WorldWideScience

Sample records for brain function progress

  1. An abnormal resting-state functional brain network indicates progression towards Alzheimer’s disease*****

    Institute of Scientific and Technical Information of China (English)

    Jie Xiang; Hao Guo; Rui Cao; Hong Liang; Junjie Chen

    2013-01-01

    Brain structure and cognitive function change in the temporal lobe, hippocampus, and prefrontal cortex of patients with mild cognitive impairment and Alzheimer’s disease, and brain network-connection strength, network efficiency, and nodal attributes are abnormal. However, existing research has only analyzed the differences between these patients and normal controls. In this study, we constructed brain networks using resting-state functional MRI data that was extracted from four populations mal controls, patients with early mild cognitive impairment, patients with late mild cognitive impairment, and patients with Alzheimer’s disease) using the Alzheimer’s Disease Neuroimaging Initiative data set. The aim was to analyze the characteristics of resting-state functional neural networks, and to observe mild cognitive impairment at different stages before the transformation to Alzheimer’s disease. Results showed that as cognitive deficits increased across the four groups, the shortest path in the rest-ing-state functional network gradual y increased, while clustering coefficients gradual y decreased. This evidence indicates that dementia is associated with a decline of brain network efficiency. In tion, the changes in functional networks revealed the progressive deterioration of network function across brain regions from healthy elderly adults to those with mild cognitive impairment and Alzhei-mer’s disease. The alterations of node attributes in brain regions may reflect the cognitive functions in brain regions, and we speculate that early impairments in memory, hearing, and language function can eventual y lead to diffuse brain injury and other cognitive impairments.

  2. Functional Magnetic Resonance Imaging for Imaging Neural Activity in the Human Brain: The Annual Progress

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available Functional magnetic resonance imaging (fMRI is recently developed and applied to measure the hemodynamic response related to neural activity. The fMRI can not only noninvasively record brain signals without risks of ionising radiation inherent in other scanning methods, such as CT or PET scans, but also record signal from all regions of the brain, unlike EEG/MEG which are biased towards the cortical surface. This paper introduces the fundamental principles and summarizes the research progress of the last year for imaging neural activity in the human brain. Aims of functional analysis of neural activity from fMRI include biological findings, functional connectivity, vision and hearing research, emotional research, neurosurgical planning, pain management, and many others. Besides formulations and basic processing methods, models and strategies of processing technology are introduced, including general linear model, nonlinear model, generative model, spatial pattern analysis, statistical analysis, correlation analysis, and multimodal combination. This paper provides readers the most recent representative contributions in the area.

  3. From the Left to the Right: How the Brain Compensates Progressive Loss of Language Function

    Science.gov (United States)

    Thiel, Alexander; Habedank, Birgit; Herholz, Karl; Kessler, Josef; Winhuisen, Lutz; Haupt, Walter F.; Heiss, Wolf-Dieter

    2006-01-01

    In normal right-handed subjects language production usually is a function of the left brain hemisphere. Patients with aphasia following brain damage to the left hemisphere have a considerable potential to compensate for the loss of this function. Sometimes, but not always, areas of the right hemisphere which are homologous to language areas of the…

  4. [Progress of clinical application of functional MRI in the localization of brain language area].

    Science.gov (United States)

    Zhang, Nan; Lu, Junfeng; Wu, Jinsong

    2016-02-01

    For surgical operation in the functional area in the brain, it's commonly demanded to resect the lesion to the maximal extent on the basis of preserve the normal neural function, thus the precise localization of functional area is extremely important. As for the advantages of being widely available, easy to grasp and non-invasive, the functional MRI (fMRI) has come into wide use, while the application of language fMRI is still in the initial stage. It's important to choose appropriate fMRI task according to the individual condition of the subject, the commonly-adopted tasks include verb generation, picture naming, word recognition, word generation, etc. However, the effectiveness of using fMRI to localize language area is not totally satisfactory, adopting multiple task is an effective approach to improve the sensitivity of this technique. The application of resting state fMRI in the localization of language area and the further research of the role of fMRI in localizing the Chinese language area are the important future directions.

  5. Depletion of brain functional connectivity enhancement leads to disability progression in multiple sclerosis: A longitudinal resting-state fMRI study.

    Science.gov (United States)

    Faivre, Anthony; Robinet, Emmanuelle; Guye, Maxime; Rousseau, Celia; Maarouf, Adil; Le Troter, Arnaud; Zaaraoui, Wafaa; Rico, Audrey; Crespy, Lydie; Soulier, Elisabeth; Confort-Gouny, Sylviane; Pelletier, Jean; Achard, Sophie; Ranjeva, Jean-Philippe; Audoin, Bertrand

    2016-11-01

    The compensatory effect of brain functional connectivity enhancement in relapsing-remitting multiple sclerosis (RRMS) remains controversial. To characterize the relationships between brain functional connectivity changes and disability progression in RRMS. Long-range connectivity, short-range connectivity, and density of connections were assessed using graph theoretical analysis of resting-state functional magnetic resonance imaging (fMRI) data acquired in 38 RRMS patients (disease duration: 120 ± 32 months) and 24 controls. All subjects were explored at baseline and all patients and six controls 2 years later. At baseline, levels of long-range and short-range brain functional connectivity were higher in patients compared to controls. During the follow-up, decrease in connections' density was inversely correlated with disability progression. Post-hoc analysis evidenced differential evolution of brain functional connectivity metrics in patients according to their level of disability at baseline: while patients with lowest disability at baseline experienced an increase in all connectivity metrics during the follow-up, patients with higher disability at baseline showed a decrease in the connectivity metrics. In these patients, decrease in the connectivity metrics was associated with disability progression. The study provides two main findings: (1) brain functional connectivity enhancement decreases during the disease course after reaching a maximal level, and (2) decrease in brain functional connectivity enhancement participates in disability progression. © The Author(s), 2016.

  6. Monitoring Radiographic Brain Tumor Progression

    Directory of Open Access Journals (Sweden)

    John H. Sampson

    2011-03-01

    Full Text Available Determining radiographic progression in primary malignant brain tumors has posed a significant challenge to the neuroncology community. Glioblastoma multiforme (GBM, WHO Grade IV through its inherent heterogeneous enhancement, growth patterns, and irregular nature has been difficult to assess for progression. Our ability to detect tumor progression radiographically remains inadequate. Despite the advanced imaging techniques, detecting tumor progression continues to be a clinical challenge. Here we review the different criteria used to detect tumor progression, and highlight the inherent challenges with detection of progression.

  7. Structural and functional hallmarks of amyotrophic lateral sclerosis progression in motor- and memory-related brain regions

    Directory of Open Access Journals (Sweden)

    Christian Michael Stoppel

    2014-01-01

    Full Text Available Previous studies have shown that in amyotrophic lateral sclerosis (ALS multiple motor and extra-motor regions display structural and functional alterations. However, their temporal dynamics during disease-progression are unknown. To address this question we employed a longitudinal design assessing motor- and novelty-related brain activity in two fMRI sessions separated by a 3-month interval. In each session, patients and controls executed a Go/NoGo-task, in which additional presentation of novel stimuli served to elicit hippocampal activity. We observed a decline in the patients' movement-related activity during the 3-month interval. Importantly, in comparison to controls, the patients' motor activations were higher during the initial measurement. Thus, the relative decrease seems to reflect a breakdown of compensatory mechanisms due to progressive neural loss within the motor-system. In contrast, the patients' novelty-evoked hippocampal activity increased across 3 months, most likely reflecting the build-up of compensatory processes typically observed at the beginning of lesions. Consistent with a stage-dependent emergence of hippocampal and motor-system lesions, we observed a positive correlation between the ALSFRS-R or MRC-Megascores and the decline in motor activity, but a negative one with the hippocampal activation-increase. Finally, to determine whether the observed functional changes co-occur with structural alterations, we performed voxel-based volumetric analyses on magnetization transfer images in a separate patient cohort studied cross-sectionally at another scanning site. Therein, we observed a close overlap between the structural changes in this cohort, and the functional alterations in the other. Thus, our results provide important insights into the temporal dynamics of functional alterations during disease-progression, and provide support for an anatomical relationship between functional and structural cerebral changes in ALS.

  8. Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson's disease, PSP and MSA

    NARCIS (Netherlands)

    Bartels, A. L.; Willemsen, A. T. M.; Kortekaas, R.; de Jong, B. M.; de Vries, R.; de Klerk, O.; van Oostrom, J. C. H.; Portman, A.; Leenders, K. L.

    2008-01-01

    Decreased blood-brain barrier (BBB) efflux function of the P-glycoprotein (P-gp) transport system could facilitate the accumulation of toxic compounds in the brain, increasing the risk of neurodegenerative pathology such as Parkinson's disease (PD). This study investigated in vivo BBB P-gp function

  9. Blood-brain barrier P-glycoprotein function decreases in specific brain regions with aging : A possible role in progressive neurodegeneration

    NARCIS (Netherlands)

    Bartels, Anna L.; Kortekaas, Rudie; Bart, Joost; Willemsen, Antoon T. M.; de Klerk, Onno L.; de Vries, Jeroen J.; van Oostrom, Joost C. H.; Leenders, Klaus L.

    2009-01-01

    Cerebrovascular P-glycoprotein (P-gp) acts at the blood-brain barrier (BBB) as an active cell membrane efflux pump for several endogenous and exogenous compounds. Age-associated decline in P-gp function could facilitate the accumulation of toxic substances in the brain, thus increasing the risk of n

  10. Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson's disease, PSP and MSA.

    Science.gov (United States)

    Bartels, A L; Willemsen, A T M; Kortekaas, R; de Jong, B M; de Vries, R; de Klerk, O; van Oostrom, J C H; Portman, A; Leenders, K L

    2008-07-01

    Decreased blood-brain barrier (BBB) efflux function of the P-glycoprotein (P-gp) transport system could facilitate the accumulation of toxic compounds in the brain, increasing the risk of neurodegenerative pathology such as Parkinson's disease (PD). This study investigated in vivo BBB P-gp function in patients with parkinsonian neurodegenerative syndromes, using [11C]-verapamil PET in PD, PSP and MSA patients. Regional differences in distribution volume were studied using SPM with higher uptake interpreted as reduced P-gp function. Advanced PD patients and PSP patients had increased [11C]-verapamil uptake in frontal white matter regions compared to controls; while de novo PD patients showed lower uptake in midbrain and frontal regions. PSP and MSA patients had increased uptake in the basal ganglia. Decreased BBB P-gp function seems a late event in neurodegenerative disorders, and could enhance continuous neurodegeneration. Lower [11C]-verapamil uptake in midbrain and frontal regions of de novo PD patients could indicate a regional up-regulation of P-gp function.

  11. How to contribute to the progress of neuroendocrinology: New insights from discovering novel neuropeptides and neurosteroids regulating pituitary and brain functions.

    Science.gov (United States)

    Tsutsui, Kazuyoshi

    2016-02-01

    Obtaining new insights by discovering novel neuropeptides and neurosteroids regulating pituitary and brain functions is essential for the progress of neuroendocrinology. At the beginning of 1970s, gonadotropin-releasing hormone (GnRH) was discovered in mammals. Since then, it was generally accepted that GnRH is the only hypothalamic neuropeptide regulating gonadotropin release in vertebrates. In 2000, however, gonadotropin-inhibitory hormone (GnIH), a novel hypothalamic neuropeptide that actively inhibits gonadotropin release, was discovered in quail. The follow-up studies demonstrated that GnIH acts as a new key player for regulation of reproduction across vertebrates. It now appears that GnIH acts on the pituitary and the brain to serve a number of behavioral and physiological functions. On the other hand, a new concept has been established that the brain synthesizes steroids, called neurosteroids. The formation of neurosteroids in the brain was originally demonstrated in mammals and subsequently in other vertebrates. Recently, 7α-hydroxypregnenolone was discovered as a novel bioactive neurosteroid inducing locomotor behavior of vertebrates, indicating that neurosteroidogenesis in the brain is still incompletely elucidated in vertebrates. At the beginning of 2010s, it was further found that the pineal gland actively produces neurosteroids. Pineal neurosteroids act on the brain to regulate locomotor rhythms and neuronal survival. Furthermore, the interaction of neuropeptides and neurosteroids is becoming clear. GnIH decreases aggressive behavior by regulating neuroestrogen synthesis in the brain. This review summarizes these new insights by discovering novel neuropeptides and neurosteroids in the field of neuroendocrinology.

  12. Split Brain Functioning.

    Science.gov (United States)

    Cassel, Russell N.

    1978-01-01

    Summarizing recent research, this article defines the functions performed by the left and right sides of the human brain. Attention is given to the right side, or the nondominant side, of the brain and its potential in terms of perception of the environment, music, art, geometry, and the aesthetics. (JC)

  13. Functional brain imaging across development.

    Science.gov (United States)

    Rubia, Katya

    2013-12-01

    The developmental cognitive neuroscience literature has grown exponentially over the last decade. This paper reviews the functional magnetic resonance imaging (fMRI) literature on brain function development of typically late developing functions of cognitive and motivation control, timing and attention as well as of resting state neural networks. Evidence shows that between childhood and adulthood, concomitant with cognitive maturation, there is progressively increased functional activation in task-relevant lateral and medial frontal, striatal and parieto-temporal brain regions that mediate these higher level control functions. This is accompanied by progressively stronger functional inter-regional connectivity within task-relevant fronto-striatal and fronto-parieto-temporal networks. Negative age associations are observed in earlier developing posterior and limbic regions, suggesting a shift with age from the recruitment of "bottom-up" processing regions towards "top-down" fronto-cortical and fronto-subcortical connections, leading to a more mature, supervised cognition. The resting state fMRI literature further complements this evidence by showing progressively stronger deactivation with age in anti-correlated task-negative resting state networks, which is associated with better task performance. Furthermore, connectivity analyses during the resting state show that with development increasingly stronger long-range connections are being formed, for example, between fronto-parietal and fronto-cerebellar connections, in both task-positive networks and in task-negative default mode networks, together with progressively lesser short-range connections, suggesting progressive functional integration and segregation with age. Overall, evidence suggests that throughout development between childhood and adulthood, there is progressive refinement and integration of both task-positive fronto-cortical and fronto-subcortical activation and task-negative deactivation, leading to

  14. Lutein and Brain Function

    Directory of Open Access Journals (Sweden)

    John W. Erdman

    2015-10-01

    Full Text Available Lutein is one of the most prevalent carotenoids in nature and in the human diet. Together with zeaxanthin, it is highly concentrated as macular pigment in the foveal retina of primates, attenuating blue light exposure, providing protection from photo-oxidation and enhancing visual performance. Recently, interest in lutein has expanded beyond the retina to its possible contributions to brain development and function. Only primates accumulate lutein within the brain, but little is known about its distribution or physiological role. Our team has begun to utilize the rhesus macaque (Macaca mulatta model to study the uptake and bio-localization of lutein in the brain. Our overall goal has been to assess the association of lutein localization with brain function. In this review, we will first cover the evolution of the non-human primate model for lutein and brain studies, discuss prior association studies of lutein with retina and brain function, and review approaches that can be used to localize brain lutein. We also describe our approach to the biosynthesis of 13C-lutein, which will allow investigation of lutein flux, localization, metabolism and pharmacokinetics. Lastly, we describe potential future research opportunities.

  15. Advancing PET science for new measures of brain function. Progress report, January 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, D.E.

    1994-10-01

    This project has continued the development of new chemistry and imaging physics applicable to PET studies of the human brain. In basic radiochemistry research, the authors have developed a modified approach to solid-phase supported [{sup 11}C]methylation system, in part dependent on the design, fabrication and validation of new small, sensitive and accurate positron detectors useful in tracking the flow of radioactivity through the synthesis apparatus. Radiopharmaceutical efforts have resulted in synthesis of new tracers of mitochondrial enzymes. For evaluation of new PET radiotracers, the authors have applied new models of unilateral brain lesions using quinolinic acid and MPP+, as models of neurodegenerative diseases. In the physics and data analysis research area the authors have developed faster and more accurate means of performing image reconstruction for use with both emission and transmission data. The authors are optimizing acquisition and kinetic modeling strategies for new radiotracers. The authors also have implemented and proven the utility of performing task switching during PET CBF activation studies for the purpose of enhancing signal-to-noise and greater detectability of areas of activation. The authors also working on routines for standardization of analysis strategies for group vs. group and individual vs. group comparisons.

  16. Advancing PET science for new measures of brain function. Progress report, January 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, D.E.

    1994-10-01

    This project has continued the development of new chemistry and imaging physics applicable to PET studies of the human brain. In basic radiochemistry research, the authors have developed a modified approach to solid-phase supported [{sup 11}C]methylation system, in part dependent on the design, fabrication and validation of new small, sensitive and accurate positron detectors useful in tracking the flow of radioactivity through the synthesis apparatus. Radiopharmaceutical efforts have resulted in synthesis of new tracers of mitochondrial enzymes. For evaluation of new PET radiotracers, the authors have applied new models of unilateral brain lesions using quinolinic acid and MPP+, as models of neurodegenerative diseases. In the physics and data analysis research area the authors have developed faster and more accurate means of performing image reconstruction for use with both emission and transmission data. The authors are optimizing acquisition and kinetic modeling strategies for new radiotracers. The authors also have implemented and proven the utility of performing task switching during PET CBF activation studies for the purpose of enhancing signal-to-noise and greater detectability of areas of activation. The authors also working on routines for standardization of analysis strategies for group vs. group and individual vs. group comparisons.

  17. 全麻药物机制研究的几点新进展%The research progress of general anesthetics on the brain function

    Institute of Scientific and Technical Information of China (English)

    李肇端; 刘兴奎; 喻田

    2013-01-01

    背景 全身麻醉应用于临床已有160多年的历史,但麻醉药导致相应的行为改变如意识丧失、遗忘和镇痛的神经生理机制是什么,至今仍不清楚,尤其对于其中最具特征性的全麻意识消失,人们对其了解最为肤浅. 目的 综述全身麻醉药对离子通道和受体、各脑电活动的影响和脑功能的变化. 内容 全麻机制的研究可以分6个层次,分别是:分子水平、突触水平、细胞水平、神经微环路水平、系统水平(脑区)以及行为水平.总结近年来全身麻醉药(以下简称全麻药)在不同结构水平研究的最新进展,并从宏观上探讨全麻药对脑功能的影响. 趋向 多种实验技术相结合将为全麻机制的研究提供新的方法.%Background The clinical application of general anesthesia has been used for more than 160 years,however,neurophysiological mechanism of corresponding behavioral changes caused by anesthetic such as loss of consciousness,amnesia and analgesic are still unclear,especially for the unconsciousness which we hardly understood.Objective We reviewed the impacts of general anesthetics on ion channels and corresonding receptors,as well as brain electrical activity and changes in brain functions.Content The research of general anesthesia mechanisms can be divided into six levels:the molecular,synaptic,cellular,neural micro-circuit,system (brain areas) and behavioral level.This review summarized the progress about general anesthetics on different levels and explored the change of brain functions by general anesthetics on macro level.Trend The combination of different kinds of experimental techniques could provide new approaches for general anesthesia mechanism.

  18. [Dehydroepiandrosterone and brain functioning].

    Science.gov (United States)

    Goncharov, N P; Katsiia, G V; Nizhnik, A N

    2005-01-01

    The adrenal glands synthesize dehydroepiandrosterone (DHEA) and its sulphate form (DHEAS) more intensively than they do other steroid hormones. Researchers are interested in these hormones for several reasons. Firstly, for some years they have been trying to find the reason for DHEA and DHEAS to be synthesized and present in the organism in such high concentrations. Secondly, their attention have been attracted by age-dependent regression of DHEA, which is strictly determined. Thirdly, despite longstanding efforts of scientists, the physiological role and spectrum of the biological activity of DHEA is still unclear. Evidence of that DHEA and DHEAS can be synthesized in situ in the brain tissue, received in rat experiments, urged researchers to clarify the role of these neurosteroids in the CNS. The presented review covers ways of neurosteroid synthesis, possible mechanisms of the regulation of these processes, and their dynamics under the condition of stress. The authors analyze experimental and clinical observations undertaken with a goal to clarify a possible role of DHEA in the manifestation of various brain functions. Special attention is payed to ambiguous results of modern studies, dedicated to replacement therapy of various disorders of CNS functioning (Alzheimer's disease, depression, age-specific memory impairment, sleep disturbance etc.) with DHEAS.

  19. Cognition and brain functional aging

    Directory of Open Access Journals (Sweden)

    Hui-jie LI

    2014-03-01

    Full Text Available China has the largest population of elderly adults. Meanwhile, it is one of the countries showing fastest aging speed in the world. Aging processing is always companied with a series of brain structural and functional changes, which result in the decline of processing speed, working memory, long-term memory and executive function, etc. The studies based on functional magnetic resonance imaging (fMRI found certain aging effects on brain function activation, spontaneous activity and functional connectivity in old people. However, few studies have explored the brain functional curve during the aging process while most previous studies explored the differences in the brain function between young people and old people. Delineation of the human brain functional aging curve will promote the understanding of brain aging mechanisms and support the normal aging monitoring and early detection of abnormal aging changes. doi: 10.3969/j.issn.1672-6731.2014.03.005

  20. Research progress in traumatic brain penumbra

    Institute of Scientific and Technical Information of China (English)

    Wang Kai; Liu Baiyun; Ma Jun

    2014-01-01

    Objective Following traumatic brain injury (TBI),brain tissue that surrounding the regional primary lesion is known as traumatic penumbra; this region may undergo secondary injury and is considered to have the potential to recover.This review aimed to reveal the existence and significance of traumatic penumbra by analyzing all relevant studies concerning basic pathologic changes and brain imaging after TBI.Data sources We collected all relevant studies about TBI and traumatic penumbra in Medline (1995 to June 2013) and ISI (1997 to March 2013),evaluated their quality and relevance,then extracted and synthesized the information.Study selection We included all relevant studies concerning TBI and traumatic penumbra (there was no limitation of research design and article language) and excluded the duplicated articles.Results The crucial pathological changes after TBI include cerebral blood flow change,cerebral edema,blood-brain barrier damage,cell apoptosis and necrosis.Besides,traditional imaging method cannot characterize the consequences of CBF reduction at an early stage and provides limited insights into the underlying pathophysiology.While advanced imaging technique,such as diffusion tensor imaging (DTI) and positron emission tomography (PET),may provide better characterization of such pathophysiology.Conclusions The future of traumatic brain lesions depends to a large extent on the evolution of the penumbra.Therefore,understanding the formation and pathophysiologic process of the traumatic penumbra and its imaging research progress is of great significant for early clinical determination and timely brain rescue.

  1. Promoting Motor Function by Exercising the Brain

    Directory of Open Access Journals (Sweden)

    Stephane Perrey

    2013-01-01

    Full Text Available Exercise represents a behavioral intervention that enhances brain health and motor function. The increase in cerebral blood volume in response to physical activity may be responsible for improving brain function. Among the various neuroimaging techniques used to monitor brain hemodynamic response during exercise, functional near-infrared spectroscopy could facilitate the measurement of task-related cortical responses noninvasively and is relatively robust with regard to the subjects’ motion. Although the components of optimal exercise interventions have not been determined, evidence from animal and human studies suggests that aerobic exercise with sufficiently high intensity has neuroprotective properties and promotes motor function. This review provides an insight into the effect of physical activity (based on endurance and resistance exercises on brain function for producing movement. Since most progress in the study of brain function has come from patients with neurological disorders (e.g., stroke and Parkinson’s patients, this review presents some findings emphasizing training paradigms for restoring motor function.

  2. Oncogenic extracellular vesicles in brain tumour progression

    Directory of Open Access Journals (Sweden)

    Esterina eD'Asti

    2012-07-01

    Full Text Available The brain is a frequent site of neoplastic growth, including both primary and metastatic tumours. The clinical intractability of many brain tumours and their distinct biology are implicitly linked to the unique microenvironment of the central nervous system (CNS and cellular interactions within. Among the most intriguing forms of cellular interactions is that mediated by membrane-derived extracellular vesicles (EVs. Their biogenesis (vesiculation and uptake by recipient cells serves as a unique mechanism of intercellular trafficking of complex biological messages including the exchange of molecules that cannot be released through classical secretory pathways, or that are prone to extracellular degradation. Tumour cells produce EVs containing molecular effectors of several cancer-related processes such as growth, invasion, drug resistance, angiogenesis, and coagulopathy. Notably, tumour-derived EVs (oncosomes also contain oncogenic proteins, transcripts, DNA and microRNA (miR. Uptake of this material may change properties of the recipient cells and impact the tumour microenvironment. Examples of transformation-related molecules found in the cargo of tumour-derived EVs include the oncogenic epidermal growth factor receptor (EGFRvIII, tumour suppressors (PTEN and oncomirs (miR-520g. It is postulated that EVs circulating in blood or cerebrospinal fluid (CSF of brain tumour patients may be used to decipher molecular features (mutations of the underlying malignancy, reflect responses to therapy or molecular subtypes of primary brain tumours (e.g. glioma or medulloblastoma. It is possible that metastases to the brain may also emit EVs with clinically relevant oncogenic signatures. Thus EVs emerge as a novel and functionally important vehicle of intercellular communication that can mediate multiple biological effects. In addition, they provide a unique platform to develop molecular biomarkers in brain malignancies.

  3. Functional brain network efficiency predicts intelligence.

    Science.gov (United States)

    Langer, Nicolas; Pedroni, Andreas; Gianotti, Lorena R R; Hänggi, Jürgen; Knoch, Daria; Jäncke, Lutz

    2012-06-01

    The neuronal causes of individual differences in mental abilities such as intelligence are complex and profoundly important. Understanding these abilities has the potential to facilitate their enhancement. The purpose of this study was to identify the functional brain network characteristics and their relation to psychometric intelligence. In particular, we examined whether the functional network exhibits efficient small-world network attributes (high clustering and short path length) and whether these small-world network parameters are associated with intellectual performance. High-density resting state electroencephalography (EEG) was recorded in 74 healthy subjects to analyze graph-theoretical functional network characteristics at an intracortical level. Ravens advanced progressive matrices were used to assess intelligence. We found that the clustering coefficient and path length of the functional network are strongly related to intelligence. Thus, the more intelligent the subjects are the more the functional brain network resembles a small-world network. We further identified the parietal cortex as a main hub of this resting state network as indicated by increased degree centrality that is associated with higher intelligence. Taken together, this is the first study that substantiates the neural efficiency hypothesis as well as the Parieto-Frontal Integration Theory (P-FIT) of intelligence in the context of functional brain network characteristics. These theories are currently the most established intelligence theories in neuroscience. Our findings revealed robust evidence of an efficiently organized resting state functional brain network for highly productive cognitions.

  4. Clinical neurorestorative progress in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Huang H

    2015-03-01

    Full Text Available Huiling Huang,1 Lin Chen,2,3 Hongyun Huang4–61Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin Neurosurgical Institute, Tianjin, People's Republic of China; 2Medical Center, Tsinghua University, Beijing, People's Republic of China; 3Tsinghua University Yuquan Hospital, Beijing, People's Republic of China; 4General Hospital of Chinese people's Armed Police Forces, 5Beijing Rehabilitation Hospital of Capital Medical University, Beijing, People's Republic of China; 6Beijing Hongtianji Neuroscience Academy, Beijing, People's Republic of ChinaAbstract: Traumatic brain injury (TBI is a leading cause of death and disability from trauma to the central nervous system. Besides the surgical interventions and symptomatic management, the conventional therapies for TBI and its sequelae are still limited. Recently emerging evidence suggests that some neurorestorative treatments appear to have a potential therapeutic role for TBI and improving the patient's quality of life. The current clinical neurorestorative strategies available in TBI include pharmacological treatments (recombinant human interleukin-1 receptor antagonist, amantadine, lithium, and valproate, the neuromodulation treatments (repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and low-level laser therapy, cell transplantation (bone marrow stromal cells and umbilical cord stromal cells, and combined neurorehabilitation. In this review, we summarize the recent clinical neurorestorative progress in the management of neurodegeneration as well as cognitive and motor deficits after TBI; indeed further clinical trials are required to provide more robust evidence.Keywords: brain trauma, neurorestorative treatment, cell transplantation, clinical study

  5. Natriuretic hormones in brain function

    Directory of Open Access Journals (Sweden)

    David eLichtstein

    2014-11-01

    Full Text Available Natriuretic hormones include three groups of compounds: the natriuretic peptides (ANP, BNP and CNP, the gastrointestinal peptides (guanylin and uroguanylin, and endogenous cardiac steroids. These substances induce the kidney to excrete sodium and therefore participate in the regulation of sodium and water homeostasis, blood volume and blood pressure. In addition to their peripheral functions, these hormones act as neurotransmitters or neuromodulators in the brain. In this review, the established information on the biosynthesis, release and function of natriuretic hormones is discussed, with particular focus on their role in brain function. The available literature on the expression patterns of each of the natriuretic hormones and their receptors in the brain will be summarized, followed by the evidence for their roles in modulating brain function. Although numerous open questions exist regarding this issue, the available data support the notion that natriuretic hormones participate in the central regulation of blood pressure, neuroprotection, satiety, and various psychiatric conditions, including: anxiety, addiction and depressive disorders. In addition, the interactions between the different natriuretic hormones in the periphery and the brain are discussed.

  6. Functional Brain Imaging: A Comprehensive Survey

    CERN Document Server

    Sarraf, Saman

    2016-01-01

    Functional brain imaging allows measuring dynamic functionality in all brain regions. It is broadly used in clinical cognitive neuroscience as, well as in research. It will allow the observation of neural activities in the brain simultaneously. From the beginning when functional brain imaging was initiated by the mapping of brain functions proposed by phrenologists, many scientists were asking why we need to image brain functionality since we have already structural information. Simply, their important question was including a great answer. Functional information of the human brain would definitely complement structural information, helping to have a better understanding of what is happening in the brain. This paper, which could be useful to those who have an interest in functional brain imaging, such as engineers, will present a quick review of modalities used in functional brain imaging. We will concentrate on the most used techniques in functional imaging which are functional magnetic resonance imaging (fM...

  7. Brain-computer interface systems: progress and prospects.

    Science.gov (United States)

    Allison, Brendan Z; Wolpaw, Elizabeth Winter; Wolpaw, Jonathan R

    2007-07-01

    Brain-computer interface (BCI) systems support communication through direct measures of neural activity without muscle activity. BCIs may provide the best and sometimes the only communication option for users disabled by the most severe neuromuscular disorders and may eventually become useful to less severely disabled and/or healthy individuals across a wide range of applications. This review discusses the structure and functions of BCI systems, clarifies terminology and addresses practical applications. Progress and opportunities in the field are also identified and explicated.

  8. Functional Brain Basis of Hypnotizability

    Science.gov (United States)

    Hoeft, Fumiko; Gabrieli, John D.E.; Whitfield-Gabrieli, Susan; Haas, Brian W.; Bammer, Roland; Menon, Vinod; Spiegel, David

    2015-01-01

    Context Focused hypnotic concentration is a model for brain control over sensation and behavior. Pain and anxiety can be effectively alleviated by hypnotic suggestion, which modulates activity in brain regions associated with focused attention, but the specific neural network underlying this phenomenon is not known. Objective The main goal of the study was to investigate the brain basis of hypnotizability. Design Cross sectional, in-vivo neuroimaging study. Setting Academic medical center at Stanford University School of Medicine. Patients 12 adults with high and 12 adults with low hypnotizability. Main Outcome Measures (1) functional MRI (fMRI) to measure functional connectivity networks at rest including default-mode, salience and executive-control networks, (2) structural T1 MRI to measure regional grey and white matter volumes, and (3) diffusion tensor imaging (DTI) to measure white matter microstructural integrity. Results High-compared to low-hypnotizable individuals showed greater functional connectivity between left dorsolateral prefrontal cortex (DLPFC), an executive-control region of the brain, and the salience network composed of the dorsal anterior cingulate cortex (dACC), anterior insula, amygdala, and ventral striatum, involved in detecting, integrating, and filtering relevant somatic, autonomic, and emotional information, using independent component analysis (ICA). Seed based analysis confirmed elevated functional coupling between the dACC and the DLPFC in high, compared to low, hypnotizables. These functional differences were not due to variation in brain structure in these regions, including regional grey and white matter volumes and white matter microstructure. Conclusions Our results provide novel evidence that altered functional connectivity in DLPFC and dACC may underlie hypnotizability. Future studies focusing on how these functional networks change and interact during hypnosis are warranted. PMID:23026956

  9. Disrupted functional brain networks in autistic toddlers

    NARCIS (Netherlands)

    Boersma, M.; Kemner, C.; Reus, M.A. de; Collin, G.; Snijders, T.M.; Hofman, D.; Buitelaar, J.K.; Stam, C.J.; Heuvel, M.P. van den

    2013-01-01

    Communication and integration of information between brain regions plays a key role in healthy brain function. Conversely, disruption in brain communication may lead to cognitive and behavioral problems. Autism is a neurodevelopmental disorder that is characterized by impaired social interactions

  10. Robust transient dynamics and brain functions

    Directory of Open Access Journals (Sweden)

    Mikhail I Rabinovich

    2011-06-01

    Full Text Available In the last few decades several concepts of Dynamical Systems Theory (DST have guided psychologists, cognitive scientists, and neuroscientists to rethink about sensory motor behavior and embodied cognition. A critical step in the progress of DST application to the brain (supported by modern methods of brain imaging and multi-electrode recording techniques has been the transfer of its initial success in motor behavior to mental function, i.e., perception, emotion, and cognition. Open questions from research in genetics, ecology, brain sciences, etc. have changed DST itself and lead to the discovery of a new dynamical phenomenon, i.e., reproducible and robust transients that are at the same time sensitive to informational signals. The goal of this review is to describe a new mathematical framework -heteroclinic sequential dynamics- to understand self-organized activity in the brain that can explain certain aspects of robust itinerant behavior. Specifically, we discuss a hierarchy of coarse-grain models of mental dynamics in the form of kinetic equations of modes. These modes compete for resources at three levels: (i within the same modality, (ii among different modalities from the same family (like perception, and (iii among modalities from different families (like emotion and cognition. The analysis of the conditions for robustness, i.e., the structural stability of transient (sequential dynamics, give us the possibility to explain phenomena like the finite capacity of our sequential working memory -a vital cognitive function-, and to find specific dynamical signatures -different kinds of instabilities- of several brain functions and mental diseases.

  11. Thermodynamic laws apply to brain function.

    Science.gov (United States)

    Salerian, Alen J

    2010-02-01

    Thermodynamic laws and complex system dynamics govern brain function. Thus, any change in brain homeostasis by an alteration in brain temperature, neurotransmission or content may cause region-specific brain dysfunction. This is the premise for the Salerian Theory of Brain built upon a new paradigm for neuropsychiatric disorders: the governing influence of neuroanatomy, neurophysiology, thermodynamic laws. The principles of region-specific brain function thermodynamics are reviewed. The clinical and supporting evidence including the paradoxical effects of various agents that alter brain homeostasis is demonstrated.

  12. Eloquent Brain, Ethical Challenges: Functional Brain Mapping in Neurosurgery.

    Science.gov (United States)

    Klein, Eran

    2015-06-01

    Functional brain mapping is an increasingly relied upon tool in presurgical planning and intraoperative decision making. Mapping allows personalization of structure-function relationships when surgical or other treatment of pathology puts eloquent functioning like language or vision at risk. As an innovative technology, functional brain mapping holds great promise but also raises important ethical questions. In this article, recent work in neuroethics on functional imaging and functional neurosurgery is explored and applied to functional brain mapping. Specific topics discussed in this article are incidental findings, responsible innovation, and informed consent.

  13. Psychological functioning in primary progressive versus secondary progressive multiple sclerosis

    DEFF Research Database (Denmark)

    Vleugels, L; Pfennings, L E; Pouwer, F

    1998-01-01

    (SD 11.1). Patients completed questionnaires measuring among others the following aspects of psychological functioning: depression (BDI, SCL-90), anxiety (STAI, SCL-90), agoraphobia (SCL-90), somatic complaints (SCL-90), hostility (SCL-90) and attitude towards handicap (GHAS). Patients with a PP......Psychological functioning in two types of multiple sclerosis (MS) patients is assessed: primary progressive (PP) and secondary progressive (SP) patients. On the basis of differences in clinical course and underlying pathology we hypothesized that primary progressive patients and secondary...... progressive patients might have different psychological functioning. Seventy patients treated in an MS centre were examined cross-sectionally. Forty had an SP course of MS and 30 a PP course. The 33 male and 37 female patients had a mean age of 48.4 years (SD 11.2) and mean age of onset of MS of 30.7 years...

  14. Functional brain imaging; Funktionelle Hirnbildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, E.R. [Medizinische Universitaet Innsbruck, Universitaetsklinik fuer Neuroradiologie, Innsbruck (Austria)

    2016-02-15

    Functional magnetic resonance imaging (fMRI) is a non-invasive method that has become one of the major tools for understanding human brain function and in recent years has also been developed for clinical applications. Changes in hemodynamic signals correspond to changes in neuronal activity with good spatial and temporal resolution in fMRI. Using high-field MR systems and increasingly dedicated statistics and postprocessing, activated brain areas can be detected and superimposed on anatomical images. Currently, fMRI data are often combined in multimodal imaging, e. g. with diffusion tensor imaging (DTI) sequences. This method is helping to further understand the physiology of cognitive brain processes and is also being used in a number of clinical applications. In addition to the blood oxygenation level-dependent (BOLD) signals, this article deals with the construction of fMRI investigations, selection of paradigms and evaluation in the clinical routine. Clinically, this method is mainly used in the planning of brain surgery, analyzing the location of brain tumors in relation to eloquent brain areas and the lateralization of language processing. As the BOLD signal is dependent on the strength of the magnetic field as well as other limitations, an overview of recent developments is given. Increases of magnetic field strength (7 T), available head coils and advances in MRI analytical methods have led to constant improvement in fMRI signals and experimental design. Especially the depiction of eloquent brain regions can be done easily and quickly and has become an essential part of presurgical planning. (orig.) [German] Mittlerweile ist die funktionelle MRT (fMRT) eine Methode, die nicht mehr nur in der neurowissenschaftlichen Routine verwendet wird. Die fMRT ermoeglicht die nichtinvasive Darstellung der Hirnaktivitaet in guter raeumlicher und zeitlicher Aufloesung unter Ausnutzung der Durchblutungsaenderung aufgrund der erhoehten Nervenzellaktivitaet. Unter

  15. Aging and functional brain networks

    Energy Technology Data Exchange (ETDEWEB)

    Tomasi D.; Tomasi, D.; Volkow, N.D.

    2011-07-11

    Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the 'default-mode' network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis, we evaluated resting-state data sets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping (FCDM), a voxelwise and data-driven approach, together with parallel computing. Aging was associated with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that, in addition to the DMN, the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging.

  16. Functional Prions in the Brain.

    Science.gov (United States)

    Rayman, Joseph B; Kandel, Eric R

    2017-01-03

    Prions are proteins that can adopt self-perpetuating conformations and are traditionally regarded as etiological agents of infectious neurodegenerative diseases in humans, such as Creutzfeldt-Jakob disease, kuru, and transmissible encephalopathies. More recently, a growing consensus has emerged that prion-like, self-templating mechanisms also underlie a variety of neurodegenerative disorders, including amyotrophic lateral sclerosis, Alzheimer's disease, and Huntington's disease. Perhaps most surprising, not all prion-like aggregates are associated with pathological changes. There are now several examples of prion-like proteins in mammals that serve positive biological functions in their aggregated state. In this review, we discuss functional prions in the nervous system, with particular emphasis on the cytoplasmic polyadenylation element-binding protein (CPEB) and the role of its prion-like aggregates in synaptic plasticity and memory. We also mention a more recent example of a functional prion-like protein in the brain, TIA-1, and its role during stress. These studies of functional prion-like proteins have provided a number of generalizable insights on how prion-based protein switches may operate to serve physiological functions in higher eukaryotes.

  17. Resting state brain activity and functional brain mapping

    Institute of Scientific and Technical Information of China (English)

    Zhao Xiaohu; Wang Peijun; Tang Xiaowei

    2007-01-01

    Functional brain imaging studies commonly use either resting or passive task states as their control conditions, and typically identify the activation brain region associated with a specific task by subtracting the resting from the active task conditions. Numerous studies now suggest, however, that the resting state may not reflect true mental "rest" conditions. The mental activity that occurs during"rest" might therefore greatly influence the functional neuroimaging observations that are collected through the usual subtracting analysis strategies. Exploring the ongoing mental processes that occur during resting conditions is thus of particular importance for deciphering functional brain mapping results and obtaining a more comprehensive understanding of human brain functions. In this review article, we will mainly focus on the discussion of the current research background of functional brain mapping at resting state and the physiological significance of the available neuroimaging data.

  18. Behavioral and Brain Functions. A new journal

    Directory of Open Access Journals (Sweden)

    Sagvolden Terje

    2005-04-01

    Full Text Available Abstract Behavioral and Brain Functions (BBF is an Open Access, peer-reviewed, online journal considering original research, review, and modeling articles in all aspects of neurobiology or behavior, favoring research that relates to both domains. Behavioral and Brain Functions is published by BioMed Central. The greatest challenge for empirical science is to understand human behavior; how human behavior arises from the myriad functions such as attention, language, memory and emotion; how these functions are reflected in brain structures and functions; and how the brain and behavior are altered in disease. Behavioral and Brain Functions covers the entire area of behavioral and cognitive neuroscience – an area where animal studies traditionally play a prominent role. Behavioral and Brain Functions is published online, allowing unlimited space for figures, extensive datasets to allow readers to study the data for themselves, and moving pictures, which are important qualities assisting communication in modern science.

  19. Estimating progression-free survival in paediatric brain tumour patients when some progression statuses are unknown

    Science.gov (United States)

    Yuan, Ying; Thall, Peter F.; Wolff, Johannes E.

    2012-01-01

    Summary In oncology, progression-free survival time, which is defined as the minimum of the times to disease progression or death, often is used to characterize treatment and covariate effects. We are motivated by the desire to estimate the progression time distribution on the basis of data from 780 paediatric patients with choroid plexus tumours, which are a rare brain cancer where disease progression always precedes death. In retrospective data on 674 patients, the times to death or censoring were recorded but progression times were missing. In a prospective study of 106 patients, both times were recorded but there were only 20 non-censored progression times and 10 non-censored survival times. Consequently, estimating the progression time distribution is complicated by the problems that, for most of the patients, either the survival time is known but the progression time is not known, or the survival time is right censored and it is not known whether the patient’s disease progressed before censoring. For data with these missingness structures, we formulate a family of Bayesian parametric likelihoods and present methods for estimating the progression time distribution. The underlying idea is that estimating the association between the time to progression and subsequent survival time from patients having complete data provides a basis for utilizing covariates and partial event time data of other patients to infer their missing progression times. We illustrate the methodology by analysing the brain tumour data, and we also present a simulation study. PMID:22408277

  20. Progress in synthesizing functional nano materials

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ With the consistent investment, the research team directed by Prof. Yadong Li of Chemistry Department of Tsinghua University achieved new progress in synthesizing nano materials with specific functions. The research team led by Prof.

  1. Toward discovery science of human brain function.

    Science.gov (United States)

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian; Gohel, Suril; Kelly, Clare; Smith, Steve M; Beckmann, Christian F; Adelstein, Jonathan S; Buckner, Randy L; Colcombe, Stan; Dogonowski, Anne-Marie; Ernst, Monique; Fair, Damien; Hampson, Michelle; Hoptman, Matthew J; Hyde, James S; Kiviniemi, Vesa J; Kötter, Rolf; Li, Shi-Jiang; Lin, Ching-Po; Lowe, Mark J; Mackay, Clare; Madden, David J; Madsen, Kristoffer H; Margulies, Daniel S; Mayberg, Helen S; McMahon, Katie; Monk, Christopher S; Mostofsky, Stewart H; Nagel, Bonnie J; Pekar, James J; Peltier, Scott J; Petersen, Steven E; Riedl, Valentin; Rombouts, Serge A R B; Rypma, Bart; Schlaggar, Bradley L; Schmidt, Sein; Seidler, Rachael D; Siegle, Greg J; Sorg, Christian; Teng, Gao-Jun; Veijola, Juha; Villringer, Arno; Walter, Martin; Wang, Lihong; Weng, Xu-Chu; Whitfield-Gabrieli, Susan; Williamson, Peter; Windischberger, Christian; Zang, Yu-Feng; Zhang, Hong-Ying; Castellanos, F Xavier; Milham, Michael P

    2010-03-09

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/.

  2. Brain viscoelasticity alteration in chronic-progressive multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Kaspar-Josche Streitberger

    Full Text Available INTRODUCTION: Viscoelastic properties indicate structural alterations in biological tissues at multiple scales with high sensitivity. Magnetic Resonance Elastography (MRE is a novel technique that directly visualizes and quantitatively measures biomechanical tissue properties in vivo. MRE recently revealed that early relapsing-remitting multiple sclerosis (MS is associated with a global decrease of the cerebral mechanical integrity. This study addresses MRE and MR volumetry in chronic-progressive disease courses of MS. METHODS: We determined viscoelastic parameters of the brain parenchyma in 23 MS patients with primary or secondary chronic progressive disease course in comparison to 38 age- and gender-matched healthy individuals by multifrequency MRE, and correlated the results with clinical data, T2 lesion load and brain volume. Two viscoelastic parameters, the shear elasticity μ and the powerlaw exponent α, were deduced according to the springpot model and compared to literature values of relapsing-remitting MS. RESULTS: In chronic-progressive MS patients, μ and α were reduced by 20.5% and 6.1%, respectively, compared to healthy controls. MR volumetry yielded a weaker correlation: Total brain volume loss in MS patients was in the range of 7.5% and 1.7% considering the brain parenchymal fraction. All findings were significant (P<0.001. CONCLUSIONS: Chronic-progressive MS disease courses show a pronounced reduction of the cerebral shear elasticity compared to early relapsing-remitting disease. The powerlaw exponent α decreased only in the chronic-progressive stage of MS, suggesting an alteration in the geometry of the cerebral mechanical network due to chronic neuroinflammation.

  3. Regulation of brain function by exercise.

    Science.gov (United States)

    Sutoo, Den'etsu; Akiyama, Kayo

    2003-06-01

    The effect of excercise on brain function was investigated through animal experiments. Exercise leads to increased serum calcium levels, and the calcium is transported to the brain. This in turn enhances brain dopamine synthesis through a calmodulin-dependent system, and increased dopamine levels regulate various brain functions. There are abnormally low levels of dopamine in the neostriatum and nucleus accumbens of epileptic mice (El mice strain) and spontaneously hypertensive rats (SHR). The low dopamine levels in those animals were improved following intracerebroventricular administration of calcium chloride. Dopamine levels and blood pressure in SHR were also normalized by exercise. In epileptic El mice, convulsions normalized dopamine levels and physiologic function. These findings suggest that exercise or convulsions affect brain function through calcium/calmodulin-dependent dopamine synthesis. This leads to the possibility that some symptoms of Parkinson's disease or senile dementia might be improved by exercise.

  4. The gravitational field and brain function

    Science.gov (United States)

    Mei, Lei; Zhou, Chuan-Dai; Lan, Jing-Quan; Wang, Zhi-Ging; Wu, Wen-Can; Xue, Xin-Min

    The frontal cortex is recognized as the highest adaptive control center of the human brain. The principle of the ``frontalization'' of human brain function offers new possibilities for brain research in space. There is evolutionary and experimental evidence indicating the validity of the principle, including it's role in nervous response to gravitational stimulation. The gravitational field is considered here as one of the more constant and comprehensive factors acting on brain evolution, which has undergone some successive crucial steps: ``encephalization'', ``corticalization'', ``lateralization'' and ``frontalization''. The dominating effects of electrical responses from the frontal cortex have been discovered 1) in experiments under gravitational stimulus; and 2) in processes potentially relating to gravitational adaptation, such as memory and learning, sensory information processing, motor programing, and brain state control. A brain research experiment during space flight is suggested to test the role of the frontal cortex in space adaptation and it's potentiality in brain control.

  5. Network Assemblies in the Functional Brain

    Science.gov (United States)

    Sepulcre, Jorge; Sabuncu, Mert R.; Johnson, Keith A.

    2012-01-01

    Purpose of review This review focuses on recent advances in functional connectivity MRI and renewed interest in knowing the large-scale functional network assemblies in the brain. We also consider some methodological aspects of graph theoretical analysis. Recent findings Network science applied to neuroscience is quickly growing in recent years. The characterization of the functional connectomes in normal and pathological brain conditions is now a priority for researchers in the neuropsychiatric field and current findings have provided new insights regarding the pivotal role of network epicenters and specific configurations of the functional networks in the brain. Summary Functional connectivity and its analytical tools are providing organization of the functional brain that will be key for the understanding of pathologies in neurology. PMID:22766721

  6. Degree of musical expertise modulates higher order brain functioning.

    Science.gov (United States)

    Oechslin, Mathias S; Van De Ville, Dimitri; Lazeyras, François; Hauert, Claude-Alain; James, Clara E

    2013-09-01

    Using functional magnetic resonance imaging, we show for the first time that levels of musical expertise stepwise modulate higher order brain functioning. This suggests that degree of training intensity drives such cerebral plasticity. Participants (non-musicians, amateurs, and expert musicians) listened to a comprehensive set of specifically composed string quartets with hierarchically manipulated endings. In particular, we implemented 2 irregularities at musical closure that differed in salience but were both within the tonality of the piece (in-key). Behavioral sensitivity scores (d') of both transgressions perfectly separated participants according to their level of musical expertise. By contrasting brain responses to harmonic transgressions against regular endings, functional brain imaging data showed compelling evidence for stepwise modulation of brain responses by both violation strength and expertise level in a fronto-temporal network hosting universal functions of working memory and attention. Additional independent testing evidenced an advantage in visual working memory for the professionals, which could be predicted by musical training intensity. The here introduced findings of brain plasticity demonstrate the progressive impact of musical training on cognitive brain functions that may manifest well beyond the field of music processing.

  7. On development of functional brain connectivity in the young brain

    Directory of Open Access Journals (Sweden)

    G.E. Anna-Jasmijn eHoff

    2013-10-01

    Full Text Available Our brain is a complex network of structurally and functionally interconnected regions, shaped to efficiently process and integrate information. The development from a brain equipped with basic functionalities to an efficient network facilitating complex behavior starts during gestation and continues into adulthood. Resting-state functional MRI (rs-fMRI enables the examination of developmental aspects of functional connectivity and functional brain networks. This review will discuss changes observed in the developing brain on the level of network functional connectivity (FC from a gestational age of 20 weeks onwards. We discuss findings of resting-state fMRI studies showing that functional network development starts during gestation, creating a foundation for each of the resting-state networks to be established. Visual and sensorimotor areas are reported to develop first, with other networks, at different rates, increasing both in network connectivity and size over time. Reaching childhood, marked fine-tuning and specialization takes place in the regions necessary for higher-order cognitive functions.

  8. Strengthening connections: functional connectivity and brain plasticity

    OpenAIRE

    2014-01-01

    The ascendancy of functional neuroimaging has facilitated the addition of network-based approaches to the neuropsychologist’s toolbox for evaluating the sequelae of brain insult. In particular, intrinsic functional connectivity (iFC) mapping of resting state fMRI (R-fMRI) data constitutes an ideal approach to measuring macro-scale networks in the human brain. Beyond the value of iFC mapping for charting how the functional topography of the brain is altered by insult and injury, iFC analyses c...

  9. Simple models of human brain functional networks.

    Science.gov (United States)

    Vértes, Petra E; Alexander-Bloch, Aaron F; Gogtay, Nitin; Giedd, Jay N; Rapoport, Judith L; Bullmore, Edward T

    2012-04-10

    Human brain functional networks are embedded in anatomical space and have topological properties--small-worldness, modularity, fat-tailed degree distributions--that are comparable to many other complex networks. Although a sophisticated set of measures is available to describe the topology of brain networks, the selection pressures that drive their formation remain largely unknown. Here we consider generative models for the probability of a functional connection (an edge) between two cortical regions (nodes) separated by some Euclidean distance in anatomical space. In particular, we propose a model in which the embedded topology of brain networks emerges from two competing factors: a distance penalty based on the cost of maintaining long-range connections; and a topological term that favors links between regions sharing similar input. We show that, together, these two biologically plausible factors are sufficient to capture an impressive range of topological properties of functional brain networks. Model parameters estimated in one set of functional MRI (fMRI) data on normal volunteers provided a good fit to networks estimated in a second independent sample of fMRI data. Furthermore, slightly detuned model parameters also generated a reasonable simulation of the abnormal properties of brain functional networks in people with schizophrenia. We therefore anticipate that many aspects of brain network organization, in health and disease, may be parsimoniously explained by an economical clustering rule for the probability of functional connectivity between different brain areas.

  10. Neuroenergetics: How energy constraints shape brain function

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The nervous system consumes a disproportionate fraction of the resting body’s energy production. In humans, the brain represents 2% of the body’s mass, yet it accounts for ~20% of the total oxygen consumption. Expansion in the size of the brain relative to the body and an increase in the number of connections between neurons during evolution underpin our cognitive powers and are responsible for our brains’ high metabolic rate. The molecules at the center of cellular energy metabolism also act as intercellular signals and constitute an important communication pathway, coordinating for instance the immune surveillance of the brain. Despite the significance of energy consumption in the nervous system, how energy constrains and shapes brain function is often under appreciated. I will illustrate the importance of brain energetics and metabolism with two examples from my recent work. First, I will show how the brain trades information for energy savings in the visual pathway. Indeed, a significant fraction ...

  11. Forthergillian Lecture. Imaging human brain function.

    Science.gov (United States)

    Frackowiak, R S

    The non-invasive brain scanning techniques introduced a quarter of a century ago have become crucial for diagnosis in clinical neurology. They have also been used to investigate brain function and have provided information about normal activity and pathogenesis. They have been used to investigate functional specialization in the brain and how specialized areas communicate to generate complex integrated functions such as speech, memory, the emotions and so on. The phenomenon of brain plasticity is poorly understood and yet clinical neurologists are aware, from everyday observations, that spontaneous recovery from brain lesions is common. An improved understanding of the mechanisms of recovery may generate new therapeutic strategies and indicate ways of modulating mechanisms that promote plastic compensation for loss of function. The main methods used to investigate these issues are positron emission tomography and magnetic resonance imaging (M.R.I.). M.R.I. is also used to map brain structure. The techniques of functional brain mapping and computational morphometrics depend on high performance scanners and a validated set of analytic statistical procedures that generate reproducible data and meaningful inferences from brain scanning data. The motor system presents a good paradigm to illustrate advances made by scanning towards an understanding of plasticity at the level of brain areas. The normal motor system is organized in a nested hierarchy. Recovery from paralysis caused by internal capsule strokes involves functional reorganization manifesting itself as changed patterns of activity in the component brain areas of the normal motor system. The pattern of plastic modification depends in part on patterns of residual or disturbed connectivity after brain injury. Therapeutic manipulations in patients with Parkinson's disease using deep brain stimulation, dopaminergic agents or fetal mesencephalic transplantation provide a means to examine mechanisms underpinning

  12. Functional network organization of the human brain.

    Science.gov (United States)

    Power, Jonathan D; Cohen, Alexander L; Nelson, Steven M; Wig, Gagan S; Barnes, Kelly Anne; Church, Jessica A; Vogel, Alecia C; Laumann, Timothy O; Miezin, Fran M; Schlaggar, Bradley L; Petersen, Steven E

    2011-11-17

    Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships. These graphs contain many subgraphs in good agreement with known functional brain systems. Other subgraphs lack established functional identities; we suggest possible functional characteristics for these subgraphs. Further, graph measures of the areal network indicate that the default mode subgraph shares network properties with sensory and motor subgraphs: it is internally integrated but isolated from other subgraphs, much like a "processing" system. The modified voxelwise graph also reveals spatial motifs in the patterning of systems across the cortex.

  13. Physiological functions of brain metallothionein

    Energy Technology Data Exchange (ETDEWEB)

    Yasutake, Akira [National Inst. for Minamata Disease, Kumamoto (Japan)

    2000-02-01

    It has been known that the brain has a certain kind of metallothinein (MT)-3 that has not been found in other tissues.This evidence is only based on the data of mRNA level. In this study, isolation method and quantification method which allows specific determination of MT-3 were developed. The cerebrum and cerebellum were removed from rats exposed to mercury vapor for 24 hours to induce MT-3 and Hg concentration, which reflects the concentration of MT-3 in their supernatants was determined. Then, each supernatant was applied onto FPLC column chromatography and Hg concentration of each fraction was determined. Since the molecular weight of MT-3 was slightly larger than MT-1, MT-2, its isolation was conducted using gel filtration chromatography. When the two columns were linked, MT-3 obtained from the brain of MT-null mouse and MT-1/2 from the kidney of wild mouse could be isolated without any overlapping and it was indicated that the larger MT-3 was eluted in a fraction earlier than the others. Whereas for Hg-MT sample from wild mouse brain, which includes all MT isomers, there appeared two peaks corresponding to MT-3 and MT-1/2, respectively, showing that isolation and quantification of MT-3 using a linked column were possible. It was demonstrated that MT-3 occupies 70-80% of the total amount of MT in wild mouse brain and the total amount in the MT-null brain was about 80% of that of the wild. Therefore, the absolute amount of MT- 3 was thought to be not different between the wild and MT-null mouse. Since detection threshold of Hg for this apparatus was 0.2 ng (1 pmole), that for MT was estimated to be 0.1 pmole because 10 Hg atoms are bound to one MT. Therefore, it is thought the sensitivity of this method is higher than that of UV detection method. (M.N.)

  14. Enhancing NMDA Receptor Function: Recent Progress on Allosteric Modulators

    Science.gov (United States)

    2017-01-01

    The N-methyl-D-aspartate receptors (NMDARs) are subtype glutamate receptors that play important roles in excitatory neurotransmission and synaptic plasticity. Their hypo- or hyperactivation are proposed to contribute to the genesis or progression of various brain diseases, including stroke, schizophrenia, depression, and Alzheimer's disease. Past efforts in targeting NMDARs for therapeutic intervention have largely been on inhibitors of NMDARs. In light of the discovery of NMDAR hypofunction in psychiatric disorders and perhaps Alzheimer's disease, efforts in boosting NMDAR activity/functions have surged in recent years. In this review, we will focus on enhancing NMDAR functions, especially on the recent progress in the generation of subunit-selective, allosteric positive modulators (PAMs) of NMDARs. We shall also discuss the usefulness of these newly developed NMDAR-PAMs. PMID:28163934

  15. Enhancing NMDA Receptor Function: Recent Progress on Allosteric Modulators

    Directory of Open Access Journals (Sweden)

    Lulu Yao

    2017-01-01

    Full Text Available The N-methyl-D-aspartate receptors (NMDARs are subtype glutamate receptors that play important roles in excitatory neurotransmission and synaptic plasticity. Their hypo- or hyperactivation are proposed to contribute to the genesis or progression of various brain diseases, including stroke, schizophrenia, depression, and Alzheimer’s disease. Past efforts in targeting NMDARs for therapeutic intervention have largely been on inhibitors of NMDARs. In light of the discovery of NMDAR hypofunction in psychiatric disorders and perhaps Alzheimer’s disease, efforts in boosting NMDAR activity/functions have surged in recent years. In this review, we will focus on enhancing NMDAR functions, especially on the recent progress in the generation of subunit-selective, allosteric positive modulators (PAMs of NMDARs. We shall also discuss the usefulness of these newly developed NMDAR-PAMs.

  16. Understanding entangled cerebral networks: A prerequisite for restoring brain function with brain-computer interfaces

    Directory of Open Access Journals (Sweden)

    Emmanuel eMandonnet

    2014-05-01

    Full Text Available Historically, cerebral processing has been conceptualized as a framework based on statically localized functions. However, a growing amount of evidence supports a hodotopical (delocalized and flexible organization. A number of studies have reported absence of a permanent neurological deficit after massive surgical resections of eloquent brain tissue. These results highlight the tremendous plastic potential of the brain. Understanding anatomo-functional correlates underlying this cerebral reorganization is a prerequisite to restore brain functions through brain-computer interfaces (BCIs in patients with cerebral diseases, or even to potentiate brain functions in healthy individuals. Here, we review current knowledge of neural networks that could be utilized in the BCIs that enable movements and language. To this end, intraoperative electrical stimulation in awake patients provides valuable information on the cerebral functional maps, their connectomics and plasticity. Overall, these studies indicate that the complex cerebral circuitry that underpins interactions between action, cognition and behavior should be throughly investigated before progress in BCI approaches can be achieved.

  17. Scale-Free Brain Functional Networks

    Science.gov (United States)

    Eguíluz, Victor M.; Chialvo, Dante R.; Cecchi, Guillermo A.; Baliki, Marwan; Apkarian, A. Vania

    2005-01-01

    Functional magnetic resonance imaging is used to extract functional networks connecting correlated human brain sites. Analysis of the resulting networks in different tasks shows that (a)the distribution of functional connections, and the probability of finding a link versus distance are both scale-free, (b)the characteristic path length is small and comparable with those of equivalent random networks, and (c)the clustering coefficient is orders of magnitude larger than those of equivalent random networks. All these properties, typical of scale-free small-world networks, reflect important functional information about brain states.

  18. Brain plasticity and recovery of cognitive functions

    Directory of Open Access Journals (Sweden)

    Anja Čuš

    2011-10-01

    Full Text Available Through its capacity of plastic changes, the adult brain enables successful dealing with new demands of everyday life and recovery after an acquired brain damage either spontaneously or by the help of rehabilitation interventions. Studies which explored the effects of cognitive training in the normal population report on different types of changes in the performance of cognitive tasks as well as different types of changes in brain activation patterns.Following practice, brain activation can change in its extent, intensity or location, while cognitive processes can become more efficient or can be replaced by different processes.After acquired brain damage plastic changes are somewhat different. After the injury, the damaged brain area can either gradually regain its previous function, or different brain regions are recruited to perform that function.Studies of spontaneous and guided recovery of cognitive functions have revealed both types of plastic changes that follow each other, as well as significant correlations between these changes and improvement on the behavioural level.

