WorldWideScience

Sample records for brain gene expression

  1. Effects of environmental enrichment on gene expression in the brain

    OpenAIRE

    Rampon, Claire; Jiang, Cecilia H.; Dong, Helin; Tang, Ya-Ping; Lockhart, David J; Schultz, Peter G.; Joe Z Tsien; Hu, Yinghe

    2000-01-01

    An enriched environment is known to promote structural changes in the brain and to enhance learning and memory performance in rodents [Hebb, D. O. (1947) Am. Psychol. 2, 306–307]. To better understand the molecular mechanisms underlying these experience-dependent cognitive changes, we have used high-density oligonucleotide microarrays to analyze gene expression in the brain. Expression of a large number of genes changes in response to enrichment training, many of w...

  2. Gene Expression Profiling during Pregnancy in Rat Brain Tissue.

    Science.gov (United States)

    Mann, Phyllis E

    2014-03-04

    The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases "expectant brain" and "maternal brain". Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH) during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array) was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1) whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated.

  3. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  4. Expression of Alzheimer's disease risk genes in ischemic brain degeneration.

    Science.gov (United States)

    Ułamek-Kozioł, Marzena; Pluta, Ryszard; Januszewski, Sławomir; Kocki, Janusz; Bogucka-Kocka, Anna; Czuczwar, Stanisław J

    2016-12-01

    We review the Alzheimer-related expression of genes following brain ischemia as risk factors for late-onset of sporadic Alzheimer's disease and their role in Alzheimer's disease ischemia-reperfusion pathogenesis. More recent advances in understanding ischemic etiology of Alzheimer's disease have revealed dysregulation of Alzheimer-associated genes including amyloid protein precursor, β-secretase, presenilin 1 and 2, autophagy, mitophagy and apoptosis. We review the relationship between these genes dysregulated by brain ischemia and the cellular and neuropathological characteristics of Alzheimer's disease. Here we summarize the latest studies supporting the theory that Alzheimer-related genes play an important role in ischemic brain injury and that ischemia is a needful and leading supplier to the onset and progression of sporadic Alzheimer's disease. Although the exact molecular mechanisms of ischemic dependent neurodegenerative disease and neuronal susceptibility finally are unknown, a downregulated expression of neuronal defense genes like alfa-secretase in the ischemic brain makes the neurons less able to resist injury. The recent challenge is to find ways to raise the adaptive reserve of the brain to overcome such ischemic-associated deficits and support and/or promote neuronal survival. Understanding the mechanisms underlying the association of these genes with risk for Alzheimer's disease will provide the most meaningful targets for therapeutic development to date.

  5. Gene Expression Profiling during Pregnancy in Rat Brain Tissue

    Directory of Open Access Journals (Sweden)

    Phyllis E. Mann

    2014-03-01

    Full Text Available The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases “expectant brain” and “maternal brain”. Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1 whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated.

  6. Aging and Gene Expression in the Primate Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Khaitovich, Philipp; Plotkin, Joshua B.; Paabo, Svante; Eisen, Michael B.

    2005-02-18

    It is well established that gene expression levels in many organisms change during the aging process, and the advent of DNA microarrays has allowed genome-wide patterns of transcriptional changes associated with aging to be studied in both model organisms and various human tissues. Understanding the effects of aging on gene expression in the human brain is of particular interest, because of its relation to both normal and pathological neurodegeneration. Here we show that human cerebral cortex, human cerebellum, and chimpanzee cortex each undergo different patterns of age-related gene expression alterations. In humans, many more genes undergo consistent expression changes in the cortex than in the cerebellum; in chimpanzees, many genes change expression with age in cortex, but the pattern of changes in expression bears almost no resemblance to that of human cortex. These results demonstrate the diversity of aging patterns present within the human brain, as well as how rapidly genome-wide patterns of aging can evolve between species; they may also have implications for the oxidative free radical theory of aging, and help to improve our understanding of human neurodegenerative diseases.

  7. Brain Gene Expression Signatures From Cerebrospinal Fluid Exosome RNA Profiling

    Science.gov (United States)

    Zanello, S. B.; Stevens, B.; Calvillo, E.; Tang, R.; Gutierrez Flores, B.; Hu, L.; Skog, J.; Bershad, E.

    2016-01-01

    While the Visual Impairment and Intracranial Pressure (VIIP) syndrome observations have focused on ocular symptoms, spaceflight has been also associated with a number of other performance and neurologic signs, such as headaches, cognitive changes, vertigo, nausea, sleep/circadian disruption and mood alterations, which, albeit likely multifactorial, can also result from elevation of intracranial pressure (ICP). We therefore hypothesize that these various symptoms are caused by disturbances in the neurophysiology of the brain structures and are correlated with molecular markers in the cerebrospinal fluid (CSF) as indicators of neurophysiological changes. Exosomes are 30-200 nm microvesicles shed into all biofluids, including blood, urine, and CSF, carrying a highly rich source of intact protein and RNA cargo. Exosomes have been identified in human CSF, and their proteome and RNA pool is a potential new reservoir for biomarker discovery in neurological disorders. The purpose of this study is to investigate changes in brain gene expression via exosome analysis in patients suffering from ICP elevation of varied severity (idiopathic intracranial hypertension -IIH), a condition which shares some of the neuroophthalmological features of VIIP, as a first step toward obtaining evidence suggesting that cognitive function and ICP levels can be correlated with biomarkers in the CSF. Our preliminary work, reported last year, validated the exosomal technology applicable to CSF analysis and demonstrated that it was possible to obtain gene expression evidence of inflammation processes in traumatic brain injury patients. We are now recruiting patients with suspected IIH requiring lumbar puncture at Baylor College of Medicine. Both CSF (5 ml) and human plasma (10 ml) are being collected in order to compare the pattern of differentially expressed genes observed in CSF and in blood. Since blood is much more accessible than CSF, we would like to determine whether plasma biomarkers for

  8. Gene × Smoking Interactions on Human Brain Gene Expression: Finding Common Mechanisms in Adolescents and Adults

    Science.gov (United States)

    Wolock, Samuel L.; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.

    2013-01-01

    Background: Numerous studies have examined gene × environment interactions (G × E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here, we assessed G × E interactions using two publically available datasets…

  9. Rate of evolution in brain-expressed genes in humans and other primates.

    Directory of Open Access Journals (Sweden)

    Hurng-Yi Wang

    2007-02-01

    Full Text Available Brain-expressed genes are known to evolve slowly in mammals. Nevertheless, since brains of higher primates have evolved rapidly, one might expect acceleration in DNA sequence evolution in their brain-expressed genes. In this study, we carried out full-length cDNA sequencing on the brain transcriptome of an Old World monkey (OWM and then conducted three-way comparisons among (i mouse, OWM, and human, and (ii OWM, chimpanzee, and human. Although brain-expressed genes indeed appear to evolve more rapidly in species with more advanced brains (apes > OWM > mouse, a similar lineage effect is observable for most other genes. The broad inclusion of genes in the reference set to represent the genomic average is therefore critical to this type of analysis. Calibrated against the genomic average, the rate of evolution among brain-expressed genes is probably lower (or at most equal in humans than in chimpanzee and OWM. Interestingly, the trend of slow evolution in coding sequence is no less pronounced among brain-specific genes, vis-à-vis brain-expressed genes in general. The human brain may thus differ from those of our close relatives in two opposite directions: (i faster evolution in gene expression, and (ii a likely slowdown in the evolution of protein sequences. Possible explanations and hypotheses are discussed.

  10. EXPRESSION OF IL-13Ra2 GENE IN HUMAN BRAIN TUMORS

    Institute of Scientific and Technical Information of China (English)

    WU An-hua; TIE Xin-xin; WANG Yun-jie; YANG Guo-rui

    2005-01-01

    Objective: To investigate the expression of IL-13Ra2 gene in brain tumors. Methods: Seventy-nine human brain tumors were obtained from the department of Neurosurgery of China Medical University. Human IL-13Ra2 expression was evaluated by reverse transcriptase polymerase chain reaction and immunohistochemical analysis. Results: IL-13Ra2 gene was highly expressed in glioblastoma, medulloblastoma, malignant meningioma and benign meningioma. Conclusion:Human IL-13Ra2 gene is expressed in brain tumors in addition to gliomas, and our result indicates that the IL-13Ra2 gene promoter based gene therapy method can be used to treat brain tumors in addition to gliomas. Further studies involving larger numbers of samples are necessary to fully understand the expression profile of IL-13Ra2 gene in the brain tumors.

  11. Gene expression of ecdysteroid-regulated gene E74 of the honeybee in ovary and brain.

    Science.gov (United States)

    Paul, R K; Takeuchi, H; Matsuo, Y; Kubo, T

    2005-01-01

    To facilitate studies of hormonal control in the honeybee (Apis mellifera L.), a cDNA for a honeybee homologue of the ecdysteroid-regulated gene E74 (AmE74) was isolated and its expression was analysed. Northern blot analysis indicated strong expression in the adult queen abdomen, and no significant expression in the adult drone and worker abdomens. In situ hybridization demonstrated that this gene was expressed selectively in the ovary and gut in the queen abdomen. Furthermore, this gene was also expressed selectively in subsets of mushroom body interneurones in the brain of the adult worker bees. These findings suggest that AmE74 is involved in neural function as well as in reproduction in adult honeybees.

  12. Expression and relevant research of MGMT and XRCC1 gene in differentgrades of brain glioma and normal brain tissues

    Institute of Scientific and Technical Information of China (English)

    Ya-Fei Zhang

    2015-01-01

    Objective: To explore and analyze expression and relevant research of MGMT and XRCC1 gene in different grades of brain glioma and normal brain tissues. Methods: 52 cases of patients with brain glioma treated in our hospital from December 2013 to December 2014, and 50 cases of normal brain-tissue patients with intracranial hypertension were selected, and proceeding test to the surgical resection of brain tissue of the above patients to determine its MGMT and XRCC1 protein content, sequentially to record the expression of MGMT and XRCC1 of both groups. Grading of tumors to brain glioma after operation was carried out, and the expression of MGMT and XRCC1 gene in brain tissues of different patients was analyzed and compared;finally the contingency tables of X2 test was used to analyze the correlation of XRCC1and MGMT. Results:Positive rate of MGMT expression in normal brain tissue was 2%,while positive rate of MGMT expression in brain glioma was 46.2%,which was obviously higher than that in normal brain tissues (χ2=26.85, P0.05), which had no statistical significance. There were 12 cases of patients whose MGMT protein expression was positive and XRCC1 protein expression was positive; there were 18 cases of patients whose MGMT protein expression was negative and XRCC1 protein expression was negative. Contingency tables of X2 test was used to analyze the correlation of XRCC1 and MGMT, which indicated that the expression of XRCCI and MGMT in brain glioma had no correlation (r=0.9%, P=0.353), relevancy of both was r=0.9%. Conclusions: Positive rate of the expression of MGMT and XRCC1 in brain glioma was obviously higher than that in normal brain tissues, but the distribution of different grades of brain glioma had no obvious difference, and MGMT and XRCC1 expression had no obvious correlation, which needed further research.

  13. Cell cycle networks link gene expression dysregulation, mutation, and brain maldevelopment in autistic toddlers.

    Science.gov (United States)

    Pramparo, Tiziano; Lombardo, Michael V; Campbell, Kathleen; Barnes, Cynthia Carter; Marinero, Steven; Solso, Stephanie; Young, Julia; Mayo, Maisi; Dale, Anders; Ahrens-Barbeau, Clelia; Murray, Sarah S; Lopez, Linda; Lewis, Nathan; Pierce, Karen; Courchesne, Eric

    2015-12-14

    Genetic mechanisms underlying abnormal early neural development in toddlers with Autism Spectrum Disorder (ASD) remain uncertain due to the impossibility of direct brain gene expression measurement during critical periods of early development. Recent findings from a multi-tissue study demonstrated high expression of many of the same gene networks between blood and brain tissues, in particular with cell cycle functions. We explored relationships between blood gene expression and total brain volume (TBV) in 142 ASD and control male toddlers. In control toddlers, TBV variation significantly correlated with cell cycle and protein folding gene networks, potentially impacting neuron number and synapse development. In ASD toddlers, their correlations with brain size were lost as a result of considerable changes in network organization, while cell adhesion gene networks significantly correlated with TBV variation. Cell cycle networks detected in blood are highly preserved in the human brain and are upregulated during prenatal states of development. Overall, alterations were more pronounced in bigger brains. We identified 23 candidate genes for brain maldevelopment linked to 32 genes frequently mutated in ASD. The integrated network includes genes that are dysregulated in leukocyte and/or postmortem brain tissue of ASD subjects and belong to signaling pathways regulating cell cycle G1/S and G2/M phase transition. Finally, analyses of the CHD8 subnetwork and altered transcript levels from an independent study of CHD8 suppression further confirmed the central role of genes regulating neurogenesis and cell adhesion processes in ASD brain maldevelopment.

  14. Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain.

    Science.gov (United States)

    Chou, Shen-Ju; Wang, Chindi; Sintupisut, Nardnisa; Niou, Zhen-Xian; Lin, Chih-Hsu; Li, Ker-Chau; Yeang, Chen-Hsiang

    2016-01-20

    Allen Brain Atlas (ABA) provides a valuable resource of spatial/temporal gene expressions in mammalian brains. Despite rich information extracted from this database, current analyses suffer from several limitations. First, most studies are either gene-centric or region-centric, thus are inadequate to capture the superposition of multiple spatial-temporal patterns. Second, standard tools of expression analysis such as matrix factorization can capture those patterns but do not explicitly incorporate spatial dependency. To overcome those limitations, we proposed a computational method to detect recurrent patterns in the spatial-temporal gene expression data of developing mouse brains. We demonstrated that regional distinction in brain development could be revealed by localized gene expression patterns. The patterns expressed in the forebrain, medullary and pontomedullary, and basal ganglia are enriched with genes involved in forebrain development, locomotory behavior, and dopamine metabolism respectively. In addition, the timing of global gene expression patterns reflects the general trends of molecular events in mouse brain development. Furthermore, we validated functional implications of the inferred patterns by showing genes sharing similar spatial-temporal expression patterns with Lhx2 exhibited differential expression in the embryonic forebrains of Lhx2 mutant mice. These analysis outcomes confirm the utility of recurrent expression patterns in studying brain development.

  15. Molecular Imaging of Gene Expression and Efficacy following Adenoviral-Mediated Brain Tumor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2002-01-01

    Full Text Available Cancer gene therapy is an active area of research relying upon the transfer and subsequent expression of a therapeutic transgene into tumor cells in order to provide for therapeutic selectivity. Noninvasive assessment of therapeutic response and correlation of the location, magnitude, and duration of transgene expression in vivo would be particularly useful in the development of cancer gene therapy protocols by facilitating optimization of gene transfer protocols, vector development, and prodrug dosing schedules. In this study, we developed an adenoviral vector containing both the therapeutic transgene yeast cytosine deaminase (yCD along with an optical reporter gene (luciferase. Following intratumoral injection of the vector into orthotopic 9L gliomas, anatomical and diffusion-weighted MR images were obtained over time in order to provide for quantitative assessment of overall therapeutic efficacy and spatial heterogeneity of cell kill, respectively. In addition, bioluminescence images were acquired to assess the duration and magnitude of gene expression. MR images revealed significant reduction in tumor growth rates associated with yCD/5-fluorocytosine (5FC gene therapy. Significant increases in mean tumor diffusion values were also observed during treatment with 5FC. Moreover, spatial heterogeneity in tumor diffusion changes were also observed revealing that diffusion magnetic resonance imaging could detect regional therapeutic effects due to the nonuniform delivery and/or expression of the therapeutic yCD transgene within the tumor mass. In addition, in vivo bioluminescence imaging detected luciferase gene expression, which was found to decrease over time during administration of the prodrug providing a noninvasive surrogate marker for monitoring gene expression. These results demonstrate the efficacy of the yCD/5FC strategy for the treatment of brain tumors and reveal the feasibility of using multimodality molecular and functional imaging

  16. Gene expression profiles in rat brain disclose CNS signature genes and regional patterns of functional specialisation

    Directory of Open Access Journals (Sweden)

    Breilid Harald

    2007-04-01

    Full Text Available Abstract Background The mammalian brain is divided into distinct regions with structural and neurophysiological differences. As a result, gene expression is likely to vary between regions in relation to their cellular composition and neuronal function. In order to improve our knowledge and understanding of regional patterns of gene expression in the CNS, we have generated a global map of gene expression in selected regions of the adult rat brain (frontomedial-, temporal- and occipital cortex, hippocampus, striatum and cerebellum; both right and left sides as well as in three major non-neural tissues (spleen, liver and kidney using the Applied Biosystems Rat Genome Survey Microarray. Results By unsupervised hierarchical clustering, we found that the transcriptome within a region was highly conserved among individual rats and that there were no systematic differences between the two hemispheres (right versus left side. Further, we identified distinct sets of genes showing significant regional enrichment. Functional annotation of each of these gene sets clearly reflected several important physiological features of the region in question, including synaptic transmission within the cortex, neurogenesis in hippocampus and G-protein-mediated signalling in striatum. In addition, we were able to reveal potentially new regional features, such as mRNA transcription- and neurogenesis-annotated activities in cerebellum and differential use of glutamate signalling between regions. Finally, we determined a set of 'CNS-signature' genes that uncover characteristics of several common neuronal processes in the CNS, with marked over-representation of specific features of synaptic transmission, ion transport and cell communication, as well as numerous novel unclassified genes. Conclusion We have generated a global map of gene expression in the rat brain and used this to determine functional processes and pathways that have a regional preference or ubiquitous

  17. Allen Brain Atlas-Driven Visualizations: A Web-Based Gene Expression Energy Visualization Tool

    Directory of Open Access Journals (Sweden)

    Andrew eZaldivar

    2014-05-01

    Full Text Available The Allen Brain Atlas-Driven Visualizations (ABADV is a publicly accessible web-based tool created to retrieve and visualize expression energy data from the Allen Brain Atlas (ABA across multiple genes and brain structures. Though the ABA offers their own search engine and software for researchers to view their growing collection of online public data sets, including extensive gene expression and neuroanatomical data from human and mouse brain, many of their tools limit the amount of genes and brain structures researchers can view at once. To complement their work, ABADV generates multiple pie charts, bar charts and heat maps of expression energy values for any given set of genes and brain structures. Such a suite of free and easy-to-understand visualizations allows for easy comparison of gene expression across multiple brain areas. In addition, each visualization links back to the ABA so researchers may view a summary of the experimental detail. ABADV is currently supported on modern web browsers and is compatible with expression energy data from the Allen Mouse Brain Atlas in situ hybridization data. By creating this web application, researchers can immediately obtain and survey numerous amounts of expression energy data from the ABA, which they can then use to supplement their work or perform meta-analysis. In the future, we hope to enable ABADV across multiple data resources.

  18. Gene expression in the rodent brain is associated with its regional connectivity.

    Science.gov (United States)

    Wolf, Lior; Goldberg, Chen; Manor, Nathan; Sharan, Roded; Ruppin, Eytan

    2011-05-01

    The putative link between gene expression of brain regions and their neural connectivity patterns is a fundamental question in neuroscience. Here this question is addressed in the first large scale study of a prototypical mammalian rodent brain, using a combination of rat brain regional connectivity data with gene expression of the mouse brain. Remarkably, even though this study uses data from two different rodent species (due to the data limitations), we still find that the connectivity of the majority of brain regions is highly predictable from their gene expression levels-the outgoing (incoming) connectivity is successfully predicted for 73% (56%) of brain regions, with an overall fairly marked accuracy level of 0.79 (0.83). Many genes are found to play a part in predicting both the incoming and outgoing connectivity (241 out of the 500 top selected genes, p-valueregional connectivity in the rodent is significantly correlated with the annotation profile of genes previously found to determine neural connectivity in C. elegans (Pearson correlation of 0.24, p<1e-6 for the outgoing connections and 0.27, p<1e-5 for the incoming). Overall, the association between connectivity and gene expression in a specific extant rodent species' brain is likely to be even stronger than found here, given the limitations of current data.

  19. Detecting positive darwinian selection in brain-expressed genes during human evolution

    Institute of Scientific and Technical Information of China (English)

    QI XueBin; Alice A. LIN; Luca L. CAVALLI-SFORZA; WANG Jun; SU Bing; YANG Su; ZHENG HongKun; WANG YinQiu; LIAO ChengHong; LIU Ying; CHEN XiaoHua; SHI Hong; YU XiaoJing

    2007-01-01

    To understand the genetic basis that underlies the phenotypic divergence between human and nonhuman primates, we screened a total of 7176 protein-coding genes expressed in the human brain and compared them with the chimpanzee orthologs to identify genes that show evidence of rapid evolution in the human lineage. Our results showed that the nonsynonymous/synonymous substitution (Ka/Ks) ratio for genes expressed in the brain of human and chimpanzee is 0.3854, suggesting that the brain-expressed genes are under functional constraint. The X-linked human brain-expressed genes evolved more rapidly than autosomal ones. We further dissected the molecular evolutionary patterns of 34 candidate genes by sequencing representative primate species to identify lineage-specific adaptive evolution. Fifteen out of the 34 candidate genes showed evidence of positive Darwinian selection in human and/or chimpanzee lineages. These genes are predicted to play diverse functional roles in embryonic development, spermatogenesis and male fertility, signal transduction, sensory nociception, and neural function. This study together with others demonstrated the usefulness and power of phylogenetic comparison of multiple closely related species in detecting lineage-specific adaptive evolution, and the identification of the positively selected brain-expressed genes may add new knowledge to the understanding of molecular mechanism of human origin.

  20. Expression of the homeobox genes OTX2 and OTX1 in the early developing human brain

    DEFF Research Database (Denmark)

    Larsen, Karen B; Lutterodt, Melissa C; Møllgård, Kjeld

    2010-01-01

    protein was found in the subcommissural organ, pineal gland, and cerebellum. The early expression of OTX2 and OTX1 in proliferative cell layers of the human fetal brain supports the concept that these homeobox genes are important in neuronal cell development and differentiation: OTX1 primarily...... of young neurons of the deeper cortical layers. We have studied the spatial and temporal expression of the two homeobox genes OTX2 and OTX1 in human fetal brains from 7 to 14 weeks postconception by in situ hybridization and immunohistochemistry. OTX2 was expressed in the diencephalon, mesencephalon...... in the neocortex, and OTX2 in the archicortex, diencephalon, rostral brain stem, and cerebellum....

  1. Differential gene expression in brain tissues of aggressive and non-aggressive dogs

    Directory of Open Access Journals (Sweden)

    Tverdal Aage

    2010-06-01

    Full Text Available Abstract Background Canine behavioural problems, in particular aggression, are important reasons for euthanasia of otherwise healthy dogs. Aggressive behaviour in dogs also represents an animal welfare problem and a public threat. Elucidating the genetic background of adverse behaviour can provide valuable information to breeding programs and aid the development of drugs aimed at treating undesirable behaviour. With the intentions of identifying gene-specific expression in particular brain parts and comparing brains of aggressive and non-aggressive dogs, we studied amygdala, frontal cortex, hypothalamus and parietal cortex, as these tissues are reported to be involved in emotional reactions, including aggression. Based on quantitative real-time PCR (qRT-PCR in 20 brains, obtained from 11 dogs euthanised because of aggressive behaviour and nine non-aggressive dogs, we studied expression of nine genes identified in an initial screening by subtraction hybridisation. Results This study describes differential expression of the UBE2V2 and ZNF227 genes in brains of aggressive and non-aggressive dogs. It also reports differential expression for eight of the studied genes across four different brain tissues (amygdala, frontal cortex, hypothalamus, and parietal cortex. Sex differences in transcription levels were detected for five of the nine studied genes. Conclusions The study showed significant differences in gene expression between brain compartments for most of the investigated genes. Increased expression of two genes was associated with the aggression phenotype. Although the UBE2V2 and ZNF227 genes have no known function in regulation of aggressive behaviour, this study contributes to preliminary data of differential gene expression in the canine brain and provides new information to be further explored.

  2. Gene expression in the rodent brain is associated with its regional connectivity.

    Directory of Open Access Journals (Sweden)

    Lior Wolf

    2011-05-01

    Full Text Available The putative link between gene expression of brain regions and their neural connectivity patterns is a fundamental question in neuroscience. Here this question is addressed in the first large scale study of a prototypical mammalian rodent brain, using a combination of rat brain regional connectivity data with gene expression of the mouse brain. Remarkably, even though this study uses data from two different rodent species (due to the data limitations, we still find that the connectivity of the majority of brain regions is highly predictable from their gene expression levels-the outgoing (incoming connectivity is successfully predicted for 73% (56% of brain regions, with an overall fairly marked accuracy level of 0.79 (0.83. Many genes are found to play a part in predicting both the incoming and outgoing connectivity (241 out of the 500 top selected genes, p-value<1e-5. Reassuringly, the genes previously known from the literature to be involved in axon guidance do carry significant information about regional brain connectivity. Surveying the genes known to be associated with the pathogenesis of several brain disorders, we find that those associated with schizophrenia, autism and attention deficit disorder are the most highly enriched in the connectivity-related genes identified here. Finally, we find that the profile of functional annotation groups that are associated with regional connectivity in the rodent is significantly correlated with the annotation profile of genes previously found to determine neural connectivity in C. elegans (Pearson correlation of 0.24, p<1e-6 for the outgoing connections and 0.27, p<1e-5 for the incoming. Overall, the association between connectivity and gene expression in a specific extant rodent species' brain is likely to be even stronger than found here, given the limitations of current data.

  3. Cholesterogenic genes expression in brain and liver of ganglioside-deficient mice.

    Science.gov (United States)

    Mlinac, Kristina; Fon Tacer, Klementina; Heffer, Marija; Rozman, Damjana; Bognar, Svjetlana Kalanj

    2012-10-01

    The aim of this study was to determine the effect of changed ganglioside profile on transcription of selected genes involved in cholesterol homeostasis. For that purpose, the expression of 11 genes related to cholesterol synthesis, regulation, and cholesterol transport was investigated in selected brain regions (frontal cortex, hippocampus, brain stem, cerebellum) and liver of St8sia1 knockout (KO) mice characterized by deficient synthesis of b- and c-series gangliosides and accumulation of a-series gangliosides. The expression of majority of the analyzed genes, as determined using quantitative real time PCR, was slightly higher in St8sia1 KO compared to wild-type (wt) controls. More prominent changes were observed in Hmgr, Cyp51, and Cyp46 expression in brain (hippocampus and brain stem) and Srebp1a, Insig2a, and Ldlr in liver. In addition, the expression of master transcriptional regulators, Srebp1a, Srebp1c, and Insig2a, as well as transporters Ldlr and Vldlr differed between liver and brain, and within brain regions in wt animals. Cyp46 expression was expectedly brain-specific, with brain region difference in both wt and St8sia1 KO. The established change in transcriptome of cholesterogenic genes is associated to specific alteration of ganglioside composition which indicates relationship between gangliosides and regulation of cholesterol metabolism.

  4. EST-based Analysis of Gene Expression in the Porcine Brain

    Institute of Scientific and Technical Information of China (English)

    Bing Zhang; Wu Jin; Yanwu Zeng; Zhixi Su; Songnian Hu; Jun Yu

    2004-01-01

    Since pig is an important livestock species worldwide, its gene expression has been investigated intensively, but rarely in brain. In order to study gene expression profiles in the pig central nervous system, we sequenced and analyzed 43,122 highquality 5′ end expressed sequence tags (ESTs) from porcine cerebellum, cortex cerebrum, and brain stem cDNA libraries, involving several different prenatal and postnatal developmental stages. The initial ESTs were assembled into 16,101 clusters and compared to protein and nucleic acid databases in GenBank. Of these sequences, 30.6% clusters matched protein databases and represented function known sequences; 75.1% had significant hits to nucleic acid databases and partial represented known function; 73.3% matched known porcine ESTs; and 21.5% had no matches to any known sequences in GenBank. We used the categories defined by the Gene Ontology to survey gene expression in the porcine brain.

  5. Effect of pharmacologic resuscitation on the brain gene expression profiles in a swine model of traumatic brain injury and hemorrhage

    DEFF Research Database (Denmark)

    Dekker, Simone E; Bambakidis, Ted; Sillesen, Martin

    2014-01-01

    BACKGROUND: We have previously shown that addition of valproic acid (VPA; a histone deacetylase inhibitor) to hetastarch (Hextend [HEX]) resuscitation significantly decreases lesion size in a swine model of traumatic brain injury (TBI) and hemorrhagic shock (HS). However, the precise mechanisms...... have not been well defined. As VPA is a transcriptional modulator, the aim of this study was to investigate its effect on brain gene expression profiles. METHODS: Swine were subjected to controlled TBI and HS (40% blood volume), kept in shock for 2 hours, and resuscitated with HEX or HEX + VPA (n = 5...... per group). Following 6 hours of observation, brain RNA was isolated, and gene expression profiles were measured using a Porcine Gene ST 1.1 microarray (Affymetrix, Santa Clara, CA). Pathway analysis was done using network analysis tools Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene...

  6. Stochastic fluctuations in gene expression in aging hippocampal neurons could be exacerbated by traumatic brain injury.

    Science.gov (United States)

    Shearer, Joseph; Boone, Deborah; Weisz, Harris; Jennings, Kristofer; Uchida, Tatsuo; Parsley, Margaret; DeWitt, Douglas; Prough, Donald; Hellmich, Helen

    2016-04-01

    Traumatic brain injury (TBI) is a risk factor for age-related dementia and development of neurodegenerative disorders such as Alzheimer's disease that are associated with cognitive decline. The exact mechanism for this risk is unknown but we hypothesized that TBI is exacerbating age-related changes in gene expression. Here, we present evidence in an animal model that experimental TBI increases age-related stochastic gene expression. We compared the variability in expression of several genes associated with cell survival or death, among three groups of laser capture microdissected hippocampal neurons from aging rat brains. TBI increased stochastic fluctuations in gene expression in both dying and surviving neurons compared to the naïve neurons. Increases in random, stochastic fluctuations in prosurvival or prodeath gene expression could potentially alter cell survival or cell death pathways in aging neurons after TBI which may lead to age-related cognitive decline.

  7. Gene expression changes in female zebrafish (Danio rerio) brain in response to acute exposure to methylmercury

    Science.gov (United States)

    Richter, Catherine A.; Garcia-Reyero, Natàlia; Martyniuk, Chris; Knoebl, Iris; Pope, Marie; Wright-Osment, Maureen K.; Denslow, Nancy D.; Tillitt, Donald E.

    2011-01-01

    Methylmercury (MeHg) is a potent neurotoxicant and endocrine disruptor that accumulates in aquatic systems. Previous studies have shown suppression of hormone levels in both male and female fish, suggesting effects on gonadotropin regulation in the brain. The gene expression profile in adult female zebrafish whole brain induced by acute (96 h) MeHg exposure was investigated. Fish were exposed by injection to 0 or 0.5(mu or u)g MeHg/g. Gene expression changes in the brain were examined using a 22,000-feature zebrafish microarray. At a significance level of pgenes were up-regulated and 76 genes were down-regulated in response to MeHg exposure. Individual genes exhibiting altered expression in response to MeHg exposure implicate effects on glutathione metabolism in the mechanism of MeHg neurotoxicity. Gene ontology (GO) terms significantly enriched among altered genes included protein folding, cell redox homeostasis, and steroid biosynthetic process. The most affected biological functions were related to nervous system development and function, as well as lipid metabolism and molecular transport. These results support the involvement of oxidative stress and effects on protein structure in the mechanism of action of MeHg in the female brain. Future studies will compare the gene expression profile induced in response to MeHg with that induced by other toxicants and will investigate responsive genes as potential biomarkers of MeHg exposure.

  8. Gene expression changes in the course of normal brain aging are sexually dimorphic.

    Science.gov (United States)

    Berchtold, Nicole C; Cribbs, David H; Coleman, Paul D; Rogers, Joseph; Head, Elizabeth; Kim, Ronald; Beach, Tom; Miller, Carol; Troncoso, Juan; Trojanowski, John Q; Zielke, H Ronald; Cotman, Carl W

    2008-10-07

    Gene expression profiles were assessed in the hippocampus, entorhinal cortex, superior-frontal gyrus, and postcentral gyrus across the lifespan of 55 cognitively intact individuals aged 20-99 years. Perspectives on global gene changes that are associated with brain aging emerged, revealing two overarching concepts. First, different regions of the forebrain exhibited substantially different gene profile changes with age. For example, comparing equally powered groups, 5,029 probe sets were significantly altered with age in the superior-frontal gyrus, compared with 1,110 in the entorhinal cortex. Prominent change occurred in the sixth to seventh decades across cortical regions, suggesting that this period is a critical transition point in brain aging, particularly in males. Second, clear gender differences in brain aging were evident, suggesting that the brain undergoes sexually dimorphic changes in gene expression not only in development but also in later life. Globally across all brain regions, males showed more gene change than females. Further, Gene Ontology analysis revealed that different categories of genes were predominantly affected in males vs. females. Notably, the male brain was characterized by global decreased catabolic and anabolic capacity with aging, with down-regulated genes heavily enriched in energy production and protein synthesis/transport categories. Increased immune activation was a prominent feature of aging in both sexes, with proportionally greater activation in the female brain. These data open opportunities to explore age-dependent changes in gene expression that set the balance between neurodegeneration and compensatory mechanisms in the brain and suggest that this balance is set differently in males and females, an intriguing idea.

  9. Regional differences in gene expression and promoter usage in aged human brains

    KAUST Repository

    Pardo, Luba M.

    2013-02-19

    To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites and to quantify the differences in gene expression across the 5 brain regions. We also analyzed the extent to which methylation influenced the observed expression profiles. We sequenced more than 71 million cap analysis of gene expression tags corresponding to 70,202 promoter regions and 16,888 genes. More than 7000 transcripts were differentially expressed, mainly because of differential alternative promoter usage. Unexpectedly, 7% of differentially expressed genes were neurodevelopmental transcription factors. Functional pathway analysis on the differentially expressed genes revealed an overrepresentation of several signaling pathways (e.g., fibroblast growth factor and wnt signaling) in hippocampus and striatum. We also found that although 73% of methylation signals mapped within genes, the influence of methylation on the expression profile was small. Our study underscores alternative promoter usage as an important mechanism for determining the regional differences in gene expression at old age.

  10. Brain stem global gene expression profiles in human spina bifida embryos

    Institute of Scientific and Technical Information of China (English)

    Hong Zhao; Xiang Li; Wan-I Lie; Quanren He; Ting Zhang; Xiaoying Zheng; Ran Zhou; Jun Xie

    2011-01-01

    Environmental and genetic factors influence the occurrence of neural tube defects, such as spina bifida.Specific disease expression patterns will help to elucidate the pathogenesis of disease.However, results obtained from animal models, which often exhibit organism specificity, do not fully explain the mechanisms of human spina bifida onset.In the present study, three embryos with a gestational age of approximately 17 weeks and a confirmed diagnosis of spina bifida, as well as 3 age-matched normal embryos, were obtained from abortions.Fetal brain stem tissues were dissected for RNA isolation, and microarray analyses were conducted to examine profiles of gene expression in brain stems of spina bifida and normal embryos using Affymetrix HG-U1 33A 2.0 GeneChip arrays.Of the 14 500 gene transcripts examined, a total of 182 genes exhibited at least 2.5-fold change in expression, including 140 upregulated and 42 downregulated genes.These genes were placed into 19 main functional categories according to the Gene Ontology Consortium database for biological functions.Of the 182 altered genes, approximately 50% were involved in cellular apoptosis, growth, adhesion, cell cycle, stress, DNA replication and repair, signal transduction, nervous system development, oxidoreduction, immune responses, and regulation of gene transcription.Gene expression in multiple biological pathways was altered in the brain stem of human spina bifida embryos.

  11. A comparison of brain gene expression levels in domesticated and wild animals.

    Directory of Open Access Journals (Sweden)

    Frank W Albert

    2012-09-01

    Full Text Available Domestication has led to similar changes in morphology and behavior in several animal species, raising the question whether similarities between different domestication events also exist at the molecular level. We used mRNA sequencing to analyze genome-wide gene expression patterns in brain frontal cortex in three pairs of domesticated and wild species (dogs and wolves, pigs and wild boars, and domesticated and wild rabbits. We compared the expression differences with those between domesticated guinea pigs and a distant wild relative (Cavia aperea as well as between two lines of rats selected for tameness or aggression towards humans. There were few gene expression differences between domesticated and wild dogs, pigs, and rabbits (30-75 genes (less than 1% of expressed genes were differentially expressed, while guinea pigs and C. aperea differed more strongly. Almost no overlap was found between the genes with differential expression in the different domestication events. In addition, joint analyses of all domesticated and wild samples provided only suggestive evidence for the existence of a small group of genes that changed their expression in a similar fashion in different domesticated species. The most extreme of these shared expression changes include up-regulation in domesticates of SOX6 and PROM1, two modulators of brain development. There was almost no overlap between gene expression in domesticated animals and the tame and aggressive rats. However, two of the genes with the strongest expression differences between the rats (DLL3 and DHDH were located in a genomic region associated with tameness and aggression, suggesting a role in influencing tameness. In summary, the majority of brain gene expression changes in domesticated animals are specific to the given domestication event, suggesting that the causative variants of behavioral domestication traits may likewise be different.

  12. Identification of a set of genes showing regionally enriched expression in the mouse brain

    Directory of Open Access Journals (Sweden)

    Marra Marco A

    2008-07-01

    Full Text Available Abstract Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters ( Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression.

  13. κMicroarray analysis of relative gene expression stability for selection of internal reference genes in the rhesus macaque brain

    Directory of Open Access Journals (Sweden)

    Urbanski Henryk F

    2010-06-01

    Full Text Available Abstract Background Normalization of gene expression data refers to the comparison of expression values using reference standards that are consistent across all conditions of an experiment. In PCR studies, genes designated as "housekeeping genes" have been used as internal reference genes under the assumption that their expression is stable and independent of experimental conditions. However, verification of this assumption is rarely performed. Here we assess the use of gene microarray analysis to facilitate selection of internal reference sequences with higher expression stability across experimental conditions than can be expected using traditional selection methods. We recently demonstrated that relative gene expression from qRT-PCR data normalized using GAPDH, ALG9 and RPL13A expression values mirrored relative expression using quantile normalization in Robust Multichip Analysis (RMA on the Affymetrix® GeneChip® rhesus Macaque Genome Array. Having shown that qRT-PCR and Affymetrix® GeneChip® data from the same hormone replacement therapy (HRT study yielded concordant results, we used quantile-normalized gene microarray data to identify the most stably expressed among probe sets for prospective internal reference genes across three brain regions from the HRT study and an additional study of normally menstruating rhesus macaques (cycle study. Gene selection was limited to 575 previously published human "housekeeping" genes. Twelve animals were used per study, and three brain regions were analyzed from each animal. Gene expression stabilities were determined using geNorm, NormFinder and BestKeeper software packages. Results Sequences co-annotated for ribosomal protein S27a (RPS27A, and ubiquitin were among the most stably expressed under all conditions and selection criteria used for both studies. Higher annotation quality on the human GeneChip® facilitated more targeted analysis than could be accomplished using the rhesus GeneChip®. In

  14. Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression.

    Directory of Open Access Journals (Sweden)

    Adolfo Sequeira

    Full Text Available BACKGROUND: Most studies investigating the neurobiology of depression and suicide have focused on the serotonergic system. While it seems clear that serotonergic alterations play a role in the pathogenesis of these major public health problems, dysfunction in additional neurotransmitter systems and other molecular alterations may also be implicated. Microarray expression studies are excellent screening tools to generate hypotheses about additional molecular processes that may be at play. In this study we investigated brain regions that are known to be implicated in the neurobiology of suicide and major depression are likely to represent valid global molecular alterations. METHODOLOGY/PRINCIPAL FINDINGS: We performed gene expression analysis using the HG-U133AB chipset in 17 cortical and subcortical brain regions from suicides with and without major depression and controls. Total mRNA for microarray analysis was obtained from 663 brain samples isolated from 39 male subjects, including 26 suicide cases and 13 controls diagnosed by means of psychological autopsies. Independent brain samples from 34 subjects and animal studies were used to control for the potential confounding effects of comorbidity with alcohol. Using a Gene Ontology analysis as our starting point, we identified molecular pathways that may be involved in depression and suicide, and performed follow-up analyses on these possible targets. Methodology included gene expression measures from microarrays, Gene Score Resampling for global ontological profiling, and semi-quantitative RT-PCR. We observed the highest number of suicide specific alterations in prefrontal cortical areas and hippocampus. Our results revealed alterations of synaptic neurotransmission and intracellular signaling. Among these, Glutamatergic (GLU and GABAergic related genes were globally altered. Semi-quantitative RT-PCR results investigating expression of GLU and GABA receptor subunit genes were consistent with

  15. Preliminary observation of genes specifically expressed in brain tissues during stroke-like episodes in rats

    Institute of Scientific and Technical Information of China (English)

    WANG Xian-mei; ZHAO Bin; ZHU Shan-jun; ZHU Zhi-ming; ZHANG Qian; HUI Ru-tai

    2001-01-01

    Objective: To observe the difference of gene expressions of brain tissues during apoplectic episodes and those of normal brain in Wistar rats in order to study the pathological mechanism of apoplexy. Methods: A rat model of hypertension was established with the administration of cold stimulus and high salt intake as the environmental risk factors.Apoplexy occurred in the rats because of hypertension. Suppression subtractive hybridization(SSH) was used to identify and analyze the differential genes specifically expressed in cerebral tissues of stoke group and control rats. Results: A total of 226 genes out of the 228 were usable and analyzed. The average length of the 226 genes was (286.6±120.3) bp with a range from 50 bp to 619 bp. And 126 clones out of the 226 showed a sequence with significant identity to the known genes; 78 clones demonstrated homogenous sequences to the existing ESTs ofdbEST, but no one of the 78 showed sequence with identity to that of known genes; and remaining 22 were novel transrcipts exhibiting no similarity to any known sequences. All the clones which were highly homogenous to the known genes were categorized on the basis of their function. It was found that 26.5% of the mitochodrial genes in brain tissues underwent changes after apoplexy and the changes showed a twofold relationship of cause and effect. Conclusion: Environmental factors are able to induce changes of gene expression, which may increase the sensitivity to apoplectic stroke.

  16. Sex-dependent gene expression in early brain development of chicken embryos

    Directory of Open Access Journals (Sweden)

    Stigson Michael

    2006-02-01

    Full Text Available Abstract Background Differentiation of the brain during development leads to sexually dimorphic adult reproductive behavior and other neural sex dimorphisms. Genetic mechanisms independent of steroid hormones produced by the gonads have recently been suggested to partly explain these dimorphisms. Results Using cDNA microarrays and real-time PCR we found gene expression differences between the male and female embryonic brain (or whole head that may be independent of morphological differentiation of the gonads. Genes located on the sex chromosomes (ZZ in males and ZW in females were common among the differentially expressed genes, several of which (WPKCI-8, HINT, MHM non-coding RNA have previously been implicated in avian sex determination. A majority of the identified genes were more highly expressed in males. Three of these genes (CDK7, CCNH and BTF2-P44 encode subunits of the transcription factor IIH complex, indicating a role for this complex in neuronal differentiation. Conclusion In conclusion, this study provides novel insights into sexually dimorphic gene expression in the embryonic chicken brain and its possible involvement in sex differentiation of the nervous system in birds.

  17. The impact of gene expression analysis on evolving views of avian brain organization.

    Science.gov (United States)

    Montiel, Juan F; Molnár, Zoltán

    2013-11-01

    Recent studies have presented data on adult and developing avian brain organization. Jarvis et al. ([2013] J Comp Neurol. 521:3614-3665) identify four pallial and two subpallial gene expression domains and demonstrate that the mesopallium and adjoining divisions of the hyperpallium (hyperpallium intercalatum and hyperpallium densocellulare), have very similar gene expression profiles to each other, distinct from those of the nidopallium, the arcopallium, and the more distant divisions of the hyperpallium (hyperpallium apicale). The study proposes an update of the current nomenclature (Jarvis et al. [2005] Nat Rev Neurosci. 6:151-159). The authors perform densitometric quantifications of the in situ expression of 50 selected genes, use correlations of distances between vectors that represent these gene expression patterns within the 23 avian brain regions of their study, and group them according to similarity in their expression profiles. The generated cluster tree further supports their argument for a new terminology. The authors hypothesize that the mesopallium and adjoining divisions of the hyperpallium have a common developmental origin, and in the accompanying paper (Chen et al. [2013] J Comp Neurol. 521:3666-3701) show that these structures/subdivisions initially form continuous gene expression domains. With subsequent development these domains fold into distinct subdivisions in the dorsal and ventral avian pallium, forming mirror images to each other. Jarvis et al. ([2013] J Comp Neurol. 521:3614-3665) also demonstrate interesting principles of the functional organization of the avian brain by showing that specific sensory stimulation or motor behavior elicits gene expression in functional units perpendicular to the axis of the gene expression reversal and compare their arrangements and cell types with mammalian cortical columns.

  18. Artificial selection on brain-expressed genes during the domestication of dog.

    Science.gov (United States)

    Li, Yan; Vonholdt, Bridgett M; Reynolds, Andy; Boyko, Adam R; Wayne, Robert K; Wu, Dong-Dong; Zhang, Ya-Ping

    2013-08-01

    Domesticated dogs have many unique behaviors not found in gray wolves that have augmented their interaction and communication with humans. The genetic basis of such unique behaviors in dogs remains poorly understood. We found that genes within regions highly differentiated between outbred Chinese native dogs (CNs) and wolves show high bias for expression localized to brain tissues, particularly the prefrontal cortex, a specific region responsible for complex cognitive behaviors. In contrast, candidate genes showing high population differentiation between CNs and German Shepherd dogs (GSs) did not demonstrate significant expression bias. These observations indicate that these candidate genes highly expressed in the brain have rapidly evolved. This rapid evolution was probably driven by artificial selection during the primary transition from wolves to ancient dogs and was consistent with the evolution of dog-specific characteristics, such as behavior transformation, for thousands of years.

  19. Lateralization of gene expression in the honeybee brain during olfactory learning

    Science.gov (United States)

    Guo, Yu; Wang, Zilong; Li, You; Wei, Guifeng; Yuan, Jiao; Sun, Yu; Wang, Huan; Qin, Qiuhong; Zeng, Zhijiang; Zhang, Shaowu; Chen, Runsheng

    2016-01-01

    In the last decade, it has been demonstrated that brain functional asymmetry occurs not only in vertebrates but also in invertebrates. However, the mechanisms underlying functional asymmetry remain unclear. In the present study, we trained honeybees of the same parentage and age, on the proboscis extension reflex (PER) paradigm with only one antenna in use. The comparisons of gene expression between the left and right hemispheres were carried out using high throughput sequencing. Our research revealed that gene expression in the honeybee brain is also asymmetric, with more genes having higher expression in the right hemisphere than the left hemisphere. Our studies show that during olfactory learning, the left hemisphere is more responsible for long term memory and the right hemisphere is more responsible for the learning and short term memory. PMID:27703214

  20. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India); Godbole, Madan M., E-mail: madangodbole@yahoo.co.in [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India)

    2010-07-02

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  1. Both 5' and 3' flanks regulate Zebrafish brain-derived neurotrophic factor gene expression

    Directory of Open Access Journals (Sweden)

    Heinrich Gerhard

    2004-05-01

    Full Text Available Abstract Background Precise control of developmental and cell-specific expression of the brain-derived neurotrophic factor (BDNF gene is essential for normal neuronal development and the diverse functions of BDNF in the adult organism. We previously showed that the zebrafish BDNF gene has multiple promoters. The complexity of the promoter structure and the mechanisms that mediate developmental and cell-specific expression are still incompletely understood. Results Comparison of pufferfish and zebrafish BDNF gene sequences as well as 5' RACE revealed three additional 5' exons and associated promoters. RT-PCR with exon-specific primers showed differential developmental and organ-specific expression. Two exons were detected in the embryo before transcription starts. Of the adult organs examined, the heart expressed a single 5' exon whereas the brain, liver and eyes expressed four of the seven 5' exons. Three of the seven 5' exons were not detectable by RT-PCR. Injection of promoter/GFP constructs into embryos revealed distinct expression patterns. The 3' flank profoundly affected expression in a position-dependent manner and a highly conserved sequence (HCS1 present in 5' exon 1c in a dehancer-like manner. Conclusions The zebrafish BDNF gene is as complex in its promoter structure and patterns of differential promoter expression as is its murine counterpart. The expression of two of the promoters appears to be regulated in a temporally and/or spatially highly circumscribed fashion. The 3' flank has a position-dependent effect on expression, either by affecting transcription termination or post-transcriptional steps. HCS1, a highly conserved sequence in 5' exon 1c, restricts expression to primary sensory neurons. The tools are now available for detailed genetic and molecular analyses of zebrafish BDNF gene expression.

  2. Species differences in brain gene expression profiles associated with adult behavioral maturation in honey bees

    Directory of Open Access Journals (Sweden)

    Robinson Gene E

    2007-06-01

    Full Text Available Abstract Background Honey bees are known for several striking social behaviors, including a complex pattern of behavioral maturation that gives rise to an age-related colony division of labor and a symbolic dance language, by which successful foragers communicate the location of attractive food sources to their nestmates. Our understanding of honey bees is mostly based on studies of the Western honey bee, Apis mellifera, even though there are 9–10 other members of genus Apis, showing interesting variations in social behavior relative to A. mellifera. To facilitate future in-depth genomic and molecular level comparisons of behavior across the genus, we performed a microarray analysis of brain gene expression for A. mellifera and three key species found in Asia, A. cerana, A. florea and A. dorsata. Results For each species we compared brain gene expression patterns between foragers and adult one-day-old bees on an A. mellifera cDNA microarray and calculated within-species gene expression ratios to facilitate cross-species analysis. The number of cDNA spots showing hybridization fluorescence intensities above the experimental threshold was reduced by an average of 16% in the Asian species compared to A. mellifera, but an average of 71% of genes on the microarray were available for analysis. Brain gene expression profiles between foragers and one-day-olds showed differences that are consistent with a previous study on A. mellifera and were comparable across species. Although 1772 genes showed significant differences in expression between foragers and one-day-olds, only 218 genes showed differences in forager/one-day-old expression between species (p Conclusion We conclude that the A. mellifera cDNA microarray can be used effectively for cross-species comparisons within the genus. Our results indicate that there is a widespread conservation of the molecular processes in the honey bee brain underlying behavioral maturation. Species differences in

  3. Global analysis of gene expression in the developing brain of Gtf2ird1 knockout mice.

    Directory of Open Access Journals (Sweden)

    Jennifer O'Leary

    Full Text Available BACKGROUND: Williams-Beuren Syndrome (WBS is a neurodevelopmental disorder caused by a hemizygous deletion of a 1.5 Mb region on chromosome 7q11.23 encompassing 26 genes. One of these genes, GTF2IRD1, codes for a putative transcription factor that is expressed throughout the brain during development. Genotype-phenotype studies in patients with atypical deletions of 7q11.23 implicate this gene in the neurological features of WBS, and Gtf2ird1 knockout mice show reduced innate fear and increased sociability, consistent with features of WBS. Multiple studies have identified in vitro target genes of GTF2IRD1, but we sought to identify in vivo targets in the mouse brain. METHODOLOGY/PRINCIPAL FINDINGS: We performed the first in vivo microarray screen for transcriptional targets of Gtf2ird1 in brain tissue from Gtf2ird1 knockout and wildtype mice at embryonic day 15.5 and at birth. Changes in gene expression in the mutant mice were moderate (0.5 to 2.5 fold and of candidate genes with altered expression verified using real-time PCR, most were located on chromosome 5, within 10 Mb of Gtf2ird1. siRNA knock-down of Gtf2ird1 in two mouse neuronal cell lines failed to identify changes in expression of any of the genes identified from the microarray and subsequent analysis showed that differences in expression of genes on chromosome 5 were the result of retention of that chromosome region from the targeted embryonic stem cell line, and so were dependent upon strain rather than Gtf2ird1 genotype. In addition, specific analysis of genes previously identified as direct in vitro targets of GTF2IRD1 failed to show altered expression. CONCLUSIONS/SIGNIFICANCE: We have been unable to identify any in vivo neuronal targets of GTF2IRD1 through genome-wide expression analysis, despite widespread and robust expression of this protein in the developing rodent brain.

  4. Gene expression analysis in gonads and brain of catfish Clarias batrachus after the exposure of malathion.

    Science.gov (United States)

    Prathibha, Y; Murugananthkumar, R; Rajakumar, A; Laldinsangi, C; Sudhakumari, C C; Mamta, S K; Dutta-Gupta, A; Senthilkumaran, B

    2014-04-01

    Pesticides like malathion have the potential to disrupt development and reproduction of aquatic organisms including fishes. To investigate the likely consequences of malathion exposure at low doses in juvenile catfish, Clarias batrachus, we studied the expression pattern of genes encoding certain transcription factors, activin A, sex steroid or orphan nuclear receptors and steroidogenic enzymes which are known to be involved in gonadal development along with histological changes. To compare further, we also analyzed certain brain specific genes related to gonadal axis. Fifty days post hatch catfish fingerlings were exposed continuously to 1 and 10 µg/L of malathion for 21 days. Results from these experiments indicated that transcript levels of various genes were altered by the treatments, which may further affect the gonadal development either directly or indirectly through brain. Histological analysis revealed slow progression of spermatogenesis in testis, while in ovary, the oil droplet oocytes were found to be higher after treatment (10 µg/L). Our findings revealed that the exposure of malathion, even at low doses, hinder or modulate early gonadal development differentially by targeting gene expression pattern of transcription factors, activin A, sex steroid or orphan nuclear receptors and steroidogenic enzymes with an evidence on histological changes. Further, some of the genes showed differential expression at the level of brain in male and female sex after the exposure of malathion.

  5. Transcriptomic analyses reveal novel genes with sexually dimorphic expression in the zebrafish gonad and brain.

    Directory of Open Access Journals (Sweden)

    Rajini Sreenivasan

    Full Text Available BACKGROUND: Our knowledge on zebrafish reproduction is very limited. We generated a gonad-derived cDNA microarray from zebrafish and used it to analyze large-scale gene expression profiles in adult gonads and other organs. METHODOLOGY/PRINCIPAL FINDINGS: We have identified 116638 gonad-derived zebrafish expressed sequence tags (ESTs, 21% of which were isolated in our lab. Following in silico normalization, we constructed a gonad-derived microarray comprising 6370 unique, full-length cDNAs from differentiating and adult gonads. Labeled targets from adult gonad, brain, kidney and 'rest-of-body' from both sexes were hybridized onto the microarray. Our analyses revealed 1366, 881 and 656 differentially expressed transcripts (34.7% novel that showed highest expression in ovary, testis and both gonads respectively. Hierarchical clustering showed correlation of the two gonadal transcriptomes and their similarities to those of the brains. In addition, we have identified 276 genes showing sexually dimorphic expression both between the brains and between the gonads. By in situ hybridization, we showed that the gonadal transcripts with the strongest array signal intensities were germline-expressed. We found that five members of the GTP-binding septin gene family, from which only one member (septin 4 has previously been implicated in reproduction in mice, were all strongly expressed in the gonads. CONCLUSIONS/SIGNIFICANCE: We have generated a gonad-derived zebrafish cDNA microarray and demonstrated its usefulness in identifying genes with sexually dimorphic co-expression in both the gonads and the brains. We have also provided the first evidence of large-scale differential gene expression between female and male brains of a teleost. Our microarray would be useful for studying gonad development, differentiation and function not only in zebrafish but also in related teleosts via cross-species hybridizations. Since several genes have been shown to play similar

  6. Sample matching by inferred agonal stress in gene expression analyses of the brain

    Directory of Open Access Journals (Sweden)

    Bunney William E

    2007-09-01

    Full Text Available Abstract Background Gene expression patterns in the brain are strongly influenced by the severity and duration of physiological stress at the time of death. This agonal effect, if not well controlled, can lead to spurious findings and diminished statistical power in case-control comparisons. While some recent studies match samples by tissue pH and clinically recorded agonal conditions, we found that these indicators were sometimes at odds with observed stress-related gene expression patterns, and that matching by these criteria still sometimes results in identifying case-control differences that are primarily driven by residual agonal effects. This problem is analogous to the one encountered in genetic association studies, where self-reported race and ethnicity are often imprecise proxies for an individual's actual genetic ancestry. Results We developed an Agonal Stress Rating (ASR system that evaluates each sample's degree of stress based on gene expression data, and used ASRs in post hoc sample matching or covariate analysis. While gene expression patterns are generally correlated across different brain regions, we found strong region-region differences in empirical ASRs in many subjects that likely reflect inter-individual variabilities in local structure or function, resulting in region-specific vulnerability to agonal stress. Conclusion Variation of agonal stress across different brain regions differs between individuals, revealing a new level of complexity for gene expression studies of brain tissues. The Agonal Stress Ratings quantitatively assess each sample's extent of regulatory response to agonal stress, and allow a strong control of this important confounder.

  7. Gene expression alterations in brains of mice infected with three strains of scrapie

    Directory of Open Access Journals (Sweden)

    Race Richard E

    2006-05-01

    Full Text Available Abstract Background Transmissible spongiform encephalopathies (TSEs or prion diseases are fatal neurodegenerative disorders which occur in humans and various animal species. Examples include Creutzfeldt-Jakob disease (CJD in humans, bovine spongiform encephalopathy (BSE in cattle, chronic wasting disease (CWD in deer and elk, and scrapie in sheep, and experimental mice. To gain insights into TSE pathogenesis, we made and used cDNA microarrays to identify disease-associated alterations in gene expression. Brain gene expression in scrapie-infected mice was compared to mock-infected mice at pre-symptomatic and symptomatic time points. Three strains of mouse scrapie that show striking differences in neuropathology were studied: ME7, 22L, and Chandler/RML. Results In symptomatic mice, over 400 significant gene expression alterations were identified. In contrast, only 22 genes showed significant alteration in the pre-symptomatic animals. We also identified genes that showed significant differences in alterations in gene expression between strains. Genes identified in this study encode proteins that are involved in many cellular processes including protein folding, endosome/lysosome function, immunity, synapse function, metal ion binding, calcium regulation and cytoskeletal function. Conclusion These studies shed light on the complex molecular events that occur during prion disease, and identify genes whose further study may yield new insights into strain specific neuropathogenesis and ante-mortem tests for TSEs.

  8. Fto colocalizes with a satiety mediator oxytocin in the brain and upregulates oxytocin gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Pawel K., E-mail: olsze005@umn.edu [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Minnesota Obesity Center, Saint Paul, MN 55108 (United States); Fredriksson, Robert; Eriksson, Jenny D. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Mitra, Anaya [Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Radomska, Katarzyna J. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Gosnell, Blake A. [Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Solvang, Maria N. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Levine, Allen S. [Minnesota Obesity Center, Saint Paul, MN 55108 (United States); Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Schioeth, Helgi B. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden)

    2011-05-13

    Highlights: {yields} The majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto. {yields} The level of colocalization is similar in the male and female brain. {yields} Fto overexpression in hypothalamic neurons increases oxytocin mRNA levels by 50%. {yields} Oxytocin does not affect Fto expression through negative feedback mechanisms. -- Abstract: Single nucleotide polymorphisms in the fat mass and obesity-associated (FTO) gene have been associated with obesity in humans. Alterations in Fto expression in transgenic animals affect body weight, energy expenditure and food intake. Fto, a nuclear protein and proposed transcription co-factor, has been speculated to affect energy balance through a functional relationship with specific genes encoding feeding-related peptides. Herein, we employed double immunohistochemistry and showed that the majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto in the brain of male and female mice. We then overexpressed Fto in a murine hypothalamic cell line and, using qPCR, detected a 50% increase in the level of oxytocin mRNA. Expression levels of several other feeding-related genes, including neuropeptide Y (NPY) and Agouti-related protein (AgRP), were unaffected by the FTO transfection. Addition of 10 and 100 nmol oxytocin to the cell culture medium did not affect Fto expression in hypothalamic cells. We conclude that Fto, a proposed transcription co-factor, influences expression of the gene encoding a satiety mediator, oxytocin.

  9. Expression of the Murine Duchenne Muscular Dystrophy Gene in Muscle and Brain

    Science.gov (United States)

    Chamberlain, Jeffrey S.; Pearlman, Joel A.; Muzny, Donna M.; Gibbs, Richard A.; Ranier, Joel E.; Reeves, Alice A.; Caskey, C. Thomas

    1988-03-01

    Complementary DNA clones were isolated that represent the 5' terminal 2.5 kilobases of the murine Duchenne muscular dystrophy (Dmd) messenger RNA (mRNA). Mouse Dmd mRNA was detectable in skeletal and cardiac muscle and at a level approximately 90 percent lower in brain. Dmd mRNA is also present, but at much lower than normal levels, in both the muscle and brain of three different strains of dystrophic mdx mice. The identification of Dmd mRNA in brain raises the possibility of a relation between human Duchenne muscular dystrophy (DMD) gene expression and the mental retardation found in some DMD males. These results also provide evidence that the mdx mutations are allelic variants of mouse Dmd gene mutations.

  10. Testes and brain gene expression in precocious male and adult maturing Atlantic salmon (Salmo salar

    Directory of Open Access Journals (Sweden)

    Houeix Benoit

    2010-03-01

    Full Text Available Abstract Background The male Atlantic salmon generally matures in fresh water upon returning after one or several years at sea. Some fast-growing male parr develop an alternative life strategy where they sexually mature before migrating to the oceans. These so called 'precocious' parr or 'sneakers' can successfully fertilise adult female eggs and so perpetuate their line. We have used a custom-built cDNA microarray to investigate gene expression changes occurring in the salmon gonad and brain associated with precocious maturation. The microarray has been populated with genes selected specifically for involvement in sexual maturation (precocious and adult and in the parr-smolt transformation. Results Immature and mature parr collected from a hatchery-reared stock in January were significantly different in weight, length and condition factor. Changes in brain expression were small - never more than 2-fold on the microarray, and down-regulation of genes was much more pronounced than up-regulation. Significantly changing genes included isotocin, vasotocin, cathepsin D, anamorsin and apolipoprotein E. Much greater changes in expression were seen in the testes. Among those genes in the testis with the most significant changes in expression were anti-Mullerian hormone, collagen 1A, and zinc finger protein (Zic1, which were down-regulated in precocity and apolipoproteins E and C-1, lipoprotein lipase and anti-leukoproteinase precursor which were up-regulated in precocity. Expression changes of several genes were confirmed in individual fish by quantitative PCR and several genes (anti-Mullerian hormone, collagen 1A, beta-globin and guanine nucleotide binding protein (G protein beta polypeptide 2-like 1 (GNB2L1 were also examined in adult maturing testes. Down-regulation of anti-Mullerian hormone was judged to be greater than 160-fold for precocious males and greater than 230-fold for November adult testes in comparison to July testes by this method. For

  11. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Gene expression time course data can be used not only to detect differentially expressed genes but also to find temporal associations among genes. The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from transcriptomic data is addressed. A network reconstruction algorithm was developed that uses statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. The multinomial hypothesis testing-based network reconstruction allows for explicit specification of the false-positive rate, unique from all extant network inference algorithms. The method is superior to dynamic Bayesian network modeling in a simulation study. Temporal gene expression data from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol are used for modeling. Genes from major neuronal pathways are identified as putative components of the alcohol response mechanism. Nine of these genes have associations with alcohol reported in literature. Several other potentially relevant genes, compatible with independent results from literature mining, may play a role in the response to alcohol. Additional, previously unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  12. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Lodowski Kerrie H

    2009-01-01

    Full Text Available Gene expression time course data can be used not only to detect differentially expressed genes but also to find temporal associations among genes. The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from transcriptomic data is addressed. A network reconstruction algorithm was developed that uses statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. The multinomial hypothesis testing-based network reconstruction allows for explicit specification of the false-positive rate, unique from all extant network inference algorithms. The method is superior to dynamic Bayesian network modeling in a simulation study. Temporal gene expression data from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol are used for modeling. Genes from major neuronal pathways are identified as putative components of the alcohol response mechanism. Nine of these genes have associations with alcohol reported in literature. Several other potentially relevant genes, compatible with independent results from literature mining, may play a role in the response to alcohol. Additional, previously unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  13. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mingzhou (Joe) [New Mexico State University, Las Cruces; Lewis, Chris K. [New Mexico State University, Las Cruces; Lance, Eric [New Mexico State University, Las Cruces; Chesler, Elissa J [ORNL; Kirova, Roumyana [Bristol-Myers Squibb Pharmaceutical Research & Development, NJ; Langston, Michael A [University of Tennessee, Knoxville (UTK); Bergeson, Susan [Texas Tech University, Lubbock

    2009-01-01

    The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from high-throughput transcriptomic data is addressed. A network reconstruction algorithm was developed that uses the statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. Using temporal gene expression data collected from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol, this algorithm identified genes from a major neuronal pathway as putative components of the alcohol response mechanism. Three of these genes have known associations with alcohol in the literature. Several other potentially relevant genes, highlighted and agreeing with independent results from literature mining, may play a role in the response to alcohol. Additional, previously-unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  14. Expression of the Otx2 homeobox gene in the developing mammalian brain: embryonic and adult expression in the pineal gland.

