WorldWideScience

Sample records for brain fluid environment

  1. Effects of Fluid Ingestion on Brain-Derived Neurotrophic Factor and Cognition During Exercise in the Heat

    Directory of Open Access Journals (Sweden)

    Roh Hee-Tae

    2017-08-01

    Full Text Available We investigated the effects of fluid ingestion during exercise in different environments on the serum brain-derived neurotrophic factor and cognition among athletes. Ten collegiate male athletes (soccer, n = 5; rugby, n = 5 were enrolled, and they completed running tests in the following four conditions (60 min each: 1 thermoneutral temperature at 18°C (group 18; 2 high ambient temperature at 32°C without fluid ingestion (group 32; 3 high ambient temperature at 32°C with water ingestion (group 32+W; and 4 high ambient temperature at 32°C with sports drink ingestion (group 32+S. Serum brain-derived neurotrophic factor levels significantly increased in group 18 immediately after exercise when compared with those at rest and were significantly higher than those in group 32 immediately and 60 min after exercise (p < 0.05. In the Stroop Color and Word Test, significantly increased Word, Color, and Color-Word scores were observed in group 18 immediately after exercise compared to those at rest (p < 0.05. However, the Color-Word score appeared to be significantly lower in group 32 immediately after exercise compared to the other groups (p < 0.05 and at 60 min post-exercise compared to group 18 (p < 0.05. We found that the exercise performed in a thermoneutral environment improved cognitive function, but the exercise performed in a hot environment did not. The differences according to the exercise environment would be largely affected by brain-derived neurotrophic factor, and fluid ingestion regardless of the type of drink (water or sports beverage was assumed to have contributed to the improvement in cognitive function caused by exercising in a hot environment.

  2. The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system?

    Science.gov (United States)

    Abbott, N Joan; Pizzo, Michelle E; Preston, Jane E; Janigro, Damir; Thorne, Robert G

    2018-03-01

    Brain fluids are rigidly regulated to provide stable environments for neuronal function, e.g., low K + , Ca 2+ , and protein to optimise signalling and minimise neurotoxicity. At the same time, neuronal and astroglial waste must be promptly removed. The interstitial fluid (ISF) of the brain tissue and the cerebrospinal fluid (CSF) bathing the CNS are integral to this homeostasis and the idea of a glia-lymph or 'glymphatic' system for waste clearance from brain has developed over the last 5 years. This links bulk (convective) flow of CSF into brain along the outside of penetrating arteries, glia-mediated convective transport of fluid and solutes through the brain extracellular space (ECS) involving the aquaporin-4 (AQP4) water channel, and finally delivery of fluid to venules for clearance along peri-venous spaces. However, recent evidence favours important amendments to the 'glymphatic' hypothesis, particularly concerning the role of glia and transfer of solutes within the ECS. This review discusses studies which question the role of AQP4 in ISF flow and the lack of evidence for its ability to transport solutes; summarizes attributes of brain ECS that strongly favour the diffusion of small and large molecules without ISF flow; discusses work on hydraulic conductivity and the nature of the extracellular matrix which may impede fluid movement; and reconsiders the roles of the perivascular space (PVS) in CSF-ISF exchange and drainage. We also consider the extent to which CSF-ISF exchange is possible and desirable, the impact of neuropathology on fluid drainage, and why using CSF as a proxy measure of brain components or drug delivery is problematic. We propose that new work and key historical studies both support the concept of a perivascular fluid system, whereby CSF enters the brain via PVS convective flow or dispersion along larger caliber arteries/arterioles, diffusion predominantly regulates CSF/ISF exchange at the level of the neurovascular unit associated with

  3. PIXE analysis of cerebrospinal fluid before and after brain transplantation

    International Nuclear Information System (INIS)

    Ma Xinpei; Wang Junke.

    1992-01-01

    Considering methodology of PIXE quantitative analysis based on Inner-standard, we provide a simple and convenient method to measure the elemental relative sensitivity curve. The concentrations of 16 various elements in cerebrospinal fluid samples before and after brain transplantation have been investigated and compared with those of normal person's and transplanted tissues. The experimental results show that the brain transplantation results in apparently curative effects in compensating and regulating the element concentrations in cerebrospinal fluid and improvement of elemental physiological metabolism. It illustrates that the appropriate concentrations of trace elements in cerebrospinal fluid play an undoubtedly important role in keeping the normal physiological function of brain and central nervous system. (author)

  4. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences

    Directory of Open Access Journals (Sweden)

    Redzic Zoran

    2011-01-01

    Full Text Available Abstract Efficient processing of information by the central nervous system (CNS represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB, which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF barrier (BCSFB, which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC transport proteins at those two barriers and underlines

  5. Fluid Mechanics of the Vascular Basement Membrane in the Brain

    Science.gov (United States)

    Coloma, Mikhail; Hui, Jonathan; Chiarot, Paul; Huang, Peter; Carare, Roxana; McLeod, Kenneth; Schaffer, David

    2013-11-01

    Beta-amyloid is a normal product of brain metabolic function and is found within the interstitial fluid of the brain. Failure of the clearance of beta-amyloid from the aging brain leads to its accumulation within the walls of arteries and to Alzheimer's disease. The vascular basement membrane (VBM) within the walls of cerebral arteries surrounds the spirally arranged smooth muscle cells and represents an essential pathway for removal of beta-amyloid from the brain. This process fails with the stiffening of arterial walls associated with aging. In this study we hypothesize that the deformation of the VBM associated with arterial pulsations drives the interstitial fluid to drain in the direction opposite of the arterial blood flow. This hypothesis is theoretically investigated by modeling the VBM as a thin, coaxial, fluid-filled porous medium surrounding a periodically deforming cylindrical tube. Flow and boundary conditions required to achieve such a backward clearance are derived through a control volume analysis of mass, momentum, and energy.

  6. Brain washing : Transport of cerebral extracellular fluids and solutes

    NARCIS (Netherlands)

    Bedussi, B.

    2017-01-01

    Regulation of extracellular volume and fluid composition provides a robust microenvironment for brain cells. In peripheral tissue, fluid surplus and solutes are removed from the interstitium via drainage into lymphatic channels. Since the central nervous system lacks a proper lymphatic vasculature,

  7. Fluid behavior in microgravity environment

    Science.gov (United States)

    Hung, R. J.; Lee, C. C.; Tsao, Y. D.

    1990-01-01

    The instability of liquid and gas interface can be induced by the presence of longitudinal and lateral accelerations, vehicle vibration, and rotational fields of spacecraft in a microgravity environment. In a spacecraft design, the requirements of settled propellant are different for tank pressurization, engine restart, venting, or propellent transfer. In this paper, the dynamical behavior of liquid propellant, fluid reorientation, and propellent resettling have been carried out through the execution of a CRAY X-MP super computer to simulate fluid management in a microgravity environment. Characteristics of slosh waves excited by the restoring force field of gravity jitters have also been investigated.

  8. Selective localization of IgG from cerebrospinal fluid to brain parenchyma

    DEFF Research Database (Denmark)

    Mørch, Marlene Thorsen; Forsberg Sørensen, Sofie; Khorooshi, Reza M. H.

    2018-01-01

    the cerebrospinal fluid and induce subpial and periventricular NMO-like lesions and blood-brain barrier breakdown, in a complement-dependent manner. To investigate how IgG trafficking from cerebrospinal fluid to brain parenchyma can be influenced by injury. IgG from healthy donors was intrathecally injected...... into the cerebrospinal fluid via cisterna magna at 1, 2, 4, or 7 days after a distal stereotactic sterile needle insertion to the striatum. Antibody deposition, detected by staining for human IgG, peaked 1 day after the intrathecal injection and was selectively seen close to the needle insertion. When NMO...

  9. Cerebrospinal fluid aquaporin-4-immunoglobulin G disrupts blood brain barrier

    DEFF Research Database (Denmark)

    Asgari, Nasrin; Berg, Carsten Tue; Mørch, Marlene Thorsen

    2015-01-01

    associated with blood-borne horseradish peroxidase leakage indicating blood-brain barrier breakdown. The cerebrospinal fluid aquaporin-4-immunoglobulin G therefore distributes widely in brain to initiate astrocytopathy and blood-brain barrier breakdown....... was evaluated. A distinct distribution pattern of aquaporin-4-immunoglobulin G deposition was observed in the subarachnoid and subpial spaces where vessels penetrate the brain parenchyma, via a paravascular route with intraparenchymal perivascular deposition. Perivascular astrocyte-destructive lesions were...

  10. Evidence for low molecular weight, non-transferrin-bound iron in rat brain and cerebrospinal fluid

    DEFF Research Database (Denmark)

    Moos, Torben; Morgan, Evan H.

    1998-01-01

    Neuroscience, blood-brain barrier, choroid plexus, interstitial fluid, transferrin receptor, uptake......Neuroscience, blood-brain barrier, choroid plexus, interstitial fluid, transferrin receptor, uptake...

  11. Fluid intelligence and brain functional organization in aging yoga and meditation practitioners

    Directory of Open Access Journals (Sweden)

    Tim eGard

    2014-04-01

    Full Text Available Numerous studies have documented the normal age-related decline of neural structure, function, and cognitive performance. Preliminary evidence suggests that meditation may reduce decline in specific cognitive domains and in brain structure. Here we extended this research by investigating the relation between age and fluid intelligence and resting state brain functional network architecture using graph theory, in middle-aged yoga and meditation practitioners, and matched controls. Fluid intelligence declined slower in yoga practitioners and meditators combined than in controls. Resting state functional networks of yoga practitioners and meditators combined were more integrated and more resilient to damage than those of controls. Furthermore, mindfulness was positively correlated with fluid intelligence, resilience, and global network efficiency. These findings reveal the possibility to increase resilience and to slow the decline of fluid intelligence and brain functional architecture and suggest that mindfulness plays a mechanistic role in this preservation.

  12. Behavior of fluids in a weightless environment

    Science.gov (United States)

    Fester, D. A.; Eberhardt, R. N.; Tegart, J. R.

    1977-01-01

    Fluid behavior in a low-g environment is controlled primarily by surface tension forces. Certain fluid and system characteristics determine the magnitude of these forces for both a free liquid surface and liquid in contact with a solid. These characteristics, including surface tension, wettability or contact angle, system geometry, and the relationships governing their interaction, are discussed. Various aspects of fluid behavior in a low-g environment are then presented. This includes the formation of static interface shapes, oscillation and rotation of drops, coalescence, the formation of foams, tendency for cavitation, and diffusion in liquids which were observed during the Skylab fluid mechanics science demonstrations. Liquid reorientation and capillary pumping to establish equilibrium configurations for various system geometries, observed during various free-fall (drop-tower) low-g tests, are also presented. Several passive low-g fluid storage and transfer systems are discussed. These systems use surface tension forces to control the liquid/vapor interface and provide gas-free liquid transfer and liquid-free vapor venting.

  13. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules.

    Science.gov (United States)

    Aspelund, Aleksanteri; Antila, Salli; Proulx, Steven T; Karlsen, Tine Veronica; Karaman, Sinem; Detmar, Michael; Wiig, Helge; Alitalo, Kari

    2015-06-29

    The central nervous system (CNS) is considered an organ devoid of lymphatic vasculature. Yet, part of the cerebrospinal fluid (CSF) drains into the cervical lymph nodes (LNs). The mechanism of CSF entry into the LNs has been unclear. Here we report the surprising finding of a lymphatic vessel network in the dura mater of the mouse brain. We show that dural lymphatic vessels absorb CSF from the adjacent subarachnoid space and brain interstitial fluid (ISF) via the glymphatic system. Dural lymphatic vessels transport fluid into deep cervical LNs (dcLNs) via foramina at the base of the skull. In a transgenic mouse model expressing a VEGF-C/D trap and displaying complete aplasia of the dural lymphatic vessels, macromolecule clearance from the brain was attenuated and transport from the subarachnoid space into dcLNs was abrogated. Surprisingly, brain ISF pressure and water content were unaffected. Overall, these findings indicate that the mechanism of CSF flow into the dcLNs is directly via an adjacent dural lymphatic network, which may be important for the clearance of macromolecules from the brain. Importantly, these results call for a reexamination of the role of the lymphatic system in CNS physiology and disease. © 2015 Aspelund et al.

  14. Fluid Mechanics of Urban Environments

    Science.gov (United States)

    Fernando, Harindra J.

    2008-11-01

    The rapid urbanization of the Earth has led to highly populated cities that act as concentrated centers of anthropogenic stressors on the natural environment. The degradation of environmental quality due to such stressors, in turn, greatly impacts human behavior. Anthropogenic stressors largely originate as a result of coupling between man-made urban elements (i.e., networks of engineering and socio-economic infrastructures) and the environment, for which surrounding fluid motions play a key role. In recent years, research efforts have been directed at the understanding and modeling of fluid motions in urban areas, infrastructure dynamics and interactions thereof, with the hope of identifying environmental impacts of urbanization and complex outcomes (or ``emergent properties'') of nominally simple interactions between infrastructures and environment. Such consequences play an important role in determining the ``resilience'' of cities under anthropogenic stressors, defined as maintaining the structure and essential functions of an urbanity without regime shifts. Holistic integrated models that meld the dynamics of infrastructures and environment as well as ``quality of life'' attributes are becoming powerful decision-making tools with regard to sustainability of urban areas (continuance or even enhancement of socio-economic activities in harmony with the environment). The rudimentary forms of integrated models are beginning to take shape, augmented by comprehensive field studies and advanced measurement platforms to validate them. This presentation deals with the challenges of modeling urban atmosphere, subject to anthropogenic forcing. An important emergent property, the Urban Heat Island, and its role in determining resilience and sustainability of cities will be discussed based on the prediction of a coupled model.

  15. A Well Designed School Environment Facilitates Brain Learning.

    Science.gov (United States)

    Chan, Tak Cheung; Petrie, Garth

    2000-01-01

    Examines how school design facilitates learning by complementing how the brain learns. How the brain learns is discussed and how an artistic environment, spaciousness in the learning areas, color and lighting, and optimal thermal and acoustical environments aid student learning. School design suggestions conclude the article. (GR)

  16. Skull and cerebrospinal fluid effects on microwave radiation propagation in human brain

    Science.gov (United States)

    Ansari, M. A.; Zarei, M.; Akhlaghipour, N.; Niknam, A. R.

    2017-12-01

    The determination of microwave absorption distribution in the human brain is necessary for the detection of brain tumors using thermo-acoustic imaging and for removing them using hyperthermia treatment. In contrast to ionizing radiation, hyperthermia treatment can be applied to remove tumors inside the brain without the concern of including secondary malignancies, which typically form from the neuronal cells of the septum pellucidum. The aim of this study is to determine the microwave absorption distribution in an adult human brain and to study the effects of skull and cerebrospinal fluid on the propagation of microwave radiation inside the brain. To this end, we simulate the microwave absorption distribution in a realistic adult brain model (Colin 27) using the mesh-based Monte Carlo (MMC) method. This is because in spite of there being other numerical methods, the MMC does not require a large memory, even for complicated geometries, and its algorithm is simple and easy to implement with low computational cost. The brain model is constructed using high-resolution (1 mm isotropic voxel) and low noise magnetic resonance imaging (MRI) scans and its volume contains 181×217×181 voxels, covering the brain completely. Using the MMC method, the radiative transport equation is solved and the absorbed microwave energy distribution in different brain regions is obtained without any fracture or anomaly. The simulation results show that the skull and cerebrospinal fluid guide the microwave radiation and suppress its penetration through deep brain compartments as a shielding factor. These results reveal that the MMC can be used to predict the amount of required energy to increase the temperature inside the tumour during hyperthermia treatment. Our results also show why a deep tumour inside an adult human brain cannot be efficiently treated using hyperthermia treatment. Finally, the accuracy of the presented numerical method is verified using the signal flow graph technique.

  17. Analysis of anaerobic product properties in fluid and aggressive environments

    OpenAIRE

    Goncharov, A.; Tulinov, A.

    2008-01-01

    The article presents the results of experiments involved in investigation of properties of some domestic and foreign-made anaerobic materials in components and units operating in fluid and aggressive environments. These experiments determined the strength and swell values of anaerobic products in the sea water, fuel and oil, and confirmed their anticorrosion properties. The experiments demonstrated high resistance of anaerobic products to various fluids and aggressive environments, which make...

  18. Drug delivery to the human brain via the cerebrospinal fluid

    International Nuclear Information System (INIS)

    Howden, L.; Aroussi, A.; Vloeberghs, M.

    2003-01-01

    This Study investigates the flow of Cerebrospinal Fluid (CSF) inside the human ventricular system with particular emphasis on drug path flow for the purpose of medical drug injections. The investigation is conducted using the computational fluid dynamics package FLUENT. The role of the ventricular system is very important in protecting the brain from injury by cushioning it against the cranium during sudden movements. If for any reason the passage of CSF through the ventricular system is blocked (usually by stenosis) then a condition known as Hydrocephalus occurs, where by the blocked CSF causes the Intra Cranial Pressure (ICP) inside the brain to rise. If this is not treated then severe brain damage and death can occur. Previous work conducted by the authors on this subject has focused on the technique of ventriculostomy to treat hydrocephalus. The present study carries on from the previous work but focuses on delivering medical drugs to treat brain tumors that are conventionally not accessible and which require complicated surgical procedures to remove them. The study focuses on the possible paths for delivering drugs to tumors in the human nervous system through conventionally accessible locations without major surgery. The results of the investigation have shown that it is possible to reach over 95% of the ventricular system by injection of drugs however the results also show that there are many factors that can affect the drug flow paths through the ventricular system and thus the areas reachable, by these drugs. (author)

  19. Drug delivery to the human brain via the cerebrospinal fluid

    Energy Technology Data Exchange (ETDEWEB)

    Howden, L.; Aroussi, A. [Univ. of Nottingham, School of Mechanical, Material, Manufacturing Engineering and Managements, Nottingham (United Kingdom)]. E-mail: eaxljh@nottingham.ac.uk; Vloeberghs, M. [Queens Medical Centre, Dept. of Child Health, Nottingham (United Kingdom)

    2003-07-01

    This Study investigates the flow of Cerebrospinal Fluid (CSF) inside the human ventricular system with particular emphasis on drug path flow for the purpose of medical drug injections. The investigation is conducted using the computational fluid dynamics package FLUENT. The role of the ventricular system is very important in protecting the brain from injury by cushioning it against the cranium during sudden movements. If for any reason the passage of CSF through the ventricular system is blocked (usually by stenosis) then a condition known as Hydrocephalus occurs, where by the blocked CSF causes the Intra Cranial Pressure (ICP) inside the brain to rise. If this is not treated then severe brain damage and death can occur. Previous work conducted by the authors on this subject has focused on the technique of ventriculostomy to treat hydrocephalus. The present study carries on from the previous work but focuses on delivering medical drugs to treat brain tumors that are conventionally not accessible and which require complicated surgical procedures to remove them. The study focuses on the possible paths for delivering drugs to tumors in the human nervous system through conventionally accessible locations without major surgery. The results of the investigation have shown that it is possible to reach over 95% of the ventricular system by injection of drugs however the results also show that there are many factors that can affect the drug flow paths through the ventricular system and thus the areas reachable, by these drugs. (author)

  20. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance

    Directory of Open Access Journals (Sweden)

    Dor Vadas

    2017-09-01

    Full Text Available Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, <10% of the brain is active at any given time, it utilizes almost all the oxygen delivered. In order to perform complex tasks or more than one task (multitasking, the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities.Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking. Participants were randomized to perform the tasks in two environments: (a normobaric air (1 ATA 21% oxygen (b HBO (2 ATA 100% oxygen. Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance.Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment (p < 0.001 for both. Multitasking performance was also significantly enhanced in HBO environment (p = 0.006 for the cognitive part and p = 0.02 for the motor part.Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.

  1. From Brain-Environment Connections to Temporal Dynamics and Social Interaction: Principles of Human Brain Function.

    Science.gov (United States)

    Hari, Riitta

    2017-06-07

    Experimental data about brain function accumulate faster than does our understanding of how the brain works. To tackle some general principles at the grain level of behavior, I start from the omnipresent brain-environment connection that forces regularities of the physical world to shape the brain. Based on top-down processing, added by sparse sensory information, people are able to form individual "caricature worlds," which are similar enough to be shared among other people and which allow quick and purposeful reactions to abrupt changes. Temporal dynamics and social interaction in natural environments serve as further essential organizing principles of human brain function. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance.

    Science.gov (United States)

    Vadas, Dor; Kalichman, Leonid; Hadanny, Amir; Efrati, Shai

    2017-01-01

    Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, multitasking), the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO) environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities. Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking). Participants were randomized to perform the tasks in two environments: (a) normobaric air (1 ATA 21% oxygen) (b) HBO (2 ATA 100% oxygen). Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance. Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment ( p Multitasking performance was also significantly enhanced in HBO environment ( p = 0.006 for the cognitive part and p = 0.02 for the motor part). Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.

  3. Effects of propranolol and clonidine on brain edema, blood-brain barrier permeability, and endothelial glycocalyx disruption after fluid percussion brain injury in the rat

    DEFF Research Database (Denmark)

    Genét, Gustav Folmer; Bentzer, Peter; Hansen, Morten Bagge

    2018-01-01

    clonidine would decrease brain edema, blood-brain barrier permeability, and glycocalyx disruption at 24 hours after trauma. METHODS: We subjected 53 adult male Sprague-Dawley rats to lateral fluid percussion brain injury and randomized infusion with propranolol (n = 16), propranolol + clonidine (n = 16......), vehicle (n = 16), or sham (n = 5) for 24 hours. Primary outcome was brain water content at 24 hours. Secondary outcomes were blood-brain barrier permeability and plasma levels of syndecan-1 (glycocalyx disruption), cell damage (histone-complexed DNA fragments), epinephrine, norepinephrine, and animal.......555). We found no effect of propranolol and propranolol/clonidine on blood-brain barrier permeability and animal motor scores. Unexpectedly, propranolol and propranolol/clonidine caused an increase in epinephrine and syndecan-1 levels. CONCLUSION: This study does not provide any support for unselective...

  4. Fluid Interfaces of Triangular Containers in Reduced Gravity Environments

    Science.gov (United States)

    Guttromson, Jayleen; Manning, Robert; Collicott, Steven H.

    2002-01-01

    Capillary dominated fluid dynamics will be examined in a reduced-gravity environment onboard the KC-135; in particular, the behavior of the lower portion of the meniscus in triangular tank geometries. Seven clear acrylic tanks were constructed to view seven angles of the four geometries. Silicon oil with two different viscosities, 2cs and 5cs silicon oil, were used on different days of the flight. Six tanks and one control tank are filled with a certain viscosity fluid for each flight day. During each parabola, three tanks are tested at time. The experimental tanks are exchanged between parabola sets on the KC-135. The 60deg -60deg -60deg control tank is viewed throughout the flight. To gather data, two digital video cameras and one digital still camera are placed perpendicular the viewing surface. To provide a greater contrast in the meniscus, an EL backlighting sheet was used to backlight the tanks. These images and video are then digitized, passed through NASA's mini-tracker software, and compared to a theory published my M. M. Weislogel, "Fluid Interface Phenomena in a Low-Gravity Environment: Recent Results from Drop Tower Experimentation." By focusing on a lower portion of the meniscus and using longer periods of reduced gravity, this experiment may confirm that a stationary point exists on the fluid surface. This information will enable better designing of propellant management devices, especially satellite propellant refilling and gas venting. Also, biological and material processing systems in reduced gravity environments will benefit from this data.

  5. Gadolinium-based Contrast Media, Cerebrospinal Fluid and the Glymphatic System: Possible Mechanisms for the Deposition of Gadolinium in the Brain.

    Science.gov (United States)

    Taoka, Toshiaki; Naganawa, Shinji

    2018-04-10

    After Kanda's first report in 2014 on gadolinium (Gd) deposition in brain tissue, a considerable number of studies have investigated the explanation for the observation. Gd deposition in brain tissue after repeated administration of gadolinium-based contrast medium (GBCM) has been histologically proven, and chelate stability has been shown to affect the deposition. However, the mechanism for this deposition has not been fully elucidated. Recently, a hypothesis was introduced that involves the 'glymphatic system', which is a coined word that combines 'gl' for glia cell and 'lymphatic' system. According to this hypothesis, the perivascular space functions as a conduit for cerebrospinal fluid to flow into the brain parenchyma. The perivascular space around the arteries allows cerebrospinal fluid to enter the interstitial space of the brain tissue through water channels controlled by aquaporin 4. The cerebrospinal fluid entering the interstitial space clears waste proteins from the tissue. It then flows into the perivascular space around the vein and is discharged outside the brain. In addition to the hypothesis regarding the glymphatic system, some reports have described that after GBCM administration, some of the GBCM distributes through systemic blood circulation and remains in other compartments including the cerebrospinal fluid. It is thought that the GBCM distributed into the cerebrospinal fluid cavity via the glymphatic system may remain in brain tissue for a longer duration compared to the GBCM in systemic circulation. Glymphatic system may of course act as a clearance system for GBCM from brain tissue. Based on these findings, the mechanism for Gd deposition in the brain will be discussed in this review. The authors speculate that the glymphatic system may be the major contributory factor to the deposition and clearance of gadolinium in brain tissue.

  6. Modeling the cometary environment using a fluid approach

    Science.gov (United States)

    Shou, Yinsi

    Comets are believed to have preserved the building material of the early solar system and to hold clues to the origin of life on Earth. Abundant remote observations of comets by telescopes and the in-situ measurements by a handful of space missions reveal that the cometary environments are complicated by various physical and chemical processes among the neutral gases and dust grains released from comets, cometary ions, and the solar wind in the interplanetary space. Therefore, physics-based numerical models are in demand to interpret the observational data and to deepen our understanding of the cometary environment. In this thesis, three models using a fluid approach, which include important physical and chemical processes underlying the cometary environment, have been developed to study the plasma, neutral gas, and the dust grains, respectively. Although models based on the fluid approach have limitations in capturing all of the correct physics for certain applications, especially for very low gas density environment, they are computationally much more efficient than alternatives. In the simulations of comet 67P/Churyumov-Gerasimenko at various heliocentric distances with a wide range of production rates, our multi-fluid cometary neutral gas model and multi-fluid cometary dust model have achieved comparable results to the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid in all collisional regimes. Therefore, our model is a powerful alternative to the particle-based model, especially for some computationally intensive simulations. Capable of accounting for the varying heating efficiency under various physical conditions in a self-consistent way, the multi-fluid cometary neutral gas model is a good tool to study the dynamics of the cometary coma with different production rates and heliocentric distances. The modeled H2O expansion speeds reproduce the general trend and the speed's nonlinear dependencies of production rate

  7. Upregulation of Aβ42 in the Brain and Bodily Fluids of Rhesus Monkeys with Aging.

    Science.gov (United States)

    Zhao, Qiao; Lu, Jing; Yao, Zitong; Wang, Shubo; Zhu, Liming; Wang, Ju; Chen, Baian

    2017-01-01

    The cerebral accumulation of amyloid beta (Aβ) is one of the key pathological hallmarks of Alzheimer's disease (AD). Aβ is also found in bodily fluids such as the cerebrospinal fluid (CSF) and plasma. However, the significance of Aβ accumulation in the brain and different bodily pools, as well as its correlation with aging and cerebral amyloid pathology, is not completely understood. To better understand this question, we selected the rhesus monkey, which is phylogenetically and physiologically highly similar to the human, as a model to study. We quantified the levels of the two main Aβ isoforms (Aβ42 and Aβ40) in different sections of the brain (frontal cortex, temporal cortex, and hippocampus) and bodily fluids (CSF and plasma) of rhesus monkeys at different developmental phases (young, 5-9 years of age; mature, 10-19 years of age; and old, 21-24 years of age). We found that the levels of neuronal and insoluble Aβ42 increased significantly in the brain with aging, suggesting that this specific isoform might be directly involved in aging and AD-like pathophysiology. There was no significant change in the Aβ40 level in the brain with aging. In addition, the Aβ42 level, but not the Aβ40 level, in both the CSF and plasma increased with aging. We also identified a positive correlation between Aβ42 in the CSF and plasma and Aβ42 in the brain. Taken collectively, our results indicate that there is an association between Aβ accumulation and age. These results support the increased incidence of AD with aging.

  8. Vascular basement membranes as pathways for the passage of fluid into and out of the brain.

    Science.gov (United States)

    Morris, Alan W J; Sharp, Matthew MacGregor; Albargothy, Nazira J; Fernandes, Rute; Hawkes, Cheryl A; Verma, Ajay; Weller, Roy O; Carare, Roxana O

    2016-05-01

    In the absence of conventional lymphatics, drainage of interstitial fluid and solutes from the brain parenchyma to cervical lymph nodes is along basement membranes in the walls of cerebral capillaries and tunica media of arteries. Perivascular pathways are also involved in the entry of CSF into the brain by the convective influx/glymphatic system. The objective of this study is to differentiate the cerebral vascular basement membrane pathways by which fluid passes out of the brain from the pathway by which CSF enters the brain. Experiment 1: 0.5 µl of soluble biotinylated or fluorescent Aβ, or 1 µl 15 nm gold nanoparticles was injected into the mouse hippocampus and their distributions determined at 5 min by transmission electron microscopy. Aβ was distributed within the extracellular spaces of the hippocampus and within basement membranes of capillaries and tunica media of arteries. Nanoparticles did not enter capillary basement membranes from the extracellular spaces. Experiment 2: 2 µl of 15 nm nanoparticles were injected into mouse CSF. Within 5 min, groups of nanoparticles were present in the pial-glial basement membrane on the outer aspect of cortical arteries between the investing layer of pia mater and the glia limitans. The results of this study and previous research suggest that cerebral vascular basement membranes form the pathways by which fluid passes into and out of the brain but that different basement membrane layers are involved. The significance of these findings for neuroimmunology, Alzheimer's disease, drug delivery to the brain and the concept of the Virchow-Robin space are discussed.

  9. A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments

    CERN Document Server

    Terzic, Edin; Nagarajah, Romesh; Alamgir, Muhammad

    2012-01-01

    Sloshing causes liquid to fluctuate, making accurate level readings difficult to obtain in dynamic environments. The measurement system described uses a single-tube capacitive sensor to obtain an instantaneous level reading of the fluid surface, thereby accurately determining the fluid quantity in the presence of slosh. A neural network based classification technique has been applied to predict the actual quantity of the fluid contained in a tank under sloshing conditions.   In A neural network approach to fluid quantity measurement in dynamic environments, effects of temperature variations and contamination on the capacitive sensor are discussed, and the authors propose that these effects can also be eliminated with the proposed neural network based classification system. To examine the performance of the classification system, many field trials were carried out on a running vehicle at various tank volume levels that range from 5 L to 50 L. The effectiveness of signal enhancement on the neural network base...

  10. The concentration of erlotinib in the cerebrospinal fluid of patients with brain metastasis from non-small-cell lung cancer

    Science.gov (United States)

    DENG, YANMING; FENG, WEINENG; WU, JING; CHEN, ZECHENG; TANG, YICONG; ZHANG, HUA; LIANG, JIANMIAO; XIAN, HAIBING; ZHANG, SHUNDA

    2014-01-01

    It has been demonstrated that erlotinib is effective in treating patients with brain metastasis from non-small-cell lung cancer. However, the number of studies determining the erlotinib concentration in these patients is limited. The purpose of this study was to measure the concentration of erlotinib in the cerebrospinal fluid of patients with brain metastasis from non-small-cell lung carcinoma. Six patients were treated with the standard recommended daily dose of erlotinib (150 mg) for 4 weeks. All the patients had previously received chemotherapy, but no brain radiotherapy. At the end of the treatment period, blood plasma and cerebrospinal fluid samples were collected and the erlotinib concentration was determined by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The average erlotinib concentration in the blood plasma and the cerebrospinal fluid was 717.7±459.7 and 23.7±13.4 ng/ml, respectively. The blood-brain barrier permeation rate of erlotinib was found to be 4.4±3.2%. In patients with partial response (PR), stable disease (SD) and progressive disease (PD), the average concentrations of erlotinib in the cerebrospinal fluid were 35.5±19.0, 19.1±8.7 and 16.4±5.9 ng/ml, respectively. In addition, the efficacy rate of erlotinib for metastatic brain lesions was 33.3%, increasing to 50% in patients with EGFR mutations. However, erlotinib appeared to be ineffective in cases with wild-type EGFR. In conclusion, a relatively high concentration of erlotinib was detected in the cerebrospinal fluid of patients with brain metastases from non-small-cell lung cancer. Thus, erlotinib may be considered as a treatment option for this patient population. PMID:24649318

  11. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia.

    Science.gov (United States)

    Abi-Saab, Walid M; Maggs, David G; Jones, Tim; Jacob, Ralph; Srihari, Vinod; Thompson, James; Kerr, David; Leone, Paola; Krystal, John H; Spencer, Dennis D; During, Matthew J; Sherwin, Robert S

    2002-03-01

    Brain levels of glucose and lactate in the extracellular fluid (ECF), which reflects the environment to which neurons are exposed, have never been studied in humans under conditions of varying glycemia. The authors used intracerebral microdialysis in conscious human subjects undergoing electrophysiologic evaluation for medically intractable epilepsy and measured ECF levels of glucose and lactate under basal conditions and during a hyperglycemia-hypoglycemia clamp study. Only measurements from nonepileptogenic areas were included. Under basal conditions, the authors found the metabolic milieu in the brain to be strikingly different from that in the circulation. In contrast to plasma, lactate levels in brain ECF were threefold higher than glucose. Results from complementary studies in rats were consistent with the human data. During the hyperglycemia-hypoglycemia clamp study the relationship between plasma and brain ECF levels of glucose remained similar, but changes in brain ECF glucose lagged approximately 30 minutes behind changes in plasma. The data demonstrate that the brain is exposed to substantially lower levels of glucose and higher levels of lactate than those in plasma; moreover, the brain appears to be a site of significant anaerobic glycolysis, raising the possibility that glucose-derived lactate is an important fuel for the brain.

  12. Effects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers

    Directory of Open Access Journals (Sweden)

    Masoud Ahmadi

    2017-12-01

    Full Text Available Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid environments such as their applications in chemical and biological sensors. Additionally, piezoelectric microcantilevers are used to enhance atomic-force microscope scanning. Motivated by these considerations, presented herein is a finite element investigation into the nonlinear vibration behavior of piezoelectric microcantilever of atomic-force microscopes in fluid environment. For this purpose, a 3D finite element model coupled with a computational fluid dynamics model is introduced based upon a fluid-solid interaction analysis. First, the reliability of present fluid-solid interaction analysis is revealed by comparison with experimental data available in the literature. Then, numerical results are presented to study the influences of fluid dynamic viscosity and density on the resonance frequency, resonance amplitude and time response of piezoelectric microcantilever. It was shown that increasing the fluid density and dynamic viscosity results in the decrease of resonance frequency. For example, for density equal to 1000 kg/m3 , increasing the viscosity of fluid environment from 0.1 to 1, 10 and 20 mPa.s leads to decrease of resonance frequency about 3%, 29% and 42%, respectively. Also, the resonance amplitude of microcantilever increases as the density increases, while increasing dynamic viscosity has a decreasing effect on the resonance amplitude.

  13. LumaFluid: a responsive environment to stimulate social interaction in public spaces

    NARCIS (Netherlands)

    Monaci, G.; Gritti, T.; Van Beers, M.; Vermeulen, A.J.W.A.; Nab, B.; Thomassen, I.; Heijboer, M.; Suijkerbuijk, S.; Walmink, W.; Hendriks, M.

    2012-01-01

    LumaFluid is an interactive environment that explores new ways to stimulate emotional and social engagement through immersive light effects. A computer vision system detects and tracks persons present inthe LumaFluid square. Using this location information, colored spotlights highlight each person

  14. Effects of Exercise Following Lateral Fluid Percussion Brain Injury in Rats.

    Science.gov (United States)

    Hicks, Ramona R.; Boggs, Arden; Leider, Denise; Kraemer, Philip; Brown, Russell; Scheff, Stephen W.; Seroogy, Kim B.

    1998-01-01

    Previous studies have suggested that brain-derived neurotrophic factor (BDNF) is involved in memory and learning, and may be neuroprotective following various brain insults. Exercise has been found to increase BDNF mRNA levels in various brain regions, including specific subpopulations of hippocampal neurons. In the present study, we were interested in whether following traumatic brain injury, exercise could increase BDNF mRNA expression, attenuate neuropathology, and improve cognitive and neuromoter performance. We subjected adult male Sprague-Dawley rats to a fluid percussion brain injury, followed by either 18 days of treadmill exercise or handling. Spatial memory was evaluated in a Morris Water Maze (MWM) and motor function was evaluated with a battery of neuromotor tests. Neuropathology was evaluated by measuring the cortical lesion volume and the extent of neuronal loss in the hipocampus. Expression of BDNF mRNA in the hippocampus was assessed with in situ hybridization and densitometry. Hybridization signal for BDNF mRNA was significantly increased bilaterally in the exercise group in hippocampal regions CA1 and CA3 (p<0.05), but not in the granule cell layer of the dentate gyrus. No significant differences were observed between the groups in neuropathology, spatial memory, or motor performance. This study suggests that after traumatic brain injury, exercise elevates BDNF mRNA in specific regions of the hippocampus.

  15. Subarachnoid Hemorrhage Severely Impairs Brain Parenchymal Cerebrospinal Fluid Circulation in Nonhuman Primate.

    Science.gov (United States)

    Goulay, Romain; Flament, Julien; Gauberti, Maxime; Naveau, Michael; Pasquet, Nolwenn; Gakuba, Clement; Emery, Evelyne; Hantraye, Philippe; Vivien, Denis; Aron-Badin, Romina; Gaberel, Thomas

    2017-08-01

    Subarachnoid hemorrhage (SAH) is a devastating form of stroke with neurological outcomes dependent on the occurrence of delayed cerebral ischemia. It has been shown in rodents that some of the mechanisms leading to delayed cerebral ischemia are related to a decreased circulation of the cerebrospinal fluid (CSF) within the brain parenchyma. Here, we evaluated the cerebral circulation of the CSF in a nonhuman primate in physiological condition and after SAH. We first evaluated in physiological condition the circulation of the brain CSF in Macaca facicularis , using magnetic resonance imaging of the temporal DOTA-Gd distribution after its injection into the CSF. Then, animals were subjected to a minimally invasive SAH before an MRI evaluation of the impact of SAH on the brain parenchymal CSF circulation. We first demonstrate that the CSF actively penetrates the brain parenchyma. Two hours after injection, almost the entire brain is labeled by DOTA-Gd. We also show that our model of SAH in nonhuman primate displays the characteristics of SAH in humans and leads to a dramatic impairment of the brain parenchymal circulation of the CSF. The CSF actively penetrates within the brain parenchyma in the gyrencephalic brain, as described for the glymphatic system in rodent. This parenchymal CSF circulation is severely impaired by SAH. © 2017 American Heart Association, Inc.

  16. Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain

    Science.gov (United States)

    Murlidharan, Giridhar; Crowther, Andrew; Reardon, Rebecca A.; Song, Juan

    2016-01-01

    Adeno-associated viruses (AAV) are currently being evaluated in clinical trials for gene therapy of CNS disorders. However, host factors that influence the spread, clearance, and transduction efficiency of AAV vectors in the brain are not well understood. Recent studies have demonstrated that fluid flow mediated by aquaporin-4 (AQP4) channels located on astroglial end feet is essential for exchange of solutes between interstitial and cerebrospinal fluid. This phenomenon, which is essential for interstitial clearance of solutes from the CNS, has been termed glial-associated lymphatic transport or glymphatic transport. In the current study, we demonstrate that glymphatic transport profoundly affects various aspects of AAV gene transfer in the CNS. Altered localization of AQP4 in aged mouse brains correlated with significantly increased retention of AAV vectors in the parenchyma and reduced systemic leakage following ventricular administration. We observed a similar increase in AAV retention and transgene expression upon i.c.v. administration in AQP4–/– mice. Consistent with this observation, fluorophore-labeled AAV vectors showed markedly reduced flux from the ventricles of AQP4–/– mice compared with WT mice. These results were further corroborated by reduced AAV clearance from the AQP4-null brain, as demonstrated by reduced transgene expression and vector genome accumulation in systemic organs. We postulate that deregulation of glymphatic transport in aged and diseased brains could markedly affect the parenchymal spread, clearance, and gene transfer efficiency of AAV vectors. Assessment of biomarkers that report the kinetics of CSF flux in prospective gene therapy patients might inform variable treatment outcomes and guide future clinical trial design. PMID:27699236

  17. Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder.

    Science.gov (United States)

    Shen, Mark D; Nordahl, Christine W; Young, Gregory S; Wootton-Gorges, Sandra L; Lee, Aaron; Liston, Sarah E; Harrington, Kayla R; Ozonoff, Sally; Amaral, David G

    2013-09-01

    Prospective studies of infants at risk for autism spectrum disorder have provided important clues about the early behavioural symptoms of autism spectrum disorder. Diagnosis of autism spectrum disorder, however, is not currently made until at least 18 months of age. There is substantially less research on potential brain-based differences in the period between 6 and 12 months of age. Our objective in the current study was to use magnetic resonance imaging to identify any consistently observable brain anomalies in 6-9 month old infants who would later develop autism spectrum disorder. We conducted a prospective infant sibling study with longitudinal magnetic resonance imaging scans at three time points (6-9, 12-15, and 18-24 months of age), in conjunction with intensive behavioural assessments. Fifty-five infants (33 'high-risk' infants having an older sibling with autism spectrum disorder and 22 'low-risk' infants having no relatives with autism spectrum disorder) were imaged at 6-9 months; 43 of these (27 high-risk and 16 low-risk) were imaged at 12-15 months; and 42 (26 high-risk and 16 low-risk) were imaged again at 18-24 months. Infants were classified as meeting criteria for autism spectrum disorder, other developmental delays, or typical development at 24 months or later (mean age at outcome: 32.5 months). Compared with the other two groups, infants who developed autism spectrum disorder (n = 10) had significantly greater extra-axial fluid at 6-9 months, which persisted and remained elevated at 12-15 and 18-24 months. Extra-axial fluid is characterized by excessive cerebrospinal fluid in the subarachnoid space, particularly over the frontal lobes. The amount of extra-axial fluid detected as early as 6 months was predictive of more severe autism spectrum disorder symptoms at the time of outcome. Infants who developed autism spectrum disorder also had significantly larger total cerebral volumes at both 12-15 and 18-24 months of age. This is the first magnetic

  18. Complement-dependent pathogenicity of brain-specific antibodies in cerebrospinal fluid

    DEFF Research Database (Denmark)

    Asgari, Nasrin; Khorooshi, Reza; Lillevang, Søren T

    2013-01-01

    The specificity and potential pathogenicity of autoantibodies vary between neurological diseases. It is often unclear whether their detection in cerebrospinal fluid (CSF) is a consequence or a cause of pathology. The goal was to test whether administration of brain-specific antibodies into CSF...... would be sufficient for pathology. Purified immunoglobulin G from a neuromyelitis optica patient was injected intrathecally with complement to naive mice. Histopathological analysis at 7 days revealed damage to the ependyma, disruption of the CSF parenchymal barrier and pathologic lesions, distant from...

  19. Fully-automated computer-assisted method of CT brain scan analysis for the measurement of cerebrospinal fluid spaces and brain absorption density

    Energy Technology Data Exchange (ETDEWEB)

    Baldy, R.E.; Brindley, G.S.; Jacobson, R.R.; Reveley, M.A.; Lishman, W.A.; Ewusi-Mensah, I.; Turner, S.W.

    1986-03-01

    Computer-assisted methods of CT brain scan analysis offer considerable advantages over visual inspection, particularly in research; and several semi-automated methods are currently available. A new computer-assisted program is presented which provides fully automated processing of CT brain scans, depending on ''anatomical knowledge'' of where cerebrospinal fluid (CSF)-containing spaces are likely to lie. After identifying these regions of interest quantitative estimates are then provided of CSF content in each slice in cisterns, ventricles, Sylvian fissure and interhemispheric fissure. Separate measures are also provided of mean brain density in each slice. These estimates can be summated to provide total ventricular and total brain volumes. The program shows a high correlation with measures derived from mechanical planimetry and visual grading procedures, also when tested against a phantom brain of known ventricular volume. The advantages and limitations of the present program are discussed.

  20. Regional distribution of TL-201 in the brain and spinal cord after injection into the cerebrospinal fluid: Imaging of brain tumors

    International Nuclear Information System (INIS)

    Woo, D.V.; Rubertone, J.; Vincent, S.; Brady, L.W. Jr.

    1986-01-01

    Radiotracers are typically employed to evaluate the brain ventricular space; however, there are no agents designed to be taken up into specific neuronal regions after injection into the cerebrospinal fluids (CSF). The authors report studies in which T1-201 was stereotaxically administered into the lateral or fourth ventricles of Sprague-Dawley rats. Brains were removed (n = 42) 2-6 hours after injection and sectioned for apposition to autoradiographic film. Specific uptake was observed in active neurons of the diencephalon, mesencephalon, cerebellum, brain stem, and spinal gray matter. Astrocytoma cell implants into the caudate nucleus of Sprague-Dawley rats induced histologically confirmed brain tumors (n = 5). Significant localization of T1-201 was observed in the tumor 4 hours after injection into the lateral ventricle. These findings suggest that T1-201 may be useful for delineating specific neuronal function via CSF circulation and for imaging actively growing brain tumors

  1. Home environment, brain injury, & school performance in LBW survivors.

    Science.gov (United States)

    Mahoney, Ashley Darcy; Pinto-Martin, Jennifer; Hanlon, Alexandra

    2014-01-01

    There has been substantial research on low birthweight (LBW) as a predictor of adverse educational and cognitive outcomes. LBW infants perform worse on cognitive battery tests compared to children born at normal birthweight; however, children exposed to similar risks do not all share the same experiences. The complex, interrelated factors responsible for poor cognitive and achievement performance vary for different populations, but researchers hypothesize that the home environment may influence the infants' long-term health outcomes. Examine the home environment as a moderator in the causal pathway from neonatal brain injury to school performance in a secondary analysis of a prospectively studied, geographically defined cohort from the Neonatal Brain Hemorrhage Study. The secondary analysis sample included 543 infants with birthweights of 501 to 2,000 g who were born consecutively in three community hospitals in New Jersey between 1984 and 1986. School performance at age 9 was measured by the Woodcock-Johnson Tests of Achievement. The home environment variables were tested and analyzed using multistep hierarchical regression modeling. A moderating effect between the variable neighborhood observations and brain injury was demonstrated for the outcome math score. The moderating relationship was found in the category of children without brain injury (β = 1.76, p = .005). There were statistically significant and potentially clinical meaningful models when looking at the home environmental variables as they relate to reading and math scores. The findings suggest that at least one variable within a LBW child's socio-environmental milieu can moderate the effects of perinatal brain injury on school performance outcomes.

  2. Enriched environment decreases microglia and brain macrophages inflammatory phenotypes through adiponectin-dependent mechanisms: Relevance to depressive-like behavior.

    Science.gov (United States)

    Chabry, Joëlle; Nicolas, Sarah; Cazareth, Julie; Murris, Emilie; Guyon, Alice; Glaichenhaus, Nicolas; Heurteaux, Catherine; Petit-Paitel, Agnès

    2015-11-01

    Regulation of neuroinflammation by glial cells plays a major role in the pathophysiology of major depression. While astrocyte involvement has been well described, the role of microglia is still elusive. Recently, we have shown that Adiponectin (ApN) plays a crucial role in the anxiolytic/antidepressant neurogenesis-independent effects of enriched environment (EE) in mice; however its mechanisms of action within the brain remain unknown. Here, we show that in a murine model of depression induced by chronic corticosterone administration, the hippocampus and the hypothalamus display increased levels of inflammatory cytokines mRNA, which is reversed by EE housing. By combining flow cytometry, cell sorting and q-PCR, we show that microglia from depressive-like mice adopt a pro-inflammatory phenotype characterized by higher expression levels of IL-1β, IL-6, TNF-α and IκB-α mRNAs. EE housing blocks pro-inflammatory cytokine gene induction and promotes arginase 1 mRNA expression in brain-sorted microglia, indicating that EE favors an anti-inflammatory activation state. We show that microglia and brain-macrophages from corticosterone-treated mice adopt differential expression profiles for CCR2, MHC class II and IL-4recα surface markers depending on whether the mice are kept in standard environment or EE. Interestingly, the effects of EE were abolished when cells are isolated from ApN knock-out mouse brains. When injected intra-cerebroventricularly, ApN, whose level is specifically increased in cerebrospinal fluid of depressive mice raised in EE, rescues microglia phenotype, reduces pro-inflammatory cytokine production by microglia and blocks depressive-like behavior in corticosterone-treated mice. Our data suggest that EE-induced ApN increase within the brain regulates microglia and brain macrophages phenotype and activation state, thus reducing neuroinflammation and depressive-like behaviors in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. PREFACE: Complex dynamics of fluids in disordered and crowded environments Complex dynamics of fluids in disordered and crowded environments

    Science.gov (United States)

    Coslovich, Daniele; Kahl, Gerhard; Krakoviack, Vincent

    2011-06-01

    . In fact, theory and simulations were recently able to predict new and surprising dynamical features, such as the occurrence of sub-diffusive laws, which result from the trapping due to the geometric and topological constraints and/or quenched disorder, the presence of both continuous and discontinuous glass transitions, and diffusion-localization transitions. Together, theory and simulations are thus able to contribute to a deeper insight into the complex dynamical behaviour of fluids in disordered confinement. Still, many yet unsolved problems remain. The fact that theoretical and simulation approaches have caught up with experimental investigations, has motivated us to organize a workshop on the dynamics of fluids confined in disordered environments, so as to bring together the different communities working in this field: theory and simulations, with their recent developments based on the mode-coupling theory of the glass transition, and experiments, with particular emphasis on colloidal systems and novel techniques. In an effort to give credit to recent developments in related problems of biophysical relevance, an entire session of the programme was dedicated to anomalous diffusion in crowded environments. The workshop was thus aimed at providing a deeper understanding of the complex dynamics of fluids in confinement as well as up-to-date perspectives on the interdisciplinary applications of this field of research. We are proud to say that all 32 contacted speakers accepted our invitation. Additional participants were attracted by our scientific programme, contributing poster presentations to the workshop. In total, close to 50 participants were registered, arriving from 11 different countries (including the US, Japan, and Mexico). Thus we conclude that the workshop indeed addressed a highly topical scientific field. From the scientific point of view a broad range of problems was covered, ranging from biophysics over soft matter to fermion systems. From the vivid

  4. A fully-automated computer-assisted method of CT brain scan analysis for the measurement of cerebrospinal fluid spaces and brain absorption density

    International Nuclear Information System (INIS)

    Baldy, R.E.; Brindley, G.S.; Jacobson, R.R.; Reveley, M.A.; Lishman, W.A.; Ewusi-Mensah, I.; Turner, S.W.