  19. Staging neurodegenerative disorders: structural, regional, biomarker, and functional progressions.

    Science.gov (United States)

    Archer, Trevor; Kostrzewa, Richard M; Beninger, Richard J; Palomo, Tomas

    2011-02-01

    The notion of staging in the neurodegenerative disorders is modulated by the constant and progressive loss of several aspects of brain structural integrity, circuitry, and neuronal processes. These destructive processes eventually remove individuals' abilities to perform at sufficient and necessary functional capacity at several levels of disease severity. The classification of (a) patients on the basis of diagnosis, risk prognosis, and intervention outcome, forms the basis of clinical staging, and (b) laboratory animals on the basis of animal model of brain disorder, extent of insult, and dysfunctional expression, provides the components for the clinical staging and preclinical staging, respectively, expressing associated epidemiological, biological, and genetic characteristics. The major focus of clinical staging in the present account stems from the fundamental notions of Braak staging as they describe the course and eventual prognosis for Alzheimer's disease, Lewy Body dementia, and Parkinson's disease. Mild cognitive impairment, which expresses the decline in episodic and semantic memory performance below the age-adjusted normal range without marked loss of global cognition or activities of daily living, and the applications of longitudinal magnetic resonance imaging, major instruments for the monitoring of either disease progression in dementia, present important challenges for staging concepts. Although Braak notions present the essential basis for further developments, current staging conceptualizations seem inadequate to comply with the massive influx of information dealing with neurodegenerative processes in brain, advanced both under clinical realities, and discoveries in the laboratory setting. The contributions of various biomarkers of disease progression, e.g., amyloid precursor protein, and neurotransmitter system imbalances, e.g., dopamine receptor supersensitivity and interactive propensities, await their incorporation into the existing staging

  20. Dynamic functional brain networks involved in simple visual discrimination learning.

    Science.gov (United States)

    Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis

    2014-10-01

    Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Thyroid, brain and mood modulation in affective disorder: insights from molecular research and functional brain imaging.

    Science.gov (United States)

    Bauer, M; London, E D; Silverman, D H; Rasgon, N; Kirchheiner, J; Whybrow, P C

    2003-11-01

    The efficacy resulting from adjunctive use of supraphysiological doses of levothyroxine has emerged as a promising approach to therapy and prophylaxis for refractory mood disorders. Most patients with mood disorders who receive treatment with supraphysiological doses of levothyroxine have normal peripheral thyroid hormone levels, and also respond differently to the hormone and tolerate it better than healthy individuals and patients with primary thyroid diseases. Progress in molecular and functional brain imaging techniques has provided a new understanding of these phenomena, illuminating the relationship between thyroid function, mood modulation and behavior. Thyroid hormones are widely distributed in the brain and have a multitude of effects on the central nervous system. Notably many of the limbic system structures where thyroid hormone receptors are prevalent have been implicated in the pathogenesis of mood disorders. The influence of the thyroid system on neurotransmitters (particularly serotonin and norepinephrine), which putatively play a major role in the regulation of mood and behavior, may contribute to the mechanisms of mood modulation. Recent functional brain imaging studies using positron emission tomography (PET) with [ (18)F]-fluorodeoxyglucose demonstrated that thyroid hormone treatment with levothyroxine affects regional brain metabolism in patients with hypothyroidism and bipolar disorder. Theses studies confirm that thyroid hormones are active in modulating metabolic function in the mature adult brain, and provide intriging neuroanatomic clues that may guide future research.

  2. DHA effects in brain development and function

    DEFF Research Database (Denmark)

    Lauritzen, Lotte; Brambilla, Paola; Mazzocchi, Allesandra

    2016-01-01

    justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects......Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since...... the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies...

  3. [Brain mechanisms of male sexual function].

    Science.gov (United States)

    Wang, Ying; Dou, Xin; Li, Jun-Fa; Luo, Yan-Lin

    2011-08-01

    In this paper, we reviewed the brain imaging studies of male sexual function in recent years from three aspects: the brain mechanism of normal sexual function, the brain mechanism of sexual dysfunction, and the mechanism of drug therapy for sexual dysfunction. Studies show that the development stages of male sexual activities, such as the excitement phase, plateau phase and orgasm phase, are controlled by different neural networks. The mesodiencephalic transition zone may play an important role in the start up of male ejaculation. There are significant differences between sexual dysfunction males and normal males in activation patterns of the brain in sexual arousal. The medial orbitofrontal cortex and inferior frontal gyrus in the abnormal activation pattern are correlated with sexual dysfunction males in sexual arousal. Serum testosterone and morphine are commonly used drugs for male sexual dysfunction, whose mechanisms are to alter the activating levels of the medial orbitofrontal cortex, insula, claustrum and inferior temporal gyrus.

  4. Exercise Benefits Brain Function: The Monoamine Connection

    OpenAIRE

    Tzu-Wei Lin; Yu-Min Kuo

    2013-01-01

    The beneficial effects of exercise on brain function have been demonstrated in animal models and in a growing number of clinical studies on humans. There are multiple mechanisms that account for the brain-enhancing effects of exercise, including neuroinflammation, vascularization, antioxidation, energy adaptation, and regulations on neurotrophic factors and neurotransmitters. Dopamine (DA), noradrenaline (NE), and serotonin (5-HT) are the three major monoamine neurotransmitters that are known...

  5. Toward discovery science of human brain function.

    NARCIS (Netherlands)

    Biswal, B.B.; Mennes, M.J.J.; Zuo, X.N.; Gohel, S.; Kelly, C.; Smith, S.M.; Beckmann, C.F.; Adelstein, J.S.; Buckner, R.L.; Colcombe, S.; Dogonowski, A.M.; Ernst, M.; Fair, D.; Hampson, M.; Hoptman, M.J.; Hyde, J.S.; Kiviniemi, V.J.; Kotter, R.; Li, S.J.; Lin, C.P.; Lowe, M.J.; Mackay, C.; Madden, D.J.; Madsen, K.H.; Margulies, D.S.; Mayberg, H.S.; McMahon, K.; Monk, C.S.; Mostofsky, S.H.; Nagel, B.J.; Pekar, J.J.; Peltier, S.J.; Petersen, S.E.; Riedl, V.; Rombouts, S.A.R.B.; Rypma, B.; Schlaggar, B.L.; Schmidt, S.; Seidler, R.D.; Siegle, G.J.; Sorg, C.; Teng, G.J.; Veijola, J.; Villringer, A.; Walter, M.; Wang, L.; Weng, X.C.; Whitfield-Gabrieli, S.; Williamson, P.; Windischberger, C.; Zang, Y.F.; Zhang, H.Y.; Castellanos, F.X.; Milham, M.P.

    2010-01-01

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a

  6. Toward discovery science of human brain function.

    NARCIS (Netherlands)

    Biswal, B.B.; Mennes, M.; Zuo, X.N.; Gohel, S.; Kelly, C.; Smith, S.M.; Beckmann, C.F.; Adelstein, J.S.; Buckner, R.L.; Colcombe, S.; Dogonowski, A.M.; Ernst, M.; Fair, D.; Hampson, M.; Hoptman, M.J.; Hyde, J.S.; Kiviniemi, V.J.; Kotter, R.; Li, S.J.; Lin, C.P.; Lowe, M.J.; Mackay, C.; Madden, D.J.; Madsen, K.H.; Margulies, D.S.; Mayberg, H.S.; McMahon, K.; Monk, C.S.; Mostofsky, S.H.; Nagel, B.J.; Pekar, J.J.; Peltier, S.J.; Petersen, S.E.; Riedl, V.; Rombouts, S.A.; Rypma, B.; Schlaggar, B.L.; Schmidt, S.; Seidler, R.D.; Siegle, G.J.; Sorg, C.; Teng, G.J.; Veijola, J.; Villringer, A.; Walter, M.; Wang, L.; Weng, X.C.; Whitfield-Gabrieli, S.; Williamson, P.; Windischberger, C.; Zang, Y.F.; Zhang, H.Y.; Castellanos, F.X.; Milham, M.P.

    2010-01-01

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a pr

  7. Executive Functioning after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2008-07-01

    Full Text Available The Behavior Rating Inventory of Executive Function (BRIEF, a caregiver-report questionnaire, was used to measure changes in executive function in the first year after traumatic brain injury (TBI in a study of children, aged 5 to 15 years, at University of Minnesota, Minneapolis, and Johns Hopkins University School of Medicine, Baltimore, MD.

  8. Toward discovery science of human brain function

    DEFF Research Database (Denmark)

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian

    2010-01-01

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a...

  9. Prospects for optogenetic augmentation of brain function

    Directory of Open Access Journals (Sweden)

    Sarah eJarvis

    2015-11-01

    Full Text Available The ability to optically control neural activity opens up possibilities for the restoration of normal function following neurological disorders. The temporal precision, spatial resolution and neuronal specificity that optogenetics offers is unequalled by other available methods, so will it be suitable for not only restoring but also extending brain function? As the first demonstrations of optically ``implanted'' novel memories emerge, we examine the suitability of optogenetics as a technique for extending neural function. While optogenetics is an effective tool for altering neural activity, the largest impediment for optogenetics in neural augmentation is our systems level understanding of brain function. Furthermore, a number of clinical limitations currently remain as substantial hurdles for the applications proposed. While neurotechnologies for treating brain disorders and interfacing with prosthetics have advanced rapidly in the past few years, partially addressing some of these critical problems, optogenetics is not yet suitable for use in humans. Instead we conclude that for the immediate future, optogenetics is the neurological equivalent of the 3D printer: its flexibility providing an ideal tool for testing and prototyping solutions for treating brain disorders and augmenting brain function.

  10. Cognitive performance after first ever stroke related to progression of vascular brain damage: a 2 year follow up CT scan study

    OpenAIRE

    Rasquin, S; Verhey, F; Lousberg, R.; Lodder, J

    2005-01-01

    Background: Stroke is one of the most common causes of cognitive impairment in the elderly. Ischaemic brain damage (white matter lesions and silent infarcts) progresses in a substantial number of stroke patients. The aim of this study was to investigate whether the progression of ischaemic brain damage is associated with cognitive functioning after first ever stroke.

  11. Tideglusib reduces progression of brain atrophy in progressive supranuclear palsy in a randomized trial.

    Science.gov (United States)

    Höglinger, Günter U; Huppertz, Hans-Jürgen; Wagenpfeil, Stefan; Andrés, María V; Belloch, Vincente; León, Teresa; Del Ser, Teodoro

    2014-04-01

    It is believed that glycogen synthase kinase-3 hyperphosphorylates tau protein in progressive supranuclear palsy (PSP). The Tau Restoration on PSP (TAUROS) trial assessed the glycogen synthase kinase-3 inhibitor tideglusib as potential treatment. For the magnetic resonance imaging (MRI) substudy reported here, we assessed the progression of brain atrophy. TAUROS was a multinational, phase 2, double-blind, placebo-controlled trial in patients with mild-to-moderate PSP who were treated with oral tideglusib (600 mg or 800 mg daily) or with placebo for 1 year. A subset of patients underwent baseline and 52-week MRI. Automated, observer-independent, atlas-based, and mask-based volumetry was done on high-resolution, T1-weighted, three-dimensional data. For primary outcomes, progression of atrophy was compared both globally (brain, cerebrum) and regionally (third ventricle, midbrain, pons) between the active and placebo groups (Bonferroni correction). For secondary outcomes, 15 additional brain structures were explored (Benjamini & Yekutieli correction). In total, MRIs from 37 patient were studied (placebo group, N = 9; tideglusib 600 mg group, N = 19; tideglusib 800 mg group, N = 9). The groups compared well in their demographic characteristics. Clinical results showed no effect of tideglusib over placebo. Progression of atrophy was significantly lower in the active group than in the placebo group for the brain (mean ± standard error of the mean: -1.3% ± 1.4% vs. -3.1% ± 2.3%, respectively), cerebrum (-1.3% ± 1.5% vs. -3.2% ± 2.1%, respectively), parietal lobe (-1.6% ± 1.9% vs. -4.1% ± 3.0%, respectively), and occipital lobe (-0.3% ± 1.8% vs. -2.7% ± 3.2%, respectively). A trend toward reduced atrophy also was observed in the frontal lobe, hippocampus, caudate nucleus, midbrain, and brainstem. In patients with PSP, tideglusib reduced the progression of atrophy in the whole brain, particularly in the parietal and occipital lobes.

  12. Advantages in functional imaging of the brain

    Directory of Open Access Journals (Sweden)

    Walter eMier

    2015-05-01

    Full Text Available As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET and functional magnetic resonance imaging (fMRI, two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. In the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine.

  13. Progress on nuclear modifications of structure functions

    CERN Document Server

    Kumano, S

    2016-01-01

    We report progress on nuclear structure functions, especially on their nuclear modifications and a new tensor structure function for the deuteron. To understand nuclear structure functions is an important step toward describing nuclei and QCD matters from low to high densities and from low to high energies in terms of fundamental quark and gluon degrees of freedom beyond conventional hadron and nuclear physics. It is also practically important for understanding new phenomena in high-energy heavy-ion collisions at RHIC and LHC. Furthermore, since systematic errors of current neutrino-oscillation experiments are dominated by uncertainties of neutrino-nucleus interactions, such studies are valuable for finding new physics beyond current framework. Next, a new tensor-polarized structure function $b_1$ is discussed for the deuteron. There was a measurement by HERMES; however, its data are inconsistent with the conventional convolution estimate based on the standard deuteron model with D-state admixture. This fact ...

  14. Progress and Prospect of Functional Rice Researches

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With the rapid development of economy and the increase of people's living standards, functional foods are being gradually embraced by consumers and have a great growth potential. Rice is the main staple food in China. It plays an important role in promoting people's health and in improving public nutrition, and therefore there is an ever-increasing consumer demand for rice for its functional quality. This study introduces the concept of functional rice and summarizes the current research progress on this topic and the application of breeding strategies including traditional breeding, induced mutagenesis, molecular marker-assisted selection and transgenic engineering in the research of a new generation of functional rice that posses health benefits, therapeutic values, bioreactor properties, and other unique functions. We then point out the prospect of functional rice from the point of view of social development, germplasm innovation,breeding of functional rice by biological technology and the test of active material related functional rice. We conclude that developing and marketing of functional rice is becoming a subject of great importance for research and is to be the focus of research in future.

  15. Strengthening connections: functional connectivity and brain plasticity.

    Science.gov (United States)

    Kelly, Clare; Castellanos, F Xavier

    2014-03-01

    The ascendancy of functional neuroimaging has facilitated the addition of network-based approaches to the neuropsychologist's toolbox for evaluating the sequelae of brain insult. In particular, intrinsic functional connectivity (iFC) mapping of resting state fMRI (R-fMRI) data constitutes an ideal approach to measuring macro-scale networks in the human brain. Beyond the value of iFC mapping for charting how the functional topography of the brain is altered by insult and injury, iFC analyses can provide insights into experience-dependent plasticity at the macro level of large-scale functional networks. Such insights are foundational to the design of training and remediation interventions that will best facilitate recovery of function. In this review, we consider what is currently known about the origin and function of iFC in the brain, and how this knowledge is informative in neuropsychological settings. We then summarize studies that have examined experience-driven plasticity of iFC in healthy control participants, and frame these findings in terms of a schema that may aid in the interpretation of results and the generation of hypotheses for rehabilitative studies. Finally, we outline some caveats to the R-fMRI approach, as well as some current developments that are likely to bolster the utility of the iFC paradigm for neuropsychology.

  16. Brain training in progress: a review of trainability in healthy seniors

    Directory of Open Access Journals (Sweden)

    Jessika I. V. Buitenweg

    2012-06-01

    Full Text Available The cognitive deterioration associated with aging is accompanied by structural alterations and loss of functionality of the frontostriatal dopamine system. The question arises how such deleterious cognitive effects could be countered. Brain training, currently highly popular among young and old alike, promises that users will improve on certain neurocognitive skills, and this has indeed been confirmed in a number of studies. Based on these results, it seems reasonable to expect beneficial effects of brain training in the elderly as well. A selective review of the existing literature suggests, however, that the results are neither robust nor consistent, and that transfer and sustained effects thus far appear limited. Based on this review, we argue for a series of elements that hold potential for progress in successful types of brain training: (i including flexibility and novelty as features of the training, (ii focusing on a number of promising, yet largely unexplored domains, such as decision-making and memory strategy training, and (iii tailoring the training adaptively to the level and progress of the individual. We also emphasize the need for covariance-based MRI methods in linking structural and functional changes in the aging brain to individual differences in neurocognitive efficiency and trainability in order to further uncover the underlying mechanisms.

  17. Visceral Afferent Pathways and Functional Brain Imaging

    Directory of Open Access Journals (Sweden)

    Stuart W.G. Derbyshire

    2003-01-01

    Full Text Available The application of functional imaging to study painful sensations has generated considerable interest regarding insight into brain dysfunction that may be responsible for functional pain such as that suffered in patients with irritable bowel syndrome (IBS. This review provides a brief introduction to the development of brain science as it relates to pain processing and a snapshot of recent functional imaging results with somatic and visceral pain. Particular emphasis is placed on current hypotheses regarding dysfunction of the brain-gut axis in IBS patients. There are clear and interpretable differences in brain activation following somatic as compared with visceral noxious sensation. Noxious visceral distension, particularly of the lower gastrointestinal tract, activates regions associated with unpleasant affect and autonomic responses. Noxious somatic sensation, in contrast, activates regions associated with cognition and skeletomotor responses. Differences between IBS patients and control subjects, however, were far less clear and interpretable. While this is in part due to the newness of this field, it also reflects weaknesses inherent within the current understanding of IBS. Future use of functional imaging to examine IBS and other functional disorders will be more likely to succeed by describing clear theoretical and clinical endpoints.

  18. Progressive Multifocal Leukoencephalopathy: Endemic Viruses and Lethal Brain Disease.

    Science.gov (United States)

    Haley, Sheila A; Atwood, Walter J

    2017-06-21

    In 1971, the first human polyomavirus was isolated from the brain of a patient who died from a rapidly progressing demyelinating disease known as progressive multifocal leukoencephalopathy. The virus was named JC virus after the initials of the patient. In that same year a second human polyomavirus was discovered in the urine of a kidney transplant patient and named BK virus. In the intervening years it became clear that both viruses were widespread in the human population but only rarely caused disease. The past decade has witnessed the discovery of eleven new human polyomaviruses, two of which cause unusual and rare cancers. We present an overview of the history of these viruses and the evolution of JC polyomavirus-induced progressive multifocal leukoencephalopathy over three different epochs.Wereview what is currently known about JC polyomavirus, what is suspected, and what remains to be done to understand the biology of how this mostly harmless endemic virus gives rise to lethal disease. Expected final online publication date for the Annual Review of Virology Volume 4 is September 29, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  19. Functional interrelationship of brain aging and delirium.

    Science.gov (United States)

    Rapazzini, Piero

    2016-02-01

    Theories on the development of delirium are complementary rather than competing and they may relate to each other. Here, we highlight that similar alterations in functional brain connectivity underlie both the observed age-related deficits and episodes of delirium. The default mode network (DMN) is a group of brain regions showing a greater level of activity at rest than during attention-based tasks. These regions include the posteromedial-anteromedial cortices and temporoparietal junctions. Evidence suggests that awareness is subserved through higher order neurons associated with the DMN. By using functional MRI disruption of DMN, connectivity and weaker task-induced deactivations of these regions are observed both in age-related cognitive impairment and during episodes of delirium. We can assume that an acute up-regulation of inhibitory tone within the brain acts to further disrupt network connectivity in vulnerable patients, who are predisposed by a reduced baseline connectivity, and triggers the delirium.

  20. New progress in brain aging and its related neurological diseases

    Directory of Open Access Journals (Sweden)

    Ming-wei ZHU

    2014-03-01

    Full Text Available Brain aging-related neurological diseases including Alzheimer's disease (AD, Parkinson's disease (PD and cerebral amyloid angiopathy (CAA have become one of the major diseases endangering the health of old people in China. Although the mechanism of brain aging and pathogenesis of its related neurodegenerative diseases remain unclear, protein pathological studies such as tau, α-synuclein (α-Syn, TDP-43 and amyloid-β protein (Aβ based on brain tissue bank and case registration database are opening the door to solve the mystery in the brain aging process and unlock pathogenesis of aging-related neurodegenerative diseases. Research on functional neuroimaging including 11C-PIB PET and 18F-FDDNP PET in Alzheimer's disease and 18F-FDG PET in Parkinson's disease, and biomarkers such as total-tau, phosphorylated-tau, and the 42 amino acid fragment of β-amyloid in cerebrospinal fluid (CSF in the preclinical stages of Alzheimer's disease now become hot topics in the field of elderly dementia and movement disorders. Clinicopathological correlation research of Alzheimer's disease, Parkinson's disease and cerebral amyloid angiopathy is also one of focuses in the geriatric neurological diseases. doi: 10.3969/j.issn.1672-6731.2014.03.004

  1. Progressive gender differences of structural brain networks in healthy adults: a longitudinal, diffusion tensor imaging study.

    Directory of Open Access Journals (Sweden)

    Yu Sun

    Full Text Available Sexual dimorphism in the brain maturation during childhood and adolescence has been repeatedly documented, which may underlie the differences in behaviors and cognitive performance. However, our understanding of how gender modulates the development of structural connectome in healthy adults is still not entirely clear. Here we utilized graph theoretical analysis of longitudinal diffusion tensor imaging data over a five-year period to investigate the progressive gender differences of brain network topology. The brain networks of both genders showed prominent economical "small-world" architecture (high local clustering and short paths between nodes. Additional analysis revealed a more economical "small-world" architecture in females as well as a greater global efficiency in males regardless of scan time point. At the regional level, both increased and decreased efficiency were found across the cerebral cortex for both males and females, indicating a compensation mechanism of cortical network reorganization over time. Furthermore, we found that weighted clustering coefficient exhibited significant gender-time interactions, implying different development trends between males and females. Moreover, several specific brain regions (e.g., insula, superior temporal gyrus, cuneus, putamen, and parahippocampal gyrus exhibited different development trajectories between males and females. Our findings further prove the presence of sexual dimorphism in brain structures that may underlie gender differences in behavioral and cognitive functioning. The sex-specific progress trajectories in brain connectome revealed in this work provide an important foundation to delineate the gender related pathophysiological mechanisms in various neuropsychiatric disorders, which may potentially guide the development of sex-specific treatments for these devastating brain disorders.

  2. Integrating Retinoic Acid Signaling with Brain Function

    Science.gov (United States)

    Luo, Tuanlian; Wagner, Elisabeth; Drager, Ursula C.

    2009-01-01

    The vitamin A derivative retinoic acid (RA) regulates the transcription of about a 6th of the human genome. Compelling evidence indicates a role of RA in cognitive activities, but its integration with the molecular mechanisms of higher brain functions is not known. Here we describe the properties of RA signaling in the mouse, which point to…

  3. DHA Effects in Brain Development and Function

    Directory of Open Access Journals (Sweden)

    Lotte Lauritzen

    2016-01-01

    Full Text Available Docosahexaenoic acid (DHA is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders.

  4. DHA Effects in Brain Development and Function.

    Science.gov (United States)

    Lauritzen, Lotte; Brambilla, Paolo; Mazzocchi, Alessandra; Harsløf, Laurine B S; Ciappolino, Valentina; Agostoni, Carlo

    2016-01-04

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders.

  5. The Research Progress in Brain Functional Activities under Chinese and English Language Tasks with fMRI%中英语言任务执行时大脑功能活动的fMRI研究进展

    Institute of Scientific and Technical Information of China (English)

    马恒芬; 于建渤; 李恩中

    2011-01-01

    应用FMRI技术探讨大脑功能活动,已成为重要的研究手段.通过对有关文献的回顾性分析,探讨母语为中文或英文受试者以及失读症和颞叶性癫痫等患者在中英文双语学习过程中大脑功能活动的变化,认识双语刺激下不同大脑功能活动的神经机制,旨在为未来的双语学习、教学以及语言康复提供有效的指导.%It has become an important research tool to investigate brain activities using fMRI technology.This article analyzed the changes in the brain functional activities of the subjects whose mother tongues are Chinese or English, and of the patients who have suffered from dyslexia and temporal lobe epilepsy during the learning processes of bilingual languages.It will provide effective guidance, to understand the neural mechanism of different brain functional activities under the stimulation of bilingual languages, for bilingual learning, teaching and language rehabilitation in the future.

  6. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  7. Raven's progressive matrices performance in adults with traumatic brain injury.

    Science.gov (United States)

    Hiscock, Merrill; Inch, Roxanne; Gleason, Angela

    2002-01-01

    Raven's Progressive Matrices (RPM), a widely used test of reasoning, is sensitive to aging, but it has not proven to be helpful in the assessment of acquired focal or lateralized brain damage. Clinical experience suggests that the test is insensitive to traumatic brain injury (TBI), but the data are difficult to interpret because of rapid inflation of norms over time (the Flynn effect). In examining data from 64 adult patients with TBI who were administered the Standard RPM between 1981 and 1989, we used previous and subsequent norms conjointly to adjust for the Flynn effect. Anterograde and retrograde adjustment of norms led to highly convergent results. After adjustment for the Flynn effect, RPM performance was comparable to Wechsler IQ, significantly below estimated premorbid IQ, and nearly 2 SD above performance on 2 TBI-sensitive neuropsychological tests. We conclude that RPM performance is neither more nor less sensitive than Wechsler IQ to the consequences of TBI in the adult, but erroneous conclusions are likely to be reached if the Flynn effect is not taken into account.

  8. Brain Perfusion in Corticobasal Syndrome with Progressive Aphasia

    Directory of Open Access Journals (Sweden)

    Yoshitake Abe

    2016-04-01

    Full Text Available Background: Brain perfusion may differ between patients with corticobasal syndrome (CBS with and without aphasia. Methods: Twenty-six (9 males and 17 females; mean age 76 ± 5.3 years patients with CBS were enrolled in the study. Brain MRI and single-photon emission computed tomography were performed in all subjects. Language was evaluated using the Standard Language Test of Aphasia. The patients were divided into two subgroups according to the presence or absence of progressive aphasia. Differences in the regional cerebral blood flow (rCBF between the two groups were detected based on voxel-by-voxel group analysis using Statistical Parametric Mapping 8. Results: All patients exhibited asymmetric motor symptoms and signs, including limb apraxia, bradykinesia, and akinetic rigidity. Of 26 patients, 9 had a clinically obvious language disturbance, characterized as nonfluent aphasia. Almost all CBS patients with aphasia exhibited cortical atrophy predominantly in the left frontal and temporal lobes with widening of the Sylvian fissure on MRI. The rCBF in the left middle frontal gyrus differed significantly between CBS patients with and without aphasia. Conclusion: CBS patients with aphasia exhibit motor symptoms predominantly on the right side and cortical atrophy mainly in the left perisylvian cortices. In particular, left frontal dysfunction might be related to nonfluent aphasia in CBS.

  9. Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia.

    Science.gov (United States)

    Mandelli, Maria Luisa; Vilaplana, Eduard; Brown, Jesse A; Hubbard, H Isabel; Binney, Richard J; Attygalle, Suneth; Santos-Santos, Miguel A; Miller, Zachary A; Pakvasa, Mikhail; Henry, Maya L; Rosen, Howard J; Henry, Roland G; Rabinovici, Gil D; Miller, Bruce L; Seeley, William W; Gorno-Tempini, Maria Luisa

    2016-10-01

    Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. To date, no longitudinal neuroimaging study has tested this hypothesis in vivo in frontotemporal dementia spectrum disorders. The aim of this study was to demonstrate that longitudinal progression of atrophy in non-fluent/agrammatic variant primary progressive aphasia spreads over time from a syndrome-specific epicentre to additional regions, based on their connectivity to the epicentre in healthy control subjects. The syndrome-specific epicentre of the non-fluent/agrammatic variant of primary progressive aphasia was derived in a group of 10 mildly affected patients (clinical dementia rating equal to 0) using voxel-based morphometry. From this region, the inferior frontal gyrus (pars opercularis), we derived functional and structural connectivity maps in healthy controls (n = 30) using functional magnetic resonance imaging at rest and diffusion-weighted imaging tractography. Graph theory analysis was applied to derive functional network features. Atrophy progression was calculated using voxel-based morphometry longitudinal analysis on 34 non-fluent/agrammatic patients. Correlation analyses were performed to compare volume changes in patients with connectivity measures of the healthy functional and structural speech/language network. The default mode network was used as a control network. From the epicentre, the healthy functional connectivity network included the left supplementary motor area and the prefrontal, inferior parietal and temporal regions, which were connected through the aslant, superior longitudinal and arcuate fasciculi. Longitudinal grey and white matter changes were found in the left language-related regions and in the right inferior frontal gyrus. Functional connectivity strength in the healthy speech/language network, but not in the default network, correlated with

  10. Hierarchical modularity in human brain functional networks

    CERN Document Server

    Meunier, D; Fornito, A; Ersche, K D; Bullmore, E T; 10.3389/neuro.11.037.2009

    2010-01-01

    The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or "modules-within-modules") decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI) in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at ...

  11. Progress on nuclear modifications of structure functions

    Directory of Open Access Journals (Sweden)

    Kumano S.

    2016-01-01

    Full Text Available We report progress on nuclear structure functions, especially on their nuclear modifications and a new tensor structure function for the deuteron. To understand nuclear structure functions is an important step toward describing nuclei and QCD matters from low to high densities and from low to high energies in terms of fundamental quark and gluon degrees of freedom beyond conventional hadron and nuclear physics. It is also practically important for understanding new phenomena in high-energy heavy-ion collisions at RHIC and LHC. Furthermore, since systematic errors of current neutrinooscillation experiments are dominated by uncertainties of neutrino-nucleus interactions, such studies are valuable for finding new physics beyond current framework. Next, a new tensor-polarized structure function b1 is discussed for the deuteron. There was a measurement by HERMES; however, its data are inconsistent with the conventional convolution estimate based on the standard deuteron model with D-state admixture. This fact suggests that a new hadronic phenomenon should exist in the tensor-polarized deuteron at high energies, and it will be experimentally investigated at JLab from the end of 2010’s.

  12. Progression of thanatophagy in cadaver brain and heart tissues

    Directory of Open Access Journals (Sweden)

    Gulnaz T. Javan

    2016-03-01

    Full Text Available Autophagy is an evolutionarily conserved catabolic process for maintaining cellular homeostasis during both normal and stress conditions. Metabolic reprogramming in tissues of dead bodies is inevitable due to chronic ischemia and nutrient deprivation, which are well-known features that stimulate autophagy. Currently, it is not fully elucidated whether postmortem autophagy, also known as thanatophagy, occurs in dead bodies is a function of the time of death. In this study, we tested the hypothesis that thanatophagy would increase in proportion to time elapsed since death for tissues collected from cadavers. Brain and heart tissue from corpses at different time intervals after death were analyzed by Western blot. Densitometry analysis demonstrated that thanatophagy occurred in a manner that was dependent on the time of death. The autophagy-associated proteins, LC3 II, p62, Beclin-1 and Atg7, increased in a time-dependent manner in heart tissues. A potent inducer of autophagy, BNIP3, decreased in the heart tissues as time of death increased, whereas the protein levels increased in brain tissues. However, there was no expression of BNIP3 at extended postmortem intervals in both brain and heart samples. Collectively, the present study demonstrates for the first time that thanatophagy occurs in brain and heart tissues of cadavers in a time-dependent manner. Further, our data suggest that cerebral thanatophagy may occur in a Beclin-1- independent manner. This unprecedented study provides potential insight into thanatophagy as a novel method for the estimation of the time of death in criminal investigationsAbstract: Autophagy is an evolutionarily conserved catabolic process for maintaining cellular homeostasis during both normal and stress conditions. Metabolic reprogramming in tissues of dead bodies is inevitable due to chronic ischemia and nutrient deprivation, which are well-known features that stimulate autophagy. Currently, it is not fully

  13. The influence of brain death on liver function

    NARCIS (Netherlands)

    Olinga, Peter; Hoeven, Joost Alexander Boreas van der; Merema, M.T.; Freund, R.L.; Ploeg, R.J; Groothuis, Geny

    2005-01-01

    Background: In this study, we investigated the influence of brain death on inflammatory response and the effects of brain death on liver function both directly after explantation and after reoxygenation. Methods: The influence of brain death on liver function was studied in rats using a brain death

  14. Progress on the optoelectronic functional organic crystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Organic crystals constructed by pi-conjugated molecules have been paid great attention to in the field of organic optoelectronic materials. The superiorities of these organic crystal materials, such as high thermal stability, highly ordered structure, and high carrier mobility over the amorphous thin film ma-terials, make them attractive candidates for optoelectronic devices. Single crystal with definite struc-ture provides a model to investigate the basic interactions between the molecules (supramolecular interaction), and the relationship between molecular stacking modes and optoelectronic performance (luminescence and carrier mobility). Through modulating molecular arrangement in organic crystal, the luminescence efficiency of organic crystal has exceeded 80% and carrier mobility has been up to the level of 10 cm2·V?1·s?1. Amplified stimulated emission phenomena have been observed in many crys-tals. In this paper, we will emphatically introduce the progress in optoelectronic functional organic crystals and some correlative principle.

  15. Progress on the optoelectronic functional organic crystals

    Institute of Scientific and Technical Information of China (English)

    WANG Huan; XIE ZengQi; Ma YuGuang; Shen JiaCong

    2007-01-01

    Organic crystals constructed by pi-conjugated molecules have been paid great attention to in the field of organic optoelectronic materials. The superiorities of these organic crystal materials, such as high thermal stability, highly ordered structure, and high carrier mobility over the amorphous thin film materials, make them attractive candidates for optoelectronic devices. Single crystal with definite structure provides a model to investigate the basic interactions between the molecules (supramolecular interaction), and the relationship between molecular stacking modes and optoelectronic performance (luminescence and carrier mobility). Through modulating molecular arrangement in organic crystal, the luminescence efficiency of organic crystal has exceeded 80% and carrier mobility has been up to the level of 10 cm2·V-1·s-1. Amplified stimulated emission phenomena have been observed in many crystals. In this paper, we will emphatically introduce the progress in optoelectronic functional organic crystals and some correlative principle.

  16. Functionality predictors in acquired brain damage.

    Science.gov (United States)

    Huertas Hoyas, E; Pedrero Pérez, E J; Águila Maturana, A M; García López-Alberca, S; González Alted, C

    2015-01-01

    Most individuals who have survived an acquired brain injury present consequences affecting the sensorimotor, cognitive, affective or behavioural components. These deficits affect the proper performance of daily living activities. The aim of this study is to identify functional differences between individuals with unilateral acquired brain injury using functional independence, capacity, and performance of daily activities. Descriptive cross-sectional design with a sample of 58 people, with right-sided injury (n=14 TBI; n=15 stroke) or left-sided injury (n = 14 TBI, n = 15 stroke), right handed, and with a mean age of 47 years and time since onset of 4 ± 3.65 years. The functional assessment/functional independence measure (FIM/FAM) and the International Classification of Functioning (ICF) were used for the study. The data showed significant differences (P<.000), and a large size effect (dr=0.78) in the cross-sectional estimates, and point to fewer restrictions for patients with a lesion on their right side. The major differences were in the variables 'speaking' and 'receiving spoken messages' (ICF variables), and 'Expression', 'Writing' and 'intelligible speech' (FIM/FAM variables). In the linear regression analysis, the results showed that only 4 FIM/FAM variables, taken together, predict 44% of the ICF variance, which measures the ability of the individual, and up to 52% of the ICF, which measures the individual's performance. Gait alone predicts a 28% of the variance. It seems that individuals with acquired brain injury in the left hemisphere display important differences regarding functional and communication variables. The motor aspects are an important prognostic factor in functional rehabilitation. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  17. Social functioning in children with brain insult

    Directory of Open Access Journals (Sweden)

    Mardee Greenham

    2010-03-01

    Full Text Available Social dysfunction is commonly reported by survivors of brain insult, and is often rated as the most debilitating of all sequelae, impacting on many areas of daily life, as well as overall quality of life. Within the early brain insult (EBI literature, physical and cognitive domains have been of primary interest and social skills have received scant attention. As a result it remains unclear how common these problems are, and whether factors predictive of recovery (insult severity, lesion location, age at insult, environment in other functional domains (motor, speech, cognition also contribute to social outcome. This study compared social outcomes for children sustaining EBI at different times from gestation to late childhood to determine whether EBI was associated with an increased risk of problems. Children with focal brain insults were categorized according to timing of brain insult: (i Congenital (n = 38: EBI: first–second trimester; (ii Perinatal (n = 33; EBI: third trimester to 1 month post-natal; (iii Infancy (n=23: EBI: 2 months–2 years post-birth; (iv Preschool (n = 19: EBI: 3–6 years; (v Middle Childhood (n = 31: EBI: 7–9 years; and (vi Late Childhood (n = 19: EBI: after age 10. Children’s teachers completed questionnaires measuring social function (Strengths and Difficulties Questionnaire, Walker McConnell Scale of Social Competence and School Adjustment. Results showed that children with EBI were at increased risk for social impairment compared to normative expectations. EBI before age 2 years was associated with most significant social impairment, while children with EBI in the preschool years and in late childhood recorded scores closer to normal. Lesion location and laterality were not predictive of social outcome, and nor was social risk. In contrast, presence of disability (seizures and family function were shown to contribute to aspects of social function.

  18. Functional Recovery After Severe Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Hart, Tessa; Kozlowski, Allan; Whyte, John

    2014-01-01

    OBJECTIVE: To examine person, injury, and treatment characteristics associated with recovery trajectories of people with severe traumatic brain injury (TBI) during inpatient rehabilitation. DESIGN: Observational prospective longitudinal study. SETTING: Two specialized inpatient TBI rehabilitation...... functional levels received more treatment and more treatment was associated with slower recovery, presumably because treatment was allocated according to need. Thus, effects of treatment on outcome could not be disentangled from effects of case mix factors. CONCLUSIONS: FIM gain during inpatient recovery...

  19. When "altering brain function" becomes "mind control".

    Science.gov (United States)

    Koivuniemi, Andrew; Otto, Kevin

    2014-01-01

    Functional neurosurgery has seen a resurgence of interest in surgical treatments for psychiatric illness. Deep brain stimulation (DBS) technology is the preferred tool in the current wave of clinical experiments because it allows clinicians to directly alter the functions of targeted brain regions, in a reversible manner, with the intent of correcting diseases of the mind, such as depression, addiction, anorexia nervosa, dementia, and obsessive compulsive disorder. These promising treatments raise a critical philosophical and humanitarian question. "Under what conditions does 'altering brain function' qualify as 'mind control'?" In order to answer this question one needs a definition of mind control. To this end, we reviewed the relevant philosophical, ethical, and neurosurgical literature in order to create a set of criteria for what constitutes mind control in the context of DBS. We also outline clinical implications of these criteria. Finally, we demonstrate the relevance of the proposed criteria by focusing especially on serendipitous treatments involving DBS, i.e., cases in which an unintended therapeutic benefit occurred. These cases highlight the importance of gaining the consent of the subject for the new therapy in order to avoid committing an act of mind control.

  20. Progress and perspectives on targeting nanoparticles for brain drug delivery

    Directory of Open Access Journals (Sweden)

    Huile Gao

    2016-07-01

    Full Text Available Due to the ability of the blood–brain barrier (BBB to prevent the entry of drugs into the brain, it is a challenge to treat central nervous system disorders pharmacologically. The development of nanotechnology provides potential to overcome this problem. In this review, the barriers to brain-targeted drug delivery are reviewed, including the BBB, blood–brain tumor barrier (BBTB, and nose-to-brain barrier. Delivery strategies are focused on overcoming the BBB, directly targeting diseased cells in the brain, and dual-targeted delivery. The major concerns and perspectives on constructing brain-targeted delivery systems are discussed.

  1. Bystander CPR Helps Save Brain Function After Near-Drowning

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_165984.html Bystander CPR Helps Save Brain Function After Near-Drowning ... likely to recover with good brain function if bystanders immediately begin chest compressions rather than wait for ...

  2. Functional brain networks in schizophrenia: a review

    Directory of Open Access Journals (Sweden)

    Vince D Calhoun

    2009-08-01

    Full Text Available Functional magnetic resonance imaging (fMRI has become a major technique for studying cognitive function and its disruption in mental illness, including schizophrenia. The major proportion of imaging studies focused primarily upon identifying regions which hemodynamic response amplitudes covary with particular stimuli and differentiate between patient and control groups. In addition to such amplitude based comparisons, one can estimate temporal correlations and compute maps of functional connectivity between regions which include the variance associated with event related responses as well as intrinsic fluctuations of hemodynamic activity. Functional connectivity maps can be computed by correlating all voxels with a seed region when a spatial prior is available. An alternative are multivariate decompositions such as independent component analysis (ICA which extract multiple components, each of which is a spatially distinct map of voxels with a common time course. Recent work has shown that these networks are pervasive in relaxed resting and during task performance and hence provide robust measures of intact and disturbed brain activity. This in turn bears the prospect of yielding biomarkers for schizophrenia, which can be described both in terms of disrupted local processing as well as altered global connectivity between large scale networks. In this review we will summarize functional connectivity measures with a focus upon work with ICA and discuss the meaning of intrinsic fluctuations. In addition, examples of how brain networks have been used for classification of disease will be shown. We present work with functional network connectivity, an approach that enables the evaluation of the interplay between multiple networks and how they are affected in disease. We conclude by discussing new variants of ICA for extracting maximally group discriminative networks from data. In summary, it is clear that identification of brain networks and their

  3. Abnormal regional brain function in Parkinson's disease: truth or fiction?

    Science.gov (United States)

    Ma, Yilong; Tang, Chengke; Moeller, James R; Eidelberg, David

    2009-04-01

    Normalization of regional measurements by the global mean is commonly employed to minimize inter-subject variability in functional imaging studies. This practice is based on the assumption that global values do not substantially differ between patient and control groups. In this issue of NeuroImage, Borghammer and colleagues challenge the validity of this assumption. They focus on Parkinson's disease (PD) and use computer simulations to show that lower global values can produce spurious increases in subcortical brain regions. The authors speculate that the increased signal observed in these areas in PD is artefactual and unrelated to localized changes in brain function. In this commentary, we summarize what is currently known of the relationship between regional and global metabolic activity in PD and experimental parkinsonism. We found that early stage PD patients exhibit global values that are virtually identical to those of age-matched healthy subjects. SPM analysis revealed increased normalized metabolic activity in a discrete set of biologically relevant subcortical brain regions. Because of their higher variability, the corresponding absolute regional measures did not differ across the two groups. Longitudinal imaging studies in this population showed that the subcortical elevations in normalized metabolism appeared earlier and progressed faster than did focal cortical or global metabolic reductions. The observed increases in subcortical activity, but not the global changes, correlated with independent clinical measures of disease progression. Multivariate analysis with SSM/PCA further confirmed that the abnormal spatial covariance structure of early PD is dominated by these subcortical increases as opposed to network-related reductions in cortical metabolic activity or global changes. Thus, increased subcortical activity in PD cannot be regarded as a simple artefact of global normalization. Moreover, stability of the normalized measurements, particularly at

  4. Functional brain network changes associated with clinical and biochemical measures of the severity of hepatic encephalopathy.

    Science.gov (United States)

    Jao, Tun; Schröter, Manuel; Chen, Chao-Long; Cheng, Yu-Fan; Lo, Chun-Yi Zac; Chou, Kun-Hsien; Patel, Ameera X; Lin, Wei-Che; Lin, Ching-Po; Bullmore, Edward T

    2015-11-15

    Functional properties of the brain may be associated with changes in complex brain networks. However, little is known about how properties of large-scale functional brain networks may be altered stepwise in patients with disturbance of consciousness, e.g., an encephalopathy. We used resting-state fMRI data on patients suffering from various degrees of hepatic encephalopathy (HE) to explore how topological and spatial network properties of functional brain networks changed at different cognitive and consciousness states. Severity of HE was measured clinically and by neuropsychological tests. Fifty-eight non-alcoholic liver cirrhosis patients and 62 normal controls were studied. Patients were subdivided into liver cirrhosis with no outstanding HE (NoHE, n=23), minimal HE with cognitive impairment only detectable by neuropsychological tests (MHE, n=28), and clinically overt HE (OHE, n=7). From the earliest stage, the NoHE, functional brain networks were progressively more random, less clustered, and less modular. Since the intermediate stage (MHE), increased ammonia level was accompanied by concomitant exponential decay of mean connectivity strength, especially in the primary cortical areas and midline brain structures. Finally, at the OHE stage, there were radical reorganization of the topological centrality-i.e., the relative importance-of the hubs and reorientation of functional connections between nodes. In summary, this study illustrated progressively greater abnormalities in functional brain network organization in patients with clinical and biochemical evidence of more severe hepatic encephalopathy. The early-than-expected brain network dysfunction in cirrhotic patients suggests that brain functional connectivity and network analysis may provide useful and complementary biomarkers for more aggressive and earlier intervention of hepatic encephalopathy. Moreover, the stepwise deterioration of functional brain networks in HE patients may suggest that hierarchical

  5. Non-invasive brain-to-brain interface (BBI: establishing functional links between two brains.

    Directory of Open Access Journals (Sweden)

    Seung-Schik Yoo

    Full Text Available Transcranial focused ultrasound (FUS is capable of modulating the neural activity of specific brain regions, with a potential role as a non-invasive computer-to-brain interface (CBI. In conjunction with the use of brain-to-computer interface (BCI techniques that translate brain function to generate computer commands, we investigated the feasibility of using the FUS-based CBI to non-invasively establish a functional link between the brains of different species (i.e. human and Sprague-Dawley rat, thus creating a brain-to-brain interface (BBI. The implementation was aimed to non-invasively translate the human volunteer's intention to stimulate a rat's brain motor area that is responsible for the tail movement. The volunteer initiated the intention by looking at a strobe light flicker on a computer display, and the degree of synchronization in the electroencephalographic steady-state-visual-evoked-potentials (SSVEP with respect to the strobe frequency was analyzed using a computer. Increased signal amplitude in the SSVEP, indicating the volunteer's intention, triggered the delivery of a burst-mode FUS (350 kHz ultrasound frequency, tone burst duration of 0.5 ms, pulse repetition frequency of 1 kHz, given for 300 msec duration to excite the motor area of an anesthetized rat transcranially. The successful excitation subsequently elicited the tail movement, which was detected by a motion sensor. The interface was achieved at 94.0±3.0% accuracy, with a time delay of 1.59±1.07 sec from the thought-initiation to the creation of the tail movement. Our results demonstrate the feasibility of a computer-mediated BBI that links central neural functions between two biological entities, which may confer unexplored opportunities in the study of neuroscience with potential implications for therapeutic applications.

  6. Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression.

    Science.gov (United States)

    Behnan, Jinan; Isakson, Pauline; Joel, Mrinal; Cilio, Corrado; Langmoen, Iver A; Vik-Mo, Einar O; Badn, Wiaam

    2014-05-01

    The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These brain tumor-derived mesenchymal stem cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro and that the non-MSC population is nontumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild-type GL261 inoculated into green fluorescent protein (GFP)-transgenic mice and GL261-GFP cells inoculated into wild-type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus, we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients.

  7. When Altering Brain Function Becomes Mind Control

    Directory of Open Access Journals (Sweden)

    Andrew Sanford Koivuniemi

    2014-10-01

    Full Text Available Functional neurosurgery has seen a resurgence of interest in surgical treatments for psychiatric illness. Deep brain stimulation (DBS technology is the preferred tool in the current wave of clinical experiments because it allows clinicians to directly alter the functions of targeted brain regions, in a reversible manner, with the intent of correcting diseases of the mind, such as depression, addiction, anorexia nervosa, dementia, and obsessive compulsive disorder. These promising treatments raise a critical philosophical and humanitarian question. Under what conditions does ‘altering brain function’ qualify as ‘mind control’? In order to answer this question one needs a definition of mind control. To this end, we reviewed the relevant philosophical, ethical, and neurosurgical literature in order to create a set of criteria for what constitutes mind control in the context of DBS. We also outline clinical implications of these criteria. Finally, we demonstrate the relevance of the proposed criteria by focusing especially on serendipitous treatments involving DBS, i.e., cases in which an unintended therapeutic benefit occurred. These cases highlight the importance of gaining the consent of the subject for the new therapy in order to avoid committing an act of mind control.

  8. The Big Five default brain: functional evidence.

    Science.gov (United States)

    Sampaio, Adriana; Soares, José Miguel; Coutinho, Joana; Sousa, Nuno; Gonçalves, Óscar F

    2014-11-01

    Recent neuroimaging studies have provided evidence that different dimensions of human personality may be associated with specific structural neuroanatomic correlates. Identifying brain correlates of a situation-independent personality structure would require evidence of a stable default mode of brain functioning. In this study, we investigated the correlates of the Big Five personality dimensions (Extraversion, Neuroticism, Openness/Intellect, Agreeableness, and Conscientiousness) and the default mode network (DMN). Forty-nine healthy adults completed the NEO-Five Factor. The results showed that the Extraversion (E) and Agreeableness (A) were positively correlated with activity in the midline core of the DMN, whereas Neuroticism (N), Openness (O), and Conscientiousness (C) were correlated with the parietal cortex system. Activity of the anterior cingulate cortex was positively associated with A and negatively with C. Regions of the parietal lobe were differentially associated with each personality dimension. The present study not only confirms previous functional correlates regarding the Big Five personality dimensions, but it also expands our knowledge showing the association between different personality dimensions and specific patterns of brain activation at rest.

  9. How do brain tumors alter functional connectivity? : A magnetoencephalography study

    NARCIS (Netherlands)

    Bartolomei, Fabrice; Bosma, Ingeborg; Klein, Martin; Baayen, Johannes C; Reijneveld, Jaap C; Postma, Tjeerd J; Heimans, Jan J; van Dijk, Bob W; de Munck, Jan C; de Jongh, Arent; Cover, Keith S; Stam, Cornelis J

    2006-01-01

    OBJECTIVE: This study was undertaken to test the hypothesis that brain tumors interfere with normal brain function by disrupting functional connectivity of brain networks. METHODS: Functional connectivity was assessed by computing the synchronization likelihood in a broad band (0.5-60Hz) or in the g

  10. Brain function assessment in different conscious states.

    Science.gov (United States)

    Ozgoren, Murat; Bayazit, Onur; Kocaaslan, Sibel; Gokmen, Necati; Oniz, Adile

    2010-06-03

    The study of brain functioning is a major challenge in neuroscience fields as human brain has a dynamic and ever changing information processing. Case is worsened with conditions where brain undergoes major changes in so-called different conscious states. Even though the exact definition of consciousness is a hard one, there are certain conditions where the descriptions have reached a consensus. The sleep and the anesthesia are different conditions which are separable from each other and also from wakefulness. The aim of our group has been to tackle the issue of brain functioning with setting up similar research conditions for these three conscious states. In order to achieve this goal we have designed an auditory stimulation battery with changing conditions to be recorded during a 40 channel EEG polygraph (Nuamps) session. The stimuli (modified mismatch, auditory evoked etc.) have been administered both in the operation room and the sleep lab via Embedded Interactive Stimulus Unit which was developed in our lab. The overall study has provided some results for three domains of consciousness. In order to be able to monitor the changes we have incorporated Bispectral Index Monitoring to both sleep and anesthesia conditions. The first stage results have provided a basic understanding in these altered states such that auditory stimuli have been successfully processed in both light and deep sleep stages. The anesthesia provides a sudden change in brain responsiveness; therefore a dosage dependent anesthetic administration has proved to be useful. The auditory processing was exemplified targeting N1 wave, with a thorough analysis from spectrogram to sLORETA. The frequency components were observed to be shifting throughout the stages. The propofol administration and the deeper sleep stages both resulted in the decreasing of N1 component. The sLORETA revealed similar activity at BA7 in sleep (BIS 70) and target propofol concentration of 1.2 microg/mL. The current study

  11. Cognitive neuroscience 2.0: building a cumulative science of human brain function.

    Science.gov (United States)

    Yarkoni, Tal; Poldrack, Russell A; Van Essen, David C; Wager, Tor D

    2010-11-01

    Cognitive neuroscientists increasingly recognize that continued progress in understanding human brain function will require not only the acquisition of new data, but also the synthesis and integration of data across studies and laboratories. Here we review ongoing efforts to develop a more cumulative science of human brain function. We discuss the rationale for an increased focus on formal synthesis of the cognitive neuroscience literature, provide an overview of recently developed tools and platforms designed to facilitate the sharing and integration of neuroimaging data, and conclude with a discussion of several emerging developments that hold even greater promise in advancing the study of human brain function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Hepatic mitochondrial function and brain tumours.

    Science.gov (United States)

    Pouliquen, Daniel L

    2007-07-01

    Therapeutic advances remain modest for patients with malignant brain tumours, due in part to inadequate ability of in-vitro models to mimic the consequences of tumour progression in vivo, which include profound immunosuppression, cytokine dysregulation and microvascular proliferation. This review summarizes recent findings on the wasting consequences of glioma growth, including changes in hepatic metabolism caused by the tumour. Release of proinflammatory cytokines by gliomas leads to anorexia, a sensation of tiredness and fatigue associated with sleep deprivation. The cachexia and associated decrease in relative liver mass that are observed in rats with the most aggressive gliomas may be accounted for by increased activity of the Cori cycle, with the intermediary metabolism of the glioma-influenced liver being directed toward energy utilization rather than energy storage. In these conditions, liver mitochondria exhibit abnormal biogenesis, together with modifications to water dynamics and ion content. Improved patient care will result from better understanding of the interactions between brain tumour cells and the immune system, and use of nutritional metabolic therapy to protect tumour-influenced hepatocytes and their mitochondria may improve outcomes.

  13. Structure and function of large-scale brain systems.

    Science.gov (United States)

    Koziol, Leonard F; Barker, Lauren A; Joyce, Arthur W; Hrin, Skip

    2014-01-01

    This article introduces the functional neuroanatomy of large-scale brain systems. Both the structure and functions of these brain networks are presented. All human behavior is the result of interactions within and between these brain systems. This system of brain function completely changes our understanding of how cognition and behavior are organized within the brain, replacing the traditional lesion model. Understanding behavior within the context of brain network interactions has profound implications for modifying abstract constructs such as attention, learning, and memory. These constructs also must be understood within the framework of a paradigm shift, which emphasizes ongoing interactions within a dynamically changing environment.

  14. Progressive Brain Atrophy in Super-refractory Status Epilepticus.

    Science.gov (United States)

    Hocker, Sara; Nagarajan, Elanagan; Rabinstein, Alejandro A; Hanson, Dennis; Britton, Jeffrey W

    2016-10-01

    Prolonged seizures in super-refractory status epilepticus (SRSE) have been shown to cause neuronal death and reorganization, and visual inspection in individual case studies has demonstrated progressive cortical and subcortical atrophy. At present, magnetic resonance imaging (MRI) studies that evaluate brain atrophy in SRSE are lacking. To document and quantify the development of atrophy over time in SRSE. This retrospective medical record review included all patients with SRSE who were admitted to a tertiary referral campus of the Mayo Clinic Hospital with SRSE from January 1, 2001, to December 31, 2013. Patients with (1) an initial MRI scan performed within 2 weeks of SRSE onset, (2) a second MRI scan within 6 months of SRSE resolution, and (3) a minimum duration of 1 week between MRI scans were included. The ventricular brain ratio (VBR) was measured on T2-weighted fluid-attenuated inversion recovery (FLAIR) images at disease onset and during follow-up. Measurements were performed on axial FLAIR images with section thickness of less than 5 mm. The plane immediately superior to the caudate head was chosen for analysis. The hypothesis that atrophy develops during SRSE despite seizure control (electroencephalogram background suppression with anesthetic drugs) was tested. Data were analyzed from June 1 to December 31, 2015. Change in VBR (ΔVBR) as a percentage of the starting measure. Nineteen patients met the inclusion criteria; these included 10 men (53%) and 9 women (47%) with a median age of 41 (interquartile range [IQR], 25-68) years. Anesthetic agents were required for a median of 13 (IQR, 5-37) days. Initial MRI was performed a median of 2 (IQR, 1-7.5) days from the onset of SRSE, and the second MRI was performed a median of 11 (IQR, 5-15.5) days from the resolution of SRSE, with a median of 40 (IQR, 15-65) days between MRI scans. Median ΔVBR was 23.3% (IQR, 10.5%-70.3%). A significant correlation between the duration of anesthetic agent use and ΔVBR was

  15. Mapping the functional neuroanatomy of spatial neglect and human parietal lobe functions: progress and challenges.

    Science.gov (United States)

    Vuilleumier, Patrik

    2013-08-01

    Spatial neglect is generally defined by various deficits in processing information from one (e.g., left) side of space contralateral to focal (e.g., right) hemisphere damage. Although classically associated with parietal lobe functions, there is now compelling evidence that neglect can follow lesions in many different cortical and subcortical sites, suggesting a dysfunction in distributed brain networks. In addition, neglect is likely to result from a combination of distinct deficits that co-occur due to concomitant damage affecting juxtaposed brain areas and their connections, but the exact nature of core deficits and their neural substrates still remains unclear. The present review describes recent progress in identifying functional components of the neglect syndrome and relating them to distinct subregions of parietal cortex. A comprehensive understanding of spatial neglect will require a more precise definition of cognitive processes implicated in different behavioral manifestations, as well as meticulous mapping of these processes onto specific brain circuits, while taking into account functional changes in activity that may arise in structurally intact areas subsequent to damage in distant portions of the relevant networks. © 2013 New York Academy of Sciences.

  16. Fast optical imaging of human brain function

    Directory of Open Access Journals (Sweden)

    Gabriele Gratton

    2010-06-01

    Full Text Available Great advancements in brain imaging during the last few decades have opened a large number of new possibilities for neuroscientists. The most dominant methodologies (electrophysiological and magnetic resonance-based methods emphasize temporal and spatial information, respectively. However, theorizing about brain function has recently emphasized the importance of rapid (within 100 ms or so interactions between different elements of complex neuronal networks. Fast optical imaging, and in particular the event-related optical signal (EROS, a technology that has emerged over the last 15 years may provide descriptions of localized (to sub-cm level brain activity with a temporal resolution of less than 100 ms. The main limitations of EROS are its limited penetration, which allows us to image cortical structures not deeper than 3 cm from the surface of the head, and its low signal-to-noise ratio. Advantages include the fact that EROS is compatible with most other imaging methods, including electrophysiological, magnetic resonance, and trans-cranial magnetic stimulation techniques, with which can be recorded concurrently. In this paper we present a summary of the research that has been conducted so far on fast optical imaging, including evidence for the possibility of recording neuronal signals with this method, the properties of the signals, and various examples of applications to the study of human cognitive neuroscience. Extant issues, controversies, and possible future developments are also discussed.

  17. A novel brain partition highlights the modular skeleton shared by structure and function.

    Science.gov (United States)

    Diez, Ibai; Bonifazi, Paolo; Escudero, Iñaki; Mateos, Beatriz; Muñoz, Miguel A; Stramaglia, Sebastiano; Cortes, Jesus M

    2015-01-01

    Elucidating the intricate relationship between brain structure and function, both in healthy and pathological conditions, is a key challenge for modern neuroscience. Recent progress in neuroimaging has helped advance our understanding of this important issue, with diffusion images providing information about structural connectivity (SC) and functional magnetic resonance imaging shedding light on resting state functional connectivity (rsFC). Here, we adopt a systems approach, relying on modular hierarchical clustering, to study together SC and rsFC datasets gathered independently from healthy human subjects. Our novel approach allows us to find a common skeleton shared by structure and function from which a new, optimal, brain partition can be extracted. We describe the emerging common structure-function modules (SFMs) in detail and compare them with commonly employed anatomical or functional parcellations. Our results underline the strong correspondence between brain structure and resting-state dynamics as well as the emerging coherent organization of the human brain.

  18. Abdominal Pain, the Adolescent and Altered Brain Structure and Function.

    Directory of Open Access Journals (Sweden)

    Catherine S Hubbard

    Full Text Available Irritable bowel syndrome (IBS is a functional gastrointestinal (GI disorder of unknown etiology. Although relatively common in children, how this condition affects brain structure and function in a pediatric population remains unclear. Here, we investigate brain changes in adolescents with IBS and healthy controls. Imaging was performed with a Siemens 3 Tesla Trio Tim MRI scanner equipped with a 32-channel head coil. A high-resolution T1-weighted anatomical scan was acquired followed by a T2-weighted functional scan. We used a surface-based morphometric approach along with a seed-based resting-state functional connectivity (RS-FC analysis to determine if groups differed in cortical thickness and whether areas showing structural differences also showed abnormal RS-FC patterns. Patients completed the Abdominal Pain Index and the GI Module of the Pediatric Quality of Life Inventory to assess abdominal pain severity and impact of GI symptoms on health-related quality of life (HRQOL. Disease duration and pain intensity were also assessed. Pediatric IBS patients, relative to controls, showed cortical thickening in the posterior cingulate (PCC, whereas cortical thinning in posterior parietal and prefrontal areas were found, including the dorsolateral prefrontal cortex (DLPFC. In patients, abdominal pain severity was related to cortical thickening in the intra-abdominal area of the primary somatosensory cortex (SI, whereas HRQOL was associated with insular cortical thinning. Disease severity measures correlated with cortical thickness in bilateral DLPFC and orbitofrontal cortex. Patients also showed reduced anti-correlations between PCC and DLPFC compared to controls, a finding that may reflect aberrant connectivity between default mode and cognitive control networks. We are the first to demonstrate concomitant structural and functional brain changes associated with abdominal pain severity, HRQOL related to GI-specific symptoms, and disease

  19. Blood-brain barrier P-glycoprotein function in neurodegenerative disease.

    Science.gov (United States)

    Bartels, A L

    2011-01-01

    Protection of the brain is strengthened by active transport and ABC transporters. P-glycoprotein (P-gp) at the blood-brain barrier (BBB) functions as an active efflux pump by extruding a substrate from the brain, which is important for maintaining loco-regional homeostasis in the brain and protection against toxic compounds. Importantly, dysfunctional BBB P-gp transport is postulated as an important factor contributing to accumulation of aggregated protein in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, P-gp is a major factor in mediating resistance to brain entry of numerous exogenous compounds, including toxins that can be involved in PD pathogenesis. This review highlights the role of altered P-gp function in the pathogenesis and progression of neurodegenerative disease. Also the implications of alterations in P-gp function for the treatment of these diseases are discussed.

