of proteins involved in endogenous inflammatory responses and defense mechanisms developing postinjury. The present study analyzed the global gene expression profile in response to cryo-induced TBI...

  14. Language and the Newborn Brain: Does Prenatal Language Experience Shape the Neonate Neural Response to Speech?

    OpenAIRE

    Lillian eMay; Krista eByers-Heinlein; Judit eGervain; Werker, Janet F.

    2011-01-01

    Previous research has shown that by the time of birth, the neonate brain responds specially to the native language when compared to acoustically similar non-language stimuli. In the current study, we use Near Infrared Spectroscopy to ask how prenatal language experience might shape the brain response to language in newborn infants. To do so, we examine the neural response of neonates when listening to familiar versus unfamiliar language, as well as to non-linguistic backwards language. Twenty...

  15. Fractional Diffusion Based Modelling and Prediction of Human Brain Response to External Stimuli

    Directory of Open Access Journals (Sweden)

    Hamidreza Namazi

    2015-01-01

    Full Text Available Human brain response is the result of the overall ability of the brain in analyzing different internal and external stimuli and thus making the proper decisions. During the last decades scientists have discovered more about this phenomenon and proposed some models based on computational, biological, or neuropsychological methods. Despite some advances in studies related to this area of the brain research, there were fewer efforts which have been done on the mathematical modeling of the human brain response to external stimuli. This research is devoted to the modeling and prediction of the human EEG signal, as an alert state of overall human brain activity monitoring, upon receiving external stimuli, based on fractional diffusion equations. The results of this modeling show very good agreement with the real human EEG signal and thus this model can be used for many types of applications such as prediction of seizure onset in patient with epilepsy.

  16. Developmental differences in the brain response to unhealthy food cues

    NARCIS (Netherlands)

    Meer, van Floor; Laan, van der Laura N.; Charbonnier, Lisette; Viergever, Max A.; Adan, Roger A.H.; Smeets, Paul A.M.

    2016-01-01

    Background: Food cues are omnipresent and may trigger overconsumption. In the past 2 decades, the prevalence of childhood obesity has increased dramatically. Because children's brains are still developing, especially in areas important for inhibition, children may be more susceptible than adults

  17. Optical imaging during toddlerhood: brain responses during naturalistic social interactions.

    Science.gov (United States)

    Hakuno, Yoko; Pirazzoli, Laura; Blasi, Anna; Johnson, Mark H; Lloyd-Fox, Sarah

    2018-01-01

    Despite the importance of our ability to interact and communicate with others, the early development of the social brain network remains poorly understood. We examined brain activity in 12- to 14-month-old infants while they were interacting live with an adult in two different naturalistic social scenarios (i.e., reading a picture book versus singing nursery rhymes with gestures), as compared to baseline (i.e., showing infants a toy without eye contact or speech). We used functional near-infrared spectroscopy (fNIRS) recorded over the right temporal lobe of infants to assess the role of the superior temporal sulcus-temporoparietal junction (STS-TPJ) region during naturalistic social interactions. We observed increased cortical activation in the STS-TPJ region to live social stimuli in both socially engaging conditions compared to baseline during real life interaction, with greater activation evident for the joint attention (reading book) condition relative to the social nursery rhymes. These results supported the view that the STS-TPJ region, engaged in the cortical social brain network, is already specialized in infants for processing social signals and is sensitive to communicative situations. This study also highlighted the potential of fNIRS for studying brain function in infants entering toddlerhood during live social interaction.

  18. Cyclic AMP response element binding protein and brain-derived ...

    Indian Academy of Sciences (India)

    ... brain-derived neurotrophic factor (BDNF) are targets of diverse classes of antidepressants and are known to be regulated in animal models and in patients suffering from depression. Given their role in neuronal plasticity, CREB and BDNF have emerged as molecules that may play an important role in modulating mood.

  19. [Evaluation of relationship between early brain response and neurodevelopment in newborns by using near infrared spectroscopy].

    Science.gov (United States)

    Hou, Xin-lin; Zhou, Cong-le; Huang, Lan; Ding, Hai-shu; Wang, Hong-mei

    2006-06-01

    To study the relationship between early brain response to extrinsic stimulation and neurodevelopment in preterm infants, assess the brain function of preterm infants in the early stage, and thereby to provide objective evidence for the degree of neurodevelopment in preterm infants and to evaluate prognosis. Using near infrared spectroscopy (NIRS), the brain response to sound stimulation of 90 preterm infants at different gestational age was observed and compared with the result obtained from 20 full term infants. The neonatal behavioral neurological assessment (NBNA) was performed at corrected age of 40 weeks, and the infants were followed up for 2 years. The effect of gestational age and brain damage on preterm infants, the relation between early brain response in preterm infants and their neurodevelopment was evaluated. All the preterm infants responded to different degrees to auditory stimulation after birth. The time to beginning to react and the time to appearance of the peak reaction were attained after auditory stimulation and the time to beginning to resume when the auditory stimulation was stopped was (278 +/- 94) s, (446 +/- 67) s and (199 +/- 52) s, respectively, which were significantly longer than those observed in the full term infants (107 +/- 30) s, (264 +/- 51) s and (131 +/- 46) s, respectively. The maximum reactions of hemoglobin, oxyhemoglobin and regional oxygen saturation in the infants after gestational age 32 weeks was (0.3 +/- 0.3)%, (0.7 +/- 0.5)% and (0.3 +/- 0.3)%, respectively, which were significantly lower than those in the full term infants (1.7 +/- 0.7)%, (1.7 +/- 0.8)% and (1.6 +/- 0.7)%, respectively. When the brain response of preterm infants was compared with that in infants without brain damage, the speed of the reaction was slow, the maximum reaction was low. The brain response in preterm infant was correlated with NBNA at corrected age of 40 weeks. It was found during the following-up that abnormal neurodevelopment was

  20. How the brain connects in response to acute stress: A review at the human brain systems level.

    Science.gov (United States)

    van Oort, J; Tendolkar, I; Hermans, E J; Mulders, P C; Beckmann, C F; Schene, A H; Fernández, G; van Eijndhoven, P F

    2017-10-24

    The brain's response to stress is a matter of extensive neurocognitive research in an attempt to unravel the mechanistic underpinnings of neural adaptation. In line with the broadly defined concept of acute stress, a wide variety of induction procedures are used to mimic stress experimentally. We set out to review commonalities and diversities of the stress-related functional activity and connectivity changes of functional brain networks in healthy adults across procedures. The acute stress response is consistently associated with both increased activity and connectivity in the salience network (SN) and surprisingly also with increased activity in the default mode network (DMN), while most studies show no changes in the central executive network. These results confirm earlier findings of an essential, coordinating role of the SN in the acute stress response and indicate a dynamic role of the DMN whose function is less clear. Moreover, paradigm specific brain responses have to be taken into account when investigating the role and the within and between network connectivity of these three networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A method for discriminating systemic and cortical hemodynamic changes by time domain fNIRS

    Science.gov (United States)

    Zucchelli, Lucia; Spinelli, Lorenzo; Contini, Davide; Re, Rebecca; Torricelli, Alessandro

    2013-06-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive optical technique able to measure hemodynamic response in the brain cortex. Among the different approaches the fNIRS can be based on, the time resolved one allows a straightforward relationship between the photon detection time and its path within the medium, improving the discrimination of the information content relative to the different layers the tissues are composed of. Thus absorption and scattering properties of the probed tissue can be estimated, and from them the oxy- and deoxy-hemoglobin concentration. However, an open issue in the optical imaging studies is still the accuracy in separating the superficial hemodynamic changes from those happening in deeper regions of the head and more likely involving the cerebral cortex. In fact a crucial point is the precise estimate of the time dependent pathlength spent by photons within the perturbed medium. A novel method for the calculus of the absorption properties in time domain fNIRS, based on a refined computation of photon pathlength in multilayered media, is proposed. The method takes into account the non-ideality of the measurement system (its instrument response function) and the heterogeneous structure of the head. The better accuracy in computing the optical pathlength can improve the NIRS data analysis, especially for the deeper layer. Simulations and preliminary analysis on in vivo data have been performed to validate the method and are here presented.

  2. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Rojas, Santiago

    2005-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via intracell...

  3. Brain Cholinergic Function and Response to Rivastigmine in Patients With Chronic Sequels of Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Östberg, Anna; Virta, Jere; Rinne, Juha O

    2017-01-01

    subjects for more than 1 year after at least moderate traumatic brain injury. Ten of the subjects were respondents and 7 nonrespondents to cholinergic medication. DESIGN:: Cholinergic function was assessed with [methyl-C] N-methylpiperidyl-4-acetate-PET (C-MP4A-PET), which reflects the activity...

  4. Thrombospondin 2-null mice display an altered brain foreign body response to polyvinyl alcohol sponge implants

    Energy Technology Data Exchange (ETDEWEB)

    Tian Weiming; Kyriakides, Themis R, E-mail: themis.kyriakides@yale.ed [Vascular Biology and Therapeutics Program, Departments of Pathology and Biomedical Engineering, Yale University, New Haven, CT 06519 (United States)

    2009-02-15

    Thrombospondin (TSP)-2 is a matricellular protein that participates in the processes of tissue repair and the foreign body response. In addition, TSP2 has been shown to influence synaptogenesis and recovery of the brain following stroke. In the present study we investigated the response following the implantation of polyvinyl alcohol (PVA) sponges in the brain. PVA sponges were implanted into the brain cortex of wild type and TSP2-null mice for a period of 4 and 8 weeks and the response was analyzed by histochemistry and quantitative immunohistochemistry. TSP2 expression was detected in the interstices of the sponge and co-localized with the extracellular matrix and astrocytes. PVA sponge invasion in TSP2-null mice was characterized by dense deposition of extracellular matrix and increased invasion of reactive astrocytes and macrophages/microglia. Furthermore, the angiogenic response was elevated and the detection of mouse serum albumin (MSA) in the brain cortex indicated excessive vessel leakage, suggesting that TSP2 plays a role in the repair/maintenance of the blood brain barrier. Finally, immunostaining demonstrated an increase in the levels of matrix metalloproteinase (MMP)-2 and MMP-9. Taken together, our observations support a role for TSP2 as critical determinant of the brain response to biomaterials.

  5. Thrombospondin 2-null mice display an altered brain foreign body response to polyvinyl alcohol sponge implants

    Science.gov (United States)

    Tian, Weiming; Kyriakides, Themis R

    2009-01-01

    Thrombospondin (TSP)-2 is a matricellular protein that participates in the processes of tissue repair and the foreign body response. In addition, TSP2 has been shown to influence synaptogenesis and recovery of the brain following stroke. In the present study we investigated the response following the implantation of polyvinyl alcohol (PVA) sponges in the brain. PVA sponges were implanted into the brain cortex of wild type and TSP2-null mice for a period of 4 and 8 weeks and the response was analyzed by histochemistry and quantitative immunohistochemistry. TSP2 expression was detected in the interstices of the sponge and co-localized with the extracellular matrix and astrocytes. PVA sponge invasion in TSP2-null mice was characterized by dense deposition of extracellular matrix and increased invasion of reactive astrocytes and macrophages/microglia. Furthermore, the angiogenic response was elevated and the detection of mouse serum albumin (MSA) in the brain cortex indicated excessive vessel leakage, suggesting that TSP2 plays a role in the repair/maintenance of the blood brain barrier. Finally, immunostaining demonstrated an increase in the levels of matrix metalloproteinase (MMP)-2 and MMP-9. Taken together, our observations support a role for TSP2 as critical determinant of the brain response to biomaterials. PMID:19020342

  6. Seeing it coming: infants' brain responses to looming danger

    Science.gov (United States)

    van der Weel, F. R. (Ruud); van der Meer, Audrey L. H.

    2009-12-01

    A fundamental property of most animals is the ability to see whether an object is approaching on a direct collision course and, if so, when it will collide. Using high-density electroencephalography in 5- to 11-month-old infants and a looming stimulus approaching under three different accelerations, we investigated how the young human nervous system extracts and processes information for impending collision. Here, we show that infants’ looming related brain activity is characterised by theta oscillations. Source analyses reveal clear localised activity in the visual cortex. Analysing the temporal dynamics of the source waveform, we provide evidence that the temporal structure of different looming stimuli is sustained during processing in the more mature infant brain, providing infants with increasingly veridical time-to-collision information about looming danger as they grow older and become more mobile.

  7. MicroRNA responses to focal cerebral ischemia in male and female mouse brain

    Directory of Open Access Journals (Sweden)

    Theresa Ann Lusardi

    2014-02-01

    Full Text Available Stroke occurs with greater frequency in men than in women across diverse ethnic backgrounds and nationalities. Work from our lab and others have revealed a sex-specific sensitivity to cerebral ischemia whereby males exhibit a larger extent of brain damage resulting from an ischemic event compared to females. Previous studies revealed that microRNA (miRNA expression is regulated by cerebral ischemia in males; however, no studies to date have examined the effect of ischemia on miRNA responses in females. Thus, we examined miRNA responses in male and female brain in response to cerebral ischemia using miRNA arrays. These studies revealed that in male and female brains, ischemia leads to both a universal miRNA response as well as a sexually distinct response to challenge. Target prediction analysis of the miRNAs increased in male or female ischemic brain reveal sex-specific differences in gene targets and protein pathways. These data support that the mechanisms underlying sexually dimorphic responses to cerebral ischemia includes distinct changes in miRNAs in male and female brain, in addition to a miRNA signature response to ischemia that is common to both.

  8. Brain size affects the behavioural response to predators in female guppies (Poecilia reticulata).

    Science.gov (United States)

    van der Bijl, Wouter; Thyselius, Malin; Kotrschal, Alexander; Kolm, Niclas

    2015-08-07

    Large brains are thought to result from selection for cognitive benefits, but how enhanced cognition leads to increased fitness remains poorly understood. One explanation is that increased cognitive ability results in improved monitoring and assessment of predator threats. Here, we use male and female guppies (Poecilia reticulata), artificially selected for large and small brain size, to provide an experimental evaluation of this hypothesis. We examined their behavioural response as singletons, pairs or shoals of four towards a model predator. Large-brained females, but not males, spent less time performing predator inspections, an inherently risky behaviour. Video analysis revealed that large-brained females were further away from the model predator when in pairs but that they habituated quickly towards the model when in shoals of four. Males stayed further away from the predator model than females but again we found no brain size effect in males. We conclude that differences in brain size affect the female predator response. Large-brained females might be able to assess risk better or need less sensory information to reach an accurate conclusion. Our results provide experimental support for the general idea that predation pressure is likely to be important for the evolution of brain size in prey species. © 2015 The Authors.

  9. How Do I Integrate Hemodynamic Variables When Managing Septic Shock?

    Directory of Open Access Journals (Sweden)

    Olfa Hamzaoui

    2016-11-01

    Full Text Available Hemodynamic management of sepsis-induced circulatory failure is complex since this pathological state includes multiple cardiovascular derangements that can vary from patient to patient according to the degree of hypovolemia, of vascular tone depression, of myocardial depression and of microvascular dysfunction. The treatment of the sepsis-induced circulatory failure is thus not univocal and should be adapted on an individual basis. As physical examination is insufficient to obtain a comprehensive picture of the hemodynamic status, numerous hemodynamic variables more or less invasively collected, have been proposed to well assess the severity of each component of the circulatory failure and to monitor the response to therapy. In this article, we first describe the hemodynamic variables, which are the most relevant to be used, emphasizing on their physiological meaning, their validation and their limitations in patients with septic shock. We then proposed a general approach for managing patients with septic shock by describing the logical steps that need to be followed in order to select and deliver the most appropriate therapies. This therapeutic approach is essentially based on knowledge of physiology, of pathophysiology of sepsis, and of published data from clinical studies that addressed the issue of hemodynamic management of septic shock.

  10. Dietary melatonin alters uterine artery hemodynamics in pregnant holstein heifers

    Science.gov (United States)

    The objective was to examine uterine artery hemodynamics and maternal serum profiles in pregnant heifers supplemented with dietary melatonin (MEL) or no supplementation (CON). In addition, melatonin receptor–mediated responses in steroid metabolism were examined using a bovine endometrial epithelial...

  11. A sliding mode observer for hemodynamic characterization under modeling uncertainties

    KAUST Repository

    Zayane, Chadia

    2014-06-01

    This paper addresses the case of physiological states reconstruction in a small region of the brain under modeling uncertainties. The misunderstood coupling between the cerebral blood volume and the oxygen extraction fraction has lead to a partial knowledge of the so-called balloon model describing the hemodynamic behavior of the brain. To overcome this difficulty, a High Order Sliding Mode observer is applied to the balloon system, where the unknown coupling is considered as an internal perturbation. The effectiveness of the proposed method is illustrated through a set of synthetic data that mimic fMRI experiments.

  12. Investigating neuromagnetic brain responses against chromatic flickering stimuli by wavelet entropies.

    Directory of Open Access Journals (Sweden)

    Mayank Bhagat

    Full Text Available BACKGROUND: Photosensitive epilepsy is a type of reflexive epilepsy triggered by various visual stimuli including colourful ones. Despite the ubiquitous presence of colorful displays, brain responses against different colour combinations are not properly studied. METHODOLOGY/PRINCIPAL FINDINGS: Here, we studied the photosensitivity of the human brain against three types of chromatic flickering stimuli by recording neuromagnetic brain responses (magnetoencephalogram, MEG from nine adult controls, an unmedicated patient, a medicated patient, and two controls age-matched with patients. Dynamical complexities of MEG signals were investigated by a family of wavelet entropies. Wavelet entropy is a newly proposed measure to characterize large scale brain responses, which quantifies the degree of order/disorder associated with a multi-frequency signal response. In particular, we found that as compared to the unmedicated patient, controls showed significantly larger wavelet entropy values. We also found that Renyi entropy is the most powerful feature for the participant classification. Finally, we also demonstrated the effect of combinational chromatic sensitivity on the underlying order/disorder in MEG signals. CONCLUSIONS/SIGNIFICANCE: Our results suggest that when perturbed by potentially epileptic-triggering stimulus, healthy human brain manages to maintain a non-deterministic, possibly nonlinear state, with high degree of disorder, but an epileptic brain represents a highly ordered state which making it prone to hyper-excitation. Further, certain colour combination was found to be more threatening than other combinations.

  13. Brain reward system's alterations in response to food and monetary stimuli in overweight and obese individuals.

    Science.gov (United States)

    Verdejo-Román, Juan; Vilar-López, Raquel; Navas, Juan F; Soriano-Mas, Carles; Verdejo-García, Antonio

    2017-02-01

    The brain's reward system is crucial to understand obesity in modern society, as increased neural responsivity to reward can fuel the unhealthy food choices that are driving the growing obesity epidemic. Brain's reward system responsivity to food and monetary rewards in individuals with excessive weight (overweight and obese) versus normal weight controls, along with the relationship between this responsivity and body mass index (BMI) were tested. The sample comprised 21 adults with obesity (BMI > 30), 21 with overweight (BMI between 25 and 30), and 39 with normal weight (BMI food (Willing to Pay) and monetary rewards (Monetary Incentive Delay). Neural activations within the brain reward system were compared across the three groups. Curve fit analyses were conducted to establish the association between BMI and brain reward system's response. Individuals with obesity had greater food-evoked responsivity in the dorsal and ventral striatum compared with overweight and normal weight groups. There was an inverted U-shape association between BMI and monetary-evoked responsivity in the ventral striatum, medial frontal cortex, and amygdala; that is, individuals with BMIs between 27 and 32 had greater responsivity to monetary stimuli. Obesity is associated with greater food-evoked responsivity in the ventral and dorsal striatum, and overweight is associated with greater monetary-evoked responsivity in the ventral striatum, the amygdala, and the medial frontal cortex. Findings suggest differential reactivity of the brain's reward system to food versus monetary rewards in obesity and overweight. Hum Brain Mapp 38:666-677, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Histamine Induces Alzheimer's Disease-Like Blood Brain Barrier Breach and Local Cellular Responses in Mouse Brain Organotypic Cultures

    Science.gov (United States)

    Sedeyn, Jonathan C.; Wu, Hao; Hobbs, Reilly D.; Levin, Eli C.; Nagele, Robert G.; Venkataraman, Venkat

    2015-01-01

    Among the top ten causes of death in the United States, Alzheimer's disease (AD) is the only one that cannot be cured, prevented, or even slowed down at present. Significant efforts have been exerted in generating model systems to delineate the mechanism as well as establishing platforms for drug screening. In this study, a promising candidate model utilizing primary mouse brain organotypic (MBO) cultures is reported. For the first time, we have demonstrated that the MBO cultures exhibit increased blood brain barrier (BBB) permeability as shown by IgG leakage into the brain parenchyma, astrocyte activation as evidenced by increased expression of glial fibrillary acidic protein (GFAP), and neuronal damage-response as suggested by increased vimentin-positive neurons occur upon histamine treatment. Identical responses—a breakdown of the BBB, astrocyte activation, and neuronal expression of vimentin—were then demonstrated in brains from AD patients compared to age-matched controls, consistent with other reports. Thus, the histamine-treated MBO culture system may provide a valuable tool in combating AD. PMID:26697497

  15. Invasive and transcranial photoacoustic imaging of the vascular response to brain electrical stimulation

    Science.gov (United States)

    Tsytsarev, Vassiliy; Yao, Junjie; Hu, Song; Li, Li; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.