    1986-01-01

    Computer-assisted methods of CT brain scan analysis offer considerable advantages over visual inspection, particularly in research; and several semi-automated methods are currently available. A new computer-assisted program is presented which provides fully automated processing of CT brain scans, depending on ''anatomical knowledge'' of where cerebrospinal fluid (CSF)-containing spaces are likely to lie. After identifying these regions of interest quantitative estimates are then provided of CSF content in each slice in cisterns, ventricles, Sylvian fissure and interhemispheric fissure. Separate measures are also provided of mean brain density in each slice. These estimates can be summated to provide total ventricular and total brain volumes. The program shows a high correlation with measures derived from mechanical planimetry and visual grading procedures, also when tested against a phantom brain of known ventricular volume. The advantages and limitations of the present program are discussed. (orig.)

  5. microRNA in Cerebral Spinal Fluid as Biomarkers of Alzheimer’s Disease Risk After Brain Injury

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-15-1-0318 TITLE: microRNA in Cerebral Spinal Fluid as Biomarkers of Alzheimer’s Disease Risk After Brain Injury...After Brain Injury 5b. GRANT NUMBER AZ14046 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) J 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...responses to brain injury that precede, and likely drive, changes in protein expression that lead to the development of AD. We have additional preliminary

  6. MRI of the brain stem using fluid attenuated inversion recivery pulse sequences

    International Nuclear Information System (INIS)

    De Coene, B.; Hajnal, J.V.; Pennock, J.M.; Bydder, G.M.

    1993-01-01

    Heavily T2-weighted fluid-attenuated inversion recovery (FLAIR) sequences with inversion times of 2000-2500 ms and echo times of 130-200 ms were used to image the brain stem of a normal adult and five patients. These sequences produce high signal from many white matter tracts and display high lesion contrast. The corticospinal and parietopontine tracts, lateral and medial lemnisci, superior and inferior cerebellar peduncles, medial longitudinal fasciculi, thalamo-olivary tracts the cuneate and gracile fasiculi gave high signal and were directly visualised. The oculomotor and trigeminal nerves were demonstrated within the brain stem. Lesions not seen with conventional T2-weighted spin echo sequences were seen with high contrast in patients with infarction, multiple sclerosis, sarcoidosis, chunt obstruction and metastatic tumour. The anatomical detail and high lesion contrast given by the FLAIR pulse sequence appear likely to be of value in diagnosis of disease in the brain stem. (orig.)

  7. Miniature magnetic fluid seal working in liquid environments

    Energy Technology Data Exchange (ETDEWEB)

    Mitamura, Yoshinori, E-mail: ymitamura@par.odn.ne.jp [Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814 (Japan); Durst, Christopher A., E-mail: chris@procyrion.com [Procyrion, Inc., Houston, TX 77027 (United States)

    2017-06-01

    This study was carried out to develop a miniature magnetic fluid (MF) seal working in a liquid environment. The miniature MF seal is intended for use in a catheter blood pump. The requirements for the MF seal included a size of less than Ø4×4.5 mm, shaft diameter of 1 mm, sealing pressure of 200 mmHg, shaft speed of up to 40000 rpm, and life of one month. The miniature MF seal was composed of an NdFeB magnet (Ø4×Ø2×1) sandwiched between two pole pieces (Ø4×Ø1.1×0.5). A shield (Ø4×Ø1.2×1.5) was placed on the pole piece facing the liquid to minimize the influence of pump flow on the MF. The seal was installed on a Ø1 shaft. A seal was formed by injecting MF (Ms: 47.8 kA/m and η: 0.5 Pa·sec) into the gap between the pole pieces and the shaft. Total volume of the MF seal was 44 μL. A sealing pressure of 370 mmHg was obtained at motor speeds of 0-40,000 rpm. The seal remained perfect for 10 days in saline under the condition of a pump flow of 1.5 L/min (The test was terminated in accordance with plans). The seal remained intact after ethylene oxide sterilization during which the seal was exposed to high pressures. In conclusion, the newly developed MF seal will be useful for a catheter pump. - Highlights: • A miniature magnetic fluid seal working in a liquid environment was developed. • The seal can be installed on Ø1 mm shaft and can seal against 370 mmHg at 40000 rpm. • The magnetic fluid seal will be useful for a catheter blood pump.

  8. SPARC/osteonectin, an endogenous mechanism for targeting albumin to the blood-cerebrospinal fluid interface during brain development

    DEFF Research Database (Denmark)

    Liddelow, S A; Dziegielewska, K M; Møllgård, K

    2011-01-01

    Specialized populations of choroid plexus epithelial cells have previously been shown to be responsible for the transfer of individual plasma proteins from blood to the cerebrospinal fluid (CSF), contributing to their characteristically high concentrations in CSF of the developing brain. The mech......Specialized populations of choroid plexus epithelial cells have previously been shown to be responsible for the transfer of individual plasma proteins from blood to the cerebrospinal fluid (CSF), contributing to their characteristically high concentrations in CSF of the developing brain....... The mechanism of this protein transfer remains elusive. Using a marsupial, Monodelphis domestica, we demonstrate that the albumin-binding protein SPARC (osteonectin/BM-40/culture-shock protein) is present in a subset of choroid plexus epithelial cells from its first appearance, throughout development...

  9. Osmotic generation of 'anomalous' fluid pressures in geological environments

    Science.gov (United States)

    Neuzii, C.E.

    2000-01-01

    Osmotic pressures are generated by differences in chemical potential of a solution across a membrane. But whether osmosis can have a significant effect on the pressure of fluids in geological environments has been controversial, because the membrane properties of geological media are poorly understood. 'Anomalous' pressures - large departures from hydrostatic pressure that are not explicable in terms of topographic or fluid-density effects are widely found in geological settings, and are commonly considered to result from processes that alter the pore or fluid volume, which in turn implies crustal changes happening at a rate too slow to observe directly. Yet if osmosis can explain some anomalies, there is no need to invoke such dynamic geological processes in those cases. Here I report results of a nine- year in situ measurement of fluid pressures and solute concentrations in shale that are consistent with the generation of large (up to 20 MPa) osmotic-pressure anomalies which could persist for tens of millions of years. Osmotic pressures of this magnitude and duration can explain many of the pressure anomalies observed in geological settings. The require, however, small shale porosity and large contrasts in the amount of dissolved solids in the pore waters - criteria that may help to distinguish between osmotic and crystal-dynamic origins of anomalous pressures.

  10. A Proposed Neurologic Pathway for Scalp Acupuncture: Trigeminal Nerve-Meninges-Cerebrospinal Fluid-Contacting Neurons-Brain.

    Science.gov (United States)

    Wang, Shuya; Liu, Kun; Wang, Yuan; Wang, Shuyou; He, Xun; Cui, Xiang; Gao, Xinyan; Zhu, Bing

    2017-10-01

    Objective: Scalp acupuncture is a somatic stimulation therapy that produces prominent clinical effects when used to treat cerebral diseases. However, this acupuncture's therapeutic mechanisms have not yet been well-addressed. Scalp acupoints are innervated by the trigeminal nerve, which is coincident with the intracranial sensory afferents as well as with the meningeal vessels. In recent years, cerebrospinal fluid-contacting neurons have been found and proved to transmit allergic substances between brain the parenchyma and meninges, representing a possible network between scalp acupuncture and the brain. The aim of the current study was to observe the connections between scalp acupoints and the meninges and to establish a possible mechanism for scalp acupuncture. Materials and Methods: Twenty-five adult Sprague-Dawley rats were used for the present study. Evans Blue dye (Sigma Chemical Co, St. Louis, MO) was injected though each rat's caudal vein after trigeminal stimulation for plasma extravasation observation. Cerebral blood flow (CBF) values of the rat's brain surface were measured at different timepoints before and after electroacupuncture (EA) on GB 15 ( Toulinqi ) or ST 36 ( Zusanli ). Results: These preliminary studies indicated that neurogenic plasma extravasation on a rat's skin and dura mater after mechanical or electrical stimulation of the trigeminal nerves is a reliable way to show the pathologic connection between scalp acupoints and the meninges. Moreover, CBF of the rat's brain surface is increased significantly after EA stimulation at GB 15 ( Toulinqi ), which is located in the receptive field of the supraorbital nerve. Conclusions: These findings suggest that the mechanism of scalp acupuncture might lie in the specific neurologic pathway that could be termed as trigeminal nerve-meninges-cerebrospinal fluid-contacting neurons-brain , which is a possible shortcut to brain functional regulation and cerebral disease treatment.

  11. Aquaporin-4 facilitator TGN-073 promotes interstitial fluid circulation within the blood-brain barrier: [17O]H2O JJVCPE MRI study.

    Science.gov (United States)

    Huber, Vincent J; Igarashi, Hironaka; Ueki, Satoshi; Kwee, Ingrid L; Nakada, Tsutomu

    2018-06-13

    The blood-brain barrier (BBB), which imposes significant water permeability restriction, effectively isolates the brain from the systemic circulation. Seemingly paradoxical, the abundance of aquaporin-4 (AQP-4) on the inside of the BBB strongly indicates the presence of unique water dynamics essential for brain function. On the basis of the highly specific localization of AQP-4, namely, astrocyte end feet at the glia limitans externa and pericapillary Virchow-Robin space, we hypothesized that the AQP-4 system serves as an interstitial fluid circulator, moving interstitial fluid from the glia limitans externa to pericapillary Virchow-Robin space to ensure proper glymphatic flow draining into the cerebrospinal fluid. The hypothesis was tested directly using the AQP-4 facilitator TGN-073 developed in our laboratory, and [O]H2O JJ vicinal coupling proton exchange MRI, a method capable of tracing water molecules delivered into the blood circulation. The results unambiguously showed that facilitation of AQP-4 by TGN-073 increased turnover of interstitial fluid through the system, resulting in a significant reduction in [O]H2O contents of cortex with normal flux into the cerebrospinal fluid. The study further suggested that in addition to providing the necessary water for proper glymphatic flow, the AQP-4 system produces a water gradient within the interstitial space promoting circulation of interstitial fluid within the BBB.

  12. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    DEFF Research Database (Denmark)

    De Vis, J B; Zwanenburg, J J; van der Kleij, L A

    2016-01-01

    OBJECTIVES: To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T2 of the CSF relates to brain atrophy. METHODS: Twenty-eight subjects [mean age 64 (sd 2) years] were included; T1-weighted and CSF MRI were......) and medial temporal lobe atrophy (MTA)] was evaluated. RESULTS: Relative total, peripheral subarachnoidal, and ventricular VCSF increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T2...... be a marker of neurodegenerative disease. KEY POINTS: • A 1:11 min CSF MRI volumetric sequence can evaluate brain atrophy. • CSF MRI provides accurate atrophy assessment without partial volume effects. • CSF MRI data can be processed quickly without user interaction. • The measured T 2 of the CSF is related...

  13. Structural Brain Abnormalities in Successfully Treated HIV Infection: Associations With Disease and Cerebrospinal Fluid Biomarkers.

    Science.gov (United States)

    van Zoest, Rosan A; Underwood, Jonathan; De Francesco, Davide; Sabin, Caroline A; Cole, James H; Wit, Ferdinand W; Caan, Matthan W A; Kootstra, Neeltje A; Fuchs, Dietmar; Zetterberg, Henrik; Majoie, Charles B L M; Portegies, Peter; Winston, Alan; Sharp, David J; Gisslén, Magnus; Reiss, Peter

    2017-12-27

    Brain structural abnormalities have been reported in persons living with human immunodeficiency virus (HIV; PLWH) who are receiving suppressive combination antiretroviral therapy (cART), but their pathophysiology remains unclear. We investigated factors associated with brain tissue volumes and white matter microstructure (fractional anisotropy) in 134 PLWH receiving suppressive cART and 79 comparable HIV-negative controls, aged ≥45 years, from the Comorbidity in Relation to AIDS cohort, using multimodal neuroimaging and cerebrospinal fluid biomarkers. Compared with controls, PLWH had lower gray matter volumes (-13.7 mL; 95% confidence interval, -25.1 to -2.2) and fractional anisotropy (-0.0073; 95% confidence interval, -.012 to -.0024), with the largest differences observed in those with prior clinical AIDS. Hypertension and the soluble CD14 concentration in cerebrospinal fluid were associated with lower fractional anisotropy. These associations were independent of HIV serostatus (Pinteraction = .32 and Pinteraction = .59, respectively) and did not explain the greater abnormalities in brain structure in relation to HIV infection. The presence of lower gray matter volumes and more white matter microstructural abnormalities in well-treated PLWH partly reflect a combination of historical effects of AIDS, as well as the more general influence of systemic factors, such as hypertension and ongoing neuroinflammation. Additional mechanisms explaining the accentuation of brain structure abnormalities in treated HIV infection remain to be identified. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  14. Quality control of computational fluid dynamics in indoor environments

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft; Nielsen, P. V.

    2003-01-01

    Computational fluid dynamics (CFD) is used routinely to predict air movement and distributions of temperature and concentrations in indoor environments. Modelling and numerical errors are inherent in such studies and must be considered when the results are presented. Here, we discuss modelling as...... the quality of CFD calculations, as well as guidelines for the minimum information that should accompany all CFD-related publications to enable a scientific judgment of the quality of the study....

  15. Ovarian cyst fluid of serous ovarian tumors contains large quantities of the brain amino acid N-acetylaspartate.

    OpenAIRE

    Kolwijck, E.; Wevers, R.A.; Engelke, U.F.H.; Woudenberg, J.; Bulten, J.; Blom, H.J.; Massuger, L.F.A.G.

    2010-01-01

    BACKGROUND: In humans, N-acetyl L-aspartate (NAA) has not been detected in other tissues than the brain. The physiological function of NAA is yet undefined. Recently, it has been suggested that NAA may function as a molecular water pump, responsible for the removal of large amounts of water from the human brain. Ovarian tumors typically present as large cystic masses with considerable fluid accumulation. METHODOLOGY AND PRINCIPAL FINDINGS: Using Gas Chromatography-Mass Spectrometry, we demons...

  16. FAST - A multiprocessed environment for visualization of computational fluid dynamics

    International Nuclear Information System (INIS)

    Bancroft, G.V.; Merritt, F.J.; Plessel, T.C.; Kelaita, P.G.; Mccabe, R.K.

    1991-01-01

    The paper presents the Flow Analysis Software Toolset (FAST) to be used for fluid-mechanics analysis. The design criteria for FAST including the minimization of the data path in the computational fluid-dynamics (CFD) process, consistent user interface, extensible software architecture, modularization, and the isolation of three-dimensional tasks from the application programmer are outlined. Each separate process communicates through the FAST Hub, while other modules such as FAST Central, NAS file input, CFD calculator, surface extractor and renderer, titler, tracer, and isolev might work together to generate the scene. An interprocess communication package making it possible for FAST to operate as a modular environment where resources could be shared among different machines as well as a single host is discussed. 20 refs

  17. The Designed Environment and How it Affects Brain Morphology and Mental Health.

    Science.gov (United States)

    Golembiewski, Jan A

    2016-01-01

    The environment is inextricably related to mental health. Recent research replicates findings of a significant, linear correlation between a childhood exposure to the urban environment and psychosis. Related studies also correlate the urban environment and aberrant brain morphologies. These findings challenge common beliefs that the mind and brain remain neutral in the face of worldly experience. There is a signature within these neurological findings that suggests that specific features of design cause and trigger mental illness. The objective in this article is to work backward from the molecular dynamics to identify features of the designed environment that may either trigger mental illness or protect against it. This review analyzes the discrete functions putatively assigned to the affected brain areas and a neurotransmitter called dopamine, which is the primary target of most antipsychotic medications. The intention is to establish what the correlations mean in functional terms, and more specifically, how this relates to the phenomenology of urban experience. In doing so, environmental mental illness risk factors are identified. Having established these relationships, the review makes practical recommendations for those in public health who wish to use the environment itself as a tool to improve the mental health of a community through design. © The Author(s) 2015.

  18. Prostaglandin D Synthase Isoforms from Cerebrospinal Fluid Vary with Brain Pathology

    Directory of Open Access Journals (Sweden)

    Michael G. Harrington

    2006-01-01

    Full Text Available Glutathione independent prostaglandin D synthase (Swissprot P41222, PTGDS has been identified in human cerebrospinal fluid and some changes in PTGDS in relation to disease have been reported. However, little is known of the extent that PTGDS isoforms fluctuate across a large range of congenital and acquired diseases. The purpose of this study was to examine changes in PTGDS isoforms in such a population. Spinal fluid from 22 healthy study participants (normal controls with no classifiable neurological or psychiatric diagnosis was obtained and PTGDS isoforms were identified by specific immunostaining and mass spectrometry after denaturing 2D gel electrophoresis. The PTGDS isoforms in controls consisted of five charge isoforms that were always present and a small number of occasional, low abundance isoforms. A qualitative survey of 98 different people with a wide range of congenital and acquired diseases revealed striking changes. Loss of the control isoforms occurred in congenital malformations of the nervous system. Gain of additional isoforms occurred in some degenerative, most demyelinating and vasculitic diseases, as well as in Creutzfeldt-Jakob disease. A retrospective analysis of published data that quantified relative amounts of PTGDS in multiple sclerosis, schizophrenia and Parkinson’s disease compared to controls revealed significant dysregulation. It is concluded that qualitative and quantitative fluctuations of cerebrospinal fluid PTGDS isoforms reflect both major and subtle brain pathophysiology.

  19. Environment and brain plasticity: towards an endogenous pharmacotherapy.

    Science.gov (United States)

    Sale, Alessandro; Berardi, Nicoletta; Maffei, Lamberto

    2014-01-01

    Brain plasticity refers to the remarkable property of cerebral neurons to change their structure and function in response to experience, a fundamental theoretical theme in the field of basic research and a major focus for neural rehabilitation following brain disease. While much of the early work on this topic was based on deprivation approaches relying on sensory experience reduction procedures, major advances have been recently obtained using the conceptually opposite paradigm of environmental enrichment, whereby an enhanced stimulation is provided at multiple cognitive, sensory, social, and motor levels. In this survey, we aim to review past and recent work concerning the influence exerted by the environment on brain plasticity processes, with special emphasis on the underlying cellular and molecular mechanisms and starting from experimental work on animal models to move to highly relevant work performed in humans. We will initiate introducing the concept of brain plasticity and describing classic paradigmatic examples to illustrate how changes at the level of neuronal properties can ultimately affect and direct key perceptual and behavioral outputs. Then, we describe the remarkable effects elicited by early stressful conditions, maternal care, and preweaning enrichment on central nervous system development, with a separate section focusing on neurodevelopmental disorders. A specific section is dedicated to the striking ability of environmental enrichment and physical exercise to empower adult brain plasticity. Finally, we analyze in the last section the ever-increasing available knowledge on the effects elicited by enriched living conditions on physiological and pathological aging brain processes.

  20. Preliminary analysis of proton magnetic resonance 1D spectra of cerebrospinal fluid and brain cancer extracts

    International Nuclear Information System (INIS)

    Toczylowska, B.; Jozwik, A.; Kierul, K.; Matysiak, Z.; Sidor, M.; Wojcik, J.

    1999-01-01

    In series of cerebrospinal fluid samples from 25 patients proton spectra of magnetic resonance were measured. The spectra were measured also for series of brain tumor tissue extracts received from another 25 patients. This paper presents an attempt to apply statistical methods of image recognition for spectra analysis of the two measured series

  1. Cerebrospinal Fluid and Interstitial Fluid Motion via the Glymphatic Pathway Modelled by Optimal Mass Transport

    OpenAIRE

    Benveniste, Helene; Nedergaard, Maikan; Lee, Hedok; Gao, Yi; Tannenbaum, Allen; Ratner, Vadim

    2016-01-01

    It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the `glymphatic pathway' plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs [1,2]. It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly throu...

  2. An evaluation and comparison of intraventricular, intraparenchymal, and fluid-coupled techniques for intracranial pressure monitoring in patients with severe traumatic brain injury.

    Science.gov (United States)

    Vender, John; Waller, Jennifer; Dhandapani, Krishnan; McDonnell, Dennis

    2011-08-01

    Intracranial pressure measurements have become one of the mainstays of traumatic brain injury management. Various technologies exist to monitor intracranial pressure from a variety of locations. Transducers are usually placed to assess pressure in the brain parenchyma and the intra-ventricular fluid, which are the two most widely accepted compartmental monitoring sites. The individual reliability and inter-reliability of these devices with and without cerebrospinal fluid diversion is not clear. The predictive capability of monitors in both of these sites to local, regional, and global changes also needs further clarification. The technique of monitoring intraventricular pressure with a fluid-coupled transducer system is also reviewed. There has been little investigation into the relationship among pressure measurements obtained from these two sources using these three techniques. Eleven consecutive patients with severe, closed traumatic brain injury not requiring intracranial mass lesion evacuation were admitted into this prospective study. Each patient underwent placement of a parenchymal and intraventricular pressure monitor. The ventricular catheter tubing was also connected to a sensor for fluid-coupled measurement. Pressure from all three sources was measured hourly with and without ventricular drainage. Statistically significant correlation within each monitoring site was seen. No monitoring location was more predictive of global pressure changes or more responsive to pressure changes related to patient stimulation. However, the intraventricular pressure measurements were not reliable in the presence of cerebrospinal fluid drainage whereas the parenchymal measurements remained unaffected. Intraparenchymal pressure monitoring provides equivalent, statistically similar pressure measurements when compared to intraventricular monitors in all care and clinical settings. This is particularly valuable when uninterrupted cerebrospinal fluid drainage is desirable.

  3. The anti-apoptotic effect of fluid mechanics preconditioning by cells membrane and mitochondria in rats brain microvascular endothelial cells.

    Science.gov (United States)

    Tian, Shan; Zhu, Fengping; Hu, Ruiping; Tian, Song; Chen, Xingxing; Lou, Dan; Cao, Bing; Chen, Qiulei; Li, Bai; Li, Fang; Bai, Yulong; Wu, Yi; Zhu, Yulian

    2018-01-01

    Exercise preconditioning is a simple and effective way to prevent ischemia. This paper further provided the mechanism in hemodynamic aspects at the cellular level. To study the anti-apoptotic effects of fluid mechanics preconditioning, Cultured rats brain microvascular endothelial cells were given fluid intervention in a parallel plate flow chamber before oxygen glucose deprivation. It showed that fluid mechanics preconditioning could inhibit the apoptosis of endothelial cells, and this process might be mediated by the shear stress activation of Tie-2 on cells membrane surface and Bcl-2 on the mitochondria surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue.

    Science.gov (United States)

    Jost, Gregor; Frenzel, Thomas; Lohrke, Jessica; Lenhard, Diana Constanze; Naganawa, Shinji; Pietsch, Hubertus

    2017-07-01

    Signal hyperintensity on unenhanced MRI in certain brain regions has been reported after multiple administrations of some, but not all, gadolinium-based contrast agents (GBCAs). One potential initial pathway of GBCA entry into the brain, infiltration from blood into the cerebrospinal fluid (CSF), was systematically evaluated in this preclinical study. GBCA infiltration and distribution in the CSF were investigated in healthy rats using repeated fluid-attenuated MRI up to 4 h after high-dose (1.8 mmol/kg) administration of six marketed and one experimental GBCA. Additionally, gadolinium measurements in CSF, blood and brain tissue samples (after 24 h) were performed using inductively coupled plasma mass spectrometry. Enhanced MRI signals in the CSF spaces with similar distribution kinetics were observed for all GBCAs. No substantial differences in the gadolinium concentrations among the marketed GBCAs were found in the CSF, blood or brain tissue. After 4.5 h, the concentration in the CSF was clearly higher than in blood but was almost completely cleared and lower than the brain tissue concentration after 24 h. In contrast to the brain signal hyperintensities, no differences in penetration and distribution into the CSF of healthy rats exist among the marketed GBCAs. • Gadolinium-based contrast agents can cross the blood-CSF barrier. • Fluid-attenuated MRI shows GBCA distribution with CSF flow. • GBCA structure and physicochemical properties do not impact CSF penetration and distribution. • GBCA clearance from CSF was almost complete within 24 h in rats. • CSF is a potential pathway of GBCA entry into the brain.

  5. Ivy Sign on Fluid-Attenuated Inversion Recovery Images in Moyamoya Disease: Correlation with Clinical Severity and Old Brain Lesions

    OpenAIRE

    Seo, Kwon-Duk; Suh, Sang Hyun; Kim, Yong Bae; Kim, Ji Hwa; Ahn, Sung Jun; Kim, Dong-Seok; Lee, Kyung-Yul

    2015-01-01

    Purpose Leptomeningeal collateral, in moyamoya disease (MMD), appears as an ivy sign on fluid-attenuated inversion-recovery (FLAIR) images. There has been little investigation into the relationship between presentation of ivy signs and old brain lesions. We aimed to evaluate clinical significance of ivy signs and whether they correlate with old brain lesions and the severity of clinical symptoms in patients with MMD. Materials and Methods FLAIR images of 83 patients were reviewed. Each cerebr...

  6. Time-dependent dynamical behavior of surface tension on rotating fluids under microgravity environment

    Science.gov (United States)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.

    1988-01-01

    Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) step functions of spin-up and spin-down in a low gravity environment, and (3) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds.

  7. Thermal and fluid simulation of the environment under the dashboard, compared with measurement data

    Science.gov (United States)

    Popescu, C. S.; Sirbu, G. M.; Nita, I. C.

    2017-10-01

    The development of vehicles during the last decade is related to the evolution of electronic systems added in order to increase the safety and the number of services available on board, such as advanced driver-assistance systems (ADAS). Cars already have a complex computer network, with electronic control units (ECUs) connected to each other and receiving information from many sensors. The ECUs transfer an important heat power to the environment, while proper operating conditions need to be provided to ensure their reliability at high and low temperature, vibration and humidity. In a car cabin, electronic devices are usually placed in the compartment under the dashboard, an enclosed space designed for functional purposes. In the early stages of the vehicle design it has become necessary to analyse the environment under dashboard, by the use of Computational Fluid Dynamics (CFD) simulations and measurements. This paper presents the cooling of heat sinks by natural convection, a thermal and fluid simulation of the environment under the dashboard compared with test data.

  8. The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review

    Directory of Open Access Journals (Sweden)

    Veening Jan G

    2010-01-01

    Full Text Available Abstract The cerebrospinal fluid (CSF system provides nutrients to and removes waste products from the brain. Recent findings suggest, however, that in addition, the CSF contains message molecules in the form of actively released neuroactive substances. The concentrations of these vary between locations, suggesting they are important for the changes in brain activity that underlie different brain states, and induce different sensory input and behavioral output relationships. The cranial CSF displays a rapid caudally-directed ventricular flow followed by a slower rostrally-directed subarachnoid flow (mainly towards the cribriform plate and from there into the nasal lymphatics. Thus, many brain areas are exposed to and can be influenced by substances contained in the CSF. In this review we discuss the production and flow of the CSF, including the mechanisms involved in the regulation of its composition. In addition, the available evidence for the release of neuropeptides and other neuroactive substances into the CSF is reviewed, with particular attention to the selective effects of these on distant downstream receptive brain areas. As a conclusion we suggest that (1 the flowing CSF is involved in more than just nutrient and waste control, but is also used as a broadcasting system consisting of coordinated messages to a variety of nearby and distant brain areas; (2 this special form of volume transmission underlies changes in behavioral states.

  9. Impact of Hot Environment on Fluid and Electrolyte Imbalance, Renal Damage, Hemolysis, and Immune Activation Postmarathon

    Directory of Open Access Journals (Sweden)

    Rodrigo Assunção Oliveira

    2017-01-01

    Full Text Available Previous studies have demonstrated the physiological changes induced by exercise exposure in hot environments. We investigated the hematological and oxidative changes and tissue damage induced by marathon race in different thermal conditions. Twenty-six male runners completed the São Paulo International Marathon both in hot environment (HE and in temperate environment (TE. Blood and urine samples were collected 1 day before, immediately after, 1 day after, and 3 days after the marathon to analyze the hematological parameters, electrolytes, markers of tissue damage, and oxidative status. In both environments, the marathon race promotes fluid and electrolyte imbalance, hemolysis, oxidative stress, immune activation, and tissue damage. The marathon runner’s performance was approximately 13.5% lower in HE compared to TE; however, in HE, our results demonstrated more pronounced fluid and electrolyte imbalance, renal damage, hemolysis, and immune activation. Moreover, oxidative stress induced by marathon in HE is presumed to be related to protein/purine oxidation instead of other oxidative sources. Fluid and electrolyte imbalance and protein/purine oxidation may be important factors responsible for hemolysis, renal damage, immune activation, and impaired performance after long-term exercise in HE. Nonetheless, we suggested that the impairment on performance in HE was not associated to the muscle damage and lipoperoxidation.

  10. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Jost, Gregor; Frenzel, Thomas; Lohrke, Jessica; Pietsch, Hubertus [MR and CT Contrast Media Research, Bayer Pharma AG, Berlin (Germany); Lenhard, Diana Constanze [Charite, Institute of Vegetative Physiology, Berlin (Germany); Naganawa, Shinji [Nagoya University Graduate School of Medicine, Department of Radiology, Nagoya (Japan)

    2017-07-15

    Signal hyperintensity on unenhanced MRI in certain brain regions has been reported after multiple administrations of some, but not all, gadolinium-based contrast agents (GBCAs). One potential initial pathway of GBCA entry into the brain, infiltration from blood into the cerebrospinal fluid (CSF), was systematically evaluated in this preclinical study. GBCA infiltration and distribution in the CSF were investigated in healthy rats using repeated fluid-attenuated MRI up to 4 h after high-dose (1.8 mmol/kg) administration of six marketed and one experimental GBCA. Additionally, gadolinium measurements in CSF, blood and brain tissue samples (after 24 h) were performed using inductively coupled plasma mass spectrometry. Enhanced MRI signals in the CSF spaces with similar distribution kinetics were observed for all GBCAs. No substantial differences in the gadolinium concentrations among the marketed GBCAs were found in the CSF, blood or brain tissue. After 4.5 h, the concentration in the CSF was clearly higher than in blood but was almost completely cleared and lower than the brain tissue concentration after 24 h. In contrast to the brain signal hyperintensities, no differences in penetration and distribution into the CSF of healthy rats exist among the marketed GBCAs. (orig.)

  11. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue

    International Nuclear Information System (INIS)

    Jost, Gregor; Frenzel, Thomas; Lohrke, Jessica; Pietsch, Hubertus; Lenhard, Diana Constanze; Naganawa, Shinji

    2017-01-01

    Signal hyperintensity on unenhanced MRI in certain brain regions has been reported after multiple administrations of some, but not all, gadolinium-based contrast agents (GBCAs). One potential initial pathway of GBCA entry into the brain, infiltration from blood into the cerebrospinal fluid (CSF), was systematically evaluated in this preclinical study. GBCA infiltration and distribution in the CSF were investigated in healthy rats using repeated fluid-attenuated MRI up to 4 h after high-dose (1.8 mmol/kg) administration of six marketed and one experimental GBCA. Additionally, gadolinium measurements in CSF, blood and brain tissue samples (after 24 h) were performed using inductively coupled plasma mass spectrometry. Enhanced MRI signals in the CSF spaces with similar distribution kinetics were observed for all GBCAs. No substantial differences in the gadolinium concentrations among the marketed GBCAs were found in the CSF, blood or brain tissue. After 4.5 h, the concentration in the CSF was clearly higher than in blood but was almost completely cleared and lower than the brain tissue concentration after 24 h. In contrast to the brain signal hyperintensities, no differences in penetration and distribution into the CSF of healthy rats exist among the marketed GBCAs. (orig.)

  12. Cerebrospinal fluid leak (image)

    Science.gov (United States)

    ... brain and spinal cord by acting like a liquid cushion. The fluid allows the organs to be buoyant protecting them from blows or other trauma. Inside the skull the cerebrospinal fluid is contained by the dura which covers ...

  13. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Vis, J.B. de; Zwanenburg, J.J.; Kleij, L.A. van der; Spijkerman, J.M.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Biessels, G.J. [University Medical Center Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht (Netherlands); Petersen, E.T. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Hvidovre Hospital, Danish Research Centre for Magnetic Resonance, Hvidovre (Denmark)

    2016-05-15

    To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T{sub 2} of the CSF relates to brain atrophy. Twenty-eight subjects [mean age 64 (sd 2) years] were included; T{sub 1}-weighted and CSF MRI were performed. The first echo data of the CSF MRI sequence was used to obtain intracranial volume, CSF partial volume was measured voxel-wise to obtain CSF volume (V{sub CSF}) and the T{sub 2} of CSF (T{sub 2,CSF}) was calculated. The correlation between V{sub CSF} / T{sub 2,CSF} and brain atrophy scores [global cortical atrophy (GCA) and medial temporal lobe atrophy (MTA)] was evaluated. Relative total, peripheral subarachnoidal, and ventricular V{sub CSF} increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T{sub 2} of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T{sub 2} of the CSF is related to brain atrophy and could thus be a marker of neurodegenerative disease. (orig.)

  14. Home Reading Environment and Brain Activation in Preschool Children Listening to Stories.

    Science.gov (United States)

    Hutton, John S; Horowitz-Kraus, Tzipi; Mendelsohn, Alan L; DeWitt, Tom; Holland, Scott K

    2015-09-01

    Parent-child reading is widely advocated to promote cognitive development, including in recommendations from the American Academy of Pediatrics to begin this practice at birth. Although parent-child reading has been shown in behavioral studies to improve oral language and print concepts, quantifiable effects on the brain have not been previously studied. Our study used blood oxygen level-dependent functional magnetic resonance imaging to examine the relationship between home reading environment and brain activity during a story listening task in a sample of preschool-age children. We hypothesized that while listening to stories, children with greater home reading exposure would exhibit higher activation of left-sided brain regions involved with semantic processing (extraction of meaning). Nineteen 3- to 5-year-old children were selected from a longitudinal study of normal brain development. All completed blood oxygen level-dependent functional magnetic resonance imaging using an age-appropriate story listening task, where narrative alternated with tones. We performed a series of whole-brain regression analyses applying composite, subscale, and individual reading-related items from the validated StimQ-P measure of home cognitive environment as explanatory variables for neural activation. Higher reading exposure (StimQ-P Reading subscale score) was positively correlated (P eco-bio-developmental models of emergent literacy. Copyright © 2015 by the American Academy of Pediatrics.

  15. Green Mind Theory: How Brain-Body-Behaviour Links into Natural and Social Environments for Healthy Habits

    Directory of Open Access Journals (Sweden)

    Jules Pretty

    2017-06-01

    Full Text Available We propose a Green Mind Theory (GMT to link the human mind with the brain and body, and connect the body into natural and social environments. The processes are reciprocal: environments shape bodies, brains, and minds; minds change body behaviours that shape the external environment. GMT offers routes to improved individual well-being whilst building towards greener economies. It builds upon research on green exercise and nature-based therapies, and draws on understanding derived from neuroscience and brain plasticity, spiritual and wisdom traditions, the lifeways of original cultures, and material consumption behaviours. We set out a simple metaphor for brain function: a bottom brain stem that is fast-acting, involuntary, impulsive, and the driver of fight and flight behaviours; a top brain cortex that is slower, voluntary, the centre for learning, and the driver of rest and digest. The bottom brain reacts before thought and directs the sympathetic nervous system. The top brain is calming, directing the parasympathetic nervous system. Here, we call the top brain blue and the bottom brain red; too much red brain is bad for health. In modern high-consumption economies, life has often come to be lived on red alert. An over-active red mode impacts the gastrointestinal, immune, cardiovascular, and endocrine systems. We develop our knowledge of nature-based interventions, and suggest a framework for the blue brain-red brain-green mind. We show how activities involving immersive-attention quieten internal chatter, how habits affect behaviours across the lifecourse, how long habits take to be formed and hard-wired into daily practice, the role of place making, and finally how green minds could foster prosocial and greener economies. We conclude with observations on twelve research priorities and health interventions, and ten calls to action.

  16. Green Mind Theory: How Brain-Body-Behaviour Links into Natural and Social Environments for Healthy Habits.

    Science.gov (United States)

    Pretty, Jules; Rogerson, Mike; Barton, Jo

    2017-06-30

    We propose a Green Mind Theory (GMT) to link the human mind with the brain and body, and connect the body into natural and social environments. The processes are reciprocal: environments shape bodies, brains, and minds; minds change body behaviours that shape the external environment. GMT offers routes to improved individual well-being whilst building towards greener economies. It builds upon research on green exercise and nature-based therapies, and draws on understanding derived from neuroscience and brain plasticity, spiritual and wisdom traditions, the lifeways of original cultures, and material consumption behaviours. We set out a simple metaphor for brain function: a bottom brain stem that is fast-acting, involuntary, impulsive, and the driver of fight and flight behaviours; a top brain cortex that is slower, voluntary, the centre for learning, and the driver of rest and digest. The bottom brain reacts before thought and directs the sympathetic nervous system. The top brain is calming, directing the parasympathetic nervous system. Here, we call the top brain blue and the bottom brain red; too much red brain is bad for health. In modern high-consumption economies, life has often come to be lived on red alert. An over-active red mode impacts the gastrointestinal, immune, cardiovascular, and endocrine systems. We develop our knowledge of nature-based interventions, and suggest a framework for the blue brain-red brain-green mind. We show how activities involving immersive-attention quieten internal chatter, how habits affect behaviours across the lifecourse, how long habits take to be formed and hard-wired into daily practice, the role of place making, and finally how green minds could foster prosocial and greener economies. We conclude with observations on twelve research priorities and health interventions, and ten calls to action.

  17. Transcytosis in the blood–cerebrospinal fluid barrier of the mouse brain with an engineered receptor/ligand system

    Directory of Open Access Journals (Sweden)

    Héctor R Méndez-Gómez

    Full Text Available Crossing the blood–brain and the blood–cerebrospinal fluid barriers (BCSFB is one of the fundamental challenges in the development of new therapeutic molecules for brain disorders because these barriers prevent entry of most drugs from the blood into the brain. However, some large molecules, like the protein transferrin, cross these barriers using a specific receptor that transports them into the brain. Based on this mechanism, we engineered a receptor/ligand system to overcome the brain barriers by combining the human transferrin receptor with the cohesin domain from Clostridium thermocellum, and we tested the hybrid receptor in the choroid plexus of the mouse brain with a dockerin ligand. By expressing our receptor in choroidal ependymocytes, which are part of the BCSFB, we found that our systemically administrated ligand was able to bind to the receptor and accumulate in ependymocytes, where some of the ligand was transported from the blood side to the brain side.

  18. Plasticity of the worker bumble bee brain in relation to age and rearing environment

    OpenAIRE

    Jones, Beryl M.; Leonard, Anne S.; Papaj, Daniel R.; Gronenberg, Wulfila

    2013-01-01

    The environment experienced during development can dramatically affect the brain, with possible implications for sensory processing, learning and memory. Although the effects of single sensory modalities on brain development have been repeatedly explored, the additive or interactive effects of multiple modalities have been less thoroughly investigated. We asked how experience with multisensory stimuli affected brain development in the bumble bee, Bombus impatiens. First, to establish the time...

  19. Protein profiling of cerebrospinal fluid

    DEFF Research Database (Denmark)

    Simonsen, Anja H

    2012-01-01

    The cerebrospinal fluid (CSF) perfuses the brain and spinal cord. CSF contains proteins and peptides important for brain physiology and potentially also relevant for brain pathology. Hence, CSF is the perfect source to search for new biomarkers to improve diagnosis of neurological diseases as well...

  20. Amyloid-β oligomer detection by ELISA in cerebrospinal fluid and brain tissue.

    Science.gov (United States)

    Bruggink, Kim A; Jongbloed, Wesley; Biemans, Elisanne A L M; Veerhuis, Rob; Claassen, Jurgen A H R; Kuiperij, H Bea; Verbeek, Marcel M

    2013-02-15

    Amyloid-β (Aβ) deposits are important pathological hallmarks of Alzheimer's disease (AD). Aβ aggregates into fibrils; however, the intermediate oligomers are believed to be the most neurotoxic species and, therefore, are of great interest as potential biomarkers. Here, we have developed an enzyme-linked immunosorbent assay (ELISA) specific for Aβ oligomers by using the same capture and (labeled) detection antibody. The ELISA predominantly recognizes relatively small oligomers (10-25 kDa) and not monomers. In brain tissue of APP/PS1 transgenic mice, we found that Aβ oligomer levels increase with age. However, for measurements in human samples, pretreatment to remove human anti-mouse antibodies (HAMAs) was required. In HAMA-depleted human hippocampal extracts, the Aβ oligomer concentration was significantly increased in AD compared with nondemented controls. Aβ oligomer levels could also be quantified in pretreated cerebrospinal fluid (CSF) samples; however, no difference was detected between AD and control groups. Our data suggest that levels of small oligomers might not be suitable as biomarkers for AD. In addition, we demonstrate the importance of avoiding HAMA interference in assays to quantify Aβ oligomers in human body fluids. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Assaying of drugs in body fluids

    International Nuclear Information System (INIS)

    Braestrup, C.; Squires, R.F.

    1981-01-01

    The invention provides, in general terms, a process for determining the concentration of a psychotropically active benzodiazepine drug in blood or other body fluid or urine, including bringing a sample of the fluid or urine into contact with brain tissue and with tritium labelled molecules of a benzodiazepine which can bind reversibly to receptors of the brain tissue to induce binding of molecules of the unlabelled drug and of the tritium labelled benzodiazepine to the receptors, and determining the radioactivity of the brain tissue, preferably by scintillation counting. (author)

  2. Skylab fluid mechanics simulations: Oscillation, rotation, collision and coalescence of water droplets under low-gravity environment

    Science.gov (United States)

    Vaughan, O. H., Jr.; Hung, R. J.

    1975-01-01

    Skylab 4 crew members performed a series of demonstrations showing the oscillations, rotations, as well as collision coalescence of water droplets which simulate various physical models of fluids under low gravity environment. The results from Skylab demonstrations provide information and illustrate the potential of an orbiting space-oriented research laboratory for the study of more sophisticated fluid mechanic experiments. Experiments and results are discussed.

  3. Interstitial Fluid Flow: The Mechanical Environment of Cells and Foundation of Meridians

    Directory of Open Access Journals (Sweden)

    Wei Yao

    2012-01-01

    Full Text Available Using information from the deep dissection, microobservation, and measurement of acupoints in the upper and lower limbs of the human body, we developed a three-dimensional porous medium model to simulate the flow field using FLUENT software and to study the shear stress on the surface of interstitial cells (mast cells caused by interstitial fluid flow. The numerical simulation results show the following: (i the parallel nature of capillaries will lead to directional interstitial fluid flow, which may explain the long interstitial tissue channels or meridians observed in some experiments; (ii when the distribution of capillaries is staggered, increases in the velocity alternate, and the velocity tends to be uniform, which is beneficial for substance exchange; (iii interstitial fluid flow induces a shear stress, with magnitude of several Pa, on interstitial cell membranes, which will activate cells and lead to a biological response; (iv capillary and interstitial parameters, such as capillary density, blood pressure, capillary permeability, interstitial pressure, and interstitial porosity, affect the shear stress on cell surfaces. The numerical simulation results suggest that in vivo interstitial fluid flow constitutes the mechanical environment of cells and plays a key role in guiding cell activities, which may explain the meridian phenomena and the acupuncture effects observed in experiments.

  4. The behavior of surface tension on steady-state rotating fluids in the low gravity environments

    Science.gov (United States)

    Hung, R. J.; Leslie, Fred W.

    1987-01-01

    The effect of surface tension on steady-state rotating fluids in a low gravity environment is studied. All the values of the physical parameters used in these calculations, except in the low gravity environments, are based on the measurements carried out by Leslie (1985) in the low gravity environment of a free-falling aircraft. The profile of the interface of two fluids is derived from Laplace's equation relating the pressure drop across an interface to the radii of curvature which has been applied to a low gravity rotating bubble that contacts the container boundary. The interface shape depends on the ratio of gravity to surface tension forces, the ratio of centrifugal to surface tension forces, the contact radius of the interface to the boundary, and the contact angle. The shape of the bubble is symmetric about its equator in a zero-gravity environment. This symmetry disappears and gradually shifts to parabolic profiles as the gravity environment becomes non-zero. The location of the maximum radius of the bubble moves upward from the center of the depth toward the top boundary of the cylinder as gravity increases. The contact radius of interface to the boundary r0 at the top side of cylinder increases and r0 at the bottom side of the cylinder decreases as the gravity environment increases from zero to 1 g.

  5. Cerebrospinal fluid B cells correlate with early brain inflammation in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Bettina Kuenz

    Full Text Available BACKGROUND: There is accumulating evidence from immunological, pathological and therapeutic studies that B cells are key components in the pathophysiology of multiple sclerosis (MS. METHODOLOGY/PRINCIPAL FINDINGS: In this prospective study we have for the first time investigated the differences in the inflammatory response between relapsing and progressive MS by comparing cerebrospinal fluid (CSF cell profiles from patients at the onset of the disease (clinically isolated syndrome, CIS, relapsing-remitting (RR and chronic progressive (CP MS by flow cytometry. As controls we have used patients with other neurological diseases. We have found a statistically significant accumulation of CSF mature B cells (CD19+CD138- and plasma blasts (CD19+CD138+ in CIS and RRMS. Both B cell populations were, however, not significantly increased in CPMS. Further, this accumulation of B cells correlated with acute brain inflammation measured by magnetic resonance imaging and with inflammatory CSF parameters such as the number of CSF leukocytes, intrathecal immunoglobulin M and G synthesis and intrathecal production of matrix metalloproteinase (MMP-9 and the B cell chemokine CxCL-13. CONCLUSIONS: Our data support an important role of CSF B cells in acute brain inflammation in CIS and RRMS.

  6. The Emerging Relationship Between Interstitial Fluid-Cerebrospinal Fluid Exchange, Amyloid-β, and Sleep.

    Science.gov (United States)

    Boespflug, Erin L; Iliff, Jeffrey J

    2018-02-15

    Amyloid-β (Aβ) plaques are a key histopathological hallmark of Alzheimer's disease (AD), and soluble Aβ species are believed to play an important role in the clinical development of this disease. Emerging biomarker data demonstrate that Aβ plaque deposition begins decades before the onset of clinical symptoms, suggesting that understanding the biological determinants of the earliest steps in the development of AD pathology may provide key opportunities for AD treatment and prevention. Although a clinical association between sleep disruption and AD has long been appreciated, emerging clinical studies and insights from the basic neurosciences have shed important new light on how sleep and Aβ homeostasis may be connected in the setting of AD. Aβ, like many interstitial solutes, is cleared in part through the exchange of brain interstitial fluid and cerebrospinal fluid along a brain-wide network of perivascular pathways recently termed the glymphatic system. Glymphatic function is primarily a feature of the sleeping brain, rather than the waking brain, and is slowed in the aging and posttraumatic brain. These changes may underlie the diurnal fluctuations in interstitial and cerebrospinal fluid Aβ levels observed in both the rodent and the human. These and other emerging studies suggest that age-related sleep disruption may be one key factor that renders the aging brain vulnerable to Aβ deposition and the development of AD. If this is true, sleep may represent a key modifiable risk factor or therapeutic target in the preclinical phases of AD. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Fluid reasoning and the developing brain

    Directory of Open Access Journals (Sweden)

    Emilio Ferrer

    2009-05-01

    Full Text Available Fluid reasoning is a cornerstone of human cognition, both during development and in adulthood. In spite of this, the neural mechanisms underlying the development of fluid reasoning are largely unknown. Here we provide an overview of this important cognitive ability, how it is measured, how it changes over childhood and adolescence, and what is known about its neurobiological underpinnings. We review important findings from the psychometric, cognitive, and neuroscientific literatures, and outline important future directions for this interdisciplinary research.

  8. Fluid therapy in neurotrauma: basic and clinical concepts

    Directory of Open Access Journals (Sweden)

    Hernando Raphael Alvis-Miranda

    2014-01-01

    Full Text Available The patient with head trauma is a challenge for the emergency physician and for the neurosurgeon. Currently traumatic brain injury constitutes a public health problem. Knowledge of the various therapeutic strategies to provide support in the prehospital and perioperative are essential for optimal care. Rapid infusion of large volumes of crystalloids to restore blood volume and blood pressure quickly is now the standard treatment for patients with combined TBI and HS The fluid in patients with brain and especially in the carrier of brain injury is a critical topic; we present a review of the literature about the history, physiology of current fluid preparations, and a discussion regard the use of fluid therapy in traumatic brain injury and decompressive craniectomy.http://dx.doi.org/10.7175/rhc.v5i1.636

  9. Interface behavior of a multi-layer fluid configuration subject to acceleration in a microgravity environment, supplement 1. M.S. Thesis

    Science.gov (United States)

    Lyell, M. J.; Roh, Michael

    1991-01-01

    With the increasing opportunities for research in a microgravity environment, there arises a need for understanding fluid mechanics under such conditions. In particular, a number of material processing configurations involve fluid-fluid interfaces which may experience instabilities in the presence of external forcing. In a microgravity environment, these accelerations may be periodic or impulse-type in nature. This research investigates the behavior of a multi-layer idealized fluid configuration which is infinite in extent. The analysis is linear, and each fluid region is considered inviscid, incompressible, and immiscible. An initial parametric study of confiquration stability in the presence of a constant acceleration field is performed. The zero mean gravity limit case serves as the base state for the subsequent time-dependent forcing cases. A stability analysis of the multi-layer fluid system in the presence of periodic forcing is investigated. Floquet theory is utilized. A parameter study is performed, and regions of stability are identified. For the impulse-type forcing case, asymptotic stability is established for the configuration. Using numerical integration, the time response of the interfaces is determined.