  20. Functional Reorganizations of Brain Network in Prelingually Deaf Adolescents

    OpenAIRE

    Wenjing Li; Jianhong Li; Jieqiong Wang; Peng Zhou; Zhenchang Wang; Junfang Xian; Huiguang He

    2016-01-01

    Previous neuroimaging studies suggested structural or functional brain reorganizations occurred in prelingually deaf subjects. However, little is known about the reorganizations of brain network architectures in prelingually deaf adolescents. The present study aims to investigate alterations of whole-brain functional network using resting-state fMRI and graph theory analysis. We recruited 16 prelingually deaf adolescents (10~18 years) and 16 normal controls matched in age and gender. Brain ne...

  1. Selective CDK inhibitor limits neuroinflammation and progressive neurodegeneration after brain trauma

    Science.gov (United States)

    Kabadi, Shruti V; Stoica, Bogdan A; Byrnes, Kimberly R; Hanscom, Marie; Loane, David J; Faden, Alan I

    2012-01-01

    Traumatic brain injury (TBI) induces secondary injury mechanisms, including cell-cycle activation (CCA), which lead to neuronal cell death, microglial activation, and neurologic dysfunction. Here, we show progressive neurodegeneration associated with microglial activation after TBI induced by controlled cortical impact (CCI), and also show that delayed treatment with the selective cyclin-dependent kinase inhibitor roscovitine attenuates posttraumatic neurodegeneration and neuroinflammation. CCI resulted in increased cyclin A and D1 expressions and fodrin cleavage in the injured cortex at 6 hours after injury and significant neurodegeneration by 24 hours after injury. Progressive neuronal loss occurred in the injured hippocampus through 21 days after injury and correlated with a decline in cognitive function. Microglial activation associated with a reactive microglial phenotype peaked at 7 days after injury with sustained increases at 21 days. Central administration of roscovitine at 3 hours after CCI reduced subsequent cyclin A and D1 expressions and fodrin cleavage, improved functional recovery, decreased lesion volume, and attenuated hippocampal and cortical neuronal cell loss and cortical microglial activation. Furthermore, delayed systemic administration of roscovitine improved motor recovery and attenuated microglial activation after CCI. These findings suggest that CCA contributes to progressive neurodegeneration and related neurologic dysfunction after TBI, likely in part related to its induction of microglial activation. PMID:21829212

  2. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    Science.gov (United States)

    2015-02-01

    cell-based assay . To solve this problem, we wish to study mice that produce robust tau pathology exclusively in brain via Cam - K Tet-off x TET-P301L, so...cerebrospinal fluid assays for aggregated forms of tau responsible for propagation of tau pathology after traumatic brain injury. Progress to date...progress towards increasing the sensitivity of cell-based assays for tau aggregation activity has been made, and additional antibody-based tau detection

  3. Default mode of brain function in monkeys.

    Science.gov (United States)

    Mantini, Dante; Gerits, Annelis; Nelissen, Koen; Durand, Jean-Baptiste; Joly, Olivier; Simone, Luciano; Sawamura, Hiromasa; Wardak, Claire; Orban, Guy A; Buckner, Randy L; Vanduffel, Wim

    2011-09-07

    Human neuroimaging has revealed a specific network of brain regions-the default-mode network (DMN)-that reduces its activity during goal-directed behavior. So far, evidence for a similar network in monkeys is mainly indirect, since, except for one positron emission tomography study, it is all based on functional connectivity analysis rather than activity increases during passive task states. Here, we tested whether a consistent DMN exists in monkeys using its defining property. We performed a meta-analysis of functional magnetic resonance imaging data collected in 10 awake monkeys to reveal areas in which activity consistently decreases when task demands shift from passive tasks to externally oriented processing. We observed task-related spatially specific deactivations across 15 experiments, implying in the monkey a functional equivalent of the human DMN. We revealed by resting-state connectivity that prefrontal and medial parietal regions, including areas 9/46d and 31, respectively, constitute the DMN core, being functionally connected to all other DMN areas. We also detected two distinct subsystems composed of DMN areas with stronger functional connections between each other. These clusters included areas 24/32, 8b, and TPOC and areas 23, v23, and PGm, respectively. Such a pattern of functional connectivity largely fits, but is not completely consistent with anatomical tract tracing data in monkeys. Also, analysis of afferent and efferent connections between DMN areas suggests a multisynaptic network structure. Like humans, monkeys increase activity during passive epochs in heteromodal and limbic association regions, suggesting that they also default to internal modes of processing when not actively interacting with the environment.

  4. Progress in Applications of Boolean Functions

    CERN Document Server

    Sasao, Tsutomu

    2010-01-01

    This book brings together five topics on the application of Boolean functions. They are 1. Equivalence classes of Boolean functions: The number of n-variable functions is large, even for values as small as n = 6, and there has been much research on classifying functions. There are many classifications, each with their own distinct merit. 2. Boolean functions for cryptography: The process of encrypting/decrypting plain text messages often depends on Boolean functions with specific properties. For example, highly nonlinear functions are valued because they are less susceptible to linear attacks.

  5. Decoding lifespan changes of the human brain using resting-state functional connectivity MRI.

    Directory of Open Access Journals (Sweden)

    Lubin Wang

    Full Text Available The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI. In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8-79 years of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' "brain ages" from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI.

  6. 肠道微生物影响大脑发育和功能的研究进展%Progress of the gut microbiota to affect the development and function of the brain

    Institute of Scientific and Technical Information of China (English)

    张秀芬; 李宏

    2016-01-01

    肠道微生物可通过免疫、内分泌、迷走神经和代谢产物等途径进行“微生物-肠-脑轴”中肠道微生物、肠道和大脑功能间的交流.肠道微生物的定植受围生因素、饮食营养、疾病、抗生素使用等多方面影响.婴幼儿期等肠道微生态构建关键时期的紊乱可影响大脑发育和功能,可能影响如孤独症谱系障碍等神经系统疾病的发生发展过程.调节肠道微生物正常生态平衡对大脑发育和行为、认知等大脑功能具有重要意义,仍需进一步临床探索.%Gut microbiota is essential to human health,playing a major role in the bidirectional communication between the gastrointestinal tract and the central nervous system through the immunological,hormonal,neural and metabolic pathways.The colonization of the gut microbiota is influenced by multiple and diverse factors,such as the perinatal factors,dietary habits,diseases and antibiotics.The infant is the critical period for modifying the gut microbiota,disruptions during this period of microbiota-host interaction have the potential to affect the development and function of the brain.To regulate the homeostasis of the gut microbiota has its profound influences on improving the symptoms of gastrointestinal and behavior disorders.

  7. The physiological and biochemical bases of functional brain imaging

    OpenAIRE

    2007-01-01

    Functional brain imaging is based on the display of computer-derived images of changes in physiological and/or biochemical functions altered by activation or depression of local functional activities in the brain. This article reviews the physiological and biochemical mechanisms involved.

  8. Hierarchical Functional Modularity in the Resting-State Human Brain

    NARCIS (Netherlands)

    Ferrarini, Luca; Veer, Ilya M.; Baerends, Evelinda; van Tol, Marie-Jose; Renken, Remco J.; van der Wee, Nic J. A.; Veltman, Dirk. J.; Aleman, Andre; Zitman, Frans G.; Penninx, Brenda W. J. H.; van Buchem, Mark A.; Reiber, Johan H. C.; Rombouts, Serge A. R. B.; Milles, Julien

    2009-01-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a mor

  9. Mapping distributed brain function and networks with diffuse optical tomography

    Science.gov (United States)

    Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.

    2014-06-01

    Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.

  10. Towards brain-computer music interfaces: progress and challenges

    OpenAIRE

    Miranda, E. R.; Durrant, Simon; Anders, T.

    2008-01-01

    Brain-Computer Music Interface (BCMI) is a new research area that is emerging at the cross roads of neurobiology,engineering sciences and music. This research involves three major challenging problems: the extraction of meaningful control information from signals emanating directly from the brain, the design of generative music techniques that respond to such information, and the training of subjects to use the system. We have implemented a proof-of-concept BCMI system that is able to use ...

  11. Changes in cognitive state alter human functional brain networks

    Directory of Open Access Journals (Sweden)

    Malaak Nasser Moussa

    2011-08-01

    Full Text Available The study of the brain as a whole system can be accomplished using network theory principles. Research has shown that human functional brain networks during a resting state exhibit small-world properties and high degree nodes, or hubs, localized to brain areas consistent with the default mode network (DMN. However, the study of brain networks across different tasks and or cognitive states has been inconclusive. Research in this field is important because the underpinnings of behavioral output are inherently dependent on whether or not brain networks are dynamic. This is the first comprehensive study to evaluate multiple network metrics at a voxel-wise resolution in the human brain at both the whole brain and regional level under various conditions: resting state, visual stimulation, and multisensory (auditory and visual stimulation. Our results show that despite global network stability, functional brain networks exhibit considerable task-induced changes in connectivity, efficiency, and community structure at the regional level.

  12. Progressive abnormalities in the brain scan in adrenal leukodystrophy. [/sup 99m/Tc tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Chatterton, B.E.

    1977-11-01

    A case report is presented of a 10-yr-old boy with restless movements and deteriorated mental ability. A brain scan was performed using /sup 99m/Tc pertechnetate. A faint area of uptake appeared; 6 months later the brain scan showed more intense uptake and neurologic symptoms increased; the patient died soon after and autopsy showed leukodystrophy of the brain and adrenal atrophy. A study of previous cases indicates that adrenal leukodystrophy is a sex-linked hereditary disease in which progressive demyelination leads to dementia, cortical blindness, and spasticity. In all reported cases abnormal areas on the brain scan corresponded with pathologic changes. (HLW)

  13. The modular and integrative functional architecture of the human brain.

    Science.gov (United States)

    Bertolero, Maxwell A; Yeo, B T Thomas; D'Esposito, Mark

    2015-12-01

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules' processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author-topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network's modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules' functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain's modular yet integrated implementation of cognitive functions.

  14. Infrared Imaging System for Studying Brain Function

    Science.gov (United States)

    Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath

    2007-01-01

    A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be

  15. Functional brain imaging of gastrointestinal sensation in health and disease

    Institute of Scientific and Technical Information of China (English)

    Lukas Van Oudenhove; Steven J Coen; Qasim Aziz

    2007-01-01

    It has since long been known, from everyday experience as well as from animal and human studies, that psychological processes-both affective and cognitiveexert an influence on gastrointestinal sensorimotor function. More specifically, a link between psychological factors and visceral hypersensitivity has been suggested,mainly based on research in functional gastrointestinal disorder patients. However, until recently, the exact nature of this putative relationship remained unclear,mainly due to a lack of non-invasive methods to study the (neurobiological) mechanisms underlying this relationship in non-sleeping humans. As functional brain imaging, introduced in visceral sensory neuroscience some 10 years ago, does provide a method for in vivo study of brain-gut interactions, insight into the neurobiological mechanisms underlying visceral sensation in general and the influence of psychological factors more particularly,has rapidly grown. In this article, an overview of brain imaging evidence on gastrointestinal sensation will be given, with special emphasis on the brain mechanisms underlying the interaction between affective & cognitive processes and visceral sensation. First, the reciprocal neural pathways between the brain and the gut (braingut axis) will be briefly outlined, including brain imaging evidence in healthy volunteers. Second, functional brain imaging studies assessing the influence of psychological factors on brain processing of visceral sensation in healthy humans will be discussed in more detail.Finally, brain imaging work investigating differences in brain responses to visceral distension between healthy volunteers and functional gastrointestinal disorder patients will be highlighted.

  16. Three-dimensional reconstruction of functional brain images

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao [Kyoto Univ. (Japan)

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  17. Progress in EEG-Based Brain Robot Interaction Systems

    Directory of Open Access Journals (Sweden)

    Xiaoqian Mao

    2017-01-01

    Full Text Available The most popular noninvasive Brain Robot Interaction (BRI technology uses the electroencephalogram- (EEG- based Brain Computer Interface (BCI, to serve as an additional communication channel, for robot control via brainwaves. This technology is promising for elderly or disabled patient assistance with daily life. The key issue of a BRI system is to identify human mental activities, by decoding brainwaves, acquired with an EEG device. Compared with other BCI applications, such as word speller, the development of these applications may be more challenging since control of robot systems via brainwaves must consider surrounding environment feedback in real-time, robot mechanical kinematics, and dynamics, as well as robot control architecture and behavior. This article reviews the major techniques needed for developing BRI systems. In this review article, we first briefly introduce the background and development of mind-controlled robot technologies. Second, we discuss the EEG-based brain signal models with respect to generating principles, evoking mechanisms, and experimental paradigms. Subsequently, we review in detail commonly used methods for decoding brain signals, namely, preprocessing, feature extraction, and feature classification, and summarize several typical application examples. Next, we describe a few BRI applications, including wheelchairs, manipulators, drones, and humanoid robots with respect to synchronous and asynchronous BCI-based techniques. Finally, we address some existing problems and challenges with future BRI techniques.

  18. Progress in EEG-Based Brain Robot Interaction Systems

    Science.gov (United States)

    Li, Mengfan; Niu, Linwei; Xian, Bin; Zeng, Ming; Chen, Genshe

    2017-01-01

    The most popular noninvasive Brain Robot Interaction (BRI) technology uses the electroencephalogram- (EEG-) based Brain Computer Interface (BCI), to serve as an additional communication channel, for robot control via brainwaves. This technology is promising for elderly or disabled patient assistance with daily life. The key issue of a BRI system is to identify human mental activities, by decoding brainwaves, acquired with an EEG device. Compared with other BCI applications, such as word speller, the development of these applications may be more challenging since control of robot systems via brainwaves must consider surrounding environment feedback in real-time, robot mechanical kinematics, and dynamics, as well as robot control architecture and behavior. This article reviews the major techniques needed for developing BRI systems. In this review article, we first briefly introduce the background and development of mind-controlled robot technologies. Second, we discuss the EEG-based brain signal models with respect to generating principles, evoking mechanisms, and experimental paradigms. Subsequently, we review in detail commonly used methods for decoding brain signals, namely, preprocessing, feature extraction, and feature classification, and summarize several typical application examples. Next, we describe a few BRI applications, including wheelchairs, manipulators, drones, and humanoid robots with respect to synchronous and asynchronous BCI-based techniques. Finally, we address some existing problems and challenges with future BRI techniques. PMID:28484488

  19. MicroRNA expression profiles and functions in the brain

    Institute of Scientific and Technical Information of China (English)

    Yanting Qi; Yu Zhao; Zhuyin Chen; Xiaona Chen; Marie C. Lin; Xiangfu Kong; Lihui Lai

    2008-01-01

    MicroRNAs are abundant in the brains of vertebrates and some show a brain-specific or brain-enriched expression pattern. Because microRNAs regulate the expression of hundreds of target genes, it is not surprising that they have profoundly important functions in brain development and pathological processes. For example, miR-124 plays an important role in inducing and maintaining neuronal identity through targeting at least two anti-neural factors. MicroRNAs have also been implicated in brain disorders, including brain tumors and neurodegenerative diseases. This review aims to present an overview of the expression profiles and functions of microRNAs in the developing brains of vertebrates.

  20. Can noninvasive brain stimulation enhance function in the ageing brain?

    Science.gov (United States)

    Vallence, Ann-Maree; Goldsworthy, Mitchell R

    2014-01-01

    Advancing age is associated with cognitive and motor performance deficits and a reduced capacity for plasticity. Zimerman and colleagues (Zimerman M, Nitsch M, Giraux P, Gerloff C, Cohen LG, Hummel FC. Ann Neurol 73: 10-15, 2013) have recently shown that noninvasive brain stimulation can enhance behavioral improvements following training on a motor sequence task in older adults. The work is of high clinical importance given the rapidly growing ageing population and the accompanying costs to health systems globally.

  1. Anomalous brain functional connectivity contributing to poor adaptive behavior in Down syndrome.

    Science.gov (United States)

    Pujol, Jesus; del Hoyo, Laura; Blanco-Hinojo, Laura; de Sola, Susana; Macià, Dídac; Martínez-Vilavella, Gerard; Amor, Marta; Deus, Joan; Rodríguez, Joan; Farré, Magí; Dierssen, Mara; de la Torre, Rafael

    2015-03-01

    Research in Down syndrome has substantially progressed in the understanding of the effect of gene overexpression at the molecular level, but there is a paucity of information on the ultimate consequences on overall brain functional organization. We have assessed the brain functional status in Down syndrome using functional connectivity MRI. Resting-state whole-brain connectivity degree maps were generated in 20 Down syndrome individuals and 20 control subjects to identify sites showing anomalous synchrony with other areas. A subsequent region-of-interest mapping served to detail the anomalies and to assess their potential contribution to poor adaptive behavior. Down syndrome individuals showed higher regional connectivity in a ventral brain system involving the amygdala/anterior temporal region and the ventral aspect of both the anterior cingulate and frontal cortices. By contrast, lower functional connectivity was identified in dorsal executive networks involving dorsal prefrontal and anterior cingulate cortices and posterior insula. Both functional connectivity increases and decreases contributed to account for patient scoring on adaptive behavior related to communication skills. The data overall suggest a distinctive functional organization with system-specific anomalies associated with reduced adaptive efficiency. Opposite effects were identified on distinct frontal and anterior temporal structures and relative sparing of posterior brain areas, which is generally consistent with Down syndrome cognitive profile. Relevantly, measurable connectivity changes, as a marker of the brain functional anomaly, could have a role in the development of therapeutic strategies addressed to improve the quality of life in Down syndrome individuals.

  2. Demonstration: A smartphone 3D functional brain scanner

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Stopczynski, Arkadiusz; Larsen, Jakob Eg

    We demonstrate a fully portable 3D real-time functional brain scanner consisting of a wireless 14-channel ‘Neuroheadset‘ (Emotiv EPOC) and a Nokia N900 smartphone. The novelty of our system is the ability to perform real-time functional brain imaging on a smartphone device, including stimulus del......, tablet computers, and netbooks) that are based on Linux operating systems....

  3. Wearable sensor network to study laterality of brain functions.

    Science.gov (United States)

    Postolache, Gabriela B; Girao, Pedro S; Postolache, Octavian A

    2015-08-01

    In the last decade researches on laterality of brain functions have been reinvigorated. New models of lateralization of brain functions were proposed and new methods for understanding mechanisms of asymmetry between right and left brain functions were described. We design a system to study laterality of motor and autonomic nervous system based on wearable sensors network. A mobile application was developed for analysis of upper and lower limbs movements, cardiac and respiratory function. The functionalities and experience gained with deployment of the system are described.

  4. Persistent Postconcussive Symptoms Are Accompanied by Decreased Functional Brain Oxygenation.

    Science.gov (United States)

    Helmich, Ingo; Saluja, Rajeet S; Lausberg, Hedda; Kempe, Mathias; Furley, Philip; Berger, Alisa; Chen, Jen-Kai; Ptito, Alain

    2015-01-01

    Diagnostic methods are considered a major concern in the determination of mild traumatic brain injury. The authors examined brain oxygenation patterns in subjects with severe and minor persistent postconcussive difficulties and a healthy control group during working memory tasks in prefrontal brain regions using functional near-infrared spectroscopy. The results demonstrated decreased working memory performances among concussed subjects with severe postconcussive symptoms that were accompanied by decreased brain oxygenation patterns. An association appears to exist between decreased brain oxygenation, poor performance of working memory tasks, and increased symptom severity scores in subjects suffering from persistent postconcussive symptoms.

  5. Manifold learning on brain functional networks in aging.

    Science.gov (United States)

    Qiu, Anqi; Lee, Annie; Tan, Mingzhen; Chung, Moo K

    2015-02-01

    We propose a new analysis framework to utilize the full information of brain functional networks for computing the mean of a set of brain functional networks and embedding brain functional networks into a low-dimensional space in which traditional regression and classification analyses can be easily employed. For this, we first represent the brain functional network by a symmetric positive matrix computed using sparse inverse covariance estimation. We then impose a Log-Euclidean Riemannian manifold structure on brain functional networks whose norm gives a convenient and practical way to define a mean. Finally, based on the fact that the computation of linear operations can be done in the tangent space of this Riemannian manifold, we adopt Locally Linear Embedding (LLE) to the Log-Euclidean Riemannian manifold space in order to embed the brain functional networks into a low-dimensional space. We show that the integration of the Log-Euclidean manifold with LLE provides more efficient and succinct representation of the functional network and facilitates regression analysis, such as ridge regression, on the brain functional network to more accurately predict age when compared to that of the Euclidean space of functional networks with LLE. Interestingly, using the Log-Euclidean analysis framework, we demonstrate the integration and segregation of cortical-subcortical networks as well as among the salience, executive, and emotional networks across lifespan.

  6. The Disconnected Brain and Executive Function Decline in Aging.

    Science.gov (United States)

    Fjell, Anders M; Sneve, Markus H; Grydeland, Håkon; Storsve, Andreas B; Walhovd, Kristine B

    2017-03-01

    Higher order speeded cognitive abilities depend on efficient coordination of activity across the brain, rendering them vulnerable to age reductions in structural and functional brain connectivity. The concept of "disconnected aging" has been invoked, suggesting that degeneration of connections between distant brain regions cause cognitive reductions. However, it has not been shown that changes in cognitive functions over time can be explained by simultaneous changes in brain connectivity. We followed 119 young and middle-aged (23-52 years) and older (63-86 years) adults for 3.3 years with repeated assessments of structural and functional brain connectivity and executive functions. We found unique age-related longitudinal reductions in executive function over and above changes in more basic cognitive processes. Intriguingly, 82.5% of the age-related decline in executive function could be explained by changes in connectivity over time. While both structural and functional connectivity changes were related to longitudinal reductions in executive function, only structural connectivity change could explain the age-specific decline. This suggests that the major part of the age-related reductions in executive function can be attributed to micro- and macrostructural alterations in brain connectivity. Although correlational in nature, we believe the present results constitute evidence for a "disconnected brain" view on cognitive aging. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Distinct patterns of brain activity in progressive supranuclear palsy and Parkinson's disease.

    Science.gov (United States)

    Burciu, Roxana G; Ofori, Edward; Shukla, Priyank; Planetta, Peggy J; Snyder, Amy F; Li, Hong; Hass, Chris J; Okun, Michael S; McFarland, Nikolaus R; Vaillancourt, David E

    2015-08-01

    The basal ganglia-thalamo-cortical and cerebello-thalamo-cortical circuits are important for motor control. Whether their functioning is affected in a similar or different way by progressive supranuclear palsy (PSP) and Parkinson's disease (PD) is not clear. A functional magnetic resonance imaging (fMRI) force production paradigm and voxel-based morphometry were used to assess differences in brain activity and macrostructural volumes between PSP, PD, and healthy age-matched controls. We found that PSP and PD share reduced functional activity of the basal ganglia and cortical motor areas, but this is more pronounced in PSP than in PD. In PSP the frontal regions are underactive, whereas the posterior parietal and occipital regions are overactive as compared with controls and PD. Furthermore, lobules I through IV, V, and VI of the cerebellum are hypoactive in PSP and PD, whereas Crus I and lobule IX are hyperactive in PSP only. Reductions in gray and white matter volume are specific to PSP. Finally, the functional status of the caudate as well as the volume of the superior frontal gyrus predict clinical gait and posture measures in PSP. PSP and PD share hypoactivity of the basal ganglia, motor cortex, and anterior cerebellum. These patients also display a unique pattern, such that anterior regions of the cortex are hypoactive and posterior regions of the cortex and cerebellum are hyperactive. Together, these findings suggest that specific structures within the basal ganglia, cortex, and cerebellum are affected differently in PSP relative to PD.

  8. The dynamic dielectric at a brain functional site and an EM wave approach to functional brain imaging.

    Science.gov (United States)

    Li, X P; Xia, Q; Qu, D; Wu, T C; Yang, D G; Hao, W D; Jiang, X; Li, X M

    2014-11-04

    Functional brain imaging has tremendous applications. The existing methods for functional brain imaging include functional Magnetic Resonant Imaging (fMRI), scalp electroencephalography (EEG), implanted EEG, magnetoencephalography (MEG) and Positron Emission Tomography (PET), which have been widely and successfully applied to various brain imaging studies. To develop a new method for functional brain imaging, here we show that the dielectric at a brain functional site has a dynamic nature, varying with local neuronal activation as the permittivity of the dielectric varies with the ion concentration of the extracellular fluid surrounding neurons in activation. Therefore, the neuronal activation can be sensed by a radiofrequency (RF) electromagnetic (EM) wave propagating through the site as the phase change of the EM wave varies with the permittivity. Such a dynamic nature of the dielectric at a brain functional site provides the basis for an RF EM wave approach to detecting and imaging neuronal activation at brain functional sites, leading to an RF EM wave approach to functional brain imaging.

  9. Collagen Mimetic Peptides: Progress Towards Functional Applications

    OpenAIRE

    Yu, S. Michael; Li, Yang; Kim, Daniel

    2011-01-01

    Traditionally, collagen mimetic peptides (CMPs) have been used for elucidating the structure of the collagen triple helix and the factors responsible for its stabilization. The wealth of fundamental knowledge on collagen structure and cell-extracellular matrix (ECM) interactions accumulated over the past decades has led to a recent burst of research exploring the potential of CMPs to recreate the higher order assembly and biological function of natural collagens for biomedical applications. A...

  10. Development of large-scale functional brain networks in children.

    Directory of Open Access Journals (Sweden)

    Kaustubh Supekar

    2009-07-01

    Full Text Available The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y and 22 young-adults (ages 19-22 y. Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  11. Systemic Chemotherapy for Progression of Brain Metastases in Extensive-Stage Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Nagla Abdel Karim

    2015-01-01

    Full Text Available Lung cancer is the most common cause of cancer related mortality in men and women. Approximately 15% of lung cancers are small cell type. Chemotherapy and radiation are the mainstay treatments. Currently, the standard chemotherapy regimen includes platinum/etoposide. For extensive small cell lung cancer, irinotecan and cisplatin have also been used. Patients with relapsed small cell lung cancer have a very poor prognosis, and the morbidity increases with brain metastases. Approximately 10%–14% of small cell lung cancer patients exhibit brain metastases at the time of diagnosis, which increases to 50%–80% as the disease progresses. Mean survival with brain metastases is reported to be less than six months, thus calling for improved regimens. Here we present a case series of patients treated with irinotecan for progressive brain metastases in small cell lung cancer, which serves as a reminder of the role of systemic chemotherapy in this setting.

  12. Neuroticism and Functional Connectomics of the Resting Adolescent Brain

    DEFF Research Database (Denmark)

    Baruël Johansen, Louise

    network organization on the global level, while network characteristics of fronto-limbic regions, involved in emotional processing, are implicated on a local level. Little is known about neuroticism and functional brain organization in childhood and adolescence. The main aim of this thesis was therefore......The personality trait neuroticism is a well-known risk factor for anxiety and mood disorders that typically have their onset in childhood and adolescence. This period is characterized by ongoing structural and functional maturation of the brain, which can be traced with magnetic resonance imaging...... (MRI). Resting-state functional MRI is a widely used technique for studies of brain development due to the task-free condition. Furthermore, this imaging modality can be used to study the functional network of the brain that subserves communication between regions of the brain. Properties...

  13. Functional brain imaging studies on specificity of meridian and acupoints

    Institute of Scientific and Technical Information of China (English)

    Xuezhi Li; Xuguang Liu; Fanrong Liang

    2008-01-01

    At present,the specificity of meridians and acupoints has been studied using functional brain imaging techniques from many standpoints.including meridians,acupoints,and sham acupoints,as well as different meridians and acupoints,coordination of acupoints,and factors influencing meridian and acupoint specificity.Preliminary experimental data have demonstrated that acupuncture at meridians and acupoints is specific with regard to brain neural information.However,research findings are contradictory,which may be related to brain functional complexity,resolution of functional brain imaging techniques,and experimental design.Future studies should further improve study method,and should strictly control experimental conditions to better analyze experimental data and acquire more beneficial data.Because of its many advantages.the functional brain imaging technique is a promising method for studying meridian and acupoint specificity.

  14. Insight and progress in density functional theory

    Science.gov (United States)

    Yang, Weitao; Mori-Sanchez, Paula; Cohen, Aron J.

    2012-12-01

    Density functional theory of electronic structure is widely and successfully applied in simulations throughout engineering and sciences. However, there are spectacular failures for many predicted properties. The errors include underestimation of the barriers of chemical reactions, the band gaps of materials, the energies of dissociating molecular ions and charge transfer excitation energies. Typical DFT calculations also fail to describe degenerate or near degenerate systems, as arise in the breaking of chemical bonds, and strongly correlated materials. These errors can all be characterized and understood through the perspective of fractional charges and fractional spins introduced recently.

  15. 弥漫性创伤性脑损伤功能磁共振成像的研究进展%Progress of functional MRI in diffuse traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    苗延巍; 伍建林

    2009-01-01

    随着人类社会工业化、现代化进程的快速发展,创伤性脑损伤(Traumatic brain injury,TBI)的发生率大大增加,在许多国家已经或将要成为人类死亡和致残的首要原因。如何早期、准确的显示TBI的病灶部位、程度,反映病程的发展,预测病情的后果是至关重要的,

  16. The effects of vitamin D on brain development and adult brain function.

    Science.gov (United States)

    Kesby, James P; Eyles, Darryl W; Burne, Thomas H J; McGrath, John J

    2011-12-05

    A role for vitamin D in brain development and function has been gaining support over the last decade. Multiple lines of evidence suggest that this vitamin is actually a neuroactive steroid that acts on brain development, leading to alterations in brain neurochemistry and adult brain function. Early deficiencies have been linked with neuropsychiatric disorders, such as schizophrenia, and adult deficiencies have been associated with a host of adverse brain outcomes, including Parkinson's disease, Alzheimer's disease, depression and cognitive decline. This review summarises the current state of research on the actions of vitamin D in the brain and the consequences of deficiencies in this vitamin. Furthermore, we discuss specific implications of vitamin D status on the neurotransmitter, dopamine.

  17. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    Science.gov (United States)

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia.

  18. Connectivity and functional profiling of abnormal brain structures in pedophilia

    Science.gov (United States)

    Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-01-01

    Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  19. Impact of fatty acids on brain circulation, structure and function

    NARCIS (Netherlands)

    Haast, R.A.M.; Kiliaan, A.J.

    2015-01-01

    The use of dietary intervention has evolved into a promising approach to prevent the onset and progression of brain diseases. The positive relationship between intake of omega-3 long chain polyunsaturated fatty acids (omega3-LCPUFAs) and decreased onset of disease- and aging-related deterioration of

  20. Localization of the brain calculation function area with MRI

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The aim of this study is to define the anatomical localization of corresponding brain function area during calculating. The activating modes in brain during continuous silent calculating subtraction and repeated silent reading multiplication table were compared and investigated. Fourteen volunteers of right-handedness were enrolled in this experiment. The quite difference of reaction modes in brain area during the two modes of calculation reveal that there are different processing pathways in brain during these two operating actions. During continuous silent calculating, the function area is localized on the posterior portion of superior and middle gyrus of frontal lobe and the Iobule of posterior parietal lobe (P < 0.01, T = 5.41). It demonstrates that these function areas play an important role in the performance of calculation and working memory. Whereas the activating of visual cortex shows that even in mental arithmetic processing the brain action is having the aid of vision and visual space association.

  1. Progress on the paternal brain: theory, animal models, human brain research, and mental health implications.

    Science.gov (United States)

    Swain, J E; Dayton, C J; Kim, P; Tolman, R M; Volling, B L

    2014-01-01

    With a secure foundation in basic research across mammalian species in which fathers participate in the raising of young, novel brain-imaging approaches are outlining a set of consistent brain circuits that regulate paternal thoughts and behaviors in humans. The newest experimental paradigms include increasingly realistic baby-stimuli to provoke paternal cognitions and behaviors with coordinated hormone measures to outline brain networks that regulate motivation, reflexive caring, emotion regulation, and social brain networks with differences and similarities to those found in mothers. In this article, on the father brain, we review all brain-imaging studies on PubMed to date on the human father brain and introduce the topic with a selection of theoretical models and foundational neurohormonal research on animal models in support of the human work. We discuss potentially translatable models for the identification and treatment of paternal mood and father-child relational problems, which could improve infant mental health and developmental trajectories with potentially broad public health importance. © 2014 Michigan Association for Infant Mental Health.

  2. Functional brain laterality for sequential movements: Impact of transient practice

    Institute of Scientific and Technical Information of China (English)

    ZHU Yihong; DONG Zongwang; WENG Xuchu; CHEN Yizhang

    2005-01-01

    The impact of learning on brain functional laterality has not been systematically investigated. We employed an event-related functional magnetic resonance imaging combined with a delayed sequential movement task to investigate brain activation pattern and laterality during a transient practice in 12 subjects. Both hemispheres, involving motor areas and posterior parietal cortex, were engaged during motor preparation and execution, with larger activation volume in the left hemisphere than in the right. Activation volume in these regions significantly decreased after a transient practice, with more reduction in the right hemisphere resulting increase in left lateralization. The theoretical implications of these findings are discussed in relation to the physiological significance of brain functional laterality.

  3. Functional MRI of food-induced brain responses

    NARCIS (Netherlands)

    Smeets, P.A.M.

    2006-01-01

    The ultimate goal of this research was to find central biomarkers of satiety, i.e., physiological measures in the brain that relate to subjectively rated appetite, actual food intake, or both. This thesis describes the changes in brain activity in response to food stimuli as measured by functional

  4. Functional MRI of food-induced brain responses

    NARCIS (Netherlands)

    Smeets, P.A.M.

    2006-01-01

    The ultimate goal of this research was to find central biomarkers of satiety, i.e., physiological measures in the brain that relate to subjectively rated appetite, actual food intake, or both. This thesis describes the changes in brain activity in response to food stimuli as measured by functional M

  5. Functional MRI of food-induced brain responses

    NARCIS (Netherlands)

    Smeets, P.A.M.

    2006-01-01

    The ultimate goal of this research was to find central biomarkers of satiety, i.e., physiological measures in the brain that relate to subjectively rated appetite, actual food intake, or both. This thesis describes the changes in brain activity in response to food stimuli as measured by functional M

  6. Emotion-Induced Topological Changes in Functional Brain Networks.

    Science.gov (United States)

    Park, Chang-Hyun; Lee, Hae-Kook; Kweon, Yong-Sil; Lee, Chung Tai; Kim, Ki-Tae; Kim, Young-Joo; Lee, Kyoung-Uk

    2016-01-01

    In facial expression perception, a distributed network is activated according to stimulus context. We proposed that an interaction between brain activation and stimulus context in response to facial expressions could signify a pattern of interactivity across the whole brain network beyond the face processing network. Functional magnetic resonance imaging data were acquired for 19 young healthy subjects who were exposed to either emotionally neutral or negative facial expressions. We constructed group-wise functional brain networks for 12 face processing areas [bilateral inferior occipital gyri (IOG), fusiform gyri (FG), superior temporal sulci (STS), amygdalae (AMG), inferior frontal gyri (IFG), and orbitofrontal cortices (OFC)] and for 73 whole brain areas, based on partial correlation of mean activation across subjects. We compared the topological properties of the networks with respect to functional distance-based measures, global and local efficiency, between the two types of face stimulus. In both face processing and whole brain networks, global efficiency was lower and local efficiency was higher for negative faces relative to neutral faces, indicating that network topology differed according to stimulus context. Particularly in the face processing network, emotion-induced changes in network topology were attributable to interactions between core (bilateral IOG, FG, and STS) and extended (bilateral AMG, IFG, and OFC) systems. These results suggest that changes in brain activation patterns in response to emotional face stimuli could be revealed as changes in the topological properties of functional brain networks for the whole brain as well as for face processing areas.

  7. DHA effects in brain development and function

    DEFF Research Database (Denmark)

    Lauritzen, Lotte; Brambilla, Paola; Mazzocchi, Allesandra;

    2016-01-01

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endoge......Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since...

  8. The Efficiency of a Small-World Functional Brain Network

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qing-Bai; ZHANG Xiao-Fei; SUI Dan-Ni; ZHOU Zhi-Jin; CHEN Qi-Cai; TANG Yi-Yuan

    2012-01-01

    We investigate whether the small-world topology of a functional brain network means high information processing efficiency by calculating the correlation between the small-world measures of a functional brain network and behavioral reaction during an imagery task.Functional brain networks are constructed by multichannel eventrelated potential data,in which the electrodes are the nodes and the functional connectivities between them are the edges.The results show that the correlation between small-world measures and reaction time is task-specific,such that in global imagery,there is a positive correlation between the clustering coefficient and reaction time,while in local imagery the average path length is positively correlated with the reaction time.This suggests that the efficiency of a functional brain network is task-dependent.%We investigate whether the small-world topology of a functional brain network means high information processing efficiency by calculating the correlation between the small-world measures of a functional brain network and behavioral reaction during an imagery task. Functional brain networks are constructed by multichannel event-related potential data, in which the electrodes are the nodes and the functional connectivities between them are the edges. The results show that the correlation between small-world measures and reaction time is task-specific, such that in global imagery, there is a positive correlation between the clustering coefficient and reaction time, while in local imagery the average path length is positively correlated with the reaction time. This suggests that the efficiency of a functional brain network is task-dependent.

  9. Mapping functional brain development: Building a social brain through interactive specialization.

    Science.gov (United States)

    Johnson, Mark H; Grossmann, Tobias; Cohen Kadosh, Kathrin

    2009-01-01

    The authors review a viewpoint on human functional brain development, interactive specialization (IS), and its application to the emerging network of cortical regions referred to as the social brain. They advance the IS view in 2 new ways. First, they extend IS into a domain to which it has not previously been applied--the emergence of social cognition and mentalizing computations in the brain. Second, they extend the implications of the IS view from the emergence of specialized functions within a cortical region to a focus on how different cortical regions with complementary functions become orchestrated into networks during human postnatal development.

  10. EMOTIONAL BRAIN. CONCEPTS OF HISTORY, LOCATION AND FUNCTION

    Directory of Open Access Journals (Sweden)

    Lorenzo Morlán Gracia

    2012-05-01

    First of all a brief historical account of the various theories concerning the functions of the brain is accomplished. It is followed with a comment on several experiments undergone along the 20th century which have highly contributed to the understanding of the emotional brain and the brain mechanisms concerning conduct. Remarkable advances have been made in the understanding of the genetics and neurochemistry of the emotional brain, yet only part of it is known. Knowing the genetic and biochemical profile of human beings will help us understand better their conduct and emotions, their relations to the environment and hence its influences on their behaviour.

  11. Mapping Functional Brain Development: Building a Social Brain through Interactive Specialization

    Science.gov (United States)

    Johnson, Mark H.; Grossmann, Tobias; Kadosh, Kathrin Cohen

    2009-01-01

    The authors review a viewpoint on human functional brain development, interactive specialization (IS), and its application to the emerging network of cortical regions referred to as the "social brain." They advance the IS view in 2 new ways. First, they extend IS into a domain to which it has not previously been applied--the emergence of social…

  12. Abnormal whole-brain functional networks in homogeneous acute mild traumatic brain injury.

    NARCIS (Netherlands)

    Shumskaya, E.; Andriessen, T.; Norris, D.G.; Vos, P.E.

    2012-01-01

    Objectives: To evaluate the whole-brain resting-state networks in a homogeneous group of patients with acute mild traumatic brain injury (MTBI) and to identify alterations in functional connectivity induced by MTBI. Methods: Thirty-five patients with acute MTBI and 35 healthy control subjects, mat

  13. Abnormal whole-brain functional networks in homogeneous acute mild traumatic brain injury.

    NARCIS (Netherlands)

    Shumskaya, A.N.; Andriessen, T.M.J.C.; Norris, D.G.; Vos, P.E.

    2012-01-01

    OBJECTIVES: To evaluate the whole-brain resting-state networks in a homogeneous group of patients with acute mild traumatic brain injury (MTBI) and to identify alterations in functional connectivity induced by MTBI. METHODS: Thirty-five patients with acute MTBI and 35 healthy control subjects, match

  14. Minor Functional Deficits in Basic Response Patterns for Reinforcement after Frontal Traumatic Brain Injury in Rats.

    Science.gov (United States)

    Vonder Haar, Cole; Winstanley, Catharine A

    2016-10-15

    Traumatic brain injury (TBI) is a major contributor to numerous psychiatric conditions and chronic behavioral dysfunction. Recent studies in experimental brain injury have begun to adopt operant methodologies to assess these deficits, all of which rely on the process of reinforcement. No studies have directly examined how reinforced behaviors are affected by TBI, however. The current study assessed performance under the four most common schedules of reinforcement (fixed ratio, variable ratio, fixed interval, variable interval) and one higher order schedule assessing motivation (progressive ratio) after bilateral, pre-frontal controlled cortical impact injury. TBI-induced differences on the basic schedules were minor, with the exception of the variable ratio, where increased efficacy (more reinforcers, higher response rates, lower interresponse times) at higher requirements was observed as a result of brain injury. Performance on the progressive ratio schedule showed some gross differences between the groups, in that sham rats became more efficient under this schedule while injured rats perseverated in lever pressing. Further, injured rats were specifically impaired at lower response requirements on the progressive ratio. Taken together, these findings indicate that simple reinforced behaviors are mostly unaffected after TBI, except in the case of variable ratio schedules, but the altered performance on the higher-order progressive ratio schedule suggests changes involving motivation or potentially perseveration. These findings validate operant measures of more complex behaviors for brain injury, all of which rely on reinforcement and can be taken into consideration when adapting and developing novel functional assessments.

  15. Brain Hemispheric Functions and the Native American.

    Science.gov (United States)

    Ross, Allen Chuck

    1982-01-01

    Uses brain research conducted by Dr. Roger Sperry to show that traditional Native Americans are more dominant in right hemisphere thinking, setting them apart from a modern left hemisphere-oriented society (especially emphasized in schools). Describes some characteristics of Native American thinking that illustrate a right hemisphere orientation…

  16. Neural substrate expansion for the restoration of brain function

    Directory of Open Access Journals (Sweden)

    Han-Chiao Isaac Chen

    2016-01-01

    Full Text Available Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks.

  17. Recent progresses in biomedical applications of aptamer-functionalized systems.

    Science.gov (United States)

    Ding, Fei; Gao, Yangguang; He, Xianran

    2017-09-15

    Aptamers, known as "chemical antibodies" are screened via a combinational technology of systematic evolution of ligands by exponential enrichment (SELEX). Due to their specific targeting ability, high binding affinity, low immunogenicity and easy modification, aptamer-functionalized systems have been extensively applied in various fields and exhibit favorable results. However, there is still a long way for them to be commercialized, and few aptamer-functionalized systems have yet successfully entered clinical and industrial use. Thus, it is necessary to overview the recent research progresses of aptamer-functionalized systems for the researchers to improve or design novel and better aptamer-functionalized systems. In this review, we first introduce the recent progresses of aptamer-functionalized systems' applications in biosensing, targeted drug delivery, gene therapy and cancer cell imaging, followed by a discussion of the challenges faced with extensive applications of aptamer-functionalized systems and speculation of the future prospects of them. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Hierarchical organization of brain functional network during visual task

    CERN Document Server

    Zhuo, Zhao; Fu, Zhong-Qian; Zhang, Jie

    2011-01-01

    In this paper, the brain functional networks derived from high-resolution synchronous EEG time series during visual task are generated by calculating the phase synchronization among the time series. The hierarchical modular organizations of these networks are systematically investigated by the fast Girvan-Newman algorithm. At the same time, the spatially adjacent electrodes (corresponding to EEG channels) are clustered into functional groups based on anatomical parcellation of brain cortex, and this clustering information are compared to that of the functional network. The results show that the modular architectures of brain functional network are in coincidence with that from the anatomical structures over different levels of hierarchy, which suggests that population of neurons performing the same function excite and inhibit in identical rhythms. The structure-function relationship further reveals that the correlations among EEG time series in the same functional group are much stronger than those in differe...

  19. Functional Imaging of Dolphin Brain Metabolism and Blood Flow

    National Research Council Canada - National Science Library

    Ridgway, Sam; Finneran, James; Carder, Don; Keogh, Mandy; Van Bonn, William; Smith, Cynthia; Scadeng, Miriam; Dubowitz, David; Mattrey, Robert; Hoh, Carl

    2006-01-01

    This report documents the first use of magnetic resonance images (MRls) of living dolphins to register functional brain scans, allowing for the exploration of potential mechanisms of unihemispheric sleep...

  20. Functional imaging of dolphin brain metabolism and blood flow

    National Research Council Canada - National Science Library

    Ridgway, Sam; Houser, Dorian; Finneran, James; Carder, Don; Keogh, Mandy; Van Bonn, William; Smith, Cynthia; Scadeng, Miriam; Dubowitz, David; Mattrey, Robert; Hoh, Carl

    2006-01-01

    This report documents the first use of magnetic resonance images (MRIs) of living dolphins to register functional brain scans, allowing for the exploration of potential mechanisms of unihemispheric sleep...

  1. Progressive brain damage, synaptic reorganization and NMDA activation in a model of epileptogenic cortical dysplasia.

    Directory of Open Access Journals (Sweden)

    Francesca Colciaghi

    Full Text Available Whether severe epilepsy could be a progressive disorder remains as yet unresolved. We previously demonstrated in a rat model of acquired focal cortical dysplasia, the methylazoxymethanol/pilocarpine - MAM/pilocarpine - rats, that the occurrence of status epilepticus (SE and subsequent seizures fostered a pathologic process capable of modifying the morphology of cortical pyramidal neurons and NMDA receptor expression/localization. We have here extended our analysis by evaluating neocortical and hippocampal changes in MAM/pilocarpine rats at different epilepsy stages, from few days after onset up to six months of chronic epilepsy. Our findings indicate that the process triggered by SE and subsequent seizures in the malformed brain i is steadily progressive, deeply altering neocortical and hippocampal morphology, with atrophy of neocortex and CA regions and progressive increase of granule cell layer dispersion; ii changes dramatically the fine morphology of neurons in neocortex and hippocampus, by increasing cell size and decreasing both dendrite arborization and spine density; iii induces reorganization of glutamatergic and GABAergic networks in both neocortex and hippocampus, favoring excitatory vs inhibitory input; iv activates NMDA regulatory subunits. Taken together, our data indicate that, at least in experimental models of brain malformations, severe seizure activity, i.e., SE plus recurrent seizures, may lead to a widespread, steadily progressive architectural, neuronal and synaptic reorganization in the brain. They also suggest the mechanistic relevance of glutamate/NMDA hyper-activation in the seizure-related brain pathologic plasticity.

  2. [Research progress of mechanism of functional dyspepsia treated with acupuncture].

    Science.gov (United States)

    Yan, Kaiwei; Zhao, Ling; Yang, Jie; Lan, Ying; Xu, Jing; Wei, Chenchen; Liang, Fanrong

    2015-09-01

    Literature about functional dyspepsia treated with acupuncture in recent 5 years is retrieved in China National Knowledge Infrastructure (CNKI), Wanfang database and PubMed. The research achievements are arranged and summed up to explore the mechanism of acupuncture for functional dyspepsia. It is found that acupuncture can regulate the secretion of braingut petide, and cause the coordination response of limbic system-brain. Also, it adjusts serum molecule metabolin and the gene expression of the transduction pathway of adjustment signal for rats. It is believed that functional dyspepsia treated with acupuncture is through multiple ways, and adjusting the function of braingut axis is one of the important mechanisms.

  3. Effect of an Enhanced Nose-to-Brain Delivery of Insulin on Mild and Progressive Memory Loss in the Senescence-Accelerated Mouse.

    Science.gov (United States)

    Kamei, Noriyasu; Tanaka, Misa; Choi, Hayoung; Okada, Nobuyuki; Ikeda, Takamasa; Itokazu, Rei; Takeda-Morishita, Mariko

    2017-03-06

    Insulin is now considered to be a new drug candidate for treating dementias, such as Alzheimer's disease, whose pathologies are linked to insulin resistance in the brain. Our recent work has clarified that a noncovalent strategy involving cell-penetrating peptides (CPPs) can increase the direct transport of insulin from the nasal cavity into the brain parenchyma. The present study aimed to determine whether the brain insulin level increased by intranasal coadministration of insulin with the CPP penetratin has potential for treating dementia. The pharmacological actions of insulin were investigated at different stages of memory impairment using a senescence-accelerated mouse-prone 8 (SAMP8) model. The results of spatial learning tests suggested that chronic intranasal administration of insulin with l-penetratin to SAMP8 slowed the progression of memory loss in the early stage of memory impairment. However, contrary to expectations, this strategy using penetratin was ineffective in recovering the severe cognitive dysfunction in the progressive stage, which involves brain accumulation of amyloid β (Aβ). Immunohistological examination of hippocampal regions of samples from SAMP8 in the progressive stage suggested that accelerated nose-to-brain insulin delivery had a partial neuroprotective function but unexpectedly increased Aβ plaque deposition in the hippocampus. These findings suggest that the efficient nose-to-brain delivery of insulin combined with noncovalent CPP strategy has different effects on dementia during the mild and progressive stages of cognitive dysfunction.

  4. Demonstration: A smartphone 3D functional brain scanner

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Stopczynski, Arkadiusz; Larsen, Jakob Eg

    We demonstrate a fully portable 3D real-time functional brain scanner consisting of a wireless 14-channel ‘Neuroheadset‘ (Emotiv EPOC) and a Nokia N900 smartphone. The novelty of our system is the ability to perform real-time functional brain imaging on a smartphone device, including stimulus...... tools are preferred. Source localization is implemented locally on the phone with a 3D brain model consisting of 1,028 vertices and 2,048 triangles stored in the mobile application. Our system design benefits from the possibility of being able to integrate with multiple hardware platforms (smartphones...

  5. Brain Structure-function Couplings (FY11)

    Science.gov (United States)

    2012-01-01

    Models of the Human Brain Connectome. Annual Review of Clinical Psychology 2011, 7, 2.1‒2.28. Butts, C. T. Revisiting the Foundations of Network Analysis...Mini-review. Gerontology 2010, 56, 112‒119. Madden, D. J.; Bennett, I. J.; Song, A. W. Cerebral White Matter Integrity and Cognitive Aging...EEG Data Using the Imaginary Part of Coherency. Clinical Neurophysiology 2004, 115 (10), 2292‒307. Nieuwenhuys, R.; Voogd, J.; van Huijzen, C. The

  6. Exploring brain function from anatomical connectivity

    Directory of Open Access Journals (Sweden)

    Gorka eZamora-López

    2011-06-01

    Full Text Available The intrinsic relationship between the architecture of the brain and the range of sensory and behavioral phenomena it produces is a relevant question in neuroscience. Here, we review recent knowledge gained on the architecture of the anatomical connectivity by means of complex network analysis. It has been found that corticocortical networks display a few prominent characteristics: (i modular organization, (ii abundant alternative processing paths and (iii the presence of highly connected hubs. Additionally, we present a novel classification of cortical areas of the cat according to the role they play in multisensory connectivity. All these properties represent an ideal anatomical substrate supporting rich dynamical behaviors, as-well-as facilitating the capacity of the brain to process sensory information of different modalities segregated and to integrate them towards a comprehensive perception of the real world. The result here exposed are mainly based in anatomical data of cats’ brain, but we show how further observations suggest that, from worms to humans, the nervous system of all animals might share fundamental principles of organization.

  7. Maintaining older brain functionality: A targeted review.

    Science.gov (United States)

    Ballesteros, Soledad; Kraft, Eduard; Santana, Silvina; Tziraki, Chariklia

    2015-08-01

    The unprecedented growth in the number of older adults in our society is accompanied by the exponential increase in the number of elderly people who will suffer cognitive decline and dementia in the next decades. This will create an enormous cost for governments, families and individuals. Brain plasticity and its role in brain adaptation to the process of aging is influenced by other changes as a result of co-morbidities, environmental factors, personality traits (psychosocial variables) and genetic and epigenetic factors. This review summarizes recent findings obtained mostly from interventional studies that aim to prevent and/or delay age-related cognitive decline in healthy adults. There are a multitude of such studies. In this paper, we focused our review on physical activity, computerized cognitive training and social enhancement interventions on improving cognition, physical health, independent living and wellbeing of older adults. The methodological limitations of some of these studies, and the need for new multi-domain synergistic interventions, based on current advances in neuroscience and social-brain theories, are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Brain Connectivity and Functional Recovery in Patients With Ischemic Stroke.

    Science.gov (United States)

    Almeida, Sara Regina Meira; Vicentini, Jessica; Bonilha, Leonardo; De Campos, Brunno M; Casseb, Raphael F; Min, Li Li

    2017-01-01

    Brain mapping studies have demonstrated that functional poststroke brain reorganization is associated with recovery of motor function. Nonetheless, the specific mechanisms associated with functional reorganization leading to motor recovery are still partly unknown. In this study, we performed a cross-sectional evaluation of poststroke subjects with the following goals: (1) To assess intra- and interhemispheric functional brain activation patterns associated with motor function in poststroke patients with variable degrees of recovery; (2) to investigate the involvement of other nonmotor functional networks in relationship with recovery. We studied 59 individuals: 13 patients with function Rankin > 1 and Barthel function with Rankin 0-1 and Barthel = 100; and 27 healthy controls. All subjects underwent structural and functional magnetic resonance imaging (3T Philips Achieva, Holland) using the same protocol (TR = 2 seconds, TE = 30 ms, FOV = 240 × 240 × 117, slice = 39). Resting state functional connectivity was used by in-house software, based on SPM12. Among patients with and without preserved function, the functional connectivity between the primary motor region (M1) and the contralateral hemisphere was increased compared with controls. Nonetheless, only patients with decreased function exhibited decreased functional connectivity between executive control, sensorimotor and visuospatial networks. Functional recovery after stroke is associated with preserved functional connectivity of motor to nonmotor networks. Copyright © 2016 by the American Society of Neuroimaging.

  9. Effects of magnesium sulfate on brain mitochondrial respiratory function in rats after experimental traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    许民辉; 代文光; 邓洵鼎

    2002-01-01

    Objective: To study the effects of magnesium sulfate on brain mitochondrial respiratory function in rats after experimental traumatic brain injury and the possible mechanism.Methods: The middle degree brain injury in rats was made by BIM-III multi-function impacting machine. The brain mitochondrial respiratory function was measured with oxygen electrode and the ultra-structural changes were observed with transmission electron microscope (TEM).Results: 1. The brain mitochondrial respiratory stage III and respiration control rate reduced significantly in the untreated groups within 24 and 72 hours. But treated Group A showed certain degree of recovery of respiratory function; treated Group B showed further improvement. 2. Untreated Group, treated Groups A and B had different degrees of mitochondrial ultra-structural damage respectively, which could be attenuated after the treatment with magnesium sulfate.Conclusions: The mitochondrial respiratory function decreases significantly after traumatic brain injury. But it can be apparently improved after magnesium sulfate management along with the attenuated damage of mitochondria discovered by TEM. The longer course of treatment can obtain a better improvement of mitochondrial respiratory function.

  10. Human brain activity with functional NIR optical imager

    Science.gov (United States)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  11. EEG-based research on brain functional networks in cognition.

    Science.gov (United States)

    Wang, Niannian; Zhang, Li; Liu, Guozhong

    2015-01-01

    Recently, exploring the cognitive functions of the brain by establishing a network model to understand the working mechanism of the brain has become a popular research topic in the field of neuroscience. In this study, electroencephalography (EEG) was used to collect data from subjects given four different mathematical cognitive tasks: recite numbers clockwise and counter-clockwise, and letters clockwise and counter-clockwise to build a complex brain function network (BFN). By studying the connectivity features and parameters of those brain functional networks, it was found that the average clustering coefficient is much larger than its corresponding random network and the average shortest path length is similar to the corresponding random networks, which clearly shows the characteristics of the small-world network. The brain regions stimulated during the experiment are consistent with traditional cognitive science regarding learning, memory, comprehension, and other rational judgment results. The new method of complex networking involves studying the mathematical cognitive process of reciting, providing an effective research foundation for exploring the relationship between brain cognition and human learning skills and memory. This could help detect memory deficits early in young and mentally handicapped children, and help scientists understand the causes of cognitive brain disorders.

  12. Functional brain connectivity phenotypes for schizophrenia drug discovery.

    Science.gov (United States)

    Dawson, Neil; Morris, Brian J; Pratt, Judith A

    2015-02-01

    While our knowledge of the pathophysiology of schizophrenia has increased dramatically, this has not translated into the development of new and improved drugs to treat this disorder. Human brain imaging and electrophysiological studies have provided dramatic new insight into the mechanisms of brain dysfunction in the disease, with a swathe of recent studies highlighting the differences in functional brain network and neural system connectivity present in the disorder. Only recently has the value of applying these approaches in preclinical rodent models relevant to the disorder started to be recognised. Here we highlight recent findings of altered functional brain connectivity in preclinical rodent models and consider their relevance to those alterations seen in the brains of schizophrenia patients. Furthermore, we highlight the potential translational value of using the paradigm of functional brain connectivity phenotypes in the context of preclinical schizophrenia drug discovery, as a means both to understand the mechanisms of brain dysfunction in the disorder and to reduce the current high attrition rate in schizophrenia drug discovery.

  13. [Determinism and Freedom of Choice in the Brain Functioning].

    Science.gov (United States)

    Ivanitsky, A M

    2015-01-01

    The problem is considered whether the brain response is completely determined by the stimulus and the personal experience or in some cases the brain is free to choose its behavioral response to achieve the desired goal. The attempt is made to approach to this important philosophical problem basing on modern knowledge about the brain. The paper consists of four parts. In the first part the theoretical views about the free choice problem solving are considered, including views about the freedom of choice as a useful illusion, the hypothesis on appliance of quantum mechanics laws to the brain functioning and the theory of mentalism. In other tree parts consequently the more complicated brain functions such as choice reaction, thinking and creation are analyzed. The general conclusion is that the possibility of quite unpredictable, but sometimes very effective decisions increases when the brain functions are more and more complicated. This fact can be explained with two factors: increasing stochasticity of the brain processes and the role of top-down determinations from mental to neural levels, according to the theory of mentalism.

  14. Pseudo-progression after stereotactic radiotherapy of brain metastases: lesion analysis using MRI cine-loops.

    Science.gov (United States)

    Wiggenraad, Ruud; Bos, Petra; Verbeek-de Kanter, Antoinette; Lycklama À Nijeholt, Geert; van Santvoort, Jan; Taphoorn, Martin; Struikmans, Henk

    2014-09-01

    Stereotactic radiotherapy (SRT) of brain metastasis can lead to lesion growth caused by radiation toxicity. The pathophysiology of this so-called pseudo-progression is poorly understood. The purpose of this study was to evaluate the use of MRI cine-loops for describing the consecutive events in this radiation induced lesion growth. Ten patients were selected from our department's database that had received SRT of brain metastases and had lesion growth caused by pseudo-progression as well as at least five follow-up MRI scans. Pre- and post SRT MRI scans were co-registered and cine-loops were made using post-gadolinium 3D T1 axial slices. The ten cine loops were discussed in a joint meeting of the authors. The use of cine-loops was superior to evaluation of separate MRI scans for interpretation of events after SRT. There was a typical lesion evolution pattern in all patients with varying time course. Initially regression of the metastases was observed, followed by an enlarging area of new contrast enhancement in the surrounding brain tissue. Analysis of consecutive MRI's using cine-loops may improve understanding of pseudo-progression. It probably represents a radiation effect in brain tissue surrounding the irradiated metastasis and not enlargement of the metastasis itself.

  15. Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation.

    Science.gov (United States)

    Wong-Goodrich, Sarah J E; Pfau, Madeline L; Flores, Catherine T; Fraser, Jennifer A; Williams, Christina L; Jones, Lee W

    2010-11-15

    Whole-brain irradiation (WBI) therapy produces progressive learning and memory deficits in patients with primary or secondary brain tumors. Exercise enhances memory and adult hippocampal neurogenesis in the intact brain, so we hypothesized that exercise may be an effective treatment to alleviate consequences of WBI. Previous studies using animal models to address this issue have yielded mixed results and have not examined potential molecular mechanisms. We investigated the short- and long-term effects of WBI on spatial learning and memory retention and determined whether voluntary running after WBI aids recovery of brain and cognitive function. Forty adult female C57Bl/6 mice given a single dose of 5 Gy or sham WBI were trained 2.5 weeks and up to 4 months after WBI in a Barnes maze. Half of the mice received daily voluntary wheel access starting 1 month after sham or WBI. Daily running following WBI prevented the marked decline in spatial memory retention observed months after irradiation. Bromodeoxyuridine (BrdUrd) immunolabeling and enzyme-linked immunosorbent assay indicated that this behavioral rescue was accompanied by a partial restoration of newborn BrdUrd+/NeuN+ neurons in the dentate gyrus and increased hippocampal expression of brain-derived vascular endothelial growth factor and insulin-like growth factor-1, and occurred despite irradiation-induced elevations in hippocampal proinflammatory cytokines. WBI in adult mice produced a progressive memory decline consistent with what has been reported in cancer patients receiving WBI therapy. Our findings show that running can abrogate this memory decline and aid recovery of adult hippocampal plasticity, thus highlighting exercise as a potential therapeutic intervention.

  16. Deconstructing multivariate decoding for the study of brain function.

    Science.gov (United States)

    Hebart, Martin N; Baker, Chris I

    2017-08-04

    Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis. In this way, multivariate decoding for brain interpretation grew out of two established frameworks: multivariate decoding for predictions in real-world applications, and classical univariate analysis based on the study and interpretation of brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt to systematically disambiguate multivariate decoding for the study of brain function from the frameworks it grew out of. After elaborating these confusions and their consequences, we describe six, often unappreciated, differences between classical univariate analysis and multivariate decoding. We then focus on how the common interpretation of what is signal and noise changes in multivariate decoding. Finally, we use four examples to illustrate where these confusions may impact the interpretation of neuroimaging data. We conclude with a discussion of potential strategies to help resolve these confusions in interpreting multivariate decoding results, including the potential departure from multivariate decoding methods for the study of brain function. Copyright © 2017. Published by Elsevier Inc.