    2010-02-01

    Advances in the brain functional imaging greatly facilitated the understanding of neurovascular coupling. For monitoring of the microvascular response to the brain electrical stimulation in vivo we used optical-resolution photoacoustic microscopy (OR-PAM) through the cranial openings as well as transcranially. Both types of the vascular response, vasoconstriction and vasodilatation, were clearly observed with good spatial and temporal resolution. Obtained results confirm one of the primary points of the neurovascular coupling theory that blood vessels could present vasoconstriction or vasodilatation in response to electrical stimulation, depending on the balance between inhibition and excitation of the different parts of the elements of the neurovascular coupling system.

  16. Dietary l-tryptophan leaves a lasting impression on the brain and the stress response

    DEFF Research Database (Denmark)

    Höglund, Erik; Øverli, Øyvind; Åberg Andersson, Madelene

    2017-01-01

    Comparative models suggest that effects of dietary tryptophan (Trp) on brain serotonin (5-hydroxytryptamine; 5-HT) neurochemistry and stress responsiveness are present throughout the vertebrate lineage. Moreover, hypothalamic 5-HT seems to play a central role in control of the neuroendocrine stre......, they indicate that trophic/structural effects in the brain underlie the effects of dietary Trp treatment on stress reactivity.......Comparative models suggest that effects of dietary tryptophan (Trp) on brain serotonin (5-hydroxytryptamine; 5-HT) neurochemistry and stress responsiveness are present throughout the vertebrate lineage. Moreover, hypothalamic 5-HT seems to play a central role in control of the neuroendocrine stress...... axis in all vertebrates. Still, recent fish studies suggest long-term effects of dietary Trp on stress responsiveness, which are independent of hypothalamic 5-HT. Here, we investigated if dietary Trp treatment may result in long-lasting effects on stress responsiveness, including changes in plasma...

  17. Effects of hunger state on food-related brain responses across the lifespan

    NARCIS (Netherlands)

    Charbonnier, L

    2016-01-01

    Thesis aims The studies conducted in this thesis were part of the Full4Health project. The aims of the Full4Health project were to assess the differences in the brain responses to food presentation and food choice and how these responses are modulated by hunger and gut signals in lean and obese

  18. Gene expression changes in female zebrafish (Danio rerio) brain in response to acute exposure to methylmercury

    Science.gov (United States)

    Richter, Catherine A.; Garcia-Reyero, Natàlia; Martyniuk, Chris; Knoebl, Iris; Pope, Marie; Wright-Osment, Maureen K.; Denslow, Nancy D.; Tillitt, Donald E.

    2011-01-01

    Methylmercury (MeHg) is a potent neurotoxicant and endocrine disruptor that accumulates in aquatic systems. Previous studies have shown suppression of hormone levels in both male and female fish, suggesting effects on gonadotropin regulation in the brain. The gene expression profile in adult female zebrafish whole brain induced by acute (96 h) MeHg exposure was investigated. Fish were exposed by injection to 0 or 0.5(mu or u)g MeHg/g. Gene expression changes in the brain were examined using a 22,000-feature zebrafish microarray. At a significance level of pfemale brain. Future studies will compare the gene expression profile induced in response to MeHg with that induced by other toxicants and will investigate responsive genes as potential biomarkers of MeHg exposure.

  19. Evaluation of the brain anaesthesia response monitor during anaesthesia for cardiac surgery: a double-blind, randomised controlled trial using two doses of fentanyl.

    Science.gov (United States)

    Shoushtarian, Mehrnaz; McGlade, Desmond P; Delacretaz, Louis J; Liley, David T J

    2016-12-01

    The brain anaesthesia response (BAR) monitor uses a method of EEG analysis, based on a model of brain electrical activity, to monitor the cerebral response to anaesthetic and sedative agents via two indices, composite cortical state (CCS) and cortical input (CI). It was hypothesised that CCS would respond to the hypnotic component of anaesthesia and CI would differentiate between two groups of patients receiving different doses of fentanyl. Twenty-five patients scheduled to undergo elective first-time coronary artery bypass graft surgery were randomised to receive a total fentanyl dose of either 12 μg/kg (fentanyl low dose, FLD) or 24 μg/kg (fentanyl moderate dose, FMD), both administered in two divided doses. Propofol was used for anaesthesia induction and pancuronium for intraoperative paralysis. Hemodynamic management was protocolised using vasoactive drugs. BIS, CCS and CI were simultaneously recorded. Response of the indices (CI, CCS and BIS) to propofol and their differences between the two groups at specific points from anaesthesia induction through to aortic cannulation were investigated. Following propofol induction, CCS and BIS but not CI showed a significant reduction. Following the first dose of fentanyl, CI, CCS and BIS decreased in both groups. Following the second dose of fentanyl, there was a significant reduction in CI in the FLD group but not the FMD group, with no significant change found for BIS or CCS in either group. The BAR monitor demonstrates the potential to monitor the level of hypnosis following anaesthesia induction with propofol via the CCS index and to facilitate the titration of fentanyl as a component of balanced anaesthesia via the CI index.

  20. Mapping brain response to pain in fibromyalgia patients using temporal analysis of FMRI.

    Directory of Open Access Journals (Sweden)

    Jesus Pujol

    Full Text Available BACKGROUND: Nociceptive stimuli may evoke brain responses longer than the stimulus duration often partially detected by conventional neuroimaging. Fibromyalgia patients typically complain of severe pain from gentle stimuli. We aimed to characterize brain response to painful pressure in fibromyalgia patients by generating activation maps adjusted for the duration of brain responses. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-seven women (mean age: 47.8 years were assessed with fMRI. The sample included nine fibromyalgia patients and nine healthy subjects who received 4 kg/cm(2 of pressure on the thumb. Nine additional control subjects received 6.8 kg/cm(2 to match the patients for the severity of perceived pain. Independent Component Analysis characterized the temporal dynamics of the actual brain response to pressure. Statistical parametric maps were estimated using the obtained time courses. Brain response to pressure (18 seconds consistently exceeded the stimulus application (9 seconds in somatosensory regions in all groups. fMRI maps following such temporal dynamics showed a complete pain network response (sensory-motor cortices, operculo-insula, cingulate cortex, and basal ganglia to 4 kg/cm(2 of pressure in fibromyalgia patients. In healthy subjects, response to this low intensity pressure involved mainly somatosensory cortices. When matched for perceived pain (6.8 kg/cm(2, control subjects showed also comprehensive activation of pain-related regions, but fibromyalgia patients showed significantly larger activation in the anterior insula-basal ganglia complex and the cingulate cortex. CONCLUSIONS/SIGNIFICANCE: The results suggest that data-driven fMRI assessments may complement conventional neuroimaging for characterizing pain responses and that enhancement of brain activation in fibromyalgia patients may be particularly relevant in emotion-related regions.

  1. Hemodynamic and Light-Scattering Changes of Rat Spinal Cord and Primary Somatosensory Cortex in Response to Innocuous and Noxious Stimuli

    Directory of Open Access Journals (Sweden)

    Ji-Wei He

    2015-09-01

    Full Text Available Neuroimaging technologies with an exceptional spatial resolution and noninvasiveness have become a powerful tool for assessing neural activity in both animals and humans. However, the effectiveness of neuroimaging for pain remains unclear partly because the neurovascular coupling during pain processing is not completely characterized. Our current work aims to unravel patterns of neurovascular parameters in pain processing. A novel fiber-optic method was used to acquire absolute values of regional oxy- (HbO and deoxy-hemoglobin concentrations, oxygen saturation rates (SO2, and the light-scattering coefficients from the spinal cord and primary somatosensory cortex (SI in 10 rats. Brief mechanical and electrical stimuli (ranging from innocuous to noxious intensities as well as a long-lasting noxious stimulus (formalin injection were applied to the hindlimb under pentobarbital anesthesia. Interhemispheric comparisons in the spinal cord and SI were used to confirm functional activation during sensory processing. We found that all neurovascular parameters showed stimulation-induced changes; however, patterns of changes varied with regions and stimuli. Particularly, transient increases in HbO and SO2 were more reliably attributed to brief stimuli, whereas a sustained decrease in SO2 was more reliably attributed to formalin. Only the ipsilateral SI showed delayed responses to brief stimuli. In conclusion, innocuous and noxious stimuli induced significant neurovascular responses at critical centers (e.g., the spinal cord and SI along the somatosensory pathway; however, there was no single response pattern (as measured by amplitude, duration, lateralization, decrease or increase that was able to consistently differentiate noxious stimuli. Our results strongly suggested that the neurovascular response patterns differ between brief and long-lasting noxious stimuli, and can also differ between the spinal cord and SI. Therefore, a use of multiple

  2. Brain Basics

    Medline Plus

    Full Text Available ... Brain Research Glossary Brain Basics (PDF, 10 pages) Introduction Watch the Brain Basics video Welcome. Brain Basics ... fear hub," which activates our natural "fight-or-flight" response to confront or escape from a dangerous ...

  3. Time-Frequency Characterization of Cerebral Hemodynamics of Migraine Sufferers as Assessed by NIRS Signals

    Directory of Open Access Journals (Sweden)

    Filippo Molinari

    2010-01-01

    Full Text Available Near-infrared spectroscopy (NIRS is a noninvasive system for the real-time monitoring of the concentration of oxygenated (O2Hb and reduced (HHb hemoglobin in the brain cortex. O2Hb and HHb concentrations vary in response to cerebral autoregulation. Sixty-eight women (14 migraineurs without aura, 49 migraineurs with aura, and 5 controls performed breath-holding and hyperventilation during NIRS recordings. Signals were processed using the Choi-Williams time-frequency transform in order to measure the power variation of the very-low frequencies (VLF: 20–40 mHz and of the low frequencies (LF: 40–140 mHz. Results showed that migraineurs without aura present different LF and VLF power levels than controls and migraineurs with aura. The accurate power measurement of the time-frequency analysis allowed for the discrimination of the subjects' hemodynamic patterns. The time-frequency analysis of NIRS signals can be used in clinical practice to assess cerebral hemodynamics.

  4. Time-Frequency Characterization of Cerebral Hemodynamics of Migraine Sufferers as Assessed by NIRS Signals

    Directory of Open Access Journals (Sweden)

    Liboni William

    2010-01-01

    Full Text Available Abstract Near-infrared spectroscopy (NIRS is a noninvasive system for the real-time monitoring of the concentration of oxygenated ( and reduced (HHb hemoglobin in the brain cortex. and HHb concentrations vary in response to cerebral autoregulation. Sixty-eight women (14 migraineurs without aura, 49 migraineurs with aura, and 5 controls performed breath-holding and hyperventilation during NIRS recordings. Signals were processed using the Choi-Williams time-frequency transform in order to measure the power variation of the very-low frequencies (VLF: 20–40 mHz and of the low frequencies (LF: 40–140 mHz. Results showed that migraineurs without aura present different LF and VLF power levels than controls and migraineurs with aura. The accurate power measurement of the time-frequency analysis allowed for the discrimination of the subjects' hemodynamic patterns. The time-frequency analysis of NIRS signals can be used in clinical practice to assess cerebral hemodynamics.

  5. Examination of the predictive factors of the response to whole brain radiotherapy for brain metastases from lung cancer using MRI.

    Science.gov (United States)

    Aoki, Shuri; Kanda, Tomonori; Matsutani, Noriyuki; Seki, Nobuhiko; Kawamura, Masafumi; Furui, Shigeru; Yamashita, Hideomi

    2017-07-01

    Previous studies have been conducted on the prognostic factors for overall survival in patients with brain metastases (BMs) following whole brain radiotherapy (WBRT). However, there have been a small number of studies regarding the prognostic factors for the response of tumor to WBRT. The aim of the present study was to identify the predictive factors for the response to WBRT from the point of view of reduction of tumor using magnetic resonance imaging. A retrospective analysis of 62 patients with BMs from primary lung cancer treated with WBRT was undertaken. The effects of the following factors on the response to WBRT were evaluated: Age; sex; performance status; lactate dehydrogenase; pathology; existence of extracranial metastases; activity of extracranial disease; chemo-history; chest radiotherapy history; treatment term; γ-knife radiotherapy; diffusion weighted image signal intensity; tumor diameter; extent of edema and the edema/tumor (E/T) ratio. The association between the reduction of tumors and clinical factors was evaluated using logistic regression analysis. Ppredictive factors for the reduction of tumor. The following 3 factors were significantly associated with the response of tumors to WBRT: The presence of SCLC; an E/T ratio of ≥1.5; and the presence of extracranial metastases. The E/T ratio is a novel index that provides a simple and easy predictive method for use in a clinical setting.

  6. Time evolution and hemodynamics of cerebral aneurysms

    Science.gov (United States)

    Sforza, Daniel M.; Putman, Christopher; Tateshima, Satoshi; Viñuela, Fernando; Cebral, Juan

    2011-03-01

    Cerebral aneurysm rupture is a leading cause of hemorrhagic strokes. Because they are being more frequently diagnosed before rupture and the prognosis of subarachnoid hemorrhage is poor, clinicians are often required to judge which aneurysms are prone to progression and rupture. Unfortunately, the processes of aneurysm initiation, growth and rupture are not well understood. Multiple factors associated to these processes have been identified. Our goal is to investigate two of them, arterial hemodynamics (using computational fluid dynamics) and the peri-aneurysmal environment, by studying a group of growing cerebral aneurysms that are followed longitudinally in time. Six patients with unruptured untreated brain aneurysms which exhibited growth during the observation period were selected for the study. Vascular models of each aneurysm at each observation time were constructed from the corresponding computed tomography angiography (CTA) images. Subsequently, models were aligned, and geometrical differences quantified. Blood flow was modeled with the 3D unsteady incompressible Navier-Stokes equation for a Newtonian fluid, and wall shear stress distribution and flow patterns were calculated and visualized. Analysis of the simulations and changes in geometry revealed asymmetric growth patterns and suggests that areas subject to vigorous flows, i.e. relative high wall shear stress and concentrated streamlines patterns; correspond to regions of aneurysm growth. Furthermore, in some cases the geometrical evolution of aneurysms is clearly affected by contacts with bone structures and calcifications in the wall, and as a consequence the hemodynamics is greatly modified. Thus, in these cases the peri-aneurysmal environment must be considered when analyzing aneurysm evolution.

  7. Exploring the motivational brain: effects of implicit power motivation on brain activation in response to facial expressions of emotion.

    Science.gov (United States)

    Schultheiss, Oliver C; Wirth, Michelle M; Waugh, Christian E; Stanton, Steven J; Meier, Elizabeth A; Reuter-Lorenz, Patricia

    2008-12-01

    This study tested the hypothesis that implicit power motivation (nPower), in interaction with power incentives, influences activation of brain systems mediating motivation. Twelve individuals low (lowest quartile) and 12 individuals high (highest quartile) in nPower, as assessed per content coding of picture stories, were selected from a larger initial participant pool and participated in a functional magnetic resonance imaging study during which they viewed high-dominance (angry faces), low-dominance (surprised faces) and control stimuli (neutral faces, gray squares) under oddball-task conditions. Consistent with hypotheses, high-power participants showed stronger activation in response to emotional faces in brain structures involved in emotion and motivation (insula, dorsal striatum, orbitofrontal cortex) than low-power participants.

  8. Comprehensive cognitive and cerebral hemodynamic evaluation after cranioplasty

    Directory of Open Access Journals (Sweden)

    Coelho F

    2014-05-01

    Full Text Available Fernanda Coelho,1 Arthur Maynart Oliveira,2 Wellingson Silva Paiva,2 Fabio Rios Freire,1 Vanessa Tome Calado,1 Robson Luis Amorim,2 Iuri Santana Neville,2 Almir Ferreira de Andrade,2 Edson Bor-Seng-Shu,3 Renato Anghinah,1 Manoel Jacobsen Teixeira21Neurorehabilitation Group, Division of Neurology, 2Division of Neurosurgery, 3Neurosonology and Cerebral Hemodynamics Group, University of São Paulo Medical School, São Paulo, BrazilAbstract: Decompressive craniectomy is an established procedure to lower intracranial pressure and can save patients' lives. However, this procedure is associated with delayed cognitive decline and cerebral hemodynamics complications. Studies show the benefits of cranioplasty beyond cosmetic aspects, including brain protection, and functional and cerebrovascular aspects, but a detailed description of the concrete changes following this procedure are lacking. In this paper, the authors report a patient with trephine syndrome who underwent cranioplasty; comprehensive cognitive and cerebral hemodynamic evaluations were performed prior to and following the cranioplasty. The discussion was based on a critical literature review.Keywords: cranioplasty, decompressive craniotomy, perfusion CT, traumatic brain injury, cognition, neuropsychological test

  9. Distribution of growth hormone-responsive cells in the mouse brain.

    Science.gov (United States)

    Furigo, Isadora C; Metzger, Martin; Teixeira, Pryscila D S; Soares, Carlos R J; Donato, Jose

    2017-01-01

    Growth hormone (GH) exerts important biological effects primarily related to growth and metabolism. However, the role of GH signaling in the brain is still elusive. To better understand GH functions in the brain, we mapped the distribution of GH-responsive cells and identified the receptors involved in GH central effects. For this purpose, mice received an acute intraperitoneal challenge with specific ligands of the GH receptor (mouse GH), prolactin receptor (prolactin) or both receptors (human GH), and their brains were subsequently processed immunohistochemically to detect the phosphorylated form of STAT5 (pSTAT5). GH induced pSTAT5 immunoreactivity in neurons, but not in astroglial cells of numerous brain regions, including the cerebral cortex, nucleus accumbens, hippocampus, septum and amygdala. The most prominent populations of GH-responsive neurons were located in hypothalamic areas, including several preoptic divisions, and the supraoptic, paraventricular, suprachiasmatic, periventricular, arcuate, ventromedial, dorsomedial, tuberal, posterior and ventral premammillary nuclei. Interestingly, many brainstem structures also exhibited GH-responsive cells. Experiments combining immunohistochemistry for pSTAT5 and in situ hybridization for GH and prolactin receptors revealed that human GH induced pSTAT5 in most, but not all, brain regions through both prolactin and GH receptors. Additionally, males and females exhibited a similar number of GH-responsive cells in forebrain structures known to be sexually dimorphic. In summary, we found GH-responsive cells primarily distributed in brain regions implicated in neurovegetative, emotional/motivational and cognitive functions. Our findings deepen the understanding of GH signaling in the brain and suggest that central GH signaling is likely more ample and complex than formerly recognized.

  10. A study of brain MRI findings and clinical response of bladder empting failure in brain bladder

    Energy Technology Data Exchange (ETDEWEB)

    Miyakoda, Keiichi (Yamashina Aiseikai Hospital, Kyoto (Japan)); Watanabe, Kousuke

    1993-02-01

    In 45 patients (38 males and 7 females; average age:78 years) with brain bladder, who did not have any peripheral neuropathies and spinal disturbance, cerebral findings of MRI (1.5 T) T[sub 2] enhanced image were analyzed in comparison with those of 7 control patients with normal urination after BPH operations. Patients with neurogenic bladder were divided into three groups as follows: 33 patients with a chief complaint of urinary disturbance (Group I), 9 patients with urinary incontinence (Group II) and 3 patients with balanced bladder (Group III). High frequency of lacune (24%) of the globus pallidus and low signalling of the corpus striatum (30%) was found in Group I patients, but low frequency in other Group patients and control patients. Furthermore, pathologic changes with various grades in the globus pallidus were observed in 91% of Group I patients. In the treatment of urinary disturbance, a high improvement rate of micturition disorder (77%) was obtained in patients treated with a combination of dantrolene and TURp (TUIbn for females). However, patients who had clear lacune of the globus pallidus showed the low improvement rate. It should be possible that the globus pallidus contributes to control the movement of the external sphincter and the pelvic base muscles as well as other striated muscles. Moreover, lacune was rarely found in the urination center of the brain-stem on MRI. (author).