    Science.gov (United States)

    Rath, Martin F; Muñoz, Estela; Ganguly, Surajit; Morin, Fabrice; Shi, Qiong; Klein, David C; Møller, Morten

    2006-04-01

    Otx2 is a vertebrate homeobox gene, which has been found to be essential for the development of rostral brain regions and appears to play a role in the development of retinal photoreceptor cells and pinealocytes. In this study, the temporal expression pattern of Otx2 was revealed in the rat brain, with special emphasis on the pineal gland throughout late embryonic and postnatal stages. Widespread high expression of Otx2 in the embryonic brain becomes progressively restricted in the adult to the pineal gland. Crx (cone-rod homeobox), a downstream target gene of Otx2, showed a pineal expression pattern similar to that of Otx2, although there was a distinct lag in time of onset. Otx2 protein was identified in pineal extracts and found to be localized in pinealocytes. Total pineal Otx2 mRNA did not show day-night variation, nor was it influenced by removal of the sympathetic input, indicating that the level of Otx2 mRNA appears to be independent of the photoneural input to the gland. Our results are consistent with the view that pineal expression of Otx2 is required for development and we hypothesize that it plays a role in the adult in controlling the expression of the cluster of genes associated with phototransduction and melatonin synthesis.

  15. Comparison of regional gene expression differences in the brains of the domestic dog and human

    Directory of Open Access Journals (Sweden)

    Kennerly Erin

    2004-11-01

    Full Text Available Abstract Comparison of the expression profiles of 2,721 genes in the cerebellum, cortex and pituitary gland of three American Staffordshire terriers, one beagle and one fox hound revealed regional expression differences in the brain but failed to reveal marked differences among breeds, or even individual dogs. Approximately 85 per cent (42 of 49 orthologue comparisons of the regional differences in the dog are similar to those that differentiate the analogous human brain regions. A smaller percentage of human differences were replicated in the dog, particularly in the cortex, which may generally be evolving more rapidly than other brain regions in mammals. This study lays the foundation for detailed analysis of the population structure of transcriptional variation as it relates to cognitive and neurological phenotypes in the domestic dog.

  16. Non-negative Tensor Factorization with missing data for the modeling of gene expressions in the Human Brain

    DEFF Research Database (Denmark)

    Nielsen, Søren Føns Vind; Mørup, Morten

    2014-01-01

    forms a promising framework for imputing missing values and characterizing gene expression in the human brain. However, care also has to be taken in particular when predicting the genetic expression levels at a whole region of the brain missing as our analysis indicates that this requires a substantial......Non-negative Tensor Factorization (NTF) has become a prominent tool for analyzing high dimensional multi-way structured data. In this paper we set out to analyze gene expression across brain regions in multiple subjects based on data from the Allen Human Brain Atlas [1] with more than 40 % data...

  17. Nutritionally driven differential gene expression leads to heterochronic brain development in honeybee castes.

    Science.gov (United States)

    Moda, Lívia Maria; Vieira, Joseana; Guimarães Freire, Anna Cláudia; Bonatti, Vanessa; Bomtorin, Ana Durvalina; Barchuk, Angel Roberto; Simões, Zilá Luz Paulino

    2013-01-01

    The differential feeding regimes experienced by the queen and worker larvae of the honeybee Apis mellifera shape a complex endocrine response cascade that ultimately gives rise to differences in brain morphologies. Brain development analyzed at the morphological level from the third (L3) through fifth (L5) larval instars revealed an asynchrony between queens and workers. In the feeding phase of the last larval instar (L5F), two well-formed structures, pedunculi and calyces, are identifiable in the mushroom bodies of queens, both of which are not present in workers until a later phase (spinning phase, L5S). Genome-wide expression analyses and normalized transcript expression experiments monitoring specific genes revealed that this differential brain development starts earlier, during L3. Analyzing brains from L3 through L5S1 larvae, we identified 21 genes with caste-specific transcription patterns (e.g., APC-4, GlcAT-P, fax, kr-h1 and shot), which encode proteins that are potentially involved in the development of brain tissues through controlling the cell proliferation rate (APC4, kr-h1) and fasciculation (GlcAT-P, fax, and shot). Shot, whose expression is known to be required for axon extension and cell proliferation, was found to be transcribed at significantly higher levels in L4 queens compared with worker larvae. Moreover, the protein encoded by this gene was immunolocalized to the cytoplasm of cells near the antennal lobe neuropiles and proximal to the Kenyon cells in the brains of L4 queens. In conclusion, during the larval period, the brains of queens are larger and develop more rapidly than workers' brains, which represents a developmental heterochrony reflecting the effect of the differential feeding regime of the two castes on nervous system development. Furthermore, this differential development is characterized by caste-specific transcriptional profiles of a set of genes, thus pointing to a link between differential nutrition and differential

  18. Nutritionally driven differential gene expression leads to heterochronic brain development in honeybee castes.

    Directory of Open Access Journals (Sweden)

    Lívia Maria Moda

    Full Text Available The differential feeding regimes experienced by the queen and worker larvae of the honeybee Apis mellifera shape a complex endocrine response cascade that ultimately gives rise to differences in brain morphologies. Brain development analyzed at the morphological level from the third (L3 through fifth (L5 larval instars revealed an asynchrony between queens and workers. In the feeding phase of the last larval instar (L5F, two well-formed structures, pedunculi and calyces, are identifiable in the mushroom bodies of queens, both of which are not present in workers until a later phase (spinning phase, L5S. Genome-wide expression analyses and normalized transcript expression experiments monitoring specific genes revealed that this differential brain development starts earlier, during L3. Analyzing brains from L3 through L5S1 larvae, we identified 21 genes with caste-specific transcription patterns (e.g., APC-4, GlcAT-P, fax, kr-h1 and shot, which encode proteins that are potentially involved in the development of brain tissues through controlling the cell proliferation rate (APC4, kr-h1 and fasciculation (GlcAT-P, fax, and shot. Shot, whose expression is known to be required for axon extension and cell proliferation, was found to be transcribed at significantly higher levels in L4 queens compared with worker larvae. Moreover, the protein encoded by this gene was immunolocalized to the cytoplasm of cells near the antennal lobe neuropiles and proximal to the Kenyon cells in the brains of L4 queens. In conclusion, during the larval period, the brains of queens are larger and develop more rapidly than workers' brains, which represents a developmental heterochrony reflecting the effect of the differential feeding regime of the two castes on nervous system development. Furthermore, this differential development is characterized by caste-specific transcriptional profiles of a set of genes, thus pointing to a link between differential nutrition and

  19. Vascular endothelial growth factor A protein level and gene expression in intracranial meningiomas with brain edema

    DEFF Research Database (Denmark)

    Nassehi, Damoun; Dyrbye, Henrik; Andresen, Morten;

    2011-01-01

    Meningiomas are the second most common primary intracranial tumors in adults. Although meningiomas are mostly benign, more than 50% of patients with meningioma develop peritumoral brain edema (PTBE), which may be fatal because of increased intracranial pressure. Vascular endothelial growth factor....... Forty-three patients had primary, solitary, supratentorial meningiomas with PTBE. In these, correlations in PTBE, edema index, VEGF-A protein, VEGF gene expression, capillary length, and tumor water content were investigated. DNA-branched hybridization was used for measuring VEGF gene expression...... in tissue homogenates prepared from frozen tissue samples. The method for VEGF-A analysis resembled an ELISA assay, but was based on chemiluminescence. The edema index was positively correlated to VEGF-A protein (p = 0.014) and VEGF gene expression (p

  20. An acute dose of gamma-hydroxybutyric acid alters gene expression in multiple mouse brain regions.

    Science.gov (United States)

    Schnackenberg, B J; Saini, U T; Robinson, B L; Ali, S F; Patterson, T A

    2010-10-13

    Gamma-hydroxybutyric acid (GHB) is normally found in the brain in low concentrations and may function as a neurotransmitter, although the mechanism of action has not been completely elucidated. GHB has been used as a general anesthetic and is currently used to treat narcolepsy and alcoholism. Recreational use of GHB is primarily as a "club drug" and a "date rape drug," due to its amnesic effects. For this study, the hypothesis was that behavioral and neurochemical alterations may parallel gene expression changes in the brain after GHB administration. Adult male C57/B6N mice (n=5/group) were administered a single dose of 500 mg/kg GHB (i.p.) and were sacrificed 1, 2 and 4 h after treatment. Control mice were administered saline. Brains were removed and regionally dissected on ice. Total RNA from the hippocampus, cortex and striatum was extracted, amplified and labeled. Gene expression was evaluated using Agilent whole mouse genome 4x44K oligonucleotide microarrays. Microarray data were analyzed by ArrayTrack and differentially expressed genes (DEGs) were identified using P or = 1.7 as the criteria for significance. Principal component analysis (PCA) and Hierarchical Cluster Analysis (HCA) showed that samples from each time point clustered into distinct treatment groups with respect to sacrifice time. Ingenuity pathways analysis (IPA) was used to identify involved pathways. The results show that GHB induces gene expression alterations in hundreds of genes in the hippocampus, cortex and striatum, and the number of affected genes increases throughout a 4-h time course. Many of these DEGs are involved in neurological disease, apoptosis, and oxidative stress.

  1. Expression of alcoholism-relevant genes in the liver are differently correlated to different parts of the brain.

    Science.gov (United States)

    Wang, Lishi; Huang, Yue; Jiao, Yan; Chen, Hong; Cao, Yanhong; Bennett, Beth; Wang, Yongjun; Gu, Weikuan

    2013-01-01

    The purpose of this study is to investigate whether expression profiles of alcoholism-relevant genes in different parts of the brain are correlated differently with those in the liver. Four experiments were conducted. First, we used gene expression profiles from five parts of the brain (striatum, prefrontal cortex, nucleus accumbens, hippocampus, and cerebellum) and from liver in a population of recombinant inbred mouse strains to examine the expression association of 10 alcoholism-relevant genes. Second, we conducted the same association analysis between brain structures and the lung. Third, using five randomly selected, nonalcoholism-relevant genes, we conducted the association analysis between brain and liver. Finally, we compared the expression of 10 alcoholism-relevant genes in hippocampus and cerebellum between an alcohol preference strain and a wild-type control. We observed a difference in correlation patterns in expression levels of 10 alcoholism-relevant genes between different parts of the brain with those of liver. We then examined the association of gene expression between alcohol dehydrogenases (Adh1, Adh2, Adh5, and Adh7) and different parts of the brain. The results were similar to those of the 10 genes. Then, we found that the association of those genes between brain structures and lung was different from that of liver. Next, we found that the association patterns of five alcoholism-nonrelevant genes were different from those of 10 alcoholism-relevant genes. Finally, we found that the expression level of 10 alcohol-relevant genes is influenced more in hippocampus than in cerebellum in the alcohol preference strain. Our results show that the expression of alcoholism-relevant genes in liver is differently associated with the expression of genes in different parts of the brain. Because different structural changes in different parts of the brain in alcoholism have been reported, it is important to investigate whether those structural differences in

  2. Effects of Nonylphenol on Brain Gene Expression Profiles in F1 Generation Rats

    Institute of Scientific and Technical Information of China (English)

    YIN-YIN XIA; PING ZHANG; YANG WANG

    2008-01-01

    Objective To explore the effects of nonylphenol on brain gene expression profiles in F1 generation rats by microarray technique.Methods mRNA was extracted from the brain of 2-day old F1 generation male rats Whose F0 female generation was either exposed to nonylphenol or free from nonylphenol exposure,and then it was reversely transcribed to cDNA hbeled with cy5 and cy3 fluorescence.Subsequently,cDNA probes were hybridized to two BiostarR-40S cDNA gene chips and fluorescent signals of cy5 and cy3 were scanned and analyzed. Results Two genes were differentially down-regulated.Conclusion Nonylphenol may disturb the neurcendocrine function of male rats when administered perinatally.

  3. Construction of eukaryotic expression vector with brain-derived neurotrophic factor receptor trkB gene

    Institute of Scientific and Technical Information of China (English)

    HUANG Tao; JIANG Xiao-dan; XU Zhong; YUAN Jun; DING Lian-shu; ZOU Yu-xi; XU Ru-xiang

    2005-01-01

    Objective: To construct an eukaryotic expression vector carrying rat brain-derived neurotrophic factor receptor trkB gene. Methods: Using the total RNA isolated from rat brain as template, the trkB gene was amplified by reverse-transcription-polymerase chain reaction (RT-PCR) with a pair of specific primers which contained the restrictive sites of EcoR I and BamH I. The amplified fragment of trkB gene was digested with EcoR I and BamH I, and then subcloned into cloning vector pMD18-T and expression vector pEGFP-C2 respectively. The recombinant plasmids were identified by restriction endonuclease enzyme analysis and PCR. Results: The amplified DNA fragment was about 1461 bp in length. Enzyme digestion and PCR analysis showed that the gene of trkB had been successfully cloned into vector pMD18-T and pEGFP-C2. Conclusions: The trkB gene of rat has been amplified and cloned into the eukaryotic expression vector pEGFP-C2.

  4. Upregulated gene expression of local brain-derived neurotrophic factor and nerve growth factor after intracisternal administration of marrow stromal cells in rats with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    胡德志; 周良辅; 朱剑虹; 毛颖; 吴雪海

    2005-01-01

    Objective: To examine the effects of rat marrow stromal cells (rMSCs) on gene expression of local brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) after injection of rMSCs into Cistern Magnum of adult rats subjected to traumatic brain injury(TBI).Results: Group cell transplantation had higher BDNF and NGF gene expressions than Group saline control during a period of less than 3 weeks (P<0.05).Conclusions: rMSCs transplantation via Cistern Magnum in rats subjected to traumatic brain injury can enhance expressions of local brain NGF and BDNF to a certain extent.

  5. A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes

    DEFF Research Database (Denmark)

    de Jong, Simone; Boks, Marco P M; Fuller, Tova F;

    2012-01-01

    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood...... of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co...... of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in...

  6. Stress-related gene expression in brain and adrenal gland of porcine fetuses and neonates.

    Science.gov (United States)

    Schwerin, Manfred; Kanitz, Ellen; Tuchscherer, Margret; Brüssow, Klaus-Peter; Nürnberg, Gerd; Otten, Winfried

    2005-03-01

    This study was conducted to examine stress-induced effects on gene expression of specific markers for HPA axis and neuronal activity in fetuses and neonatal pigs. Brain, pituitary gland, and adrenal gland were obtained to determine the mRNA levels for corticotropin-releasing hormone (CRH), CRH receptor 1 (CRHR1), pro-opiomelanocortin (POMC), ACTH receptor (MC2R), c-jun and c-fos. The suitability of these molecular markers was determined in neonatal pigs which were maternally deprived for two hours. It was found that maternal deprivation caused significantly higher transcript levels of c-fos and CRH in brain accompanied by a down-regulation of CRHR1 mRNA and an up-regulation of c-jun in the pituitary gland. To determine the effect of elevated maternal cortisol levels on gene expression of these molecular markers in fetuses, pregnant sows were treated with 100 IU ACTH (Synacthen Depot) s.c. every two days between Day 49 and Day 75 of gestation (normal gestation length 114 days). Animals were killed 48 hours after the last ACTH administration and fetuses of each sow were isolated. The ACTH treatment of sows significantly increased mRNA expression of c-fos but not of CRH in the fetal brain, and significantly decreased MC2R mRNA expression in the adrenal gland. However, HPA axis seems not to be fully developed in Day 77-fetuses because fetal pituitary CRHR1 and POMC mRNA expression was low in most of the fetuses. Although the expression of endocrine regulatory factors was partially incomplete in fetuses at the beginning of the third-trimester, ACTH dependent activation of c-fos mRNA in brain indicates a stress-related increase of neuronal activity. Based on these results it is assumed that prenatal stress in pigs may also have effects on the activity of the HPA axis in the offspring.

  7. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    Directory of Open Access Journals (Sweden)

    Veronica H Ryan

    Full Text Available The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades.AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging.The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism.Expression patterns were split into Development (0 to 20 years and Aging (21 to 78 years intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2, cyclooxygenases (COX-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA and PTGS2 (COX-2 genes at 1q25, highly inter-correlated genes were at distant chromosomal loci.Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  8. Seasonal and regional differences in gene expression in the brain of a hibernating mammal.

    Directory of Open Access Journals (Sweden)

    Christine Schwartz

    Full Text Available Mammalian hibernation presents a unique opportunity to study naturally occurring neuroprotection. Hibernating ground squirrels undergo rapid and extreme physiological changes in body temperature, oxygen consumption, and heart rate without suffering neurological damage from ischemia and reperfusion injury. Different brain regions show markedly different activity during the torpor/arousal cycle: the cerebral cortex shows activity only during the periodic returns to normothermia, while the hypothalamus is active over the entire temperature range. Therefore, region-specific neuroprotective strategies must exist to permit this compartmentalized spectrum of activity. In this study, we use the Illumina HiSeq platform to compare the transcriptomes of these two brain regions at four collection points across the hibernation season: April Active, October Active, Torpor, and IBA. In the cerebral cortex, 1,085 genes were found to be differentially expressed across collection points, while 1,063 genes were differentially expressed in the hypothalamus. Comparison of these transcripts indicates that the cerebral cortex and hypothalamus implement very different strategies during hibernation, showing less than 20% of these differentially expressed genes in common. The cerebral cortex transcriptome shows evidence of remodeling and plasticity during hibernation, including transcripts for the presynaptic cytomatrix proteins bassoon and piccolo, and extracellular matrix components, including laminins and collagens. Conversely, the hypothalamic transcriptome displays upregulation of transcripts involved in damage response signaling and protein turnover during hibernation, including the DNA damage repair gene RAD50 and ubiquitin E3 ligases UBR1 and UBR5. Additionally, the hypothalamus transcriptome also provides evidence of potential mechanisms underlying the hibernation phenotype, including feeding and satiety signaling, seasonal timing mechanisms, and fuel

  9. Significant effects of antiretroviral therapy on global gene expression in brain tissues of patients with HIV-1-associated neurocognitive disorders.

    Directory of Open Access Journals (Sweden)

    Alejandra Borjabad

    2011-09-01

    Full Text Available Antiretroviral therapy (ART has reduced morbidity and mortality in HIV-1 infection; however HIV-1-associated neurocognitive disorders (HAND persist despite treatment. The reasons for the limited efficacy of ART in the brain are unknown. Here we used functional genomics to determine ART effectiveness in the brain and to identify molecular signatures of HAND under ART. We performed genome-wide microarray analysis using Affymetrix U133 Plus 2.0 Arrays, real-time PCR, and immunohistochemistry in brain tissues from seven treated and eight untreated HAND patients and six uninfected controls. We also determined brain virus burdens by real-time PCR. Treated and untreated HAND brains had distinct gene expression profiles with ART transcriptomes clustering with HIV-1-negative controls. The molecular disease profile of untreated HAND showed dysregulated expression of 1470 genes at p<0.05, with activation of antiviral and immune responses and suppression of synaptic transmission and neurogenesis. The overall brain transcriptome changes in these patients were independent of histological manifestation of HIV-1 encephalitis and brain virus burdens. Depending on treatment compliance, brain transcriptomes from patients on ART had 83% to 93% fewer dysregulated genes and significantly lower dysregulation of biological pathways compared to untreated patients, with particular improvement indicated for nervous system functions. However a core of about 100 genes remained similarly dysregulated in both treated and untreated patient brain tissues. These genes participate in adaptive immune responses, and in interferon, cell cycle, and myelin pathways. Fluctuations of cellular gene expression in the brain correlated in Pearson's formula analysis with plasma but not brain virus burden. Our results define for the first time an aberrant genome-wide brain transcriptome of untreated HAND and they suggest that antiretroviral treatment can be broadly effective in reducing

  10. Differential Expression of FosB Proteins and Potential Target Genes in Select Brain Regions of Addiction and Depression Patients

    OpenAIRE

    Gajewski, Paula A.; Turecki, Gustavo; Robison, Alfred J.

    2016-01-01

    Chronic exposure to stress or drugs of abuse has been linked to altered gene expression throughout the body, and changes in gene expression in discrete brain regions are thought to underlie many psychiatric diseases, including major depressive disorder and drug addiction. Preclinical models of these disorders have provided evidence for mechanisms of this altered gene expression, including transcription factors, but evidence supporting a role for these factors in human patients has been slow t...

  11. Effect of Long-Term Intake of Y3+ in Drinking Water on Gene Expression in Brains of Rats

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The rats were fed with water dissolved Y3 + at different levels (0, 53.4, 5340 mg· L- 1 ) for 7 months. The gene expression in brain tissue was detected with oligonucleotide microarray. The results show that, compared to the control,789 genes express differentially, 507 over-expressed genes and 282 under-expressed genes in the high-dose group (5340found to express differentially including 32 over-expressed genes and 12 under-expressed genes in the low-dose group (53.sults suggest that Y3 + can change the expression of some genes, which may be responsible for the toxicity of rare earths on learning and memory.

  12. Cloning of a Gene Whose Expression is Increased in Scrapie and in Senile Plaques in Human Brain

    Science.gov (United States)

    Wietgrefe, S.; Zupancic, M.; Haase, A.; Chesebro, B.; Race, R.; Frey, W.; Rustan, T.; Friedman, R. L.

    1985-12-01

    A complementary DNA library was constructed from messenger RNA's extracted from the brains of mice infected with the scrapie agent. The library was differentially screened with the objectives of finding clones that might be used as markers of infection and finding clones of genes whose increased expression might be correlated with the pathological changes common to scrapie and Alzheimer's disease. A gene was identified whose expression is increased in scrapie. The complementary DNA corresponding to this gene hybridized preferentially and focally to cells in the brains of scrapie-infected animals. The cloned DNA also hybridized to the neuritic plaques found with increased frequency in brains of patients with Alzheimer's disease.

  13. EXPRESSING HUMAN MATURED BRAIN-DERIVED NEUROTROPHIC FACTOR GENE IN E. Coli AND DETERMINING ITS BIOACTIVITY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Expressing the human matured brain-derived neurotrophic factor (mBDNF) gene in E.Coli and determining its bioactivity. Methods The resulting gene of mBDNF was subcloned into the EcoRI-BamHI site of the expression vector plasmid pBV220. The ligation products were used to transform the competent E. Coli DH5α. The proteins of mBDNF were experessed by temperature inducing. The expression products were dealed with solubilizing inclusion bodies and refolding protein. It was introduced into the embryonic chicken DRG to test whether the expressed mBDNF is a biologically active protein. Results The recombinant plasmid pBV/mBDNF was successfully constructed. By temperature inducing,under the control of the bacteriophage λ PL promoter, the experessed mBDNF protein was a 14Kd non-fusion protein,which existed in E. Coli as inclusion bodies. The size of expressed mBDNF is identical to the prediction. Bioactivity of the products was proved that it could support the cell survival and neurite growth in the primary cultures of embryonic 8-day-old chicken DRG neurons as compared to control.Conclusion The mBDNF gene can be expressed bioactively in E. Coli.

  14. Study of gene function based on spatial co-expression in a high-resolution mouse brain atlas

    Directory of Open Access Journals (Sweden)

    Jiang Tao

    2007-04-01

    Full Text Available Abstract Background The Allen Brain Atlas (ABA project systematically profiles three-dimensional high-resolution gene expression in postnatal mouse brains for thousands of genes. By unveiling gene behaviors at both the cellular and molecular levels, ABA is becoming a unique and comprehensive neuroscience data source for decoding enigmatic biological processes in the brain. Given the unprecedented volume and complexity of the in situ hybridization image data, data mining in this area is extremely challenging. Currently, the ABA database mainly serves as an online reference for visual inspection of individual genes; the underlying rich information of this large data set is yet to be explored by novel computational tools. In this proof-of-concept study, we studied the hypothesis that genes sharing similar three-dimensional expression profiles in the mouse brain are likely to share similar biological functions. Results In order to address the pattern comparison challenge when analyzing the ABA database, we developed a robust image filtering method, dubbed histogram-row-column (HRC algorithm. We demonstrated how the HRC algorithm offers the sensitivity of identifying a manageable number of gene pairs based on automatic pattern searching from an original large brain image collection. This tool enables us to quickly identify genes of similar in situ hybridization patterns in a semi-automatic fashion and consequently allows us to discover several gene expression patterns with expression neighborhoods containing genes of similar functional categories. Conclusion Given a query brain image, HRC is a fully automated algorithm that is able to quickly mine vast number of brain images and identify a manageable subset of genes that potentially shares similar spatial co-distribution patterns for further visual inspection. A three-dimensional in situ hybridization pattern, if statistically significant, could serve as a fingerprint of certain gene function

  15. A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes.

    Science.gov (United States)

    de Jong, Simone; Boks, Marco P M; Fuller, Tova F; Strengman, Eric; Janson, Esther; de Kovel, Carolien G F; Ori, Anil P S; Vi, Nancy; Mulder, Flip; Blom, Jan Dirk; Glenthøj, Birte; Schubart, Chris D; Cahn, Wiepke; Kahn, René S; Horvath, Steve; Ophoff, Roel A

    2012-01-01

    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co-expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes in this network.

  16. Cell type-specific genes show striking and distinct patterns of spatial expression in the mouse brain.

    Science.gov (United States)

    Ko, Younhee; Ament, Seth A; Eddy, James A; Caballero, Juan; Earls, John C; Hood, Leroy; Price, Nathan D

    2013-02-19

    To characterize gene expression patterns in the regional subdivisions of the mammalian brain, we integrated spatial gene expression patterns from the Allen Brain Atlas for the adult mouse with panels of cell type-specific genes for neurons, astrocytes, and oligodendrocytes from previously published transcriptome profiling experiments. We found that the combined spatial expression patterns of 170 neuron-specific transcripts revealed strikingly clear and symmetrical signatures for most of the brain's major subdivisions. Moreover, the brain expression spatial signatures correspond to anatomical structures and may even reflect developmental ontogeny. Spatial expression profiles of astrocyte- and oligodendrocyte-specific genes also revealed regional differences; these defined fewer regions and were less distinct but still symmetrical in the coronal plane. Follow-up analysis suggested that region-based clustering of neuron-specific genes was related to (i) a combination of individual genes with restricted expression patterns, (ii) region-specific differences in the relative expression of functional groups of genes, and (iii) regional differences in neuronal density. Products from some of these neuron-specific genes are present in peripheral blood, raising the possibility that they could reflect the activities of disease- or injury-perturbed networks and collectively function as biomarkers for clinical disease diagnostics.

  17. A synthetic luciferin improves in vivo bioluminescence imaging of gene expression in cardiovascular brain regions.

    Science.gov (United States)

    Simonyan, Hayk; Hurr, Chansol; Young, Colin N

    2016-10-01

    Bioluminescence imaging is an effective tool for in vivo investigation of molecular processes. We have demonstrated the applicability of bioluminescence imaging to spatiotemporally monitor gene expression in cardioregulatory brain nuclei during the development of cardiovascular disease, via incorporation of firefly luciferase into living animals, combined with exogenous d-luciferin substrate administration. Nevertheless, d-luciferin uptake into the brain tissue is low, which decreases the sensitivity of bioluminescence detection, particularly when considering small changes in gene expression in tiny central areas. Here, we tested the hypothesis that a synthetic luciferin, cyclic alkylaminoluciferin (CycLuc1), would be superior to d-luciferin for in vivo bioluminescence imaging in cardiovascular brain regions. Male C57B1/6 mice underwent targeted delivery of an adenovirus encoding the luciferase gene downstream of the CMV promoter to the subfornical organ (SFO) or paraventricular nucleus of hypothalamus (PVN), two crucial cardioregulatory neural regions. While bioluminescent signals could be obtained following d-luciferin injection (150 mg/kg), CycLuc1 administration resulted in a three- to fourfold greater bioluminescent emission from the SFO and PVN, at 10- to 20-fold lower substrate concentrations (7.5-15 mg/kg). This CycLuc1-mediated enhancement in bioluminescent emission was evident early following substrate administration (i.e., 6-10 min) and persisted for up to 1 h. When the exposure time was reduced from 60 s to 1,500 ms, minimal signal in the PVN was detectable with d-luciferin, whereas bioluminescent images could be reliably captured with CycLuc1. These findings demonstrate that bioluminescent imaging with the synthetic luciferin CycLuc1 provides an improved physiological genomics tool to investigate molecular events in discrete cardioregulatory brain nuclei.

  18. Diazepam binding inhibitor gene expression: Location in brain and peripheral tissues of rate

    Energy Technology Data Exchange (ETDEWEB)

    Alho, H.; Fremeau, R.T. Jr.; Tiedge, H.; Wilcox, J.; Bovolin, P.; Brosius, J.; Roberts, J.L.; Costa, E.

    1988-09-01

    Diazepam binding inhibitor (DBI), an endogenous 10-kDa polypeptide was isolated from rat and human brain by monitoring displacement of radioactive diazepam bound to specific recognition sites in brain synaptic and mitochondrial membranes. The cellular location of DBI mRNA was studied in rat brain and selected peripheral tissues by in situ hybridization histochemistry with a /sup 35/S-labeled single-stranded complementary RNA probe. DBI mRNA was heterogeneously distributed in rat brain, with particularly high levels in the area postrema, the cerebellar cortex, and ependyma of the third ventricle. Intermediate levels were found in the olfactory bulb, pontine nuclei, inferior colliculi, arcuate nucleus, and pineal gland. Relatively low but significant levels of silver grains were observed overlying many mesencephalic and telencephalic areas that have previously been shown to contain numerous DBI-immunoreactive neurons and a high density of central benzodiazepine receptors. In situ hybridizations also revealed high levels of DBI mRNA in the posterior lobe of the pituitary gland, liver, and germinal center of the white pulp of spleen, all tissues that are rich in peripheral benzodiazepine binding sites. The tissue-specific pattern of DBI gene expression described here could be exploited to further understand the physiological function of DBI in the brain and periphery.

  19. The Creatine Transporter Gene Paralogous at 16p11.2 Is Expressed in Human Brain

    Directory of Open Access Journals (Sweden)

    Nadia Bayou

    2008-01-01

    We report on the clinical, cytogenetic, and molecular findings in a boy with autism carrying a de novo translocation t(7;16(p22.1;p11.2. The chromosome 16 breakpoint disrupts the paralogous SLC6A8 gene also called SLC6A10 or CT2. Predicted translation of exons and RT-PCR analysis reveal specific expression of the creatine transporter paralogous in testis and brain. Several studies reported on the role of X-linked creatine transporter mutations in individuals with mental retardation, with or without autism. The existence of disruption in SLC6A8 paralogous gene associated with idiopathic autism suggests that this gene may be involved in the autistic phenotype in our patient.

  20. Novel middle-type Kenyon cells in the honeybee brain revealed by area-preferential gene expression analysis.

    Science.gov (United States)

    Kaneko, Kumi; Ikeda, Tsubomi; Nagai, Mirai; Hori, Sayaka; Umatani, Chie; Tadano, Hiroto; Ugajin, Atsushi; Nakaoka, Takayoshi; Paul, Rajib Kumar; Fujiyuki, Tomoko; Shirai, Kenichi; Kunieda, Takekazu; Takeuchi, Hideaki; Kubo, Takeo

    2013-01-01

    The mushroom bodies (a higher center) of the honeybee (Apis mellifera L) brain were considered to comprise three types of intrinsic neurons, including large- and small-type Kenyon cells that have distinct gene expression profiles. Although previous neural activity mapping using the immediate early gene kakusei suggested that small-type Kenyon cells are mainly active in forager brains, the precise Kenyon cell types that are active in the forager brain remain to be elucidated. We searched for novel gene(s) that are expressed in an area-preferential manner in the honeybee brain. By identifying and analyzing expression of a gene that we termed mKast (middle-type Kenyon cell-preferential arrestin-related protein), we discovered novel 'middle-type Kenyon cells' that are sandwiched between large- and small-type Kenyon cells and have a gene expression profile almost complementary to those of large- and small-type Kenyon cells. Expression analysis of kakusei revealed that both small-type Kenyon cells and some middle-type Kenyon cells are active in the forager brains, suggesting their possible involvement in information processing during the foraging flight. mKast expression began after the differentiation of small- and large-type Kenyon cells during metamorphosis, suggesting that middle-type Kenyon cells differentiate by modifying some characteristics of large- and/or small-type Kenyon cells. Interestingly, CaMKII and mKast, marker genes for large- and middle-type Kenyon cells, respectively, were preferentially expressed in a distinct set of optic lobe (a visual center) neurons. Our findings suggested that it is not simply the Kenyon cell-preferential gene expression profiles, rather, a 'clustering' of neurons with similar gene expression profiles as particular Kenyon cell types that characterize the honeybee mushroom body structure.

  1. Gene co-expression analysis identifies brain regions and cell types involved in migraine pathophysiology: a GWAS-based study using the Allen Human Brain Atlas.

    Science.gov (United States)

    Eising, Else; Huisman, Sjoerd M H; Mahfouz, Ahmed; Vijfhuizen, Lisanne S; Anttila, Verneri; Winsvold, Bendik S; Kurth, Tobias; Ikram, M Arfan; Freilinger, Tobias; Kaprio, Jaakko; Boomsma, Dorret I; van Duijn, Cornelia M; Järvelin, Marjo-Riitta R; Zwart, John-Anker; Quaye, Lydia; Strachan, David P; Kubisch, Christian; Dichgans, Martin; Davey Smith, George; Stefansson, Kari; Palotie, Aarno; Chasman, Daniel I; Ferrari, Michel D; Terwindt, Gisela M; de Vries, Boukje; Nyholt, Dale R; Lelieveldt, Boudewijn P F; van den Maagdenberg, Arn M J M; Reinders, Marcel J T

    2016-04-01

    Migraine is a common disabling neurovascular brain disorder typically characterised by attacks of severe headache and associated with autonomic and neurological symptoms. Migraine is caused by an interplay of genetic and environmental factors. Genome-wide association studies (GWAS) have identified over a dozen genetic loci associated with migraine. Here, we integrated migraine GWAS data with high-resolution spatial gene expression data of normal adult brains from the Allen Human Brain Atlas to identify specific brain regions and molecular pathways that are possibly involved in migraine pathophysiology. To this end, we used two complementary methods. In GWAS data from 23,285 migraine cases and 95,425 controls, we first studied modules of co-expressed genes that were calculated based on human brain expression data for enrichment of genes that showed association with migraine. Enrichment of a migraine GWAS signal was found for five modules that suggest involvement in migraine pathophysiology of: (i) neurotransmission, protein catabolism and mitochondria in the cortex; (ii) transcription regulation in the cortex and cerebellum; and (iii) oligodendrocytes and mitochondria in subcortical areas. Second, we used the high-confidence genes from the migraine GWAS as a basis to construct local migraine-related co-expression gene networks. Signatures of all brain regions and pathways that were prominent in the first method also surfaced in the second method, thus providing support that these brain regions and pathways are indeed involved in migraine pathophysiology.

  2. Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage.

    Science.gov (United States)

    Kokaia, Z; Zhao, Q; Kokaia, M; Elmér, E; Metsis, M; Smith, M L; Siesjö, B K; Lindvall, O

    1995-11-01

    Levels of mRNA for c-fos, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), TrkB, and TrkC were studied using in situ hybridization in the rat brain at different reperfusion times after unilateral middle cerebral artery occlusion (MCAO). Short-term (15 min) MCAO, which does not cause neuronal death, induced elevated BDNF mRNA expression confined to ipsilateral frontal and cingulate cortices outside the ischemic area. With a longer duration of MCAO (2 h), which leads to cortical infarction, the increase was more marked and elevated BDNF mRNA levels were also detected bilaterally in dentate granule cells and CA1 and CA3 pyramidal neurons. Maximum expression was found after 2 h of reperfusion. At 24 h BDNF mRNA expression had returned to control values. In the ischemic core of the parietal cortex only scattered neurons were expressing high levels of BDNF mRNA after 15 min and 2 h of MCAO. Analysis of different BDNF transcripts showed that MCAO induced a marked increase of exon III mRNA but only small increases of exon I and II mRNAs in cortex and hippocampus. In contrast to BDNF mRNA, elevated expression of c-fos mRNA was observed in the entire ipsilateral cerebral cortex, including the ischemic core, after both 15 min and 2 h of MCAO. Two hours of MCAO also induced transient, bilateral increases of NGF and TrkB mRNA levels and a decrease of NT-3 mRNA expression, confined to dentate granule cells. The upregulation of BDNF mRNA expression in cortical neurons after MCAO is probably triggered by glutamate through a spreading depression-like mechanism. The lack of response of the BDNF gene in the ischemic core may be due to suppression of signal transduction or transcription factor synthesis caused by the ischemia. The observed pattern of gene expression after MCAO agrees well with a neuroprotective role of BDNF in cortical neurons. However, elevated levels of NGF and BDNF protein could also increase synaptic efficacy in the

  3. RNA Sequence Analysis of Human Huntington Disease Brain Reveals an Extensive Increase in Inflammatory and Developmental Gene Expression.

    Directory of Open Access Journals (Sweden)

    Adam Labadorf

    Full Text Available Huntington's Disease (HD is a devastating neurodegenerative disorder that is caused by an expanded CAG trinucleotide repeat in the Huntingtin (HTT gene. Transcriptional dysregulation in the human HD brain has been documented but is incompletely understood. Here we present a genome-wide analysis of mRNA expression in human prefrontal cortex from 20 HD and 49 neuropathologically normal controls using next generation high-throughput sequencing. Surprisingly, 19% (5,480 of the 28,087 confidently detected genes are differentially expressed (FDR<0.05 and are predominantly up-regulated. A novel hypothesis-free geneset enrichment method that dissects large gene lists into functionally and transcriptionally related groups discovers that the differentially expressed genes are enriched for immune response, neuroinflammation, and developmental genes. Markers for all major brain cell types are observed, suggesting that HD invokes a systemic response in the brain area studied. Unexpectedly, the most strongly differentially expressed genes are a homeotic gene set (represented by Hox and other homeobox genes, that are almost exclusively expressed in HD, a profile not widely implicated in HD pathogenesis. The significance of transcriptional changes of developmental processes in the HD brain is poorly understood and warrants further investigation. The role of inflammation and the significance of non-neuronal involvement in HD pathogenesis suggest anti-inflammatory therapeutics may offer important opportunities in treating HD.

  4. Gene expression in the mouse brain following early pregnancy exposure to ethanol

    Directory of Open Access Journals (Sweden)

    Christine R. Zhang

    2016-12-01

    Full Text Available Exposure to alcohol during early embryonic or fetal development has been linked with a variety of adverse outcomes, the most common of which are structural and functional abnormalities of the central nervous system [1]. Behavioural and cognitive deficits reported in individuals exposed to alcohol in utero include intellectual impairment, learning and memory difficulties, diminished executive functioning, attention problems, poor motor function and hyperactivity [2]. The economic and social costs of these outcomes are substantial and profound [3,4]. Improvement of neurobehavioural outcomes following prenatal alcohol exposure requires greater understanding of the mechanisms of alcohol-induced damage to the brain. Here we use a mouse model of relatively moderate ethanol exposure early in pregnancy and profile gene expression in the hippocampus and caudate putamen of adult male offspring. The effects of offspring sex and age on ethanol-sensitive hippocampal gene expression were also examined. All array data are available at the Gene Expression Omnibus (GEO repository under accession number GSE87736.

  5. The Pattern of Brain-Derived Neurotrophic Factor Gene Expression in the Hippocampus of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Iraj Salehi

    2010-06-01

    Full Text Available Objective(sThe aim of this study was to evaluate the effects of regular exercise in preventing diabetes complication in the hippocampus of streptozotocin (STZ-induced diabetic rat.Materials and MethodsA total of 48 male wistar rats were divided into four groups (control, control exercise, diabetic and diabetic exercise. Diabetes was induced by injection of single dose of STZ. Exercise was performed for one hr every day, over a period of 8 weeks. The antioxidant enzymes (SOD, GPX, CAT and GR and oxidant indexes with brain-derived neurotrophic factor (BDNF protein and its mRNA and apoptosis were measured in hippocampus of rats. ResultsA significant decrease in antioxidant enzymes activities and increased malondialdehyde (MDA level were observed in diabetic rats (P= 0.004. In response to exercise, antioxidant enzymes activities increased (P= 0.004. In contrast, MDA level decreased in diabetic rats (P= 0.004. Induction of diabetes caused an increase of BDNF protein and its mRNA expression. In response to exercise, BDNF protein and its mRNA expression reduced in hippocampus of diabetic rats. ConclusionDiabetes induced oxidative stress and increased BDNF gene expression. Exercise ameliorated oxidative stress and decreased BDNF gene expression.

  6. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    Science.gov (United States)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  7. To what extent is blood a reasonable surrogate for brain in gene expression studies: estimation from mouse hippocampus and spleen

    Directory of Open Access Journals (Sweden)

    Matthew N Davies

    2009-10-01

    Full Text Available Microarrays are designed to measure genome-wide differences in gene expression. In cases where a tissue is not accessible for analysis (e.g. human brain, it is of interest to determine whether a second, accessible tissue could be used as a surrogate for transcription profiling. Surrogacy has applications in the study of behavioural and neurodegenerative disorders. Comparison between hippocampus and spleen mRNA obtained from a mouse recombinant inbred panel indicates a high degree of correlation between the tissues for genes that display a high heritability of expression level. This correlation is not limited to apparent expression differences caused by sequence polymorphisms in the target sequences and includes both cis and trans genetic effects. A tissue such as blood could therefore give surrogate information on expression in brain for a subset of genes, in particular those co-expressed between the two tissues, which have heritably varying expression.

  8. To What Extent is Blood a Reasonable Surrogate for Brain in Gene Expression Studies: Estimation from Mouse Hippocampus and Spleen.

    Science.gov (United States)

    Davies, Matthew N; Lawn, Sarah; Whatley, Steven; Fernandes, Cathy; Williams, Robert W; Schalkwyk, Leonard C

    2009-01-01

    Microarrays are designed to measure genome-wide differences in gene expression. In cases where a tissue is not accessible for analysis (e.g. human brain), it is of interest to determine whether a second, accessible tissue could be used as a surrogate for transcription profiling. Surrogacy has applications in the study of behavioural and neurodegenerative disorders. Comparison between hippocampus and spleen mRNA obtained from a mouse recombinant inbred panel indicates a high degree of correlation between the tissues for genes that display a high heritability of expression level. This correlation is not limited to apparent expression differences caused by sequence polymorphisms in the target sequences and includes both cis and trans genetic effects. A tissue such as blood could therefore give surrogate information on expression in brain for a subset of genes, in particular those co-expressed between the two tissues, which have heritably varying expression.

  9. Brains, genes, and primates.

    Science.gov (United States)

    Izpisua Belmonte, Juan Carlos; Callaway, Edward M; Caddick, Sarah J; Churchland, Patricia; Feng, Guoping; Homanics, Gregg E; Lee, Kuo-Fen; Leopold, David A; Miller, Cory T; Mitchell, Jude F; Mitalipov, Shoukhrat; Moutri, Alysson R; Movshon, J Anthony; Okano, Hideyuki; Reynolds, John H; Ringach, Dario; Sejnowski, Terrence J; Silva, Afonso C; Strick, Peter L; Wu, Jun; Zhang, Feng

    2015-05-06

    One of the great strengths of the mouse model is the wide array of genetic tools that have been developed. Striking examples include methods for directed modification of the genome, and for regulated expression or inactivation of genes. Within neuroscience, it is now routine to express reporter genes, neuronal activity indicators, and opsins in specific neuronal types in the mouse. However, there are considerable anatomical, physiological, cognitive, and behavioral differences between the mouse and the human that, in some areas of inquiry, limit the degree to which insights derived from the mouse can be applied to understanding human neurobiology. Several recent advances have now brought into reach the goal of applying these tools to understanding the primate brain. Here we describe these advances, consider their potential to advance our understanding of the human brain and brain disorders, discuss bioethical considerations, and describe what will be needed to move forward.

  10. Transcriptome sequencing of gene expression in the brain of the HIV-1 transgenic rat.

    Directory of Open Access Journals (Sweden)

    Ming D Li

    Full Text Available The noninfectious HIV-1 transgenic (HIV-1Tg rat was developed as a model of AIDs-related pathology and immune dysfunction by manipulation of a noninfectious HIV-1(gag-pol virus with a deleted 3-kb SphI-MscI fragment containing the 3' -region of gag and the 5' region of pol into F344 rats. Our previous studies revealed significant behavioral differences between HIV-1Tg and F344 control rats in their performance in the Morris water maze and responses to psychostimulants. However, the molecular mechanisms underlying these behavioral differences remain largely unknown. The primary goal of this study was to identify differentially expressed genes and enriched pathways affected by the gag-pol-deleted HIV-1 genome. Using RNA deep sequencing, we sequenced RNA transcripts in the prefrontal cortex, hippocampus, and striatum of HIV-1Tg and F344 rats. A total of 72 RNA samples were analyzed (i.e., 12 animals per group × 2 strains × 3 brain regions. Following deep-sequencing analysis of 50-bp paired-end reads of RNA-Seq, we used Bowtie/Tophat/Cufflinks suites to align these reads into transcripts based on the Rn4 rat reference genome and to measure the relative abundance of each transcript. Statistical analyses on each brain region in the two strains revealed that immune response- and neurotransmission-related pathways were altered in the HIV-1Tg rats, with brain region differences. Other neuronal survival-related pathways, including those encoding myelin proteins, growth factors, and translation regulators, were altered in the HIV-1Tg rats in a brain region-dependent manner. This study is the first deep-sequencing analysis of RNA transcripts associated the HIV-1Tg rat. Considering the functions of the pathways and brain regions examined in this study, our findings of abnormal gene expression patterns in HIV-1Tg rats suggest mechanisms underlying the deficits in learning and memory and vulnerability to drug addiction and other psychiatric disorders

  11. Social Support Modulates Stress-Related Gene Expression in Various Brain Regions of Piglets

    Science.gov (United States)

    Kanitz, Ellen; Hameister, Theresa; Tuchscherer, Armin; Tuchscherer, Margret; Puppe, Birger

    2016-01-01

    The presence of an affiliative conspecific may alleviate an individual’s stress response in threatening conditions. However, the mechanisms and neural circuitry underlying the process of social buffering have not yet been elucidated. Using the domestic pig as an animal model, we examined the effect of a 4-h maternal and littermate deprivation on stress hormones and on mRNA expression of the glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11ß-hydroxysteroid dehydrogenase (11ß-HSD) types 1 and 2 and the immediate early gene c-fos in various brain regions of 7-, 21- and 35-day old piglets. The deprivation occurred either alone or with a familiar or unfamiliar age-matched piglet. Compared to piglets deprived alone, the presence of a conspecific animal significantly reduced free plasma cortisol concentrations and altered the MR/GR balance and 11ß-HSD2 and c-fos mRNA expression in the prefrontal cortex (PFC), amygdala and hypothalamus, but not in the hippocampus. The alterations in brain mRNA expression were particularly found in 21- or 35-day old piglets, which may reflect the species-specific postnatal ontogeny of the investigated brain regions. The buffering effects of social support were most pronounced in the amygdala, indicating its significance both for the assessment of social conspecifics as biologically relevant stimuli and for the processing of emotional states. In conclusion, the present findings provide further evidence for the importance of the cortico-limbic network underlying the abilities of individuals to cope with social stress and strongly emphasize the benefits of social partners in livestock with respect to positive welfare and health. PMID:27965550

  12. Expression of the Otx2 homeobox gene in the developing mammalian brain: embryonic and adult expression in the pineal gland

    DEFF Research Database (Denmark)

    Rath, Martin F; Muñoz, Estela; Ganguly, Surajit;

    2006-01-01

    , with special emphasis on the pineal gland throughout late embryonic and postnatal stages. Widespread high expression of Otx2 in the embryonic brain becomes progressively restricted in the adult to the pineal gland. Crx (cone-rod homeobox), a downstream target gene of Otx2, showed a pineal expression pattern...... that the level of Otx2 mRNA appears to be independent of the photoneural input to the gland. Our results are consistent with the view that pineal expression of Otx2 is required for development and we hypothesize that it plays a role in the adult in controlling the expression of the cluster of genes associated...... similar to that of Otx2, although there was a distinct lag in time of onset. Otx2 protein was identified in pineal extracts and found to be localized in pinealocytes. Total pineal Otx2 mRNA did not show day-night variation, nor was it influenced by removal of the sympathetic input, indicating...

  13. Natural selection constrains personality and brain gene expression differences in Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Thörnqvist, Per-Ove; Höglund, Erik; Winberg, Svante

    2015-04-01

    In stream-spawning salmonid fishes there is a considerable variation in the timing of when fry leave the spawning nests and establish a feeding territory. The timing of emergence from spawning nests appears to be related to behavioural and physiological traits, e.g. early emerging fish are bolder and more aggressive. In the present study, emerging Atlantic salmon (Salmo salar L.) alevins were sorted into three fractions: early, intermediate and late emerging. At the parr stage, behaviour, stress responses, hindbrain monoaminergic activity and forebrain gene expression were explored in fish from the early and late emerging fractions (first and last 25%). The results show that when subjected to confinement stress, fish from the late emerging fraction respond with a larger activation of the brain serotonergic system than fish from the early fraction. Similarly, in late emerging fish, stress resulted in elevated expression of mRNA coding for serotonin 1A receptors (5-HT1A), GABA-A receptor-associated protein and ependymin, effects not observed in fish from the early emerging fraction. Moreover, fish from the early emerging fraction displayed bolder behaviour than their late emerging littermates. Taken together, these results suggest that time of emergence, boldness and aggression are linked to each other, forming a behavioural syndrome in juvenile salmon. Differences in brain gene expression between early and late emerging salmon add further support to a relationship between stress coping style and timing of emergence. However, early and late emerging salmon do not appear to differ in hypothalamus-pituitary-interrenal (HPI) axis reactivity, another characteristic of divergent stress coping styles.

  14. Impaired brain StAR and HSP70 gene expression in zebrafish exposed to Methyl-Parathion based insecticide.

    Science.gov (United States)

    da Rosa, João Gabriel Santos; Koakoski, Gessi; Piato, Angelo L; Bogo, Maurício Reis; Bonan, Carla Denise; Barcellos, Leonardo José Gil

    2016-01-01

    Fish production ponds and natural water body areas located in close proximity to agricultural fields receive water with variable amounts of agrochemicals, and consequently, compounds that produce adverse effects may reach nontarget organisms. The aim of this study was to investigate whether waterborne methyl-parathion-based insecticide (MPBI) affected gene expression patterns of brain glucocorticoid receptor (GR), steroidogenic acute regulatory protein (StAR), and heat shock protein 70 (hsp70) in adult zebrafish (Danio rerio) exposed to this chemical for 96 h. Treated fish exposed to MPBI-contaminated water showed an inhibition of brain StAR and hsp70 gene expression. Data demonstrated that MPBI produced a decrease brain StAR and hsp70 gene expression.

  15. Gene expression profiling in C57BL/6J and A/J mouse inbred strains reveals gene networks specific for brain regions independent of genetic background

    Directory of Open Access Journals (Sweden)

    Horvath Steve

    2010-01-01

    Full Text Available Abstract Background We performed gene expression profiling of the amygdala and hippocampus taken from inbred mouse strains C57BL/6J and A/J. The selected brain areas are implicated in neurobehavioral traits while these mouse strains are known to differ widely in behavior. Consequently, we hypothesized that comparing gene expression profiles for specific brain regions in these strains might provide insight into the molecular mechanisms of human neuropsychiatric traits. We performed a whole-genome gene expression experiment and applied a systems biology approach using weighted gene co-expression network analysis. Results We were able to identify modules of co-expressed genes that distinguish a strain or brain region. Analysis of the networks that are most informative for hippocampus and amygdala revealed enrichment in neurologically, genetically and psychologically related pathways. Close examination of the strain-specific gene expression profiles, however, revealed no functional relevance but a significant enrichment of single nucleotide polymorphisms in the probe sequences used for array hybridization. This artifact was not observed for the modules of co-expressed genes that distinguish amygdala and hippocampus. Conclusions The brain-region specific modules were found to be independent of genetic background and are therefore likely to represent biologically relevant molecular networks that can be studied to complement our knowledge about pathways in neuropsychiatric disease.

  16. Natural selection constrains personality and brain gene expression differences in Atlantic salmon (Salmo salar)

    DEFF Research Database (Denmark)

    Thörnqvist, Per-Ove; Höglund, Erik; Winberg, Svante

    2015-01-01

    In stream-spawning salmonid fishes there is a considerable variation in the timing of when fry leave the spawning nests and establish a feeding territory. The timing of emergence from spawning nests appears to be related to behavioural and physiological traits, e.g. early emerging fish are bolder...... and more aggressive. In the present study, emerging Atlantic salmon (Salmo salar L.) alevins were sorted into three fractions: early, intermediate and late emerging. At the parr stage, behaviour, stress responses, hindbrain monoaminergic activity and forebrain gene expression were explored in fish from...... the early and late emerging fractions (first and last 25%). The results show that when subjected to confinement stress, fish from the late emerging fraction respond with a larger activation of the brain serotonergic system than fish from the early fraction. Similarly, in late emerging fish, stress resulted...

  17. Seizure-related 6,a brain-specific expression gene,is highly expressed in the human cerebellum

    Institute of Scientific and Technical Information of China (English)

    Jianming Jiang; Long Yu; Yangtai Guan; Zhiliang Yu; Xinghua Huang; Xiaosong Chen; Lisha Tang; Xianning Zhang

    2010-01-01

    Epilepsy is a complex,Mendelian disease,and most cases are sporadic.Genomic comparisons of tissue from identified monogenic epilepsies with multigenic and acquired syndromes could ultimately reveal crucial molecular neuropathology for an epileptic phenotype.In the present study,a novel gene,human seizure-related(hSEZ)-6,was isolated from a human brain cDNA library.hSEZ-6 comprises 17 exons and spans a region of at least 55.6 kb,which was localized to 17q12 by radiation hybridization,hSEZ-6 exhibits two isoform types,hSEZ-6A and hSEZ-6B,which encode996 and 995 amino acids,respectively.The two putative hSEZ-6 proteins contain similar motifs and share 82% and 84% identity with mouse SEZ-6A protein,whose expression level increased in mouse cerebral cortex-derived cells treated with a convulsant drug,pentylentetrazole.Northern blot analysis demonstrated that hSEZ-6 is expressed highly in the cerebellum and in nucleus of the extrapyramidal system,such as the caudate nucleus and putamen.Reverse transcription polymerase chain reaction revealed that hSEZ-6 is expressed in neurons rather than gliocytes,which suggests that hSEZ-6 is a seizure-related gene.

  18. Effects of acute heat stress on gene expression of brain-gut neuropeptides in broiler chickens.

    Science.gov (United States)

    Lei, L; Hepeng, L; Xianlei, L; Hongchao, J; Hai, L; Sheikhahmadi, A; Yufeng, W; Zhigang, S

    2013-11-01

    Heat stress-induced reduction in feed intake is an annoyance of the poultry industry. Feed intake is regulated by complex mechanisms in which brain-gut neuropeptides are involved, but the changes in such neuropeptides in broiler chickens during heat exposure remain unclear. In this study, we investigated the effects of acute heat stress (35°C, 6 h, and 65% relative humidity) on the gene expression of appetite-regulating peptides in the hypothalamus and gastrointestinal tract of broiler chickens at 42 d of age. The hypothalamic mRNA levels of neuropeptide Y, agouti-related peptide, pro-opiomelanocortin, cocaine- and amphetamine-regulated transcript, corticotropin-releasing hormone, melanocortin 4 receptor, melanin-concentrating hormone, prepro-orexin, cholecystokinin (CCK), and ghrelin did not significantly change (P>0.05) in the heat-exposed broiler chickens. However, the mRNA levels of ghrelin in the glandular stomach, duodenum, and jejunum significantly increased and the mRNA level of CCK in the duodenum significantly decreased. The results indicate that acute heat stress had no effect on the gene expression of central appetite-regulating peptides under current experimental conditions; however, some gastrointestinal tract peptides (e.g., ghrelin and CCK) might play a role in the regulation of appetite in acute heat-exposed broiler chickens. Furthermore, ghrelin in the glandular stomach, duodenum, and jejunum might be the main regulative target of acute heat stress induced anorexia.

  19. Gene expression patterns of spleen, lung and brain with different radiosensitivity in C57BL6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, Zahidur Rahman; Lee, Woo Jung; Bae, Sang Woo; Lee, Yun Sil [Laboratory of Radiation Effect, Seoul (Korea, Republic of); Lee, Su Jae [Laboratory of Radiation Experimental Therapeutics, Seoul (Korea, Republic of)

    2005-12-15

    Although little information is available on the underlying mechanisms, various genetic factors have been associated with tissue-specific responses to radiation. In the present study, we explored the possibility whether organ specific gene expression is associated with radiosensitivity using samples from brain, lung and spleen. We examined intrinsic expression pattern of 23 genes in the organs by semi-quantitative RT-PCR method using both male and female C57BL/6 mice. Expression of p53 and p21, well known factors for governing sensitivity to radiation or chemotherapeutic agents, was not different among the organ types. Both higher expression of sialyltransferase, delta7-sterol reductase, leptin receptor splice variant form 12.1, and Cu/Zn SuperOxide Dismutase (SOD) and lower expression of alphaB crystalline were specific for spleen tissue. Expression level of glutathione peroxidase and APO-1 cell surface antigen gene in lung tissue was high, while that of Na, K-ATPase alpha-subunit, Cu/ZnSOD, and cyclin G was low. Brain, radioresistant organ, showed higher expression of Na, K-ATPase-subunit, cyclin G, and nucleolar protein hNop56 and lower expression of delta7-sterol reductase. The result revealed a potential correlation between gene expression patterns and organ sensitivity, and identified genes which might be responsible for organ sensitivity.

  20. Detecting lineage-specific adaptive evolution of brain-expressed genes in human using rhesus macaque as outgroup

    DEFF Research Database (Denmark)

    Yu, Xiao-Jing; Zheng, Hong-Kun; Wang, Jun;

    2006-01-01

    Comparative genetic analysis between human and chimpanzee may detect genetic divergences responsible for human-specific characteristics. Previous studies have identified a series of genes that potentially underwent Darwinian positive selection during human evolution. However, without a closely...... related species as outgroup, it is difficult to identify human-lineage-specific changes, which is critical in delineating the biological uniqueness of humans. In this study, we conducted phylogeny-based analyses of 2633 human brain-expressed genes using rhesus macaque as the outgroup. We identified 47...... candidate genes showing strong evidence of positive selection in the human lineage. Genes with maximal expression in the brain showed a higher evolutionary rate in human than in chimpanzee. We observed that many immune-defense-related genes were under strong positive selection, and this trend was more...

  1. Comparison of the effects of erythropoietin and anakinra on functional recovery and gene expression in a traumatic brain injury model

    Directory of Open Access Journals (Sweden)

    Gail D Anderson

    2013-10-01

    Full Text Available The goal of this study was to compare the effects of two inflammatory modulators, erythropoietin (EPO and anakinra, on functional recovery and brain gene expression following a cortical contusion impact (CCI injury. Dosage regimens were designed to provide serum concentrations in the range obtained with clinically approved doses. Functional recovery was assessed using both motor and spatial learning tasks and neuropathological measurements conducted in the cortex and hippocampus. Microarray-based transcriptional profiling was used to determine the effect on gene expression at 24 h, 72 h and 7 days post-CCI. Ingenuity Pathway Analysis was used to evaluate the effect on relevant functional categories. EPO and anakinra treatment resulted in significant changes in brain gene expression in the CCI model demonstrating acceptable brain penetration. At all three time points, EPO treatment resulted in significantly more differentially expressed genes than anakinra. For anakinra at 24 h and EPO at 24 h, 72 h and 7 days, the genes in the top 3 functional categories were involved in cellular movement, inflammatory response and cell-to-cell signaling. For EPO, the majority of the genes in the top 10 canonical pathways identified were associated with inflammatory and immune signaling processes. This was true for anakinra only at 24 h post-traumatic brain injury (TBI. The immunomodulation effects of EPO and anakinra did not translate into positive effects on functional behavioral and lesion studies. Treatment with either EPO or anakinra failed to induce significant beneficial effects on recovery of function or produce any significant effects on the prevention of injury induced tissue loss at 30 days post-injury. In conclusion, treatment with EPO or anakinra resulted in significant effects on gene expression in the brain without affecting functional outcome. This suggests that targeting these inflammatory processes alone may not be sufficient for preventing

  2. Analysis of cycle gene expression in Aedes aegypti brains by in situ hybridization.

    Directory of Open Access Journals (Sweden)

    Samira Chahad-Ehlers

    Full Text Available Even though the blood-sucking mosquito Aedes aegypti is one of the most important disease vectors, relatively little is known about the molecular mechanisms underlying processes involved in the temporal pattern of its activity and host seeking behavior. In this study, we analyzed the expression of the cycle (cyc gene, one of the core components of the circadian clock, in Ae. aegypti brains by in situ hybridization at two different time points in light-dark conditions and compared the results with those obtained using a quantitative PCR assay (qPCR. Within the brain, differential labeling was detected according to distinct areas empirically pre-defined. Six out of seven of these areas showed significantly higher staining at ZT3 (three hours after light-on compared to ZT11 (one before light-off, which is consistent with the qPCR data. Predominant staining was observed in three of those areas which correspond to positions of the optical and antennal lobes, as well as the region where the neurons controlling activity rhythms are presumably localized.

  3. The effect of alcohol and nicotine abuse on gene expression in the brain.

    Science.gov (United States)

    Flatscher-Bader, Traute; Wilce, Peter A

    2009-12-01

    Alcohol intake at levels posing an acute heath risk is common amongst teenagers. Alcohol abuse is the second most common mental disorder worldwide. The incidence of smoking is decreasing in the Western world but increasing in developing countries and is the leading cause of preventable death worldwide. Considering the longstanding history of alcohol and tobacco consumption in human societies, it might be surprising that the molecular mechanisms underlying alcohol and smoking dependence are still incompletely understood. Effective treatments against the risk of relapse are lacking. Drugs of abuse exert their effect manipulating the dopaminergic mesocorticolimbic system. In this brain region, alcohol has many potential targets including membranes and several ion channels, while other drugs, for example nicotine, act via specific receptors or binding proteins. Repeated consumption of drugs of abuse mediates adaptive changes within this region, resulting in addiction. The high incidence of alcohol and nicotine co-abuse complicates analysis of the molecular basis of the disease. Gene expression profiling is a useful approach to explore novel drug targets in the brain. Several groups have utilised this technology to reveal drug-sensitive pathways in the mesocorticolimbic system of animal models and in human subjects. These studies are the focus of the present review.