  17. MR of brain involvement in progressive facial hemiatrophy (Romberg disease): Reconsideration of a syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Terstegge, K.; Hosten, N. (Universitaetsklinikum Rudolf Virchow, Berlin (Germany)); Kunath, B. (Klinik und Poliklinik fuer Neurologie, Dresden (Germany)); Felber, S.; Henkes, H. (Universitaetskliniken der Universitaet Homburg (Germany)); Speciali, J.G. (Universidade de Sao Paolo (Brazil))

    1994-01-01

    To gain further insight into the pathogenesis of progressive facial hemiatrophy, a sporadic disease of unclear etiology characterized by shrinking and deformation of one side of the face. We investigated possible brain involvement. MR of the head and face was performed in three female patients with progressive facial hemiatrophy. The central-nervous-system findings were correlated to a clinical protocol and a review of the literature. One patient with epilepsy had abnormal brain findings confined to the cerebral hemisphere homolateral to the facial hemiatrophy. These consisted of monoventricular enlargement, meningocortical dysmorphia, and white-matter changes. These MR findings, and corresponding neuroradiologic data disclosed by the review, indicate that homolateral hemiatrophy occasionally occurs in a subgroup of patients with progressive facial hemiatrophy. The MR features do not seem consistent with an underlying simple or nutritive atrophic process. We propose chronic localized meningoencephalitis with vascular involvement as a possible underlying cause of the occasional brain involvement in progressive facial hemiatrophy. 29 refs., 2 figs.

  18. Effects of Great Lakes fish consumption on brain PCB pattern, concentration, and progressive-ratio performance

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, P.; Pagano, J.; Sargent, D.; Darvill, T.; Lonky, E.; Reihman, J.

    2000-01-01

    This study investigated the effects of consumption of Great Lakes fish on progressive ratio performance, and on the pattern and concentrations of brain polychlorinated biphenyls (PCBs), dichlorodiphenyldichloroethene (DDE), and mirex in the rat. Adult, male Sprague-Dawley rats were fed a 30% diet of either Lake Ontario salmon (LAKE), Pacific Ocean salmon, or lab chow control for 20 or 65 days. Following the treatment regimen, half the rats from each group were sacrificed immediately for gas chromatographic analysis of organochlorine contaminants, and the other half were tested on a multiple fixed-ratio-progressive-ratio reinforcement schedule and then sacrificed for analysis. Consumption of Lake Ontario fish resulted in significantly higher levels of brain PCBs, DDE, and mirex relative to controls, but still well within human exposure ranges. Consumption of Lake Ontario fish for 20 or 65 days produced an average brain PCB concentration of 457 and 934 ng/g fat, respectively. Consumption of laboratory rat chow or Pacific Ocean salmon for 20 or 65 days produced an average brain PCB concentration of 240, 464, and 441 ng/g fat, respectively. Moreover, both LAKE-fed groups showed a much more heavily chlorinated pattern of brain PCBs than all control groups, as evidenced by both significant increases in the most heavily chlorinated PCB congeners and significant increases in the average chlorine biphenyl.

  19. Functional neuroimaging of traumatic brain injury: advances and clinical utility

    Directory of Open Access Journals (Sweden)

    Irimia A

    2015-09-01

    Full Text Available Andrei Irimia, John Darrell Van Horn USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA Abstract: Functional deficits due to traumatic brain injury (TBI can have significant and enduring consequences upon patients’ life quality and expectancy. Although functional neuroimaging is essential for understanding TBI pathophysiology, an insufficient amount of effort has been dedicated to the task of translating functional neuroimaging findings into information with clinical utility. The purpose of this review is to summarize the use of functional neuroimaging techniques – especially functional magnetic resonance imaging, diffusion tensor imaging, positron emission tomography, magnetic resonance spectroscopy, and electroencephalography – for advancing current knowledge of TBI-related brain dysfunction and for improving the rehabilitation of TBI patients. We focus on seven core areas of functional deficits, namely consciousness, motor function, attention, memory, higher cognition, personality, and affect, and, for each of these, we summarize recent findings from neuroimaging studies which have provided substantial insight into brain function changes due to TBI. Recommendations are also provided to aid in setting the direction of future neuroimaging research and for understanding brain function changes after TBI. Keywords: cognitive decline, personality change, magnetic resonance imaging, diffusion tensor imaging

  20. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    Science.gov (United States)

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain.

  1. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    Directory of Open Access Journals (Sweden)

    Guangye Li

    Full Text Available An all-chain-wireless brain-to-brain system (BTBS, which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP based brain-computer interface (BCI was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain.

  2. [Functional imaging of deep brain stimulation in idiopathic Parkinson's disease].

    Science.gov (United States)

    Hilker, R

    2010-10-01

    Functional brain imaging allows the effects of deep brain stimulation (DBS) on the living human brain to be investigated. In patients with advanced Parkinson's disease (PD), positron emission tomography (PET) studies were undertaken at rest as well as under motor, cognitive or behavioral activation. DBS leads to a reduction of abnormal PD-related network activity in the motor system, which partly correlates with the improvement of motor symptoms. The local increase of energy consumption within the direct target area suggests a predominant excitatory influence of the stimulation current on neuronal tissue. Remote effects of DBS of the subthalamic nucleus (STN) on frontal association cortices indicate an interference of stimulation energy with associative and limbic basal ganglia loops. Taken together, functional brain imaging provides very valuable data for advancement of the DBS technique in PD therapy.

  3. Model of local temperature changes in brain upon functional activation.

    Science.gov (United States)

    Collins, Christopher M; Smith, Michael B; Turner, Robert

    2004-12-01

    Experimental results for changes in brain temperature during functional activation show large variations. It is, therefore, desirable to develop a careful numerical model for such changes. Here, a three-dimensional model of temperature in the human head using the bioheat equation, which includes effects of metabolism, perfusion, and thermal conduction, is employed to examine potential temperature changes due to functional activation in brain. It is found that, depending on location in brain and corresponding baseline temperature relative to blood temperature, temperature may increase or decrease on activation and concomitant increases in perfusion and rate of metabolism. Changes in perfusion are generally seen to have a greater effect on temperature than are changes in metabolism, and hence active brain is predicted to approach blood temperature from its initial temperature. All calculated changes in temperature for reasonable physiological parameters have magnitudes <0.12 degrees C and are well within the range reported in recent experimental studies involving human subjects.

  4. Effect of glycolysis inhibition on mitochondrial function in rat brain.

    Science.gov (United States)

    Cano-Ramírez, D; Torres-Vargas, C E; Guerrero-Castillo, S; Uribe-Carvajal, S; Hernández-Pando, R; Pedraza-Chaverri, J; Orozco-Ibarra, M

    2012-05-01

    Inhibition of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase enhances the neural vulnerability to excitotoxicity both in vivo and in vitro through an unknown mechanism possibly related to mitochondrial failure. However, as the effect of glycolysis inhibition on mitochondrial function in brain has not been studied, the aim of the present work was to evaluate the effect of glycolysis inhibition induced by iodoacetate on mitochondrial function and oxidative stress in brain. Mitochondria were isolated from brain cortex, striatum and cerebellum of rats treated systemically with iodoacetate (25 mg/kg/day for 3 days). Oxygen consumption, ATP synthesis, transmembrane potential, reactive oxygen species production, lipoperoxidation, glutathione levels, and aconitase activity were assessed. Oxygen consumption and aconitase activity decreased in the brain cortex and striatum, showing that glycolysis inhibition did not trigger severe mitochondrial impairment, but a slight mitochondrial malfunction and oxidative stress were present.

  5. Whole-brain functional networks in cognitively normal, mild cognitive impairment, and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Eun Hyun Seo

    Full Text Available The conceptual significance of understanding functional brain alterations and cognitive deficits associated with Alzheimer's disease (AD process has been widely established. However, the whole-brain functional networks of AD and its prodromal stage, mild cognitive impairment (MCI, are not well clarified yet. In this study, we compared the characteristics of the whole-brain functional networks among cognitively normal (CN, MCI, and AD individuals by applying graph theoretical analyses to [(18F] fluorodeoxyglucose positron emission tomography (FDG-PET data. Ninety-four CN elderly, 183 with MCI, and 216 with AD underwent clinical evaluation and FDG-PET scan. The overall small-world property as seen in the CN whole-brain network was preserved in MCI and AD. In contrast, individual parameters of the network were altered with the following patterns of changes: local clustering of networks was lower in both MCI and AD compared to CN, while path length was not different among the three groups. Then, MCI had a lower level of local clustering than AD. Subgroup analyses for AD also revealed that very mild AD had lower local clustering and shorter path length compared to mild AD. Regarding the local properties of the whole-brain networks, MCI and AD had significantly decreased normalized betweenness centrality in several hubs regionally associated with the default mode network compared to CN. Our results suggest that the functional integration in whole-brain network progressively declines due to the AD process. On the other hand, functional relatedness between neighboring brain regions may not gradually decrease, but be the most severely altered in MCI stage and gradually re-increase in clinical AD stages.

  6. Developing brain vital signs: Initial framework for monitoring brain function changes over time

    Directory of Open Access Journals (Sweden)

    Sujoy eGhosh Hajra

    2016-05-01

    Full Text Available Clinical assessment of brain function relies heavily on indirect behavior-based tests. Unfortunately, behavior-based assessments are subjective and therefore susceptible to several confounding factors. Event-related brain potentials (ERPs, derived from electroencephalography (EEG, are often used to provide objective, physiological measures of brain function. Historically, ERPs have been characterized extensively within research settings, with limited but growing clinical applications. Over the past 20 years, we have developed clinical ERP applications for the evaluation of functional status following serious injury and/or disease. This work has identified an important gap: the need for a clinically accessible framework to evaluate ERP measures. Crucially, this enables baseline measures before brain dysfunction occurs, and might enable the routine collection of brain function metrics in the future much like blood pressure measures today. Here, we propose such a framework for extracting specific ERPs as potential brain vital signs. This framework enabled the translation/transformation of complex ERP data into accessible metrics of brain function for wider clinical utilization. To formalize the framework, three essential ERPs were selected as initial indicators: 1 the auditory N100 (Auditory sensation; 2 the auditory oddball P300 (Basic attention; and 3 the auditory speech processing N400 (Cognitive processing. First step validation was conducted on healthy younger and older adults (age range: 22-82 years. Results confirmed specific ERPs at the individual level (86.81%-98.96%, verified predictable age-related differences (P300 latency delays in older adults, p<0.05, and demonstrated successful linear transformation into the proposed brain vital sign (BVS framework (basic attention latency sub-component of BVS framework reflects delays in older adults, p<0.05. The findings represent an initial critical step in developing, extracting, and

  7. 复杂脑网络研究:现状与挑战%Complex Brain Networks:Progresses and Challenges

    Institute of Scientific and Technical Information of China (English)

    张方风; 郑志刚

    2012-01-01

    Progresses in studies of complex networks and its applications in brain network were retrospected, including the research on topology structure features of anatomical and functional brain networks, as well as on the relationship between brain structures and functions. Based on complex networks theory, some important topology features of anatomical and functional brain networks were reported, such as small world,scale free,modular and hub regions; then some new findings were presented about the relationship between cognitive function and neuropsychiatry disorder with abnormalities in functional connectivity and changes in topological structure changes. Several challenges and key issues that should be addressed in the future were further raised.%以大脑网络研究为例,详细介绍了大脑网络的构建、结构网络、功能网络以及结构与功能的联系等方面的研究进展.基于复杂网络理论,对大脑结构网络和功能网络的分析得到很多重要的拓扑性质,如“小世界”、“无标度”、模块化以及核心脑区的分布等;另外发现认知功能、神经精神疾病与大脑结构和功能网络的拓扑结构变化或异常有关;总结了国内外在此领域的研究成果,提出了大脑网络研究工作面临的挑战,并展望了将来发展方向.

  8. Joint brain connectivity estimation from diffusion and functional MRI data

    Science.gov (United States)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information

  9. Joint Modelling of Structural and Functional Brain Networks

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Herlau, Tue; Mørup, Morten

    Functional and structural magnetic resonance imaging have become the most important noninvasive windows to the human brain. A major challenge in the analysis of brain networks is to establish the similarities and dissimilarities between functional and structural connectivity. We formulate a non...... significant structures that are consistently shared across subjects and data splits. This provides an unsupervised approach for modeling of structure-function relations in the brain and provides a general framework for multimodal integration.......-parametric Bayesian network model which allows for joint modelling and integration of multiple networks. We demonstrate the model’s ability to detect vertices that share structure across networks jointly in functional MRI (fMRI) and diffusion MRI (dMRI) data. Using two fMRI and dMRI scans per subject, we establish...

  10. Early Bifrontal Brain Injury: Disturbances in Cognitive Function Development

    Directory of Open Access Journals (Sweden)

    Christine Bonnier

    2010-01-01

    Full Text Available We describe six psychomotor, language, and neuropsychological sequential developmental evaluations in a boy who sustained a severe bifrontal traumatic brain injury (TBI at 19 months of age. Visuospatial, drawing, and writing skills failed to develop normally. Gradually increasing difficulties were noted in language leading to reading and spontaneous speech difficulties. The last two evaluations showed executive deficits in inhibition, flexibility, and working memory. Those executive abnormalities seemed to be involved in the other impairments. In conclusion, early frontal brain injury disorganizes the development of cognitive functions, and interactions exist between executive function and other cognitive functions during development.

  11. The brain and development of function

    NARCIS (Netherlands)

    Touwen, BCL

    1998-01-01

    Neurobiological and functional development are discontinuous. The interrelationships between identifiable morphological processes and the developmental course of functional display are astonishingly weak. One of the first persons who tried to find a solution for this problem was McGraw. This paper t

  12. Mapping Human Brain Function with MRI at 7 Tesla

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ In the past decade, the most significant development in MRI is the introduction of fMRI, which permits the mapping of human brain function with exquisite details noninvasively. Functional mapping can be achieved by measuring changes in the blood oxygenation level (I.e. The BOLD contrast) or cerebral blood flow.

  13. The Role of Brain Aging in Cognition and Motor Function

    NARCIS (Netherlands)

    Y.Y. Hoogendam (Jory)

    2014-01-01

    markdownabstract__Abstract__ Aging of the population is accompanied by many challenges, such as the maintenance of health and quality of life during older age. An important aspect of living longer is that old age is related to disease and loss of functions. The loss of brain functions poses a large

  14. Is performance better when brain functions are typically lateralized?

    NARCIS (Netherlands)

    Geuze, Reint; Zickert, Nele; Beking, Tess; Groothuis, Antonius

    2014-01-01

    Lateralization refers to the dominant involvement of one homologous region of the brain over the other in functional task performance. Direction and strength of lateralization depend on the functional task. It is well known that language is lateralized to the left hemisphere, even in most left-hande

  15. Clinimetrics and functional outcome one year after traumatic brain injury

    NARCIS (Netherlands)

    J.T.M. van Baalen (Bianca)

    2008-01-01

    textabstractThis thesis is based on the findings of the FuPro-TBI (Functional Prognosis in Traumatic Brain Injury) study, which was part of the national FuPro research programme which investigated the functional prognosis of four neurological disorders: multiple sclerosis (MS), stroke, amyotrofic l

  16. Data mining a functional neuroimaging database for functional segregation in brain regions

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Balslev, Daniela; Hansen, Lars Kai

    2006-01-01

    We describe a specialized neuroinformatic data mining technique in connection with a meta-analytic functional neuroimaging database: We mine for functional segregation within brain regions by identifying journal articles that report brain activations within the regions and clustering the abstract...

  17. Adaptation of brain functional and structural networks in aging.

    Directory of Open Access Journals (Sweden)

    Annie Lee

    Full Text Available The human brain, especially the prefrontal cortex (PFC, is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI, and high angular resolution diffusion imaging (HARDI, and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.

  18. Resting-state brain organization revealed by functional covariance networks.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Zhang

    Full Text Available BACKGROUND: Brain network studies using techniques of intrinsic connectivity network based on fMRI time series (TS-ICN and structural covariance network (SCN have mapped out functional and structural organization of human brain at respective time scales. However, there lacks a meso-time-scale network to bridge the ICN and SCN and get insights of brain functional organization. METHODOLOGY AND PRINCIPAL FINDINGS: We proposed a functional covariance network (FCN method by measuring the covariance of amplitude of low-frequency fluctuations (ALFF in BOLD signals across subjects, and compared the patterns of ALFF-FCNs with the TS-ICNs and SCNs by mapping the brain networks of default network, task-positive network and sensory networks. We demonstrated large overlap among FCNs, ICNs and SCNs and modular nature in FCNs and ICNs by using conjunctional analysis. Most interestingly, FCN analysis showed a network dichotomy consisting of anti-correlated high-level cognitive system and low-level perceptive system, which is a novel finding different from the ICN dichotomy consisting of the default-mode network and the task-positive network. CONCLUSION: The current study proposed an ALFF-FCN approach to measure the interregional correlation of brain activity responding to short periods of state, and revealed novel organization patterns of resting-state brain activity from an intermediate time scale.

  19. Functional Connectivity Hubs and Networks in the Awake Marmoset Brain

    Directory of Open Access Journals (Sweden)

    Annabelle Marie Belcher

    2016-03-01

    Full Text Available In combination with advances in analytical methods, resting-state fMRI is allowing unprecedented access to achieve a better understanding of the network organization of the brain. Increasing evidence suggests that this architecture may incorporate highly functionally connected nodes, or hubs, and we have recently proposed local functional connectivity density (lFCD mapping to identify highly-connected nodes in the human brain. Here we imaged awake nonhuman primates to test whether, like the human brain, the marmoset brain contains functional connectivity hubs. Ten adult common marmosets (Callithrix jacchus were acclimated to mild, comfortable restraint using individualized helmets. Following restraint training, resting BOLD data were acquired during eight consecutive 10 min scans for each subject. lFCD revealed prominent cortical and subcortical hubs of connectivity across the marmoset brain; specifically, in primary and secondary visual cortices (V1/V2, higher-order visual association areas (A19M/V6[DM], posterior parietal and posterior cingulate areas (PGM and A23b/A31, thalamus, dorsal and ventral striatal areas (caudate, putamen, lateral septal nucleus, and anterior cingulate cortex (A24a. lFCD hubs were highly connected to widespread areas of the brain, and further revealed significant network-network interactions. These data provide a baseline platform for future investigations in a nonhuman primate model of the brain’s network topology.

  20. Adaptation of brain functional and structural networks in aging.

    Science.gov (United States)

    Lee, Annie; Ratnarajah, Nagulan; Tuan, Ta Anh; Chen, Shen-Hsing Annabel; Qiu, Anqi

    2015-01-01

    The human brain, especially the prefrontal cortex (PFC), is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI), and high angular resolution diffusion imaging (HARDI), and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.

  1. Effects of Canon chord progression on brain activity and motivation are dependent on subjective feelings, not the chord progression per se.

    Science.gov (United States)

    Kayashima, Yoshinori; Yamamuro, Kazuhiko; Makinodan, Manabu; Nakanishi, Yoko; Wanaka, Akio; Kishimoto, Toshifumi

    2017-01-01

    A number of studies have indicated that relaxing and pleasant melodies are useful for the treatment of patients with psychiatric disorders, including schizophrenia, depression, and dementia. However, few studies have investigated what constitutive elements of the music had an effect on brain activity. As Canon chord progression is one of critical elements for pleasant melodies, we sought to examine the effects of Canon chord progression and pitch-shifted Canon chord progression on brain activity using performance on the auditory oddball task during event-related potentials (ERPs) in 30 healthy subjects. Unexpectedly, we found no differences in ERP components between subjects listening to Canon chord progression (n=15) or pitch-shifted Canon chord progression (n=15). Next, we divided participants into two groups: those who found the melody pleasant (n=17) and those who did not (n=13), for both Canon chord progression and pitch-shifted Canon chord progression. The average of P300 amplitude was higher at Fz in subjects found the music pleasant versus those finding it unpleasant. Moreover, subjects who found it pleasant exhibited higher motivation scores than those who felt it was unpleasant, whereas listening to Canon chord progression did not matter. These findings suggest that the effects of Canon chord progression on brain activity and motivation depend on subjective feelings, not the chord progression per se.

  2. 数字化脑图谱研宄进展%Research Progress of the Digital Human Brain Atlas

    Institute of Scientific and Technical Information of China (English)

    汤煜春; 刘树伟; 孙博; 樊令仲; 林祥涛

    2012-01-01

    Brain atlases play important roles in the exploration of human brain structure and function e.g. In the interpretation of results, in the visualization of information and in the processing of data. Currently, it has been one of the hot spots in neuroscience research. This paper reviewed the history and research progress of the digital human brain atlas and described the construction and application of the Chinese standard digital brain atlas based on MRI.%脑图谱是探索人脑结构和功能的重要工具,在运算结果的解释、信息的可视化及数据的处理中发挥着重要作用,是当前神经科学领域的研究热点.回顾了数字化脑图谱的发展过程和研究进展,并详细介绍了基于MRI图像的中国人数字化标准脑图谱的建立及其应用前景.

  3. Differentiating functional brain regions using optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Gil, Daniel A.; Bow, Hansen C.; Shen, Jin-H.; Joos, Karen M.; Skala, Melissa C.

    2017-02-01

    The human brain is made up of functional regions governing movement, sensation, language, and cognition. Unintentional injury during neurosurgery can result in significant neurological deficits and morbidity. The current standard for localizing function to brain tissue during surgery, intraoperative electrical stimulation or recording, significantly increases the risk, time, and cost of the procedure. There is a need for a fast, cost-effective, and high-resolution intraoperative technique that can avoid damage to functional brain regions. We propose that optical coherence tomography (OCT) can fill this niche by imaging differences in the cellular composition and organization of functional brain areas. We hypothesized this would manifest as differences in the attenuation coefficient measured using OCT. Five functional regions (prefrontal, somatosensory, auditory, visual, and cerebellum) were imaged in ex vivo porcine brains (n=3), a model chosen due to a similar white/gray matter ratio as human brains. The attenuation coefficient was calculated using a depth-resolved model and quantitatively validated with Intralipid phantoms across a physiological range of attenuation coefficients (absolute difference < 0.1cm-1). Image analysis was performed on the attenuation coefficient images to derive quantitative endpoints. We observed a statistically significant difference among the median attenuation coefficients of these five regions (one-way ANOVA, p<0.05). Nissl-stained histology will be used to validate our results and correlate OCT-measured attenuation coefficients to neuronal density. Additional development and validation of OCT algorithms to discriminate brain regions are planned to improve the safety and efficacy of neurosurgical procedures such as biopsy, electrode placement, and tissue resection.

  4. The functional brain architecture of human morality.

    Science.gov (United States)

    Funk, Chadd M; Gazzaniga, Michael S

    2009-12-01

    Human morality provides the foundation for many of the pillars of society, informing political legislation and guiding legal decisions while also governing everyday social interactions. In the past decade, researchers in the field of cognitive neuroscience have made tremendous progress in the effort to understand the neural basis of human morality. The emerging insights from this research point toward a model in which automatic processing in parallel neural circuits, many of which are associated with social emotions, evaluate the actions and intentions of others. Through various mechanisms of competition, only a subset of these circuits ultimately causes a decision or an action. This activity is experienced consciously as a subjective moral sense of right or wrong, and an interpretive process offers post hoc explanations designed to link the social stimulus with the subjective moral response using whatever explicit information is available.

  5. Microcephaly disease gene Wdr62 regulates mitotic progression of embryonic neural stem cells and brain size.

    Science.gov (United States)

    Chen, Jian-Fu; Zhang, Ying; Wilde, Jonathan; Hansen, Kirk C; Lai, Fan; Niswander, Lee

    2014-05-30

    Human genetic studies have established a link between a class of centrosome proteins and microcephaly. Current studies of microcephaly focus on defective centrosome/spindle orientation. Mutations in WDR62 are associated with microcephaly and other cortical abnormalities in humans. Here we create a mouse model of Wdr62 deficiency and find that the mice exhibit reduced brain size due to decreased neural progenitor cells (NPCs). Wdr62 depleted cells show spindle instability, spindle assembly checkpoint (SAC) activation, mitotic arrest and cell death. Mechanistically, Wdr62 associates and genetically interacts with Aurora A to regulate spindle formation, mitotic progression and brain size. Our results suggest that Wdr62 interacts with Aurora A to control mitotic progression, and loss of these interactions leads to mitotic delay and cell death of NPCs, which could be a potential cause of human microcephaly.

  6. Multi-platform genome-wide analysis of melanoma progression to brain metastasis

    Directory of Open Access Journals (Sweden)

    Diego M. Marzese

    2014-12-01

    Full Text Available Melanoma has a high tendency to metastasize to brain tissue. The understanding about the molecular alterations of early-stage melanoma progression to brain metastasis (MBM is very limited. Identifying MBM-specific genomic and epigenomic alterations is a key initial step in understanding its aggressive nature and identifying specific novel druggable targets. Here, we describe a multi-platform dataset generated with different stages of melanoma progression to MBM. This data includes genome-wide DNA methylation (Illumina HM450K BeadChip, gene expression (Affymetrix HuEx 1.0 ST array, single nucleotide polymorphisms (SNPs and copy number variation (CNV; Affymetrix SNP 6.0 array analyses of melanocyte cells (MNCs, primary melanoma tumors (PRMs, lymph node metastases (LNMs and MBMs. The analysis of this data has been reported in our recently published study (Marzese et al., 2014.

  7. Decreased functional brain connectivity in adolescents with internet addiction.

    Directory of Open Access Journals (Sweden)

    Soon-Beom Hong

    Full Text Available BACKGROUND: Internet addiction has become increasingly recognized as a mental disorder, though its neurobiological basis is unknown. This study used functional neuroimaging to investigate whole-brain functional connectivity in adolescents diagnosed with internet addiction. Based on neurobiological changes seen in other addiction related disorders, it was predicted that connectivity disruptions in adolescents with internet addiction would be most prominent in cortico-striatal circuitry. METHODS: Participants were 12 adolescents diagnosed with internet addiction and 11 healthy comparison subjects. Resting-state functional magnetic resonance images were acquired, and group differences in brain functional connectivity were analyzed using the network-based statistic. We also analyzed network topology, testing for between-group differences in key graph-based network measures. RESULTS: Adolescents with internet addiction showed reduced functional connectivity spanning a distributed network. The majority of impaired connections involved cortico-subcortical circuits (∼24% with prefrontal and ∼27% with parietal cortex. Bilateral putamen was the most extensively involved subcortical brain region. No between-group difference was observed in network topological measures, including the clustering coefficient, characteristic path length, or the small-worldness ratio. CONCLUSIONS: Internet addiction is associated with a widespread and significant decrease of functional connectivity in cortico-striatal circuits, in the absence of global changes in brain functional network topology.

  8. [Endocrine functions of the brain in adult and developing mammals].

    Science.gov (United States)

    Ugriumov, M V

    2009-01-01

    The main prerequisite for organism's viability is the maintenance of the internal environment despite changes in the external environment, which is provided by the neuroendocrine control system. The key unit in this system is hypothalamus exerting endocrine effects on certain peripheral organs and anterior pituitary. Physiologically active substances of neuronal origin enter blood vessels in the neurohemal parts of hypothalamus where no blood-brain barrier exists. In other parts of the adult brain, the arrival of physiologically active substances is blocked by the blood-brain barrier. According to the generally accepted concept, the neuroendocrine system formation in ontogeny starts with the maturation of peripheral endocrine glands, which initially function autonomously and then are controlled by the anterior pituitary. The brain is engaged in neuroendocrine control after its maturation completes, which results in a closed control system typical of adult mammals. Since neurons start to secrete physiologically active substances soon after their formation and long before interneuronal connections are formed, these cells are thought to have an effect on brain development as inducers. Considering that there is no blood-brain barrier during this period, we proposed the hypothesis that the developing brain functions as a multipotent endocrine organ. This means that tens of physiologically active substances arrive from the brain to the systemic circulation and have an endocrine effect on the whole body development. Dopamine, serotonin, and gonadotropin-releasing hormone were selected as marker physiologically active substances of cerebral origin to test this hypothesis. In adult animals, they act as neurotransmitters or neuromodulators transmitting information from neuron to neuron as well as neurohormones arriving from the hypothalamus with portal blood to the anterior pituitary. Perinatal rats--before the blood-brain barrier is formed--proved to have equally high

  9. Assortative mixing in functional brain networks during epileptic seizures

    CERN Document Server

    Bialonski, Stephan

    2013-01-01

    We investigate assortativity of functional brain networks before, during, and after one-hundred epileptic seizures with different anatomical onset locations. We construct binary functional networks from multi-channel electroencephalographic data recorded from 60 epilepsy patients, and from time-resolved estimates of the assortativity coefficient we conclude that positive degree-degree correlations are inherent to seizure dynamics. While seizures evolve, an increasing assortativity indicates a segregation of the underlying functional network into groups of brain regions that are only sparsely interconnected, if at all. Interestingly, assortativity decreases already prior to seizure end. Together with previous observations of characteristic temporal evolutions of global statistical properties and synchronizability of epileptic brain networks, our findings may help to gain deeper insights into the complicated dynamics underlying generation, propagation, and termination of seizures.

  10. Totally Tubular: The Mystery behind Function and Origin of the Brain Ventricular System

    OpenAIRE

    Lowery, Laura Anne; Sive, Hazel

    2009-01-01

    A unique feature of the vertebrate brain is the brain ventricular system, a series of connected cavities which are filled with cerebrospinal fluid (CSF) and surrounded by neuroepithelium. While CSF is critical for both adult brain function and embryonic brain development, neither development nor function of the brain ventricular system is fully understood. In this review, we discuss the mystery of why vertebrate brains have ventricles, and whence they originate. The brain ventricular system d...

  11. Disseminated intravascular coagulation scores as predictors for progressive hemorrhage and neurological prognosis following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Yirui Sun; Jin Hu; Caihua Xi; Ersong Wang; Jianqing Wang; Yong Liu; Hua Liu; Qiang Yuan; Haijun Yao; Liangfu Zhou

    2011-01-01

    Coagulation abnormalities, such as disseminated intravascular coagulation (DIC), are associated with progressive hemcrrhagic injury (PHI) following head trauma.However, the exact relationship between coagulopathy and PHI remains unclear.The present study utilized a scoring system defined by the International Society of Thrombosis and Haemostasis to investigate whether a high DIC score is predictive for PHI.This study was a multicenter prospective design involving four hospitals, a 6-month observation, and follow-up.Of 352 traumatic brain injury (TBI) patients, serial CT scan indicated approximately one third of patients developed progressive hemorrhage, which was most frequently observed in the frontal, temporal, and orbitof rontal lobes of patients with brain contusion.PHI-positive patients exhibited poor prognosis, as indicated by prolonged length of hospital/intensive care unit stay and high mortality.More importantly, a DIC score after TBI, as well as patient age and sex, could serve as predictors for PHI.In addition, DIC scores were closely associated with injury severity.Therefore, the DIC scoring system facilitated early PHI diagnosis in TBI patients, and DIC scores might serve as a valuable predictor for TBI patients with PHI.Key Words: coagulopathy; disseminated intravascular coagulation; disseminated intravascular coagulation scoring; intracranial hemorrhage; progressive hemorrhagic injury; traumatic brain injury

  12. In vitro-differentiated neural cell cultures progress towards donor-identical brain tissue

    Science.gov (United States)

    Hjelm, Brooke E.; Salhia, Bodour; Kurdoglu, Ahmet; Szelinger, Szabolcs; Reiman, Rebecca A.; Sue, Lucia I.; Beach, Thomas G.; Huentelman, Matthew J.; Craig, David W.

    2013-01-01

    Multiple research groups have observed neuropathological phenotypes and molecular symptoms in vitro using induced pluripotent stem cell (iPSC)-derived neural cell cultures (i.e. patient-specific neurons and glia). However, the global differences/similarities that may exist between in vitro neural cells and their tissue-derived counterparts remain largely unknown. In this study, we compared temporal series of iPSC-derived in vitro neural cell cultures to endogenous brain tissue from the same autopsy donor. Specifically, we utilized RNA sequencing (RNA-Seq) to evaluate the transcriptional progression of in vitro-differentiated neural cells (over a timecourse of 0, 35, 70, 105 and 140 days), and compared this with donor-identical temporal lobe tissue. We observed in vitro progression towards the reference brain tissue, and the following three results support this conclusion: (i) there was a significant increasing monotonic correlation between the days of our timecourse and the number of actively transcribed protein-coding genes and long intergenic non-coding RNAs (lincRNAs) (P vitro to brain-tissue differences (P vitro neural development and physiological progression occurring predominantly by transcriptional activation of downregulated genes rather than deactivation of upregulated genes. PMID:23666530

  13. Reduction of brain kynurenic acid improves cognitive function.

    Science.gov (United States)

    Kozak, Rouba; Campbell, Brian M; Strick, Christine A; Horner, Weldon; Hoffmann, William E; Kiss, Tamas; Chapin, Douglas S; McGinnis, Dina; Abbott, Amanda L; Roberts, Brooke M; Fonseca, Kari; Guanowsky, Victor; Young, Damon A; Seymour, Patricia A; Dounay, Amy; Hajos, Mihaly; Williams, Graham V; Castner, Stacy A

    2014-08-06

    The elevation of kynurenic acid (KYNA) observed in schizophrenic patients may contribute to core symptoms arising from glutamate hypofunction, including cognitive impairments. Although increased KYNA levels reduce excitatory neurotransmission, KYNA has been proposed to act as an endogenous antagonist at the glycine site of the glutamate NMDA receptor (NMDAR) and as a negative allosteric modulator at the α7 nicotinic acetylcholine receptor. Levels of KYNA are elevated in CSF and the postmortem brain of schizophrenia patients, and these elevated levels of KYNA could contribute to NMDAR hypofunction and the cognitive deficits and negative symptoms associated with this disease. However, the impact of endogenously produced KYNA on brain function and behavior is less well understood due to a paucity of pharmacological tools. To address this issue, we identified PF-04859989, a brain-penetrable inhibitor of kynurenine aminotransferase II (KAT II), the enzyme responsible for most brain KYNA synthesis. In rats, systemic administration of PF-04859989 dose-dependently reduced brain KYNA to as little as 28% of basal levels, and prevented amphetamine- and ketamine-induced disruption of auditory gating and improved performance in a sustained attention task. It also prevented ketamine-induced disruption of performance in a working memory task and a spatial memory task in rodents and nonhuman primates, respectively. Together, these findings support the hypotheses that endogenous KYNA impacts cognitive function and that inhibition of KAT II, and consequent lowering of endogenous brain KYNA levels, improves cognitive performance under conditions considered relevant for schizophrenia.

  14. Hemispheric asymmetry of electroencephalography-based functional brain networks.

    Science.gov (United States)

    Jalili, Mahdi

    2014-11-12

    Electroencephalography (EEG)-based functional brain networks have been investigated frequently in health and disease. It has been shown that a number of graph theory metrics are disrupted in brain disorders. EEG-based brain networks are often studied in the whole-brain framework, where all the nodes are grouped into a single network. In this study, we studied the brain networks in two hemispheres and assessed whether there are any hemispheric-specific patterns in the properties of the networks. To this end, resting state closed-eyes EEGs from 44 healthy individuals were processed and the network structures were extracted separately for each hemisphere. We examined neurophysiologically meaningful graph theory metrics: global and local efficiency measures. The global efficiency did not show any hemispheric asymmetry, whereas the local connectivity showed rightward asymmetry for a range of intermediate density values for the constructed networks. Furthermore, the age of the participants showed significant direct correlations with the global efficiency of the left hemisphere, but only in the right hemisphere, with local connectivity. These results suggest that only local connectivity of EEG-based functional networks is associated with brain hemispheres.

  15. Brain stem and cerebellar atrophy in chronic progressive neuro-Behçet's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kanoto, Masafumi, E-mail: mkanoto@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Hosoya, Takaaki, E-mail: thosoya@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Toyoguchi, Yuuki, E-mail: c-elegans_0201g@mail.goo.ne.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Oda, Atsuko, E-mail: a.oda@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan)

    2013-01-15

    Purpose: Chronic progressive neuro-Behçet's disease (CPNBD) resembles multiple sclerosis (MS) on patient background and image findings, and therefore is difficult to diagnose. The purpose is to identify the characteristic magnetic resonance imaging (MRI) findings of CPNBD and to clarify the differences between the MRI findings of CPNBD and those of MS. Materials and methods: The subjects consist of a CPNBD group (n = 4; 1 male and 3 females; mean age, 51 y.o.), a MS group (n = 19; 3 males and 16 females; mean age, 45 y.o.) and a normal control group (n = 23; 10 males and 13 females; mean age, 45 y.o.). Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were retrospectively evaluated in each subjects. In middle sagittal brain MR images, the prepontine distance was measured as an indirect index of brain stem and cerebellar atrophy and the pontine and mesencephalic distance was measured as a direct index of brain stem atrophy. These indexes were statistically analyzed. Results: Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were seen in all CPNBD cases. Prepontine distance was significantly different between the CPNBD group and the MS group (p < 0.05), and between the CPNBD group and the normal control group (p < 0.001). Pontine and mesencephalic distance were significantly different between the CPNBD group and the MS group (p < 0.001, p < 0.01 respectively), and between the CPNBD group and the normal control group (p < 0.001). Conclusions: Chronic progressive neuro-Behçet's disease should be considered in patients with brain stem and cerebellar atrophy in addition to leukoencephalopathy similar to that seen in multiple sclerosis.

  16. Human functional neuroimaging of brain changes associated with practice

    OpenAIRE

    GARAVAN, HUGH PATRICK

    2005-01-01

    PUBLISHED The discovery that experience-driven changes in the human brain can occur from a neural to a cortical level throughout the lifespan has stimulated a proliferation of research into how neural function changes in response to experience, enabled by neuroimaging methods such as positron emission tomography and functional magnetic resonance imaging. Studies attempt to characterize these changes by examining how practice on a task affects the functional anatomy underlying performance. ...

  17. Brain metabolic maps in Mild Cognitive Impairment predict heterogeneity of progression to dementia

    Directory of Open Access Journals (Sweden)

    Chiara Cerami

    2015-01-01

    Full Text Available [18F]FDG-PET imaging has been recognized as a crucial diagnostic marker in Mild Cognitive Impairment (MCI, supporting the presence or the exclusion of Alzheimer's Disease (AD pathology. A clinical heterogeneity, however, underlies MCI definition. In this study, we aimed to evaluate the predictive role of single-subject voxel-based maps of [18F]FDG distribution generated through statistical parametric mapping (SPM in the progression to different dementia subtypes in a sample of 45 MCI. Their scans were compared to a large normal reference dataset developed and validated for comparison at single-subject level. Additionally, Aβ42 and Tau CSF values were available in 34 MCI subjects. Clinical follow-up (mean 28.5 ± 7.8 months assessed subsequent progression to AD or non-AD dementias. The SPM analysis showed: 1 normal brain metabolism in 14 MCI cases, none of them progressing to dementia; 2 the typical temporo-parietal pattern suggestive for prodromal AD in 15 cases, 11 of them progressing to AD; 3 brain hypometabolism suggestive of frontotemporal lobar degeneration (FTLD subtypes in 7 and dementia with Lewy bodies (DLB in 2 subjects (all fulfilled FTLD or DLB clinical criteria at follow-up; and 4 7 MCI cases showed a selective unilateral or bilateral temporo-medial hypometabolism without the typical AD pattern, and they all remained stable. In our sample, objective voxel-based analysis of [18F]FDG-PET scans showed high predictive prognostic value, by identifying either normal brain metabolism or hypometabolic patterns suggestive of different underlying pathologies, as confirmed by progression at follow-up. These data support the potential usefulness of this SPM [18F]FDG PET analysis in the early dementia diagnosis and for improving subject selection in clinical trials based on MCI definition.

  18. Sleep, Neuronal Plasticity and Brain Function

    NARCIS (Netherlands)

    Meerlo, Peter; Benca, Ruth M.; Abel, Ted

    2015-01-01

    Sleep is truly one of the biggest mysteries in behavioral neuroscience. Humans spend a substantial portion of their lives asleep, as do all other mammalian and bird species that have been studied to date, yet the functions of sleep remain elusive and continue to be a topic of debate among sleep

  19. Sleep, Neuronal Plasticity and Brain Function

    NARCIS (Netherlands)

    Meerlo, Peter; Benca, Ruth M.; Abel, Ted

    2015-01-01

    Sleep is truly one of the biggest mysteries in behavioral neuroscience. Humans spend a substantial portion of their lives asleep, as do all other mammalian and bird species that have been studied to date, yet the functions of sleep remain elusive and continue to be a topic of debate among sleep rese

  20. Brain Function in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    J. Gordon Millichap

    2002-02-01

    Full Text Available The role of dystrophin disorders in the CNS function of boys with Duchenne muscular dystrophy (DMD and the dystrophin-deficient mdx mouse, an animal model of DMD, is reviewed at the University of New South Wales, University of Sydney, Australia.

  1. Functional Brain Network Changes Associated with Maintenance of Cognitive Function in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Santosh A Helekar

    2010-11-01

    Full Text Available In multiple sclerosis (MS functional changes in connectivity due to cortical reorganization could lead to cognitive impairment (CI, or reflect a re-adjustment to reduce the clinical effects of widespread tissue damage. Such alterations in connectivity could result in changes in neural activation as assayed by executive function tasks. We examined cognitive function in MS patients with mild to moderate cognitive impairment and age-matched controls. We evaluated brain activity using functional magnetic resonance imaging (fMRI during the successful performance of the Wisconsin-card sorting (WCS task by MS patients, showing compensatory maintenance of normal function, as measured by response latency and error rate. To assess changes in functional connectivity throughout the brain, we performed a global functional brain network analysis by computing voxel by voxel correlations on the fMRI time series data and carrying out a hierarchical cluster analysis. We found that during the WCS task there is a significant reduction in the number of smaller size brain functional networks, and a change in the brain areas representing the nodes of these networks in MS patients compared to age-matched controls. There is also a concomitant increase in the strength of functional connections between brain loci separated at intermediate scale distances in these patients. These functional alterations might reflect compensatory neuroplastic reorganization underlying maintenance of relatively normal cognitive function in the face of white matter lesions and cortical atrophy produced by MS.

  2. Human brain networks function in connectome-specific harmonic waves.

    Science.gov (United States)

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  3. The microbiota-gut-brain axis in functional gastrointestinal disorders

    Science.gov (United States)

    De Palma, Giada; Collins, Stephen M; Bercik, Premysl

    2014-01-01

    Functional gastrointestinal disorders (FGIDs) are highly prevalent and pose a significant burden on health care and society, and impact patients’ quality of life. FGIDs comprise a heterogeneous group of disorders, with unclear underlying pathophysiology. They are considered to result from the interaction of altered gut physiology and psychological factors via the gut-brain axis, where brain and gut symptoms are reciprocally influencing each other’s expression. Intestinal microbiota, as a part of the gut-brain axis, plays a central role in FGIDs. Patients with Irritable Bowel Syndrome, a prototype of FGIDs, display altered composition of the gut microbiota compared with healthy controls and benefit, at the gastrointestinal and psychological levels, from the use of probiotics and antibiotics. This review aims to recapitulate the available literature on FGIDs and microbiota-gut-brain axis. PMID:24921926

  4. The microbiota-gut-brain axis in functional gastrointestinal disorders.

    Science.gov (United States)

    De Palma, Giada; Collins, Stephen M; Bercik, Premysl

    2014-01-01

    Functional gastrointestinal disorders (FGIDs) are highly prevalent and pose a significant burden on health care and society, and impact patients' quality of life. FGIDs comprise a heterogeneous group of disorders, with unclear underlying pathophysiology. They are considered to result from the interaction of altered gut physiology and psychological factors via the gut-brain axis, where brain and gut symptoms are reciprocally influencing each other's expression. Intestinal microbiota, as a part of the gut-brain axis, plays a central role in FGIDs. Patients with Irritable Bowel Syndrome, a prototype of FGIDs, display altered composition of the gut microbiota compared with healthy controls and benefit, at the gastrointestinal and psychological levels, from the use of probiotics and antibiotics. This review aims to recapitulate the available literature on FGIDs and microbiota-gut-brain axis.

  5. Functional electrical stimulation improves brain perfusion in cranial trauma patients

    Directory of Open Access Journals (Sweden)

    Bárbara Juarez Amorim

    2011-08-01

    Full Text Available OBJECTIVE: Demonstrate brain perfusion changes due to neuronal activation after functional electrical stimulation (FES. METHOD: It was studied 14 patients with hemiplegia who were submitted to a program with FES during fourteen weeks. Brain perfusion SPECT was performed before and after FES therapy. These patients were further separated into 2 groups according to the hemiplegia cause: cranial trauma and major vascular insults. All SPECT images were analyzed using SPM. RESULTS: There was a significant statistical difference between the two groups related to patient's ages and extent of hypoperfusion in the SPECT. Patients with cranial trauma had a reduction in the hypoperfused area and patients with major vascular insult had an increase in the hypoperfused area after FES therapy. CONCLUSION: FES therapy can result in brain perfusion improvement in patients with brain lesions due to cranial trauma but probably not in patients with major vascular insults with large infarct area.

  6. Transcranial brain stimulation to promote functional recovery after stroke

    DEFF Research Database (Denmark)

    Raffin, Estelle; Siebner, Hartwig R

    2014-01-01

    PURPOSE OF REVIEW: Noninvasive brain stimulation (NIBS) is increasingly used to enhance the recovery of function after stroke. The purpose of this review is to highlight and discuss some unresolved questions that need to be addressed to better understand and exploit the potential of NIBS as a the......PURPOSE OF REVIEW: Noninvasive brain stimulation (NIBS) is increasingly used to enhance the recovery of function after stroke. The purpose of this review is to highlight and discuss some unresolved questions that need to be addressed to better understand and exploit the potential of NIBS...

  7. Darwin's evolution theory, brain oscillations, and complex brain function in a new "Cartesian view".

    Science.gov (United States)

    Başar, Erol; Güntekin, Bahar

    2009-01-01

    Comparatively analyses of electrophysiological correlates across species during evolution, alpha activity during brain maturation, and alpha activity in complex cognitive processes are presented to illustrate a new multidimensional "Cartesian System" brain function. The main features are: (1) The growth of the alpha activity during evolution, increase of alpha during cognitive processes, and decrease of the alpha entropy during evolution provide an indicator for evolution of brain cognitive performance. (2) Human children younger than 3 years are unable to produce higher cognitive processes and do not show alpha activity till the age of 3 years. The mature brain can perform higher cognitive processes and demonstrates regular alpha activity. (3) Alpha activity also is significantly associated with highly complex cognitive processes, such as the recognition of facial expressions. The neural activity reflected by these brain oscillations can be considered as constituent "building blocks" for a great number of functions. An overarching statement on the alpha function is presented by extended analyzes with multiple dimensions that constitute a "Cartesian Hyperspace" as the basis for oscillatory function. Theoretical implications are considered.

  8. Abnormal Resting-State Functional Connectivity in Progressive Supranuclear Palsy and Corticobasal Syndrome

    Directory of Open Access Journals (Sweden)

    Komal Bharti

    2017-06-01

    Full Text Available BackgroundPathological and MRI-based evidence suggests that multiple brain structures are likely to be involved in functional disconnection between brain areas. Few studies have investigated resting-state functional connectivity (rsFC in progressive supranuclear palsy (PSP and corticobasal syndrome (CBS. In this study, we investigated within- and between-network rsFC abnormalities in these two conditions.MethodsTwenty patients with PSP, 11 patients with CBS, and 16 healthy subjects (HS underwent a resting-state fMRI study. Resting-state networks (RSNs were extracted to evaluate within- and between-network rsFC using the Melodic and FSLNets software packages.ResultsIncreased within-network rsFC was observed in both PSP and CBS patients, with a larger number of RSNs being involved in CBS. Within-network cerebellar rsFC positively correlated with mini-mental state examination scores in patients with PSP. Compared to healthy volunteers, PSP and CBS patients exhibit reduced functional connectivity between the lateral visual and auditory RSNs, with PSP patients additionally showing lower functional connectivity between the cerebellar and insular RSNs. Moreover, rsFC between the salience and executive-control RSNs was increased in patients with CBS compared to HS.ConclusionThis study provides evidence of functional brain reorganization in both PSP and CBS. Increased within-network rsFC could represent a higher degree of synchronization in damaged brain areas, while between-network rsFC abnormalities may mainly reflect degeneration of long-range white matter fibers.

  9. Loss of functional GABAA receptors in the Alzheimer diseased brain

    Science.gov (United States)

    Limon, Agenor; Reyes-Ruiz, Jorge Mauricio; Miledi, Ricardo

    2012-01-01

    The cholinergic and glutamatergic neurotransmission systems are known to be severely disrupted in Alzheimer's disease (AD). GABAergic neurotransmission, in contrast, is generally thought to be well preserved. Evidence from animal models and human postmortem tissue suggest GABAergic remodeling in the AD brain. Nevertheless, there is no information on changes, if any, in the electrophysiological properties of human native GABA receptors as a consequence of AD. To gain such information, we have microtransplanted cell membranes, isolated from temporal cortices of control and AD brains, into Xenopus oocytes, and recorded the electrophysiological activity of the transplanted GABA receptors. We found an age-dependent reduction of GABA currents in the AD brain. This reduction was larger when the AD membranes were obtained from younger subjects. We also found that GABA currents from AD brains have a faster rate of desensitization than those from non-AD brains. Furthermore, GABA receptors from AD brains were slightly, but significantly, less sensitive to GABA than receptors from non-AD brains. The reduction of GABA currents in AD was associated with reductions of mRNA and protein of the principal GABA receptor subunits normally present in the temporal cortex. Pairwise analysis of the transcripts within control and AD groups and analyses of the proportion of GABA receptor subunits revealed down-regulation of α1 and γ2 subunits in AD. In contrast, the proportions of α2, β1, and γ1 transcripts were up-regulated in the AD brains. Our data support a functional remodeling of GABAergic neurotransmission in the human AD brain. PMID:22691495

  10. Nonlinear functional mapping of the human brain

    OpenAIRE

    Allgaier, Nicholas; Banaschewski, Tobias; Barker, Gareth; Arun L W Bokde; Bongard, Josh C.; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J.; Danforth, Christopher M.; Desrivières, Sylvane; Peter S. Dodds; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen

    2015-01-01

    The field of neuroimaging has truly become data rich, and novel analytical methods capable of gleaning meaningful information from large stores of imaging data are in high demand. Those methods that might also be applicable on the level of individual subjects, and thus potentially useful clinically, are of special interest. In the present study, we introduce just such a method, called nonlinear functional mapping (NFM), and demonstrate its application in the analysis of resting state fMRI fro...

  11. Hyperbaric oxygen therapy improves cognitive functioning after brain injury

    Institute of Scientific and Technical Information of China (English)

    Su Liu; Guangyu Shen; Shukun Deng; Xiubin Wang; Qinfeng Wu; Aisong Guo

    2013-01-01

    Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury;however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hyperbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney’s free fal ing method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats’ spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was sig-nificantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibril ary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly im-proves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is me-diated by metabolic changes and nerve cellrestoration in the hippocampal CA3 region.

  12. Hyperbaric oxygen therapy improves cognitive functioning after brain injury.

    Science.gov (United States)

    Liu, Su; Shen, Guangyu; Deng, Shukun; Wang, Xiubin; Wu, Qinfeng; Guo, Aisong

    2013-12-15

    Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury; however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hyperbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney's free falling method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats' spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was significantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibrillary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly improves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is mediated by metabolic changes and nerve cell restoration in the hippocampal CA3 region.

  13. Homocysteine, Liver Function Derangement and Brain Atrophy in Alcoholics.

    Science.gov (United States)

    Fernández-Rodríguez, Camino; González-Reimers, Emilio; Quintero-Platt, Geraldine; de la Vega-Prieto, María José; Pérez-Hernández, Onán; Martín-González, Candelaria; Espelosín-Ortega, Elisa; Romero-Acevedo, Lucía; Santolaria-Fernández, Francisco

    2016-11-01

    Hyperhomocysteinemia may be involved in the development of brain atrophy in alcoholics. Its pathogenesis is multifactorial. In the present study, we analyse the relationship between homocysteine levels and brain atrophy, and the relative weight of co-existing factors such as liver function impairment, the amount of ethanol consumed, serum vitamin B12, B6, and folic acid levels on homocysteine levels and brain alterations in alcoholic patients. We included 59 patients admitted to this hospital for major withdrawal symptoms and 24 controls. The mini-mental state examination test and a brain computed tomography (CT) scan were performed and several indices were calculated. Serum levels of homocysteine, folic acid, vitamin B6 and vitamin B12 were determined. Liver function was assessed by Child-Pugh score. The daily consumption of ethanol in grams per day and years of addiction were recorded. A total of 83.6% and 80% of the patients showed cerebellar or frontal atrophy, respectively. Patients showed altered values of brain indices, higher levels of homocysteine and vitamin B12, but lower levels of folic acid, compared with controls. Homocysteine, B12 and liver function variables showed significant correlations with brain CT indices. Multivariate analyses disclosed that Pugh's score, albumin and bilirubin were independently related to cerebellar atrophy, frontal atrophy, cella index or ventricular index. Serum vitamin B12 was the only factor independently related to Evans index. It was also related to cella index, but after bilirubin. Homocysteine levels were independently related to ventricular index, but after bilirubin. Vitamin B12 and homocysteine levels are higher among alcoholics. Liver function derangement, vitamin B12 and homocysteine are all independently related to brain atrophy, although not to cognitive alterations. Hyperhomocysteinemia has been described in alcoholics and may be related to brain atrophy, a reversible condition with an obscure pathogenesis

  14. Effects of soccer heading on brain structure and function

    Directory of Open Access Journals (Sweden)

    Ana Carolina Oliveira Rodrigues

    2016-03-01

    Full Text Available Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered an offensive or defensive move whereby the player’s unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of six to twelve incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the

  15. Effects of Soccer Heading on Brain Structure and Function.

    Science.gov (United States)

    Rodrigues, Ana Carolina; Lasmar, Rodrigo Pace; Caramelli, Paulo

    2016-01-01

    Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered as an offensive or defensive move whereby the player's unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of 6-12 incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years, some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the establishment of safety

  16. Functional constraints in the evolution of brain circuits

    Science.gov (United States)

    Bosman, Conrado A.; Aboitiz, Francisco

    2015-01-01

    Regardless of major anatomical and neurodevelopmental differences, the vertebrate isocortex shows a remarkably well-conserved organization. In the isocortex, reciprocal connections between excitatory and inhibitory neurons are distributed across multiple layers, encompassing modular, dynamical and recurrent functional networks during information processing. These dynamical brain networks are often organized in neuronal assemblies interacting through rhythmic phase relationships. Accordingly, these oscillatory interactions are observed across multiple brain scale levels, and they are associated with several sensory, motor, and cognitive processes. Most notably, oscillatory interactions are also found in the complete spectrum of vertebrates. Yet, it is unknown why this functional organization is so well conserved in evolution. In this perspective, we propose some ideas about how functional requirements of the isocortex can account for the evolutionary stability observed in microcircuits across vertebrates. We argue that isocortex architectures represent canonical microcircuits resulting from: (i) the early selection of neuronal architectures based on the oscillatory excitatory-inhibitory balance, which lead to the implementation of compartmentalized oscillations and (ii) the subsequent emergence of inferential coding strategies (predictive coding), which are able to expand computational capacities. We also argue that these functional constraints may be the result of several advantages that oscillatory activity contributes to brain network processes, such as information transmission and code reliability. In this manner, similarities in mesoscale brain circuitry and input-output organization between different vertebrate groups may reflect evolutionary constraints imposed by these functional requirements, which may or may not be traceable to a common ancestor. PMID:26388716

  17. Efficiency and cost of economical brain functional networks.

    Directory of Open Access Journals (Sweden)

    Sophie Achard

    2007-02-01

    Full Text Available Brain anatomical networks are sparse, complex, and have economical small-world properties. We investigated the efficiency and cost of human brain functional networks measured using functional magnetic resonance imaging (fMRI in a factorial design: two groups of healthy old (N = 11; mean age = 66.5 years and healthy young (N = 15; mean age = 24.7 years volunteers were each scanned twice in a no-task or "resting" state following placebo or a single dose of a dopamine receptor antagonist (sulpiride 400 mg. Functional connectivity between 90 cortical and subcortical regions was estimated by wavelet correlation analysis, in the frequency interval 0.06-0.11 Hz, and thresholded to construct undirected graphs. These brain functional networks were small-world and economical in the sense of providing high global and local efficiency of parallel information processing for low connection cost. Efficiency was reduced disproportionately to cost in older people, and the detrimental effects of age on efficiency were localised to frontal and temporal cortical and subcortical regions. Dopamine antagonism also impaired global and local efficiency of the network, but this effect was differentially localised and did not interact with the effect of age. Brain functional networks have economical small-world properties-supporting efficient parallel information transfer at relatively low cost-which are differently impaired by normal aging and pharmacological blockade of dopamine transmission.

  18. Continuous theta burst transcranial magnetic stimulation affects brain functional connectivity.

    Science.gov (United States)

    Dan Cao; Yingjie Li; Ling Wei; Yingying Tang

    2016-08-01

    Prefrontal cortex (PFC) plays an important role in the emotional processing as well as in the functional brain network. Hyperactivity in the right dorsolateral prefrontal cortex (DLPFC) would be found in anxious participants. However, it is still unclear what the role of PFC played in a resting functional network. Continuous theta burst transcranial magnetic stimulation (cTBS) is an effective tool to create virtual lesions on brain regions. In this paper, we applied cTBS over right prefrontal area, and investigated the effects of cTBS on the brain activity for functional connectivity by the method of graph theory. We recorded 64-channels EEG on thirteen healthy participants in the resting condition and emotional tasks before and after 40 s of cTBS. This work focused on the effect of cTBS on cortical activities in the resting condition by calculating the coherence between EEG channels and building functional networks before and after cTBS in the delta, theta, alpha and beta bands. Results revealed that 1) The functional connectivity after cTBS was significantly increased compared with that before cTBS in delta, theta, alpha and beta bands in the resting condition; 2) The efficiency-cost reached the maximum before and after cTBS both with the cost about 0.3 in the bands above, which meant that the information transmission of functional brain network with this cost was highly efficient; 3) the clustering coefficient and path length after cTBS was significantly increased in delta, theta and beta bands. In conclusion, cTBS over PFC indeed enhanced the functional connectivity in the resting condition. In addition, the information transmission in the resting brain network was highly efficient with the cost about 0.3.

  19. Effects of nutrients on brain function.

    Science.gov (United States)

    Maher, T J

    2000-01-01

    While many of the above examples support a role of these dietary components in modifying the synthesis, storage, release and actions of various neurotransmitter molecules in the central nervous system, most of the responses to eating everyday foods are expected to produce subtle changes in physiological and/or behavioral parameters. However, the observed subtle changes may have significant consequences when present in individuals with altered homeostasis as might be present in various disease states or certain environmental situations (e.g. depression, PMS, stress). Studies in the future should investigate the effects of various diets, e.g., vegetarian, macrobiotic, traditional Eastern, etc. on physiological and psychological functioning. Care should be taken to differentiate between the responses of subgroups of subjects, e.g. male vs. female, old vs. young, and lean vs. obese, as some differences in the rate of neurotransmitter synthesis and receptor dynamics have been reported in some studies. Chronic consumption of these diets may lead to long-term alterations in the neurotransmitter systems' dynamics, or as is often the situation with long-term pharmacological treatments, may result in adaptive changes to minimize the acute effects of such treatments. To date, no such studies have been performed that have systematically addressed many of these issues. Future studies will require careful design so as to enhance the chances of detecting such alterations in function. However, the most significant alterations in function occur when a dietary component is administered in a purified form, separate from the normal diet. In this case the compound should be treated more like a pharmacological agent than a nutrient since adverse (i.e. antinutritive) effects may result. The most difficult studies however will use everyday foods with the aim of detecting changes based on the underlying biochemical changes.

  20. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    KAUST Repository

    Magistretti, Pierre J.

    2015-05-01

    The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.

  1. Whole-brain atrophy differences between progressive supranuclear palsy and idiopathic Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Carlos Guevara

    2016-09-01

    Full Text Available Background: The absence of markers for ante-mortem diagnosis of progressive supranuclear palsy (PSP results in this disorder’s being commonly mistaken for other conditions, such as idiopathic Parkinson's disease (IPD. Such mistakes occur particularly in the initial stages, when ‘plus syndrome’ has not yet clinically emerged.Objective. To investigate global brain volume and tissue loss in patients with PSP relative to patients with IPD and healthy controls and correlations between clinical parameters and magnetic resonance imaging (MRI-derived brain volume estimates.Methods: T1-weighted images were obtained from three groups of Chilean Latin American adults: 21 patients with IPD, 18 patients with PSP and 14 healthy controls. We used Structural Imaging Evaluation with Normalization of Atrophy (SIENAX to assess white matter, gray matter and whole-brain volumes (normalized to cranial volume. Imaging data were used to analyze putative correlations with the clinical status of PSP and IPD patients using the Unified Parkinson’s Disease Rating Scale Part III, Hoehn and Yahr, the Clinical Global Impression for Disease Severity Scale and the Frontal Assessment Battery.Results: PSP patients had significantly lower whole brain volume than both IPD patients and controls. Whole brain volume reduction in PSP patients was primarily attributable to gray matter volume reduction. We found a significant correlation between brain volume reduction and clinical status in the PSP group.Conclusions: At the group level, whole brain and gray matter volumes differentiated patients with PSP from patients with IPD. There was also significant clinical-imaging correlations with motor disturbances in PSP.

  2. Whole-Brain Atrophy Differences between Progressive Supranuclear Palsy and Idiopathic Parkinson’s Disease

    Science.gov (United States)

    Guevara, Carlos; Bulatova, Katherina; Barker, Gareth J.; Gonzalez, Guido; Crossley, Nicolas A.; Kempton, Matthew J.