  11. Pipecolic acid enhancement of GABA response in single neurons of rat brain.

    Science.gov (United States)

    Takahama, K; Hashimoto, T; Wang, M W; Akaike, N; Hitoshi, T; Okano, Y; Kasé, Y; Miyata, T

    1986-03-01

    Using unit recording and microelectrophoresis, influence of pipecolic acid (PA), a major metabolite of lysine in the brain, on GABA and glycine responses was studied in the cerebral cortical and hippocampal pyramidal neurons of rats. With small currents, PA had no effect on the single neuron activities but enhanced GABA response without affecting glycine response. The finding provides a new evidence that PA may have a connection with central GABA system.

  12. Effect of lighting conditions on brain network complexity associated with response learning.

    Science.gov (United States)

    Fidalgo, Camino; Conejo, Nélida M; González-Pardo, Héctor; Arias, Jorge L

    2013-10-25

    Several studies have reported the brain regions involved in response learning. However, there is discrepancy regarding the lighting conditions in the experimental setting (i.e. under dark or light conditions). In this regard, it would be relevant to know if the presence/absence of visual cues in the environment has any effect in the brain networks involved in a response learning task. Animals were trained in a water T-maze under two different lighting conditions (light versus dark). All subjects reached the learning criterion of 80% correct arm choices. Quantitative cytochrome oxidase (CO) histochemistry was used as a metabolic brain mapping technique. Our results show that the ventral hippocampus and the parietal cortex are associated with the acquisition of a response learning task regardless of lighting conditions. In addition, when the same task is run in the dark, widespread recruitment of structures involving cortical, limbic and striatal regions was found. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion.

    Science.gov (United States)

    Blood, A J; Zatorre, R J

    2001-09-25

    We used positron emission tomography to study neural mechanisms underlying intensely pleasant emotional responses to music. Cerebral blood flow changes were measured in response to subject-selected music that elicited the highly pleasurable experience of "shivers-down-the-spine" or "chills." Subjective reports of chills were accompanied by changes in heart rate, electromyogram, and respiration. As intensity of these chills increased, cerebral blood flow increases and decreases were observed in brain regions thought to be involved in reward/motivation, emotion, and arousal, including ventral striatum, midbrain, amygdala, orbitofrontal cortex, and ventral medial prefrontal cortex. These brain structures are known to be active in response to other euphoria-inducing stimuli, such as food, sex, and drugs of abuse. This finding links music with biologically relevant, survival-related stimuli via their common recruitment of brain circuitry involved in pleasure and reward.

  14. Local modulation of human brain responses by circadian rhythmicity and sleep debt.

    Science.gov (United States)

    Muto, Vincenzo; Jaspar, Mathieu; Meyer, Christelle; Kussé, Caroline; Chellappa, Sarah L; Degueldre, Christian; Balteau, Evelyne; Shaffii-Le Bourdiec, Anahita; Luxen, André; Middleton, Benita; Archer, Simon N; Phillips, Christophe; Collette, Fabienne; Vandewalle, Gilles; Dijk, Derk-Jan; Maquet, Pierre

    2016-08-12

    Human performance is modulated by circadian rhythmicity and homeostatic sleep pressure. Whether and how this interaction is represented at the regional brain level has not been established. We quantified changes in brain responses to a sustained-attention task during 13 functional magnetic resonance imaging sessions scheduled across the circadian cycle, during 42 hours of wakefulness and after recovery sleep, in 33 healthy participants. Cortical responses showed significant circadian rhythmicity, the phase of which varied across brain regions. Cortical responses also significantly decreased with accrued sleep debt. Subcortical areas exhibited primarily a circadian modulation that closely followed the melatonin profile. These findings expand our understanding of the mechanisms involved in maintaining cognition during the day and its deterioration during sleep deprivation and circadian misalignment. Copyright © 2016, American Association for the Advancement of Science.

  15. Pathologic complete response in renal cell carcinoma brain metastases treated with stereotactic radiosurgery.

    Science.gov (United States)

    Teh, Bin S; Bloch, Charles; Paulino, Arnold C; Shen, Steven; Hinckley, Lisa; Baskin, David; Butler, Edward B; Amato, Robert

    2007-06-01

    Renal cell carcinoma (RCC) is often regarded as a radiation-resistant tumor. However, radiation therapy (RT) in the form of stereotactic radiosurgery (SRS) or whole-brain irradiation has been used to treat brain metastases from RCC. To date, there have been no clinical pathologic correlative findings before and after RT. Herein, we present a case of a patient with brain metastases from RCC treated with SRS. The diagnosis of clear-cell RCC was made in 2001 after right radical nephrectomy. He was also found to have lung metastases at diagnosis. He presented with neurologic symptoms in 2004, and magnetic resonance imaging showed 3 brain lesions with a significant amount of edema consistent with brain metastases. The largest lesion caused a midline shift and was surgically resected. Pathology revealed metastatic RCC. The other 2 smaller brain lesions were treated at 20 Gy respectively with shaped-beam SRS using the BrainLab Novalis system. No whole-brain irradiation was delivered. However, the patient had difficulty weaning off his steroids, and a magnetic resonance imaging performed 6 months after SRS was read as "progression of the lesions." He then underwent resection of both the irradiated brain lesions. Pathologic examination revealed necrotic tissues without any viable tumor identified. The patient has since been doing very well, now 18 months after SRS and 5 years from the initial diagnosis. This is the first reported case that demonstrates that precise high-dose radiation in the form of SRS can cause significant tumor cell death (pathologic complete response) in radiation-resistant brain metastases from RCC. This finding also provides a rationale to deliver stereotactic body RT for primary and metastatic RCC extracranially. A prospective clinical trial using stereotactic body RT for primary and metastatic RCC is under way.

  16. Carcinoma cells misuse the host tissue damage response to invade the brain

    Science.gov (United States)

    Chuang, Han-Ning; van Rossum, Denise; Sieger, Dirk; Siam, Laila; Klemm, Florian; Bleckmann, Annalen; Bayerlová, Michaela; Farhat, Katja; Scheffel, Jörg; Schulz, Matthias; Dehghani, Faramarz; Stadelmann, Christine; Hanisch, Uwe-Karsten; Binder, Claudia; Pukrop, Tobias

    2013-01-01

    The metastatic colonization of the brain by carcinoma cells is still barely understood, in particular when considering interactions with the host tissue. The colonization comes with a substantial destruction of the surrounding host tissue. This leads to activation of damage responses by resident innate immune cells to protect, repair, and organize the wound healing, but may distract from tumoricidal actions. We recently demonstrated that microglia, innate immune cells of the CNS, assist carcinoma cell invasion. Here we report that this is a fatal side effect of a physiological damage response of the brain tissue. In a brain slice coculture model, contact with both benign and malignant epithelial cells induced a response by microglia and astrocytes comparable to that seen at the interface of human cerebral metastases. While the glial damage response intended to protect the brain from intrusion of benign epithelial cells by inducing apoptosis, it proved ineffective against various malignant cell types. They did not undergo apoptosis and actually exploited the local tissue reaction to invade instead. Gene expression and functional analyses revealed that the C-X-C chemokine receptor type 4 (CXCR4) and WNT signaling were involved in this process. Furthermore, CXCR4-regulated microglia were recruited to sites of brain injury in a zebrafish model and CXCR4 was expressed in human stroke patients, suggesting a conserved role in damage responses to various types of brain injuries. Together, our findings point to a detrimental misuse of the glial damage response program by carcinoma cells resistant to glia-induced apoptosis. PMID:23832647

  17. Mapping the sequence of brain events in response to disgusting food.

    Science.gov (United States)

    Pujol, Jesus; Blanco-Hinojo, Laura; Coronas, Ramón; Esteba-Castillo, Susanna; Rigla, Mercedes; Martínez-Vilavella, Gerard; Deus, Joan; Novell, Ramón; Caixàs, Assumpta

    2018-01-01

    Warning signals indicating that a food is potentially dangerous may evoke a response that is not limited to the feeling of disgust. We investigated the sequence of brain events in response to visual representations of disgusting food using a dynamic image analysis. Functional MRI was acquired in 30 healthy subjects while they were watching a movie showing disgusting food scenes interspersed with the scenes of appetizing food. Imaging analysis included the identification of the global brain response and the generation of frame-by-frame activation maps at the temporal resolution of 2 s. Robust activations were identified in brain structures conventionally associated with the experience of disgust, but our analysis also captured a variety of other brain elements showing distinct temporal evolutions. The earliest events included transient changes in the orbitofrontal cortex and visual areas, followed by a more durable engagement of the periaqueductal gray, a pivotal element in the mediation of responses to threat. A subsequent core phase was characterized by the activation of subcortical and cortical structures directly concerned not only with the emotional dimension of disgust (e.g., amygdala-hippocampus, insula), but also with the regulation of food intake (e.g., hypothalamus). In a later phase, neural excitement extended to broad cortical areas, the thalamus and cerebellum, and finally to the default mode network that signaled the progressive termination of the evoked response. The response to disgusting food representations is not limited to the emotional domain of disgust, and may sequentially involve a variety of broadly distributed brain networks. Hum Brain Mapp 39:369-380, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Effects of light on cognitive brain responses depend on circadian phase and sleep homeostasis.

    Science.gov (United States)

    Vandewalle, Gilles; Archer, Simon N; Wuillaume, Catherine; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Dijk, Derk-Jan; Maquet, Pierre

    2011-06-01

    Light is a powerful modulator of cognition through its long-term effects on circadian rhythmicity and direct effects on brain function as identified by neuroimaging. How the direct impact of light on brain function varies with wavelength of light, circadian phase, and sleep homeostasis, and how this differs between individuals, is a largely unexplored area. Using functional MRI, we compared the effects of 1 minute of low-intensity blue (473 nm) and green light (527 nm) exposures on brain responses to an auditory working memory task while varying circadian phase and status of the sleep homeostat. Data were collected in 27 subjects genotyped for the PER3 VNTR (12 PER3(5/5) and 15 PER3(4/4) ) in whom it was previously shown that the brain responses to this task, when conducted in darkness, depend on circadian phase, sleep homeostasis, and genotype. In the morning after sleep, blue light, relative to green light, increased brain responses primarily in the ventrolateral and dorsolateral prefrontal cortex and in the intraparietal sulcus, but only in PER3(4/4) individuals. By contrast, in the morning after sleep loss, blue light increased brain responses in a left thalamofrontoparietal circuit to a larger extent than green light, and only so in PER3(5/5) individuals. In the evening wake maintenance zone following a normal waking day, no differential effect of 1 minute of blue versus green light was observed in either genotype. Comparison of the current results with the findings observed in darkness indicates that light acts as an activating agent particularly under those circumstances in which and in those individuals in whom brain function is jeopardized by an adverse circadian phase and high homeostatic sleep pressure.

  19. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response

    Directory of Open Access Journals (Sweden)

    Andreas Stengel

    2017-04-01

    Full Text Available Corticotropin-releasing factor (CRF is the hallmark brain peptide triggering the response to stress and mediates—in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA axis—other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine release. Mounting evidence now supports that activation of brain somatostatin signaling exerts a broader anti-stress effect by blunting the endocrine, autonomic, behavioral (with a focus on food intake and visceral gastrointestinal motor responses through the involvement of distinct somatostatin receptor subtypes.

  20. How brain response and eating habits modulate food energy estimation.

    Science.gov (United States)

    Mengotti, P; Aiello, M; Terenzi, D; Miniussi, C; Rumiati, R I

    2018-01-29

    The estimates we do of the energy content of different foods tend to be inaccurate, depending on several factors. The elements influencing such evaluation are related to the differences in the portion size of the foods shown, their energy density (kcal/g), but also to individual differences of the estimators, such as their body-mass index (BMI) or eating habits. Within this context the contribution of brain regions involved in food-related decisions to the energy estimation process is still poorly understood. Here, normal-weight and overweight/obese women with restrained or non-restrained eating habits, received anodal transcranial direct current stimulation (AtDCS) to modulate the activity of the left dorsolateral prefrontal cortex (dlPFC) while they performed a food energy estimation task. Participants were asked to judge the energy content of food images, unaware that all foods, for the quantity presented, shared the same energy content. Results showed that food energy density was a reliable predictor of their energy content estimates, suggesting that participants relied on their knowledge about the food energy density as a proxy for estimating food energy content. The neuromodulation of the dlPFC interacted with individual differences in restrained eating, increasing the precision of the energy content estimates in participants with higher scores in the restrained eating scale. Our study highlights the importance of eating habits, such as restrained eating, in modulating the activity of the left dlPFC during food appraisal. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Dabigatran abrogates brain endothelial cell permeability in response to thrombin.

    Science.gov (United States)

    Hawkins, Brian Thomas; Gu, Yu-Huan; Izawa, Yoshikane; del Zoppo, Gregory John

    2015-06-01

    Atrial fibrillation (AF) increases the risk and severity of thromboembolic stroke. Generally, antithrombotic agents increase the hemorrhagic risk of thromboembolic stroke. However, significant reductions in thromboembolism and intracerebral hemorrhage have been shown with the antithrombin dabigatran compared with warfarin. As thrombin has been implicated in microvessel injury during cerebral ischemia, we hypothesized that dabigatran decreases the risk of intracerebral hemorrhage by direct inhibition of the thrombin-mediated increase in cerebral endothelial cell permeability. Primary murine brain endothelial cells (mBECs) were exposed to murine thrombin before measuring permeability to 4-kDa fluorescein isothiocyanate-dextran. Thrombin increased mBEC permeability in a concentration-dependent manner, without significant endothelial cell death. Pretreatment of mBECs with dabigatran completely abrogated the effect of thrombin on permeability. Neither the expressions of the endothelial cell β1-integrins nor the tight junction protein claudin-5 were affected by thrombin exposure. Oxygen-glucose deprivation (OGD) also increased permeability; this effect was abrogated by treatment with dabigatran, as was the additive effect of thrombin and OGD on permeability. Taken together, these results indicate that dabigatran could contribute to a lower risk of intracerebral hemorrhage during embolism-associated ischemia from AF by protection of the microvessel permeability barrier from local thrombin challenge.

  2. Carnosinase levels in aging brain: redox state induction and cellular stress response.

    Science.gov (United States)

    Bellia, Francesco; Calabrese, Vittorio; Guarino, Francesca; Cavallaro, Monia; Cornelius, Carolin; De Pinto, Vito; Rizzarelli, Enrico

    2009-11-01

    Carnosinase is a dipeptidase found almost exclusively in brain and serum. Its natural substrate carnosine, present at high concentration in the brain, has been proposed as an antioxidant in vivo. We investigated the role of carnosinase in brain aging to establish a possible correlation with age-related changes in cellular stress response and redox status. In addition, a stable HeLa cell line expressing recombinant human serum carnosinase CN1 was established. The enzyme was purified from transfected cells, and specific antibodies were produced against it. Brain expression of CN1, Hsp72, heme oxygenase-1, and thioredoxin reductase increased with age, with a maximal induction in hippocampus and substantia nigra, followed by cerebellum, cortex, septum, and striatum. Hsps induction was associated with significant changes in total SH groups, GSH redox state, carbonyls, and HNE levels. A positive correlation between decrease in GSH and increase in Hsp72 expression was observed in all brain regions examined during aging. Increased carnosinase activity in the brain can lead to decreased carnosine levels and GSH/GSSG ratio. These results, consistent with the current notion that oxidative stress and cellular damage are characteristic hallmarks of the aging process, sustain the critical role of cellular stress-response mechanisms as possible targets for novel antiaging strategies.

  3. Untangling the Effect of Head Acceleration on Brain Responses to Blast Waves.

    Science.gov (United States)

    Mao, Haojie; Unnikrishnan, Ginu; Rakesh, Vineet; Reifman, Jaques

    2015-12-01

    Multiple injury-causing mechanisms, such as wave propagation, skull flexure, cavitation, and head acceleration, have been proposed to explain blast-induced traumatic brain injury (bTBI). An accurate, quantitative description of the individual contribution of each of these mechanisms may be necessary to develop preventive strategies against bTBI. However, to date, despite numerous experimental and computational studies of bTBI, this question remains elusive. In this study, using a two-dimensional (2D) rat head model, we quantified the contribution of head acceleration to the biomechanical response of brain tissues when exposed to blast waves in a shock tube. We compared brain pressure at the coup, middle, and contre-coup regions between a 2D rat head model capable of simulating all mechanisms (i.e., the all-effects model) and an acceleration-only model. From our simulations, we determined that head acceleration contributed 36-45% of the maximum brain pressure at the coup region, had a negligible effect on the pressure at the middle region, and was responsible for the low pressure at the contre-coup region. Our findings also demonstrate that the current practice of measuring rat brain pressures close to the center of the brain would record only two-thirds of the maximum pressure observed at the coup region. Therefore, to accurately capture the effects of acceleration in experiments, we recommend placing a pressure sensor near the coup region, especially when investigating the acceleration mechanism using different experimental setups.

  4. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    Directory of Open Access Journals (Sweden)

    Rick O Gilmore

    Full Text Available Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction at three different speeds (2, 4, and 8 deg/s. Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood.

  5. Hemodynamics of Flow Diverters.

    Science.gov (United States)

    Dholakia, Ronak; Sadasivan, Chander; Fiorella, David J; Woo, Henry H; Lieber, Baruch B

    2017-02-01

    Cerebral aneurysms are pathological focal evaginations of the arterial wall at and around the junctions of the circle of Willis. Their tenuous walls predispose aneurysms to leak or rupture leading to hemorrhagic strokes with high morbidity and mortality rates. The endovascular treatment of cerebral aneurysms currently includes the implantation of fine-mesh stents, called flow diverters, within the parent artery bearing the aneurysm. By mitigating flow velocities within the aneurysmal sac, the devices preferentially induce thrombus formation in the aneurysm within hours to days. In response to the foreign implant, an endothelialized arterial layer covers the luminal surface of the device over a period of days to months. Organization of the intraneurysmal thrombus leads to resorption and shrinkage of the aneurysm wall and contents, eventually leading to beneficial remodeling of the pathological site to a near-physiological state. The devices' primary function of reducing flow activity within aneurysms is corollary to their mesh structure. Complete specification of the device mesh structure, or alternately device permeability, necessarily involves the quantification of two variables commonly used to characterize porous media-mesh porosity and mesh pore density. We evaluated the flow alteration induced by five commercial neurovascular devices of varying porosity and pore density (stents: Neuroform, Enterprise, and LVIS; flow diverters: Pipeline and FRED) in an idealized sidewall aneurysm model. As can be expected in such a model, all devices substantially reduced intraneurysmal kinetic energy as compared to the nonstented case with the coarse-mesh stents inducing a 65-80% reduction whereas the fine-mesh flow diverters induced a near-complete flow stagnation (∼98% reduction). We also note a trend toward greater device efficacy (lower intraneurysmal flow) with decreasing device porosity and increasing device pore density. Several such flow studies have been and are

  6. Brain responses to acupuncture stimulation in the prosthetic hand of an amputee patient.

    Science.gov (United States)

    Lee, In-Seon; Jung, Won-Mo; Lee, Ye-Seul; Wallraven, Christian; Chae, Younbyoung

    2015-10-01

    This report describes the brain responses to acupuncture in an upper limb amputee patient. A 62-year-old male had previously undergone a lower left arm amputation following an electrical accident. Using functional MRI, we investigated brain responses to acupuncture stimulation in the aforementioned amputee under three conditions: (a) intact hand, (b) prosthetic hand (used by the patient), and (c) fake fabric hand. The patient described greater de qi sensation when he received acupuncture stimulation in his prosthetic hand compared to a fake hand, with both stimulations performed in a similar manner. We found enhanced brain activation in the insula and sensorimotor cortex in response to acupuncture stimulation in the amputee's prosthetic hand, while there was only minimal activation in the visual cortex in response to acupuncture stimulation in a fake hand. The enhanced brain responses to acupuncture stimulation of the patient's prosthetic hand might be derived from cortical reorganisation, as he has been using his prosthetic hand for over 40 years. Our findings suggest the possible use of acupuncture stimulation in a prosthetic hand as an enhanced sensory feedback mechanism, which may represent a new treatment approach for phantom limb pain. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Physical exercise and brain responses to images of high-calorie food.

    Science.gov (United States)

    Killgore, William D S; Kipman, Maia; Schwab, Zachary J; Tkachenko, Olga; Preer, Lily; Gogel, Hannah; Bark, John S; Mundy, Elizabeth A; Olson, Elizabeth A; Weber, Mareen

    2013-12-04

    Physical exercise has many health benefits, including improved cardiovascular fitness, lean muscle development, increased metabolism, and weight loss, as well as positive effects on brain functioning and cognition. Recent evidence suggests that regular physical exercise may also affect the responsiveness of reward regions of the brain to food stimuli. We examined whether the total number of minutes of self-reported weekly physical exercise was related to the responsiveness of appetite and food reward-related brain regions to visual presentations of high-calorie and low-calorie food images during functional MRI. Second, we examined whether such responses would correlate with self-reported food preferences. While undergoing scanning, 37 healthy adults (22 men) viewed images of high-calorie and low-calorie foods and provided desirability ratings for each food image. The correlation between exercise minutes per week and brain responses to the primary condition contrast (high-calorie>low-calorie) was evaluated within the amygdala, insula, and medial orbitofrontal cortex, brain regions previously implicated in responses to food images. Higher levels of exercise were significantly correlated with lower responsiveness within the medial orbitofrontal cortex and left insula to high-calorie foods. Furthermore, activation of these regions was positively correlated with preference ratings for high-calorie foods, particularly those with a savory flavor. These findings suggest that physical exercise may be associated with reduced activation in food-responsive reward regions, which are in turn associated with reduced preferences for unhealthy high-calorie foods. Physical exercise may confer secondary health benefits beyond its primary effects on cardiovascular fitness and energy expenditure.