  10. Prediction of brain target site concentrations on the basis of CSF PK : impact of mechanisms of blood-to-brain transport and within brain distribution

    OpenAIRE

    Westerhout, J.

    2014-01-01

    In the development of drugs for the treatment of central nervous system (CNS) disorders, the prediction of human CNS drug action is a big challenge. Direct measurement of brain extracellular fluid (brainECF) concentrations is highly restricted in human. Therefore, unbound drug concentrations in human cerebrospinal fluid (CSF) are used as a surrogate for human brainECF concentrations. Due to qualitative and quantitative differences in processes that govern the pharmacokinetics (PK) of drugs in...

  11. Brain Gene Expression Signatures From Cerebrospinal Fluid Exosome RNA Profiling

    Science.gov (United States)

    Zanello, S. B.; Stevens, B.; Calvillo, E.; Tang, R.; Gutierrez Flores, B.; Hu, L.; Skog, J.; Bershad, E.

    2016-01-01

    While the Visual Impairment and Intracranial Pressure (VIIP) syndrome observations have focused on ocular symptoms, spaceflight has been also associated with a number of other performance and neurologic signs, such as headaches, cognitive changes, vertigo, nausea, sleep/circadian disruption and mood alterations, which, albeit likely multifactorial, can also result from elevation of intracranial pressure (ICP). We therefore hypothesize that these various symptoms are caused by disturbances in the neurophysiology of the brain structures and are correlated with molecular markers in the cerebrospinal fluid (CSF) as indicators of neurophysiological changes. Exosomes are 30-200 nm microvesicles shed into all biofluids, including blood, urine, and CSF, carrying a highly rich source of intact protein and RNA cargo. Exosomes have been identified in human CSF, and their proteome and RNA pool is a potential new reservoir for biomarker discovery in neurological disorders. The purpose of this study is to investigate changes in brain gene expression via exosome analysis in patients suffering from ICP elevation of varied severity (idiopathic intracranial hypertension -IIH), a condition which shares some of the neuroophthalmological features of VIIP, as a first step toward obtaining evidence suggesting that cognitive function and ICP levels can be correlated with biomarkers in the CSF. Our preliminary work, reported last year, validated the exosomal technology applicable to CSF analysis and demonstrated that it was possible to obtain gene expression evidence of inflammation processes in traumatic brain injury patients. We are now recruiting patients with suspected IIH requiring lumbar puncture at Baylor College of Medicine. Both CSF (5 ml) and human plasma (10 ml) are being collected in order to compare the pattern of differentially expressed genes observed in CSF and in blood. Since blood is much more accessible than CSF, we would like to determine whether plasma biomarkers for

  12. Various irrigation fluids affect postoperative brain edema and cellular damage during experimental neurosurgery in rats.

    Science.gov (United States)

    Doi, Kazuhisa; Kawano, Takeshi; Morioka, Yujiro; Fujita, Yasutaka; Nishimura, Masuhiro

    2006-12-01

    This study was conducted to investigate how various irrigation fluids used during neurosurgical procedures affect the degree of postoperative brain edema and cellular damage during experimental neurosurgery in rats. The cerebral cortex was exposed and incised crosswise with a surgical knife under irrigation with an artificial CSF, lactated Ringer's solution, or normal saline. Four hours after injury, irrigation was stopped and brain tissue samples were obtained from injured and uninjured sites. Specific gravity, cerebrovascular permeability, and TTC staining of the samples were evaluated. Incision and irrigation of the brain were not performed on the control group. At the injured site, specific gravities of the samples in the normal saline group and the lactated Ringer's solution group were significantly lower than the specific gravity in the artificial CSF group. The EB concentration was significantly higher in the lactated Ringer's solution group and relatively high in the normal saline group as compared with the artificial CSF group. TTC staining did not differ significantly between the artificial CSF group and the control group. It was significantly lower in the lactated Ringer's solution group and the normal saline group than in the control group and the artificial CSF group. As compared with normal saline and lactated Ringer's solution, artificial CSF reduced postoperative brain edema, cerebrovascular permeability, and cellular damage in sites injured by experimental neurosurgery in rats.

  13. Mechanisms that determine the internal environment of the developing brain: a transcriptomic, functional and ultrastructural approach.

    Science.gov (United States)

    Liddelow, Shane A; Dziegielewska, Katarzyna M; Ek, C Joakim; Habgood, Mark D; Bauer, Hannelore; Bauer, Hans-Christian; Lindsay, Helen; Wakefield, Matthew J; Strazielle, Nathalie; Kratzer, Ingrid; Møllgård, Kjeld; Ghersi-Egea, Jean-François; Saunders, Norman R

    2013-01-01

    We provide comprehensive identification of embryonic (E15) and adult rat lateral ventricular choroid plexus transcriptome, with focus on junction-associated proteins, ionic influx transporters and channels. Additionally, these data are related to new structural and previously published permeability studies. Results reveal that most genes associated with intercellular junctions are expressed at similar levels at both ages. In total, 32 molecules known to be associated with brain barrier interfaces were identified. Nine claudins showed unaltered expression, while two claudins (6 and 8) were expressed at higher levels in the embryo. Expression levels for most cytoplasmic/regulatory adaptors (10 of 12) were similar at the two ages. A few junctional genes displayed lower expression in embryos, including 5 claudins, occludin and one junctional adhesion molecule. Three gap junction genes were enriched in the embryo. The functional effectiveness of these junctions was assessed using blood-delivered water-soluble tracers at both the light and electron microscopic level: embryo and adult junctions halted movement of both 286Da and 3kDa molecules into the cerebrospinal fluid (CSF). The molecular identities of many ion channel and transporter genes previously reported as important for CSF formation and secretion in the adult were demonstrated in the embryonic choroid plexus (and validated with immunohistochemistry of protein products), but with some major age-related differences in expression. In addition, a large number of previously unidentified ion channel and transporter genes were identified for the first time in plexus epithelium. These results, in addition to data obtained from electron microscopical and physiological permeability experiments in immature brains, indicate that exchange between blood and CSF is mainly transcellular, as well-formed tight junctions restrict movement of small water-soluble molecules from early in development. These data strongly indicate the

  14. Multiple sclerosis patients lacking oligoclonal bands in the cerebrospinal fluid have less global and regional brain atrophy.

    Science.gov (United States)

    Ferreira, Daniel; Voevodskaya, Olga; Imrell, Kerstin; Stawiarz, Leszek; Spulber, Gabriela; Wahlund, Lars-Olof; Hillert, Jan; Westman, Eric; Karrenbauer, Virginija Danylaité

    2014-09-15

    To investigate whether multiple sclerosis (MS) patients with and without cerebrospinal fluid (CSF) oligoclonal immunoglobulin G bands (OCB) differ in brain atrophy. Twenty-eight OCB-negative and thirty-five OCB-positive patients were included. Larger volumes of total CSF and white matter (WM) lesions; smaller gray matter (GM) volume in the basal ganglia, diencephalon, cerebellum, and hippocampus; and smaller WM volume in corpus callosum, periventricular-deep WM, brainstem, and cerebellum, were observed in OCB-positives. OCB-negative patients, known to differ genetically from OCB-positives, are characterized by less global and regional brain atrophy. This finding supports the notion that OCB-negative MS patients may represent a clinically relevant MS subgroup. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Coupled changes in brain white matter microstructure and fluid intelligence in later life.

    Science.gov (United States)

    Ritchie, Stuart J; Bastin, Mark E; Tucker-Drob, Elliot M; Maniega, Susana Muñoz; Engelhardt, Laura E; Cox, Simon R; Royle, Natalie A; Gow, Alan J; Corley, Janie; Pattie, Alison; Taylor, Adele M; Valdés Hernández, Maria Del C; Starr, John M; Wardlaw, Joanna M; Deary, Ian J

    2015-06-03

    Understanding aging-related cognitive decline is of growing importance in aging societies, but relatively little is known about its neural substrates. Measures of white matter microstructure are known to correlate cross-sectionally with cognitive ability measures, but only a few small studies have tested for longitudinal relations among these variables. We tested whether there were coupled changes in brain white matter microstructure indexed by fractional anisotropy (FA) and three broad cognitive domains (fluid intelligence, processing speed, and memory) in a large cohort of human participants with longitudinal diffusion tensor MRI and detailed cognitive data taken at ages 73 years (n = 731) and 76 years (n = 488). Longitudinal changes in white matter microstructure were coupled with changes in fluid intelligence, but not with processing speed or memory. Individuals with higher baseline white matter FA showed less subsequent decline in processing speed. Our results provide evidence for a longitudinal link between changes in white matter microstructure and aging-related cognitive decline during the eighth decade of life. They are consistent with theoretical perspectives positing that a corticocortical "disconnection" partly explains cognitive aging. Copyright © 2015 Ritchie et al.

  16. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming.

    Science.gov (United States)

    Tytell, Eric D; Hsu, Chia-Yu; Williams, Thelma L; Cohen, Avis H; Fauci, Lisa J

    2010-11-16

    Animal movements result from a complex balance of many different forces. Muscles produce force to move the body; the body has inertial, elastic, and damping properties that may aid or oppose the muscle force; and the environment produces reaction forces back on the body. The actual motion is an emergent property of these interactions. To examine the roles of body stiffness, muscle activation, and fluid environment for swimming animals, a computational model of a lamprey was developed. The model uses an immersed boundary framework that fully couples the Navier-Stokes equations of fluid dynamics with an actuated, elastic body model. This is the first model at a Reynolds number appropriate for a swimming fish that captures the complete fluid-structure interaction, in which the body deforms according to both internal muscular forces and external fluid forces. Results indicate that identical muscle activation patterns can produce different kinematics depending on body stiffness, and the optimal value of stiffness for maximum acceleration is different from that for maximum steady swimming speed. Additionally, negative muscle work, observed in many fishes, emerges at higher tail beat frequencies without sensory input and may contribute to energy efficiency. Swimming fishes that can tune their body stiffness by appropriately timed muscle contractions may therefore be able to optimize the passive dynamics of their bodies to maximize peak acceleration or swimming speed.

  17. Manipulation of colony environment modulates honey bee aggression and brain gene expression.

    Science.gov (United States)

    Rittschof, C C; Robinson, G E

    2013-11-01

    The social environment plays an essential role in shaping behavior for most animals. Social effects on behavior are often linked to changes in brain gene expression. In the honey bee (Apis mellifera L.), social modulation of individual aggression allows colonies to adjust the intensity with which they defend their hive in response to predation threat. Previous research has showed social effects on both aggression and aggression-related brain gene expression in honey bees, caused by alarm pheromone and unknown factors related to colony genotype. For example, some bees from less aggressive genetic stock reared in colonies with genetic predispositions toward increased aggression show both increased aggression and more aggressive-like brain gene expression profiles. We tested the hypothesis that exposure to a colony environment influenced by high levels of predation threat results in increased aggression and aggressive-like gene expression patterns in individual bees. We assessed gene expression using four marker genes. Experimentally induced predation threats modified behavior, but the effect was opposite of our predictions: disturbed colonies showed decreased aggression. Disturbed colonies also decreased foraging activity, suggesting that they did not habituate to threats; other explanations for this finding are discussed. Bees in disturbed colonies also showed changes in brain gene expression, some of which paralleled behavioral findings. These results show that bee aggression and associated molecular processes are subject to complex social influences. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  18. Interaction between blood-brain barrier and glymphatic system in solute clearance.

    Science.gov (United States)

    Verheggen, I C M; Van Boxtel, M P J; Verhey, F R J; Jansen, J F A; Backes, W H

    2018-03-30

    Neurovascular pathology concurs with protein accumulation, as the brain vasculature is important for waste clearance. Interstitial solutes, such as amyloid-β, were previously thought to be primarily cleared from the brain by blood-brain barrier transport. Recently, the glymphatic system was discovered, in which cerebrospinal fluid is exchanged with interstitial fluid, facilitated by the aquaporin-4 water channels on the astroglial endfeet. Glymphatic flow can clear solutes from the interstitial space. Blood-brain barrier transport and glymphatic clearance likely serve complementary roles with partially overlapping mechanisms providing a well-conditioned neuronal environment. Disruption of these mechanisms can lead to protein accumulation and may initiate neurodegenerative disorders, for instance amyloid-β accumulation and Alzheimer's disease. Although both mechanisms seem to have a similar purpose, their interaction has not been clearly discussed previously. This review focusses on this interaction in healthy and pathological conditions. Future health initiatives improving waste clearance might delay or even prevent onset of neurodegenerative disorders. Defining glymphatic flow kinetics using imaging may become an alternative way to identify those at risk of Alzheimer's disease. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Increased transfer of 45Ca into brain and cerebrospinal fluid from plasma during chronic hypocalcemia in rats.

    Science.gov (United States)

    Murphy, V A; Rapoport, S I

    1988-06-28

    Recent studies have shown regulation of central nervous system [Ca] after chronic hypo- and hypercalcemia. To investigate the mechanism of this regulation, 3-week-old rats were fed diets for 8 weeks that contained low or normal levels of Ca. Plasma [Ca] was 40% less in rats fed the low Ca diet than in animals fed normal diet. Unidirectional transfer coefficients for Ca (KCa) and Cl (KCl) into cerebrospinal fluid (CSF) and brain were determined from the 10 min uptake of intravenously injected 45Ca and 36Cl in awake animals. KCa for CSF was 68% greater in low-Ca rats than in normal rats. Likewise, the values of KCa for brain regions with areas adjacent to the ventricles like the hippocampus and pons-medulla were 50% higher than in normal animals. On the other hand, KCas for parietal cortex, a brain region distant from the choroid plexus and not expected to be influenced by Ca entry into CSF, were similar between the groups. Comparison of the regional ratios of KCa/KCl revealed that a selective increase of Ca transport occurred into CSF and all brain regions except the parietal cortex in Ca-deficient rats. The results suggest that Ca homeostasis of CSF and brain [Ca] during chronic hypocalcemia is due to increased transfer of Ca from blood to brain, and that the regulation occurs via the CSF, possibly at the choroid plexus, but not via the cerebral capillaries.

  20. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment

    Science.gov (United States)

    Wise, Kimberly C.; Manna, Sunil K.; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L.; Thomas, Renard L.; Sarkar, Shubhashish; Kulkarni, Anil D.; Pellis, Neil R.; Ramesh, Govindarajan T.

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent.

  1. Expression of TRPM8 in the distal cerebrospinal fluid-contacting neurons in the brain mesencephalon of rats

    Directory of Open Access Journals (Sweden)

    Zhang Licai

    2009-03-01

    Full Text Available Abstract Background It has been shown that distal cerebrospinal fluid-contacting neurons (dCSF-CNs exist near the ventral midline of the midbrain aqueduct and also in the grey matter of the inferior third ventricle and the fourth ventricle floor in the superior segment of the pons. The dCSF-CNs communicate between the cerebrospinal fluid (CSF and the brain parenchyma and may participate in the transduction and regulation of pain signals. The cold sensation receptor channel, TRPM8 is involved in analgesia for neuropathic pain, but whether the TRPM8 receptor exists on dCSF-CNs remains unknown. However, there is preliminary evidence that TRPM8 is expressed in dCSF-CNs and may participate in the transmission and regulation of sensory information between brain parenchyma and cerebrospinal fluid (CSF in rats. Methods Retrograde tracing of the cholera toxin subunit B labeled with horseradish peroxidase (CB-HRP injected into the lateral ventricle was used to identify dCSF-CNs. A double-labeled immunofluorescent technique and laser scanning confocal microscopy were used to identify the expression of TRPM8 in dCSF-CNs. Software Image-Pro Plus was used to count the number of neurons in three sections where CB-HRP positive neurons were located in the mesencephalon of six rats. Results The cell bodies of CB-HRP-positive dCSF-CNs were found in the brain parenchyma near the midline of the ventral Aq, also in the grey of the 3V, and the 4V floor in the superior segment of the pons. In the mesencephalon their processes extended into the CSF. TRPM8 labeled neurons were also found in the same area as were CB-HRP/TRPM8 double-labeled neurons. CB-HRP/TRPM8 double-labeled neurons were found in 42.9 ± 2.3% of neurons labeled by TRPM8, and all CB-HRP-labeled neurons were also labeled with TPRM8. Conclusion This study has demonstrated that the cold sensation receptor channel, TRPM8, is localised within the dCSF-CNs of the mesencephalon. TRPM8 acts as receptor of d

  2. Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders

    DEFF Research Database (Denmark)

    Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben

    2012-01-01

    is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead...... involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells...

  3. Computer modeling of the dynamics of surface tension on rotating fluids in low and microgravity environments

    Science.gov (United States)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, Fred W.

    1989-01-01

    Time-dependent evolutions of the profile of the free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low- and microgravity environments, (2) linear functions of increasing and decreasing gravity environments at high- and low-rotating cylinder speeds, and (3) step functions of spin-up and spin-down in a low-gravity environment.

  4. Research into the Physiology of Cerebrospinal Fluid Reaches a New Horizon: Intimate Exchange between Cerebrospinal Fluid and Interstitial Fluid May Contribute to Maintenance of Homeostasis in the Central Nervous System.

    Science.gov (United States)

    Matsumae, Mitsunori; Sato, Osamu; Hirayama, Akihiro; Hayashi, Naokazu; Takizawa, Ken; Atsumi, Hideki; Sorimachi, Takatoshi

    2016-07-15

    Cerebrospinal fluid (CSF) plays an essential role in maintaining the homeostasis of the central nervous system. The functions of CSF include: (1) buoyancy of the brain, spinal cord, and nerves; (2) volume adjustment in the cranial cavity; (3) nutrient transport; (4) protein or peptide transport; (5) brain volume regulation through osmoregulation; (6) buffering effect against external forces; (7) signal transduction; (8) drug transport; (9) immune system control; (10) elimination of metabolites and unnecessary substances; and finally (11) cooling of heat generated by neural activity. For CSF to fully mediate these functions, fluid-like movement in the ventricles and subarachnoid space is necessary. Furthermore, the relationship between the behaviors of CSF and interstitial fluid in the brain and spinal cord is important. In this review, we will present classical studies on CSF circulation from its discovery over 2,000 years ago, and will subsequently introduce functions that were recently discovered such as CSF production and absorption, water molecule movement in the interstitial space, exchange between interstitial fluid and CSF, and drainage of CSF and interstitial fluid into both the venous and the lymphatic systems. Finally, we will summarize future challenges in research. This review includes articles published up to February 2016.

  5. Changes of brain and cerebrospinal fluid area with development in childhood on CT

    International Nuclear Information System (INIS)

    Nonaka, Chizuru; Hiraiwa, Mikio; Abe, Toshiaki; Fujii, Ryochi; Ohmi, Kazuhiko

    1980-01-01

    There have been reported about changes of the brain CT (Computed Tomography) findings with development in childhood. These reports have been applied with one dimensional measurement, and we previously reported that one dimensional measurement was insufficient for objective judgement of CT findings, compared with our two dimensional measurement. Brain CT were performed in sixty-six children (thirty-four males and thirty-two females, aged from ten-day-old to twelve-year-old). Two dimensional measurement were played on the slice through foramen of Monro. We measured intracranial area (IC), brain area (BA), ventricular area (VA), and bifrontal fluid collection area (BFC). IC and BA were increased with development, but VA had no obvious change. Increase of IC and BA were disclosed significantly in infancy and toddling period. BFC was decreased with development on the average, and invisible in many cases over three-year-old. Thus, in the cases under three-year-old there lay massive variation of BFC in size. About the relationship between large BFC and central coordination difficulty in infancy, we reported in the last number of this journal. Variation of BFC in the cases under three-year-old might be due to selection of our subjects, those including eighteen infants with central coordination difficulty. Index of BA (BA x 100/IC), VA (VA x 100/IC), and BFC (BFC x 100/IC) were well matched to changes of BA, VA, and BFC with development. This is the first report for application of two dimensional measurement in CT findings of children with development. (author)

  6. Central coordination difficulty and brain CT in infancy

    International Nuclear Information System (INIS)

    Hiraiwa, Mikio; Nonaka, Chizuru; Abe, Toshiaki; Ohmi, Kazuhiko; Togo, Tomoko

    1980-01-01

    Brain CT (Computed Tomography) was performed in eighteen infants, eight males and ten females, one-month-old to twelve-month-old with central coordination difficulty (CCD) in General Electrics (U.S.A.) model CT/T-8800. Analyses of CT findings were enforced with two dimensional measurement which we previously reported. We measured intracranial area, brain area, ventricular area, and bifrontal fluid collection (low density area between skull and anterior side of the frontal lobe). Each slices we measured were through foramen of Monro by fifteen-degree declined from cantho-meatal line. Patients with CCD had higher amount of accumulated bifrontal fluid collection on the CT compared with those without CCD. Brain area index (brain area x100/intracranial area) also showed diagnostic value for CCD. Patients with CCD had lower brain area index than those without CCD. Ventricular area index (ventricular area x100/intracranial area) was less appropriate index for CCD than accumulated bifrontal fluid collection and brain area index. We thought that CT findings of the patients with CCD in infancy were characteristic in accumulated bifrontal fluid collection and reduced brain area index. (author)

  7. Excitant and depressant drugs modulate effects of environment on brain weight and cholinesterases

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, E.L.; Rosenzweig, M.R.; Wu, S.Y.C.

    1973-01-01

    Certain excitant drugs can enhance the effects of enriched experience on weights of brain sections and on the activities of acetylcholinesterase and cholinesterase in the brain, and certain depressants can lessen the brain weight effects. Most experiments were performed with prepubertal male rats. Some rats were exposed in groups of 12 to an enriched environmental condition (EC), usually for 2 h per day and over a 30-day period; others remained in their individual home cages (HC) throughout. Some received a drug injection and others received a saline injection before the daily EC period; HC controls received similar injections. The drug injections had no significant effects on brain values of HC rats, but they altered effects of EC, probably by influencing the animals' reactions to the environment. Methamphetamine and d-amphetamine enhanced the EC effects; metrazol had small positive effects; and strychnine was without effects. Phenobarbital depressed the brain weight effects but increased the enzymatic effects. Use of methamphetamine made it possible to find EC effects with short daily periods (30 min) or with a shortened experimental duration (15 days). In experiments with adult rats, methamphetamine did not modulate the brain weight effects. The results of this study may bear on the use of stimulants to promote recovery from brain damage.

  8. Apparatus and method for fatigue testing of a material specimen in a high-pressure fluid environment

    Science.gov (United States)

    Wang, Jy-An; Feng, Zhili; Anovitz, Lawrence M; Liu, Kenneth C

    2013-06-04

    The invention provides fatigue testing of a material specimen while the specimen is disposed in a high pressure fluid environment. A specimen is placed between receivers in an end cap of a vessel and a piston that is moveable within the vessel. Pressurized fluid is provided to compression and tension chambers defined between the piston and the vessel. When the pressure in the compression chamber is greater than the pressure in the tension chamber, the specimen is subjected to a compression force. When the pressure in the tension chamber is greater than the pressure in the compression chamber, the specimen is subjected to a tension force. While the specimen is subjected to either force, it is also surrounded by the pressurized fluid in the tension chamber. In some examples, the specimen is surrounded by hydrogen.

  9. Neural Control Mechanisms and Body Fluid Homeostasis

    Science.gov (United States)

    Johnson, Alan Kim

    1998-01-01

    The goal of the proposed research was to study the nature of afferent signals to the brain that reflect the status of body fluid balance and to investigate the central neural mechanisms that process this information for the activation of response systems which restore body fluid homeostasis. That is, in the face of loss of fluids from intracellular or extracellular fluid compartments, animals seek and ingest water and ionic solutions (particularly Na(+) solutions) to restore the intracellular and extracellular spaces. Over recent years, our laboratory has generated a substantial body of information indicating that: (1) a fall in systemic arterial pressure facilitates the ingestion of rehydrating solutions and (2) that the actions of brain amine systems (e.g., norepinephrine; serotonin) are critical for precise correction of fluid losses. Because both acute and chronic dehydration are associated with physiological stresses, such as exercise and sustained exposure to microgravity, the present research will aid in achieving a better understanding of how vital information is handled by the nervous system for maintenance of the body's fluid matrix which is critical for health and well-being.

  10. Pathogenesis of Brain Edema and Investigation into Anti-Edema Drugs

    Science.gov (United States)

    Michinaga, Shotaro; Koyama, Yutaka

    2015-01-01

    Brain edema is a potentially fatal pathological state that occurs after brain injuries such as stroke and head trauma. In the edematous brain, excess accumulation of extracellular fluid results in elevation of intracranial pressure, leading to impaired nerve function. Despite the seriousness of brain edema, only symptomatic treatments to remove edema fluid are currently available. Thus, the development of novel anti-edema drugs is required. The pathogenesis of brain edema is classified as vasogenic or cytotoxic edema. Vasogenic edema is defined as extracellular accumulation of fluid resulting from disruption of the blood-brain barrier (BBB) and extravasations of serum proteins, while cytotoxic edema is characterized by cell swelling caused by intracellular accumulation of fluid. Various experimental animal models are often used to investigate mechanisms underlying brain edema. Many soluble factors and functional molecules have been confirmed to induce BBB disruption or cell swelling and drugs targeted to these factors are expected to have anti-edema effects. In this review, we discuss the mechanisms and involvement of factors that induce brain edema formation, and the possibility of anti-edema drugs targeting them. PMID:25941935

  11. EFFECT OF THE VOLUME OF FLUID INGESTED ON URINE CONCENTRATING ABILITY DURING PROLONGED HEAVY EXERCISE IN A HOT ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Hidenori Otani

    2013-03-01

    Full Text Available This study examined the effect of the volume of fluid ingested on urine concentrating ability during prolonged heavy exercise in a hot environment at low levels of dehydration. Seven healthy males performed 105 min of intermittent cycle exercise at 70% maximum oxygen uptake (32°C, 60% relative humidity while receiving no fluid ingestion (NF, voluntary fluid ingestion (VF, partial fluid ingestion equivalent to one-half of body mass loss (PF, and full fluid ingestion equivalent to body mass loss (FF. Fluid (5°C, 3.4% carbohydrate, 10.5 mmol·L-1 sodium was ingested just before commencing exercise and at 15, 33, 51, 69, and 87 min of exercise, and the total amount of fluid ingested in PF and FF was divided into six equal volumes. During exercise, body mass loss was 2.2 ± 0.2, 1.1 ± 0.5, 1.1 ± 0.2, and 0.1 ± 0.2% in NF, VF, PF, and FF, respectively, whereas total sweat loss was about 2% of body mass in each trial. Subjects in VF ingested 719 ± 240 ml of fluid during exercise; the volume of fluid ingested was 1.1 ± 0.4% of body mass. Creatinine clearance was significantly higher and free water clearance was significantly lower in FF than in NF during exercise. Urine flow rate during exercise decreased significantly in NF. There were significant decreases in creatinine and osmolar clearance and was a significant increase in free water clearance during exercise in NF and VF. Creatinine clearance decreased significantly and free water clearance increased significantly during exercise in PF. There was no statistical change in urinary indices of renal function during exercise in FF. The findings suggest that full fluid ingestion equivalent to body mass loss has attenuated the decline in urine concentrating ability during prolonged heavy exercise in a hot environment at low levels of dehydration.

  12. A simple interface to computational fluid dynamics programs for building environment simulations

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, III, C R; Chen, Q [Massachusetts Institute of Technology, Cambridge, MA (United States)

    2000-07-01

    It is becoming a popular practice for architects and HVAC engineers to simulate airflow in and around buildings by computational fluid dynamics (CFD) methods in order to predict indoor and outdoor environment. However, many CFD programs are crippled by a historically poor and inefficient user interface system, particularly for users with little training in numerical simulation. This investigation endeavors to create a simplified CFD interface (SCI) that allows architects and buildings engineers to use CFD without excessive training. The SCI can be easily integrated into new CFD programs. (author)

  13. Glutamate Transporters in the Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Helms, Hans Christian Cederberg; Nielsen, Carsten Uhd; Waagepetersen, Helle S

    2017-01-01

    concentration of L-glutamate causes excitotoxicity. A tight control of the brain interstitial fluid L-glutamate levels is therefore imperative, in order to maintain optimal neurotransmission and to avoid such excitotoxicity. The blood-brain barrier, i.e., the endothelial lining of the brain capillaries...... cells. The mechanisms underlying transendothelial L-glutamate transport are however still not well understood. The present chapter summarizes the current knowledge on blood-brain barrier L-glutamate transporters and the suggested pathways for the brain-to-blood L-glutamate efflux......., regulates the exchange of nutrients, gases, and metabolic waste products between plasma and brain interstitial fluid. It has been suggested that brain capillary endothelial cells could play an important role in L-glutamate homeostasis by mediating brain-to-blood L-glutamate efflux. Both in vitro and in vivo...

  14. Distribution Assessments of Coumarins from Angelicae Pubescentis Radix in Rat Cerebrospinal Fluid and Brain by Liquid Chromatography Tandem Mass Spectrometry Analysis

    Directory of Open Access Journals (Sweden)

    Yan-Fang Yang

    2018-01-01

    Full Text Available Angelicae Pubescentis Radix (APR is a widely-used traditional Chinese medicine. Pharmacological studies have begun to probe its biological activities on neurological disorders recently. To assess the brain penetration and distribution of APR, a validated ultra-performance liquid chromatography tandem mass spectrometry method was applied to the simultaneous determinations of the main coumarins from APR in the rat cerebrospinal fluid (CSF and brain after oral administration of APR extract, including psoralen, xanthotoxin, bergapten, isoimperatorin, columbianetin, columbianetin acetate, columbianadin, oxypeucedanin hydrate, angelol B, osthole, meranzin hydrate and nodakenetin. Most of the tested coumarins entered the rat CSF and brain quickly, and double-peak phenomena in concentration-time curves were similar to those of their plasma pharmacokinetics. Columbianetin had the highest concentration in the CSF and brain, while psoralen and columbianetin acetate had the largest percent of CSF/plasma and brain/plasma, indicating that these three coumarins may be worthy of further research on the possible nervous effects. Correlations between the in vivo brain distributions and plasma pharmacokinetics of these coumarins were well verified. These results provided valuable information for the overall in vivo brain distribution characteristics of APR and also for its further studies on the active substances for the central nervous system.

  15. Distribution Assessments of Coumarins from Angelicae Pubescentis Radix in Rat Cerebrospinal Fluid and Brain by Liquid Chromatography Tandem Mass Spectrometry Analysis.

    Science.gov (United States)

    Yang, Yan-Fang; Zhang, Lei; Yang, Xiu-Wei

    2018-01-20

    Angelicae Pubescentis Radix (APR) is a widely-used traditional Chinese medicine. Pharmacological studies have begun to probe its biological activities on neurological disorders recently. To assess the brain penetration and distribution of APR, a validated ultra-performance liquid chromatography tandem mass spectrometry method was applied to the simultaneous determinations of the main coumarins from APR in the rat cerebrospinal fluid (CSF) and brain after oral administration of APR extract, including psoralen, xanthotoxin, bergapten, isoimperatorin, columbianetin, columbianetin acetate, columbianadin, oxypeucedanin hydrate, angelol B, osthole, meranzin hydrate and nodakenetin. Most of the tested coumarins entered the rat CSF and brain quickly, and double-peak phenomena in concentration-time curves were similar to those of their plasma pharmacokinetics. Columbianetin had the highest concentration in the CSF and brain, while psoralen and columbianetin acetate had the largest percent of CSF/plasma and brain/plasma, indicating that these three coumarins may be worthy of further research on the possible nervous effects. Correlations between the in vivo brain distributions and plasma pharmacokinetics of these coumarins were well verified. These results provided valuable information for the overall in vivo brain distribution characteristics of APR and also for its further studies on the active substances for the central nervous system.

  16. Using the cerebrospinal fluid to understand ingestive behavior.

    Science.gov (United States)

    Woods, Stephen C; May, Aaron A; Liu, Min; Tso, Patrick; Begg, Denovan P

    2017-09-01

    The cerebrospinal fluid (CSF) offers a window into the workings of the brain and blood-brain barrier (BBB). Molecules that enter into the central nervous system (CNS) by passive diffusion or receptor-mediated transport through the choroid plexus often appear in the CSF prior to acting within the brain. Other molecules enter the CNS by passing through the BBB into the brain's interstitial fluid prior to appearing in the CSF. This pattern is also often observed for molecules synthesized by neurons or glia within the CNS. The CSF is therefore an important conduit for the entry and clearance of molecules into/from the CNS and thereby constitutes an important window onto brain activity and barrier function. Assessing the CSF basally, under experimental conditions, or in the context of challenges or metabolic diseases can provide powerful insights about brain function. Here, we review important findings made by our labs, as influenced by the late Randall Sakai, by interrogating the CSF. Copyright © 2016. Published by Elsevier Inc.

  17. Imaging Brain Function with Functional Near-Infrared Spectroscopy in Unconstrained Environments

    Directory of Open Access Journals (Sweden)

    Joana B. Balardin

    2017-05-01

    Full Text Available Assessing the neural correlates of motor and cognitive processes under naturalistic experimentation is challenging due to the movement constraints of traditional brain imaging technologies. The recent advent of portable technologies that are less sensitive to motion artifacts such as Functional Near Infrared Spectroscopy (fNIRS have been made possible the study of brain function in freely-moving participants. In this paper, we describe a series of proof-of-concept experiments examining the potential of fNIRS in assessing the neural correlates of cognitive and motor processes in unconstrained environments. We show illustrative applications for practicing a sport (i.e., table tennis, playing a musical instrument (i.e., piano and violin alone or in duo and performing daily activities for many hours (i.e., continuous monitoring. Our results expand upon previous research on the feasibility and robustness of fNIRS to monitor brain hemodynamic changes in different real life settings. We believe that these preliminary results showing the flexibility and robustness of fNIRS measurements may contribute by inspiring future work in the field of applied neuroscience.

  18. Determination of pharmacological levels of harmane, harmine and harmaline in mammalian brain tissue, cerebrospinal fluid and plasma by high-performance liquid chromatography with fluorimetric detection.

    Science.gov (United States)

    Moncrieff, J

    1989-11-24

    Increased blood aldehyde levels, as occur in alcohol intoxication, could lead to the formation of beta-carbolines such as harmane by condensation with indoleamines. Endogenous beta-carbolines, therefore, should occur in specific brain areas where indoleamine concentrations are high, whilst exogenous beta-carbolines should exhibit an even distribution. The author presents direct and sensitive methods for assaying the beta-carbolines harmane, harmine and harmaline in brain tissue, cerebrospinal fluid and plasma at picogram sample concentrations using reversed-phase high-performance liquid chromatography with fluorimetric detection and minimal sample preparation. Using these assay methods, it was found that the distribution of beta-carbolines from a source exogenous to the brain results in a relatively even distribution within the brain tissue.

  19. Environment-dependent plasticity and ontogenetic changes in the brain of hatchery-reared Atlantic salmon

    DEFF Research Database (Denmark)

    Näslund, J.; Larsen, Martin Hage; Thomassen, S.T.

    2017-01-01

    enhancement strategies, like environmental enrichment. Here, we investigated the size of the brain in hatcheryreared Atlantic salmon Salmo salar kept at standard (high) and reduced (low) tank densities. In contrast to our predictions, we found that fish reared at high density had larger dry mass of cerebellum...... and telencephalon, correcting for body size. No differences were detected for total brain mass. Furthermore, we found that the relative size of both telencephalon and cerebellum, in relation to total brain mass, changed with body size. Cerebellum increased in relative size with increased body size, while......Lowered rearing density has repeatedly been shown to increase the performance of hatchery-reared salmonids stocked into natural environments. One possible mechanism for this pattern could be that lower densities enhance brain development, which has been shown to be the case in other hatchery...

  20. Biomarkers of Pediatric Brain Tumors

    Directory of Open Access Journals (Sweden)

    Mark D Russell

    2013-03-01

    Full Text Available Background and Need for Novel Biomarkers: Brain tumors are the leading cause of death by solid tumors in children. Although improvements have been made in their radiological detection and treatment, our capacity to promptly diagnose pediatric brain tumors in their early stages remains limited. This contrasts several other cancers where serum biomarkers such as CA 19-9 and CA 125 facilitate early diagnosis and treatment. Aim: The aim of this article is to review the latest literature and highlight biomarkers which may be of clinical use in the common types of primary pediatric brain tumor. Methods: A PubMed search was performed to identify studies reporting biomarkers in the bodily fluids of pediatric patients with brain tumors. Details regarding the sample type (serum, cerebrospinal fluid or urine, biomarkers analyzed, methodology, tumor type and statistical significance were recorded. Results: A total of 12 manuscripts reporting 19 biomarkers in 367 patients vs. 397 controls were identified in the literature. Of the 19 biomarkers identified, 12 were isolated from cerebrospinal fluid, 2 from serum, 3 from urine, and 2 from multiple bodily fluids. All but one study reported statistically significant differences in biomarker expression between patient and control groups.Conclusions: This review identifies a panel of novel biomarkers for pediatric brain tumors. It provides a platform for the further studies necessary to validate these biomarkers and, in addition, highlights several techniques through which new biomarkers can be discovered.

  1. Pathogenesis of Brain Edema and Investigation into Anti-Edema Drugs

    OpenAIRE

    Shotaro Michinaga; Yutaka Koyama

    2015-01-01

    Brain edema is a potentially fatal pathological state that occurs after brain injuries such as stroke and head trauma. In the edematous brain, excess accumulation of extracellular fluid results in elevation of intracranial pressure, leading to impaired nerve function. Despite the seriousness of brain edema, only symptomatic treatments to remove edema fluid are currently available. Thus, the development of novel anti-edema drugs is required. The pathogenesis of brain edema is classified as vas...

  2. Pathogenesis of Brain Edema and Investigation into Anti-Edema Drugs

    Directory of Open Access Journals (Sweden)

    Shotaro Michinaga

    2015-04-01

    Full Text Available Brain edema is a potentially fatal pathological state that occurs after brain injuries such as stroke and head trauma. In the edematous brain, excess accumulation of extracellular fluid results in elevation of intracranial pressure, leading to impaired nerve function. Despite the seriousness of brain edema, only symptomatic treatments to remove edema fluid are currently available. Thus, the development of novel anti-edema drugs is required. The pathogenesis of brain edema is classified as vasogenic or cytotoxic edema. Vasogenic edema is defined as extracellular accumulation of fluid resulting from disruption of the blood-brain barrier (BBB and extravasations of serum proteins, while cytotoxic edema is characterized by cell swelling caused by intracellular accumulation of fluid. Various experimental animal models are often used to investigate mechanisms underlying brain edema. Many soluble factors and functional molecules have been confirmed to induce BBB disruption or cell swelling and drugs targeted to these factors are expected to have anti-edema effects. In this review, we discuss the mechanisms and involvement of factors that induce brain edema formation, and the possibility of anti-edema drugs targeting them.

  3. Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the aging rat brain from three to thirty months

    Directory of Open Access Journals (Sweden)

    Chiu Catherine

    2012-01-01

    Full Text Available Abstract Background Amyloid accumulation in the brain parenchyma is a hallmark of Alzheimer's disease (AD and is seen in normal aging. Alterations in cerebrospinal fluid (CSF dynamics are also associated with normal aging and AD. This study analyzed CSF volume, production and turnover rate in relation to amyloid-beta peptide (Aβ accumulation in the aging rat brain. Methods Aging Fischer 344/Brown-Norway hybrid rats at 3, 12, 20, and 30 months were studied. CSF production was measured by ventriculo-cisternal perfusion with blue dextran in artificial CSF; CSF volume by MRI; and CSF turnover rate by dividing the CSF production rate by the volume of the CSF space. Aβ40 and Aβ42 concentrations in the cortex and hippocampus were measured by ELISA. Results There was a significant linear increase in total cranial CSF volume with age: 3-20 months (p p p p -1 to 12 months (11.30 day-1 and then a decrease to 20 months (10.23 day-1 and 30 months (6.62 day-1. Aβ40 and Aβ42 concentrations in brain increased from 3-30 months (p Conclusions In young rats there is no correlation between CSF turnover and Aβ brain concentrations. After 12 months, CSF turnover decreases as brain Aβ continues to accumulate. This decrease in CSF turnover rate may be one of several clearance pathway alterations that influence age-related accumulation of brain amyloid.

  4. Transport characteristics of guanidino compounds at the blood-brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders

    Directory of Open Access Journals (Sweden)

    Tachikawa Masanori

    2011-02-01

    Full Text Available Abstract Guanidino compounds (GCs, such as creatine, phosphocreatine, guanidinoacetic acid, creatinine, methylguanidine, guanidinosuccinic acid, γ-guanidinobutyric acid, β-guanidinopropionic acid, guanidinoethane sulfonic acid and α-guanidinoglutaric acid, are present in the mammalian brain. Although creatine and phosphocreatine play important roles in energy homeostasis in the brain, accumulation of GCs may induce epileptic discharges and convulsions. This review focuses on how physiologically important and/or neurotoxic GCs are distributed in the brain under physiological and pathological conditions. Transporters for GCs at the blood-brain barrier (BBB and the blood-cerebrospinal fluid (CSF barrier (BCSFB have emerged as substantial contributors to GCs distribution in the brain. Creatine transporter (CRT/solute carrier (SLC 6A8 expressed at the BBB regulates creatine concentration in the brain, and represents a major pathway for supply of creatine from the circulating blood to the brain. CRT may be a key factor facilitating blood-to-brain guanidinoacetate transport in patients deficient in S-adenosylmethionine:guanidinoacetate N-methyltransferase, the creatine biosynthetic enzyme, resulting in cerebral accumulation of guanidinoacetate. CRT, taurine transporter (TauT/SLC6A6 and organic cation transporter (OCT3/SLC22A3 expressed at the BCSFB are involved in guanidinoacetic acid or creatinine efflux transport from CSF. Interestingly, BBB efflux transport of GCs, including guanidinoacetate and creatinine, is negligible, though the BBB has a variety of efflux transport systems for synthetic precursors of GCs, such as amino acids and neurotransmitters. Instead, the BCSFB functions as a major cerebral clearance system for GCs. In conclusion, transport of GCs at the BBB and BCSFB appears to be the key determinant of the cerebral levels of GCs, and changes in the transport characteristics may cause the abnormal distribution of GCs in the brain seen

  5. A radioenzymatic technique for the measurement of free and conjugated 3,4-dihydroxyphenylethyleneglycol in brain tissue and biological fluids

    International Nuclear Information System (INIS)

    Dennis, T.; Scatton, B.

    1982-01-01

    A simple, sensitive and specific radioenzymatic assay for the measurement of 3,4-dihydroxyphenylethyleneglycol (DOPEG) was developed. The assay is based on the conversion of the compound to its O-methylated derivative in the presence of catechol-O-methyltransferase and [ 3 H]S-adenosyl-methionine. The tritiated 3-methoxy-4-hydroxyphenylethyleneglycol formed is selectively extracted in organic solvents and isolated by thin layer chromatography. After oxidation to vanillin the O-methylated compound is extracted and measured by liquid scintillation spectrophotometry. This assay has been applied to the measurement of free and conjugated DOPEG is a variety of biological tissues and fluids. Both free and conjugated DOPEG were readily detected in discrete rat brain areas. Substantial amounts of free and conjugated DOPEG were also measured in ventricular perfusates from freely moving rats. Finally, the presence of DOPEG was also demonstrated in human cerebrospinal fluid, plasma and urine. Only the free form of DOPEG was found in cerebrospinal fluid, whereas both unconjugated and conjugated forms were present in plasma and urine. (Auth.)

  6. News from the editors of Fluids and Barriers of the CNS.

    Science.gov (United States)

    Drewes, Lester R; Jones, Hazel C; Keep, Richard F

    2014-01-01

    This editorial announces a new affiliation between Fluids and Barriers of the CNS (FBCNS) and the International Brain Barriers Society (IBBS) with mutual benefits to the journal and to society members. This is a natural progression from the appointment of two new Co-Editors in Chief: Professor Lester Drewes and Professor Richard Keep in 2013. FBCNS provides a unique and specialist platform for the publication of research in the expanding fields of brain barriers and brain fluid systems in both health and disease.

  7. Self lubricating fluid bearings

    International Nuclear Information System (INIS)

    Kapich, D.D.

    1980-01-01

    The invention concerns self lubricating fluid bearings, which are used in a shaft sealed system extending two regions. These regions contain fluids, which have to be isolated. A first seal is fluid tight for the first region between the carter shaft and the shaft. The second seal is fluid tight between the carter and the shaft, it communicates with the second region. The first fluid region is the environment surrounding the shaft carter. The second fluid region is a part of a nuclear reactor which contains the cooling fluid. The shaft is conceived to drive a reactor circulating and cooling fluid [fr

  8. Urinary Biomarkers of Brain Diseases

    Directory of Open Access Journals (Sweden)

    Manxia An

    2015-12-01

    Full Text Available Biomarkers are the measurable changes associated with a physiological or pathophysiological process. Unlike blood, urine is not subject to homeostatic mechanisms. Therefore, greater fluctuations could occur in urine than in blood, better reflecting the changes in human body. The roadmap of urine biomarker era was proposed. Although urine analysis has been attempted for clinical diagnosis, and urine has been monitored during the progression of many diseases, particularly urinary system diseases, whether urine can reflect brain disease status remains uncertain. As some biomarkers of brain diseases can be detected in the body fluids such as cerebrospinal fluid and blood, there is a possibility that urine also contain biomarkers of brain diseases. This review summarizes the clues of brain diseases reflected in the urine proteome and metabolome.

  9. Simplified Aeroelastic Model for Fluid Structure Interaction between Microcantilever Sensors and Fluid Surroundings.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available Fluid-structural coupling occurs when microcantilever sensors vibrate in a fluid. Due to the complexity of the mechanical characteristics of microcantilevers and lack of high-precision microscopic mechanical testing instruments, effective methods for studying the fluid-structural coupling of microcantilevers are lacking, especially for non-rectangular microcantilevers. Here, we report fluid-structure interactions (FSI of the cable-membrane structure via a macroscopic study. The simplified aeroelastic model was introduced into the microscopic field to establish a fluid-structure coupling vibration model for microcantilever sensors. We used the finite element method to solve the coupled FSI system. Based on the simplified aeroelastic model, simulation analysis of the effects of the air environment on the vibration of the commonly used rectangular microcantilever was also performed. The obtained results are consistent with the literature. The proposed model can also be applied to the auxiliary design of rectangular and non-rectangular sensors used in fluid environments.

  10. Quantitative estimation of a ratio of intracranial cerebrospinal fluid volume to brain volume based on segmentation of CT images in patients with extra-axial hematoma.

    Science.gov (United States)

    Nguyen, Ha Son; Patel, Mohit; Li, Luyuan; Kurpad, Shekar; Mueller, Wade

    2017-02-01

    Background Diminishing volume of intracranial cerebrospinal fluid (CSF) in patients with space-occupying masses have been attributed to unfavorable outcome associated with reduction of cerebral perfusion pressure and subsequent brain ischemia. Objective The objective of this article is to employ a ratio of CSF volume to brain volume for longitudinal assessment of space-volume relationships in patients with extra-axial hematoma and to determine variability of the ratio among patients with different types and stages of hematoma. Patients and methods In our retrospective study, we reviewed 113 patients with surgical extra-axial hematomas. We included 28 patients (age 61.7 +/- 17.7 years; 19 males, nine females) with an acute epidural hematoma (EDH) ( n = 5) and subacute/chronic subdural hematoma (SDH) ( n = 23). We excluded 85 patients, in order, due to acute SDH ( n = 76), concurrent intraparenchymal pathology ( n = 6), and bilateral pathology ( n = 3). Noncontrast CT images of the head were obtained using a CT scanner (2004 GE LightSpeed VCT CT system, tube voltage 140 kVp, tube current 310 mA, 5 mm section thickness) preoperatively, postoperatively (3.8 ± 5.8 hours from surgery), and at follow-up clinic visit (48.2 ± 27.7 days after surgery). Each CT scan was loaded into an OsiriX (Pixmeo, Switzerland) workstation to segment pixels based on radiodensity properties measured in Hounsfield units (HU). Based on HU values from -30 to 100, brain, CSF spaces, vascular structures, hematoma, and/or postsurgical fluid were segregated from bony structures, and subsequently hematoma and/or postsurgical fluid were manually selected and removed from the images. The remaining images represented overall brain volume-containing only CSF spaces, vascular structures, and brain parenchyma. Thereafter, the ratio between the total number of voxels representing CSF volume (based on values between 0 and 15 HU) to the total number of voxels

  11. An ultra high performance liquid chromatography with tandem mass spectrometry method for plasma and cerebrospinal fluid pharmacokinetics of rhein in patients with traumatic brain injury after administration of rhubarb decoction.

    Science.gov (United States)

    Wang, Yang; Fan, Rong; Luo, Jiekun; Tang, Tao; Xing, Zhihua; Xia, Zian; Peng, Weijun; Wang, Wenzhu; Lv, Huiying; Huang, Wei; Liang, Yizeng; Yi, Lunzhao; Lu, Hongmei; Huang, Xi

    2015-04-01

    Damage of blood-brain barrier is a common result of traumatic brain injury. This damage can open the blood-brain barrier and allow drug passage. An ultraperformance liquid chromatography with tandem mass spectrometry method was established to determine the concentration of rhein in the biofluids (plasma and cerebrospinal fluid) of patients with a compromised blood-brain barrier following traumatic brain injury after rhubarb administration. Furthermore, the pharmacokinetic profiles were analyzed. A triple-quadruple tandem mass spectrometer with electrospray ionization was used for rhein detection. The mass transition followed was m/z 283.06→239.0. The calibration curve was linear in the concentration range of 10-8000 ng/mL for the biofluids. The intra- and interday precisions were less than 10%. The relative standard deviation of recovery was less than 15% in biological matrices. The pharmacokinetic data showed that rhein was rapidly transported into biofluids, and exhibited a peak concentration 1 h after rhubarb administration. The elimination rate of rhein was slow. The AUCcerebrospinal fluid /AUCplasma (AUC is area under curve) of rhein was approximately 17%, indicating that portions of rhein could pass the impaired blood-brain barrier. The method was successfully applied to quantify rhein in the biofluids of all patients. The data presented can help to guide clinical applications of rhubarb for treating traumatic brain injury. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Workshop on Two-Phase Fluid Behavior in a Space Environment

    Science.gov (United States)

    Swanson, Theodore D. (Editor); Juhasz, AL (Editor); Long, W. Russ (Editor); Ottenstein, Laura (Editor)

    1989-01-01

    The Workshop was successful in achieving its main objective of identifying a large number of technical issues relating to the design of two-phase systems for space applications. The principal concern expressed was the need for verified analytical tools that will allow an engineer to confidently design a system to a known degree of accuracy. New and improved materials, for such applications as thermal storage and as heat transfer fluids, were also identified as major needs. In addition to these research efforts, a number of specific hardware needs were identified which will require development. These include heat pumps, low weight radiators, advanced heat pipes, stability enhancement devices, high heat flux evaporators, and liquid/vapor separators. Also identified was the need for a centralized source of reliable, up-to-date information on two-phase flow in a space environment.