    2016-01-01

    Background: The absence of markers for ante-mortem diagnosis of progressive supranuclear palsy (PSP), results in this disorder being commonly mistaken for other conditions, such as idiopathic Parkinson’s disease (IPD). Such mistakes occur particularly in the initial stages, when “plus syndrome” has not yet clinically emerged. Objective: To investigate the global brain volume and tissue loss in patients with PSP relative to patients with IPD and healthy controls and correlations between clinical parameters and magnetic resonance imaging (MRI)-derived brain volume estimates. Methods: T1-weighted images were obtained from three groups of Chilean Latin American adults: 21 patients with IPD, 18 patients with PSP and 14 healthy controls. We used Structural Imaging Evaluation with Normalization of Atrophy (SIENAX) to assess white matter, gray matter and whole-brain volumes (normalized to cranial volume). Imaging data were used to analyze putative correlations with the clinical status of PSP and IPD patients using the Unified Parkinson’s Disease Rating Scale Part III (UPDRS III), Hoehn and Yahr (H&Y), the Clinical Global Impression for Disease Severity Scale (CGI-S) and the Frontal Assessment Battery (FAB). Results: PSP patients had significantly lower whole brain volume than both IPD patients and controls. Whole brain volume reduction in PSP patients was primarily attributable to gray matter volume reduction. We found a significant correlation between brain volume reduction and clinical status in the PSP group. Conclusions: At the group level, the whole brain and gray matter volumes differentiated patients with PSP from patients with IPD. There was also significant clinical-imaging correlations with motor disturbances in PSP. PMID:27679572

  3. Does sleep restore the topology of functional brain networks?

    Science.gov (United States)

    Koenis, Maria M G; Romeijn, Nico; Piantoni, Giovanni; Verweij, Ilse; Van der Werf, Ysbrand D; Van Someren, Eus J W; Stam, Cornelis J

    2013-02-01

    Previous studies have shown that healthy anatomical as well as functional brain networks have small-world properties and become less optimal with brain disease. During sleep, the functional brain network becomes more small-world-like. Here we test the hypothesis that the functional brain network during wakefulness becomes less optimal after sleep deprivation (SD). Electroencephalography (EEG) was recorded five times a day after a night of SD and after a night of normal sleep in eight young healthy subjects, both during eyes-closed and eyes-open resting state. Overall synchronization was determined with the synchronization likelihood (SL) and the phase lag index (PLI). From these coupling strength matrices the normalized clustering coefficient C (a measurement of local clustering) and path length L (a measurement of global integration) were computed. Both measures were normalized by dividing them by their corresponding C-s and L-s values of random control networks. SD reduced alpha band C/C-s and L/L-s and theta band C/C-s during eyes-closed resting state. In contrast, SD increased gamma-band C/C-s and L/L-s during eyes-open resting state. Functional relevance of these changes in network properties was suggested by their association with sleep deprivation-induced performance deficits on a sustained attention simple reaction time task. The findings indicate that SD results in a more random network of alpha-coupling and a more ordered network of gamma-coupling. The present study shows that SD induces frequency-specific changes in the functional network topology of the brain, supporting the idea that sleep plays a role in the maintenance of an optimal functional network. Copyright © 2011 Wiley Periodicals, Inc.

  4. Disrupted functional brain connectome in unilateral sudden sensorineural hearing loss.

    Science.gov (United States)

    Xu, Haibo; Fan, Wenliang; Zhao, Xueyan; Li, Jing; Zhang, Wenjuan; Lei, Ping; Liu, Yuan; Wang, Haha; Cheng, Huamao; Shi, Hong

    2016-05-01

    Sudden sensorineural hearing loss (SSNHL) is generally defined as sensorineural hearing loss of 30 dB or greater over at least three contiguous audiometric frequencies and within a three-day period. This hearing loss is usually unilateral and can be associated with tinnitus and vertigo. The pathogenesis of unilateral sudden sensorineural hearing loss is still unknown, and the alterations in the functional connectivity are suspected to involve one possible pathogenesis. Despite scarce findings with respect to alterations in brain functional networks in unilateral sudden sensorineural hearing loss, the alterations of the whole brain functional connectome and whether these alterations were already in existence in the acute period remains unknown. The aim of this study was to investigate the alterations of brain functional connectome in two large samples of unilateral sudden sensorineural hearing loss patients and to investigate the correlation between unilateral sudden sensorineural hearing loss characteristics and changes in the functional network properties. Pure tone audiometry was performed to assess hearing ability. Abnormal changes in the peripheral auditory system were examined using conventional magnetic resonance imaging. The graph theoretical network analysis method was used to detect brain connectome alterations in unilateral sudden sensorineural hearing loss. Compared with the control groups, both groups of unilateral SSNHL patients exhibited a significantly increased clustering coefficient, global efficiency, and local efficiency but a significantly decreased characteristic path length. In addition, the primary increased nodal strength (e.g., nodal betweenness, hubs) was observed in several regions primarily, including the limbic and paralimbic systems, and in the auditory network brain areas. These findings suggest that the alteration of network organization already exists in unilateral sudden sensorineural hearing loss patients within the acute period

  5. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui [Pudong New Area People' s Hospital, Department of Neurosurgery, Shanghai (China)

    2011-05-15

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  6. Variability in functional brain networks predicts expertise during action observation.

    Science.gov (United States)

    Amoruso, Lucía; Ibáñez, Agustín; Fonseca, Bruno; Gadea, Sebastián; Sedeño, Lucas; Sigman, Mariano; García, Adolfo M; Fraiman, Ricardo; Fraiman, Daniel

    2017-02-01

    Observing an action performed by another individual activates, in the observer, similar circuits as those involved in the actual execution of that action. This activation is modulated by prior experience; indeed, sustained training in a particular motor domain leads to structural and functional changes in critical brain areas. Here, we capitalized on a novel graph-theory approach to electroencephalographic data (Fraiman et al., 2016) to test whether variability in functional brain networks implicated in Tango observation can discriminate between groups differing in their level of expertise. We found that experts and beginners significantly differed in the functional organization of task-relevant networks. Specifically, networks in expert Tango dancers exhibited less variability and a more robust functional architecture. Notably, these expertise-dependent effects were captured within networks derived from electrophysiological brain activity recorded in a very short time window (2s). In brief, variability in the organization of task-related networks seems to be a highly sensitive indicator of long-lasting training effects. This finding opens new methodological and theoretical windows to explore the impact of domain-specific expertise on brain plasticity, while highlighting variability as a fruitful measure in neuroimaging research.

  7. Predicting functional brain ROIs via fiber shape models.

    Science.gov (United States)

    Zhang, Tuo; Guo, Lei; Li, Kaiming; Zhu, Dajing; Cui, Guangbin; Liu, Tianming

    2011-01-01

    Study of structural and functional connectivities of the human brain has received significant interest and effort recently. A fundamental question arises when attempting to measure the structural and/or functional connectivities of specific brain networks: how to best identify possible Regions of Interests (ROIs)? In this paper, we present a novel ROI prediction framework that localizes ROIs in individual brains based on learned fiber shape models from multimodal task-based fMRI and diffusion tensor imaging (DTI) data. In the training stage, ROIs are identified as activation peaks in task-based fMRI data. Then, shape models of white matter fibers emanating from these functional ROIs are learned. In addition, ROIs' location distribution model is learned to be used as an anatomical constraint. In the prediction stage, functional ROIs are predicted in individual brains based on DTI data. The ROI prediction is formulated and solved as an energy minimization problem, in which the two learned models are used as energy terms. Our experiment results show that the average ROI prediction error is 3.45 mm, in comparison with the benchmark data provided by working memory task-based fMRI. Promising results were also obtained on the ADNI-2 longitudinal DTI dataset.

  8. Psychosocial Stress and Brain Function in Adolescent Psychopathology.

    Science.gov (United States)

    Quinlan, Erin Burke; Cattrell, Anna; Jia, Tianye; Artiges, Eric; Banaschewski, Tobias; Barker, Gareth; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Brühl, Rüdiger; Conrod, Patricia J; Desrivieres, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Martinot, Jean-Luc; Paillère Martinot, Marie-Laure; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Paus, Tomáš; Poustka, Luise; Smolka, Michael N; Vetter, Nora C; Walter, Henrik; Whelan, Robert; Glennon, Jeffrey C; Buitelaar, Jan K; Happé, Francesca; Loth, Eva; Barker, Edward D; Schumann, Gunter

    2017-08-01

    The authors sought to explore how conduct, hyperactivity/inattention, and emotional symptoms are associated with neural reactivity to social-emotional stimuli, and the extent to which psychosocial stress modulates these relationships. Participants were community adolescents recruited as part of the European IMAGEN study. Bilateral amygdala regions of interest were used to assess the relationship between the three symptom domains and functional MRI neural reactivity during passive viewing of dynamic angry and neutral facial expressions. Exploratory functional connectivity and whole brain multiple regression approaches were used to analyze how the symptoms and psychosocial stress relate to other brain regions. In response to the social-emotional stimuli, adolescents with high levels of conduct or hyperactivity/inattention symptoms who had also experienced a greater number of stressful life events showed hyperactivity of the amygdala and several regions across the brain. This effect was not observed with emotional symptoms. A cluster in the midcingulate was found to be common to both conduct problems and hyperactivity symptoms. Exploratory functional connectivity analyses suggested that amygdala-precuneus connectivity is associated with hyperactivity/inattention symptoms. The results link hyperactive amygdala responses and regions critical for top-down emotional processing with high levels of psychosocial stress in individuals with greater conduct and hyperactivity/inattention symptoms. This work highlights the importance of studying how psychosocial stress affects functional brain responses to social-emotional stimuli, particularly in adolescents with externalizing symptoms.

  9. Functional Neuroimaging of Appetite and Gut–Brain Interactions

    NARCIS (Netherlands)

    Smeets, P.A.M.; Preissl, Hubert

    2016-01-01

    Ultimately, eating decisions are made in the brain, based on the integration
    of multiple neural and hormonal signals. Since the early 1990s the use of
    functional
    neuroimaging techniques has continued to increase. Their application
    in the study of the regulation of food intake and gut

  10. Dehydration affects brain structure and function in healthy adolescents.

    Science.gov (United States)

    Kempton, Matthew J; Ettinger, Ulrich; Foster, Russell; Williams, Steven C R; Calvert, Gemma A; Hampshire, Adam; Zelaya, Fernando O; O'Gorman, Ruth L; McMorris, Terry; Owen, Adrian M; Smith, Marcus S

    2011-01-01

    It was recently observed that dehydration causes shrinkage of brain tissue and an associated increase in ventricular volume. Negative effects of dehydration on cognitive performance have been shown in some but not all studies, and it has also been reported that an increased perceived effort may be required following dehydration. However, the effects of dehydration on brain function are unknown. We investigated this question using functional magnetic resonance imaging (fMRI) in 10 healthy adolescents (mean age = 16.8, five females). Each subject completed a thermal exercise protocol and nonthermal exercise control condition in a cross-over repeated measures design. Subjects lost more weight via perspiration in the thermal exercise versus the control condition (P Dehydration following the thermal exercise protocol led to a significantly stronger increase in fronto-parietal blood-oxygen-level-dependent (BOLD) response during an executive function task (Tower of London) than the control condition, whereas cerebral perfusion during rest was not affected. The increase in BOLD response after dehydration was not paralleled by a change in cognitive performance, suggesting an inefficient use of brain metabolic activity following dehydration. This pattern indicates that participants exerted a higher level of neuronal activity in order to achieve the same performance level. Given the limited availability of brain metabolic resources, these findings suggest that prolonged states of reduced water intake may adversely impact executive functions such as planning and visuo-spatial processing.

  11. Abnormal brain functional connectivity of the hypothalamus in cluster headaches.

    Directory of Open Access Journals (Sweden)

    Enchao Qiu

    Full Text Available The aim of this study was to detect the abnormality of the brain functional connectivity of the hypothalamus during acute spontaneous cluster headache (CH attacks ('in attack' and headache-free intervals ('out of attack' using resting-state functional magnetic resonance imaging (RS-fMRI technique. The RS-fMRI data from twelve male CH patients during 'in attack' and 'out of attack' periods and twelve age- and sex-matched normal controls were analyzed by the region-of-interest -based functional connectivity method using SPM5 software. Abnormal brain functional connectivity of the hypothalamus is present in CH, which is located mainly in the pain system during the spontaneous CH attacks. It extends beyond the pain system during CH attack intervals.

  12. Hierarchical alteration of brain structural and functional networks in female migraine sufferers.

    Directory of Open Access Journals (Sweden)

    Jixin Liu

    Full Text Available BACKGROUND: Little is known about the changes of brain structural and functional connectivity networks underlying the pathophysiology in migraine. We aimed to investigate how the cortical network reorganization is altered by frequent cortical overstimulation associated with migraine. METHODOLOGY/PRINCIPAL FINDINGS: Gray matter volumes and resting-state functional magnetic resonance imaging signal correlations were employed to construct structural and functional networks between brain regions in 43 female patients with migraine (PM and 43 gender-matched healthy controls (HC by using graph theory-based approaches. Compared with the HC group, the patients showed abnormal global topology in both structural and functional networks, characterized by higher mean clustering coefficients without significant change in the shortest absolute path length, which indicated that the PM lost optimal topological organization in their cortical networks. Brain hubs related to pain-processing revealed abnormal nodal centrality in both structural and functional networks, including the precentral gyrus, orbital part of the inferior frontal gyrus, parahippocampal gyrus, anterior cingulate gyrus, thalamus, temporal pole of the middle temporal gyrus and the inferior parietal gyrus. Negative correlations were found between migraine duration and regions with abnormal centrality. Furthermore, the dysfunctional connections in patients' cortical networks formed into a connected component and three dysregulated modules were identified involving pain-related information processing and motion-processing visual networks. CONCLUSIONS: Our results may reflect brain alteration dynamics resulting from migraine and suggest that long-term and high-frequency headache attacks may cause both structural and functional connectivity network reorganization. The disrupted information exchange between brain areas in migraine may be reshaped into a hierarchical modular structure progressively.

  13. Brain Functional Connectivity in MS: An EEG-NIRS Study

    Science.gov (United States)

    2015-10-01

    oxygen- based ( near -infrared spectroscopy (NIRS), functional MRI (fMRI)) signals, and to use the results to help optimize BOLD fMRI analyses of brain...2. Keywords BOLD – blood oxygen level dependent EEG – electroencephalography NIRS – near -infrared spectroscopy fMRI – functional MRI MS...INTRODUCTION TO ELECTROENCEPHALOGRAPHY AND NEAR -INFRARED SPECTROSCOPY NEUROIMAGING MEASUREMENT AND ANALYSIS P.40LO GlACO~lETTT 1. COURSE O VERVIEW T he

  14. Progressively Disrupted Intrinsic Functional Connectivity of Basolateral Amygdala in Very Early Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Marion Ortner

    2016-09-01

    Full Text Available Abstract:Very early Alzheimer’s disease (AD - i.e., AD at stages of mild cognitive impairment (MCI and mild dementia - is characterized by progressive structural and neuropathologic changes such as atrophy or tangle deposition in medial temporal lobes, including hippocampus and entorhinal cortex but also adjacent amygdala. While progressively disrupted intrinsic connectivity of hippocampus with other brain areas has been demonstrated by many studies, amygdala connectivity was rarely investigated in AD, notwithstanding its known relevance for emotion processing and mood disturbances, which are both important in early AD. Intrinsic functional connectivity (iFC patterns of hippocampus and amygdala overlap in healthy persons. Thus, we hypothesized that increased alteration of iFC patterns along AD is not limited to the hippocampus but also concerns the amygdala, independent from atrophy. To address this hypothesis, we applied structural and functional resting-state MRI in healthy controls (CON, n=33 and patients with AD in the stages of MCI (AD-MCI, n=38 and mild dementia (AD-D, n=36. Outcome measures were voxel-based morphometry (VBM values and region of interest-based intrinsic functional connectivity maps (iFC of basolateral amygdala, which has extended cortical connectivity. Amygdala VBM values were progressively reduced in patients (CON > AD-MCI and AD-D. Amygdala iFC was progressively reduced along impairment severity (CON > AD-MCI > AD-D, particularly for hippocampus, temporal lobes, and fronto-parietal areas. Notably, decreased iFC was independent of amygdala atrophy. Results demonstrate progressively impaired amygdala intrinsic connectivity in temporal and fronto-parietal lobes independent from increasing amygdala atrophy in very early AD. Data suggest that early AD disrupts intrinsic connectivity of medial temporal lobe key regions including that of amygdala.

  15. Pro-cognitive drug effects modulate functional brain network organization

    Directory of Open Access Journals (Sweden)

    Carsten eGiessing

    2012-08-01

    Full Text Available Previous studies document that cholinergic and noradrenergic drugs improve attention, memory and cognitive control in healthy subjects and patients with neuropsychiatric disorders. In humans neural mechanisms of cholinergic and noradrenergic modulation have mainly been analyzed by investigating drug-induced changes of task-related neural activity measured with fMRI. Endogenous neural activity has often been neglected. Further, although drugs affect the coupling between neurons, only a few human studies have explicitly addressed how drugs modulate the functional connectome, i.e. the functional neural interactions within the brain. These studies have mainly focused on synchronization or correlation of brain activations. Recently, there are some drug studies using graph theory and other new mathematical approaches to model the brain as a complex network of interconnected processing nodes. Using such measures it is possible to detect not only focal, but also subtle, widely distributed drug effects on functional network topology. Most important, graph theoretical measures also quantify whether drug-induced changes in topology or network organization facilitate or hinder information processing. Several studies could show that functional brain integration is highly correlated with behavioral performance suggesting that cholinergic and noradrenergic drugs which improve measures of cognitive performance should increase functional network integration. The purpose of this paper is to show that graph theory provides a mathematical tool to develop theory-driven biomarkers of pro-cognitive drug effects, and also to discuss how these approaches can contribute to the understanding of the role of cholinergic and noradrenergic modulation in the human brain. Finally we discuss the global workspace theory as a theoretical framework of pro-cognitive drug effects and argue that pro-cognitive effects of cholinergic and noradrenergic drugs might be related to higher

  16. The automatic brain: studies on practice and brain function in healthy subjects and patients with schizophrenia

    NARCIS (Netherlands)

    van Raalten, T.R.

    2009-01-01

    Practice makes perfect. The neural mechanisms behind the behavioral improvement of practice (automatization) however are largely unknown. Here we investigate how practice changes brain function and how this can improve our processing capacity. We also examine whether a deficit in automatization can

  17. Left Brain vs. Right Brain: Findings on Visual Spatial Capacities and the Functional Neurology of Giftedness

    Science.gov (United States)

    Kalbfleisch, M. Layne; Gillmarten, Charles

    2013-01-01

    As neuroimaging technologies increase their sensitivity to assess the function of the human brain and results from these studies draw the attention of educators, it becomes paramount to identify misconceptions about what these data illustrate and how these findings might be applied to educational contexts. Some of these "neuromyths" have…

  18. Left Brain vs. Right Brain: Findings on Visual Spatial Capacities and the Functional Neurology of Giftedness

    Science.gov (United States)

    Kalbfleisch, M. Layne; Gillmarten, Charles

    2013-01-01

    As neuroimaging technologies increase their sensitivity to assess the function of the human brain and results from these studies draw the attention of educators, it becomes paramount to identify misconceptions about what these data illustrate and how these findings might be applied to educational contexts. Some of these "neuromyths" have…

  19. Recent progresses in application of functionalized graphene sheets

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Graphene,a rapidly rising star on the horizon of material science,has a unique two-dimensional nanostructure as well as exceptional mechanical and electronic properties.Despite its short history,graphene has exhibited great potential in various applications.In order to implement the potential applications,functionalization of graphene is necessary to obtain uniform dispersions for good processability.Two kinds are dominant for functionalization such as covalent and non-covalent methods.The former is based on the formation of covalent bonds,and the latter the interaction among molecules.In this review,we summarized briefly the recent progress of functionalized graphene sheets (FGs) in different fields,such as optoelectronic materials,sensors,energy storage materials,catalytic,reinforcing components and so on,and also prospected the development trend of FGs in the future.

  20. Hyperations, Veblen progressions and transfinite iterations of ordinal functions

    CERN Document Server

    Fernández-Duque, David

    2012-01-01

    In this paper we introduce hyperations and cohyperations, which are forms of transfinite iteration of ordinal functions. Hyperations are iterations of normal functions. Unlike iteration by pointwise convergence, hyperation preserves normality. The hyperation of a normal function f is a sequence of normal functions so that f^0= id, f^1 = f and for all ordinals \\alpha, \\beta we have that f^(\\alpha + \\beta) = f^\\alpha f^\\beta. These conditions do not determine f^\\alpha uniquely; in addition, we require that the functions be minimal in an appropriate sense. We study hyperations systematically and show that they are a natural refinement of Veblen progressions. Next, we define cohyperations, very similar to hyperations except that they are left-additive: given \\alpha, \\beta, f^(\\alpha + \\beta)= f^\\beta f^\\alpha. Cohyperations iterate initial functions which are functions that map initial segments to initial segments. We systematically study cohyperations and see how they can be employed to define left inverses to h...

  1. Brain Basics

    Medline Plus

    Full Text Available ... Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of ... to slow or stop them from progressing. Functional magnetic resonance imaging (fMRI) is another important research tool in understanding ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures ... to slow or stop them from progressing. Functional magnetic resonance imaging (fMRI) is another important research tool in understanding ...

  3. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain

    Directory of Open Access Journals (Sweden)

    Becky Wong

    2016-01-01

    Full Text Available Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1 whether the language neural network is different for first (dominant versus second (nondominant language processing; (2 the effects of bilinguals’ executive functioning on the structure and function of the “universal” language neural network; (3 the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4 the effects of age of acquisition and proficiency of the user’s second language in the bilingual brain, and how these have implications for future research in neurolinguistics.

  4. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain.

    Science.gov (United States)

    Wong, Becky; Yin, Bin; O'Brien, Beth

    2016-01-01

    Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1) whether the language neural network is different for first (dominant) versus second (nondominant) language processing; (2) the effects of bilinguals' executive functioning on the structure and function of the "universal" language neural network; (3) the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4) the effects of age of acquisition and proficiency of the user's second language in the bilingual brain, and how these have implications for future research in neurolinguistics.

  5. Mapping Multiplex Hubs in Human Functional Brain Networks

    Science.gov (United States)

    De Domenico, Manlio; Sasai, Shuntaro; Arenas, Alex

    2016-01-01

    Typical brain networks consist of many peripheral regions and a few highly central ones, i.e., hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches. PMID:27471443

  6. Effects of Canon chord progression on brain activity and motivation are dependent on subjective feelings, not the chord progression per se

    Directory of Open Access Journals (Sweden)

    Kayashima Y

    2017-06-01

    Full Text Available Yoshinori Kayashima,1,2,* Kazuhiko Yamamuro,1,* Manabu Makinodan,1 Yoko Nakanishi,1 Akio Wanaka,2 Toshifumi Kishimoto1 1Department of Psychiatry, 2Department of Anatomy and Neuroscience, Nara Medical University School of Medicine, Kashihara, Japan *These authors contributed equally to this work Abstract: A number of studies have indicated that relaxing and pleasant melodies are useful for the treatment of patients with psychiatric disorders, including schizophrenia, depression, and dementia. However, few studies have investigated what constitutive elements of the music had an effect on brain activity. As Canon chord progression is one of critical elements for pleasant melodies, we sought to examine the effects of Canon chord progression and pitch-shifted Canon chord progression on brain activity using performance on the auditory oddball task during event-related potentials (ERPs in 30 healthy subjects. Unexpectedly, we found no differences in ERP components between subjects listening to Canon chord progression (n=15 or pitch-shifted Canon chord progression (n=15. Next, we divided participants into two groups: those who found the melody pleasant (n=17 and those who did not (n=13, for both Canon chord progression and pitch-shifted Canon chord progression. The average of P300 amplitude was higher at Fz in subjects found the music pleasant versus those finding it unpleasant. Moreover, subjects who found it pleasant exhibited higher motivation scores than those who felt it was unpleasant, whereas listening to Canon chord progression did not matter. These findings suggest that the effects of Canon chord progression on brain activity and motivation depend on subjective feelings, not the chord progression per se. Keywords: music, Canon chord progression, motivation, event-related potential, subjective feelings 

  7. Brain structural and functional correlates of resilience to Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Sophia eFrangou

    2012-01-01

    Full Text Available Background: Resilient adaptation can be construed in different ways, but as used here it refers to the adaptive brain changes associated with avoidance of psychopathology despite familiar risk for Bipolar Disorder (BD. Although family history of BD is associated with elevated risk of affective morbidity a significant proportion of first-degree relatives of BD patients remains free of psychopathology. Examination of brain structure and function in these individuals may inform on adaptive changes that may pre-empt disease expression. Methods: Data presented here are derived from the Vulnerability to Bipolar Disorders (VIBES study which includes patients with BD, asymptomatic relatives and healthy controls. Participants underwent extensive investigations including brain structural (sMRI and functional magnetic resonance imaging (fMRI. The data presented here focus on sMRI voxel-based-morphometry and on conventional and connectivity analyses of fMRI data obtained during the Stroop Colour Word Test (SCWT, a task of cognitive control during conflict resolution. All analyses were implemented in SPM (www.fil.ion.ucl.ac.uk/spm. Resilience in relatives was operationalized as the absence of clinical-range symptoms.Results: Resilient relatives of BD patients expressed structural, functional and connectivity changes reflecting the effect of genetic risk on the brain. These included increased insular volume, decreased activation within the posterior and inferior parietal regions involved in selective attention during the SCWT, and reduced fronto-insular and fronto-cingulate connectivity.Resilience was associated with increased cerebellar vermal volume and enhanced functional coupling between the dorsal and the ventral prefrontal cortex. Conclusions: Our findings suggests the presence of biological mechanisms associated with resilient adaptation of brain networks and pave the way for the identification of outcome-specific trajectories given a particular

  8. Partial sleep in the context of augmentation of brain function.

    Directory of Open Access Journals (Sweden)

    Ivan N. Pigarev

    2014-05-01

    Full Text Available Inability to solve complex problems or errors in decision making is often attributed to poor brain processing, and raises the issue of brain augmentation. Investigation of neuronal activity in the cerebral cortex in the sleep-wake cycle offers insights into the mechanisms underlying the reduction in mental abilities for complex problem solving. Some cortical areas may transit into a sleep state while an organism is still awake. Such local sleep would reduce behavioral ability in the tasks for which the sleeping areas are crucial. The studies of this phenomenon have indicated that local sleep develops in high order cortical areas. This is why complex problem solving is mostly affected by local sleep, and prevention of local sleep might be a potential way of augmentation of brain function. For this approach to brain augmentation not to entail negative consequences for the organism, it is necessary to understand the functional role of sleep. Our studies have given an unexpected answer to this question. It was shown that cortical areas that process signals from extero- and proprioreceptors during wakefulness, switch to the processing of interoceptive information during sleep. It became clear that during sleep all computational power of the brain is directed to the restoration of the vital functions of internal organs. These results explain the logic behind the initiation of total and local sleep. Indeed, a mismatch between the current parameters of any visceral system and the genetically determined normal range would provide the feeling of tiredness, or sleep pressure. If an environmental situation allows falling asleep, the organism would transit to a normal total sleep in all cortical areas. However, if it is impossible to go to sleep immediately, partial sleep may develop in some cortical areas in the still behaviorally awake organism. This local sleep may reduce both the intellectual power and the restorative function of sleep for visceral

  9. The early puberal brain: Work in progress. A study on genetic and hormonal influences

    NARCIS (Netherlands)

    Peper, J.S.

    2008-01-01

    The timing and speed of developmental processes during healthy puberty might be of critical importance to optimal adult functioning. Indeed, diseases that affect the brain at a young age, such as schizophrenia, are likely to have their origin in this period. The general aim of this thesis was to exp

  10. Brain Cholinergic Function and Response to Rivastigmine in Patients With Chronic Sequels of Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Östberg, Anna; Virta, Jere; Rinne, Juha O

    2017-01-01

    subjects for more than 1 year after at least moderate traumatic brain injury. Ten of the subjects were respondents and 7 nonrespondents to cholinergic medication. DESIGN:: Cholinergic function was assessed with [methyl-C] N-methylpiperidyl-4-acetate-PET (C-MP4A-PET), which reflects the activity...... was notably lower throughout the cortex in both respondents and nonrespondents, without significant differences between them. CONCLUSION:: Our study suggests that frontal cholinergic dysfunction is associated with the clinical response to cholinergic stimulation in patients with traumatic brain injury....

  11. Dynamic reorganization of intrinsic functional networks in the mouse brain.

    Science.gov (United States)

    Grandjean, Joanes; Preti, Maria Giulia; Bolton, Thomas A W; Buerge, Michaela; Seifritz, Erich; Pryce, Christopher R; Van De Ville, Dimitri; Rudin, Markus

    2017-03-14

    Functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) allows for the integrative study of neuronal processes at a macroscopic level. The majority of studies to date have assumed stationary interactions between brain regions, without considering the dynamic aspects of network organization. Only recently has the latter received increased attention, predominantly in human studies. Applying dynamic FC (dFC) analysis to mice is attractive given the relative simplicity of the mouse brain and the possibility to explore mechanisms underlying network dynamics using pharmacological, environmental or genetic interventions. Therefore, we have evaluated the feasibility and research potential of mouse dFC using the interventions of social stress or anesthesia duration as two case-study examples. By combining a sliding-window correlation approach with dictionary learning, several dynamic functional states (dFS) with a complex organization were identified, exhibiting highly dynamic inter- and intra-modular interactions. Each dFS displayed a high degree of reproducibility upon changes in analytical parameters and across datasets. They fluctuated at different degrees as a function of anesthetic depth, and were sensitive indicators of pathology as shown for the chronic psychosocial stress mouse model of depression. Dynamic functional states are proposed to make a major contribution to information integration and processing in the healthy and diseased brain.

  12. Personality is reflected in the brain's intrinsic functional architecture.

    Directory of Open Access Journals (Sweden)

    Jonathan S Adelstein

    Full Text Available Personality describes persistent human behavioral responses to broad classes of environmental stimuli. Investigating how personality traits are reflected in the brain's functional architecture is challenging, in part due to the difficulty of designing appropriate task probes. Resting-state functional connectivity (RSFC can detect intrinsic activation patterns without relying on any specific task. Here we use RSFC to investigate the neural correlates of the five-factor personality domains. Based on seed regions placed within two cognitive and affective 'hubs' in the brain--the anterior cingulate and precuneus--each domain of personality predicted RSFC with a unique pattern of brain regions. These patterns corresponded with functional subdivisions responsible for cognitive and affective processing such as motivation, empathy and future-oriented thinking. Neuroticism and Extraversion, the two most widely studied of the five constructs, predicted connectivity between seed regions and the dorsomedial prefrontal cortex and lateral paralimbic regions, respectively. These areas are associated with emotional regulation, self-evaluation and reward, consistent with the trait qualities. Personality traits were mostly associated with functional connections that were inconsistently present across participants. This suggests that although a fundamental, core functional architecture is preserved across individuals, variable connections outside of that core encompass the inter-individual differences in personality that motivate diverse responses.

  13. The brain-computer: origin of the idea and progress in its realization.

    Science.gov (United States)

    Ichikawa, Michinori; Matsumoto, Gen

    2004-06-01

    The Brain-Computer is a physical analogue of a real organism which uses both a brain-inspired memory-based architecture and an output-driven learning algorithm. This system can be realized by creating a scaled-down model car that learns how to drive by heuristically connecting image processing with behavior control. This study proves that learning efficiency progresses rapidly when the acquired behaviors are prioritized. We develop a small real-world device that moves about purposefully in an artificial environment. The robot uses imaging information acquired through its random actions to make a mental map. This map, then, provides the cognitive structure for acquiring necessary information for autonomous behavior.

  14. Progress in the genetics of polygenic brain disorders: significant new challenges for neurobiology.

    Science.gov (United States)

    McCarroll, Steven A; Hyman, Steven E

    2013-10-30

    Advances in genome analysis, accompanied by the assembly of large patient cohorts, are making possible successful genetic analyses of polygenic brain disorders. If the resulting molecular clues, previously hidden in the genomes of affected individuals, are to yield useful information about pathogenesis and inform the discovery of new treatments, neurobiology will have to rise to many difficult challenges. Here we review the underlying logic of the genetic investigations, describe in more detail progress in schizophrenia and autism, and outline the challenges for neurobiology that lie ahead. We argue that technologies at the disposal of neuroscience are adequately advanced to begin to study the biology of common and devastating polygenic disorders.

  15. Progression of brain atrophy in spinocerebellar ataxia type 2: A longitudinal tensor-based morphometry study

    OpenAIRE

    Mario Mascalchi; Stefano Diciotti; Marco Giannelli; Andrea Ginestroni; Andrea Soricelli; Emanuele Nicolai; Marco Aiello; Carlo Tessa; Lucia Galli; Maria Teresa Dotti; Silvia Piacentini; Elena Salvatore; Nicola Toschi

    2014-01-01

    Spinocerebellar ataxia type 2 (SCA2) is the second most frequent autosomal dominant inherited ataxia worldwide. We investigated the capability of magnetic resonance imaging (MRI) to track in vivo progression of brain atrophy in SCA2 by examining twice 10 SCA2 patients (mean interval 3.6 years) and 16 age- and gender-matched healthy controls (mean interval 3.3 years) on the same 1.5 T MRI scanner. We used T1-weighted images and tensor-based morphometry (TBM) to investigate volume changes and t...

  16. Progressively Disrupted Intrinsic Functional Connectivity of Basolateral Amygdala in Very Early Alzheimer’s Disease

    Science.gov (United States)

    Ortner, Marion; Pasquini, Lorenzo; Barat, Martina; Alexopoulos, Panagiotis; Grimmer, Timo; Förster, Stefan; Diehl-Schmid, Janine; Kurz, Alexander; Förstl, Hans; Zimmer, Claus; Wohlschläger, Afra; Sorg, Christian; Peters, Henning

    2016-01-01

    Very early Alzheimer’s disease (AD) – i.e., AD at stages of mild cognitive impairment (MCI) and mild dementia – is characterized by progressive structural and neuropathologic changes, such as atrophy or tangle deposition in medial temporal lobes, including hippocampus and entorhinal cortex and also adjacent amygdala. While progressively disrupted intrinsic connectivity of hippocampus with other brain areas has been demonstrated by many studies, amygdala connectivity was rarely investigated in AD, notwithstanding its known relevance for emotion processing and mood disturbances, which are both important in early AD. Intrinsic functional connectivity (iFC) patterns of hippocampus and amygdala overlap in healthy persons. Thus, we hypothesized that increased alteration of iFC patterns along AD is not limited to the hippocampus but also concerns the amygdala, independent from atrophy. To address this hypothesis, we applied structural and functional resting-state MRI in healthy controls (CON, n = 33) and patients with AD in the stages of MCI (AD-MCI, n = 38) and mild dementia (AD-D, n = 36). Outcome measures were voxel-based morphometry (VBM) values and region-of-interest-based iFC maps of basolateral amygdala, which has extended cortical connectivity. Amygdala VBM values were progressively reduced in patients (CON > AD-MCI and AD-D). Amygdala iFC was progressively reduced along impairment severity (CON > AD-MCI > AD-D), particularly for hippocampus, temporal lobes, and fronto-parietal areas. Notably, decreased iFC was independent of amygdala atrophy. Results demonstrate progressively impaired amygdala intrinsic connectivity in temporal and fronto-parietal lobes independent from increasing amygdala atrophy in very early AD. Data suggest that early AD disrupts intrinsic connectivity of medial temporal lobe key regions, including that of amygdala. PMID:27698649

  17. STUDY OF DELETION OF P16 GENE IN THE PROGRESSION OF BRAIN ASTROCYTOMAS

    Institute of Scientific and Technical Information of China (English)

    Zhai Guang; Yuan Xianhou

    1998-01-01

    Objective:To study the relationship between deletion of P16 gene and occurrence and progression of astrocytomas. Methods: The techniques of polymerase chain reaction (PCR) and immunohistochemistry were used to detect the deletion of exon2 of P16 gene and expression of P16 gene in 52 cases of Brain astrocytoma.Results: The deletion rate of exon2 of P16 gene in the tumors analyzed was 34.6%. Most of them with deletion of exon2 of p16 gene were high grade astrocytomas (grade Ⅲ 42%, grade Ⅳ 50%). 61.5% of the tumors were absent from expression of p16 and the deletion rate of p16 protein increased with the grade of astrocytoma (X2=10.83, P<0.005). Conclusion: Deletion of p16 gene and protein may correlate with the malignant progression of astrocytoma.

  18. Intestinal barrier function and the brain-gut axis.

    Science.gov (United States)

    Alonso, Carmen; Vicario, María; Pigrau, Marc; Lobo, Beatriz; Santos, Javier

    2014-01-01

    The luminal-mucosal interface of the intestinal tract is the first relevant location where microorganism-derived antigens and all other potentially immunogenic particles face the scrutiny of the powerful mammalian immune system. Upon regular functioning conditions, the intestinal barrier is able to effectively prevent most environmental and external antigens to interact openly with the numerous and versatile elements that compose the mucosal-associated immune system. This evolutionary super system is capable of processing an astonishing amount of antigens and non-immunogenic particles, approximately 100 tons in one individual lifetime, only considering food-derived components. Most important, to develop oral tolerance and proper active immune responses needed to prevent disease and inflammation, this giant immunogenic load has to be managed in a way that physiological inflammatory balance is constantly preserved. Adequate functioning of the intestinal barrier involves local and distant regulatory networks integrating the so-called brain-gut axis. Along this complex axis both brain and gut structures participate in the processing and execution of response signals to external and internal changes coming from the digestive tract, using multidirectional pathways to communicate. Dysfunction of brain-gut axis facilitates malfunctioning of the intestinal barrier, and vice versa, increasing the risk of uncontrolled immunological reactions that may trigger mucosal and brain low-grade inflammation, a putative first step to the initiation of more permanent gut disorders. In this chapter, we describe the structure, function and interactions of intestinal barrier, microbiota and brain-gut axis in both healthy and pathological conditions.

  19. Functional bitter taste receptors are expressed in brain cells.

    Science.gov (United States)

    Singh, Nisha; Vrontakis, Maria; Parkinson, Fiona; Chelikani, Prashen

    2011-03-04

    Humans are capable of sensing five basic tastes which are sweet, sour, salt, umami and bitter. Of these, bitter taste perception provides protection against ingestion of potentially toxic substances. Bitter taste is sensed by bitter taste receptors (T2Rs) that belong to the G-protein coupled receptors (GPCRs) superfamily. Humans have 25 T2Rs that are expressed in the oral cavity, gastrointestinal (GI) neuroendocrine cells and airway cells. Electrophysiological studies of the brain neurons show that the neurons are able to respond to different tastants. However, the presence of bitter taste receptors in brain cells has not been elucidated. In this report using RT-PCR, and immunohistochemistry analysis we show that T2Rs are expressed in multiple regions of the rat brain. RT-PCR analysis revealed the presence of T2R4, T2R107 and T2R38 transcripts in the brain stem, cerebellum, cortex and nucleus accumbens. The bitter receptor T2R4 was selected for further analysis at the transcript level by quantitative real time PCR and at the protein level by immunohistochemistry. To elucidate if the T2R4 expressed in these cells is functional, assays involving G-protein mediated calcium signaling were carried out. The functional assays showed an increase in intracellular calcium levels after the application of exogenous ligands for T2R4, denatonium benzoate and quinine to these cultured cells, suggesting that endogenous T2R4 expressed in these cells is functional. We discuss our results in terms of the physiological relevance of bitter receptor expression in the brain.

  20. Practice induces function-specific changes in brain activity.

    Directory of Open Access Journals (Sweden)

    Tamar R van Raalten

    Full Text Available BACKGROUND: Practice can have a profound effect on performance and brain activity, especially if a task can be automated. Tasks that allow for automatization typically involve repeated encoding of information that is paired with a constant response. Much remains unknown about the effects of practice on encoding and response selection in an automated task. METHODOLOGY: To investigate function-specific effects of automatization we employed a variant of a Sternberg task with optimized separation of activity associated with encoding and response selection by means of m-sequences. This optimized randomized event-related design allows for model free measurement of BOLD signals over the course of practice. Brain activity was measured at six consecutive runs of practice and compared to brain activity in a novel task. PRINCIPAL FINDINGS: Prompt reductions were found in the entire cortical network involved in encoding after a single run of practice. Changes in the network associated with response selection were less robust and were present only after the third run of practice. CONCLUSIONS/SIGNIFICANCE: This study shows that automatization causes heterogeneous decreases in brain activity across functional regions that do not strictly track performance improvement. This suggests that cognitive performance is supported by a dynamic allocation of multiple resources in a distributed network. Our findings may bear importance in understanding the role of automatization in complex cognitive performance, as increased encoding efficiency in early stages of practice possibly increases the capacity to otherwise interfering information.

  1. Sleep Restriction Impairs Blood–Brain Barrier Function

    Science.gov (United States)

    He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J.; Wang, Yuping

    2014-01-01

    The blood–brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. PMID:25355222

  2. Sleep restriction impairs blood-brain barrier function.

    Science.gov (United States)

    He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J; Wang, Yuping; Pan, Weihong

    2014-10-29

    The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. Copyright © 2014 the authors 0270-6474/14/3414697-10$15.00/0.

  3. Structural and functional brain changes in delusional disorder.

    Science.gov (United States)

    Vicens, Victor; Radua, Joaquim; Salvador, Raymond; Anguera-Camós, Maria; Canales-Rodríguez, Erick J; Sarró, Salvador; Maristany, Teresa; McKenna, Peter J; Pomarol-Clotet, Edith

    2016-02-01

    Delusional disorder has been the subject of very little investigation using brain imaging. To examine potential structural and/or functional brain abnormalities in this disorder. We used structural imaging (voxel-based morphometry, VBM) and functional imaging (during performance of the n-back task and whole-brain resting connectivity analysis) to examine 22 patients meeting DSM-IV criteria for delusional disorder and 44 matched healthy controls. The patients showed grey matter reductions in the medial frontal/anterior cingulate cortex and bilateral insula on unmodulated (but not on modulated) VBM analysis, failure of de-activation in the medial frontal/anterior cingulate cortex during performance of the n-back task, and decreased resting-state connectivity in the bilateral insula. The findings provide evidence of brain abnormality in the medial frontal/anterior cingulate cortex and insula in delusional disorder. A role for the former region in the pathogenesis of delusions is consistent with several other lines of evidence. © The Royal College of Psychiatrists 2016.

  4. Meta-analysis of functional brain imaging in specific phobia.

    Science.gov (United States)

    Ipser, Jonathan C; Singh, Leesha; Stein, Dan J

    2013-07-01

    Although specific phobia is a prevalent anxiety disorder, evidence regarding its underlying functional neuroanatomy is inconsistent. A meta-analysis was undertaken to identify brain regions that were consistently responsive to phobic stimuli, and to characterize changes in brain activation following cognitive behavioral therapy (CBT). We searched the PubMed, SCOPUS and PsycINFO databases to identify positron emission tomography and functional magnetic resonance imaging studies comparing brain activation in specific phobia patients and healthy controls. Two raters independently extracted study data from all the eligible studies, and pooled coordinates from these studies using activation likelihood estimation, a quantitative meta-analytic technique. Resulting statistical parametric maps were compared between patients and healthy controls, in response to phobic versus fear-evoking stimuli, and before and after therapy. Thirteen studies were included, comprising 327 participants. Regions that were consistently activated in response to phobic stimuli included the left insula, amygdala, and globus pallidus. Compared to healthy controls, phobic subjects had increased activation in response to phobic stimuli in the left amygdala/globus pallidus, left insula, right thalamus (pulvinar), and cerebellum. Following exposure-based therapy widespread deactivation was observed in the right frontal cortex, limbic cortex, basal ganglia and cerebellum, with increased activation detected in the thalamus. Exposure to phobia-specific stimuli elicits brain activation that is consistent with current understandings of the neuroanatomy of fear conditioning and extinction. There is evidence that the effects of CBT in specific phobia may be mediated through the same underlying neurocircuitry.

  5. Progress of porous silicon APTES-functionalization by FTIR investigations

    Science.gov (United States)

    Majoul, N.; Aouida, S.; Bessaïs, B.

    2015-03-01

    This work reports on the behavior of amino group-functionalized porous silicon (PS) intended to be used in bio-sensing and/or in medical applications. Amino-terminated organic layers were deposited onto silicon (Si) wafers and PS layers via 3-aminopropyltriethoxysilane (APTES) prepared in freshly hydrolysis solution. Fourier transform infrared (FTIR) spectroscopy was used to probe the absorption bands of NH2, CH2, SiO and SiHx groups forming in APTES-Si and APTES-PS complexes. The PS samples were dipped for different periods in hydrolyzed APTES solution. The increase in dipping time results in the disappearance of the Sisbnd Sisbnd H absorption bands, and the progressive apparition of the Osbnd Sisbnd H groups. After an adequate incubation time, all Sisbnd Sisbnd H and Osbnd Sisbnd H absorption bands disappear indicating a total functionalization of the PS layers.

  6. Raven's Progressive Matrices in the Lexicon of Dynamic Mapping of the Brain (MRI).

    Science.gov (United States)

    Mazhirina, K G; Mel'nikov, M E; Pokrovskii, M A; Petrovskii, E D; Savelov, A A; Shtark, M B

    2016-04-01

    Using functional magnetic resonance imaging, we studied intracerebral dynamics during completion of Raven's Progressive Matrices test. Solving the test organized in sets of progressively increasing difficulty cause changes in cerebellar activation functionally related to cognitive activities and operations. As the tasks became more complicated, we observed gradual suppression of the activity of default mode network (DMN). The most pronounced changes in cerebral activation patterns occurred the second set of the test and involved associative somatosensory area and Wernicke's area that is known to play an important role in cognitive processes associated with synthesis and analysis of information.

  7. Voxel-based morphometry to detect brain atrophy in progressive mild cognitive impairment.

    Science.gov (United States)

    Hämäläinen, Anne; Tervo, Susanna; Grau-Olivares, Marta; Niskanen, Eini; Pennanen, Corina; Huuskonen, Jari; Kivipelto, Miia; Hänninen, Tuomo; Tapiola, Mia; Vanhanen, Matti; Hallikainen, Merja; Helkala, Eeva-Liisa; Nissinen, Aulikki; Vanninen, Ritva; Soininen, Hilkka

    2007-10-01

    Recent research has shown an increased rate of conversion to dementia in subjects with mild cognitive impairment (MCI) compared to controls. However, there are no specific methods to predict who will later develop dementia. In the present study, 22 controls and 56 MCI subjects were followed on average for 37 months (max. 60 months) and studied with magnetic resonance imaging (MRI) at baseline to assess changes in brain structure associated to later progression to dementia. Voxel-based morphometry (VBM) was used to investigate gray matter atrophy. During the follow-up, 13 subjects progressed to dementia. At baseline, no differences were detected in age or education between the control and MCI subjects, but they differed by several neuropsychological tests. The stable and progressive MCI subjects differed only by CDR sum of boxes scores and delayed verbal recall, which were also significant predictors of conversion to dementia. At the baseline imaging, the MCI subjects showed reduced gray matter density in medial temporal, temporoparietal as well as in frontal cortical areas compared to controls. Interestingly, the progressive MCI subjects showed atrophy in the left temporoparietal and posterior cingulate cortices and in the precuneus bilaterally, and a trend for hippocampal atrophy when compared to the stable MCI subjects. We conclude that widespread cortical atrophy is present already two and a half years before a clinical diagnosis of dementia can be set.

  8. The effect of conditional probability of chord progression on brain response: an MEG study.

    Directory of Open Access Journals (Sweden)

    Seung-Goo Kim

    Full Text Available BACKGROUND: Recent electrophysiological and neuroimaging studies have explored how and where musical syntax in Western music is processed in the human brain. An inappropriate chord progression elicits an event-related potential (ERP component called an early right anterior negativity (ERAN or simply an early anterior negativity (EAN in an early stage of processing the musical syntax. Though the possible underlying mechanism of the EAN is assumed to be probabilistic learning, the effect of the probability of chord progressions on the EAN response has not been previously explored explicitly. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, the empirical conditional probabilities in a Western music corpus were employed as an approximation of the frequencies in previous exposure of participants. Three types of chord progression were presented to musicians and non-musicians in order to examine the correlation between the probability of chord progression and the neuromagnetic response using magnetoencephalography (MEG. Chord progressions were found to elicit early responses in a negatively correlating fashion with the conditional probability. Observed EANm (as a magnetic counterpart of the EAN component responses were consistent with the previously reported EAN responses in terms of latency and location. The effect of conditional probability interacted with the effect of musical training. In addition, the neural response also correlated with the behavioral measures in the non-musicians. CONCLUSIONS/SIGNIFICANCE: Our study is the first to reveal the correlation between the probability of chord progression and the corresponding neuromagnetic response. The current results suggest that the physiological response is a reflection of the probabilistic representations of the musical syntax. Moreover, the results indicate that the probabilistic representation is related to the musical training as well as the sensitivity of an individual.

  9. A meta-analysis on progressive atrophy in intractable temporal lobe epilepsy: Time is brain?

    Science.gov (United States)

    Caciagli, Lorenzo; Bernasconi, Andrea; Wiebe, Samuel; Koepp, Matthias J; Bernasconi, Neda; Bernhardt, Boris C

    2017-08-01

    It remains unclear whether drug-resistant temporal lobe epilepsy (TLE) is associated with cumulative brain damage, with no expert consensus and no quantitative syntheses of the available evidence. We conducted a systematic review and meta-analysis of MRI studies on progressive atrophy, searching PubMed and Ovid MEDLINE databases for cross-sectional and longitudinal quantitative MRI studies on drug-resistant TLE. We screened 2,976 records and assessed eligibility of 248 full-text articles. Forty-two articles met the inclusion criteria for quantitative evaluation. We observed a predominance of cross-sectional studies, use of different clinical indices of progression, and high heterogeneity in age-control procedures. Meta-analysis of 18/1 cross-sectional/longitudinal studies on hippocampal atrophy (n = 979 patients) yielded a pooled effect size of r = -0.42 for ipsilateral atrophy related to epilepsy duration (95% confidence interval [CI] -0.51 to -0.32; p atrophy (n = 1,504 patients) indicated that >80% of articles reported duration-related progression in extratemporal cortical and subcortical regions. Detailed analysis of study design features yielded low to moderate levels of evidence for progressive atrophy across studies, mainly due to dominance of cross-sectional over longitudinal investigations, use of diverse measures of seizure estimates, and absence of consistent age control procedures. While the neuroimaging literature is overall suggestive of progressive atrophy in drug-resistant TLE, published studies have employed rather weak designs to directly demonstrate it. Longitudinal multicohort studies are needed to unequivocally differentiate aging from disease progression. © 2017 American Academy of Neurology.

  10. Regional expression of the MAPT gene is associated with loss of hubs in brain networks and cognitive impairment in Parkinson disease and progressive supranuclear palsy.

    Science.gov (United States)

    Rittman, Timothy; Rubinov, Mikail; Vértes, Petra E; Patel, Ameera X; Ginestet, Cedric E; Ghosh, Boyd C P; Barker, Roger A; Spillantini, Maria Grazia; Bullmore, Edward T; Rowe, James B

    2016-12-01

    Abnormalities of tau protein are central to the pathogenesis of progressive supranuclear palsy, whereas haplotype variation of the tau gene MAPT influences the risk of Parkinson disease and Parkinson's disease dementia. We assessed whether regional MAPT expression might be associated with selective vulnerability of global brain networks to neurodegenerative pathology. Using task-free functional magnetic resonance imaging in progressive supranuclear palsy, Parkinson disease, and healthy subjects (n = 128), we examined functional brain networks and measured the connection strength between 471 gray matter regions. We obtained MAPT and SNCA microarray expression data in healthy subjects from the Allen brain atlas. Regional connectivity varied according to the normal expression of MAPT. The regional expression of MAPT correlated with the proportionate loss of regional connectivity in Parkinson's disease. Executive cognition was impaired in proportion to the loss of hub connectivity. These effects were not seen with SNCA, suggesting that alpha-synuclein pathology is not mediated through global network properties. The results establish a link between regional MAPT expression and selective vulnerability of functional brain networks to neurodegeneration.

  11. Large-Scale Functional Brain Network Abnormalities in Alzheimer’s Disease: Insights from Functional Neuroimaging

    Directory of Open Access Journals (Sweden)

    Bradford C. Dickerson

    2009-01-01

    Full Text Available Functional MRI (fMRI studies of mild cognitive impairment (MCI and Alzheimer’s disease (AD have begun to reveal abnormalities in large-scale memory and cognitive brain networks. Since the medial temporal lobe (MTL memory system is a site of very early pathology in AD, a number of studies have focused on this region of the brain. Yet it is clear that other regions of the large-scale episodic memory network are affected early in the disease as well, and fMRI has begun to illuminate functional abnormalities in frontal, temporal, and parietal cortices as well in MCI and AD. Besides predictable hypoactivation of brain regions as they accrue pathology and undergo atrophy, there are also areas of hyperactivation in brain memory and cognitive circuits, possibly representing attempted compensatory activity. Recent fMRI data in MCI and AD are beginning to reveal relationships between abnormalities of functional activity in the MTL memory system and in functionally connected brain regions, such as the precuneus. Additional work with “resting state” fMRI data is illuminating functional-anatomic brain circuits and their disruption by disease. As this work continues to mature, it will likely contribute to our understanding of fundamental memory processes in the human brain and how these are perturbed in memory disorders. We hope these insights will translate into the incorporation of measures of task-related brain function into diagnostic assessment or therapeutic monitoring, which will hopefully one day be useful for demonstrating beneficial effects of treatments being tested in clinical trials.

  12. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives.

    Science.gov (United States)

    Alam, Monzurul; Rodrigues, Willyam; Pham, Bau Ngoc; Thakor, Nitish V

    2016-09-01

    Restoration of motor function is one of the highest priorities in individuals afflicted with spinal cord injury (SCI). The application of brain-machine interfaces (BMIs) to neuroprostheses provides an innovative approach to treat patients with sensorimotor impairments. A BMI decodes motor intent from cortical signals to control external devices such as a computer cursor or a robotic arm. Recent BMI systems can now use these motor intent signals to directly activate paretic muscles or to modulate the spinal cord in a way that reengage dormant neuromuscular systems below the level of injury. In this perspective, we review the progress made in the development of brain-machine-spinal-cord interfaces (BMSCIs) and highlight their potential for neurorehabilitation after SCI. The advancement and application of these neuroprostheses goes beyond improved motor control. The use of BMSCI may combine repetitive physical training along with intent-driven neuromodulation to promote neurorehabilitation by facilitating activity-dependent plasticity. Strong evidence suggests that proper timing of volitional neuromodulation facilitates long-term potentiation in the neuronal circuits that can promote permanent functional recovery in SCI subjects. However, the effectiveness of these implantable neuroprostheses must take into account the fact that there will be continuous changes in the interface between the signals of intent and the actual trigger to initiate the motor action. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Restoration of Function With Acupuncture Following Severe Traumatic Brain Injury: A Case Report.

    Science.gov (United States)

    Wolf, Jacob; Sparks, Linda; Deng, Yong; Langland, Jeffrey

    2015-11-01

    This case report illustrates the improvement of an acupuncture-treated patient who incurred a severe traumatic brain injury (TBI) from a snowboarding accident. Over 4 years, the patient progressed from initially not being able to walk, having difficulty with speech, and suffering from poor eyesight to where he has now regained significant motor function, speech, and vision and has returned to snowboarding. A core acupuncture protocol plus specific points added to address the patient's ongoing concerns was used. This case adds to the medical literature by demonstrating the potential role of acupuncture in TBI treatment.

  14. Control channels in the brain and their influence on brain executive functions

    Science.gov (United States)

    Meng, Qinglei; Choa, Fow-Sen; Hong, Elliot; Wang, Zhiguang; Islam, Mohammad

    2014-05-01

    In a computer network there are distinct data channels and control channels where massive amount of visual information are transported through data channels but the information streams are routed and controlled by intelligent algorithm through "control channels". Recent studies on cognition and consciousness have shown that the brain control channels are closely related to the brainwave beta (14-40 Hz) and alpha (7-13 Hz) oscillations. The high-beta wave is used by brain to synchronize local neural activities and the alpha oscillation is for desynchronization. When two sensory inputs are simultaneously presented to a person, the high-beta is used to select one of the inputs and the alpha is used to deselect the other so that only one input will get the attention. In this work we demonstrated that we can scan a person's brain using binaural beats technique and identify the individual's preferred control channels. The identified control channels can then be used to influence the subject's brain executive functions. In the experiment, an EEG measurement system was used to record and identify a subject's control channels. After these channels were identified, the subject was asked to do Stroop tests. Binaural beats was again used to produce these control-channel frequencies on the subject's brain when we recorded the completion time of each test. We found that the high-beta signal indeed speeded up the subject's executive function performance and reduced the time to complete incongruent tests, while the alpha signal didn't seem to be able to slow down the executive function performance.

  15. piRNAs and Their Functions in the Brain

    Science.gov (United States)

    Zuo, Lingjun; Wang, Zhiren; Tan, Yunlong; Chen, Xiangning; Luo, Xingguang

    2016-01-01

    Piwi-interacting RNAs (piRNAs) are the non-coding RNAs with 24–32 nucleotides (nt). They exhibit stark differences in length, expression pattern, abundance, and genomic organization when compared to micro-RNAs (miRNAs). There are hundreds of thousands unique piRNA sequences in each species. Numerous piRNAs have been identified and deposited in public databases. Since the piRNAs were originally discovered and well-studied in the germline, a few other studies have reported the presence of piRNAs in somatic cells including neurons. This paper reviewed the common features, biogenesis, functions, and distributions of piRNAs and summarized their specific functions in the brain. This review may provide new insights and research direction for brain disorders. PMID:27512315

  16. Control of brain development, function, and behavior by the microbiome.

    Science.gov (United States)

    Sampson, Timothy R; Mazmanian, Sarkis K

    2015-05-13

    Animals share an intimate and life-long partnership with a myriad of resident microbial species, collectively referred to as the microbiota. Symbiotic microbes have been shown to regulate nutrition and metabolism and are critical for the development and function of the immune system. More recently, studies have suggested that gut bacteria can impact neurological outcomes--altering behavior and potentially affecting the onset and/or severity of nervous system disorders. In this review, we highlight emerging evidence that the microbiome extends its influence to the brain via various pathways connecting the gut to the central nervous system. While understanding and appreciation of a gut microbial impact on neurological function is nascent, unraveling gut-microbiome-brain connections holds the promise of transforming the neurosciences and revealing potentially novel etiologies for psychiatric and neurodegenerative disorders.

  17. Alterations of Blood Brain Barrier Function in Hyperammonemia: An Overview

    OpenAIRE

    2011-01-01

    Ammonia is a neurotoxin involved in the pathogenesis of neurological conditions associated with hyperammonemia, including hepatic encephalopathy, a condition associated with acute—(ALF) or chronic liver failure. This article reviews evidence that apart from directly affecting the metabolism and function of the central nervous system cells, ammonia influences the passage of different molecules across the blood brain barrier (BBB). A brief description is provided of the tight junctions, which c...

  18. Brain N-acetylaspartate levels correlate with motor function in metachromatic leukodystrophy

    DEFF Research Database (Denmark)

    í Dali, Christine; Hanson, Lars G.; Barton, N. W.

    2010-01-01

    in oligodendrocytes and is known as a marker for neuronal and axonal loss. NAA and other metabolite levels measured by proton magnetic resonance spectroscopy (MRS) correlate with performance of the brain in normal children. There is a need for sensitive measures of disease progression in patients with MLD to enable...... development of future reatments. Methods: A cross-section of 13 children with late infantile MLD were examined by proton MRS. Signals from NAA, total choline, and total creatine in the deep white matter were measured and correlated with the results of cognitive and motor function tests. Results: The NAA...... signal decreased as the disease process advanced. Motor function, measured by the Gross Motor Function Measure–88, varied from 13 (only head movement in the supine position) to 180 (able to walk) across the study cohort, demonstrating a wide range in functional status. Similarly, varied decreases were...

  19. Disrupted functional brain connectivity and its association to structural connectivity in amnestic mild cognitive impairment and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Yu Sun

    Full Text Available Although anomalies in the topological architecture of whole-brain connectivity have been found to be associated with Alzheimer's disease (AD, our understanding about the progression of AD in a functional connectivity (FC perspective is still rudimentary and few study has explored the function-structure relations in brain networks of AD patients. By using resting-state functional MRI (fMRI, this study firstly investigated organizational alternations in FC networks in 12 AD patients, 15 amnestic mild cognitive impairment (aMCI patients, and 14 age-matched healthy aging subjects and found that all three groups exhibit economical small-world network properties. Nonetheless, we found a decline of the optimal architecture in the progression of AD, represented by a more localized modular organization with less efficient local information transfer. Our results also show that aMCI forms a boundary between normal aging and AD and represents a functional continuum between healthy aging and the earliest signs of dementia. Moreover, we revealed a dissociated relationship between the overall FC and structural connectivity (SC in AD patients. In this study, diffusion tensor imaging tractography was used to map the structural network of the same individuals. The decreased FC-SC coupling may be indicative of more stringent and less dynamic brain function in AD patients. Our findings provided insightful implications for understanding the pathophysiological mechanisms of brain dysfunctions in aMCI and AD patients and demonstrated that functional disorders can be characterized by multimodal neuroimaging-based metrics.

  20. Man Versus Machine Part 2: Comparison of Radiologists' Interpretations and NeuroQuant Measures of Brain Asymmetry and Progressive Atrophy in Patients With Traumatic Brain Injury.

    Science.gov (United States)

    Ross, David E; Ochs, Alfred L; DeSmit, Megan E; Seabaugh, Jan M; Havranek, Michael D

    2015-01-01

    This study is an expanded version of an earlier study, which compared NeuroQuant measures of MRI brain volume with the radiologist's traditional approach in outpatients with mild or moderate traumatic brain injury. NeuroQuant volumetric analyses were compared with the radiologists' interpretations. NeuroQuant found significantly higher rates of atrophy (50.0%), abnormal asymmetry (83.3%), and progressive atrophy (70.0%) than the radiologists (12.5%, 0% and 0%, respectively). Overall, NeuroQuant was more sensitive for detecting at least one sign of atrophy, abnormal asymmetry, or progressive atrophy (95.8%) than the traditional radiologist's approach (12.5%).