  4. Mouse Social Network Dynamics and Community Structure are Associated with Plasticity-Related Brain Gene Expression.

    Science.gov (United States)

    Williamson, Cait M; Franks, Becca; Curley, James P

    2016-01-01

    Laboratory studies of social behavior have typically focused on dyadic interactions occurring within a limited spatiotemporal context. However, this strategy prevents analyses of the dynamics of group social behavior and constrains identification of the biological pathways mediating individual differences in behavior. In the current study, we aimed to identify the spatiotemporal dynamics and hierarchical organization of a large social network of male mice. We also sought to determine if standard assays of social and exploratory behavior are predictive of social behavior in this social network and whether individual network position was associated with the mRNA expression of two plasticity-related genes, DNA methyltransferase 1 and 3a. Mice were observed to form a hierarchically organized social network and self-organized into two separate social network communities. Members of both communities exhibited distinct patterns of socio-spatial organization within the vivaria that was not limited to only agonistic interactions. We further established that exploratory and social behaviors in standard behavioral assays conducted prior to placing the mice into the large group was predictive of initial network position and behavior but were not associated with final social network position. Finally, we determined that social network position is associated with variation in mRNA levels of two neural plasticity genes, DNMT1 and DNMT3a, in the hippocampus but not the mPOA. This work demonstrates the importance of understanding the role of social context and complex social dynamics in determining the relationship between individual differences in social behavior and brain gene expression.

  5. Expression analysis of the genes identified in GWAS of the postmortem brain tissues from patients with schizophrenia.

    Science.gov (United States)

    Umeda-Yano, Satomi; Hashimoto, Ryota; Yamamori, Hidenaga; Weickert, Cynthia Shannon; Yasuda, Yuka; Ohi, Kazutaka; Fujimoto, Michiko; Ito, Akira; Takeda, Masatoshi

    2014-05-07

    Many gene expression studies have examined postmortem brain tissues of patients with schizophrenia. However, only a few expression studies of the genes identified in genome-wide association study (GWAS) have been published to date. We measured the expression levels of the genes identified in GWAS (ZNF804A, OPCML, RPGRIP1L, NRGN, and TCF4) of the postmortem brain tissues of patients with schizophrenia and controls from two separate sample sets (i.e., the Australian Tissue Resource Center and Stanley Medical Research Institute). We also determined whether the single-nucleotide polymorphisms (SNPs) identified in the GWAS were related to the gene expression changes in the prefrontal cortex. No difference was observed between the patients with schizophrenia and controls from the Australian Tissue Resource Center samples in the mRNA levels of ZNF804A, OPCML, RPGRIP1L, NRGN, or TCF4. The lack of mRNA change for these five transcripts was also found in the brain samples from the Stanley Medical Research Institute. In addition, no relationship between the schizophrenia-associated SNPs identified in the GWAS and the corresponding gene expression was observed in either sample set. Our results suggest that major changes in the transcript levels of the five candidate genes identified in the GWAS may not occur in adult patients with schizophrenia. The lack of linkage between the risk gene polymorphisms and the expression levels of their major transcripts suggests that the control of pan mRNA levels may not be a prominent mechanism by which the genes identified in the GWAS contribute to the pathophysiology of schizophrenia. Further studies are needed to examine how the genes identified in the GWAS contribute to the pathophysiology of schizophrenia.

  6. Platelets alter gene expression profile in human brain endothelial cells in an in vitro model of cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Mathieu Barbier

    Full Text Available Platelet adhesion to the brain microvasculature has been associated with cerebral malaria (CM in humans, suggesting that platelets play a role in the pathogenesis of this syndrome. In vitro co-cultures have shown that platelets can act as a bridge between Plasmodium falciparum-infected red blood cells (pRBC and human brain microvascular endothelial cells (HBEC and potentiate HBEC apoptosis. Using cDNA microarray technology, we analyzed transcriptional changes of HBEC in response to platelets in the presence or the absence of tumor necrosis factor (TNF and pRBC, which have been reported to alter gene expression in endothelial cells. Using a rigorous statistical approach with multiple test corrections, we showed a significant effect of platelets on gene expression in HBEC. We also detected a strong effect of TNF, whereas there was no transcriptional change induced specifically by pRBC. Nevertheless, a global ANOVA and a two-way ANOVA suggested that pRBC acted in interaction with platelets and TNF to alter gene expression in HBEC. The expression of selected genes was validated by RT-qPCR. The analysis of gene functional annotation indicated that platelets induce the expression of genes involved in inflammation and apoptosis, such as genes involved in chemokine-, TREM1-, cytokine-, IL10-, TGFβ-, death-receptor-, and apoptosis-signaling. Overall, our results support the hypothesis that platelets play a pathogenic role in CM.

  7. Over-expression of brain-derived neurotrophic factor in mesenchymal stem cells transfected with recombinant lentivirus BDNF gene.

    Science.gov (United States)

    Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z

    2016-12-30

    This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.

  8. Astrocyte Cultures Mimicking Brain Astrocytes in Gene Expression, Signaling, Metabolism and K(+) Uptake and Showing Astrocytic Gene Expression Overlooked by Immunohistochemistry and In Situ Hybridization.

    Science.gov (United States)

    Hertz, Leif; Chen, Ye; Song, Dan

    2017-01-01

    Based on differences in gene expression between cultured astrocytes and freshly isolated brain astrocytes it has been claimed that cultured astrocytes poorly reflect the characteristics of their in vivo counterparts. This paper shows that this is not the case with the cultures of mouse astrocytes we have used since 1978. The culture is prepared following guidelines provided by Drs. Monique Sensenbrenner and John Booher, with the difference that dibutyryl cyclic AMP is added to the culture medium from the beginning of the third week. This addition has only minor effects on glucose and glutamate metabolism, but it is crucial for effects by elevated K(+) concentrations and for Ca(2+) homeostasis, important aspects of astrocyte function. Work by Liang Peng and her colleagues has shown identity between not only gene expression but also drug-induced gene upregulations and editings in astrocytes cultured by this method and astrocytes freshly isolated from brains of drug-treated animals. Dr. Norenberg's laboratory has demonstrated identical upregulation of the cotransporter NKCC1 in ammonia-exposed astrocytes and rats with liver failure. Similarity between cultured and freshly isolated astrocytes has also been shown in metabolism, K(+) uptake and several aspects of signaling. However, others have shown that the gene for the glutamate transporter GLT1 is not expressed, and rat cultures show some abnormalities in K(+) effects. Nevertheless, the overall reliability of the cultured cells is important because immunohistochemistry and in situ hybridization poorly demonstrate many astrocytic genes, e.g., those of nucleoside transporters, and even microarray analysis of isolated cells can be misleading.

  9. Developmental lead effects on behavior and brain gene expression in male and female BALB/cAnNTac mice.

    Science.gov (United States)

    Kasten-Jolly, Jane; Pabello, Nina; Bolivar, Valerie J; Lawrence, David A

    2012-10-01

    Lead (Pb) was one of the first poisons identified, and the developing nervous system is particularly vulnerable to its toxic effects. Relatively low, subclinical doses, of Pb that produce no overt signs of encephalopathy can affect cognitive, emotional, and motor functions. In the present study, the effects of developmental Pb-exposure on behavioral performance and gene expression in BALB/cAnNTac mice were evaluated. Pups were exposed to Pb from gestational-day (gd) 8 to postnatal-day (pnd) 21 and later evaluated in exploratory behavior, rotarod, Morris water maze, and resident-intruder assays as adults. Pb-exposure caused significant alterations in exploratory behavior and water maze performance during the probe trial, but rotarod performance was not affected. Pb-exposed males displayed violent behavior towards their cage mates, but not to a stranger in the resident-intruder assay. Gene expression analysis at pnd21 by microarray and qRT-PCR was performed to provide a molecular link to the behavior changes that were observed. Pb strongly up-regulated gene expression within the signaling pathways of mitogen activated protein kinases (MAPKs), extra-cellular matrix (ECM) receptor, focal adhesion, and vascular endothelial growth-factor (VEGF), but Pb down-regulated gene expression within the pathways for glycan structures-biosynthesis 1, purine metabolism, and N-glycan biosynthesis. Pb increased transcription of genes for major histocompatibility (MHC) proteins, the chemokine Ccl28, chemokine receptors, IL-7, IL7R, and proteases. The qRT-PCR analysis indicated an increase of gene expression in the whole brain for caspase 1 and NOS2. Analysis of IL-1β, caspase 1, NOS2, Trail, IL-18 and IL-33 gene expression of brain regions indicated that Pb perturbed the inter-regional expression pattern of pro-inflammatory genes. Brain region protein concentrations for IL-10, an anti-inflammatory cytokine, showed a significant decrease only within the cortex region. Results indicate

  10. Gene expression Analysis of Neurons and Astrocytes Isolated by Laser Capture Microdissection from Frozen Human Brain Tissues.

    Directory of Open Access Journals (Sweden)

    Lidia Tagliafierro

    2016-08-01

    Full Text Available Different cell types and multiple cellular connections characterize the human brain. Gene expression analysis using a specific population of cells is more accurate than conducting analysis of the whole tissue homogenate, particularly in the context of neurodegenerative diseases, where a specific subset of cells is affected by the different pathology. Due to the difficulty to obtain homogenous cell populations, gene expression in specific cell-types (neurons, astrocytes, etc. has been understudied. To leverage the use of archive resources of frozen human brains in studies of neurodegenerative diseases, we developed and calibrated a method to quantify cell-type specific – neuronal, astrocytes – expression profiles of genes implicated in neurodegenerative diseases, including Parkinson’s and Alzheimer’s diseases. Archive human frozen brain tissues were used to prepare slides for rapid immunostaining using cell-specific antibodies. The immunoreactive-cells were isolated by Laser Capture Microdissection (LCM. The enrichment for a particular cell-type of interest was validated in post-analysis stage by the expression of cell-specific markers. We optimized the technique to preserve the RNA integrity, so that the RNA was suitable for downstream expression analyses. Following RNA extraction, the expression levels were determined digitally using nCounter Single Cell Gene Expression assay (NanoString Technologies®. The results demonstrated that using our optimized technique we successfully isolated single neurons and astrocytes from human frozen brain tissues and obtained RNA of a good quality that was suitable for mRNA expression analysis. We present here new advancements compared to previous reported methods, which improve the method’s feasibility and its applicability for a variety of downstream molecular analyses. Our new developed method can be implemented in genetic and functional genomic research of neurodegenerative diseases and has the

  11. Identification of a novel enhancer of brain expression near the apoE gene cluster by comparative genomics

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ping; Pennacchio, Len A.; Goff, Wilfried Le; Rubin, Edward M.; Smith, Jonathan D.

    2003-10-01

    Comparative analysis of the human and mouse genomic sequences downstream of the apolipoprotein E gene (APOE) revealed a highly conserved element with previously undefined function. In reporter gene transfection studies, this element which is located f42 kb distal to APOE was found to have silencer activity in a subset of cell lines examined. Analysis of transgenic mice containing a fusion construct linking this distal 631 bp conserved element to a reporter gene comprised of the human APOE gene with its proximal promoter resulted in robust brain expression of the transgenic human apoE mRNA in three independent transgenic lines, supporting the identification of a novel brain controlling region (BCR). Further studies using immunohistochemistry revealed widespread human apoE localization throughout the brains of the BCR-apoE transgenic mice with prominent expression in the cortex and diencephalon. In addition, double-label immunofluorescence performed on brain sections and cultures of primary cortical cells localized human apoE protein to cortical neurons and microglia. These studies demonstrate that comparative sequence analysis is a successful strategy to predict candidate regulatory regions in vivo, although they do not imply that this element controls apoE expression physiologically.

  12. Inheritance of acquired behaviour adaptations and brain gene expression in chickens.

    Directory of Open Access Journals (Sweden)

    Daniel Nätt

    Full Text Available BACKGROUND: Environmental challenges may affect both the exposed individuals and their offspring. We investigated possible adaptive aspects of such cross-generation transmissions, and hypothesized that chronic unpredictable food access would cause chickens to show a more conservative feeding strategy and to be more dominant, and that these adaptations would be transmitted to the offspring. METHODOLOGY/PRINCIPAL FINDINGS: Parents were raised in an unpredictable (UL or in predictable diurnal light rhythm (PL, 12:12 h light:dark. In a foraging test, UL birds pecked more at freely available, rather than at hidden and more attractive food, compared to birds from the PL group. Female offspring of UL birds, raised in predictable light conditions without parental contact, showed a similar foraging behavior, differing from offspring of PL birds. Furthermore, adult offspring of UL birds performed more food pecks in a dominance test, showed a higher preference for high energy food, survived better, and were heavier than offspring of PL parents. Using cDNA microarrays, we found that the differential brain gene expression caused by the challenge was mirrored in the offspring. In particular, several immunoglobulin genes seemed to be affected similarly in both UL parents and their offspring. Estradiol levels were significantly higher in egg yolk from UL birds, suggesting one possible mechanism for these effects. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that unpredictable food access caused seemingly adaptive responses in feeding behavior, which may have been transmitted to the offspring by means of epigenetic mechanisms, including regulation of immune genes. This may have prepared the offspring for coping with an unpredictable environment.

  13. Sexually Dimorphic Gene Expression Associated with Growth and Reproduction of Tongue Sole (Cynoglossus semilaevis Revealed by Brain Transcriptome Analysis

    Directory of Open Access Journals (Sweden)

    Pingping Wang

    2016-08-01

    Full Text Available In this study, we performed a comprehensive analysis of the transcriptome of one- and two-year-old male and female brains of Cynoglossus semilaevis by high-throughput Illumina sequencing. A total of 77,066 transcripts, corresponding to 21,475 unigenes, were obtained with a N50 value of 4349 bp. Of these unigenes, 33 genes were found to have significant differential expression and potentially associated with growth, from which 18 genes were down-regulated and 12 genes were up-regulated in two-year-old males, most of these genes had no significant differences in expression among one-year-old males and females and two-year-old females. A similar analysis was conducted to look for genes associated with reproduction; 25 genes were identified, among them, five genes were found to be down regulated and 20 genes up regulated in two-year-old males, again, most of the genes had no significant expression differences among the other three. The performance of up regulated genes in Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway enrichment analysis was significantly different between two-year-old males and females. Males had a high gene expression in genetic information processing, while female’s highly expressed genes were mainly enriched on organismal systems. Our work identified a set of sex-biased genes potentially associated with growth and reproduction that might be the candidate factors affecting sexual dimorphism of tongue sole, laying the foundation to understand the complex process of sex determination of this economic valuable species.

  14. PDM-ENLOR for segmentation of mouse brain gene expression images.

    Science.gov (United States)

    Le, Yen H; Kurkure, Uday; Kakadiaris, Ioannis A

    2015-02-01

    Statistical shape models, such as Active Shape Models (ASMs), suffer from their inability to represent a large range of variations of a complex shape and to account for the large errors in detection of (point) landmarks. We propose a method, PDM-ENLOR (Point Distribution Model-based ENsemble of LOcal Regressors), that overcomes these limitations by locating each landmark individually using an ensemble of local regression models and appearance cues from selected landmarks. We first detect a set of reference landmarks which were selected based on their saliency during training. For each landmark, an ensemble of regressors is built. From the locations of the detected reference landmarks, each regressor infers a candidate location for that landmark using local geometric constraints, encoded by a point distribution model (PDM). The final location of that point is determined as a weighted linear combination, whose coefficients are learned from the training data, of candidates proposed by its ensemble's component regressors. We use multiple subsets of reference landmarks as explanatory variables for the component regressors to provide varying degrees of locality for the models in each ensemble. This helps our ensemble model to capture a larger range of shape variations as compared to a single PDM. We demonstrate the advantages of our method on the challenging problem of segmenting gene expression images of mouse brain. The overall mean and standard deviation of the Dice coefficient overlap over all 14 anatomical regions and all 100 test images were (88.1 ± 9.5)%.

  15. Global developmental gene expression and pathway analysis of normal brain development and mouse models of human neuronal migration defects.

    Science.gov (United States)

    Pramparo, Tiziano; Libiger, Ondrej; Jain, Sonia; Li, Hong; Youn, Yong Ha; Hirotsune, Shinji; Schork, Nicholas J; Wynshaw-Boris, Anthony

    2011-03-01

    Heterozygous LIS1 mutations are the most common cause of human lissencephaly, a human neuronal migration defect, and DCX mutations are the most common cause of X-linked lissencephaly. LIS1 is part of a protein complex including NDEL1 and 14-3-3ε that regulates dynein motor function and microtubule dynamics, while DCX stabilizes microtubules and cooperates with LIS1 during neuronal migration and neurogenesis. Targeted gene mutations of Lis1, Dcx, Ywhae (coding for 14-3-3ε), and Ndel1 lead to neuronal migration defects in mouse and provide models of human lissencephaly, as well as aid the study of related neuro-developmental diseases. Here we investigated the developing brain of these four mutants and wild-type mice using expression microarrays, bioinformatic analyses, and in vivo/in vitro experiments to address whether mutations in different members of the LIS1 neuronal migration complex lead to similar and/or distinct global gene expression alterations. Consistent with the overall successful development of the mutant brains, unsupervised clustering and co-expression analysis suggested that cell cycle and synaptogenesis genes are similarly expressed and co-regulated in WT and mutant brains in a time-dependent fashion. By contrast, focused co-expression analysis in the Lis1 and Ndel1 mutants uncovered substantial differences in the correlation among pathways. Differential expression analysis revealed that cell cycle, cell adhesion, and cytoskeleton organization pathways are commonly altered in all mutants, while synaptogenesis, cell morphology, and inflammation/immune response are specifically altered in one or more mutants. We found several commonly dysregulated genes located within pathogenic deletion/duplication regions, which represent novel candidates of human mental retardation and neurocognitive disabilities. Our analysis suggests that gene expression and pathway analysis in mouse models of a similar disorder or within a common pathway can be used to define

  16. Expression of apoptosis-Related genes bcl-2 and bax in rat brain hippocampus, followed by intraperitoneal injection of nanosilver

    Directory of Open Access Journals (Sweden)

    Maryam Ghoshcian

    2016-05-01

    Full Text Available Background: Silver nanoparticles are small scale substance (<100 nm used in food technology and medical industry. The data suggest that nanosilver may produce neurotoxicity by generating free radical-induced oxidative stress and by altering gene expression producing apoptosis and neurotoxicity. In this study, the apoptotic effects of Nano silver on apoptosis- related genes expression bcl-2 and bax on rat hippocampus, which is involved in memory and learning, was investigated. Materials & Methods: 28 male Wistar rats were divided into four groups of control and three groups of the treatment. The control group received saline and the treatment groups received intraperitoneal injections of silver nanoparticles at doses of 100, 200 and 400ppm. Ten days after the last injection, the hippocampal region was dissected and removed and then the expression of bcl-2 and bax genes was evaluated using semi-qualitative RT-PCR and Densitometry assay. Results: The expression of anti- apoptotic b-cl2 gene was reduced in the treatment groups compared to the control group. In comparison, the expression of pro- apoptotic bax gene was increased in the treatment groups compared to the control group. This apoptotic affects was increased at higher doses. Conclusion: The data suggest that silver nanoparticles may produce apoptosis by altering apoptosis- related genes expression, in rat brain hippocampus cells.

  17. Expression patterns of the murine LIM class homeobox gene lim1 in the developing brain and excretory system.

    Science.gov (United States)

    Fujii, T; Pichel, J G; Taira, M; Toyama, R; Dawid, I B; Westphal, H

    1994-01-01

    We report the cloning, sequence analysis, and developmental expression pattern of lim1, a member of the LIM class homeobox gene family in the mouse. lim1 cDNA encodes a predicted 406 amino acid protein that is 93% identical with the product of the Xenopus LIM class homeobox gene Xlim1. We have characterized lim1 expression from day 8.5 post coitum onward. Northern blot analysis of RNA transcripts indicates that lim1 is expressed both during embryogenesis and in the adult brain. Analysis by whole-mount and section in situ hybridization shows lim1 expression in the central nervous system from the telencephalon through the spinal cord and in the developing excretory system including pronephric region, mesonephros, nephric duct, and metanephros. In the metanephros, lim1 is strongly expressed in renal vesicles and S-shaped bodies, and transcripts are also detected in the ureteric branches.

  18. Gene expression profiling in C57BL/6J and A/J mouse inbred strains reveals gene networks specific for brain regions independent of genetic background

    NARCIS (Netherlands)

    de Jong, Simone; Fuller, Tova F; Janson, Esther; Strengman, Eric; Horvath, Steve; Kas, Martien J H; Ophoff, Roel A

    2010-01-01

    BACKGROUND: We performed gene expression profiling of the amygdala and hippocampus taken from inbred mouse strains C57BL/6J and A/J. The selected brain areas are implicated in neurobehavioral traits while these mouse strains are known to differ widely in behavior. Consequently, we hypothesized that

  19. Chasing migration genes: a brain expressed sequence tag resource for summer and migratory monarch butterflies (Danaus plexippus.

    Directory of Open Access Journals (Sweden)

    Haisun Zhu

    Full Text Available North American monarch butterflies (Danaus plexippus undergo a spectacular fall migration. In contrast to summer butterflies, migrants are juvenile hormone (JH deficient, which leads to reproductive diapause and increased longevity. Migrants also utilize time-compensated sun compass orientation to help them navigate to their overwintering grounds. Here, we describe a brain expressed sequence tag (EST resource to identify genes involved in migratory behaviors. A brain EST library was constructed from summer and migrating butterflies. Of 9,484 unique sequences, 6068 had positive hits with the non-redundant protein database; the EST database likely represents approximately 52% of the gene-encoding potential of the monarch genome. The brain transcriptome was cataloged using Gene Ontology and compared to Drosophila. Monarch genes were well represented, including those implicated in behavior. Three genes involved in increased JH activity (allatotropin, juvenile hormone acid methyltransfersase, and takeout were upregulated in summer butterflies, compared to migrants. The locomotion-relevant turtle gene was marginally upregulated in migrants, while the foraging and single-minded genes were not differentially regulated. Many of the genes important for the monarch circadian clock mechanism (involved in sun compass orientation were in the EST resource, including the newly identified cryptochrome 2. The EST database also revealed a novel Na+/K+ ATPase allele predicted to be more resistant to the toxic effects of milkweed than that reported previously. Potential genetic markers were identified from 3,486 EST contigs and included 1599 double-hit single nucleotide polymorphisms (SNPs and 98 microsatellite polymorphisms. These data provide a template of the brain transcriptome for the monarch butterfly. Our "snap-shot" analysis of the differential regulation of candidate genes between summer and migratory butterflies suggests that unbiased, comprehensive

  20. Bcl-2 gene family expression in the brain of rat offspring after gestational and lactational dioxin exposure.

    Science.gov (United States)

    Chang, Shwu-Fen; Sun, Yu-Yo; Yang, Liang-Yo; Hu, Ssu-Yao; Tsai, Shih-Ying; Lee, Wen-Sen; Lee, Yi-Hsuan

    2005-05-01

    Recent epidemiological studies have shown that dioxin, a persistent organic pollutant, is related to cognitive and behavioral abnormalities in the offspring of exposed cohort. In order to investigate the possible impact of dioxin in survival gene expression during brain development, we established an animal model of gestational and lactational dioxin-exposed rat offspring. The expressions of dioxin-responsive gene cytochrome P450 1A1 (CYP1A1), apoptotic gene Bax, and anti-apoptotic genes Bcl-2 and Bcl-xL were examined in rat liver and brains using Western blot analysis and RT-PCR. The results showed that treatment of pregnant rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (2 microg/kg body weight through oral delivery) at gestation day 15 resulted in an increase of Bcl-xL in offspring male liver and cerebral cortex, but a decrease in female offspring. In contrast, the expression of Bcl-xL in the cerebellum was decreased in male, but increased in female. Bcl-2, another anti-apoptotic gene, was also downregulated in P0 female liver, cerebral cortex, but was not observed in male. In the 4-month-old offspring, however, the Bcl-2 protein levels in the liver and cerebellum of both male and female pups were higher in the TCDD group as compared with the control group. However, the Bcl-2 level in the cerebral cortex of TCDD-treated groups was higher than the control group only in female but not male offspring at 4 months old. The expression of Bax showed no significant changes upon TCDD exposure at P0 stage, but was significantly reduced in the 4-month-old male cortex. These results indicate that early exposure of dioxin could affect the development of certain brain regions with gender difference, in terms of its differential effect on expressions of Bcl-xL, Bcl-2, and Bax.

  1. Carbonated soft drinks induce oxidative stress and alter the expression of certain genes in the brains of Wistar rats.

    Science.gov (United States)

    El-Terras, Adel; Soliman, Mohamed Mohamed; Alkhedaide, Adel; Attia, Hossam Fouad; Alharthy, Abdullah; Banaja, Abdel Elah

    2016-04-01

    In Saudi Arabia, the consumption of carbonated soft drinks is common and often occurs with each meal. Carbonated soft drink consumption has been shown to exhibit effects on the liver, kidney and bone. However, the effects of these soft drinks on brain activity have not been widely examined, particularly at the gene level. Therefore, the current study was conducted with the aim of evaluating the effects of chronic carbonated soft drink consumption on oxidative stress, brain gene biomarkers associated with aggression and brain histology. In total, 40 male Wistar rats were divided into four groups: Group 1 served as a control and was provided access to food and water ad libitum; and groups 2‑4 were given free access to food and carbonated soft drinks only (Cola for group 2, Pepsi for group 3 and 7‑UP for group 4). Animals were maintained on these diets for 3 consecutive months. Upon completion of the experimental period, animals were sacrificed and serological and histopathological analyses were performed on blood and tissues samples. Reverse transcription‑polymerase chain reaction was used to analyze alterations in gene expression levels. Results revealed that carbonated soft drinks increased the serum levels of malondialdehyde (MDA). Carbonated soft drinks were also observed to downregulate the expression of antioxidants glutathione reductase (GR), catalase and glutathione peroxidase (GPx) in the brain when compared with that in the control rats. Rats administered carbonated soft drinks also exhibited decreased monoamine oxidase A (MAO‑A) and acetylcholine esterase (AChE) serum and mRNA levels in the brain. In addition, soft drink consumption upregulated mRNA expression of dopamine D2 receptor (DD2R), while 5-hydroxytryptamine transporter (5‑HTT) expression was decreased. However, following histological examination, all rats had a normal brain structure. The results of this study demonstrated that that carbonated soft drinks induced oxidative stress and

  2. Pathogenic LRRK2 mutations do not alter gene expression in cell model systems or human brain tissue.

    Directory of Open Access Journals (Sweden)

    Michael J Devine

    Full Text Available Point mutations in LRRK2 cause autosomal dominant Parkinson's disease. Despite extensive efforts to determine the mechanism of cell death in patients with LRRK2 mutations, the aetiology of LRRK2 PD is not well understood. To examine possible alterations in gene expression linked to the presence of LRRK2 mutations, we carried out a case versus control analysis of global gene expression in three systems: fibroblasts isolated from LRRK2 mutation carriers and healthy, non-mutation carrying controls; brain tissue from G2019S mutation carriers and controls; and HEK293 inducible LRRK2 wild type and mutant cell lines. No significant alteration in gene expression was found in these systems following correction for multiple testing. These data suggest that any alterations in basal gene expression in fibroblasts or cell lines containing mutations in LRRK2 are likely to be quantitatively small. This work suggests that LRRK2 is unlikely to play a direct role in modulation of gene expression, although it remains possible that this protein can influence mRNA expression under pathogenic cicumstances.

  3. Identification of gene expression changes associated with the initiation of diapause in the brain of the cotton bollworm, Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Xu Wei-Hua

    2011-05-01

    Full Text Available Abstract Background Diapause, a state of arrested development accompanied by a marked decrease of metabolic rate, helps insects to overcome unfavorable seasons. Helicoverpa armigera (Har undergoes pupal diapause, but the molecular mechanism of diapause initiation is unclear. Using suppression subtractive hybridization (SSH, we investigated differentially expressed genes in diapause- and nondiapause-destined pupal brains at diapause initiation. Results We constructed two SSH libraries (forward, F and reverse, R to isolate genes that are up-regulated or down-regulated at diapause initiation. We obtained 194 unique sequences in the F library and 115 unique sequences in the R library. Further, genes expression at the mRNA and protein level in diapause- and nondiapause-destined pupal brains were confirmed by RT-PCR, Northern blot or Western blot analysis. Finally, we classified the genes and predicted their possible roles at diapause initiation. Conclusion Differentially expressed genes at pupal diapause initiation are possibly involved in the regulation of metabolism, energy, stress resistance, signaling pathways, cell cycle, transcription and translation.

  4. Integrative analyses of RNA editing, alternative splicing, and expression of young genes in human brain transcriptome by deep RNA sequencing.

    Science.gov (United States)

    Wu, Dong-Dong; Ye, Ling-Qun; Li, Yan; Sun, Yan-Bo; Shao, Yi; Chen, Chunyan; Zhu, Zhu; Zhong, Li; Wang, Lu; Irwin, David M; Zhang, Yong E; Zhang, Ya-Ping

    2015-08-01

    Next-generation RNA sequencing has been successfully used for identification of transcript assembly, evaluation of gene expression levels, and detection of post-transcriptional modifications. Despite these large-scale studies, additional comprehensive RNA-seq data from different subregions of the human brain are required to fully evaluate the evolutionary patterns experienced by the human brain transcriptome. Here, we provide a total of 6.5 billion RNA-seq reads from different subregions of the human brain. A significant correlation was observed between the levels of alternative splicing and RNA editing, which might be explained by a competition between the molecular machineries responsible for the splicing and editing of RNA. Young human protein-coding genes demonstrate biased expression to the neocortical and non-neocortical regions during evolution on the lineage leading to humans. We also found that a significantly greater number of young human protein-coding genes are expressed in the putamen, a tissue that was also observed to have the highest level of RNA-editing activity. The putamen, which previously received little attention, plays an important role in cognitive ability, and our data suggest a potential contribution of the putamen to human evolution.

  5. Integrating early life experience, gene expression, brain development, and emergent phenotypes: unraveling the thread of nature via nurture.

    Science.gov (United States)

    Weaver, Ian C G

    2014-01-01

    Adaptation to environmental changes is based on the perpetual generation of new phenotypes. Modern biology has focused on the role of epigenetic mechanisms in facilitating the adaptation of organisms to changing environments through alterations in gene expression. Inherited and/or acquired epigenetic factors are relatively stable and have regulatory roles in numerous genomic activities that translate into phenotypic outcomes. Evidence that dietary and pharmacological interventions have the potential to reverse environment-induced modification of epigenetic states (e.g., early life experience, nutrition, medication, infection) has provided an additional stimulus for understanding the biological basis of individual differences in cognitive abilities and disorders of the brain. It has been suggested that accurate quantification of the relative contribution of heritable genetic and epigenetic variation is essential for understanding phenotypic divergence and adaptation in changing environments, a process requiring stable modulation of gene expression. The main challenge for epigenetics in psychology and psychiatry is to determine how experiences and environmental cues, including the nature of our nurture, influence the expression of neuronal genes to produce long-term individual differences in behavior, cognition, personality, and mental health. To this end, focusing on DNA and histone modifications and their initiators, mediators and readers may provide new inroads for understanding the molecular basis of phenotypic plasticity and disorders of the brain. In this chapter, we review recent discoveries highlighting epigenetic aspects of normal brain development and mental illness, as well as discuss some future directions in the field of behavioral epigenetics.

  6. Expression of the human TSPY gene in the brains of transgenic mice suggests a potential role of this Y chromosome gene in neural functions

    Institute of Scientific and Technical Information of China (English)

    Tatsuo Kido; Stephanie Schubert; J(o)rg Schmidtke; Yun-Fai Chris Lau

    2011-01-01

    The testis specific protein Y-encoded (TSPY) is a member of TSPY/SET/NAPl superfamily, encoded within the gonadoblastoma locus on the Y chromosome. TSPY shares a highly conserved SET/NAP-domain responsible for protein-protein interaction among TSPY/SET/NAPl proteins.Accumulating data, so far, support the role of TSPY as the gonadoblastoma gene, involved in germ cell tumorigenesis. The X-chromosome homolog of TSPY, TSPX is expressed in various tissues at both fetal and adult stages, including the brain, and is capable of interacting with the multi-domain adapter protein CASK, thereby influencing the synaptic and transcriptional functions and developmental regulation of CASK in the brain and other neural tissues. Similar to TSPX, we demonstrated that TSPY could interact with CASK at its SET/NAP-domain in cultured cells. Transgenic mice harboring a human TSPY gene and flanking sequences showed specific expression of the human TSPYtransgene in both testis and brain. The neural expression pattern of the human TSPY gene overlapped with those of the endogenous mouse Cask and Tspx gene. Similarly with TSPX, TSPY was co-localized with CASK in neuronal axon fibers in the brain, suggesting a potential role(s) of TSPY in development and/or physiology of the nervous system.

  7. Seasonal changes in patterns of gene expression in avian song control brain regions.

    Directory of Open Access Journals (Sweden)

    Christopher K Thompson

    Full Text Available Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log(2 0.585 in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity.

  8. Effects of L-Theanine on Posttraumatic Stress Disorder Induced Changes in Rat Brain Gene Expression

    Directory of Open Access Journals (Sweden)

    Tomás Eduardo Ceremuga

    2014-01-01

    Full Text Available Posttraumatic stress disorder (PTSD is characterized by the occurrence of a traumatic event that is beyond the normal range of human experience. The future of PTSD treatment may specifically target the molecular mechanisms of PTSD. In the US, approximately 20% of adults report taking herbal products to treat medical illnesses. L-theanine is the amino acid in green tea primarily responsible for relaxation effects. No studies have evaluated the potential therapeutic properties of herbal medications on gene expression in PTSD. We evaluated gene expression in PTSD-induced changes in the amygdala and hippocampus of Sprague-Dawley rats. The rats were assigned to PTSD-stressed and nonstressed groups that received either saline, midazolam, L-theanine, or L-theanine + midazolam. Amygdala and hippocampus tissue samples were analyzed for changes in gene expression. One-way ANOVA was used to detect significant difference between groups in the amygdala and hippocampus. Of 88 genes examined, 17 had a large effect size greater than 0.138. Of these, 3 genes in the hippocampus and 5 genes in the amygdala were considered significant (P<0.05 between the groups. RT-PCR analysis revealed significant changes between groups in several genes implicated in a variety of disorders ranging from PTSD, anxiety, mood disorders, and substance dependence.

  9. Differential Expression of FosB Proteins and Potential Target Genes in Select Brain Regions of Addiction and Depression Patients.

    Science.gov (United States)

    Gajewski, Paula A; Turecki, Gustavo; Robison, Alfred J

    2016-01-01

    Chronic exposure to stress or drugs of abuse has been linked to altered gene expression throughout the body, and changes in gene expression in discrete brain regions are thought to underlie many psychiatric diseases, including major depressive disorder and drug addiction. Preclinical models of these disorders have provided evidence for mechanisms of this altered gene expression, including transcription factors, but evidence supporting a role for these factors in human patients has been slow to emerge. The transcription factor ΔFosB is induced in the prefrontal cortex (PFC) and hippocampus (HPC) of rodents in response to stress or cocaine, and its expression in these regions is thought to regulate their "top down" control of reward circuitry, including the nucleus accumbens (NAc). Here, we use biochemistry to examine the expression of the FosB family of transcription factors and their potential gene targets in PFC and HPC postmortem samples from depressed patients and cocaine addicts. We demonstrate that ΔFosB and other FosB isoforms are downregulated in the HPC but not the PFC in the brains of both depressed and addicted individuals. Further, we show that potential ΔFosB transcriptional targets, including GluA2, are also downregulated in the HPC but not PFC of cocaine addicts. Thus, we provide the first evidence of FosB gene expression in human HPC and PFC in these psychiatric disorders, and in light of recent findings demonstrating the critical role of HPC ΔFosB in rodent models of learning and memory, these data suggest that reduced ΔFosB in HPC could potentially underlie cognitive deficits accompanying chronic cocaine abuse or depression.

  10. PROGNOSTIC VALUE OF BRAIN AND ACUTE LEUKEMIA CYTOPLASMIC GENE EXPRESSION IN EGYPTIAN CHILDREN WITH ACUTE MYELOID LEUKEMIA

    Directory of Open Access Journals (Sweden)

    adel abd elhaleim hagag

    2015-04-01

    Full Text Available Abstract      Background: Acute myeloid leukemia (AML accounts for 25%-35% of the acute leukemia in children. BAALC (Brain and Acute Leukemia, Cytoplasmic gene is a recently identified gene on chromosome 8q22.3 that has prognostic significance in AML.  The aim of this work was to study the impact of BAALC gene expression on prognosis of AML in Egyptian children. Patients and methods: This study was conducted on 40 patients of newly diagnosed AML who were subjected to the following: Full history taking, clinical examination, laboratory investigations including: complete blood count, LDH, bone marrow aspiration, cytochemistry and immunophenotyping, assessment of BAALC Gene by real time PCR in bone marrow aspirate mononuclear cells before the start of chemotherapy. Results: BAALC gene expression showed positive expression in 24 cases (60% and negative expression in 16 cases (40%. Patients who showed positive BAALC gene expression included 10 patients achieved complete remission, 8 patients died and 6 relapsed patients, while patients who showed negative expression include 12 patients achieved complete remission, 1 relapsed patient and 3 patients died. There was significant association between BAALC gene expression and FAB classification of patients of AML patientsas positive BAALC expression is predominantly seen in FAB subtypes M1 and M2 compared with negative BAALC gene expression that was found more in M3 and M4 (8 cases with M1, 12 cases with M2, 1 case with M3 and 3 cases with M4 in positive BAALC expression versus 2 cases with M1, 3 cases with M2, 4 cases with M3 and 7 cases with M4 in BAALC gene negative expression group with significant difference regarding FAB subtypes. As regard age, sex, splenomegaly, lymphadenopathy, pallor, purpura, platelets count, WBCs count, and percentage of blast cells in BM, the present study showed no significant association with BAALC. Conclusion: BAALC expression is an important prognostic factor in AML

  11. Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene.

    Directory of Open Access Journals (Sweden)

    Rebecca L Skalsky

    Full Text Available Glioblastoma is a highly aggressive malignant tumor involving glial cells in the human brain. We used high-throughput sequencing to comprehensively profile the small RNAs expressed in glioblastoma and non-tumor brain tissues. MicroRNAs (miRNAs made up the large majority of small RNAs, and we identified over 400 different cellular pre-miRNAs. No known viral miRNAs were detected in any of the samples analyzed. Cluster analysis revealed several miRNAs that were significantly down-regulated in glioblastomas, including miR-128, miR-124, miR-7, miR-139, miR-95, and miR-873. Post-transcriptional editing was observed for several miRNAs, including the miR-376 family, miR-411, miR-381, and miR-379. Using the deep sequencing information, we designed a lentiviral vector expressing a cell suicide gene, the herpes simplex virus thymidine kinase (HSV-TK gene, under the regulation of a miRNA, miR-128, that was found to be enriched in non-tumor brain tissue yet down-regulated in glioblastomas, Glioblastoma cells transduced with this vector were selectively killed when cultured in the presence of ganciclovir. Using an in vitro model to recapitulate expression of brain-enriched miRNAs, we demonstrated that neuronally differentiated SH-SY5Y cells transduced with the miRNA-regulated HSV-TK vector are protected from killing by expression of endogenous miR-128. Together, these results provide an in-depth analysis of miRNA dysregulation in glioblastoma and demonstrate the potential utility of these data in the design of miRNA-regulated therapies for the treatment of brain cancers.

  12. Photoperiodic Modulation of Circadian Clock and Reproductive Axis Gene Expression in the Pre-Pubertal European Sea Bass Brain.

    Directory of Open Access Journals (Sweden)

    Rute S T Martins

    Full Text Available The acquisition of reproductive competence requires the activation of the brain-pituitary-gonad (BPG axis, which in most vertebrates, including fishes, is initiated by changes in photoperiod. In the European sea bass long-term exposure to continuous light (LL alters the rhythm of reproductive hormones, delays spermatogenesis and reduces the incidence of precocious males. In contrast, an early shift from long to short photoperiod (AP accelerates spermatogenesis. However, how photoperiod affects key genes in the brain to trigger the onset of puberty is still largely unknown. Here, we investigated if the integration of the light stimulus by clock proteins is sufficient to activate key genes that trigger the BPG axis in the European sea bass. We found that the clock genes clock, npas2, bmal1 and the BPG genes gnrh, kiss and kissr share conserved transcription factor frameworks in their promoters, suggesting co-regulation. Other gene promoters of the BGP axis were also predicted to be co-regulated by the same frameworks. Co-regulation was confirmed through gene expression analysis of brains from males exposed to LL or AP photoperiod compared to natural conditions: LL fish had suppressed gnrh1, kiss2, galr1b and esr1, while AP fish had stimulated npas2, gnrh1, gnrh2, kiss2, kiss1rb and galr1b compared to NP. It is concluded that fish exposed to different photoperiods present significant expression differences in some clock and reproductive axis related genes well before the first detectable endocrine and morphological responses of the BPG axis.

  13. Photoperiodic Modulation of Circadian Clock and Reproductive Axis Gene Expression in the Pre-Pubertal European Sea Bass Brain

    Science.gov (United States)

    Martins, Rute S. T.; Gomez, Ana; Zanuy, Silvia; Carrillo, Manuel; Canário, Adelino V. M.

    2015-01-01

    The acquisition of reproductive competence requires the activation of the brain-pituitary-gonad (BPG) axis, which in most vertebrates, including fishes, is initiated by changes in photoperiod. In the European sea bass long-term exposure to continuous light (LL) alters the rhythm of reproductive hormones, delays spermatogenesis and reduces the incidence of precocious males. In contrast, an early shift from long to short photoperiod (AP) accelerates spermatogenesis. However, how photoperiod affects key genes in the brain to trigger the onset of puberty is still largely unknown. Here, we investigated if the integration of the light stimulus by clock proteins is sufficient to activate key genes that trigger the BPG axis in the European sea bass. We found that the clock genes clock, npas2, bmal1 and the BPG genes gnrh, kiss and kissr share conserved transcription factor frameworks in their promoters, suggesting co-regulation. Other gene promoters of the BGP axis were also predicted to be co-regulated by the same frameworks. Co-regulation was confirmed through gene expression analysis of brains from males exposed to LL or AP photoperiod compared to natural conditions: LL fish had suppressed gnrh1, kiss2, galr1b and esr1, while AP fish had stimulated npas2, gnrh1, gnrh2, kiss2, kiss1rb and galr1b compared to NP. It is concluded that fish exposed to different photoperiods present significant expression differences in some clock and reproductive axis related genes well before the first detectable endocrine and morphological responses of the BPG axis. PMID:26641263

  14. Meta-type analysis of dopaminergic effects on gene expression in the neuroendocrine brain of female goldfish

    Directory of Open Access Journals (Sweden)

    Jason T Popesku

    2012-11-01

    Full Text Available Dopamine (DA is a major neurotransmitter important for neuroendocrine control and recent studies have described genomic signalling pathways activated and inhibited by DA agonists and antagonists in the goldfish brain. Here we perform a meta-type analysis using microarray datasets from experiments conducted with female goldfish to characterize the gene expression responses that underlie dopaminergic signalling. Sexually mature, pre-spawning (GSI 4.5 ± 1.3% or sexually regressing ( GSI 3 ± 0.4% female goldfish (15-40 g injected intraperitoneally with either SKF 38393, LY 171555, SCH 23390, sulpiride, or a combination of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and α-methyl-p-tyrosine. Microarray meta-type analysis identified 268 genes in the telencephalon and hypothalamus as having reciprocal (i.e. opposite between agonism and antagonism/depletion fold change responses, suggesting that these transcripts are likely targets for DA-mediated regulation. Noteworthy genes included ependymin, vimentin, and aromatase, genes that support the significance of DA in neuronal plasticity and tissue remodelling. Sub-network enrichment analysis (SNEA was used to identify common gene regulators and binding proteins associated with the differentially expressed genes mediated by DA. SNEA analysis identified gene expression targets that were related to three major categories that included cell signalling (STAT3, SP1, SMAD, Jun/Fos, immune response (IL6, IL1β, TNFs, cytokine, NF-κB, and cell proliferation and growth (IGF1, TGFβ1. These gene networks are also known to be associated with neurodegenerative disorders such as Parkinsons’ disease, well-known to be associated with loss of dopaminergic neurons. This study identifies genes and networks that underlie DA signalling in the vertebrate CNS and provides targets that may be key neuroendocrine regulators. The results provide a foundation for future work on dopaminergic regulation of gene expression in fish

  15. Learning-dependent gene expression of CREB1 isoforms in the molluscan brain

    Directory of Open Access Journals (Sweden)

    Hisayo Sadamoto

    2010-05-01

    Full Text Available Cyclic AMP-responsive element binding protein1 (CREB1 has multiple functions in gene regulation. Various studies have reported that CREB1-dependent gene induction is necessary for memory formation and long-lasting behavioral changes in both vertebrates and invertebrates. In the present study, we characterized Lymnaea CREB1 (LymCREB1 mRNA isoforms of spliced variants in the central nervous system (CNS of the pond snail Lymnaea stagnalis. Among these spliced variants, the three isoforms that code a whole LymCREB1 protein are considered to be the activators for gene regulation. The other four isoforms, which code truncated LymCREB1 proteins with no kinase inducible domain, are the repressors. For a better understanding of the possible roles of different LymCREB1 isoforms, the expression level of these isoform mRNAs was investigated by a real-time quantitative RT-PCR method. Further, we examined the changes in gene expression for all the isoforms in the CNS after conditioned taste aversion (CTA learning or backward conditioning as a control. The results showed that CTA learning increased LymCREB1 gene expression, but it did not change the activator/repressor ratio. Our findings showed that the repressor isoforms, as well as the activator ones, are expressed in large amounts in the CNS, and the gene expression of CREB1 isoforms appeared to be specific for the given stimulus. This was the first quantitative analysis of the expression patterns of CREB1 isoforms at the mRNA level and their association with learning behavior.

  16. Identification of differentially expressed thyroid hormone responsive genes from the brain of the Mexican Axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Huggins, P; Johnson, C K; Schoergendorfer, A; Putta, S; Bathke, A C; Stromberg, A J; Voss, S R

    2012-01-01

    The Mexican axolotl (Ambystoma mexicanum) presents an excellent model to investigate mechanisms of brain development that are conserved among vertebrates. In particular, metamorphic changes of the brain can be induced in free-living aquatic juveniles and adults by simply adding thyroid hormone (T4) to rearing water. Whole brains were sampled from juvenile A. mexicanum that were exposed to 0, 8, and 18 days of 50 nM T4, and these were used to isolate RNA and make normalized cDNA libraries for 454 DNA sequencing. A total of 1,875,732 high quality cDNA reads were assembled with existing ESTs to obtain 5884 new contigs for human RefSeq protein models, and to develop a custom Affymetrix gene expression array (Amby_002) with approximately 20,000 probe sets. The Amby_002 array was used to identify 303 transcripts that differed statistically (p1.5) as a function of days of T4 treatment. Further statistical analyses showed that Amby_002 performed concordantly in comparison to an existing, small format expression array. This study introduces a new A. mexicanum microarray resource for the community and the first lists of T4-responsive genes from the brain of a salamander amphibian.

  17. 3' tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer

    Directory of Open Access Journals (Sweden)

    Poland Gregory A

    2009-11-01

    Full Text Available Abstract Background Massive parallel sequencing has the potential to replace microarrays as the method for transcriptome profiling. Currently there are two protocols: full-length RNA sequencing (RNA-SEQ and 3'-tag digital gene expression (DGE. In this preliminary effort, we evaluated the 3' DGE approach using two reference RNA samples from the MicroArray Quality Control Consortium (MAQC. Results Using Brain RNA sample from multiple runs, we demonstrated that the transcript profiles from 3' DGE were highly reproducible between technical and biological replicates from libraries constructed by the same lab and even by different labs, and between two generations of Illumina's Genome Analyzers. Approximately 65% of all sequence reads mapped to mitochondrial genes, ribosomal RNAs, and canonical transcripts. The expression profiles of brain RNA and universal human reference RNA were compared which demonstrated that DGE was also highly quantitative with excellent correlation of differential expression with quantitative real-time PCR. Furthermore, one lane of 3' DGE sequencing, using the current sequencing chemistry and image processing software, had wider dynamic range for transcriptome profiling and was able to detect lower expressed genes which are normally below the detection threshold of microarrays. Conclusion 3' tag DGE profiling with massive parallel sequencing achieved high sensitivity and reproducibility for transcriptome profiling. Although it lacks the ability of detecting alternative splicing events compared to RNA-SEQ, it is much more affordable and clearly out-performed microarrays (Affymetrix in detecting lower abundant transcripts.

  18. Genomics-based screening of differentially expressed genes in the brains of mice exposed to silver nanoparticles via inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hye-Young; Choi, You-Jin; Jung, Eun-Jung; Yin, Hu-Quan [Seoul National University, College of Pharmacy and Research Institute of Pharmaceutical Sciences (Korea, Republic of); Kwon, Jung-Taek; Kim, Ji-Eun; Im, Hwang-Tae; Cho, Myung-Haing [Seoul National University, College of Veterinary Medicine (Korea, Republic of); Kim, Ju-Han [Seoul National University, College of Medicine (Korea, Republic of); Kim, Hyun-Young [Occupational Safety and Health Research Institute, Chemical Safety and Health Research Center (Korea, Republic of); Lee, Byung-Hoon, E-mail: lee@snu.ac.k [Seoul National University, College of Pharmacy and Research Institute of Pharmaceutical Sciences (Korea, Republic of)

    2010-06-15

    Silver nanoparticles (AgNP) are among the fastest growing product categories in the nanotechnology industry. Despite the importance of AgNP in consumer products and clinical applications, relatively little is known regarding AgNP toxicity and its associated risks. We investigated the effects of AgNP on gene expression in the mouse brain using Affymetrix Mouse Genome Arrays. C57BL/6 mice were exposed to AgNP (geometric mean diameter, 22.18 {+-} 1.72 nm; 1.91 x 10{sup 7} particles/cm{sup 3}) for 6 h/day, 5 days/week using the nose-only exposure system for 2 weeks. Total RNA isolated from the cerebrum and cerebellum was subjected to hybridization. From over 39,000 probe sets, 468 genes in the cerebrum and 952 genes in the cerebellum were identified as AgNP-responsive (one-way analysis of variance; p < 0.05). The largest groups of gene products affected by AgNP exposure included 73 genes in the cerebrum and 144 genes in the cerebellum. AgNP exposure modulated the expression of several genes associated with motor neuron disorders, neurodegenerative disease, and immune cell function, indicating potential neurotoxicity and immunotoxicity associated with AgNP exposure. Real-time PCR data for five genes analyzed from whole blood showed good correlation with the observed changes in the brain. Following rigorous validation and substantiation, these genes may assist in the development of surrogate markers for AgNP exposure and/or toxicity.

  19. Identification, tissue distribution and evaluation of brain neuropeptide Y gene expression in the Brazilian flounder Paralichthys orbignyanus

    Indian Academy of Sciences (India)

    Vinicius F Campos; Tiago Collares; João C Deschamps; Fabiana K Seixas; Odir A Dellagostin; Carlos Frederico C Lanes; Juliana Sandrini; Luis Fernando Marins; Marcelo Okamoto; Luís A Sampaio; Ricardo B Robaldo

    2010-09-01

    Neuropeptide Y (NPY) is one of the most potent stimulants of food intake in vertebrates, mammals and fish. However, the present knowledge about feeding behaviour in fish is still limited and based on studies in a few species. The Brazilian flounder Paralichthys orbignyanus is being considered for aquaculture, and it is important to understand the mechanisms regulating feeding in order to improve its performance in captivity. The objectives of this study were to clone NPY cDNA, evaluate the mRNA levels in different tissues of flounder, and also evaluate brain NPY expression to associate food intake with NPY expression levels. A 597 bp NPY cDNA was cloned from Brazilian flounder brain. NPY expression was detected in all the peripheral tissues analysed. No significant differences were observed in brain NPY gene expression over 24 h after food intake at a temperature of 15 ± 3°C. No correlation was observed among plasma glucose, total protein, cholesterol, triglycerides and NPY expression levels during this 24 h period. On the other hand, mRNA levels were increased after two weeks of fasting at elevated temperatures. Our results suggest that NPY mRNA levels in Brazilian flounder are affected by temperature.

  20. Consequences of early life stress on the expression of endocannabinoid-related genes in the rat brain.

    Science.gov (United States)

    Marco, Eva M; Echeverry-Alzate, Victor; López-Moreno, Jose Antonio; Giné, Elena; Peñasco, Sara; Viveros, Maria Paz

    2014-09-01

    The endocannabinoid system is involved in several physiological and pathological states including anxiety, depression, addiction and other neuropsychiatric disorders. Evidence from human and rodent studies suggests that exposure to early life stress may increase the risk of psychopathology later in life. Indeed, maternal deprivation (MD) (24 h at postnatal day 9) in rats induces behavioural alterations associated with depressive-like and psychotic-like symptoms, as well as important changes in the endocannabinoid system. As most neuropsychiatric disorders first appear at adolescence, and show remarkable sexual dimorphisms in their prevalence and severity, in the present study, we analysed the gene expression of the main components of the brain cannabinoid system in adolescent (postnatal day 46) Wistar male and female rats reared under standard conditions or exposed to MD. For this, we analysed, by real-time quantitative PCR, the expression of genes encoding for CB1 and CB2 receptors, TRPV1 and GPR55 (Cnr1, Cnr2a, Cnr2b, Trpv1, and Gpr55), for the major enzymes of synthesis, N-acyl phosphatidyl-ethanolamine phospholipase D (NAPE-PLD) and diacylglycerol lipase (DAGL) (Nape-pld, Dagla and Daglb), and degradation, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) (Faah, Magl and Cox-2), in specific brain regions, that is, the frontal cortex, ventral and dorsal striatum, dorsal hippocampus and amygdala. In males, MD increased the genetic expression of all the genes studied within the frontal cortex, whereas in females such an increase was observed only in the hippocampus. In conclusion, the endocannabinoid system is sensitive to early life stress at the gene expression level in a sex-dependent and region-dependent manner, and these changes are already evident in the adolescent brain.

  1. Obesity and age-related alterations in the gene expression of zinc-transporter proteins in the human brain.

    Science.gov (United States)

    Olesen, R H; Hyde, T M; Kleinman, J E; Smidt, K; Rungby, J; Larsen, A

    2016-06-14

    The incidence of Alzheimer's disease (AD) is increasing. Major risk factors for AD are advancing age and diabetes. Lately, obesity has been associated with an increased risk of dementia. Obese and diabetic individuals are prone to decreased circulating levels of zinc, reducing the amount of zinc available for crucial intracellular processes. In the brain, zinc co-localizes with glutamate in synaptic vesicles, and modulates NMDA receptor activity. Intracellular zinc is involved in apoptosis and fluctuations in cytoplasmic Zn(2+) affect modulation of intracellular signaling. The ZNT and ZIP proteins participate in intracellular zinc homeostasis. Altered expression of zinc-regulatory proteins has been described in AD patients. Using microarray data from human frontal cortex (BrainCloud), this study investigates expression of the SCLA30A (ZNT) and SCLA39A (ZIP) families of genes in a Caucasian and African-American sample of 145 neurologically and psychiatrically normal individuals. Expression of ZNT3 and ZNT4 were significantly reduced with increasing age, whereas expression of ZIP1, ZIP9 and ZIP13 were significantly increased. Increasing body mass index (BMI) correlated with a significant reduction in ZNT1 expression similar to what is seen in the early stages of AD. Increasing BMI also correlated with reduced expression of ZNT6. In conclusion, we found that the expression of genes that regulate intracellular zinc homeostasis in the human frontal cortex is altered with increasing age and affected by increasing BMI. With the increasing rates of obesity throughout the world, these findings warrant continuous scrutiny of the long-term consequences of obesity on brain function and the development of neurodegenerative diseases.

  2. Suppression subtraction hybridization (SSH) and macroarray techniques reveal differential gene expression profiles in brain of sea bream infected with nodavirus.

    Science.gov (United States)

    Dios, S; Poisa-Beiro, L; Figueras, A; Novoa, B

    2007-03-01

    Despite of the impact that viruses have on aquatic organisms, relatively little is known on how fish fight against these infections. In this work, the brain gene expression pattern of sea bream (Sparus aurata) in response to nodavirus infection was investigated. We used the suppression subtractive hybridization (SSH) method to generate a subtracted cDNA library enriched with gene transcripts differentially expressed after 1 day post-infection. Some of the ESTs from the infected tissues fell in gene categories related to stress and immune responses. For the reverse library (ESTs expressed in controls compared with infected tissues) the most abundant transcripts were of ribosomal and mitochondrial nature. Several ESTs potentially induced by virus exposure were selected for in vivo expression studies. We observed a clear difference in expression between infected and control samples for two candidate genes, ubiquitin conjugating enzyme 7 interacting protein, which seems to play an important role in apoptosis and the interferon induced protein with helicase C domain 1 (mda-5) that contributes to apoptosis and regulates the type I IFN production, a key molecule of the antiviral innate response in most organisms.

  3. Differential Gene Expression Patterns in Developing Sexually Dimorphic Rat Brain Regions Exposed to Antiandrogenic, Estrogenic, or Complex Endocrine

    DEFF Research Database (Denmark)

    Lichtensteiger, Walter; Bassetti-Gaille, Catherine; Faass, Oliver

    2015-01-01

    The study addressed the question whether gene expression patterns induced by different mixtures of endocrine disrupting chemicals (EDCs) administered in a higher dose range, corresponding to 450×, 200×, and 100× high-end human exposure levels, could be characterized in developing brain with respect...... to endocrine activity of mixture components, and which developmental processes were preferentially targeted. Three EDC mixtures, A-Mix (anti-androgenic mixture) with 8 antiandrogenic chemicals (di-n-butylphthalate, diethylhexylphthalate, vinclozolin, prochloraz, procymidone, linuron, epoxiconazole, and DDE), E...... on genes encoding for components of excitatory glutamatergic synapses and genes controlling migration and pathfinding of glutamatergic and GABAergic neurons, as well as genes linked with increased risk of autism spectrum disorders. Because development of glutamatergic synapses is regulated by sex steroids...

  4. Obesity and age-related alterations in the gene expression of zinc-transporter proteins in the human brain

    DEFF Research Database (Denmark)

    Olesen, R H; Hyde, T M; Kleinman, J E

    2016-01-01

    The incidence of Alzheimer's disease (AD) is increasing. Major risk factors for AD are advancing age and diabetes. Lately, obesity has been associated with an increased risk of dementia. Obese and diabetic individuals are prone to decreased circulating levels of zinc, reducing the amount of zinc...... available for crucial intracellular processes. In the brain, zinc co-localizes with glutamate in synaptic vesicles, and modulates NMDA receptor activity. Intracellular zinc is involved in apoptosis and fluctuations in cytoplasmic Zn(2+) affect modulation of intracellular signaling. The ZNT and ZIP proteins...... participate in intracellular zinc homeostasis. Altered expression of zinc-regulatory proteins has been described in AD patients. Using microarray data from human frontal cortex (BrainCloud), this study investigates expression of the SCLA30A (ZNT) and SCLA39A (ZIP) families of genes in a Caucasian and African...

  5. Mode of GH administration and gene expression in the female rat brain.

    Science.gov (United States)

    Walser, Marion; Schiöler, Linus; Oscarsson, Jan; Åberg, Maria A I; Wickelgren, Ruth; Svensson, Johan; Isgaard, Jörgen; Aberg, N David

    2017-03-08

    The endogenous secretion of growth hormone (GH) is sexually dimorphic in rats with females having a more even and males a more pulsatile secretion and low trough levels. The mode of GH administration, mimicking the sexually dimorphic secretion, has different systemic effects. In the brains of male rats, we have previously found that the mode of GH administration differently affects neuron haemoglobin beta (Hbb) expression whereas effects on other transcripts were moderate. The different modes of GH administration could have different effects on brain transcripts in female rats. Hypophysectomised female rats were given GH either as injections twice daily or as continuous infusion and GH-responsive transcripts were assessed by quantitative reverse transcription polymerase chain reaction in the hippocampus and parietal cortex (cortex). The different modes of GH-administration markedly increased Hbb and 5'-aminolevulinate synthase 2 (Alas2) in both brain regions. As other effects were relatively moderate, a mixed model analysis (MMA) was used to investigate general effects of the treatments. In the hippocampus, MMA showed that GH-infusion suppressed glia- and neuron-related transcript expression whereas GH-injections increased expression. In the cortex, GH-infusion instead increased neuron-related transcripts, whereas GH-injections had no significant effect. Interestingly, this contrasts to previous results from male rat cortex where GH-infusion generally decreased expression levels. In conclusion, the results indicate that there is a small but significant difference in response to mode of GH administration, in the hippocampus as compared to the cortex. For both modes of GH administration, there was a robust effect on Hbb and Alas2.

  6. Changes in HSP gene and protein expression in natural scrapie with brain damage

    Directory of Open Access Journals (Sweden)

    Serrano Carmen

    2011-01-01

    Full Text Available Abstract Heat shock proteins (Hsp perform cytoprotective functions such as apoptosis regulation and inflammatory response control. These proteins can also be secreted to the extracellular medium, acting as inflammatory mediators, and their chaperone activity permits correct folding of proteins and avoids the aggregation of anomalous isoforms. Several studies have proposed the implication of Hsp in prion diseases. We analysed the gene expression and protein distribution of different members of the Hsp27, Hsp70, and Hsp90 families in the central nervous system of sheep naturally infected with scrapie. Different expression profiles were observed in the areas analysed. Whereas changes in transcript levels were not observed in the cerebellum or medulla oblongata, a significant decrease in HSP27 and HSP90 was detected in the prefrontal cortex. In contrast, HSP73 was over-expressed in diencephalons of scrapie animals. Western blotting did not reveal significant differences in Hsp90 and Hsp70 protein expression between scrapie and control animals. Expression rates identified by real-time RT-PCR and western blotting were compared with the extent of classical scrapie lesions using stepwise regression. Changes in Hsp gene and protein expression were associated with prion protein deposition, gliosis and spongiosis rather than with apoptosis. Finally, immunohistochemistry revealed intense Hsp70 and Hsp90 immunolabelling in Purkinje cells of scrapie sheep. In contrast, controls displayed little or no staining in these cells. The observed differences in gene expression and protein distribution suggest that the heat shock proteins analysed play a role in the natural form of the disease.

  7. Surgery increases cell death and induces changes in gene expression compared with anesthesia alone in the developing piglet brain

    Science.gov (United States)

    Fierens, Igor; Rocha-Ferreira, Eridan; Hristova, Mariya; Ezzati, Mojgan; Rostami, Jamshid; Alonso-Alconada, Daniel; Chaban, Badr; Hassell, Jane; Fleiss, Bobbi; Gressens, Pierre; Sanders, Robert D.; Robertson, Nicola J.