  13. In silico investigation of blast-induced intracranial fluid cavitation as it potentially leads to traumatic brain injury

    Science.gov (United States)

    Haniff, S.; Taylor, P. A.

    2017-11-01

    We conducted computational macroscale simulations predicting blast-induced intracranial fluid cavitation possibly leading to brain injury. To further understanding of this problem, we developed microscale models investigating the effects of blast-induced cavitation bubble collapse within white matter axonal fiber bundles of the brain. We model fiber tracks of myelinated axons whose diameters are statistically representative of white matter. Nodes of Ranvier are modeled as unmyelinated sections of axon. Extracellular matrix envelops the axon fiber bundle, and gray matter is placed adjacent to the bundle. Cavitation bubbles are initially placed assuming an intracranial wave has already produced them. Pressure pulses, of varied strengths, are applied to the upper boundary of the gray matter and propagate through the model, inducing bubble collapse. Simulations, conducted using the shock wave physics code CTH, predict an increase in pressure and von Mises stress in axons downstream of the bubbles after collapse. This appears to be the result of hydrodynamic jetting produced during bubble collapse. Interestingly, results predict axon cores suffer significantly lower shear stresses from proximal bubble collapse than does their myelin sheathing. Simulations also predict damage to myelin sheathing, which, if true, degrades axonal electrical transmissibility and general health of the white matter structures in the brain.

  14. Energy Consumption and Indoor Environment Predicted by a Combination of Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2003-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution is introduced for improvement of the predictions of both the energy consumption and the indoor environment.The article describes a calculation...

  15. Fluid intelligence allows flexible recruitment of the parieto-frontal network in analogical reasoning.

    Science.gov (United States)

    Preusse, Franziska; van der Meer Elke; Deshpande, Gopikrishna; Krueger, Frank; Wartenburger, Isabell

    2011-01-01

    Fluid intelligence is the ability to think flexibly and to understand abstract relations. People with high fluid intelligence (hi-fluIQ) perform better in analogical reasoning tasks than people with average fluid intelligence (ave-fluIQ). Although previous neuroimaging studies reported involvement of parietal and frontal brain regions in geometric analogical reasoning (which is a prototypical task for fluid intelligence), however, neuroimaging findings on geometric analogical reasoning in hi-fluIQ are sparse. Furthermore, evidence on the relation between brain activation and intelligence while solving cognitive tasks is contradictory. The present study was designed to elucidate the cerebral correlates of geometric analogical reasoning in a sample of hi-fluIQ and ave-fluIQ high school students. We employed a geometric analogical reasoning task with graded levels of task difficulty and confirmed the involvement of the parieto-frontal network in solving this task. In addition to characterizing the brain regions involved in geometric analogical reasoning in hi-fluIQ and ave-fluIQ, we found that blood oxygenation level dependency (BOLD) signal changes were greater for hi-fluIQ than for ave-fluIQ in parietal brain regions. However, ave-fluIQ showed greater BOLD signal changes in the anterior cingulate cortex and medial frontal gyrus than hi-fluIQ. Thus, we showed that a similar network of brain regions is involved in geometric analogical reasoning in both groups. Interestingly, the relation between brain activation and intelligence is not mono-directional, but rather, it is specific for each brain region. The negative brain activation-intelligence relationship in frontal brain regions in hi-fluIQ goes along with a better behavioral performance and reflects a lower demand for executive monitoring compared to ave-fluIQ individuals. In conclusion, our data indicate that flexibly modulating the extent of regional cerebral activity is characteristic for fluid intelligence.

  16. Fluid intelligence allows flexible recruitment of the parieto-frontal network in analogical reasoning.

    Directory of Open Access Journals (Sweden)

    Franziska ePreusse

    2011-03-01

    Full Text Available Fluid intelligence is the ability to think flexibly and to understand abstract relations. People with high fluid intelligence (hi-fluIQ perform better in analogical reasoning tasks than people with average fluid intelligence (ave-fluIQ. Although previous neuroimaging studies reported involvement of parietal and frontal brain regions in geometric analogical reasoning (which is a prototypical task for fluid intelligence, however, neuroimaging findings on geometric analogical reasoning in hi-fluIQ are sparse. Furthermore, evidence on the relation between brain activation and intelligence while solving cognitive tasks is contradictory. The present study was designed to elucidate the cerebral correlates of geometric analogical reasoning in a sample of hi-fluIQ and ave-fluIQ high school students. We employed a geometric analogical reasoning task with graded levels of task difficulty and confirmed the involvement of the parieto-frontal network in solving this task. In addition to characterizing the brain regions involved in geometric analogical reasoning in hi-fluIQ and ave-fluIQ, we found that blood oxygenation level dependency (BOLD signal changes were greater for hi-fluIQ than for ave-fluIQ in parietal brain regions. However, ave-fluIQ showed greater BOLD signal changes in the anterior cingulate cortex and medial frontal gyrus than hi-fluIQ. Thus, we showed that a similar network of brain regions is involved in geometric analogical reasoning in both groups. Interestingly, the relation between brain activation and intelligence is not mono-directional, but rather, it is specific for each brain region. The negative brain activation–intelligence relationship in frontal brain regions in hi-fluIQ goes along with a better behavioral performance and reflects a lower demand for executive monitoring compared to ave-fluIQ individuals. In conclusion, our data indicate that flexibly modulating the extent of regional cerebral activity is characteristic for

  17. Dynamical behavior of surface tension on rotating fluids in low and microgravity environments

    Science.gov (United States)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.

    1989-01-01

    Consideration is given to the time-dependent evolutions of the free surface profile (bubble shapes) of a cylindrical container, partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry in low and microgravity environments. The dynamics of the bubble shapes are calculated for four cases: linear time-dependent functions of spin-up and spin-down in low and microgravity, linear time-dependent functions of increasing and decreasing gravity at high and low rotating cylinder speeds, time-dependent step functions of spin-up and spin-down in low gravity, and sinusoidal function oscillation of the gravity environment in high and low rotating cylinder speeds. It is shown that the computer algorithms developed by Hung et al. (1988) may be used to simulate the profile of time-dependent bubble shapes under variations of centrifugal, capillary, and gravity forces.

  18. Astrocyte oxidative metabolism and metabolite trafficking after fluid percussion brain injury in adult rats.

    Science.gov (United States)

    Bartnik-Olson, Brenda L; Oyoyo, Udochukwu; Hovda, David A; Sutton, Richard L

    2010-12-01

    Despite various lines of evidence pointing to the compartmentation of metabolism within the brain, few studies have reported the effect of a traumatic brain injury (TBI) on neuronal and astrocyte compartments and/or metabolic trafficking between these cells. In this study we used ex vivo ¹³C NMR spectroscopy following an infusion of [1-¹³C] glucose and [1,2-¹³C₂] acetate to study oxidative metabolism in neurons and astrocytes of sham-operated and fluid percussion brain injured (FPI) rats at 1, 5, and 14 days post-surgery. FPI resulted in a decrease in the ¹³C glucose enrichment of glutamate in neurons in the injured hemisphere at day 1. In contrast, enrichment of glutamine in astrocytes from acetate was not significantly decreased at day 1. At day 5 the ¹³C enrichment of glutamate and glutamine from glucose in the injured hemisphere of FPI rats did not differ from sham levels, but glutamine derived from acetate metabolism in astrocytes was significantly increased. The ¹³C glucose enrichment of the C3 position of glutamate (C3) in neurons was significantly decreased ipsilateral to FPI at day 14, whereas the enrichment of glutamine in astrocytes had returned to sham levels at this time point. These findings indicate that the oxidative metabolism of glucose is reduced to a greater extent in neurons compared to astrocytes following a FPI. The increased utilization of acetate to synthesize glutamine, and the acetate enrichment of glutamate via the glutamate-glutamine cycle, suggests an integral protective role for astrocytes in maintaining metabolic function following TBI-induced impairments in glucose metabolism.

  19. Thermosensitive PLA based nanodispersion for targeting brain tumor via intranasal route

    International Nuclear Information System (INIS)

    Jain, Darshana S.; Bajaj, Amrita N.; Athawale, Rajani B.; Shikhande, Shruti S.; Pandey, Abhijeet; Goel, Peeyush N.; Gude, Rajiv P.; Patil, Satish; Raut, Preeti

    2016-01-01

    Delivery of drugs to the brain via nasal route has been studied by many researchers. However, low residence time, mucociliary clearance and enzymatically active environment of nasal cavity pose many challenges to successful nasal delivery of drugs. We aim to deliver methotrexate by designing thermosensitive nanodispersion exhibiting enhanced residence time in nasal cavity and bypassing the blood brain barrier (BBB). PLA nanoparticles were developed using solvent evaporation technique. The developed nanoparticles were further dispersed in prepared thermosensitive vehicle of poloxamer 188 and Carbopol 934 to impart the property of increased residence time. The formulated nanoparticles demonstrated no interaction with the simulated nasal fluids (SNF), mucin, serum proteins and erythrocytes which demonstrate the safety of developed formulation for nasal administration. The penetration property of nanoparticles though the nasal mucosa was higher than the pure drug due to low mucociliary clearance. The developed nanoparticles diffused though the membrane pores and rapidly distributed into the brain portions compared to the pure drug. There was detectable and quantifiable amount of drug seen in the brain as demonstrated by in vivo brain distribution studies with considerably low amount of drug deposition in the lungs. The pharmacokinetic parameters demonstrated the enhancement in circulation half life, area under curve (AUC) and Cmax of the drug when administered intranasal in encapsulated form. Thus, the thermosensitive nanodispersions are surely promising delivery systems for delivering anticancer agents though the nasal route for potential treatment of brain tumors. - Highlights: • The present investigation explores intra-nasal route as potential route for targeting brain tumor. • Thermosensitive nanodispersion has been formulated for enhancing nasal residence time. • PLA nanoparticles enhance penetration into the brain owing to hydrophobic nature and small size

  20. Thermosensitive PLA based nanodispersion for targeting brain tumor via intranasal route

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Darshana S., E-mail: darshanaj_cup@yahoo.com [C.U. Shah College of Pharmacy, S.N.D.T Women' s University, Juhu Tara Road, Santacruz (West), Mumbai 400 049 (India); Bajaj, Amrita N. [C.U. Shah College of Pharmacy, S.N.D.T Women' s University, Juhu Tara Road, Santacruz (West), Mumbai 400 049 (India); Athawale, Rajani B., E-mail: rajani.athawale@gmail.com [C.U. Shah College of Pharmacy, S.N.D.T Women' s University, Juhu Tara Road, Santacruz (West), Mumbai 400 049 (India); Shikhande, Shruti S. [C.U. Shah College of Pharmacy, S.N.D.T Women' s University, Juhu Tara Road, Santacruz (West), Mumbai 400 049 (India); Pandey, Abhijeet [H. R Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra (India); Goel, Peeyush N.; Gude, Rajiv P. [Gude Lab, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410 210 (India); Patil, Satish; Raut, Preeti [Cipla Pvt. Ltd., Vikhroli (West), Mumbai (India)

    2016-06-01

    Delivery of drugs to the brain via nasal route has been studied by many researchers. However, low residence time, mucociliary clearance and enzymatically active environment of nasal cavity pose many challenges to successful nasal delivery of drugs. We aim to deliver methotrexate by designing thermosensitive nanodispersion exhibiting enhanced residence time in nasal cavity and bypassing the blood brain barrier (BBB). PLA nanoparticles were developed using solvent evaporation technique. The developed nanoparticles were further dispersed in prepared thermosensitive vehicle of poloxamer 188 and Carbopol 934 to impart the property of increased residence time. The formulated nanoparticles demonstrated no interaction with the simulated nasal fluids (SNF), mucin, serum proteins and erythrocytes which demonstrate the safety of developed formulation for nasal administration. The penetration property of nanoparticles though the nasal mucosa was higher than the pure drug due to low mucociliary clearance. The developed nanoparticles diffused though the membrane pores and rapidly distributed into the brain portions compared to the pure drug. There was detectable and quantifiable amount of drug seen in the brain as demonstrated by in vivo brain distribution studies with considerably low amount of drug deposition in the lungs. The pharmacokinetic parameters demonstrated the enhancement in circulation half life, area under curve (AUC) and Cmax of the drug when administered intranasal in encapsulated form. Thus, the thermosensitive nanodispersions are surely promising delivery systems for delivering anticancer agents though the nasal route for potential treatment of brain tumors. - Highlights: • The present investigation explores intra-nasal route as potential route for targeting brain tumor. • Thermosensitive nanodispersion has been formulated for enhancing nasal residence time. • PLA nanoparticles enhance penetration into the brain owing to hydrophobic nature and small size

  1. Fluid Intelligence and Cognitive Reflection in a Strategic Environment: Evidence from Dominance-Solvable Games.

    Science.gov (United States)

    Hanaki, Nobuyuki; Jacquemet, Nicolas; Luchini, Stéphane; Zylbersztejn, Adam

    2016-01-01

    Dominance solvability is one of the most straightforward solution concepts in game theory. It is based on two principles: dominance (according to which players always use their dominant strategy) and iterated dominance (according to which players always act as if others apply the principle of dominance). However, existing experimental evidence questions the empirical accuracy of dominance solvability. In this study, we study the relationships between the key facets of dominance solvability and two cognitive skills, cognitive reflection, and fluid intelligence. We provide evidence that the behaviors in accordance with dominance and one-step iterated dominance are both predicted by one's fluid intelligence rather than cognitive reflection. Individual cognitive skills, however, only explain a small fraction of the observed failure of dominance solvability. The accuracy of theoretical predictions on strategic decision making thus not only depends on individual cognitive characteristics, but also, perhaps more importantly, on the decision making environment itself.

  2. Neocortical Transplants in the Mammalian Brain Lack a Blood-Brain Barrier to Macromolecules

    Science.gov (United States)

    Rosenstein, Jeffrey M.

    1987-02-01

    In order to determine whether the blood-brain barrier was present in transplants of central nervous tissue, fetal neocortex, which already possesses blood-brain and blood-cerebrospinal fluid barriers to protein, was grafted into the undamaged fourth ventricle or directly into the neocortex of recipient rats. Horseradish peroxidase or a conjugated human immunoglobulin G-peroxidase molecule was systemically administered into the host. These proteins were detected within the cortical transplants within 2 minutes regardless of the age of the donor or postoperative time. At later times these compounds, which normally do not cross the blood-brain barrier, inundated the grafts and adjacent host brain and also entered the cerebrospinal fluid. Endogenous serum albumin detected immunocytochemically in untreated hosts had a comparable although less extensive distribution. Thus, transplants of fetal central nervous tissue have permanent barrier dysfunction, probably due to microvascular changes, and are not integrated physiologically within the host. Blood-borne compounds, either systemically administered or naturally occurring, which should never contact normal brain tissue, have direct access to these transplants and might affect neuronal function.

  3. Task performance in virtual environments used for cognitive rehabilitation after traumatic brain injury.

    Science.gov (United States)

    Christiansen, C; Abreu, B; Ottenbacher, K; Huffman, K; Masel, B; Culpepper, R

    1998-08-01

    This report describes a reliability study using a prototype computer-simulated virtual environment to assess basic daily living skills in a sample of persons with traumatic brain injury (TBI). The benefits of using virtual reality in training for situations where safety is a factor have been established in defense and industry, but have not been demonstrated in rehabilitation. Thirty subjects with TBI receiving comprehensive rehabilitation services at a residential facility. An immersive virtual kitchen was developed in which a meal preparation task involving multiple steps could be performed. The prototype was tested using subjects who completed the task twice within 7 days. The stability of performance was estimated using intraclass correlation coefficients (ICCs). The ICC value for total performance based on all steps involved in the meal preparation task was .73. When three items with low variance were removed the ICC improved to .81. Little evidence of vestibular optical side-effects was noted in the subjects tested. Adequate initial reliability exists to continue development of the environment as an assessment and training prototype for persons with brain injury.

  4. Fluid mechanics in the perivascular space.

    Science.gov (United States)

    Wang, Peng; Olbricht, William L

    2011-04-07

    Perivascular space (PVS) within the brain is an important pathway for interstitial fluid (ISF) and solute transport. Fluid flowing in the PVS can affect these transport processes and has significant impacts on physiology. In this paper, we carry out a theoretical analysis to investigate the fluid mechanics in the PVS. With certain assumptions and approximations, we are able to find an analytical solution to the problem. We discuss the physical meanings of the solution and particularly examine the consequences of the induced fluid flow in the context of convection-enhanced delivery (CED). We conclude that peristaltic motions of the blood vessel walls can facilitate fluid and solute transport in the PVS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Cilia induced cerebrospinal fluid flow in the third ventricle of brain

    Science.gov (United States)

    Wang, Yong; Westendorf, Christian; Faubel, Regina; Eichele, Gregor; Bodenschatz, Eberhard

    2016-11-01

    Cerebrospinal fluid (CSF) conveys many physiologically important signaling factors through the ventricles of the mammalian brain. The walls of the ventricles are covered with motile cilia that were thought to generate a laminar flow purely following the curvature of walls. However, we recently discovered that cilia of the ventral third ventricle (v3V) generate a complex flow network along the wall, leading to subdivision of the v3V. The contribution of such cilia induced flow to the overall three dimensional volume flow remains to be investigated by using numerical simulation, arguably the best approach for such investigations. The lattice Boltzmann method is used to study the CFS flow in a reconstructed geometry of the v3V. Simulation of CSF flow neglecting cilia in this geometry confirmed that the previous idea about pure confined flow does not reflect the reality observed in experiment. The experimentally recorded ciliary flow network along the wall was refined with the smoothed particle hydrodynamics and then adapted as boundary condition in simulation. We study the contribution of the ciliary network to overall CSF flow and identify site-specific delivery of CSF constituents with respect to the temporal changes.

  6. MDMA, Methylone, and MDPV: Drug-Induced Brain Hyperthermia and Its Modulation by Activity State and Environment.

    Science.gov (United States)

    Kiyatkin, Eugene A; Ren, Suelynn E

    2017-01-01

    Psychomotor stimulants are frequently used by humans to intensify the subjective experience of different types of social interactions. Since psychomotor stimulants enhance metabolism and increase body temperatures, their use under conditions of physiological activation and in warm humid environments could result in pathological hyperthermia, a life-threatening symptom of acute drug intoxication. Here, we will describe the brain hyperthermic effects of MDMA, MDPV, and methylone, three structurally related recreational drugs commonly used by young adults during raves and other forms of social gatherings. After a short introduction on brain temperature and basic mechanisms underlying its physiological fluctuations, we will consider how MDMA, MDPV, and methylone affect brain and body temperatures in awake freely moving rats. Here, we will discuss the role of drug-induced heat production in the brain due to metabolic brain activation and diminished heat dissipation due to peripheral vasoconstriction as two primary contributors to the hyperthermic effects of these drugs. Then, we will consider how the hyperthermic effects of these drugs are modulated under conditions that model human drug use (social interaction and warm ambient temperature). Since social interaction results in brain and body heat production, coupled with skin vasoconstriction that impairs heat loss to the external environment, these physiological changes interact with drug-induced changes in heat production and loss, resulting in distinct changes in the hyperthermic effects of each tested drug. Finally, we present our recent data, in which we compared the efficacy of different pharmacological strategies for reversing MDMA-induced hyperthermia in both the brain and body. Specifically, we demonstrate increased efficacy of the centrally acting atypical neuroleptic compound clozapine over the peripherally acting vasodilator drug, carvedilol. These data could be important for understanding the potential

  7. Embryonic Blood-Cerebrospinal Fluid Barrier Formation and Function

    Directory of Open Access Journals (Sweden)

    David eBueno

    2014-10-01

    Full Text Available During embryonic development and adult life, brain cavities and ventricles are filled with cerebrospinal fluid (CSF. CSF has attracted interest as an active signaling medium that regulates brain development, homeostasis and disease. CSF is a complex protein-rich fluid containing growth factors and signaling molecules that regulate multiple cell functions in the central nervous system (CNS. The composition and substance concentrations of CSF are tightly controlled. In recent years, it has been demonstrated that embryonic CSF (eCSF has a key function as a fluid pathway for delivering diffusible signals to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. From fetal stages through to adult life, CSF is primarily produced by the choroid plexus. The development and functional activities of the choroid plexus and other blood–brain barrier (BBB systems in adults and fetuses have been extensively analyzed. However, eCSF production and control of its homeostasis in embryos, from the closure of the anterior neuropore when the brain cavities become physiologically sealed, to the formation of the functional fetal choroid plexus, has not been studied in as much depth and remains open to debate. This review brings together the existing literature, some of which is based on experiments conducted by our research group, concerning the formation and function of a temporary embryonic blood–CSF barrier in the context of the crucial roles played by the molecules in eCSF.

  8. Fluid inclusion geothermometry

    Science.gov (United States)

    Cunningham, C.G.

    1977-01-01

    Fluid inclusions trapped within crystals either during growth or at a later time provide many clues to the histories of rocks and ores. Estimates of fluid-inclusion homogenization temperature and density can be obtained using a petrographic microscope with thin sections, and they can be refined using heating and freezing stages. Fluid inclusion studies, used in conjunction with paragenetic studies, can provide direct data on the time and space variations of parameters such as temperature, pressure, density, and composition of fluids in geologic environments. Changes in these parameters directly affect the fugacity, composition, and pH of fluids, thus directly influencing localization of ore metals. ?? 1977 Ferdinand Enke Verlag Stuttgart.

  9. Plasma, cerebrospinal fluid, and brain distribution of 14C-melatonin in rat: a biochemical and autoradiographic study

    International Nuclear Information System (INIS)

    Vitte, P.A.; Harthe, C.; Lestage, P.; Claustrat, B.; Bobillier, P.

    1988-01-01

    The distribution of 14C-Melatonin (14C-MT) after systemic injection was studied in the plasma, cerebrospinal fluid (CSF), and brain of rats. Chromatographic analysis (thin-layer chromatography and high-performance liquid chromatography) indicated that the radioactivity from biological samples taken at various times following the injection of label was mainly associated with 14C-MT. Computer analysis of plasma 14C-MT kinetics showed a three-compartment system with half-lives of 0.21 +/- 0.05, 5.97 +/- 1.11, and 47.52 +/- 8.86 min. The volume of distribution and the clearance were 1,736 +/- 349 ml.kg-1 and 25.1 +/- 1.7 ml.min-1.kg-1 respectively. The entry of 14C-MT into the CSF was rapid and reached a maximum at 5 min. The decay followed a two-compartment system with half-lives of 16.5 +/- 2.9 and 47.3 +/- 8.6 min. The CSF/plasma concentration ratio was 0.38 at the steady state (30 min). At 2 min the level of 14C-MT in the brain was 3.8 higher than in the CSF. Representative autoradiograms revealed an heterogeneous localization of 14C-MT in the grey matter. The highest regional values, as evaluated by the permeability area product technique, were found in cortex, thalamic nuclei, medial geniculate nucleus, anterior pretectal area, paraventricular nucleus of the hypothalamus, choroid plexuses, and bulb-pons. Thirty minutes later 14C-MT was still detected in most of the brain regions analyzed. These results point to a low but rapid penetration of circulating MT into the brain and the CSF. The heterogeneous distribution and the partial retention of 14C-MT in the brain are compatible with the hypothesis of a central action of this hormone mediated via binding sites

  10. In vivo 1H MR spectroscopic findings in traumatic contusion of ICR mouse brain induced by fluid percussion injury

    International Nuclear Information System (INIS)

    Choi, Chi-Bong; Kim, Hwi-Yool; Han, Duk-Young; Kang, Young-Woon; Han, Young-Min; Jeun, Sin-Soo; Choe, Bo-Young

    2005-01-01

    Purpose: The purpose of this study was to investigate the proton metabolic differences of the right parietal cortex with experimental brain contusions of ICR mouse induced by fluid percussion injury (FPI) compared to normal controls and to test the possibility that 1 H magnetic resonance spectroscopy (MRS) findings could provide neuropathologic criteria in the diagnosis and monitoring of traumatic brain contusions. Materials and methods: A homogeneous group of 20 ICR male mice was used for MRI and in vivo 1 H MRS. Using image-guided, water-suppressed in vivo 1 H MRS with a 4.7 T MRI/MRS system, we evaluated the MRS measurement of the relative proton metabolite ratio between experimental brain contusion of ICR mouse and healthy control subjects. Results: After trauma, NAA/Cr ratio, as a neuronal marker decreased significantly versus controls, indicating neuronal loss. The ratio of NAA/Cr in traumatic brain contusions was 0.90 ± 0.11, while that in normal control subjects was 1.13 ± 0.12 (P = 0.001). The Cho/Cr ratio had a tendency to rise in experimental brain contusions (P = 0.02). The Cho/Cr ratio was 0.91 ± 0.17, while that of the normal control subjects was 0.76 ± 0.15. However, no significant difference of Glx/Cr was established between the experimental traumatic brain injury models and the normal controls. Discussion and conclusions: The present 1 H MRS study shows significant proton metabolic changes of parietal cortex with experimental brain contusions of ICR mouse induced by FPI compared to normal controls. In vivo 1 H MRS may be a useful modality for the clinical evaluation of traumatic contusions and could aid in better understanding the neuropathologic process of traumatic contusions induced by FPI

  11. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI

    OpenAIRE

    Iliff, Jeffrey J.; Lee, Hedok; Yu, Mei; Feng, Tian; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene

    2013-01-01

    The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes t...

  12. Resistance of Listeria monocytogenes F2365 cells to synthetic gastric fluid is greater following growth on ready-to-eat deli turkey meat than in brain heart infusion broth.

    Science.gov (United States)

    Peterson, Luke D; Faith, Nancy G; Czuprynski, Charles J

    2007-11-01

    Ready-to-eat (RTE) deli meats have been categorized as high-risk foods for contraction of foodborne listeriosis. Several recent listeriosis outbreaks have been associated with the consumption of RTE deli turkey meat. In this study, we examined whether the growth of Listeria monocytogenes F2365 on commercially prepared RTE deli turkey meat causes listerial cells to become more resistant to inactivation by synthetic gastric fluid (SGF). Listerial cells grown on turkey meat to late logarithmic-early stationary phase were significantly more resistant to SGF at pH 7.0, 5.0, or 3.5 than listerial cells grown in brain heart infusion (BHI) broth. The pH was lower in the fluid in packages of turkey meat than in BHI broth (6.5 versus 7.5). However, listerial cells grown in BHI broth adjusted to a lower pH (6.0) did not exhibit enhanced resistance to SGF. The lesser resistance to SGF of listerial cells grown in BHI broth may be due, in part, to the presence of glucose (0.2%). This study indicates the environment presented by the growth of L. monocytogenes on deli turkey meat affects its ability to survive conditions it encounters in the gastrointestinal tract.

  13. Prediction of brain target site concentrations on the basis of CSF PK : impact of mechanisms of blood-to-brain transport and within brain distribution

    NARCIS (Netherlands)

    Westerhout, J.

    2014-01-01

    In the development of drugs for the treatment of central nervous system (CNS) disorders, the prediction of human CNS drug action is a big challenge. Direct measurement of brain extracellular fluid (brainECF) concentrations is highly restricted in human. Therefore, unbound drug concentrations in

  14. Contrast-enhanced fast fluid-attenuated inversion recovery MR imaging in patients with brain tumors

    International Nuclear Information System (INIS)

    Kim, Chan Kyo; Na, Dong Gyu; Ryoo, Wook Jae; Byun Hong Sik; Yoon, Hye Kyung; Kim, Jong hyun

    2000-01-01

    To assess the feasibility of contrast-enhanced fast fluid-attenuated inversion recovery (fast FLAIR) MR imaging in patients with brain tumors. This study involved 31 patients with pathologically proven brain tumors and nine with clinically diagnosed metastases. In all patients, T2-weighted, fast FLAIR, images were visual contrast-enhanced T1-weighted MR images were obtained. Contrast-enhanced fast FLAIR images were visually compared with other MR sequences in terms of tumor conspicuity. In order to distinguish tumor and surrounding edema, contrast-enhanced fast FLAIR images were compared with fast FLAIR and T2-weighted images. The tumor-to- white matter contrast-to-noise ratios (CNRs), as demonstrated by T2-weighted, fast FLAIR, contrast-enhanced fast FLAIR and contrast-enhanced T1-weighted imaging, were quantitatively assessed and compared. For the visual assessment of tumor conspicuity, contrast-enhanced fast FLAIR image imaging superior to fast FLAIR in 60% of cases (24/40), and superior to T2-weighted in 70% (28/40). Contrast-enhanced fast FLAIR imaging was inferior to contrast-enhanced T1-weighted in 58% of cases (23/40). For distinguishing between tumor and surrounding edema, contrast-enhanced fast FLAIR imaging was superior to fast FLAIR or T2-weighted in 22 of 27 tumors with peritumoral edema (81%). Quantitatively, CNR was the highest on contrast-enhanced fast FLAIR image and the lowest on fast FLAIR. For the detection of leptomeningeal metastases, contrast-enhanced fast FLAIR was partially superior to contrast-enhanced T1-weighted imaging in two of three high-grade gliomas. Although contrast-enhanced fast FLAIR imaging should not be seen as a replacement for conventional modalities, it provides additional informaton for assessment of the extent of glial cell tumors and leptomeningeal metastases in patients with brain tumors. (author)

  15. Materials processing using supercritical fluids

    Directory of Open Access Journals (Sweden)

    Orlović Aleksandar M.

    2005-01-01

    Full Text Available One of the most interesting areas of supercritical fluids applications is the processing of novel materials. These new materials are designed to meet specific requirements and to make possible new applications in Pharmaceuticals design, heterogeneous catalysis, micro- and nano-particles with unique structures, special insulating materials, super capacitors and other special technical materials. Two distinct possibilities to apply supercritical fluids in processing of materials: synthesis of materials in supercritical fluid environment and/or further processing of already obtained materials with the help of supercritical fluids. By adjusting synthesis parameters the properties of supercritical fluids can be significantly altered which further results in the materials with different structures. Unique materials can be also obtained by conducting synthesis in quite specific environments like reversed micelles. This paper is mainly devoted to processing of previously synthesized materials which are further processed using supercritical fluids. Several new methods have been developed to produce micro- and nano-particles with the use of supercritical fluids. The following methods: rapid expansion of supercritical solutions (RESS supercritical anti-solvent (SAS, materials synthesis under supercritical conditions and encapsulation and coating using supercritical fluids were recently developed.

  16. Brain drains: new insights into brain clearance pathways from lymphatic biology.

    Science.gov (United States)

    Bower, Neil I; Hogan, Benjamin M

    2018-05-01

    The lymphatic vasculature act as the drainage system for most of our tissues and organs, clearing interstitial fluid and waste and returning them to the blood circulation. This is not the case for the central nervous system (CNS), which is devoid of parenchymal lymphatic vessels. Nevertheless, the brain is responsible for 25% of the body's metabolism and only compromises 2% of the body's mass. This high metabolic load requires an efficient system to remove waste products and maintain homeostasis. Well-described mechanisms of waste clearance include phagocytic immune cell functions as well as perivascular fluid flow; however, the need for active drainage of waste from the brain is becoming increasingly appreciated. Recent developments in lymphatic vascular biology challenge the proposition that the brain lacks lymphatic drainage or an equivalent. In this review, we describe the roles of the glymphatic system (a key drainage mechanism in the absence of lymphatics), the recently characterized meningeal lymphatic vessels, and explore an enigmatic cell population found in zebrafish called mural lymphatic endothelial cells. These systems may play important individual and collective roles in draining and clearing wastes from the brain.

  17. Numerical Cerebrospinal System Modeling in Fluid-Structure Interaction.

    Science.gov (United States)

    Garnotel, Simon; Salmon, Stéphanie; Balédent, Olivier

    2018-01-01

    Cerebrospinal fluid (CSF) stroke volume in the aqueduct is widely used to evaluate CSF dynamics disorders. In a healthy population, aqueduct stroke volume represents around 10% of the spinal stroke volume while intracranial subarachnoid space stroke volume represents 90%. The amplitude of the CSF oscillations through the different compartments of the cerebrospinal system is a function of the geometry and the compliances of each compartment, but we suspect that it could also be impacted be the cardiac cycle frequency. To study this CSF distribution, we have developed a numerical model of the cerebrospinal system taking into account cerebral ventricles, intracranial subarachnoid spaces, spinal canal and brain tissue in fluid-structure interactions. A numerical fluid-structure interaction model is implemented using a finite-element method library to model the cerebrospinal system and its interaction with the brain based on fluid mechanics equations and linear elasticity equations coupled in a monolithic formulation. The model geometry, simplified in a first approach, is designed in accordance with realistic volume ratios of the different compartments: a thin tube is used to mimic the high flow resistance of the aqueduct. CSF velocity and pressure and brain displacements are obtained as simulation results, and CSF flow and stroke volume are calculated from these results. Simulation results show a significant variability of aqueduct stroke volume and intracranial subarachnoid space stroke volume in the physiological range of cardiac frequencies. Fluid-structure interactions are numerous in the cerebrospinal system and difficult to understand in the rigid skull. The presented model highlights significant variations of stroke volumes under cardiac frequency variations only.

  18. CT study in primary low spinal fluid pressure syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Moritoshi; Okayama, Kenji; Kubo, Hiromasa; Watanabe, Hiromi; Endou, Riuko (Ohmiya Red Cross Hospital, Yono, Saitama (Japan))

    1991-02-01

    CT findings in primary low spinal fluid pressure syndrome were studied on the basis of 3 cases. Case 1 was a 43-year-old male with a complicated bilateral isodense subdural hematoma (SDH). Case 2 was a 45-year-old female with a complicated bilateral high dense SDH. Case 3 was a 36-year-old female discharged without any complications after spinal fluid pressure normalized. Slight downward displacement of the brain under low spinal fluid pressure was shown as the narrowing of a Sylvian fissures and infratentorial cisterns on CT. On the other hand, in this syndrome with a complicated bilateral isodense SDH, in addition to this finding, CT revealed distortion and narrowing of body lateral ventricles, which might be differential findings from this syndrome without complicated SDH. Under low spinal fluid pressure, bridging veins are more stretched by a downward displacement of the brain. And consequently they were easily injured and SDH was developed. (author).

  19. Magnetic resonance imaging of cold injury-induced brain edema in rats

    International Nuclear Information System (INIS)

    Houkin, Kiyohiro; Abe, Hiroshi; Hashiguchi, Yuji; Seri, Shigemi.

    1996-01-01

    The chronological changes of blood-brain barrier disruption, and diffusion and absorption of edema fluid were investigated in rats with cold-induced brain injury (vasogenic edema) using magnetic resonance imaging. Contrast medium was administered intravenously at 3 and 24 hours after lesioning as a tracer of edema fluid. Serial T 1 -weighted multiple-slice images were obtained for 180 minutes after contrast administration. Disruption of the blood-brain barrier was more prominent at 24 hours after lesioning than at 3 hours. Contrast medium leaked from the periphery of the injury and gradually diffused to the center of the lesion. Contrast medium diffused into the corpus callosum and the ventricular system (cerebrospinal fluid). Disruption of the blood-brain barrier induced by cold injury was most prominent at the periphery of the vasogenic edema. Edema fluid subsequently extended into the center of the lesion and was also absorbed by the ventricular system. Magnetic resonance imaging is a useful method to assess the efficacy of therapy for vasogenic edema. (author)

  20. Short-term mechanisms influencing volumetric brain dynamics

    Directory of Open Access Journals (Sweden)

    Nikki Dieleman

    2017-01-01

    Full Text Available With the use of magnetic resonance imaging (MRI and brain analysis tools, it has become possible to measure brain volume changes up to around 0.5%. Besides long-term brain changes caused by atrophy in aging or neurodegenerative disease, short-term mechanisms that influence brain volume may exist. When we focus on short-term changes of the brain, changes may be either physiological or pathological. As such determining the cause of volumetric dynamics of the brain is essential. Additionally for an accurate interpretation of longitudinal brain volume measures by means of neurodegeneration, knowledge about the short-term changes is needed. Therefore, in this review, we discuss the possible mechanisms influencing brain volumes on a short-term basis and set-out a framework of MRI techniques to be used for volumetric changes as well as the used analysis tools. 3D T1-weighted images are the images of choice when it comes to MRI of brain volume. These images are excellent to determine brain volume and can be used together with an analysis tool to determine the degree of volume change. Mechanisms that decrease global brain volume are: fluid restriction, evening MRI measurements, corticosteroids, antipsychotics and short-term effects of pathological processes like Alzheimer's disease, hypertension and Diabetes mellitus type II. Mechanisms increasing the brain volume include fluid intake, morning MRI measurements, surgical revascularization and probably medications like anti-inflammatory drugs and anti-hypertensive medication. Exercise was found to have no effect on brain volume on a short-term basis, which may imply that dehydration caused by exercise differs from dehydration by fluid restriction. In the upcoming years, attention should be directed towards studies investigating physiological short-term changes within the light of long-term pathological changes. Ultimately this may lead to a better understanding of the physiological short-term effects of

  1. Impaired brain glymphatic flow in a rodent model of chronic liver disease and minimal hepatic encephalopathy

    OpenAIRE

    Lythgoe, Mark; Hosford, Patrick; Arias, Natalia; Gallego-Duran, Rocio; Hadjihambi, Anna; Jalan, Rajiv; Gourine, Alexander; Habtesion, Abeba; Davies, Nathan; Harrison, Ian

    2017-01-01

    Neuronal function is exquisitely sensitive to alterations in extracellular environment. In patients with hepatic encephalopathy (HE), accumulation of metabolic waste products and noxious substances in the interstitial fluid of the brain may contribute to neuronal dysfunction and cognitive impairment. In a rat model of chronic liver disease, we used an emerging dynamic contrast-enhanced MRI technique to assess the efficacy of the glymphatic system, which facilitates clearance of solutes from t...

  2. Changes in brain CT with aging

    International Nuclear Information System (INIS)

    Hiraiwa, Mikio; Abe, Toshiaki; Nonaka, Chizuru

    1983-01-01

    We have devised a new method for the objective evaluation of brain CT, a two-dimensional measurement: Two-dimensional measurement is based not on the developed films, but on treating raw data from magnetic tape. On the basis of our application of this method, we have discussed the changes in brain CT with aging. 135 patients, 72 males and 63 females, aged from 10 days to 78 years old, were subjected. The intracranial area showed a significant increase under 2 years old, but no marked changes after 3 years of age. The brain area increased under 2 years of age, and decreased after one's forties. The ventricular area showed no significant changes until the forties, but gradually increased thereafter. The bifrontal fluid-collection area was prominent in infancy, was almost invisible between 3 and 50 years of age and thereafter grew larger. For a relative comparison of brain CT scans with different intracranial areas, we devised three indices; BAI (brain-area index; brain area x 100/intracranial area), VAI (ventricular-area index; ventricular area x 100/intracranial area), and BFCI (bifrontal fluid-collection-area index; bifrontal fluid-collection area x 100/intracranial area). The BAI was low in infancy (under 95), was 96-97 between 3 and 50 years of age, and slowly decreased thereafter (88 in seventies). The VAI was under 2 until 50 years of age and gradually increased thereafter. The BFCI was high (over 3) in infancy and 0.2-0.4 between 3 and 50 years of age, and slowly increased thereafter. (J.P.N.)

  3. Systemic Administration of Glibenclamide Fails to Achieve Therapeutic Levels in the Brain and Cerebrospinal Fluid of Rodents.

    Directory of Open Access Journals (Sweden)

    Carolina Lahmann

    Full Text Available Activating mutations in the Kir6.2 (KCNJ11 subunit of the ATP-sensitive potassium channel cause neonatal diabetes (ND. Patients with severe mutations also suffer from neurological complications. Glibenclamide blocks the open KATP channels and is the treatment of choice for ND. However, although glibenclamide successfully restores normoglycaemia, it has a far more limited effect on the neurological problems. To assess the extent to which glibenclamide crosses the blood-brain barrier (BBB in vivo, we quantified glibenclamide concentrations in plasma, cerebrospinal fluid (CSF, and brain tissue of rats, control mice, and mice expressing a human neonatal diabetes mutation (Kir6.2-V59M selectively in neurones (nV59M mice. As only small sample volumes can be obtained from rodents, we developed a highly sensitive method of analysis, using liquid chromatography tandem mass spectrometry acquisition with pseudo-selected reaction monitoring, achieving a quantification limit of 10ng/ml (20nM glibenclamide in a 30μl sample. Glibenclamide was not detectable in the CSF or brain of rats after implantation with subcutaneous glibenclamide pellets, despite high plasma concentrations. Further, one hour after a suprapharmacological glibenclamide dose was administered directly into the lateral ventricle of the brain, the plasma concentration was twice that of the CSF. This suggests the drug is rapidly exported from the CSF. Elacridar, an inhibitor of P-glycoprotein and breast cancer resistance protein (major multidrug resistance transporters at the BBB, did not affect glibenclamide levels in CSF and brain tissue. We also identified a reduced sensitivity to volatile anaesthetics in nV59M mice and showed this was not reversed by systemic delivery of glibenclamide. Our results therefore suggest that little glibenclamide reaches the central nervous system when given systemically, that glibenclamide is rapidly removed across the BBB when given intracranioventricularly

  4. Hypertonic saline (HTS versus standard (isotonic fluid therapy for traumatic brain injuries: a systematic review

    Directory of Open Access Journals (Sweden)

    Andrit Lourens

    2014-12-01

    Full Text Available Traumatic Brain Injury (TBI is one of the foremost causes of mortality secondary to trauma. Poorer outcomes are associated with secondary insults, after the initial brain injury occurred. The management goal of TBI is to prevent or minimise the effects of secondary brain injuries. The primary objective of this systematic review/meta-analysis was to assess the effects of Hypertonic Saline (HTS compared to Standard Fluid Therapy (SFT in the treatment and resuscitation of TBI patients. We searched CENTRAL, MEDLINE (from 1966, EBSCOhost, Scopus, ScienceDirect, Proquest Medical Library and EMBASE (from 1980 in May 2010 and updated searches in February 2011. Data were assessed and extracted by two independent authors. Risk ratios (RR with a 95% confidence interval (CI were used as the effect measure. The review included three RCTs (1184 participants of which two were of high to moderate quality (1005 participants. HTS was not found to be associated with a reduction in mortality (3 RCTs, 1184 participants, RR 0.91, 95%CI 0.76 to 1.09 and morbidity in TBI patients. No significant improvement in haemodynamical stability was found whereas insufficient data were available to indicate a reduction in the intracranial pressure (ICP. In the HTS group, cerebral perfusion pressure (CPP (MD 3.83 mmHg, 95%CI 1.08 to 6.57 and serum sodium level (MD 8 mEq/L, 95%CI 7.47 to 8.53 were higher. Existing studies show no indication that HTS, in comparison to SFT, reduces mortality or morbidity after the occurrence of TBI. Against this backdrop, some uncertainties still exist in terms of the use of different concentrations and volumes of HTS, the timing of administration as well as the benefit in specific injury profiles. As a result, formulating conclusive recommendations is complex.

  5. Momentary fitting in a fluid environment: A grounded theory of triage nurse decision making.

    Science.gov (United States)

    Reay, Gudrun; Rankin, James A; Then, Karen L

    2016-05-01

    Triage nurses control access to the Emergency Department (ED) and make decisions about patient acuity, patient priority, and placement of the patient in the ED. Understanding the processes and strategies that triage nurses use to make decisions is therefore vital for patient safety and the operation of the ED. The aim of the current study was to generate a substantive grounded theory (GT) of decision making by emergency triage Registered Nurses (RNs). Data collection consisted of seven observations of the triage environment at three tertiary care hospitals where RNs conducted triage and twelve interviews with triage RNs. The data were analyzed by constant comparison in accordance with the classical GT method. In the resultant theory, Momentary Fitting in a Fluid Environment, triage is conceptualized as a process consisting of four categories, determining acuity, anticipating needs, managing space, and creating space. The findings indicate that triage RNs continually strive to achieve fit, while simultaneously considering the individual patient and the ED as a whole entity. Triage RNs require appropriately designed triage environments and computer technology that enable them to secure real time knowledge of the ED to maintain situation awareness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Cerebrospinal Fluid Enhancement on Fluid Attenuated Inversion Recovery Images After Carotid Artery Stenting with Neuroprotective Balloon Occlusions: Hemodynamic Instability and Blood–Brain Barrier Disruption

    International Nuclear Information System (INIS)

    Ogami, Ryo; Nakahara, Toshinori; Hamasaki, Osamu; Araki, Hayato; Kurisu, Kaoru

    2011-01-01

    Purpose: A rare complication of carotid artery stenting (CAS), prolonged reversible neurological symptoms with delayed cerebrospinal fluid (CSF) space enhancement on fluid attenuated inversion recovery (FLAIR) images, is associated with blood–brain barrier (BBB) disruption. We prospectively identified patients who showed CSF space enhancement on FLAIR images. Methods: Nineteen patients—5 acute-phase and 14 scheduled—underwent 21 CAS procedures. Balloon catheters were navigated across stenoses, angioplasty was performed using a neuroprotective balloon, and stents were placed with after dilation under distal balloon protection. CSF space hyperintensity or obscuration on FLAIR after versus before CAS indicated CSF space enhancement. Correlations with clinical factors were examined. Results: CSF space was enhanced on FLAIR in 12 (57.1%) cases. Postprocedural CSF space enhancement was significantly related to age, stenosis rate, acute-stage procedure, and total occlusion time. All acute-stage CAS patients showed delayed enhancement. Only age was associated with delayed CSF space enhancement in scheduled CAS patients. Conclusions: Ischemic intolerance for severe carotid artery stenosis and temporary neuroprotective balloon occlusion, causing reperfusion injury, seem to be the main factors that underlie BBB disruption with delayed CSF space enhancement shortly after CAS, rather than sudden poststenting hemodynamic change. Our results suggest that factors related to hemodynamic instability or ischemic intolerance seem to be associated with post-CAS BBB vulnerability. Patients at risk for hemodynamic instability or with ischemic intolerance, which decrease BBB integrity, require careful management to prevent intracranial hemorrhagic and other post-CAS complications.

  7. Effect of surface tension on the dynamical behavior of bubble in rotating fluids under low gravity environment

    Science.gov (United States)

    Hung, R. J.; Tsao, Y. D.; Leslie, Fred W.; Hong, B. B.

    1988-01-01

    Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) linear functions of increasing and decreasing gravity enviroment in high and low rotating cylidner speeds, (3) step functions of spin-up and spin-down in a low gravity environment, and (4) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds. The initial condition of bubble profiles was adopted from the steady-state formulations in which the computer algorithms have been developed by Hung and Leslie (1988), and Hung et al. (1988).

  8. A Proposed Treatment for Visual Field Loss caused by Traumatic Brain Injury using Interactive Visuotactile Virtual Environment

    Science.gov (United States)

    Farkas, Attila J.; Hajnal, Alen; Shiratuddin, Mohd F.; Szatmary, Gabriella

    In this paper, we propose a novel approach of using interactive virtual environment technology in Vision Restoration Therapy caused by Traumatic Brain Injury. We called the new system Interactive Visuotactile Virtual Environment and it holds a promise of expanding the scope of already existing rehabilitation techniques. Traditional vision rehabilitation methods are based on passive psychophysical training procedures, and can last up to six months before any modest improvements can be seen in patients. A highly immersive and interactive virtual environment will allow the patient to practice everyday activities such as object identification and object manipulation through the use 3D motion sensoring handheld devices such data glove or the Nintendo Wiimote. Employing both perceptual and action components in the training procedures holds the promise of more efficient sensorimotor rehabilitation. Increased stimulation of visual and sensorimotor areas of the brain should facilitate a comprehensive recovery of visuomotor function by exploiting the plasticity of the central nervous system. Integrated with a motion tracking system and an eye tracking device, the interactive virtual environment allows for the creation and manipulation of a wide variety of stimuli, as well as real-time recording of hand-, eye- and body movements and coordination. The goal of the project is to design a cost-effective and efficient vision restoration system.

  9. The functional connectivity landscape of the human brain.

    Directory of Open Access Journals (Sweden)

    Bratislav Mišić

    Full Text Available Functional brain networks emerge and dissipate over a primarily static anatomical foundation. The dynamic basis of these networks is inter-regional communication involving local and distal regions. It is assumed that inter-regional distances play a pivotal role in modulating network dynamics. Using three different neuroimaging modalities, 6 datasets were evaluated to determine whether experimental manipulations asymmetrically affect functional relationships based on the distance between brain regions in human participants. Contrary to previous assumptions, here we show that short- and long-range connections are equally likely to strengthen or weaken in response to task demands. Additionally, connections between homotopic areas are the most stable and less likely to change compared to any other type of connection. Our results point to a functional connectivity landscape characterized by fluid transitions between local specialization and global integration. This ability to mediate functional properties irrespective of spatial distance may engender a diverse repertoire of cognitive processes when faced with a dynamic environment.

  10. Fluid Annotations in a Open World

    DEFF Research Database (Denmark)

    Zellweger, Polle Trescott; Bouvin, Niels Olof; Jehøj, Henning

    2001-01-01

    Fluid Documents use animated typographical changes to provide a novel and appealing user experience for hypertext browsing and for viewing document annotations in context. This paper describes an effort to broaden the utility of Fluid Documents by using the open hypermedia Arakne Environment to l...... to layer fluid annotations and links on top of abitrary HTML pages on the World Wide Web. Changes to both Fluid Documents and Arakne are required....

  11. Optimal-mass-transfer-based estimation of glymphatic transport in living brain

    OpenAIRE

    Ratner, Vadim; Zhu, Liangjia; Kolesov, Ivan; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2015-01-01

    It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the ‘glymphatic pathway’ plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs1,2. It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly through ...