  8. Brain and Serum Androsterone is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Richard J Servatius

    2016-08-01

    Full Text Available Exposure to lateral fluid percussion (LFP injury consistent with mild traumatic brain injury (mTBI persistently attenuates acoustic startle responses (ASRs in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM. ASRs were measured post injury days (PIDs 1, 3, 7, 14, 21 and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34, PID 35 (S35, on both days (2S, or the experimental context (CON. Levels of the neurosteroids pregnenolone (PREG, allopregnanolone (ALLO, and androsterone (ANDRO were determined for the prefrontal cortex, hippocampus and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30 and 60 min post-stressor for determination of corticosterone (CORT levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration.

  9. Tunicamycin-induced unfolded protein response in the developing mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiping; Wang, Xin [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Ke, Zun-Ji [Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203 (China); Comer, Ashley L.; Xu, Mei; Frank, Jacqueline A. [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Zhang, Zhuo; Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Luo, Jia, E-mail: jialuo888@uky.edu [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States)

    2015-03-15

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific.

  10. Abnormal early brain responses during visual search are evident in schizophrenia but not bipolar affective disorder.

    Science.gov (United States)

    VanMeerten, Nicolaas J; Dubke, Rachel E; Stanwyck, John J; Kang, Seung Suk; Sponheim, Scott R

    2016-01-01

    People with schizophrenia show deficits in processing visual stimuli but neural abnormalities underlying the deficits are unclear and it is unknown whether such functional brain abnormalities are present in other severe mental disorders or in individuals who carry genetic liability for schizophrenia. To better characterize brain responses underlying visual search deficits and test their specificity to schizophrenia we gathered behavioral and electrophysiological responses during visual search (i.e., Span of Apprehension [SOA] task) from 38 people with schizophrenia, 31 people with bipolar disorder, 58 biological relatives of people with schizophrenia, 37 biological relatives of people with bipolar disorder, and 65 non-psychiatric control participants. Through subtracting neural responses associated with purely sensory aspects of the stimuli we found that people with schizophrenia exhibited reduced early posterior task-related neural responses (i.e., Span Endogenous Negativity [SEN]) while other groups showed normative responses. People with schizophrenia exhibited longer reaction times than controls during visual search but nearly identical accuracy. Those individuals with schizophrenia who had larger SENs performed more efficiently (i.e., shorter reaction times) on the SOA task suggesting that modulation of early visual cortical responses facilitated their visual search. People with schizophrenia also exhibited a diminished P300 response compared to other groups. Unaffected first-degree relatives of people with bipolar disorder and schizophrenia showed an amplified N1 response over posterior brain regions in comparison to other groups. Diminished early posterior brain responses are associated with impaired visual search in schizophrenia and appear to be specifically associated with the neuropathology of schizophrenia. Published by Elsevier B.V.

  11. Clarifications on Continuous Renal Replacement Therapy and Hemodynamics

    Directory of Open Access Journals (Sweden)

    Xiao-Ting Wang

    2017-01-01

    Conclusions: CRRT is not only a replacement for organ function, but an important form of hemodynamic therapy. Improved hemodynamic management of critically ill patients can be achieved by establishing specific therapeutic hemodynamic targets and maintaining circulatory stability during CRRT. Over the long term, observation of renal hemodynamics will provide greater opportunities for the progression of CRRT hemodynamic therapy.

  12. Brain connectivity reflects human aesthetic responses to music.

    Science.gov (United States)

    Sachs, Matthew E; Ellis, Robert J; Schlaug, Gottfried; Loui, Psyche

    2016-06-01

    Humans uniquely appreciate aesthetics, experiencing pleasurable responses to complex stimuli that confer no clear intrinsic value for survival. However, substantial variability exists in the frequency and specificity of aesthetic responses. While pleasure from aesthetics is attributed to the neural circuitry for reward, what accounts for individual differences in aesthetic reward sensitivity remains unclear. Using a combination of survey data, behavioral and psychophysiological measures and diffusion tensor imaging, we found that white matter connectivity between sensory processing areas in the superior temporal gyrus and emotional and social processing areas in the insula and medial prefrontal cortex explains individual differences in reward sensitivity to music. Our findings provide the first evidence for a neural basis of individual differences in sensory access to the reward system, and suggest that social-emotional communication through the auditory channel may offer an evolutionary basis for music making as an aesthetically rewarding function in humans. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Diffuse optical systems and methods to image physiological changes of the brain in response to focal TBI (Conference Presentation)

    Science.gov (United States)

    Abookasis, David; Volkov, Boris; Kofman, Itamar

    2017-02-01

    During the last four decades, various optical techniques have been proposed and intensively used for biomedical diagnosis and therapy both in animal model and in human. These techniques have several advantages over the traditional existing methods: simplicity in structure, low-cost, easy to handle, portable, can be used repeatedly over time near the patient bedside for continues monitoring, and offer high spatiotemporal resolution. In this work, we demonstrate the use of two optical imaging modalities namely, spatially modulated illumination and dual-wavelength laser speckle to image the changes in brain tissue chromophores, morphology, and metabolic before, during, and after the onset of focal traumatic brain injury in intact mouse head (n=15). Injury was applied in anesthetized mice by weight-drop apparatus using 50gram metal rod striking the mouse's head. Following data analysis, we show a series of hemodynamic and structural changes over time including higher deoxyhemoglobin, reduction in oxygen saturation and blood flow, cell swelling, etc., in comparison with baseline measurements. In addition, to validate the monitoring of cerebral blood flow by the imaging system, measurements with laser Doppler flowmetry were also performed (n=5), which confirmed reduction in blood flow following injury. Overall, our result demonstrates the capability of diffuse optical modalities to monitor and map brain tissue optical and physiological properties following brain trauma.

  14. Another kind of 'BOLD Response': answering multiple-choice questions via online decoded single-trial brain signals.

    Science.gov (United States)

    Sorger, Bettina; Dahmen, Brigitte; Reithler, Joel; Gosseries, Olivia; Maudoux, Audrey; Laureys, Steven; Goebel, Rainer

    2009-01-01

    The term 'locked-in'syndrome (LIS) describes a medical condition in which persons concerned are severely paralyzed and at the same time fully conscious and awake. The resulting anarthria makes it impossible for these patients to naturally communicate, which results in diagnostic as well as serious practical and ethical problems. Therefore, developing alternative, muscle-independent communication means is of prime importance. Such communication means can be realized via brain-computer interfaces (BCIs) circumventing the muscular system by using brain signals associated with preserved cognitive, sensory, and emotional brain functions. Primarily, BCIs based on electrophysiological measures have been developed and applied with remarkable success. Recently, also blood flow-based neuroimaging methods, such as functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS), have been explored in this context. After reviewing recent literature on the development of especially hemodynamically based BCIs, we introduce a highly reliable and easy-to-apply communication procedure that enables untrained participants to motor-independently and relatively effortlessly answer multiple-choice questions based on intentionally generated single-trial fMRI signals that can be decoded online. Our technique takes advantage of the participants' capability to voluntarily influence certain spatio-temporal aspects of the blood oxygenation level-dependent (BOLD) signal: source location (by using different mental tasks), signal onset and offset. We show that healthy participants are capable of hemodynamically encoding at least four distinct information units on a single-trial level without extensive pretraining and with little effort. Moreover, real-time data analysis based on simple multi-filter correlations allows for automated answer decoding with a high accuracy (94.9%) demonstrating the robustness of the presented method. Following our 'proof of concept', the

  15. Usefulness of Hemodynamic Sensors for Physiologic Cardiac Pacing in Heart Failure Patients

    Directory of Open Access Journals (Sweden)

    Eraldo Occhetta

    2011-01-01

    Full Text Available The rate adaptive sensors applied to cardiac pacing should respond as promptly as the normal sinus node with an highly specific and sensitive detection of the need of increasing heart rate. Sensors operating alone may not provide optimal heart responsiveness: central venous pH sensing, variations in the oxygen content of mixed venous blood, QT interval, breathing rate and pulmonary minute ventilation monitored by thoracic impedance variations, activity sensors. Using sensors that have different attributes but that work in a complementary manners offers distinct advantages. However, complicated sensors interactions may occur. Hemodynamic sensors detect changes in the hemodynamic performances of the heart, which partially depends on the autonomic nervous system-induced inotropic regulation of myocardial fibers. Specific hemodynamic sensors have been designed to measure different expression of the cardiac contraction strength: Peak Endocardial Acceleration (PEA, Closed Loop Stimulation (CLS and TransValvular Impedance (TVI, guided by intraventricular impedance variations. Rate-responsive pacing is just one of the potential applications of hemodynamic sensors in implantable pacemakers. Other issues discussed in the paper include: hemodynamic monitoring for the optimal programmation and follow up of patients with cardiac resynchronization therapy; hemodynamic deterioration impact of tachyarrhythmias; hemodynamic upper rate limit control; monitoring and prevention of vasovagal malignant syncopes.

  16. Using Differential Reinforcement to Decrease Academic Response Latencies of an Adolescent with Acquired Brain Injury

    Science.gov (United States)

    Heinicke, Megan R.; Carr, James E.; Mozzoni, Michael P.

    2009-01-01

    The present study investigated the effects of contingency-specifying rules and a token economy to decrease the latency to comply with academic instructions by a 16-year-old girl with acquired brain injury. Results showed that treatment was successful in reducing academic response latencies. These results replicate previous research in which…

  17. Empathic brain responses in insula are modulated by levels of alexithymia but not autism

    Science.gov (United States)

    Bird, Geoffrey; Brindley, Rachel; White, Sarah; Frith, Uta; Singer, Tania

    2010-01-01

    Difficulties in social cognition are well recognized in individuals with autism spectrum conditions (henceforth ‘autism’). Here we focus on one crucial aspect of social cognition: the ability to empathize with the feelings of another. In contrast to theory of mind, a capacity that has often been observed to be impaired in individuals with autism, much less is known about the capacity of individuals with autism for affect sharing. Based on previous data suggesting that empathy deficits in autism are a function of interoceptive deficits related to alexithymia, we aimed to investigate empathic brain responses in autistic and control participants with high and low degrees of alexithymia. Using functional magnetic resonance imaging, we measured empathic brain responses with an ‘empathy for pain’ paradigm assessing empathic brain responses in a real-life social setting that does not rely on attention to, or recognition of, facial affect cues. Confirming previous findings, empathic brain responses to the suffering of others were associated with increased activation in left anterior insula and the strength of this signal was predictive of the degree of alexithymia in both autistic and control groups but did not vary as a function of group. Importantly, there was no difference in the degree of empathy between autistic and control groups after accounting for alexithymia. These findings suggest that empathy deficits observed in autism may be due to the large comorbidity between alexithymic traits and autism, rather than representing a necessary feature of the social impairments in autism. PMID:20371509

  18. Predictive value of brain perfusion SPECT for ketamine response in hyperalgesic fibromyalgia

    Energy Technology Data Exchange (ETDEWEB)

    Guedj, Eric; Cammilleri, Serge; Colavolpe, Cecile; Taieb, David; Laforte, Catherine de; Mundler, Olivier [Centre Hospitalo-Universitaire de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Assistance Publique des Hopitaux de Marseille, Marseille Cedex 5 (France); Niboyet, Jean [Clinique La Phoceanne, Unite d' Etude et de Traitement de la Douleur, Marseille (France)

    2007-08-15

    Ketamine has been used successfully in various proportions of fibromyalgia (FM) patients. However, the response to this specific treatment remains largely unpredictable. We evaluated brain SPECT perfusion before treatment with ketamine, using voxel-based analysis. The objective was to determine the predictive value of brain SPECT for ketamine response. Seventeen women with FM (48 {+-} 11 years; ACR criteria) were enrolled in the study. Brain SPECT was performed before any change was made in therapy in the pain care unit. We considered that a patient was a good responder to ketamine if the VAS score for pain decreased by at least 50% after treatment. A voxel-by-voxel group analysis was performed using SPM2, in comparison to a group of ten healthy women matched for age. The VAS score for pain was 81.8 {+-} 4.2 before ketamine and 31.8 {+-} 27.1 after ketamine. Eleven patients were considered ''good responders'' to ketamine. Responder and non-responder subgroups were similar in terms of pain intensity before ketamine. In comparison to responding patients and healthy subjects, non-responding patients exhibited a significant reduction in bilateral perfusion of the medial frontal gyrus. This cluster of hypoperfusion was highly predictive of non-response to ketamine (positive predictive value 100%, negative predictive value 91%). Brain perfusion SPECT may predict response to ketamine in hyperalgesic FM patients. (orig.)

  19. Electric brain responses to inappropriate harmonies during listening to expressive music

    NARCIS (Netherlands)

    Koesch, S; Mulder, J

    Objectives: Recent studies with event-related brain potentials (ERPs) investigating music processing found (early) negativities with right-hemispheric predominance as a response to inappropriate harmonies within sequences of chords. The stimuli used in those studies were fairly artificial in order

  20. Dietary l-tryptophan leaves a lasting impression on the brain and the stress response

    OpenAIRE

    Höglund, Erik; Øverli, Øyvind; Åberg Andersson, Madelene; Silva, Patricia Isabel da Mota E.; Laursen, Danielle Caroline; Moltesen, Maria M; Krogdahl, Åshild; Schjolden, Joachim; Winberg, Svante; Vindas, Marco A; Mayer, Ian; Hillestad, Marie

    2017-01-01

    Comparative models suggest that effects of dietary tryptophan (Trp) on brain serotonin (5-hydroxytryptamine; 5-HT) neurochemistry and stress responsiveness are present throughout the vertebrate lineage. Moreover, hypothalamic 5-HT seems to play a central role in control of the neuroendocrine stress axis in all vertebrates. Still, recent fish studies suggest long-term effects of dietary Trp on stress responsiveness, which are independent of hypothalamic 5-HT. Here, we investigated if dietary T...

  1. Real-time monitoring of small animal cortical hemodynamics by photoacoustic tomography

    Science.gov (United States)

    Li, Changhui; Aquirre, Andres; Gamelin, John; Maurudis, Anastasios; Zhu, Quing; Wang, Lihong V.

    2010-02-01

    For the first time, the hemodynamics within the entire cerebral cortex of a mouse were studied by using photoacoustic tomography (PAT) non-invasively and in real time. The PAT system, based on a 512-element full-ring array with cylindrical focusing, received the PA signal primarily from a slice of about 2 mm thickness. This system can provide not only high resolution brain vasculature images but also hemodynamic functional images. We recorded the wash-in process of a photoacoustic contrast agent in a mouse brain in real time. Our results demonstrated that PAT is a powerful imaging modality to study real-time small animal neurofunctional activities that cause changes in hemodynamics.

  2. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure

    KAUST Repository

    Baud, Maxime O.

    2016-05-03

    © 2016 European Sleep Research Society. Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment.

  3. Monitoring the Response of Hyperbilirubinemia in the Mouse Brain by In Vivo Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    Isabella Manni

    2016-12-01

    Full Text Available Increased levels of unconjugated bilirubin are neurotoxic, but the mechanism leading to neurological damage has not been completely elucidated. Innovative strategies of investigation are needed to more precisely define this pathological process. By longitudinal in vivo bioluminescence imaging, we noninvasively visualized the brain response to hyperbilirubinemia in the MITO-Luc mouse, in which light emission is restricted to the regions of active cell proliferation. We assessed that acute hyperbilirubinemia promotes bioluminescence in the brain region, indicating an increment in the cell proliferation rate. Immunohistochemical detection in brain sections of cells positive for both luciferase and the microglial marker allograft inflammatory factor 1 suggests proliferation of microglial cells. In addition, we demonstrated that brain induction of bioluminescence was altered by pharmacological displacement of bilirubin from its albumin binding sites and by modulation of the blood–brain barrier permeability, all pivotal factors in the development of bilirubin-induced neurologic dysfunction. We also determined that treatment with minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, or administration of bevacizumab, an anti-vascular endothelial growth factor antibody, blunts bilirubin-induced bioluminescence. Overall the study supports the use of the MITO-Luc mouse as a valuable tool for the rapid response monitoring of drugs aiming at preventing acute bilirubin-induced neurological dysfunction.

  4. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure.

    Science.gov (United States)

    Baud, Maxime O; Parafita, Julia; Nguyen, Audrey; Magistretti, Pierre J; Petit, Jean-Marie

    2016-10-01

    Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment. © 2016 European Sleep Research Society.

  5. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain

    Science.gov (United States)

    Zhou, Tao; Hong, Guosong; Fu, Tian-Ming; Yang, Xiao; Schuhmann, Thomas G.; Viveros, Robert D.; Lieber, Charles M.

    2017-01-01

    Implantation of electrical probes into the brain has been central to both neuroscience research and biomedical applications, although conventional probes induce gliosis in surrounding tissue. We recently reported ultraflexible open mesh electronics implanted into rodent brains by syringe injection that exhibit promising chronic tissue response and recording stability. Here we report time-dependent histology studies of the mesh electronics/brain-tissue interface obtained from sections perpendicular and parallel to probe long axis, as well as studies of conventional flexible thin-film probes. Confocal fluorescence microscopy images of the perpendicular and parallel brain slices containing mesh electronics showed that the distribution of astrocytes, microglia, and neurons became uniform from 2–12 wk, whereas flexible thin-film probes yield a marked accumulation of astrocytes and microglia and decrease of neurons for the same period. Quantitative analyses of 4- and 12-wk data showed that the signals for neurons, axons, astrocytes, and microglia are nearly the same from the mesh electronics surface to the baseline far from the probes, in contrast to flexible polymer probes, which show decreases in neuron and increases in astrocyte and microglia signals. Notably, images of sagittal brain slices containing nearly the entire mesh electronics probe showed that the tissue interface was uniform and neurons and neurofilaments penetrated through the mesh by 3 mo postimplantation. The minimal immune response and seamless interface with brain tissue postimplantation achieved by ultraflexible open mesh electronics probes provide substantial advantages and could enable a wide range of opportunities for in vivo chronic recording and modulation of brain activity in the future. PMID:28533392

  6. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimers Disease

    Science.gov (United States)

    2015-12-01

    Alricsson M (2012) Physical exercise ameliorates deficits induced by traumatic brain injury. Acta Neurol Scand 125, 293-302. [19] Qu C, Mahmood A...AWARD NUMBER: W81XWH-12-1-0582 TITLE: Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s...COVERED 09/25/2012-09/24/2015 4. TITLE AND SUBTITLE Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for

  7. Brain stem evoked response audiometry of former drug users.

    Science.gov (United States)

    Weich, Tainara Milbradt; Tochetto, Tania Maria; Seligman, Lilian

    2012-10-01

    Illicit drugs are known for their deleterious effects upon the central nervous system and more specifically for how they adversely affect hearing. This study aims to analyze and compare the hearing complaints and the results of brainstem evoked response audiometry (BERA) of former drug user support group goers. This is a cross-sectional non-experimental descriptive quantitative study. The sample consisted of 17 subjects divided by their preferred drug of use. Ten individuals were placed in the marijuana group (G1) and seven in the crack/cocaine group (G2). The subjects were further divided based on how long they had been using drugs: 1 to 5 years, 6 to 10 years, and over 15 years. They were interviewed, and assessed by pure tone audiometry, acoustic impedance tests, and BERA. No statistically significant differences were found between G1 and G2 or time of drug use in absolute latencies and interpeak intervals. However, only five of the 17 individuals had BERA results with adequate results for their ages. Marijuana and crack/cocaine may cause diffuse disorders in the brainstem and compromise the transmission of auditory stimuli regardless of how long these substances are used for.