    2017-01-01

    In a range of animal species, exposure of the brain to general anaesthesia without surgery during early infancy may adversely affect its neural and cognitive development. The mechanisms mediating this are complex but include an increase in brain cell death. In humans, attempts to link adverse cognitive development to infantile anaesthesia exposure have yielded ambiguous results. One caveat that may influence the interpretation of human studies is that infants are not exposed to general anaesthesia without surgery, raising the possibility that surgery itself, may contribute to adverse cognitive development. Using piglets, we investigated whether a minor surgical procedure increases cell death and disrupts neuro-developmental and cognitively salient gene transcription in the neonatal brain. We randomly assigned neonatal male piglets to a group who received 6h of 2% isoflurane anaesthesia or a group who received an identical anaesthesia plus 15 mins of surgery designed to replicate an inguinal hernia repair. Compared to anesthesia alone, surgery-induced significant increases in cell death in eight areas of the brain. Using RNAseq data derived from all 12 piglets per group we also identified significant changes in the expression of 181 gene transcripts induced by surgery in the cingulate cortex, pathway analysis of these changes suggests that surgery influences the thrombin, aldosterone, axonal guidance, B cell, ERK-5, eNOS and GABAA signalling pathways. This suggests a number of novel mechanisms by which surgery may influence neural and cognitive development independently or synergistically with the effects of anaesthesia. PMID:28355229

  8. Short-term striatal gene expression responses to brain-derived neurotrophic factor are dependent on MEK and ERK activation.

    Directory of Open Access Journals (Sweden)

    Ozgun Gokce

    Full Text Available BACKGROUND: Brain-derived neurotrophic factor (BDNF is believed to be an important regulator of striatal neuron survival, differentiation, and plasticity. Moreover, reduction of BDNF delivery to the striatum has been implicated in the pathophysiology of Huntington's disease. Nevertheless, many essential aspects of BDNF responses in striatal neurons remain to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we assessed the relative contributions of multipartite intracellular signaling pathways to the short-term induction of striatal gene expression by BDNF. To identify genes regulated by BDNF in these GABAergic cells, we first used DNA microarrays to quantify their transcriptomic responses following 3 h of BDNF exposure. The signal transduction pathways underlying gene induction were subsequently dissected using pharmacological agents and quantitative real-time PCR. Gene expression responses to BDNF were abolished by inhibitors of TrkB (K252a and calcium (chelator BAPTA-AM and transient receptor potential cation channel [TRPC] antagonist SKF-96365. Interestingly, inhibitors of mitogen-activated protein kinase kinases 1 and 2 (MEK1/2 and extracellular signal-regulated kinase ERK also blocked the BDNF-mediated induction of all tested BDNF-responsive genes. In contrast, inhibitors of nitric oxide synthase (NOS, phosphotidylinositol-3-kinase (PI3K, and CAMK exhibited less prevalent, gene-specific effects on BDNF-induced RNA expression. At the nuclear level, the activation of both Elk-1 and CREB showed MEK dependence. Importantly, MEK-dependent activation of transcription was shown to be required for BDNF-induced striatal neurite outgrowth, providing evidence for its contribution to striatal neuron plasticity. CONCLUSIONS: These results show that the MEK/ERK pathway is a major mediator of neuronal plasticity and other important BDNF-dependent striatal functions that are fulfilled through the positive regulation of gene expression.

  9. Seasonal changes and sexual dimorphism in gene expression of StAR protein, steroidogenic enzymes and sex hormone receptors in the frog brain.

    Science.gov (United States)

    Santillo, Alessandra; Falvo, Sara; Di Fiore, Maria Maddalena; Chieffi Baccari, Gabriella

    2016-12-24

    The brain of amphibians contains all the key enzymes of steroidogenesis and has a high steroidogenic activity. In seasonally-breeding amphibian species brain steroid levels fluctuate synchronously with the reproductive cycle. Here we report a study of gene expression of StAR protein, key steroidogenic enzymes and sex hormone receptors in the telencephalon (T) and diencephalon-mesencephalon (D-M) of male and female reproductive and post-reproductive Pelophylax esculentus, a seasonally breeding anuran amphibian. Significant differences in gene expression were observed between (a) the reproductive and post-reproductive phase, (b) the two brain regions and (c) male and female frogs. During the reproductive phase, star gene expression increased in the male (both T and D-M) but not in the female brain. Seasonal fluctuations in expression levels of hsd3b1, hsd17b1, srd5a1 and cyp19a1 genes for neurosteroidogenic enzymes occurred in D-M region of both sexes, with the higher levels in reproductive period. Moreover, the D-M region generally showed higher levels of gene expression than the T region in both sexes. Gene expression was higher in females than males for most genes, suggesting higher neurosteroid production in female brain. Seasonal and sex-linked changes were also observed in gene expression for androgen (ar) and estrogen (esr1, esr2) receptors, with the males showing the highest ar levels in reproductive phase and the highest esr1 and esr2 levels in post-reproductive phase; in contrast, females showed the maximum expression for all three genes in reproductive phase. The results are the first evidence for seasonal changes and sexual dimorphism of gene expression of the neurosteroidogenic pathway in amphibians.

  10. Differences in inhibitory avoidance, cortisol and brain gene expression in TL and AB zebrafish.

    Science.gov (United States)

    Gorissen, M; Manuel, R; Pelgrim, T N M; Mes, W; de Wolf, M J S; Zethof, J; Flik, G; van den Bos, R

    2015-06-01

    Recently, we established an inhibitory avoidance paradigm in Tupfel Long-Fin (TL) zebrafish. Here, we compared task performance of TL fish and fish from the AB strain; another widely used strain and shown to differ genetically and behaviourally from TL fish. Whole-body cortisol and telencephalic gene expression related to stress, anxiety and fear were measured before and 2 h post-task. Inhibitory avoidance was assessed in a 3-day paradigm: fish learn to avoid swimming from a white to a black compartment where a 3V-shock is given: day 1 (first shock), day 2 (second shock) and day 3 (no shock, sampling). Tupfel Long-Fin fish rapidly learned to avoid the black compartment and showed an increase in avoidance-related spatial behaviour in the white compartment across days. In contrast, AB fish showed no inhibitory avoidance learning. AB fish had higher basal cortisol levels and expression levels of stress-axis related genes than TL fish. Tupfel Long-Fin fish showed post-task learning-related changes in cortisol and gene expression levels, but these responses were not seen in AB fish. We conclude that AB fish show higher cortisol levels and no inhibitory avoidance than TL fish. The differential learning responses of these Danio strains may unmask genetically defined risks for stress-related disorders.

  11. Brain region-specific alterations in the gene expression of cytokines, immune cell markers and cholinergic system components during peripheral endotoxin-induced inflammation.

    Science.gov (United States)

    Silverman, Harold A; Dancho, Meghan; Regnier-Golanov, Angelique; Nasim, Mansoor; Ochani, Mahendar; Olofsson, Peder S; Ahmed, Mohamed; Miller, Edmund J; Chavan, Sangeeta S; Golanov, Eugene; Metz, Christine N; Tracey, Kevin J; Pavlov, Valentin A

    2015-03-11

    Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune-brain communication, including the impact of peripheral inflammation on brain region-specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region-specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches.

  12. Pacific white shrimp (Litopenaeus vannamei) vitellogenesis-inhibiting hormone (VIH) is predominantly expressed in the brain and negatively regulates hepatopancreatic vitellogenin (VTG) gene expression.

    Science.gov (United States)

    Chen, Ting; Zhang, Lv-Ping; Wong, Nai-Kei; Zhong, Ming; Ren, Chun-Hua; Hu, Chao-Qun

    2014-03-01

    Ovarian maturation in crustaceans is temporally orchestrated by two processes: oogenesis and vitellogenesis. The peptide hormone vitellogenesis-inhibiting hormone (VIH), by far the most potent negative regulator of crustacean reproduction known, critically modulates crustacean ovarian maturation by suppressing vitellogenin (VTG) synthesis. In this study, cDNA encoding VIH was cloned from the eyestalk of Pacific white shrimp, Litopenaeus vannamei, a highly significant commercial culture species. Phylogenetic analysis suggests that L. vannamei VIH (lvVIH) can be classified as a member of the type II crustacean hyperglycemic hormone family. Northern blot and RT-PCR results reveal that both the brain and eyestalk were the major sources for lvVIH mRNA expression. In in vitro experiments on primary culture of shrimp hepatopancreatic cells, it was confirmed that some endogenous inhibitory factors existed in L. vannamei hemolymph, brain, and eyestalk that suppressed hepatopancreatic VTG gene expression. Purified recombinant lvVIH protein was effective in inhibiting VTG mRNA expression in both in vitro primary hepatopancreatic cell culture and in vivo injection experiments. Injection of recombinant VIH could also reverse ovarian growth induced by eyestalk ablation. Furthermore, unilateral eyestalk ablation reduced the mRNA level of lvVIH in the brain but not in the remaining contralateral eyestalk. Our study, as a whole, provides new insights on VIH regulation of shrimp reproduction: 1) the brain and eyestalk are both important sites of VIH expression and therefore possible coregulators of hepatopancreatic VTG mRNA expression and 2) eyestalk ablation could increase hepatopancreatic VTG expression by transcriptionally abolishing eyestalk-derived VIH and diminishing brain-derived VIH.

  13. Development of a predictor for human brain tumors based on gene expression values obtained from two types of microarray technologies.

    Science.gov (United States)

    Castells, Xavier; Acebes, Juan José; Boluda, Susana; Moreno-Torres, Angel; Pujol, Jesús; Julià-Sapé, Margarida; Candiota, Ana Paula; Ariño, Joaquín; Barceló, Anna; Arús, Carles

    2010-04-01

    Development of molecular diagnostics that can reliably differentiate amongst different subtypes of brain tumors is an important unmet clinical need in postgenomics medicine and clinical oncology. A simple linear formula derived from gene expression values of four genes (GFAP, PTPRZ1, GPM6B, and PRELP) measured from cDNA microarrays (n = 35) have distinguished glioblastoma and meningioma cases in a previous study. We herein extend this work further and report that the above predictor formula showed its robustness when applied to Affymetrix microarray data acquired prospectively in our laboratory (n = 80) as well as publicly available data (n = 98). Importantly, GFAP and GPM6B were both retained as being significant in the predictive model upon using the Affymetrix data obtained in our laboratory, whereas the other two predictor genes were SFRP2 and SLC6A2. These results collectively indicate the importance of the expression values of GFAP and GPM6B genes sampled from the two types of microarray technologies tested. The high prediction accuracy obtained in these instances demonstrates the robustness of the predictors across microarray platforms used. This result would require further validation with a larger population of meningioma and glioblastoma cases. At any rate, this study paves the way for further application of gene signatures to more stringent biopsy discrimination challenges.

  14. Genomics-based screening of differentially expressed genes in the brains of mice exposed to silver nanoparticles via inhalation

    Science.gov (United States)

    Lee, Hye-Young; Choi, You-Jin; Jung, Eun-Jung; Yin, Hu-Quan; Kwon, Jung-Taek; Kim, Ji-Eun; Im, Hwang-Tae; Cho, Myung-Haing; Kim, Ju-Han; Kim, Hyun-Young; Lee, Byung-Hoon

    2010-06-01

    Silver nanoparticles (AgNP) are among the fastest growing product categories in the nanotechnology industry. Despite the importance of AgNP in consumer products and clinical applications, relatively little is known regarding AgNP toxicity and its associated risks. We investigated the effects of AgNP on gene expression in the mouse brain using Affymetrix Mouse Genome Arrays. C57BL/6 mice were exposed to AgNP (geometric mean diameter, 22.18 ± 1.72 nm; 1.91 × 107 particles/cm3) for 6 h/day, 5 days/week using the nose-only exposure system for 2 weeks. Total RNA isolated from the cerebrum and cerebellum was subjected to hybridization. From over 39,000 probe sets, 468 genes in the cerebrum and 952 genes in the cerebellum were identified as AgNP-responsive (one-way analysis of variance; p brain. Following rigorous validation and substantiation, these genes may assist in the development of surrogate markers for AgNP exposure and/or toxicity.

  15. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    Science.gov (United States)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P hypertensive chickens, superoxide dismutase activity was decreased (forebrain, midbrain, and hindbrain), while catalase activity was increased (forebrain and midbrain) ( P hypertensive chickens. Probably, these situations in the oxidant and antioxidant status of the brain especially hindbrain may change its function at cardiovascular center and sympathetic nervous system to exacerbate pulmonary hypertension.

  16. Preprocessing and Quality Control Strategies for Illumina DASL Assay-Based Brain Gene Expression Studies with Semi-Degraded Samples.

    Science.gov (United States)

    Chow, Maggie L; Winn, Mary E; Li, Hai-Ri; April, Craig; Wynshaw-Boris, Anthony; Fan, Jian-Bing; Fu, Xiang-Dong; Courchesne, Eric; Schork, Nicholas J

    2012-01-01

    Available statistical preprocessing or quality control analysis tools for gene expression microarray datasets are known to greatly affect downstream data analysis, especially when degraded samples, unique tissue samples, or novel expression assays are used. It is therefore important to assess the validity and impact of the assumptions built in to preprocessing schemes for a dataset. We developed and assessed a data preprocessing strategy for use with the Illumina DASL-based gene expression assay with partially degraded postmortem prefrontal cortex samples. The samples were obtained from individuals with autism as part of an investigation of the pathogenic factors contributing to autism. Using statistical analysis methods and metrics such as those associated with multivariate distance matrix regression and mean inter-array correlation, we developed a DASL-based assay gene expression preprocessing pipeline to accommodate and detect problems with microarray-based gene expression values obtained with degraded brain samples. Key steps in the pipeline included outlier exclusion, data transformation and normalization, and batch effect and covariate corrections. Our goal was to produce a clean dataset for subsequent downstream differential expression analysis. We ultimately settled on available transformation and normalization algorithms in the R/Bioconductor package lumi based on an assessment of their use in various combinations. A log2-transformed, quantile-normalized, and batch and seizure-corrected procedure was likely the most appropriate for our data. We empirically tested different components of our proposed preprocessing strategy and believe that our results suggest that a preprocessing strategy that effectively identifies outliers, normalizes the data, and corrects for batch effects can be applied to all studies, even those pursued with degraded samples.

  17. In utero and lactational dioxin exposure induces Sema3b and Sema3g gene expression in the developing mouse brain.

    Science.gov (United States)

    Kimura, Eiki; Endo, Toshihiro; Yoshioka, Wataru; Ding, Yunjie; Ujita, Waka; Kakeyama, Masaki; Tohyama, Chiharu

    2016-07-22

    In the developing mammalian brain, neural network formation is regulated by complex signaling cascades. In utero and lactational dioxin exposure is known to induce higher brain function abnormalities and dendritic growth disruption in rodents. However, it is unclear whether perinatal dioxin exposure affects the expression of genes involved in neural network formation. Therefore, we investigated changes in gene expression in the brain regions of developing mice born to dams administered 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dose: 0, 0.6, or 3.0 μg/kg) on gestational day 12.5. Quantitative RT-PCR showed that TCDD exposure induced Ahrr expression in the cerebral cortex, hippocampus, and olfactory bulb of 3-day-old mice. Gene microarray analysis indicated that the mRNA expression levels of Sema3b and Sema3g, which encode proteins that are known to control axonal projections, were elevated in the olfactory bulb of TCDD-exposed mice, and the induction of these genes was observed during a 2-week postnatal period. Increased Sema3g expression was also observed in the brain but not in the kidney, liver, lung, and spleen of TCDD-exposed neonatal mice. These results indicate that the Sema3b and Sema3g genes are sensitive to brain-specific induction by dioxin exposure, which may disrupt neural network formation in the mammalian nervous system, thereby leading to abnormal higher brain function in adulthood.

  18. Functional characterisation of human synaptic genes expressed in the Drosophila brain.

    Science.gov (United States)

    Zografos, Lysimachos; Tang, Joanne; Hesse, Franziska; Wanker, Erich E; Li, Ka Wan; Smit, August B; Davies, R Wayne; Armstrong, J Douglas

    2016-05-15

    Drosophila melanogaster is an established and versatile model organism. Here we describe and make available a collection of transgenic Drosophila strains expressing human synaptic genes. The collection can be used to study and characterise human synaptic genes and their interactions and as controls for mutant studies. It was generated in a way that allows the easy addition of new strains, as well as their combination. In order to highlight the potential value of the collection for the characterisation of human synaptic genes we also use two assays, investigating any gain-of-function motor and/or cognitive phenotypes in the strains in this collection. Using these assays we show that among the strains made there are both types of gain-of-function phenotypes investigated. As an example, we focus on the three strains expressing human tyrosine protein kinase Fyn, the small GTPase Rap1a and human Arc, respectively. Of the three, the first shows a cognitive gain-of-function phenotype while the second a motor gain-of-function phenotype. By contrast, Arc, which has no Drosophila ortholog, shows no gain-of-function phenotype.

  19. Functional characterisation of human synaptic genes expressed in the Drosophila brain

    Directory of Open Access Journals (Sweden)

    Lysimachos Zografos

    2016-05-01

    Full Text Available Drosophila melanogaster is an established and versatile model organism. Here we describe and make available a collection of transgenic Drosophila strains expressing human synaptic genes. The collection can be used to study and characterise human synaptic genes and their interactions and as controls for mutant studies. It was generated in a way that allows the easy addition of new strains, as well as their combination. In order to highlight the potential value of the collection for the characterisation of human synaptic genes we also use two assays, investigating any gain-of-function motor and/or cognitive phenotypes in the strains in this collection. Using these assays we show that among the strains made there are both types of gain-of-function phenotypes investigated. As an example, we focus on the three strains expressing human tyrosine protein kinase Fyn, the small GTPase Rap1a and human Arc, respectively. Of the three, the first shows a cognitive gain-of-function phenotype while the second a motor gain-of-function phenotype. By contrast, Arc, which has no Drosophila ortholog, shows no gain-of-function phenotype.

  20. A high soy diet enhances neurotropin receptor and Bcl-XL gene expression in the brains of ovariectomized female rats.

    Science.gov (United States)

    Lovekamp-Swan, Tara; Glendenning, Michele L; Schreihofer, Derek A

    2007-07-23

    Estrogen is a powerful neuroprotective agent with the ability to induce trophic and antiapoptotic genes. However, concerns about negative overall health consequences of estrogen replacement after menopause have led to the adoption of other strategies to obtain estrogen's benefits in the brain, including the use of selective estrogen receptor modulators, high soy diets, or isoflavone supplements. This study sought to determine the ability of a high soy diet to induce neuroprotective gene expression in the female rat brain and compare the actions of soy with estrogen. Adult ovariectomized female rats were treated with 3 days of high dose estrogen or 2 weeks of a soy-free diet, a high soy diet, or chronic low dose estrogen. Different brain regions were microdissected and subjected to real time RT-PCR for neuroprotective genes previously shown to be estrogen-regulated. The principle findings are that a high soy diet led to the widespread increase in the mRNA for neurotropin receptors TrkA and p75-NTR, and the antiapoptotic Bcl-2 family member Bcl-X(L). Immunohistochemistry confirmed increases in both TrkA and Bcl-X(L). Chronic low dose estrogen mimicked some of these effects, but acute high dose estrogen did not. The effects of a high soy diet were particularly evident in the parietal cortex and hippocampus, two regions protected by estrogen in animal models of neurological disease and injury. These results suggest that a high soy diet may provide beneficial effects to the brain similar to low dose chronic estrogen treatment such as that used for postmenopausal hormone replacement.

  1. Brain insults in rats induce increased expression of the BDNF gene through differential use of multiple promoters.

    Science.gov (United States)

    Kokaia, Z; Metsis, M; Kokaia, M; Bengzon, J; Elmér, E; Smith, M L; Timmusk, T; Siesjö, B K; Persson, H; Lindvall, O

    1994-04-01

    The rat brain-derived neurotrophic factor (BDNF) gene consists of four short 5'-exons linked to separate promoters and one 3'-exon encoding the mature BDNF protein. Using in situ hybridization we demonstrate here that kindling-induced seizures, cerebral ischaemia and insulin-induced hypoglycaemic coma increase BDNF mRNA levels through insult- and region-specific usage of three promoters within the BDNF gene. Both brief (2 min) and longer (10 min) periods of forebrain ischaemia induced significant and major increases only of exon III mRNA in the dentate gyrus. Following hypoglycaemic coma (1 and 30 min), exon III mRNA was markedly elevated in the dentate gyrus and, in addition, exon I mRNA showed a moderate increase. Single and recurrent (n = 40) hippocampal seizures significantly increased expression of exon I, II and III mRNAs in the dentate gyrus granule cells. After recurrent seizures, including generalized convulsions, there were also major increases of both exon I and III mRNAs in the CA3 region, amygdala, piriform cortex and neocortex, whereas in the hippocampal CA1 sector marked elevations were detected only for exon III mRNA. The insults had no effect on the level of exon IV mRNA in the brain. The region- and insult-specific pattern of promoter activation might be of importance for the effectiveness of protective responses as well as for the regulation of plastic changes following brain insults.

  2. Expression of hypoxia-inducible factor 1 alpha and oligodendrocyte lineage gene-1 in cultured brain slices after oxygen-glucose deprivation

    Institute of Scientific and Technical Information of China (English)

    Hong Cui; Weijuan Han; Lijun Yang; Yanzhong Chang

    2013-01-01

    Oligodendrocyte lineage gene-1 expressed in oligodendrocytes may trigger the repair of neuronal myelin impairment, and play a crucial role in myelin repair. Hypoxia-inducible factor 1α, a transcription factor, is of great significance in premature infants with hypoxic-ischemic brain damage. There is little evidence of direct regulatory effects of hypoxia-inducible factor 1α on oligodendrocyte lineage gene-1. In this study, brain slices of Sprague-Dawley rats were cultured and subjected to oxygen-glucose deprivation. Then, slices were transfected with hypoxia-inducible factor 1α or oligodendrocyte lineage gene-1. The expression levels of hypoxia-inducible factor 1α and oligodendrocyte lineage gene-1 were significantly up-regulated in rat brains prior to transfection, as detected by immunohistochemical staining. Eight hours after transfection of slices with hypoxia-inducible factor 1α, oligodendrocyte lineage gene-1 expression was upregulated, and reached a peak 24 hours after transfection. Oligodendrocyte lineage gene-1 transfection induced no significant differences in hypoxia-inducible factor 1α levels in rat brain tissues with oxygen-glucose deprivation. These experimental findings indicate that hypoxia-inducible factor 1α can regulate oligodendrocyte lineage gene-1 expression in hypoxic brain tissue, thus repairing the neural impairment.

  3. Epigenetic Activation of Neuronal Gene Expression by JMJD3 is Required for Postnatal and Adult Brain Neurogenesis

    Science.gov (United States)

    Park, Dae Hwi; Hong, Sung Jun; Salinas, Ryan D.; Liu, Siyuan John; Sun, Shawn W.; Sgualdino, Jacopo; Testa, Giuseppe; Matzuk, Martin M.; Iwamori, Naoki; Lim, Daniel A.

    2014-01-01

    SUMMARY The epigenetic mechanisms that enable lifelong neurogenesis from neural stem cells (NSCs) in the adult mammalian brain are poorly understood. Here we show that JMJD3, a histone H3-lysine 27 (H3K27) demethylase, acts as a critical activator of neurogenesis from adult subventricular zone (SVZ) NSCs. JMJD3 is upregulated in neuroblasts, and Jmjd3-deletion targeted to SVZ NSCs in both developing and adult mice impairs neuronal differentiation. JMJD3 regulates neurogenic gene expression via interaction at not only promoter regions, but also neurogenic enhancer elements. JMJD3 localizes at neural enhancers genome-wide in embryonic brain, and in SVZ NSCs, JMJD3 regulates the I12b enhancer of Dlx2. In Jmjd3-deleted SVZ cells, I12b remains enriched with H3K27me3, and Dlx2-dependent neurogenesis fails. These findings support a model in which JMJD3 and the poised state of key transcriptional regulatory elements comprise an epigenetic mechanism that enables the activation of neurogenic gene expression in adult NSCs throughout life. PMID:25176653

  4. Activation of Neuronal Gene Expression by the JMJD3 Demethylase Is Required for Postnatal and Adult Brain Neurogenesis

    Directory of Open Access Journals (Sweden)

    Dae Hwi Park

    2014-09-01

    Full Text Available The epigenetic mechanisms that enable lifelong neurogenesis from neural stem cells (NSCs in the adult mammalian brain are poorly understood. Here, we show that JMJD3, a histone H3 lysine 27 (H3K27 demethylase, acts as a critical activator of neurogenesis from adult subventricular zone (SVZ NSCs. JMJD3 is upregulated in neuroblasts, and Jmjd3 deletion targeted to SVZ NSCs in both developing and adult mice impairs neuronal differentiation. JMJD3 regulates neurogenic gene expression via interaction at not only promoter regions but also neurogenic enhancer elements. JMJD3 localizes at neural enhancers genome-wide in embryonic brain, and in SVZ NSCs, JMJD3 regulates the I12b enhancer of Dlx2. In Jmjd3-deleted SVZ cells, I12b remains enriched with H3K27me3 and Dlx2-dependent neurogenesis fails. These findings support a model in which JMJD3 and the poised state of key transcriptional regulatory elements comprise an epigenetic mechanism that enables the activation of neurogenic gene expression in adult NSCs throughout life.

  5. Nutrition and division of labor: Effects on foraging and brain gene expression in the paper wasp Polistes metricus.

    Science.gov (United States)

    Daugherty, T H F; Toth, A L; Robinson, G E

    2011-12-01

    Deeply conserved molecular mechanisms regulate food-searching behaviour in response to nutritional cues in a wide variety of vertebrates and invertebrates. Studies of the highly eusocial honey bee have shown that nutritional physiology and some conserved nutrient signalling pathways, especially the insulin pathway, also regulate the division of labour between foraging and non-foraging individuals. Typically, lean workers leave the nest to forage for food, and well-nourished workers perform tasks inside the nest. Here we provide the first direct test of whether similar mechanisms operate in a primitively eusocial insect in an independently evolved social lineage, the paper wasp Polistes metricus. We found that food deprivation caused reduced lipid stores and higher levels of colony and individual foraging. Individuals with greatly reduced lipid stores foraged at extremely elevated levels. In addition, brain expression of several foraging-related genes was influenced by food deprivation, including insulin-like peptide 2 (ilp2). Together with previous findings, our results demonstrate that nutrition regulates foraging division of labour in two independently evolved social insect lineages (bees and wasps), despite large differences in social organization. Our results also provide additional support for the idea that nutritional asymmetries among individuals, based on differences in nutritional physiology and expression of conserved nutrient signalling genes in the brain, are important in the division of labour in eusocial societies.

  6. The Rat Homolog of the Schizophrenia Susceptibility Gene ZNF804A Is Highly Expressed during Brain Development, Particularly in Growth Cones

    DEFF Research Database (Denmark)

    Hinna, Katja Hvid; Rich, Karen; Fex Svenningsen, Åsa;

    2015-01-01

    A single nucleotide polymorphism in the ZNF804A gene, rs1344706, is associated with schizophrenia. The polymorphism has been suggested to alter fetal expression of ZNF804A. It has also been reported to be associated with altered cortical functioning and neural connectivity in the brain. Since...... developmental mechanisms are suggested in the pathophysiology for schizophrenia, expression of Zfp804A, the rat homolog of ZNF804A, was investigated in the developing rat brain. We found that expression of Zfp804A in most brain regions is developmentally regulated and peaks around birth, where after...

  7. Nicotine mediates expression of genes related to antioxidant capacity and oxidative stress response in HIV-1 transgenic rat brain.

    Science.gov (United States)

    Song, Guohua; Nesil, Tanseli; Cao, Junran; Yang, Zhongli; Chang, Sulie L; Li, Ming D

    2016-02-01

    Oxidative stress plays an important role in the progression of HIV-1 infection. Nicotine can either protect neurons from neurodegeneration or induce oxidative stress, depending on its dose and degree of oxidative stress impairment. However, the relationship between nicotine and oxidative stress in the HIV-1-infected individuals remains largely unknown. The purpose of this study was to determine the effect of nicotine on expression of genes related to the glutathione (GSH)-centered antioxidant system and oxidative stress in the nucleus accumbens (NAc) and ventral tegmental area (VTA) of HIV-1 transgenic (HIV-1Tg) and F344 control rats. Adult HIV-1Tg and F344 rats received nicotine (0.4 mg/kg, base, s.c.) or saline injections once per day for 27 days. At the end of treatment, various brain regions including the NAc and VTA were collected from each rat. Following total RNA extraction and complementary DNA (cDNA) synthesis of each sample, quantitative reverse transcription PCR (RT-PCR) analysis was performed for 43 oxidative-stress-related genes. Compared with F344 control rats, HIV-1Tg rats showed a significant downregulation of genes involved in ATPase and cyctochrome oxidase at the messenger RNA (mRNA) level in both regions. Further, we found a significant downregulation of Gstm5 in the NAc and upregulation of Cox1, Cox3, and Gsta6 in the VTA of HIV-1Tg rats. HIV-1Tg rats showed brain-region-specific responses to chronic nicotine treatment. This response resulted in a change in the expression of genes involved in antioxidant mechanisms including the downregulation of genes such as Atp5h, Calml1, Gpx7, Gstm5, Gsr, and Gsta6 and upregulation of Sod1 in the NAc, as well as downregulation of genes like Cox5a, Gpx4, Gpx6, Gpx7, Gstm5, and Sod1 in the VTA of HIV-1Tg rats. Together, we conclude that chronic nicotine treatment has a dual effect on the antioxidant defense system and oxidative-stress-induced apoptosis signaling in HIV-1Tg rats. These findings suggest that

  8. In vitro Expression in Eukaryotic Cells of a Prion Protein Gene Cloned from Scrapie-Infected Mouse Brain

    Science.gov (United States)

    Caughey, Byron; Race, Richard E.; Vogel, Mari; Buchmeier, Michael J.; Chesebro, Bruce

    1988-07-01

    It has been proposed that the causative agent of scrapie represents a class of infectious particle that is devoid of nucleic acid and that an altered form of the endogenous prion protein (PrP) is the agent. However, it has been difficult to exclude the possibility that PrP purified from scrapie tissues might be contaminated with a more conventional viral agent. To obtain PrP uncontaminated by scrapie-infected tissues, PrP cDNA cloned from a scrapie-infected mouse brain was expressed in mouse C127 cells in vitro. mRNA and protein encoded by the cloned PrP gene were identified. The expressed PrP polypeptides appeared to be glycosylated and were released from the cell surface into the medium. Homogenates of the cells expressing the cloned PrP gene were inoculated into susceptible mice but failed to induce clinical signs of scrapie. Thus, either PrP is not the transmissible agent of scrapie or the expressed PrP requires additional modification to be infectious.

  9. Association analyses between brain-expressed fatty-acid binding protein (FABP) genes and schizophrenia and bipolar disorder.

    Science.gov (United States)

    Iwayama, Yoshimi; Hattori, Eiji; Maekawa, Motoko; Yamada, Kazuo; Toyota, Tomoko; Ohnishi, Tetsuo; Iwata, Yasuhide; Tsuchiya, Kenji J; Sugihara, Genichi; Kikuchi, Mitsuru; Hashimoto, Kenji; Iyo, Masaomi; Inada, Toshiya; Kunugi, Hiroshi; Ozaki, Norio; Iwata, Nakao; Nanko, Shinichiro; Iwamoto, Kazuya; Okazaki, Yuji; Kato, Tadafumi; Yoshikawa, Takeo

    2010-03-05

    Deficits in prepulse inhibition (PPI) are a biological marker for psychiatric illnesses such as schizophrenia and bipolar disorder. To unravel PPI-controlling mechanisms, we previously performed quantitative trait loci (QTL) analysis in mice, and identified Fabp7, that encodes a brain-type fatty acid binding protein (Fabp), as a causative gene. In that study, human FABP7 showed genetic association with schizophrenia. FABPs constitute a gene family, of which members FABP5 and FABP3 are also expressed in the brain. These FABP proteins are molecular chaperons for polyunsaturated fatty acids (PUFAs) such as arachidonic and docosahexaenoic acids. Additionally, the involvement of PUFAs has been documented in the pathophysiology of schizophrenia and mood disorders. Therefore in this study, we examined the genetic roles of FABP5 and 3 in schizophrenia (N = 1,900 in combination with controls) and FABP7, 5, and 3 in bipolar disorder (N = 1,762 in the case-control set). Three single nucleotide polymorphisms (SNPs) from FABP7 showed nominal association with bipolar disorder, and haplotypes of the same gene showed empirical associations with bipolar disorder even after correction of multiple testing. We could not perform association studies on FABP5, due to the lack of informative SNPs. FABP3 displayed no association with either disease. Each FABP is relatively small and it is assumed that there are multiple regulatory elements that control gene expression. Therefore, future identification of unknown regulatory elements will be necessary to make a more detailed analysis of their genetic contribution to mental illnesses.

  10. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    Energy Technology Data Exchange (ETDEWEB)

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F. [Univ. of California, San Francisco, CA (United States)

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing to the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.

  11. Novel subtractive transcription-based amplification of mRNA (STAR method and its application in search of rare and differentially expressed genes in AD brains

    Directory of Open Access Journals (Sweden)

    Walker P Roy

    2006-11-01

    Full Text Available Abstract Background Alzheimer's disease (AD is a complex disorder that involves multiple biological processes. Many genes implicated in these processes may be present in low abundance in the human brain. DNA microarray analysis identifies changed genes that are expressed at high or moderate levels. Complementary to this approach, we described here a novel technology designed specifically to isolate rare and novel genes previously undetectable by other methods. We have used this method to identify differentially expressed genes in brains affected by AD. Our method, termed Subtractive Transcription-based Amplification of mRNA (STAR, is a combination of subtractive RNA/DNA hybridization and RNA amplification, which allows the removal of non-differentially expressed transcripts and the linear amplification of the differentially expressed genes. Results Using the STAR technology we have identified over 800 differentially expressed sequences in AD brains, both up- and down- regulated, compared to age-matched controls. Over 55% of the sequences represent genes of unknown function and roughly half of them were novel and rare discoveries in the human brain. The expression changes of nearly 80 unique genes were further confirmed by qRT-PCR and the association of additional genes with AD and/or neurodegeneration was established using an in-house literature mining tool (LitMiner. Conclusion The STAR process significantly amplifies unique and rare sequences relative to abundant housekeeping genes and, as a consequence, identifies genes not previously linked to AD. This method also offers new opportunities to study the subtle changes in gene expression that potentially contribute to the development and/or progression of AD.

  12. A Gene Co-Expression Network in Whole Blood of Schizophrenia Patients Is Independent of Antipsychotic-Use and Enriched for Brain-Expressed Genes

    NARCIS (Netherlands)

    de Jong, Simone; Boks, Marco P. M.; Fuller, Tova F.; Strengman, Eric; Janson, Esther; de Kovel, Carolien G. F.; Ori, Anil P. S.; Vi, Nancy; Mulder, Flip; Blom, Jan Dirk; Glenthoj, Birte; Schubart, Chris D.; Cahn, Wiepke; Kahn, Rene S.; Horvath, Steve; Ophoff, Roel A.

    2012-01-01

    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of

  13. Using bioconductor package BiGGR for metabolic flux estimation based on gene expression changes in brain.

    Science.gov (United States)

    Gavai, Anand K; Supandi, Farahaniza; Hettling, Hannes; Murrell, Paul; Leunissen, Jack A M; van Beek, Johannes H G M

    2015-01-01

    Predicting the distribution of metabolic fluxes in biochemical networks is of major interest in systems biology. Several databases provide metabolic reconstructions for different organisms. Software to analyze flux distributions exists, among others for the proprietary MATLAB environment. Given the large user community for the R computing environment, a simple implementation of flux analysis in R appears desirable and will facilitate easy interaction with computational tools to handle gene expression data. We extended the R software package BiGGR, an implementation of metabolic flux analysis in R. BiGGR makes use of public metabolic reconstruction databases, and contains the BiGG database and the reconstruction of human metabolism Recon2 as Systems Biology Markup Language (SBML) objects. Models can be assembled by querying the databases for pathways, genes or reactions of interest. Fluxes can then be estimated by maximization or minimization of an objective function using linear inverse modeling algorithms. Furthermore, BiGGR provides functionality to quantify the uncertainty in flux estimates by sampling the constrained multidimensional flux space. As a result, ensembles of possible flux configurations are constructed that agree with measured data within precision limits. BiGGR also features automatic visualization of selected parts of metabolic networks using hypergraphs, with hyperedge widths proportional to estimated flux values. BiGGR supports import and export of models encoded in SBML and is therefore interoperable with different modeling and analysis tools. As an application example, we calculated the flux distribution in healthy human brain using a model of central carbon metabolism. We introduce a new algorithm termed Least-squares with equalities and inequalities Flux Balance Analysis (Lsei-FBA) to predict flux changes from gene expression changes, for instance during disease. Our estimates of brain metabolic flux pattern with Lsei-FBA for Alzheimer

  14. Gene expression in brain and liver produced by three different regimens of alcohol consumption in mice: comparison with immune activation.

    Directory of Open Access Journals (Sweden)

    Elizabeth Osterndorff-Kahanek

    Full Text Available Chronically available alcohol escalates drinking in mice and a single injection of the immune activator lipopolysaccharide can mimic this effect and result in a persistent increase in alcohol consumption. We hypothesized that chronic alcohol drinking and lipopolysaccharide injections will produce some similar molecular changes that play a role in regulation of alcohol intake. We investigated the molecular mechanisms of chronic alcohol consumption or lipopolysaccharide insult by gene expression profiling in prefrontal cortex and liver of C57BL/6J mice. We identified similar patterns of transcriptional changes among four groups of animals, three consuming alcohol (vs water in different consumption tests and one injected with lipopolysaccharide (vs. vehicle. The three tests of alcohol consumption are the continuous chronic two bottle choice (Chronic, two bottle choice available every other day (Chronic Intermittent and limited access to one bottle of ethanol (Drinking in the Dark. Gene expression changes were more numerous and marked in liver than in prefrontal cortex for the alcohol treatments and similar in the two tissues for lipopolysaccharide. Many of the changes were unique to each treatment, but there was significant overlap in prefrontal cortex for Chronic-Chronic Intermittent and for Chronic Intermittent-lipopolysaccharide and in liver all pairs showed overlap. In silico cell-type analysis indicated that lipopolysaccharide had strongest effects on brain microglia and liver Kupffer cells. Pathway analysis detected a prefrontal cortex-based dopamine-related (PPP1R1B, DRD1, DRD2, FOSB, PDNY network that was highly over-represented in the Chronic Intermittent group, with several genes from the network being also regulated in the Chronic and lipopolysaccharide (but not Drinking in the Dark groups. Liver showed a CYP and GST centered metabolic network shared in part by all four treatments. We demonstrate common consequences of chronic alcohol

  15. The peroxisome proliferator-activated receptor alpha-selective activator ciprofibrate upregulates expression of genes encoding fatty acid oxidation and ketogenesis enzymes in rat brain.

    Science.gov (United States)

    Cullingford, Tim E; Dolphin, Colin T; Sato, Hitoshi

    2002-04-01

    Activated peroxisome proliferator activated receptor alpha (PPAR alpha) protects against the cellular inflammatory response, and is central to fatty acid-mediated upregulation of the gene encoding the key ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHS). We have previously demonstrated both PPAR alpha and mHS expression in brain, implying that brain-targeted PPAR alpha activators may likewise up-regulate mHS expression in brain. Thus, to attempt pharmacological activation of brain PPAR alpha in vivo, we have administered to rats two drugs with previously defined actions in rat brain, namely the PPAR alpha-selective activator ciprofibrate and the pan-PPAR activator valproate. Using the sensitive and discriminatory RNase protection co-assay, we demonstrate that both ciprofibrate and valproate induce mHS expression in liver, the archetypal PPAR alpha-expressing organ. Furthermore, ciprofibrate potently increases mHS mRNA abundance in rat brain, together with lesser increases in two other PPAR alpha-regulated mRNAs. Thus we demonstrate, for the first time, up-regulation of expression of PPAR alpha-dependent genes including mHS in brain, with implications in the increased elimination of neuro-inflammatory lipids and concomitant increased production of neuro-protective ketone bodies.

  16. Regional and cellular gene expression changes in human Huntington's disease brain

    OpenAIRE

    2006-01-01

    Huntington's disease (HD) pathology is well understood at a histological level but a comprehensive molecular analysis of the effect of the disease in the human brain has not previously been available. To elucidate the molecular phenotype of HD on a genome-wide scale, we compared mRNA profiles from 44 human HD brains with those from 36 unaffected controls using microarray analysis. Four brain regions were analyzed: caudate nucleus, cerebellum, prefrontal association cortex [Brodmann's area 9 (...

  17. Expression, Covariation, and Genetic Regulation of miRNA Biogenesis Genes in Brain Supports their Role in Addiction, Psychiatric Disorders, and Disease

    Directory of Open Access Journals (Sweden)

    Megan Kathleen Mulligan

    2013-07-01

    Full Text Available The role of miRNA and miRNA biogenesis genes in the adult brain is just beginning to be explored. In this study we have performed a comprehensive analysis of the expression, genetic regulation, and co-expression of major components of the miRNA biogenesis pathway using human and mouse data sets and resources available on the GeneNetwork web site (genenetwork.org. We found a wide range of variation in expression in both species for key components of the pathway—Drosha, Pasha, and Dicer. Across species, tissues, and expression platforms all three genes are generally well correlated. No single genetic locus exerts a strong and consistent influence on the expression of these key genes across murine brain regions. However, in mouse striatum, many members of the miRNA pathway are correlated—including Dicer, Drosha, Pasha, Ars2 (Srrt, Eif2c1 (Ago1, Eif2c2 (Ago2, Zcchc11, and Snip1. The expression of these genes may be partly influenced by a locus on Chromosome 9 (105.67 to 106.32 Mb. We explored ~1500 brain phenotypes available for the C57BL/6J x DBA/2J (BXD genetic mouse population in order to identify miRNA biogenesis genes correlated with traits related to addiction and psychiatric disorders. We found a significant association between expression of Dicer and Drosha in several brain regions and the response to many drugs of abuse, including ethanol, cocaine, and methamphetamine. Expression of Dicer, Drosha, and Pasha in most of the brain regions explored is strongly correlated with the expression of key members of the dopamine system. Drosha, Pasha, and Dicer expression is also correlated with the expression of behavioral traits measuring depression and sensorimotor gating, impulsivity, and anxiety, respectively. Our study provides a global survey of the expression and regulation of key miRNA biogenesis genes in brain and provides preliminary support for the involvement of these genes and their product miRNAs in addiction and psychiatric disease

  18. Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain

    Directory of Open Access Journals (Sweden)

    Hauptmann Giselbert

    2011-04-01

    Full Text Available Abstract Background In recent years, mapping of overlapping and abutting regulatory gene expression domains by chromogenic two-color in situ hybridization has helped define molecular subdivisions of the developing vertebrate brain and shed light on its basic organization. Despite the benefits of this technique, visualization of overlapping transcript distributions by differently colored precipitates remains difficult because of masking of lighter signals by darker color precipitates and lack of three-dimensional visualization properties. Fluorescent detection of transcript distributions may be able to solve these issues. However, despite the use of signal amplification systems for increasing sensitivity, fluorescent detection in whole-mounts suffers from rapid quenching of peroxidase (POD activity compared to alkaline phosphatase chromogenic reactions. Thus, less strongly expressed genes cannot be efficiently detected. Results We developed an optimized procedure for fluorescent detection of transcript distribution in whole-mount zebrafish embryos using tyramide signal amplification (TSA. Conditions for hybridization and POD-TSA reaction were optimized by the application of the viscosity-increasing polymer dextran sulfate and the use of the substituted phenol compounds 4-iodophenol and vanillin as enhancers of POD activity. In combination with highly effective bench-made tyramide substrates, these improvements resulted in dramatically increased signal-to-noise ratios. The strongly enhanced signal intensities permitted fluorescent visualization of less abundant transcripts of tissue-specific regulatory genes. When performing multicolor fluorescent in situ hybridization (FISH experiments, the highly sensitive POD reaction conditions required effective POD inactivation after each detection cycle by glycine-hydrochloric acid treatment. This optimized FISH procedure permitted the simultaneous fluorescent visualization of up to three unique transcripts

  19. Decreased glucose transporter 1 gene expression and glucose uptake in fetal brain exposed to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Pullen, G.L.; Srivenugopal, K.S.; Yuan Xiaohua; Snyder, A.K. (Veterans Affairs Medical Center, North Chicago, IL (United States) Chicago Medical School, North Chicago, IL (United States))

    1992-01-01

    Using pregnant rats fed equicaloric liquid diets (AF, ad libitum-fed controls; PF, pair-fed controls; EF, ethanol-fed), the authors have previously shown that maternal alcoholism produces a specific and significant decrease of glucose in the fetal brain, which is accompanied by growth retardation. To further define the mechanisms of ethanol-induced perturbations in fetal fuel supply, they have examined (I) the uptake of 2-deoxyglucose (2-DG) by dissociated brain cells from fetal rats that were exposed to ethanol in utero and (II) the steady-state levels of the glucose transporter-1 (GT-1) mRNA. A 9% decrease in brain weight and a 54.8% reduction in 2-DG uptake into brain cells were found in offspring of EF mothers compared to the AF group. Brain weight correlated with the rate of 2-DG uptake. Northern blot analysis showed a 50% reduction of GT-1 mRNA in EF brain relative to that in the AF and PF groups. They conclude that glucose transport into the brain is an important parameter altered by maternal ethanol ingestion.

  20. Pathologic and Gene Expression Features of Metastatic Melanomas to the Brain (MBM)

    Science.gov (United States)

    Hamilton, Ronald; Krauze, Michal; Romkes, Marjorie; Omolo, Bernard; Konstantinopoulos, Panagiotis; Reinhart, Todd; Harasymczuk, Malgorzata; Wang, YangYang; Lin, Yan; Ferrone, Soldano; Whiteside, Theresa; Bortoluzzi, Stephanie; Werley, Jonette; Nukui, Tomoko; Fallert-Junecko, Beth; Kondziolka, Douglas; Ibrahim, Joseph; Becker, Dorothea; Kirkwood, John; Moschos, Stergios

    2013-01-01

    Background The prognosis of MBM is variable with prolonged survival in a subset. It is unclear whether MBMs differ from extracranial metastases (EcM) and primary melanomas (PrM). Methods To study the biology of MBM we performed histopathologic analysis of tumor blocks from patients' craniotomy samples and whole genome expression profiling (WGEP) with confirmatory immunohistochemistry (IHC). Results Mononuclear infiltrate and low intratumoral hemorrhage were associated with prolonged overall survival (OS). Pathway analysis of WGEP data from 29 such craniotomy tumor blocks demonstrated that several immune-related BioCarta gene sets were associated with prolonged OS. WGEP analysis of MBM in comparison with same-patient EcM and PrM showed that MBM and EcM were similar—but both differ significantly from PrM. IHC analysis revealed that peritumoral CD3+ and CD8+ cells were associated with prolonged OS. Conclusions MBMs are more similar to EcM compared to PrM. Immune infiltrate is a favorable prognostic factor for MBM. PMID:23695963

  1. Thyroid hormone regulation of brain gene expression: role of thyroid hormone receptors

    OpenAIRE

    Gil-Ibáñez, Pilar

    2014-01-01

    Tesis doctoral inédita, leída en la Universidad Autónoma de Madrid. Facultad de Medicina. Departamento de Bioquímica. Fecha de lectura: 13 de junio, 2014 Thyroid hormones are important during development of the mammalian brain. They are involved in neuronal and glial cell differentiation and migration, axonal myelination, and synaptogenesis. The effects of thyroid hormones on brain development ...

  2. Environmental enrichment attenuates cognitive deficits, but does not alter neurotrophin gene expression in the hippocampus following lateral fluid percussion brain injury.

    Science.gov (United States)

    Hicks, R R; Zhang, L; Atkinson, A; Stevenon, M; Veneracion, M; Seroogy, K B

    2002-01-01

    Environmental enrichment attenuates neurological deficits associated with experimental brain injury. The molecular events that mediate these environmentally induced improvements in function after injury are largely unknown, but neurotrophins have been hypothesized to be a neural substrate because of their role in cell survival and neural plasticity. Furthermore, exposure to complex environments in normal animals increases neurotrophin gene expression. However, following an ischemic injury, environmental enrichment decreases neurotrophin mRNA levels. Whether these contrasting findings are attributable to differences between injured and uninjured animals or are dependent upon the specific type of brain injury has not been determined. We examined the effects of 14 days of environmental enrichment following a lateral fluid percussion brain injury on behavior and gene expression of brain-derived neurotrophic factor, its high-affinity receptor, TrkB, and neurotrophin-3 in the rat hippocampus. Environmental enrichment attenuated learning deficits in the injured animals, but neither the injury nor housing conditions influenced neurotrophin/receptor mRNA levels. From these data we suggest that following brain trauma, improvements in learning associated with environmental enrichment are not mediated by alterations in brain-derived neurotrophic factor, TrkB or neurotrophin-3 gene expression.

  3. Identification of sexually dimorphic gene expression in brain tissue of the fish Leporinus macrocephalus through mRNA differential display and real time PCR analyses.

    Science.gov (United States)

    Alves-Costa, Fernanda A; Wasko, A P

    2010-03-01

    Differentially expressed genes in males and females of vertebrate species generally have been investigated in gonads and, to a lesser extent, in other tissues. Therefore, we attempted to identify sexually dimorphic gene expression in the brains of adult males and females of Leporinus macrocephalus, a gonochoristic fish species that presents a ZZ/ZW sex determination system, throughout a comparative analysis using differential display reverse transcriptase-PCR and real-time PCR. Four cDNA fragments were characterized, representing candidate genes with differential expression between the samples. Two of these fragments presented no significant identity with previously reported gene sequences. The other two fragments, isolated from male specimens, were associated to the gene that codes for the protein APBA2 (amyloid beta (A4) precursor protein-binding, family A, member 2) and to the Rab 37 gene, a member of the Ras oncogene family. The overexpression of these genes has been associated to a greater production of the beta-amyloid protein which, in turns, is the major factor that leads to Alzheimer's disease, and to the development of brain-tumors, respectively. Quantitative RT-PCR analyses revealed a higher Apba2 gene expression in males, thus validating the previous data on differential display. L. macrocephalus may represent an interesting animal model to the understanding of the function of several vertebrate genes, including those involved in neurodegenerative and cancer diseases.

  4. Gene Expression in the Human Brain: The Current State of the Study of Specificity and Spatiotemporal Dynamics

    Science.gov (United States)

    Naumova, Oksana Yu.; Lee, Maria; Rychkov, Sergei Yu.; Vlasova, Natalia V.; Grigorenko, Elena L.

    2013-01-01

    Gene expression is one of the main molecular processes regulating the differentiation, development, and functioning of cells and tissues. In this review a handful of relevant terms and concepts are introduced and the most common techniques used in studies of gene expression/expression profiling (also referred to as studies of the transcriptome or…

  5. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages.

    Directory of Open Access Journals (Sweden)

    Maggie L Chow

    Full Text Available Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess

  6. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages.

    Science.gov (United States)

    Chow, Maggie L; Pramparo, Tiziano; Winn, Mary E; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J; Courchesne, Eric

    2012-01-01

    Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons

  7. Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets

    KAUST Repository

    Najera, Julia A.

    2016-04-23

    Background Methamphetamine (Meth) abuse is a major health problem linked to the aggravation of HIV- associated complications, especially within the Central Nervous System (CNS). Within the CNS, Meth has the ability to modify the activity/function of innate immune cells and increase brain viral loads. Here, we examined changes in the gene expression profile of neuron-free microglial cell preparations isolated from the brain of macaques infected with the Simian Immunodeficiency Virus (SIV), a model of neuroAIDS, and exposed to Meth. We aimed to identify molecular patterns triggered by Meth that could explain the detection of higher brain viral loads and the development of a pro-inflammatory CNS environment in the brain of infected drug abusers. Results We found that Meth alone has a strong effect on the transcription of genes associated with immune pathways, particularly inflammation and chemotaxis. Systems analysis led to a strong correlation between Meth exposure and enhancement of molecules associated with chemokines and chemokine receptors, especially CXCR4 and CCR5, which function as co-receptors for viral entry. The increase in CCR5 expression was confirmed in the brain in correlation with increased brain viral load. Conclusions Meth enhances the availability of CCR5-expressing cells for SIV in the brain, in correlation with increased viral load. This suggests that Meth is an important factor in the susceptibility to the infection and to the aggravated CNS inflammatory pathology associated with SIV in macaques and HIV in humans.

  8. Genome-wide analysis of brain and gonad transcripts reveals changes of key sex reversal-related genes expression and signaling pathways in three stages of Monopterus albus

    Science.gov (United States)

    Hu, Qing; Guo, Wei; Li, Dapeng

    2017-01-01

    Background The natural sex reversal severely affects the sex ratio and thus decreases the productivity of the rice field eel (Monopterus albus). How to understand and manipulate this process is one of the major issues for the rice field eel stocking. So far the genomics and transcriptomics data available for this species are still scarce. Here we provide a comprehensive study of transcriptomes of brain and gonad tissue in three sex stages (female, intersex and male) from the rice field eel to investigate changes in transcriptional level during the sex reversal process. Results Approximately 195 thousand unigenes were generated and over 44.4 thousand were functionally annotated. Comparative study between stages provided multiple differentially expressed genes in brain and gonad tissue. Overall 4668 genes were found to be of unequal abundance between gonad tissues, far more than that of the brain tissues (59 genes). These genes were enriched in several different signaling pathways. A number of 231 genes were found with different levels in gonad in each stage, with several reproduction-related genes included. A total of 19 candidate genes that could be most related to sex reversal were screened out, part of these genes’ expression patterns were validated by RT-qPCR. The expression of spef2, maats1, spag6 and dmc1 were abundant in testis, but was barely detected in females, while the 17β-hsd12, zpsbp3, gal3 and foxn5 were only expressed in ovary. Conclusion This study investigated the complexity of brain and gonad transcriptomes in three sex stages of the rice field eel. Integrated analysis of different gene expression and changes in signaling pathways, such as PI3K-Akt pathway, provided crucial data for further study of sex transformation mechanisms. PMID:28319194

  9. Effects of different endocrine disruptor (EDC) mixtures on gene expression in neonatal rat brain regions

    DEFF Research Database (Denmark)

    Lichtensteiger, Walter; Bassetti-Gaille, Catherine; Faass, Oliver

    2013-01-01

    Sexual brain differentiation is a potential EDC target. It depends on a combination of estrogen receptor- and androgen receptor-mediated effects in males and on estrogens in females. It is not known how these processes are affected by real-world mixtures of EDCs. We investigated the effect of thr...

  10. Changes of gene expression in developing mouse brain after exposures to x-rays, in comparison with exposures to accelerated heavy ion particles

    Energy Technology Data Exchange (ETDEWEB)

    Yaoi, Takeshi; Fushiki, Shinji [Kyoto Prefectural Univ. of Medicine, Dept. of Pathology and Applied Neurobiology, Kyoto (Japan); Nojima, Kumie [National Institute of Radiological Sciences, International Space Radiation Lab., Anagawa, Chiba (Japan)

    2003-07-01

    Prenatal exposure to ionizing radiation of low doses in rodents impedes neuronal migration during the period of cortical histogenesis, and results in disorganized cortical architecture in mature brain. On the contrary, exposure to heavy ion beams during fetal period mainly affects cell survival, viz., induction of apoptosis. However, the molecular mechanisms underlying to produce such difference in the effects between exposure to heavy particles and exposure to X-rays remain unknown. We have attempted to elucidate whether the changes of gene expression after exposure to heavy ions differ from those after X-irradiation in fetal brains. We thus applied two molecular biological techniques, i.e., the Restriction Landmark cDNA Scanning (RLCS) method and the suppression subtractive PCR method. Approximately 13,000 cDNA species were scanned and it turned out that more than twenty genes among the genes scanned were differentially expressed between X-irradiated embryos and non-irradiated ones. One of the genes showing up-regulation is Rab6A that is known to be associated with vesicle transport from trans-Golgi network. In addition, expression of some genes encoding RAB6A-interacting proteins was up-regulated. When expression of these genes was compared between animals after heavy-ion irradiation and those after X-irradiation, the changing pattern was different. Taking our previous observation that prenatal exposure to carbon particles induces apoptotic cell death in developing cerebral cortex into consideration, the difference in gene expression herein reported may contribute to better understand the difference in effects between exposures to heavy-ion particles and to X-rays. In conclusion, we identified Rab6A and its interacting proteins as candidates for the migration-associated genes, whose expression in fetal brain is up-regulated by carbon beam irradiation. (author)

  11. Effects of Herbal Supplements on PTSD-Induced Changes in Rat Behavior & Brain Gene Expression

    Science.gov (United States)

    2014-06-10

    Steele A, Kurnik DM, et al. Choline transporter gene variation is associated with attention - deficit hyperactivity disorder . Journal of...Wojcicki, J., Crawford, D., Edwards, R., Kemper, J., Townsend, W., Ceremuga, G., Padron, G. Effects of L-theanine on Post Traumatic Stress Disorder ...Mazei-Robison M, Steele A, Kurnik DM, Stein MA, Waldman ID, Blakely RD: Choline transporter gene variation is associated with attention - deficit

  12. Dissecting the role of Kr-h1 brain gene expression in foraging behavior in honey bees (Apis mellifera).

    Science.gov (United States)

    Fussnecker, B; Grozinger, C

    2008-09-01

    Expression of Krüppel homolog-1 (Kr-h1) in the honey bee brain is strongly associated with foraging behavior. We performed a series of studies to determine if Kr-h1 expression correlates with specific aspects of foraging. We found that Kr-h1 expression is unaffected by flight experience in male bees. Expression was unaffected by behavioral reversion of workers from foraging to brood care, suggesting that expression is not associated with the active performance of foraging, but rather with stable physiological changes. Kr-h1 expression is increased by cGMP treatment in workers, and the Kr-h1 promoter contains a conserved potential cGMP response element. Since cGMP treatment causes precocious foraging, our results suggest that Kr-h1 expression is associated with cGMP-mediated changes in the brain that occur early in the transition to foraging behavior.

  13. Isoform-level brain expression profiling of the spermidine/spermine N1-Acetyltransferase1 (SAT1) gene in major depression and suicide

    OpenAIRE

    2015-01-01

    Low brain expression of the spermidine/spermine N-1 acetyltransferase (SAT1) gene, the rate-limiting enzyme involved in catabolism of polyamines that mediate the polyamine stress response (PSR), has been reported in depressed suicides. However, it is unknown whether this effect is associated with depression or with suicide and whether all or only specific isoforms expressed by SAT1, such as the primary 171 amino acid protein-encoding transcript (SSAT), or an alternative splice variant (SSATX)...

  14. Preliminary Studies on Differential Expression of Auditory Functional Genes in the Brain After Repeated Blast Exposures

    Science.gov (United States)

    2012-01-01

    Army Medical Research and Materiel Command, Fort Detrick, MD Abstract—The mechanisms of central auditory processing involved in auditory/ vestibular ...trans- ducers in auditory neurons [22–23,45–48]. The frontal cor- tex and midbrain of blast-exposed mice showed significant increase in the expression of...auditory neurons [26]. Other types of molecules involved in calcium regula- tion, such as calreticulin and calmodulin-dependent pro- tein kinase expression

  15. The EF-hand Ca(2+)-binding protein super-family: a genome-wide analysis of gene expression patterns in the adult mouse brain.

    Science.gov (United States)

    Girard, F; Venail, J; Schwaller, B; Celio, M R

    2015-05-21

    In mice, 249 putative members of the superfamily of EF-hand domain Ca(2+)-binding proteins, manifesting great diversity in structure, cellular localization and functions have been identified. Three members in particular, namely, calbindin-D28K, calretinin and parvalbumin, are widely used as markers for specific neuronal subpopulations in different regions of the brain. The aim of the present study was to compile a comprehensive atlas of the gene-expression profiles of the entire EF-hand gene superfamily in the murine brain. This was achieved by a meticulous examination of the in-situ hybridization images in the Allen Brain Atlas database. Topographically, our analysis focused on the olfactory bulb, cerebral cortex (barrel cortex in the primary somatosensory area), basal ganglia, hippocampus, amygdala, thalamus, hypothalamus, cerebellum, midbrain, pons and medulla, and on clearly identifiable sub-structures within each of these areas. The expression profiles of four family-members, namely hippocalcin-like 4, neurocalcin-δ, plastin 3 and tescalcin, that have not been hitherto reported, at either the mRNA (in-situ-hybridization) or the protein (immunohistochemical) levels, are now presented for the first time. The fruit of our analysis is a document in which the gene-expression profiles of all members of the EF-hand family genes are compared, and in which future possible neuronal markers for specific cells/brain areas are identified. The assembled information could afford functional clues to investigators, conducive to further experimental pursuit.

  16. Theobromine-Induced Changes in A1 Purinergic Receptor Gene Expression and Distribution in a Rat Brain Alzheimer's Disease Model.

    Science.gov (United States)

    Mendiola-Precoma, Jesus; Padilla, Karla; Rodríguez-Cruz, Alfredo; Berumen, Laura C; Miledi, Ricardo; García-Alcocer, Guadalupe

    2017-01-01

    Dementia caused by Alzheimer's disease (AD) is mainly characterized by accumulation in the brain of extra- and intraneuronal amyloid-β (Aβ) and tau proteins, respectively, which selectively affect specific regions, particularly the neocortex and the hippocampus. Sporadic AD is mainly caused by an increase in apolipoprotein E, a component of chylomicrons, which are cholesterol transporters in the brain. Recent studies have shown that high lipid levels, especially cholesterol, are linked to AD. Adenosine is an atypical neurotransmitter that regulates a wide range of physiological functions by activating four P1 receptors (A1, A2A, A2B, and A3) and P2 purinergic receptors that are G protein-coupled. A1 receptors are involved in the inhibition of neurotransmitter release, which could be related to AD. The aim of the present work was to study the effects of a lard-enriched diet (LED) on cognitive and memory processes in adult rats (6 months of age) as well as the effect of theobromine on these processes. The results indicated that the fat-enriched diet resulted in a long-term deterioration in cognitive and memory functions. Increased levels of Aβ protein and IL-1β were also observed in the rats fed with a high-cholesterol diet, which were used to validate the AD animal model. In addition, the results of qPCR and immunohistochemistry indicated a decrease in gene expression and distribution of A1 purinegic receptor, respectively, in the hippocampus of LED-fed rats. Interestingly, theobromine, at both concentrations tested, restored A1 receptor levels and improved cognitive functions and Aβ levels for a dose of 30 mg/L drinking water.

  17. Global Brain Gene Expression Analysis Links Glutamatergic and GABAergic Alterations to Suicide and Major Depression

    OpenAIRE

    Adolfo Sequeira; Firoza Mamdani; Carl Ernst; Vawter, Marquis P.; Bunney, William E.; Veronique Lebel; Sonia Rehal; Tim Klempan; Alain Gratton; Chawki Benkelfat; Rouleau, Guy A.; Naguib Mechawar; Gustavo Turecki

    2009-01-01

    BACKGROUND: Most studies investigating the neurobiology of depression and suicide have focused on the serotonergic system. While it seems clear that serotonergic alterations play a role in the pathogenesis of these major public health problems, dysfunction in additional neurotransmitter systems and other molecular alterations may also be implicated. Microarray expression studies are excellent screening tools to generate hypotheses about additional molecular processes that may be at play. In t...

  18. Differential expressions of the alternatively spliced variant mRNAs of the µ opioid receptor gene, OPRM1, in brain regions of four inbred mouse strains.