  12. Oligoclonal bands in the cerebrospinal fluid and increased brain atrophy in early stages of relapsing-remitting multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Juan Ignacio Rojas

    2012-08-01

    Full Text Available OBJECTIVE: To determine if the presence of oligoclonal bands (OB at early stages of multiple sclerosis was associated with higher brain atrophy, when compared with patients without OB. METHODS: Relapsing-remitting multiple sclerosis (RRMS patients with less than two years of disease onset and OB detection in cerebrospinal fluid (CSF were included. SIENAX was used for total brain volume (TBV, gray matter volume (GMV, and white matter volume (WMV. RESULTS: Forty patients were included, 29 had positive IgG-OB. No differences were found between positive and negative patients in gender, expanded disability status scale (EDSS, treatment received, and T2/T1 lesion load. TBV in positive IgG-OB patients was 1.5 mm³ x 10(6 compared with 1.64 mm³ x 10(6 in the negative ones (p=0.02. GMV was 0.51 mm³ x 10(6 in positive IgG-OB compared with 0.62 mm³ x 10(6 in negative ones (p=0.002. No differences in WMV (p=0.09 were seen. CONCLUSIONS: IgG-OB in the CSF was related to neurodegeneration magnetic resonance (MR markers in early RRMS.

  13. Permeability of the blood-brain barrier predicts conversion from optic neuritis to multiple sclerosis

    DEFF Research Database (Denmark)

    Cramer, Stig P; Modvig, Signe; Simonsen, Helle Juhl

    2015-01-01

    in the permeability of the blood-brain barrier in normal-appearing white matter of patients with multiple sclerosis and here, for the first time, we present a study on the capability of blood-brain barrier permeability in predicting conversion from optic neuritis to multiple sclerosis and a direct comparison...... with cerebrospinal fluid markers of inflammation, cellular trafficking and blood-brain barrier breakdown. To this end, we applied dynamic contrast-enhanced magnetic resonance imaging at 3 T to measure blood-brain barrier permeability in 39 patients with monosymptomatic optic neuritis, all referred for imaging...... fluid as well as levels of CXCL10 and MMP9 in the cerebrospinal fluid. These findings suggest that blood-brain barrier permeability, as measured by magnetic resonance imaging, may provide novel pathological information as a marker of neuroinflammation related to multiple sclerosis, to some extent...

  14. Proton nuclear magnetic resonance studies on brain edema

    International Nuclear Information System (INIS)

    Naruse, S.; Horikawa, Y.; Tanaka, C.; Hirakawa, K.; Nishikawa, H.; Yoshizaki, K.

    1982-01-01

    The water in normal and edematous brain tissues of rats was studied by the pulse nuclear magnetic resonance (NMR) technique, measuring the longitudinal relaxation time (T1) and the transverse relaxation time (T2). In the normal brain, T1 and T2 were single components, both shorter than in pure water. Prolongation and separation of T2 into two components, one fast and one slow, were the characteristic findings in brain edema induced by both cold injury and triethyl tin (TET), although some differences between the two types of edema existed in the content of the lesion and in the degree of changes in T1 and T2 values. Quantitative analysis of T1 and T2 values in their time course relating to water content demonstrated that prolongation of T1 referred to the volume of increased water in tissues examined, and that two phases of T2 reflected the distribution and the content of the edema fluid. From the analysis of the slow component of T2 versus water content during edema formation, it was demonstrated that the increase in edema fluid was steady, and its content was constant during formation of TET-induced edema. On the contrary, during the formation of cold-injury edema, water-rich edema fluid increased during the initial few hours, and protein-rich edema fluid increased thereafter. It was concluded that proton NMR relaxation time measurements may provide new understanding in the field of brain edema research

  15. On the Relationship between Fluid Intelligence, Gesture Production, and Brain Structure

    Science.gov (United States)

    Wartenburger, Isabell; Kuhn, Esther; Sassenberg, Uta; Foth, Manja; Franz, Elizabeth A.; van der Meer, Elke

    2010-01-01

    Individuals scoring high in fluid intelligence tasks generally perform very efficiently in problem solving tasks and analogical reasoning tasks presumably because they are able to select the task-relevant information very quickly and focus on a limited set of task-relevant cognitive operations. Moreover, individuals with high fluid intelligence…

  16. Hydraulic fracturing chemicals and fluids technology

    CERN Document Server

    Fink, Johannes

    2013-01-01

    When classifying fracturing fluids and their additives, it is important that production, operation, and completion engineers understand which chemical should be utilized in different well environments. A user's guide to the many chemicals and chemical additives used in hydraulic fracturing operations, Hydraulic Fracturing Chemicals and Fluids Technology provides an easy-to-use manual to create fluid formulations that will meet project-specific needs while protecting the environment and the life of the well. Fink creates a concise and comprehensive reference that enables the engineer to logically select and use the appropriate chemicals on any hydraulic fracturing job. The first book devoted entirely to hydraulic fracturing chemicals, Fink eliminates the guesswork so the engineer can select the best chemicals needed on the job while providing the best protection for the well, workers and environment. Pinpoints the specific compounds used in any given fracturing operation Provides a systematic approach to class...

  17. Potential Pathways for CNS Drug Delivery Across the Blood-Cerebrospinal Fluid Barrier

    OpenAIRE

    Strazielle, Nathalie; Ghersi-Egea, Jean-Fran?ois

    2016-01-01

    The blood-brain interfaces restrict the cerebral bioavailability of pharmacological compounds. Various drug delivery strategies have been developed to improve drug penetration into the brain. Most strategies target the microvascular endothelium forming the blood-brain barrier proper. Targeting the blood-cerebrospinal fluid (CSF) barrier formed by the epithelium of the choroid plexuses in addition to the blood-brain barrier may offer added-value for the treatment of central nervous system dise...

  18. Manganese and selenium concentrations in cerebrospinal fluid of seriously ill children.

    Science.gov (United States)

    Franěk, Tomáš; Kotaška, Karel; Průša, Richard

    2017-11-01

    The homeostasis of essential trace elements such as selenium and manganese may be altered in patients with severe diseases of various etiologies (trauma brain injuries, tumors, leukemias, lymphomas, neurological diseases). Concentration of manganese and selenium were determined in cerebrospinal fluid by electrothermal atomic absorption spectrometry in 50 hospitalized children with various clinical ethiologies including oncological, neurological, and brain related diseases. The concentrations of manganese in cerebrospinal fluid of children were 0.97±0.67 μg/L. The concentrations of selenium were 13.3±3.5 μg/L. The concentrations were similar as published in adults. The values did not correlated with the age, gender and severity of the disease. We evaluated values of selenium and manganese in cerebrospinal fluid of seriously diseased children. © 2017 Wiley Periodicals, Inc.

  19. Miniature magnetic fluid seal working in liquid environments

    Science.gov (United States)

    Mitamura, Yoshinori; Durst, Christopher A.

    2017-06-01

    This study was carried out to develop a miniature magnetic fluid (MF) seal working in a liquid environment. The miniature MF seal is intended for use in a catheter blood pump. The requirements for the MF seal included a size of less than Ø4×4.5 mm, shaft diameter of 1 mm, sealing pressure of 200 mmHg, shaft speed of up to 40000 rpm, and life of one month. The miniature MF seal was composed of an NdFeB magnet (Ø4×Ø2×1) sandwiched between two pole pieces (Ø4×Ø1.1×0.5). A shield (Ø4×Ø1.2×1.5) was placed on the pole piece facing the liquid to minimize the influence of pump flow on the MF. The seal was installed on a Ø1 shaft. A seal was formed by injecting MF (Ms: 47.8 kA/m and η: 0.5 Pa·sec) into the gap between the pole pieces and the shaft. Total volume of the MF seal was 44 μL. A sealing pressure of 370 mmHg was obtained at motor speeds of 0-40,000 rpm. The seal remained perfect for 10 days in saline under the condition of a pump flow of 1.5 L/min (The test was terminated in accordance with plans). The seal remained intact after ethylene oxide sterilization during which the seal was exposed to high pressures. In conclusion, the newly developed MF seal will be useful for a catheter pump.

  20. Putting reins on the brain. How the body and environment use it.

    Directory of Open Access Journals (Sweden)

    Dobromir eDotov

    2014-10-01

    Full Text Available Radical embodied cognitive neuroscience (RECN will probably rely on dynamical systems theory (DST and complex systems theory for methods and formalism. Yet, there have been plenty of non-radical neurodynamicists out there for quite some time. How much of their work fits with radical embodied cognitive science, what do they need RECN for, and what are the inconsistencies between RECN and established neurodynamics that would have to be resolved? This paper is both theoretical hypothesis and review. First, it provides a brief overview of the typical, purely structural considerations why the central nervous systems (CNS should be treated as a nonlinear dynamical system and what this entails. The reader will learn about the circular causality enclosing brain and behavior and different attempts to formalize this circularity. Then, three different attempts at linking dynamics and theory of brain function are described in more detail and criticized. A fourth method based on ecological psychology could fix some of the issues that the others encounter. It is argued that studying self-organization of the brain without taking its ecological embedding into account is insufficient. Finally, based on existing theoretical work we propose two roles that the CNS has to be fulfilling in order to allow an animal to behave adequately in its niche. In its first role the CNS has to be enslaved easily by patterns of behavior that guide the animal through its environment. In the second role the brain has to flexibly switch among patterns, what can be called the metastable circuit breaker. The relevance of this idea is supported using certain motor symptoms of Parkinson's disease. These symptoms can be explained as consequent to an excessive stability of the (metastable circuit breaker.

  1. Studying variability in human brain aging in a population-based German cohort – Rationale and design of 1000BRAINS

    Directory of Open Access Journals (Sweden)

    Svenja eCaspers

    2014-07-01

    Full Text Available The ongoing 1000 brains study (1000BRAINS is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions & language; examination of motor skills; ratings of personality, life quality, mood & daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla of the brain. The latter includes (i 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fibre tracking and for diffusion kurtosis imaging; (iii resting-state and task-based functional MRI; and (iv fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.

  2. Automatic, accurate, and reproducible segmentation of the brain and cerebro-spinal fluid in T1-weighted volume MRI scans and its application to serial cerebral and intracranial volumetry

    Science.gov (United States)

    Lemieux, Louis

    2001-07-01

    A new fully automatic algorithm for the segmentation of the brain and cerebro-spinal fluid (CSF) from T1-weighted volume MRI scans of the head was specifically developed in the context of serial intra-cranial volumetry. The method is an extension of a previously published brain extraction algorithm. The brain mask is used as a basis for CSF segmentation based on morphological operations, automatic histogram analysis and thresholding. Brain segmentation is then obtained by iterative tracking of the brain-CSF interface. Grey matter (GM), white matter (WM) and CSF volumes are calculated based on a model of intensity probability distribution that includes partial volume effects. Accuracy was assessed using a digital phantom scan. Reproducibility was assessed by segmenting pairs of scans from 20 normal subjects scanned 8 months apart and 11 patients with epilepsy scanned 3.5 years apart. Segmentation accuracy as measured by overlap was 98% for the brain and 96% for the intra-cranial tissues. The volume errors were: total brain (TBV): -1.0%, intra-cranial (ICV):0.1%, CSF: +4.8%. For repeated scans, matching resulted in improved reproducibility. In the controls, the coefficient of reliability (CR) was 1.5% for the TVB and 1.0% for the ICV. In the patients, the Cr for the ICV was 1.2%.

  3. Computational Fluid Dynamics and Room Air Movement

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2004-01-01

    on the mass fraction transport equation. The importance of ?false? or numerical diffusion is also addressed in connection with the simple description of a supply opening. The different aspects of boundary conditions in the indoor environment as e.g. the simulation of Air Terminal Devices and the simulation......Nielsen, P.V. Computational Fluid Dynamics and Room Air Movement. Indoor Air, International Journal of Indoor Environment and Health, Vol. 14, Supplement 7, pp. 134-143, 2004. ABSTRACT Computational Fluid Dynamics (CFD) and new developments of CFD in the indoor environment as well as quality...... considerations are important elements in the study of energy consumption, thermal comfort and indoor air quality in buildings. The paper discusses the quality level of Computational Fluid Dynamics and the involved schemes (first, second and third order schemes) by the use of the Smith and Hutton problem...

  4. Multivariate Associations of Fluid Intelligence and NAA.

    Science.gov (United States)

    Nikolaidis, Aki; Baniqued, Pauline L; Kranz, Michael B; Scavuzzo, Claire J; Barbey, Aron K; Kramer, Arthur F; Larsen, Ryan J

    2017-04-01

    Understanding the neural and metabolic correlates of fluid intelligence not only aids scientists in characterizing cognitive processes involved in intelligence, but it also offers insight into intervention methods to improve fluid intelligence. Here we use magnetic resonance spectroscopic imaging (MRSI) to measure N-acetyl aspartate (NAA), a biochemical marker of neural energy production and efficiency. We use principal components analysis (PCA) to examine how the distribution of NAA in the frontal and parietal lobes relates to fluid intelligence. We find that a left lateralized frontal-parietal component predicts fluid intelligence, and it does so independently of brain size, another significant predictor of fluid intelligence. These results suggest that the left motor regions play a key role in the visualization and planning necessary for spatial cognition and reasoning, and we discuss these findings in the context of the Parieto-Frontal Integration Theory of intelligence. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Tumor DNA in cerebral spinal fluid reflects clinical course in a patient with melanoma leptomeningeal brain metastases

    Science.gov (United States)

    Li, Yingmei; Pan, Wenying; Connolly, Ian D.; Reddy, Sunil; Nagpal, Seema

    2017-01-01

    Cerebral spinal fluid (CSF) from brain tumor patients contains tumor cellular and cell-free DNA (cfDNA), which provides a less-invasive and routinely accessible method to obtain tumor genomic information. In this report, we used droplet digital PCR to test mutant tumor DNA in CSF of a patient to monitor the treatment response of metastatic melanoma leptomeningeal disease (LMD). The primary melanoma was known to have a BRAFV600E mutation, and the patient was treated with whole brain radiotherapy and BRAF inhibitors. We collected 9 CSF samples over 6 months. The mutant cfDNA fraction gradually decreased from 53 % (time of diagnosis) to 0 (time of symptom alleviation) over the first 6 time points. Three months after clinical improvement, the patient returned with severe symptoms and the mutant cfDNA was again detected in CSF at high levels. The mutant DNA fraction corresponded well with the patient’s clinical response. We used whole exome sequencing to examine the mutation profiles of the LMD tumor DNA in CSF before therapeutic response and after disease relapse, and discovered a canonical cancer mutation PTENR130* at both time points. The cellular and cfDNA revealed similar mutation profiles, suggesting cfDNA is representative of LMD cells. This study demonstrates the potential of using cellular or cfDNA in CSF to monitor treatment response for LMD. PMID:26961773

  6. Temporal Patterns of Soluble Adhesion Molecules in Cerebrospinal Fluid and Plasma in Patients with the Acute Brain Infraction

    Directory of Open Access Journals (Sweden)

    Vesna Selakovic

    2009-01-01

    Full Text Available The aim of this study was to define concentration changes of soluble adhesion molecules (sICAM-1, sVCAM-1 and sE-Selectin in cerebrospinal fluid and plasma, as well as, number of peripheral blood leukocytes and the albumin coefficient in the patients with the acute brain infarction. We also, analyzed the correlation between the measured levels, the infarct volume and the degree of neurological and the functional deficit. The study included 50 patients with the acute cerebral infarction and the control group consisted of 16 patients, age and sex matched. Obtained results showed significant increase in number of leukocytes, the albumin coefficient and the level of soluble adhesion molecules within the first seven days in patients. The highest values of measured parameters were noted within the third and the fourth day after the insult, which is the suggested period of maximal intensity of inflammatory reactions. Significant correlation was found between measured parameters and the infarct volume, the degree of neurological and the functional deficit. The results suggest that investigated parameters in CSF and blood represent a dynamic index of inflammatory events as one of the fundametal mechanisms responsible for neuron damage during acute phase of brain infarction.

  7. Explosive Evaporating Phenomena of Cryogenic Fluids by Direct Contacting Normal Temperature Fluids

    Directory of Open Access Journals (Sweden)

    T Watanabe

    2016-09-01

    Full Text Available Cryogenic fluids have characteristics such as thermal stratification and flashing by pressure release in storage vessel. The mixture of the extreme low temperature fluid and the normal temperature fluid becomes the cause which causes pressure vessel and piping system crush due to explosive boiling and rapid freezing. In recent years in Japan, the demand of cryogenic fluids like a LH2, LNG is increasing because of the advance of fuel cell device technology, hydrogen of engine, and stream of consciousness for environmental agreement. These fuel liquids are cryogenic fluids. On the other hand, as for fisheries as well, the use of a source of energy that environment load is small has been being a pressing need. And, the need of the ice is high, as before, for keeping freshness of marine products in fisheries. Therefore, we carried out the experiments related to promotion of evaporating cryogenic fluids and generation of ice, in the contact directly of the water and liquid nitrogen. From the results of visualization, phenomena of explosive evaporating and ice forming were observed by using video camera.

  8. Lipidomics of human brain aging and Alzheimer's disease pathology.

    Science.gov (United States)

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2015-01-01

    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context. © 2015 Elsevier Inc. All rights reserved.

  9. Responses of the Human Brain to Mild Dehydration and Rehydration Explored In Vivo by 1H-MR Imaging and Spectroscopy.

    Science.gov (United States)

    Biller, A; Reuter, M; Patenaude, B; Homola, G A; Breuer, F; Bendszus, M; Bartsch, A J

    2015-12-01

    As yet, there are no in vivo data on tissue water changes and associated morphometric changes involved in the osmo-adaptation of normal brains. Our aim was to evaluate osmoadaptive responses of the healthy human brain to osmotic challenges of de- and rehydration by serial measurements of brain volume, tissue fluid, and metabolites. Serial T1-weighted and (1)H-MR spectroscopy data were acquired in 15 healthy individuals at normohydration, on 12 hours of dehydration, and during 1 hour of oral rehydration. Osmotic challenges were monitored by serum measures, including osmolality and hematocrit. MR imaging data were analyzed by using FreeSurfer and LCModel. On dehydration, serum osmolality increased by 0.67% and brain tissue fluid decreased by 1.63%, on average. MR imaging morphometry demonstrated corresponding decreases of cortical thickness and volumes of the whole brain, cortex, white matter, and hypothalamus/thalamus. These changes reversed during rehydration. Continuous fluid ingestion of 1 L of water for 1 hour within the scanner lowered serum osmolality by 0.96% and increased brain tissue fluid by 0.43%, on average. Concomitantly, cortical thickness and volumes of the whole brain, cortex, white matter, and hypothalamus/thalamus increased. Changes in brain tissue fluid were related to volume changes of the whole brain, the white matter, and hypothalamus/thalamus. Only volume changes of the hypothalamus/thalamus significantly correlated with serum osmolality. This is the first study simultaneously evaluating changes in brain tissue fluid, metabolites, volume, and cortical thickness. Our results reflect cellular volume regulatory mechanisms at a macroscopic level and emphasize that it is essential to control for hydration levels in studies on brain morphometry and metabolism in order to avoid confounding the findings. © 2015 by American Journal of Neuroradiology.

  10. Fluid overload correction and cardiac history influence brain natriuretic peptide evolution in incident haemodialysis patients.

    Science.gov (United States)

    Chazot, Charles; Vo-Van, Cyril; Zaoui, Eric; Vanel, Thierry; Hurot, Jean Marc; Lorriaux, Christie; Mayor, Brice; Deleaval, Patrick; Jean, Guillaume

    2011-08-01

    Brain natriuretic peptide (BNP) is a cardiac peptide secreted by ventricle myocardial cells under stretch constraint. Increased BNP has been shown associated with increased mortality in end-stage renal disease patients. In patients starting haemodialysis (HD), both fluid overload and cardiac history are frequently present and may be responsible for a high BNP plasma level. We report in this study the evolution of BNP levels in incident HD patients, its relationship with fluid removal and cardiac history as well as its prognostic value. Forty-six patients (female/male: 21/25; 68.6 ± 14.5 years old) surviving at least 6 months after HD treatment onset were retrospectively analysed. Plasma BNP (Chemoluminescent Microparticule ImmunoAssay on i8200 Architect Abbott, Paris, France; normal value < 100 pg/mL) was assessed at HD start and during the second quarter of HD treatment (Q2). At dialysis start, the plasma BNP level was 1041 ± 1178 pg/mL (range: 14-4181 pg/mL). It was correlated with age (P = 0.0017) and was significantly higher in males (P = 0.0017) and in patients with cardiac disease history (P = 0.001). The plasma BNP level at baseline was not related to the mortality risk. At Q2, predialysis systolic blood pressure (BP) decreased from 140.5 ± 24.5 to 129.4 ± 20.6 mmHg (P = 0.0001) and the postdialysis body weight by 7.6 ± 8.4% (P < 0.0001). The BNP level decreased to 631 ± 707 pg/mL (P = 0.01) at Q2. Its variation was significantly correlated with systolic BP decrease (P = 0.006). A high BNP level was found associated with an increased risk of mortality. Hence, plasma BNP levels decreased during the first months of HD treatment during the dry weight quest. Whereas initial BNP values were not associated with increased mortality risk, the BNP level at Q2 was independently predictive of mortality. Hence, BNP is a useful tool to follow patient dehydration after dialysis start. Initial fluid overload may act as a confounding factor for its value as a

  11. Variations in the cerebrospinal fluid proteome following traumatic brain injury and subarachnoid hemorrhage.

    Science.gov (United States)

    Connor, David E; Chaitanya, Ganta V; Chittiboina, Prashant; McCarthy, Paul; Scott, L Keith; Schrott, Lisa; Minagar, Alireza; Nanda, Anil; Alexander, J Steven

    2017-09-01

    Proteomic analysis of cerebrospinal fluid (CSF) has shown great promise in identifying potential markers of injury in neurodegenerative diseases [1-13]. Here we compared CSF proteomes in healthy individuals, with patients diagnosed with traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) in order to characterize molecular biomarkers which might identify these different clinical states and describe different molecular mechanisms active in each disease state. Patients presenting to the Neurosurgery service at the Louisiana State University Hospital-Shreveport with an admitting diagnosis of TBI or SAH were prospectively enrolled. Patients undergoing CSF sampling for diagnostic procedures were also enrolled as controls. CSF aliquots were subjected to 2-dimensional gel electrophoresis (2D GE) and spot percentage densities analyzed. Increased or decreased spot expression (compared to controls) was defined in terms of in spot percentages, with spots showing consistent expression change across TBI or SAH specimens being followed up by Matrix-Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). Polypeptide masses generated were matched to known standards using a search of the NCBI and/or GenPept databases for protein matches. Eight hundred fifteen separately identifiable polypeptide migration spots were identified on 2D GE gels. MALDI-MS successfully identified 13 of 22 selected 2D GE spots as recognizable polypeptides. Statistically significant changes were noted in the expression of fibrinogen, carbonic anhydrase-I (CA-I), peroxiredoxin-2 (Prx-2), both α and β chains of hemoglobin, serotransferrin (Tf) and N-terminal haptoglobin (Hp) in TBI and SAH specimens, as compared to controls. The greatest mean fold change among all specimens was seen in CA-I and Hp at 30.7 and -25.7, respectively. TBI specimens trended toward greater mean increases in CA-I and Prx-2 and greater mean decreases in Hp and Tf. Consistent CSF elevation of CA-I and Prx-2 with

  12. Prion diseases of the brain

    International Nuclear Information System (INIS)

    Lutz, Kira; Urbach, Horst

    2015-01-01

    The prion diseases of the brain, especially Creutzfeldt-Jakob disease, are rare fatal neurodegenerative disorders. A definitive CJD diagnosis is currently only possible by a brain biopsy or post mortem autopsy. The diagnosis of Creutzfeldt-Jakob disease is based on clinical signs, pathognomonic EEG, on typical MRI findings and the examination of the cerebrospinal fluid. Using the MRI the diagnosis Creutzfeldt-Jakob disease can be confirmed or excluded with high certainty. The MRI examination should contain diffusion-weighted and FLAIR imaging sequences. This review article provides an overview of the prion diseases of the brain with the corresponding imaging findings.

  13. Survey of 800+ datasets from human tissue and body fluid reveals XenomiRs are likely artifacts

    DEFF Research Database (Denmark)

    Kang, Wenjing; Bang-Berthelsen, Claus Heiner; Holm, Anja

    2017-01-01

    the main bloodstream (such as brain and cerebro-spinal fluids). Interestingly, the majority (81%) of body fluid xenomiRs stem from rodents, which are rare human dietary contributions, but common laboratory animals. Body fluid samples from the same studies tend to group together when clustered by xenomi...

  14. MRI of subdural fluid collections in infants

    International Nuclear Information System (INIS)

    Fukushima, Tsuneyuki; Takagi, Takuji; Nagai, Hajime; Banno, Tatsuo

    1988-01-01

    Twenty cases of subdural fluid collectioin in infants were examined by MRI (0.5 Tesla). The findings of MRI were classified into 3 groups as follows: Group I: Blood component is observed in the entire subdural fluid (4 cases, 20 %). Group II: Blood component is observed in a part of the subdural fluid (4 cases, 20 %). Group III: Subdural fluid consists of pure CSF (12 cases, 60 %). In general, operative treatment should be considered for cases which have blood components in the subdural space and/or symptoms and signs of increased ICP. In group I, operation was performed on 2 cases (50 %). In group II, subdural fluid collections were associated with dilated subarachnoid spaces and 2 cases were operated on in this group (50 %). In group III, only one case was operated on (8.3 %) and subdural fluid collections disappeared spontaneously in 4 cases of this group. The precise anatomical location of subdural fluid collections could not be decided in several cases even by MRI. The cases which had blood components, tended to demonstrate membranes frequently on MRI. However, the existence of blood components did not affect the DQ S significantly. The prognosis of subdural fluid collection is supposedly related to the degree of preexistent brain damage. (author)

  15. Developmentally Sensitive Interaction Effects of Genes and the Social Environment on Total and Subcortical Brain Volumes.

    Directory of Open Access Journals (Sweden)

    Jennifer S Richards

    Full Text Available Smaller total brain and subcortical volumes have been linked to psychopathology including attention-deficit/hyperactivity disorder (ADHD. Identifying mechanisms underlying these alterations, therefore, is of great importance. We investigated the role of gene-environment interactions (GxE in interindividual variability of total gray matter (GM, caudate, and putamen volumes. Brain volumes were derived from structural magnetic resonance imaging scans in participants with (N = 312 and without ADHD (N = 437 from N = 402 families (age M = 17.00, SD = 3.60. GxE effects between DAT1, 5-HTT, and DRD4 and social environments (maternal expressed warmth and criticism; positive and deviant peer affiliation as well as the possible moderating effect of age were examined using linear mixed modeling. We also tested whether findings depended on ADHD severity. Deviant peer affiliation was associated with lower caudate volume. Participants with low deviant peer affiliations had larger total GM volumes with increasing age. Likewise, developmentally sensitive GxE effects were found on total GM and putamen volume. For total GM, differential age effects were found for DAT1 9-repeat and HTTLPR L/L genotypes, depending on the amount of positive peer affiliation. For putamen volume, DRD4 7-repeat carriers and DAT1 10/10 homozygotes showed opposite age relations depending on positive peer affiliation and maternal criticism, respectively. All results were independent of ADHD severity. The presence of differential age-dependent GxE effects might explain the diverse and sometimes opposing results of environmental and genetic effects on brain volumes observed so far.

  16. Developmentally Sensitive Interaction Effects of Genes and the Social Environment on Total and Subcortical Brain Volumes.

    Science.gov (United States)

    Richards, Jennifer S; Arias Vásquez, Alejandro; Franke, Barbara; Hoekstra, Pieter J; Heslenfeld, Dirk J; Oosterlaan, Jaap; Faraone, Stephen V; Buitelaar, Jan K; Hartman, Catharina A

    2016-01-01

    Smaller total brain and subcortical volumes have been linked to psychopathology including attention-deficit/hyperactivity disorder (ADHD). Identifying mechanisms underlying these alterations, therefore, is of great importance. We investigated the role of gene-environment interactions (GxE) in interindividual variability of total gray matter (GM), caudate, and putamen volumes. Brain volumes were derived from structural magnetic resonance imaging scans in participants with (N = 312) and without ADHD (N = 437) from N = 402 families (age M = 17.00, SD = 3.60). GxE effects between DAT1, 5-HTT, and DRD4 and social environments (maternal expressed warmth and criticism; positive and deviant peer affiliation) as well as the possible moderating effect of age were examined using linear mixed modeling. We also tested whether findings depended on ADHD severity. Deviant peer affiliation was associated with lower caudate volume. Participants with low deviant peer affiliations had larger total GM volumes with increasing age. Likewise, developmentally sensitive GxE effects were found on total GM and putamen volume. For total GM, differential age effects were found for DAT1 9-repeat and HTTLPR L/L genotypes, depending on the amount of positive peer affiliation. For putamen volume, DRD4 7-repeat carriers and DAT1 10/10 homozygotes showed opposite age relations depending on positive peer affiliation and maternal criticism, respectively. All results were independent of ADHD severity. The presence of differential age-dependent GxE effects might explain the diverse and sometimes opposing results of environmental and genetic effects on brain volumes observed so far.

  17. Thermal regulation in terrestrial environment using a two-phase fluid loop with capillary pumping; Regulation thermique en environnement terrestre par boucle fluide diphasique a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)

    Butto, C [Universite Paul Sabatier, LESETH, 31 - Toulouse (France)

    1997-12-31

    Two-phase fluid loops with capillary pumping are particularly interesting silent devices which allow energy savings and do not create any noise pollution (no mechanical vibrations). In terrestrial environment, the gravity field, when judiciously used, allows to improve their performances and thus, their use in thermal regulation of big computers, power electronic components, transformers, etc, is particularly interesting. In this study, the main results concerning the functioning of such a loop in the gravity field are presented and used to highlight the conditions that allow to take advantage of this field and the improvements obtained. (J.S.) 5 refs.

  18. Thermal regulation in terrestrial environment using a two-phase fluid loop with capillary pumping; Regulation thermique en environnement terrestre par boucle fluide diphasique a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)

    Butto, C. [Universite Paul Sabatier, LESETH, 31 - Toulouse (France)

    1996-12-31

    Two-phase fluid loops with capillary pumping are particularly interesting silent devices which allow energy savings and do not create any noise pollution (no mechanical vibrations). In terrestrial environment, the gravity field, when judiciously used, allows to improve their performances and thus, their use in thermal regulation of big computers, power electronic components, transformers, etc, is particularly interesting. In this study, the main results concerning the functioning of such a loop in the gravity field are presented and used to highlight the conditions that allow to take advantage of this field and the improvements obtained. (J.S.) 5 refs.

  19. Wearable nanosensor system for monitoring mild traumatic brain injuries in football players

    Science.gov (United States)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Football players are more to violent impacts and injuries more than any athlete in any other sport. Concussion or mild traumatic brain injuries were one of the lesser known sports injuries until the last decade. With the advent of modern technologies in medical and engineering disciplines, people are now more aware of concussion detection and prevention. These concussions are often overlooked by football players themselves. The cumulative effect of these mild traumatic brain injuries can cause long-term residual brain dysfunctions. The principle of concussion is based the movement of the brain in the neurocranium and viscerocranium. The brain is encapsulated by the cerebrospinal fluid which acts as a protective layer for the brain. This fluid can protect the brain against minor movements, however, any rapid movements of the brain may mitigate the protective capability of the cerebrospinal fluid. In this paper, we propose a wireless health monitoring helmet that addresses the concerns of the current monitoring methods - it is non-invasive for a football player as helmet is not an additional gear, it is efficient in performance as it is equipped with EEG nanosensors and 3D accelerometer, it does not restrict the movement of the user as it wirelessly communicates to the remote monitoring station, requirement of individual monitoring stations are not required for each player as the ZigBee protocol can couple multiple transmitters with one receiver. A helmet was developed and validated according to the above mentioned parameters.

  20. Proceedings of the sixth international and forty third national conference on fluid mechanics and fluid power: book of abstracts

    International Nuclear Information System (INIS)

    Jain, Anuj; Paul, Akshoy Ranjan

    2016-01-01

    Fluid Mechanics and Fluid Power (FMFP) Conference is an important meeting to promote all activities in the field of Fluid Mechanics and Fluid Power in India. FMFP-2016 offers great opportunity to scientists, researchers, engineers and business executives from all parts of the world to share the recent advancements and future trends in all aspects of fluid mechanics and fluid power- be it theoretical, experimental, applied and computational, and build network. It covers theoretical and experimental fluid dynamics, flow instability, transition, turbulence and control, fluid machinery, turbomachinery and fluid power, IC engines and gas turbines, multiphase flows, fluid-structure interaction and flow-induced noise, micro and nano fluid mechanics, bio-inspired fluid mechanics, energy and environment, specialized topics (transport phenomena in materials processing and manufacturing, MHD and EHD flows, granular flows, nuclear reactor, thermal hydraulics, defence and space engineering, sustainable habitat. Papers relevant to INIS are indexed separately

  1. Pollutant dispersion in built environment

    CERN Document Server

    Ming, Tingzhen; Gong, Tingrui; Li, Zhengtong

    2017-01-01

    This book discusses energy transfer, fluid flow and pollution in built environments. It provides a comprehensive overview of the highly detailed fundamental theories as well as the technologies used and the application of heat and mass transfer and fluid flow in built environments, with a focus on the mathematical models and computational and experimental methods. It is a valuable resource for researchers in the fields of buildings and environment, heat transfer and global warming.

  2. Quantitative Gd-DOTA uptake from cerebrospinal fluid into rat brain using 3D VFA-SPGR at 9.4T.

    Science.gov (United States)

    Lee, Hedok; Mortensen, Kristian; Sanggaard, Simon; Koch, Palle; Brunner, Hans; Quistorff, Bjørn; Nedergaard, Maiken; Benveniste, Helene

    2018-03-01

    We propose a quantitative technique to assess solute uptake into the brain parenchyma based on dynamic contrast-enhanced MRI (DCE-MRI). With this approach, a small molecular weight paramagnetic contrast agent (Gd-DOTA) is infused in the cerebral spinal fluid (CSF) and whole brain gadolinium concentration maps are derived. We implemented a 3D variable flip angle spoiled gradient echo (VFA-SPGR) longitudinal relaxation time (T1) technique, the accuracy of which was cross-validated by way of inversion recovery rapid acquisition with relaxation enhancement (IR-RARE) using phantoms. Normal Wistar rats underwent Gd-DOTA infusion into CSF via the cisterna magna and continuous MRI for approximately 130 min using T1-weighted imaging. Dynamic Gd-DOTA concentration maps were calculated and parenchymal uptake was estimated. In the phantom study, T1 discrepancies between the VFA-SPGR and IR-RARE sequences were approximately 6% with a transmit coil inhomogeneity correction. In the in vivo study, contrast transport profiles indicated maximal parenchymal retention of approximately 19% relative to the total amount delivered into the cisterna magna. Imaging strategies for accurate 3D contrast concentration mapping at 9.4T were developed and whole brain dynamic concentration maps were derived to study solute transport via the glymphatic system. The newly developed approach will enable future quantitative studies of the glymphatic system in health and disease states. Magn Reson Med 79:1568-1578, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Clay-based geothermal drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Guven, N.; Carney, L.L.; Lee, L.J.; Bernhard, R.P.

    1982-11-01

    The rheological properties of fluids based on fibrous clays such as sepiolite and attapulgite have been systematically examined under conditions similar to those of geothermal wells, i.e. at elevated temperatures and pressures in environments with concentrated brines. Attapulgite- and sepiolite-based fluids have been autoclaved at temperatures in the range from 70 to 800/sup 0/F with the addition of chlorides and hydroxides of Na, K, Ca, and Mg. The rheological properties (apparent and plastic viscosity, fluid loss, gel strength, yield point, and cake thickness) of the autoclaved fluids have been studied and correlated with the chemical and physical changes that occur in the clay minerals during the autoclaving process.

  4. Optimal-mass-transfer-based estimation of glymphatic transport in living brain

    Science.gov (United States)

    Ratner, Vadim; Zhu, Liangjia; Kolesov, Ivan; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2015-03-01

    It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the `glymphatic pathway' plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs . It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly through a network of dedicated vessels, but rather through para-vascular channels and brain parenchyma in a slower time-domain, and thus conventional fMRI or other blood-flow sensitive MRI sequences do not provide much useful information about the desired flow patterns. We have accordingly analyzed a series of MRI images, taken at different times, of the brain of a live rat, which was injected with a paramagnetic tracer into the CSF via the lumbar intrathecal space of the spine. Our goal is twofold: (a) find glymphatic (tracer) flow directions in the live rodent brain; and (b) provide a model of a (healthy) brain that will allow the prediction of tracer concentrations given initial conditions. We model the liquid flow through the brain by the diffusion equation. We then use the Optimal Mass Transfer (OMT) approach to derive the glymphatic flow vector field, and estimate the diffusion tensors by analyzing the (changes in the) flow. Simulations show that the resulting model successfully reproduces the dominant features of the experimental data. Keywords: inverse problem, optimal mass transport, diffusion equation, cerebrospinal fluid flow in brain, optical flow, liquid flow modeling, Monge Kantorovich problem, diffusion tensor estimation

  5. Animal study assessing safety of an acoustic coupling fluid that holds the potential to avoid surgically induced artifacts in 3D ultrasound guided operations

    International Nuclear Information System (INIS)

    Jakola, Asgeir S; Jørgensen, Arve; Selbekk, Tormod; Michler, Ralf-Peter; Solheim, Ole; Torp, Sverre H; Sagberg, Lisa M; Aadahl, Petter; Unsgård, Geirmund

    2014-01-01

    Use of ultrasound in brain tumor surgery is common. The difference in attenuation between brain and isotonic saline may cause artifacts that degrade the ultrasound images, potentially affecting resection grades and safety. Our research group has developed an acoustic coupling fluid that attenuates ultrasound energy like the normal brain. We aimed to test in animals if the newly developed acoustic coupling fluid may have harmful effects. Eight rats were included for intraparenchymal injection into the brain, and if no adverse reactions were detected, 6 pigs were to be included with injection of the coupling fluid into the subarachnoid space. Animal behavior, EEG registrations, histopathology and immunohistochemistry were used in assessment. In total, 14 animals were included, 8 rats and 6 pigs. We did not detect any clinical adverse effects, seizure activity on EEG or histopathological signs of tissue damage. The novel acoustic coupling fluid intended for brain tumor surgery appears safe in rats and pigs under the tested circumstances

  6. Are rapid changes in brain elasticity possible?

    Science.gov (United States)

    Parker, K. J.

    2017-09-01

    Elastography of the brain is a topic of clinical and preclinical research, motivated by the potential for viscoelastic measures of the brain to provide sensitive indicators of pathological processes, and to assist in early diagnosis. To date, studies of the normal brain and of those with confirmed neurological disorders have reported a wide range of shear stiffness and shear wave speeds, even within similar categories. A range of factors including the shear wave frequency, and the age of the individual are thought to have a possible influence. However, it may be that short term dynamics within the brain may have an influence on the measured stiffness. This hypothesis is addressed quantitatively using the framework of the microchannel flow model, which derives the tissue stiffness, complex modulus, and shear wave speed as a function of the vascular and fluid network in combination with the elastic matrix that comprise the brain. Transformation rules are applied so that any changes in the fluid channels or the elastic matrix can be mapped to changes in observed elastic properties on a macroscopic scale. The results are preliminary but demonstrate that measureable, time varying changes in brain stiffness are possible simply by accounting for vasodynamic or electrochemical changes in the state of any region of the brain. The value of this preliminary exploration is to identify possible mechanisms and order-of-magnitude changes that may be testable in vivo by specialized protocols.

  7. Brain imaging

    International Nuclear Information System (INIS)

    Greenfield, L.D.; Bennett, L.R.

    1976-01-01

    Imaging with radionuclides should be used in a complementary fashion with other neuroradiologic techniques. It is useful in the early detection and evaluation of intracranial neoplasm, cerebrovascular accident and abscess, and in postsurgical follow-up. Cisternography yields useful information about the functional status of cerebrospinal fluid pathways. Computerized axial tomography is a new technique of great promise that produced a cross-sectional image of the brain

  8. Brain Plasticity, Intelligence and Schizophrenia: influence of genes and environment

    NARCIS (Netherlands)

    Hedman, A.M.

    2013-01-01

    This thesis shows that the adult human brain has plastic properties. These plastic properties are at least in part heritable and have functional significance. Identifying genes and environmental factors implicated in brain plasticity is an important next step to optimize brain development in health

  9. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease.

    Science.gov (United States)

    Simon, Matthew J; Iliff, Jeffrey J

    2016-03-01

    Cerebrospinal fluid (CSF) circulation and turnover provides a sink for the elimination of solutes from the brain interstitium, serving an important homeostatic role for the function of the central nervous system. Disruption of normal CSF circulation and turnover is believed to contribute to the development of many diseases, including neurodegenerative conditions such as Alzheimer's disease, ischemic and traumatic brain injury, and neuroinflammatory conditions such as multiple sclerosis. Recent insights into CSF biology suggesting that CSF and interstitial fluid exchange along a brain-wide network of perivascular spaces termed the 'glymphatic' system suggest that CSF circulation may interact intimately with glial and vascular function to regulate basic aspects of brain function. Dysfunction within this glial vascular network, which is a feature of the aging and injured brain, is a potentially critical link between brain injury, neuroinflammation and the development of chronic neurodegeneration. Ongoing research within this field may provide a powerful new framework for understanding the common links between neurodegenerative, neurovascular and neuroinflammatory disease, in addition to providing potentially novel therapeutic targets for these conditions. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Sphingolipid metabolism correlates with cerebrospinal fluid Beta amyloid levels in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Alfred N Fonteh

    Full Text Available Sphingolipids are important in many brain functions but their role in Alzheimer's disease (AD is not completely defined. A major limit is availability of fresh brain tissue with defined AD pathology. The discovery that cerebrospinal fluid (CSF contains abundant nanoparticles that include synaptic vesicles and large dense core vesicles offer an accessible sample to study these organelles, while the supernatant fluid allows study of brain interstitial metabolism. Our objective was to characterize sphingolipids in nanoparticles representative of membrane vesicle metabolism, and in supernatant fluid representative of interstitial metabolism from study participants with varying levels of cognitive dysfunction. We recently described the recruitment, diagnosis, and CSF collection from cognitively normal or impaired study participants. Using liquid chromatography tandem mass spectrometry, we report that cognitively normal participants had measureable levels of sphingomyelin, ceramide, and dihydroceramide species, but that their distribution differed between nanoparticles and supernatant fluid, and further differed in those with cognitive impairment. In CSF from AD compared with cognitively normal participants: a total sphingomyelin levels were lower in nanoparticles and supernatant fluid; b levels of ceramide species were lower in nanoparticles and higher in supernatant fluid; c three sphingomyelin species were reduced in the nanoparticle fraction. Moreover, three sphingomyelin species in the nanoparticle fraction were lower in mild cognitive impairment compared with cognitively normal participants. The activity of acid, but not neutral sphingomyelinase was significantly reduced in the CSF from AD participants. The reduction in acid sphingomylinase in CSF from AD participants was independent of depression and psychotropic medications. Acid sphingomyelinase activity positively correlated with amyloid β42 concentration in CSF from cognitively normal but

  11. Insulin transport into the brain and cerebrospinal fluid.

    Science.gov (United States)

    Begg, Denovan P

    2015-01-01

    The pancreatic hormone insulin plays a well-described role in the periphery, based principally on its ability to lower circulating glucose levels via activation of glucose transporters. However, insulin also acts within the central nervous system (CNS) to alter a number of physiological outcomes ranging from energy balance and glucose homeostasis to cognitive performance. Insulin is transported into the CNS by a saturable receptor-mediated process that is proposed to be dependent on the insulin receptor. Transport of insulin into the brain is dependent on numerous factors including diet, glycemia, a diabetic state and notably, obesity. Obesity leads to a marked decrease in insulin transport from the periphery into the CNS and the biological basis of this reduction of transport remains unresolved. Despite decades of research into the effects of central insulin on a wide range of physiological functions and its transport from the periphery to the CNS, numerous questions remain unanswered including which receptor is responsible for transport and the precise mechanisms of action of insulin within the brain. © 2015 Elsevier Inc. All rights reserved.

  12. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?

    Science.gov (United States)

    Kiviniemi, Vesa; Wang, Xindi; Korhonen, Vesa; Keinänen, Tuija; Tuovinen, Timo; Autio, Joonas; LeVan, Pierre; Keilholz, Shella; Zang, Yu-Feng; Hennig, Jürgen; Nedergaard, Maiken

    2016-06-01

    The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001-0.023 Hz) and low frequency (LF 0.023-0.73 Hz) waves that both propagate with unique spatiotemporal patterns. Our findings using critically sampled magnetic resonance encephalography open a new view into cerebral fluid dynamics. Since glymphatic system failure may precede protein accumulations in diseases such as Alzheimer's dementia, this methodological advance offers a novel approach to image brain fluid dynamics that potentially can enable early detection and intervention in neurodegenerative diseases. © The Author(s) 2015.

  13. Sonic Hedgehog (SHH) pathway in the adult brain: key signaling for astrocyte reactivation and brain repair

    OpenAIRE

    Bermúdez-Muñoz, Olga M

    2016-01-01

    While neurons play a key role in neurotransmission in the nervous central system (CNS) of animals, glial cells are crucial for neuron support and brain maintenance. Recent studies reveal that glial cells regulate the release and reuptake of neurotransmitters, pyruvate and glutathione metabolism, ion buffering, the organization of blood brain barrier and ensures the production of myelin and cerebrospinal fluid. The activity of glial cells is coordinated by the communication between neurons and...

  14. The effect on emotions and brain activity by the direct/indirect lighting in the residential environment.

    Science.gov (United States)

    Shin, Yu-Bin; Woo, Seung-Hyun; Kim, Dong-Hyeon; Kim, Jinseong; Kim, Jae-Jin; Park, Jin Young

    2015-01-01

    This study was performed to explore how direct/indirect lighting affects emotions and brain oscillations compared to the direct lighting when brightness and color temperature are controlled. Twenty-eight subjects (12 females; mean age 22.5) participated. The experimental conditions consisted of two lighting environments: direct/indirect lighting (400 lx downlight, 300 lx uplight) and direct lighting (700 lx downlight). On each trial, a luminance environment was presented for 4 min, followed by participants rated their emotional feelings of the lighting environment. EEG data were recorded during the experiment. Spectral analysis was performed for the range of delta, theta, alpha, beta, and gamma ranges. The participants felt cooler and more pleasant and theta oscillations on the F4, F8, T4, and TP7 electrodes were more enhanced in the direct/indirect lighting environment compared to the direct lighting environment. There was significant correlation between the "cool" rating and the theta power of the F8 electrode. The participants felt more pleasant in the direct/indirect lighting environment, indicating that space with direct/indirect lighting modulated subjective perception. Additionally, our results suggest that theta oscillatory activity can be used as a biological marker that reflects emotional status in different lighting environments. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Outer brain barriers in rat and human development

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Holst, Camilla Bjørnbak; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides...... diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post...

  16. Disrupted Brain Network in Progressive Mild Cognitive Impairment Measured by Eigenvector Centrality Mapping is Linked to Cognition and Cerebrospinal Fluid Biomarkers.

    Science.gov (United States)

    Qiu, Tiantian; Luo, Xiao; Shen, Zhujing; Huang, Peiyu; Xu, Xiaojun; Zhou, Jiong; Zhang, Minming

    2016-10-18

    Mild cognitive impairment (MCI) is a heterogeneous condition associated with a high risk of progressing to Alzheimer's disease (AD). Although functional brain network alterations have been observed in progressive MCI (pMCI), the underlying pathological mechanisms of network alterations remain unclear. In the present study, we evaluated neuropsychological, imaging, and cerebrospinal fluid (CSF) data at baseline across a cohort of: 21 pMCI patients, 33 stable MCI (sMCI) patients, and 29 normal controls. Fast eigenvector centrality mapping (fECM) based on resting-state functional MRI (rsfMRI) was used to investigate brain network organization differences among these groups, and we further assessed its relation to cognition and AD-related pathology. Our results demonstrated that pMCI had decreased eigenvector centrality (EC) in left temporal pole and parahippocampal gyrus, and increased EC in left middle frontal gyrus compared to sMCI. In addition, compared to normal controls, patients with pMCI showed decreased EC in right hippocampus and bilateral parahippocampal gyrus, and sMCI had decreased EC in right middle frontal gyrus and superior parietal lobule. Correlation analysis showed that EC in the left temporal pole was related to Wechsler Memory Scale-Revised Logical Memory (WMS-LM) delay score (r = 0.467, p = 0.044) and total tau (t-tau) level in CSF (r = -0.509, p = 0.026) in pMCI. Our findings implicate EC changes of different brain network nodes in the prognosis of pMCI and sMCI. Importantly, the association between decreased EC of brain network node and pathological changes may provide a deeper understanding of the underlying pathophysiology of pMCI.

  17. Go with the Flow: Cerebrospinal Fluid Flow Regulates Neural Stem Cell Proliferation.

    Science.gov (United States)

    Kaneko, Naoko; Sawamoto, Kazunobu

    2018-06-01

    Adult neural stem cells in the wall of brain ventricles make direct contact with cerebrospinal fluid. In this issue of Cell Stem Cell, Petrik et al. (2018) demonstrate that these neural stem cells sense the flow of cerebrospinal fluid through a transmembrane sodium channel, ENaC, which regulates their proliferation. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. 2017 Military Supplement: Dodecafluoropentane Emulsion (Ddfpe) as a Resuscitation Fluid for Treatment of Hemorrhagic Shock and Traumatic Brain Injury: A Review.

    Science.gov (United States)

    Graham, Kaitlin; Moon-Massat, Paula F; Unger, Evan C

    2017-11-15

    Dodecafluoropentane emulsion (DDFPe) is a novel nanotechnology for oxygen delivery with therapeutic potential for hemorrhagic shock and/or traumatic brain injury (TBI). DDFPe demonstrates efficacy at smaller doses than previously tested perfluorocarbon oxygen therapeutics. This smaller dose potentially eliminates toxicities exhibited by previous oxygen therapeutics, while anti-inflammatory properties of DDFPe may alleviate damage from ischemia reperfusion injury. This mini-review summarizes our progress in developing a battle-field ready product to prevent combat death due to hemorrhagic shock and/or TBI. Preclinical studies, for both indications, show promising effects of DDFPe as a resuscitation fluid. DDFPe may become a part of the toolkit for tactical healthcare professionals in battlefield and domestic emergency medicine.