  8. Fetal Magnetoencephalography--Achievements and Challenges in the Study of Prenatal and Early Postnatal Brain Responses: A Review

    Science.gov (United States)

    Sheridan, Carolin J.; Matuz, Tamara; Draganova, Rossitza; Eswaran, Hari; Preissl, Hubert

    2010-01-01

    Fetal magnetoencephalography (fMEG) is the only non-invasive method for investigating evoked brain responses and spontaneous brain activity generated by the fetus "in utero". Fetal auditory as well as visual-evoked fields have been successfully recorded in basic stimulus-response studies. Moreover, paradigms investigating precursors for cognitive…

  9. Violence: heightened brain attentional network response is selectively muted in Down syndrome.

    Science.gov (United States)

    Anderson, Jeffrey S; Treiman, Scott M; Ferguson, Michael A; Nielsen, Jared A; Edgin, Jamie O; Dai, Li; Gerig, Guido; Korenberg, Julie R

    2015-01-01

    The ability to recognize and respond appropriately to threat is critical to survival, and the neural substrates subserving attention to threat may be probed using depictions of media violence. Whether neural responses to potential threat differ in Down syndrome is not known. We performed functional MRI scans of 15 adolescent and adult Down syndrome and 14 typically developing individuals, group matched by age and gender, during 50 min of passive cartoon viewing. Brain activation to auditory and visual features, violence, and presence of the protagonist and antagonist were compared across cartoon segments. fMRI signal from the brain's dorsal attention network was compared to thematic and violent events within the cartoons between Down syndrome and control samples. We found that in typical development, the brain's dorsal attention network was most active during violent scenes in the cartoons and that this was significantly and specifically reduced in Down syndrome. When the antagonist was on screen, there was significantly less activation in the left medial temporal lobe of individuals with Down syndrome. As scenes represented greater relative threat, the disparity between attentional brain activation in Down syndrome and control individuals increased. There was a reduction in the temporal autocorrelation of the dorsal attention network, consistent with a shortened attention span in Down syndrome. Individuals with Down syndrome exhibited significantly reduced activation in primary sensory cortices, and such perceptual impairments may constrain their ability to respond to more complex social cues such as violence. These findings may indicate a relative deficit in emotive perception of violence in Down syndrome, possibly mediated by impaired sensory perception and hypoactivation of medial temporal structures in response to threats, with relative preservation of activity in pro-social brain regions. These findings indicate that specific genetic differences associated

  10. Influence of paravertebrals miorelaxation on cerebral hemodynamics of sportsmen

    Directory of Open Access Journals (Sweden)

    Syshko D.V.

    2014-01-01

    Full Text Available Purpose: Paravertebrals miorelaxation was the complex of exercises in a water environment directed on the decline of tone of paravertebral muscles. Material: Before and after it was used of paravertebrals miorelaxation registered the indexes of reoentsefalografics at the sportsmen engaged in the Greek-Roman fight (n=22 by football (n=24 and heavy athletics (n=25. Results : The changes, that have been determined at the wrestlers, was in the form of increasing tone of large (increase TRF, TGRР, decreased ADR and medium (decreased Т1, Т2 arteries of the brain, decreased tone of the small arteries. Paravertebral myorelaxation of weightlifters caused them changes in the form of increasing tone of the great vessels (increase Т3, decreased tone of large and medium-sized arteries of the brain (increase АDR, Т2, increasing the tone of the small arteries (increase АI, DI. Reliable changes in cerebral hemodynamics have not been established at football players. Conclusions: The obtained data indicate that there are different mechanisms of adaptation in the brain blood vessels under conditions of the paravertebral miorelaxation. These differences are predetermined by two main factors: the functional state of the cardiovascular system in general and the functional states of the system of regulation of cerebral hemodynamics.

  11. Regional brain metabolic response to lorazepam in alcoholics during early and late alcohol detoxification.

    Science.gov (United States)

    Volkow, N D; Wang, G J; Overall, J E; Hitzemann, R; Fowler, J S; Pappas, N; Frecska, E; Piscani, K

    1997-10-01

    Changes in GABA function have been postulated to be involved in alcohol tolerance, withdrawal and addiction. In this study we measured regional brain metabolic responses to lorazepam, to indirectly assess GABA function (benzodiazepines facilitate GABAergic neurotransmission), in alcoholics during early and late withdrawal. Brain metabolism was measured using PET and 2-deoxy-2[18F]fluoro-D-glucose after placebo (baseline) and after lorazepam (30 micrograms/kg intravenously) in 10 alcoholics and 16 controls. In the alcoholics evaluations were performed 2 to 3 weeks after detoxification and were repeated 6 to 8 weeks later. Controls were also evaluated twice at a 6 to 8 weeks interval. While during the initial evaluation metabolism was significantly lower for most brain regions in the alcoholics than in controls in the repeated evaluation the only significant differences were in cingulate and orbitofrontal cortex. Lorazepam-induced decrements in metabolism did not change with protracted alcohol withdrawal and the magnitude of these changes were similar in controls and alcoholics except for a trend towards a blunted response to lorazepam in orbitofrontal cortex in alcoholics during the second evaluation. Abnormalities in orbitofrontal cortex and cingulate gyrus in alcoholics are unlikely to be due to withdrawal since they persist 8 to 11 weeks after detoxification. The fact that there was only a trend of significance for an abnormal response to lorazepam in orbitofrontal cortex indicates that mechanisms other than GABA are involved in the brain metabolic abnormalities observed in alcoholic subjects.

  12. Cerebral hemodynamic and metabolic changes in fulminant hepatic failure

    Directory of Open Access Journals (Sweden)

    Fernando Mendes Paschoal Junior

    Full Text Available ABSTRACT Intracranial hypertension and brain swelling are a major cause of morbidity and mortality of patients suffering from fulminant hepatic failure (FHF. The pathogenesis of these complications has been investigated in man, in experimental models and in isolated cell systems. Currently, the mechanism underlying cerebral edema and intracranial hypertension in the presence of FHF is multi-factorial in etiology and only partially understood. The aim of this paper is to review the pathophysiology of cerebral hemodynamic and metabolism changes in FHF in order to improve understanding of intracranial dynamics complication in FHF.

  13. Assessing paedophilia based on the haemodynamic brain response to face images

    DEFF Research Database (Denmark)

    Ponseti, Jorge; Granert, Oliver; Van Eimeren, Thilo

    2016-01-01

    OBJECTIVES: Objective assessment of sexual preferences may be of relevance in the treatment and prognosis of child sexual offenders. Previous research has indicated that this can be achieved by pattern classification of brain responses to sexual child and adult images. Our recent research showed...... sexually attracted to men or women (teleiophiles) were exposed to images of child and adult, male and female faces during a functional magnetic resonance imaging (fMRI) session. RESULTS: A cross-validated, automatic pattern classification algorithm of brain responses to facial stimuli yielded four...... misclassified participants (three false positives), corresponding to a specificity of 91% and a sensitivity of 95%. CONCLUSIONS: These results indicate that the functional response to facial stimuli can be reliably used for fMRI-based classification of paedophilia, bypassing the problem of showing child sexual...

  14. New method for retrospective study of hemodynamic changes before and after aneurysm formation in patients with ruptured or unruptured aneurysms

    OpenAIRE

    Le, Wei-Jie; Zhu, Yue-Qi; Li, Ming-Hua; Yan, Lei; Tan, Hua-Qiao; Xiao, Shi-Min; Cheng, Ying-Sheng

    2013-01-01

    Background Prospective observation of hemodynamic changes before and after formation of brain aneurysms is often difficult. We used a vessel surface repair method to carry out a retrospective hemodynamic study before and after aneurysm formation in a ruptured aneurysm of the posterior communicating artery (RPcomAA) and an unruptured aneurysm of the posterior communicating artery (URPcomAA). Methods Arterial geometries obtained from three-dimensional digital subtraction angiography of cerebral...

  15. Magnetic resonance imaging brain activation in first-episode bipolar mania during a response inhibition task.

    Science.gov (United States)

    Strakowski, Stephen M; Adler, Caleb M; Cerullo, Michael A; Eliassen, James C; Lamy, Martine; Fleck, David E; Lee, Jing-Huei; DelBello, Melissa P

    2008-11-01

    Impulsivity is common in bipolar disorder, especially during mania. Understanding the functional neuroanatomy of response inhibition, one component of impulsivity, might clarify the neural substrate of bipolar disorder. Sixteen DSM-IV first-episode, manic bipolar patients and 16 matched healthy subjects were examined during a first manic episode using functional magnetic resonance imaging while performing a response inhibition task. All subjects were studied using a 4.0 Tesla Varian Unity INOVA Whole Body MRI/MRS system. The response inhibition task was presented using non-ferromagnetic goggles, and task performance was recorded during scan acquisition. Imaging data were analysed using analysis of functional neuroimages. Group contrasts were made for the specific response inhibition measure. The groups performed the task similarly, although both demonstrated relatively poor rates of target response, but high rates of successful 'stops'. Despite similar behavioural results, the groups showed significantly different patterns of functional magnetic resonance imaging brain activation. Specifically, during response inhibition, the healthy subjects exhibited significantly greater activation in anterior and posterior cingulate, medial dorsal thalamus, middle temporal gyrus, and precuneus. The bipolar patients exhibited prefrontal activation (BA 10) that was not observed in healthy subjects. Bipolar and healthy subjects exhibit different patterns of brain activation to response inhibition; these differences may reflect different functional neuroanatomic approaches to response inhibition between the two groups.

  16. Cortical neurons and networks are dormant but fully responsive during isoelectric brain state.

    Science.gov (United States)

    Altwegg-Boussac, Tristan; Schramm, Adrien E; Ballestero, Jimena; Grosselin, Fanny; Chavez, Mario; Lecas, Sarah; Baulac, Michel; Naccache, Lionel; Demeret, Sophie; Navarro, Vincent; Mahon, Séverine; Charpier, Stéphane

    2017-09-01

    A continuous isoelectric electroencephalogram reflects an interruption of endogenously-generated activity in cortical networks and systematically results in a complete dissolution of conscious processes. This electro-cerebral inactivity occurs during various brain disorders, including hypothermia, drug intoxication, long-lasting anoxia and brain trauma. It can also be induced in a therapeutic context, following the administration of high doses of barbiturate-derived compounds, to interrupt a hyper-refractory status epilepticus. Although altered sensory responses can be occasionally observed on an isoelectric electroencephalogram, the electrical membrane properties and synaptic responses of individual neurons during this cerebral state remain largely unknown. The aim of the present study was to characterize the intracellular correlates of a barbiturate-induced isoelectric electroencephalogram and to analyse the sensory-evoked synaptic responses that can emerge from a brain deprived of spontaneous electrical activity. We first examined the sensory responsiveness from patients suffering from intractable status epilepticus and treated by administration of thiopental. Multimodal sensory responses could be evoked on the flat electroencephalogram, including visually-evoked potentials that were significantly amplified and delayed, with a high trial-to-trial reproducibility compared to awake healthy subjects. Using an analogous pharmacological procedure to induce prolonged electro-cerebral inactivity in the rat, we could describe its cortical and subcortical intracellular counterparts. Neocortical, hippocampal and thalamo-cortical neurons were all silent during the isoelectric state and displayed a flat membrane potential significantly hyperpolarized compared with spontaneously active control states. Nonetheless, all recorded neurons could fire action potentials in response to intracellularly injected depolarizing current pulses and their specific intrinsic

  17. Responsiveness of fetal rat brain cells to glia maturation factor during neoplastic transformation in cell culture

    DEFF Research Database (Denmark)

    Haugen, A; Laerum, O D; Bock, E

    1981-01-01

    The effect of partially purified extracts from adult pig brains containing a glia maturation protein factor (BE) has been investigated on neural cells during carcinogenesis. Pregnant BD IX-rats were given a single transplacental dose of the carcinogen ethylnitrosourea (EtNU) on the 18th day...... of gestation. The brains of the treated fetuses were transferred to cell culture and underwent neoplastic transformation with a characteristic sequence of phenotypic alterations which could be divided into five different stages. During the first 40 days after explantation (stage I & II) BE induced...... on GFA-content was seen any longer, although some few weakly GFA positive cells could be observed in all permanent cell lines. Fetal rat brain cells therefore seem to become less responsive to this differentiation inducer during neoplastic transformation in cell culture....

  18. Haemodynamic brain response to visual sexual stimuli is different between homosexual and heterosexual men.

    Science.gov (United States)

    Hu, S-H; Wang, Q-D; Xu, Y; Liao, Z-L; Xu, L-J; Liao, Z-L; Xu, X-J; Wei, E-Q; Yan, L-Q; Hu, J-B; Wei, N; Zhou, W-H; Huang, M-L; Zhang, M-M

    2011-01-01

    The underlying neurobiological factors involved in sexual orientation are largely unknown. This study investigated whether neural circuits or different cognitive processes accounted for differences in brain activation in 14 heterosexual and 14 homosexual males. Brain scans were undertaken in each subject using functional magnetic resonance imaging while they viewed different sexual stimuli, i.e. heterosexual couple stimuli (HCS), gay couple stimuli (GCS), lesbian couple stimuli (LCS) and neutral stimuli (NS). Ratings of sexual attractiveness of the stimuli were assessed. Subjective sexual arousal was induced by HCS and GCS in heterosexual and homosexual men, respectively. Sexual disgust was induced by GCS and LCS in heterosexual and homosexual men, respectively. Compared with viewing NS, viewing sexual stimuli induced significantly different brain activations, most of which had the characteristics of cognitive processes. These observations suggest that different cognitive patterns may be the major cause of different subjective responses to sexual stimuli between heterosexual and homosexual men.

  19. Planarian shows decision-making behavior in response to multiple stimuli by integrative brain function.

    Science.gov (United States)

    Inoue, Takeshi; Hoshino, Hajime; Yamashita, Taiga; Shimoyama, Seira; Agata, Kiyokazu

    2015-01-01

    Planarians belong to an evolutionarily early group of organisms that possess a central nervous system including a well-organized brain with a simple architecture but many types of neurons. Planarians display a number of behaviors, such as phototaxis and thermotaxis, in response to external stimuli, and it has been shown that various molecules and neural pathways in the brain are involved in controlling these behaviors. However, due to the lack of combinatorial assay methods, it remains obscure whether planarians possess higher brain functions, including integration in the brain, in which multiple signals coming from outside are coordinated and used in determining behavioral strategies. In the present study, we designed chemotaxis and thigmotaxis/kinesis tracking assays to measure several planarian behaviors in addition to those measured by phototaxis and thermotaxis assays previously established by our group, and used these tests to analyze planarian chemotactic and thigmotactic/kinetic behaviors. We found that headless planarian body fragments and planarians that had specifically lost neural activity following regeneration-dependent conditional gene knockdown (Readyknock) of synaptotagmin in the brain lost both chemotactic and thigmotactic behaviors, suggesting that neural activity in the brain is required for the planarian's chemotactic and thigmotactic behaviors. Furthermore, we compared the strength of phototaxis, chemotaxis, thigmotaxis/kinesis, and thermotaxis by presenting simultaneous binary stimuli to planarians. We found that planarians showed a clear order of predominance of these behaviors. For example, when planarians were simultaneously exposed to 400 lux of light and a chemoattractant, they showed chemoattractive behavior irrespective of the direction of the light source, although exposure to light of this intensity alone induces evasive behavior away from the light source. In contrast, when the light intensity was increased to 800 or 1600 lux and

  20. Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants.

    Science.gov (United States)

    Lin, Pei-Yi; Roche-Labarbe, Nadege; Dehaes, Mathieu; Carp, Stefan; Fenoglio, Angela; Barbieri, Beniamino; Hagan, Katherine; Grant, P Ellen; Franceschini, Maria Angela

    2013-03-14

    Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are reflected by corresponding changes in cerebral oxygen metabolism (CMRO₂). Thus, measures of CMRO₂ are reflective of neuronal viability and provide critical diagnostic information, making CMRO₂ an ideal target for bedside measurement of brain health. Brain-imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) yield measures of cerebral glucose and oxygen metabolism, but these techniques require the administration of radionucleotides, so they are used in only the most acute cases. Continuous-wave near-infrared spectroscopy (CWNIRS) provides non-invasive and non-ionizing radiation measures of hemoglobin oxygen saturation (SO₂) as a surrogate for cerebral oxygen consumption. However, SO₂ is less than ideal as a surrogate for cerebral oxygen metabolism as it is influenced by both oxygen delivery and consumption. Furthermore, measurements of SO₂ are not sensitive enough to detect brain injury hours after the insult, because oxygen consumption and delivery reach equilibrium after acute transients. We investigated the possibility of using more sophisticated NIRS optical methods to quantify cerebral oxygen metabolism at the bedside in healthy and brain-injured newborns. More specifically, we combined the frequency-domain NIRS (FDNIRS) measure of SO2 with the diffuse correlation spectroscopy (DCS) measure of blood flow index (CBFi) to yield an index of CMRO₂ (CMRO₂i). With the combined FDNIRS/DCS system we are able to quantify cerebral metabolism and hemodynamics. This represents an improvement over CWNIRS for detecting brain health, brain

  1. Abnormal Brain Responses to Action Observation in Complex Regional Pain Syndrome.

    Science.gov (United States)

    Hotta, Jaakko; Saari, Jukka; Koskinen, Miika; Hlushchuk, Yevhen; Forss, Nina; Hari, Riitta

    2017-03-01

    Patients with complex regional pain syndrome (CRPS) display various abnormalities in central motor function, and their pain is intensified when they perform or just observe motor actions. In this study, we examined the abnormalities of brain responses to action observation in CRPS. We analyzed 3-T functional magnetic resonance images from 13 upper limb CRPS patients (all female, ages 31-58 years) and 13 healthy, age- and sex-matched control subjects. The functional magnetic resonance imaging data were acquired while the subjects viewed brief videos of hand actions shown in the first-person perspective. A pattern-classification analysis was applied to characterize brain areas where the activation pattern differed between CRPS patients and healthy subjects. Brain areas with statistically significant group differences (q CRPS impairs action observation by affecting brain areas related to pain processing and motor control. This article shows that in CRPS, the observation of others' motor actions induces abnormal neural activity in brain areas essential for sensorimotor functions and pain. These results build the cerebral basis for action-observation impairments in CRPS. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  2. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task

    Directory of Open Access Journals (Sweden)

    Carl-Johan Boraxbekk

    2015-07-01

    Full Text Available Objective: It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods: 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Results: Episodic memory performance improved significantly (p = 0.010 after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA. Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Conclusions: Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity.

  3. Gene expression in the brain and kidney of rainbow trout in response to handling stress

    Directory of Open Access Journals (Sweden)

    Afanasyev Sergey

    2005-01-01

    Full Text Available Abstract Background Microarray technologies are rapidly becoming available for new species including teleost fishes. We constructed a rainbow trout cDNA microarray targeted at the identification of genes which are differentially expressed in response to environmental stressors. This platform included clones from normalized and subtracted libraries and genes selected through functional annotation. Present study focused on time-course comparisons of stress responses in the brain and kidney and the identification of a set of genes which are diagnostic for stress response. Results Fish were stressed with handling and samples were collected 1, 3 and 5 days after the first exposure. Gene expression profiles were analysed in terms of Gene Ontology categories. Stress affected different functional groups of genes in the tissues studied. Mitochondria, extracellular matrix and endopeptidases (especially collagenases were the major targets in kidney. Stress response in brain was characterized with dramatic temporal alterations. Metal ion binding proteins, glycolytic enzymes and motor proteins were induced transiently, whereas expression of genes involved in stress and immune response, cell proliferation and growth, signal transduction and apoptosis, protein biosynthesis and folding changed in a reciprocal fashion. Despite dramatic difference between tissues and time-points, we were able to identify a group of 48 genes that showed strong correlation of expression profiles (Pearson r > |0.65| in 35 microarray experiments being regulated by stress. We evaluated performance of the clone sets used for preparation of microarray. Overall, the number of differentially expressed genes was markedly higher in EST than in genes selected through Gene Ontology annotations, however 63% of stress-responsive genes were from this group. Conclusions 1. Stress responses in fish brain and kidney are different in function and time-course. 2. Identification of stress

  4. Brain networks involved in early versus late response anticipation and their relation to conflict processing.

    Science.gov (United States)

    Lütcke, Henry; Gevensleben, Holger; Albrecht, Björn; Frahm, Jens

    2009-11-01

    Previous electrophysiological studies have clearly identified separable neural events underlying early and late components of response anticipation. Functional neuroimaging studies, however, have so far failed to account for this separation. Here, we performed functional magnetic resonance imaging (fMRI) of an anticipation paradigm in 12 healthy adult subjects that reliably produced early and late expectancy waves in the electroencephalogram. We furthermore compared fMRI activations elicited during early and late anticipation to those associated with response conflict. Our results demonstrate the existence of distinct cortical and subcortical brain regions underlying early and late anticipation. Although late anticipatory behavior was associated with activations in dorsal ACC, frontal cortex, and thalamus, brain responses linked to the early expectancy wave were localized mainly in motor and premotor cortical areas as well as the caudate nucleus. Additionally, late anticipation was associated with increased activity in midbrain dopaminergic nuclei, very likely corresponding to the substantia nigra. Furthermore, whereas regions involved in late anticipation proved to be very similar to activations elicited by response conflict, this was not the case for early anticipation. The current study supports a distinction between early and late anticipatory processes, in line with a plethora of neurophysiological work, and for the first time describes the brain structures differentially involved in these processes.