  1. Progressive brain atrophy in Schinzel-Giedion syndrome with a SETBP1 mutation.

    Science.gov (United States)

    Takeuchi, Akihito; Okamoto, Nobuhiko; Fujinaga, Shoko; Morita, Hirosuke; Shimizu, Junya; Akiyama, Tomoyuki; Ninomiya, Shinsuke; Takanashi, Jun-ichi; Kubo, Toshihide

    2015-08-01

    Schinzel-Giedion syndrome is a rare congenital malformation syndrome. Recently, SETBP1 was identified as the causative gene. Herein, we present a Japanese boy with Schinzel-Giedion syndrome resulting from a novel mutation in SETBP1 in order to establish the clinical features and serial MRI findings associated with the syndrome. On the third day of life, the boy was referred to our hospital because of facial abnormalities and feeding difficulty. Midfacial retraction, frontal bossing, deep groove under the eyes, upturned nose, low-set ears, bilateral cryptorchidism, and generalized hypertrichosis were identified on admission. At the age of 7 months, epileptic spasms in series occurred. Based on characteristic facial and skeletal abnormalities and severe developmental delay, we clinically diagnosed him with Schinzel-Giedion syndrome. Direct sequencing of the SETBP1 gene revealed a heterozygous mutation (p.Ile871Ser) in exon 4. Although neither cardiac defect nor choanal stenosis were present in our case, the phenotype of our case was nearly identical to those of previously reported cases confirmed by genetic analysis. Serial MRI from the age of 1 month-3 years revealed progressive brain atrophy, especially in the white matter and basal ganglia. However, myelination was age-appropriate and no obvious abnormal signals in the white matter were seen. Diffusion weighted imaging revealed no abnormal findings. Accumulation of MRI data including diffusion weighted imaging from Schinzel-Giedion syndrome cases is needed to understand the mechanism underlying progressive brain atrophy in this syndrome.

  2. Brain structure, executive function and appetitive traits in adolescent obesity.

    Science.gov (United States)

    de Groot, C J; van den Akker, E L T; Rings, E H H M; Delemarre-van de Waal, H A; van der Grond, J

    2017-08-01

    Children with obesity show differences in brain structure, executive function and appetitive traits when compared with lean peers. Little is known on the relationship between brain structure and these traits. To investigate the relationship between differences in brain structure and executive function and appetitive traits, in obese and lean adolescents. MRI was used to measure cortical thickness and subcortical volumes. Executive function was measured by a Stop Signal-and a Choice Delay Task. Appetitive traits were measured using the Child Eating Behaviour Questionnaire. Adolescents with obesity had greater volumes of the pallidum; 1.78 mL (SE 0.03, p=0.014), when compared with controls; 1.65 mL (SE 0.02). In the group with obesity, greater pallidum volume was positively associated with the ability to delay reward in the Choice Delay Task (p=0.012). The association between pallidum volumes and Choice Delay Task in obese adolescents supports the hypothesis that the pallidum plays an important role in executive dysfunction in obese children. © 2016 World Obesity Federation.

  3. Rescue of Brain Function Using Tunneling Nanotubes Between Neural Stem Cells and Brain Microvascular Endothelial Cells.

    Science.gov (United States)

    Wang, Xiaoqing; Yu, Xiaowen; Xie, Chong; Tan, Zijian; Tian, Qi; Zhu, Desheng; Liu, Mingyuan; Guan, Yangtai

    2016-05-01

    Evidence indicates that neural stem cells (NSCs) can ameliorate cerebral ischemia in animal models. In this study, we investigated the mechanism underlying one of the neuroprotective effects of NSCs: tunneling nanotube (TNT) formation. We addressed whether the control of cell-to-cell communication processes between NSCs and brain microvascular endothelial cells (BMECs) and, particularly, the control of TNT formation could influence the rescue function of stem cells. In an attempt to mimic the cellular microenvironment in vitro, a co-culture system consisting of terminally differentiated BMECs from mice in a distressed state and NSCs was constructed. Additionally, engraftment experiments with infarcted mouse brains revealed that control of TNT formation influenced the effects of stem cell transplantation in vivo. In conclusion, our findings provide the first evidence that TNTs exist between NSCs and BMECs and that regulation of TNT formation alters cell function.

  4. Functional brain imaging in the dementias: role in early detection, differential diagnosis, and longitudinal studies

    Energy Technology Data Exchange (ETDEWEB)

    Devous, M.D. Sr. [Nuclear Medicine Center and Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX (United States)

    2002-12-01

    This review considers the role of functional brain imaging techniques in the dementias. The substantial assistance that especially single-photon emission tomography and positron emission tomography can play in the initial diagnosis of dementia and in the differential diagnosis of the specific dementing disorder is discussed. These techniques alone essentially match the sensitivity and specificity of clinical diagnoses in distinguishing Alzheimer's dementia (AD) from age-matched controls, from frontal lobe dementia and vascular dementia, and even from Lewy body dementia. Newer analytic techniques such as voxel-based correlational analyses and discriminant function analyses enhance the power of such differential diagnoses. Functional brain imaging techniques can also significantly assist in patient screening for clinical trials. The correlation of the observed deficits with specific patterns of cognitive abnormalities permits enhanced patient management and treatment planning and improved longitudinal assessment of outcome. It is also noteworthy that the classic abnormalities of temporoparietal and posterior cingulate hypoperfusion or hypometabolism appear to be present prior to symptom onset. These abnormalities predict progression to AD in the presence of the earliest of symptoms, and are present even in cognitively normal but at-risk subjects, with a severity proportional to the risk status. Even greater predictive ability for progression to AD is obtained by combining measures of perfusion or metabolism with risk factors, tau protein levels, hippocampal N-Acetyl aspartate concentrations, or hippocampal volume measures. (orig.)

  5. Treatment-related changes in functional connectivity in brain tumor patients : a magnetoencephalography study

    NARCIS (Netherlands)

    Douw, Linda; Baayen, Hans; Bosma, Ingeborg; Klein, Martin; Vandertop, Peter; Heimans, Jan; Stam, Kees; de Munck, Jan; Reijneveld, Jaap

    2008-01-01

    Widespread disturbances in resting state functional connectivity between remote brain areas have been demonstrated in patients with brain tumors. Functional connectivity has been associated with neurocognitive deficits in these patients. Thus far, it is unknown how (surgical) treatment affects funct

  6. Functional photoacoustic tomography for neonatal brain imaging: developments and challenges

    Science.gov (United States)

    Hariri, Ali; Tavakoli, Emytis; Adabi, Saba; Gelovani, Juri; Avanaki, Mohammad R. N.

    2017-03-01

    Transfontanelle ultrasound imaging (TFUSI) is a routine diagnostic brain imaging method in infants who are born prematurely, whose skull bones have not completely fused together and have openings between them, so-called fontanelles. Open fontanelles in neonates provide acoustic windows, allowing the ultrasound beam to freely pass through. TFUSI is used to rule out neurological complications of premature birth including subarachnoid hemorrhage (SAH), intraventricular (IVH), subependimal (SEPH), subdural (SDH) or intracerebral (ICH) hemorrhages, as well as hypoxic brain injuries. TFUSI is widely used in the clinic owing to its low cost, safety, accessibility, and noninvasive nature. Nevertheless, the accuracy of TFUSI is limited. To address several limitations of current clinical imaging modalities, we develop a novel transfontanelle photoacoustic imaging (TFPAI) probe, which, for the first time, should allow for non-invasive structural and functional imaging of the infant brain. In this study, we test the feasibility of TFPAI for detection of experimentally-induced intra ventricular and Intraparenchymal hemorrhage phantoms in a sheep model with a surgically-induced cranial window which will serve as a model of neonatal fontanelle. This study is towards using the probe we develop for bedside monitoring of neonates with various disease conditions and complications affecting brain perfusion and oxygenation, including apnea, asphyxia, as well as for detection of various types of intracranial hemorrhages (SAH, IVH, SEPH, SDH, ICH).

  7. Effects of exercise on brain functions in diabetic animalmodels

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Human life span has dramatically increased overseveral decades, and the quality of life has beenconsidered to be equally important. However, diabetesmellitus (DM) characterized by problems relatedto insulin secretion and recognition has become aserious health problem in recent years that threatenshuman health by causing decline in brain functionsand finally leading to neurodegenerative diseases.Exercise is recognized as an effective therapy for DMwithout medication administration. Exercise studiesusing experimental animals are a suitable option toovercome this drawback, and animal studies haveimproved continuously according to the needs of theexperimenters. Since brain health is the most significantfactor in human life, it is very important to assess brainfunctions according to the different exercise conditionsusing experimental animal models. Generally, thereare two types of DM; insulin-dependent type 1 DM andan insulin-independent type 2 DM (T2DM); however,the author will mostly discuss brain functions in T2DManimal models in this review. Additionally, many physiopathologicalterations are caused in the brain by DMsuch as increased adiposity, inflammation, hormonaldysregulation, uncontrolled hyperphagia, insulin andleptin resistance, and dysregulation of neurotransmittersand declined neurogenesis in the hippocampus andwe describe how exercise corrects these alterationsin animal models. The results of changes in the brainenvironment differ according to voluntary, involuntaryrunning exercises and resistance exercise, and gender inthe animal studies. These factors have been mentionedin this review, and this review will be a good referencefor studying how exercise can be used with therapy fortreating DM.

  8. Barrier Functionality of Porcine and Bovine Brain Capillary Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ailar Nakhlband

    2011-09-01

    Full Text Available Introduction: To date, isolated cell based blood-brain barrier (BBB models have been widely used for brain drug delivery and targeting, due to their relatively proper bioelectrical and permeability properties. However, primary cultures of brain capillary endothelial cells (BCECs isolated from different species vary in terms of bioelectrical and permeability properties. Methods: To pursue this, in the current investigation, primary porcine and bovine BCECs (PBCECs and BBCECs, respectively were isolated and used as an in vitro BBB model. The bioelectrical and permeability properties were assessed in BCECs co-cultured with C6 cells with/without hydrocortisone (550 nM. The bioelectrical properties were further validated by means of the permeability coefficients of transcellular and paracellular markers. Results: The primary PBCECs displayed significantly higher trans-endothelial electrical resistance (~900 W.cm2 than BBCECs (~700 W.cm2 - both co-cultured with C6 cells in presence of hydrocortisone. Permeability coefficients of propranolol/diazepam and mannitol/sucrose in PBCECs were ~21 and ~2 (×10-6 cm.sec-1, where these values for BBCECs were ~25 and ~5 (×10-6 cm.sec-1. Conclusion: Upon our bioelectrical and permeability findings, both models display discriminative barrier functionality but porcine BCECs seem to provide a better platform than bovine BCECs for drug screening and brain targeting.

  9. Brain Oscillations and Functional Connectivity during Overt Language Production.

    Science.gov (United States)

    Ewald, Arne; Aristei, Sabrina; Nolte, Guido; Abdel Rahman, Rasha

    2012-01-01

    In the present study we investigate the communication of different large scale brain sites during an overt language production task with state of the art methods for the estimation of EEG functional connectivity. Participants performed a semantic blocking task in which objects were named in semantically homogeneous blocks of trials consisting of members of a semantic category (e.g., all objects are tools) or in heterogeneous blocks, consisting of unrelated objects. The classic pattern of slower naming times in the homogeneous relative to heterogeneous blocks is assumed to reflect the duration of lexical selection. For the collected data in the homogeneous and heterogeneous conditions the imaginary part of coherency (ImC) was evaluated at different frequencies. The ImC is a measure for detecting the coupling of different brain sites acting on sensor level. Most importantly, the ImC is robust to the artifact of volume conduction. We analyzed the ImC at all pairs of 56 EEG channels across all frequencies. Contrasting the two experimental conditions we found pronounced differences in the theta band at 7 Hz and estimated the most dominant underlying brain sources via a minimum norm inverse solution based on the ImC. As a result of the source localization, we observed connectivity between occipito-temporal and frontal areas, which are well-known to play a major role in lexical-semantic language processes. Our findings demonstrate the feasibility of investigating interactive brain activity during overt language production.

  10. The Brain Network of Naming: A Lesson from Primary Progressive Aphasia.

    Directory of Open Access Journals (Sweden)

    Raffaella Migliaccio

    Full Text Available Word finding depends on the processing of semantic and lexical information, and it involves an intermediate level for mapping semantic-to-lexical information which also subserves lexical-to-semantic mapping during word comprehension. However, the brain regions implementing these components are still controversial and have not been clarified via a comprehensive lesion model encompassing the whole range of language-related cortices. Primary progressive aphasia (PPA, for which anomia is thought to be the most common sign, provides such a model, but the exploration of cortical areas impacting naming in its three main variants and the underlying processing mechanisms is still lacking.We addressed this double issue, related to language structure and PPA, with thirty patients (11 semantic, 12 logopenic, 7 agrammatic variant using a picture-naming task and voxel-based morphometry for anatomo-functional correlation. First, we analyzed correlations for each of the three variants to identify the regions impacting naming in PPA and to disentangle the core regions of word finding. We then combined the three variants and correlation analyses for naming (semantic-to-lexical mapping and single-word comprehension (lexical-to-semantic mapping, predicting an overlap zone corresponding to a bidirectional lexical-semantic hub.Our results showed that superior portions of the left temporal pole and left posterior temporal cortices impact semantic and lexical naming mechanisms in semantic and logopenic PPA, respectively. In agrammatic PPA naming deficits were rare, and did not correlate with any cortical region. Combined analyses revealed a cortical overlap zone in superior/middle mid-temporal cortices, distinct from the two former regions, impacting bidirectional binding of lexical and semantic information. Altogether, our findings indicate that lexical/semantic word processing depends on an anterior-posterior axis within lateral-temporal cortices, including an

  11. The Brain Network of Naming: A Lesson from Primary Progressive Aphasia

    Science.gov (United States)

    Migliaccio, Raffaella; Boutet, Claire; Valabregue, Romain; Ferrieux, Sophie; Nogues, Marie; Lehéricy, Stéphane; Dormont, Didier; Levy, Richard; Dubois, Bruno; Teichmann, Marc

    2016-01-01

    Objective Word finding depends on the processing of semantic and lexical information, and it involves an intermediate level for mapping semantic-to-lexical information which also subserves lexical-to-semantic mapping during word comprehension. However, the brain regions implementing these components are still controversial and have not been clarified via a comprehensive lesion model encompassing the whole range of language-related cortices. Primary progressive aphasia (PPA), for which anomia is thought to be the most common sign, provides such a model, but the exploration of cortical areas impacting naming in its three main variants and the underlying processing mechanisms is still lacking. Methods We addressed this double issue, related to language structure and PPA, with thirty patients (11 semantic, 12 logopenic, 7 agrammatic variant) using a picture-naming task and voxel-based morphometry for anatomo-functional correlation. First, we analyzed correlations for each of the three variants to identify the regions impacting naming in PPA and to disentangle the core regions of word finding. We then combined the three variants and correlation analyses for naming (semantic-to-lexical mapping) and single-word comprehension (lexical-to-semantic mapping), predicting an overlap zone corresponding to a bidirectional lexical-semantic hub. Results and Conclusions Our results showed that superior portions of the left temporal pole and left posterior temporal cortices impact semantic and lexical naming mechanisms in semantic and logopenic PPA, respectively. In agrammatic PPA naming deficits were rare, and did not correlate with any cortical region. Combined analyses revealed a cortical overlap zone in superior/middle mid-temporal cortices, distinct from the two former regions, impacting bidirectional binding of lexical and semantic information. Altogether, our findings indicate that lexical/semantic word processing depends on an anterior-posterior axis within lateral

  12. Activated and deactivated functional brain areas in the Deqi state

    Science.gov (United States)

    Huang, Yong; Zeng, Tongjun; Zhang, Guifeng; Li, Ganlong; Lu, Na; Lai, Xinsheng; Lu, Yangjia; Chen, Jiarong

    2012-01-01

    We compared the activities of functional regions of the brain in the Deqi versus non-Deqi state, as reported by physicians and subjects during acupuncture. Twelve healthy volunteers received sham and true needling at the Waiguan (TE5) acupoint. Real-time cerebral functional MRI showed that compared with non-sensation after sham needling, true needling activated Brodmann areas 3, 6, 8, 9, 10, 11, 13, 20, 21, 37, 39, 40, 43, and 47, the head of the caudate nucleus, the parahippocampal gyrus, thalamus and red nucleus. True needling also deactivated Brodmann areas 1, 2, 3, 4, 5, 6, 7, 9, 10, 18, 24, 31, 40 and 46. PMID:25538761

  13. Activated and deactivated functional brain areas in the Deqi state

    OpenAIRE

    Huang, Yong; Zeng, Tongjun; Zhang, Guifeng; Li, Ganlong; Lu, Na; Lai, Xinsheng; Lu, Yangjia; Chen, Jiarong

    2012-01-01

    We compared the activities of functional regions of the brain in the Deqi versus non-Deqi state, as reported by physicians and subjects during acupuncture. Twelve healthy volunteers received sham and true needling at the Waiguan (TE5) acupoint. Real-time cerebral functional MRI showed that compared with non-sensation after sham needling, true needling activated Brodmann areas 3, 6, 8, 9, 10, 11, 13, 20, 21, 37, 39, 40, 43, and 47, the head of the caudate nucleus, the parahippocampal gyrus, th...

  14. Functional magnetic resonance imaging of the brain: A quick review

    Directory of Open Access Journals (Sweden)

    Vaghela Viratsinh

    2010-01-01

    Full Text Available Ability to non-invasively map the hemodynamic changes occurring focally in areas of brain involved in various motor, sensory and cognitive functions by functional magnetic resonance imaging (fMRI has revolutionized research in neuroscience in the last two decades. This technique has already gained clinical use especially in pre-surgical evaluation of epilepsy and neurosurgical planning of resection of mass lesions adjacent to eloquent cortex. In this review we attempt to illustrate basic principles and techniques of fMRI, its applications, practical points to consider while performing and evaluating clinical fMRI and its limitations.

  15. Altered functional brain networks in Prader-Willi syndrome.

    Science.gov (United States)

    Zhang, Yi; Zhao, Heng; Qiu, Siyou; Tian, Jie; Wen, Xiaotong; Miller, Jennifer L; von Deneen, Karen M; Zhou, Zhenyu; Gold, Mark S; Liu, Yijun

    2013-06-01

    Prader-Willi syndrome (PWS) is a genetic imprinting disorder characterized mainly by hyperphagia and early childhood obesity. Previous functional neuroimaging studies used visual stimuli to examine abnormal activities in the eating-related neural circuitry of patients with PWS. It was found that patients with PWS exhibited both excessive hunger and hyperphagia consistently, even in situations without any food stimulation. In the present study, we employed resting-state functional MRI techniques to investigate abnormal brain networks related to eating disorders in children with PWS. First, we applied amplitude of low-frequency fluctuation analysis to define the regions of interest that showed significant alterations in resting-state brain activity levels in patients compared with their sibling control group. We then applied a functional connectivity (FC) analysis to these regions of interest in order to characterize interactions among the brain regions. Our results demonstrated that patients with PWS showed decreased FC strength in the medial prefrontal cortex (MPFC)/inferior parietal lobe (IPL), MPFC/precuneus, IPL/precuneus and IPL/hippocampus in the default mode network; decreased FC strength in the pre-/postcentral gyri and dorsolateral prefrontal cortex (DLPFC)/orbitofrontal cortex (OFC) in the motor sensory network and prefrontal cortex network, respectively; and increased FC strength in the anterior cingulate cortex/insula, ventrolateral prefrontal cortex (VLPFC)/OFC and DLPFC/VLPFC in the core network and prefrontal cortex network, respectively. These findings indicate that there are FC alterations among the brain regions implicated in eating as well as rewarding, even during the resting state, which may provide further evidence supporting the use of PWS as a model to study obesity and to provide information on potential neural targets for the medical treatment of overeating.

  16. A Multivariate Granger Causality Concept towards Full Brain Functional Connectivity.

    Science.gov (United States)

    Schmidt, Christoph; Pester, Britta; Schmid-Hertel, Nicole; Witte, Herbert; Wismüller, Axel; Leistritz, Lutz

    2016-01-01

    Detecting changes of spatially high-resolution functional connectivity patterns in the brain is crucial for improving the fundamental understanding of brain function in both health and disease, yet still poses one of the biggest challenges in computational neuroscience. Currently, classical multivariate Granger Causality analyses of directed interactions between single process components in coupled systems are commonly restricted to spatially low- dimensional data, which requires a pre-selection or aggregation of time series as a preprocessing step. In this paper we propose a new fully multivariate Granger Causality approach with embedded dimension reduction that makes it possible to obtain a representation of functional connectivity for spatially high-dimensional data. The resulting functional connectivity networks may consist of several thousand vertices and thus contain more detailed information compared to connectivity networks obtained from approaches based on particular regions of interest. Our large scale Granger Causality approach is applied to synthetic and resting state fMRI data with a focus on how well network community structure, which represents a functional segmentation of the network, is preserved. It is demonstrated that a number of different community detection algorithms, which utilize a variety of algorithmic strategies and exploit topological features differently, reveal meaningful information on the underlying network module structure.

  17. A Multivariate Granger Causality Concept towards Full Brain Functional Connectivity.

    Directory of Open Access Journals (Sweden)

    Christoph Schmidt

    Full Text Available Detecting changes of spatially high-resolution functional connectivity patterns in the brain is crucial for improving the fundamental understanding of brain function in both health and disease, yet still poses one of the biggest challenges in computational neuroscience. Currently, classical multivariate Granger Causality analyses of directed interactions between single process components in coupled systems are commonly restricted to spatially low- dimensional data, which requires a pre-selection or aggregation of time series as a preprocessing step. In this paper we propose a new fully multivariate Granger Causality approach with embedded dimension reduction that makes it possible to obtain a representation of functional connectivity for spatially high-dimensional data. The resulting functional connectivity networks may consist of several thousand vertices and thus contain more detailed information compared to connectivity networks obtained from approaches based on particular regions of interest. Our large scale Granger Causality approach is applied to synthetic and resting state fMRI data with a focus on how well network community structure, which represents a functional segmentation of the network, is preserved. It is demonstrated that a number of different community detection algorithms, which utilize a variety of algorithmic strategies and exploit topological features differently, reveal meaningful information on the underlying network module structure.

  18. Differential Effects of Brain Disorders on Structural and Functional Connectivity

    Science.gov (United States)

    Vega-Pons, Sandro; Olivetti, Emanuele; Avesani, Paolo; Dodero, Luca; Gozzi, Alessandro; Bifone, Angelo

    2017-01-01

    Different measures of brain connectivity can be defined based on neuroimaging read-outs, including structural and functional connectivity. Neurological and psychiatric conditions are often associated with abnormal connectivity, but comparing the effects of the disease on different types of connectivity remains a challenge. In this paper, we address the problem of quantifying the relative effects of brain disease on structural and functional connectivity at a group level. Within the framework of a graph representation of connectivity, we introduce a kernel two-sample test as an effective method to assess the difference between the patients and control group. Moreover, we propose a common representation space for structural and functional connectivity networks, and a novel test statistics to quantitatively assess differential effects of the disease on different types of connectivity. We apply this approach to a dataset from BTBR mice, a murine model of Agenesis of the Corpus Callosum (ACC), a congenital disorder characterized by the absence of the main bundle of fibers connecting the two hemispheres. We used normo-callosal mice (B6) as a comparator. The application of the proposed methods to this data-set shows that the two types of connectivity can be successfully used to discriminate between BTBR and B6, meaning that both types of connectivity are affected by ACC. However, our novel test statistics shows that structural connectivity is significantly more affected than functional connectivity, consistent with the idea that functional connectivity has a robust topology that can tolerate substantial alterations in its structural connectivity substrate. PMID:28119556

  19. Hypothalamic-Pituitary Function in Brain Death: A Review.

    Science.gov (United States)

    Nair-Collins, Michael; Northrup, Jesse; Olcese, James

    2016-01-01

    The Uniform Determination of Death Act (UDDA) states that an individual is dead when "all functions of the entire brain" have ceased irreversibly. However, it has been questioned whether some functions of the hypothalamus, particularly osmoregulation, can continue after the clinical diagnosis of brain death (BD). In order to learn whether parts of the hypothalamus can continue to function after the diagnosis of BD, we performed 2 separate systematic searches of the MEDLINE database, corresponding to the functions of the posterior and anterior pituitary. No meta-analysis is possible due to nonuniformity in the clinical literature. However, some modest generalizations can reasonably be drawn from a narrative review and from anatomic considerations that explain why these findings should be expected. We found evidence suggesting the preservation of hypothalamic function, including secretion of hypophysiotropic hormones, responsiveness to anterior pituitary stimulation, and osmoregulation, in a substantial proportion of patients declared dead by neurological criteria. We discuss several possible explanations for these findings. We conclude by suggesting that additional clinical research with strict inclusion criteria is necessary and further that a more nuanced and forthright public dialogue is needed, particularly since standard diagnostic practices and the UDDA may not be entirely in accord.

  20. Personality Is Reflected in the Brain's Intrinsic Functional Architecture

    Science.gov (United States)

    Adelstein, Jonathan S.; Shehzad, Zarrar; Mennes, Maarten; DeYoung, Colin G.; Zuo, Xi-Nian; Kelly, Clare; Margulies, Daniel S.; Bloomfield, Aaron; Gray, Jeremy R.; Castellanos, F. Xavier; Milham, Michael P.

    2011-01-01

    Personality describes persistent human behavioral responses to broad classes of environmental stimuli. Investigating how personality traits are reflected in the brain's functional architecture is challenging, in part due to the difficulty of designing appropriate task probes. Resting-state functional connectivity (RSFC) can detect intrinsic activation patterns without relying on any specific task. Here we use RSFC to investigate the neural correlates of the five-factor personality domains. Based on seed regions placed within two cognitive and affective ‘hubs’ in the brain—the anterior cingulate and precuneus—each domain of personality predicted RSFC with a unique pattern of brain regions. These patterns corresponded with functional subdivisions responsible for cognitive and affective processing such as motivation, empathy and future-oriented thinking. Neuroticism and Extraversion, the two most widely studied of the five constructs, predicted connectivity between seed regions and the dorsomedial prefrontal cortex and lateral paralimbic regions, respectively. These areas are associated with emotional regulation, self-evaluation and reward, consistent with the trait qualities. Personality traits were mostly associated with functional connections that were inconsistently present across participants. This suggests that although a fundamental, core functional architecture is preserved across individuals, variable connections outside of that core encompass the inter-individual differences in personality that motivate diverse responses. PMID:22140453

  1. Brain ERP components predict which individuals progress to Alzheimer's disease and which do not.

    Science.gov (United States)

    Chapman, Robert M; McCrary, John W; Gardner, Margaret N; Sandoval, Tiffany C; Guillily, Maria D; Reilly, Lindsey A; DeGrush, Elizabeth

    2011-10-01

    Predicting which individuals will progress to Alzheimer's disease (AD) is important in both clinical and research settings. We used brain Event-Related Potentials (ERPs) obtained in a perceptual/cognitive paradigm with various processing demands to predict which individual Mild Cognitive Impairment (MCI) subjects will develop AD versus which will not. ERP components, including P3, memory "storage" component, and other earlier and later components, were identified and measured by Principal Components Analysis. When measured for particular task conditions, a weighted set of eight ERP component_conditions performed well in discriminant analysis at predicting later AD progression with good accuracy, sensitivity, and specificity. The predictions for most individuals (79%) had high posterior probabilities and were accurate (88%). This method, supported by a cross-validation where the prediction accuracy was 70-78%, features the posterior probability for each individual as a method of determining the likelihood of progression to AD. Empirically obtained prediction accuracies rose to 94% when the computed posterior probabilities for individuals were 0.90 or higher (which was found for 40% of our MCI sample).

  2. Carbofuran Modulating Functions of Acetylcholinesterase from Rat Brain In Vitro

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Gupta

    2016-01-01

    Full Text Available Carbofuran, a potential environmental xenobiotic, has the ability to cross blood brain barrier and to adversely influence brain functions. In the present study, the impact of carbofuran on the biophysical and biochemical properties of rat brain AChE has been evaluated in vitro. This enzyme was membrane-bound which could be solubilised using Triton-X100 (0.2%, v/v, a nonionic detergent, in the extraction buffer (50 mM phosphate, pH 7.4. The enzyme was highly stable up to one month when stored at -20°C and exhibited optimum activity at pH 7.4 and 37°C. AChE displayed a direct relationship between activity and varying substrate concentrations (acetylthiocholine iodide (ATI by following Michaelis-Menten curve. The Km and Vmax values as computed from the Lineweaver-Burk double reciprocal plot of the data were found to be 0.07 mM and 0.066 µmole/mL/min, respectively. The enzyme exhibited IC50 value for carbofuran equal to 6.0 nM. The steady-state kinetic studies to determine mode of action of carbofuran on rat brain AChE displayed it to be noncompetitive in nature with Ki value equal to 5 nm. These experiments suggested that rat brain AChE was very sensitive to carbofuran and this enzyme might serve as a significant biomarker of carbofuran induced neurotoxicity.

  3. The temporal structures and functional significance of scale-free brain activity

    Science.gov (United States)

    He, Biyu J.; Zempel, John M.; Snyder, Abraham Z.; Raichle, Marcus E.

    2010-01-01

    SUMMARY Scale-free dynamics, with a power spectrum following P ∝ f-β, are an intrinsic feature of many complex processes in nature. In neural systems, scale-free activity is often neglected in electrophysiological research. Here, we investigate scale-free dynamics in human brain and show that it contains extensive nested frequencies, with the phase of lower frequencies modulating the amplitude of higher frequencies in an upward progression across the frequency spectrum. The functional significance of scale-free brain activity is indicated by task performance modulation and regional variation, with β being larger in default network and visual cortex and smaller in hippocampus and cerebellum. The precise patterns of nested frequencies in the brain differ from other scale-free dynamics in nature, such as earth seismic waves and stock market fluctuations, suggesting system-specific generative mechanisms. Our findings reveal robust temporal structures and behavioral significance of scale-free brain activity and should motivate future study on its physiological mechanisms and cognitive implications. PMID:20471349

  4. Functional Assays for Specific Targeting and Delivery of RNA Nanoparticles to Brain Tumor

    Science.gov (United States)

    Lee, Tae Jin; Haque, Farzin; Vieweger, Mario; Yoo, Ji Young; Kaur, Balveen; Guo, Peixuan; Croce, Carlo M.

    2017-01-01

    Cumulative progress in nanoparticle development has opened a new era of targeted delivery of therapeutics to cancer cells and tissue. However, developing proper detection methods has lagged behind resulting in the lack of precise evaluation and monitoring of the systemically administered nanoparticles. RNA nanoparticles derived from the bacteriophage phi29 DNA packaging motor pRNA have emerged as a new generation of drugs for cancer therapy. Multifunctional RNA nanoparticles can be fabricated by bottom-up self-assembly of engineered RNA fragments harboring targeting (RNA aptamer or chemical ligand), therapeutic (siRNA, miRNA, ribozymes, and small molecule drugs), and imaging (fluorophore, radiolabels) modules. We have recently demonstrated that RNA nanoparticles can reach and target intracranial brain tumors in mice upon systemic injection with little or no accumulation in adjacent healthy brain tissues or in major healthy internal organs. Herein, we describe various functional imaging methods (fluorescence confocal microscopy, flow cytometry, fluorescence whole body imaging, and magnetic resonance imaging) to evaluate and monitor RNA nanoparticle targeting to intracranial brain tumors in mice. Such imaging techniques will allow in-depth evaluation of specifically delivered RNA therapeutics to brain tumors. PMID:25896001

  5. IMAGING OF BRAIN FUNCTION BASED ON THE ANALYSIS OF FUNCTIONAL CONNECTIVITY - IMAGING ANALYSIS OF BRAIN FUNCTION BY FMRI AFTER ACUPUNCTURE AT LR3 IN HEALTHY INDIVIDUALS.

    Science.gov (United States)

    Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong

    2016-01-01

    This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, after true (sham) acupuncture in each group. Analysis of changes in connectivity among the brain areas was performed using the brain functional connectivity method. The right cerebrum temporal lobe was selected as the seed point to analyze the functional connectivity. It had a functional connectivity with right cerebrum superior frontal gyrus, limbic lobe cingulate gyrus and left cerebrum inferior temporal gyrus (BA 37), inferior parietal lobule compared by before vs. after acupuncture at LR3, and right cerebrum sub-lobar insula and left cerebrum middle frontal gyrus, medial frontal gyrus compared by true vs. sham acupuncture at LR3, and right cerebrum occipital lobe cuneus, occipital lobe sub-gyral, parietal lobe precuneus and left cerebellum anterior lobe culmen by acupuncture at LR3 vs. sham acupoint. Acupuncture at LR3 mainly specifically activated the brain functional network that participates in visual function, associative function, and emotion cognition, which are similar to the features on LR3 in tradition Chinese medicine. These brain areas constituted a neural network structure with specific functions that had specific reference values for the interpretation of the acupoint specificity of the Taichong acupoint.

  6. Effects of Deep Brain Stimulation on Autonomic Function

    Directory of Open Access Journals (Sweden)

    Adam Basiago

    2016-08-01

    Full Text Available Over the course of the development of deep brain stimulation (DBS into a well-established therapy for Parkinson’s disease, essential tremor, and dystonia, its utility as a potential treatment for autonomic dysfunction has emerged. Dysfunction of autonomic processes is common in neurological diseases. Depending on the specific target in the brain, DBS has been shown to raise or lower blood pressure, normalize the baroreflex, to alter the caliber of bronchioles, and eliminate hyperhidrosis, all through modulation of the sympathetic nervous system. It has also been shown to improve cortical control of the bladder, directly induce or inhibit the micturition reflex, and to improve deglutition and gastric emptying. In this review, we will attempt to summarize the relevant available studies describing these effects of DBS on autonomic function, which vary greatly in character and magnitude with respect to stimulation target.

  7. A probabilistic approach to delineating functional brain regions

    DEFF Research Database (Denmark)

    Kalbitzer, Jan; Svarer, Claus; Frokjaer, Vibe G

    2009-01-01

    The purpose of this study was to develop a reliable observer-independent approach to delineating volumes of interest (VOIs) for functional brain regions that are not identifiable on structural MR images. The case is made for the raphe nuclei, a collection of nuclei situated in the brain stem known...... to be densely packed with serotonin transporters (5-hydroxytryptaminic [5-HTT] system). METHODS: A template set for the raphe nuclei, based on their high content of 5-HTT as visualized in parametric (11)C-labeled 3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile PET images, was created for 10...... healthy subjects. The templates were subsequently included in the region sets used in a previously published automatic MRI-based approach to create an observer- and activity-independent probabilistic VOI map. The probabilistic map approach was tested in a different group of 10 subjects and compared...

  8. A propositional representation model of anatomical and functional brain data.

    Science.gov (United States)

    Maturana, Pablo; Batrancourt, Bénédicte

    2011-01-01

    Networks can represent a large number of systems. Recent advances in the domain of networks have been transferred to the field of neuroscience. For example, the graph model has been used in neuroscience research as a methodological tool to examine brain networks organization, topology and complex dynamics, as well as a framework to test the structure-function hypothesis using neuroimaging data. In the current work we propose a graph-theoretical framework to represent anatomical, functional and neuropsychological assessment instruments information. On the one hand, interrelationships between anatomic elements constitute an anatomical graph. On the other hand, a functional graph contains several cognitive functions and their more elementary cognitive processes. Finally, the neuropsychological assessment instruments graph includes several neuropsychological tests and scales linked with their different sub-tests and variables. The two last graphs are connected by relations of type "explore" linking a particular instrument with the cognitive function it explores. We applied this framework to a sample of patients with focal brain damage. Each patient was related to: (i) the cerebral entities injured (assessed with structural neuroimaging data) and (ii) the neusopsychological assessment tests carried out (weight by performance). Our model offers a suitable platform to visualize patients' relevant information, facilitating the representation, standardization and sharing of clinical data. At the same time, the integration of a large number of patients in this framework will make possible to explore relations between anatomy (injured entities) and function (performance in different tests assessing different cognitive functions) and the use of neurocomputational tools for graph analysis may help diagnostic and contribute to the comprehension of neural bases of cognitive functions.

  9. Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function.

    Science.gov (United States)

    Irwin, R W; Yao, J; To, J; Hamilton, R T; Cadenas, E; Brinton, R D

    2012-01-01

    The mitochondrial energy-transducing capacity of the brain is important for long-term neurological health and is influenced by endocrine hormone responsiveness. The present study aimed to determine the role of oestrogen receptor (ER) subtypes in regulating mitochondrial function using selective agonists for ERα (propylpyrazoletriol; PPT) and ERβ (diarylpropionitrile; DPN). Ovariectomised female rats were treated with 17β-oestradiol (E(2) ), PPT, DPN or vehicle control. Both ER selective agonists significantly increased the mitochondrial respiratory control ratio and cytochrome oxidase (COX) activity relative to vehicle. Western blots of purified whole brain mitochondria detected ERα and, to a greater extent, ERβ localisation. Pre-treatment with DPN, an ERβ agonist, significantly increased ERβ association with mitochondria. In the hippocampus, DPN activated mitochondrial DNA-encoded COX I expression, whereas PPT was ineffective, indicating that mechanistically ERβ, and not ERα, activated mitochondrial transcriptional machinery. Both selective ER agonists increased protein expression of nuclear DNA-encoded COX IV, suggesting that activation of ERβ or ERα is sufficient. Selective ER agonists up-regulated a panel of bioenergetic enzymes and antioxidant defence proteins. Up-regulated proteins included pyruvate dehydrogenase, ATP synthase, manganese superoxide dismutase and peroxiredoxin V. In vitro, whole cell metabolism was assessed in live primary cultured hippocampal neurones and mixed glia. The results of analyses conducted in vitro were consistent with data obtained in vivo. Furthermore, lipid peroxides, accumulated as a result of hormone deprivation, were significantly reduced by E(2) , PPT and DPN. These findings suggest that the activation of both ERα and ERβ is differentially required to potentiate mitochondrial function in brain. As active components in hormone therapy, synthetically designed oestrogens as well as natural phyto-oestrogen cocktails

  10. Brain functional connectivity network breakdown and restoration in blindness.

    Science.gov (United States)

    Bola, Michał; Gall, Carolin; Moewes, Christian; Fedorov, Anton; Hinrichs, Hermann; Sabel, Bernhard A

    2014-08-05

    To characterize brain functional connectivity in subjects with prechiasmatic visual system damage and relate functional connectivity features to extent of vision loss. In this case-control study, resting-state, eyes-closed EEG activity was recorded in patients with partial optic nerve damage (n = 15) and uninjured controls (n = 13). We analyzed power density and functional connectivity (coherence, Granger causality), the latter as (1) between-areal coupling strength and (2) individually thresholded binary graphs. Functional connectivity was then modulated by noninvasive repetitive transorbital alternating current stimulation (rtACS; 10 days, 40 minutes daily; n = 7; sham, n = 8) to study how this would affect connectivity networks and perception. Patients exhibited lower spectral power (p = 0.005), decreased short- (p = 0.015) and long-range (p = 0.033) coherence, and less densely clustered coherence networks (p = 0.025) in the high-alpha frequency band (11-13 Hz). rtACS strengthened short- (p = 0.003) and long-range (p = 0.032) alpha coherence and this was correlated with improved detection abilities (r = 0.57, p = 0.035) and processing speed (r = 0.56, p = 0.049), respectively. Vision loss in the blind is caused not only by primary tissue damage but also by a breakdown of synchronization in brain networks. Because visual field improvements are associated with resynchronization of alpha band coherence, brain connectivity is a key component in partial blindness and in restoration of vision. © 2014 American Academy of Neurology.

  11. Neuropsychologic and functional outcome after complicated mild traumatic brain injury.

    Science.gov (United States)

    Kashluba, Shauna; Hanks, Robin A; Casey, Joseph E; Millis, Scott R

    2008-05-01

    To investigate the extent to which neuropsychologic and functional outcome after complicated mild traumatic brain injury (TBI) parallels that of moderate TBI recovery. A longitudinal study comparing neuropsychologic and functional status of persons with complicated mild TBI and moderate TBI at discharge from inpatient rehabilitation and at 1 year postinjury. Rehabilitation hospital with a Traumatic Brain Injury Model System. Persons with complicated mild TBI (n=102), each with an intracranial brain lesion documented through neuroimaging and a highest Glasgow Coma Scale (GCS) score in the emergency department between 13 and 15, and 127 persons with moderate TBI. Not applicable. FIM instrument, Disability Rating Scale, Community Integration Questionnaire, Wechsler Memory Scale logical memory I and II, Rey Auditory Verbal Learning Test, Trail-Making Test, Controlled Oral Word Association Test, Symbol Digit Modalities Test, Wisconsin Card Sorting Test, and block design. Few differences in neuropsychologic performance existed between the TBI groups. Less severely impaired information processing speed and verbal learning were seen in the complicated mild TBI group at rehabilitation discharge and 1 year postinjury. Despite overall improvement across cognitive domains within the complicated mild TBI group, some degree of impairment remained at 1 year postinjury on those measures that had identified participants as impaired soon after injury. No differences on functional ability measures were found between the TBI groups at either time period postinjury, with both groups exhibiting incomplete recovery of functional status at the 1-year follow-up. When classifying severity of TBI based on GCS scores, consideration of a moderate injury designation should be given to persons with an intracranial bleed and a GCS score between 13 and 15.

  12. Totally tubular: the mystery behind function and origin of the brain ventricular system.

    Science.gov (United States)

    Lowery, Laura Anne; Sive, Hazel

    2009-04-01

    A unique feature of the vertebrate brain is the ventricular system, a series of connected cavities which are filled with cerebrospinal fluid (CSF) and surrounded by neuroepithelium. While CSF is critical for both adult brain function and embryonic brain development, neither development nor function of the brain ventricular system is fully understood. In this review, we discuss the mystery of why vertebrate brains have ventricles, and whence they originate. The brain ventricular system develops from the lumen of the neural tube, as the neuroepithelium undergoes morphogenesis. The molecular mechanisms underlying this ontogeny are described. We discuss possible functions of both adult and embryonic brain ventricles, as well as major brain defects that are associated with CSF and brain ventricular abnormalities. We conclude that vertebrates have taken advantage of their neural tube to form the essential brain ventricular system.

  13. A comparative study of two prediction models for brain tumor progression

    Science.gov (United States)

    Zhou, Deqi; Tran, Loc; Wang, Jihong; Li, Jiang

    2015-03-01

    MR diffusion tensor imaging (DTI) technique together with traditional T1 or T2 weighted MRI scans supplies rich information sources for brain cancer diagnoses. These images form large-scale, high-dimensional data sets. Due to the fact that significant correlations exist among these images, we assume low-dimensional geometry data structures (manifolds) are embedded in the high-dimensional space. Those manifolds might be hidden from radiologists because it is challenging for human experts to interpret high-dimensional data. Identification of the manifold is a critical step for successfully analyzing multimodal MR images. We have developed various manifold learning algorithms (Tran et al. 2011; Tran et al. 2013) for medical image analysis. This paper presents a comparative study of an incremental manifold learning scheme (Tran. et al. 2013) versus the deep learning model (Hinton et al. 2006) in the application of brain tumor progression prediction. The incremental manifold learning is a variant of manifold learning algorithm to handle large-scale datasets in which a representative subset of original data is sampled first to construct a manifold skeleton and remaining data points are then inserted into the skeleton by following their local geometry. The incremental manifold learning algorithm aims at mitigating the computational burden associated with traditional manifold learning methods for large-scale datasets. Deep learning is a recently developed multilayer perceptron model that has achieved start-of-the-art performances in many applications. A recent technique named "Dropout" can further boost the deep model by preventing weight coadaptation to avoid over-fitting (Hinton et al. 2012). We applied the two models on multiple MRI scans from four brain tumor patients to predict tumor progression and compared the performances of the two models in terms of average prediction accuracy, sensitivity, specificity and precision. The quantitative performance metrics were

  14. Research progress of early rehabilitation therapy on severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Yang YU

    2014-06-01

    Full Text Available In recent years, the mortality rates after severe traumatic brain injury (TBI have decreased because of advances in emergency medicine. Despite these positive achievements, the disability due to TBI has not appreciably reduced. TBI results in impairment of neurological and cognitive functions leading to activity restriction of patients. The current focus is to rehabilitate them so that they can regain their premorbid functional status as much as possible. This paper would like to review the treatment mechanism, methods and clinical advantages of early rehabilitation therapy in patients with severe TBI. doi: 10.3969/j.issn.1672-6731.2014.06.017

  15. The function of neurocognitive networks. Comment on “Understanding brain networks and brain organization” by Pessoa

    Science.gov (United States)

    Bressler, Steven L.

    2014-09-01

    Pessoa [5] has performed a valuable service by reviewing the extant literature on brain networks and making a number of interesting proposals about their cognitive function. The term function is at the core of understanding the brain networks of cognition, or neurocognitive networks (NCNs) [1]. The great Russian neuropsychologist, Luria [4], defined brain function as the common task executed by a distributed brain network of complex dynamic structures united by the demands of cognition. Casting Luria in a modern light, we can say that function emerges from the interactions of brain regions in NCNs as they dynamically self-organize according to cognitive demands. Pessoa rightly details the mapping between brain function and structure, emphasizing both its pluripotency (one structure having multiple functions) and degeneracy (many structures having the same function). However, he fails to consider the potential importance of a one-to-one mapping between NCNs and function. If NCNs are uniquely composed of specific collections of brain areas, then each NCN has a unique function determined by that composition.

  16. Blood-Brain Barrier P-Glycoprotein Function in Neurodegenerative Disease

    NARCIS (Netherlands)

    Bartels, A. L.

    2011-01-01

    Protection of the brain is strengthened by active transport and ABC transporters. P-glycoprotein (P-gp) at the blood-brain barrier (BBB) functions as an active efflux pump by extruding a substrate from the brain, which is important for maintaining loco-regional homeostasis in the brain and protectio

  17. Reorganization of Functional Connectivity as a Correlate of Cognitive Recovery in Acquired Brain Injury

    Science.gov (United States)

    Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando

    2010-01-01

    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on…

  18. Stable functional networks exhibit consistent timing in the human brain.

    Science.gov (United States)

    Chapeton, Julio I; Inati, Sara K; Zaghloul, Kareem A

    2017-03-01

    Despite many advances in the study of large-scale human functional networks, the question of timing, stability, and direction of communication between cortical regions has not been fully addressed. At the cellular level, neuronal communication occurs through axons and dendrites, and the time required for such communication is well defined and preserved. At larger spatial scales, however, the relationship between timing, direction, and communication between brain regions is less clear. Here, we use a measure of effective connectivity to identify connections between brain regions that exhibit communication with consistent timing. We hypothesized that if two brain regions are communicating, then knowledge of the activity in one region should allow an external observer to better predict activity in the other region, and that such communication involves a consistent time delay. We examine this question using intracranial electroencephalography captured from nine human participants with medically refractory epilepsy. We use a coupling measure based on time-lagged mutual information to identify effective connections between brain regions that exhibit a statistically significant increase in average mutual information at a consistent time delay. These identified connections result in sparse, directed functional networks that are stable over minutes, hours, and days. Notably, the time delays associated with these connections are also highly preserved over multiple time scales. We characterize the anatomic locations of these connections, and find that the propagation of activity exhibits a preferred posterior to anterior temporal lobe direction, consistent across participants. Moreover, networks constructed from connections that reliably exhibit consistent timing between anatomic regions demonstrate features of a small-world architecture, with many reliable connections between anatomically neighbouring regions and few long range connections. Together, our results demonstrate

  19. Functional brain networks develop from a "local to distributed" organization.

    Directory of Open Access Journals (Sweden)

    Damien A Fair

    2009-05-01

    Full Text Available The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI, graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward 'segregation' (a general decrease in correlation strength between regions close in anatomical space and 'integration' (an increased correlation strength between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more "distributed" architecture in young adults. We argue that this "local to distributed" developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths are similar in child and adult graphs, with both showing "small-world"-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults

  20. Tau and Beta-Amyloid Deposition, Micro-Hemorrhage and Brain Function after Traumatic Brain Injury in War Veterans

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0418 TITLE: Tau and Beta-Amyloid Deposition, Micro hemorrhage and Brain Function after Traumatic Brain Injury in...COVERED 25Sept15 - 24September16 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Tau and Beta-Amyloid Deposition, Micro hemorrhage and Brain Function...after Traumatic Brain Injury in War Veterans 5b. GRANT NUMBER W81XWH-14-1-0418 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Ms. Tia Cummins 5d

  1. Using computational models to relate structural and functional brain connectivity.

    Science.gov (United States)

    Hlinka, Jaroslav; Coombes, Stephen

    2012-07-01

    Modern imaging methods allow a non-invasive assessment of both structural and functional brain connectivity. This has lead to the identification of disease-related alterations affecting functional connectivity. The mechanism of how such alterations in functional connectivity arise in a structured network of interacting neural populations is as yet poorly understood. Here we use a modeling approach to explore the way in which this can arise and to highlight the important role that local population dynamics can have in shaping emergent spatial functional connectivity patterns. The local dynamics for a neural population is taken to be of the Wilson-Cowan type, whilst the structural connectivity patterns used, describing long-range anatomical connections, cover both realistic scenarios (from the CoComac database) and idealized ones that allow for more detailed theoretical study. We have calculated graph-theoretic measures of functional network topology from numerical simulations of model networks. The effect of the form of local dynamics on the observed network state is quantified by examining the correlation between structural and functional connectivity. We document a profound and systematic dependence of the simulated functional connectivity patterns on the parameters controlling the dynamics. Importantly, we show that a weakly coupled oscillator theory explaining these correlations and their variation across parameter space can be developed. This theoretical development provides a novel way to characterize the mechanisms for the breakdown of functional connectivity in diseases through changes in local dynamics.

  2. Structure-function clustering in multiplex brain networks

    Science.gov (United States)

    Crofts, J. J.; Forrester, M.; O'Dea, R. D.

    2016-10-01

    A key question in neuroscience is to understand how a rich functional repertoire of brain activity arises within relatively static networks of structurally connected neural populations: elucidating the subtle interactions between evoked “functional connectivity” and the underlying “structural connectivity” has the potential to address this. These structural-functional networks (and neural networks more generally) are more naturally described using a multilayer or multiplex network approach, in favour of standard single-layer network analyses that are more typically applied to such systems. In this letter, we address such issues by exploring important structure-function relations in the Macaque cortical network by modelling it as a duplex network that comprises an anatomical layer, describing the known (macro-scale) network topology of the Macaque monkey, and a functional layer derived from simulated neural activity. We investigate and characterize correlations between structural and functional layers, as system parameters controlling simulated neural activity are varied, by employing recently described multiplex network measures. Moreover, we propose a novel measure of multiplex structure-function clustering which allows us to investigate the emergence of functional connections that are distinct from the underlying cortical structure, and to highlight the dependence of multiplex structure on the neural dynamical regime.

  3. Functional MRI of the brain: localisation of eloquent cortex in focal brain lesion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dymarkowski, S.; Sunaert, S.; Oostende, S. van; Hecke, P. van; Wilms, G.; Demaerel, P.; Marchal, G. [Department of Radiology, University Hospitals, Leuven (Belgium); Nuttin, B.; Plets, C. [Department of Neurosurgery, University Hospitals, Leuven (Belgium)

    1998-12-01

    The aim of this study was to assess the feasibility of functional MRI (fMRI) in a clinical environment on a large patient group, and to evaluate the pretherapeutic value of localisation of eloquent cortex. Forty patients with focal brain lesions of different origin were studied using fMRI. Functional information was obtained using motor, somatosensory, auditory and phonological stimuli depending on the localisation of the lesions. To obtain information about the spatial accuracy of fMRI, the results were compared with postoperative electrocortical stimulation. Two patients with secondary trigeminal neuralgia were scanned using a motor protocol and were implanted with an extradural plate electrode. Imaging was successful in 40 of 42 patients (including the 2 with trigeminal neuralgia). These patients were analysed for strength of activation, the relation of the lesion to activation sites and the presence of mass effect. The correlation between these data and surgical findings provided significant additional clinical information. Functional MRI can be accurately performed in patients with focal brain lesions using a dedicated approach. Functional MRI offers important clinical information as a contribution to a decrease in posttherapeutic morbidity. The accuracy of the technique can be confirmed by other modalities, including invasive cortical electrostimulation. (orig.) With 7 figs., 2 tabs., 25 refs.

  4. Mapping multiplex hubs in human functional brain networks

    Directory of Open Access Journals (Sweden)

    Alex Arenas

    2016-07-01

    Full Text Available Typical brain networks consist of many peripheral regions and a few highly centralones, i.e. hubs, playing key functional roles in cerebral inter-regional interactions. Studieshave shown that networks, obtained from the analysis of specific frequency components ofbrain activity, present peculiar architectures with unique profiles of region centrality. However,the identification of hubs in networks built from different frequency bands simultaneouslyis still a challenging problem, remaining largely unexplored. Here we identify eachfrequency component with one layer of a multiplex network and face this challenge by exploitingthe recent advances in the analysis of multiplex topologies. First, we show that eachfrequency band carries unique topological information, fundamental to accurately modelbrain functional networks. We then demonstrate that hubs in the multiplex network, in generaldifferent from those ones obtained after discarding or aggregating the measured signalsas usual, provide a more accurate map of brain’s most important functional regions, allowingto distinguish between healthy and schizophrenic populations better than conventionalnetwork approaches.

  5. Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development

    Science.gov (United States)

    Montgomery, Rusty L.; Hsieh, Jenny; Barbosa, Ana C.; Richardson, James A.; Olson, Eric N.

    2009-01-01

    The molecular mechanism by which neural progenitor cells commit to a specified lineage of the central nervous system remains unknown. We show that HDAC1 and HDAC2 redundantly control neuronal development and are required for neuronal specification. Mice lacking HDAC1 or HDAC2 in neuronal precursors show no overt histoarchitectural phenotypes, whereas deletion of both HDAC1 and HDAC2 in developing neurons results in severe hippocampal abnormalities, absence of cerebellar foliation, disorganization of cortical neurons, and lethality by postnatal day 7. These abnormalities in brain formation can be attributed to a failure of neuronal precursors to differentiate into mature neurons and to excessive cell death. These results reveal redundant and essential roles for HDAC1 and HDAC2 in the progression of neuronal precursors to mature neurons in vivo. PMID:19380719

  6. Relationship between trauma-induced coagulopathy and progressive hemorrhagic injury in patients with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jia Liu; Heng-Li Tian

    2016-01-01

    Progressive hemorrhagic injury (PHI) can be divided into coagulopathy-related PHI and normal coagulation PHI.Coagulation disorders after traumatic brain injuries can be included in trauma-induced coagulopathy (TIC).Some studies showed that TIC is associated with PHI and increases the rates of disability and mortality.In this review,we discussed some mechanisms in TIC,which is of great importance in the development of PHI,including tissue factor (TF) hypothesis,protein C pathway and thrombocytopenia.The main mechanism in the relation of TIC to PHI is hypocoagulability.We also reviewed some coagulopathy parameters and proposed some possible risk factors,predictors and therapies.

  7. Functional brain networks contributing to the Parieto-Frontal Integration Theory of Intelligence.

    Science.gov (United States)

    Vakhtin, Andrei A; Ryman, Sephira G; Flores, Ranee A; Jung, Rex E

    2014-12-01

    The refinement of localization of intelligence in the human brain is converging onto a distributed network that broadly conforms to the Parieto-Frontal Integration Theory (P-FIT). While this theory has received support in the neuroimaging literature, no functional magnetic resonance imaging study to date has conducted a whole-brain network-wise examination of the changes during engagement in tasks that are reliable measures of general intelligence (e.g., Raven's Progressive Matrices Test; RPM). Seventy-nine healthy subjects were scanned while solving RPM problems and during rest. Functional networks were extracted from the RPM and resting state data using Independent Component Analysis. Twenty-nine networks were identified, 26 of which were detected in both conditions. Fourteen networks were significantly correlated with the RPM task. The networks' spatial maps and functional connectivity measures at 3 frequency levels (low, medium, & high) were compared between the RPM and rest conditions. The regions involved in the networks that were found to be task related were consistent with the P-FIT, localizing to the bilateral medial frontal and parietal regions, right superior frontal lobule, and the right cingulate gyrus. Functional connectivity in multiple component pairs was differentially affected across all frequency levels during the RPM task. Our findings demonstrate that functional brain networks are more stable than previously thought, and maintain their general features across resting state and engagement in a complex cognitive task. The described spatial and functional connectivity alterations that such components undergo during fluid reasoning provide a network-wise framework of the P-FIT that can be valuable for further, network based, neuroimaging inquiries regarding the neural underpinnings of intelligence.

  8. Large-Scale Functional Brain Network Reorganization During Taoist Meditation.

    Science.gov (United States)

    Jao, Tun; Li, Chia-Wei; Vértes, Petra E; Wu, Changwei Wesley; Achard, Sophie; Hsieh, Chao-Hsien; Liou, Chien-Hui; Chen, Jyh-Horng; Bullmore, Edward T

    2016-02-01

    Meditation induces a distinct and reversible mental state that provides insights into brain correlates of consciousness. We explored brain network changes related to meditation by graph theoretical analysis of resting-state functional magnetic resonance imaging data. Eighteen Taoist meditators with varying levels of expertise were scanned using a within-subjects counterbalanced design during resting and meditation states. State-related differences in network topology were measured globally and at the level of individual nodes and edges. Although measures of global network topology, such as small-worldness, were unchanged, meditation was characterized by an extensive and expertise-dependent reorganization of the hubs (highly connected nodes) and edges (functional connections). Areas of sensory cortex, especially the bilateral primary visual and auditory cortices, and the bilateral temporopolar areas, which had the highest degree (or connectivity) during the resting state, showed the biggest decrease during meditation. Conversely, bilateral thalamus and components of the default mode network, mainly the bilateral precuneus and posterior cingulate cortex, had low degree in the resting state but increased degree during meditation. Additionally, these changes in nodal degree were accompanied by reorganization of anatomical orientation of the edges. During meditation, long-distance longitudinal (antero-posterior) edges increased proportionally, whereas orthogonal long-distance transverse (right-left) edges connecting bilaterally homologous cortices decreased. Our findings suggest that transient changes in consciousness associated with meditation introduce convergent changes in the topological and spatial properties of brain functional networks, and the anatomical pattern of integration might be as important as the global level of integration when considering the network basis for human consciousness.

  9. The heme oxygenase system and its functions in the brain.

    Science.gov (United States)

    Maines, M D

    2000-05-01

    The heme oxygenase (HO) system was identified in the early 1970s as a distinct microsomal enzyme system that catalyzes formation of bile pigments (Maines and Kappas, 1974). Up to the early 1990s the system was considered only as a "molecular wrecking ball" (Lane, 1998) for degradation of the heme molecule and production of toxic waste products, CO and bile pigments. For those years, the HO system remained relatively unknown to the research community. In a rather short span of the past 10 years following the discovery of high levels of a second form of the enzyme, HO-2, in the brain, suggesting that "heme oxygenase in the brain has functions aside from heme degradation" (Sun et al., 1990); concomitant with finding that another toxic gas, NO, is a signal molecule for generation of cGMP (Ignarro et al., 1982), the system was propelled into main stream research. This propulsion was fueled by the realization of the multiple and diverse functions of heme degradation products. Heme oxygenase has now found relevance in all kinds of human pathophysiology ranging from stroke, cancer, multiple sclerosis, and malaria to transplantation and immune response. As it turns out, its potential benefits are mesmerizing investigators in diverse fields (Lane, 1998). The most recent findings with HO-2 being a hemoprotein and potentially an intracellular "sink" for NO (McCoubrey et al., 1997a; Ding et al., 1999), together with the discovery of the third form of the enzyme, HO-3 (McCoubrey et al., 1997b), are likely to insure the widespread interest in the enzyme system in the coming years. The present review is intended to highlight molecular properties of HO isozymes and their likely functions in the brain. Extended reviews of the system are found in Maines (1992, 1997).

  10. Bisphenol A Interaction With Brain Development and Functions

    Directory of Open Access Journals (Sweden)

    P. Negri-Cesi

    2015-06-01

    Full Text Available Brain development is an organized, but constantly adaptive, process in which genetic and epigenetic signals allow neurons to differentiate, to migrate, and to develop correct connections. Gender specific prenatal sex hormone milieu participates in the dimorphic development of many neuronal networks. Environmental cues may interfere with these developmental programs, producing adverse outcomes. Bisphenol A (BPA, an estrogenic/antiandrogenic endocrine disruptor widely diffused in the environment, produces adverse effects at levels below the acceptable daily intake. This review analyzes the recent literature on the consequences of perinatal exposure to BPA environmental doses on the development of a dimorphic brain. The BPA interference with the development and function of the neuroendocrine hypothalamus and of the nuclei controlling energy balance, and with the hippocampal memory processing is also discussed. The detrimental action of BPA appears complex, involving different hormonal and epigenetic pathways activated, often in a dimorphic way, within clearcut susceptibility windows. To date, discrepancies in experimental approaches and in related outcomes make unfeasible to translate the available information into clear dose–response models for human risk assessment. Evaluation of BPA brain levels in relation to the appearance of adverse effects in future basic studies will certainly give better definition of the warning threshold for human health.