  19. The aging brain and neurodegenerative disorders

    International Nuclear Information System (INIS)

    Braffman, B.H.; Trojanowski, J.Q.; Atlas, S.W.

    1991-01-01

    Both the aging brain and neurodegenerative disorders are characterized by a lack of vital endurance of affected neurons resulting in their premature death. Neuronal shrinkage or atrophy and death are normal and inevitable aspects of normal or successful aging; this is unexpected, excessive, and premature in neurodegenerative disorders. These histologic changes result in the neuroimaging findings of focal and/or diffuse atrophy with consequent enlargement of cerebrospinal fluid (CSF) spaces. The aging brain and neurodegenerative disorders share other magnetic resonance (MR) changes, i.e., markedly hypointense extrapyramidal nuclei and hyperintense white matter foci. The sequelae of senescent vascular changes result in additional characteristic features of the aging brain. This paper presents the MR and neuropathologic manifestations of both the normal aging brain and the brain affected by neurodegenerative disorders

  20. [Drainage characteristic of the brain interstitial fluid detected by using fluorescence and magnetic tracer method].

    Science.gov (United States)

    Zhao, Y; Li, Y Q; Li, H Y; Li, Y L; Liu, L X; Yuan, L; Zhang, S J; Han, H B

    2017-04-18

    Compare the results of molecular diffusion and mass flow in the interstitial space(ISS) displayed by using optical and magnetic probes and study partitioned drainage of the brain interstitial fluid (ISF). In the study, 36 male SD rats were randomly divided into fluorescent inspection group (18), magnetic tracer group (18). Then they were divided equally into caudate nucleus (Cn), thalamus (T) and substantia nigra (Sn) subgroup, 6 rats in each subgroup. Referencing the brain stereotaxic atlas, the coronal globus pallidus as center level, Cn, T or Sn were acted as puncture positioning target. A 10 μL microsyringe was stereotaxically positioned and the lucifer yellow (LY) solution of 2 μL 10 mmol/L was infused into centric position. The coronary slices undergo cardiac perfusion and fix respectively in time point Cn 3 h, T 2 h and Sn 1 h. The rat brain was placed in rat stainless steel brain matrices and cut backward along visual intersection. The injection point of coronal slice as the center level, take 3 slices in front of the center level and 2 slices behind of it. 1 mm for each slice and 6 slices in total. Then slices were detected by laser scanning confocal microscope (LSCM). Simultaneous, in the same coordinate brain regions of another three groups, a gadolinium-diethylene triamine pentaacetic acidm (Gd-DTPA) solution of 2 μL 10 mmol/L was infused into different injection and detected by MRI tracer-based method. Then the Radiant can be used to measure distribution area of Gd-DTPA. LY and Gd-DTPA have different distribution regions in Cn, T and Sn. After LY and Gd-DTPA were introduced into the Cn subgroup 3 h, compare the 1 to 6 levels distribution area of LY and Gd-DTPA as follows: (10.95±4.27) mm 2 vs. (8.33±2.25) mm 2 , (18.16±4.74) mm 2 vs. (16.42±2.88) mm 2 , (24.57±3.65) mm 2 vs. (20.75±2.29) mm 2 , (34.81±3.32) mm 2 vs. (28.88±1.51) mm 2 , (30.53±3.12) mm 2 vs. (20.92±2.75) mm 2 , (12.15±4.92) mm 2 vs. (10.00±1.89) mm 2 . The statistical

  1. Oxytocin-receptor-expressing neurons in the parabrachial nucleus regulate fluid intake.

    Science.gov (United States)

    Ryan, Philip J; Ross, Silvano I; Campos, Carlos A; Derkach, Victor A; Palmiter, Richard D

    2017-12-01

    Brain regions that regulate fluid satiation are not well characterized, yet are essential for understanding fluid homeostasis. We found that oxytocin-receptor-expressing neurons in the parabrachial nucleus of mice (Oxtr PBN neurons) are key regulators of fluid satiation. Chemogenetic activation of Oxtr PBN neurons robustly suppressed noncaloric fluid intake, but did not decrease food intake after fasting or salt intake following salt depletion; inactivation increased saline intake after dehydration and hypertonic saline injection. Under physiological conditions, Oxtr PBN neurons were activated by fluid satiation and hypertonic saline injection. Oxtr PBN neurons were directly innervated by oxytocin neurons in the paraventricular hypothalamus (Oxt PVH  neurons), which mildly attenuated fluid intake. Activation of neurons in the nucleus of the solitary tract substantially suppressed fluid intake and activated Oxtr PBN neurons. Our results suggest that Oxtr PBN neurons act as a key node in the fluid satiation neurocircuitry, which acts to decrease water and/or saline intake to prevent or attenuate hypervolemia and hypernatremia.

  2. 24-h Fluid Kinetics and Perception of Sweat Losses Following a 1-h Run in a Temperate Environment

    Directory of Open Access Journals (Sweden)

    Eric K. O'Neal

    2013-12-01

    Full Text Available This study examined 24-h post-run hydration status and sweat loss estimation accuracy in college age runners (men = 12, women = 8 after completing a 1-h self-paced outdoor run (wet bulb globe temperature = 19.9 ± 3.0 °C. Sweat losses (1353 ± 422 mL; 1.9% ± 0.5% of body mass were significantly greater (p < 0.001 than perceived losses (686 ± 586 mL. Cumulative fluid consumption equaled 3876 ± 1133 mL (218 ± 178 mL during with 37% of fluid ingested lost through urine voids (1450 ± 678 mL. Fluid balance based on intake and urine production equaled +554 ± 669 mL at 12 h and +1186 ± 735 mL at 24 h. Most runners reported euhydrated (pre-run urine specific gravity (USG = 1.018 ± 0.008 with no changes (p = 0.33 at hours 12 or 24 when both genders were included. However, USG was higher (p = 0.004 at 12 h post-run for men (1.025 ± 0.0070 vs. 1.014 ± 0.007, who consumed 171% ± 40% of sweat losses at 12 h vs. 268% ± 88% for women. Most runners do not need intervention concerning between bout hydration needs in temperate environments. However, repeated USG measurements were able to identify runners who greatly under or over consumed fluid during recovery. Practitioners can use multiple USG assessments as cheap method to detect runners who need to modify their hydration strategies and should promote assessment of sweat losses by change in body mass, as runners had poor perception of sweat losses.

  3. Enrichment of Human-Computer Interaction in Brain-Computer Interfaces via Virtual Environments

    Directory of Open Access Journals (Sweden)

    Alonso-Valerdi Luz María

    2017-01-01

    Full Text Available Tridimensional representations stimulate cognitive processes that are the core and foundation of human-computer interaction (HCI. Those cognitive processes take place while a user navigates and explores a virtual environment (VE and are mainly related to spatial memory storage, attention, and perception. VEs have many distinctive features (e.g., involvement, immersion, and presence that can significantly improve HCI in highly demanding and interactive systems such as brain-computer interfaces (BCI. BCI is as a nonmuscular communication channel that attempts to reestablish the interaction between an individual and his/her environment. Although BCI research started in the sixties, this technology is not efficient or reliable yet for everyone at any time. Over the past few years, researchers have argued that main BCI flaws could be associated with HCI issues. The evidence presented thus far shows that VEs can (1 set out working environmental conditions, (2 maximize the efficiency of BCI control panels, (3 implement navigation systems based not only on user intentions but also on user emotions, and (4 regulate user mental state to increase the differentiation between control and noncontrol modalities.

  4. Cine MR imaging of cerebrospinal fluid flow

    International Nuclear Information System (INIS)

    Kawahara, K.; Yoshikawa, A.; Maeda, M.; Hamachi, J.; Morita, R.; Mishima, T.; Yamada, R.

    1988-01-01

    Cine MR imaging was used to study cerebrospinal fluid (CSF) flow in five patients with various kinds of hydrocephalus, 14 patients with brain atrophy, and 26 healthy subjects. For each study, sagittal and axial sections were obtained. In this study, the authors detected cerebrospinal fluid flow, apparent as high signal intensity, and its direction. They detected the outflow from the foramen of Monro, aqueduct, and foramen of Magendie in sagittal cine images of patients with those with normal-pressure hydrocehalus (NPH), those with brain atrophy, and controls. Especially in patients with NPH, the markedly high signal intensity from CSF flow was observeed in the third and fourth ventricles. In patients with obstructive hydrocephalus, the fourth ventricle tumor, the outflow of CSF was not present. In axial sections, the signal intensity of aqueduct in patients with obstructive hydrocephalus was lower, whereas that in patients with NPH, controls, and those with atrophy was higher than in the midbrain. Cine MR imaging is a very attractive technique in diagnosing hydrocephalus and other abnormal conditions

  5. Sphingolipid Metabolism Correlates with Cerebrospinal Fluid Beta Amyloid Levels in Alzheimer’s Disease

    Science.gov (United States)

    Fonteh, Alfred N.; Ormseth, Cora; Chiang, Jiarong; Cipolla, Matthew; Arakaki, Xianghong; Harrington, Michael G.

    2015-01-01

    Sphingolipids are important in many brain functions but their role in Alzheimer’s disease (AD) is not completely defined. A major limit is availability of fresh brain tissue with defined AD pathology. The discovery that cerebrospinal fluid (CSF) contains abundant nanoparticles that include synaptic vesicles and large dense core vesicles offer an accessible sample to study these organelles, while the supernatant fluid allows study of brain interstitial metabolism. Our objective was to characterize sphingolipids in nanoparticles representative of membrane vesicle metabolism, and in supernatant fluid representative of interstitial metabolism from study participants with varying levels of cognitive dysfunction. We recently described the recruitment, diagnosis, and CSF collection from cognitively normal or impaired study participants. Using liquid chromatography tandem mass spectrometry, we report that cognitively normal participants had measureable levels of sphingomyelin, ceramide, and dihydroceramide species, but that their distribution differed between nanoparticles and supernatant fluid, and further differed in those with cognitive impairment. In CSF from AD compared with cognitively normal participants: a) total sphingomyelin levels were lower in nanoparticles and supernatant fluid; b) levels of ceramide species were lower in nanoparticles and higher in supernatant fluid; c) three sphingomyelin species were reduced in the nanoparticle fraction. Moreover, three sphingomyelin species in the nanoparticle fraction were lower in mild cognitive impairment compared with cognitively normal participants. The activity of acid, but not neutral sphingomyelinase was significantly reduced in the CSF from AD participants. The reduction in acid sphingomylinase in CSF from AD participants was independent of depression and psychotropic medications. Acid sphingomyelinase activity positively correlated with amyloid β42 concentration in CSF from cognitively normal but not impaired

  6. Mathematical modelling of blood-brain barrier failure and edema

    Science.gov (United States)

    Waters, Sarah; Lang, Georgina; Vella, Dominic; Goriely, Alain

    2015-11-01

    Injuries such as traumatic brain injury and stroke can result in increased blood-brain barrier permeability. This increase may lead to water accumulation in the brain tissue resulting in vasogenic edema. Although the initial injury may be localised, the resulting edema causes mechanical damage and compression of the vasculature beyond the original injury site. We employ a biphasic mixture model to investigate the consequences of blood-brain barrier permeability changes within a region of brain tissue and the onset of vasogenic edema. We find that such localised changes can indeed result in brain tissue swelling and that the type of damage that results (stress damage or strain damage) depends on the ability of the brain to clear edema fluid.

  7. Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood-brain barrier models.

    Directory of Open Access Journals (Sweden)

    Eduard Urich

    Full Text Available Brain microvascular endothelial cells (BEC constitute the blood-brain barrier (BBB which forms a dynamic interface between the blood and the central nervous system (CNS. This highly specialized interface restricts paracellular diffusion of fluids and solutes including chemicals, toxins and drugs from entering the brain. In this study we compared the transcriptome profiles of the human immortalized brain endothelial cell line hCMEC/D3 and human primary BEC. We identified transcriptional differences in immune response genes which are directly related to the immortalization procedure of the hCMEC/D3 cells. Interestingly, astrocytic co-culturing reduced cell adhesion and migration molecules in both BECs, which possibly could be related to regulation of immune surveillance of the CNS controlled by astrocytic cells within the neurovascular unit. By matching the transcriptome data from these two cell lines with published transcriptional data from freshly isolated mouse BECs, we discovered striking differences that could explain some of the limitations of using cultured BECs to study BBB properties. Key protein classes such as tight junction proteins, transporters and cell surface receptors show differing expression profiles. For example, the claudin-5, occludin and JAM2 expression is dramatically reduced in the two human BEC lines, which likely explains their low transcellular electric resistance and paracellular leakiness. In addition, the human BEC lines express low levels of unique brain endothelial transporters such as Glut1 and Pgp. Cell surface receptors such as LRP1, RAGE and the insulin receptor that are involved in receptor-mediated transport are also expressed at very low levels. Taken together, these data illustrate that BECs lose their unique protein expression pattern outside of their native environment and display a more generic endothelial cell phenotype. A collection of key genes that seems to be highly regulated by the local

  8. Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Liguori, Claudio [University of Rome ' ' Tor Vergata' ' , Neurophysiopathology Unit, Department of Systems Medicine, Rome (Italy); University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy); Chiaravalloti, Agostino; Schillaci, Orazio [University of Rome ' Tor Vergata' , Department of Biomedicine and Prevention, Rome (Italy); IRCSS Neuromed, Pozzilli (Italy); Sancesario, Giuseppe; Stefani, Alessandro [University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy); IRCCS Fondazione Santa Lucia, Rome (Italy); Sancesario, Giulia Maria [IRCCS Fondazione Santa Lucia, Rome (Italy); Mercuri, Nicola Biagio [University of Rome ' ' Tor Vergata' ' , Neurophysiopathology Unit, Department of Systems Medicine, Rome (Italy); University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy); IRCCS Fondazione Santa Lucia, Rome (Italy); Pierantozzi, Mariangela [University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy)

    2016-10-15

    It has been suggested that neuronal energy metabolism may be involved in Alzheimer's disease (AD). In this view, the finding of increased cerebrospinal fluid (CSF) lactate levels in AD patients has been considered the result of energetic metabolism dysfunction. Here, we investigated the relationship between neuronal energy metabolism, as measured via CSF lactate levels, and cerebral glucose metabolism, as stated at the 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography ([18F]FDG PET) in AD patients. AD patients underwent lumbar puncture to measure CSF lactate levels and [18F]FDG PET to assess brain glucose metabolism. CSF and PET data were compared to controls. Since patients were studied at rest, we specifically investigated brain areas active in rest-condition owing to the Default Mode Network (DMN). We correlated the CSF lactate concentrations with the [18F]FDG PET data in brain areas owing to the DMN, using sex, age, disease duration, Mini Mental State Examination, and CSF levels of tau proteins and beta-amyloid as covariates. AD patients (n = 32) showed a significant increase of CSF lactate levels compared to Control 1 group (n = 28). They also showed brain glucose hypometabolism in the DMN areas compared to Control 2 group (n = 30). Within the AD group we found the significant correlation between increased CSF lactate levels and glucose hypometabolism in Broadman areas (BA) owing to left medial prefrontal cortex (BA10, mPFC), left orbitofrontal cortex (BA11, OFC), and left parahippocampal gyrus (BA 35, PHG). We found high CSF levels of lactate and glucose hypometabolism within the DMN in AD patients. Moreover, we found a relationship linking the increased CSF lactate and the reduced glucose consumption in the left mPFC, OFC and PHG, owing to the anterior hub of DMN. These findings could suggest that neural glucose hypometabolism may affect the DMN efficiency in AD, also proposing the possible role of damaged brain energetic machine in impairing

  9. Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer's disease

    International Nuclear Information System (INIS)

    Liguori, Claudio; Chiaravalloti, Agostino; Schillaci, Orazio; Sancesario, Giuseppe; Stefani, Alessandro; Sancesario, Giulia Maria; Mercuri, Nicola Biagio; Pierantozzi, Mariangela

    2016-01-01

    It has been suggested that neuronal energy metabolism may be involved in Alzheimer's disease (AD). In this view, the finding of increased cerebrospinal fluid (CSF) lactate levels in AD patients has been considered the result of energetic metabolism dysfunction. Here, we investigated the relationship between neuronal energy metabolism, as measured via CSF lactate levels, and cerebral glucose metabolism, as stated at the 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography ([18F]FDG PET) in AD patients. AD patients underwent lumbar puncture to measure CSF lactate levels and [18F]FDG PET to assess brain glucose metabolism. CSF and PET data were compared to controls. Since patients were studied at rest, we specifically investigated brain areas active in rest-condition owing to the Default Mode Network (DMN). We correlated the CSF lactate concentrations with the [18F]FDG PET data in brain areas owing to the DMN, using sex, age, disease duration, Mini Mental State Examination, and CSF levels of tau proteins and beta-amyloid as covariates. AD patients (n = 32) showed a significant increase of CSF lactate levels compared to Control 1 group (n = 28). They also showed brain glucose hypometabolism in the DMN areas compared to Control 2 group (n = 30). Within the AD group we found the significant correlation between increased CSF lactate levels and glucose hypometabolism in Broadman areas (BA) owing to left medial prefrontal cortex (BA10, mPFC), left orbitofrontal cortex (BA11, OFC), and left parahippocampal gyrus (BA 35, PHG). We found high CSF levels of lactate and glucose hypometabolism within the DMN in AD patients. Moreover, we found a relationship linking the increased CSF lactate and the reduced glucose consumption in the left mPFC, OFC and PHG, owing to the anterior hub of DMN. These findings could suggest that neural glucose hypometabolism may affect the DMN efficiency in AD, also proposing the possible role of damaged brain energetic machine in impairing

  10. New aspects of fenestrated vasculature and tissue dynamics in the sensory circumventricular organs of adult brains

    Directory of Open Access Journals (Sweden)

    Seiji eMiyata

    2015-10-01

    Full Text Available The blood–brain barrier (BBB generally consists of endothelial tight junction barriers that prevent the free entry of blood-derived substances, thereby maintaining the extracellular environment of the brain. However, the circumventricular organs (CVOs, which are located along the midlines of the brain ventricles, lack these endothelial barriers and have fenestrated capillaries; therefore, they have a number of essential functions, including the transduction of information between the blood circulation and brain. Previous studies have demonstrated the extensive contribution of the CVOs to body fluid and thermal homeostasis, energy balance, the chemoreception of blood-derived substances, and neuroinflammation. In this review, recent advances have been discussed in fenestrated capillary characterization and dynamic tissue reconstruction accompanied by angiogenesis and neurogliogenesis in the sensory CVOs of adult brains. The sensory CVOs, including the organum vasculosum of the lamina terminalis (OVLT, subfornical organ (SFO, and area postrema (AP, have size-selective and heterogeneous vascular permeabilities. Astrocyte-/tanycyte-like neural stem cells (NSCs sense blood- and cerebrospinal fluid-derived information through the transient receptor potential vanilloid 1, a mechanical/osmotic receptor, Toll-like receptor 4, a lipopolysaccharide receptor, and Nax, a Na-sensing Na channel. They also express tight junction proteins and densely and tightly surround mature neurons to protect them from blood-derived neurotoxic substances, indicating that the NSCs of the CVOs perform BBB functions while maintaining the capacity to differentiate into new neurons and glial cells. In addition to neurogliogenesis, the density of fenestrated capillaries is regulated by angiogenesis, which is accompanied by the active proliferation and sprouting of endothelial cells. Vascular endothelial growth factor (VEGF signaling may be involved in angiogenesis and

  11. [Acid-base equilibrium and the brain].

    Science.gov (United States)

    Rabary, O; Boussofara, M; Grimaud, D

    1994-01-01

    In physiological conditions, the regulation of acid-base balance in brain maintains a noteworthy stability of cerebral pH. During systemic metabolic acid-base imbalances cerebral pH is well controlled as the blood/brain barrier is slowly and poorly permeable to electrolytes (HCO3- and H+). Cerebral pH is regulated by a modulation of the respiratory drive, triggered by the early alterations of interstitial fluid pH, close to medullary chemoreceptors. As blood/brain barrier is highly permeable to Co2, CSF pH is corrected in a few hours, even in case of severe metabolic acidosis and alkalosis. Conversely, during ventilatory acidosis and alkalosis the cerebral pH varies in the same direction and in the same range than blood pH. Therefore, the brain is better protected against metabolic than ventilatory acid-base imbalances. Ventilatory acidosis and alkalosis are able to impair cerebral blood flow and brain activity through interstitial pH alterations. During respiratory acidosis, [HCO3-] increases in extracellular fluids to control cerebral pH by two main ways: a carbonic anhydrase activation at the blood/brain and blood/CSF barriers level and an increase in chloride shift in glial cells (HCO3- exchanged for Cl-). During respiratory alkalosis, [HCO3-] decreases in extracellular fluids by the opposite changes in HCO3- transport and by an increase in lactic acid synthesis by cerebral cells. The treatment of metabolic acidosis with bicarbonates may induce a cerebral acidosis and worsen a cerebral oedema during ketoacidosis. Moderate hypocapnia carried out to treat intracranial hypertension is mainly effective when cerebral blood flow is high and vascular CO2 reactivity maintained. Hypocapnia may restore an altered cerebral blood flow autoregulation. Instrumental hypocapnia requires a control of cerebral perfusion pressure and cerebral arteriovenous difference for oxygen, to select patients for whom this kind of treatment may be of benefit, to choose the optimal level of

  12. Measurement of human blood brain barrier integrity using 11C-inulin and positron emission tomography

    International Nuclear Information System (INIS)

    Hara, Toshihiko; Iio, Masaaki; Tsukiyama, Takashi

    1988-01-01

    Positron emission tomography (PET) using 11 C-inulin was demonstrated to be applicable to the clinical measurement of blood brain barrier permeability and cerebral interstitial fluid volume. Kinetic data were analyzed by application of a two compartment model, in which blood plasma and interstitial fluid spaces constitute the compartments. The blood activity contribution was subtracted from the PET count with the aid of the 11 CO inhalation technique. The values we estimated in a human brain were in agreement with the reported values obtained for animal brains by the use of 14 C-inulin. (orig.)

  13. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI.

    Science.gov (United States)

    Iliff, Jeffrey J; Lee, Hedok; Yu, Mei; Feng, Tian; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene

    2013-03-01

    The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes to amyloid plaque deposition and Alzheimer's disease progression. Here we provide proof of concept that glymphatic pathway function can be measured using a clinically relevant imaging technique. Dynamic contrast-enhanced MRI was used to visualize CSF-ISF exchange across the rat brain following intrathecal paramagnetic contrast agent administration. Key features of glymphatic pathway function were confirmed, including visualization of para-arterial CSF influx and molecular size-dependent CSF-ISF exchange. Whole-brain imaging allowed the identification of two key influx nodes at the pituitary and pineal gland recesses, while dynamic MRI permitted the definition of simple kinetic parameters to characterize glymphatic CSF-ISF exchange and solute clearance from the brain. We propose that this MRI approach may provide the basis for a wholly new strategy to evaluate Alzheimer's disease susceptibility and progression in the live human brain.

  14. Extending brain-training to the affective domain: increasing cognitive and affective executive control through emotional working memory training.

    Directory of Open Access Journals (Sweden)

    Susanne Schweizer

    Full Text Available So-called 'brain-training' programs are a huge commercial success. However, empirical evidence regarding their effectiveness and generalizability remains equivocal. This study investigated whether brain-training (working memory [WM] training improves cognitive functions beyond the training task (transfer effects, especially regarding the control of emotional material since it constitutes much of the information we process daily. Forty-five participants received WM training using either emotional or neutral material, or an undemanding control task. WM training, regardless of training material, led to transfer gains on another WM task and in fluid intelligence. However, only brain-training with emotional material yielded transferable gains to improved control over affective information on an emotional Stroop task. The data support the reality of transferable benefits of demanding WM training and suggest that transferable gains across to affective contexts require training with material congruent to those contexts. These findings constitute preliminary evidence that intensive cognitively demanding brain-training can improve not only our abstract problem-solving capacity, but also ameliorate cognitive control processes (e.g. decision-making in our daily emotive environments.

  15. Amniotic fluid chemokines and autism spectrum disorders: An exploratory study utilizing a Danish Historic Birth Cohort

    DEFF Research Database (Denmark)

    Abdallah, Morsi; Larsen, Nanna Brink; Grove, Jakob

    2012-01-01

    Elevated levels of chemokines have been reported in plasma and brain tissue of individuals with Autism Spectrum Disorders (ASD). The aim of this study was to examine chemokine levels in amniotic fluid (AF) samples of individuals diagnosed with ASD and their controls.......Elevated levels of chemokines have been reported in plasma and brain tissue of individuals with Autism Spectrum Disorders (ASD). The aim of this study was to examine chemokine levels in amniotic fluid (AF) samples of individuals diagnosed with ASD and their controls....

  16. Improving fluid registration through white matter segmentation in a twin study design

    Science.gov (United States)

    Chou, Yi-Yu; Lepore, Natasha; Brun, Caroline; Barysheva, Marina; McMahon, Katie; de Zubicaray, Greig I.; Wright, Margaret J.; Toga, Arthur W.; Thompson, Paul M.

    2010-03-01

    Robust and automatic non-rigid registration depends on many parameters that have not yet been systematically explored. Here we determined how tissue classification influences non-linear fluid registration of brain MRI. Twin data is ideal for studying this question, as volumetric correlations between corresponding brain regions that are under genetic control should be higher in monozygotic twins (MZ) who share 100% of their genes when compared to dizygotic twins (DZ) who share half their genes on average. When these substructure volumes are quantified using tensor-based morphometry, improved registration can be defined based on which method gives higher MZ twin correlations when compared to DZs, as registration errors tend to deplete these correlations. In a study of 92 subjects, higher effect sizes were found in cumulative distribution functions derived from statistical maps when performing tissue classification before fluid registration, versus fluidly registering the raw images. This gives empirical evidence in favor of pre-segmenting images for tensor-based morphometry.

  17. Aerosol transport simulations in indoor and outdoor environments using computational fluid dynamics (CFD)

    Science.gov (United States)

    Landazuri, Andrea C.

    This dissertation focuses on aerosol transport modeling in occupational environments and mining sites in Arizona using computational fluid dynamics (CFD). The impacts of human exposure in both environments are explored with the emphasis on turbulence, wind speed, wind direction and particle sizes. Final emissions simulations involved the digitalization process of available elevation contour plots of one of the mining sites to account for realistic topographical features. The digital elevation map (DEM) of one of the sites was imported to COMSOL MULTIPHYSICSRTM for subsequent turbulence and particle simulations. Simulation results that include realistic topography show considerable deviations of wind direction. Inter-element correlation results using metal and metalloid size resolved concentration data using a Micro-Orifice Uniform Deposit Impactor (MOUDI) under given wind speeds and directions provided guidance on groups of metals that coexist throughout mining activities. Groups between Fe-Mg, Cr-Fe, Al-Sc, Sc-Fe, and Mg-Al are strongly correlated for unrestricted wind directions and speeds, suggesting that the source may be of soil origin (e.g. ore and tailings); also, groups of elements where Cu is present, in the coarse fraction range, may come from mechanical action mining activities and saltation phenomenon. Besides, MOUDI data under low wind speeds (Computational Fluid Dynamics can be used as a source apportionment tool to identify areas that have an effect over specific sampling points and susceptible regions under certain meteorological conditions, and these conclusions can be supported with inter-element correlation matrices and lead isotope analysis, especially since there is limited access to the mining sites. Additional results concluded that grid adaption is a powerful tool that allows to refine specific regions that require lots of detail and therefore better resolve flow detail, provides higher number of locations with monotonic convergence than the

  18. Brain-grounded theory of temporal and spatial design in architecture and the environment

    CERN Document Server

    Ando, Yoichi

    2016-01-01

    In this book, brain-grounded theory of temporal and spatial design in architecture and the environment is discussed. The author believes that it is a key to solving such global problems as environmental disorders and severe climate change as well as conflicts that are caused by the ill-conceived notion of “time is money”. There are three phases or aspects of a person’s life: the physical life, the spiritual or mental life, and the third stage of life, when a person moves from middle age into old age and can choose what he or she wishes to do instead of simply what must be done. This book describes the temporal design of the environment based on the theory of subjective preference, which could make it possible for an individual to realize a healthy life in all three phases. In his previously published work, the present author wrote that the theory of subjective preference has been established for the sound and visual fields based on neural evidence, and that subjective preference is an overall response o...

  19. Device Stores and Discharges Metered Fluid

    Science.gov (United States)

    Hooper, S. L.; Setzer, D.

    1983-01-01

    Hand-held container accepts measured amount of liquid from pressurized supply. Supply pressure drives spring-loaded piston that stores enough mechanical energy to discharge measured liquid into another container. Original application of container was to rehydrate sterilized pre-packaged food in zerogravity environment of space vehicles. Possible terrestrial applicatios include dispensing of toxic fluids or metering of fluids for household, commercial or laboratory uses.

  20. Control of chemical usage in drilling fluid formulations to minimize discharge to the environment

    International Nuclear Information System (INIS)

    Geehan, T.; Forbes, D.M.; Moore, D.J.

    1991-01-01

    A reduction in the environmental footprint from drilling operations can best be addressed by minimizing the sources of that footprint. One of the principal sources of possible environmental damage is drilling fluid and drill solid discharge. The toxicity as measured by acute and/or sub-chronic testing regimes depends on the composition of the drilling fluid/drill solids slurry. The trend within the drilling fluids industry has been to direct its attention to finding drilling fluid products which alone and in combination are considered to be non-toxic as determined by required testing procedures. This paper goes on to describe a parallel approach in which the total volume of chemicals discharged (whether considered toxic or benign) is reduced. Both approaches can be considered complimentary. The reduction in volume/mass of discharge is achieved by increased monitoring of both drilling fluid properties, composition and solids control operational efficiency. Additionally the increased monitoring allows less complicated formulations to be used to produce the desired drilling fluid properties; as specified by the mud programme. The need for more complete rigsite monitoring packages, will become more important as oilbased muds are replaced by waterbased mud for difficult drilling situations with stricter environmental regulations on discharge of drilling waste. The paper also outlines how the optimization of the drilling fluid operation was linked to a reduction in drilling fluid costs at the same time maintaining drilling efficiency

  1. Exploring the Environment/Energy Pareto Optimal Front of an Office Room Using Computational Fluid Dynamics-Based Interactive Optimization Method

    Directory of Open Access Journals (Sweden)

    Kangji Li

    2017-02-01

    Full Text Available This paper is concerned with the development of a high-resolution and control-friendly optimization framework in enclosed environments that helps improve thermal comfort, indoor air quality (IAQ, and energy costs of heating, ventilation and air conditioning (HVAC system simultaneously. A computational fluid dynamics (CFD-based optimization method which couples algorithms implemented in Matlab with CFD simulation is proposed. The key part of this method is a data interactive mechanism which efficiently passes parameters between CFD simulations and optimization functions. A two-person office room is modeled for the numerical optimization. The multi-objective evolutionary algorithm—non-dominated-and-crowding Sorting Genetic Algorithm II (NSGA-II—is realized to explore the environment/energy Pareto front of the enclosed space. Performance analysis will demonstrate the effectiveness of the presented optimization method.

  2. Immuno-reactive somatostatin in the cerebro-spinal fluid

    International Nuclear Information System (INIS)

    Kohler, J.

    1983-01-01

    In the present work the lumbar cerebro-spinal fluid of 178 patients with different neurological affections was examined with the aid of a specific radioimmunoassay for somatostatin. 18 patients without any pathologic neurological findings served as controls. In degenerative diseases of the brain, reduced somatostatin levels in the cerebro-spinal fluid as compared to the controls were measured. In 3 patients with isolated cerebellar atrophy no reduction of the somatostatin content was found; rather the values were highly normal. Huntington-Chorea also is a case apart. In patients with manifest affections, the somatostatin reduction, amounting to 54.6%, was particularly notable as compared to the controls. By contrast, degenerative diseases with predominant medullary and spastic affection are characterized by significantly increased somatostatin levels. Again, in non-spastic patients the values were not significantly different from those of the controls. Patients with inflammations of the brain and meminges as well as with tumors of the nervous system showed somatostatin levels increased by about 60.8% respectively 51.8% as compared to the controls. Epileptic patients normally exhibit a reduced somatostatin level in the cerebro-spinal fluid, but the reduction is not significant. Disseminated encephalomyclitis, whether chromic or acute, is not found to be associated with significant modifications of the somatostatin level in the cerebro-spinal fluid. Strikingly, however, patients in which the disease took a serious or very serious clinical course showed also the lowest somatostatin levels in the cerebro-spinal fluid. In patients exhibiting the roof compression symptom in consequence of a prolapse of the disk, no significant modifications were found. By contrast, in patients with the symptoms of a transverse lesion, significantly increased somatostatin values were measured. (orig./MG) [de

  3. Pathways for insulin access to the brain: the role of the microvascular endothelial cell

    OpenAIRE

    Meijer, Rick I.; Gray, Sarah M.; Aylor, Kevin W.; Barrett, Eugene J.

    2016-01-01

    New understanding of the directional flow of subarachnoid cerebrospinal fluid (CSF) through the Virchow-Robin space (VRS) to brain parenchyma, coupled with the demonstration here of rapid, insulin receptor-dependent trapping of plasma insulin by the brain microvasculature, underscores the direct role of insulin's blood-brain barrier transit to insulin delivery to the brain.

  4. Hemorrhagic brain metastases

    International Nuclear Information System (INIS)

    Takahashi, Motoichiro; Takekawa, S.D.; Suzuki, Kenzo

    1986-01-01

    Tumor hemorrhage on computed tomography (CT) was found in 14 patients with brain metastases (7 % of two hundred patients with brain metastases), from April 1979 to July 1983. Primary foci of these lesions were the lung (6 patients), breast (2), kidney (2), uterus (2), colon (1) and adrenal gland (1). ''Stroke'' syndrome was the initial presenting symptom in 3 patients; neurological focal sign or symptoms of increased intracranial pressure in the remaining patients. CT demonstrated peritumoral hemorrhage in all patients with solid mass, intratumoral hemorrhage in a few patients and also cerebral or ventricular hemorrhage, which was fatal complication, in 2 patients (colon and breast cancers). A cystic mass with fluid-blood level was noted in a patient with breast cancer. Several predisposing factors including chemotherapy, thrombocytopenia, radiotherapy or combination of these were recognized in 8 patients. Of these, chemotherapy was the most causative factor of tumor hemorrhage. Brain irradiation for hemorrhagic brain metastases was effective for prolongation of mean survival time of these patients as follows; 10 months in irradiated group, whereas 1.5 months in non-irradiated group. (author)

  5. Markers for blood-brain barrier integrity

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Møllgård, Kjeld

    2015-01-01

    In recent years there has been a resurgence of interest in brain barriers and various roles their intrinsic mechanisms may play in neurological disorders. Such studies require suitable models and markers to demonstrate integrity and functional changes at the interfaces between blood, brain......, and cerebrospinal fluid. Studies of brain barrier mechanisms and measurements of plasma volume using dyes have a long-standing history, dating back to the late nineteenth-century. Their use in blood-brain barrier studies continues in spite of their known serious limitations in in vivo applications. These were well...... known when first introduced, but seem to have been forgotten since. Understanding these limitations is important because Evans blue is still the most commonly used marker of brain barrier integrity and those using it seem oblivious to problems arising from its in vivo application. The introduction...

  6. Characterization of the L-glutamate clearance pathways across the blood-brain barrier and the effect of astrocytes in an in vitro blood-brain barrier model

    DEFF Research Database (Denmark)

    Helms, Hans CC; Aldana, Blanca I; Groth, Simon

    2017-01-01

    The aim was to characterize the clearance pathways for L-glutamate from the brain interstitial fluid across the blood-brain barrier using a primary in vitro bovine endothelial/rat astrocyte co-culture. Transporter profiling was performed using uptake studies of radiolabeled L-glutamate with co...... brain to blood via the concerted action of abluminal and luminal transport proteins, but the total brain clearance is highly dependent on metabolism in astrocytes and endothelial cells followed by transport of metabolites....

  7. From an unlicensed philosopher: reflections on brain, mind, society, culture--each other's environments with equal "ontologic standing".

    Science.gov (United States)

    Shay, Jonathan

    2010-10-01

    Philosophic conclusions drawn from work with psychologically and morally injured combat veterans include that brain, mind, society, and culture "co-evolved." The four encompass the complete human phenomenon, but not all are reducible to the physical brain. None of the four are "ontologically prior" to the others, when viewed over the entire lifecycle. All four are what I call "each other's environments," with obligatory cross-boundary flows--each with each in both directions. Rigorous, but nonreductionist interdisciplinary research, in the vein of "evo-devo" in embryology, is called for in the study of the human phenomena. On the basis of these conclusions, I offer a few practical comments on clinical work with psychologically and morally injured combat veterans. © 2010 Association for Research in Nervous and Mental Disease.

  8. Sleep spindling and fluid intelligence across adolescent development: sex matters

    Directory of Open Access Journals (Sweden)

    Róbert eBódizs

    2014-11-01

    Full Text Available Evidence supports the intricate relationship between sleep electroencephalogram (EEG spindling and cognitive abilities in children and adults. Although sleep EEG changes during adolescence index fundamental brain reorganization, a detailed analysis of sleep spindling and the spindle-intelligence relationship was not yet provided for adolescents. Therefore, adolescent development of sleep spindle oscillations were studied in a home polysomnographic study focusing on the effects of chronological age and developmentally acquired overall mental efficiency (fluid IQ with sex as a potential modulating factor. Subjects were 24 healthy adolescents (12 males with an age range of 15–22 years (mean: 18 years and fluid IQ of 91-126 (mean: 104.12, Raven Progressive Matrices Test. Slow spindles (SSs and fast spindles (FSs were analyzed in 21 EEG derivations by using the individual adjustment method. A significant age-dependent increase in average FS density (r = .57; p = .005 was found. Moreover, fluid IQ correlated with FS density (r = .43; p = .04 and amplitude (r = .41; p = .049. The latter effects were entirely driven by particularly reliable FS-IQ correlations in females [r = .80 (p = .002 and r = .67 (p = .012, for density and amplitude, respectively]. Region-specific analyses revealed that these correlations peak in the fronto-central regions. The control of the age-dependence of FS measures and IQ scores did not considerably reduce the spindle-IQ correlations with respect to FS density. The only positive spindle-index of fluid IQ in males turned out to be the frequency of FSs (r = .60, p = .04. Increases in FS density during adolescence may index reshaped structural connectivity related to white matter maturation in the late developing human brain. The continued development over this age range of cognitive functions is indexed by specific measures of sleep spindling unravelling gender differences in adolescent brain maturation and perhaps cognitive

  9. Problems in Microgravity Fluid Mechanics: G-Jitter Convection

    Science.gov (United States)

    Homsy, G. M.

    2005-01-01

    This is the final report on our NASA grant, Problems in Microgravity Fluid Mechanics NAG3-2513: 12/14/2000 - 11/30/2003, extended through 11/30/2004. This grant was made to Stanford University and then transferred to the University of California at Santa Barbara when the PI relocated there in January 2001. Our main activity has been to conduct both experimental and theoretical studies of instabilities in fluids that are relevant to the microgravity environment, i.e. those that do not involve the action of buoyancy due to a steady gravitational field. Full details of the work accomplished under this grant are given below. Our work has focused on: (i) Theoretical and computational studies of the effect of g-jitter on instabilities of convective states where the convection is driven by forces other than buoyancy (ii) Experimental studies of instabilities during displacements of miscible fluid pairs in tubes, with a focus on the degree to which these mimic those found in immiscible fluids. (iii) Theoretical and experimental studies of the effect of time dependent electrohydrodynamic forces on chaotic advection in drops immersed in a second dielectric liquid. Our objectives are to acquire insight and understanding into microgravity fluid mechanics problems that bear on either fundamental issues or applications in fluid physics. We are interested in the response of fluids to either a fluctuating acceleration environment or to forces other than gravity that cause fluid mixing and convection. We have been active in several general areas.

  10. FORMATE-BASED FLUIDS: FORMULATION AND APPLICATION

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2008-12-01

    Full Text Available Formate-based fluids has been successfully used in over hunders HPHT well operations since they introduced in field practice. They have many advantages when compared with conventional HPHT drilling and completion fluids such as: minimal formation damage, maintenance of additve properties at high temperatures, reduced hydraulic flow resistance, low potential for differential sticking, naturally lubricating, very low corrosion rates, biodegradable and pose little risk to the environment etc. Formate-based fluids can be applied during deep slim hole drilling, shale drilling, reservoir drilling, salt and gas hydrate formations drilling. The laboratory research was carried out to evaluate the rheological behavior of formate-based fluids as a function of temperature. Formate-based fluids were formulated using potassium formate brine, xanthan polymer, PAC, starch and calcium carbonate. Experimental results show that potassium formate improves the thermal stability of polymers.

  11. Potential predictors for the amount of intra-operative brain shift during deep brain stimulation surgery

    Science.gov (United States)

    Datteri, Ryan; Pallavaram, Srivatsan; Konrad, Peter E.; Neimat, Joseph S.; D'Haese, Pierre-François; Dawant, Benoit M.

    2011-03-01

    A number of groups have reported on the occurrence of intra-operative brain shift during deep brain stimulation (DBS) surgery. This has a number of implications for the procedure including an increased chance of intra-cranial bleeding and complications due to the need for more exploratory electrodes to account for the brain shift. It has been reported that the amount of pneumocephalus or air invasion into the cranial cavity due to the opening of the dura correlates with intraoperative brain shift. Therefore, pre-operatively predicting the amount of pneumocephalus expected during surgery is of interest toward accounting for brain shift. In this study, we used 64 DBS patients who received bilateral electrode implantations and had a post-operative CT scan acquired immediately after surgery (CT-PI). For each patient, the volumes of the pneumocephalus, left ventricle, right ventricle, third ventricle, white matter, grey matter, and cerebral spinal fluid were calculated. The pneumocephalus was calculated from the CT-PI utilizing a region growing technique that was initialized with an atlas-based image registration method. A multi-atlas-based image segmentation method was used to segment out the ventricles of each patient. The Statistical Parametric Mapping (SPM) software package was utilized to calculate the volumes of the cerebral spinal fluid (CSF), white matter and grey matter. The volume of individual structures had a moderate correlation with pneumocephalus. Utilizing a multi-linear regression between the volume of the pneumocephalus and the statistically relevant individual structures a Pearson's coefficient of r = 0.4123 (p = 0.0103) was found. This study shows preliminary results that could be used to develop a method to predict the amount of pneumocephalus ahead of the surgery.

  12. Amniotic fluid MMP-9 and neurotrophins in autism spectrum disorders

    DEFF Research Database (Denmark)

    Abdallah, Morsi; Pearce, Brad D; Larsen, Nanna

    2012-01-01

    Evidence suggests that some developmental disorders, such as autism spectrum disorders (ASDs), are caused by errors in brain plasticity. Given the important role of matrix metalloproteinases (MMPs) and neurotrophins (NTs) in neuroplasticity, amniotic fluid samples for 331 ASD cases and 698...

  13. Rearing environment influences boldness and prey acquisition behavior, and brain and lens development of bull trout

    Science.gov (United States)

    Brignon, William R.; Pike, Martin M.; Ebbesson, Lars O.E.; Schaller, Howard A.; Peterson, James T.; Schreck, Carl B.

    2018-01-01

    Animals reared in barren captive environments exhibit different developmental trajectories and behaviors than wild counterparts. Hence, the captive phenotypes may influence the success of reintroduction and recovery programs for threatened and endangered species. We collected wild bull trout embryos from the Metolius River Basin, Oregon and reared them in differing environments to better understand how captivity affects the bull trout Salvelinus confluentusphenotype. We compared the boldness and prey acquisition behaviors and development of the brain and eye lens of bull trout reared in conventional barren and more structurally complex captive environments with that of wild fish. Wild fish and captive reared fish from complex habitats exhibited a greater level of boldness and prey acquisition ability, than fish reared in conventional captive environments. In addition, the eye lens of conventionally reared bull trout was larger than complex reared captive fish or same age wild fish. Interestingly, we detected wild fish had a smaller relative cerebellum than either captive reared treatment. Our results suggest that rearing fish in more complex captive environments can create a more wild-like phenotype than conventional rearing practices. A better understanding of the effects of captivity on the development and behavior of bull trout can inform rearing and reintroduction programs though prediction of the performance of released individuals.

  14. On the fluid mechanics of fires

    Energy Technology Data Exchange (ETDEWEB)

    TIESZEN,SHELDON R.

    2000-02-29

    Fluid mechanics research related to fire is reviewed with focus on canonical flows, multiphysics coupling aspects, experimental and numerical techniques. Fire is a low-speed, chemically-reacting, flow in which buoyancy plans an important role. Fire research has focused on two canonical flows, the reacting boundary-layer and the reacting free plume. There is rich, multi-lateral, bi-directional, coupling among fluid mechanics and scalar transport, combustion, and radiation. There is only a limited experimental fluid-mechanics database for fire due to measurement difficulties in the harsh environment, and the focus within the fire community on thermal/chemical consequences. Increasingly, computational fluid dynamics techniques are being used to provide engineering guidance on thermal/chemical consequences and to study fire phenomenology.

  15. Clinical observations of the brain abscesses, especially on the computed tomographic brain scan findings

    International Nuclear Information System (INIS)

    Kitano, Masahiko; Kuroda, Ryotaro; Yamada, Yasufumi; Yorimae, Akira; Akai, Fumiharu; Watanabe, Masaru; Nakatani, Jiro; Ioku, Masahiko

    1988-01-01

    Fifteen cases with pyogenic brain abscess were experienced in our clinic during the last 7 years. The records of these patients were examined to evaluate the clinical stage and the result of several treatments. In 12 operative cases, diagnosis was made by fluid aspirated from the abscess. Bacteria were cultured from the fluid in 5 among these cases. In 3 other non-operative patients, diagnosis was based on computed tomographic (CT) brain scans and laboratory studies. Each volume of the brain abscess and surrounding brain edema was measured on serial CT scans to evaluate the clinical stage and the abscess evolution. In symptoms and signs, it has been thought that one of the factors contributing to mortality was the level of consciousness. In this study, the disturbance of consciousness did not correlate with the size of abscess, but with that of edema. The cases reported here were divided into 3 groups according to the volume of abscess and of edema on initial CT scans. The cases of group A had small surrounding edema ( 50 ml) and small abscess ( 25 ml). The group A had slight change in the clinical status and the size of edema, but the others had severe change. Three phase changes in edema size were seen in the group B regardless of therapeutic modalities ; showing almost constant increase in first 2 weeks, great decrease in second 2 weeks and moderate decrease following these 4 weeks. In the group C, however, these phases were seen only in early operation cases. (J.P.N.)

  16. Advances in fluid modeling and turbulence measurements

    International Nuclear Information System (INIS)

    Wada, Akira; Ninokata, Hisashi; Tanaka, Nobukazu

    2002-01-01

    The context of this book consists of four fields: Environmental Fluid Mechanics; Industrial Fluid Mechanics; Fundamentals of Fluid Mechanics; and Turbulence Measurements. Environmental Fluid Mechanics includes free surface flows in channels, rivers, seas, and estuaries. It also discusses wind engineering issues, ocean circulation model and dispersion problems in atmospheric, water and ground water environments. In Industrial Fluid Mechanics, fluid phenomena in energy exchanges, modeling of turbulent two- or multi-phase flows, swirling flows, flows in combustors, variable density flows and reacting flows, flows in turbo-machines, pumps and piping systems, and fluid-structure interaction are discussed. In Fundamentals of Fluid Mechanics, progress in modeling turbulent flows and heat/mass transfers, computational fluid dynamics/numerical techniques, parallel computing algorithms, applications of chaos/fractal theory in turbulence are reported. In Turbulence Measurements, experimental studies of turbulent flows, experimental and post-processing techniques, quantitative and qualitative flow visualization techniques are discussed. Separate abstracts were presented for 15 of the papers in this issue. The remaining 89 were considered outside the subject scope of INIS. (J.P.N.)

  17. Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Ontiveros, Esperanza; Gómez-Garza, Gilberto; Barragán-Mejía, Gerardo; Broadway, James; Chapman, Susan; Valencia-Salazar, Gildardo; Jewells, Valerie; Maronpot, Robert R; Henríquez-Roldán, Carlos; Pérez-Guillé, Beatriz; Torres-Jardón, Ricardo; Herrit, Lou; Brooks, Diane; Osnaya-Brizuela, Norma; Monroy, Maria E; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Solt, Anna C; Engle, Randall W

    2008-11-01

    Exposure to air pollution is associated with neuroinflammation in healthy children and dogs in Mexico City. Comparative studies were carried out in healthy children and young dogs similarly exposed to ambient pollution in Mexico City. Children from Mexico City (n: 55) and a low polluted city (n:18) underwent psychometric testing and brain magnetic resonance imaging MRI. Seven healthy young dogs with similar exposure to Mexico City air pollution had brain MRI, measurement of mRNA abundance of two inflammatory genes cyclooxygenase-2, and interleukin 1 beta in target brain areas, and histopathological evaluation of brain tissue. Children with no known risk factors for neurological or cognitive disorders residing in a polluted urban environment exhibited significant deficits in a combination of fluid and crystallized cognition tasks. Fifty-six percent of Mexico City children tested showed prefrontal white matter hyperintense lesions and similar lesions were observed in dogs (57%). Exposed dogs had frontal lesions with vascular subcortical pathology associated with neuroinflammation, enlarged Virchow-Robin spaces, gliosis, and ultrafine particulate matter deposition. Based on the MRI findings, the prefrontal cortex was a target anatomical region in Mexico City children and its damage could have contributed to their cognitive dysfunction. The present work presents a groundbreaking, interdisciplinary methodology for addressing relationships between environmental pollution, structural brain alterations by MRI, and cognitive deficits/delays in healthy children.