  5. The rate of training response to aerobic exercise affects brain function of rats.

    Science.gov (United States)

    Marton, Orsolya; Koltai, Erika; Takeda, Masaki; Mimura, Tatsuya; Pajk, Melitta; Abraham, Dora; Koch, Lauren Gerard; Britton, Steven L; Higuchi, Mitsuru; Boldogh, Istvan; Radak, Zsolt

    2016-10-01

    There is an increasing volume of data connecting capacity to respond to exercise training with quality of life and aging. In this study, we used a rat model in which animals were selectively bred for low and high gain in running distance to test t whether genetic segregation for trainability is associated with brain function and signaling processes in the hippocampus. Rats selected for low response (LRT) and high response training (HRT) were randomly divided into control or exercise group that trained five times a week for 30 min per day for three months at 70% VO2max. All four groups had similar running distance before training. With training, HRT rats showed significantly greater increases in VO2max and running distance than LRT rats (p trained rats outperformed HRT control ones. Significant difference was noted between LRT and HRT groups in redox milieu as assessed by levels of reactive oxygen species (ROS), carbonylation of proteins, nNOS and S-nitroso-cysteine. Moreover the silent information regulator 1 (SIRT1), brain-derived neurotrophic factor (BDNF), ratio of phospho and total cAMP-response element binding protein (CREB), and apoptotic index, also showed significant differences between LRT and HRT groups. These findings suggest that aerobic training responses are not localized to skeletal muscle, but differently involve signaling processes in the brain of LRT and HRT rats. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. 5-HTTLPR moderates the association between interdependence and brain responses to mortality threats.

    Science.gov (United States)

    Luo, Siyang; Yu, Dian; Han, Shihui

    2017-09-17

    While behavioral research suggests an association between cultural worldview and decreased anxiety of death, the underlying neurobiological mechanisms remain unclear. Using functional MRI, we investigated whether and how the serotonin transporter promoter polymorphism (5-HTTLPR), which has been associated with mental disorders such as anxiety and depression, moderates the associations between a cultural trait (i.e., interdependence) and self-report of death anxiety/depression and between interdependence and brain responses to mortality threats. Long/long and short/short allele carriers of the 5-HTTLPR were scanned using fMRI while they performed a one-back task on death-related, death-unrelated negative, and neutral words. Participants' interdependence and death anxiety/depression were assessed using questionnaires after scanning. We found that participants who assessed themselves with greater interdependence reported lower death anxiety/depression and showed decreased neural response to death-related words in emotion-related brain regions including the anterior cingulate, putamen, and thalamus. However, these results were evident in long/long allele carriers of the 5-HTTLPR but not in short/short allele carriers who even showed positive associations between interdependence and neural activities in the anterior cingulate, putamen and thalamus in response to death-related words. Our findings suggest candidate mechanisms for explaining the complex relationship between genotype, cultural traits, and mental/neural responses to mortality threats. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Estradiol levels modulate brain activity and negative responses to psychosocial stress across the menstrual cycle.

    Science.gov (United States)

    Albert, Kimberly; Pruessner, Jens; Newhouse, Paul

    2015-09-01

    Although ovarian hormones are thought to have a potential role in the well-known sex difference in mood and anxiety disorders, the mechanisms through which ovarian hormone changes contribute to stress regulation are not well understood. One mechanism by which ovarian hormones might impact mood regulation is by mediating the effect of psychosocial stress, which often precedes depressive episodes and may have mood consequences that are particularly relevant in women. In the current study, brain activity and mood response to psychosocial stress was examined in healthy, normally cycling women at either the high or low estradiol phase of the menstrual cycle. Twenty eight women were exposed to the Montreal Imaging Stress Task (MIST), with brain activity determined through functional magnetic resonance imaging, and behavioral response assessed with subjective mood and stress measures. Brain activity responses to psychosocial stress differed between women in the low versus high estrogen phase of the menstrual cycle: women with high estradiol levels showed significantly less deactivation in limbic regions during psychosocial stress compared to women with low estradiol levels. Additionally, women with higher estradiol levels also had less subjective distress in response to the MIST than women with lower estradiol levels. The results of this study suggest that, in normally cycling premenopausal women, high estradiol levels attenuate the brain activation changes and negative mood response to psychosocial stress. Normal ovarian hormone fluctuations may alter the impact of psychosocially stressful events by presenting periods of increased vulnerability to psychosocial stress during low estradiol phases of the menstrual cycle. This menstrual cycle-related fluctuation in stress vulnerability may be relevant to the greater risk for affective disorder or post-traumatic stress disorder in women. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The impoverished brain: disparities in maternal education affect the neural response to sound.

    Science.gov (United States)

    Skoe, Erika; Krizman, Jennifer; Kraus, Nina

    2013-10-30

    Despite the prevalence of poverty worldwide, little is known about how early socioeconomic adversity affects auditory brain function. Socioeconomically disadvantaged children are underexposed to linguistically and cognitively stimulating environments and overexposed to environmental toxins, including noise pollution. This kind of sensory impoverishment, we theorize, has extensive repercussions on how the brain processes sound. To characterize how this impoverishment affects auditory brain function, we compared two groups of normal-hearing human adolescents who attended the same schools and who were matched in age, sex, and ethnicity, but differed in their maternal education level, a correlate of socioeconomic status (SES). In addition to lower literacy levels and cognitive abilities, adolescents from lower maternal education backgrounds were found to have noisier neural activity than their classmates, as reflected by greater activity in the absence of auditory stimulation. Additionally, in the lower maternal education group, the neural response to speech was more erratic over repeated stimulation, with lower fidelity to the input signal. These weaker, more variable, and noisier responses are suggestive of an inefficient auditory system. By studying SES within a neuroscientific framework, we have the potential to expand our understanding of how experience molds the brain, in addition to informing intervention research aimed at closing the achievement gap between high-SES and low-SES children.

  9. Fear across the senses: brain responses to music, vocalizations and facial expressions.

    Science.gov (United States)

    Aubé, William; Angulo-Perkins, Arafat; Peretz, Isabelle; Concha, Luis; Armony, Jorge L

    2015-03-01

    Intrinsic emotional expressions such as those communicated by faces and vocalizations have been shown to engage specific brain regions, such as the amygdala. Although music constitutes another powerful means to express emotions, the neural substrates involved in its processing remain poorly understood. In particular, it is unknown whether brain regions typically associated with processing 'biologically relevant' emotional expressions are also recruited by emotional music. To address this question, we conducted an event-related functional magnetic resonance imaging study in 47 healthy volunteers in which we directly compared responses to basic emotions (fear, sadness and happiness, as well as neutral) expressed through faces, non-linguistic vocalizations and short novel musical excerpts. Our results confirmed the importance of fear in emotional communication, as revealed by significant blood oxygen level-dependent signal increased in a cluster within the posterior amygdala and anterior hippocampus, as well as in the posterior insula across all three domains. Moreover, subject-specific amygdala responses to fearful music and vocalizations were correlated, consistent with the proposal that the brain circuitry involved in the processing of musical emotions might be shared with the one that have evolved for vocalizations. Overall, our results show that processing of fear expressed through music, engages some of the same brain areas known to be crucial for detecting and evaluating threat-related information. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Fear across the senses: brain responses to music, vocalizations and facial expressions

    Science.gov (United States)

    Angulo-Perkins, Arafat; Peretz, Isabelle; Concha, Luis; Armony, Jorge L.

    2015-01-01

    Intrinsic emotional expressions such as those communicated by faces and vocalizations have been shown to engage specific brain regions, such as the amygdala. Although music constitutes another powerful means to express emotions, the neural substrates involved in its processing remain poorly understood. In particular, it is unknown whether brain regions typically associated with processing ‘biologically relevant’ emotional expressions are also recruited by emotional music. To address this question, we conducted an event-related functional magnetic resonance imaging study in 47 healthy volunteers in which we directly compared responses to basic emotions (fear, sadness and happiness, as well as neutral) expressed through faces, non-linguistic vocalizations and short novel musical excerpts. Our results confirmed the importance of fear in emotional communication, as revealed by significant blood oxygen level-dependent signal increased in a cluster within the posterior amygdala and anterior hippocampus, as well as in the posterior insula across all three domains. Moreover, subject-specific amygdala responses to fearful music and vocalizations were correlated, consistent with the proposal that the brain circuitry involved in the processing of musical emotions might be shared with the one that have evolved for vocalizations. Overall, our results show that processing of fear expressed through music, engages some of the same brain areas known to be crucial for detecting and evaluating threat-related information. PMID:24795437

  11. Principal component analysis of the cytokine and chemokine response to human traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Adel Helmy

    Full Text Available There is a growing realisation that neuro-inflammation plays a fundamental role in the pathology of Traumatic Brain Injury (TBI. This has led to the search for biomarkers that reflect these underlying inflammatory processes using techniques such as cerebral microdialysis. The interpretation of such biomarker data has been limited by the statistical methods used. When analysing data of this sort the multiple putative interactions between mediators need to be considered as well as the timing of production and high degree of statistical co-variance in levels of these mediators. Here we present a cytokine and chemokine dataset from human brain following human traumatic brain injury and use principal component analysis and partial least squares discriminant analysis to demonstrate the pattern of production following TBI, distinct phases of the humoral inflammatory response and the differing patterns of response in brain and in peripheral blood. This technique has the added advantage of making no assumptions about the Relative Recovery (RR of microdialysis derived parameters. Taken together these techniques can be used in complex microdialysis datasets to summarise the data succinctly and generate hypotheses for future study.

  12. Cannabinoid Signaling and Neuroinflammatory Diseases: A Melting pot for the Regulation of Brain Immune Responses.

    Science.gov (United States)

    Chiurchiù, Valerio; Leuti, Alessandro; Maccarrone, Mauro

    2015-06-01

    The concept of the central nervous system (CNS) as an immune-privileged site, essentially due to the presence of the blood brain barrier, appears to be overly simplistic. Indeed, within healthy CNS immune activities are permitted and are required for neuronal function and host defense, not only due to the presence of the resident innate immune cells of the brain, but also by virtue of a complex cross-talk of the CNS with peripheral immune cells. Nonetheless, long-standing and persisting neuroinflammatory responses are most often detrimental and characterize several neuroinflammatory diseases, including multiple sclerosis, Alzheimer's disease and amyotrophic lateral sclerosis. A growing body of evidence suggests that Cannabis sativa-derived phytocannabinoids, as well as synthetic cannabinoids, are endowed with significant immunoregulatory and anti-inflammatory properties, both in peripheral tissues and in the CNS, through the activation of cannabinoid receptors. In this review, the immunomodulatory effects of cannabinoid signaling on the most relevant brain immune cells will be discussed. In addition, the impact of cannabinoid regulation on the overall integration of the manifold brain immune responses will also be highlighted, along with the implication of these compounds as potential agents for the management of neuroinflammatory disorders.

  13. Flexible multivariate hemodynamics fMRI data analyses and simulations with PyHRF

    Directory of Open Access Journals (Sweden)

    Thomas eVincent

    2014-04-01

    Full Text Available As part of fMRI data analysis, the pyhrf package provides a set of tools for addressing the two main issues involved in intra-subject fMRI data analysis: (i the localization of cerebral regions that elicit evoked activity and (ii the estimation of activation dynamics also known as Hemodynamic Response Function (HRF recovery. To tackle these two problems, pyhrf implements the Joint Detection-Estimation framework~(JDE which recovers parcel-level HRFs and embeds an adaptive spatio-temporal regularization scheme of activation maps. With respect to the sole detection issue~(i, the classical voxelwise GLM procedure is also available through nipy, whereas Finite Impulse Response~(FIR and temporally regularized FIR models are concerned with HRF estimation~(ii and are specifically implemented in pyhrf. Several parcellation tools are also integrated such as spatial and functional clustering. Parcellations may be used for spatial averaging prior to FIR/RFIR analysis or to specify the spatial support of the HRF estimates in the JDE approach. These analysis procedures can be applied either to volumic data sets or to data projected onto the cortical surface. For validation purpose, this package is shipped with artificial and real fMRI data sets, which are used in this paper to compare the outcome of the different available approaches. The artificial fMRI data generator is also described to illustrate how to simulate different activation configurations, HRF shapes or nuisance components. To cope with the high computational needs for inference, pyhrf handles distributing computing by exploiting cluster units as well as multi-core machines. Finally, a dedicated viewer is presented, which handles $n$-dimensional images and provides suitable features to explore whole brain hemodynamics~(time series, maps, ROI mask overlay.

  14. Significant correlation between autonomic nervous activity and cerebral hemodynamics during thermotherapy on the neck.

    Science.gov (United States)

    Yasui, Hiroshi; Takamoto, Kouich; Hori, Etsuro; Urakawa, Susumu; Nagashima, Yoshinao; Yada, Yukihiro; Ono, Taketoshi; Nishijo, Hisao

    2010-08-25

    Although local thermotherapy reduces mental stress and neck stiffness, its physiological mechanisms are still not fully understood. We speculated that local thermotherapy exerts its effect, in addition to its direct peripheral effects, through the central nervous system that is involved in controlling stress responses. In the present study, we investigated the effects of a heat- and steam-generating (HSG) sheet on cerebral hemodynamics and autonomic nervous activity using near-infrared spectroscopy (NIRS) and the electrocardiograms (ECGs). Thirteen healthy young female subjects participated in this study. HSG or simple (control) sheets were repeatedly applied to the neck for 120 s with 180 s intervals of rest between applications. During the experiment, brain hemodynamic responses (changes in Oxy-Hb, Deoxy-Hb, and Total-Hb) and autonomic nervous activity based on heart rate variability (HRV) were monitored. Subjective perception of neck stiffness and fatigue was significantly improved after application of the HSG sheet. NIRS findings indicated that the application of HSG sheets decreased Oxy-Hb concentration in the anterior-dorsal region of the medial prefrontal cortex (adMPFC), while increasing parasympathetic nervous activity and decreasing sympathetic nervous activity. Furthermore, changes in Oxy-Hb in the adMPFC were significantly and negatively correlated with those in parasympathetic nervous activity during application of the HSG sheet. These findings suggest that application of the HSG sheet to the neck region induced mental relaxation and ameliorated neck stiffness by modifying activity of the adMPFC. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Cerebrovascular hemodynamics during pranayama techniques

    Directory of Open Access Journals (Sweden)

    L Nivethitha

    2017-01-01

    Full Text Available Background: Pranayama techniques are known to produce variable physiological effects on the body. We evaluated the effect of the two commonly practiced Pranayama techniques on cerebral hemodynamics. Materials and Methods: Fifteen healthy male volunteers, trained in Yoga and Pranayama, were included in the study. Mean age was 24 years (range 22–32 years. Study participants performed 2 Pranayamas in 2 different orders. Order 1 (n = 7 performed Bhastrika (bellows breaths followed by Kumbhaka (breath retention while order 2 (n = 8 performed Kumbhaka followed by Bhastrika. Both breathing techniques were performed for 1 min each. Continuous transcranial Doppler (TCD monitoring was performed during the breathing techniques. TCD parameters that were recorded included peak systolic velocity (PSV, end-diastolic velocity (EDV, mean flow velocity (MFV, and pulsatility index (PI of the right middle cerebral artery at baseline, 15, 30, 45, and 60 s. Results: Significant reductions in EDV (3.67 ± 6.48; P< 0.001 and MFV (22.00 ± 7.30; P< 0.001 with a significant increase in PI (2.43 ± 0.76; P< 0.001 were observed during Bhastrika. On the contrary, a significant increase in PSV (65.27 ± 13.75; P< 0.001, EDV (28.67 ± 12.03; P< 0.001, and MFV (43.67 ± 12.85; P< 0.001 with a significant reduction in PI (0.89 ± 0.28; P< 0.01 was observed only during Kumbhaka. Conclusion: Bhastrika and Kumbhaka practices of Pranayama produce considerable and opposing effects on cerebral hemodynamic parameters. Our findings may play a potential role in designing the Pranayama techniques according to patients' requirements.

  16. Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods

    Science.gov (United States)

    Durduran, Turgut

    Diffuse optical techniques were used to measure hemodynamics of tissues non-invasively. Spectroscopy and tomography of the brain, muscle and implanted tumors were carried out in animal models and humans. Two qualitatively different methods, diffuse optical tomography and diffuse correlation tomography, were hybridized permitting simultaneous measurement of total hemoglobin concentration, blood oxygen saturation and blood flow. This combination of information was processed further to derive estimates of oxygen metabolism (e.g. CMRO 2) in tissue. The diffuse correlation measurements of blood flow were demonstrated in human tissues, for the first time, demonstrating continous, non-invasive imaging of oxygen metabolism in large tissue volumes several centimeters below the tissue surface. The bulk of these investigations focussed on cerebral hemodynamics. Extensive validation of this methodology was carried out in in vivo rat brain models. Three dimensional images of deep tissue hemodynamics in middle cerebral artery occlusion and cortical spreading depression (CSD) were obtained. CSD hemodynamics were found to depend strongly on partial pressure of carbon dioxide. The technique was then adapted for measurement of human brain. All optical spectroscopic measurements of CMRO2 during functional activation were obtained through intact human skull non-invasively. Finally, a high spatio-temporal resolution measurement of cerebral blood flow due to somatosensory cortex activation following electrical forepaw stimulation in rats was carried out with laser speckle flowmetry. New analysis methods were introduced for laser speckle flowmetry. In other organs, deep tissue hemodynamics were measured on human calf muscle during exercise and cuff-ischemia and were shown to have some clinical utility for peripheral vascular disease. In mice tumor models, the measured hemodynamics were shown to be predictive of photodynamic therapy efficacy, again suggesting promise of clinical utility

  17. Global transcriptional response of pig brain and lung to natural infection by Pseudorabies virus

    Directory of Open Access Journals (Sweden)

    Furlong RA

    2009-12-01

    Full Text Available Abstract Background Pseudorabies virus (PRV is an alphaherpesviruses whose native host is pig. PRV infection mainly causes signs of central nervous system disorder in young pigs, and respiratory system diseases in the adult. Results In this report, we have analyzed native host (piglets gene expression changes in response to acute pseudorabies virus infection of the brain and lung using a printed human oligonucleotide gene set from Illumina. A total of 210 and 1130 out of 23,000 transcript probes displayed differential expression respectively in the brain and lung in piglets after PRV infection (p-value Conclusion This is the first comprehensive analysis of the global transcriptional response of the native host to acute alphaherpesvirus infection. The differentially regulated genes reported here are likely to be of interest for the further study and understanding of host viral gene interactions.

  18. Effect of oculomotor rehabilitation on vergence responsivity in mild traumatic brain injury.

    Science.gov (United States)

    Thiagarajan, Preethi; Ciuffreda, Kenneth J

    2013-01-01

    A range of dynamic and static vergence responses were evaluated in 12 individuals with mild traumatic brain injury (age: 29 +/- 3 yr) having near vision symptoms. All measures were performed in a crossover design before and after oculomotor training (OMT) and placebo (P) training. Following OMT, peak velocity for both convergence and divergence increased significantly. Increased peak velocity was significantly correlated with increased clinically based vergence prism flipper rate. Steady-state response variability for convergence reduced significantly following OMT. The maximum amplitude of convergence, relative fusional amplitudes, and near stereoacuity improved significantly. In addition, symptoms reduced significantly, and visual attention improved markedly. None of the measures were found to change significantly following P training. The significant improvement in most aspects of vergence eye movements following OMT demonstrates considerable residual brain plasticity via oculomotor learning. The improved vergence affected positively on nearwork-related symptoms and visual attention.

  19. Hippocampal Neurogenesis and the Brain Repair Response to Brief Stereotaxic Insertion of a Microneedle

    Directory of Open Access Journals (Sweden)

    Shijie Song

    2013-01-01

    Full Text Available We tested the hypothesis that transient microinjury to the brain elicits cellular and humoral responses that stimulate hippocampal neurogenesis. Brief stereotaxic insertion and removal of a microneedle into the right hippocampus resulted in (a significantly increased expression of granulocyte-colony stimulating factor (G-CSF, the chemokine MIP-1a, and the proinflammatory cytokine IL12p40; (b pronounced activation of microglia and astrocytes; and (c increase in hippocampal neurogenesis. This study describes immediate and early humoral and cellular mechanisms of the brain’s response to microinjury that will be useful for the investigation of potential neuroprotective and deleterious effects of deep brain stimulation in various neuropsychiatric disorders.