    Directory of Open Access Journals (Sweden)

    Jin Xu

    Full Text Available The µ opioid receptor gene, OPRM1, undergoes extensive alternative pre-mRNA splicing in rodents and humans, with dozens of alternatively spliced variants of the OPRM1 gene. The present studies establish a SYBR green quantitative PCR (qPCR assay to more accurately quantify mouse OPRM1 splice variant mRNAs. Using these qPCR assays, we examined the expression of OPRM1 splice variant mRNAs in selected brain regions of four inbred mouse strains displaying differences in µ opioid-induced tolerance and physical dependence: C56BL/6J, 129P3/J, SJL/J and SWR/J. The complete mRNA expression profiles of the OPRM1 splice variants reveal marked differences of the variant mRNA expression among the brain regions in each mouse strain, suggesting region-specific alternative splicing of the OPRM1 gene. The expression of many variants was also strain-specific, implying a genetic influence on OPRM1 alternative splicing. The expression levels of a number of the variant mRNAs in certain brain regions appear to correlate with strain sensitivities to morphine analgesia, tolerance and physical dependence in four mouse strains.

  19. Huntington’s disease blood and brain show a common gene expression pattern and share an immune signature with Alzheimer’s disease

    Science.gov (United States)

    Hensman Moss, Davina J.; Flower, Michael D.; Lo, Kitty K.; Miller, James R. C.; van Ommen, Gert-Jan B.; ’t Hoen, Peter A. C.; Stone, Timothy C.; Guinee, Amelia; Langbehn, Douglas R.; Jones, Lesley; Plagnol, Vincent; van Roon-Mom, Willeke M. C.; Holmans, Peter; Tabrizi, Sarah J.

    2017-01-01

    There is widespread transcriptional dysregulation in Huntington’s disease (HD) brain, but analysis is inevitably limited by advanced disease and postmortem changes. However, mutant HTT is ubiquitously expressed and acts systemically, meaning blood, which is readily available and contains cells that are dysfunctional in HD, could act as a surrogate for brain tissue. We conducted an RNA-Seq transcriptomic analysis using whole blood from two HD cohorts, and performed gene set enrichment analysis using public databases and weighted correlation network analysis modules from HD and control brain datasets. We identified dysregulated gene sets in blood that replicated in the independent cohorts, correlated with disease severity, corresponded to the most significantly dysregulated modules in the HD caudate, the most prominently affected brain region, and significantly overlapped with the transcriptional signature of HD myeloid cells. High-throughput sequencing technologies and use of gene sets likely surmounted the limitations of previously inconsistent HD blood expression studies. Our results suggest transcription is disrupted in peripheral cells in HD through mechanisms that parallel those in brain. Immune upregulation in HD overlapped with Alzheimer’s disease, suggesting a common pathogenic mechanism involving macrophage phagocytosis and microglial synaptic pruning, and raises the potential for shared therapeutic approaches. PMID:28322270

  20. Lossless 3-D reconstruction and registration of semi-quantitative gene expression data in the mouse brain.

    Science.gov (United States)

    Enlow, Matthew A; Ju, Tao; Kakadiaris, Ioannis A; Carson, James P

    2011-01-01

    As imaging, computing, and data storage technologies improve, there is an increasing opportunity for multiscale analysis of three-dimensional datasets (3-D). Such analysis enables, for example, microscale elements of multiple macroscale specimens to be compared throughout the entire macroscale specimen. Spatial comparisons require bringing datasets into co-alignment. One approach for co-alignment involves elastic deformations of data in addition to rigid alignments. The elastic deformations distort space, and if not accounted for, can distort the information at the microscale. The algorithms developed in this work address this issue by allowing multiple data points to be encoded into a single image pixel, appropriately tracking each data point to ensure lossless data mapping during elastic spatial deformation. This approach was developed and implemented for both 2-D and 3D registration of images. Lossless reconstruction and registration was applied to semi-quantitative cellular gene expression data in the mouse brain, enabling comparison of multiple spatially registered 3-D datasets without any augmentation of the cellular data. Standard reconstruction and registration without the lossless approach resulted in errors in cellular quantities of ∼ 8%.

  1. Olfactory cells via nasal biopsy reflect the developing brain in gene expression profiles: utility and limitation of the surrogate tissues in research for brain disorders.

    Science.gov (United States)

    Horiuchi, Yasue; Kano, Shin-Ichi; Ishizuka, Koko; Cascella, Nicola G; Ishii, Seiji; Talbot, C Conover; Jaffe, Andrew E; Okano, Hideyuki; Pevsner, Jonathan; Colantuoni, Carlo; Sawa, Akira

    2013-12-01

    Human olfactory cells obtained by rapid nasal biopsy have been suggested to be a good surrogate system to address brain disease-associated molecular changes. Nonetheless, whether use of this experimental strategy is justified remains unclear. Here we compared expression profiles of olfactory cells systematically with those from the brain tissues and other cells. Principal component analysis indicated that the expression profiles of olfactory cells are very different from those of blood cells, but are closer to those of stem cells, in particular mesenchymal stem cells, that can be differentiated into the cells of the central nervous system.

  2. Mushroom Bodies of the Honeybee Brain Show Cell Population-Specific Plasticity in Expression of Amine-Receptor Genes

    Science.gov (United States)

    McQuillan, H. James; Nakagawa, Shinichi; Mercer, Alison R.

    2012-01-01

    Dopamine and octopamine released in the mushroom bodies of the insect brain play a critical role in the formation of aversive and appetitive memories, respectively. As recent evidence suggests a complex relationship between the effects of these two amines on the output of mushroom body circuits, we compared the expression of dopamine- and…

  3. Regional expression of the MAPT gene is associated with loss of hubs in brain networks and cognitive impairment in Parkinson disease and progressive supranuclear palsy.

    Science.gov (United States)

    Rittman, Timothy; Rubinov, Mikail; Vértes, Petra E; Patel, Ameera X; Ginestet, Cedric E; Ghosh, Boyd C P; Barker, Roger A; Spillantini, Maria Grazia; Bullmore, Edward T; Rowe, James B

    2016-12-01

    Abnormalities of tau protein are central to the pathogenesis of progressive supranuclear palsy, whereas haplotype variation of the tau gene MAPT influences the risk of Parkinson disease and Parkinson's disease dementia. We assessed whether regional MAPT expression might be associated with selective vulnerability of global brain networks to neurodegenerative pathology. Using task-free functional magnetic resonance imaging in progressive supranuclear palsy, Parkinson disease, and healthy subjects (n = 128), we examined functional brain networks and measured the connection strength between 471 gray matter regions. We obtained MAPT and SNCA microarray expression data in healthy subjects from the Allen brain atlas. Regional connectivity varied according to the normal expression of MAPT. The regional expression of MAPT correlated with the proportionate loss of regional connectivity in Parkinson's disease. Executive cognition was impaired in proportion to the loss of hub connectivity. These effects were not seen with SNCA, suggesting that alpha-synuclein pathology is not mediated through global network properties. The results establish a link between regional MAPT expression and selective vulnerability of functional brain networks to neurodegeneration.

  4. The neuronal ceroid lipofuscinosis Cln8 gene expression is developmentally regulated in mouse brain and up-regulated in the hippocampal kindling model of epilepsy

    Directory of Open Access Journals (Sweden)

    Kuronen Mervi

    2005-04-01

    Full Text Available Abstract Background The neuronal ceroid lipofuscinoses (NCLs are a group of inherited neurodegenerative disorders characterized by accumulation of autofluorescent material in many tissues, especially in neurons. Mutations in the CLN8 gene, encoding an endoplasmic reticulum (ER transmembrane protein of unknown function, underlie NCL phenotypes in humans and mice. The human phenotype is characterized by epilepsy, progressive psychomotor deterioration and visual loss, while motor neuron degeneration (mnd mice with a Cln8 mutation show progressive motor neuron dysfunction and retinal degeneration. Results We investigated spatial and temporal expression of Cln8 messenger ribonucleic acid (mRNA using in situ hybridization, reverse transcriptase polymerase chain reaction (RT-PCR and northern blotting. Cln8 is ubiquitously expressed at low levels in embryonic and adult tissues. In prenatal embryos Cln8 is most prominently expressed in the developing gastrointestinal tract, dorsal root ganglia (DRG and brain. In postnatal brain the highest expression is in the cortex and hippocampus. Expression of Cln8 mRNA in the central nervous system (CNS was also analyzed in the hippocampal electrical kindling model of epilepsy, in which Cln8 expression was rapidly up-regulated in hippocampal pyramidal and granular neurons. Conclusion Expression of Cln8 in the developing and mature brain suggests roles for Cln8 in maturation, differentiation and supporting the survival of different neuronal populations. The relevance of Cln8 up-regulation in hippocampal neurons of kindled mice should be further explored.

  5. St. John's Wort increases brain serotonin synthesis by inhibiting hepatic tryptophan 2, 3 dioxygenase activity and its gene expression in stressed rats.

    Science.gov (United States)

    Bano, Samina; Ara, Iffat; Saboohi, Kausar; Moattar, Tariq; Chaoudhry, Bushra

    2014-09-01

    We aimed to investigate the effects of herbal St. John's Wort (SJW) on transcriptional regulation of hepatic tryptophan 2, 3 - dioxygenase (TDO) enzyme activity and brain regional serotonin (5-HT) levels in rats exposed to forced swim test (FST). TDO mRNA expression was quantified using real-time reverse transcription polymerase chain (RT-PCR) reaction and brain regional indoleamines were determined by high performance liquid chromatography coupled to fluorescence detector. Behavioral analysis shows significant reduction in immobility time in SJW (500mg/kg/ml) administered rats. It was found that pretreatment of SJW to rats did not prevent stress-induced elevation in plasma corticosterone levels however it increases serotonin synthesis by virtue of inhibiting hepatic TDO enzyme activity and its gene expression, ascertaining the notion that there exists an inverse relationship between hepatic TDO enzyme activity and brain 5-HT. The drug also decreases serotonin turnover in all the brain areas (hypothalamus, hippocampus amygdala) in stressed rats endorsing its monoamine oxidase inhibition property. Inhibition of TDO enzyme activity and its gene expression by the drug provides new insights for the development of therapeutic interventions for stress related mental illnesses.

  6. Gene expression profile of brain regions reflecting aberrations in nervous system development targeting the process of neurite extension of rat offspring exposed developmentally to glycidol.

    Science.gov (United States)

    Akane, Hirotoshi; Saito, Fumiyo; Shiraki, Ayako; Imatanaka, Nobuya; Akahori, Yumi; Itahashi, Megu; Wang, Liyun; Shibutani, Makoto

    2014-12-01

    We previously found that exposure to glycidol at 1000 ppm in drinking water caused axonopathy in maternal rats and aberrations in late-stage hippocampal neurogenesis, targeting the process of neurite extension in offspring. To identify the profile of developmental neurotoxicity of glycidol, pregnant Sprague-Dawley rats were given drinking water containing glycidol from gestational day 6 until weaning on day 21 after delivery, and offspring at 0, 300 and 1000 ppm were subjected to region-specific global gene expression profiling. Four brain regions were selected to represent both cerebral and cerebellar tissues, i.e., the cingulate cortex, corpus callosum, hippocampal dentate gyrus and cerebellar vermis. Downregulated genes in the dentate gyrus were related to axonogenesis (Nfasc), myelination (Mal, Mrf and Ugt8), and cell proliferation (Aurkb and Ndc80) at ≥ 300 ppm, and upregulated genes were related to neural development (Frzb and Fzd6) at 1000 ppm. Upregulation was observed for genes related to myelination (Kl, Igf2 and Igfbp2) in the corpus callosum and axonogenesis and neuritogenesis (Efnb3, Tnc and Cd44) in the cingulate cortex, whereas downregulation was observed for genes related to synaptic transmission (Thbs2 and Ccl2) in the cerebellar vermis; all of these changes were mostly observed at 1000 ppm. Altered gene expression of Cntn3, which functions on neurite outgrowth-promotion, was observed in all four brain regions at 1000 ppm. Gene expression profiles suggest that developmental exposure to glycidol affected plasticity of neuronal networks in the broad brain areas, and dentate gyrus neurogenesis may be the sensitive target of this type of toxicity.

  7. Differential expression of brain immune genes and schizophrenia-related behavior in C57BL/6N and DBA/2J female mice.

    Science.gov (United States)

    Ma, Li; Kulesskaya, Natalia; Võikar, Vootele; Tian, Li

    2015-03-30

    Mounting evidence suggests the association of immune genes with complex neuropsychiatric diseases, such as schizophrenia. However, immune gene expression in the brain and their involvement in schizophrenia-related behavior in animal models have not been well studied so far. We analyzed the social (resident-intruder) and sensorimotor gating (pre-pulse inhibition (PPI) of acoustic startle) behaviors, and expression profiles of several brain immune genes in adult C57BL/6N and DBA/2J female mice. Compared to C57BL/6N mice, DBA/2J mice exhibited less social interaction in the resident-intruder test and reduced pre-pulse inhibition. The mRNA levels of Il1b and Il6 genes were significantly higher in the cortex and hypothalamus, while the mRNA level of C1qb was lower in the cortex, hippocampus and hypothalamus of DBA/2J mice compared to C57BL/6N mice. Furthermore, Tnfsf13b was up-regulated in the cortex and hippocampus, and so did Cd47 in the hippocampus, while Cx3cl1 was down-regulated in the cortex of DBA/2J mice. Our study demonstrates the differential expression of several immune genes in C57BL/6N and DBA/2J strains and more importantly provides clues on their potential importance in regulating schizophrenia-related endophenotypes in animal models.

  8. Gene expression profile induced by oral administration of baicalin and gardenin after focal brain ischemia in rats

    Institute of Scientific and Technical Information of China (English)

    Zhan-jun ZHANG; Zhong WANG; Xiao-yan ZHANG; Kang YING; Jian-xun LIU; Yong-yan WANG

    2005-01-01

    Aim: To investigate differential gene expression and the pharmacological mechanism of baicalin and gardenin in focal cerebral ischemia in rats with high-density cDNA microarray. Methods: Rat left middle cerebral arteries were occluded and treated with either baicalin or gardenin. The pharmacological effects were investigated using the difference in infarction areas before and after treatment, which were determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Gene expression was demonstrated using a "Biostar40S" gene microarray. Semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to verify the result of the selected genes. Results: Both baicalin and gardenin reduced the infarction areas in focal cerebral ischemia rats (P<0.05). The differential genes were 211,177, and 70 (upregulated or downregulated) in the model group, baicalin,and gardenin treatment groups compared with the sham-operated group,respectively. Gene expression of RpL19 and Csnk2 underwent an approximately 1.9 and 2.1-fold increase, respectively, verified by semiquantitative RT-PCR, which was the same trend as the cDNA microarray. Conclusion: Differential gene expression with respect to the pharmacological effects of baicalin and gardenin on focal cerebral ischemia by cDNA microarray revealed a number of clues with respect to the therapeutic mechanisms of Chinese traditional medicine. In addition,the present study provided theoretical and experimental evidence that will aid future studies examining cerebral ischemia.

  9. Non-negative Tensor Factorization with missing data for the modeling of gene expressions in the Human Brain

    DEFF Research Database (Denmark)

    Nielsen, Søren Føns Vind; Mørup, Morten

    2014-01-01

    of the component matrices. We examine three gene expression prediction scenarios based on data missing at random, whole genes missing and whole areas missing within a subject. We find that the column-wise updating approach also known as HALS performs the most efficient when fitting the model. We further observe...... that the non-negativity constrained CP model is able to predict gene expressions better than predicting by the subject average when data is missing at random. When whole genes and whole areas are missing it is in general better to predict by subject averages. However, we find that when whole genes are missing...... missing in our problem. Our analysis is based on the non-negativity constrained Canonical Polyadic (CP) decomposition where we handle the missing data using marginalization considering three prominent alternating least squares procedures; multiplicative updates, column-wise, and row-wise updating...

  10. Comprehensive regional and temporal gene expression profiling of the rat brain during the first 24 h after experimental stroke identifies dynamic ischemia-induced gene expression patterns, and reveals a biphasic activation of genes in surviving tissue

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Wieloch, Tadeusz; Gidö, Gunilla

    2006-01-01

    In order to identify biological processes relevant for cell death and survival in the brain following stroke, the postischemic brain transcriptome was studied by a large-scale cDNA array analysis of three peri-infarct brain regions at eight time points during the first 24 h of reperfusion following......-dehydrogenase1, and Choline kinase) or cell death-regulating genes such as mitochondrial CLIC. We conclude that a biphasic transcriptional up-regulation of the brain-derived neurotrophic factor (BDNF)-G-protein coupled receptor (GPCR)-mitogen-activated protein (MAP) kinase signaling pathways occurs in surviving...... tissue, concomitant with a progressive and persistent activation of cell proliferation signifying tissue regeneration, which provide the means for cell survival and postischemic brain plasticity....

  11. Fetal and neonatal iron deficiency exacerbates mild thyroid hormone insufficiency effects on male thyroid hormone levels and brain thyroid hormone-responsive gene expression.

    Science.gov (United States)

    Bastian, Thomas W; Prohaska, Joseph R; Georgieff, Michael K; Anderson, Grant W

    2014-03-01

    Fetal/neonatal iron (Fe) and iodine/TH deficiencies lead to similar brain developmental abnormalities and often coexist in developing countries. We recently demonstrated that fetal/neonatal Fe deficiency results in a mild neonatal thyroidal impairment, suggesting that TH insufficiency contributes to the neurodevelopmental abnormalities associated with Fe deficiency. We hypothesized that combining Fe deficiency with an additional mild thyroidal perturbation (6-propyl-2-thiouracil [PTU]) during development would more severely impair neonatal thyroidal status and brain TH-responsive gene expression than either deficiency alone. Early gestation pregnant rats were assigned to 7 different treatment groups: control, Fe deficient (FeD), mild TH deficient (1 ppm PTU), moderate TH deficient (3 ppm PTU), severe TH deficient (10 ppm PTU), FeD/1 ppm PTU, or FeD/3 ppm PTU. FeD or 1 ppm PTU treatment alone reduced postnatal day 15 serum total T4 concentrations by 64% and 74%, respectively, without significantly altering serum total T3 concentrations. Neither treatment alone significantly altered postnatal day 16 cortical or hippocampal T3 concentrations. FeD combined with 1 ppm PTU treatment produced a more severe effect, reducing serum total T4 by 95%, and lowering hippocampal and cortical T3 concentrations by 24% and 31%, respectively. Combined FeD/PTU had a more severe effect on brain TH-responsive gene expression than either treatment alone, significantly altering Pvalb, Dio2, Mbp, and Hairless hippocampal and/or cortical mRNA levels. FeD/PTU treatment more severely impacted cortical and hippocampal parvalbumin protein expression compared with either individual treatment. These data suggest that combining 2 mild thyroidal insults during development significantly disrupts thyroid function and impairs TH-regulated brain gene expression.

  12. Diurnal expression of clock genes in pineal gland and brain and plasma levels of melatonin and cortisol in Atlantic salmon parr and smolts.

    Science.gov (United States)

    Huang, Tien-sheng; Ruoff, Peter; Fjelldal, Per G

    2010-10-01

    In Atlantic salmon, the preadaptation to a marine life, i.e., parr-smolt transformation, and melatonin production in the pineal gland are regulated by the photoperiod. However, the clock genes have never been studied in the pineal gland of this species. The aim of the present study was to describe the diurnal expression of clock genes (Per1-like, Cry2, and Clock) in the pineal gland and brain of Atlantic salmon parr and smolts in freshwater, as well as plasma levels of melatonin and cortisol. By employing an out-of-season smolt production model, the parr-smolt transformation was induced by subjecting triplicate groups of parr to 6 wks (wks 0 to 6) under a 12 h:12 h light-dark (LD) regime followed by 6 wks (wks 6 to 12) of continuous light (LL). The measured clock genes in both pineal gland and brain and the plasma levels of melatonin and cortisol showed significant daily variations in parr under LD in wk 6, whereas these rhythms were abolished in smolts under LL in wk 12. In parr, the pineal Per1-like and Cry2 expression peaked in the dark phase, whereas the pineal Clock expression was elevated during the light phase. Although this study presents novel findings on the clock gene system in the teleost pineal gland, the role of this system in the regulation of smoltification needs to be studied in more detail.

  13. Imaging brain gene expression profiles by antipsychotics: region-specific action of amisulpride on postsynaptic density transcripts compared to haloperidol.

    Science.gov (United States)

    de Bartolomeis, Andrea; Marmo, Federica; Buonaguro, Elisabetta Filomena; Rossi, Rodolfo; Tomasetti, Carmine; Iasevoli, Felice

    2013-11-01

    Induction of motor disorders is considered the clinical landmark differentiating typical from atypical antipsychotics, and has been mainly correlated to dopamine D2 receptors blockade in striatum. This view is challenged by benzamides, such as amisulpride, which display low liability for motor side effects despite being D2/D3 receptors high-affinity blocking agents. These effects have been explained with the prominent presynaptic action of amisulpride or with the fast dissociation at D2 receptors, but there is scarce information on the effects of amisulpride on postsynaptic signaling. We carried out a molecular imaging study of gene expression after acute administration of haloperidol (0.8 mg/kg), amisulpride (10 or 35 mg/kg), or vehicle, focusing on postsynaptic genes that are key regulators of synaptic plasticity, such as Arc, c-fos, Zif-268, Norbin, Homer. The last one has been associated to schizophrenia both in clinical and preclinical studies, and is differentially induced by antipsychotics with different D2 receptors affinity. Topography of gene expression revealed that amisulpride, unlike haloperidol, triggers transcripts expression peak in medial striatal regions. Correlation analysis of gene expression revealed a prevalent correlated gene induction within motor corticostriatal regions by haloperidol and a more balanced gene induction within limbic and motor corticostriatal regions by amisulpride. Despite the selective dopaminergic profile of both compounds, our results demonstrated a differential modulation of postsynaptic molecules by amisulpride and haloperidol, the former impacting preferentially medial regions of striatum whereas the latter inducing strong gene expression in lateral regions. Thus, we provided a possible molecular profile of amisulpride, putatively explaining its "atypical atypicality".

  14. Helicobacter pylori Infection Induces Anemia, Depletes Serum Iron Storage, and Alters Local Iron-Related and Adult Brain Gene Expression in Male INS-GAS Mice.

    Directory of Open Access Journals (Sweden)

    Monika Burns

    Full Text Available Iron deficiency anemia (IDA affects > 500 million people worldwide, and is linked to impaired cognitive development and function in children. Helicobacter pylori, a class 1 carcinogen, infects about half of the world's population, thus creating a high likelihood of overlapping risk. This study determined the effect of H. pylori infection on iron homeostasis in INS-GAS mice. Two replicates of INS-GAS/FVB male mice (n = 9-12/group were dosed with H. pylori (Hp strain SS1 or sham dosed at 6-9 weeks of age, and were necropsied at 27-29 weeks of age. Hematologic and serum iron parameters were evaluated, as was gene expression in gastric and brain tissues. Serum ferritin was lower in Hp SS1-infected mice than uninfected mice (p < 0.0001. Infected mice had a lower red blood cell count (p<0.0001, hematocrit (p < 0.001, and hemoglobin concentration (p <0.0001 than uninfected mice. Relative expression of gastric hepcidin antimicrobial peptide (Hamp was downregulated in mice infected with Hp SS1 compared to sham-dosed controls (p<0.001. Expression of bone morphogenic protein 4 (Bmp4, a growth factor upstream of hepcidin, was downregulated in gastric tissue of Hp SS1-infected mice (p<0.001. Hp SS1-infected mice had downregulated brain expression of tyrosine hydroxylase (Th (p = 0.02. Expression of iron-responsive genes involved in myelination (myelin basic protein (Mbp and proteolipid protein 2 (Plp2 was downregulated in infected mice (p = 0.001 and p = 0.02. Expression of synaptic plasticity markers (brain derived neurotrophic factor 3 (Bdnf3, Psd95 (a membrane associated guanylate kinase, and insulin-like growth factor 1 (Igf1 was also downregulated in Hp SS1-infected mice (p = 0.09, p = 0.04, p = 0.02 respectively. Infection of male INS-GAS mice with Hp SS1, without concurrent dietary iron deficiency, depleted serum ferritin, deregulated gastric and hepatic expression of iron regulatory genes, and altered iron-dependent neural processes. The use of Hp SS

  15. [Influence of tissue-specific superoxide dismutase genes expression in brain cells on Drosophila melanogaster sensitivity to oxidative stress and viability].

    Science.gov (United States)

    Vitushynska, M V; Matiytsiv, N P; Chernyk, Y

    2015-01-01

    The study has shown that both functional gene knockout Sodl and Sod2 and their overexpression in neurons and glial tissue increase the sensitivity of Drosophila melanogaster to oxidative stress (OS) conditions. The lowest survival rate was only 20.5% in insects with Sod2 knockout in neurons. Comparative analysis of the survival curves showed that adults with altered tissue-specific expression of the studied genes had reduced average and maximum life span. Under OS conditions induced by 5% hydrogen peroxide the life spans of wild type Oregon R and transgenic insects were significantly reduced. Altered Sod gene expression in glial tissue leads to degenerative changes in Drosophila brain at the young age. During the aging of insects and the action of pro-oxidants increasing of neurodegenerative phenotype is observed.

  16. Gene therapy for brain tumors.

    Science.gov (United States)

    Bansal, K; Engelhard, H H

    2000-09-01

    "Gene therapy" can be defined as the transfer of genetic material into a patient's cells for therapeutic purposes. To date, a diverse and creative assortment of treatment strategies utilizing gene therapy have been devised, including gene transfer for modulating the immune system, enzyme prodrug ("suicide gene") therapy, oncolytic therapy, replacement/therapeutic gene transfer, and antisense therapy. For malignant glioma, gene-directed prodrug therapy using the herpes simplex virus thymidine kinase gene was the first gene therapy attempted clinically. A variety of different strategies have now been pursued experimentally and in clinical trials. Although, to date, gene therapy for brain tumors has been found to be reasonably safe, concerns still exist regarding issues related to viral delivery, transduction efficiency, potential pathologic response of the brain, and treatment efficacy. Improved viral vectors are being sought, and potential use of gene therapy in combination with other treatments is being investigated.

  17. Gene expression profiling in brain of mice exposed to the marine neurotoxin ciguatoxin reveals an acute anti-inflammatory, neuroprotective response

    Directory of Open Access Journals (Sweden)

    Ryan James C

    2010-08-01

    Full Text Available Abstract Background Ciguatoxins (CTXs are polyether marine neurotoxins and potent activators of voltage-gated sodium channels. This toxin is carried by multiple reef-fish species and human consumption of ciguatoxins can result in an explosive gastrointestinal/neurologic illness. This study characterizes the global transcriptional response in mouse brain to a symptomatic dose of the highly toxic Pacific ciguatoxin P-CTX-1 and additionally compares this data to transcriptional profiles from liver and whole blood examined previously. Adult male C57/BL6 mice were injected with 0.26 ng/g P-CTX-1 while controls received only vehicle. Animals were sacrificed at 1, 4 and 24 hrs and transcriptional profiling was performed on brain RNA with Agilent whole genome microarrays. RT-PCR was used to independently validate gene expression and the web tool DAVID was used to analyze gene ontology (GO and molecular pathway enrichment of the gene expression data. Results A pronounced 4°C hypothermic response was recorded in these mice, reaching a minimum at 1 hr and lasting for 8 hrs post toxin exposure. Ratio expression data were filtered by intensity, fold change and p-value, with the resulting data used for time course analysis, K-means clustering, ontology classification and KEGG pathway enrichment. Top GO hits for this gene set included acute phase response and mono-oxygenase activity. Molecular pathway analysis showed enrichment for complement/coagulation cascades and metabolism of xenobiotics. Many immediate early genes such as Fos, Jun and Early Growth Response isoforms were down-regulated although others associated with stress such as glucocorticoid responsive genes were up-regulated. Real time PCR confirmation was performed on 22 differentially expressed genes with a correlation of 0.9 (Spearman's Rho, p Conclusions Many of the genes differentially expressed in this study, in parallel with the hypothermia, figure prominently in protection against

  18. The gene expression of the neuronal protein, SLC38A9, changes in mouse brain after in vivo starvation and high-fat diet

    Science.gov (United States)

    Eriksson, Mikaela M.; Lekholm, Emilia; Arapi, Vasiliki; Perland, Emelie; Fredriksson, Robert

    2017-01-01

    SLC38A9 is characterized as a lysosomal component of the amino acid sensing Ragulator-RAG GTPase complex, controlling the mechanistic target of rapamycin complex 1 (mTORC1). Here, immunohistochemistry was used to map SLC38A9 in mouse brain and staining was detected throughout the brain, in cortex, hypothalamus, thalamus, hippocampus, brainstem and cerebellum. More specifically, immunostaining was found in areas known to be involved in amino acid sensing and signaling pathways e.g. piriform cortex and hypothalamus. SLC38A9 immunoreactivity co-localized with both GABAergic and glutamatergic neurons, but not with astrocytes. SLC38A9 play a key role in the mTORC1 pathway, and therefore we performed in vivo starvation and high-fat diet studies, to measure gene expression alterations in specific brain tissues and in larger brain regions. Following starvation, Slc38a9 was upregulated in brainstem and cortex, and in anterior parts of the brain (Bregma 3.2 to -2.1mm). After high-fat diet, Slc38a9 was specifically upregulated in hypothalamus, while overall downregulation was noticed throughout the brain (Bregma 3.2 to -8.6mm). PMID:28235079

  19. Analysis of Post-Traumatic Brain Injury Gene Expression Signature Reveals Tubulins, Nfe2l2, Nfkb, Cd44, and S100a4 as Treatment Targets.

    Science.gov (United States)

    Lipponen, Anssi; Paananen, Jussi; Puhakka, Noora; Pitkänen, Asla

    2016-08-17

    We aimed to define the chronically altered gene expression signature of traumatic brain injury (TBI-sig) to discover novel treatments to reverse pathologic gene expression or reinforce the expression of recovery-related genes. Genome-wide RNA-sequencing was performed at 3 months post-TBI induced by lateral fluid-percussion injury in rats. We found 4964 regulated genes in the perilesional cortex and 1966 in the thalamus (FDR < 0.05). TBI-sig was used for a LINCS analysis which identified 11 compounds that showed a strong connectivity with the TBI-sig in neuronal cell lines. Of these, celecoxib and sirolimus were recently reported to have a disease-modifying effect in in vivo animal models of epilepsy. Other compounds revealed by the analysis were BRD-K91844626, BRD-A11009626, NO-ASA, BRD-K55260239, SDZ-NKT-343, STK-661558, BRD-K75971499, ionomycin, and desmethylclomipramine. Network analysis of overlapping genes revealed the effects on tubulins (Tubb2a, Tubb3, Tubb4b), Nfe2l2, S100a4, Cd44, and Nfkb2, all of which are linked to TBI-relevant outcomes, including epileptogenesis and tissue repair. Desmethylclomipramine modulated most of the gene targets considered favorable for TBI outcome. Our data demonstrate long-lasting transcriptomics changes after TBI. LINCS analysis predicted that these changes could be modulated by various compounds, some of which are already in clinical use but never tested in TBI.

  20. DNA methylation and expression profiles of the brain-derived neurotrophic factor (BDNF) and dopamine transporter (DAT1) genes in patients with schizophrenia.

    Science.gov (United States)

    Kordi-Tamandani, Dor Mohammad; Sahranavard, Roya; Torkamanzehi, Adam

    2012-12-01

    Methylation and expression profile of CpG islands were examined in the promoters of the brain-derived neurotrophic factor (BDNF) and dopamine transporter (DAT1) genes. These are well known to be involved in the pathophysiology of psychiatric disorders such as schizophrenia. Genomic DNA was extracted from peripheral blood of 80 patients with schizophrenia and 71 healthy controls. Methylation pattern was studied by Methylation-Specific PCR. RNA expression analysis was done on extracted RNA from blood samples from patients suffering from schizophrenia (n = 17) and healthy controls (n = 17). Frequency of the BDNF gene methylation was highlighted as a statistically significant relationship between cases and controls regarding decreased risk of disease in comparison to unmethylated patterns (OR = 0.24; 95 % CI = 1.11-0.50; P = 0.00007). For the DAT1 gene, this relationship was insignificant in 61 cases (76.25 %) and 52 controls (73.23 %) (OR = 1.17; 95 % CI = 0.53-2.61). Estimates of relative gene expression revealed a statistically significant association of the BDNF gene between schizophrenic patients and healthy controls (Mean ± SD: 13.3920 ± 15.19 and 0.437 ± 0.328, P = 0.0001) respectively; however, it was not significant for the DAT1 gene. This first hand evidence, regarding BDNF and DAT1 gene methylation and their expression profile with risk of schizophrenia, indicated a significant function for the BDNF gene in the development of schizophrenia. However, further populations with large sample sizes need to be studied to verify the exact role of BDNF in mental disorders such as schizophrenia.

  1. The role of brain-derived neurotrophic factor in the regulation of cell growth and gene expression in melanotrope cells of Xenopus laevis.

    Science.gov (United States)

    Jenks, Bruce G; Kuribara, Miyuki; Kidane, Adhanet H; Kramer, Bianca M R; Roubos, Eric W; Scheenen, Wim J J M

    2012-07-01

    Brain-derived neurotrophic factor (BDNF) is, despite its name, also found outside the central nervous system (CNS), but the functional significance of this observation is largely unknown. This review concerns the expression of BDNF in the pituitary gland. While the presence of the neurotrophin in the mammalian pituitary gland is well documented its functional significance remains obscure. Studies on the pars intermedia of the pituitary of the amphibian Xenopus laevis have shown that BDNF is produced by the neuroendocrine melanotrope cells, its expression is physiologically regulated, and the melanotrope cells themselves express receptors for the neurotrophin. The neurotrophin has been shown to act as an autocrine factor on the melanotrope to promote cell growth and regulate gene expression. In doing so BDNF supports the physiological function of the cell to produce and release α-melanophore-stimulating hormone for the purpose of adjusting the animal's skin color to that of its background.

  2. Helicobacter pylori Infection Induces Anemia, Depletes Serum Iron Storage, and Alters Local Iron-Related and Adult Brain Gene Expression in Male INS-GAS Mice.

    Science.gov (United States)

    Burns, Monika; Muthupalani, Sureshkumar; Ge, Zhongming; Wang, Timothy C; Bakthavatchalu, Vasudevan; Cunningham, Catriona; Ennis, Kathleen; Georgieff, Michael; Fox, James G

    2015-01-01

    Iron deficiency anemia (IDA) affects > 500 million people worldwide, and is linked to impaired cognitive development and function in children. Helicobacter pylori, a class 1 carcinogen, infects about half of the world's population, thus creating a high likelihood of overlapping risk. This study determined the effect of H. pylori infection on iron homeostasis in INS-GAS mice. Two replicates of INS-GAS/FVB male mice (n = 9-12/group) were dosed with H. pylori (Hp) strain SS1 or sham dosed at 6-9 weeks of age, and were necropsied at 27-29 weeks of age. Hematologic and serum iron parameters were evaluated, as was gene expression in gastric and brain tissues. Serum ferritin was lower in Hp SS1-infected mice than uninfected mice (p in mice infected with Hp SS1 compared to sham-dosed controls (pin gastric tissue of Hp SS1-infected mice (pin myelination (myelin basic protein (Mbp) and proteolipid protein 2 (Plp2)) was downregulated in infected mice (p = 0.001 and p = 0.02). Expression of synaptic plasticity markers (brain derived neurotrophic factor 3 (Bdnf3), Psd95 (a membrane associated guanylate kinase), and insulin-like growth factor 1 (Igf1)) was also downregulated in Hp SS1-infected mice (p = 0.09, p = 0.04, p = 0.02 respectively). Infection of male INS-GAS mice with Hp SS1, without concurrent dietary iron deficiency, depleted serum ferritin, deregulated gastric and hepatic expression of iron regulatory genes, and altered iron-dependent neural processes. The use of Hp SS1-infected INS-GAS mice will be an appropriate animal model for further study of the effects of concurrent H. pylori infection and anemia on iron homeostasis and adult iron-dependent brain gene expression.

  3. [On the role of selective silencer Freud-1 in the regulation of the brain 5-HT(1A) receptor gene expression].

    Science.gov (United States)

    Naumenko, V S; Osipova, D V; Tsybko, A S

    2010-01-01

    Selective 5-HT(1A) receptor silencer (Freud-1) is known to be one of the main factors for transcriptional regulation of brain serotonin 5-HT(1A) receptor. However, there is a lack of data on implication of Freud-1 in the mechanisms underlying genetically determined and experimentally altered 5-HT(1A) receptor system state in vivo. In the present study we have found a difference in the 5-HT(1A) gene expression in the midbrain of AKR and CBA inbred mouse strains. At the same time no distinction in Freud-1 expression was observed. We have revealed 90.3% of homology between mouse and rat 5-HT(1A) receptor DRE-element, whereas there was no difference in DRE-element sequence between AKR and CBA mice. This indicates the absence of differences in Freud-1 binding site in these mouse strains. In the model of 5-HT(1A) receptor desensitization produced by chronic 5-HT(1A) receptor agonist administration, a significant reduction of 5-HT(1A) receptor gene expression together with considerable increase of Freud-1 expression were found. These data allow us to conclude that the selective silencer of 5-HT(1A) receptor, Freud-1, is involved in the compensatory mechanisms that modulate the functional state of brain serotonin system, although it is not the only factor for 5-HT(1A) receptor transcriptional regulation.

  4. Profiling brain expression of the spermidine/spermine N1-acetyltransferase 1 (SAT1) gene in suicide.

    Science.gov (United States)

    Klempan, Timothy A; Rujescu, Dan; Mérette, Chantal; Himmelman, Carla; Sequeira, Adolfo; Canetti, Lilian; Fiori, Laura M; Schneider, Barbara; Bureau, Alexandre; Turecki, Gustavo

    2009-10-05

    Altered stress reactivity is considered to be a risk factor for both major depressive disorder and suicidal behavior. The authors have sought to expand their previous findings implicating altered expression of spermidine/spermine N(1)-acetyltransferase 1 (SAT1), the rate-limiting enzyme involved in catabolism of the polyamines spermidine and spermine in the polyamine stress response (PSR), across multiple brain regions between control individuals and depressed individuals who have died by suicide. Microarray expression of probesets annotated to SAT1 were examined across 17 brain regions in 13 controls and 26 individuals who have died by suicide (16 with a diagnosis of major depression and 10 without), all of French-Canadian origin. Profiling conducted on the Affymetrix U133A/B chipset was further examined on a second chipset (U133 Plus 2.0) using RT-PCR, and analyzed in a second, independent sample. A reduction in SAT1 expression identified through multiple probesets was observed across 12 cortical regions in depressed individuals who have died by suicide compared with controls. Of these, five cortical regions showed statistically significant reductions which were supported by RT-PCR and analysis on the additional chipset. SAT1 cortical expression levels were also found to be significantly lower in an independent sample of German subjects with major depression who died by suicide in comparison with controls. These findings suggest that downregulation of SAT1 expression may play a role in depression and suicidality, possibly by impeding the normal PSR program or through compensation for the increased polyamine metabolism accompanying the psychological distress associated with depressive disorders.

  5. Role of steroid hormones and morphine treatment in the modulation of opioid receptor gene expression in brain structures in the female rat.

    Science.gov (United States)

    Cruz, Wesley Soares; Pereira, Lucas Assis; Cezar, Luana Carvalho; Camarini, Rosana; Felicio, Luciano Freitas; Bernardi, Maria Martha; Teodorov, Elizabeth

    2015-01-01

    This study determined the effects of acute treatment with morphine on the expression of the Oprm1, Oprk1, and Oprd1 genes (which encode μ, κ, and δ receptors, respectively) in the striatum, hypothalamus, and periaqueductal gray (PAG) in ovariectomized female rats treated with estrogen. Ovariectomized female rats were divided into five equal groups. Two groups received estrogen (50 µg/kg, 54 h before testing) and saline (ES group) or 3.5 mg/kg morphine (EM group) 2 h before euthanasia. The SS group received saline solution 54 and 2 h before the experiments. The SM group received saline 54 h and 3.5 mg/kg morphine 2 h before the experiments. The W group remained undisturbed. The genes expression were evaluated. Oprm1 and Oprk1 expression were activated, respectively, in the hypothalamus and PAG and in the striatum and PAG by morphine only in estrogen-treated animals. Oprd1 expression in the hypothalamus and PAG was activated by morphine in both estrogen-treated and -nontreated animals. The Oprm1 and Oprk1 gene response to morphine might depend on estrogen, whereas the Oprd1 gene response to morphine might not depend on estrogen, supporting the hypothesis of a functional role for ovarian hormones in opioid receptor-mediated functional adaptations in the female brain.

  6. Strain dependent gene expression and neurochemical levels in the brain of zebrafish: focus on a few alcohol related targets.

    Science.gov (United States)

    Pan, Y; Chatterjee, D; Gerlai, R

    2012-12-05

    The zebrafish is becoming increasingly popular in behavior genetics because it may allow one to conduct large scale mutation and drug screens facilitating the discovery of mechanisms of complex traits. Strain differences in adult zebrafish behavior have already been reported, which may have important implications in neurobehavioral genetics. For example, we have found the AB and SF strains to differ in their behavioral responses to both acute and chronic alcohol exposure. In the current study, we further characterize these strains using semi-quantitative RT-PCR to measure the expression of ten selected genes and HPLC to measure the levels of nine neurochemicals. We chose the target genes and neurochemicals based upon their potential involvement in alcohol and other drugs of abuse related mechanisms. We quantified the expression of the genes encoding D1-R, D2a-R, D4a-R dopamine receptors, GABA(A)-R, GABA(B)-R1, GAD1, MAO, NMDA-R (NR2D subunit), 5HT-R1bd and SLC6 a4a. We found the gene encoding D1 dopamine receptor over-expressed and the genes encoding GABA(B1) receptor and solute family carrier protein 6 (SLC6) 4a under-expressed in SF compared to AB. We also found the level of all (dopamine, DOPAC, Serotonin, GABA, Glutamate, Glycine, Aspartate, Taurine) but one (5HIAA) neurochemicals tested decreased in SF as compared to AB. These results, combined with previously identified behavioral differences between the AB and SF strains, demonstrate the importance of strain characterization in zebrafish. They now also allow formulation of working hypotheses about possible mechanisms underlying the differential effects of acute and chronic alcohol treatment on these two zebrafish strains.

  7. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression.

    Directory of Open Access Journals (Sweden)

    Sandra J Kuhlman

    Full Text Available We describe a method that combines Cre-recombinase knockin mice and viral-mediated gene transfer to genetically label and functionally manipulate specific neuron types in the mouse brain. We engineered adeno-associated viruses (AAVs that express GFP, dsRedExpress, or channelrhodopsin (ChR2 upon Cre/loxP recombination-mediated removal of a transcription-translation STOP cassette. Fluorescent labeling was sufficient to visualize neuronal structures with synaptic resolution in vivo, and ChR2 expression allowed light activation of neuronal spiking. The structural dynamics of a specific class of neocortical neuron, the parvalbumin-containing (Pv fast-spiking GABAergic interneuron, was monitored over the course of a week. We found that although the majority of Pv axonal boutons were stable in young adults, bouton additions and subtractions on axonal shafts were readily observed at a rate of 10.10% and 9.47%, respectively, over 7 days. Our results indicate that Pv inhibitory circuits maintain the potential for structural re-wiring in post-adolescent cortex. With the generation of an increasing number of Cre knockin mice and because viral transfection can be delivered to defined brain regions at defined developmental stages, this strategy represents a general method to systematically visualize the structure and manipulate the function of different cell types in the mouse brain.

  8. Gene expression profiles and neural activities of Kenyon cell subtypes in the honeybee brain: identification of novel 'middle-type' Kenyon cells.

    Science.gov (United States)

    Kaneko, Kumi; Suenami, Shota; Kubo, Takeo

    2016-01-01

    In the honeybee (Apis mellifera L.), it has long been thought that the mushroom bodies, a higher-order center in the insect brain, comprise three distinct subtypes of intrinsic neurons called Kenyon cells. In class-I large-type Kenyon cells and class-I small-type Kenyon cells, the somata are localized at the edges and in the inner core of the mushroom body calyces, respectively. In class-II Kenyon cells, the somata are localized at the outer surface of the mushroom body calyces. The gene expression profiles of the large- and small-type Kenyon cells are distinct, suggesting that each exhibits distinct cellular characteristics. We recently identified a novel gene, mKast (middle-type Kenyon cell-preferential arrestin-related gene-1), which has a distinctive expression pattern in the Kenyon cells. Detailed expression analyses of mKast led to the discovery of novel 'middle-type' Kenyon cells characterized by their preferential mKast-expression in the mushroom bodies. The somata of the middle-type Kenyon cells are localized between the large- and small-type Kenyon cells, and the size of the middle-type Kenyon cell somata is intermediate between that of large- and small-type Kenyon cells. Middle-type Kenyon cells appear to differentiate from the large- and/or small-type Kenyon cell lineage(s). Neural activity mapping using an immediate early gene, kakusei, suggests that the small-type and some middle-type Kenyon cells are prominently active in the forager brain, suggesting a potential role in processing information during foraging flight. Our findings indicate that honeybee mushroom bodies in fact comprise four types of Kenyon cells with different molecular and cellular characteristics: the previously known class-I large- and small-type Kenyon cells, class-II Kenyon cells, and the newly identified middle-type Kenyon cells described in this review. As the cellular characteristics of the middle-type Kenyon cells are distinct from those of the large- and small-type Kenyon

  9. Analysis of Alzheimer's disease severity across brain regions by topological analysis of gene co-expression networks

    Directory of Open Access Journals (Sweden)

    Zhang Weixiong

    2010-10-01

    Full Text Available Abstract Background Alzheimer's disease (AD is a progressive neurodegenerative disorder involving variations in the transcriptome of many genes. AD does not affect all brain regions simultaneously. Identifying the differences among the affected regions may shed more light onto the disease progression. We developed a novel method involving the differential topology of gene coexpression networks to understand the association among affected regions and disease severity. Methods We analysed microarray data of four regions - entorhinal cortex (EC, hippocampus (HIP, posterior cingulate cortex (PCC and middle temporal gyrus (MTG from AD affected and normal subjects. A coexpression network was built for each region and the topological overlap between them was examined. Genes with zero topological overlap between two region-specific networks were used to characterise the differences between the two regions. Results and conclusion Results indicate that MTG shows early AD pathology compared to the other regions. We postulate that if the MTG gets affected later in the disease, post-mortem analyses of individuals with end-stage AD will show signs of early AD in the MTG, while the EC, HIP and PCC will have severe pathology. Such knowledge is useful for data collection in clinical studies where sample selection is a limiting factor as well as highlighting the underlying biology of disease progression.

  10. Absence of mutations in four genes encoding for congenital cataract and expressed in the human brain in Tunisian families with cataract and mental retardation

    Directory of Open Access Journals (Sweden)

    Chograni Manèl

    2011-11-01

    Full Text Available Abstract Background To identify the genetic defect associated with autosomal recessive congenital cataract (ARCC, mental retardation (MR and ARCC, MR and microcephaly present in most patients in four Tunisian consanguineous families. Methods We screened four genes implicated in congenital cataract by direct sequencing in two groups of patients; those affected by ARCC associated to MR and those who presented also microcephaly. Among its three genes PAX6, PITX3 and HSF4 are expressed in human brain and one gene LIM2 encodes for the protein MP20 that interact with the protein galectin-3 expressed in human brain and plays a crucial role in its development. All genes were screened by direct sequencing in two groups of patients; those affected by ARCC associated to MR and those who presented also microcephaly. Results We report no mutation in the four genes of congenital cataract and its flanking regions. Only variations that did not segregate with the studied phenotypes (ARCC associated to MR, ARCC associated with MR and microcephaly are reported. We detected three intronic variations in PAX6 gene: IVS4 -274insG (intron 4, IVS12 -174G>A (intron12 in the four studied families and IVS4 -195G>A (intron 4 in two families. Two substitutions polymorphisms in PITX3 gene: c.439 C>T (exon 3 and c.930 C>A (exon4 in one family. One intronic variation in HSF4 gene: IVS7 +93C>T (intron 7 identified in one family. And three intronic substitutions in LIM2 gene identified in all four studied families: IVS2 -24A>G (intron 2, IVS4 +32C>T (intron 4 and c.*15A>C (3'-downstream sequence. Conclusion Although the role of the four studied genes: PAX6, PITX3, HSF4 and LIM2 in both ocular and central nervous system development, we report the absence of mutations in all studied genes in four families with phenotypes associating cataract, MR and microcephaly.

  11. Isoform-level brain expression profiling of the spermidine/spermine N1-Acetyltransferase1 (SAT1) gene in major depression and suicide.

    Science.gov (United States)

    Pantazatos, Spiro P; Andrews, Stuart J; Dunning-Broadbent, Jane; Pang, Jiuhong; Huang, Yung-Yu; Arango, Victoria; Nagy, Peter L; John Mann, J

    2015-07-01

    Low brain expression of the spermidine/spermine N-1 acetyltransferase (SAT1) gene, the rate-limiting enzyme involved in catabolism of polyamines that mediate the polyamine stress response (PSR), has been reported in depressed suicides. However, it is unknown whether this effect is associated with depression or with suicide and whether all or only specific isoforms expressed by SAT1, such as the primary 171 amino acid protein-encoding transcript (SSAT), or an alternative splice variant (SSATX) that is involved in SAT1 regulated unproductive splicing and transcription (RUST), are involved. We applied next generation sequencing (RNA-seq) to assess gene-level, isoform-level, and exon-level SAT1 expression differences between healthy controls (HC, N = 29), DSM-IV major depressive disorder suicides (MDD-S, N = 21) and MDD non-suicides (MDD, N = 9) in the dorsal lateral prefrontal cortex (Brodmann Area 9, BA9) of medication-free individuals postmortem. Using small RNA-seq, we also examined miRNA species putatively involved in SAT1 post-transcriptional regulation. A DSM-IV diagnosis was made by structured interview. Toxicology and history ruled out recent psychotropic medication. At the gene-level, we found low SAT1 expression in both MDD-S (vs. HC, p = 0.002) and MDD (vs. HC, p = 0.002). At the isoform-level, reductions in MDD-S (vs. HC) were most pronounced in four transcripts including SSAT and SSATX, while reductions in MDD (vs. HC) were pronounced in three transcripts, one of which was reduced in MDD relative to MDD-S (all p suicides in an independent sample and implicate low SAT1 brain expression in MDD independent of suicide. Low expressions of both SSAT and SATX isoforms suggest that shared transcriptional mechanisms involved in RUST may account for low SAT1 brain expression in depressed suicides. Future studies are required to understand the functions and regulation of SAT1 isoforms, and how they relate to the pathogenesis of MDD and suicide.

  12. Fasting Upregulates PPAR Target Genes in Brain and Influences Pituitary Hormone Expression in a PPAR Dependent Manner

    Directory of Open Access Journals (Sweden)

    Bettina König

    2009-01-01

    PPAR target genes implicated in -oxidation of fatty acids (acyl-CoA oxidase, carnitine palmitoyltransferase-1, medium chain acyl-CoA dehydrogenase and ketogenesis (mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in pituitary gland and partially also in frontal cortex and diencephalon compared to nonfasted animals. These data strongly indicate that fasting activates PPAR in brain and pituitary gland. Furthermore, pituitary prolactin and luteinizing hormone- mRNA concentrations were increased upon fasting in wild-type mice but not in mice lacking PPAR. For proopiomelanocortin and thyrotropin-, genotype-specific differences in pituitary mRNA concentrations were observed. Thus, PPAR seems to be involved in transcriptional regulation of pituitary hormones.

  13. Distress call-induced gene expression in the brain of the Indian short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Ganesh, Ambigapathy; Raghuram, Hanumanthan; Nathan, Parthasarathy T; Marimuthu, Ganapathy; Rajan, Koilmani Emmanuvel

    2010-02-01

    Individuals in distress emit audible vocalizations to either warn or inform conspecifics. The Indian short-nosed fruit bat, Cynopterus sphinx, emits distress calls soon after becoming entangled in mist nets, which appear to attract conspecifics. Phase I of these distress calls is longer and louder, and includes a secondary peak, compared to phase II. Activity-dependent expression of egr-1 was examined in free-ranging C. sphinx following the emissions and responses to a distress call. We found that the level of expression of egr-1 was higher in bats that emitted a distress call, in adults that responded, and in pups than in silent bats. Up-regulated cDNA was amplified to identify the target gene (TOE1) of the protein Egr-1. The observed expression pattern Toe1 was similar to that of egr-1. These findings suggest that the neuronal activity related to recognition of a distress call and an auditory feedback mechanism induces the expression of Egr-1. Co-expression of egr-1 with Toe1 may play a role in initial triggering of the genetic mechanism that could be involved in the consolidation or stabilization of distress call memories.

  14. Immune challenge by intraperitoneal administration of lipopolysaccharide directs gene expression in distinct blood-brain barrier cells toward enhanced prostaglandin E(2) signaling.

    Science.gov (United States)

    Vasilache, Ana Maria; Qian, Hong; Blomqvist, Anders

    2015-08-01

    The cells constituting the blood-brain barrier are critical for the transduction of peripheral immune signals to the brain, but hitherto no comprehensive analysis of the signaling events that occur in these cells in response to a peripheral inflammatory stimulus has been performed. Here, we examined the inflammatory transcriptome in blood-brain barrier cells, including endothelial cells, pericytes, and perivascular macrophages, which were isolated by fluorescent-activated cell sorting, from non-immune-challenged mice and from mice stimulated by bacterial wall lipopolysaccharide. We show that endothelial cells and perivascular macrophages display distinct transcription profiles for inflammatory signaling and respond in distinct and often opposing ways to the immune stimulus. Thus, endothelial cells show induced PGE2 synthesis and transport with attenuation of PGE2 catabolism, increased expression of cytokine receptors and down-stream signaling molecules, and downregulation of adhesion molecules. In contrast, perivascular macrophages show downregulation of the synthesis of prostanoids other than PGE2 and of prostaglandin catabolism, but upregulation of interleukin-6 synthesis. Pericytes were largely unresponsive to the immune stimulation, with the exception of downregulation of proteins involved in pericyte-endothelial cell communication. While the endothelial cells account for most of the immune-induced gene expression changes in the blood-brain barrier, the response of the endothelial cells occurs in a concerted manner with that of the perivascular cells to elevate intracerebral levels of PGE2, hence emphasizing the critical role of PGE2 in immune-induced signal transduction across the blood-brain barrier.

  15. PJA1, encoding a RING-H2 finger ubiquitin ligase, is a novel human X chromosome gene abundantly expressed in brain.

    Science.gov (United States)

    Yu, Ping; Chen, Yiwang; Tagle, Danilo A; Cai, Tao

    2002-06-01

    RING-finger proteins contain cysteine-rich, zinc-binding domains and are involved in the formation of macromolecular scaffolds important for transcriptional repression and ubiquitination. In this study, we have identified a RING-H2 finger gene, PJA1 (for praja-1), from a human brain cDNA library and mapped it to human chromosome Xq12 between markers DXS983 and DXS1216, a region implicated in X-linked mental retardation (MRX). Northern blot analysis indicated a 2.7-kb transcript that was abundantly expressed in the brain, including regions of the cerebellum, cerebral cortex, medulla, occipital pole, frontal lobe, temporal lobe, and putamen. Amino acid sequence analysis of the 71-kDa protein PJA1 showed 52.3% identity to human PJA2 (for praja-2, also known as NEURODAP1/KIAA0438) and also a significant identity to its homologs in rat, mouse, and zebrafish. In vitro binding and immunoprecipitation assays demonstrated that both PJA1 and PJA2 are able to bind the ubiquitin-conjugating enzyme UbcH5B. Moreover, the ubiquitination assay indicated that PJA1 and PJA2 have an E2-dependent E3 ubiquitin ligase activity. Thus our findings demonstrate that PJA1 can be involved in protein ubiquitination in the brain and is a suitable candidate gene for MRX.

  16. Neurokinin-1 (NK-1 receptor and brain-derived neurotrophic factor (BDNF gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain

    Directory of Open Access Journals (Sweden)

    McCarson Kenneth E

    2007-10-01

    Full Text Available Abstract Persistent pain produces complex alterations in sensory pathways of the central nervous system (CNS through activation of various nociceptive mechanisms. However, the effects of pain on higher brain centers, particularly the influence of the stressful component of pain on the limbic system, are poorly understood. Neurokinin-1 (NK-1 receptors and brain-derived neurotrophic factor (BDNF, known neuromediators of hyperalgesia and spinal central sensitization, have also been implicated in the plasticity and neurodegeneration occurring in the hippocampal formation during exposures to various stressors. Results of this study showed that injections of complete Freund's adjuvant (CFA into the hind paw increased NK-1 receptor and BDNF mRNA levels in the ipsilateral dorsal horn, supporting an important role for these nociceptive mediators in the amplification of ascending pain signaling. An opposite effect was observed in the hippocampus, where CFA down-regulated NK-1 receptor and BDNF gene expression, phenomena previously observed in immobilization models of stress and depression. Western blot analyses demonstrated that in the spinal cord, CFA also increased levels of phosphorylated cAMP response element-binding protein (CREB, while in the hippocampus the activation of this transcription factor was significantly reduced, further suggesting that tissue specific transcription of either NK-1 or BDNF genes may be partially regulated by common intracellular transduction mechanisms mediated through activation of CREB. These findings suggest that persistent nociception induces differential regional regulation of NK-1 receptor and BDNF gene expression and CREB activation in the CNS, potentially reflecting varied roles of these neuromodulators in the spinal cord during persistent sensory activation vs. modulation of the higher brain structures such as the hippocampus.

  17. Neurokinin-1 (NK-1) receptor and brain-derived neurotrophic factor (BDNF) gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain.

    Science.gov (United States)

    Duric, Vanja; McCarson, Kenneth E

    2007-10-31

    Persistent pain produces complex alterations in sensory pathways of the central nervous system (CNS) through activation of various nociceptive mechanisms. However, the effects of pain on higher brain centers, particularly the influence of the stressful component of pain on the limbic system, are poorly understood. Neurokinin-1 (NK-1) receptors and brain-derived neurotrophic factor (BDNF), known neuromediators of hyperalgesia and spinal central sensitization, have also been implicated in the plasticity and neurodegeneration occurring in the hippocampal formation during exposures to various stressors. Results of this study showed that injections of complete Freund's adjuvant (CFA) into the hind paw increased NK-1 receptor and BDNF mRNA levels in the ipsilateral dorsal horn, supporting an important role for these nociceptive mediators in the amplification of ascending pain signaling. An opposite effect was observed in the hippocampus, where CFA down-regulated NK-1 receptor and BDNF gene expression, phenomena previously observed in immobilization models of stress and depression. Western blot analyses demonstrated that in the spinal cord, CFA also increased levels of phosphorylated cAMP response element-binding protein (CREB), while in the hippocampus the activation of this transcription factor was significantly reduced, further suggesting that tissue specific transcription of either NK-1 or BDNF genes may be partially regulated by common intracellular transduction mechanisms mediated through activation of CREB. These findings suggest that persistent nociception induces differential regional regulation of NK-1 receptor and BDNF gene expression and CREB activation in the CNS, potentially reflecting varied roles of these neuromodulators in the spinal cord during persistent sensory activation vs. modulation of the higher brain structures such as the hippocampus.

  18. Early free access to hypertonic NaCl solution induces a long-term effect on drinking, brain cell activity and gene expression of adult rat offspring.

    Science.gov (United States)

    Macchione, A F; Beas, C; Dadam, F M; Caeiro, X E; Godino, A; Ponce, L F; Amigone, J L; Vivas, L

    2015-07-01

    Exposure to an altered osmotic environment during a pre/postnatal period can differentially program the fluid intake and excretion pattern profile in a way that persists until adulthood. However, knowledge about the programming effects on the underlying brain neurochemical circuits of thirst and hydroelectrolyte balance, and its relation with behavioral outputs, is limited. We evaluated whether early voluntary intake of hypertonic NaCl solution may program adult offspring fluid balance, plasma vasopressin, neural activity, and brain vasopressin and angiotensinergic receptor type 1a (AT1a)-receptor gene expression. The manipulation (M) period covered dams from 1 week before conception until offspring turned 1-month-old. The experimental groups were (i) Free access to hypertonic NaCl solution (0.45 M NaCl), food (0.18% NaCl) and water [M-Na]; and (ii) Free access to food and water only [M-Ctrol]. Male offspring (2-month-old) were subjected to iv infusion (0.15 ml/min) of hypertonic (1.5M NaCl), isotonic (0.15M NaCl) or sham infusion during 20 min. Cumulative water intake (140 min) and drinking latency to the first lick were recorded from the start of the infusion. Our results indicate that, after systemic sodium overload, the M-Na group had increased water intake, and diminished neuronal activity (Fos-immunoreactivity) in the subfornical organ (SFO) and nucleus of the solitary tract. They also showed reduced relative vasopressin (AVP)-mRNA and AT1a-mRNA expression at the supraoptic nucleus and SFO, respectively. The data indicate that the availability of a rich source of sodium during the pre/postnatal period induces a long-term effect on drinking, neural activity, and brain gene expression implicated in the control of hydroelectrolyte balance.

  19. Exploring the functional role of the CHRM2 gene in human cognition: results from a dense genotyping and brain expression study

    Directory of Open Access Journals (Sweden)

    de Geus Eco JC

    2007-11-01

    Full Text Available Abstract Background The CHRM2 gene, located on the long arm of chromosome 7 (7q31-35, is involved in neuronal excitability, synaptic plasticity and feedback regulation of acetylcholine release, and has been implicated in higher cognitive processing. The aim of this study is the identification of functional (noncoding variants underlying cognitive phenotypic variation. Methods We previously reported an association between polymorphisms in the 5'UTR regions of the CHRM2 gene and intelligence.. However, no functional variants within this area have currently been identified. In order to identify the relevant functional variant(s, we conducted a denser coverage of SNPs, using two independent Dutch cohorts, consisting of a children's sample (N = 371 ss; mean age 12.4 and an adult sample (N= 391 ss; mean age 37.6. For all individuals standardized intelligence measures were available. Subsequently, we investigated genotype-dependent CHRM2 gene expression levels in the brain, to explore putative enhancer/inhibition activity exerted by variants within the muscarinic acetylcholinergic receptor. Results Using a test of within-family association two of the previously reported variants – rs2061174, and rs324650 – were again strongly associated with intelligence (P Conclusion Using a denser coverage of SNPs in the CHRM2 gene, we confirmed the 5'UTR regions to be most interesting in the context of intelligence, and ruled out other regions of this gene. Although no correlation between genomic variants and gene expression was found, it would be interesting to examine allele-specific effects on CHRM2 transcripts expression in much more detail, for example in relation to transcripts specific halve-life and their relation to LTP and memory.

  20. [Protective action of glutamate antibodies on increased expression of genes of programmed death of rat brain cells induced by injection of a β-amyloid fragment (25-35)].

    Science.gov (United States)

    Kolobov, V V; Davydova, T V; Fomina, V G

    2014-01-01

    Glutamate antibodies intranasally administered to Wistar rats at a dose of 300 μg/kg reduced the elevated levels of expression of Aifml, Casp3, and Parp 1 genes in the prefrontal cortex and Aifml and Casp3 genes in the hippocampus on the third day after administration of the β-amyloid fragment Aβ25-35 into the Meynert nuclei of the brain. Changes in Aifm1, Bax, Casp3, and Parp 1 gene expression were not found in the hypothalamus, and changes in Bax gene expression were not found in the brain structures studied. The discovered features of gene expression in the prefrontal cortex and hippocampus are considered in terms of development of various cell-death programs, which are modulated by glutamate antibodies.