  18. Litter environment affects behavior and brain metabolic activity of adult knockout mice

    Directory of Open Access Journals (Sweden)

    David Crews

    2009-08-01

    Full Text Available In mammals, the formative environment for social and anxiety-related behaviors is the family unit; in the case of rodents, this is the litter and the mother-young bond. A deciding factor in this environment is the sex ratio of the litter and, in the case of mice lacking functional copies of gene(s, the ratio of the various genotypes in the litter. Both Sex and Genotype ratios of the litter affect the nature and quality of the individual’s behavior later in adulthood, as well as metabolic activity in brain nuclei that underlie these behaviors. Mice were raised in litters reconstituted shortly after to birth to control for Sex ratio and Genotype ratio (wild type pups vs. pups lacking a functional estrogen receptor α. In both males and females the Sex and Genotype of siblings in the litter affected aggressive behaviors as well as patterns of metabolic activity in limbic nuclei in the social behavior network later in adulthood. Further, this pattern in males varied depending upon the Genotype of their brothers and sisters. Principal Components Analysis revealed two components comprised of several amygdalar and hypothalamic nuclei; the VMH showed strong correlations in both clusters, suggesting its pivotal nature in the organization of two neural networks.

  19. Time-frequency analyses of fluid-solid interaction under sinusoidal translational shear deformation of the viscoelastic rat cerebrum

    Science.gov (United States)

    Leahy, Lauren N.; Haslach, Henry W.

    2018-02-01

    During normal extracellular fluid (ECF) flow in the brain glymphatic system or during pathological flow induced by trauma resulting from impacts and blast waves, ECF-solid matter interactions result from sinusoidal shear waves in the brain and cranial arterial tissue, both heterogeneous biological tissues with high fluid content. The flow in the glymphatic system is known to be forced by pulsations of the cranial arteries at about 1 Hz. The experimental shear stress response to sinusoidal translational shear deformation at 1 Hz and 25% strain amplitude and either 0% or 33% compression is compared for rat cerebrum and bovine aortic tissue. Time-frequency analyses aim to correlate the shear stress signal frequency components over time with the behavior of brain tissue constituents to identify the physical source of the shear nonlinear viscoelastic response. Discrete fast Fourier transformation analysis and the novel application to the shear stress signal of harmonic wavelet decomposition both show significant 1 Hz and 3 Hz components. The 3 Hz component in brain tissue, whose magnitude is much larger than in aortic tissue, may result from interstitial fluid induced drag forces. The harmonic wavelet decomposition locates 3 Hz harmonics whose magnitudes decrease on subsequent cycles perhaps because of bond breaking that results in easier fluid movement. Both tissues exhibit transient shear stress softening similar to the Mullins effect in rubber. The form of a new mathematical model for the drag force produced by ECF-solid matter interactions captures the third harmonic seen experimentally.

  20. Brain atrophy during aging

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Yamada, Kenji; Yamada, Susumu; Ono, Shuichi; Takeda, Shunpei; Hatazawa, Jun; Ito, Masatoshi; Kubota, Kazuo

    1985-01-01

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT. Brain atrophy was minimal in 34-35 years old in both sexes, increased exponentially to the increasing age after 34-35 years, and probably resulted in dementia, such as vascular or multi-infarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34-35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extent of brain atrophy (20 - 30 %) existed among aged subjects. Progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was the decrease in the cerebral blood flow. We have classified brain atrophy into sulcal and cisternal enlargement type (type I), ventricular enlargement type (type II) and mixed type (type III) according to the clinical study using NMR-CT. Brain atrophy of type I progresses significantly in almost all of the geriatric disorders. This type of brain atrophy progresses significantly in heavy smokers and drinkers. Therefore this type of brain atrophy might be caused by the decline in the blood flow in anterior and middle cerebral arteries. Brain atrophy of type II was caused by the disturbance of cerebrospinal fluid circulation after cerebral bleeding and subarachnoid bleeding. Brain atrophy of type III was seen in vascular dementia or multi-infarct dementia which was caused by loss of brain matter after multiple infarction, and was seen also in dementia of Alzheimer type in which degeneration of nerve cells results in brain atrophy. NMR-CT can easily detect small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy. (J.P.N.)

  1. Estimation of in-vivo neurotransmitter release by brain microdialysis: the issue of validity.

    Science.gov (United States)

    Di Chiara, G.; Tanda, G.; Carboni, E.

    1996-11-01

    Although microdialysis is commonly understood as a method of sampling low molecular weight compounds in the extracellular compartment of tissues, this definition appears insufficient to specifically describe brain microdialysis of neurotransmitters. In fact, transmitter overflow from the brain into dialysates is critically dependent upon the composition of the perfusing Ringer. Therefore, the dialysing Ringer not only recovers the transmitter from the extracellular brain fluid but is a main determinant of its in-vivo release. Two types of brain microdialysis are distinguished: quantitative micro-dialysis and conventional microdialysis. Quantitative microdialysis provides an estimate of neurotransmitter concentrations in the extracellular fluid in contact with the probe. However, this information might poorly reflect the kinetics of neurotransmitter release in vivo. Conventional microdialysis involves perfusion at a constant rate with a transmitter-free Ringer, resulting in the formation of a steep neurotransmitter concentration gradient extending from the Ringer into the extracellular fluid. This artificial gradient might be critical for the ability of conventional microdialysis to detect and resolve phasic changes in neurotransmitter release taking place in the implanted area. On the basis of these characteristics, conventional microdialysis of neurotransmitters can be conceptualized as a model of the in-vivo release of neurotransmitters in the brain. As such, the criteria of face-validity, construct-validity and predictive-validity should be applied to select the most appropriate experimental conditions for estimating neurotransmitter release in specific brain areas in relation to behaviour.

  2. Cerebrospinal Fluid Biomarkers in Diagnosing Alzheimer's Disease in Clinical Practice

    DEFF Research Database (Denmark)

    Slats, Diane; Spies, Petra E; Sjögren, Magnus J C

    2010-01-01

    Analysis of the brain specific biomarkers amyloid beta(42) (Abeta(42)) and total tau (t-tau) protein in cerebrospinal fluid (CSF) has a sensitivity and specificity of more than 85% for differentiating Alzheimer's Disease (AD) from non-demented controls. International guidelines are contradictory...

  3. Bernoulli's Principle Applied to Brain Fluids: Intracranial Pressure Does Not Drive Cerebral Perfusion or CSF Flow.

    Science.gov (United States)

    Schmidt, Eric; Ros, Maxime; Moyse, Emmanuel; Lorthois, Sylvie; Swider, Pascal

    2016-01-01

    In line with the first law of thermodynamics, Bernoulli's principle states that the total energy in a fluid is the same at all points. We applied Bernoulli's principle to understand the relationship between intracranial pressure (ICP) and intracranial fluids. We analyzed simple fluid physics along a tube to describe the interplay between pressure and velocity. Bernoulli's equation demonstrates that a fluid does not flow along a gradient of pressure or velocity; a fluid flows along a gradient of energy from a high-energy region to a low-energy region. A fluid can even flow against a pressure gradient or a velocity gradient. Pressure and velocity represent part of the total energy. Cerebral blood perfusion is not driven by pressure but by energy: the blood flows from high-energy to lower-energy regions. Hydrocephalus is related to increased cerebrospinal fluid (CSF) resistance (i.e., energy transfer) at various points. Identification of the energy transfer within the CSF circuit is important in understanding and treating CSF-related disorders. Bernoulli's principle is not an abstract concept far from clinical practice. We should be aware that pressure is easy to measure, but it does not induce resumption of fluid flow. Even at the bedside, energy is the key to understanding ICP and fluid dynamics.

  4. Mesoscopic model for binary fluids

    Science.gov (United States)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  5. Relation between plasma and brain lipids

    DEFF Research Database (Denmark)

    Wellington, Cheryl L; Frikke-Schmidt, Ruth

    2016-01-01

    : Plasma levels of traditional lipids and lipoproteins are not consistently associated with risk of dementia even though low plasma levels of apolipoprotein E, through unknown mechanisms, robustly predict future dementia. Experimental evidence suggests neuroprotective roles of several brain...... and cerebrospinal fluid apolipoproteins. Whether plasma levels of apolipoprotein E, or any other apolipoprotein with possible central nervous system and/or blood-brain barrier functions (apolipoproteins J, A-I, A-II, A-IV, D, C-I, and C-III) may become accessible biomarker components that improve risk prediction...

  6. Fluid Temperature of Aero Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2016-01-01

    Full Text Available In modern supersonic aircrafts due to aerodynamic skin heating a temperature of hydraulics environment significantly exceeds that of permissible for fluids used. The same problem exists for subsonic passenger aircrafts, especially for Airbuses, which have hydraulics of high power where convective heat transfer with the environment is insufficient and there is no required temperature control of fluid. The most significant in terms of heat flow is the flow caused by the loss of power to the pump and when designing the hydraulic system (HS it is necessary to pay very serious attention to it. To use a constant capacity pump is absolutely unacceptable, since HS efficiency in this case is extremely low, and the most appropriate are variable-capacity pumps, cut-off pumps, dual-mode pumps. The HS fluid cooling system should provide high reliability, lightweight, simple design, and a specified heat transfer in all flight modes.A system cooling the fluid by the fuel of feeding lines of the aircraft engines is the most effective, and it is widely used in supersonic aircrafts, where power of cooling system is essential. Subsonic aircrafts widely use convective heat exchangers. In thermal design of the aircraft hydraulics, the focus is generally given to the maximum and minimum temperatures of the HS fluid, the choice of the type of heat exchanger (convective or flow-through, the place of its installation. In calculating the operating temperature of a hydraulic system and its cooling systems it is necessary to determine an increase of the working fluid temperature when throttling it. There are three possible formulas to calculate the fluid temperature in throttling, with the error of a calculated temperature drop from 30% to 4%.The article considers the HS stationary and noon-stationary operating conditions and their calculation, defines temperatures of fluid and methods to control its specified temperature. It also discusses various heat exchanger schemes

  7. FLAIR images of brain diseases

    International Nuclear Information System (INIS)

    Segawa, Fuminori; Kinoshita, Masao; Kishibayashi, Jun; Kamada, Kazuhiko; Sunohara, Nobuhiko.

    1994-01-01

    The present study was designed to assess the usefulness of fluid-attenuated inversion recovery (FLAIR) images in diagnosing brain diseases. The subjects were 20 patients with multiple cerebral infarction, multiple sclerosis, temporal epilepsy, or brain trauma, and 20 other healthy adults. FLAIR images, with a long repetitive time of 6000 msec and a long inversion time of 1400-1600 msec, showed low signal intensity in the cerebrospinal fluid in the lateral ventricles and the cerebral sulci, and high signal intensity in brain tissues. Signal intensity on FLAIR images correlated well with T2 relaxation times under 100 msec. For multiple sclerosis and cerebral infarction, cystic lesions, which were shown on T2-weighted images with long relaxation times over 100 msec, appeared as low-signal areas; and the lesions surrounding the cystic lesions appeared as high-signal areas. For temporal lobe epilepsy, the hippocampus was visualized as a high-signal area. Hippocampal lesions were demonstrated better with FLAIR images than with conventional T2-weighted and proton-density images. In a patient with cerebral trauma, FLAIR images revealed the lobulated structure with the residual cortex shown as a high signal area. The lesions surrounding the cystic change were imaged as high signal areas. These structural changes were demonstrated better with FLAIR images than with conventional T2-weighted sequences. FLAIR images were useful in detecting white matter lesions surrounding the lateral ventricles and cortical and subcortical lesions near the brain surface, which were unclear on conventional T2-weighted and proton-density images. (N.K.)

  8. Impairment of Interrelated Iron- and Copper Homeostatic Mechanisms in Brain Contributes to the Pathogenesis of Neurodegenerative Disorders

    Science.gov (United States)

    Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben

    2012-01-01

    Iron and copper are important co-factors for a number of enzymes in the brain, including enzymes involved in neurotransmitter synthesis and myelin formation. Both shortage and an excess of iron or copper will affect the brain. The transport of iron and copper into the brain from the circulation is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead to altered copper homeostasis in the brain. Similarly, changes in dietary copper affect the brain iron homeostasis. Moreover, the uptake routes of iron and copper overlap each other which affect the interplay between the concentrations of the two metals in the brain. The divalent metal transporter-1 (DMT1) is involved in the uptake of both iron and copper. Furthermore, copper is an essential co-factor in numerous proteins that are vital for iron homeostasis and affects the binding of iron-response proteins to iron-response elements in the mRNA of the transferrin receptor, DMT1, and ferroportin, all highly involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells that express various transporters. PMID:23055972

  9. Application of own computer program for assessment of brain-fluid index in the medial temporal lobe portions in patients with drug-resistant temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Boguslawska, R.; Skrobowska, E.; Rysz, A.

    2009-01-01

    Background: Epilepsy resistant to pharmacological treatment still remains one of the main problems in contemporary epileptology. The problem most frequently concerns patients with focal epilepsy, with the seizure focus possible to localize. In case of drug-resistant epilepsy, both morphological imaging methods (MR) and manual measurements or volumetry are used. Also functional studies, such as MRS (magnetic resonance spectroscopy), fMRI (functional magnetic resonance), SPECT (single photon emission tomography) and PET (positron emission tomography) are performed. Material/Methods: The study presents application of own computer program based on the method of segmentation of the cerebrospinal fluid (CSF) and the brain tissue. The program calculates automatically the brain-fluin index in the hippocampal region. The material comprises the brain-fluin index results calculated with the presented program in comparison with the method of manual delineation in a group of 50 patients with drug-resistant temporal lobe epilepsy. The program is easy to use, it reads the MR data recorded in DICOM installed on a PC. Results: The brain-fluin index result (expressed as a decimal fraction) is calculated on the basis of 4 consecutive layers examined by MR (evaluating hippocampal structures) performed using SE sequence, and T2-weighted imaging in the frontal plane perpendicular to the long axis of the temporal lobes. The results obtained in epilepsy patients were compared with 24 control subjects. Conclusions: Detailed analysis of the obtained data allowed to conclude that precise hippocampal volume assessment can be obtained by combination of both methods, i.e. manual delineation and automatic calculation of brain-fluin index taking into consideration the total volume of cerebral structures. (authors)

  10. Prevention and management of brain edema in patients with acute liver failure

    DEFF Research Database (Denmark)

    Wendon, J.; Larsen, Finn Stolze

    2008-01-01

    1. Intracranial pressure is the pressure exerted by the cranial contents on the dural envelope and consists of the partial pressures of the brain, blood, and cerebrospinal fluid. 2. Severe cases of acute liver failure are frequently complicated by brain edema (due to cytotoxic edema...

  11. Do brain image databanks support understanding of normal ageing brain structure? A systematic review

    International Nuclear Information System (INIS)

    Dickie, David Alexander; Job, Dominic E.; Wardlaw, Joanna M.; Poole, Ian; Ahearn, Trevor S.; Staff, Roger T.; Murray, Alison D.

    2012-01-01

    To document accessible magnetic resonance (MR) brain images, metadata and statistical results from normal older subjects that may be used to improve diagnoses of dementia. We systematically reviewed published brain image databanks (print literature and Internet) concerned with normal ageing brain structure. From nine eligible databanks, there appeared to be 944 normal subjects aged ≥60 years. However, many subjects were in more than one databank and not all were fully representative of normal ageing clinical characteristics. Therefore, there were approximately 343 subjects aged ≥60 years with metadata representative of normal ageing, but only 98 subjects were openly accessible. No databank had the range of MR image sequences, e.g. T2*, fluid-attenuated inversion recovery (FLAIR), required to effectively characterise the features of brain ageing. No databank supported random subject retrieval; therefore, manual selection bias and errors may occur in studies that use these subjects as controls. Finally, no databank stored results from statistical analyses of its brain image and metadata that may be validated with analyses of further data. Brain image databanks require open access, more subjects, metadata, MR image sequences, searchability and statistical results to improve understanding of normal ageing brain structure and diagnoses of dementia. (orig.)

  12. An Integrative, Multi-Scale Computational Model of a Swimming Lamprey Fully Coupled to Its Fluid Environment and Incorporating Proprioceptive Feedback

    Science.gov (United States)

    Hamlet, C. L.; Hoffman, K.; Fauci, L.; Tytell, E.

    2016-02-01

    The lamprey is a model organism for both neurophysiology and locomotion studies. To study the role of sensory feedback as an organism moves through its environment, a 2D, integrative, multi-scale model of an anguilliform swimmer driven by neural activation from a central pattern generator (CPG) is constructed. The CPG in turn drives muscle kinematics and is fully coupled to the surrounding fluid. The system is numerically evolved in time using an immersed boundary framework producing an emergent swimming mode. Proprioceptive feedback to the CPG based on experimental observations adjust the activation signal as the organism interacts with its environment. Effects on the speed, stability and cost (metabolic work) of swimming due to nonlinear dependencies associated with muscle force development combined with proprioceptive feedback to neural activation are estimated and examined.

  13. The Antiedema Effect of Intracisternal Hyperosmolar Albumine on Experimental Created Brain Edema

    Directory of Open Access Journals (Sweden)

    Ayhan Tekiner

    2010-01-01

    Full Text Available Aim: The brain edema caused by central nervous system diseases and trauma is an important reason of morbidity and mortality currently. Although the most of physiopathology of traumatic brain edema has been elucidated through many clinical and laboratory studies, the treatment of edema couldn?t been standardized. For this purpose, from past to the present although many treatment principles have been accepted, also different treatment agents are being used. Material and Methods: In this experimental study thirty six New Zealander rabbits weighing between 2.2 and 2.8 kg were used. Craniectomi was applied to the subjects and gravity was dropped from high in order to develop traumatic brain edema. The subjects were divided into six groups and hyperosmolar albumine was given to each group on different time periods. It was Aim: ed to resolve the edema by drawing the edema liquid to subarachnoid distance by giving human albumin a physiologic macromolecule through cysterna manga. The efficacy of tretment was evaluated through two parameters: the first cerebrospinal fluid osmolality and the second the rate of brain tissue fluid. Results: Cerebrospinal fluid osmolality and brain tissue fluid ratio gained at the result of the study were statistical evaluated by  Kruskal-Wallis nonparametric ANOVA test and Mann-Whitney U test. p value<0,05 was accepted statistical significant. Conclusions: When compared the Results : of the study groups the difference was significant between trauma and control group and the difference was relatively close to the control group at the treatment group. The treatment was significantly efficient at the groups which were applied hyperosmolar albumine two or three times in the first 72 hours after trauma. According to these Results : we can declare this experimental study has reached to the purpose and can contribute to future studies about the same subject.

  14. Social connectedness, mental health and the adolescent brain.

    Science.gov (United States)

    Lamblin, M; Murawski, C; Whittle, S; Fornito, A

    2017-09-01

    Social relationships promote health and wellbeing. Brain regions regulating social behavior continue to develop throughout adolescence, as teens learn to navigate their social environment with increasing sophistication. Adolescence is also a time of increased risk for the development of psychiatric disorders, many of which are characteristically associated with social dysfunction. In this review, we consider the links between adolescent brain development and the broader social environment. We examine evidence that individual differences in social ability, partly determined by genetic influences on brain structure and function, impact the quality and quantity of social ties during adolescence and that, conversely, the structure of one's social network exerts complex yet profound influences on individual behavior and mental health. In this way, the brain and social environment sculpt each other throughout the teenage years to influence one's social standing amongst peers. Reciprocal interactions between brain maturation and the social environment at this critical developmental stage may augment risk or promote resilience for mental illness and other health outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Simulation of the deformation of a fluid domain in motion in another fluid by the boundary element method

    International Nuclear Information System (INIS)

    Rocchi-Tavares, Miriam

    1992-01-01

    The objective of this research thesis is to model the sustentation (or aerodynamic levitation) of a drop by a fluid flowing through a porous plate. More precisely, the author developed a general calculation tool to solve the Stokes problem by using the boundary element method. The author reports the calculation of stresses at the surface of a solid body moving in an infinite medium, in order to validate the calculation tool before its extension to more complex problems. Then, the model is developed to describe the deformation of a fluid mass moving in another fluid. The surrounding environment is either infinite or limited by a plane wall which can be impervious or crossed by an ambient fluid. Then, the author addresses the study of the evolution of the surface of a drop moving in an infinite medium, analyses the behaviour of a fluid mass at the vicinity of a plane, infinite and impervious wall. The last part addresses the sustentation of a deformable fluid body above a porous plane wall crossed by another fluid [fr

  16. Glutamate Efflux at the Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Cederberg-Helms, Hans Christian; Uhd-Nielsen, Carsten; Brodin, Birger

    2014-01-01

    is well known, however endothelial cells may also play an important role through mediating brain-to-blood L-glutamate efflux. Expression of excitatory amino acid transporters has been demonstrated in brain endothelial cells of bovine, human, murine, rat and porcine origin. These can account for high...... affinity concentrative uptake of L-glutamate from the brain interstitial fluid into the capillary endothelial cells. The mechanisms in between L-glutamate uptake in the endothelial cells and L-glutamate appearing in the blood are still unclear and may involve a luminal transporter for L......-glutamate, metabolism of L-glutamate and transport of metabolites or a combination of the two. However, both in vitro and in vivo studies have demonstrated blood-to-brain transport of L-glutamate, at least during pathological events. This review summarizes the current knowledge on the brain-to-blood L-glutamate efflux...

  17. Development of the Young Brain

    Medline Plus

    Full Text Available ... until now the human brain has done a great job of changing- adapting to these environments but ... age Researchers identify 44 genomic variants associated with depression Brain activity can predict success of depression treatment ...

  18. The Family Environment as a Moderator of Psychosocial Outcomes Following Traumatic Brain Injury in Young Children

    Science.gov (United States)

    Yeates, Keith Owen; Taylor, H. Gerry; Walz, Nicolay Chertkoff; Stancin, Terry; Wade, Shari L.

    2010-01-01

    Objective This study sought to determine whether the family environment moderates psychosocial outcomes after traumatic brain injury (TBI) in young children. Method Participants were recruited prospectively from consecutive hospital admissions of 3-6 year old children, and included 19 with severe TBI, 56 with complicated mild/moderate TBI, and 99 with orthopedic injuries (OI). They completed four assessments across the first 18 months post-injury. The initial assessment included measures of parenting style, family functioning, and the quality of the home. Children’s behavioral adjustment, adaptive functioning, and social competence were assessed at each occasion. Mixed model analyses examined the relationship of the family environment to psychosocial outcomes across time. Results The OI and TBI groups differed significantly in social competence, but the family environment did not moderate the group difference, which was of medium magnitude. In contrast, group differences in behavioral adjustment became more pronounced across time at high levels of authoritarian and permissive parenting; among children with severe TBI, however, even those with low levels of permissive parenting showed increases in behavioral problems. For adaptive functioning, better home environments provided some protection following TBI, but not over time for the severe TBI group. These three-way interactions of group, family environment, and time post injury were all of medium magnitude. Conclusions The findings indicate that the family environment moderates the psychosocial outcomes of TBI in young children, but the moderating influence may wane with time among children with severe TBI. PMID:20438212

  19. Facilitating Geoscience Education in Higher-Education Institutes Worldwide With GeoBrain -- An Online Learning and Research Environment for Classroom Innovations

    Science.gov (United States)

    Deng, M.; di, L.

    2006-12-01

    Higher education in geosciences has imminent goals to prepare students with modern geoscience knowledge and skills to meet the increased demand on trained professionals for working on the big challenges faced by geoscience disciplines, such as the global environmental change, world energy supplies, sustainable development, etc. In order to reach the goal, the geoscience education in post-secondary institutes worldwide has to attract and retain enough students and to train students with knowledge and skills needed by the society. The classroom innovations that can encourage and support student investigations and research activities are key motivation mechanisms that help to reach the goal. This presentation describes the use of GeoBrain, an innovative geospatial knowledge system, as a powerful educating tool for motivating and facilitating innovative undergraduate and graduate teaching and research in geosciences. Developed in a NASA funded project, the GeoBrain system has adopted and implemented the latest Web services and knowledge management technologies for providing innovative methods in publishing, accessing, visualizing, and analyzing geospatial data and in building/sharing geoscience knowledge. It provides a data-rich online learning and research environment enabled by wealthy data and information available at NASA Earth Observing System (EOS) Data and Information System (EOSDIS). Students, faculty members, and researchers from institutes worldwide can easily access, analyze, and model with the huge amount of NASA EOS data just like they possess such vast resources locally at their desktops. The online environment provided by GeoBrain has brought significant positive changes to geosciences education in higher-education institutes because of its new concepts and technologies, motivation mechanisms, free exploration resources, and advanced geo- processing capabilities. With the system, the used-to-be very challenging or even impossible teaching tasks has

  20. Effects of service environments on aluminum-brazed titanium (ABTi)

    Science.gov (United States)

    Cotton, W. L.

    1978-01-01

    Aluminum brazed titanium (ABTi) structures were evaluated during prolonged exposure to extreme environments: elevated temperature exposure to airline service fluids, hydraulic fluid, and seawater, followed by laboratory corrosion tests. Solid-face and perforated face honeycomb sandwich panel specimens, stressed panel assemblies, and faying surface brazed joints were tested. The corrosion resistance of ABTi is satisfactory for commercial airline service. Unprotected ABTi proved inherently resistant to attack by all of the extreme service aircraft environments except: seawater at 700 K (800 F) and above, dripping phosphate ester hydraulic fluid at 505 K (450 F), and a marine environment at ambient temperature. The natural oxides and deposits present on titanium surfaces in airline service provide protection against hot salt corrosion pitting. Coatings are required to protect titanium dripping phosphate ester fluid at elevated temperatures and to protect exposed acoustic honeycomb parts against corrosion in a marine environment.

  1. Origin and Timing of Dauphiné Twins Using Fluid Inclusions in Quartz-Cement Fractures in Sandstones from Diagenetic Environments

    Science.gov (United States)

    Fall, A.; Ukar, E.; Laubach, S.

    2016-12-01

    Dauphiné twins in quartz are widespread in many tectonometamorphic environments. Under diagenetic temperatures (fluid inclusion trails. The association of Dauphiné twins and fluid inclusion trails from which temperature and possibly timing can be inferred provides a way to research mechanism and timing of twinning, and potentially the magnitude of paleostrain and stress in some diagenetic settings. Using examples from East Texas and Colorado cores, we show that twins are associated with crack-seal microstructure and fluid inclusions. Fracture wall-parallel and wall-normal inclusion trails contain coexisting aqueous and hydrocarbon gas inclusions, so homogenization temperatures of aqueous inclusions, ranging from 130°C to 159°C in the East Texas Basin, and from 162°C to 176°C in the Piceance Basin, record true trapping temperatures. Inclusions in wall-normal trails are large and irregularly shaped compared to those in wall-parallel trails, but both show similar liquid-to-vapor ratios. Trapping temperatures for wall-normal inclusion trails are usually higher than those in the wall-parallel trails. Wall-normal fluid inclusion assemblage temperatures typically match the highest temperatures of wall-parallel assemblages trapped during sequential widening, but not necessarily the most recent. In context of burial histories for these samples, this temperature pattern implies that wall-normal assemblages form at discrete times during or after crack-seal fracture widening. Stacking transmitted light images with scanning electron microscope cathodoluminescence (SEM-CL) and electron backscattered diffraction (EBSD) images demonstrates that the twin boundaries are localized along wall-normal inclusion trails. Localization in isolated, potentially high-stress quartz deposits in fractures is compatible with a mechanical origin for these Dauphiné twins. Punctuated temperature values and discrepant sizes and shapes of inclusions in wall-normal trails imply that twinning is

  2. Spatial model of convective solute transport in brain extracellular space does not support a "glymphatic" mechanism.

    Science.gov (United States)

    Jin, Byung-Ju; Smith, Alex J; Verkman, Alan S

    2016-12-01

    A "glymphatic system," which involves convective fluid transport from para-arterial to paravenous cerebrospinal fluid through brain extracellular space (ECS), has been proposed to account for solute clearance in brain, and aquaporin-4 water channels in astrocyte endfeet may have a role in this process. Here, we investigate the major predictions of the glymphatic mechanism by modeling diffusive and convective transport in brain ECS and by solving the Navier-Stokes and convection-diffusion equations, using realistic ECS geometry for short-range transport between para-arterial and paravenous spaces. Major model parameters include para-arterial and paravenous pressures, ECS volume fraction, solute diffusion coefficient, and astrocyte foot-process water permeability. The model predicts solute accumulation and clearance from the ECS after a step change in solute concentration in para-arterial fluid. The principal and robust conclusions of the model are as follows: (a) significant convective transport requires a sustained pressure difference of several mmHg between the para-arterial and paravenous fluid and is not affected by pulsatile pressure fluctuations; (b) astrocyte endfoot water permeability does not substantially alter the rate of convective transport in ECS as the resistance to flow across endfeet is far greater than in the gaps surrounding them; and (c) diffusion (without convection) in the ECS is adequate to account for experimental transport studies in brain parenchyma. Therefore, our modeling results do not support a physiologically important role for local parenchymal convective flow in solute transport through brain ECS. © 2016 Jin et al.

  3. Pre-analytical factors influencing the stability of cerebrospinal fluid proteins

    DEFF Research Database (Denmark)

    Simonsen, Anja H; Bahl, Justyna M C; Danborg, Pia B

    2013-01-01

    Cerebrospinal fluid (CSF) is a potential source for new biomarkers due to its proximity to the brain. This study aimed to clarify the stability of the CSF proteome when undergoing pre-analytical factors. We investigated the effects of repeated freeze/thaw cycles, protease inhibitors and delayed s...

  4. Miniature Brain Decision Making in Complex Visual Environments

    National Research Council Canada - National Science Library

    Dyer, Adrian

    2008-01-01

    .... In particular, the grantee investigated the problem of face invariance to understand the role that experience with stimuli can play in permitting a brain to learn how to reliably recognize target...

  5. Molecular Analyses Reveal Inflammatory Mediators in the Solid Component and Cyst Fluid of Human Adamantinomatous Craniopharyngioma.

    Science.gov (United States)

    Donson, Andrew M; Apps, John; Griesinger, Andrea M; Amani, Vladimir; Witt, Davis A; Anderson, Richard C E; Niazi, Toba N; Grant, Gerald; Souweidane, Mark; Johnston, James M; Jackson, Eric M; Kleinschmidt-DeMasters, Bette K; Handler, Michael H; Tan, Aik-Choon; Gore, Lia; Virasami, Alex; Gonzalez-Meljem, Jose Mario; Jacques, Thomas S; Martinez-Barbera, Juan Pedro; Foreman, Nicholas K; Hankinson, Todd C

    2017-09-01

    Pediatric adamantinomatous craniopharyngioma (ACP) is a highly solid and cystic tumor, often causing substantial damage to critical neuroendocrine structures such as the hypothalamus, pituitary gland, and optic apparatus. Paracrine signaling mechanisms driving tumor behavior have been hypothesized, with IL-6R overexpression identified as a potential therapeutic target. To identify potential novel therapies, we characterized inflammatory and immunomodulatory factors in ACP cyst fluid and solid tumor components. Cytometric bead analysis revealed a highly pro-inflammatory cytokine pattern in fluid from ACP compared to fluids from another cystic pediatric brain tumor, pilocytic astrocytoma. Cytokines and chemokines with particularly elevated concentrations in ACPs were IL-6, CXCL1 (GRO), CXCL8 (IL-8) and the immunosuppressive cytokine IL-10. These data were concordant with solid tumor compartment transcriptomic data from a larger cohort of ACPs, other pediatric brain tumors and normal brain. The majority of receptors for these cytokines and chemokines were also over-expressed in ACPs. In addition to IL-10, the established immunosuppressive factor IDO-1 was overexpressed by ACPs at the mRNA and protein levels. These data indicate that ACP cyst fluids and solid tumor components are characterized by an inflammatory cytokine and chemokine expression pattern. Further study regarding selective cytokine blockade may inform novel therapeutic interventions. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  6. Prion diseases of the brain; Prionenerkrankung des Gehirns

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Kira; Urbach, Horst [Universitaetsklinik Freiburg (Germany). Klinik fuer Neuroradiologie

    2015-09-15

    The prion diseases of the brain, especially Creutzfeldt-Jakob disease, are rare fatal neurodegenerative disorders. A definitive CJD diagnosis is currently only possible by a brain biopsy or post mortem autopsy. The diagnosis of Creutzfeldt-Jakob disease is based on clinical signs, pathognomonic EEG, on typical MRI findings and the examination of the cerebrospinal fluid. Using the MRI the diagnosis Creutzfeldt-Jakob disease can be confirmed or excluded with high certainty. The MRI examination should contain diffusion-weighted and FLAIR imaging sequences. This review article provides an overview of the prion diseases of the brain with the corresponding imaging findings.

  7. Brain biopsy for diagnosis of chlamydia encephalitis

    Directory of Open Access Journals (Sweden)

    I. A. Voznyuk

    2017-01-01

    Full Text Available This is the case of encephalitis associated with chlamydia infection of central nervous system. The diagnostic protocol of the patient included: a careful observation of somatic and neurological status, laboratory tests of blood and cerebrospinal fluid, neurovisualization. The results of the diagnostic protocol suggest that laboratory tests blood and cerebrospinal fluid possess low sensitivity and specificity. The MRI study has revealed the localization and inflammatory character of the changes in brain tissue; it has also helped to choose the most favorable area for the stereotaxic biopsy. The obtained tissue was evaluated by means of light (immunohistochemistry and electronic microscopy. The active chlamydia infection was estimated. The subsequent antibacterial etiotropic therapy resulted in the regression of the neurologic symptoms and remission.The intravitalpathomorphology study of the brain could be recommended for the management of the severe encephalitis of the unknown origin. 

  8. A field application of nanoparticle-based invert emulsion drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Alexey S.; Husein, Maen, E-mail: mhusein@ucalgary.ca [University of Calgary, Department of Chemical & Petroleum Engineering (Canada); Hareland, Geir [Oklahoma State University, Department of Chemical Engineering (United States)

    2015-08-15

    Application of nanotechnology in drilling fluids for the oil and gas industry has been a focus of several recent studies. A process for the in situ synthesis of nanoparticles (NPs) into drilling fluids has been developed previously in our group and showed that calcium-based NPs (CNPs) and iron-based NPs (INPs), respectively, with concentrations of 0.5–2.0 wt% can dramatically improve filtration properties of commercial drilling fluids in a laboratory environment. In this work, a modified process for the emulsion-based synthesis of NPs on a 20 m{sup 3} volume and its subsequent full-scale field testing are presented. Comparison between NP carrier fluids prepared under controlled environment in the laboratory and those prepared on a large scale in a mixing facility revealed very little variation in the main characteristics of the drilling fluid; including the size of the solid constituents. Transmission electron microscopy photographs suggest an average CNP particle size in the carrier fluid of 51 ± 11 nm. Results from the full-scale field test showed that total mud losses while drilling with CNP-based invert emulsion were on average 27 % lower than in the case of conventional fluids. This loss prevention falls within the range observed in the laboratory.

  9. Enriched environment influences hormonal status and hippocampal brain derived neurotrophic factor in a sex dependent manner.

    Science.gov (United States)

    Bakos, J; Hlavacova, N; Rajman, M; Ondicova, K; Koros, C; Kitraki, E; Steinbusch, H W M; Jezova, D

    2009-12-01

    The present study is aimed at testing the hypothesis that an enriched environment (EE) induces sex-dependent changes in stress hormone release and in markers of increased brain plasticity. The focus was on hypothalamic-pituitary-adrenocortical (HPA) axis activity, plasma levels of stress hormones, gene expression of glutamate receptor subunits and concentrations of brain-derived neurotrophic factor (BDNF) in selected brain regions. Rats exposed to EE were housed in groups of 12 in large cages with various objects, which were frequently changed, for 6 weeks. Control animals were housed four per cage under standard conditions. In females the EE-induced rise in hippocampal BDNF, a neurotrophic factor associated with increased neural plasticity, was more pronounced than in males. Similar sex-specific changes were observed in BDNF concentrations in the hypothalamus. EE also significantly attenuated oxytocin and aldosterone levels only in female but not male rats. Plasma testosterone positively correlated with hippocampal BDNF in female but not male rats housed in EE. In male rats housing in EE led to enhanced levels of testosterone and adrenocorticotropic hormone (ACTH), this was not seen in females. Hippocampal glucocorticoid but not mineralocorticoid receptor levels decreased in rats housed in EE irrespective of sex. Housing conditions failed to modify mRNA levels of glutamate receptor type 1 (Glur1) and metabotropic glutamate receptor subtype 5 (mGlur5) subunits of glutamate receptors in the forebrain. Moreover, a negative association between corticosterone and BDNF was observed in both sexes. The results demonstrate that the association between hormones and changes in brain plasticity is sex related. In particular, testosterone seems to be involved in the regulatory processes related to neuroplasticity in females.

  10. Deep-brain-stimulation does not impair deglutition in Parkinson's disease.

    Science.gov (United States)

    Lengerer, Sabrina; Kipping, Judy; Rommel, Natalie; Weiss, Daniel; Breit, Sorin; Gasser, Thomas; Plewnia, Christian; Krüger, Rejko; Wächter, Tobias

    2012-08-01

    A large proportion of patients with Parkinson's disease develop dysphagia during the course of the disease. Dysphagia in Parkinson's disease affects different phases of deglutition, has a strong impact on quality of life and may cause severe complications, i.e., aspirational pneumonia. So far, little is known on how deep-brain-stimulation of the subthalamic nucleus influences deglutition in PD. Videofluoroscopic swallowing studies on 18 patients with Parkinson's disease, which had been performed preoperatively, and postoperatively with deep-brain-stimulation-on and deep-brain-stimulation-off, were analyzed retrospectively. The patients were examined in each condition with three consistencies (viscous, fluid and solid). The 'New Zealand index for multidisciplinary evaluation of swallowing (NZIMES) Subscale One' for qualitative and 'Logemann-MBS-Parameters' for quantitative evaluation were assessed. Preoperatively, none of the patients presented with clinically relevant signs of dysphagia. While postoperatively, the mean daily levodopa equivalent dosage was reduced by 50% and deep-brain-stimulation led to a 50% improvement in motor symptoms measured by the UPDRS III, no clinically relevant influence of deep-brain-stimulation-on swallowing was observed using qualitative parameters (NZIMES). However quantitative parameters (Logemann scale) found significant changes of pharyngeal parameters with deep-brain-stimulation-on as compared to preoperative condition and deep-brain-stimulation-off mostly with fluid consistency. In Parkinson patients without dysphagia deep-brain-stimulation of the subthalamic nucleus modulates the pharyngeal deglutition phase but has no clinically relevant influence on deglutition. Further studies are needed to test if deep-brain-stimulation is a therapeutic option for patients with swallowing disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. β-endorphin in human cerebrospinal fluid

    International Nuclear Information System (INIS)

    Jeffcoate, W.J.; McLoughlin, L.; Hope, J.; Rees, L.H.; Ratter, S.J.; Lowry, P.J.; Besser, G.M.

    1978-01-01

    β-endorphin is a brain peptide with potent morphine-like activity structurally related to the anterior pituitary hormone β-lipotrophin (β-L.P.H.). A radioimmunoassay has been developed for human β-endorphin in plasma and cerebrospinal fluid (C.S.F.). Since the antiserum also reacts with β-L.P.H., β-endorphin was distinguished by using a second antiserum which measures β-L.P.H. alone. With these two immunoassay systems and gel chromatography, β-endorphin was found in all 20 C.S.F. samples tested at a concentration always higher than, but with no other relationship to, that in plasma. β-endorphin was found in C.S.F. of patients who had hypopituitarism and undetectable plasma-β-endorphin, suggesting that it is synthesised in the brain rather than in the pituitary. (author)

  12. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation.

    Science.gov (United States)

    Achariyar, Thiyagaragan M; Li, Baoman; Peng, Weiguo; Verghese, Philip B; Shi, Yang; McConnell, Evan; Benraiss, Abdellatif; Kasper, Tristan; Song, Wei; Takano, Takahiro; Holtzman, David M; Nedergaard, Maiken; Deane, Rashid

    2016-12-08

    Apolipoprotein E (apoE) is a major carrier of cholesterol and essential for synaptic plasticity. In brain, it's expressed by many cells but highly expressed by the choroid plexus and the predominant apolipoprotein in cerebrospinal fluid (CSF). The role of apoE in the CSF is unclear. Recently, the glymphatic system was described as a clearance system whereby CSF and ISF (interstitial fluid) is exchanged via the peri-arterial space and convective flow of ISF clearance is mediated by aquaporin 4 (AQP4), a water channel. We reasoned that this system also serves to distribute essential molecules in CSF into brain. The aim was to establish whether apoE in CSF, secreted by the choroid plexus, is distributed into brain, and whether this distribution pattern was altered by sleep deprivation. We used fluorescently labeled lipidated apoE isoforms, lenti-apoE3 delivered to the choroid plexus, immunohistochemistry to map apoE brain distribution, immunolabeled cells and proteins in brain, Western blot analysis and ELISA to determine apoE levels and radiolabeled molecules to quantify CSF inflow into brain and brain clearance in mice. Data were statistically analyzed using ANOVA or Student's t- test. We show that the glymphatic fluid transporting system contributes to the delivery of choroid plexus/CSF-derived human apoE to neurons. CSF-delivered human apoE entered brain via the perivascular space of penetrating arteries and flows radially around arteries, but not veins, in an isoform specific manner (apoE2 > apoE3 > apoE4). Flow of apoE around arteries was facilitated by AQP4, a characteristic feature of the glymphatic system. ApoE3, delivered by lentivirus to the choroid plexus and ependymal layer but not to the parenchymal cells, was present in the CSF, penetrating arteries and neurons. The inflow of CSF, which contains apoE, into brain and its clearance from the interstitium were severely suppressed by sleep deprivation compared to the sleep state. Thus, choroid plexus

  13. Imaging review of cerebrospinal fluid leaks

    OpenAIRE

    Naga V Vemuri; Lakshmi S P Karanam; Venkatesh Manchikanti; Srinivas Dandamudi; Sampath K Puvvada; Vineet K Vemuri

    2017-01-01

    Cerebrospinal fluid (CSF) leak occurs due to a defect in the dura and skull base. Trauma remains the most common cause of CSF leak; however, a significant number of cases are iatrogenic, and result from a complication of functional endoscopic sinus surgery (FESS). Early diagnosis of CSF leak is of paramount importance to prevent life-threatening complications such as brain abscess and meningitis. Imaging plays a crucial role in the detection and characterization of CSF leaks. Three-dimensiona...

  14. Effects of geometry and fluid elasticity during polymeric droplet pinch-off in microfluidic environments

    Science.gov (United States)

    Steinhaus, Ben; Shen, Amy; Sureshkumar, Radhakrishna

    2006-11-01

    We investigate the effects of fluid elasticity and channel geometry on polymeric droplet pinch-off by performing systematic experiments using viscoelastic polymer solutions which possess practically shear rate-independent viscosity (Boger fluids). Four different geometric sizes (width and depth are scaled up proportionally at the ratio of 0.5, 1, 2, 20) are used to study the effect of the length scale, which in turn influences the ratio of elastic to viscous forces as well as the Rayleigh time scale associated with the interfacial instability of a cylindrical column of liquid. We observe a power law relationship between the dimensionless (scaled with respect to the Rayleigh time scale) capillary pinch-off time, T, and the elasticity number, E, defined as the ratio of the fluid relaxation time to the time scale of viscous diffusion. In general, T increases dramatically with increasing E. The inhibition of ``bead-on-a-string'' formation is observed for flows with effective Deborah number, De, defined as the ratio of the fluid relaxation time to the Rayleigh time scale becomes greater than 10. For sufficiently large values of De, the Rayleigh instability may be modified substantially by fluid elasticity.

  15. Delayed methotrexate excretion in infants and young children with primary central nervous system tumors and postoperative fluid collections.

    Science.gov (United States)

    Wright, Karen D; Panetta, John C; Onar-Thomas, Arzu; Reddick, Wilburn E; Patay, Zoltan; Qaddoumi, Ibrahim; Broniscer, Alberto; Robinson, Giles; Boop, Frederick A; Klimo, Paul; Ward, Deborah; Gajjar, Amar; Stewart, Clinton F

    2015-01-01

    High-dose methotrexate (HD-MTX) has been used to treat children with central nervous system tumors. Accumulation of MTX within pleural, peritoneal, or cardiac effusions has led to delayed excretion and increased risk of systemic toxicity. This retrospective study analyzed the association of intracranial post-resection fluid collections with MTX plasma disposition in infants and young children with brain tumors. Brain MRI findings were analyzed for postoperative intracranial fluid collections in 75 pediatric patients treated with HD-MTX and for whom serial MTX plasma concentrations (MTX) were collected. Delayed plasma excretion was defined as (MTX) ≥1 μM at 42 hours (h). Leucovorin was administered at 42 h and then every 6 h until (MTX) collections present. Population average (inter-individual variation) MTX clearance was 96.0 ml/min/m² (41.1 CV %) and increased with age. Of the patients with intracranial fluid collections, 24 had delayed excretion; only 2 of the 17 without fluid collections (P collection, total leucovorin dosing, or hydration fluids between those with and without toxicity. Although an intracranial fluid collection is associated with delayed MTX excretion, HD-MTX can be safely administered with monitoring of infants and young children with intracranial fluid collections. Infants younger than 1 year may need additional monitoring to avoid toxicity.

  16. The Brains behind Brain-Based Research: The Tale of Two Postsecondary Online Learners

    Science.gov (United States)

    McGuckin, Dawn; Ladhani, Mubeen

    2010-01-01

    This paper is written from the perspective of two postsecondary students who realized the implications for brain-based learning in the online environment. This paper explores the relationship between online learning in regards to how the brain generates meaning and understanding, the role of emotions, the collaborative construction of knowledge,…

  17. Light on! Real world evaluation of a P300-based brain-computer interface (BCI) for environment control in a smart home.

    Science.gov (United States)

    Carabalona, Roberta; Grossi, Ferdinando; Tessadri, Adam; Castiglioni, Paolo; Caracciolo, Antonio; de Munari, Ilaria

    2012-01-01

    Brain-computer interface (BCI) systems aim to enable interaction with other people and the environment without muscular activation by the exploitation of changes in brain signals due to the execution of cognitive tasks. In this context, the visual P300 potential appears suited to control smart homes through BCI spellers. The aim of this work is to evaluate whether the widely used character-speller is more sustainable than an icon-based one, designed to operate smart home environment or to communicate moods and needs. Nine subjects with neurodegenerative diseases and no BCI experience used both speller types in a real smart home environment. User experience during BCI tasks was evaluated recording concurrent physiological signals. Usability was assessed for each speller type immediately after use. Classification accuracy was lower for the icon-speller, which was also more attention demanding. However, in subjective evaluations, the effect of a real feedback partially counterbalanced the difficulty in BCI use. Since inclusive BCIs require to consider interface sustainability, we evaluated different ergonomic aspects of the interaction of disabled users with a character-speller (goal: word spelling) and an icon-speller (goal: operating a real smart home). We found the first one as more sustainable in terms of accuracy and cognitive effort.

  18. Involvement of Neuroinflammation during Brain Development in Social Cognitive Deficits in Autism Spectrum Disorder and Schizophrenia.

    Science.gov (United States)

    Nakagawa, Yutaka; Chiba, Kenji

    2016-09-01

    Development of social cognition, a unique and high-order function, depends on brain maturation from childhood to adulthood in humans. Autism spectrum disorder (ASD) and schizophrenia have similar social cognitive deficits, although age of onset in each disorder is different. Pathogenesis of these disorders is complex and contains several features, including genetic risk factors, environmental risk factors, and sites of abnormalities in the brain. Although several hypotheses have been postulated, they seem to be insufficient to explain how brain alterations associated with symptoms in these disorders develop at distinct developmental stages. Development of ASD appears to be related to cerebellar dysfunction and subsequent thalamic hyperactivation in early childhood. By contrast, schizophrenia seems to be triggered by thalamic hyperactivation in late adolescence, whereas hippocampal aberration has been possibly initiated in childhood. One of the possible culprits is metal homeostasis disturbances that can induce dysfunction of blood-cerebrospinal fluid barrier. Thalamic hyperactivation is thought to be induced by microglia-mediated neuroinflammation and abnormalities of intracerebral environment. Consequently, it is likely that the thalamic hyperactivation triggers dysregulation of the dorsolateral prefrontal cortex for lower brain regions related to social cognition. In this review, we summarize the brain aberration in ASD and schizophrenia and provide a possible mechanism underlying social cognitive deficits in these disorders based on their distinct ages of onset. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Sleep spindling and fluid intelligence across adolescent development: sex matters.

    Science.gov (United States)

    Bódizs, Róbert; Gombos, Ferenc; Ujma, Péter P; Kovács, Ilona

    2014-01-01

    Evidence supports the intricate relationship between sleep electroencephalogram (EEG) spindling and cognitive abilities in children and adults. Although sleep EEG changes during adolescence index fundamental brain reorganization, a detailed analysis of sleep spindling and the spindle-intelligence relationship was not yet provided for adolescents. Therefore, adolescent development of sleep spindle oscillations were studied in a home polysomnographic study focusing on the effects of chronological age and developmentally acquired overall mental efficiency (fluid IQ) with sex as a potential modulating factor. Subjects were 24 healthy adolescents (12 males) with an age range of 15-22 years (mean: 18 years) and fluid IQ of 91-126 (mean: 104.12, Raven Progressive Matrices Test). Slow spindles (SSs) and fast spindles (FSs) were analyzed in 21 EEG derivations by using the individual adjustment method (IAM). A significant age-dependent increase in average FS density (r = 0.57; p = 0.005) was found. Moreover, fluid IQ correlated with FS density (r = 0.43; p = 0.04) and amplitude (r = 0.41; p = 0.049). The latter effects were entirely driven by particularly reliable FS-IQ correlations in females [r = 0.80 (p = 0.002) and r = 0.67 (p = 0.012), for density and amplitude, respectively]. Region-specific analyses revealed that these correlations peak in the fronto-central regions. The control of the age-dependence of FS measures and IQ scores did not considerably reduce the spindle-IQ correlations with respect to FS density. The only positive spindle-index of fluid IQ in males turned out to be the frequency of FSs (r = 0.60, p = 0.04). Increases in FS density during adolescence may index reshaped structural connectivity related to white matter maturation in the late developing human brain. The continued development over this age range of cognitive functions is indexed by specific measures of sleep spindling unraveling gender differences in adolescent brain maturation and perhaps

  20. Accurate Fluid Level Measurement in Dynamic Environment Using Ultrasonic Sensor and ν-SVM

    Directory of Open Access Journals (Sweden)

    Jenny TERZIC

    2009-10-01

    Full Text Available A fluid level measurement system based on a single Ultrasonic Sensor and Support Vector Machines (SVM based signal processing and classification system has been developed to determine the fluid level in automotive fuel tanks. The novel approach based on the ν-SVM classification method uses the Radial Basis Function (RBF to compensate for the measurement error induced by the sloshing effects in the tank caused by vehicle motion. A broad investigation on selected pre-processing filters, namely, Moving Mean, Moving Median, and Wavelet filter, has also been presented. Field drive trials were performed under normal driving conditions at various fuel volumes ranging from 5 L to 50 L to acquire sample data from the ultrasonic sensor for the training of SVM model. Further drive trials were conducted to obtain data to verify the SVM results. A comparison of the accuracy of the predicted fluid level obtained using SVM and the pre-processing filters is provided. It is demonstrated that the ν-SVM model using the RBF kernel function and the Moving Median filter has produced the most accurate outcome compared with the other signal filtration methods in terms of fluid level measurement.