  20. DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses.

    Science.gov (United States)

    Vialou, Vincent; Robison, Alfred J; Laplant, Quincey C; Covington, Herbert E; Dietz, David M; Ohnishi, Yoshinori N; Mouzon, Ezekiell; Rush, Augustus J; Watts, Emily L; Wallace, Deanna L; Iñiguez, Sergio D; Ohnishi, Yoko H; Steiner, Michel A; Warren, Brandon L; Krishnan, Vaishnav; Bolaños, Carlos A; Neve, Rachael L; Ghose, Subroto; Berton, Olivier; Tamminga, Carol A; Nestler, Eric J

    2010-06-01

    In contrast with the many studies of stress effects on the brain, relatively little is known about the molecular mechanisms of resilience, the ability of some individuals to escape the deleterious effects of stress. We found that the transcription factor DeltaFosB mediates an essential mechanism of resilience in mice. Induction of DeltaFosB in the nucleus accumbens, an important brain reward-associated region, in response to chronic social defeat stress was both necessary and sufficient for resilience. DeltaFosB induction was also required for the standard antidepressant fluoxetine to reverse behavioral pathology induced by social defeat. DeltaFosB produced these effects through induction of the GluR2 AMPA glutamate receptor subunit, which decreased the responsiveness of nucleus accumbens neurons to glutamate, and through other synaptic proteins. Together, these findings establish a previously unknown molecular pathway underlying both resilience and antidepressant action.

  1. Computer Controlled Switching Device for Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    J. Tauchmanová

    2007-01-01

    Full Text Available This paper has two goals. The practical part deals with the design of a computer controlled switching device for an external stimulator for deep brain stimulation. The switching device is used during investigations with functional magnetic resonance for controlling signals leading to the deep brain stimulation (DBS electrode in the patient's brain. The motivation for designing this device was improve measured data quality and to enable new types of experiments.The theoretical part reports on early attempts to approach the problem of modeling and localizing the neural response of the human brain as a system identification and estimation task. The parametric identification method and real fMRI data are used for modeling the hemodynamic response.The project is in cooperation with 1st Faculty of Medicine, Charles University in Prague and Na Homolce hospital in Prague.

  2. Ketamine modulation of the haemodynamic response to spreading depolarization in the gyrencephalic swine brain.

    Science.gov (United States)

    Sánchez-Porras, Renán; Santos, Edgar; Schöll, Michael; Kunzmann, Kevin; Stock, Christian; Silos, Humberto; Unterberg, Andreas W; Sakowitz, Oliver W

    2017-05-01

    Spreading depolarization (SD) generates significant alterations in cerebral haemodynamics, which can have detrimental consequences on brain function and integrity. Ketamine has shown an important capacity to modulate SD; however, its impact on SD haemodynamic response is incompletely understood. We investigated the effect of two therapeutic ketamine dosages, a low-dose of 2 mg/kg/h and a high-dose of 4 mg/kg/h, on the haemodynamic response to SD in the gyrencephalic swine brain. Cerebral blood volume, pial arterial diameter and cerebral blood flow were assessed through intrinsic optical signal imaging and laser-Doppler flowmetry. Our findings indicate that frequent SDs caused a persistent increase in the baseline pial arterial diameter, which can lead to a diminished capacity to further dilate. Ketamine infused at a low-dose reduced the hyperemic/vasodilative response to SD; however, it did not alter the subsequent oligemic/vasoconstrictive response. This low-dose did not prevent the baseline diameter increase and the diminished dilative capacity. Only infusion of ketamine at a high-dose suppressed SD and the coupled haemodynamic response. Therefore, the haemodynamic response to SD can be modulated by continuous infusion of ketamine. However, its use in pathological models needs to be explored to corroborate its possible clinical benefit.

  3. Functional Brain Activation in Response to a Clinical Vestibular Test Correlates with Balance.

    Science.gov (United States)

    Noohi, Fatemeh; Kinnaird, Catherine; DeDios, Yiri; Kofman, Igor S; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2017-01-01

    The current study characterizes brain fMRI activation in response to two modes of vestibular stimulation: Skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either a vestibulo-spinal reflex [saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)], or an ocular muscle response [utricle-mediated ocular VEMP (oVEMP)]. Research suggests that the skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for subjects than the high decibel tones required to elicit VEMPs. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of brain activity. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that pneumatically powered skull taps would elicit a similar pattern of brain activity as shown in previous studies. Our results provide the first evidence of using pneumatically powered skull taps to elicit vestibular activity inside the MRI scanner. A conjunction analysis revealed that skull taps elicit overlapping activation with auditory tone bursts in the canonical vestibular cortical regions. Further, our postural control assessments revealed that greater amplitude of brain activation in response to vestibular stimulation was associated with better balance control for both techniques. Additionally, we found that skull taps elicit more robust vestibular activity compared to auditory tone bursts, with less reported aversive effects, highlighting the utility of this approach for future clinical and basic science research.

  4. Managing health worker migration: a qualitative study of the Philippine response to nurse brain drain

    Directory of Open Access Journals (Sweden)

    Dimaya Roland M

    2012-12-01

    Full Text Available Abstract Background The emigration of skilled nurses from the Philippines is an ongoing phenomenon that has impacted the quality and quantity of the nursing workforce, while strengthening the domestic economy through remittances. This study examines how the development of brain drain-responsive policies is driven by the effects of nurse migration and how such efforts aim to achieve mind-shifts among nurses, governing and regulatory bodies, and public and private institutions in the Philippines and worldwide. Methods Interviews and focus group discussions were conducted to elicit exploratory perspectives on the policy response to nurse brain drain. Interviews with key informants from the nursing, labour and immigration sectors explored key themes behind the development of policies and programmes that respond to nurse migration. Focus group discussions were held with practising nurses to understand policy recipients’ perspectives on nurse migration and policy. Results Using the qualitative data, a thematic framework was created to conceptualize participants’ perceptions of how nurse migration has driven the policy development process. The framework demonstrates that policymakers have recognised the complexity of the brain drain phenomenon and are crafting dynamic policies and programmes that work to shift domestic and global mindsets on nurse training, employment and recruitment. Conclusions Development of responsive policy to Filipino nurse brain drain offers a glimpse into a domestic response to an increasingly prominent global issue. As a major source of professionals migrating abroad for employment, the Philippines has formalised efforts to manage nurse migration. Accordingly, the Philippine paradigm, summarised by the thematic framework presented in this paper, may act as an example for other countries that are experiencing similar shifts in healthcare worker employment due to migration.

  5. Managing health worker migration: a qualitative study of the Philippine response to nurse brain drain.

    Science.gov (United States)

    Dimaya, Roland M; McEwen, Mary K; Curry, Leslie A; Bradley, Elizabeth H

    2012-12-19

    The emigration of skilled nurses from the Philippines is an ongoing phenomenon that has impacted the quality and quantity of the nursing workforce, while strengthening the domestic economy through remittances. This study examines how the development of brain drain-responsive policies is driven by the effects of nurse migration and how such efforts aim to achieve mind-shifts among nurses, governing and regulatory bodies, and public and private institutions in the Philippines and worldwide. Interviews and focus group discussions were conducted to elicit exploratory perspectives on the policy response to nurse brain drain. Interviews with key informants from the nursing, labour and immigration sectors explored key themes behind the development of policies and programmes that respond to nurse migration. Focus group discussions were held with practising nurses to understand policy recipients' perspectives on nurse migration and policy. Using the qualitative data, a thematic framework was created to conceptualize participants' perceptions of how nurse migration has driven the policy development process. The framework demonstrates that policymakers have recognised the complexity of the brain drain phenomenon and are crafting dynamic policies and programmes that work to shift domestic and global mindsets on nurse training, employment and recruitment. Development of responsive policy to Filipino nurse brain drain offers a glimpse into a domestic response to an increasingly prominent global issue. As a major source of professionals migrating abroad for employment, the Philippines has formalised efforts to manage nurse migration. Accordingly, the Philippine paradigm, summarised by the thematic framework presented in this paper, may act as an example for other countries that are experiencing similar shifts in healthcare worker employment due to migration.

  6. Authors’ response: what are emotions and how are they created in the brain?

    Science.gov (United States)

    Lindquist, Kristen A; Wager, Tor D; Bliss-Moreau, Eliza; Kober, Hedy; Barret, Lisa Feldman

    2012-06-01

    In our response, we clarify important theoretical differences between basic emotion and psychological construction approaches. We evaluate the empirical status of the basic emotion approach, addressing whether it requires brain localization, whether localization can be observed with better analytic tools, and whether evidence for basic emotions exists in other types of measures. We then revisit the issue of whether the key hypotheses of psychological construction are supported by our meta-analytic findings. We close by elaborating on commentator suggestions for future research.

  7. Caffeine differentially alters cortical hemodynamic activity during working memory: a near infrared spectroscopy study.

    Science.gov (United States)

    Heilbronner, Urs; Hinrichs, Hermann; Heinze, Hans-Jochen; Zaehle, Tino

    2015-10-01

    Caffeine is a widely used stimulant with potentially beneficial effects on cognition as well as vasoconstrictive properties. In functional magnetic imaging research, caffeine has gained attention as a potential enhancer of the blood oxygenation level-dependent (BOLD) response. In order to clarify changes of oxy- and deoxyhemoglobin (HbO and HbR) induced by caffeine during a cognitive task, we investigated a working memory (WM) paradigm (visual 2-back) using near-infrared spectroscopy (NIRS). Behaviorally, caffeine had no effect on the WM performance but influenced reaction times in the 0-back condition. NIRS data demonstrate caffeine-dependent alterations of the course of the hemodynamic response. The intake of 200 mg caffeine caused a significant decrease of the HbO response between 20 and 40 s after the onset of a 2-back task in the bilateral inferior frontal cortex (IFC). In parallel, the HbR response of the left IFC was significantly increased due to caffeine intake. In line with previous results, we did not detect an effect of caffeine on most aspects of behavior. Effects of caffeine on brain vasculature were detected as general reduction of HbO. Neuronal effects of caffeine are reflected in an increased concentration of HbR in the left hemisphere when performing a verbal memory task and suggest influences on metabolism.

  8. Assessing signal-driven mechanism in neonates: brain responses to temporally and spectrally different sounds

    Directory of Open Access Journals (Sweden)

    Yasuyo eMinagawa-Kawai

    2011-06-01

    Full Text Available Past studies have found that in adults that acoustic properties of sound signals (such as fast vs. slow temporal features differentially activate the left and right hemispheres, and some have hypothesized that left-lateralization for speech processing may follow from left-lateralization to rapidly changing signals. Here, we tested whether newborns’ brains show some evidence of signal-specific lateralization responses using near-infrared spectroscopy (NIRS and auditory stimuli that elicits lateralized responses in adults, composed of segments that vary in duration and spectral diversity. We found significantly greater bilateral responses of oxygenated hemoglobin (oxy-Hb in the temporal areas for stimuli with a minimum segment duration of 21 ms, than stimuli with a minimum segment duration of 667 ms. However, we found no evidence for hemispheric asymmetries dependent on the stimulus characteristics. We hypothesize that acoustic-based functional brain asymmetries may develop throughout early infancy, and discuss their possible relationship with brain asymmetries for language.

  9. Do animals and furniture items elicit different brain responses in human infants?

    Science.gov (United States)

    Jeschonek, Susanna; Marinovic, Vesna; Hoehl, Stefanie; Elsner, Birgit; Pauen, Sabina

    2010-11-01

    One of the earliest categorical distinctions to be made by preverbal infants is the animate-inanimate distinction. To explore the neural basis for this distinction in 7-8-month-olds, an equal number of animal and furniture pictures was presented in an ERP-paradigm. The total of 118 pictures, all looking different from each other, were presented in a semi-randomized order for 1000ms each. Infants' brain responses to exemplars from both categories differed systematically regarding the negative central component (Nc: 400-600ms) at anterior channels. More specifically, the Nc was enhanced for animals in one subgroup of infants, and for furniture items in another subgroup of infants. Explorative analyses related to categorical priming further revealed category-specific differences in brain responses in the late time window (650-1550ms) at right frontal channels: Unprimed stimuli (preceded by a different-category item) elicited a more positive response as compared to primed stimuli (preceded by a same-category item). In sum, these findings suggest that the infant's brain discriminates exemplars from both global domains. Given the design of our task, we conclude that processes of category identification are more likely to account for our findings than processes of on-line category formation during the experimental session. Copyright © 2009 Elsevier B.V. All rights reserved.

  10. Brain response to visual sexual stimuli in heterosexual and homosexual males.

    Science.gov (United States)

    Paul, Thomas; Schiffer, Boris; Zwarg, Thomas; Krüger, Tillmann H C; Karama, Sherif; Schedlowski, Manfred; Forsting, Michael; Gizewski, Elke R

    2008-06-01

    Although heterosexual and homosexual individuals clearly show differences in subjective response to heterosexual and homosexual sexual stimuli, the neurobiological processes underlying sexual orientation are largely unknown. We addressed the question whether the expected differences in subjective response to visual heterosexual and homosexual stimuli may be reflected in differences in brain activation pattern. Twenty-four healthy male volunteers, 12 heterosexuals and 12 homosexuals, were included in the study. BOLD signal was measured while subjects were viewing erotic videos of heterosexual and homosexual content. SPM02 was used for data analysis. Individual sexual arousal was assessed by subjective rating. As compared to viewing sexually neutral videos, viewing erotic videos led to a brain activation pattern characteristic for sexual arousal in both groups only when subjects were viewing videos of their respective sexual orientation. Particularly, activation in the hypothalamus, a key brain area in sexual function, was correlated with sexual arousal. Conversely, when viewing videos opposite to their sexual orientation both groups showed absent hypothalamic activation. Moreover, the activation pattern found in both groups suggests that stimuli of opposite sexual orientation triggered intense autonomic response and may be perceived, at least to some extent, as aversive. Copyright 2007 Wiley-Liss, Inc.

  11. Response-driven Imaging Biomarkers for Predicting Radiation Necrosis of the Brain

    Science.gov (United States)

    Nazem-Zadeh, Mohammad-Reza; Chapman, Christopher H.; Chenevert, Thomas; Lawrence, Theodore S.; Ten Haken, Randall K.; Tsien, Christina I.; Cao, Yue

    2014-01-01

    Purpose Radiation necrosis is an uncommon but severe adverse effect of brain radiation therapy. Current predictive models based on radiation dose have limited accuracy. We aimed to identify early individual response biomarkers based upon diffusion tensor (DT) imaging and incorporated them into a response model for prediction of radiation necrosis. Methods and Materials Twenty-nine patients with glioblastoma received six weeks of intensity modulated radiation therapy (RT) and concurrent temozolamide. Patients underwent DT-MRI scans before treatment, at three weeks during RT, and one, three, and six months after RT. Cases with radiation necrosis were classified based on generalized equivalent uniform dose (gEUD) of whole brain and DT index early changes in the corpus callosum and its substructures. Significant covariates were used to develop normal tissue complication probability models using binary logistic regression. Results Seven patients developed radiation necrosis. Percentage changes of radial diffusivity (RD) in the splenium at three weeks during RT and at six months after RT differed significantly between the patients with and without necrosis (p=0.05 and p=0.01). Percentage change of RD at three weeks during RT in the 30 Gy dose-volume of the splenium and brain gEUD combined yielded the best-fit logistic regression model. Conclusions Our findings indicate that early individual response during the course of RT, assessed by radial diffusivity, has the potential to aid in predicting delayed radiation necrosis, which could provide guidance in dose-escalation trials. PMID:24778364

  12. Lateral cord stimulation decreases spastic electromyographic spreading: responses in a brain-damaged pig preparation.

    Science.gov (United States)

    Andreani, Juan Carlos M; Guma, Cristina

    2008-07-01

    Objective.  The aim of our work was to investigate whether lateral stimulation of the spinal cord, lateral cord stimulation (LCS), results in inhibition of the spastic phenomena of upper motor lesions in an animal model. Methods.  This study was conducted using an animal model consisting of surgically brain damaged pigs subjected to unilateral cortical and subcortical brain lesions. A double laminectomy at cervical (C3-C4) and lumbar (L3-L6) was performed, and spastic thresholds of abnormal electromyographic responses, disseminated to adjacent segments, facilitated by spinal liberation, and produced by extradural electrical stimulation of the fourth lumbar root, were measured before and after cervical stimulation of the LCS. The variable studied was the minimal amount of current of LCS necessary to abolish electromyographic responses in the L7 myotome, away from the stimulated L4 nerve root. Results.  Experiments in 12 animals showed a significant increase of threshold after LCS, with a marked posteffect, signaling a less abnormal threshold. Conclusions.  This experiment demonstrated that LCS produces threshold increases to abolish abnormally propagated electromyographic evoked responses induced by the electrical stimulation of the fourth lumbar root in pigs with experimental cortical and subcortical brain lesions. © 2008 International Neuromodulation Society.

  13. Differential Recruitment of Brain Regions During Response Inhibition in Children Prenatally Exposed to Alcohol.

    Science.gov (United States)

    Kodali, Vikas N; Jacobson, Joseph L; Lindinger, Nadine M; Dodge, Neil C; Molteno, Christopher D; Meintjes, Ernesta M; Jacobson, Sandra W

    2017-02-01

    Response inhibition is a distinct aspect of executive function that is frequently impaired in children with fetal alcohol spectrum disorders (FASD). We used a Go/NoGo (GNG) task in a functional MRI protocol to investigate differential activation of brain regions in the response inhibition network in children diagnosed with full or partial fetal alcohol syndrome (FAS/PFAS), compared with healthy controls. A rapid, event-related task with 120 Go and 60 NoGo trials was used to study children aged 8 to 12 years-8 with FAS/PFAS, 17 controls. Letters were projected sequentially, with Go and NoGo trials randomly interspersed across the task. BOLD signal in the whole brain was contrasted for the correct NoGo minus correct Go trials between the FAS/PFAS and control groups. Compared to the FAS/PFAS group, controls showed greater activation of the inferior frontal and anterior cingulate network linked to response inhibition in typically developing children. By contrast, the FAS/PFAS group showed greater BOLD response in dorsolateral prefrontal cortex and other middle prefrontal regions, suggesting compensation for inefficient function of pathways that normally mediate inhibitory processing. All group differences were significant after control for potential confounding variables. None of the effects of prenatal alcohol exposure on activation of the regions associated with response inhibition were attributable to the effects of this exposure on IQ. This is the first FASD GNG study in which all participants in the exposed group met criteria for a diagnosis of full FAS or PFAS. Although FASD is frequently comorbid with attention deficit hyperactivity disorder, the pattern of brain activation seen in these disorders differs, suggesting that different neural pathways mediate response inhibition in FASD and that different interventions for FASD are, therefore, warranted. Copyright © 2017 by the Research Society on Alcoholism.

  14. Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues.

    Science.gov (United States)

    Anafi, Ron C; Pellegrino, Renata; Shockley, Keith R; Romer, Micah; Tufik, Sergio; Pack, Allan I

    2013-05-30

    Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed "sleep specific" changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific molecular functions and that it has a

  15. MicroRNA: Small RNA mediators of the brains genomic response to environmental stress.

    Science.gov (United States)

    Hollins, Sharon L; Cairns, Murray J

    2016-08-01

    The developmental processes that establish the synaptic architecture of the brain while retaining capacity for activity-dependent remodeling, are complex and involve a combination of genetic and epigenetic influences. Dysregulation of these processes can lead to problems with neural circuitry which manifest in humans as a range of neurodevelopmental syndromes, such as schizophrenia, bipolar disorder and fragile X mental retardation. Recent studies suggest that prenatal, postnatal and intergenerational environmental factors play an important role in the aetiology of stress-related psychopathology. A number of these disorders have been shown to display epigenetic changes in the postmortem brain that reflect early life experience. These changes affect the regulation of gene expression though chromatin remodeling (transcriptional) and post-transcriptional influences, especially small noncoding microRNA (miRNA). These dynamic and influential molecules appear to play an important function in both brain development and its adaption to stress. In this review, we examine the role of miRNA in mediating the brain's response to both prenatal and postnatal environmental perturbations and explore how stress- induced alterations in miRNA expression can regulate the stress response via modulation of the immune system. Given the close relationship between environmental stress, miRNA, and brain development/function, we assert that miRNA hold a significant position at the molecular crossroads between neural development and adaptations to environmental stress. A greater understanding of the dynamics that mediate an individual's predisposition to stress-induced neuropathology has major human health benefits and is an important area of research. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Hemodynamic Monitorization of the Burn Patient

    Directory of Open Access Journals (Sweden)

    Ahmet Coşar

    2011-07-01

    Full Text Available Hemodynamic monitorization is the basic component of the medical care of the burn patients. It provides valuable information of the cardiopulmonary performance which is essential in the rapid diagnosis and treatment in the case of hemodynamic disturbance. The clinical importance of any monitorization parameter, associated risks – benefits, cost effectivity, and also assessment and management skills of the health care providers should be taken into consideration in the selection process of the monitorization method. This paper reviews the methods of the hemodynamic monitorization for the clinical care of the burn patients. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 11-20

  17. Toll-like receptor 2 signaling in response to brain injury: an innate bridge to neuroinflammation

    DEFF Research Database (Denmark)

    Babcock, Alicia; Wirenfeldt, Martin; Holm, Thomas

    2006-01-01

    -induced expression of cytokines and chemokines. Recruitment of T cells, but not macrophages, was delayed in TLR2-deficient mice, as well as in mice lacking TNFR1 (tumor necrosis factor receptor 1). TLR2 deficiency also affected microglial proliferative expansion, whereas all of these events were unaffected in TLR4......-mutant mice. Consistent with the fact that responses in knock-out mice had all returned to wild-type levels by 8 d, there was no evidence for effects on neuronal plasticity at 20 d. These results identify a role for TLR2 signaling in the early glial response to brain injury, acting as an innate bridge...