  1. Gene Expression Omnibus (GEO)

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  2. Effects of the fish spawning inducer ovaprim on vasotocin receptor gene expression in brain and ovary of the catfish Heteropneustes fossilis with a note on differential transcript expression in ovarian follicles.

    Science.gov (United States)

    Rawat, A; Chaube, R; Joy, K P

    2017-01-15

    Ovaprim (OVP), a commercial formulation of a salmon GnRH analogue and the dopamine receptor-2 blocker domperidone, is a successful spawning inducer for fish breeding. It induces a preovulatory surge in LH, which stimulates the synthesis of a maturation-inducing steroid (MIS, 17,20β-dihydroxy-4-pregnen-3-one) that initiates germinal vesicle breakdown (GVBD) and ovulation. Coincidently, the OVP treatment also stimulates vasotocin (VT) secretion in the brain and ovary of the catfish Heteropneustes fossilis that also stimulates the synthesis of the MIS. VT mediates its effect through V1- and V2-type receptors. In the present study in the catfish, we report that OVP stimulates the expression of VT receptor genes v1a1, v1a2 and v2a in the brain and ovary. A single intraperitoneal administration of OVP (0.5μL/g body weight) or incubation of post-vitellogenic ovarian follicles with 5μL/mL OVP, for 0, 4, 8, 12, 16, and 24h stimulated ovulation and GVBD, respectively, in a time-dependent manner. The OVP treatment in vivo stimulated brain VT receptor transcript levels 4h onwards. The peak expression was noticed at 12h (v1a1), 8 and 12h (v1a2), and 8, 12 and 16h (v2a), coinciding with FOM and ovulation. The VT receptor genes are expressed in the ovarian follicles compartmentally; both v1a1 and v1a2 are expressed in the isolated follicular layer (theca and granulosa) but absent in denuded oocytes. V2a is expressed in the denuded oocytes and not in the follicular layer. The OVP injection stimulated the v1a1 and v1a2 expression from 4h onwards in both intact follicle and isolated follicular layer, the peak expression was observed at 16h. The v2a expression was up-regulated in both intact follicles and denuded oocytes at 4h (denuded oocytes) or 8h (intact follicle) onwards with the peak expression at 12h and 16h (denuded oocytes) or at 16h (intact follicles). Under in vitro conditions, the OVP incubations elicited similar pattern of changes with the peak stimulation at 16h for

  3. Modulation of intestinal microbiota by the probiotic VSL#3 resets brain gene expression and ameliorates the age-related deficit in LTP.

    Directory of Open Access Journals (Sweden)

    Eleonora Distrutti

    Full Text Available The intestinal microbiota is increasingly recognized as a complex signaling network that impacts on many systems beyond the enteric system modulating, among others, cognitive functions including learning, memory and decision-making processes. This has led to the concept of a microbiota-driven gut-brain axis, reflecting a bidirectional interaction between the central nervous system and the intestine. A deficit in synaptic plasticity is one of the many changes that occurs with age. Specifically, the archetypal model of plasticity, long-term potentiation (LTP, is reduced in hippocampus of middle-aged and aged rats. Because the intestinal microbiota might change with age, we have investigated whether the age-related deficit in LTP might be attenuated by changing the composition of intestinal microbiota with VSL#3, a probiotic mixture comprising 8 Gram-positive bacterial strains. Here, we report that treatment of aged rats with VSL#3 induced a robust change in the composition of intestinal microbiota with an increase in the abundance of Actinobacteria and Bacterioidetes, which was reduced in control-treated aged rats. VSL#3 administration modulated the expression of a large group of genes in brain tissue as assessed by whole gene expression, with evidence of a change in genes that impact on inflammatory and neuronal plasticity processes. The age-related deficit in LTP was attenuated in VSL#3-treated aged rats and this was accompanied by a modest decrease in markers of microglial activation and an increase in expression of BDNF and synapsin. The data support the notion that intestinal microbiota can be manipulated to positively impact on neuronal function.

  4. Modulation of intestinal microbiota by the probiotic VSL#3 resets brain gene expression and ameliorates the age-related deficit in LTP.

    Science.gov (United States)

    Distrutti, Eleonora; O'Reilly, Julie-Ann; McDonald, Claire; Cipriani, Sabrina; Renga, Barbara; Lynch, Marina A; Fiorucci, Stefano

    2014-01-01

    The intestinal microbiota is increasingly recognized as a complex signaling network that impacts on many systems beyond the enteric system modulating, among others, cognitive functions including learning, memory and decision-making processes. This has led to the concept of a microbiota-driven gut-brain axis, reflecting a bidirectional interaction between the central nervous system and the intestine. A deficit in synaptic plasticity is one of the many changes that occurs with age. Specifically, the archetypal model of plasticity, long-term potentiation (LTP), is reduced in hippocampus of middle-aged and aged rats. Because the intestinal microbiota might change with age, we have investigated whether the age-related deficit in LTP might be attenuated by changing the composition of intestinal microbiota with VSL#3, a probiotic mixture comprising 8 Gram-positive bacterial strains. Here, we report that treatment of aged rats with VSL#3 induced a robust change in the composition of intestinal microbiota with an increase in the abundance of Actinobacteria and Bacterioidetes, which was reduced in control-treated aged rats. VSL#3 administration modulated the expression of a large group of genes in brain tissue as assessed by whole gene expression, with evidence of a change in genes that impact on inflammatory and neuronal plasticity processes. The age-related deficit in LTP was attenuated in VSL#3-treated aged rats and this was accompanied by a modest decrease in markers of microglial activation and an increase in expression of BDNF and synapsin. The data support the notion that intestinal microbiota can be manipulated to positively impact on neuronal function.

  5. Effects of an oxycodone conjugate vaccine on oxycodone self-administration and oxycodone-induced brain gene expression in rats.

    Directory of Open Access Journals (Sweden)

    Marco Pravetoni

    Full Text Available Prescription opioid abuse is an increasing public health concern in the USA. A vaccine comprising a hapten (OXY conjugated to the carrier protein keyhole limpet hemocyanin (OXY-KLH has been shown to attenuate the antinociceptive effects of oxycodone. Here, the vaccine's ability to prevent acquisition of intravenous (i.v. oxycodone self-administration was studied in rats. Effects of vaccination on oxycodone-induced changes in the expression of several genes within the mesolimbic system, which are regulated by chronic opiate use, were also examined. Vaccination with OXY-KLH reduced the proportion of rats acquiring i.v. self-administration of oxycodone under a fixed ratio (FR 3 schedule of reinforcement compared to control rats immunized with the unconjugated KLH carrier protein. Vaccination significantly reduced the mean number of infusions at FR3, total number of infusions, and total oxycodone intake during the entire protocol. Compared to oxycodone self-administering control rats immunized with the carrier alone, rats vaccinated with the OXY-KLH immunogen showed increased levels of adenylate cyclase 5 (Adcy5 and decreased levels of early growth response protein 2 (Egr2 and the early immediate gene c-Fos in the striatum. These data suggest that vaccination with OXY-KLH can attenuate the reinforcing effects of oxycodone at a clinically-relevant exposure level. Analysis of mRNA expression identified some addiction-relevant markers that may be of interest in understanding oxycodone effects or the protection provided by vaccination.

  6. Transmission of stress-induced learning impairment and associated brain gene expression from parents to offspring in chickens.

    Directory of Open Access Journals (Sweden)

    Christina Lindqvist

    Full Text Available BACKGROUND: Stress influences many aspects of animal behaviour and is a major factor driving populations to adapt to changing living conditions, such as during domestication. Stress can affect offspring through non-genetic mechanisms, but recent research indicates that inherited epigenetic modifications of the genome could possibly also be involved. METHODOLOGY/PRINCIPAL FINDINGS: Red junglefowl (RJF, ancestors of modern chickens and domesticated White Leghorn (WL chickens were raised in a stressful environment (unpredictable light-dark rhythm and control animals in similar pens, but on a 12/12 h light-dark rhythm. WL in both treatments had poorer spatial learning ability than RJF, and in both populations, stress caused a reduced ability to solve a spatial learning task. Offspring of stressed WL, but not RJF, raised without parental contact, had a reduced spatial learning ability compared to offspring of non-stressed animals in a similar test as that used for their parents. Offspring of stressed WL were also more competitive and grew faster than offspring of non-stressed parents. Using a whole-genome cDNA microarray, we found that in WL, the same changes in hypothalamic gene expression profile caused by stress in the parents were also found in the offspring. In offspring of stressed WL, at least 31 genes were up- or down-regulated in the hypothalamus and pituitary compared to offspring of non-stressed parents. CONCLUSIONS/SIGNIFICANCE: Our results suggest that, in WL the gene expression response to stress, as well as some behavioural stress responses, were transmitted across generations. The ability to transmit epigenetic information and behaviour modifications between generations may therefore have been favoured by domestication. The mechanisms involved remain to be investigated; epigenetic modifications could either have been inherited or acquired de novo in the specific egg environment. In both cases, this would offer a novel explanation to

  7. Older Age Results in Differential Gene Expression after Mild Traumatic Brain Injury and is Linked to Imaging Differences at Acute Follow-up

    Directory of Open Access Journals (Sweden)

    Young-Eun Cho

    2016-07-01

    Full Text Available Older age consistently relates to a lesser ability to fully recover from a traumatic brain injury (TBI; however, there is limited data to explicate the nature of age-related risks. This study was undertaken to determine the relationship of age on gene-activity following a TBI, and how this biomarker relates to changes in neuroimaging findings. A younger group (between the ages of 19-35 years, and an older group (between the ages of 60-89 years were compared on global gene-activity within 48 hours following a TBI, and then at follow-up within 1-week. At each time-point gene-expression profiles, and imaging findings from magnetic resonance imaging (MRI and computed tomography (CT were obtained and compared. The younger group was found to have greater gene expression of inflammatory regulatory genes at 48 hours and 1 week in genes such as basic leucine zipper transcription factor 2 (BACH2, leucine rich repeat neuronal 3 (LRRN3 and lymphoid enhancer-binding factor 1 (LEF1 compared to the older group. In the older group, there was increased activity in genes within S100 family, including calcium binding protein P (S100P and S100 calcium binding protein A8 (S100A8, which previous studies have linked to poor recovery from TBI. The older group also had reduced activity of the noggin (NOG gene, which is a member of the transforming growth factor-β (TGF-β superfamily and is linked to neuro-recovery and neuro-regeneration compared to the younger group. We link these gene-expression findings that were validated to neuroimaging, reporting that in the older group with a MRI finding of TBI related damage, there was a lesser likelihood to then have a negative MRI finding at follow-up compared to the younger group. Together, these data indicate that age impacts gene activity following a TBI, and suggests that this differential activity related to immune regulation and neuro-recovery contributes to a lesser likelihood of neuronal recovery in older patients as

  8. Discovery of a novel functional leptin protein (LEP) in zebra finches: evidence for the existence of an authentic avian leptin gene predominantly expressed in the brain and pituitary.

    Science.gov (United States)

    Huang, Guian; Li, Juan; Wang, Hongning; Lan, Xinyu; Wang, Yajun

    2014-09-01

    Leptin (LEP) is reported to play important roles in controlling energy balance in vertebrates, including birds. However, it remains an open question whether an authentic "LEP gene" exists and functions in birds. Here, we identified and characterized a LEP gene (zebra finch LEP [zbLEP]) encoding a 172-amino acid precursor in zebra finches. Despite zbLEP showing limited amino acid sequence identity (26%-29%) to human and mouse LEPs, synteny analysis proved that zbLEP is orthologous to mammalian LEP. Using a pAH32 luciferase reporter system and Western blot analysis, we demonstrated that the recombinant zbLEP protein could potently activate finch and chicken LEP receptors (zbLEPR; cLEPR) expressed in human embryonic kidney 293 cells and enhance signal transducer and activator of transcription 3 phosphorylation, further indicating that zbLEP is a functional ligand for avian LEPRs. Interestingly, quantitative real-time RT-PCR revealed that zbLEP mRNA is expressed nearly exclusively in the pituitary and various brain regions but undetectable in adipose tissue and liver, whereas zbLEPR mRNA is widely expressed in adult finch tissues examined with abundant expression noted in pituitary, implying that unlike mammalian LEP, finch LEP may not act as an adipocyte-derived signal to control energy balance. As in finches, a LEP highly homologous to zbLEP was also identified in budgerigar genome. Strikingly, finch and budgerigar LEPs show little homology with chicken LEP (cLEP) previously reported, suggesting that the so-called cLEP is incorrect. Collectively, our data provide convincing evidence for the existence of an authentic functional LEP in avian species and suggest an important role of brain- and pituitary-derived LEP played in vertebrates.

  9. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior

    DEFF Research Database (Denmark)

    Baek, Jean-Ha; Schmidt, Eva; Viceconte, Nikenza;

    2015-01-01

    Hutchinson–Gilford progeria syndrome (HGPS) is a segmental progeroid syndrome with multiple features suggestive of premature accelerated aging. Accumulation of progerin is thought to underlie the pathophysiology of HGPS. However, despite ubiquitous expression of lamin A in all differentiated cells......, the HGPS mutation results in organ-specific defects. For example, bone and skin are strongly affected by HGPS, while the brain appears to be unaffected. There are no definite explanations as to the variable sensitivity to progeria disease among different organs. In addition, low levels of progerin have...

  10. Permanent focal brain ischemia induces isoform-dependent changes in the pattern of Na+/Ca2+ exchanger gene expression in the ischemic core, periinfarct area, and intact brain regions.

    Science.gov (United States)

    Boscia, Francesca; Gala, Rosaria; Pignataro, Giuseppe; de Bartolomeis, Andrea; Cicale, Maria; Ambesi-Impiombato, Alberto; Di Renzo, Gianfranco; Annunziato, Lucio

    2006-04-01

    Dysregulation of sodium [Na+]i and calcium [Ca2+]i homeostasis plays a pivotal role in the pathophysiology of cerebral ischemia. Three gene products of the sodium-calcium exchanger family NCX1, NCX2, and NCX3 couple, in a bidirectional way, the movement of these ions across the cell membrane during cerebral ischemia. Each isoform displays a selective distribution in the rat brain. To determine whether NCX gene expression can be regulated after cerebral ischemia, we used NCX isoform-specific antisense radiolabeled probes to analyze, by radioactive in situ hybridization histochemistry, the pattern of NCX1, NCX2, and NCX3 transcripts in the ischemic core, periinfarct area, as well as in nonischemic brain regions, after 6 and 24 h of permanent middle cerebral artery occlusion (pMCAO) in rats. We found that in the focal region, comprising divisions of the prefrontal, somatosensory, and insular cortices, all three NCX transcripts were downregulated. In the periinfarct area, comprising part of the motor cortex and the lateral compartments of the caudate-putamen, NCX2 messenger ribonucleic acid (mRNA) was downregulated, whereas NCX3 mRNA was significantly upregulated. In remote nonischemic brain regions such as the prelimbic and infralimbic cortices, and tenia tecta, both NCX1 and NCX3 transcripts were upregulated, whereas in the medial caudate-putamen only NCX3 transcripts increased. In all these intact regions, NCX2 signal strongly decreased. These results indicate that NCX gene expression is regulated after pMCAO in a differential manner, depending on the exchanger isoform and region involved in the insult. These data may provide a better understanding of each NCX subtype's pathophysiologic role and may allow researchers to design appropriate pharmacological strategies to treat brain ischemia.

  11. Protective Effect of Isoflurane and Sevoflurane on Ischemic Neurons and Expression of Bcl-2 and ICE Genes in Rat Brain

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To study the protective effect of volatile anesthetics, isoflurane and sevoflurane, on ischemic neurons after cerebral ischemia-reperfusion in rats and its possible molecular mechanism. Methods Rat cerebral ischemia-reperfusion model was developed by occlusion of the middle cerebral artery (MCA) and bilateral common carotid arteries (CCAs) 1 h after reperfusion. Using flow cytometry (FCM) and Northern blot hybridization, we calculated the number of apoptotic bodies and detected the expression of bcl-2 mRNA and interleukin-1 β converting enzyme (ICE) mRNA. Results The apoptotic bodies in hippocampus analyzed by FCM peaked at appeared 24 h after reperfusion, and decreased about 54% and 40%, respectively,after treatment with isoflurane and sevoflurane, as compared with ischemic group. There was no significant difference in the expression of bcl-2 mRNA and ICE mRNA between the inhaled anesthetic groups and ischemic group in hippocampus 24 hafter MCA/CCAs occlusion. Conclusion Isoflurane and sevoflurane partially inhibit apoptosis but have no significant effect on the expression of bcl-2 and ICE genes.

  12. Lead induces similar gene expression changes in brains of gestationally exposed adult mice and in neurons differentiated from mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Francisco Javier Sánchez-Martín

    Full Text Available Exposure to environmental toxicants during embryonic life causes changes in the expression of developmental genes that may last for a lifetime and adversely affect the exposed individual. Developmental exposure to lead (Pb, an ubiquitous environmental contaminant, causes deficits in cognitive functions and IQ, behavioral effects, and attention deficit hyperactivity disorder (ADHD. Long-term effects observed after early life exposure to Pb include reduction of gray matter, alteration of myelin structure, and increment of criminal behavior in adults. Despite growing research interest, the molecular mechanisms responsible for the effects of lead in the central nervous system are still largely unknown. To study the molecular changes due to Pb exposure during neurodevelopment, we exposed mice to Pb in utero and examined the expression of neural markers, neurotrophins, transcription factors and glutamate-related genes in hippocampus, cortex, and thalamus at postnatal day 60. We found that hippocampus was the area where gene expression changes due to Pb exposure were more pronounced. To recapitulate gestational Pb exposure in vitro, we differentiated mouse embryonic stem cells (ESC into neurons and treated ESC-derived neurons with Pb for the length of the differentiation process. These neurons expressed the characteristic neuronal markers Tubb3, Syp, Gap43, Hud, Ngn1, Vglut1 (a marker of glutamatergic neurons, and all the glutamate receptor subunits, but not the glial marker Gafp. Importantly, several of the changes observed in Pb-exposed mouse brains in vivo were also observed in Pb-treated ESC-derived neurons, including those affecting expression of Ngn1, Bdnf exon IV, Grin1, Grin2D, Grik5, Gria4, and Grm6. We conclude that our ESC-derived model of toxicant exposure during neural differentiation promises to be a useful model to analyze mechanisms of neurotoxicity induced by Pb and other environmental agents.

  13. A large-scale electrophoresis- and chromatography-based determination of gene expression profiles in bovine brain capillary endothelial cells after the re-induction of blood-brain barrier properties

    Directory of Open Access Journals (Sweden)

    Duban-Deweer Sophie

    2010-11-01

    Full Text Available Abstract Background Brain capillary endothelial cells (BCECs form the physiological basis of the blood-brain barrier (BBB. The barrier function is (at least in part due to well-known proteins such as transporters, tight junctions and metabolic barrier proteins (e.g. monoamine oxidase, gamma glutamyltranspeptidase and P-glycoprotein. Our previous 2-dimensional gel proteome analysis had identified a large number of proteins and revealed the major role of dynamic cytoskeletal remodelling in the differentiation of bovine BCECs. The aim of the present study was to elaborate a reference proteome of Triton X-100-soluble species from bovine BCECs cultured in the well-established in vitro BBB model developed in our laboratory. Results A total of 215 protein spots (corresponding to 130 distinct proteins were identified by 2-dimensional gel electrophoresis, whereas over 350 proteins were identified by a shotgun approach. We classified around 430 distinct proteins expressed by bovine BCECs. Our large-scale gene expression analysis enabled the correction of mistakes referenced into protein databases (e.g. bovine vinculin and constitutes valuable evidence for predictions based on genome annotation. Conclusions Elaboration of a reference proteome constitutes the first step in creating a gene expression database dedicated to capillary endothelial cells displaying BBB characteristics. It improves of our knowledge of the BBB and the key proteins in cell structures, cytoskeleton organization, metabolism, detoxification and drug resistance. Moreover, our results emphasize the need for both appropriate experimental design and correct interpretation of proteome datasets.

  14. Evidence for genetic regulation of mRNA expression of the dosage-sensitive gene retinoic acid induced-1 (RAI1) in human brain

    Science.gov (United States)

    Chen, Li; Tao, Yu; Song, Fan; Yuan, Xi; Wang, Jian; Saffen, David

    2016-01-01

    RAI1 (retinoic acid induced-1) is a dosage-sensitive gene that causes Smith-Magenis syndrome (SMS) when mutated or deleted and Potocki-Lupski Syndrome (PTLS) when duplicated, with psychiatric features commonly observed in both syndromes. How common genetic variants regulate this gene, however, is unknown. In this study, we found that RAI1 mRNA expression in Chinese prefrontal and temporal cortex correlate with genotypes of common single nucleotide polymorphisms (SNPs) located in the RAI1 5′-upstream region. Using genotype imputation, “R2-Δ2” analysis, and data from the RegulomeDB database, we identified SNPs rs4925102 and rs9907986 as possible regulatory variants, accounting for approximately 30–40% of the variance in RAI1 mRNA expression in both brain regions. Specifically, rs4925102 and rs9907986 are predicted to disrupt the binding of retinoic acid RXR-RAR receptors and the transcription factor DEAF1 (Deformed epidermal autoregulatory factor-1), respectively. Consistent with these predictions, we observed binding of RXRα and RARα to the predicted RAI1 target in chromatin immunoprecipitation assays. Retinoic acid is crucial for early development of the central neural system, and DEAF1 is associated with intellectual disability. The observation that a significant portion of RAI1 mRNA expression is genetically controlled raises the possibility that common RAI1 5′-region regulatory variants contribute more generally to psychiatric disorders. PMID:26743651

  15. Differential adenoassociated virus vector-driven expression of a neuropeptide Y gene in primary rat brain astroglial cultures after transfection with Sendai virosomes versus Lipofectin.

    Science.gov (United States)

    de Fiebre, C M; Wu, P; Notabartolo, D; Millard, W J; Meyer, E M

    1994-06-01

    The ability of Sendai virosomes or Lipofectin to introduce an AAV vector into primary rat brain astroglial cultures was characterized. The pJDT95npy vector was constructed by inserting rat NPY cDNA downstream from the indigenous AAV p5, p19 and p40 promoters in pJDT95. Lipofectin-mediated transfection with pJDT95npy (10 micrograms) resulted in pronounced expression of several NPY mRNA species: p5-driven (3.3 kb), p19-driven (2.7 kb) and p40-driven (0.6, 0.8, 1.1, and 1.8 kb). Exposure to virosomally encapsulated pJDT95npy (50 or 100 ng) resulted in transient expression of some p40-driven mRNA species (0.8 and 1.8 kb). Neither method produced astroglia cells which synthesized mature NPY immunoreactivity. This demonstrates that an AAV-derived vector can drive gene expression in astroglia, that Sendai virosomes can infuse vectors into astroglia, but that the amount of DNA infused in this manner may limit long term expression.

  16. Altered cell cycle-related gene expression in brain and lymphocytes from a transgenic mouse model of Alzheimer's disease [amyloid precursor protein/presenilin 1 (PS1)].

    Science.gov (United States)

    Esteras, Noemí; Bartolomé, Fernando; Alquézar, Carolina; Antequera, Desireé; Muñoz, Úrsula; Carro, Eva; Martín-Requero, Ángeles

    2012-09-01

    Cumulative evidence indicates that aberrant re-expression of many cell cycle-related proteins and inappropriate neuronal cell cycle control are critical events in Alzheimer's disease (AD) pathogenesis. Evidence of cell cycle activation in post-mitotic neurons has also been observed in murine models of AD, despite the fact that most of these mice do not show massive loss of neuronal bodies. Dysfunction of the cell cycle appears to affect cells other than neurons, as peripheral cells, such as lymphocytes and fibroblasts from patients with AD, show an altered response to mitogenic stimulation. We sought to determine whether cell cycle disturbances are present simultaneously in both brain and peripheral cells from the amyloid precursor protein (APP)/presenilin 1 (PS1) mouse model of AD, in order to validate the use of peripheral cells from patients not only to study cell cycle abnormalities as a pathogenic feature of AD, but also as a means to test novel therapeutic approaches. By using cell cycle pathway-specific RT(2)Profiler™ PCR Arrays, we detected changes in a number of cell cycle-related genes in brain as well as in lymphocytes from APP/PS1 mice. Moreover, we found enhanced 5'-bromo-2'-deoxyuridine incorporation into DNA in lymphocytes from APP/PS1 mice, and increased expression of the cell proliferation marker proliferating cell nuclear antigen (PCNA), and the cyclin-dependent kinase (CDK) inhibitor Cdkn2a, as detected by immunohistochemistry in cortical neurons of the APP/PS1 mice. Taken together, the cell cycle-related changes in brain and blood cells reported here support the mitosis failure hypothesis in AD and validate the use of peripheral cells as surrogate tissue to study the molecular basis of AD pathogenesis.

  17. Lactoferrin up-regulates intestinal gene expression of brain-derived neurotrophic factors BDNF, UCHL1 and alkaline phosphatase activity to alleviate early weaning diarrhea in postnatal piglets.

    Science.gov (United States)

    Yang, Changwei; Zhu, Xi; Liu, Ni; Chen, Yue; Gan, Hexia; Troy, Frederic A; Wang, Bing

    2014-08-01

    The molecular mechanisms underlying how dietary lactoferrin (Lf) impacts gut development and maturation and protects against early weaning diarrhea are not well understood. In this study, we supplemented postnatal piglets with an Lf at a dose level of 155 and 285 mg/kg/day from 3 to 38 days following birth. Our findings show that the high dose of Lf up-regulated messenger RNA expression levels of genes encoding brain-derived neurotrophic factor (BDNF) and ubiquitin carboxy-terminal hydrolase L1 (ubiquitin thiolesterase (UCHL1) and, to a lesser extent, glial cell line-derived neurotrophic factor, in the duodenum (Pintestinal alkaline phosphatase activity (Pbrain-microbe axis that has not been previously reported.

  18. MicroRNA expression profiles and functions in the brain

    Institute of Scientific and Technical Information of China (English)

    Yanting Qi; Yu Zhao; Zhuyin Chen; Xiaona Chen; Marie C. Lin; Xiangfu Kong; Lihui Lai

    2008-01-01

    MicroRNAs are abundant in the brains of vertebrates and some show a brain-specific or brain-enriched expression pattern. Because microRNAs regulate the expression of hundreds of target genes, it is not surprising that they have profoundly important functions in brain development and pathological processes. For example, miR-124 plays an important role in inducing and maintaining neuronal identity through targeting at least two anti-neural factors. MicroRNAs have also been implicated in brain disorders, including brain tumors and neurodegenerative diseases. This review aims to present an overview of the expression profiles and functions of microRNAs in the developing brains of vertebrates.

  19. Effect of brain-derived neurotrophic factor on activity-regulated cytoskeleton-associated protein gene expression in primary frontal cortical neurons. Comparison with NMDA and AMPA

    DEFF Research Database (Denmark)

    El-Sayed, Mona; Hofman-Bang, Jacob; Mikkelsen, Jens D

    2011-01-01

    The effect of brain-derived neurotrophic factor (BDNF) on activity-regulated cytoskeleton-associated protein (Arc) mRNA levels in primary neuronal cultures of rat frontal cortex was characterized pharmacologically and compared to the effect on expression of c-fos, bdnf, neuritin, cox-2 as examples...... of other immediate early genes. BDNF induced a very strong increase (around 100 fold) in Arc mRNA and the maximal effect seen at 25 ng/ml. The effect was dose-dependent with EC50 around 1.6 ng/ml. The time profile revealed a significant effect after 25 min. BDNF also increased levels of c-Fos, neuritin...... and BDNF mRNA, but not COX-2 mRNA. The pharmacological profile of NMDA and AMPA-induced arc gene expression in frontal cortical neurons was compared to BDNF. NMDA and AMPA increased Arc mRNA but their maximal effect did not exceed 20-fold. The effect of AMPA was completely blocked by the NMDA receptor...

  20. Oral leucine supplementation is sensed by the brain but neither reduces food intake nor induces an anorectic pattern of gene expression in the hypothalamus.

    Directory of Open Access Journals (Sweden)

    Thais T Zampieri

    Full Text Available Leucine activates the intracellular mammalian target of the rapamycin (mTOR pathway, and hypothalamic mTOR signaling regulates food intake. Although central infusion of leucine reduces food intake, it is still uncertain whether oral leucine supplementation is able to affect the hypothalamic circuits that control energy balance. We observed increased phosphorylation of p70s6k in the mouse hypothalamus after an acute oral gavage of leucine. We then assessed whether acute oral gavage of leucine induces the activation of neurons in several hypothalamic nuclei and in the brainstem. Leucine did not induce the expression of Fos in hypothalamic nuclei, but it increased the number of Fos-immunoreactive neurons in the area postrema. In addition, oral gavage of leucine acutely increased the 24 h food intake of mice. Nonetheless, chronic leucine supplementation in the drinking water did not change the food intake and the weight gain of ob/ob mice and of wild-type mice consuming a low- or a high-fat diet. We assessed the hypothalamic gene expression and observed that leucine supplementation increased the expression of enzymes (BCAT1, BCAT2 and BCKDK that metabolize branched-chain amino acids. Despite these effects, leucine supplementation did not induce an anorectic pattern of gene expression in the hypothalamus. In conclusion, our data show that the brain is able to sense oral leucine intake. However, the food intake is not modified by chronic oral leucine supplementation. These results question the possible efficacy of leucine supplementation as an appetite suppressant to treat obesity.

  1. Oral Leucine Supplementation Is Sensed by the Brain but neither Reduces Food Intake nor Induces an Anorectic Pattern of Gene Expression in the Hypothalamus

    Science.gov (United States)

    Zampieri, Thais T.; Pedroso, João A. B.; Furigo, Isadora C.; Tirapegui, Julio; Donato, Jose

    2013-01-01

    Leucine activates the intracellular mammalian target of the rapamycin (mTOR) pathway, and hypothalamic mTOR signaling regulates food intake. Although central infusion of leucine reduces food intake, it is still uncertain whether oral leucine supplementation is able to affect the hypothalamic circuits that control energy balance. We observed increased phosphorylation of p70s6k in the mouse hypothalamus after an acute oral gavage of leucine. We then assessed whether acute oral gavage of leucine induces the activation of neurons in several hypothalamic nuclei and in the brainstem. Leucine did not induce the expression of Fos in hypothalamic nuclei, but it increased the number of Fos-immunoreactive neurons in the area postrema. In addition, oral gavage of leucine acutely increased the 24 h food intake of mice. Nonetheless, chronic leucine supplementation in the drinking water did not change the food intake and the weight gain of ob/ob mice and of wild-type mice consuming a low- or a high-fat diet. We assessed the hypothalamic gene expression and observed that leucine supplementation increased the expression of enzymes (BCAT1, BCAT2 and BCKDK) that metabolize branched-chain amino acids. Despite these effects, leucine supplementation did not induce an anorectic pattern of gene expression in the hypothalamus. In conclusion, our data show that the brain is able to sense oral leucine intake. However, the food intake is not modified by chronic oral leucine supplementation. These results question the possible efficacy of leucine supplementation as an appetite suppressant to treat obesity. PMID:24349566

  2. Sodium fluoride affects zebrafish behaviour and alters mRNA expressions of biomarker genes in the brain: Role of Nrf2/Keap1.

    Science.gov (United States)

    Mukhopadhyay, Debdip; Priya, Pooja; Chattopadhyay, Ansuman

    2015-09-01

    Sodium fluoride (NaF), used as pesticides and for industrial purposes are deposited in the water bodies and therefore affects its biota. Zebrafish exposed to NaF in laboratory condition showed hyperactivity and frequent surfacing activity, somersaulting and vertical swimming pattern as compared to the control group. Reactive oxygen species level was elevated and glutathione level was depleted along with increased malondialdehyde content in the brain. Levels of glutathione-s-transferase (GST), catalase (CAT) and superoxide dismutase were also elevated in the treatment groups. Expression of mRNA of nuclear factor erythroid 2 related factor 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein 1 (Keap1) during stress condition were observed along with Gst, Cat, NADPH: quinone oxidoreductase 1(Nqo1) and p38. Except Keap1, all other genes exhibited elevated expression. Nrf2/Keap1 proteins had similar expression pattern as their corresponding mRNA. The findings in this study might help to understand the molecular mechanism of fluoride induced neurotoxicity in fish.

  3. Identification of a tachykinin-related neuropeptide from the honeybee brain using direct MALDI-TOF MS and its gene expression in worker, queen and drone heads.

    Science.gov (United States)

    Takeuchi, H; Yasuda, A; Yasuda-Kamatani, Y; Kubo, T; Nakajima, T

    2003-06-01

    Using a combination of MALDI-TOF and on-line capillary HPLC/Q-Tof mass spectroscopy, we identified and determined the amino acid sequence of a novel neuropeptide in the brain of the honeybee Apis mellifera L., termed AmTRP peptide (Apis mellifera tachykinin-related peptide), related to insect tachykinin. A cDNA for a prepro-protein (prepro-AmTRP) of AmTRP was isolated and determined to encode seven AmTRPs 1-7. Northern blot analysis indicated that the prepro-AmTRP gene is expressed differentially in the nurse bee, forager, queen and drone heads. Strong expression was detected in the queen and forager heads, while weak and almost no significant expression was detected in the nurse and drone heads, respectively. These results suggest that AmTRP peptide functions as a neuromodulator and/or hormone, associated with sex-specific or age/division of labour-selective behaviour and/or physiology of the honeybees.

  4. Upregulation of Haploinsufficient Gene Expression in the Brain by Targeting a Long Non-coding RNA Improves Seizure Phenotype in a Model of Dravet Syndrome

    Directory of Open Access Journals (Sweden)

    J. Hsiao

    2016-07-01

    Full Text Available Dravet syndrome is a devastating genetic brain disorder caused by heterozygous loss-of-function mutation in the voltage-gated sodium channel gene SCN1A. There are currently no treatments, but the upregulation of SCN1A healthy allele represents an appealing therapeutic strategy. In this study we identified a novel, evolutionary conserved mechanism controlling the expression of SCN1A that is mediated by an antisense non-coding RNA (SCN1ANAT. Using oligonucleotide-based compounds (AntagoNATs targeting SCN1ANAT we were able to induce specific upregulation of SCN1A both in vitro and in vivo, in the brain of Dravet knock-in mouse model and a non-human primate. AntagoNAT-mediated upregulation of Scn1a in postnatal Dravet mice led to significant improvements in seizure phenotype and excitability of hippocampal interneurons. These results further elucidate the pathophysiology of Dravet syndrome and outline a possible new approach for the treatment of this and other genetic disorders with similar etiology.

  5. Shared Pathways Among Autism Candidate Genes Determined by Co-expression Network Analysis of the Developing Human Brain Transcriptome

    NARCIS (Netherlands)

    Mahfouz, A.; Ziats, M.N.; Rennert, O.M.; Lelieveldt, B.P.F.; Reinders, M.J.T.

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental syndrome known to have a significant but complex genetic etiology. Hundreds of diverse genes have been implicated in ASD; yet understanding how many genes, each with disparate function, can all be linked to a single clinical phenotype remains un

  6. MicroRNA Expression Profiling of the Porcine Developing Brain

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Kaczkowski, Bogumil; Busk, Peter Kamp

    2011-01-01

    MicroRNAs are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level and play an important role in the control of developmental and physiological processes. In particular, the developing brain contains an impressive diversity of microRNAs. Most microRNA...... and the growth curve when compared to humans. Considering these similarities, studies examining microRNA expression during porcine brain development could potentially be used to predict the expression profile and role of microRNAs in the human brain....

  7. MicroRNA expression profiling of the porcine developing brain

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Kaczkowski, Bogumil; Busk, Peter Kamp;

    2011-01-01

    MicroRNAs are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level and play an important role in the control of developmental and physiological processes. In particular, the developing brain contains an impressive diversity of microRNAs. Most micro...... and the growth curve when compared to humans. Considering these similarities, studies examining microRNA expression during porcine brain development could potentially be used to predict the expression profile and role of microRNAs in the human brain....

  8. Gene co-expression analysis identifies brain regions and cell types involved in migraine pathophysiology: a GWAS-based study using the Allen Human Brain Atlas

    NARCIS (Netherlands)

    E. Eising; S.M.H. Huisman (Sjoerd M. H.); A. Mahfouz (Ahmed); L.S. Vijfhuizen (Lisanne S.); K. Stefansson (Kari); B.S. Winsvold (Bendik); K.H. Kurth (Karl); M.A. Ikram (Arfan); B. Müller-Myhsok (Bertram); J. Kaprio (Jaakko); D.I. Boomsma (Dorret); C.M. van Duijn (Cock); M.-R. Jarvelin (Marjo-Riitta); J-A. Zwart (John-Anker); L. Quaye (Lydia); D.P. Strachan (David P.); E.T. Dermitzakis (Emmanouil); C. Kubisch (Christian); G.D. Smith; J-A. Zwart (John-Anker); A. Palotie (Aarno); D.I. Chasman (Daniel); M.D. Ferrari (Michel); G.M. Terwindt (Gisela); A.H. Stam (Anine); A.S. Dimas (Antigone); B.P.F. Lelieveldt (Boudewijn); A.M.J.M. Maagdenberg (Arn); M.J. Reinders (Marcel)

    2016-01-01

    textabstractMigraine is a common disabling neurovascular brain disorder typically characterised by attacks of severe headache and associated with autonomic and neurological symptoms. Migraine is caused by an interplay of genetic and environmental factors. Genome-wide association studies (GWAS) have

  9. Obesity and age-related alterations in the gene expression of zinc-transporter proteins in the human brain

    OpenAIRE

    Olesen, R H; Hyde, T M; Kleinman, J E; Smidt, K; Rungby, J; Larsen, A.

    2016-01-01

    The incidence of Alzheimer's disease (AD) is increasing. Major risk factors for AD are advancing age and diabetes. Lately, obesity has been associated with an increased risk of dementia. Obese and diabetic individuals are prone to decreased circulating levels of zinc, reducing the amount of zinc available for crucial intracellular processes. In the brain, zinc co-localizes with glutamate in synaptic vesicles, and modulates NMDA receptor activity. Intracellular zinc is involved in apoptosis an...

  10. CDRI-08 Attenuates REST/NRSF-Mediated Expression of NMDAR1 Gene in PBDE-209-Exposed Mice Brain.

    Science.gov (United States)

    Verma, Priya; Gupta, Rajaneesh K; Gandhi, Behrose S; Singh, Poonam

    2015-01-01

    CDRI-08 is a standardized bacoside enriched ethanolic extract of Bacopa monnieri, a nootropic plant. We reported that CDRI-08 attenuated oxidative stress and memory impairment in mice, induced by a flame retardant, PBDE-209. In order to explore the mechanism, present study was designed to examine the role of CDRI-08 on the expression of NMDAR1 (NR1) and the binding of REST/NRSF to NR1 promoter against postnatal exposure of PBDE-209. Male mice pups were orally supplemented with CDRI-08 at the doses of 40, 80, or 120 mg/kg along with PBDE-209 (20 mg/kg) during PND 3-10 and frontal cortex and hippocampus were collected at PND 11 and 60 to study the expression and regulation of NR1 by RT-PCR and electrophoretic mobility shift assay, respectively. The findings showed upregulated expression of NR1 and decreased binding of REST/NRSF to NR1 promoter after postnatal exposure of PBDE-209. Interestingly, supplementation with CDRI-08 significantly restored the expression of NR1 and binding of REST/NRSF to NR1 promoter near to the control value at the dose of 120 mg/kg. In conclusion, the results suggest that CDRI-08 possibly acts on glutamatergic system through expression and regulation of NR1 and may restore memory, impaired by PBDE-209 as reported in our previous study.

  11. CDRI-08 Attenuates REST/NRSF-Mediated Expression of NMDAR1 Gene in PBDE-209-Exposed Mice Brain

    Directory of Open Access Journals (Sweden)

    Priya Verma

    2015-01-01

    Full Text Available CDRI-08 is a standardized bacoside enriched ethanolic extract of Bacopa monnieri, a nootropic plant. We reported that CDRI-08 attenuated oxidative stress and memory impairment in mice, induced by a flame retardant, PBDE-209. In order to explore the mechanism, present study was designed to examine the role of CDRI-08 on the expression of NMDAR1 (NR1 and the binding of REST/NRSF to NR1 promoter against postnatal exposure of PBDE-209. Male mice pups were orally supplemented with CDRI-08 at the doses of 40, 80, or 120 mg/kg along with PBDE-209 (20 mg/kg during PND 3–10 and frontal cortex and hippocampus were collected at PND 11 and 60 to study the expression and regulation of NR1 by RT-PCR and electrophoretic mobility shift assay, respectively. The findings showed upregulated expression of NR1 and decreased binding of REST/NRSF to NR1 promoter after postnatal exposure of PBDE-209. Interestingly, supplementation with CDRI-08 significantly restored the expression of NR1 and binding of REST/NRSF to NR1 promoter near to the control value at the dose of 120 mg/kg. In conclusion, the results suggest that CDRI-08 possibly acts on glutamatergic system through expression and regulation of NR1 and may restore memory, impaired by PBDE-209 as reported in our previous study.

  12. Expression of stathmin gene in brain of epilepsy rats%stathmin基因在癫痫大鼠脑中的表达

    Institute of Scientific and Technical Information of China (English)

    张琳娜; 李海英; 陶虹; 扈启宽

    2012-01-01

    目的 探讨stathmin基因在癫痫发病中的作用.方法 取大鼠20只,随机分为对照组和青霉素组各10只.青霉素组采用腹腔注射青霉素制备大鼠癫痫模型,对照组向大鼠腹腔注射相同剂量的生理盐水.分别采用RT-PCR法和Western blot法检测大鼠癫痫发作后脑组织中海马区stathmin mRNA及蛋白表达.结果 stathmin mRNA及stathmin蛋白在癫痫脑组织中高表达,与对照组比较差异有统计学意义(P均<0.05).结论 stathmin在癫痫中过表达,stathmin可能为癫痫的生物治疗提供一个新靶点.%Objective To investigate the effect of stathmin gene in epilepsy. Methods Totally 20 rats were divided into penicillinum group and normal group. The epilepsy model was established by injecting penicillinum into abdominal cavity in penicillinum group, while the same dose of normal sodium was injected into abdominal cavity in control goup. Stathmin mRNA and protein in rat brain hippocampus tissue were examined by RT-PCR and Western blot method. Results Compared with normal group, the expression level of stathmin in the penicillinum group was higher (P <0.05). Conclusion Stathmin is overexpressed in rat epilepsy brain which may be a new biotherapy target in the treatment of epilepsy.

  13. Tumor-specific gene expression patterns with gene expression profiles

    Institute of Scientific and Technical Information of China (English)

    RUAN Xiaogang; LI Yingxin; LI Jiangeng; GONG Daoxiong; WANG Jinlian

    2006-01-01

    Gene expression profiles of 14 common tumors and their counterpart normal tissues were analyzed with machine learning methods to address the problem of selection of tumor-specific genes and analysis of their differential expressions in tumor tissues. First, a variation of the Relief algorithm, "RFE_Relief algorithm" was proposed to learn the relations between genes and tissue types. Then, a support vector machine was employed to find the gene subset with the best classification performance for distinguishing cancerous tissues and their counterparts. After tissue-specific genes were removed, cross validation experiments were employed to demonstrate the common deregulated expressions of the selected gene in tumor tissues. The results indicate the existence of a specific expression fingerprint of these genes that is shared in different tumor tissues, and the hallmarks of the expression patterns of these genes in cancerous tissues are summarized at the end of this paper.

  14. Gene and protein analysis of brain derived neurotrophic factor expression in relation to neurological recovery induced by an enriched environment in a rat stroke model.

    Science.gov (United States)

    Hirata, Kenji; Kuge, Yuji; Yokota, Chiaki; Harada, Akina; Kokame, Koichi; Inoue, Hiroyasu; Kawashima, Hidekazu; Hanzawa, Hiroko; Shono, Yuji; Saji, Hideo; Minematsu, Kazuo; Tamaki, Nagara

    2011-05-20

    Although an enriched environment enhances functional recovery after ischemic stroke, the mechanism underlying this effect remains unclear. We previously reported that brain derived neurotrophic factor (BDNF) gene expression decreased in rats housed in an enriched environment for 4 weeks compared to those housed in a standard cage for the same period. To further clarify the relationship between the decrease in BDNF and functional recovery, we investigated the effects of differential 2-week housing conditions on the mRNA of BDNF and protein levels of proBDNF and mature BDNF (matBDNF). After transient occlusion of the right middle cerebral artery of male Sprague-Dawley rats, we divided the rats into two groups: (1) an enriched group housed multiply in large cages equipped with toys, and (2) a standard group housed alone in small cages without toys. Behavioral tests before and after 2-week differential housing showed better neurological recovery in the enriched group than in the standard group. Synaptophysin immunostaining demonstrated that the density of synapses in the peri-infarct area was increased in the enriched group compared to the standard group, while infarct volumes were not significantly different. Real-time reverse transcription polymerase chain reaction, Western blotting and immunostaining all revealed no significant difference between the groups. The present results suggest that functional recovery cannot be ascribed to an increase in matBDNF or a decrease in proBDNF but rather to other underlying mechanisms.

  15. Sleep deprivation and gene expression in the brain%睡眠剥夺与脑内的基因表达

    Institute of Scientific and Technical Information of China (English)

    叶晨静; 赵忠新

    2005-01-01

    Sleeping plays a more important role than just providing rest and is exquisitely involved in homeostatic regulation. Studies suggest that prolonged waking is always followed by a compensatory increase in the hours and/or the intensity of sleep. Such homeostatic regulation of sleep indicates that a distinct physiological, biochemical, or molecular process is altered once sleep is deprived. Revealing such processes may provide critical clues to determining the functions of sleeping. Studies show that sleep deprivation could change the expressions of certain genes in the brain, such as Hsp70, GRP78/Bip , BDNF/TrkB, glucose transporter 1, the fos/jun family, Chromogranin C, synaptotagmin Ⅳ, and prepro-orexin.%睡眠十分重要,并且有着非常精细的自稳调节,研究发现觉醒时间的延长总是伴随着睡眠时间和(或)强度补偿性地增加.睡眠的自稳调节现象表明一旦剥夺睡眠,脑的生理、生化或分子学过程便会发生显著变化,揭示这些变化可以为我们了解睡眠功能提供重要线索.

  16. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior

    DEFF Research Database (Denmark)

    Baek, Jean-Ha; Schmidt, Eva; Viceconte, Nikenza

    2015-01-01

    , the HGPS mutation results in organ-specific defects. For example, bone and skin are strongly affected by HGPS, while the brain appears to be unaffected. There are no definite explanations as to the variable sensitivity to progeria disease among different organs. In addition, low levels of progerin have...

  17. The role of brain-derived neurotrophic factor in the regulation of cell growth and gene expression in melanotrope cells of Xenopus laevis.

    NARCIS (Netherlands)

    Jenks, B.G.; Kuribara, M.; Kidane, A.H.; Kramer, B.M.; Roubos, E.W.; Scheenen, W.J.

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is, despite its name, also found outside the central nervous system (CNS), but the functional significance of this observation is largely unknown. This review concerns the expression of BDNF in the pituitary gland. While the presence of the neurotrophin in th

  18. QUANTITATIVE RT-PCR ANALYSES OF FIVE EVOLUTIONARY CONSERVED GENES IN ALLIGATOR BRAINS DURING DEVELOPMENT

    Science.gov (United States)

    Wilson, Sarah M.; Zhu, Tianli; Khanna, Rajesh; Pritz, Michael B.

    2011-01-01

    Gene expression was investigated in the major brain subdivisions (telencephalon, diencephalon, midbrain and hindbrain) in a representative reptile, Alligator mississipiensis, during the later stages of embryonic development. The following genes were examined: voltage-gated sodium channel isoforms: NaV1.1 and NaV1.2; synaptic vesicle 2a (SV2a); synaptophysin; and calbindin 2. With the exception of synaptophysin, which was only expressed in the telencephalon, all genes were expressed in all brain regions sampled at the time periods examined. For NaV1.1, gene expression varied according to brain area sampled. When compared with NaV1.1, the pattern of NaV1.2 gene expression differed appreciably. The gene expression of SV2a was the most robust of any of the genes examined. Of the other genes examined, although differences were noted, no statistically significant changes were found either between brain part or time interval. Although limited, the present analysis is the first quantitative mRNA gene expression study in any reptile during development. Together with future experiments of a similar nature, the present gene expression results should determine which genes are expressed in major brain areas at which times during development in Alligator. When compared with other amniotes, these results will prove useful for determining how gene expression during development influences adult brain structure. PMID:22379598

  19. Increasing BMI is associated with reduced expression of P-glycoprotein (ABCB1 gene) in the human brain with a stronger association in African Americans than Caucasians

    DEFF Research Database (Denmark)

    2016-01-01

    effects to antipsychotics include obesity and metabolic disease. Polymorphisms in the ABCB1 gene coding for p-glycoprotein are associated with more severe side effects to neuro-pharmaceuticals as well as weight gain, indicating a potential link between p-glycoprotein function and metabolic regulation......The efflux pump, p-glycoprotein, controls bioavailability and excretion of pharmaceutical compounds. In the blood-brain barrier, p-glycoprotein regulates the delivery of pharmaceutical substances to the brain, influencing efficacy and side effects for some drugs notably antipsychotics. Common side...

  20. A comparative expression analysis of gene transcripts in brain tissue of non-transgenic and GH-transgenic zebrafish (Danio rerio using a DDRT-PCR approach

    Directory of Open Access Journals (Sweden)

    Fernanda A. Alves-Costa

    2012-06-01

    Full Text Available The presence of higher level of exogenous growth hormone (GH in transgenic animals could lead to several physiological alterations. A GH transgenic zebrafish (Danio rerio line was compared to nontransgenic (NT samples of the species through a DDRT-PCR approach, with the goal of identifying candidate differentially expressed transcripts in brain tissues that could be involved in GH overexpression. Densitometric analyses of two selected amplification products, p300 and ADCY2, pointed to a significant lower gene expression in the transgenic zebrafish (104.02 ± 57.71; 224.10 ± 91.73 when compared to NT samples (249.75 ± 30.08; 342.95 ± 65.19. The present data indicate that p300 and ADCY2 are involved in a regulation system for GH when high circulating levels of this hormone are found in zebrafishes.A presença de níveis mais elevados do hormônio de crescimento (GH em animais transgênicos poderia levar a várias alterações fisiológicas. Uma linhagem transgênica de paulistinha (Danio rerio para o GH foi comparada com amostras não transgênicas (NT desta espécie, através de uma abordagem de DDRT-PCR, com o objetivo de identificar transcritos candidatos diferencialmente expressos em tecido cerebral que poderiam estar envolvidos na superexpressão de GH. Análises densitométricas de dois produtos de amplificação selecionados, p300 e ADCY2, apontaram uma expressão gênica significativamente menor nas amostras transgênicas de paulistinha (104.02 ± 57.71; 224.10 ± 91.73, quando comparadas com as amostras NT (249.75 ± 30.08; 342.95±65.19. Os presentes dados indicam que p300 e ADCY2 estão envolvidos em um sistema de regulação do GH, quando altos níveis circulantes desse hormônio são encontrados em paulistinha.

  1. Age-related alteration of activity and gene expression of endothelial nitric oxide synthase in different parts of the brain in rats.

    Science.gov (United States)

    Strosznajder, Joanna B; Jeśko, Henryk; Zambrzycka, Agata; Eckert, Anne; Chalimoniuk, Małgorzata

    2004-11-11

    Nitric oxide (NO) plays important roles in aging and neurodegeneration. Our previous results indicated that aging differently affects NOS isoforms. Expression of nNOS mRNA was lower while iNOS was absent at any age. However, total NO synthesis increased in aged cerebral cortex and cerebellum as a consequence of changes of nNOS phosphorylation state. The question arise how aging influences activity and expression of eNOS in different parts of adult and aged brain. The levels of eNOS mRNA, protein and activity were measured using RT-PCR, immuno- and radiochemical methods, respectively. Our studies indicated that after inhibition of nNOS with 7-nitroindazole (7-NI) NO synthesis is lower in all parts of aged brain comparing to adults. However, eNOS activity significantly decreases only in cerebellum. The expression of eNOS determined on mRNA level was enhanced in all investigated aged brain parts to 140-190% of adult value and the data were statistically significant for cerebral cortex and cerebellum. The higher level of mRNA is probably the adaptive response to lower NOS activity. However, the Western-blot signal of eNOS protein was unchanged in aged brain parts comparing to adults suggesting age-related disturbances of protein synthesis and its function. It is also possible that a post-translational modification of the enzyme occurs in the aged rat brain. The lower eNOS activity in aged brain may significantly affects the signal transduction processes on the pathway NO/cGMP/PKG.

  2. Genetic control of human brain transcript expression in Alzheimer disease.

    Science.gov (United States)

    Webster, Jennifer A; Gibbs, J Raphael; Clarke, Jennifer; Ray, Monika; Zhang, Weixiong; Holmans, Peter; Rohrer, Kristen; Zhao, Alice; Marlowe, Lauren; Kaleem, Mona; McCorquodale, Donald S; Cuello, Cindy; Leung, Doris; Bryden, Leslie; Nath, Priti; Zismann, Victoria L; Joshipura, Keta; Huentelman, Matthew J; Hu-Lince, Diane; Coon, Keith D; Craig, David W; Pearson, John V; Heward, Christopher B; Reiman, Eric M; Stephan, Dietrich; Hardy, John; Myers, Amanda J

    2009-04-01

    We recently surveyed the relationship between the human brain transcriptome and genome in a series of neuropathologically normal postmortem samples. We have now analyzed additional samples with a confirmed pathologic diagnosis of late-onset Alzheimer disease (LOAD; final n = 188 controls, 176 cases). Nine percent of the cortical transcripts that we analyzed had expression profiles correlated with their genotypes in the combined cohort, and approximately 5% of transcripts had SNP-transcript relationships that could distinguish LOAD samples. Two of these transcripts have been previously implicated in LOAD candidate-gene SNP-expression screens. This study shows how the relationship between common inherited genetic variants and brain transcript expression can be used in the study of human brain disorders. We suggest that studying the transcriptome as a quantitative endo-phenotype has greater power for discovering risk SNPs influencing expression than the use of discrete diagnostic categories such as presence or absence of disease.

  3. Analysis of multiplex gene expression maps obtained by voxelation

    Directory of Open Access Journals (Sweden)

    Smith Desmond J

    2009-04-01

    Full Text Available Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. Results To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in

  4. Effect of Morphine-Sensitization in D2 Receptor Gene Expression in the Mice Brain in the Absence and Presence of Lithium Chloride

    Directory of Open Access Journals (Sweden)

    Hoda Mehregan

    2010-01-01

    Full Text Available Objective: In this study we have investigated the changes in D2 receptor expression levelin morphine-sensitized mice, in the absence and presence of lithium chloride (LiCl. Theresult would pave the way to comprehend and confront this complicated event.Materials and Methods: Male NMRI mice, weighing 20-25g, were used in this study.They were divided into six groups. The first group received 0.9% saline as the controlgroup and the other group was treated with morphine sulphate (30 mg/kg. LiCl (5 and 10mg/kg treatments was separately performed in two other groups. The final two groupswere simultaneously treated with morphine sulphate (30 mg/kg and LiCl (5 mg/kg inone group and morphine sulphate (30 mg/kg accompanied by LiCl (10 mg/kg in theother group. All injections were performed intraperitoneally and once daily. After a fiveday wash-out, mice were decapitated and the brain regions which included the striatum,prefrontal cortex (PFC and hippocampus were extracted. Using relative Real-Timepolymerase chain reaction (PCR, the expression levels of the long (D2L and short (D2Sisoforms of the D2 receptor were investigated.Results: Morphine treatment leads to a significant increase (p<0.0.5 in D2S levels in thestriatum and PFC but has no effect on D2L levels in the examined regions. In the groupreceiving LiCl 5mg/kg, the D2L levels showed a significant augmentation in PFC and thehippocampus (p<0.05 as well as the striatum (p<0.001. The D2S levels in the samegroup, significantly increased in the PFC (p<0.05 and striatum (p<0.001. LiCl at a doseof 10 mg/kg did not alter the expression of either isoforms in any region. While simultaneousadministration of morphine and LiCl (10 mg/kg resulted in a marked increase in D2Slevels in the striatum (p<0.001 and PFC (p<0.05, morphine administration along withLiCl (5mg/kg was ineffective on the expression levels of D2L and D2S isoforms whencompared to the control group.Conclusion: Morphine sensitization leads to an

  5. The flow of gene expression.

    Science.gov (United States)

    Misteli, Tom

    2004-03-01

    Gene expression is a highly interconnected multistep process. A recent meeting in Iguazu Falls, Argentina, highlighted the need to uncover both the molecular details of each single step as well as the mechanisms of coordination among processes in order to fully understand the expression of genes.

  6. Different Coexpressions of Arthritis-Relevant Genes between Different Body Organs and Different Brain Regions in the Normal Mouse Population

    OpenAIRE

    Cao, Yanhong; Huang, Yue; Wang, Lishi; Zhu, JiaQian; Gu, Weikuan

    2012-01-01

    Structural changes in different parts of the brain in rheumatoid arthritis (RA) patients have been reported. RA is not regarded as a brain disease. Body organs such as spleen and lung produce RA-relevant genes. We hypothesized that the structural changes in the brain are caused by changes of gene expression in body organs. Changes in different parts of the brain may be affected by altered gene expressions in different body organs. This study explored whether an association between gene expres...

  7. Ascidian gene-expression profiles

    OpenAIRE

    Jeffery, William R.

    2002-01-01

    With the advent of gene-expression profiling, a large number of genes can now be investigated simultaneously during critical stages of development. This approach will be particularly informative in studies of ascidians, basal chordates whose genomes and embryology are uniquely suited for mapping developmental gene networks.

  8. Impact of L-Carnitine and Cinnamon on Insulin-Like Growth Factor-1 and Inducible Nitric Oxide Synthase Gene Expression in Heart and Brain of Insulin Resistant Rats

    Directory of Open Access Journals (Sweden)

    Mona A. Mohamed

    2010-01-01

    Full Text Available Problem statement: Evaluate the effects of daily administration of L-carnitine and cinnamon extract for two weeks on the expression of Insulin-like Growth Factor-1 (IGF-1 and inducible Nitric Oxide Synthase (iNOS genes in cardiac and brain tissues of rats with Insulin Resistance (IR. Approach: Rats were divided into 4 groups (8 animals each: Group (1 rats fed control diet (60% starch as control while groups (2, 3 and 4 fed high fructose diet (60% fructose. At the beginning of the 3rd week of feeding, rats of group (3 were treated with L-carnitine (300 mg kg-1 body weight/day, i.p. and animals of group (4 received a daily oral dose of cinnamon aqueous extract (0.5 mL rat-1. The animals were maintained in their respective groups for 4 weeks. Results: Feeding high fructose diet causes significant reduction in Insulin Receptor Substrate-1 (IRS-1 (amounted 30.65% and elevation in iNOS expression (reached 51% in the cardiac tissues as compared to control. In brain tissues, the IGF-1 mRNA was reduced in fructose loaded groups (28.81%. Administration of either L-carnitine or cinnamon extract significantly improves the expression of the cardiac studied genes but with no effects on the brain tissues. Conclusion: The present study illustrated that CE was more potent than L-carnitine in improving the IR.

  9. Expression of the ctenophore Brain Factor 1 forkhead gene ortholog (ctenoBF-1) mRNA is restricted to the presumptive mouth and feeding apparatus: implications for axial organization in the Metazoa

    Science.gov (United States)

    Yamada, Atsuko; Martindale, Mark Q.

    2002-01-01

    Ctenophores are thoroughly modern animals whose ancestors are derived from a separate evolutionary branch than that of other eumetazoans. Their major longitudinal body axis is the oral-aboral axis. An apical sense organ, called the apical organ, is located at the aboral pole and contains a highly innervated statocyst and photodetecting cells. The apical organ integrates sensory information and controls the locomotory apparatus of ctenophores, the eight longitudinal rows of ctene/comb plates. In an effort to understand the developmental and evolutionary organization of axial properties of ctenophores we have isolated a forkhead gene from the Brain Factor 1 (BF-1) family. This gene, ctenoBF-1, is the first full-length nuclear gene reported from ctenophores. This makes ctenophores the most basal metazoan (to date) known to express definitive forkhead class transcription factors. Orthologs of BF-1 in vertebrates, Drosophila, and Caenorhabditis elegans are expressed in anterior neural structures. Surprisingly, in situ hybridizations with ctenoBF-1 antisense riboprobes show that this gene is not expressed in the apical organ of ctenophores. CtenoBF-1 is expressed prior to first cleavage. Transcripts become localized to the aboral pole by the 8-cell stage and are inherited by ectodermal micromeres generated from this region at the 16- and 32-cell stages. Expression in subsets of these cells persists and is seen around the edge of the blastopore (presumptive mouth) and in distinct ectodermal regions along the tentacular poles. Following gastrulation, stomodeal expression begins to fade and intense staining becomes restricted to two distinct domains in each tentacular feeding apparatus. We suggest that the apical organ is not homologous to the brain of bilaterians but that the oral pole of ctenophores corresponds to the anterior pole of bilaterian animals.

  10. Human Lacrimal Gland Gene Expression

    Science.gov (United States)

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  11. Effects of long-term environmental enrichment on anxiety, memory, hippocampal plasticity and overall brain gene expression in C57BL6 mice

    Directory of Open Access Journals (Sweden)

    Melanie Hüttenrauch

    2016-08-01

    Full Text Available There is ample evidence that physical activity exerts positive effects on a variety of brain functions by facilitating neuroprotective processes and influencing neuroplasticity. Accordingly, numerous studies have shown that continuous exercise can successfully diminish or prevent the pathology of neurodegenerative diseases such as Alzheimer’s disease in transgenic mouse models. However, the long-term effect of physical activity on brain health of aging WT mice has not been studied in detail yet. Here, we show that prolonged physical and cognitive stimulation, mediated by an enriched environment (EE paradigm for a duration of eleven months, leads to reduced anxiety and improved spatial reference memory in C57BL6 wildtype (WT mice. While the number of CA1 pyramidal neurons remained unchanged between standard housed (SH and EE mice, the number of dentate gyrus (DG neurons, as well as the CA1 and DG volume were significantly increased in EE mice. A whole-brain deep sequencing transcriptome analysis, carried out to better understand the molecular mechanisms underlying the observed effects, revealed an up-regulation of a variety of genes upon EE, mainly associated with synaptic plasticity and transcription regulation. The present findings corroborate the impact of continuous physical activity as a potential prospective route in the prevention of age-related cognitive decline and neurodegenerative disorders.