  11. Functional magnetic resonance imaging and the brain: A brief review

    Science.gov (United States)

    Chow, Maggie S M; Wu, Sharon L; Webb, Sarah E; Gluskin, Katie; Yew, D T

    2017-01-01

    Functional magnetic resonance imaging (fMRI) is employed in many behavior analysis studies, with blood oxygen level dependent- (BOLD-) contrast imaging being the main method used to generate images. The use of BOLD-contrast imaging in fMRI has been refined over the years, for example, the inclusion of a spin echo pulse and increased magnetic strength were shown to produce better recorded images. Taking careful precautions to control variables during measurement, comparisons between different specimen groups can be illustrated by fMRI imaging using both quantitative and qualitative methods. Differences have been observed in comparisons of active and resting, developing and aging, and defective and damaged brains in various studies. However, cognitive studies using fMRI still face a number of challenges in interpretation that can only be overcome by imaging large numbers of samples. Furthermore, fMRI studies of brain cancer, lesions and other brain pathologies of both humans and animals are still to be explored. PMID:28144401

  12. Structural MRI studies of language function in the undamaged brain.

    Science.gov (United States)

    Richardson, Fiona M; Price, Cathy J

    2009-10-01

    In recent years, the demonstration that structural changes can occur in the human brain beyond those associated with development, ageing and neuropathology has revealed a new approach to studying the neural basis of behaviour. In this review paper, we focus on structural imaging studies of language that have utilised behavioural measures in order to investigate the neural correlates of language skills in the undamaged brain. We report studies that have used two different techniques: voxel-based morphometry of whole brain grey or white matter images and diffusion tensor imaging. At present, there are relatively few structural imaging studies of language. We group them into those that investigated (1) the perception of novel speech sounds, (2) the links between speech sounds and their meaning, (3) speech production, and (4) reading. We highlight the validity of the findings by comparing the results to those from functional imaging studies. Finally, we conclude by summarising the novel contribution of these studies to date and potential directions for future research.

  13. Brain oscillations and functional connectivity during overt language production

    Directory of Open Access Journals (Sweden)

    Arne eEwald

    2012-06-01

    Full Text Available In the present study we investigate the communication of different large scale brain sites during an overt language production task with state of the art methods for the estimation of EEG functional connectivity. Participants performed a semantic blocking task in which objects were named in semantically homogeneous blocks of trials consisting of members of a semantic category (e.g., all objects are tools or in heterogeneous blocks, consisting of unrelated objects. The classic pattern of slower naming times in the homogeneous relative to heterogeneous blocks is assumed to reflect the duration of lexical selection. For the collected data in the homogeneous and heterogeneous conditions the imaginary part of coherency (ImC was evaluated at different frequencies. The ImC is a measure for detecting the coupling of different brain sites acting on sensor level. Most importantly, a non-vanishing ImC cannot be explained by mixtures of independent sources and must therefore reflect true interactions. After performing a grand average over 24 subjects we analyzed the ImC at all pairs of 56 EEG channels across all frequencies. Contrasting the two experimental conditions we found differences in interaction between left temporal and frontal areas and frontal and occipital areas in the theta band at 7Hz, and also smaller differences in the delta and beta band. These areas are well-known to play a major role in lexical-semantic language processes. Our findings demonstrate the feasibility of investigating interactive brain activity during overt language production.

  14. A Statistical Method to Distinguish Functional Brain Networks

    Science.gov (United States)

    Fujita, André; Vidal, Maciel C.; Takahashi, Daniel Y.

    2017-01-01

    One major problem in neuroscience is the comparison of functional brain networks of different populations, e.g., distinguishing the networks of controls and patients. Traditional algorithms are based on search for isomorphism between networks, assuming that they are deterministic. However, biological networks present randomness that cannot be well modeled by those algorithms. For instance, functional brain networks of distinct subjects of the same population can be different due to individual characteristics. Moreover, networks of subjects from different populations can be generated through the same stochastic process. Thus, a better hypothesis is that networks are generated by random processes. In this case, subjects from the same group are samples from the same random process, whereas subjects from different groups are generated by distinct processes. Using this idea, we developed a statistical test called ANOGVA to test whether two or more populations of graphs are generated by the same random graph model. Our simulations' results demonstrate that we can precisely control the rate of false positives and that the test is powerful to discriminate random graphs generated by different models and parameters. The method also showed to be robust for unbalanced data. As an example, we applied ANOGVA to an fMRI dataset composed of controls and patients diagnosed with autism or Asperger. ANOGVA identified the cerebellar functional sub-network as statistically different between controls and autism (p < 0.001). PMID:28261045

  15. Functional connectivity of the rodent brain using optical imaging

    Science.gov (United States)

    Guevara Codina, Edgar

    The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techniques explored in the first two contributions of this thesis are Optical Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the metabolic rate of oxygen consumption, that closely parallels neural activity. They both have adequate spatial and temporal resolution and are well adapted to image the convexity of the mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was used in the newborn rat. Optical coherence tomography and laminar optical tomography were also part of the array of imaging techniques developed and applied in other collaborations. The first article of this work shows the changes in functional connectivity in an acute murine model of epileptiform activity. Homologous correlations are both increased and decreased with a small dependence on seizure duration. These changes suggest a potential decoupling between the hemodynamic parameters in resting-state networks, underlining the importance to investigate epileptic networks with several independent hemodynamic measures. The second study examines a novel murine model of arterial stiffness: the unilateral calcification of the right carotid. Seed-based connectivity analysis

  16. Crossed-Brain Representation of Verbal and Nonverbal Functions

    Directory of Open Access Journals (Sweden)

    Esmeralda Matute

    2015-01-01

    Full Text Available A 74-year-old, left-handed man presented with a rapidly evolving loss of strength in his right leg associated with difficulty in walking. MR images disclosed an extensive left hemisphere tumor. A neuropsychological examination revealed that language was broadly normal but that the patient presented with severe nonlinguistic abnormalities, including hemineglect (both somatic and spatial, constructional defects, and general spatial disturbances; symptoms were usually associated with right hemisphere pathologies. No ideomotor apraxia was found. The implications of crossed-brain representations of verbal and nonverbal functions are analyzed.

  17. The Apolipoprotein E Gene, Attention, and Brain Function

    OpenAIRE

    Parasuraman, Raja; Pamela M Greenwood; Sunderland, Trey

    2002-01-01

    The ɛ4 allele of the apolipoprotein E (ApoE) gene is associated with alterations in brain function and is a risk factor for Alzheimer’s disease (AD). Changes in components of visuospatial attention with ApoE-ɛ4, aging, and AD are described. Healthy middle-aged adults without dementia who have the ApoE-ɛ4 gene show deficits in spatial attention and working memory that are qualitatively similar to those seen in clinically diagnosed AD patients. The findings support an association between ApoE p...

  18. Changes in brain functional network connectivity after stroke

    Institute of Scientific and Technical Information of China (English)

    Wei Li; Yapeng Li; Wenzhen Zhu; Xi Chen

    2014-01-01

    Studies have shown that functional network connection models can be used to study brain net-work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore functional network connectivity changes in stroke patients. We used independent component analysis to find the motor areas of stroke patients, which is a novel way to determine these areas. In this study, we collected functional magnetic resonance imaging datasets from healthy controls and right-handed stroke patients following their ifrst ever stroke. Using independent component analysis, six spatially independent components highly correlat-ed to the experimental paradigm were extracted. Then, the functional network connectivity of both patients and controls was established to observe the differences between them. The results showed that there were 11 connections in the model in the stroke patients, while there were only four connections in the healthy controls. Further analysis found that some damaged connections may be compensated for by new indirect connections or circuits produced after stroke. These connections may have a direct correlation with the degree of stroke rehabilitation. Our ifndings suggest that functional network connectivity in stroke patients is more complex than that in hea-lthy controls, and that there is a compensation loop in the functional network following stroke. This implies that functional network reorganization plays a very important role in the process of rehabilitation after stroke.

  19. Characterizing and Targeting Bone Marrow-Derived Inflammatory Cells in Driving the Malignancy and Progression of Childhood Astrocytic Brain Tumors

    Science.gov (United States)

    2016-11-01

    Progression of Childhood Astrocytic Brain Tumors PRINCIPAL INVESTIGATOR: Yujie Huang Ph.D. CONTRACTING ORGANIZATION: Cornell University Weill Cornell... Brain Tumors 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Yujie Huang 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail:yuh2005@med.cornell.edu & yhuangthu...27 11. Training & Professional Development …………………..………..28 12. Appendices …………………………………………………………...29 2 1. Introduction Brain

  20. Interventions for dysarthria due to stroke and other adult-acquired, non-progressive brain injury.

    Science.gov (United States)

    Mitchell, Claire; Bowen, Audrey; Tyson, Sarah; Butterfint, Zoe; Conroy, Paul

    2017-01-25

    Dysarthria is an acquired speech disorder following neurological injury that reduces intelligibility of speech due to weak, imprecise, slow and/or unco-ordinated muscle control. The impact of dysarthria goes beyond communication and affects psychosocial functioning. This is an update of a review previously published in 2005. The scope has been broadened to include additional interventions, and the title amended accordingly. To assess the effects of interventions to improve dysarthric speech following stroke and other non-progressive adult-acquired brain injury such as trauma, infection, tumour and surgery. We searched the Cochrane Stroke Group Trials Register (May 2016), CENTRAL (Cochrane Library 2016, Issue 4), MEDLINE, Embase, and CINAHL on 6 May 2016. We also searched Linguistics and Language Behavioral Abstracts (LLBA) (1976 to November 2016) and PsycINFO (1800 to September 2016). To identify further published, unpublished and ongoing trials, we searched major trials registers: WHO ICTRP, the ISRCTN registry, and ClinicalTrials.gov. We also handsearched the reference lists of relevant articles and contacted academic institutions and other researchers regarding other published, unpublished or ongoing trials. We did not impose any language restrictions. We selected randomised controlled trials (RCTs) comparing dysarthria interventions with 1) no intervention, 2) another intervention for dysarthria (this intervention may differ in methodology, timing of delivery, duration, frequency or theory), or 3) an attention control. Three review authors selected trials for inclusion, extracted data, and assessed risk of bias. We attempted to contact study authors for clarification and missing data as required. We calculated standardised mean difference (SMD) and 95% confidence interval (CI), using a random-effects model, and performed sensitivity analyses to assess the influence of methodological quality. We planned to conduct subgroup analyses for underlying clinical

  1. Progressive Disintegration of Brain Networking from Normal Aging to Alzheimer Disease: Analysis of Independent Components of (18)F-FDG PET Data.

    Science.gov (United States)

    Pagani, Marco; Giuliani, Alessandro; Öberg, Johanna; De Carli, Fabrizio; Morbelli, Silvia; Girtler, Nicola; Arnaldi, Dario; Accardo, Jennifer; Bauckneht, Matteo; Bongioanni, Francesca; Chincarini, Andrea; Sambuceti, Gianmario; Jonsson, Cathrine; Nobili, Flavio

    2017-07-01

    Brain connectivity has been assessed in several neurodegenerative disorders investigating the mutual correlations between predetermined regions or nodes. Selective breakdown of brain networks during progression from normal aging to Alzheimer disease dementia (AD) has also been observed. Methods: We implemented independent-component analysis of (18)F-FDG PET data in 5 groups of subjects with cognitive states ranging from normal aging to AD-including mild cognitive impairment (MCI) not converting or converting to AD-to disclose the spatial distribution of the independent components in each cognitive state and their accuracy in discriminating the groups. Results: We could identify spatially distinct independent components in each group, with generation of local circuits increasing proportionally to the severity of the disease. AD-specific independent components first appeared in the late-MCI stage and could discriminate converting MCI and AD from nonconverting MCI with an accuracy of 83.5%. Progressive disintegration of the intrinsic networks from normal aging to MCI to AD was inversely proportional to the conversion time. Conclusion: Independent-component analysis of (18)F-FDG PET data showed a gradual disruption of functional brain connectivity with progression of cognitive decline in AD. This information might be useful as a prognostic aid for individual patients and as a surrogate biomarker in intervention trials. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  2. From blood to brain: amoeboid microglial cell, a nascent macrophage and its functions in developing brain

    Institute of Scientific and Technical Information of China (English)

    Charanjit KAUR; S Thameem DHEEN; Eng-ang LING

    2007-01-01

    Amoeboid microglial cells (AMC) in the developing brain are active macrophages.The macrophagic nature of these cells has been demonstrated by many methods,such as the localization of various hydrolytic enzymes and the presence of comple-ment type 3 surface receptors in them. More importantly is the direct visualization of these cells engaged in the phagocytosis of degenerating cells at the ultrastruc-tural level. Further evidence of them being active macrophages is the avid inter-nalization of tracers administered by the intravenous or intraperitoneal routes in developing rats. The potential involvement of AMC in immune functions is sup-ported by the induced expression of major histocompatibility complex class Ⅰ and Ⅱ antigens on them when challenged by lipopolysaccharide or interferon-γ. Im-munosuppressive drugs, such as glucocorticoids and immune function-enhanc-ing drugs like melatonin, affect the expression of surface receptors and antigens and the release of cytokines by AMC. Recent studies in our laboratory have shown the expression of insulin-like growth factors, endothelins, 21,31-cyclic nucle-otide 31-phosphodiesterase, and N-methyl-D-asparate receptors. This along with the release of chemokines, such as stromal derived factor-la and monocyte chemoattractant protein-1, suggests multiple functional roles of AMC in early brain development.

  3. Progression of brain atrophy in spinocerebellar ataxia type 2: a longitudinal tensor-based morphometry study.

    Directory of Open Access Journals (Sweden)

    Mario Mascalchi

    Full Text Available Spinocerebellar ataxia type 2 (SCA2 is the second most frequent autosomal dominant inherited ataxia worldwide. We investigated the capability of magnetic resonance imaging (MRI to track in vivo progression of brain atrophy in SCA2 by examining twice 10 SCA2 patients (mean interval 3.6 years and 16 age- and gender-matched healthy controls (mean interval 3.3 years on the same 1.5 T MRI scanner. We used T1-weighted images and tensor-based morphometry (TBM to investigate volume changes and the Inherited Ataxia Clinical Rating Scale to assess the clinical deficit. With respect to controls, SCA2 patients showed significant higher atrophy rates in the midbrain, including substantia nigra, basis pontis, middle cerebellar peduncles and posterior medulla corresponding to the gracilis and cuneatus tracts and nuclei, cerebellar white matter (WM and cortical gray matter (GM in the inferior portions of the cerebellar hemisphers. No differences in WM or GM volume loss were observed in the supratentorial compartment. TBM findings did not correlate with modifications of the neurological deficit. In conclusion, MRI volumetry using TBM is capable of demonstrating the progression of pontocerebellar atrophy in SCA2, supporting a possible role of MRI as biomarker in future trials.

  4. Brain Structure and Executive Functions in Children with Cerebral Palsy: A Systematic Review

    Science.gov (United States)

    Weierink, Lonneke; Vermeulen, R. Jeroen; Boyd, Roslyn N.

    2013-01-01

    This systematic review aimed to establish the current knowledge about brain structure and executive function (EF) in children with cerebral palsy (CP). Five databases were searched (up till July 2012). Six articles met the inclusion criteria, all included structural brain imaging though no functional brain imaging. Study quality was assessed using…

  5. Some Problems for Representations of Brain Organization Based on Activation in Functional Imaging

    Science.gov (United States)

    Sidtis, John J.

    2007-01-01

    Functional brain imaging has overshadowed traditional lesion studies in becoming the dominant approach to the study of brain-behavior relationships. The proponents of functional imaging studies frequently argue that this approach provides an advantage over lesion studies by observing normal brain activity in vivo without the disruptive effects of…

  6. Brain Structure and Executive Functions in Children with Cerebral Palsy: A Systematic Review

    Science.gov (United States)

    Weierink, Lonneke; Vermeulen, R. Jeroen; Boyd, Roslyn N.

    2013-01-01

    This systematic review aimed to establish the current knowledge about brain structure and executive function (EF) in children with cerebral palsy (CP). Five databases were searched (up till July 2012). Six articles met the inclusion criteria, all included structural brain imaging though no functional brain imaging. Study quality was assessed using…

  7. PET imaging reveals brain functional changes in internet gaming disorder

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Mei; Zhang, Ying; Du, Fenglei; Hou, Haifeng; Chao, Fangfang; Zhang, Hong [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Chen, Qiaozhen [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Psychiatry, Hangzhou (China)

    2014-07-15

    Internet gaming disorder is an increasing problem worldwide, resulting in critical academic, social, and occupational impairment. However, the neurobiological mechanism of internet gaming disorder remains unknown. The aim of this study is to assess brain dopamine D{sub 2} (D{sub 2})/Serotonin 2A (5-HT{sub 2A}) receptor function and glucose metabolism in the same subjects by positron emission tomography (PET) imaging approach, and investigate whether the correlation exists between D{sub 2} receptor and glucose metabolism. Twelve drug-naive adult males who met criteria for internet gaming disorder and 14 matched controls were studied with PET and {sup 11}C-N-methylspiperone ({sup 11}C-NMSP) to assess the availability of D{sub 2}/5-HT{sub 2A} receptors and with {sup 18}F-fluoro-D-glucose ({sup 18}F-FDG) to assess regional brain glucose metabolism, a marker of brain function. {sup 11}C-NMSP and {sup 18}F-FDG PET imaging data were acquired in the same individuals under both resting and internet gaming task states. In internet gaming disorder subjects, a significant decrease in glucose metabolism was observed in the prefrontal, temporal, and limbic systems. Dysregulation of D{sub 2} receptors was observed in the striatum, and was correlated to years of overuse. A low level of D{sub 2} receptors in the striatum was significantly associated with decreased glucose metabolism in the orbitofrontal cortex. For the first time, we report the evidence that D{sub 2} receptor level is significantly associated with glucose metabolism in the same individuals with internet gaming disorder, which indicates that D{sub 2}/5-HT{sub 2A} receptor-mediated dysregulation of the orbitofrontal cortex could underlie a mechanism for loss of control and compulsive behavior in internet gaming disorder subjects. (orig.)

  8. A Self-Study Tutorial using the Allen Brain Explorer and Brain Atlas to Teach Concepts of Mammalian Neuroanatomy and Brain Function.

    Science.gov (United States)

    Jenks, Bruce G

    2009-01-01

    The Allen Brain Atlas is a repository of neuroanatomical data concerning the mouse brain. The core of the database is a Nissl-stained reference atlas of the brain accompanied by in situ hybridization data for essentially the entire mouse genome. This database is freely available at the Allen Institute for Brain Science website, as is an innovative tool to explore the database, the Brain Explorer. This tool is downloaded and installed on your own computer. I have developed a self-study tutorial, "Explorations with the Allen Brain Explorer", which uses the Brain Explorer and the Brain Atlas to teach fundamentals of mammalian neuroanatomy and brain function. In this tutorial background information and step-by-step exercises on the use of the Brain Explorer are given using PowerPoint as a platform. To do the tutorial both the PowerPoint and the Brain Explorer are opened on the computer and the students switch from one program to the other as they go, in a step-wise fashion, through the various exercises. There are two main groups of exercises, titled "The Basics" and "Explorations", with both groups accessed from a PowerPoint "Start Menu" by clicking on dynamic links to the appropriate exercises. Most exercises have a number of dynamic links to PowerPoint slides where background information for the exercises is given or the neuroanatomical data collected from the Brain Atlas is discussed.

  9. Alterations of intestinal mucosa structure and barrier function following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Chun-Hua Hang; Ji-Xin Shi; Jie-Shou Li; Wei Wu; Hong-Xia Yin

    2003-01-01

    AIM: Gastrointestinal dysfunction is a common complication in patients with traumatic brain injury (TBI). However, the effect of traumatic brain injury on intestinal mucosa has not been studied previously. The aim of the current study was to explore the alterations of intestinal mucosa morphology and barrier function, and to determine how rapidly the impairment of gut barrier function occurs and how long it persists following traumatic brain injury.METHODS: Male Wistar rats were randomly divided into six groups (6 rats each group) including controls without brain injury and traumatic brain injury groups at hours 3,12, 24, and 72, and on day 7. The intestinal mucosa structure was detected by histopathological examination and electron microscopy. Gut barrier dysfunction was evaluated by detecting serum endotoxin and intestinal permeability. The level of serum endotoxin and intestinal permeability was measured by using chromogenic limulus amebocyte lysate and lactulose/mannitol (L/M) ratio, respectively.RESULTS: After traumatic brain injury, the histopathological alterations of gut mucosa occurred rapidly as early as 3 hours and progressed to a serious state, including shedding of epithelial cells, fracture of villi, focal ulcer, fusion of adjacent villi, dilation of central chyle duct, mucosal atrophy,and vascular dilation, congestion and edema in the villous interstitium and lamina propria. Apoptosis of epithelial cells,fracture and sparseness of microvilli, loss of tight junction between enterocytes, damage of mitochondria and endoplasm, were found by electron microscopy. The villous height, crypt depth and surface area in jejunum decreased progressively with the time of brain injury. As compared with that of control group (183.7±41.8 EU/L), serum endotoxin level was signnificantly increased at 3, 12, and 24 hours following TBI (434.8±54.9 EU/L, 324.2±61.7 EU/L and 303.3±60.2 EU/L, respectively), and peaked at 72 hours (560.5±76.2 EU/L), then declined on day 7

  10. Molecular and metabolic pattern classification for detection of brain glioma progression

    Energy Technology Data Exchange (ETDEWEB)

    Imani, Farzin, E-mail: imanif@upmc.edu [Department of Radiology, University of Pittsburgh Medical Center, PA (United States); Boada, Fernando E. [Department of Radiology, University of Pittsburgh Medical Center, PA (United States); Lieberman, Frank S. [Department of Neurology, University of Pittsburgh Medical Center, PA (United States); Davis, Denise K.; Mountz, James M. [Department of Radiology, University of Pittsburgh Medical Center, PA (United States)

    2014-02-15

    Objectives: The ability to differentiate between brain tumor progression and radiation therapy induced necrosis is critical for appropriate patient management. In order to improve the differential diagnosis, we combined fluorine-18 2-fluoro-deoxyglucose positron emission tomography ({sup 18}F-FDG PET), proton magnetic resonance spectroscopy ({sup 1}H MRS) and histological data to develop a multi-parametric machine-learning model. Methods: We enrolled twelve post-therapy patients with grade 2 and 3 gliomas that were suspicious of tumor progression. All patients underwent {sup 18}F-FDG PET and {sup 1}H MRS. Maximal standardized uptake value (SUVmax) of the tumors and reference regions were obtained. Multiple 2D maps of choline (Cho), creatine (Cr), and N-acetylaspartate (NAA) of the tumors were generated. A support vector machine (SVM) learning model was established to take imaging biomarkers and histological data as input vectors. A combination of clinical follow-up and multiple sequential MRI studies served as the basis for assessing the clinical outcome. All vector combinations were evaluated for diagnostic accuracy and cross validation. The optimal cutoff value of individual parameters was calculated using Receiver operating characteristic (ROC) plots. Results: The SVM and ROC analyses both demonstrated that SUVmax of the lesion was the most significant single diagnostic parameter (75% accuracy) followed by Cho concentration (67% accuracy). SVM analysis of all paired parameters showed SUVmax and Cho concentration in combination could achieve 83% accuracy. SUVmax of the lesion paired with SUVmax of the white matter as well as the tumor Cho paired with the tumor Cr both showed 83% accuracy. These were the most significant paired diagnostic parameters of either modality. Combining all four parameters did not improve the results. However, addition of two more parameters, Cho and Cr of brain parenchyma contralateral to the tumor, increased the accuracy to 92

  11. Functional specializations for music processing in the human newborn brain.

    Science.gov (United States)

    Perani, Daniela; Saccuman, Maria Cristina; Scifo, Paola; Spada, Danilo; Andreolli, Guido; Rovelli, Rosanna; Baldoli, Cristina; Koelsch, Stefan

    2010-03-09

    In adults, specific neural systems with right-hemispheric weighting are necessary to process pitch, melody, and harmony as well as structure and meaning emerging from musical sequences. It is not known to what extent the specialization of these systems results from long-term exposure to music or from neurobiological constraints. One way to address this question is to examine how these systems function at birth, when auditory experience is minimal. We used functional MRI to measure brain activity in 1- to 3-day-old newborns while they heard excerpts of Western tonal music and altered versions of the same excerpts. Altered versions either included changes of the tonal key or were permanently dissonant. Music evoked predominantly right-hemispheric activations in primary and higher order auditory cortex. During presentation of the altered excerpts, hemodynamic responses were significantly reduced in the right auditory cortex, and activations emerged in the left inferior frontal cortex and limbic structures. These results demonstrate that the infant brain shows a hemispheric specialization in processing music as early as the first postnatal hours. Results also indicate that the neural architecture underlying music processing in newborns is sensitive to changes in tonal key as well as to differences in consonance and dissonance.

  12. [Early functional disorders of the brain in uncomplicated hypertensive patients].

    Science.gov (United States)

    De Quesada-Martínez, M E; Blanco-García, M; Díaz-De Quesada, L

    To detect the presence of changes in brain electrical activity that might be used as early markers in patients with risk factors for developing vascular encephalopathy. There were studied 84 uncomplicated hypertensive patients, with a normal neurological physical examination and mean age of 49 years compared to 35 functionally healthy subjects. The patients were divided into three groups: slight high blood pressure (SLHBP, n = 24) with diastolic blood pressure (DBP) between 90 and 100 mmHg, moderate high blood pressure (MHBP, n = 40) with DBP between 101 and 114 mmHg, and severe high blood pressure (SHBP, n = 20) with TAD of 115 mmHg or higher. All subjects underwent digital electroencephalogram (dEEG) with quantitative analysis (QEEG). The patients showed focal, especially frontal paroxysms, and diffuse polymorphic theta activity in these areas, mainly those with SLHBP. Posterior alpha rhythm disorganization, inter-hemispheric asymmetries and frontal monomorphic activity were more often found in SHBP patients. In QEEG was observed an increase in absolute and relative power of slow activities, and a decrease in power of alpha and beta activities. All these findings were more frequent in the left hemisphere. The hemodynamic characteristics of the Central Nervous System and the changes caused by HBP alter the functional organization of the brain cortex, especially in frontal and midline regions, irrigated by the anterior cerebral artery.

  13. Resting-state functional brain networks in Parkinson's disease.

    Science.gov (United States)

    Baggio, Hugo C; Segura, Bàrbara; Junque, Carme

    2015-10-01

    The network approach is increasingly being applied to the investigation of normal brain function and its impairment. In the present review, we introduce the main methodological approaches employed for the analysis of resting-state neuroimaging data in Parkinson's disease studies. We then summarize the results of recent studies that used a functional network perspective to evaluate the changes underlying different manifestations of Parkinson's disease, with an emphasis on its cognitive symptoms. Despite the variability reported by many studies, these methods show promise as tools for shedding light on the pathophysiological substrates of different aspects of Parkinson's disease, as well as for differential diagnosis, treatment monitoring and establishment of imaging biomarkers for more severe clinical outcomes.

  14. Neurophotonics: non-invasive optical techniques for monitoring brain functions

    Science.gov (United States)

    Torricelli, Alessandro; Contini, Davide; Mora, Alberto Dalla; Pifferi, Antonio; Re, Rebecca; Zucchelli, Lucia; Caffini, Matteo; Farina, Andrea; Spinelli, Lorenzo

    2014-01-01

    Summary The aim of this review is to present the state of the art of neurophotonics, a recently founded discipline lying at the interface between optics and neuroscience. While neurophotonics also includes invasive techniques for animal studies, in this review we focus only on the non-invasive methods that use near infrared light to probe functional activity in the brain, namely the fast optical signal, diffuse correlation spectroscopy, and functional near infrared spectroscopy methods. We also present an overview of the physical principles of light propagation in biological tissues, and of the main physiological sources of signal. Finally, we discuss the open issues in models, instrumentation, data analysis and clinical approaches. PMID:25764252

  15. Alteration and reorganization of functional networks: a new perspective in brain injury study

    Directory of Open Access Journals (Sweden)

    Nazareth P. Castellanos

    2011-09-01

    Full Text Available Plasticity is the mechanism underlying brain’s potential capability to compensate injury. Recently several studies have shown that functional connections among brain areas are severely altered by brain injury and plasticity leading to a reorganization of the networks. This new approach studies the impact of brain injury by means of alteration of functional interactions. The concept of functional connectivity refers to the statistical interdependencies between physiological time series simultaneously recorded in various brain areas and it could be an essential tool for brain function studies, being its deviation from healthy reference an indicator for damage. In this article, we review studies investigating functional connectivity changes after brain injury and subsequent recovery, providing an accessible introduction to common mathematical methods to infer functional connectivity, exploring their capabilities, future perspectives and clinical uses in brain injury studies.

  16. An evolutionary computation approach to examine functional brain plasticity

    Directory of Open Access Journals (Sweden)

    Arnab eRoy

    2016-04-01

    Full Text Available One common research goal in systems neurosciences is to understand how the functional relationship between a pair of regions of interest (ROIs evolves over time. Examining neural connectivity in this way is well-suited for the study of developmental processes, learning, and even in recovery or treatment designs in response to injury. For most fMRI based studies, the strength of the functional relationship between two ROIs is defined as the correlation between the average signal representing each region. The drawback to this approach is that much information is lost due to averaging heterogeneous voxels, and therefore, the functional relationship between a ROI-pair that evolve at a spatial scale much finer than the ROIs remain undetected. To address this shortcoming, we introduce a novel evolutionary computation (EC based voxel-level procedure to examine functional plasticity between an investigator defined ROI-pair by simultaneously using subject-specific BOLD-fMRI data collected from two sessions seperated by finite duration of time. This data-driven procedure detects a sub-region composed of spatially connected voxels from each ROI (a so-called sub-regional-pair such that the pair shows a significant gain/loss of functional relationship strength across the two time points. The procedure is recursive and iteratively finds all statistically significant sub-regional-pairs within the ROIs. Using this approach, we examine functional plasticity between the default mode network (DMN and the executive control network (ECN during recovery from traumatic brain injury (TBI; the study includes 14 TBI and 12 healthy control subjects. We demonstrate that the EC based procedure is able to detect functional plasticity where a traditional averaging based approach fails. The subject-specific plasticity estimates obtained using the EC-procedure are highly consistent across multiple runs. Group-level analyses using these plasticity estimates showed an increase in

  17. Irradiation of rat brain reduces P-glycoprotein expression and function

    OpenAIRE

    Bart, J.; Nagengast, W B; Coppes, R P; Wegman, T D; van der Graaf, W T A; Groen, H J M; Vaalburg, W; de Vries, E G E; Hendrikse, N.H.

    2007-01-01

    The blood–brain barrier (BBB) hampers delivery of several drugs including chemotherapeutics to the brain. The drug efflux pump P-glycoprotein (P-gp), expressed on brain capillary endothelial cells, is part of the BBB. P-gp expression on capillary endothelium decreases 5 days after brain irradiation, which may reduce P-gp function and increase brain levels of P-gp substrates. To elucidate whether radiation therapy reduces P-gp expression and function in the brain, right hemispheres of rats wer...

  18. Functional neuroanatomy of executive function after neonatal brain injury in adults who were born very preterm.

    Directory of Open Access Journals (Sweden)

    Anastasia K Kalpakidou

    Full Text Available Individuals who were born very preterm (VPT; <33 gestational weeks are at risk of experiencing deficits in tasks involving executive function in childhood and beyond. In addition, the type and severity of neonatal brain injury associated with very preterm birth may exert differential effects on executive functioning by altering its neuroanatomical substrates. Here we addressed this question by investigating with functional magnetic resonance imaging (fMRI the haemodynamic response during executive-type processing using a phonological verbal fluency and a working memory task in VPT-born young adults who had experienced differing degrees of neonatal brain injury. 12 VPT individuals with a history of periventricular haemorrhage and ventricular dilatation (PVH+VD, 17 VPT individuals with a history of uncomplicated periventricular haemorrhage (UPVH, 13 VPT individuals with no history of neonatal brain injury and 17 controls received an MRI scan whilst completing a verbal fluency task with two cognitive loads ('easy' and 'hard' letters. Two groups of VPT individuals (PVH+VD; n = 10, UPVH; n = 8 performed an n-back task with three cognitive loads (1-, 2-, 3-back. Results demonstrated that VPT individuals displayed hyperactivation in frontal, temporal, and parietal cortices and in caudate nucleus, insula and thalamus compared to controls, as demands of the verbal fluency task increased, regardless of type of neonatal brain injury. On the other hand, during the n-back task and as working memory load increased, the PVH+VD group showed less engagement of the frontal cortex than the UPVH group. In conclusion, this study suggests that the functional neuroanatomy of different executive-type processes is altered following VPT birth and that neural activation associated with specific aspects of executive function (i.e., working memory may be particularly sensitive to the extent of neonatal brain injury.

  19. A phase II trial with bevacizumab and irinotecan for patients with primary brain tumors and progression after standard therapy

    DEFF Research Database (Denmark)

    Møller, Søren; Grunnet, Kirsten; Hansen, Steinbjørn;

    2012-01-01

    The combination of irinotecan and bevacizumab has shown efficacy in the treatment of recurrent glioblastoma multiforme (GBM). A prospective, phase II study of 85 patients with various recurrent brain tumors was carried out. Primary endpoints were progression free survival (PFS) and response rate....

  20. Systems pharmacology and blood-brain barrier functionality in Parkinson's disease

    NARCIS (Netherlands)

    Ravenstijn, Paulien Gerarda Maria

    2009-01-01

    Parkinson’s disease is a progressive neurodegenerative disease, which is composed of many components, each caused by interplay of a number of genetic and nongenetic causes. As the blood-brain barrier (BBB) is a key player in the relationship between plasma and brain pharmacokinetics, the influences

  1. On the matter of mind: neural complexity and functional dynamics of the human brain.

    NARCIS (Netherlands)

    Hofman, M.A.; Watanabe, Shigeru; Hofman, Michel; Shimizu, Toru

    2017-01-01

    The evolutionary expansion of the brain is among the most distinctive morphological features of anthropoid primates. During the past decades, considerable progress has been made in explaining brain evolution in terms of physical and adaptive principles. The object of this review is to present

  2. Systems pharmacology and blood-brain barrier functionality in Parkinson's disease

    NARCIS (Netherlands)

    Ravenstijn, Paulien Gerarda Maria

    2009-01-01

    Parkinson’s disease is a progressive neurodegenerative disease, which is composed of many components, each caused by interplay of a number of genetic and nongenetic causes. As the blood-brain barrier (BBB) is a key player in the relationship between plasma and brain pharmacokinetics, the influences

  3. From brain topography to brain topology: relevance of graph theory to functional neuroscience.

    Science.gov (United States)

    Minati, Ludovico; Varotto, Giulia; D'Incerti, Ludovico; Panzica, Ferruccio; Chan, Dennis

    2013-07-10

    Although several brain regions show significant specialization, higher functions such as cross-modal information integration, abstract reasoning and conscious awareness are viewed as emerging from interactions across distributed functional networks. Analytical approaches capable of capturing the properties of such networks can therefore enhance our ability to make inferences from functional MRI, electroencephalography and magnetoencephalography data. Graph theory is a branch of mathematics that focuses on the formal modelling of networks and offers a wide range of theoretical tools to quantify specific features of network architecture (topology) that can provide information complementing the anatomical localization of areas responding to given stimuli or tasks (topography). Explicit modelling of the architecture of axonal connections and interactions among areas can furthermore reveal peculiar topological properties that are conserved across diverse biological networks, and highly sensitive to disease states. The field is evolving rapidly, partly fuelled by computational developments that enable the study of connectivity at fine anatomical detail and the simultaneous interactions among multiple regions. Recent publications in this area have shown that graph-based modelling can enhance our ability to draw causal inferences from functional MRI experiments, and support the early detection of disconnection and the modelling of pathology spread in neurodegenerative disease, particularly Alzheimer's disease. Furthermore, neurophysiological studies have shown that network topology has a profound link to epileptogenesis and that connectivity indices derived from graph models aid in modelling the onset and spread of seizures. Graph-based analyses may therefore significantly help understand the bases of a range of neurological conditions. This review is designed to provide an overview of graph-based analyses of brain connectivity and their relevance to disease aimed

  4. How structure sculpts function: Unveiling the contribution of anatomical connectivity to the brain's spontaneous correlation structure

    Science.gov (United States)

    Bettinardi, R. G.; Deco, G.; Karlaftis, V. M.; Van Hartevelt, T. J.; Fernandes, H. M.; Kourtzi, Z.; Kringelbach, M. L.; Zamora-López, G.

    2017-04-01

    Intrinsic brain activity is characterized by highly organized co-activations between different regions, forming clustered spatial patterns referred to as resting-state networks. The observed co-activation patterns are sustained by the intricate fabric of millions of interconnected neurons constituting the brain's wiring diagram. However, as for other real networks, the relationship between the connectional structure and the emergent collective dynamics still evades complete understanding. Here, we show that it is possible to estimate the expected pair-wise correlations that a network tends to generate thanks to the underlying path structure. We start from the assumption that in order for two nodes to exhibit correlated activity, they must be exposed to similar input patterns from the entire network. We then acknowledge that information rarely spreads only along a unique route but rather travels along all possible paths. In real networks, the strength of local perturbations tends to decay as they propagate away from the sources, leading to a progressive attenuation of the original information content and, thus, of their influence. Accordingly, we define a novel graph measure, topological similarity, which quantifies the propensity of two nodes to dynamically correlate as a function of the resemblance of the overall influences they are expected to receive due to the underlying structure of the network. Applied to the human brain, we find that the similarity of whole-network inputs, estimated from the topology of the anatomical connectome, plays an important role in sculpting the backbone pattern of time-average correlations observed at rest.

  5. Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function?

    Science.gov (United States)

    Boly, M; Phillips, C; Tshibanda, L; Vanhaudenhuyse, A; Schabus, M; Dang-Vu, T T; Moonen, G; Hustinx, R; Maquet, P; Laureys, S

    2008-01-01

    Spontaneous brain activity has recently received increasing interest in the neuroimaging community. However, the value of resting-state studies to a better understanding of brain-behavior relationships has been challenged. That altered states of consciousness are a privileged way to study the relationships between spontaneous brain activity and behavior is proposed, and common resting-state brain activity features observed in various states of altered consciousness are reviewed. Early positron emission tomography studies showed that states of extremely low or high brain activity are often associated with unconsciousness. However, this relationship is not absolute, and the precise link between global brain metabolism and awareness remains yet difficult to assert. In contrast, voxel-based analyses identified a systematic impairment of associative frontoparieto-cingulate areas in altered states of consciousness, such as sleep, anesthesia, coma, vegetative state, epileptic loss of consciousness, and somnambulism. In parallel, recent functional magnetic resonance imaging studies have identified structured patterns of slow neuronal oscillations in the resting human brain. Similar coherent blood oxygen level-dependent (BOLD) systemwide patterns can also be found, in particular in the default-mode network, in several states of unconsciousness, such as coma, anesthesia, and slow-wave sleep. The latter results suggest that slow coherent spontaneous BOLD fluctuations cannot be exclusively a reflection of conscious mental activity, but may reflect default brain connectivity shaping brain areas of most likely interactions in a way that transcends levels of consciousness, and whose functional significance remains largely in the dark.

  6. Anatomical and functional brain abnormalities in unmedicated major depressive disorder

    Directory of Open Access Journals (Sweden)

    Yang X

    2015-09-01

    Full Text Available Xiao Yang,1,2,* Xiaojuan Ma,3,* Mingli Li,1,2 Ye Liu,1 Jian Zhang,1 Bin Huang,4 Liansheng Zhao,1,2 Wei Deng,1,2 Tao Li,1,2 Xiaohong Ma1,2 1Psychiatric Laboratory and Department of Psychiatry, 2National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 3Chengdu First People’s Hospital, Chengdu, 4Dong Feng Mao Jian Hospital, Shiyan, People’s Republic of China *These authors contributed equally to this work Background: Using magnetic resonance imaging (MRI and resting-state functional magnetic resonance imaging (rsfMRI to explore the mechanism of brain structure and function in unmedicated patients with major depressive disorder (MDD. Patients and methods: Fifty patients with MDD and 50 matched healthy control participants free of psychotropic medication underwent high-resolution structural and rsfMRI scanning. Optimized diffeomorphic anatomical registration through exponentiated lie algebra and the Data Processing Assistant for rsfMRI were used to find potential differences in gray-matter volume (GMV and regional homogeneity (ReHo between the two groups. A Pearson correlation model was used to analyze associations of morphometric and functional changes with clinical symptoms. Results: Compared to healthy controls, patients with MDD showed significant GMV increase in the left posterior cingulate gyrus and GMV decrease in the left lingual gyrus (P<0.001, uncorrected. In ReHo analysis, values were significantly increased in the left precuneus and decreased in the left putamen (P<0.001, uncorrected in patients with MDD compared to healthy controls. There was no overlap between anatomical and functional changes. Linear correlation suggested no significant correlation between mean GMV values within regions with anatomical abnormality and ReHo values in regions with functional abnormality in the patient group. These changes were not significantly correlated with symptom severity. Conclusion: Our study suggests a dissociation

  7. BRAIN FUNCTIONAL IMAGING BASED ON BRAIN TISSUE OXYGEN CONTENT VIA MAGNETIC RESONANCE

    Directory of Open Access Journals (Sweden)

    M.A OGHABIAN

    2003-03-01

    Full Text Available Introduction: FMRI is a new approach in MRI to provide functional data of human brain activities. Some methods such as BOLD contrast, perfusion imaging, diffusion imaging, and spectroscopy in MRI have used to yield functional images. Material and Methods: This research was performed in imaging center of IMAM KHOMEINI hospital in TEHRAN in 1997. The experiments were performed on a conventional 1.5- T picker MR instrument, using a standard head coil. CE – FAST gradient echo images were obtained (TR=100, TE = 35, 128*256 matrix, 10 mm slice, FOV = 250 mm, F.A =25 Degree, NEX = 1, 13 s per image. Images were obtained during sensory - motor stimulation by pressing fingers to each other, coronal oblique images were acquired through central sulcus (precentral gyrus where the related sensory cortex is. Then, the Images were transferred to personal computers in order to eliminate noise and highlight the functional differences. These images were processed by various mathematical methods such as subtraction and student T- test. Results: Although some changes were seen in functional area, there were not significant results by the conventional system protocols. Some new protocols were designed and implemented to increase the sensitivity of the system to functional changes. Discussion: However, more research needs to be done in the future to obtain faster and more efficient techniques and in regard to clinical applications of the method.

  8. Functional and morphometric brain dissociation between dyslexia and reading ability.

    Science.gov (United States)

    Hoeft, Fumiko; Meyler, Ann; Hernandez, Arvel; Juel, Connie; Taylor-Hill, Heather; Martindale, Jennifer L; McMillon, Glenn; Kolchugina, Galena; Black, Jessica M; Faizi, Afrooz; Deutsch, Gayle K; Siok, Wai Ting; Reiss, Allan L; Whitfield-Gabrieli, Susan; Gabrieli, John D E

    2007-03-06

    In functional neuroimaging studies, individuals with dyslexia frequently exhibit both hypoactivation, often in the left parietotemporal cortex, and hyperactivation, often in the left inferior frontal cortex, but there has been no evidence to suggest how to interpret the differential relations of hypoactivation and hyperactivation to dyslexia. To address this question, we measured brain activation by functional MRI during visual word rhyme judgment compared with visual cross-hair fixation rest, and we measured gray matter morphology by voxel-based morphometry in dyslexic adolescents in comparison with (i) an age-matched group, and (ii) a reading-matched group younger than the dyslexic group but equal to the dyslexic group in reading performance. Relative to the age-matched group (n = 19; mean 14.4 years), the dyslexic group (n = 19; mean 14.4 years) exhibited hypoactivation in left parietal and bilateral fusiform cortices and hyperactivation in left inferior and middle frontal gyri, caudate, and thalamus. Relative to the reading-matched group (n = 12; mean 9.8 years), the dyslexic group (n = 12; mean 14.5 years) also exhibited hypoactivation in left parietal and fusiform regions but equal activation in all four areas that had exhibited hyperactivation relative to age-matched controls as well. In regions that exhibited atypical activation in the dyslexic group, only the left parietal region exhibited reduced gray matter volume relative to both control groups. Thus, areas of hyperactivation in dyslexia reflected processes related to the level of current reading ability independent of dyslexia. In contrast, areas of hypoactivation in dyslexia reflected functional atypicalities related to dyslexia itself, independent of current reading ability, and related to atypical brain morphology in dyslexia.

  9. Imaging brain neuronal activity using functionalized magnetonanoparticles and MRI.

    Science.gov (United States)

    Akhtari, Massoud; Bragin, Anatol; Moats, Rex; Frew, Andrew; Mandelkern, Mark

    2012-10-01

    This study explored the use of non-radioactive 2-deoxy glucose (2DG)-labeled magnetonanoparticles (MNP) and magnetic resonance imaging (MRI) to detect functional activity during rest, peripheral stimulation, and epileptic seizures, in animal models. Non-radioactive 2DG was covalently attached to magnetonanoparticles composed of iron oxide and dextran and intravenous (tail) injections were performed. 2DG-MNP was injected in resting and stimulated naïve rodents and the subsequent MRI was compared to published (14)C-2DG autoradiography data. Reproducibility and statistical significance was established in one studied model. Negative contrast enhancement (NCE) in acute seizures and chronic models of epilepsy were investigated. MRI NCE due to 2DG-MNP particles was compared to that of plain (unconjugated) MNP in one animal. NCE due to 2DG-MNP particles at 3 T, which is approved for human use, was also investigated. Histology showed presence of MNP (following intravenous injection) in the brain tissues of resting naïve animal. 2DG-MNP intraparenchymal uptake was visible on MRI and histology. The locations of NCE agreed with published results of 2DG autoradiography in resting and stimulated animals and epileptic rats. Localization of epileptogenicity was confirmed by subsequent depth-electrode EEG (iEEG). Non-radioactive 2DG-MNP can cross the blood-brain barrier (BBB) and may accurately localize areas of increased activity. Although, this proof-of-principle study involves only a limited number of animals, and much more research and quantification are necessary to demonstrate that 2DG-MNP, or MNPs conjugated with other ligands, could eventually be used to image localized cerebral function with MRI in humans, this MNP-MRI approach is potentially applicable to the use of many bioactive molecules as ligands for imaging normal and abnormal localized cerebral functions.

  10. Quetiapine modulates functional connectivity in brain aggression networks.

    Science.gov (United States)

    Klasen, Martin; Zvyagintsev, Mikhail; Schwenzer, Michael; Mathiak, Krystyna A; Sarkheil, Pegah; Weber, René; Mathiak, Klaus

    2013-07-15

    Aggressive behavior is associated with dysfunctions in an affective regulation network encompassing amygdala and prefrontal areas such as orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC). In particular, prefrontal regions have been postulated to control amygdala activity by inhibitory projections, and this process may be disrupted in aggressive individuals. The atypical antipsychotic quetiapine successfully attenuates aggressive behavior in various disorders; the underlying neural processes, however, are unknown. A strengthened functional coupling in the prefrontal-amygdala system may account for these anti-aggressive effects. An inhibition of this network has been reported for virtual aggression in violent video games as well. However, there have been so far no in-vivo observations of pharmacological influences on corticolimbic projections during human aggressive behavior. In a double-blind, placebo-controlled study, quetiapine and placebo were administered for three successive days prior to an fMRI experiment. In this experiment, functional brain connectivity was assessed during virtual aggressive behavior in a violent video game and an aggression-free control task in a non-violent modification. Quetiapine increased the functional connectivity of ACC and DLPFC with the amygdala during virtual aggression, whereas OFC-amygdala coupling was attenuated. These effects were observed neither for placebo nor for the non-violent control. These results demonstrate for the first time a pharmacological modification of aggression-related human brain networks in a naturalistic setting. The violence-specific modulation of prefrontal-amygdala networks appears to control aggressive behavior and provides a neurobiological model for the anti-aggressive effects of quetiapine.

  11. Brain structural and functional dissociated patterns in schizophrenia.

    Science.gov (United States)

    Zhuo, Chuanjun; Zhu, Jiajia; Wang, Chunli; Qu, Hongru; Ma, Xiaolei; Tian, Hongjun; Liu, Mei; Qin, Wen

    2017-01-31

    Although previous studies found that aberrations in gray matter volume (GMV) and global functional connectivity density (gFCD) are important characteristics of schizophrenia, to the best of our knowledge no study to date has investigated the associations between the spatial distribution patterns of GMV and gFCD alterations. We investigated pattern changes in gFCD and GMV among patients with schizophrenia and their associated spatial distributions. Ninety-five patients with schizophrenia and 93 matched healthy controls underwent structural and resting-state functional MRI scanning to assess gFCD and GMV. We found that gFCD increased in the subcortical regions (caudate, pallidum, putamen, and thalami) and limbic system (left hippocampus and parahippocampus), and decreased in the posterior parieto-occipito-temporal cortices (postcentral gyri, occipital cortex, temporo-occipital conjunction, and inferior parietal lobule), in patients with schizophrenia. By contrast, we found decreased GMV in brain regions including the frontal, parietal, temporal, occipital, cingulate cortices, and the insular, striatum, thalamus in these patients. Increased gFCD primarily occurred in subcortical regions including the basal ganglia and some regions of the limbic system. Decreased gFCD appeared primarily in the cortical regions. There were no statistically significant correlations between changes in gFCD and GMV, and their spatial distribution patterns, in different regions. Our findings indicate that gFCD and GMV are both perturbed in multiple brain regions in schizophrenia. gFCD and GMV consistently decreased in the cortical regions, with the exception of the Supplementary Motor Area (SMA). However, in the sub-cortical regions, the alterations of gFCD and GMV showed the opposite pattern, with increased gFCD and decreased GMV simultaneously observed in these regions. Overall, our findings suggest that structural and functional alterations appear to contribute independently to the

  12. Cerebrovascular and corticomotor function during progressive passive hyperthermia in humans.

    Science.gov (United States)

    Ross, Emma Z; Cotter, James D; Wilson, Luke; Fan, Jui-Lin; Lucas, Samuel J E; Ainslie, Philip N

    2012-03-01

    The present study examined the integrative effects of passive heating on cerebral perfusion and alterations in central motor drive. Eight participants underwent passive hyperthermia [0.5°C increments in core temperature (Tc) from normothermia (37 ± 0.3°C) to their limit of thermal tolerance (T-LIM; 39.0 ± 0.4°C)]. Blood flow velocity in the middle cerebral artery (CBFv) and respiratory responses were measured continuously. Arterial blood gases and blood pressure were obtained intermittently. At baseline and each Tc level, supramaximal femoral nerve stimulation and transcranial magnetic stimulation (TMS) were performed to assess neuromuscular and cortical function, respectively. At T-LIM, measures were (in a randomized order) also made during a period of breathing 5% CO(2) gas to restore eucapnia (+5% CO(2)). Mean heating time was 179 ± 51 min, with each 0.5°C increment in Tc taking 40 ± 10 min. CBFv was reduced by ∼20% below baseline from +0.5°C until T-LIM. Maximal voluntary contraction (MVC) of the knee extensors was decreased at T-LIM (-9 ± 10%; P ventilation (Ve; R(2) = 0.76; P < 0.05) and partial pressure of end-tidal CO(2) (Pet(CO(2)); R(2) = 0.63; P < 0.05) and to changes in CBFv (R(2) = 0.61; P = 0.067). Interestingly, although CBFv was not fully restored, MVC and cortical VA were restored towards baseline values during inhalation of 5% CO(2). These results indicate that descending voluntary drive becomes progressively impaired as Tc is increased, presumably due, in part, to reductions in CBFv and to hyperthermia-induced hyperventilation and subsequent hypocapnia.

  13. Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain.

    Science.gov (United States)

    Barrett, Lisa Feldman; Satpute, Ajay Bhaskar

    2013-06-01

    Understanding how a human brain creates a human mind ultimately depends on mapping psychological categories and concepts to physical measurements of neural response. Although it has long been assumed that emotional, social, and cognitive phenomena are realized in the operations of separate brain regions or brain networks, we demonstrate that it is possible to understand the body of neuroimaging evidence using a framework that relies on domain general, distributed structure-function mappings. We review current research in affective and social neuroscience and argue that the emerging science of large-scale intrinsic brain networks provides a coherent framework for a domain-general functional architecture of the human brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Brain Activity and Functional Connectivity Associated with Hypnosis.

    Science.gov (United States)

    Jiang, Heidi; White, Matthew P; Greicius, Michael D; Waelde, Lynn C; Spiegel, David

    2017-08-01

    Hypnosis has proven clinical utility, yet changes in brain activity underlying the hypnotic state have not yet been fully identified. Previous research suggests that hypnosis is associated with decreased default mode network (DMN) activity and that high hypnotizability is associated with greater functional connectivity between the executive control network (ECN) and the salience network (SN). We used functional magnetic resonance imaging to investigate activity and functional connectivity among these three networks in hypnosis. We selected 57 of 545 healthy subjects with very high or low hypnotizability using two hypnotizability scales. All subjects underwent four conditions in the scanner: rest, memory retrieval, and two different hypnosis experiences guided by standard pre-recorded instructions in counterbalanced order. Seeds for the ECN, SN, and DMN were left and right dorsolateral prefrontal cortex, dorsal anterior cingulate cortex (dACC), and posterior cingulate cortex (PCC), respectively. During hypnosis there was reduced activity in the dACC, increased functional connectivity between the dorsolateral prefrontal cortex (DLPFC;ECN) and the insula in the SN, and reduced connectivity between the ECN (DLPFC) and the DMN (PCC). These changes in neural activity underlie the focused attention, enhanced somatic and emotional control, and lack of self-consciousness that characterizes hypnosis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Brain functions after sports-related concussion: insights from event-related potentials and functional MRI.

    Science.gov (United States)

    Gosselin, Nadia; Saluja, Rajeet Singh; Chen, Jen-Kai; Bottari, Carolina; Johnston, Karen; Ptito, Alain

    2010-10-01

    The high incidence of concussions in contact sports and their impact on brain functions are a major cause for concern. To improve our understanding of brain functioning after sports-related concussion, advanced functional assessment techniques, namely event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI), have been recently used in research studies. Contrary to neuropsychological tests that measure verbal and/or motor responses, ERPs and fMRI assess the neural activities associated with cognitive/behavioral demands, and thus provide access to better comprehension of brain functioning. In fact, ERPs have excellent temporal resolution, and fMRI identifies the involved structures during a task. This article describes ERP and fMRI techniques and reviews the results obtained with these tools in sports-related concussion. Although these techniques are not yet readily available, they offer a unique clinical approach, particularly for complex cases (ie, athletes with multiple concussions, chronic symptoms) and objective measures that provide valuable information to guide management and return-to-play decision making.

  16. Memory Networks in Tinnitus: A Functional Brain Image Study

    Science.gov (United States)

    Laureano, Maura Regina; Onishi, Ektor Tsuneo; Bressan, Rodrigo Affonseca; Castiglioni, Mario Luiz Vieira; Batista, Ilza Rosa; Reis, Marilia Alves; Garcia, Michele Vargas; de Andrade, Adriana Neves; de Almeida, Roberta Ribeiro; Garrido, Griselda J.; Jackowski, Andrea Parolin

    2014-01-01

    Tinnitus is characterized by the perception of sound in the absence of an external auditory stimulus. The network connectivity of auditory and non-auditory brain structures associated with emotion, memory and attention are functionally altered in debilitating tinnitus. Current studies suggest that tinnitus results from neuroplastic changes in the frontal and limbic temporal regions. The objective of this study was to use Single-Photon Emission Computed Tomography (SPECT) to evaluate changes in the cerebral blood flow in tinnitus patients with normal hearing compared with healthy controls. Methods: Twenty tinnitus patients with normal hearing and 17 healthy controls, matched for sex, age and years of education, were subjected to Single Photon Emission Computed Tomography using the radiotracer ethylenedicysteine diethyl ester, labeled with Technetium 99 m (99 mTc-ECD SPECT). The severity of tinnitus was assessed using the “Tinnitus Handicap Inventory” (THI). The images were processed and analyzed using “Statistical Parametric Mapping” (SPM8). Results: A significant increase in cerebral perfusion in the left parahippocampal gyrus (pFWE <0.05) was observed in patients with tinnitus compared with healthy controls. The average total THI score was 50.8+18.24, classified as moderate tinnitus. Conclusion: It was possible to identify significant changes in the limbic system of the brain perfusion in tinnitus patients with normal hearing, suggesting that central mechanisms, not specific to the auditory pathway, are involved in the pathophysiology of symptoms, even in the absence of clinically diagnosed peripheral changes. PMID:24516567

  17. Selectionist and evolutionary approaches to brain function: a critical appraisal

    Directory of Open Access Journals (Sweden)

    Chrisantha Thomas Fernando

    2012-04-01

    Full Text Available We consider approaches to brain dynamics and function that have been claimed to be Darwinian. These include Edelman’s theory of neuronal group selection, Changeux’s theory of synaptic selection and selective stabilization of pre-representations, Seung’s Darwinian synapse, Loewenstein’s synaptic melioration, Adam’s selfish synapse and Calvin’s replicating activity patterns. Except for the last two, the proposed mechanisms are selectionist but not truly Darwinian, because no replicators with information transfer to copies and hereditary variation can be identified in them. All of them fit, however, a generalized selectionist framework conforming to the picture of Price’s covariance formulation, which deliberately was not specific even to selection in biology, and therefore does not imply an algorithmic picture of biological evolution. Bayesian models and reinforcement learning are formally in agreement with selection dynamics. A classification of search algorithms is shown to include Darwinian replicators (evolutionary units with multiplication, heredity and variability as the most powerful mechanism in a sparsely occupied search space. Examples of why parallel competitive search with information transfer among the units is efficient are given. Finally, we review our recent attempts to construct and analyze simple models of true Darwinian evolutionary units in the brain in terms of connectivity and activity copying of neuronal groups. Although none of the proposed neuronal replicators include miraculous mechanisms, their identification remains a challenge but also a great promise.

  18. Is heading a soccer ball injurious to brain function?

    Science.gov (United States)

    Baroff, G S

    1998-04-01

    With the growing popularity of soccer both in the United States and worldwide, reports of adverse effects of 'heading' on brain function are a source of concern. This article reviews the related research literature on neurologic and neuropsychological findings. Neurologic and neuropsychological abnormalities have been reported in a significant minority of older former professional players in Norway. Purportedly unrelated to age, the most prominent findings were cerebral atrophy and impairment on intelligence test abilities that are particularly vulnerable to brain damage. Also noteworthy in these retired players were persistent physical, cognitive, and emotional complaints consistent with a postconcussive syndrome. Younger amateur players appear to be free of major abnormalities, although some report persistent difficulties with memory and concentration. The severity of these complaints may be related to a history of soccer-related head injuries and not necessarily specific to heading. Research findings specific to heading are not more than suggestive at best, and clarification of the risks of heading a soccer ball awaits more definitive studies.

  19. Memory networks in tinnitus: a functional brain image study.

    Directory of Open Access Journals (Sweden)

    Maura Regina Laureano

    Full Text Available Tinnitus is characterized by the perception of sound in the absence of an external auditory stimulus. The network connectivity of auditory and non-auditory brain structures associated with emotion, memory and attention are functionally altered in debilitating tinnitus. Current studies suggest that tinnitus results from neuroplastic changes in the frontal and limbic temporal regions. The objective of this study was to use Single-Photon Emission Computed Tomography (SPECT to evaluate changes in the cerebral blood flow in tinnitus patients with normal hearing compared with healthy controls.Twenty tinnitus patients with normal hearing and 17 healthy controls, matched for sex, age and years of education, were subjected to Single Photon Emission Computed Tomography using the radiotracer ethylenedicysteine diethyl ester, labeled with Technetium 99 m (99 mTc-ECD SPECT. The severity of tinnitus was assessed using the "Tinnitus Handicap Inventory" (THI. The images were processed and analyzed using "Statistical Parametric Mapping" (SPM8.A significant increase in cerebral perfusion in the left parahippocampal gyrus (pFWE <0.05 was observed in patients with tinnitus compared with healthy controls. The average total THI score was 50.8+18.24, classified as moderate tinnitus.It was possible to identify significant changes in the limbic system of the brain perfusion in tinnitus patients with normal hearing, suggesting that central mechanisms, not specific to the auditory pathway, are involved in the pathophysiology of symptoms, even in the absence of clinically diagnosed peripheral changes.

  20. Sera from remitting and secondary progressive multiple sclerosis patients disrupt the blood-brain barrier.

    Directory of Open Access Journals (Sweden)

    Fumitaka Shimizu

    Full Text Available BACKGROUND: Pathological destruction of blood-brain barrier (BBB has been thought to be the initial key event in the process of developing multiple sclerosis (MS. The purpose of the present study was to clarify the possible molecular mechanisms responsible for the malfunction of BBB by sera from relapse-remitting MS (RRMS and secondary progressive MS (SPMS patients. METHODS: We evaluated the effects of sera from the patients in the relapse phase of RRMS (RRMS-R, stable phase of RRMS (RRMS-S and SPMS on the expression of tight junction proteins and vascular cell adhesion protein-1 (VCAM-1, and on the transendothelial electrical resistance (TEER in human brain microvascular endothelial cells (BMECs. RESULTS: Sera from the RRMS-R or SPMS patients decreased the claudin-5 protein expression and the TEER in BMECs. In RRMS-R, this effect was restored after adding an MMP inhibitor, and the MMP-2/9 secretion by BMECs was significantly increased after the application of patients' sera. In SPMS, the immunoglobulin G (IgG purified from patients' sera also decreased the claudin-5 protein expression and the TEER in BMECs. The sera and purified IgG from all MS patients increased the VCAM-1 protein expression in BMECs. CONCLUSIONS: The up-regulation of autocrine MMP-2/9 by BMECs after exposure to sera from RRMS-R patients or the autoantibodies against BMECs from SPMS patients can compromise the BBB. Both RRMS-S and SPMS sera increased the VCAM-1 expression in the BBB, thus indicating that targeting the VCAM-1 in the BBB could represent a possible therapeutic strategy for even the stable phase of MS and SPMS.

  1. Functional brain substrate of quality of life in patients with schizophrenia: A brain SPECT multidimensional analysis.