  18. Studying cerebral hemodynamics and metabolism using simultaneous near-infrared spectroscopy and transcranial Doppler ultrasound: a hyperventilation and caffeine study

    Science.gov (United States)

    Yang, Runze; Brugniaux, Julien; Dhaliwal, Harinder; Beaudin, Andrew E; Eliasziw, Misha; Poulin, Marc J; Dunn, Jeff F

    2015-01-01

    Caffeine is one of the most widely consumed psycho-stimulants in the world, yet little is known about its effects on brain oxygenation and metabolism. Using a double-blind, placebo-controlled, randomized cross-over study design, we combined transcranial Doppler ultrasound (TCD) and near-infrared spectroscopy (NIRS) to study caffeine's effect on middle cerebral artery peak blood flow velocity (Vp), brain tissue oxygenation (StO2), total hemoglobin (tHb), and cerebral oxygen metabolism (CMRO2) in five subjects. Hyperventilation-induced hypocapnia served as a control to verify the sensitivity of our measurements. During hypocapnia (∼16 mmHg below resting values), Vp decreased by 40.0 ± 2.4% (95% CI, P < 0.001), while StO2 and tHb decreased by 2.9 ± 0.3% and 2.6 ± 0.4%, respectively (P = 0.003 and P = 0.002, respectively). CMRO2, calculated using the Fick equation, was reduced by 29.3 ± 9% compared to the isocapnic-euoxia baseline (P < 0.001). In the pharmacological experiments, there was a significant decrease in Vp, StO2, and tHb after ingestion of 200 mg of caffeine compared with placebo. There was no significant difference in CMRO2 between caffeine and placebo. Both showed a CMRO2 decline compared to baseline showing the importance of a placebo control. In conclusion, this study showed that profound hypocapnia impairs cerebral oxidative metabolism. We provide new insight into the effects of caffeine on cerebral hemodynamics. Moreover, this study showed that multimodal NIRS/TCD is an excellent tool for studying brain hemodynamic responses to pharmacological interventions and physiological challenges. PMID:25907789

  19. Optical tomography of the neonatal brain

    Energy Technology Data Exchange (ETDEWEB)

    Hebden, Jeremy C. [University College London, Department of Medical Physics and Bioengineering, London (United Kingdom); Austin, Topun [University College London, Department of Paediatrics and Child Health, London (United Kingdom)

    2007-11-15

    A new method of assessing neurological function and pathology in the newborn infant is being developed based on the transmission of near-infrared light across the brain. Absorption by blood over a range of wavelengths reveals a strong dependency on oxygenation status, and measurements of transmitted light enable the spatial variation in the concentrations of the oxygenated and de-oxygenated forms of hemoglobin to be derived. Optical tomography has so far provided static three-dimensional maps of blood volume and oxygenation as well as dynamic images revealing the brain's response to sensory stimulation and global hemodynamic changes. The imaging modality is being developed as a safe and non-invasive tool that can be utilized at the cotside in intensive care. Optical tomography of the healthy infant brain is also providing a means of studying neurophysiological processes during early development and the potential consequences of prematurity. (orig.)

  20. Traumatic brain injury: pathophysiology for neurocritical care.

    Science.gov (United States)

    Kinoshita, Kosaku

    2016-01-01

    Severe cases of traumatic brain injury (TBI) require neurocritical care, the goal being to stabilize hemodynamics and systemic oxygenation to prevent secondary brain injury. It is reported that approximately 45 % of dysoxygenation episodes during critical care have both extracranial and intracranial causes, such as intracranial hypertension and brain edema. For this reason, neurocritical care is incomplete if it only focuses on prevention of increased intracranial pressure (ICP) or decreased cerebral perfusion pressure (CPP). Arterial hypotension is a major risk factor for secondary brain injury, but hypertension with a loss of autoregulation response or excess hyperventilation to reduce ICP can also result in a critical condition in the brain and is associated with a poor outcome after TBI. Moreover, brain injury itself stimulates systemic inflammation, leading to increased permeability of the blood-brain barrier, exacerbated by secondary brain injury and resulting in increased ICP. Indeed, systemic inflammatory response syndrome after TBI reflects the extent of tissue damage at onset and predicts further tissue disruption, producing a worsening clinical condition and ultimately a poor outcome. Elevation of blood catecholamine levels after severe brain damage has been reported to contribute to the regulation of the cytokine network, but this phenomenon is a systemic protective response against systemic insults. Catecholamines are directly involved in the regulation of cytokines, and elevated levels appear to influence the immune system during stress. Medical complications are the leading cause of late morbidity and mortality in many types of brain damage. Neurocritical care after severe TBI has therefore been refined to focus not only on secondary brain injury but also on systemic organ damage after excitation of sympathetic nerves following a stress reaction.

  1. Influence of probe flexibility and gelatin embedding on neuronal density and glial responses to brain implants.

    Directory of Open Access Journals (Sweden)

    Per Köhler

    Full Text Available To develop long-term high quality communication between brain and computer, a key issue is how to reduce the adverse foreign body responses. Here, the impact of probe flexibility and gelatine embedding on long-term (6w tissue responses, was analyzed. Probes of same polymer material, size and shape, flexible mainly in one direction, were implanted in rat cerebral cortex (nimplants = 3 x 8 in two orientations with respect to the major movement direction of the brain relative to the skull: parallel to (flex mode or transverse to (rigid mode. Flex mode implants were either embedded in gelatin or non-embedded. Neurons, activated microglia and astrocytes were visualized using immunohistochemistry. The astrocytic reactivity, but not microglial response, was significantly lower to probes implanted in flex mode as compared to rigid mode. The microglial response, but not astrocytic reactivity, was significantly smaller to gelatin embedded probes (flex mode than non-embedded. Interestingly, the neuronal density was preserved in the inner zone surrounding gelatin embedded probes. This contrasts to the common reports of reduced neuronal density close to implanted probes. In conclusion, sheer stress appears to be an important factor for astrocytic reactivity to implanted probes. Moreover, gelatin embedding can improve the neuronal density and reduce the microglial response close to the probe.

  2. SU-E-QI-12: Morphometry Based Measurements of the Structural Response to Whole Brain Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, D; Castillo, R; Castillo, E; Guerrero, T [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: Although state of the art radiation therapy techniques for treating intracranial malignancies have eliminated acute brain injury, cognitive impairment occurs in 50–90% of patients who survive >6mo post irradiation. Quantitative characterization of therapy response is needed to facilitate therapeutic strategies to minimize radiation induced cognitive impairment [1]. Deformation based morphometry techniques [2, 3] are presented as a quantitative imaging biomarker of therapy response in patients receiving whole brain radiation for treating medulloblastoma. Methods: Post-irradiation magnetic resonance imaging (MRI) data sets were retrospectively analyzed in N=15 patients, >60 MR image datasets. As seen in Fig 1(a), volume changes at multiple time points post-irradiation were quantitatively measured in the cerebrum and ventricles with respect to pre-irradiation MRI. A high resolution image Template, was registered to the pre-irradiation MRI of each patient to create a brain atlas for the cerebrum, cerebellum, and ventricles. Skull stripped images for each patient were registered to the initial pre-treatment scan. Average volume changes in the labeled regions were measured using the determinant of the displacement field Jacobian. Results: Longitudinal measurements, Fig 1(b-c), show a negative correlation p=.06, of the cerebral volume change with the time interval from irradiation. A corresponding positive correlation, p=.01, between ventricular volume change and time interval from irradiation is seen. One sample t-test for correlations were computed using a Spearman method. An average decrease in cerebral volume, p=.08, and increase in ventricular volume, p<.001, was observed. The radiation dose was seen directly proportional to the induced volume changes in the cerebrum, r=−.44, p<.001, Fig 1(d). Conclusion: Results indicate that morphometric monitoring of brain tissue volume changes may potentially be used to quantitatively assess toxicity and response to

  3. Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise.

    Directory of Open Access Journals (Sweden)

    Christos I Ioannou

    Full Text Available The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB. The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies.

  4. Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise

    Science.gov (United States)

    Ioannou, Christos I.; Pereda, Ernesto; Lindsen, Job P.; Bhattacharya, Joydeep

    2015-01-01

    The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min) of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha) binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies. PMID:26065708

  5. Use of frontal lobe hemodynamics as reinforcement signals to an adaptive controller.

    Directory of Open Access Journals (Sweden)

    Marcello M DiStasio

    Full Text Available Decision-making ability in the frontal lobe (among other brain structures relies on the assignment of value to states of the animal and its environment. Then higher valued states can be pursued and lower (or negative valued states avoided. The same principle forms the basis for computational reinforcement learning controllers, which have been fruitfully applied both as models of value estimation in the brain, and as artificial controllers in their own right. This work shows how state desirability signals decoded from frontal lobe hemodynamics, as measured with near-infrared spectroscopy (NIRS, can be applied as reinforcers to an adaptable artificial learning agent in order to guide its acquisition of skills. A set of experiments carried out on an alert macaque demonstrate that both oxy- and deoxyhemoglobin concentrations in the frontal lobe show differences in response to both primarily and secondarily desirable (versus undesirable stimuli. This difference allows a NIRS signal classifier to serve successfully as a reinforcer for an adaptive controller performing a virtual tool-retrieval task. The agent's adaptability allows its performance to exceed the limits of the NIRS classifier decoding accuracy. We also show that decoding state desirabilities is more accurate when using relative concentrations of both oxyhemoglobin and deoxyhemoglobin, rather than either species alone.

  6. Research of brain activation regions of "yes" and "no" responses by auditory stimulations in human EEG

    Science.gov (United States)

    Hu, Min; Liu, GuoZhong

    2011-11-01

    People with neuromuscular disorders are difficult to communicate with the outside world. It is very important to the clinician and the patient's family that how to distinguish vegetative state (VS) and minimally conscious state (MCS) for a disorders of consciousness (DOC) patient. If a patient is diagnosed with VS, this means that the hope of recovery is greatly reduced, thus leading to the family to abandon the treatment. Brain-computer interface (BCI) is aiming to help those people by analyzing patients' electroencephalogram (EEG). This paper focus on analyzing the corresponding activated regions of the brain when a subject responses "yes" or "no" to an auditory stimuli question. When the brain concentrates, the phase of the related area will become orderly from desultorily. So in this paper we analyzed EEG from the angle of phase. Seven healthy subjects volunteered to participate in the experiment. A total of 84 groups of repeatability stimulation test were done. Firstly, the frequency is fragmented by using wavelet method. Secondly, the phase of EEG is extracted by Hilbert. At last, we obtained approximate entropy and information entropy of each frequency band of EEG. The results show that brain areas are activated of the central area when people say "yes", and the areas are activated of the central area and temporal when people say "no". This conclusion is corresponding to magnetic resonance imaging technology. This study provides the theory basis and the algorithm design basis for designing BCI equipment for people with neuromuscular disorders.

  7. Comparison of immune responses to attenuated rabies virus and street virus in mouse brain.

    Science.gov (United States)

    Miao, Fa-Ming; Zhang, Shou-Feng; Wang, Shu-Chao; Liu, Ye; Zhang, Fei; Hu, Rong-Liang

    2017-01-01

    Rabies is a lethal neurological disease caused by the neurotropic rabies virus (RABV). To investigate the innate immune response in the brain during rabies infection, key gene transcripts indicative of innate immunity in a mouse model system were measured using real-time RT-PCR. Mice were infected via the intracerebral or intramuscular route with either attenuated rabies virus (SRV9) or pathogenic rabies virus (BD06). Infection with SRV9 resulted in the early detection of viral replication and the rapid induction of innate immune response gene expression in the brain. BD06 infection elicited innate immune response gene expression during only the late stage of infection. We measured Na-fluorescein uptake to assess blood-brain barrier (BBB) permeability, which was enhanced during the early stage of SRV9 infection and significantly enhanced during the late stage of BD06 infection. Furthermore, early SRV9 replication increased the maturation and differentiation of dendritic cells (DCs) and B cells in the inguinal lymph nodes and initiated the generation of virus-neutralizing antibodies (VNAs), which cooperate with the innate immune response to eliminate virus from the CNS. However, BD06 infection did not stimulate VNA production; thus, the virus was able to evade the host immune response and cause encephalitis. The rabies virus phosphoprotein has been reported to counteract IFN activation. In an in vitro study of the relationship between IFN antagonism and RABV pathogenicity, we demonstrated that SRV9 more strongly antagonized IFN activity than did BD06. Therefore, there is no positive relationship between the IFN antagonist activity of the virus and its pathogenicity.

  8. Transcriptomic responses in mouse brain exposed to chronic excess of the neurotransmitter glutamate

    Directory of Open Access Journals (Sweden)

    Pal Ranu

    2010-06-01

    Full Text Available Abstract Background Increases during aging in extracellular levels of glutamate (Glu, the major excitatory neurotransmitter in the brain, may be linked to chronic neurodegenerative diseases. Little is known about the molecular responses of neurons to chronic, moderate increases in Glu levels. Genome-wide gene expression in brain hippocampus was examined in a unique transgenic (Tg mouse model that exhibits moderate Glu hyperactivity throughout the lifespan, the neuronal Glutamate dehydrogenase (Glud1 mouse, and littermate 9 month-old wild type mice. Results Integrated bioinformatic analyses on transcriptomic data were used to identify bio-functions, pathways and gene networks underlying neuronal responses to increased Glu synaptic release. Bio-functions and pathways up-regulated in Tg mice were those associated with oxidative stress, cell injury, inflammation, nervous system development, neuronal growth, and synaptic transmission. Increased gene expression in these functions and pathways indicated apparent compensatory responses offering protection against stress, promoting growth of neuronal processes (neurites and re-establishment of synapses. The transcription of a key gene in the neurite growth network, the kinase Ptk2b, was significantly up-regulated in Tg mice as was the activated (phosphorylated form of the protein. In addition to genes related to neurite growth and synaptic development, those associated with neuronal vesicle trafficking in the Huntington's disease signalling pathway, were also up-regulated. Conclusions This is the first study attempting to define neuronal gene expression patterns in response to chronic, endogenous Glu hyperactivity at brain synapses. The patterns observed were characterized by a combination of responses to stress and stimulation of nerve growth, intracellular transport and recovery.

  9. Branding and a child's brain: an fMRI study of neural responses to logos.

    Science.gov (United States)

    Bruce, Amanda S; Bruce, Jared M; Black, William R; Lepping, Rebecca J; Henry, Janice M; Cherry, Joseph Bradley C; Martin, Laura E; Papa, Vlad B; Davis, Ann M; Brooks, William M; Savage, Cary R

    2014-01-01

    Branding and advertising have a powerful effect on both familiarity and preference for products, yet no neuroimaging studies have examined neural response to logos in children. Food advertising is particularly pervasive and effective in manipulating choices in children. The purpose of this study was to examine how healthy children's brains respond to common food and other logos. A pilot validation study was first conducted with 32 children to select the most culturally familiar logos, and to match food and non-food logos on valence and intensity. A new sample of 17 healthy weight children were then scanned using functional magnetic resonance imaging. Food logos compared to baseline were associated with increased activation in orbitofrontal cortex and inferior prefrontal cortex. Compared to non-food logos, food logos elicited increased activation in posterior cingulate cortex. Results confirmed that food logos activate some brain regions in children known to be associated with motivation. This marks the first study in children to examine brain responses to culturally familiar logos. Considering the pervasiveness of advertising, research should further investigate how children respond at the neural level to marketing.

  10. Noninvasive optical evaluation of low frequency oscillations in prefrontal cortex hemodynamics during verbal working memory

    Science.gov (United States)

    Li, Ting; Zhao, Yue; Li, Kai; Sun, Yunlong

    2014-03-01

    The low frequency oscillation (LFO) around 0.1 Hz has been observed recently in cerebral hemodynamic signals during rest/sleep, enhanced breathing, and head- up-tilting, showing that cerebral autoregulation can be accessed by LFOs. However, many brain function researches require direct measurement of LFOs during specified brain function activities. This pilot study explored using near-infrared spectroscopy/imaging (NIRS) to noninvasively and simultaneously detect LFOs of prefrontal cerebral hemodynamics (i.e., oxygenated/deoxygenated/total hemoglobin concentration: △[oxy-Hb]/ △[deoxy-Hb]/ △[tot-Hb]) during N-back visual verbal working memory task. The LFOs were extracted from the measured variables using power spectral analysis. We found the brain activation sites struck clear LFOs while other sites did not. The LFO of △[deoxy-Hb] acted as a negative pike and ranged in (0.05, 0.1) Hz, while LFOs of △[oxy-Hb] and △[tot-Hb] acted as a positive pike and ranged in (0.1, 0.15) Hz. The amplitude difference and frequency lag between △[deoxy-Hb] and △[oxy-Hb]/ △[tot-Hb] produced a more focused and sensitive activation map compare to hemodynamic amplitude-quantified activation maps. This study observed LFOs in brain activities and showed strong potential of LFOs in accessing brain functions.

  11. Hemodynamic Monitorization of the Burn Patient

    OpenAIRE

    Ahmet Coşar; Burak Eşkin

    2011-01-01

    Hemodynamic monitorization is the basic component of the medical care of the burn patients. It provides valuable information of the cardiopulmonary performance which is essential in the rapid diagnosis and treatment in the case of hemodynamic disturbance. The clinical importance of any monitorization parameter, associated risks – benefits, cost effectivity, and also assessment and management skills of the health care providers should be taken into consideration in the selection process of ...

  12. Repeated diffusion MRI reveals earliest time point for stratification of radiotherapy response in brain metastases

    Science.gov (United States)

    Mahmood, Faisal; Johannesen, Helle H.; Geertsen, Poul; Hansen, Rasmus H.

    2017-04-01

    An imaging biomarker for early prediction of treatment response potentially provides a non-invasive tool for better prognostics and individualized management of the disease. Radiotherapy (RT) response is generally related to changes in gross tumor volume manifesting months later. In this prospective study we investigated the apparent diffusion coefficient (ADC), perfusion fraction and pseudo diffusion coefficient derived from diffusion weighted MRI as potential early biomarkers for radiotherapy response of brain metastases. It was a particular aim to assess the optimal time point for acquiring the DW-MRI scan during the course of treatment, since to our knowledge this important question has not been addressed directly in previous studies. Twenty-nine metastases (N  =  29) from twenty-one patients, treated with whole-brain fractionated external beam RT were analyzed. Patients were scanned with a 1 T MRI system to acquire DW-, T2*W-, T2W- and T1W scans, before start of RT, at each fraction and at follow up two to three months after RT. The DW-MRI parameters were derived using regions of interest based on high b-value images (b  =  800 s mm-2). Both volumetric and RECIST criteria were applied for response evaluation. It was found that in non-responding metastases the mean ADC decreased and in responding metastases it increased. The volume based response proved to be far more consistently predictable by the ADC change found at fraction number 7 and later, compared to the linear response (RECIST). The perfusion fraction and pseudo diffusion coefficient did not show sufficient prognostic value with either response assessment criteria. In conclusion this study shows that the ADC derived using high b-values may be a reliable biomarker for early assessment of radiotherapy response for brain metastases patients. The earliest response stratification can be achieved using two DW-MRI scans, one pre-treatment and one at treatment day 7-9 (equivalent to 21 Gy).

  13. Dynamic metabolic response to multiple spreading depolarizations in patients with acute brain injury: an online microdialysis study

    DEFF Research Database (Denmark)

    Feuerstein, Delphine; Manning, Andrew; Hashemi, Parastoo

    2010-01-01

    Spreading depolarizations (SDs) occur spontaneously with high incidence in patients with acute brain injury. They can be detected by subdural electrocorticographic recordings. We here characterize the dynamic metabolic response to these events. A microdialysis catheter was inserted into perilesio...