  12. Effects of Long-Term Environmental Enrichment on Anxiety, Memory, Hippocampal Plasticity and Overall Brain Gene Expression in C57BL6 Mice

    Science.gov (United States)

    Hüttenrauch, Melanie; Salinas, Gabriela; Wirths, Oliver

    2016-01-01

    There is ample evidence that physical activity exerts positive effects on a variety of brain functions by facilitating neuroprotective processes and influencing neuroplasticity. Accordingly, numerous studies have shown that continuous exercise can successfully diminish or prevent the pathology of neurodegenerative diseases such as Alzheimer’s disease in transgenic mouse models. However, the long-term effect of physical activity on brain health of aging wild-type (WT) mice has not yet been studied in detail. Here, we show that prolonged physical and cognitive stimulation, mediated by an enriched environment (EE) paradigm for a duration of 11 months, leads to reduced anxiety and improved spatial reference memory in C57BL6 WT mice. While the number of CA1 pyramidal neurons remained unchanged between standard housed (SH) and EE mice, the number of dentate gyrus (DG) neurons, as well as the CA1 and DG volume were significantly increased in EE mice. A whole-brain deep sequencing transcriptome analysis, carried out to better understand the molecular mechanisms underlying the observed effects, revealed an up-regulation of a variety of genes upon EE, mainly associated with synaptic plasticity and transcription regulation. The present findings corroborate the impact of continuous physical activity as a potential prospective route in the prevention of age-related cognitive decline and neurodegenerative disorders. PMID:27536216

  13. Brain gene expression profiles of Cln1 and Cln5 deficient mice unravels common molecular pathways underlying neuronal degeneration in NCL diseases

    Directory of Open Access Journals (Sweden)

    Gentile Massimiliano

    2008-03-01

    Full Text Available Abstract Background The neuronal ceroid lipofuscinoses (NCL are a group of children's inherited neurodegenerative disorders, characterized by blindness, early dementia and pronounced cortical atrophy. The similar pathological and clinical profiles of the different forms of NCL suggest that common disease mechanisms may be involved. To explore the NCL-associated disease pathology and molecular pathways, we have previously produced targeted knock-out mice for Cln1 and Cln5. Both mouse-models replicate the NCL phenotype and neuropathology; the Cln1-/- model presents with early onset, severe neurodegenerative disease, whereas the Cln5-/- model produces a milder disease with a later onset. Results Here we have performed quantitative gene expression profiling of the cortex from 1 and 4 month old Cln1-/- and Cln5-/- mice. Combined microarray datasets from both mouse models exposed a common affected pathway: genes regulating neuronal growth cone stabilization display similar aberrations in both models. We analyzed locus specific gene expression and showed regional clustering of Cln1 and three major genes of this pathway, further supporting a close functional relationship between the corresponding gene products; adenylate cyclase-associated protein 1 (Cap1, protein tyrosine phosphatase receptor type F (Ptprf and protein tyrosine phosphatase 4a2 (Ptp4a2. The evidence from the gene expression data, indicating changes in the growth cone assembly, was substantiated by the immunofluorescence staining patterns of Cln1-/- and Cln5-/- cortical neurons. These primary neurons displayed abnormalities in cytoskeleton-associated proteins actin and β-tubulin as well as abnormal intracellular distribution of growth cone associated proteins GAP-43, synapsin and Rab3. Conclusion Our data provide the first evidence for a common molecular pathogenesis behind neuronal degeneration in INCL and vLINCL. Since CLN1 and CLN5 code for proteins with distinct functional roles

  14. NMDA and non-NMDA receptor gene expression following global brain ischemia in rats: effect of NMDA and non-NMDA receptor antagonists.

    Science.gov (United States)

    Pellegrini-Giampietro, D E; Pulsinelli, W A; Zukin, R S

    1994-03-01

    Transient forebrain or global ischemia in rats induces selective and delayed damage of hippocampal CA1 neurons. In a previous study, we have shown that expression of GluR2, the kainate/alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit that governs Ca2+ permeability, is preferentially reduced in CA1 at a time point preceding neuronal degeneration. Postischemic administration of the selective AMPA receptor antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX), protects CA1 neurons against delayed death. In this study we examined the effects of NBQX (at a neuroprotective dose) and of MK-801 (a selective NMDA receptor antagonist, not protective in this model) on kainate/AMPA receptor gene expression changes after global ischemia. We also examined the effects of transient forebrain ischemia on expression of the NMDA receptor subunit NMDAR1. In ischemic rats treated with saline, GluR2 and GluR3 mRNAs were markedly reduced in CA1 but were unchanged in CA3 or dentate gyrus. GluR1 and NMDAR1 mRNAs were not significantly changed in any region examined. Administration of NBQX or MK-801 did not alter the ischemia-induced changes in kainate/AMPA receptor gene expression. These findings suggest that NBQX affords neuroprotection by a direct blockade of kainate/AMPA receptors, rather than by a modification of GluR2 expression changes.

  15. Topological features in cancer gene expression data.

    Science.gov (United States)

    Lockwood, S; Krishnamoorthy, B

    2015-01-01

    We present a new method for exploring cancer gene expression data based on tools from algebraic topology. Our method selects a small relevant subset from tens of thousands of genes while simultaneously identifying nontrivial higher order topological features, i.e., holes, in the data. We first circumvent the problem of high dimensionality by dualizing the data, i.e., by studying genes as points in the sample space. Then we select a small subset of the genes as landmarks to construct topological structures that capture persistent, i.e., topologically significant, features of the data set in its first homology group. Furthermore, we demonstrate that many members of these loops have been implicated for cancer biogenesis in scientific literature. We illustrate our method on five different data sets belonging to brain, breast, leukemia, and ovarian cancers.

  16. Hypermethylation of the CPG Island of p16 Gene Correlates with Gene Inactivation in Brain Glioma

    Institute of Scientific and Technical Information of China (English)

    JIAOBaohua; GENGShaomei; 等

    2002-01-01

    Objective:To study the correlation between hypermethylation of the CPG island of p16 gene and its inactivation in gliomas.Mehtods:In 50 cases of brain glioma,immunohistochemical method was applied to detect the expression of p16 protein; PCR a-nalysis was performed to identify the deletion of exons 1,2 of p16 gene and hypermethylation of CPG island of exon 1 of p16 gene in brain glioma.Results:Immunohistochemical analysis showed that p16 protein expression was negative in 27 cases(54%) and positive in 23 cases(46%) of 50 cases of brain gliomas.In the group with negative p16 protein expression(n=27 cases),RT-PCR analysis showed that there were 9 cases(33%) with homozygous deletions ofp16 gene and 7 cases(26%) with hypermethylation of CPG island of p16 gene.Conclusion:The transcriptional inhibition of p16 gene may be induced by aberrant hypermethylation of p16 gene 5'-CPG island in some of the cases without the homozygous deletions of p16 gene.Hypermethylation of 5'-CPG island is one of the important mechanisms for p16 gene inactivation.

  17. Shuffling Yeast Gene Expression Data

    CERN Document Server

    Bilke, S

    2000-01-01

    A new method to sort gene expression patterns into functional groups is presented. The method is based on a sorting algorithm using a non-local similarity score, which takes all other patterns in the dataset into account. The method is therefore very robust with respect to noise. Using the expression data for yeast, we extract information about functional groups. Without prior knowledge of parameters the cell cycle regulated genes in yeast can be identified. Furthermore a second, independent cell clock is identified. The capability of the algorithm to extract information about signal flow in the regulatory network underlying the expression patterns is demonstrated.

  18. 5-HT1A receptor gene silencers Freud-1 and Freud-2 are differently expressed in the brain of rats with genetically determined high level of fear-induced aggression or its absence.

    Science.gov (United States)

    Kondaurova, Elena M; Ilchibaeva, Tatiana V; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2016-09-01

    Serotonin 5-HT1A receptor is known to play a crucial role in the mechanisms of genetically defined aggression. In its turn, 5-HT1A receptor functional state is under control of multiple factors. Among others, transcriptional factors Freud-1 and Freud-2 are known to be involved in the repression of 5-HT1A receptor gene expression. However, implication of these factors in the regulation of behavior is unclear. Here, we investigated the expression of 5-HT1A receptor and silencers Freud-1 and Freud-2 in the brain of rats selectively bred for 85 generations for either high level of fear-induced aggression or its absence. It was shown that Freud-1 and Freud-2 levels were different in aggressive and nonaggressive animals. Freud-1 protein level was decreased in the hippocampus, whereas Freud-2 protein level was increased in the frontal cortex of highly aggressive rats. There no differences in 5-HT1A receptor gene expression were found in the brains of highly aggressive and nonaggressive rats. However, 5-HT1A receptor protein level was decreased in the midbrain and increased in the hippocampus of highly aggressive rats. These data showed the involvement of Freud-1 and Freud-2 in the regulation of genetically defined fear-induced aggression. However, these silencers do not affect transcription of the 5-HT1A receptor gene in the investigated rats. Our data indicate the implication of posttranscriptional rather than transcriptional regulation of 5-HT1A receptor functional state in the mechanisms of genetically determined aggressive behavior. On the other hand, the implication of other transcriptional regulators for 5-HT1A receptor gene in the mechanisms of genetically defined aggression could be suggested.

  19. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each p...... with a high frequency of loss of heterozygosity. The genes and ESTs presented in this study encode new potential tumor markers as well as potential novel therapeutic targets for prevention or therapy of CRC.......Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... pool) of total RNA from left-sided sporadic colorectal carcinomas. We compared normal tissue to carcinoma tissue from Dukes' stages A-D (noninvasive to distant metastasis) and identified 908 known genes and 4,155 ESTs that changed remarkably from normal to tumor tissue. Based on intensive filtering 226...

  20. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  1. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer's disease.

    Science.gov (United States)

    Tucsek, Zsuzsanna; Toth, Peter; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Szalai, Gabor; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna

    2014-10-01

    There is growing evidence that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular damage and neuroinflammation, we compared young (7 months) and aged (24 months) high fat diet-fed obese C57BL/6 mice. Aging exacerbated obesity-induced systemic inflammation and blood-brain barrier disruption, as indicated by the increased circulating levels of proinflammatory cytokines and increased presence of extravasated immunoglobulin G in the hippocampus, respectively. Obesity-induced blood-brain barrier damage was associated with microglia activation, upregulation of activating Fc-gamma receptors and proinflammatory cytokines, and increased oxidative stress. Treatment of cultured primary microglia with sera derived from aged obese mice resulted in significantly more pronounced microglia activation and oxidative stress, as compared with treatment with young sera. Serum-induced activation and oxidative stress were also exacerbated in primary microglia derived from aged animals. Hippocampal expression of genes involved in regulation of the cellular amyloid precursor protein-dependent signaling pathways, beta-amyloid generation, and the pathogenesis of tauopathy were largely unaffected by obesity in aged mice. Collectively, obesity in aging is associated with a heightened state of systemic inflammation, which exacerbates blood-brain barrier disruption. The resulting neuroinflammation and oxidative stress in the mouse hippocampus likely contribute to the significant cognitive decline observed in aged obese animals.

  2. Obesity in Aging Exacerbates Blood–Brain Barrier Disruption, Neuroinflammation, and Oxidative Stress in the Mouse Hippocampus: Effects on Expression of Genes Involved in Beta-Amyloid Generation and Alzheimer’s Disease

    Science.gov (United States)

    Tucsek, Zsuzsanna; Toth, Peter; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Szalai, Gabor; Sonntag, William E.; Csiszar, Anna

    2014-01-01

    There is growing evidence that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular damage and neuroinflammation, we compared young (7 months) and aged (24 months) high fat diet–fed obese C57BL/6 mice. Aging exacerbated obesity-induced systemic inflammation and blood–brain barrier disruption, as indicated by the increased circulating levels of proinflammatory cytokines and increased presence of extravasated immunoglobulin G in the hippocampus, respectively. Obesity-induced blood–brain barrier damage was associated with microglia activation, upregulation of activating Fc-gamma receptors and proinflammatory cytokines, and increased oxidative stress. Treatment of cultured primary microglia with sera derived from aged obese mice resulted in significantly more pronounced microglia activation and oxidative stress, as compared with treatment with young sera. Serum-induced activation and oxidative stress were also exacerbated in primary microglia derived from aged animals. Hippocampal expression of genes involved in regulation of the cellular amyloid precursor protein–dependent signaling pathways, beta-amyloid generation, and the pathogenesis of tauopathy were largely unaffected by obesity in aged mice. Collectively, obesity in aging is associated with a heightened state of systemic inflammation, which exacerbates blood–brain barrier disruption. The resulting neuroinflammation and oxidative stress in the mouse hippocampus likely contribute to the significant cognitive decline observed in aged obese animals. PMID:24269929

  3. Zipf's Law in Gene Expression

    CERN Document Server

    Furusawa, C; Furusawa, Chikara; Kaneko, Kunihiko

    2002-01-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1, i.e., they obey Zipf's law. Furthermore, by simulations of a simple model with an intra-cellular reaction network, we found that Zipf's law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  4. Zipf's Law in Gene Expression

    Science.gov (United States)

    Furusawa, Chikara; Kaneko, Kunihiko

    2003-02-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1; i.e., they obey Zipf’s law. Furthermore, by simulations of a simple model with an intracellular reaction network, we found that Zipf’s law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  5. Correction of gene expression data

    DEFF Research Database (Denmark)

    Darbani Shirvanehdeh, Behrooz; Stewart, C. Neal, Jr.; Noeparvar, Shahin;

    2014-01-01

    This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies...... an analytical approach to examine the suitability of correction methods by considering the inter-treatment bias as well as the inter-replicate variance, which allows use of the best correction method with minimum residual bias. Analyses of RNA sequencing and microarray data showed that the efficiencies...

  6. Protection by Neuroglobin Expression in Brain Pathologies

    Science.gov (United States)

    Baez, Eliana; Echeverria, Valentina; Cabezas, Ricardo; Ávila-Rodriguez, Marco; Garcia-Segura, Luis Miguel; Barreto, George E.

    2016-01-01

    Astrocytes play an important role in physiological, metabolic, and structural functions, and when impaired, they can be involved in various pathologies including Alzheimer, focal ischemic stroke, and traumatic brain injury. These disorders involve an imbalance in the blood flow and nutrients such as glucose and lactate, leading to biochemical and molecular changes that cause neuronal damage, which is followed by loss of cognitive and motor functions. Previous studies have shown that astrocytes are more resilient than neurons during brain insults as a consequence of their more effective antioxidant systems, transporters, and enzymes, which made them less susceptible to excitotoxicity. In addition, astrocytes synthesize and release different protective molecules for neurons, including neuroglobin, a member of the globin family of proteins. After brain injury, neuroglobin expression is induced in astrocytes. Since neuroglobin promotes neuronal survival, its increased expression in astrocytes after brain injury may represent an endogenous neuroprotective mechanism. Here, we review the role of neuroglobin in the central nervous system, its relationship with different pathologies, and the role of different factors that regulate its expression in astrocytes. PMID:27672379

  7. Protection by neuroglobin expression in brain pathologies

    Directory of Open Access Journals (Sweden)

    Eliana Baez

    2016-09-01

    Full Text Available Astrocytes play an important role in physiological, metabolic and structural functions and, when impaired, they can be involved in various pathologies including Alzheimer, focal ischemic stroke and traumatic brain injury. These disorders involve an imbalance in the blood flow and nutrients such as glucose and lactacte, leading to biochemical and molecular changes that cause neuronal damage, which is followed by loss of cognitive and motor functions. Previous studies have shown that astrocytes are more resilient than neurons during brain insults as a consequence of their more effective antioxidant systems, transporters and enzymes, which made them less susceptible to excitotoxicity. In addition, astrocytes synthesize and release different protective molecules for neurons, including neuroglobin, a member of the globin family of proteins. After brain injury neuroglobin expression is induced in astrocytes. Since neuroglobin promotes neuronal survival, its increased expression in astrocytes after brain injury may represent an endogenous neuroprotective mechanism. Here, we review the role of neuroglobin in the CNS, its relationship with different pathologies, and the role of different factors that regulate its expression in astrocytes.

  8. Protection by Neuroglobin Expression in Brain Pathologies.

    Science.gov (United States)

    Baez, Eliana; Echeverria, Valentina; Cabezas, Ricardo; Ávila-Rodriguez, Marco; Garcia-Segura, Luis Miguel; Barreto, George E

    2016-01-01

    Astrocytes play an important role in physiological, metabolic, and structural functions, and when impaired, they can be involved in various pathologies including Alzheimer, focal ischemic stroke, and traumatic brain injury. These disorders involve an imbalance in the blood flow and nutrients such as glucose and lactate, leading to biochemical and molecular changes that cause neuronal damage, which is followed by loss of cognitive and motor functions. Previous studies have shown that astrocytes are more resilient than neurons during brain insults as a consequence of their more effective antioxidant systems, transporters, and enzymes, which made them less susceptible to excitotoxicity. In addition, astrocytes synthesize and release different protective molecules for neurons, including neuroglobin, a member of the globin family of proteins. After brain injury, neuroglobin expression is induced in astrocytes. Since neuroglobin promotes neuronal survival, its increased expression in astrocytes after brain injury may represent an endogenous neuroprotective mechanism. Here, we review the role of neuroglobin in the central nervous system, its relationship with different pathologies, and the role of different factors that regulate its expression in astrocytes.

  9. Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans

    Science.gov (United States)

    Mayne, Benjamin T.; Bianco-Miotto, Tina; Buckberry, Sam; Breen, James; Clifton, Vicki; Shoubridge, Cheryl; Roberts, Claire T.

    2016-01-01

    The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analyzed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes), followed by the heart (375 genes), kidney (224 genes), colon (218 genes), and thyroid (163 genes). More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs, and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  10. [Blockade of NMDA receptor enhances corticosterone-induced downregulation of brain-derived neurotrophic factor gene expression in the rat hippocampus through cAMP response element binding protein pathway].

    Science.gov (United States)

    Feng, Hao; Lu, Li-Min; Huang, Ying; Zhu, Yi-Chun; Yao, Tai

    2005-10-25

    High concentration of corticosterone leads to morphological and functional impairments in hippocampus, ranging from a reversible atrophy of pyramidal CA3 apical dendrites to the impairment of long-term potentiation (LTP) and hippocampus-dependent learning and memory. Glutamate and N-methyl-D-aspartate (NMDA) receptor play an important role in this effect. Because of the importance of brain-derived neurotrophic factor (BDNF) in the functions of the hippocampal neurons, alteration of the expression of BDNF is thought to be involved in the corticosterone effect on the hippocampus. To determine whether change in BDNF in the hippocampus is involved in the corticosterone effect, we injected corticosterone (2 mg/kg, s.c.) to Sprague-Dawley rats and measured the mRNA, proBDNF and mature BDNF protein levels in the hippocampus. We also measured the phosphorylation level of the transcription factor cAMP response element binding protein (CREB). Furthermore, we intraperitoneally injected NMDA receptor antagonist MK801 (0.1 mg/kg) 30 min before corticosterone administration to investigate whether and how MK801 affected the regulation of BDNF gene expression by corticosterone. Our results showed that 3 h after single s.c. injection of corticsterone, the expression of BDNF mRNA, proBDNF and mature BDNF protein decreased significantly (PBDNF gene expression in the rat hippocampus by corticosterone. We also found that either applying corticosterone or co-applying corticosterone with MK801 downregulated the phosphoration level of CREB, the latter (corticosterone plus MK801) being more effective (PBDNF gene expression in the rat hippocampus through CREB pathway and that blockade of NMDA receptor enhances this effect of corticosterone in reducing BDNF expression.

  11. Feed intake and brain neuropeptide Y (NPY) and cholecystokinin (CCK) gene expression in juvenile cobia fed plant-based protein diets with different lysine to arginine ratios.

    Science.gov (United States)

    Nguyen, Minh Van; Jordal, Ann-Elise Olderbakk; Espe, Marit; Buttle, Louise; Lai, Hung Van; Rønnestad, Ivar

    2013-07-01

    Cobia (Rachycentron canadum, Actinopterygii, Perciformes;10.5±0.1g) were fed to satiation with three plant-based protein test diets with different lysine (L) to arginine (A) ratios (LL/A, 0.8; BL/A, 1.1; and HL/A, 1.8), using a commercial diet as control for six weeks. The test diets contained 730 g kg(-1) plant ingredients with 505-529 g protein, 90.2-93.9 g lipid kg(-1) dry matter; control diet contained 550 g protein and 95 g lipid kg(-1) dry matter. Periprandial expression of brain NPY and CCK (npy and cck) was measured twice (weeks 1 and 6). At week one, npy levels were higher in pre-feeding than postfeeding cobia for all diets, except LL/A. At week six, npy levels in pre-feeding were higher than in postfeeding cobia for all diets. cck in pre-feeding cobia did not differ from that in postfeeding for all diets, at either time point. Cobia fed LL/A had lower feed intake (FI) than cobia fed BL/A and control diet, but no clear correlations between dietary L/A ratio and FI, growth and expression of npy and cck were detected. The data suggest that NPY serves as an orexigenic factor, but further studies are necessary to describe links between dietary L/A and regulation of appetite and FI in cobia.

  12. Homeobox gene expression in Brachiopoda

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Martinez, Pedro; Wanninger, Andreas

    2011-01-01

    The molecular control that underlies brachiopod ontogeny is largely unknown. In order to contribute to this issue we analyzed the expression pattern of two homeobox containing genes, Not and Cdx, during development of the rhynchonelliform (i.e., articulate) brachiopod Terebratalia transversa. Not...

  13. FTO is expressed in neurones throughout the brain and its expression is unaltered by fasting.

    Directory of Open Access Journals (Sweden)

    James S McTaggart

    Full Text Available Single-nucleotide polymorphisms in the first intron of the ubiquitously expressed FTO gene are associated with obesity. Although the physiological functions of FTO remain unclear, food intake is often altered when Fto expression levels are manipulated. Furthermore, deletion of FTO from neurones alone has a similar effect on food intake to deletion of FTO in all tissues. These results indicate that FTO expression in the brain is particularly important. Considerable focus has been placed on the dynamic regulation of Fto mRNA expression in the hypothalamus after short-term (16-48 hour fasting, but results have been controversial. There are no studies that quantify FTO protein levels across the brain, and assess its alteration following short-term fasting. Using immunohistochemistry, we found that FTO protein is widely expressed in mouse brain, and present in the majority of neurones. Using quantitative Western blotting and RT-qPCR we show that FTO protein and mRNA levels in the hypothalamus, cerebellum and rostral brain are relatively uniform, and levels in the brain are higher than in skeletal muscles of the lower limbs. Fasting for 18 hours does not alter the expression pattern, or levels, of FTO protein and mRNA. We further show that the majority of POMC neurones, which are critically involved in food intake regulation, also express FTO, but that the percentage of FTO-positive POMC neurones is not altered by fasting. In summary, we find no evidence that Fto/FTO expression is regulated by short-term (18-hour fasting. Thus, it is unlikely that the hunger and increased post-fasting food intake caused by such food deprivation is driven by alterations in Fto/FTO expression. The widespread expression of FTO in neurones also suggests that physiological studies of this protein should not be limited to the hypothalamus.

  14. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  15. Gene cloning and mRNA expression of glutamate dehydrogenase in the liver, brain and intestine of the swamp eel, Monopterus albus, exposed to freshwater, terrestrial conditions, environmental ammonia or salinity stress

    Directory of Open Access Journals (Sweden)

    C Y Toh

    2011-12-01

    Full Text Available The swamp eel, Monopterus albus, is an obligatory air-breathing teleost which can survive long period of emersion, has high environmental and tissue ammonia tolerance, and acclimate from fresh to brackish water. This study was undertaken to clone and sequence gdh expressed in the liver, intestine and brain of M. albus, to verify whether more than one form of gdh were expressed, and to examine the gdh mRNA expressions in these three organs in fish exposed to various adverse conditions using quantitative real-time PCR. Only one gdh gene sequence, consisted of a 133 bp 5’ UTR, a CDS region spanning 1629 bp and a 3’ UTR of approximately 717 bp, was obtained from the liver, intestine and brain of M. albus. The translated Gdh amino acid sequence from the liver of M. albus had 542 residues and was confirmed to be Gdh1a. It had sequence identity of >90% with Oncorhynchus mykiss Gdh1a, Salmo salar Gdh1a1, Bostrychus sinensis Gdh1a and Tribolodon hakonensis Gdh1a, and formed a monophyletic clade with B. sinensis Gdh1a, Tetraodon nigroviridis Gdh1a, Chaenocephalus aceratus Gdh1a, Salmo salar Gdh1a1 and Gdh1a2 and O. mykiss Gdh1a. An increase in mRNA expression of gdh1a could be essential for increased glutamate production in support of increases in glutamine synthesis under certain environmental condition. Indeed, exposure of M. albus to 1 day of terrestrial conditions or 75 mmol l-1 NH4Cl, but not brackish water, resulted in a significant increase in gdh1a mRNA expression in the liver. However, exposure to brackish water, but not terrestrial conditions or 75 mmol l-1 NH4Cl, lead to a significant increase in the intestinal mRNA expression of gdh1a. By contrast, all the three experimental conditions had no significant effects on the mRNA expression of gdh1a in the brain of M. albus. Our results indicate for the first time that gdh mRNA expression was differentially up-regulated in the liver and intestine of M. albus, in responses to ammonia toxicity and

  16. Different coexpressions of arthritis-relevant genes between different body organs and different brain regions in the normal mouse population.

    Science.gov (United States)

    Cao, Yanhong; Huang, Yue; Wang, Lishi; Zhu, Jiaqian; Gu, Weikuan

    2013-02-25

    Structural changes in different parts of the brain in rheumatoid arthritis (RA) patients have been reported. RA is not regarded as a brain disease. Body organs such as spleen and lung produce RA-relevant genes. We hypothesized that the structural changes in the brain are caused by changes of gene expression in body organs. Changes in different parts of the brain may be affected by altered gene expressions in different body organs. This study explored whether an association between gene expressions of an organ or a body part varies in different brain structures. By examining the association of the 10 most altered genes from a mouse model of spontaneous arthritis in a normal mouse population, we found two groups of gene expression patterns between five brain structures and spleen. The correlation patterns between the prefrontal cortex, nucleus accumbens, and spleen were similar, while the associations between the other three parts of the brain and spleen showed a different pattern. Among overall patterns of the associations between body organs and brain structures, spleen and lung had a similar pattern, and patterns for kidney and liver were similar. Analysis of the five additional known arthritis-relevant genes produced similar results. Analysis of 10 nonrelevant-arthritis genes did not result in a strong association of gene expression or clearly segregated patterns. Our data suggest that abnormal gene expressions in different diseased body organs may influence structural changes in different brain parts.

  17. A novel brain receptor is expressed in a distinct population of olfactory sensory neurons

    NARCIS (Netherlands)

    Conzelmann, S; Levai, O; Bode, B; Eisel, U; Raming, K; Breer, H; Strotmann, J

    2000-01-01

    Three novel G-protein-coupled receptor genes related to the previously described RA1c gene have been isolated from the mouse genome. Expression of these genes has been detected in distinct areas of the brain and also in the olfactory epithelium of the nose. Developmental studies revealed a different

  18. Notch receptor expression in human brain arteriovenous malformations.

    Science.gov (United States)

    Hill-Felberg, Sandra; Wu, Hope Hueizhi; Toms, Steven A; Dehdashti, Amir R

    2015-08-01

    The roles of the Notch pathway proteins in normal adult vascular physiology and the pathogenesis of brain arteriovenous malformations are not well-understood. Notch 1 and 4 have been detected in human and mutant mice vascular malformations respectively. Although mutations in the human Notch 3 gene caused a genetic form of vascular stroke and dementia, its role in arteriovenous malformations development has been unknown. In this study, we performed immunohistochemistry screening on tissue microarrays containing eight surgically resected human brain arteriovenous malformations and 10 control surgical epilepsy samples. The tissue microarrays were evaluated for Notch 1-4 expression. We have found that compared to normal brain vascular tissue Notch-3 was dramatically increased in brain arteriovenous malformations. Similarly, Notch 4 labelling was also increased in vascular malformations and was confirmed by western blot analysis. Notch 2 was not detectable in any of the human vessels analysed. Using both immunohistochemistry on microarrays and western blot analysis, we have found that Notch-1 expression was detectable in control vessels, and discovered a significant decrease of Notch 1 expression in vascular malformations. We have demonstrated that Notch 3 and 4, and not Notch 1, were highly increased in human arteriovenous malformations. Our findings suggested that Notch 4, and more importantly, Notch 3, may play a role in the development and pathobiology of human arteriovenous malformations.

  19. Brain disorders: getting 'Down' to the gene.

    Science.gov (United States)

    Tessarollo, Lino

    2010-08-01

    Narrowing down the genetic basis of Down syndrome, in which hundreds of genes are triplicated, has been difficult. A new study finds that the expression of two affected genes, Olig1 and Olig2, is critical for maintaining the balance of inhibitory and excitatory signaling in a mouse model of Down syndrome.

  20. The Trojan Horse Liposome Technology for Nonviral Gene Transfer across the Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    Ruben J. Boado

    2011-01-01

    Full Text Available The application of blood-borne gene therapy protocols to the brain is limited by the presence of the blood-brain barrier (BBB. Viruses have been extensively used as gene delivery systems. However, their efficacy in brain is limited by the lack of transport across the BBB following intravenous (IV administration. Recent progress in the “Trojan Horse Liposome” (THL technology applied to transvascular non-viral gene therapy of the brain presents a promising solution to the trans-vascular brain gene delivery problem. THLs are comprised of immunoliposomes carrying nonviral gene expression plasmids. The tissue target specificity of the THL is provided by peptidomimetic monoclonal antibody (MAb component of the THL, which binds to specific endogenous receptors located on both the BBB and on brain cellular membranes, for example, insulin receptor and transferrin receptor. These MAbs mediate (a receptor-mediated transcytosis of the THL complex through the BBB, (b endocytosis into brain cells and (c transport to the brain cell nuclear compartment. The expression of the transgene in brain may be restricted using tissue/cell specific gene promoters. This manuscript presents an overview on the THL transport technology applied to brain disorders, including lysosomal storage disorders and Parkinson's disease.

  1. Gene Expression in Trypanosomatid Parasites

    Directory of Open Access Journals (Sweden)

    Santiago Martínez-Calvillo

    2010-01-01

    Full Text Available The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.

  2. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  3. Altered expression pattern of clock genes in a rat model of depression

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Bouzinova, Elena; Fahrenkrug, Jan;

    2016-01-01

    quantified expression of clock genes on brain sections in the prefrontal cortex, nucleus accumbens, pineal gland, suprachiasmatic nucleus, substantia nigra, amygdala, ventral tegmental area, subfields of the hippocampus, and the lateral habenula using in situ hybridization histochemistry. Expression of clock...

  4. Validation of commonly used reference genes for sleep-related gene expression studies

    Directory of Open Access Journals (Sweden)

    Castro Rosa MRPS

    2009-05-01

    Full Text Available Abstract Background Sleep is a restorative process and is essential for maintenance of mental and physical health. In an attempt to understand the complexity of sleep, multidisciplinary strategies, including genetic approaches, have been applied to sleep research. Although quantitative real time PCR has been used in previous sleep-related gene expression studies, proper validation of reference genes is currently lacking. Thus, we examined the effect of total or paradoxical sleep deprivation (TSD or PSD on the expression stability of the following frequently used reference genes in brain and blood: beta-actin (b-actin, beta-2-microglobulin (B2M, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, and hypoxanthine guanine phosphoribosyl transferase (HPRT. Results Neither TSD nor PSD affected the expression stability of all tested genes in both tissues indicating that b-actin, B2M, GAPDH and HPRT are appropriate reference genes for the sleep-related gene expression studies. In order to further verify these results, the relative expression of brain derived neurotrophic factor (BDNF and glycerol-3-phosphate dehydrogenase1 (GPD1 was evaluated in brain and blood, respectively. The normalization with each of four reference genes produced similar pattern of expression in control and sleep deprived rats, but subtle differences in the magnitude of expression fold change were observed which might affect the statistical significance. Conclusion This study demonstrated that sleep deprivation does not alter the expression stability of commonly used reference genes in brain and blood. Nonetheless, the use of multiple reference genes in quantitative RT-PCR is required for the accurate results.

  5. Enhanced brain targeting efficiency of intranasally administered plasmid DNA: an alternative route for brain gene therapy.

    Science.gov (United States)

    Han, In-Kwon; Kim, Mi Young; Byun, Hyang-Min; Hwang, Tae Sun; Kim, Jung Mogg; Hwang, Kwang Woo; Park, Tae Gwan; Jung, Woon-Won; Chun, Taehoon; Jeong, Gil-Jae; Oh, Yu-Kyoung

    2007-01-01

    Recently, nasal administration has been studied as a noninvasive route for delivery of plasmid DNA encoding therapeutic or antigenic genes. Here, we examined the brain targeting efficiency and transport pathways of intranasally administered plasmid DNA. Quantitative polymerase chain reaction (PCR) measurements of plasmid DNA in blood and brain tissues revealed that intranasally administered pCMVbeta (7.2 kb) and pN2/CMVbeta (14.1 kb) showed systemic absorption and brain distribution. Following intranasal administration, the beta-galactosidase protein encoded by these plasmids was significantly expressed in brain tissues. Kinetic studies showed that intranasally administered plasmid DNA reached the brain with a 2,595-fold higher efficiency than intravenously administered plasmid DNA did, 10 min post-dose. Over 1 h post-dose, the brain targeting efficiencies were consistently higher for intranasally administered plasmid DNA than for intravenously administered DNA. To examine how plasmid DNA enters the brain and moves to the various regions, we examined tissues from nine brain regions, at 5 and 10 min after intranasal or intravenous administration of plasmid DNA. Intravenously administered plasmid DNA displayed similar levels of plasmid DNA in the nine different regions, whereas, intranasally administered plasmid DNA exhibited different levels of distribution among the regions, with the highest plasmid DNA levels in the olfactory bulb. Moreover, plasmid DNA was mainly detected in the endothelial cells, but not in glial cells. Our results suggest that intranasally applied plasmid DNA may reach the brain through a direct route, possibly via the olfactory bulb, and that the nasal route might be an alternative method for efficiently delivering plasmid DNA to the brain.

  6. Classification with binary gene expressions

    OpenAIRE

    Tuna, Salih; Niranjan, Mahesan

    2009-01-01

    Microarray gene expression measurements are reported, used and archived usually to high numerical precision. However, properties of mRNA molecules, such as their low stability and availability in small copy numbers, and the fact that measurements correspond to a population of cells, rather than a single cell, makes high precision meaningless. Recent work shows that reducing measurement precision leads to very little loss of information, right down to binary levels. In this paper we show how p...

  7. The Gene Expression Omnibus database

    Science.gov (United States)

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  8. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies.

    Science.gov (United States)

    Chapman, Joanne R; Waldenström, Jonas

    2015-01-01

    The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies.

  9. Bcl-2 gene therapy for apoptosis following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-feng; ZHENG Xue-sheng; LIU Wei-guo; FENG Jun-feng

    2006-01-01

    Objective: To investigate the therapeutic effect of Bcl- 2 fusion protein on apoptosis in brain following traumatic brain injury.Methods: Bcl-2 gene was cloned by RT-PCR. Bcl-2 and EGFP genes were linked together and inserted into pAdeno-X vector. This recombinant vector was packaged into infectious adenovirus in HEK293 cells. Ninety Wistar rats were assigned randomly into experimental group(n=45) and control group (n=45). All rats were subjected to traumatic brain injury. Then recombinant adenovirus (for experimental group) or saline (for control group) was injected into the traumatic brain. The expression of Bcl-2 fusion protein was investigated by Western blotting, immunohistochemistry and fluorescence microscopy. Apoptosis in the injured brain was studied by TUNEL. Animals' behavior capacity was evaluated by tiltboard test.Results: In the experimental group, many fluorescent cells were found around the traumatic locus,which were also proven to be Bcl-2-positive by immunohistochemistry. On the contrary, few Bcl-2-positive cells and no fluorescent cell were detected in the control group. Bcl-2 expression of experimental group was much higher than that of control group, which was illustrated by Western blotting. The apoptosis index of experimental group was 0.027 ± 0.005, and that of control group was 0.141±0.025 (P<0.01). Two weeks after injury, animals of the experimental group behaved better than those of the control group.Conclusions: A recombinant adenovirus vector expressing Bcl-2 fusion protein has been constructed. Bcl-2 fusion protein can suppress apoptosis and promote cell survival. Moreover, the behavior recovery of the injured animal is promoted. Bcl-2 fusion protein provides a way to track the target cells in vivo.

  10. Antisense expression increases gene expression variability and locus interdependency

    OpenAIRE

    Xu, Zhenyu; Wei, Wu; Gagneur, Julien; Clauder-Münster, Sandra; Smolik, Miłosz; Huber, Wolfgang; Steinmetz, Lars M.

    2011-01-01

    Genome-wide transcription profiling has revealed extensive expression of non-coding RNAs antisense to genes, yet their functions, if any, remain to be understood. In this study, we perform a systematic analysis of sense–antisense expression in response to genetic and environmental changes in yeast. We find that antisense expression is associated with genes of larger expression variability. This is characterized by more ‘switching off' at low levels of expression for genes with antisense compa...

  11. Investigation of G72 (DAOA expression in the human brain

    Directory of Open Access Journals (Sweden)

    Hirsch Steven

    2008-12-01

    Full Text Available Abstract Background Polymorphisms at the G72/G30 locus on chromosome 13q have been associated with schizophrenia or bipolar disorder in more than ten independent studies. Even though the genetic findings are very robust, the physiological role of the predicted G72 protein has thus far not been resolved. Initial reports suggested G72 as an activator of D-amino acid oxidase (DAO, supporting the glutamate dysfunction hypothesis of schizophrenia. However, these findings have subsequently not been reproduced and reports of endogenous human G72 mRNA and protein expression are extremely limited. In order to better understand the function of this putative schizophrenia susceptibility gene, we attempted to demonstrate G72 mRNA and protein expression in relevant human brain regions. Methods The expression of G72 mRNA was studied by northern blotting and semi-quantitative SYBR-Green and Taqman RT-PCR. Protein expression in human tissue lysates was investigated by western blotting using two custom-made specific anti-G72 peptide antibodies. An in-depth in silico analysis of the G72/G30 locus was performed in order to try and identify motifs or regulatory elements that provide insight to G72 mRNA expression and transcript stability. Results Despite using highly sensitive techniques, we failed to identify significant levels of G72 mRNA in a variety of human tissues (e.g. adult brain, amygdala, caudate nucleus, fetal brain, spinal cord and testis human cell lines or schizophrenia/control post mortem BA10 samples. Furthermore, using western blotting in combination with sensitive detection methods, we were also unable to detect G72 protein in a number of human brain regions (including cerebellum and amygdala, spinal cord or testis. A detailed in silico analysis provides several lines of evidence that support the apparent low or absent expression of G72. Conclusion Our results suggest that native G72 protein is not normally present in the tissues that we analysed

  12. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata;

    2015-01-01

    expression. We reanalyzed 77,840 expression profiles and observed a limited set of 'transcriptional components' that describe well-known biology, explain the vast majority of variation in gene expression and enable us to predict the biological function of genes. On correcting expression profiles...... for these components, we observed that the residual expression levels (in 'functional genomic mRNA' profiling) correlated strongly with copy number. DNA copy number correlated positively with expression levels for 99% of all abundantly expressed human genes, indicating global gene dosage sensitivity. By applying...

  13. Identification of four soybean reference genes for gene expression normalization

    Science.gov (United States)

    Gene expression analysis requires the use of reference genes stably expressed independently of specific tissues or environmental conditions. Housekeeping genes (e.g., actin, tubulin, ribosomal, polyubiquitin and elongation factor 1-alpha) are commonly used as reference genes with the assumption tha...

  14. Inflammation-related genes up-regulated in schizophrenia brains

    Directory of Open Access Journals (Sweden)

    Kreuger Johan

    2007-09-01

    Full Text Available Abstract Background Multiple studies have shown that brain gene expression is disturbed in subjects suffering from schizophrenia. However, disentangling disease effects from alterations caused by medication is a challenging task. The main goal of this study is to find transcriptional alterations in schizophrenia that are independent of neuroleptic treatment. Methods We compared the transcriptional profiles in brain autopsy samples from 55 control individuals with that from 55 schizophrenic subjects, subdivided according to the type of antipsychotic medication received. Results Using global and high-resolution mRNA quantification techniques, we show that genes involved in immune response (GO:0006955 are up regulated in all groups of patients, including those not treated at the time of death. In particular, IFITM2, IFITM3, SERPINA3, and GBP1 showed increased mRNA levels in schizophrenia (p-values from qPCR ≤ 0.01. These four genes were co-expressed in both schizophrenic subjects and controls. In-vitro experiments suggest that these genes are expressed in both oligodendrocyte and endothelial cells, where transcription is inducible by the inflammatory cytokines TNF-α, IFN-α and IFN-γ. Conclusion Although the modified genes are not classical indicators of chronic or acute inflammation, our results indicate alterations of inflammation-related pathways in schizophrenia. In addition, the observation in oligodendrocyte cells suggests that alterations in inflammatory-related genes may have consequences for myelination. Our findings encourage future research to explore whether anti-inflammatory agents can be used in combination with traditional antipsychotics for a more efficient treatment of schizophrenia.

  15. MRI of Transgene Expression: Correlation to Therapeutic Gene Expression

    Directory of Open Access Journals (Sweden)

    Tomotsugu Ichikawa

    2002-01-01

    Full Text Available Magnetic resonance imaging (MRI can provide highresolution 3D maps of structural and functional information, yet its use of mapping in vivo gene expression has only recently been explored. A potential application for this technology is to noninvasively image transgene expression. The current study explores the latter using a nonregulatable internalizing engineered transferrin receptor (ETR whose expression can be probed for with a superparamagnetic Tf-CLIO probe. Using an HSV-based amplicon vector system for transgene delivery, we demonstrate that: 1 ETR is a sensitive MR marker gene; 2 several transgenes can be efficiently expressed from a single amplicon; 3 expression of each transgene results in functional gene product; and 4 ETR gene expression correlates with expression of therapeutic genes when the latter are contained within the same amplicon. These data, taken together, suggest that MRI of ETR expression can serve as a surrogate for measuring therapeutic transgene expression.

  16. Correlating Expression Data with Gene Function Using Gene Ontology

    Institute of Scientific and Technical Information of China (English)

    LIU,Qi; DENG,Yong; WANG,Chuan; SHI,Tie-Liu; LI,Yi-Xue

    2006-01-01

    Clustering is perhaps one of the most widely used tools for microarray data analysis. Proposed roles for genes of unknown function are inferred from clusters of genes similarity expressed across many biological conditions.However, whether function annotation by similarity metrics is reliable or not and to what extent the similarity in gene expression patterns is useful for annotation of gene functions, has not been evaluated. This paper made a comprehensive research on the correlation between the similarity of expression data and of gene functions using Gene Ontology. It has been found that although the similarity in expression patterns and the similarity in gene functions are significantly dependent on each other, this association is rather weak. In addition, among the three categories of Gene Ontology, the similarity of expression data is more useful for cellular component annotation than for biological process and molecular function. The results presented are interesting for the gene functions prediction research area.

  17. Inducible gene manipulations in brain serotonergic neurons of transgenic rats.

    Directory of Open Access Journals (Sweden)

    Tillmann Weber

    Full Text Available The serotonergic (5-HT system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP, in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system.

  18. THE GENE EXPRESSION OF BDNF IN NORMAL RABBIT RETINA

    Institute of Scientific and Technical Information of China (English)

    王建明; 胡海涛; 马东亮; 孙乃学; 赵世平; 冯海晓

    2004-01-01

    Objective To investigate the distribution of brain-derived neurotrophic factor(BDNF) protein in the rabbit retina. Methods Immune response material in the retina was observed using BDNF antibody by the method of immunohistochemistry. Results BDNF gene expression was mainly found in the RGCs, also in innernuclei cells and outernuclei cells in rabbit retina. Conclusion RGC is not only the target cell of BDNF, but also express the BDNF protein. BDNF from multi-sources participates in the regulation of RGCs.

  19. Chronic ethanol exposure produces time- and brain region-dependent changes in gene coexpression networks.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Osterndorff-Kahanek

    Full Text Available Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY, nucleus accumbens (NAC, prefrontal cortex (PFC, and liver after four weekly cycles of chronic intermittent ethanol (CIE vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000 at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600. Within each region, there was little gene overlap across time (~20%. All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global 'rewiring' of coexpression systems involving glial and immune signaling as well as neuronal genes.

  20. Immune response gene expression increases in the aging murine hippocampus.

    Science.gov (United States)

    Terao, Akira; Apte-Deshpande, Anjali; Dousman, Linda; Morairty, Stephen; Eynon, Barrett P; Kilduff, Thomas S; Freund, Yvonne R

    2002-11-01

    Using GeneChips, basal and lipopolysaccharide (LPS)-induced gene expression was examined in the hippocampus of 3-, 12-, 18- and 24-month-old male C57BL/6 mice to identify genes whose altered expression could influence hippocampal function in advanced age. Gene elements that changed with age were selected with a t-statistic and specific expression patterns were confirmed with real-time quantitative PCR. Basal expression of 128 gene elements clearly changed with age in the hippocampus. Fourteen gene elements showed increased expression with age and these increases were validated after LPS stimulation. Major histocompatibility complex (MHC) TL region and thymic shared antigen (TSA-1) gene expression increased, suggesting T cell activation in the hippocampus with age. Cytokine (interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha) and chemokine (macrophage chemotactic protein-1) expression increased sharply in 24-month-old mice. These findings are in contrast to a decrease in the peripheral immune response, documented by decreased T cell proliferation and decreased ratios of naive to memory T cells. Age-related increases in inflammatory potential in the brain may contribute to neurodegenerative diseases of the aged.

  1. Brain-derived neurotrophic factor activation of NFAT (nuclear factor of activated T-cells)-dependent transcription: a role for the transcription factor NFATc4 in neurotrophin-mediated gene expression.

    Science.gov (United States)

    Groth, Rachel D; Mermelstein, Paul G

    2003-09-03

    A member of the neurotrophin family, brain-derived neurotrophic factor (BDNF) regulates neuronal survival and differentiation during development. Within the adult brain, BDNF is also important in neuronal adaptive processes, such as the activity-dependent plasticity that underlies learning and memory. These long-term changes in synaptic strength are mediated through alterations in gene expression. However, many of the mechanisms by which BDNF is linked to transcriptional and translational regulation remain unknown. Recently, the transcription factor NFATc4 (nuclear factor of activated T-cells isoform 4) was discovered in neurons, where it is believed to play an important role in long-term changes in neuronal function. Interestingly, NFATc4 is particularly sensitive to the second messenger systems activated by BDNF. Thus, we hypothesized that NFAT-dependent transcription may be an important mediator of BDNF-induced plasticity. In cultured rat CA3-CA1 hippocampal neurons, BDNF activated NFAT-dependent transcription via TrkB receptors. Inhibition of calcineurin blocked BDNF-induced nuclear translocation of NFATc4, thus preventing transcription. Further, phospholipase C was a critical signaling intermediate between BDNF activation of TrkB and the initiation of NFAT-dependent transcription. Both inositol 1,4,5-triphosphate (IP3)-mediated release of calcium from intracellular stores and activation of protein kinase C were required for BDNF-induced NFAT-dependent transcription. Finally, increased expression of IP3 receptor 1 and BDNF after neuronal exposure to BDNF was linked to NFAT-dependent transcription. These results suggest that NFATc4 plays a crucial role in neurotrophin-mediated synaptic plasticity.

  2. Blood-Brain Barrier Deterioration and Hippocampal Gene Expression in Polymicrobial Sepsis: An Evaluation of Endothelial MyD88 and the Vagus Nerve.

    Directory of Open Access Journals (Sweden)

    Gerard Honig

    Full Text Available Systemic infection can initiate or exacerbate central nervous system (CNS pathology, even in the absence of overt invasion of bacteria into the CNS. Recent epidemiological studies have demonstrated that human survivors of sepsis have an increased risk of long-term neurocognitive decline. There is thus a need for improved understanding of the physiological mechanisms whereby acute sepsis affects the CNS. In particular, MyD88-dependent activation of brain microvascular endothelial cells and a resulting loss of blood-brain barrier integrity have been proposed to play an important role in the effects of systemic inflammation on the CNS. Signaling through the vagus nerve has also been considered to be an important component of CNS responses to systemic infection. Here, we demonstrate that blood-brain barrier permeabilization and hippocampal transcriptional responses during polymicrobial sepsis occur even in the absence of MyD88-dependent signaling in cerebrovascular endothelial cells. We further demonstrate that these transcriptional responses can occur without vagus nerve input. These results suggest that redundant signals mediate CNS responses in sepsis. Either endothelial or vagus nerve activation may be individually sufficient to transmit systemic inflammation to the central nervous system. Transcriptional activation in the forebrain in sepsis may be mediated by MyD88-independent endothelial mechanisms or by non-vagal neuronal pathways.

  3. Expression change in Angiopoietin-1 underlies change in relative brain size in fish.

    Science.gov (United States)

    Chen, Yu-Chia; Harrison, Peter W; Kotrschal, Alexander; Kolm, Niclas; Mank, Judith E; Panula, Pertti

    2015-07-07

    Brain size varies substantially across the animal kingdom and is often associated with cognitive ability; however, the genetic architecture underpinning natural variation in these key traits is virtually unknown. In order to identify the genetic architecture and loci underlying variation in brain size, we analysed both coding sequence and expression for all the loci expressed in the telencephalon in replicate populations of guppies (Poecilia reticulata) artificially selected for large and small relative brain size. A single gene, Angiopoietin-1 (Ang-1), a regulator of angiogenesis and suspected driver of neural development, was differentially expressed between large- and small-brain populations. Zebra fish (Danio rerio) morphants showed that mild knock down of Ang-1 produces a small-brained phenotype that could be rescued with Ang-1 mRNA. Translation inhibition of Ang-1 resulted in smaller brains in larvae and increased expression of Notch-1, which regulates differentiation of neural stem cells. In situ analysis of newborn large- and small-brained guppies revealed matching expression patterns of Ang-1 and Notch-1 to those observed in zebrafish larvae. Taken together, our results suggest that the genetic architecture affecting brain size in our population may be surprisingly simple, and Ang-1 may be a potentially important locus in the evolution of vertebrate brain size and cognitive ability.

  4. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain.

    Science.gov (United States)

    Pichery, Mélanie; Mirey, Emilie; Mercier, Pascale; Lefrancais, Emma; Dujardin, Arnaud; Ortega, Nathalie; Girard, Jean-Philippe

    2012-04-01

    IL-33 (previously known as NF from high endothelial venules) is an IL-1 family cytokine that signals through the ST2 receptor and drives cytokine production in mast cells, basophils, eosinophils, invariant NKT and NK cells, Th2 lymphocytes, and type 2 innate immune cells (natural helper cells, nuocytes, and innate helper 2 cells). Little is known about endogenous IL-33; for instance, the cellular sources of IL-33 in mouse tissues have not yet been defined. In this study, we generated an Il-33-LacZ gene trap reporter strain (Il-33(Gt/Gt)) and used this novel tool to analyze expression of endogenous IL-33 in vivo. We found that the Il-33 promoter exhibits constitutive activity in mouse lymphoid organs, epithelial barrier tissues, brain, and embryos. Immunostaining with anti-IL-33 Abs, using Il-33(Gt/Gt) (Il-33-deficient) mice as control, revealed that endogenous IL-33 protein is highly expressed in mouse epithelial barrier tissues, including stratified squamous epithelia from vagina and skin, as well as cuboidal epithelium from lung, stomach, and salivary gland. Constitutive expression of IL-33 was not detected in blood vessels, revealing the existence of species-specific differences between humans and mice. Importantly, IL-33 protein was always localized in the nucleus of producing cells with no evidence for cytoplasmic localization. Finally, strong expression of the Il-33-LacZ reporter was also observed in inflamed tissues, in the liver during LPS-induced endotoxin shock, and in the lung alveoli during papain-induced allergic airway inflammation. Together, our findings support the possibility that IL-33 may function as a nuclear alarmin to alert the innate immune system after injury or infection in epithelial barrier tissues.

  5. Killing of Brain Tumor Cells by Hypoxia-Responsive Element Mediated Expression of BAX

    Directory of Open Access Journals (Sweden)

    Hangjun Ruan

    1999-11-01

    Full Text Available The presence of radioresistant hypoxic cells in human brain tumors limits the overall effectiveness of conventional fractionated radiation therapy. Tumor-specific therapies that target hypoxic cells are clearly needed. We have investigated the expression of suicide genes under hypoxia by a hypoxia-responsive element (HRE, which can be activated through hypoxia-inducible factor-1 (HIF-1. We transfected plasmids containing multiple copies of HIRE into U-87 MG and U-251 MG-NCI human brain tumor cells and tested their ability to induce LacZ gene expression under anoxia. Gene expression under anoxia versus oxia was increased about 12-fold for U-87 MG cells and about fourfold for U-251 MG-NCI cells. At intermediate hypoxic conditions, increased LacZ gene expression in U-87 MG cells was induced by the plasmid that contained three HREs, but not by the plasmid with two HREs. Lastly, when we placed a suicide gene BAX under the control of HREs, cells transfected with the BAX plasmids were preferentially killed through apoptosis under anoxia. Our studies demonstrate that HRE-regulated gene expression is active in brain tumor cells, and that the amount of increased gene expression obtained is dependent on the cell line, the HIRE copy number, and the degree of hypoxia.

  6. Anti-epileptic effects of neuropeptide Y gene transfection into the rat brain

    Institute of Scientific and Technical Information of China (English)

    Changzheng Dong; Wenqing Zhao; Wenling Li; Peiyuan Lv; Xiufang Dong

    2013-01-01

    Neuropeptide Y gene transfection into normal rat brain tissue can provide gene overexpression, which can attenuate the severity of kainic acid-induced seizures. In this study, a recombinant adeno-associated virus carrying the neuropeptide Y gene was transfected into brain tissue of rats with kainic acid-induced epilepsy through stereotactic methods. Following these transfections, we verified overexpression of the neuropeptide Y gene in the epileptic brain. Electroencephalograms showed that seizure severity was significantly inhibited and seizure latency was significantly prolonged up to 4 weeks after gene transfection. Moreover, quantitative fluorescent PCR and western blot assays revealed that the mRNA and protein expression of the N-methyl-D-aspartate receptor subunits NR1, NR2A, and NR2B was inhibited in the hippocampus of epileptic rats. These findings indicate that neuropeptide Y may inhibit seizures via down-regulation of the functional expression of N-methyl-D-aspartate receptors.

  7. Ion channel gene expression predicts survival in glioma patients.

    Science.gov (United States)

    Wang, Rong; Gurguis, Christopher I; Gu, Wanjun; Ko, Eun A; Lim, Inja; Bang, Hyoweon; Zhou, Tong; Ko, Jae-Hong

    2015-08-03

    Ion channels are important regulators in cell proliferation, migration, and apoptosis. The malfunction and/or aberrant expression of ion channels may disrupt these important biological processes and influence cancer progression. In this study, we investigate the expression pattern of ion channel genes in glioma. We designate 18 ion channel genes that are differentially expressed in high-grade glioma as a prognostic molecular signature. This ion channel gene expression based signature predicts glioma outcome in three independent validation cohorts. Interestingly, 16 of these 18 genes were down-regulated in high-grade glioma. This signature is independent of traditional clinical, molecular, and histological factors. Resampling tests indicate that the prognostic power of the signature outperforms random gene sets selected from human genome in all the validation cohorts. More importantly, this signature performs better than the random gene signatures selected from glioma-associated genes in two out of three validation datasets. This study implicates ion channels in brain cancer, thus expanding on knowledge of their roles in other cancers. Individualized profiling of ion channel gene expression serves as a superior and independent prognostic tool for glioma patients.

  8. Neuroglobin and Cytoglobin expression in the human brain

    DEFF Research Database (Denmark)

    Hundahl, Christian Ansgar; Kelsen, Jesper; Hay-Schmidt, Anders

    2013-01-01

    expressed and up-regulated following stroke in the human brain. The present study aimed at confirming our previous observations in rodents using two post-mortem human brains. The anatomical localization of Neuroglobin and Cytoglobin in the human brain is much like what has been described for the rodent...

  9. Differential Notch Signalling Pathway Gene Expression of Nidus and Adjacent Brain Tissure Parts in Human Brain Arteriovenous Malformations%Notch信号通路基因在人脑动静脉畸形和周围脑组织中的差异表达

    Institute of Scientific and Technical Information of China (English)

    郑名哲; 陈衔城; 汤海亮; 谢清; 宫晔

    2012-01-01

    Aim: To investigate the expression of genes involved in Notch signalling pathway of different parts in human brain arteriovenous malformations (BAVM) by using Notch signalling pathway microarray. Methods: Five BAVM cases with stroke history were collected, whose sample of nidus (N) and adjacent brain tissure (B) were obtained in surgery. Signal intensity of the genes was examed and calculated by using Oligo GE Array Human Notch Signaling Pathway Microarray OHS-059. The genes with N/B ratio larger than 1.5 or smaller than 0.67 were counted as markablly changed, two of which were verified by realtime PCR. Results: Twenty seven of 113 genes involved in Notch signalling pathway were found differentially expressed. Four genes were up-regulated, and twenty three genes were down-regulated. Most important genes include Notch signalling pathway ligands DLL1/DLL3, key genes of cleavage ADAM10/ADAM17, Notch signalling pathway target gene HESS, Notch related Sonic Hedgehog pathway gene GLI1, Wnt signalling pathway gene FZD1, oncogene LM02. The data from two genes DLL1 and HESS by realtime PCR is basically consisted with the data from the gene chip. Some important genes involved in Notch signalling pathway did not show differential expression at the two parts of BAVM. Conclusion: Many of the genes involved in Notch signalling pathway were differential expressed at nidus and adjacent brain tissue parts in BAVM, which indicated BAVM occurrence and developing have something to do with Notch signalling pathway. Notch signallling pathway gene expression pattern might be different at adjacent brain tissure. Differential expressed genes can contribute new ways to BAVM research.%目的:应用基因芯片研究人脑动静脉畸形(BAVM)的畸形团及周围脑组织的Notch信号通路相关基因的差异表达.方法:收集有出血史的5例BAVM标本,在畸形团、周围脑组织分别取材,进行Notch信号通路基因芯片杂交,得到基因芯片上各基因点数值型信

  10. Pharmacological complement inhibition at the C3 convertase level promotes neuronal survival, neuroprotective intracerebral gene expression, and neurological outcome after traumatic brain injury.

    Science.gov (United States)

    Leinhase, Iris; Schmidt, Oliver I; Thurman, Joshua M; Hossini, Amir M; Rozanski, Michal; Taha, Mohy E; Scheffler, Alice; John, Thilo; Smith, Wade R; Holers, V Michael; Stahel, Philip F

    2006-06-01

    The complement system represents an important mediator of neuroinflammation in traumatic brain injury. We have previously shown that transgenic mice with central nervous system-targeted overexpression of Crry, a potent murine complement inhibitor at the level of C3 convertases, are protected from complement-mediated neuropathological sequelae in brain-injured mice. This knowledge was expanded in the present study to a pharmacological approach by the use of a recombinant Crry molecule (termed Crry-Ig) which was recently made available in a chimeric form fused to the non-complement fixing mouse IgG1 Fc region. In a standardized model of closed head injury in mice, the systemic injection of 1 mg Crry-Ig at 1 h and 24 h after trauma resulted in a significant neurological improvement for up to 7 days, as compared to vehicle-injected control mice (P complement inhibition represents a promising approach for attenuation of neuroinflammation and secondary neurodegeneration after head injury.

  11. Mutated Genes in Schizophrenia Map to Brain Networks

    Science.gov (United States)

    ... Matters NIH Research Matters August 12, 2013 Mutated Genes in Schizophrenia Map to Brain Networks Schizophrenia networks in the ... in People with Serious Mental Illness Clues for Schizophrenia in Rare Gene Glitch Recognizing Schizophrenia: Seeking Clues to a Difficult ...

  12. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy (Davis, CA); Bachkirova, Elena (Davis, CA); Rey, Michael (Davis, CA)

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  13. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  14. The effects of high fat diet and exercise on cAMP response element binding protein gene expression in brain of mice%高脂膳食与运动对小鼠脑内cAMP反应元件结合蛋白基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    云少君; 乔欣; 李蔓; 魏守刚

    2015-01-01

    目的:通过观察cAMP反应元件结合蛋白( CREB)基因表达探讨高脂膳食与运动对脑老化的影响。方法70只ICR小鼠按体重随机分为普通对照组、高脂对照组、运动对照组、普通脑老化组、脑老化+高脂组、脑老化+运动组及脑老化+高脂+运动组。造模10 w后,以 Morris水迷宫实验检测小鼠的学习记忆能力, RT-PCR检测小鼠大脑CREB基因的表达水平。结果与普通对照组相比,普通脑老化组、脑老化+高脂组、脑老化+高脂+运动组及高脂对照组小鼠脑CREB基因表达水平明显降低(P<0.05),运动对照组CREB 基因表达水平无明显变化。脑老化+运动组小鼠脑CREB基因表达水平明显高于脑老化组( P<0.05)。结论脑老化小鼠 CREB基因表达水平降低。高脂膳食下调CREB 基因的表达,具有促脑老化效应。运动可以防止脑老化小鼠CREB基因的表达下降,具有抗脑老化效应。%Objective To explore the effects of high fat diet and exercise on the expression of cAMP response element binding pro-tein( CREB) gene in brain of mice.Methods Seventy mice were randomly divided into control , high fat diet, exercise, brain aging, brain aging +high fat diet, brain aging +exercise, brain aging +high fat diet +exercise groups.The experimental duration was 10 weeks.Morris water maze test was used to measure the learning and memory ability .Reverse transcription polymerase chain reaction ( RT-PCR) was used to detect the brain CREB gene expression .Results Compared with that of control group , the CREB gene expression was decreased in brain aging mice and brain aging +high fat diet group (P<0.05).There was not significant difference of CREB gene expression between brain ag-ing+exercise group and control group .The CREB gene expression in brain aging +high fat diet +exercise group was decreased significantly compared with that of normal group , but compared with that of brain

  15. Two different gene loci related to the spatial patterning of brain ventricle in vertebrate

    Institute of Scientific and Technical Information of China (English)

    LUO Minna; LI Bingxia; TONG Ying; ZHAO Shufang; LUO Chen

    2007-01-01

    Observations on living embryonic brains and the microstructure of brain ventricle of goldfish revealed that there are two brain ventricle phenotypes in gynogenetic haploid embryos. One phenotype is as normal as that of the control inbreeding diploid embryos,which has normal differentiated forebrain, midbrain and hindbrain. Another phenotype is obviously abnormal, the brain patterning is irregular, and no distinct brain ventricle can be observed. The ratio of haploid embryos with normal brain pattern to that with abnormal brain pattern is 1:3. This ratio indicates that there are two gene loci involved in the spatial patterning of the brain ventricle. Since the possibility that deleterious recessive mutant alleles exist on both of the two gene loci had been excluded in this experiment, the phenotype represented the expressional state rather than the genotype of these two genes. Therefore, the ratio of 1∶ 3 suggests that the expressing probability for each copy of the two genes is 50%, and the regulatory mechanism of the expression is based on two sets of chromosomes, controlled by the rule of the diploid-dependent regulatory mechanism.

  16. cis sequence effects on gene expression

    Directory of Open Access Journals (Sweden)

    Jacobs Kevin

    2007-08-01

    Full Text Available Abstract Background Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in cis on gene expression (cis sequence effects in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting cis sequence effects and the proportion of gene expression variation explained by cis sequence effects using three different analytical approaches, and compared our results to the literature. Results We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of cis sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p cis sequence effects in our study, respectively. Conclusion Based on analysis of our results and the extant literature, one in four genes exhibits significant cis sequence effects, and for these genes, about 30% of gene expression variation is accounted for by cis sequence variation. Despite diverse experimental approaches, the presence or absence of significant cis sequence effects is largely supported by previously published studies.