    Science.gov (United States)

    Faget-Agius, Catherine; Boyer, Laurent; Richieri, Raphaëlle; Auquier, Pascal; Lançon, Christophe; Guedj, Eric

    2016-03-30

    The aim of this study was to investigate the functional brain substrate of quality of life (QoL) in patients with schizophrenia. Participants comprised 130 right-handed patients with schizophrenia who underwent whole-brain single photon emission computed tomography (SPECT) with (99m)Tc-labeled ethylcysteinate dimer ((99m)Tc-ECD) for exploring correlations of regional cerebral blood flow (rCBF) with the eight dimensions score of the Schizophrenia Quality of Life questionnaire (S-QoL 18). A significant positive correlation was found between the global index of the S-QoL 18 and rCBF in the right superior temporal sulcus and between psychological well-being dimension and rCBF in Brodmann area (BA)6, BA8, BA9, and BA10 and between self-esteem dimension and rCBF in striatum and between family relationship dimension and rCBF in BA1, BA2, BA3, BA4, BA8, BA22, BA40, BA42 and BA44 and between relationship with friends dimension and rCBF in BA44 and between physical well-being dimension and rCBF in parahippocampal gyrus, and finally between autonomy dimension and rCBF in cuneus and precuneus. A significant negative correlation was found between resilience dimension and rCBF in precuneus and between sentimental life dimension and rCBF in BA10. Our findings provide neural correlates of QoL. Brain regions involved in cognitions, emotional information processing and social cognition underlie the different QoL dimensions. Copyright © 2016. Published by Elsevier Ireland Ltd.

  2. Evolution of human brain functions: the functional structure of human consciousness.

    Science.gov (United States)

    Cloninger, C Robert

    2009-11-01

    The functional structure of self-aware consciousness in human beings is described based on the evolution of human brain functions. Prior work on heritable temperament and character traits is extended to account for the quantum-like and holographic properties (i.e. parts elicit wholes) of self-aware consciousness. Cladistic analysis is used to identify the succession of ancestors leading to human beings. The functional capacities that emerge along this lineage of ancestors are described. The ecological context in which each cladogenesis occurred is described to illustrate the shifting balance of evolution as a complex adaptive system. Comparative neuroanatomy is reviewed to identify the brain structures and networks that emerged coincident with the emergent brain functions. Individual differences in human temperament traits were well developed in the common ancestor shared by reptiles and humans. Neocortical development in mammals proceeded in five major transitions: from early reptiles to early mammals, early primates, simians, early Homo, and modern Homo sapiens. These transitions provide the foundation for human self-awareness related to sexuality, materiality, emotionality, intellectuality, and spirituality, respectively. The functional structure of human self-aware consciousness is concerned with the regulation of five planes of being: sexuality, materiality, emotionality, intellectuality, and spirituality. Each plane elaborates neocortical functions organized around one of the five special senses. The interactions among these five planes gives rise to a 5 x 5 matrix of subplanes, which are functions that coarsely describe the focus of neocortical regulation. Each of these 25 neocortical functions regulates each of five basic motives or drives that can be measured as temperaments or basic emotions related to fear, anger, disgust, surprise, and happiness/sadness. The resulting 5 x 5 x 5 matrix of human characteristics provides a general and testable model of the

  3. Distributed representations in memory: insights from functional brain imaging.

    Science.gov (United States)

    Rissman, Jesse; Wagner, Anthony D

    2012-01-01

    Forging new memories for facts and events, holding critical details in mind on a moment-to-moment basis, and retrieving knowledge in the service of current goals all depend on a complex interplay between neural ensembles throughout the brain. Over the past decade, researchers have increasingly utilized powerful analytical tools (e.g., multivoxel pattern analysis) to decode the information represented within distributed functional magnetic resonance imaging activity patterns. In this review, we discuss how these methods can sensitively index neural representations of perceptual and semantic content and how leverage on the engagement of distributed representations provides unique insights into distinct aspects of memory-guided behavior. We emphasize that, in addition to characterizing the contents of memories, analyses of distributed patterns shed light on the processes that influence how information is encoded, maintained, or retrieved, and thus inform memory theory. We conclude by highlighting open questions about memory that can be addressed through distributed pattern analyses.

  4. Alcohol Binge Drinking and Executive Functioning during Adolescent Brain Development

    Directory of Open Access Journals (Sweden)

    Soledad Gil-Hernandez

    2017-10-01

    Full Text Available Alcohol consumption in adolescents causes negative effects on familiar, social, academic life, as well as neurocognitive alterations. The binge drinking (BD pattern of alcohol is characterized by the alternation of episodes of heavy drinking in a short interval of time, and periods of abstinence, a practice that can result in important brain alterations; even more than regular alcohol consumption. The prefrontal cortex, which acts as neural support for the executive processes, is particularly affected by alcohol; however, not all studies are in agreement about how BD alcohol consumption affects executive functioning. Some research has found that alcohol consumption in adolescence does not significantly affect executive functioning while others found it does. It is possible that these discrepancies could be due to the history of alcohol consumption, that is, at what age the subjects started drinking. The aim of our study is to assess the performance on executive functioning tasks of 13–19-year-old adolescents according to their pattern of alcohol consumption. We hypothesize that BD adolescents will perform worse than non-BD subjects in tasks that evaluate executive functions, and these differences will increase depending on how long they have been consuming alcohol. Three hundred and twenty-two students (48.14% females; age range 13–22 years; mean aged 16.7 ± 2.59 participated in the study; all of them had begun drinking at the age of 13 years. Participant were divided into three groups, according to their age range (13–15, 16–18, and 19–22 years and divided according to their pattern of alcohol consumption (BD and control groups. Then, the subjects were evaluated with neuropsychological tasks that assess executive functions like working memory, inhibition, cognitive flexibility, or self-control among others. The entire sample showed a normal improvement in their executive performance, but this improvement was more stable and robust in

  5. Reproducibility of graph metrics of human brain functional networks.

    Science.gov (United States)

    Deuker, Lorena; Bullmore, Edward T; Smith, Marie; Christensen, Soren; Nathan, Pradeep J; Rockstroh, Brigitte; Bassett, Danielle S

    2009-10-01

    Graph theory provides many metrics of complex network organization that can be applied to analysis of brain networks derived from neuroimaging data. Here we investigated the test-retest reliability of graph metrics of functional networks derived from magnetoencephalography (MEG) data recorded in two sessions from 16 healthy volunteers who were studied at rest and during performance of the n-back working memory task in each session. For each subject's data at each session, we used a wavelet filter to estimate the mutual information (MI) between each pair of MEG sensors in each of the classical frequency intervals from gamma to low delta in the overall range 1-60 Hz. Undirected binary graphs were generated by thresholding the MI matrix and 8 global network metrics were estimated: the clustering coefficient, path length, small-worldness, efficiency, cost-efficiency, assortativity, hierarchy, and synchronizability. Reliability of each graph metric was assessed using the intraclass correlation (ICC). Good reliability was demonstrated for most metrics applied to the n-back data (mean ICC=0.62). Reliability was greater for metrics in lower frequency networks. Higher frequency gamma- and beta-band networks were less reliable at a global level but demonstrated high reliability of nodal metrics in frontal and parietal regions. Performance of the n-back task was associated with greater reliability than measurements on resting state data. Task practice was also associated with greater reliability. Collectively these results suggest that graph metrics are sufficiently reliable to be considered for future longitudinal studies of functional brain network changes.

  6. EMOTIONAL BRAIN. CONCEPTS OF HISTORY, LOCATION AND FUNCTION

    National Research Council Canada - National Science Library

    Lorenzo Morlán Gracia

    2012-01-01

    .... It is followed with a comment on several experiments undergone along the 20th century which have highly contributed to the understanding of the emotional brain and the brain mechanisms concerning conduct...

  7. Compensation through Functional Hyperconnectivity: A Longitudinal Connectome Assessment of Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Armin Iraji

    2016-01-01

    Full Text Available Mild traumatic brain injury (mTBI is a major public health concern. Functional MRI has reported alterations in several brain networks following mTBI. However, the connectome-scale brain network changes are still unknown. In this study, sixteen mTBI patients were prospectively recruited from an emergency department and followed up at 4–6 weeks after injury. Twenty-four healthy controls were also scanned twice with the same time interval. Three hundred fifty-eight brain landmarks that preserve structural and functional correspondence of brain networks across individuals were used to investigate longitudinal brain connectivity. Network-based statistic (NBS analysis did not find significant difference in the group-by-time interaction and time effects. However, 258 functional pairs show group differences in which mTBI patients have higher functional connectivity. Meta-analysis showed that “Action” and “Cognition” are the most affected functional domains. Categorization of connectomic signatures using multiview group-wise cluster analysis identified two patterns of functional hyperconnectivity among mTBI patients: (I between the posterior cingulate cortex and the association areas of the brain and (II between the occipital and the frontal lobes of the brain. Our results demonstrate that brain concussion renders connectome-scale brain network connectivity changes, and the brain tends to be hyperactivated to compensate the pathophysiological disturbances.

  8. Dynamic reorganization of brain functional networks during cognition.

    Science.gov (United States)

    Bola, Michał; Sabel, Bernhard A

    2015-07-01

    How does cognition emerge from neural dynamics? The dominant hypothesis states that interactions among distributed brain regions through phase synchronization give basis for cognitive processing. Such phase-synchronized networks are transient and dynamic, established on the timescale of milliseconds in order to perform specific cognitive operations. But unlike resting-state networks, the complex organization of transient cognitive networks is typically not characterized within the graph theory framework. Thus, it is not known whether cognitive processing merely changes the strength of functional connections or, conversely, requires qualitatively new topological arrangements of functional networks. To address this question, we recorded high-density EEG while subjects performed a visual discrimination task. We conducted an event-related network analysis (ERNA) where source-space weighted functional networks were characterized with graph measures. ERNA revealed rapid, transient, and frequency-specific reorganization of the network's topology during cognition. Specifically, cognitive networks were characterized by strong clustering, low modularity, and strong interactions between hub-nodes. Our findings suggest that dense and clustered connectivity between the hub nodes belonging to different modules is the "network fingerprint" of cognition. Such reorganization patterns might facilitate global integration of information and provide a substrate for a "global workspace" necessary for cognition and consciousness to occur. Thus, characterizing topology of the event-related networks opens new vistas to interpret cognitive dynamics in the broader conceptual framework of graph theory. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The relationship of brain structure to age and executive functioning in adolescent disruptive behavior disorder.

    Science.gov (United States)

    Hummer, Tom A; Wang, Yang; Kronenberger, William G; Dunn, David W; Mathews, Vincent P

    2015-03-30

    Characterizing brain maturation in adolescents with disruptive behavior disorders (DBDs) may provide insight into the progression of their behavioral deficits. Therefore, this study examined how age and executive functioning were related to structural neural characteristics in DBD. Thirty-three individuals (aged 13-17) with a DBD, along with a matched control sample, completed neuropsychological testing and underwent magnetic resonance imaging (MRI) to measure gray matter volume and microstructural white matter properties. Voxel-based morphometry quantified gray matter volume, and diffusion tensor imaging measured fractional anisotropy (FA) in white matter tracts. In the anterior cingulate, gray matter volume decreased with age in healthy controls but showed no such change in the DBD sample. In the corpus callosum and superior longitudinal fasciculus (SLF), FA increased with age in the control sample significantly more than in the DBD sample. Executive functioning, particularly working memory, was associated with SLF FA bilaterally. However, the relationship of SLF FA to working memory performance was weaker in the DBD sample. These data suggest that youth with DBD have altered brain development compared with typically developing youth. The abnormal maturation of the anterior cingulate and frontoparietal tracts during adolescence may contribute to the persistence of behavioral deficits in teens with a DBD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Genetic Determinants of Cognitive Function and Age-Related Brain Changes

    NARCIS (Netherlands)

    M. Schuur (Maaike)

    2010-01-01

    textabstractThe brain is by far the most complicated structure of the human being, and its malfunction is characterized by various degrees and types of morbidity. Several brain functions deteriorate with increasing age during life. Cognitive decline and age-related brain pathology are common in the

  11. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function

    NARCIS (Netherlands)

    Griep, L.M.; Wolbers, F.; de Wagenaar, B.; ter Braak, Paulus Martinus; Weksler, B.B.; Romero, A.; Couraud, P.O.; Vermes, I.; van der Meer, Andries Dirk; van den Berg, Albert

    The blood-brain barrier (BBB) is a unique feature of the human body, preserving brain homeostasis and preventing toxic substances to enter the brain. However, in various neurodegenerative diseases, the function of the BBB is disturbed. Mechanisms of the breakdown of the BBB are incompletely

  12. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function

    NARCIS (Netherlands)

    Griep, L.M.; Wolbers, F.; Wagenaar, de B.; Braak, ter P.M.; Weksler, B.B.; Romero, A.; Couraud, P.O.; Vermes, I.; Meer, van der A.D.; Berg, van den A.

    2013-01-01

    The blood-brain barrier (BBB) is a unique feature of the human body, preserving brain homeostasis and preventing toxic substances to enter the brain. However, in various neurodegenerative diseases, the function of the BBB is disturbed. Mechanisms of the breakdown of the BBB are incompletely understo

  13. Thermal camera used for the assessment of metabolism and functions of the rat brain

    Science.gov (United States)

    Kastek, Mariusz; Piatkowski, Tadeusz; Polakowski, Henryk; Kaczmarska, Katarzyna; Czernicki, Zbigniew; Koźniewska, Ewa; Przykaza, Lukasz

    2014-05-01

    Motivation to undertake research on brain surface temperature in clinical practice is based on a strong conviction that the enormous progress in thermal imaging techniques and camera design has a great application potential. Intraoperative imaging of pathological changes and functionally important areas of the brain is not yet fully resolved in neurosurgery and remains a challenge. Extensive knowledge of the complex mechanisms controlling homeostasis (thermodynamic status of an organism being a part of it ) and laws of physics (which are the foundations of thermography), make this method very good and a simple imaging tool in comparison with other modern techniques, such as computed tomography, magnetic resonance imaging and angiography. Measurements of temperature distribution across the brain surface were performed on four rats (Wistar strain) weighing approximately 300 g each. Animals have remained under general anesthesia typically conducted using isoflurane. The brain was unveiled (the dura mater remained untouched) through the skin incision and removal of the bone cranial vault. Cerebrocortical microflow was measured using laser-Doppler flow meter. Arterial blood pressure was also measured in rat femoral artery. From the above data the cerebrovascular resistance index was calculated. Cerebral flow was modified by increasing the CO2 concentration in the inspired air to 5% for the duration of 6 minutes. Another change in cerebral flow was induced by periodic closing of right middle cerebral artery. Artery occlusion was performed by introducing a filament for a period of 15 minutes, then an artery was opened again. Measurements were carried out before, during and after the artery occlusion. Paper presents results and methodology of measurements.

  14. Transdiagnostic Associations Between Functional Brain Network Integrity and Cognition.

    Science.gov (United States)

    Sheffield, Julia M; Kandala, Sridhar; Tamminga, Carol A; Pearlson, Godfrey D; Keshavan, Matcheri S; Sweeney, John A; Clementz, Brett A; Lerman-Sinkoff, Dov B; Hill, S Kristian; Barch, Deanna M

    2017-06-01

    Cognitive impairment occurs across the psychosis spectrum and is associated with functional outcome. However, it is unknown whether these shared manifestations of cognitive dysfunction across diagnostic categories also reflect shared neurobiological mechanisms or whether the source of impairment differs. To examine whether the general cognitive deficit observed across psychotic disorders is similarly associated with functional integrity of 2 brain networks widely implicated in supporting many cognitive domains. A total of 201 healthy control participants and 375 patients with psychotic disorders from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) consortium were studied from September 29, 2007, to May 31, 2011. The B-SNIP recruited healthy controls and stable outpatients from 6 sites: Baltimore, Maryland; Boston, Massachusetts; Chicago, Illinois; Dallas, Texas; Detroit, Michigan; and Hartford, Connecticut. All participants underwent cognitive testing and resting-state functional magnetic resonance imaging. Data analysis was performed from April 28, 2015, to February 21, 2017. The Brief Assessment of Cognition in Schizophrenia was used to measure cognitive ability. A principal axis factor analysis on the Brief Assessment of Cognition in Schizophrenia battery yielded a single factor (54% variance explained) that served as the measure of general cognitive ability. Functional network integrity measures included global and local efficiency of the whole brain, cingulo-opercular network (CON), frontoparietal network, and auditory network and exploratory analyses of all networks from the Power atlas. Group differences in network measures, associations between cognition and network measures, and mediation models were tested. The final sample for the current study included 201 healthy controls, 143 patients with schizophrenia, 103 patients with schizoaffective disorder, and 129 patients with psychotic bipolar disorder (mean [SD] age, 35.1 [12.0] years

  15. Brain structure and functional connectivity associated with pornography consumption: the brain on porn.

    Science.gov (United States)

    Kühn, Simone; Gallinat, Jürgen

    2014-07-01

    Since pornography appeared on the Internet, the accessibility, affordability, and anonymity of consuming visual sexual stimuli have increased and attracted millions of users. Based on the assumption that pornography consumption bears resemblance with reward-seeking behavior, novelty-seeking behavior, and addictive behavior, we hypothesized alterations of the frontostriatal network in frequent users. To determine whether frequent pornography consumption is associated with the frontostriatal network. In a study conducted at the Max Planck Institute for Human Development in Berlin, Germany, 64 healthy male adults covering a wide range of pornography consumption reported hours of pornography consumption per week. Pornography consumption was associated with neural structure, task-related activation, and functional resting-state connectivity. Gray matter volume of the brain was measured by voxel-based morphometry and resting state functional connectivity was measured on 3-T magnetic resonance imaging scans. We found a significant negative association between reported pornography hours per week and gray matter volume in the right caudate (P pornography consumption. The negative association of self-reported pornography consumption with the right striatum (caudate) volume, left striatum (putamen) activation during cue reactivity, and lower functional connectivity of the right caudate to the left dorsolateral prefrontal cortex could reflect change in neural plasticity as a consequence of an intense stimulation of the reward system, together with a lower top-down modulation of prefrontal cortical areas. Alternatively, it could be a precondition that makes pornography consumption more rewarding.

  16. Nanoparticle functionalization for brain targeting drug delivery and diagnostic

    DEFF Research Database (Denmark)

    Gomes, Maria João; Mendes, Bárbara; Martins, Susana

    2016-01-01

    Nanobiotechnology has been demonstrated to be an efficient tool for targeted therapy as well as diagnosis, with particular emphasis on brain tumor and neurodegenerative diseases. On this regard, the aim of this chapter is focused on engineered nanoparticles targeted to the brain, so that they have...... the ability to overcome the blood-brain barrier (BBB) and enter the brain tissue. Firstly, it highlighted the difficulty of physically active molecules and colloidal carriers to overcome BBB, which is an impediment for the treatment of several brain diseases; then, the use of nanoparticles as advantageous...

  17. Right hemispace presentation and left cueing on Raven's Coloured Progressive Matrices among right brain-damaged neglect patients.

    Science.gov (United States)

    Soukup, V M; Harrell, E H; Clark, T

    1994-07-01

    Despite the substantial experimental literature that has accrued on factors associated with a reduction in neglect, few empirical studies have attempted to extrapolate these findings to clinical assessment and evaluate the efficacy of neglect-reducing strategies on patient performance. The current study developed a modified version of the Raven's Coloured Progressive Matrices (RCPM) by aligning the response alternatives in a column, in the right hemispace. Three groups of patients (right brain-damaged (RBD) with neglect, RBD without neglect, and orthopaedic controls) were administered abbreviated versions of the revised format, and performance was compared to the standard presentation format. The efficacy of left cues with the revised format was also investigated. Presence of neglect was assessed via the Schenkenberg Line Bisection Task and the Bells Test. Results showed a significant performance decrement among RBD neglect patients under all conditions. However, contrary to predictions, RBD neglect patients did not reveal significantly better performance on the revised version as compared to the standard presentation format. No significant effects associated with left side cueing were observed. The finding that no significant performance changes emerged as a function of stimulus modification and verbal prompts suggests that, although these manipulations may be employed by clinicians to maximize patient performance, empirical support for the efficacy of these procedures is lacking.

  18. Altered small-world efficiency of brain functional networks in acupuncture at ST36: a functional MRI study.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available BACKGROUND: Acupuncture in humans can produce clinical effects via the central nervous system. However, the neural substrates of acupuncture's effects remain largely unknown. RESULTS: We utilized functional MRI to investigate the topological efficiency of brain functional networks in eighteen healthy young adults who were scanned before and after acupuncture at the ST36 acupoints (ACUP and its sham point (SHAM. Whole-brain functional networks were constructed by thresholding temporal correlations matrices of ninety brain regions, followed by a graph theory-based analysis. We showed that brain functional networks exhibited small-world attributes (high local and global efficiency regardless of the order of acupuncture and stimulus points, a finding compatible with previous studies of brain functional networks. Furthermore, the brain networks had increased local efficiency after ACUP stimulation but there were no significant differences after SHAM, indicating a specificity of acupuncture point in coordinating local information flow over the whole brain. Moreover, significant (P<0.05, corrected by false discovery rate approach effects of only acupuncture point were detected on nodal degree of the left hippocampus (higher nodal degree at ACUP as compared to SHAM. Using an uncorrected P<0.05, point-related effects were also observed in the anterior cingulate cortex, frontal and occipital regions while stimulation-related effects in various brain regions of frontal, parietal and occipital cortex regions. In addition, we found that several limbic and subcortical brain regions exhibited point- and stimulation-related alterations in their regional homogeneity (P<0.05, uncorrected. CONCLUSIONS: Our results suggest that acupuncture modulates topological organization of whole-brain functional brain networks and the modulation has point specificity. These findings provide new insights into neuronal mechanism of acupuncture from the perspective of functional

  19. Regional early and progressive loss of brain pericytes but not vascular smooth muscle cells in adult mice with disrupted platelet-derived growth factor receptor-β signaling

    Science.gov (United States)

    Nikolakopoulou, Angeliki Maria; Zhao, Zhen; Montagne, Axel

    2017-01-01

    Pericytes regulate key neurovascular functions of the brain. Studies in pericyte-deficient transgenic mice with aberrant signaling between endothelial-derived platelet-derived growth factor BB (PDGF-BB) and platelet-derived growth factor receptor β (PDGFRβ) in pericytes have contributed to better understanding of the role of pericytes in the brain. Here, we studied PdgfrβF7/F7 mice, which carry seven point mutations that disrupt PDGFRβ signaling causing loss of pericytes and vascular smooth muscle cells (VSMCs) in the developing brain. We asked whether these mice have a stable or progressive vascular phenotype after birth, and whether both pericyte and VSMCs populations are affected in the adult brain. We found an early and progressive region-dependent loss of brain pericytes, microvascular reductions and blood-brain barrier (BBB) breakdown, which were more pronounced in the cortex, hippocampus and striatum than in the thalamus, whereas VSMCs population remained unaffected at the time when pericyte loss was already established. For example, compared to age-matched controls, PdgfrβF7/F7 mice between 4–6 and 36–48 weeks of age developed a region-dependent loss in pericyte coverage (22–46, 24–44 and 4–31%) and cell numbers (36–49, 34–64 and 11–36%), reduction in capillary length (20–39, 13–46 and 1–30%), and an increase in extravascular fibrinogen-derived deposits (3.4–5.2, 2.8–4.1 and 0–3.6-fold) demonstrating BBB breakdown in the cortex, hippocampus and thalamus, respectively. Capillary reductions and BBB breakdown correlated with loss of pericyte coverage. Our data suggest that PdgfrβF7/F7 mice develop an aggressive and rapid vascular phenotype without appreciable early involvement of VSMCs, therefore providing a valuable model to study regional effects of pericyte loss on brain vascular and neuronal functions. This model could be a useful tool for future studies directed at understanding the role of pericytes in the pathogenesis

  20. Protocatechuic acid protects brain mitochondrial function in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Semaming, Yoswaris; Sripetchwandee, Jirapas; Sa-Nguanmoo, Piangkwan; Pintana, Hiranya; Pannangpetch, Patchareewan; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2015-10-01

    Brain mitochondrial dysfunction has been demonstrated in diabetic animals with neurodegeneration. Protocatechuic acid (PCA), a major metabolite of anthocyanin, has been shown to exert glycemic control and oxidative stress reduction in the heart. However, its effects on oxidative stress and mitochondrial function in the brain under diabetic condition have never been investigated. We found that PCA exerted glycemic control, attenuates brain mitochondrial dysfunction, and contributes to the prevention of brain oxidative stress in diabetic rats.

  1. Epigenome-wide DNA methylation landscape of melanoma progression to brain metastasis reveals aberrations on homeobox D cluster associated with prognosis.

    Science.gov (United States)

    Marzese, Diego M; Scolyer, Richard A; Huynh, Jamie L; Huang, Sharon K; Hirose, Hajime; Chong, Kelly K; Kiyohara, Eiji; Wang, Jinhua; Kawas, Neal P; Donovan, Nicholas C; Hata, Keisuke; Wilmott, James S; Murali, Rajmohan; Buckland, Michael E; Shivalingam, Brindha; Thompson, John F; Morton, Donald L; Kelly, Daniel F; Hoon, Dave S B

    2014-01-01

    Melanoma brain metastasis (MBM) represents a frequent complication of cutaneous melanoma. Despite aggressive multi-modality therapy, patients with MBM often have a survival rate of MBM. In this study, we generated a comprehensive DNA methylation landscape through the use of genome-wide copy number, DNA methylation and gene expression data integrative analysis of melanoma progression to MBM. A progressive genome-wide demethylation in low CpG density and an increase in methylation level of CpG islands according to melanoma progression were observed. MBM-specific partially methylated domains (PMDs) affecting key brain developmental processes were identified. Differentially methylated CpG sites between MBM and lymph node metastasis (LNM) from patients with good prognosis were identified. Among the most significantly affected genes were the HOX family members. DNA methylation of HOXD9 gene promoter affected transcript and protein expression and was significantly higher in MBM than that in early stages. A MBM-specific PMD was identified in this region. Low methylation level of this region was associated with active HOXD9 expression, open chromatin and histone modifications associated with active transcription. Demethylating agent induced HOXD9 expression in melanoma cell lines. The clinical relevance of this finding was verified in an independent large cohort of melanomas (n = 145). Patients with HOXD9 hypermethylation in LNM had poorer disease-free and overall survival. This epigenome-wide study identified novel methylated genes with functional and clinical implications for MBM patients.

  2. (18)F-FDG PET/CT and functional MRI in a case of crossed logopenic primary progressive aphasia.

    Science.gov (United States)

    Cabrera-Martín, M N; Matías-Guiu, J A; Yus-Fuertes, M; Valles-Salgado, M; Moreno-Ramos, T; Matías-Guiu, J; Carreras Delgado, J L

    Primary progressive aphasia is a clinical syndrome caused by a neurodegeneration of areas and neural networks involved in language, usually in the left hemisphere. The term "crossed aphasia" denotes an acquired language dysfunction caused by a lesion in the hemisphere ipsilateral to the dominant hand. A case is presented on a 75-year-old right-handed woman with a logopenic variant of primary progressive aphasia with word-finding difficulties of 2 years onset. The (18)F-FDG PET/CT showed right temporoparietal hypometabolism. A functional MRI scan was performed during a verb naming task in order to characterise language lateralisation patterns. A similar activation pattern was observed in both hemispheres, with less activation than expected in bilateral inferior frontal gyrus. These findings support that logopenic variant of primary progressive aphasia should not be considered as a neurodegeneration starting in the left brain hemisphere, but as a syndrome characterised by asymmetric neurodegeneration of brain regions and neural networks involved in language. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  3. Relationship between progression of brain white matter changes and late-life depression

    DEFF Research Database (Denmark)

    Firbank, Michael J; Teodorczuk, Andrew; van der Flier, Wiesje M;

    2012-01-01

    Brain white matter changes (WMC) and depressive symptoms are linked, but the directionality of this association remains unclear.......Brain white matter changes (WMC) and depressive symptoms are linked, but the directionality of this association remains unclear....

  4. Brain and Retinal Pericytes: Origin, Function and Role

    Directory of Open Access Journals (Sweden)

    Andrea eTrost

    2016-02-01

    Full Text Available Pericytes are specialized mural cells located at the abluminal surface of capillary blood vessels, embedded within the basement membrane. In the vascular network these multifunctional cells fulfil diverse functions, which are indispensable for proper homoeostasis. They serve as microvascular stabilisers, are potential regulators of microvascular blood flow and have a central role in angiogenesis, as they for example regulate endothelial cell proliferation. Furthermore, pericytes, as part of the neurovascular unit, are a major component of the blood-retina/brain barrier. CNS pericytes are a heterogenic cell population derived from mesodermal and neuro-ectodermal germ layers acting as modulators of stromal and niche environmental properties. In addition, they display multipotent differentiation potential making them an intriguing target for regenerative therapies. Pericyte-deficiencies can be cause or consequence of many kinds of diseases. In diabetes, for instance, pericyte-loss is a severe pathological process in diabetic retinopathy with detrimental consequences for eye sight in millions of patients. In this review we provide an overview of our current understanding of CNS pericyte origin and function, with a special focus on the retina in the healthy and diseased. Finally, we highlight the role of pericytes in de- and regenerative processes.

  5. Functional brain alterations in anorexia nervosa: a scoping review.

    Science.gov (United States)

    Fuglset, Tone Seim; Landrø, Nils Inge; Reas, Deborah Lynn; Rø, Øyvind

    2016-01-01

    Neuroimaging allows for the identification of brain abnormalities and alterations that are associated with anorexia nervosa (AN). We performed a scoping review to map out the extent and nature of recent research activity on functional magnetic resonance imaging (fMRI) in individuals diagnosed with, or recovered from, AN (AN-REC). A literature search of PubMed, Psychinfo and Embase was conducted using the search terms "anorexia nervosa" AND "functional magnetic resonance imaging." We included fMRI studies that involved a comparison between individuals with AN or AN-REC and healthy controls published in English language between 2010 and 2015. A total of 49 papers were included, regardless of the experimental stimuli or paradigm. Findings varied considerably across studies, reflecting methodological differences in study design, such as sample differences and experimental paradigms. Collectively, studies published during the past five years suggest altered activation in regions related to the fronto-striato and the limbic circuits, which are theorized to have an important role in the pathophysiology of AN.

  6. Data-driven analysis of functional brain interactions during free listening to music and speech.

    Science.gov (United States)

    Fang, Jun; Hu, Xintao; Han, Junwei; Jiang, Xi; Zhu, Dajiang; Guo, Lei; Liu, Tianming

    2015-06-01

    Natural stimulus functional magnetic resonance imaging (N-fMRI) such as fMRI acquired when participants were watching video streams or listening to audio streams has been increasingly used to investigate functional mechanisms of the human brain in recent years. One of the fundamental challenges in functional brain mapping based on N-fMRI is to model the brain's functional responses to continuous, naturalistic and dynamic natural stimuli. To address this challenge, in this paper we present a data-driven approach to exploring functional interactions in the human brain during free listening to music and speech streams. Specifically, we model the brain responses using N-fMRI by measuring the functional interactions on large-scale brain networks with intrinsically established structural correspondence, and perform music and speech classification tasks to guide the systematic identification of consistent and discriminative functional interactions when multiple subjects were listening music and speech in multiple categories. The underlying premise is that the functional interactions derived from N-fMRI data of multiple subjects should exhibit both consistency and discriminability. Our experimental results show that a variety of brain systems including attention, memory, auditory/language, emotion, and action networks are among the most relevant brain systems involved in classic music, pop music and speech differentiation. Our study provides an alternative approach to investigating the human brain's mechanism in comprehension of complex natural music and speech.

  7. Activated and deactivated functional brain areas in the Deqi state: A functional MRI study.

    Science.gov (United States)

    Huang, Yong; Zeng, Tongjun; Zhang, Guifeng; Li, Ganlong; Lu, Na; Lai, Xinsheng; Lu, Yangjia; Chen, Jiarong

    2012-10-25

    We compared the activities of functional regions of the brain in the Deqi versus non-Deqi state, as reported by physicians and subjects during acupuncture. Twelve healthy volunteers received sham and true needling at the Waiguan (TE5) acupoint. Real-time cerebral functional MRI showed that compared with non-sensation after sham needling, true needling activated Brodmann areas 3, 6, 8, 9, 10, 11, 13, 20, 21, 37, 39, 40, 43, and 47, the head of the caudate nucleus, the parahippocampal gyrus, thalamus and red nucleus. True needling also deactivated Brodmann areas 1, 2, 3, 4, 5, 6, 7, 9, 10, 18, 24, 31, 40 and 46.

  8. Association of IQ Changes and Progressive Brain Changes in Patients With Schizophrenia

    NARCIS (Netherlands)

    Kubota, Manabu; van Haren, Neeltje E. M.; Haijma, Sander V.; Schnack, Hugo G.; Cahn, Wiepke; Pol, Hilleke E. Hulshoff; Kahn, Rene S.

    2015-01-01

    IMPORTANCE Although schizophrenia is characterized by impairments in intelligence and the loss of brain volume, the relationship between changes in IQ and brain measures is not clear. OBJECTIVE To investigate the association between IQ and brain measures in patients with schizophrenia across time. D

  9. The effect of souvenaid on functional brain network organisation in patients with mild Alzheimer's disease: a randomised controlled study.

    Directory of Open Access Journals (Sweden)

    Hanneke de Waal

    Full Text Available BACKGROUND: Synaptic loss is a major hallmark of Alzheimer's disease (AD. Disturbed organisation of large-scale functional brain networks in AD might reflect synaptic loss and disrupted neuronal communication. The medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect, is designed to enhance synapse formation and function and has been shown to improve memory performance in patients with mild AD in two randomised controlled trials. OBJECTIVE: To explore the effect of Souvenaid compared to control product on brain activity-based networks, as a derivative of underlying synaptic function, in patients with mild AD. DESIGN: A 24-week randomised, controlled, double-blind, parallel-group, multi-country study. PARTICIPANTS: 179 drug-naïve mild AD patients who participated in the Souvenir II study. INTERVENTION: Patients were randomised 1∶1 to receive Souvenaid or an iso-caloric control product once daily for 24 weeks. OUTCOME: In a secondary analysis of the Souvenir II study, electroencephalography (EEG brain networks were constructed and graph theory was used to quantify complex brain structure. Local brain network connectivity (normalised clustering coefficient gamma and global network integration (normalised characteristic path length lambda were compared between study groups, and related to memory performance. RESULTS: THE NETWORK MEASURES IN THE BETA BAND WERE SIGNIFICANTLY DIFFERENT BETWEEN GROUPS: they decreased in the control group, but remained relatively unchanged in the active group. No consistent relationship was found between these network measures and memory performance. CONCLUSIONS: The current results suggest that Souvenaid preserves the organisation of brain networks in patients with mild AD within 24 weeks, hypothetically counteracting the progressive network disruption over time in AD. The results strengthen the hypothesis that Souvenaid affects synaptic integrity and function. Secondly, we conclude

  10. Tau and Beta-Amyloid Deposition, Microhemorrhage and Brain Function after Traumatic Brain Injury in War Veterans

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0418 TITLE: Tau and Beta-Amyloid Deposition, Microhemorrhage and Brain Function after Traumatic Brain Injury in War...REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour...completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information

  11. Graph analysis of functional brain networks: practical issues in translational neuroscience.

    Science.gov (United States)

    De Vico Fallani, Fabrizio; Richiardi, Jonas; Chavez, Mario; Achard, Sophie

    2014-10-05

    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective, communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires the know-how of all the methodological steps of the pipeline that manipulate the input brain signals and extract the functional network properties. On the other hand, knowledge of the neural phenomenon under study is required to perform physiologically relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes.

  12. Exploring the brain network: a review on resting-state fMRI functional connectivity.

    Science.gov (United States)

    van den Heuvel, Martijn P; Hulshoff Pol, Hilleke E

    2010-08-01

    Our brain is a network. It consists of spatially distributed, but functionally linked regions that continuously share information with each other. Interestingly, recent advances in the acquisition and analysis of functional neuroimaging data have catalyzed the exploration of functional connectivity in the human brain. Functional connectivity is defined as the temporal dependency of neuronal activation patterns of anatomically separated brain regions and in the past years an increasing body of neuroimaging studies has started to explore functional connectivity by measuring the level of co-activation of resting-state fMRI time-series between brain regions. These studies have revealed interesting new findings about the functional connections of specific brain regions and local networks, as well as important new insights in the overall organization of functional communication in the brain network. Here we present an overview of these new methods and discuss how they have led to new insights in core aspects of the human brain, providing an overview of these novel imaging techniques and their implication to neuroscience. We discuss the use of spontaneous resting-state fMRI in determining functional connectivity, discuss suggested origins of these signals, how functional connections tend to be related to structural connections in the brain network and how functional brain communication may form a key role in cognitive performance. Furthermore, we will discuss the upcoming field of examining functional connectivity patterns using graph theory, focusing on the overall organization of the functional brain network. Specifically, we will discuss the value of these new functional connectivity tools in examining believed connectivity diseases, like Alzheimer's disease, dementia, schizophrenia and multiple sclerosis. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Imaging Brain Function with Functional Near-Infrared Spectroscopy in Unconstrained Environments

    Directory of Open Access Journals (Sweden)

    Joana B. Balardin

    2017-05-01

    Full Text Available Assessing the neural correlates of motor and cognitive processes under naturalistic experimentation is challenging due to the movement constraints of traditional brain imaging technologies. The recent advent of portable technologies that are less sensitive to motion artifacts such as Functional Near Infrared Spectroscopy (fNIRS have been made possible the study of brain function in freely-moving participants. In this paper, we describe a series of proof-of-concept experiments examining the potential of fNIRS in assessing the neural correlates of cognitive and motor processes in unconstrained environments. We show illustrative applications for practicing a sport (i.e., table tennis, playing a musical instrument (i.e., piano and violin alone or in duo and performing daily activities for many hours (i.e., continuous monitoring. Our results expand upon previous research on the feasibility and robustness of fNIRS to monitor brain hemodynamic changes in different real life settings. We believe that these preliminary results showing the flexibility and robustness of fNIRS measurements may contribute by inspiring future work in the field of applied neuroscience.

  14. Brain research reveals automatic musical memory functions in children.

    Science.gov (United States)

    Huotilainen, Minna; Putkinen, Vesa; Tervaniemi, Mari

    2009-07-01

    Even though music has special meanings and values compared to other sounds, it is nonetheless processed in the brain via partly the same neural networks that are built to process all kinds of sounds. The development of these brain areas depends on the input: on the sounds that a child is exposed to and chooses to attend to. We present two brain research paradigms that can be used to assess the specialization of the brain for musical sounds, and show promising results with these paradigms in a group of young children who have music as their hobby.

  15. A novel pattern mining approach for identifying cognitive activity in EEG based functional brain networks.

    Science.gov (United States)

    Thilaga, M; Vijayalakshmi, R; Nadarajan, R; Nandagopal, D

    2016-06-01

    The complex nature of neuronal interactions of the human brain has posed many challenges to the research community. To explore the underlying mechanisms of neuronal activity of cohesive brain regions during different cognitive activities, many innovative mathematical and computational models are required. This paper presents a novel Common Functional Pattern Mining approach to demonstrate the similar patterns of interactions due to common behavior of certain brain regions. The electrode sites of EEG-based functional brain network are modeled as a set of transactions and node-based complex network measures as itemsets. These itemsets are transformed into a graph data structure called Functional Pattern Graph. By mining this Functional Pattern Graph, the common functional patterns due to specific brain functioning can be identified. The empirical analyses show the efficiency of the proposed approach in identifying the extent to which the electrode sites (transactions) are similar during various cognitive load states.

  16. Radionecrosis versus disease progression in brain metastasis. Value of (18)F-DOPA PET/CT/MRI.

    Science.gov (United States)

    Hernández Pinzón, J; Mena, D; Aguilar, M; Biafore, F; Recondo, G; Bastianello, M

    2016-01-01

    The use of (18)F-DOPA PET/CT with magnetic resonance imaging fusion and the use of visual methods and quantitative analysis helps to differentiate between changes post-radiosurgery vs. suspicion of disease progression in a patient with brain metastases from melanoma, thus facilitating taking early surgical action. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  17. Characterization of Large Scale Functional Brain Networks During Ketamine-Medetomidine Anesthetic Induction

    OpenAIRE

    2016-01-01

    Several experiments evidence that specialized brain regions functionally interact and reveal that the brain processes and integrates information in a specific and structured manner. Networks can be used to model brain functional activities constituting a way to characterize and quantify this structured form of organization. Reports state that different physiological states or even diseases that affect the central nervous system may be associated to alterations on those networks, that might re...

  18. Exosomes function in cell-cell communication during brain circuit development

    OpenAIRE

    Sharma, Pranav; Schiapparelli, Lucio; Cline, Hollis T.

    2013-01-01

    Exosomes are small extracellular vesicles that mediate intercellular signaling in the brain without requiring direct contact between cells. Although exosomes have been shown to play a role in neurological diseases and in response to nerve trauma, a role for exosome-mediated signaling in brain development and function has not yet been demonstrated. Here we review data building a case for exosome function in the brain.

  19. Correlation with neuropsychological assessment and SPM analysis of brain perfusion SPECT in patients with progressive supranuclear palsy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young Jin; Kang, Do Young; Park, Kyung Won; Kim, Jae Woo [School of Medicine, Dong-A University, Busan (Korea, Republic of)

    2004-07-01

    Progressive supranuclear palsy (PSP) is a degenerative condition of unknown aetiology that produces an akinetic-rigid form of parkinsonism characterised by early falls, dementia and abnormalities of extraocular movements. The patterns of decreased regional cerebral blood flow and cognitive impairment in PSP compared with normal control have been insufficiently investigated and a limited number of studies have been performed. We evaluated clinical symptoms, functional neuroimaging study using Tc-99m HMPAO SPECT and neuropsychological profiles in patients with PSP. Eleven patients with PSP diagnosed by the clinical criteria of National Institute of Neurological Disorders and Stroke and the Society for PSP (NINDS-SPSP) (mean age: 70.5{+-}5.6 years, educational period: 4.5{+-}4.7 years) and age-matched 10 healthy control subjects (mean age: 68.1{+-}4.5 years, educational period: 6.5{+-}4.1 years) participated in this study were participated. All patients were given a neurologic examination, brain MRI and cerebral perfusion SPECT using Tc-99m HMPAO. We concomittently evaluated several cognitive profiles using the Seoul Neuropsychological Screening Battery. SPM analysis of the SPECT image showed significant perfusion deficits in the left inferior frontal gyrus, left caudate nucleus, left middle frontal gyrus and cingulate gyrus in the patients with PSP compared with age-matched healthy control (uncorrected p<0.01). On neuropsychological assessment, cognitive deficits on verbal and visual memory, word fluency and frontal executive functions were prominent in most patients with PSP compared with healthy control subjects. Our findings suggest that measurement of regional cerebral blood flow by perfusion SPECT and voxel-based SPM analysis with neuropsychological assessment are useful to understanding the correlation between perfusion deficits and abnormal cognitive profiles in patients with PSP.

  20. Enhancement of Brain Functions During Aging Through Various Exercises: a Review Study

    Directory of Open Access Journals (Sweden)

    Bijay Kumar Bhagat

    2016-09-01

    Full Text Available Introduction: Decline of brain and mental functions with aging is a natural biological phenomenon. Scientists have engaged themselves to find out the different ways to protect degeneration and enhance brain functions. Regular exercise is one of the potential area. However, there are controversial and inconclusive results which create further interest of research. Aim: To review scientific literature related to exercise effect on brain and mental function during aging. Methods: Searches were conducted through electronic databases- PubMed, Medline, Springer link, Elsevier, and Google Scholar. The searching terms were: brain function (brain function or cognition or memory or processing speed or learning or executive function and physical exercise (physical exercise or exercise or stretching exercise or strength exercise. Initial search were 11 review studies and 57 randomized control trials. The current study selected 03 review and 08 randomized control trials studies after fulfillment of its requirement. Findings: Long term (>24 weeks combination exercise (aerobic, strength and stretching training can improve memory functions and processing speed in elderly people. Aerobic exercise training and strength training together can contribute to the improvement of episodic memory, executive functions and processing speed in healthy elderly people. Memory can be enhanced through aerobic exercise training and also by doing strength exercise training in healthy older adults. Interpretations: Changes in different brain and mental functions may be occurred due to structural and functional variations. The structural changes may include change in the volume of hippocampus, neurogenesis, angiogenesis, and so on. The physiological variations can include brain plasticity, increase in brain-derived neurotrophic factor (BDNF, enhancement of Default Mode Network (DMN, increase the activity of proteasome and neprilysin. Conclusions: Aging brain and mental functions

  1. Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function.

    Science.gov (United States)

    Baruch, Kuti; Deczkowska, Aleksandra; David, Eyal; Castellano, Joseph M; Miller, Omer; Kertser, Alexander; Berkutzki, Tamara; Barnett-Itzhaki, Zohar; Bezalel, Dana; Wyss-Coray, Tony; Amit, Ido; Schwartz, Michal

    2014-10-03

    Aging-associated cognitive decline is affected by factors produced inside and outside the brain. By using multiorgan genome-wide analysis of aged mice, we found that the choroid plexus, an interface between the brain and the circulation, shows a type I interferon (IFN-I)-dependent gene expression profile that was also found in aged human brains. In aged mice, this response was induced by brain-derived signals, present in the cerebrospinal fluid. Blocking IFN-I signaling within the aged brain partially restored cognitive function and hippocampal neurogenesis and reestablished IFN-II-dependent choroid plexus activity, which is lost in aging. Our data identify a chronic aging-induced IFN-I signature, often associated with antiviral response, at the brain's choroid plexus and demonstrate its negative influence on brain function, thereby suggesting a target for ameliorating cognitive decline in aging.

  2. Diazepam and Jacobson's progressive relaxation show similar attenuating short-term effects on stress-related brain glucose consumption.

    Science.gov (United States)

    Pifarré, P; Simó, M; Gispert, J-D; Plaza, P; Fernández, A; Pujol, J

    2015-02-01

    A non-pharmacological method to reduce anxiety is "progressive relaxation" (PR). The aim of the method is to reduce mental stress and associated mental processes by means of progressive suppression of muscle tension. The study was addressed to evaluate changes in brain glucose metabolism induced by PR in patients under a stressing state generated by a diagnostic medical intervention. The effect of PR was compared to a dose of sublingual diazepam, with the prediction that both interventions would be associated with a reduction in brain metabolism. Eighty-four oncological patients were assessed with 18F-fluorodeoxyglucose-positron emission tomography. Maps of brain glucose distribution from 28 patients receiving PR were compared with maps from 28 patients receiving sublingual diazepam and with 28 patients with no treatment intervention. Compared to reference control subjects, the PR and diazepam groups showed a statistically significant, bilateral and generalized cortical hypometabolism. Regions showing the most prominent changes were the prefrontal cortex and anterior cingulate cortex. No significant differences were identified in the direct comparison between relaxation technique and sublingual diazepam. Our findings suggest that relaxation induced by a physical/psychological procedure can be as effective as a reference anxiolytic in reducing brain activity during a stressful state.

  3. Structure, expression, and function of kynurenine aminotransferases in human and rodent brains.

    Science.gov (United States)

    Han, Qian; Cai, Tao; Tagle, Danilo A; Li, Jianyong

    2010-02-01

    Kynurenine aminotransferases (KATs) catalyze the synthesis of kynurenic acid (KYNA), an endogenous antagonist of N-methyl-D: -aspartate and alpha 7-nicotinic acetylcholine receptors. Abnormal KYNA levels in human brains are implicated in the pathophysiology of schizophrenia, Alzheimer's disease, and other neurological disorders. Four KATs have been reported in mammalian brains, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase. KAT II has a striking tertiary structure in N-terminal part and forms a new subgroup in fold type I aminotransferases, which has been classified as subgroup Iepsilon. Knowledge regarding KATs is vast and complex; therefore, this review is focused on recent important progress of their gene characterization, physiological and biochemical function, and structural properties. The biochemical differences of four KATs, specific enzyme activity assays, and the structural insights into the mechanism of catalysis and inhibition of these enzymes are discussed.

  4. Structure Expression and Function of kynurenine Aminotransferases in Human and Rodent Brains

    Energy Technology Data Exchange (ETDEWEB)

    Q Han; T Cai; D Tagle; J Li

    2011-12-31

    Kynurenine aminotransferases (KATs) catalyze the synthesis of kynurenic acid (KYNA), an endogenous antagonist of N-methyl-D: -aspartate and alpha 7-nicotinic acetylcholine receptors. Abnormal KYNA levels in human brains are implicated in the pathophysiology of schizophrenia, Alzheimer's disease, and other neurological disorders. Four KATs have been reported in mammalian brains, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase. KAT II has a striking tertiary structure in N-terminal part and forms a new subgroup in fold type I aminotransferases, which has been classified as subgroup Iepsilon. Knowledge regarding KATs is vast and complex; therefore, this review is focused on recent important progress of their gene characterization, physiological and biochemical function, and structural properties. The biochemical differences of four KATs, specific enzyme activity assays, and the structural insights into the mechanism of catalysis and inhibition of these enzymes are discussed.

  5. Complex network analysis of brain functional connectivity under a multi-step cognitive task

    Science.gov (United States)

    Cai, Shi-Min; Chen, Wei; Liu, Dong-Bai; Tang, Ming; Chen, Xun

    2017-01-01

    Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a multi-step cognitive task involving consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed based on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to the order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and is obviously restricted to the order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse functional connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.

  6. Dynamic brain architectures in local brain activity and functional network efficiency associate with efficient reading in bilinguals.

    Science.gov (United States)

    Feng, Gangyi; Chen, Hsuan-Chih; Zhu, Zude; He, Yong; Wang, Suiping

    2015-10-01

    The human brain is organized as a dynamic network, in which both regional brain activity and inter-regional connectivity support high-level cognitive processes, such as reading. However, it is still largely unknown how the functional brain network organizes to enable fast and effortless reading processing in the native language (L1) but not in a non-proficient second language (L2), and whether the mechanisms underlying local activity are associated with connectivity dynamics in large-scale brain networks. In the present study, we combined activation-based and multivariate graph-theory analysis with functional magnetic resonance imaging data to address these questions. Chinese-English unbalanced bilinguals read narratives for comprehension in Chinese (L1) and in English (L2). Compared with L2, reading in L1 evoked greater brain activation and recruited a more globally efficient but less clustered network organization. Regions with both increased network efficiency and enhanced brain activation in L1 reading were mostly located in the fronto-temporal reading-related network (RN), whereas regions with decreased global network efficiency, increased clustering, and more deactivation in L2 reading were identified in the default mode network (DMN). Moreover, functional network efficiency was closely associated with local brain activation, and such associations were also modulated by reading efficiency in the two languages. Our results demonstrate that an economical and integrative brain network topology is associated with efficient reading, and further reveal a dynamic association between network efficiency and local activation for both RN and DMN. These findings underscore the importance of considering interregional connectivity when interpreting local BOLD signal changes in bilingual reading.

  7. Breathing as a Fundamental Rhythm of Brain Function

    Science.gov (United States)

    Heck, Detlef H.; McAfee, Samuel S.; Liu, Yu; Babajani-Feremi, Abbas; Rezaie, Roozbeh; Freeman, Walter J.; Wheless, James W.; Papanicolaou, Andrew C.; Ruszinkó, Miklós; Sokolov, Yury; Kozma, Robert

    2017-01-01

    Ongoing fluctuations of neuronal activity have long been considered intrinsic noise that introduces unavoidable and unwanted variability into neuronal processing, which the brain eliminates by averaging across population activity (Georgopoulos et al., 1986; Lee et al., 1988; Shadlen and Newsome, 1994; Maynard et al., 1999). It is now understood, that the seemingly random fluctuations of cortical activity form highly structured patterns, including oscillations at various frequencies, that modulate evoked neuronal responses (Arieli et al., 1996; Poulet and Petersen, 2008; He, 2013) and affect sensory perception (Linkenkaer-Hansen et al., 2004; Boly et al., 2007; Sadaghiani et al., 2009; Vinnik et al., 2012; Palva et al., 2013). Ongoing cortical activity is driven by proprioceptive and interoceptive inputs. In addition, it is partially intrinsically generated in which case it may be related to mental processes (Fox and Raichle, 2007; Deco et al., 2011). Here we argue that respiration, via multiple sensory pathways, contributes a rhythmic component to the ongoing cortical activity. We suggest that this rhythmic activity modulates the temporal organization of cortical neurodynamics, thereby linking higher cortical functions to the process of breathing. PMID:28127277

  8. CART in the brain of vertebrates: circuits, functions and evolution.

    Science.gov (United States)

    Subhedar, Nishikant K; Nakhate, Kartik T; Upadhya, Manoj A; Kokare, Dadasaheb M

    2014-04-01

    Cocaine- and amphetamine-regulated transcript peptide (CART) with its wide distribution in the brain of mammals has been the focus of considerable research in recent years. Last two decades have witnessed a steady rise in the information on the genes that encode this neuropeptide and regulation of its transcription and translation. CART is highly enriched in the hypothalamic nuclei and its relevance to energy homeostasis and neuroendocrine control has been understood in great details. However, the occurrence of this peptide in a range of diverse circuitries for sensory, motor, vegetative, limbic and higher cortical areas has been confounding. Evidence that CART peptide may have role in addiction, pain, reward, learning and memory, cognition, sleep, reproduction and development, modulation of behavior and regulation of autonomic nervous system are accumulating, but an integration has been missing. A steady stream of papers has been pointing at the therapeutic potentials of CART. The current review is an attempt at piecing together the fragments of available information, and seeks meaning out of the CART elements in their anatomical niche. We try to put together the CART containing neuronal circuitries that have been conclusively demonstrated as well as those which have been proposed, but need confirmation. With a view to finding out the evolutionary antecedents, we visit the CART systems in sub-mammalian vertebrates and seek the answer why the system is shaped the way it is. We enquire into the conservation of the CART system and appreciate its functional diversity across the phyla.

  9. Astrocytes, Synapses and Brain Function: A Computational Approach

    Science.gov (United States)

    Nadkarni, Suhita

    2006-03-01

    Modulation of synaptic reliability is one of the leading mechanisms involved in long- term potentiation (LTP) and long-term depression (LTD) and therefore has implications in information processing in the brain. A recently discovered mechanism for modulating synaptic reliability critically involves recruitments of astrocytes - star- shaped cells that outnumber the neurons in most parts of the central nervous system. Astrocytes until recently were thought to be subordinate cells merely participating in supporting neuronal functions. New evidence, however, made available by advances in imaging technology has changed the way we envision the role of these cells in synaptic transmission and as modulator of neuronal excitability. We put forward a novel mathematical framework based on the biophysics of the bidirectional neuron-astrocyte interactions that quantitatively accounts for two distinct experimental manifestation of recruitment of astrocytes in synaptic transmission: a) transformation of a low fidelity synapse transforms into a high fidelity synapse and b) enhanced postsynaptic spontaneous currents when astrocytes are activated. Such a framework is not only useful for modeling neuronal dynamics in a realistic environment but also provides a conceptual basis for interpreting experiments. Based on this modeling framework, we explore the role of astrocytes for neuronal network behavior such as synchrony and correlations and compare with experimental data from cultured networks.

  10. Theory of brain function, quantum mechanics and superstrings

    CERN Document Server

    Nanopoulos, Dimitri V.

    1995-01-01

    Recent developments/efforts to understand aspects of the brain function at the {\\em sub-neural} level are discussed. MicroTubules (MTs) participate in a wide variety of dynamical processes in the cell especially in bioinformation processes such as learning and memory, by possessing a well-known binary error-correcting code with 64 words. In fact, MTs and DNA/RNA are unique cell structures that possess a code system. It seems that the MTs' code system is strongly related to a kind of ``Mental Code" in the following sense. The MTs' periodic paracrystalline structure make them able to support a superposition of coherent quantum states, as it has been recently conjectured by Hameroff and Penrose, representing an external or mental order, for sufficient time needed for efficient quantum computing. Then the quantum superposition collapses spontaneously/dynamically through a new, string-derived mechanism for collapse proposed recently by Ellis, Mavromatos, and myself. At the moment of collapse, organized quantum exo...

  11. Alterations of blood brain barrier function in hyperammonemia: an overview.

    Science.gov (United States)

    Skowrońska, Marta; Albrecht, Jan

    2012-02-01

    Ammonia is a neurotoxin involved in the pathogenesis of neurological conditions associated with hyperammonemia, including hepatic encephalopathy, a condition associated with acute--(ALF) or chronic liver failure. This article reviews evidence that apart from directly affecting the metabolism and function of the central nervous system cells, ammonia influences the passage of different molecules across the blood brain barrier (BBB). A brief description is provided of the tight junctions, which couple adjacent cerebral capillary endothelial cells to each other to form the barrier. Ammonia modulates the transcellular passage of low-to medium-size molecules, by affecting their carriers located at the BBB. Ammonia induces interrelated aberrations of the transport of the large neutral amino acids and aromatic amino acids (AAA), whose influx is augmented by exchange with glutamine produced in the course of ammonia detoxification, and maybe also modulated by the extracellularly acting gamma-glutamyl moiety transferring enzyme, gamma-glutamyl-transpeptidase. Impaired AAA transport affects neurotransmission by altering intracerebral synthesis of catecholamines (serotonin and dopamine), and producing "false neurotransmitters" (octopamine and phenylethylamine). Ammonia also modulates BBB transport of the cationic amino acids: the nitric oxide precursor, arginine, and ornithine, which is an ammonia trap, and affects the transport of energy metabolites glucose and creatine. Moreover, ammonia acting either directly or in synergy with liver injury-derived inflammatory cytokines also evokes subtle increases of the transcellular passage of molecules of different size (BBB "leakage"), which appears to be responsible for the vasogenic component of cerebral edema associated with ALF.

  12. Effects of alcohol intake on brain structure and function in non-alcohol-dependent drinkers

    NARCIS (Netherlands)

    Bruin, Eveline Astrid de

    2005-01-01

    About 85% of the adult population in the Netherlands regularly drinks alcohol. Chronic excessive alcohol intake in alcohol-dependent individuals is known to have damaging effects on brain structure and function. Relatives of alcohol-dependent individuals display differences in brain function that ar

  13. Effects of alcohol intake on brain structure and function in non-alcohol-dependent drinkers

    NARCIS (Netherlands)

    Bruin, Eveline Astrid de

    2005-01-01

    About 85% of the adult population in the Netherlands regularly drinks alcohol. Chronic excessive alcohol intake in alcohol-dependent individuals is known to have damaging effects on brain structure and function. Relatives of alcohol-dependent individuals display differences in brain function that

  14. State-Dependent Changes of Connectivity Patterns and Functional Brain Network Topology in Autism Spectrum Disorder

    Science.gov (United States)

    Barttfeld, Pablo; Wicker, Bruno; Cukier, Sebastian; Navarta, Silvana; Lew, Sergio; Leiguarda, Ramon; Sigman, Mariano

    2012-01-01

    Anatomical and functional brain studies have converged to the hypothesis that autism spectrum disorders (ASD) are associated with atypical connectivity. Using a modified resting-state paradigm to drive subjects' attention, we provide evidence of a very marked interaction between ASD brain functional connectivity and cognitive state. We show that…

  15. Organisation and functional role of the brain angiotensin system

    Directory of Open Access Journals (Sweden)

    Catherine Llorens-Cortes

    2002-03-01

    Full Text Available The discovery that all components of the renin-angiotensin system (RAS are present in the brain led investigators to postulate the existence of a local brain RAS. Supporting this, angiotensin immunoreactive neurones have been visualised in the brain. Two major pathways were described: a forebrain pathway which connects circumventricular organs to the median preoptic nucleus, paraventricular and supraoptic nuclei, and a second pathway connecting the hypothalamus to the medulla oblongata. Blood-brain-barrier deficient circumventricular organs are rich in angiotensin II (Ang II receptors. By activating these receptors, circulating Ang II may act on central cardiovascular centres via angiotensinergic neurones, providing a link between peripheral and central Ang II systems. Among the effector peptides of the brain RAS, Ang II and angiotensin III (Ang III have the same affinity for type 1 and type 2 Ang II receptors. When injected into the brain, both peptides increase blood pressure (BP, water intake and pituitary hormone release and may modify learning and memory. Since Ang II is converted in vivo to Ang III, the nature of the true effector is unknown. This review summarises new insights into the predominant role of brain Ang III in the control of BP and underlines the fact that brain aminopeptidase A, the enzyme forming central Ang III, could constitute a putative central therapeutic target for the treatment of hypertension.

  16. Analysis of structure-function network decoupling in the brain systems of spastic diplegic cerebral palsy.

    Science.gov (United States)

    Lee, Dongha; Pae, Chongwon; Lee, Jong Doo; Park, Eun Sook; Cho, Sung-Rae; Um, Min-Hee; Lee, Seung-Koo; Oh, Maeng-Keun; Park, Hae-Jeong

    2017-10-01

    Manifestation of the functionalities from the structural brain network is becoming increasingly important to understand a brain disease. With the aim of investigating the differential structure-function couplings according to network systems, we investigated the structural and functional brain networks of patients with spastic diplegic cerebral palsy with periventricular leukomalacia compared to healthy controls. The structural and functional networks of the whole brain and motor system, constructed using deterministic and probabilistic tractography of diffusion tensor magnetic resonance images and Pearson and partial correlation analyses of resting-state functional magnetic resonance images, showed differential embedding of functional networks in the structural networks in patients. In the whole-brain network of patients, significantly reduced global network efficiency compared to healthy controls were found in the structural networks but not in the functional networks, resulting in reduced structural-functional coupling. On the contrary, the motor network of patients had a significantly lower functional network efficiency over the intact structural network and a lower structure-function coupling than the control group. This reduced coupling but reverse directionality in the whole-brain and motor networks of patients was prominent particularly between the probabilistic structural and partial correlation-based functional networks. Intact (or less deficient) functional network over impaired structural networks of the whole brain and highly impaired functional network topology over the intact structural motor network might subserve relatively preserved cognitions and impaired motor functions in cerebral palsy. This study suggests that the structure-function relationship, evaluated specifically using sparse functional connectivity, may reveal important clues to functional reorganization in cerebral palsy. Hum Brain Mapp 38:5292-5306, 2017. © 2017 Wiley Periodicals

  17. The blind brain: how (lack of) vision shapes the morphological and functional architecture of the human brain.

    Science.gov (United States)

    Ricciardi, Emiliano; Handjaras, Giacomo; Pietrini, Pietro

    2014-11-01

    Since the early days, how we represent the world around us has