  17. A sequence-based approach to identify reference genes for gene expression analysis

    Directory of Open Access Journals (Sweden)

    Chari Raj

    2010-08-01

    Full Text Available Abstract Background An important consideration when analyzing both microarray and quantitative PCR expression data is the selection of appropriate genes as endogenous controls or reference genes. This step is especially critical when identifying genes differentially expressed between datasets. Moreover, reference genes suitable in one context (e.g. lung cancer may not be suitable in another (e.g. breast cancer. Currently, the main approach to identify reference genes involves the mining of expression microarray data for highly expressed and relatively constant transcripts across a sample set. A caveat here is the requirement for transcript normalization prior to analysis, and measurements obtained are relative, not absolute. Alternatively, as sequencing-based technologies provide digital quantitative output, absolute quantification ensues, and reference gene identification becomes more accurate. Methods Serial analysis of gene expression (SAGE profiles of non-malignant and malignant lung samples were compared using a permutation test to identify the most stably expressed genes across all samples. Subsequently, the specificity of the reference genes was evaluated across multiple tissue types, their constancy of expression was assessed using quantitative RT-PCR (qPCR, and their impact on differential expression analysis of microarray data was evaluated. Results We show that (i conventional references genes such as ACTB and GAPDH are highly variable between cancerous and non-cancerous samples, (ii reference genes identified for lung cancer do not perform well for other cancer types (breast and brain, (iii reference genes identified through SAGE show low variability using qPCR in a different cohort of samples, and (iv normalization of a lung cancer gene expression microarray dataset with or without our reference genes, yields different results for differential gene expression and subsequent analyses. Specifically, key established pathways in lung

  18. Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain

    Directory of Open Access Journals (Sweden)

    Pascal eGrange

    2015-05-01

    Full Text Available Two cliques of genes identified computationally for their high co-expression in the mouse brain according to the Allen Brain Atlas, and for their enrichment in genes related to autism spectrum disorder, have recently been shown to be highly co-expressed in the cerebellar cortex, compared to what could be expected by chance. Moreover, the expression of these cliques of genes is not homogeneous across the cerebellar cortex, and it has been noted that their expression pattern seems to highlight the granular layer. However, this observation was only made by eye, and recent advances in computational neuroanatomy allow to rank cell types in the mouse brain (characterized by their transcriptome profiles according to the similarity between their spatial density profiles and the expression profiles of the cliques. We establish by Monte Carlo simulation that with probability at least 99%, the expression profiles of the two cliques are more similar to the density profile of granule cells than 99% of the expression of cliques containing the same number of genes (Purkinje cells also score above 99% in one of the cliques. Thresholding the expression profiles shows that the signal is more intense in the granular layer. Finally, we work out pairs of cell types whose combined expression profiles are more similar to the expression profiles of the cliquesthan any single cell type. These pairs predominantly consist of one cortical pyramidal cell and one cerebellar cell (whichcan be either a granule cell or a Purkinje cell.

  19. Brain Plasticity, Intelligence and Schizophrenia: influence of genes and environment

    NARCIS (Netherlands)

    Hedman, A.M.

    2013-01-01

    This thesis shows that the adult human brain has plastic properties. These plastic properties are at least in part heritable and have functional significance. Identifying genes and environmental factors implicated in brain plasticity is an important next step to optimize brain development in health

  20. Transduction of Brain Dopamine Neurons by Adenoviral Vectors Is Modulated by CAR Expression: Rationale for Tropism Modified Vectors in PD Gene Therapy

    OpenAIRE

    Lewis, Travis B.; Glasgow, Joel N.; Glandon, Anya M.; Curiel, David T.; Standaert, David G.

    2010-01-01

    BACKGROUND: Gene-based therapy is a new paradigm for the treatment of Parkinson disease (PD) and offers considerable promise for precise targeting and flexibility to impact multiple pathobiological processes for which small molecule agents are not available. Some success has been achieved utilizing adeno-associated virus for this approach, but it is likely that the characteristics of this vector system will ultimately create barriers to progress in clinical therapy. Adenovirus (Ad) vector ove...

  1. PKG in honey bees: spatial expression, Amfor gene expression, sucrose responsiveness, and division of labor.

    Science.gov (United States)

    Thamm, Markus; Scheiner, Ricarda

    2014-06-01

    Division of labor is a hallmark of social insects. In honey bees, division of labor involves transition of female workers from one task to the next. The most distinct tasks are nursing (providing food for the brood) and foraging (collecting pollen and nectar). The brain mechanisms regulating this form of behavioral plasticity have largely remained elusive. Recently, it was suggested that division of labor is based on nutrition-associated signaling pathways. One highly conserved gene associated with food-related behavior across species is the foraging gene, which encodes a cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG). Our analysis of this gene reveals the presence of alternative splicing in the honey bee. One isoform is expressed in the brain. Expression of this isoform is most pronounced in the mushroom bodies, the subesophageal ganglion, and the corpora allata. Division of labor and sucrose responsiveness in honey bees correlate significantly with foraging gene expression in distinct brain regions. Activating PKG selectively increases sucrose responsiveness in nurse bees to the level of foragers, whereas the same treatment does not affect responsiveness to light. These findings demonstrate a direct link between PKG signaling in distinct brain areas and division of labor. Furthermore, they demonstrate that the difference in sensory responsiveness between nurse bees and foragers can be compensated for by activating PKG. Our findings on the function of PKG in regulating specific sensory responsiveness and social organization offer valuable indications for the function of the cGMP/PKG pathway in many other insects and vertebrates.

  2. Paternal irradiation perturbs the expression of circadian genes in offspring

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Andre M.G.F.; Barber, Ruth C.; Dubrova, Yuri E., E-mail: yed2@le.ac.uk

    2015-05-15

    Highlights: • We have analysed gene expression in the offspring of irradiated male mice. • CBA/Ca and BALB/c male mice were used in our study. • The pattern of gene expression was established in four tissues. • Expression of genes in involved in rhythmic process/circadian rhythm is compromised. • Our data may explain the phenomenon of transgenerational genomic instability. - Abstract: The circadian system represents a complex network which influences the timing of many biological processes. Recent studies have established that circadian alterations play an important role in the susceptibility to many human diseases, including cancer. Here we report that paternal irradiation in mice significantly affects the expression of genes involved in rhythmic processes in their first-generation offspring. Using microarrays, the patterns of gene expression were established for brain, kidney, liver and spleen samples from the non-exposed offspring of irradiated CBA/Ca and BALB/c male mice. The most over-represented categories among the genes differentially expressed in the offspring of control and irradiated males were those involved in rhythmic process, circadian rhythm and DNA-dependent regulation of transcription. The results of our study therefore provide a plausible explanation for the transgenerational effects of paternal irradiation, including increased transgenerational carcinogenesis described in other studies.

  3. Synthetic promoter libraries- tuning of gene expression

    DEFF Research Database (Denmark)

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal

    2006-01-01

    The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene...... knockout and strong overexpression. However, applications such as metabolic optimization and control analysis necessitate a continuous set of expression levels with only slight increments in strength to cover a specific window around the wildtype expression level of the studied gene; this requirement can...... be met by using promoter libraries. This approach generally consists of inserting a library of promoters in front of the gene to be studied, whereby the individual promoters might deviate either in their spacer sequences or bear slight deviations from the consensus sequence of a vegetative promoter. Here...

  4. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...... beta-glucuronidase, resulting in an operon structure in which both genes are transcribed from a common promoter. We show that there is a linear correlation between the expressions of the two genes, which facilitates screening for mutants with suitable enzyme activities. In a second example, we show......, overexpression was achieved by introducing an additional gene copy into a phage attachment site on the chromosome. This resulted in a series of strains with phosphofructokinase activities from 1.4 to 11 times the wild-type activity level. In this example, the pfk gene was cloned upstream of a gusA gene encoding...

  5. Gene expression in cortex and hippocampus during acute pneumococcal meningitis

    Directory of Open Access Journals (Sweden)

    Wittwer Matthias

    2006-06-01

    Full Text Available Abstract Background Pneumococcal meningitis is associated with high mortality (~30% and morbidity. Up to 50% of survivors are affected by neurological sequelae due to a wide spectrum of brain injury mainly affecting the cortex and hippocampus. Despite this significant disease burden, the genetic program that regulates the host response leading to brain damage as a consequence of bacterial meningitis is largely unknown. We used an infant rat model of pneumococcal meningitis to assess gene expression profiles in cortex and hippocampus at 22 and 44 hours after infection and in controls at 22 h after mock-infection with saline. To analyze the biological significance of the data generated by Affymetrix DNA microarrays, a bioinformatics pipeline was used combining (i a literature-profiling algorithm to cluster genes based on the vocabulary of abstracts indexed in MEDLINE (NCBI and (ii the self-organizing map (SOM, a clustering technique based on covariance in gene expression kinetics. Results Among 598 genes differentially regulated (change factor ≥ 1.5; p ≤ 0.05, 77% were automatically assigned to one of 11 functional groups with 94% accuracy. SOM disclosed six patterns of expression kinetics. Genes associated with growth control/neuroplasticity, signal transduction, cell death/survival, cytoskeleton, and immunity were generally upregulated. In contrast, genes related to neurotransmission and lipid metabolism were transiently downregulated on the whole. The majority of the genes associated with ionic homeostasis, neurotransmission, signal transduction and lipid metabolism were differentially regulated specifically in the hippocampus. Of the cell death/survival genes found to be continuously upregulated only in hippocampus, the majority are pro-apoptotic, while those continuously upregulated only in cortex are anti-apoptotic. Conclusion Temporal and spatial analysis of gene expression in experimental pneumococcal meningitis identified potential

  6. Linking Genes and Brain Development of Honeybee Workers: A Whole-Transcriptome Approach

    Science.gov (United States)

    Vleurinck, Christina; Raub, Stephan; Sturgill, David; Oliver, Brian; Beye, Martin

    2016-01-01

    Honeybees live in complex societies whose capabilities far exceed those of the sum of their single members. This social synergism is achieved mainly by the worker bees, which form a female caste. The worker bees display diverse collaborative behaviors and engage in different behavioral tasks, which are controlled by the central nervous system (CNS). The development of the worker brain is determined by the female sex and the worker caste determination signal. Here, we report on genes that are controlled by sex or by caste during differentiation of the worker’s pupal brain. We sequenced and compared transcriptomes from the pupal brains of honeybee workers, queens and drones. We detected 333 genes that are differently expressed and 519 genes that are differentially spliced between the sexes, and 1760 genes that are differentially expressed and 692 genes that are differentially spliced between castes. We further found that 403 genes are differentially regulated by both the sex and caste signals, providing evidence of the integration of both signals through differential gene regulation. In this gene set, we found that the molecular processes of restructuring the cell shape and cell-to-cell signaling are overrepresented. Our approach identified candidate genes that may be involved in brain differentiation that ensures the various social worker behaviors. PMID:27490820

  7. Gene Expression Patterns in Ovarian Carcinomas

    Science.gov (United States)

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  8. Microanalysis of gene expression in cultured cells

    NARCIS (Netherlands)

    E. van der Veer (Eveliene)

    1982-01-01

    textabstractIn this thesis two aspects of gene expression in cultured cells have been studied: the heterogeneity in gene expression in relation with the development and application of microchemical techniques for the prenatal diagnosis of inborn errors of metabolism and the possibility of inducing g

  9. Arabidopsis gene expression patterns during spaceflight

    Science.gov (United States)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  10. A Simple Method for Immunohistochemical Staining of Zebrafish Brain Sections for c-fos Protein Expression.

    Science.gov (United States)

    Chatterjee, Diptendu; Tran, Steven; Shams, Soaleha; Gerlai, Robert

    2015-12-01

    Immediate early genes (IEGs) are transcription factors whose own transcription is initiated rapidly, for example, in the brain in response to environmental stimuli. c-fos is an IEG often used as a marker of neuronal activation. c-fos mRNA expression has started to be quantified and localized in the zebrafish brain following environmental manipulations but analysis of the expression of c-fos protein in the zebrafish brain has rarely been attempted. Here, we describe an immunofluorescence staining method for quantifying c-fos protein expression in different regions of the zebrafish brain. In addition, we expose zebrafish to caffeine, a positive control for c-fos activation in the brain. To confirm cell nucleus specific binding of the c-fos antibody, we counterstained brain sections with the nuclear fluorescent stain DAPI. Furthermore, we describe a method for reducing background autofluorescence often observed in zebrafish brain tissue. Our analysis showed that exposure to caffeine increased the number of c-fos protein-positive cells in specific zebrafish brain regions detected by the immunofluorescence method. Our results demonstrate the feasibility of immunofluorescence-based methods in the analysis of neuronal activation in the zebrafish brain, and reinforce the utility of the zebrafish in behavioral neuroscience research.

  11. Expression studies of the obesity candidate gene FTO in pig

    DEFF Research Database (Denmark)

    Madsen, Majbritt Busk; Birck, Malene Muusfeldt; Fredholm, Merete

    2010-01-01

    Obesity is an increasing problem worldwide and research on candidate genes in good animal models is highly needed. The pig is an excellent model as its metabolism, organ size, and eating habits resemble that of humans. The present study is focused on the characterization of the fat mass and obesity...... associated gene (FTO) in pig. This gene has recently been associated with increased body mass index in several human populations. To establish information on the expression profile of FTO in the pig we performed quantitative PCR in a panel of adult pig tissues and in tissues sampled at different...... and cerebellum). Additionally, in order to see the involvement of the FTO gene in obesity, the changes in expression level were investigated in a nutritional study in brain of Gottingen minipigs under a high cholesterol diet. Significantly higher (P

  12. Gene set analysis for longitudinal gene expression data

    Directory of Open Access Journals (Sweden)

    Piepho Hans-Peter

    2011-07-01

    Full Text Available Abstract Background Gene set analysis (GSA has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations. Results We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified. Conclusions The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website http://ndinbre.org/programs/bioinformatics.php. Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information with

  13. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

    DEFF Research Database (Denmark)

    Manijak, Mieszko P.; Nielsen, Henrik Bjørn

    2011-01-01

    BACKGROUND: Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially...... circumvented by instead matching gene expression signatures to signatures of other experiments. FINDINGS: To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700...

  14. Downregulation of myelination, energy, and translational genes in Menkes disease brain.

    Science.gov (United States)

    Liu, Po-Ching; Chen, Yi-Wen; Centeno, Jose A; Quezado, Martha; Lem, Kristen; Kaler, Stephen G

    2005-08-01

    Menkes disease (MD) is an X-linked recessive neurodegenerative disorder caused by mutations in a copper-transporting p-type ATPase (ATP7A) that normally delivers copper to the central nervous system. The precise reasons for neurodegeneration in MD are poorly understood. We hypothesized that gene expression changes in a MD patient with a lethal ATP7A mutation would indicate pathophysiological cascades relevant to the effects of copper deficiency in the developing brain. To test this hypothesis, oligonucleotide probes for 12,000 genes arrayed on Affymetrix Human Genome U95 GeneChips were used for expression profiling of fluorescently labeled primary cRNAs from post-mortem cerebral cortex and cerebellum of a MD patient who died at 6 months of age and a normal control brain matched for age, gender, and race. Histopathologic analysis of the proband's brain showed preservation of neuronal integrity and no hypoxic effects. However, cerebrospinal fluid and brain copper levels were subnormal, and expression profiling identified over 350 known dysregulated genes. For a subset of genes (approximately 12%) analyzed by quantitative RT-PCR, the correct cross-validation rate was 88%. Thirty known genes were altered in both cortex and cerebellum. Downregulation of genes involved in myelination, energy metabolism, and translation was the major finding. The cerebellum was more sensitive to copper deficiency.

  15. Preparation of Trojan horse liposomes (THLs) for gene transfer across the blood-brain barrier.

    Science.gov (United States)

    Pardridge, William M

    2010-04-01

    Nonviral plasmid DNA is delivered to the brain via a transvascular route across the blood-brain barrier (BBB) following intravenous administration of DNA encapsulated within Trojan horse liposomes (THLs), also called PEGylated immunoliposomes (PILs). The liposome surface is covered with several thousand strands of polymer (e.g., polyethylene glycol [PEG]), and the tips of 1%-2% of the polymer strands are conjugated with a targeting monoclonal antibody that acts as a molecular Trojan horse (MTH). The MTH binds to a receptor (e.g., for transferrin or insulin) on the BBB and brain cell membrane, triggering receptor-mediated transcytosis of the THL across the BBB in vivo, and receptor-mediated endocytosis into brain cells beyond the BBB. The persistence of transgene expression in the brain is inversely related to the rate of degradation of the episomal plasmid DNA. THL technology enables an exogenous gene to be widely expressed in the majority of cells in adult brain (or other organs) within 1 d of a single intravenous administration. Applications of the THLs include tissue-specific gene expression with tissue-specific promoters, complete normalization of striatal tyrosine hydroxylase in experimental Parkinson's disease following intravenous tyrosine hydroxylase gene therapy, a 100% increase in survival time of mice with brain tumors following weekly intravenous antisense gene therapy using THLs, and a 90% increase in survival time with weekly intravenous RNA interference (RNAi) gene therapy in mice with intracranial brain tumors. This protocol describes the preparation of THLs for use in gene transfer in vitro or in vivo.

  16. Peripheral lipopolysaccharide administration transiently affects expression of brain-derived neurotrophic factor, corticotropin and proopiomelanocortin in mouse brain.

    Science.gov (United States)

    Schnydrig, Sabine; Korner, Lukas; Landweer, Svenja; Ernst, Beat; Walker, Gaby; Otten, Uwe; Kunz, Dieter

    2007-12-11

    Peripheral inflammation induced by intraperitoneal (i.p.) injection of Lipopolysaccharide (LPS) is known to cause functional impairments in the brain affecting memory and learning. One of mechanisms may be the interference with neurotrophin (NT) expression and function. In the current study we administered a single, high dose of LPS (3mg/kg, i.p.) into mice and investigated changes in brain-derived neurotrophic factor (BDNF) gene expression within 1-6 days after LPS injection. Crude synaptosomes were isolated from brain tissue and subjected to Western-blot analyses. We found transient reductions in synaptosomal proBDNF- and BDNF protein expression, with a maximal decrease at day 3 as compared to saline injected controls. The time course of reduction of BDNF mRNA in whole brain extracts parallels the decrease in protein levels in synaptosomes. LPS effects in the central nervous system (CNS) are known to crucially involve the activation of the hypothalamic-pituitary-adrenal (HPA) axis. We analysed the time course of corticotropin releasing hormone (CRH)- and proopiomelanocortin (POMC) mRNA expression. As observed for BDNF-, CRH- and POMC mRNA levels are also significantly reduced on day 3 indicating a comparable time course. These results suggest that peripheral inflammation causes a reduction of trophic supply in the brain, including BDNF at synaptic sites. The mechanisms involved could be a negative feedback of the activated HPA axis.

  17. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  18. Neural stem cell transplantation with Nogo-66 receptor gene silencing to treat severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dong Wang; Jianjun Zhang; Jingjian Ma; Yuan Mu; Yinghui Zhuang

    2011-01-01

    Inhibition of neurite growth, which is mediated by the Nogo-66 receptor (NgR), affects nerve regeneration following neural stem cell (NSC) transplantation. The present study utilized RNA interference to silence NgR gene expression in NSCs, which were subsequently transplanted into rats with traumatic brain injury. Following transplantation of NSCs transfected with small interfering RNA,typical neural cell-like morphology was detected in injured brain tissues, and was accompanied by absence of brain tissue cavity, increased growth-associated protein 43 mRNA and protein expression,and improved neurological function compared with NSC transplantation alone. Results demonstrated that NSC transplantation with silenced NgR gene promoted functional recovery following brain injury.

  19. SLC9A9 Co-expression modules in autism-associated brain regions.

    Science.gov (United States)

    Patak, Jameson; Hess, Jonathan L; Zhang-James, Yanli; Glatt, Stephen J; Faraone, Stephen V

    2016-07-21

    SLC9A9 is a sodium hydrogen exchanger present in the recycling endosome and highly expressed in the brain. It is implicated in neuropsychiatric disorders, including autism spectrum disorders (ASDs). Little research concerning its gene expression patterns and biological pathways has been conducted. We sought to investigate its possible biological roles in autism-associated brain regions throughout development. We conducted a weighted gene co-expression network analysis on RNA-seq data downloaded from Brainspan. We compared prenatal and postnatal gene expression networks for three ASD-associated brain regions known to have high SLC9A9 gene expression. We also performed an ASD-associated single nucleotide polymorphism enrichment analysis and a cell signature enrichment analysis. The modules showed differences in gene constituents (membership), gene number, and connectivity throughout time. SLC9A9 was highly associated with immune system functions, metabolism, apoptosis, endocytosis, and signaling cascades. Gene list comparison with co-immunoprecipitation data was significant for multiple modules. We found a disproportionately high autism risk signal among genes constituting the prenatal hippocampal module. The modules were enriched with astrocyte and oligodendrocyte markers. SLC9A9 is potentially involved in the pathophysiology of ASDs. Our investigation confirmed proposed functions for SLC9A9, such as endocytosis and immune regulation, while also revealing potential roles in mTOR signaling and cell survival.. By providing a concise molecular map and interactions, evidence of cell type and implicated brain regions we hope this will guide future research on SLC9A9. Autism Res 2016. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  20. The functional landscape of mouse gene expression

    Directory of Open Access Journals (Sweden)

    Zhang Wen

    2004-12-01

    Full Text Available Abstract Background Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. Results We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. Conclusions We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics.

  1. Neuroinflammation induces glial aromatase expression in the uninjured songbird brain

    Directory of Open Access Journals (Sweden)

    Saldanha Colin J

    2011-07-01

    Full Text Available Abstract Background Estrogens from peripheral sources as well as central aromatization are neuroprotective in the vertebrate brain. Under normal conditions, aromatase is only expressed in neurons, however following anoxic/ischemic or mechanical brain injury; aromatase is also found in astroglia. This increased glial aromatization and the consequent estrogen synthesis is neuroprotective and may promote neuronal survival and repair. While the effects of estradiol on neuroprotection are well studied, what induces glial aromatase expression remains unknown. Methods Adult male zebra finches (Taeniopygia guttata were given a penetrating injury to the entopallium. At several timepoints later, expression of aromatase, IL-1β-like, and IL-6-like were examined using immunohisotchemistry. A second set of zebra birds were exposed to phytohemagglutinin (PHA, an inflammatory agent, directly on the dorsal surface of the telencephalon without creating a penetrating injury. Expression of aromatase, IL-1β-like, and IL-6-like were examined using both quantitative real-time polymerase chain reaction to examine mRNA expression and immunohistochemistry to determine cellular expression. Statistical significance was determined using t-test or one-way analysis of variance followed by the Tukey Kramers post hoc test. Results Following injury in the zebra finch brain, cytokine expression occurs prior to aromatase expression. This temporal pattern suggests that cytokines may induce aromatase expression in the damaged zebra finch brain. Furthermore, evoking a neuroinflammatory response characterized by an increase in cytokine expression in the uninjured brain is sufficient to induce glial aromatase expression. Conclusions These studies are among the first to examine a neuroinflammatory response in the songbird brain following mechanical brain injury and to describe a novel neuroimmune signal to initiate aromatase expression in glia.

  2. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  3. Multivariate search for differentially expressed gene combinations

    Directory of Open Access Journals (Sweden)

    Klebanov Lev

    2004-10-01

    Full Text Available Abstract Background To identify differentially expressed genes, it is standard practice to test a two-sample hypothesis for each gene with a proper adjustment for multiple testing. Such tests are essentially univariate and disregard the multidimensional structure of microarray data. A more general two-sample hypothesis is formulated in terms of the joint distribution of any sub-vector of expression signals. Results By building on an earlier proposed multivariate test statistic, we propose a new algorithm for identifying differentially expressed gene combinations. The algorithm includes an improved random search procedure designed to generate candidate gene combinations of a given size. Cross-validation is used to provide replication stability of the search procedure. A permutation two-sample test is used for significance testing. We design a multiple testing procedure to control the family-wise error rate (FWER when selecting significant combinations of genes that result from a successive selection procedure. A target set of genes is composed of all significant combinations selected via random search. Conclusions A new algorithm has been developed to identify differentially expressed gene combinations. The performance of the proposed search-and-testing procedure has been evaluated by computer simulations and analysis of replicated Affymetrix gene array data on age-related changes in gene expression in the inner ear of CBA mice.

  4. Gene Expression Profiling in Porcine Fetal Thymus

    Institute of Scientific and Technical Information of China (English)

    Yanjiong Chen; Shengbin Li; Lin Ye; Jianing Geng; Yajun Deng; Songnian Hu

    2003-01-01

    obtain an initial overview of gene diversity and expression pattern in porcinethymus, 11,712 ESTs (Expressed Sequence Tags) from 100-day-old porcine thymus(FTY) were sequenced and 7,071 cleaned ESTs were used for gene expressionanalysis. Clustered by the PHRAP program, 959 contigs and 3,074 singlets wereobtained. Blast search showed that 806 contigs and 1,669 singlets (totally 5,442ESTs) had homologues in GenBank and 1,629 ESTs were novel. According to theGene Ontology classification, 36.99% ESTs were cataloged into the gene expressiongroup, indicating that although the functional gene (18.78% in defense group) ofthymus is expressed in a certain degree, the 100-day-old porcine thymus still existsin a developmental stage. Comparative analysis showed that the gene expressionpattern of the 100-day-old porcine thymus is similar to that of the human infantthymus.

  5. Exploring the molecular mechanism of acute heat stress exposure in broiler chickens using gene expression profiling.

    Science.gov (United States)

    Luo, Q B; Song, X Y; Ji, C L; Zhang, X Q; Zhang, D X

    2014-08-10

    The process of heat regulation is complex and its exact molecular mechanism is not fully understood. In this study, to investigate the global gene regulation response to acute heat exposure, gene microarrays were exploited to analyze the effects of heat stress on three tissues (brain, liver, leg muscle) of the yellow broiler chicken (Gallus gallus). We detected 166 differentially expressed genes (DEGs) in the brain, 219 in the leg muscle and 317 in the liver. Six of these genes were differentially expressed in all three tissues and were validated by qRT-PCR, and included heat shock protein genes (HSPH1, HSP25), apoptosis-related genes (RB1CC1, BAG3), a cell proliferation and differentiation-related gene (ID1) and the hunger and energy metabolism related gene (PDK). All these genes might be important factors in chickens suffering from heat stress. We constructed gene co-expression networks using the DEGs of the brain, leg muscle and liver and two, four and two gene co-expression modules were identified in these tissues, respectively. Functional enrichment of these gene modules revealed that various functional clusters were related to the effects of heat stress, including those for cytoskeleton, extracellular space, ion binding and energy metabolism. We concluded that these genes and functional clusters might be important factors in chickens under acute heat stress. Further in-depth research on the newly discovered heat-related genes and functional clusters is required to fully understand their molecular functions in thermoregulation.

  6. Quantitative and functional interrogation of parent-of-origin allelic expression biases in the brain.

    Science.gov (United States)

    Perez, Julio D; Rubinstein, Nimrod D; Fernandez, Daniel E; Santoro, Stephen W; Needleman, Leigh A; Ho-Shing, Olivia; Choi, John J; Zirlinger, Mariela; Chen, Shau-Kwaun; Liu, Jun S; Dulac, Catherine

    2015-07-03

    The maternal and paternal genomes play different roles in mammalian brains as a result of genomic imprinting, an epigenetic regulation leading to differential expression of the parental alleles of some genes. Here we investigate genomic imprinting in the cerebellum using a newly developed Bayesian statistical model that provides unprecedented transcript-level resolution. We uncover 160 imprinted transcripts, including 41 novel and independently validated imprinted genes. Strikingly, many genes exhibit parentally biased--rather than monoallelic--expression, with different magnitudes according to age, organ, and brain region. Developmental changes in parental bias and overall gene expression are strongly correlated, suggesting combined roles in regulating gene dosage. Finally, brain-specific deletion of the paternal, but not maternal, allele of the paternally-biased Bcl-x, (Bcl2l1) results in loss of specific neuron types, supporting the functional significance of parental biases. These findings reveal the remarkable complexity of genomic imprinting, with important implications for understanding the normal and diseased brain.

  7. Prioritization of candidate genes for cattle reproductive traits, based on protein-protein interactions, gene expression, and text-mining

    DEFF Research Database (Denmark)

    Hulsegge, Ina; Woelders, Henri; Smits, Mari;

    2013-01-01

    and processes in brain areas and pituitary involved in reproductive traits in cattle using information derived from three different data sources: gene expression, protein-protein interactions, and literature. We identified 59, 89, 53, 23, and 71 genes in bovine amygdala, dorsal hypothalamus, hippocampus...

  8. Phytochrome-regulated Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Peter H. Quail

    2007-01-01

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent comprehensive studies in Arabidopsis that have identified the genome-wide set of phy-regulated genes that respond rapidly to red-light signals upon first exposure of dark-grown seedlings, and have tested the functional relevance to normal seedling photomorphogenesis of an initial subset of these genes. The data: (a) reveal considerable complexity in the channeling of the light signals through the different phy-family members (phyA to phyE) to responsive genes; (b) identify a diversity of transcription-factor-encoding genes as major early, if not primary, targets of phy signaling, and, therefore, as potentially important regulators in the transcriptional-network hierarchy; and (c) identify auxin-related genes as the dominant class among rapidly-regulated, hormone-related genes. However, reverse-genetic functional profiling of a selected subset of these genes reveals that only a limited fraction are necessary for optimal phy-induced seedling deetiolation.

  9. Nucleosome repositioning underlies dynamic gene expression.

    Science.gov (United States)

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.

  10. Differential Expression of Sirtuins in the Ageing Rat Brain

    Directory of Open Access Journals (Sweden)

    Gilles J. Guillemin

    2015-05-01

    Full Text Available Although there are seven mammalian sirtuins (SIRT1-7, little is known about their expression in the ageing brain. To characterise the change(s in mRNA and protein expression of SIRT1-7 and their associated proteins in the brain of ‘physiologically’ aged Wistar rats. We tested mRNA and protein expression levels of rat SIRT1-7, and the levels of associated proteins in the brain using RT-PCR and western blotting. Our data shows that SIRT1 expression increases with age, concurrently with increased acetylated p53 levels in all brain regions investigated. SIRT2 and FOXO3a protein levels increased only in the occipital lobe. SIRT3-5 expression declined significantly in the hippocampus and frontal lobe, associated with increases in superoxide and fatty acid oxidation levels, and acetylated CPS-1 protein expression, and a reduction in MnSOD level. While SIRT6 expression declines significantly with age acetylated H3K9 protein expression is increased throughout the brain. SIRT7 and Pol I protein expression increased in the frontal lobe. This study identifies previously unknown roles for sirtuins in regulating cellular homeostasis and healthy ageing.

  11. Gene cloning and mRNA expression of glutamate dehydrogenase in the liver, brain and intestine of the swamp eel, Monopterus albus, exposed to freshwater, terrestrial conditions, environmental ammonia or salinity stress

    OpenAIRE

    C Y Toh; S F Chew; Ip, Alex Y.K.

    2011-01-01

    The swamp eel, Monopterus albus, is an obligatory air-breathing teleost which can survive long period of emersion, has high environmental and tissue ammonia tolerance, and acclimate from fresh to brackish water. This study was undertaken to clone and sequence gdh expressed in the liver, intestine and brain of M. albus, to verify whether more than one form of gdh were expressed, and to examine the gdh mRNA expressions in these three organs in fish exposed to various adverse conditions using qu...

  12. Altered choroid plexus gene expression in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Cortney Ann Turner

    2014-04-01

    Full Text Available Given the emergent interest in biomarkers for mood disorders, we assessed gene expression in the choroid plexus, the region that produces cerebrospinal fluid (CSF, in individuals with major depressive disorder (MDD. Genes that are expressed in the choroid plexus (CP can be secreted into the CSF and may be potential biomarker candidates. Given that we have previously shown that fibroblast growth factor family members are differentially expressed in post-mortem brain of subjects with MDD and the CP is a known source of growth factors in the brain, we posed the question whether growth factor dysregulation would be found in the CP of subjects with MDD. We performed laser capture microscopy of the choroid plexus at the level of the hippocampus in subjects with MDD and psychiatrically normal controls. We then extracted, amplified, labeled and hybridized the cRNA to Illumina BeadChips to assess gene expression. In controls, the most highly abundant known transcript was transthyretin. Moreover, half of the 14 most highly expressed transcripts in controls encode ribosomal proteins. Using BeadStudio software, we identified 169 transcripts differentially expressed (p< 0.05 between control and MDD samples. Using pathway analysis we noted that the top network altered in subjects with MDD included multiple members of the transforming growth factor-beta (TGFβ pathway. Quantitative real-time PCR (qRT-PCR confirmed downregulation of several transcripts that interact with the extracellular matrix in subjects with MDD. These results suggest that there may be an altered cytoskeleton in the choroid plexus in MDD subjects that may lead to a disrupted blood-CSF-brain barrier.

  13. Molecular characterization and expression of maternally expressed gene 3 (Meg3/Gtl2) RNA in the mouse inner ear

    DEFF Research Database (Denmark)

    Manji, S.S.; Sørensen, Brita Singers; Klockars, T.;

    2006-01-01

    The pathways responsible for sound perception in the cochlea involve the coordinated and regulated expression of hundreds of genes. By using microarray analysis, we identified several transcripts enriched in the inner ear, including the maternally expressed gene 3 (Meg3/Gtl2), an imprinted...... noncoding RNA. Real-time PCR analysis demonstrated that Meg3/Gtl2 was highly expressed in the cochlea, brain, and eye. Molecular studies revealed the presence of several Meg3/Gtl2 RNA splice variants in the mouse cochlea, brain, and eye. In situ hybridizations showed intense Meg3/Gtl2 RNA staining...... in the nuclei of type I spiral ganglion cells and in cerebellum near the dorsal vestibular region of the cochlea. In embryonic mouse head sections, Meg3/Gtl2 RNA expression was observed in the otocyst, brain, eye, cartilage, connective tissue, and muscle. Meg3/Gtl2 RNA expression increased in the developing...

  14. Reference genes for normalization: A study of rat brain tissue

    DEFF Research Database (Denmark)

    Bonefeld, Birgit; Elfving, Betina; Wegener, Gregers

    2008-01-01

    Quantitative real-time polymerase chain reaction (qPCR) has become a widely used tool in the search for disease genes. When examining gene expression with qPCR in psychiatric diseases, endogenous reference gene(s) must be used for normalization. Traditionally, genes such as beta-actin (ActB), Gap...

  15. Leaky Scanning and Reinitiation Regulate BACE1 Gene Expression

    OpenAIRE

    Zhou, Weihui; Song, Weihong

    2006-01-01

    β-Site β-amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is the β-secretase in vivo for processing APP to generate amyloid β protein (Aβ). Aβ deposition in the brain is the hallmark of Alzheimer's disease (AD) neuropathology. Inhibition of BACE1 activity has major pharmaceutical potential for AD treatment. The expression of the BACE1 gene is relatively low in vivo. The control of BACE1 expression has not been well defined. There are six upstream AUGs (uAUGs) in the 5′ leader sequenc...

  16. Gene expression profile of sprinter's muscle.

    Science.gov (United States)

    Yoshioka, M; Tanaka, H; Shono, N; Shindo, M; St-Amand, J

    2007-12-01

    We have characterized the global gene expression profile in left vastus lateralis muscles of sprinters and sedentary men. The gene expression profile was analyzed by using serial analysis of gene expression (SAGE) method. The abundantly expressed transcripts in the sprinter's muscle were mainly involved in contraction and energy metabolism, whereas six transcripts were corresponding to potentially novel transcripts. Thirty-eight transcripts were differentially expressed between the sprinter and sedentary individuals. Moreover, sprinters showed higher expressions of both uncharacterized and potentially novel transcripts. Sprinters also highly expressed seven transcripts, such as glycine-rich protein, myosin heavy polypeptide (MYH) 2, expressed sequence tag similar to (EST) fructose-bisphosphate aldolase 1 isoform A (ALDOA), glyceraldehyde-3-phosphate dehydrogenase and ATP synthase F0 subunit 6. On the other hand, 20 transcripts such as MYH1, tropomyosin 2 and 3, troponin C slow, C2 fast, I slow, T1 slow and T3 fast, myoglobin, creatine kinase, ALDOA, glycogen phosphorylase, cytochrome c oxidase II and III, and NADH dehydrogenase 1 and 2 showed lower expression levels in the sprinters than the sedentary controls. The current study has characterized the global gene expressions in sprinters and identified a number of transcripts that can be subjected to further mechanistic analysis.

  17. Database of queryable gene expression patterns for Xenopus.

    Science.gov (United States)

    Gilchrist, Michael J; Christensen, Mikkel B; Bronchain, Odile; Brunet, Frédéric; Chesneau, Albert; Fenger, Ursula; Geach, Timothy J; Ironfield, Holly V; Kaya, Ferdinand; Kricha, Sadia; Lea, Robert; Massé, Karine; Néant, Isabelle; Paillard, Elodie; Parain, Karine; Perron, Muriel; Sinzelle, Ludivine; Souopgui, Jacob; Thuret, Raphaël; Ymlahi-Ouazzani, Qods; Pollet, Nicolas

    2009-06-01

    The precise localization of gene expression within the developing embryo, and how it changes over time, is one of the most important sources of information for elucidating gene function. As a searchable resource, this information has up until now been largely inaccessible to the Xenopus community. Here, we present a new database of Xenopus gene expression patterns, queryable by specific location or region in the embryo. Pattern matching can be driven either from an existing in situ image, or from a user-defined pattern based on development stage schematic diagrams. The data are derived from the work of a group of 21 Xenopus researchers over a period of 4 days. We used a novel, rapid manual annotation tool, XenMARK, which exploits the ability of the human brain to make the necessary distortions in transferring data from the in situ images to the standard schematic geometry. Developmental Dynamics 238:1379-1388, 2009. (c) 2009 Wiley-Liss, Inc.

  18. Differentially Expressed Genes for Aggressive Pecking Behaviour in Laying Hens

    DEFF Research Database (Denmark)

    Buitenhuis, Bart; Hedegaard, Jakob; Janss, Luc

    2009-01-01

    Background Aggressive behaviour is an important aspect in the daily lives of animals living in groups. Aggressive animals have advantages, such as better access to food or territories, and they produce more offspring than low ranking animals. The social hierarchy in chickens is measured using the...... expressed genes may elucidate how the pecking order forms in laying hens at a molecular level....... the 'pecking order' concept, which counts the number of aggressive pecks given and received. To date, little is known about the underlying genetics of the 'pecking order'. Results A total of 60 hens from a high feather pecking selection line were divided into three groups: only receivers (R), only peckers (P...... binding (GO:0035254). Conclusion In conclusion, our study provides new insights into which genes are involved in aggressive behaviours in chickens. Pecking and receiving hens exhibited different gene expression profiles in their brains. Following confirmation, the identification of differentially...

  19. Gene-expression signatures of Atlantic salmon's plastic life cycle

    Science.gov (United States)

    Aubin-Horth, N.; Letcher, B.H.; Hofmann, H.A.

    2009-01-01

    How genomic expression differs as a function of life history variation is largely unknown. Atlantic salmon exhibits extreme alternative life histories. We defined the gene-expression signatures of wild-caught salmon at two different life stages by comparing the brain expression profiles of mature sneaker males and immature males, and early migrants and late migrants. In addition to life-stage-specific signatures, we discovered a surprisingly large gene set that was differentially regulated-at similar magnitudes, yet in opposite direction-in both life history transitions. We suggest that this co-variation is not a consequence of many independent cellular and molecular switches in the same direction but rather represents the molecular equivalent of a physiological shift orchestrated by one or very few master regulators. ?? 2009 Elsevier Inc. All rights reserved.

  20. A reliable and flexible gene manipulation strategy in posthatch zebra finch brain

    Science.gov (United States)

    Ahmadiantehrani, Somayeh; London, Sarah E.

    2017-01-01

    Songbird models meaningfully contribute to many fields including learned vocal communication, the neurobiology of social interactions, brain development, and ecology. The value of investigating gene-brain-behavior relationships in songbirds is therefore high. Viral infections typically used in other lab animals to deliver gene editing constructs have been less effective in songbirds, likely due to immune system properties. We therefore leveraged the in vivo electroporation strategy used in utero in rodents and in ovo in poultry, and apply it to posthatch zebra finch songbird chicks. We present a series of experiments with a combination of promoters, fluorescent protein genes, and piggyBac transposase vectors to demonstrate that this can be a reliable, efficient, and flexible strategy for genome manipulation. We discuss options for gene delivery experiments to test circuit and behavioral hypotheses using a variety of manipulations, including gene overexpression, CRISPR/Cas9 gene editing, inducible technologies, optogenetic or DREADD cellular control, and cell type-specific expression. PMID:28233828

  1. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  2. Expression of polarity genes in human cancer.

    Science.gov (United States)

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical-basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.

  3. Increased cortical expression of two synaptogenic thrombospondins in human brain evolution.

    Science.gov (United States)

    Cáceres, Mario; Suwyn, Carolyn; Maddox, Marcelia; Thomas, James W; Preuss, Todd M

    2007-10-01

    Thrombospondins are extracellular-matrix glycoproteins implicated in the control of synaptogenesis and neurite growth. Previous microarray studies suggested that one gene of this family, thrombospondin 4 (THBS4), was upregulated during human brain evolution. Using independent techniques to examine thrombospondin expression patterns in adult brain samples, we report approximately 6-fold and approximately 2-fold greater expression of THBS4 and THBS2 messenger RNA (mRNA), respectively, in human cerebral cortex compared with chimpanzees and macaques, with corresponding differences in protein levels. In humans and chimpanzees, thrombospondin expression differences were observed in the forebrain (cortex and caudate), whereas the cerebellum and most nonbrain tissues exhibited similar levels of the 2 mRNAs. Histological examination revealed THBS4 mRNA and protein expression in numerous pyramidal and glial cells in the 3 species but humans also exhibited very prominent immunostaining of the synapse-rich cortical neuropil. In humans, additionally, THBS4 antibodies labeled beta-amyloid containing plaques in Alzheimer's cases and some control cases. This is the first detailed characterization of gene-expression changes in human evolution that involve specific brain regions, including portions of cerebral cortex. Increased expression of thrombospondins in human brain evolution could result in changes in synaptic organization and plasticity, and contribute to the distinctive cognitive abilities of humans, as well as to our unique vulnerability to neurodegenerative disease.

  4. Brain expressed microRNAs implicated in schizophrenia etiology

    DEFF Research Database (Denmark)

    Hansen, Thomas; Olsen, Line; Lindow, Morten;

    2007-01-01

    Protein encoding genes have long been the major targets for research in schizophrenia genetics. However, with the identification of regulatory microRNAs (miRNAs) as important in brain development and function, miRNAs genes have emerged as candidates for schizophrenia-associated genetic factors...

  5. Astrocyte-targeted expression of IL-6 protects the CNS against a focal brain injury

    DEFF Research Database (Denmark)

    Penkowa, Milena; Giralt, Mercedes; Lago, Natalia

    2003-01-01

    The effect of CNS-targeted IL-6 gene expression has been thoroughly investigated in the otherwise nonperturbed brain but not following brain injury. Here we examined the impact of astrocyte-targeted IL-6 production in a traumatic brain injury (cryolesion) model using GFAP-IL6 transgenic mice...... significantly increased up to but not including 20 dpl in the GFAP-IL6 mice. Oxidative stress as well as apoptotic cell death was significantly decreased throughout the time period studied in the GFAP-IL6 mice compared to controls. This could be linked to the altered inflammatory response as well...... as to the transgenic IL-6-induced increase of the antioxidant, neuroprotective proteins metallothionein-I + II. These results indicate that although in the brain the chronic astrocyte-targeted expression of IL-6 spontaneously induces an inflammatory response causing significant damage, during an acute...

  6. Increasing vitamin A in post-weaning diets reduces food intake and body weight and modifies gene expression in brains of male rats born to dams fed a high multivitamin diet.

    Science.gov (United States)

    Sánchez-Hernández, Diana; Cho, Clara E; Kubant, Ruslan; Reza-López, Sandra A; Poon, Abraham N; Wang, Jingzhou; Huot, Pedro S P; Smith, Christopher E; Anderson, G Harvey

    2014-10-01

    High multivitamin gestational diets (HV, 10-fold AIN-93G levels) increase body weight (BW) and food intake (FI) in rat offspring weaned to a recommended multivitamin (RV), but not to a HV diet. We hypothesized that high vitamin A (HA) alone, similar to HV, in post-weaning diets would prevent these effects of the HV maternal diet consistent with gene expression in FI and reward pathways. Male offspring from dams fed HV diets were weaned to a high vitamin A (HA, 10-fold AIN-93G levels), HV or RV diet for 29 weeks. BW, FI, expression of genes involved in regulation of FI and reward and global and gene-specific DNA methylation of pro-opiomelanocortin (POMC) in the hypothalamus were measured. Both HV and HA diets slowed post-weaning weight gain and modified gene expression in offspring compared to offspring fed an RV post-weaning diet. Hypothalamic POMC expression in HA offspring was not different from either HV or RV, and dopamine receptor 1 was 30% (Pdiets reduces post-weaning weight gain and FI and modifies gene expression in FI and reward pathways.

  7. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    Science.gov (United States)

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  8. Metal ion toxins and brain aquaporin-4 expression: an overview

    Directory of Open Access Journals (Sweden)

    Adriana eXimenes-Da-Silva

    2016-06-01

    Full Text Available Metal ions such as iron, zinc, and manganese are essential to metabolic functions, protein synthesis, neurotransmission, and antioxidant neuroprotective mechanisms. Conversely, non-essential metals such as mercury and lead are sources of human intoxication due to occupational activities or environmental contamination. Essential or non-essential metal accumulation in the central nervous system (CNS results in changes in blood-brain barrier (BBB permeability, as well as triggering microglia activation and astrocyte reactivity and changing water transport through the cells, which could result in brain swelling. Aquaporin-4 is the main water channel in the CNS, is expressed in astrocyte foot processes in brain capillaries and along the circumventricular epithelium in the ventricles, and has important physiological functions in maintaining brain osmotic homeostasis and supporting brain excitability through regulation of the extracellular space. Some evidence has pointed to a role of AQP4 during metal intoxication in the brain, where it may act in a dual form as a neuroprotector or a mediator of the development of oxidative stress in neurons and astrocytes, resulting in brain swelling and neuronal damage. This mini-review presents the way some metal ions affect changes in AQP4 expression in the CNS and discuss the ways in which water transport in brain cells can be involved in brain damage.

  9. GENE EXPRESSION PROFILING OF GANGLIOGLIOMA MALIGNANT PROGRESSION BY cDNA ARRAY

    Institute of Scientific and Technical Information of China (English)

    ZHANG Quan-bin; HUANG Qiang; DONG Jun; WANG Ai-dong; SUN Ji-yong; LAN Qing; HU Geng-xi

    2005-01-01

    Objective: To establish gene expression profiles associated with malignant progression of ganglioglioma. Methods: The primary and two recurrent glioma specimens were collected intraoperatively from the same patient who experienced tumor transformation into anaplastic astrocytoma and glioblastoma multiform for the first and second recurrence respectively. Gene expression was assayed through cDNA array and bioinformatics analysis. Results: A total of 197 differentially expressed genes with differential ratio value more than 3 compared with normal brain tissue were obtained. Among 109 functionally denned genes, those associated with development ranked the first by frequency, followed by genes associated with metabolism, differentiation, signal transduction and so on. As a result of cluster analysis among 368 genes, eleven genes were up regulated with malignant progression, while six genes were down regulated. Conclusion: Gene expression profiles associated with malignant progression of glioma were successfully established, which provides a powerful tool for research on molecular mechanisms of malignant progression of gliomas.

  10. Differential spatial expression and subcellular localization of CtBP family members in rodent brain.

    Directory of Open Access Journals (Sweden)

    Diana Hübler

    Full Text Available C-terminal binding proteins (CtBPs are well-characterized nuclear transcriptional co-regulators. In addition, cytoplasmic functions were discovered for these ubiquitously expressed proteins. These include the involvement of the isoform CtBP1-S/BARS50 in cellular membrane-trafficking processes and a role of the isoform RIBEYE as molecular scaffolds in ribbons, the presynaptic specializations of sensory synapses. CtBPs were suggested to regulate neuronal differentiation and they were implied in the control of gene expression during epileptogenesis. However, the expression patterns of CtBP family members in specific brain areas and their subcellular localizations in neurons in situ are largely unknown. Here, we performed comprehensive assessment of the expression of CtBP1 and CtBP2 in mouse brain at the microscopic and the ultra-structural levels using specific antibodies. We quantified and compared expression levels of both CtBPs in biochemically isolated brain fractions containing cellular nuclei or synaptic compartment. Our study demonstrates differential regional and subcellular expression patterns for the two CtBP family members in brain and reveals a previously unknown synaptic localization for CtBP2 in particular brain regions. Finally, we propose a mechanism of differential synapto-nuclear targeting of its splice variants CtBP2-S and CtBP2-L in neurons.

  11. Differential spatial expression and subcellular localization of CtBP family members in rodent brain.

    Science.gov (United States)

    Hübler, Diana; Rankovic, Marija; Richter, Karin; Lazarevic, Vesna; Altrock, Wilko D; Fischer, Klaus-Dieter; Gundelfinger, Eckart D; Fejtova, Anna

    2012-01-01

    C-terminal binding proteins (CtBPs) are well-characterized nuclear transcriptional co-regulators. In addition, cytoplasmic functions were discovered for these ubiquitously expressed proteins. These include the involvement of the isoform CtBP1-S/BARS50 in cellular membrane-trafficking processes and a role of the isoform RIBEYE as molecular scaffolds in ribbons, the presynaptic specializations of sensory synapses. CtBPs were suggested to regulate neuronal differentiation and they were implied in the control of gene expression during epileptogenesis. However, the expression patterns of CtBP family members in specific brain areas and their subcellular localizations in neurons in situ are largely unknown. Here, we performed comprehensive assessment of the expression of CtBP1 and CtBP2 in mouse brain at the microscopic and the ultra-structural levels using specific antibodies. We quantified and compared expression levels of both CtBPs in biochemically isolated brain fractions containing cellular nuclei or synaptic compartment. Our study demonstrates differential regional and subcellular expression patterns for the two CtBP family members in brain and reveals a previously unknown synaptic localization for CtBP2 in particular brain regions. Finally, we propose a mechanism of differential synapto-nuclear targeting of its splice variants CtBP2-S and CtBP2-L in neurons.

  12. Gene expression profiling in autoimmune diseases

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo;

    2007-01-01

    A central issue in autoimmune disease is whether the underlying inflammation is a repeated stereotypical process or whether disease specific gene expression is involved. To shed light on this, we analysed whether genes previously found to be differentially regulated in rheumatoid arthritis (RA...

  13. Gene Expression Profiles of Inflammatory Myopathies

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-11-01

    Full Text Available The simultaneous expression of 10,000 genes was measured, using Affymetrix GeneChip microarrays, in muscle specimens from 45 patients with various myopathies (dystrophy, congenital myopathy, and inflammatory myopathy examined at Brigham and Women’s Hospital, and Children’s Hospital, Harvard Medical School, Boston, MA.

  14. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.

    2013-07-18

    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  15. Perspectives: Gene Expression in Fisheries Management

    Science.gov (United States)

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  16. Differential Regulation of α7 Nicotinic Receptor Gene (CHRNA7) Expression in Schizophrenic Smokers

    OpenAIRE

    Mexal, Sharon; Berger, Ralph; Logel, Judy; Ross, Randal G.; Freedman, Robert; Leonard, Sherry

    2009-01-01

    The α7 neuronal nicotinic receptor gene (CHRNA7) has been implicated in the pathophysiology of schizophrenia by genetic and pharmacological studies. Expression of the α7* receptor, as measured by [125I]α-bungarotoxin autoradiography, is decreased in postmortem brain of schizophrenic subjects compared to non-mentally ill controls. Most schizophrenic patients are heavy smokers, with high levels of serum cotinine. Smoking changes the expression of multiple genes and differentially regulates gene...

  17. Neuroglobin expression in rats after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Xin Lin; Min Li; Aijia Shang; Yazhuo Hu; Xiao Yang; Ling Ye; Suyan Bian; Zhongfeng Wang; Dingbiao Zhou

    2012-01-01

    In this study, we used a rat model of severe closed traumatic brain injury to explore the relationship between neuroglobin, brain injury and neuronal apoptosis. Real-time PCR showed that neuroglobin mRNA expression rapidly increased in the rat cerebral cortex, and peaked at 30 minutes and 48 hours following traumatic brain injury. Immunohistochemical staining demonstrated that neuroglobin expression increased and remained high 2 hours to 5 days following injury. The rate of increase in the apoptosis-related Bax/Bcl-2 ratio greatly decreased between 30 minutes and 1 hour as well as between 48 and 72 hours post injury. Expression of neuroglobin and the anti-apoptotic factor Bcl-2 greatly increased, while that of the proapoptotic factor decreased, in the cerebral cortex post severe closed traumatic brain injury. It suggests that neuroglobin might protect neurons from apoptosis after traumatic injury by regulating Bax/Bcl-2 pathway.

  18. LIS1 Lissencephaly gene CNS expression: Relation to neuronal migration

    Energy Technology Data Exchange (ETDEWEB)

    Reiner, O. [Weizmann Institute of Science, Rehovot (Israel)]|[Baylor College of Medicine, Houston, TX (United States); Gal-Gerber, O.; Sapir, T. [Weizmann Institute of Science, Rehovot (Israel)] [and others

    1994-09-01

    Lis1 is the murine gene corresponding to human LIS1 gene involved in Miller-Dieker lissencephaly located on chromosome 17p13.3 as demonstrated by cDNA cloning, sequence analysis and genetic mapping. Lis1 expression was studied in developing mouse brain using in situ hybridization. At embryonic day 15, Lis1 expression was most prominently localized in the neuronal layer of the retina, the developing hippocampus, doral root ganglia, cranial ganglia and the thalamus. At postnatal day 5 a unique pattern of expression was detected in the developing cerebellum. Lis1 was expressed at high levels in the Purkinje cell layer when the granule cells were migrating through the Purkinje cell layer inwards. The expression of Lis1 in Purkinje cells in the adult is markedly reduced. Similarly, Lis1 was expressed in the ontogenetically older layers of the neocortex (layers 5 and 6) where younger neurons have to migrate through to settle in the superficial layers. Thus, at both sites a link between expression and neuronal migration was demonstrated. These studies on the expression pattern of Lis1 could be useful in understanding abnormalities in Miller-Dieker lissencephaly syndrome (MDS) patients.

  19. Expression profiling of solute carrier gene families at the blood-CSF barrier

    Directory of Open Access Journals (Sweden)

    Horace T.B. Ho

    2012-08-01

    Full Text Available The choroid plexus (CP is a highly vascularized tissue in the brain ventricles and acts as the blood-cerebrospinal fluid barrier (BCSFB. A main function of the CP is to secrete cerebrospinal fluid (CSF, which is accomplished by active transport of small ions and water from the blood side to the CSF side. The CP also supplies the brain with certain nutrients, hormones and metal ions, while removing metabolites and xenobiotics from the CSF. Numerous membrane transporters are expressed in the CP in order to facilitate the solute exchange between the blood and the CSF. The solute carrier (SLC superfamily represents a major class of transporters in the CP that constitutes the molecular mechanisms for CP function. Recently, we systematically and quantitatively examined Slc gene expression in 20 anatomically comprehensive brain areas in the adult mouse brain using high-quality in situ hybridization data generated by the Allen Brain Atlas. Here we focus our analysis on Slc gene expression at the BCSFB using previously obtained data. Of the 252 Slc genes present in the mouse brain, 202 Slc genes were found at detectable levels in the CP. Unsupervised hierarchical cluster analysis showed that the CP Slc gene expression pattern is substantially different from the other 19 analyzed brain regions. The majority of the Slc genes in the CP are expressed at low to moderate levels, whereas 28 Slc genes are present in the CP at the highest levels. These highly expressed Slc genes encode transporters involved in CSF secretion, energy production, and transport of nutrients, hormones, neurotransmitters, sulfate, and metal ions. In this review, the functional characteristics and potential importance of these Slc transporters in the CP are discussed, with particular emphasis on their localization and physiological functions at the BCSFB.

  20. The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders

    Science.gov (United States)

    Cattaneo, A; Cattane, N; Begni, V; Pariante, C M; Riva, M A

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. The human BDNF gene consists of 11 exons, and distinct BDNF transcripts are produced through the use of alternative promoters and splicing events. The majority of the BDNF transcripts can be detected not only in the brain but also in the blood cells, although no study has yet investigated the differential expression of BDNF transcripts at the peripheral level. This review provides a description of the human BDNF gene structure as well as a summary of clinical and preclinical evidence supporting the role of BDNF in the pathogenesis of psychiatric disorders. We will discuss several mechanisms as possibly underlying BDNF modulation, including epigenetic mechanisms. We will also discuss the potential use of peripheral BDNF as a biomarker for psychiatric disorders, focusing on the factors that can influence BDNF gene expression and protein levels. Within this context, we have also characterized, for we believe the first time, the expression of BDNF transcripts in the blood, with the aim to provide novel insights into the molecular mechanisms and signaling that may regulate peripheral BDNF gene expression levels. PMID:27874848

  1. Insulin gene: organisation, expression and regulation.

    Science.gov (United States)

    Dumonteil, E; Philippe, J

    1996-06-01

    Insulin, a major hormone of the endocrine pancreas, plays a key role in the control of glucose homeostasis. This review discusses the mechanisms of cell-specific expression and regulation of the insulin gene. Whereas expression is restricted to islet beta-cells in adults, the insulin gene is more widely expressed at several embryonic stages, although the role of extrapancreatic expression is still unclear. beta-cell-specific expression relies on the interactions of 5'-flanking sequence motifs of the promoter with a number of ubiquitous and islet-specific transcription factors. IEF1 and IPF-1, by their binding to the E and A boxes, respectively, of the insulin gene promoter, appear to be the major determinants of beta-cell-specific expression. IEF1 is a heterodimer of the basic helix-loop-helix family of transcription factors, whereas IPF-1 belongs to the homeodomain-containing family. beta-cell specific determinants are conserved throughout evolution, although the human insulin gene 5'-flanking sequence also contains a polymorphic minisatellite which is unique to primates and may play a role in insulin gene regulation. Glucose modulates insulin gene transcription, with multiple elements of the promoter involved in glucose responsiveness. Remarkably, IPF-1 and IEF1 are involved in both beta-cell-specific expression and glucose regulation of the insulin gene. cAMP also regulates insulin gene transcription through a CRE, in response to various hormonal stimuli. On the whole, recent studies have provided a better understanding of beta-cell differentiation and function.

  2. Gene expression studies using microarrays

    NARCIS (Netherlands)

    Burgess, Janette

    2001-01-01

    1. The rapid progression of the collaborative sequencing programmes that are unravelling the complete genome sequences of many organisms are opening pathways for new approaches to gene analysis. As the sequence data become available, the bottleneck in biological research will shift to understanding

  3. Gene expression reveals overlap between normal aging and Alzheimer's disease genes.

    Science.gov (United States)

    Avramopoulos, Dimitrios; Szymanski, Megan; Wang, Ruihua; Bassett, Susan

    2011-12-01

    Alzheimer's disease (AD) is a common cause of dementia with a strong genetic component and risk sharply increasing with age. We performed two parallel microarray experiments to independently identify genes involved in normal aging and genes involved in AD using RNA extracted from the temporal lobe of 22 late onset AD and 23 control brain donors. We found that AD is accompanied by significant changes in the expression of many genes with upregulation of genes involved in inflammation and in transcription regulation and downregulation of genes involved in neuronal functions. The changes with healthy aging involved multiple genes but were not as strong. Replicating and strengthening previous reports, we find a highly significant overlap between genes changing expression with age and those changing in AD, and we observe that those changes are most often in the same direction. This result supports an overlap between the biological processes of normal aging and susceptibility to AD and suggests that age related genes expression changes might increase the risk of developing AD.

  4. Selection of Candidate Housekeeping Genes for Normalization in Human Postmortem Brain Samples

    Directory of Open Access Journals (Sweden)

    Aldo Pagano

    2011-08-01

    Full Text Available The most frequently used technique to study the expression profile of genes involved in common neurological disorders is quantitative real-time RT-PCR, which allows the indirect detection of very low amounts of selected mRNAs in tissue samples. Expression analysis by RT-qPCR requires an appropriate normalization to the expression level of genes characterized by a stable, constitutive transcription. However, the identification of a gene transcribed at a very stable level is difficult if not impossible, since significant fluctuations of the level of mRNA synthesis often accompanies changes of cell behavior. The aim of this study is to identify the most stable genes in postmortem human brain samples of patients affected by Alzheimer’s disease (AD suitable as reference genes. The experiments analyzed 12 commonly used reference genes in brain samples from eight individuals with AD and seven controls. After a careful analysis of the results calculated by geNorm and NormFinder algorithms, we found that CYC1 and EIF4A2 are the best reference genes. We remark on the importance of the determination of the best reference genes for each sample to be analyzed and suggest a practical combination of reference genes to be used in the analysis of human postmortem samples.

  5. The labial gene is required to terminate proliferation of identified neuroblasts in postembryonic development of the Drosophila brain

    Directory of Open Access Journals (Sweden)

    Philipp A. Kuert

    2012-08-01

    The developing brain of Drosophila has become a useful model for studying the molecular genetic mechanisms that give rise to the complex neuronal arrays that characterize higher brains in other animals including mammals. Brain development in Drosophila begins during embryogenesis and continues during a subsequent postembryonic phase. During embryogenesis, the Hox gene labial is expressed in the developing tritocerebrum, and labial loss-of-function has been shown to be associated with a loss of regional neuronal identity and severe patterning defects in this part of the brain. However, nothing is known about the expression and function of labial, or any other Hox gene, during the postembryonic phase of brain development, when the majority of the neurons in the adult brain are generated. Here we report the first analysis of Hox gene action during postembryonic brain development in Drosophila. We show that labial is expressed initially in six larval brain neuroblasts, of which only four give rise to the labial expressing neuroblast lineages present in the late larval brain. Although MARCM-based clonal mutation of labial in these four neuroblast lineages does not result in an obvious phenotype, a striking and unexpected effect of clonal labial loss-of-function does occur during postembryonic brain development, namely the formation of two ectopic neuroblast lineages that are not present in wildtype brains. The same two ectopic neuroblast lineages are also observed following cell death blockage and, significantly, in this case the resulting ectopic lineages are Labial-positive. These findings imply that labial is required in two specific neuroblast lineages of the wildtype brain for the appropriate termination of proliferation through programmed cell death. Our analysis of labial function reveals a novel cell autonomous role of this Hox gene in shaping the lineage architecture of the brain during postembryonic development.

  6. Application of multidisciplinary analysis to gene expression.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuefel (University of New Mexico, Albuquerque, NM); Kang, Huining (University of New Mexico, Albuquerque, NM); Fields, Chris (New Mexico State University, Las Cruces, NM); Cowie, Jim R. (New Mexico State University, Las Cruces, NM); Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy (New Mexico State University, Las Cruces, NM); Mosquera-Caro, Monica P. (University of New Mexico, Albuquerque, NM); Xu, Yuexian (University of New Mexico, Albuquerque, NM); Martin, Shawn Bryan; Helman, Paul (University of New Mexico, Albuquerque, NM); Andries, Erik (University of New Mexico, Albuquerque, NM); Ar, Kerem (University of New Mexico, Albuquerque, NM); Potter, Jeffrey (University of New Mexico, Albuquerque, NM); Willman, Cheryl L. (University of New Mexico, Albuquerque, NM); Murphy, Maurice H. (University of New Mexico, Albuquerque, NM)

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  7. Effect of brain-derived neurotrophic factor and green fluorescent protein gene-transfected neural stem cells transplantation on brain-derived neurotrophic factor expression in rats with spinal cord injury%BDNF-GFP转染