  1. Acute Respiratory Distress Syndrome in Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu. A. Churlyaev

    2009-01-01

    Full Text Available Objective: to study the development of acute respiratory distress syndrome (ARDS in victims with isolated severe brain injury (SBI. Subject and methods. 171 studies were performed in 16 victims with SBI. Their general condition was rated as very critical. The patients were divided into three groups: 1 non-ARDS; 2 Stage 1 ARDS; and 3 Stage 2 ARDS. The indicators of Stages 1 and 2 were assessed in accordance with the classification proposed by V. V. Moroz and A. M. Golubev. Intracranial pressure (ICP, extravascular lung water index, pulmonary vascular permeability, central hemodynamics, oxygenation index, lung anastomosis, the X-ray pattern of the lung and brain (computed tomography, and its function were monitored. Results. The hemispheric cortical level of injury of the brain with function compensation of its stem was predominantly determined in the controls; subcompensation and decompensation were ascertained in the ARDS groups. According to the proposed classification, these patients developed Stages 1 and 2 ARDS. When ARDS developed, there were rises in the level of extravascular lung fluid and pulmonary vascular permeability, a reduction in the oxygenation index (it was 6—12 hours later as compared with them, increases in a lung shunt and ICP; X-ray study revealed bilateral infiltrates in the absence of heart failure in Stage 2 ARDS. The correlation was positive between ICP and extravascular lung water index, and lung vascular permeability index (r>0.4;p<0.05. Conclusion. The studies have indicated that the classification proposed by V. V. Moroz and A. M. Golubev enables an early diagnosis of ARDS. One of its causes is severe brainstem injury that results in increased extravascular fluid in the lung due to its enhanced vascular permeability. The ICP value is a determinant in the diagnosis of secondary brain injuries. Key words: acute respiratory distress syndrome, extravascu-lar lung fluid, pulmonary vascular permeability, brain injury

  2. Oxygen--a limiting factor for brain recovery.

    Science.gov (United States)

    Hadanny, Amir; Efrati, Shai

    2015-09-01

    Effective brain metabolism is highly dependent on a narrow therapeutic window of oxygen. In major insults to the brain (e.g., intracerebral hemorrhage), a slight decrease in oxygen supply, as occurs in a hypobaric environment at high altitude, has devastating effects on the injured brain tissue. Conversely, increasing brain oxygenation, by the use of hyperbaric oxygen therapy, can improve brain metabolism and its dependent regenerative processes.

  3. Oxygen - a limiting factor for brain recovery

    OpenAIRE

    Hadanny, Amir; Efrati, Shai

    2015-01-01

    Effective brain metabolism is highly dependent on a narrow therapeutic window of oxygen. In major insults to the brain (e.g., intracerebral hemorrhage), a slight decrease in oxygen supply, as occurs in a hypobaric environment at high altitude, has devastating effects on the injured brain tissue. Conversely, increasing brain oxygenation, by the use of hyperbaric oxygen therapy, can improve brain metabolism and its dependent regenerative processes.

  4. Strategies to improve drug delivery across the blood-brain barrier.

    Science.gov (United States)

    de Boer, Albertus G; Gaillard, Pieter J

    2007-01-01

    The blood-brain barrier (BBB), together with the blood-cerebrospinal-fluid barrier, protects and regulates the homeostasis of the brain. However, these barriers also limit the transport of small-molecule and, particularly, biopharmaceutical drugs such as proteins, genes and interference RNA to the brain, thereby limiting the treatment of many brain diseases. As a result, various drug delivery and targeting strategies are currently being developed to enhance the transport and distribution of drugs into the brain. In this review, we discuss briefly the biology and physiology of the BBB as the most important barrier for drug transport to the brain and, in more detail, the possibilities for delivering large-molecule drugs, particularly genes, by receptor-mediated nonviral drug delivery to the (human) brain. In addition, the systemic and intracellular pharmacokinetics of nonviral gene delivery, together with targeted brain imaging, are reviewed briefly.

  5. The Paravascular Pathway for Brain Waste Clearance: Current Understanding, Significance and Controversy

    Directory of Open Access Journals (Sweden)

    Andrew Bacyinski

    2017-11-01

    Full Text Available The paravascular pathway, also known as the “glymphatic” pathway, is a recently described system for waste clearance in the brain. According to this model, cerebrospinal fluid (CSF enters the paravascular spaces surrounding penetrating arteries of the brain, mixes with interstitial fluid (ISF and solutes in the parenchyma, and exits along paravascular spaces of draining veins. Studies have shown that metabolic waste products and solutes, including proteins involved in the pathogenesis of neurodegenerative diseases such as amyloid-beta, may be cleared by this pathway. Consequently, a growing body of research has begun to explore the association between glymphatic dysfunction and various disease states. However, significant controversy exists in the literature regarding both the direction of waste clearance as well as the anatomical space in which the waste-fluid mixture is contained. Some studies have found no evidence of interstitial solute clearance along the paravascular space of veins. Rather, they demonstrate a perivascular pathway in which waste is cleared from the brain along an anatomically distinct perivascular space in a direction opposite to that of paravascular flow. Although possible explanations have been offered, none have been able to fully reconcile the discrepancies in the literature, and many questions remain. Given the therapeutic potential that a comprehensive understanding of brain waste clearance pathways might offer, further research and clarification is highly warranted.

  6. The Paravascular Pathway for Brain Waste Clearance: Current Understanding, Significance and Controversy.

    Science.gov (United States)

    Bacyinski, Andrew; Xu, Maosheng; Wang, Wei; Hu, Jiani

    2017-01-01

    The paravascular pathway, also known as the "glymphatic" pathway, is a recently described system for waste clearance in the brain. According to this model, cerebrospinal fluid (CSF) enters the paravascular spaces surrounding penetrating arteries of the brain, mixes with interstitial fluid (ISF) and solutes in the parenchyma, and exits along paravascular spaces of draining veins. Studies have shown that metabolic waste products and solutes, including proteins involved in the pathogenesis of neurodegenerative diseases such as amyloid-beta, may be cleared by this pathway. Consequently, a growing body of research has begun to explore the association between glymphatic dysfunction and various disease states. However, significant controversy exists in the literature regarding both the direction of waste clearance as well as the anatomical space in which the waste-fluid mixture is contained. Some studies have found no evidence of interstitial solute clearance along the paravascular space of veins. Rather, they demonstrate a perivascular pathway in which waste is cleared from the brain along an anatomically distinct perivascular space in a direction opposite to that of paravascular flow. Although possible explanations have been offered, none have been able to fully reconcile the discrepancies in the literature, and many questions remain. Given the therapeutic potential that a comprehensive understanding of brain waste clearance pathways might offer, further research and clarification is highly warranted.

  7. Fetal environment

    International Nuclear Information System (INIS)

    Kinare, Arun

    2008-01-01

    The intrauterine environment has a strong influence on pregnancy outcome. The placenta and the umbilical cord together form the main supply line of the fetus. Amniotic fluid also serves important functions. These three main components decide whether there will be an uneventful pregnancy and the successful birth of a healthy baby. An insult to the intrauterine environment has an impact on the programming of the fetus, which can become evident in later life, mainly in the form of cardiovascular diseases, diabetes, and certain learning disabilities. The past two decades have witnessed major contributions from researchers in this field, who have included ultrasonologists, epidemiologists, neonatologists, and pediatricians. Besides being responsible for these delayed postnatal effects, abnormalities of the placenta, umbilical cord, and amniotic fluid also have associations with structural and chromosomal disorders. Population and race also influence pregnancy outcomes to some extent in certain situations. USG is the most sensitive imaging tool currently available for evaluation of these factors and can offer considerable information in this area. This article aims at reviewing the USG-related developments in this area and the anatomy, physiology, and various pathologies of the placenta, umbilical cord, and the amniotic fluid

  8. The Experience of Fluid Temporality in Adaptive Lighting Environments

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2013-01-01

    The paper presents research on the experiential qualities emerging from the performative engagement within adaptive lighting environments. Being performatively engaged in an environment, where the lighting is continuously adapting, opens an experiential position with fuid temporality, and opens...... of adaptive lighting environments through the lighting research and designs of the four authors....

  9. Mechanisms to explain the reverse perivascular transport of solutes out of the brain.

    Science.gov (United States)

    Schley, D; Carare-Nnadi, R; Please, C P; Perry, V H; Weller, R O

    2006-02-21

    Experimental studies and observations in the human brain indicate that interstitial fluid and solutes, such as amyloid-beta (Abeta), are eliminated from grey matter of the brain along pericapillary and periarterial pathways. It is unclear, however, what constitutes the motive force for such transport within blood vessel walls, which is in the opposite direction to blood flow. In this paper the potential for global pressure differences to achieve such transport are considered. A mathematical model is constructed in order to test the hypothesis that perivascular drainage of interstitial fluid and solutes out of brain tissue is driven by pulsations of the blood vessel walls. Here it is assumed that drainage occurs through a thin layer between astrocytes and endothelial cells or between smooth muscle cells. The model suggests that, during each pulse cycle, there are periods when fluid and solutes are driven along perivascular spaces in the reverse direction to the flow of blood. It is shown that successful drainage may depend upon some attachment of solutes to the lining of the perivascular space, in order to produce a valve-like effect, although an alternative without this requirement is also postulated. Reduction in pulse amplitude, as in ageing cerebral vessels, would prolong the attachment time, encourage precipitation of Abeta peptides in vessel walls, and impair elimination of Abeta from the brain. These factors may play a role in the pathogenesis of cerebral amyloid angiopathy and in the accumulation of Abeta in the brain in Alzheimer's disease.

  10. Isointense infant brain MRI segmentation with a dilated convolutional neural network

    OpenAIRE

    Moeskops, Pim; Pluim, Josien P. W.

    2017-01-01

    Quantitative analysis of brain MRI at the age of 6 months is difficult because of the limited contrast between white matter and gray matter. In this study, we use a dilated triplanar convolutional neural network in combination with a non-dilated 3D convolutional neural network for the segmentation of white matter, gray matter and cerebrospinal fluid in infant brain MR images, as provided by the MICCAI grand challenge on 6-month infant brain MRI segmentation.

  11. Home Environment as a Predictor of Long-Term Executive Functioning following Early Childhood Traumatic Brain Injury.

    Science.gov (United States)

    Durish, Christianne Laliberté; Yeates, Keith Owen; Stancin, Terry; Taylor, H Gerry; Walz, Nicolay C; Wade, Shari L

    2018-01-01

    This study examined the relationship of the home environment to long-term executive functioning (EF) following early childhood traumatic brain injury (TBI). Participants (N=134) were drawn from a larger parent study of 3- to 6-year-old children hospitalized for severe TBI (n=16), complicated mild/moderate TBI (n=44), or orthopedic injury (OI; n=74), recruited prospectively at four tertiary care hospitals in the United States and followed for an average of 6.8 years post-injury. Quality of the home environment, caregiver psychological distress, and general family functioning were assessed shortly after injury (i.e., early home) and again at follow-up (i.e., late home). Participants completed several performance-based measures of EF at follow-up. Hierarchical regression analyses examined the early and late home environment measures as predictors of EF, both as main effects and as moderators of group differences. The early and late home environment were inconsistent predictors of long-term EF across groups. Group differences in EF were significant for only the TEA-Ch Walk/Don't Walk subtest, with poorer performance in the severe TBI group. However, several significant interactions suggested that the home environment moderated group differences in EF, particularly after complicated mild/moderate TBI. The home environment is not a consistent predictor of long-term EF in children with early TBI and OI, but may moderate the effects of TBI on EF. The findings suggest that interventions designed to improve the quality of stimulation in children's home environments might reduce the long-term effects of early childhood TBI on EF. (JINS, 2018, 24, 11-21).

  12. Amyloid-β peptides and tau protein as biomarkers in cerebrospinal and interstitial fluid following traumatic brain injury: A review of experimental and clinical studies

    Directory of Open Access Journals (Sweden)

    Parmenion P. Tsitsopoulos

    2013-06-01

    Full Text Available Traumatic brain injury (TBI survivors frequently suffer from life-long deficits in cognitive functions and a reduced quality of life. Axonal injury, observed in most severe TBI patients, results in accumulation of amyloid precursor protein (APP. Post-injury enzymatic cleavage of APP can generate amyloid-β (Aβ peptides, a hallmark finding in Alzheimer’s disease (AD. At autopsy, brains of AD and a subset of TBI victims display some similarities including accumulation of Aβ peptides and neurofibrillary tangles of hyperphosphorylated tau proteins. Most epidemiological evidence suggests a link between TBI and AD, implying that TBI has neurodegenerative sequelae. Aβ peptides and tau may be used as biomarkers in interstitial fluid (ISF using cerebral microdialysis and/or cerebrospinal fluid (CSF following clinical TBI. In the present review, the available clinical and experimental literature on Aβ peptides and tau as potential biomarkers following TBI is comprehensively analyzed. Elevated CSF and ISF tau protein levels have been observed following severe TBI and suggested to correlate with clinical outcome. Although Aβ peptides are produced by normal neuronal metabolism, high levels of long and/or fibrillary Aβ peptides may be neurotoxic. Increased CSF and/or ISF Aβ levels post-injury may be related to neuronal activity and/or the presence of axonal injury. The heterogeneity of animal models, clinical cohorts, analytical techniques and the complexity of TBI in available studies make the clinical value of tau and Aβ as biomarkers uncertain at present. Additionally, the link between early post-injury changes in tau and Aβ peptides and the future risk of developing AD remains unclear. Future studies using e.g. rapid biomarker sampling combined with enhanced analytical techniques and/or novel pharmacological tools could provide additional information on the importance of Aβ peptides and tau protein in both the acute pathophysiology and long

  13. Ultrasonic fluid quantity measurement in dynamic vehicular applications a support vector machine approach

    CERN Document Server

    Terzic, Jenny; Nagarajah, Romesh; Alamgir, Muhammad

    2013-01-01

    Accurate fluid level measurement in dynamic environments can be assessed using a Support Vector Machine (SVM) approach. SVM is a supervised learning model that analyzes and recognizes patterns. It is a signal classification technique which has far greater accuracy than conventional signal averaging methods. Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications: A Support Vector Machine Approach describes the research and development of a fluid level measurement system for dynamic environments. The measurement system is based on a single ultrasonic sensor. A Support Vector Machines (SVM) based signal characterization and processing system has been developed to compensate for the effects of slosh and temperature variation in fluid level measurement systems used in dynamic environments including automotive applications. It has been demonstrated that a simple ν-SVM model with Radial Basis Function (RBF) Kernel with the inclusion of a Moving Median filter could be used to achieve the high levels...

  14. Spatial model of convective solute transport in brain extracellular space does not support a “glymphatic” mechanism

    Science.gov (United States)

    Jin, Byung-Ju; Smith, Alex J.

    2016-01-01

    A “glymphatic system,” which involves convective fluid transport from para-arterial to paravenous cerebrospinal fluid through brain extracellular space (ECS), has been proposed to account for solute clearance in brain, and aquaporin-4 water channels in astrocyte endfeet may have a role in this process. Here, we investigate the major predictions of the glymphatic mechanism by modeling diffusive and convective transport in brain ECS and by solving the Navier–Stokes and convection–diffusion equations, using realistic ECS geometry for short-range transport between para-arterial and paravenous spaces. Major model parameters include para-arterial and paravenous pressures, ECS volume fraction, solute diffusion coefficient, and astrocyte foot-process water permeability. The model predicts solute accumulation and clearance from the ECS after a step change in solute concentration in para-arterial fluid. The principal and robust conclusions of the model are as follows: (a) significant convective transport requires a sustained pressure difference of several mmHg between the para-arterial and paravenous fluid and is not affected by pulsatile pressure fluctuations; (b) astrocyte endfoot water permeability does not substantially alter the rate of convective transport in ECS as the resistance to flow across endfeet is far greater than in the gaps surrounding them; and (c) diffusion (without convection) in the ECS is adequate to account for experimental transport studies in brain parenchyma. Therefore, our modeling results do not support a physiologically important role for local parenchymal convective flow in solute transport through brain ECS. PMID:27836940

  15. Interaction between DRD2 variation and sound environment on mood and emotion-related brain activity.

    Science.gov (United States)

    Quarto, T; Fasano, M C; Taurisano, P; Fazio, L; Antonucci, L A; Gelao, B; Romano, R; Mancini, M; Porcelli, A; Masellis, R; Pallesen, K J; Bertolino, A; Blasi, G; Brattico, E

    2017-01-26

    Sounds, like music and noise, are capable of reliably affecting individuals' mood and emotions. However, these effects are highly variable across individuals. A putative source of variability is genetic background. Here we explored the interaction between a functional polymorphism of the dopamine D2 receptor gene (DRD2 rs1076560, G>T, previously associated with the relative expression of D2S/L isoforms) and sound environment on mood and emotion-related brain activity. Thirty-eight healthy subjects were genotyped for DRD2 rs1076560 (G/G=26; G/T=12) and underwent functional magnetic resonance imaging (fMRI) during performance of an implicit emotion-processing task while listening to music or noise. Individual variation in mood induction was assessed before and after the task. Results showed mood improvement after music exposure in DRD2GG subjects and mood deterioration after noise exposure in GT subjects. Moreover, the music, as opposed to noise environment, decreased the striatal activity of GT subjects as well as the prefrontal activity of GG subjects while processing emotional faces. These findings suggest that genetic variability of dopamine receptors affects sound environment modulations of mood and emotion processing. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Brain-derived neurotrophic factor and interleukin-6 levels in the serum and cerebrospinal fluid of children with viral infection-induced encephalopathy.

    Science.gov (United States)

    Morichi, Shinichiro; Yamanaka, Gaku; Ishida, Yu; Oana, Shingo; Kashiwagi, Yasuyo; Kawashima, Hisashi

    2014-11-01

    We investigated changes in the brain-derived neurotrophic factor (BDNF) and interleukin (IL)-6 levels in pediatric patients with central nervous system (CNS) infections, particularly viral infection-induced encephalopathy. Over a 5-year study period, 24 children hospitalized with encephalopathy were grouped based on their acute encephalopathy type (the excitotoxicity, cytokine storm, and metabolic error types). Children without CNS infections served as controls. In serum and cerebrospinal fluid (CSF) samples, BDNF and IL-6 levels were increased in all encephalopathy groups, and significant increases were noted in the influenza-associated and cytokine storm encephalopathy groups. Children with sequelae showed higher BDNF and IL-6 levels than those without sequelae. In pediatric patients, changes in serum and CSF BDNF and IL-6 levels may serve as a prognostic index of CNS infections, particularly for the diagnosis of encephalopathy and differentiation of encephalopathy types.

  17. Procoagulant and fibrinolytic activity in cerebrospinal fluid from adults with bacterial meningitis

    NARCIS (Netherlands)

    Weisfelt, Martijn; Determann, Rogier M.; de Gans, Jan; van der Ende, Arie; Levi, Marcel; van de Beek, Diederik; Schultz, Marcus J.

    2007-01-01

    OBJECTIVES: This study investigated levels of coagulation and fibrinolysis factors in cerebrospinal fluid (CSF) from adults with bacterial meningitis in relation to development of brain infarction. METHODS: CSF was collected from 92 adults with community-acquired bacterial meningitis, who

  18. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases.

    Science.gov (United States)

    Sun, Bao-Liang; Wang, Li-Hua; Yang, Tuo; Sun, Jing-Yi; Mao, Lei-Lei; Yang, Ming-Feng; Yuan, Hui; Colvin, Robert A; Yang, Xiao-Yi

    2017-09-10

    The belief that the vertebrate brain functions normally without classical lymphatic drainage vessels has been held for many decades. On the contrary, new findings show that functional lymphatic drainage does exist in the brain. The brain lymphatic drainage system is composed of basement membrane-based perivascular pathway, a brain-wide glymphatic pathway, and cerebrospinal fluid (CSF) drainage routes including sinus-associated meningeal lymphatic vessels and olfactory/cervical lymphatic routes. The brain lymphatic systems function physiological as a route of drainage for interstitial fluid (ISF) from brain parenchyma to nearby lymph nodes. Brain lymphatic drainage helps maintain water and ion balance of the ISF, waste clearance, and reabsorption of macromolecular solutes. A second physiological function includes communication with the immune system modulating immune surveillance and responses of the brain. These physiological functions are influenced by aging, genetic phenotypes, sleep-wake cycle, and body posture. The impairment and dysfunction of the brain lymphatic system has crucial roles in age-related changes of brain function and the pathogenesis of neurovascular, neurodegenerative, and neuroinflammatory diseases, as well as brain injury and tumors. In this review, we summarize the key component elements (regions, cells, and water transporters) of the brain lymphatic system and their regulators as potential therapeutic targets in the treatment of neurologic diseases and their resulting complications. Finally, we highlight the clinical importance of ependymal route-based targeted gene therapy and intranasal drug administration in the brain by taking advantage of the unique role played by brain lymphatic pathways in the regulation of CSF flow and ISF/CSF exchange. Copyright © 2017. Published by Elsevier Ltd.

  19. The effect of brain lesions on sound localization in complex acoustic environments.

    Science.gov (United States)

    Zündorf, Ida C; Karnath, Hans-Otto; Lewald, Jörg

    2014-05-01

    Localizing sound sources of interest in cluttered acoustic environments--as in the 'cocktail-party' situation--is one of the most demanding challenges to the human auditory system in everyday life. In this study, stroke patients' ability to localize acoustic targets in a single-source and in a multi-source setup in the free sound field were directly compared. Subsequent voxel-based lesion-behaviour mapping analyses were computed to uncover the brain areas associated with a deficit in localization in the presence of multiple distracter sound sources rather than localization of individually presented sound sources. Analyses revealed a fundamental role of the right planum temporale in this task. The results from the left hemisphere were less straightforward, but suggested an involvement of inferior frontal and pre- and postcentral areas. These areas appear to be particularly involved in the spectrotemporal analyses crucial for effective segregation of multiple sound streams from various locations, beyond the currently known network for localization of isolated sound sources in otherwise silent surroundings.

  20. Unsteady bio-fluid dynamics in flying and swimming

    Science.gov (United States)

    Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen

    2017-08-01

    Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.

  1. Subseafloor seawater-basalt-microbe reactions: Continuous sampling of borehole fluids in a ridge flank environment

    Science.gov (United States)

    Wheat, C. Geoffrey; Jannasch, Hans W.; Fisher, Andrew T.; Becker, Keir; Sharkey, Jessica; Hulme, Samuel

    2010-07-01

    Integrated Ocean Drilling Program (IODP) Hole 1301A was drilled, cased, and instrumented with a long-term, subseafloor observatory (CORK) on the eastern flank of the Juan de Fuca Ridge in summer 2004. This borehole is located 1 km south of ODP Hole 1026B and 5 km north of Baby Bare outcrop. Hole 1301A penetrates 262 m of sediment and 108 m of the uppermost 3.5 Ma basaltic basement in an area of warm (64°C) hydrothermal circulation. The borehole was instrumented, and those instruments were recovered 4 years later. Here we report chemical data from two continuous fluid samplers (OsmoSamplers) and temperature recording tools that monitored changes in the state of borehole (formation) fluids. These changes document the effects of drilling, fluid overpressure and flow, seawater-basalt interactions, and microbial metababolic activity. Initially, bottom seawater flowed into the borehole through a leak between concentric CORK casing strings. Eventually, the direction of flow reversed, and warm, altered formation fluid flowed into the borehole and discharged at the seafloor. This reversal occurred during 1 week in September 2007, 3 years after drilling operations ceased. The composition of the formation fluid around Hole 1301A generally lies within bounds defined by springs on Baby Bare outcrop (to the south) and fluids that discharged from Hole 1026B (to the north); deviations likely result from reactions with drilling products. Simple conservative mixing of two end-member fluids reveals reactions occurring within the crust, including nitrate reduction presumably by denitrifying microbes. The observed changes in borehole fluid composition provide the foundation for a conceptual model of chemical and microbial change during recharge of a warm ridge-flank hydrothermal system. This model can be tested through future scientific ocean drilling experiments.

  2. FCM Clustering Algorithms for Segmentation of Brain MR Images

    Directory of Open Access Journals (Sweden)

    Yogita K. Dubey

    2016-01-01

    Full Text Available The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF, Gray Matter (GM, and White Matter (WM, has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed.

  3. Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Peng, Weiguo; Achariyar, Thiyagarajan M; Li, Baoman; Liao, Yonghong; Mestre, Humberto; Hitomi, Emi; Regan, Sean; Kasper, Tristan; Peng, Sisi; Ding, Fengfei; Benveniste, Helene; Nedergaard, Maiken; Deane, Rashid

    2016-09-01

    Glymphatic transport, defined as cerebrospinal fluid (CSF) peri-arterial inflow into brain, and interstitial fluid (ISF) clearance, is reduced in the aging brain. However, it is unclear whether glymphatic transport affects the distribution of soluble Aβ in Alzheimer's disease (AD). In wild type mice, we show that Aβ40 (fluorescently labeled Aβ40 or unlabeled Aβ40), was distributed from CSF to brain, via the peri-arterial space, and associated with neurons. In contrast, Aβ42 was mostly restricted to the peri-arterial space due mainly to its greater propensity to oligomerize when compared to Aβ40. Interestingly, pretreatment with Aβ40 in the CSF, but not Aβ42, reduced CSF transport into brain. In APP/PS1 mice, a model of AD, with and without extensive amyloid-β deposits, glymphatic transport was reduced, due to the accumulation of toxic Aβ species, such as soluble oligomers. CSF-derived Aβ40 co-localizes with existing endogenous vascular and parenchymal amyloid-β plaques, and thus, may contribute to the progression of both cerebral amyloid angiopathy and parenchymal Aβ accumulation. Importantly, glymphatic failure preceded significant amyloid-β deposits, and thus, may be an early biomarker of AD. By extension, restoring glymphatic inflow and ISF clearance are potential therapeutic targets to slow the onset and progression of AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Brain size and urbanization in birds

    Institute of Scientific and Technical Information of China (English)

    Anders; Pape; M?ller; Johannes; Erritz?e

    2015-01-01

    Background: Brain size may affect the probability of invasion of urban habitats if a relatively larger brain entails superior ability to adapt to novel environments. However, once urbanized urban environments may provide poor quality food that has negative consequences for normal brain development resulting in an excess of individuals with small brains.Methods: Here we analyze the independent effects of mean, standard deviation and skewness in brain mass for invasion of urban habitats by 108 species of birds using phylogenetic multiple regression analyses weighted by sample size.Results: There was no significant difference in mean brain mass between urbanized and non-urbanized species or between urban and rural populations of the same species, and mean brain mass was not significantly correlated with time since urbanization. Bird species that became urbanized had a greater standard deviation in brain mass than non-urbanized species, and the standard deviation in brain mass increased with time since urbanization. Brain mass was significantly left skewed in species that remained rural, while there was no significant skew in urbanized species. The degree of left skew was greater in urban than in rural populations of the same species, and successfully urbanized species decreased the degree of left skew with time since urbanization. This is consistent with the hypothesis that sub-optimal brain development was more common in rural habitats resulting in disproportionately many individuals with very smal brains.Conclusions: These findings do not support the hypothesis that large brains promote urbanization, but suggest that skewness has played a role in the initial invasion of urban habitats, and that variance and skew in brain mass have increased as species have become urbanized.

  5. Brain size and urbanization in birds

    Institute of Scientific and Technical Information of China (English)

    Anders Pape Mller; Johannes Erritze

    2015-01-01

    Background:Brain size may affect the probability of invasion of urban habitats if a relatively larger brain entails superior ability to adapt to novel environments. However, once urbanized urban environments may provide poor quality food that has negative consequences for normal brain development resulting in an excess of individuals with small brains. Methods:Here we analyze the independent effects of mean, standard deviation and skewness in brain mass for invasion of urban habitats by 108 species of birds using phylogenetic multiple regression analyses weighted by sample size. Results:There was no significant difference in mean brain mass between urbanized and non-urbanized species or between urban and rural populations of the same species, and mean brain mass was not significantly correlated with time since urbanization. Bird species that became urbanized had a greater standard deviation in brain mass than non-urbanized species, and the standard deviation in brain mass increased with time since urbanization. Brain mass was significantly left skewed in species that remained rural, while there was no significant skew in urbanized species. The degree of left skew was greater in urban than in rural populations of the same species, and successfully urbanized species decreased the degree of left skew with time since urbanization. This is consistent with the hypothesis that sub-optimal brain development was more common in rural habitats resulting in disproportionately many individuals with very smal brains. Conclusions:These findings do not support the hypothesis that large brains promote urbanization, but suggest that skewness has played a role in the initial invasion of urban habitats, and that variance and skew in brain mass have increased as species have become urbanized.

  6. Normotension, hypertension and body fluid regulation: brain and kidney.

    Science.gov (United States)

    Bie, P; Evans, R G

    2017-01-01

    The fraction of hypertensive patients with essential hypertension (EH) is decreasing as the knowledge of mechanisms of secondary hypertension increases, but in most new cases of hypertension the pathophysiology remains unknown. Separate neurocentric and renocentric concepts of aetiology have prevailed without much interaction. In this regard, several questions regarding the relationships between body fluid and blood pressure regulation are pertinent. Are all forms of EH associated with sympathetic overdrive or a shift in the pressure-natriuresis curve? Is body fluid homoeostasis normally driven by the influence of arterial blood pressure directly on the kidney? Does plasma renin activity, driven by renal nerve activity and renal arterial pressure, provide a key to stratification of EH? Our review indicates that (i) a narrow definition of EH is useful; (ii) in EH, indices of cardiovascular sympathetic activity are elevated in about 50% of cases; (iii) in EH as in normal conditions, mediators other than arterial blood pressure are the major determinants of renal sodium excretion; (iv) chronic hypertension is always associated with a shift in the pressure-natriuresis curve, but this may be an epiphenomenon; (v) plasma renin levels are useful in the analysis of EH only after metabolic standardization and then determination of the renin function line (plasma renin as a function of sodium intake); and (vi) angiotensin II-mediated hypertension is not a model of EH. Recent studies of baroreceptors and renal nerves as well as sodium intake and renin secretion help bridge the gap between the neurocentric and renocentric concepts. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  7. Autoradiographic investigations of cells from the cerebrospinal fluid

    International Nuclear Information System (INIS)

    Thamm, W.

    1983-01-01

    A total of 155 samples of cerebrospinal fluid obtained from 61 patients were subjected to cytological examination and incubated together with 3 1 H-thymidine. Radioactive labelling was thus achieved for lymphocytes, monocytes and tumour cells. The highest contents of radioactivity were seen in tumour cells. To a lesser degree had the isotope become attached to the lymphocytes, while the tendency to take up radioactivity was lowest in cells from autochthonous tumours of the brain. In cerebral and meningeal metastases the labelling index rose proportionately to the progress of the disease. Autoradiography can be used to monitor cytostatic treatment carried out to control the spread of meningeal carcinoma cells. In non-inflammatory disorders, lymphocytes and monocytes of the cerebrospinal fluid only rarely show radioactivity. A suprisignly high labelling index was determined for lymphocytes and monocytes of cerebrospinal fluid from young children, which was considered to be attributable to the high proliferation rates to be expected here. (orig./MG) [de

  8. Alteration of brain insulin and leptin signaling promotes energy homeostasis impairment and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Taouis Mohammed

    2011-09-01

    Full Text Available The central nervous system (CNS controls vital functions, by efficiently coordinating peripheral and central cascades of signals and networks in a coordinated manner. Historically, the brain was considered to be an insulin-insensitive tissue. But, new findings demonstrating that insulin is present in different regions of themammalian brain, in particular the hypothalamus and the hippocampus. Insulin acts through specific receptors and dialogues with numerous peptides, neurotransmitters and adipokines such as leptin. The cross-talk between leptin and insulin signaling pathways at the hypothalamic level is clearly involved in the control of energy homeostasis. Both hormones are anorexigenic through their action on hypothalamic arcuate nucleus by inducing the expression of anorexigenic neuropetides such as POMC (pro-opiomelanocortin, the precursor of aMSH and reducing the expression of orexigenic neuropeptide such as NPY (Neuropeptide Y. Central defect of insulin and leptin signaling predispose to obesity (leptin-resistant state and type-2 diabetes (insulin resistant state. Obesity and type-2 diabetes are associated to deep alterations in energy homeostasis control but also to other alterations of CNS functions as the predisposition to neurodegenerative diseases such as Alzheimer’s disease (AD. AD is a neurodegenerative disorder characterized by distinct hallmarks within the brain. Postmortem observation of AD brains showed the presence of parenchymal plaques due to the accumulation of the amyloid beta (AB peptide and neurofibrillary tangles. These accumulations result from the hyperphosphorylation of tau (a mictrotubule-interacting protein. Both insulin and leptin have been described to modulate tau phosphorylation and therefore in leptin and insulin resistant states may contribute to AD. The concentrations of leptin and insulin cerebrospinal fluid are decreased type2 diabetes and obese patients. In addition, the concentration of insulin in the

  9. Development of the Young Brain

    Medline Plus

    Full Text Available ... most helpful for us to adapt to the environment. Announcer: Our brains have been challenged by the ... on having the written word and having this environment. And so now the questions is will we ...

  10. Brain pathology after mild traumatic brain injury: an exploratory study by repeated magnetic resonance examination.

    Science.gov (United States)

    Lannsjö, Marianne; Raininko, Raili; Bustamante, Mariana; von Seth, Charlotta; Borg, Jörgen

    2013-09-01

    To explore brain pathology after mild traumatic brain injury by repeated magnetic resonance examination. A prospective follow-up study. Nineteen patients with mild traumatic brain injury presenting with Glasgow Coma Scale (GCS) 14-15. The patients were examined on day 2 or 3 and 3-7 months after the injury. The magnetic resonance protocol comprised conventional T1- and T2-weighted sequences including fluid attenuated inversion recovery (FLAIR), two susceptibility-weighted sequences to reveal haemorrhages, and diffusion-weighted sequences. Computer-aided volume comparison was performed. Clinical outcome was assessed by the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Hospital Anxiety and Depression Scale (HADS) and Glasgow Outcome Scale Extended (GOSE). At follow-up, 7 patients (37%) reported ≥  3 symptoms in RPQ, 5 reported some anxiety and 1 reported mild depression. Fifteen patients reported upper level of good recovery and 4 patients lower level of good recovery (GOSE 8 and 7, respectively). Magnetic resonance pathology was found in 1 patient at the first examination, but 4 patients (21%) showed volume loss at the second examination, at which 3 of them reported GOSE scores of 8. Loss of brain volume, demonstrated by computer-aided magnetic resonance imaging volumetry, may be a feasible marker of brain pathology after mild traumatic brain injury.

  11. Perfusion kinetics in human brain tumor with DCE-MRI derived model and CFD analysis.

    Science.gov (United States)

    Bhandari, A; Bansal, A; Singh, A; Sinha, N

    2017-07-05

    Cancer is one of the leading causes of death all over the world. Among the strategies that are used for cancer treatment, the effectiveness of chemotherapy is often hindered by factors such as irregular and non-uniform uptake of drugs inside tumor. Thus, accurate prediction of drug transport and deposition inside tumor is crucial for increasing the effectiveness of chemotherapeutic treatment. In this study, a computational model of human brain tumor is developed that incorporates dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) data into a voxelized porous media model. The model takes into account realistic transport and perfusion kinetics parameters together with realistic heterogeneous tumor vasculature and accurate arterial input function (AIF), which makes it patient specific. The computational results for interstitial fluid pressure (IFP), interstitial fluid velocity (IFV) and tracer concentration show good agreement with the experimental results. The computational model can be extended further for predicting the deposition of chemotherapeutic drugs in tumor environment as well as selection of the best chemotherapeutic drug for a specific patient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Elevation of brain-enriched miRNAs in cerebrospinal fluid of patients with acute ischemic stroke

    DEFF Research Database (Denmark)

    Sorensen, Sofie Solvsten; Nygaard, Ann-Britt; Carlsen, Anting Liu

    2017-01-01

    BackgroundThe purpose of this study was to investigate the potential of cerebrospinal fluid miRNAs as diagnostic biomarkers of acute ischemic stroke using three different profiling techniques in order to identify and bypass any influence from technical variation. MethodsCerebrospinal fluid (CSF) ...

  13. Fast CSF MRI for brain segmentation; Cross-validation by comparison with 3D T1-based brain segmentation methods

    NARCIS (Netherlands)

    van der Kleij, Lisa A; de Bresser, Jeroen; Hendrikse, Jeroen; Siero, Jeroen C W; Petersen, Esben T; De Vis, Jill B

    2018-01-01

    OBJECTIVE: In previous work we have developed a fast sequence that focusses on cerebrospinal fluid (CSF) based on the long T2 of CSF. By processing the data obtained with this CSF MRI sequence, brain parenchymal volume (BPV) and intracranial volume (ICV) can be automatically obtained. The aim of

  14. Implementation of an Embedded Web Server Application for Wireless Control of Brain Computer Interface Based Home Environments.

    Science.gov (United States)

    Aydın, Eda Akman; Bay, Ömer Faruk; Güler, İnan

    2016-01-01

    Brain Computer Interface (BCI) based environment control systems could facilitate life of people with neuromuscular diseases, reduces dependence on their caregivers, and improves their quality of life. As well as easy usage, low-cost, and robust system performance, mobility is an important functionality expected from a practical BCI system in real life. In this study, in order to enhance users' mobility, we propose internet based wireless communication between BCI system and home environment. We designed and implemented a prototype of an embedded low-cost, low power, easy to use web server which is employed in internet based wireless control of a BCI based home environment. The embedded web server provides remote access to the environmental control module through BCI and web interfaces. While the proposed system offers to BCI users enhanced mobility, it also provides remote control of the home environment by caregivers as well as the individuals in initial stages of neuromuscular disease. The input of BCI system is P300 potentials. We used Region Based Paradigm (RBP) as stimulus interface. Performance of the BCI system is evaluated on data recorded from 8 non-disabled subjects. The experimental results indicate that the proposed web server enables internet based wireless control of electrical home appliances successfully through BCIs.

  15. Fluid Mechanics of Blood Clot Formation.

    Science.gov (United States)

    Fogelson, Aaron L; Neeves, Keith B

    2015-01-01

    Intravascular blood clots form in an environment in which hydrodynamic forces dominate and in which fluid-mediated transport is the primary means of moving material. The clotting system has evolved to exploit fluid dynamic mechanisms and to overcome fluid dynamic challenges to ensure that clots that preserve vascular integrity can form over the wide range of flow conditions found in the circulation. Fluid-mediated interactions between the many large deformable red blood cells and the few small rigid platelets lead to high platelet concentrations near vessel walls where platelets contribute to clotting. Receptor-ligand pairs with diverse kinetic and mechanical characteristics work synergistically to arrest rapidly flowing cells on an injured vessel. Variations in hydrodynamic stresses switch on and off the function of key clotting polymers. Protein transport to, from, and within a developing clot determines whether and how fast it grows. We review ongoing experimental and modeling research to understand these and related phenomena.

  16. Mapping the regional influence of genetics on brain structure variability--a tensor-based morphometry study.

    Science.gov (United States)

    Brun, Caroline C; Leporé, Natasha; Pennec, Xavier; Lee, Agatha D; Barysheva, Marina; Madsen, Sarah K; Avedissian, Christina; Chou, Yi-Yu; de Zubicaray, Greig I; McMahon, Katie L; Wright, Margaret J; Toga, Arthur W; Thompson, Paul M

    2009-10-15

    Genetic and environmental factors influence brain structure and function profoundly. The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8+/-1.8 SD years). All 92 twins' 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject's anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions that have a more protracted maturational time-course.

  17. AqSo_NaCl: Computer program to calculate p-T-V-x properties in the H2O-NaCl fluid system applied to fluid inclusion research and pore fluid calculation

    Science.gov (United States)

    Bakker, Ronald J.

    2018-06-01

    The program AqSo_NaCl has been developed to calculate pressure - molar volume - temperature - composition (p-V-T-x) properties, enthalpy, and heat capacity of the binary H2O-NaCl system. The algorithms are designed in BASIC within the Xojo programming environment, and can be operated as stand-alone project with Macintosh-, Windows-, and Unix-based operating systems. A series of ten self-instructive interfaces (modules) are developed to calculate fluid inclusion properties and pore fluid properties. The modules may be used to calculate properties of pure NaCl, the halite-liquidus, the halite-vapourus, dew-point and bubble-point curves (liquid-vapour), critical point, and SLV solid-liquid-vapour curves at temperatures above 0.1 °C (with halite) and below 0.1 °C (with ice or hydrohalite). Isochores of homogeneous fluids and unmixed fluids in a closed system can be calculated and exported to a.txt file. Isochores calculated for fluid inclusions can be corrected according to the volumetric properties of quartz. Microthermometric data, i.e. dissolution temperatures and homogenization temperatures, can be used to calculated bulk fluid properties of fluid inclusions. Alternatively, in the absence of total homogenization temperature the volume fraction of the liquid phase in fluid inclusions can be used to obtain bulk properties.

  18. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility--Reykjavik study.

    Science.gov (United States)

    Mitchell, Gary F; van Buchem, Mark A; Sigurdsson, Sigurdur; Gotal, John D; Jonsdottir, Maria K; Kjartansson, Ólafur; Garcia, Melissa; Aspelund, Thor; Harris, Tamara B; Gudnason, Vilmundur; Launer, Lenore J

    2011-11-01

    Aortic stiffness increases with age and vascular risk factor exposure and is associated with increased risk for structural and functional abnormalities in the brain. High ambient flow and low impedance are thought to sensitize the cerebral microcirculation to harmful effects of excessive pressure and flow pulsatility. However, haemodynamic mechanisms contributing to structural brain lesions and cognitive impairment in the presence of high aortic stiffness remain unclear. We hypothesized that disproportionate stiffening of the proximal aorta as compared with the carotid arteries reduces wave reflection at this important interface and thereby facilitates transmission of excessive pulsatile energy into the cerebral microcirculation, leading to microvascular damage and impaired function. To assess this hypothesis, we evaluated carotid pressure and flow, carotid-femoral pulse wave velocity, brain magnetic resonance images and cognitive scores in participants in the community-based Age, Gene/Environment Susceptibility--Reykjavik study who had no history of stroke, transient ischaemic attack or dementia (n = 668, 378 females, 69-93 years of age). Aortic characteristic impedance was assessed in a random subset (n = 422) and the reflection coefficient at the aorta-carotid interface was computed. Carotid flow pulsatility index was negatively related to the aorta-carotid reflection coefficient (R = -0.66, Pwave velocity were each associated with increased risk for silent subcortical infarcts (hazard ratios of 1.62-1.71 per standard deviation, Pwave velocity was associated with higher white matter hyperintensity volume (0.108 ± 0.045 SD/SD, P = 0.018). Pulsatility index was associated with lower whole brain (-0.127 ± 0.037 SD/SD, Pwave velocity (-0.095 ± 0.043 SD/SD, P = 0.028) and carotid pulse pressure (-0.114 ± 0.045 SD/SD, P = 0.013) were associated with lower memory scores. Pulsatility index was associated with lower memory scores (-0.165 ± 0.039 SD/SD, Pwave

  19. The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system? [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Norman R. Saunders

    2016-03-01

    Full Text Available Barrier mechanisms in the brain are important for its normal functioning and development. Stability of the brain’s internal environment, particularly with respect to its ionic composition, is a prerequisite for the fundamental basis of its function, namely transmission of nerve impulses. In addition, the appropriate and controlled supply of a wide range of nutrients such as glucose, amino acids, monocarboxylates, and vitamins is also essential for normal development and function. These are all cellular functions across the interfaces that separate the brain from the rest of the internal environment of the body. An essential morphological component of all but one of the barriers is the presence of specialized intercellular tight junctions between the cells comprising the interface: endothelial cells in the blood-brain barrier itself, cells of the arachnoid membrane, choroid plexus epithelial cells, and tanycytes (specialized glial cells in the circumventricular organs. In the ependyma lining the cerebral ventricles in the adult brain, the cells are joined by gap junctions, which are not restrictive for intercellular movement of molecules. But in the developing brain, the forerunners of these cells form the neuroepithelium, which restricts exchange of all but the smallest molecules between cerebrospinal fluid and brain interstitial fluid because of the presence of strap junctions between the cells. The intercellular junctions in all these interfaces are the physical basis for their barrier properties. In the blood-brain barrier proper, this is combined with a paucity of vesicular transport that is a characteristic of other vascular beds. Without such a diffusional restrain, the cellular transport mechanisms in the barrier interfaces would be ineffective. Superimposed on these physical structures are physiological mechanisms as the cells of the interfaces contain various metabolic transporters and efflux pumps, often ATP-binding cassette (ABC

  20. Cerebrospinal and Interstitial Fluid Transport via the Glymphatic Pathway Modeled by Optimal Mass Transport

    OpenAIRE

    Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2017-01-01

    The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of M...

  1. Radiation-induced brain damage in children

    International Nuclear Information System (INIS)

    Oi, Shizuo; Kokunai, Takashi; Ijichi, Akihiro; Matsumoto, Satoshi; Raimondi, A.J.

    1990-01-01

    The nature and sequence of the radiation-induced changes in the brain were studied postmortem in 34 children with glioma, 22 of whom underwent central nervous system radiation therapy. Twenty received whole-brain or whole-neuroaxis radiation at a total mean dosage of 4063 cGy. Brain tissue alternations were analyzed histologically by means of various staining methods, including immunohistochemical techniques. The histological features of irradiated brains were compared with those of non-irradiated brains. Microscopic findings included demyelination (seven cases), focal necrosis (six cases), cortical atrophy (four cases), endothelial proliferation (four cases), and telangiectatic vascular proliferation with vascular thickening and oozing of a thick fluid (one case). Such findings were rare in non-irradiated patients. Demyelination was observed earliest in a patient who died 5 months after radiation therapy and was more common after 9 months. Focal necrosis was first observed 9 months post-irradiation but was more advanced and extensive after 1 year. Calcified foci were found only after 60 months. Various vascular changes such as vascular thickening and thrombosis suggested ischemic insult to the brain as a late effect of radiation injury. The results of this study suggest that the immature brain may be more sensitive to radiation than is the adult brain, and that the manifestations of radiation-induced injury depend on the time elapsed after irradiation. (author)

  2. Fluid and flexible minds: Intelligence reflects synchrony in the brain’s intrinsic network architecture

    Directory of Open Access Journals (Sweden)

    Michael A. Ferguson

    2017-06-01

    Full Text Available Human intelligence has been conceptualized as a complex system of dissociable cognitive processes, yet studies investigating the neural basis of intelligence have typically emphasized the contributions of discrete brain regions or, more recently, of specific networks of functionally connected regions. Here we take a broader, systems perspective in order to investigate whether intelligence is an emergent property of synchrony within the brain’s intrinsic network architecture. Using a large sample of resting-state fMRI and cognitive data (n = 830, we report that the synchrony of functional interactions within and across distributed brain networks reliably predicts fluid and flexible intellectual functioning. By adopting a whole-brain, systems-level approach, we were able to reliably predict individual differences in human intelligence by characterizing features of the brain’s intrinsic network architecture. These findings hold promise for the eventual development of neural markers to predict changes in intellectual function that are associated with neurodevelopment, normal aging, and brain disease. In our study, we aimed to understand how individual differences in intellectual functioning are reflected in the intrinsic network architecture of the human brain. We applied statistical methods, known as spectral decompositions, in order to identify individual differences in the synchronous patterns of spontaneous brain activity that reliably predict core aspects of human intelligence. The synchrony of brain activity at rest across multiple discrete neural networks demonstrated positive relationships with fluid intelligence. In contrast, global synchrony within the brain’s network architecture reliably, and inversely, predicted mental flexibility, a core facet of intellectual functioning. The multinetwork systems approach described here represents a methodological and conceptual extension of earlier efforts that related differences in

  3. Labyrinth and cerebral-spinal fluid pressure changes in guinea pigs and monkeys during simulated zero G

    Science.gov (United States)

    Parker, D. E.

    1977-01-01

    This study was undertaken to explore the hypothesis that shifts of body fluids from the legs and torso toward the head contribute to the motion sickness experienced by astronauts and cosmonauts. The shifts in body fluids observed during zero-G exposure were simulated by elevating guinea pigs' and monkeys' torsos and hindquarters. Cerebral-spinal fluid pressure was recorded from a transducer located in a brain ventricle; labyrinth fluid pressure was recorded from a pipette cemented in a hole in a semicircular canal. An anticipated divergence in cerebral-spinal fluid pressure and labyrinth fluid pressure during torso elevation was not observed. The results of this study do not support a fluid shift mechanism of zero-G-induced motion sickness. However, a more complete test of the fluid shift mechanism would be obtained if endolymph and perilymph pressure changes were determined separately; we have been unable to perform this test to date.

  4. Glymphatic clearance controls state-dependent changes in brain lactate concentration

    DEFF Research Database (Denmark)

    Lundgaard, Iben; Lu, Minh Lon; Yang, Ezra

    2017-01-01

    Brain lactate concentration is higher during wakefulness than in sleep. However, it is unknown why arousal is linked to an increase in brain lactate and why lactate declines within minutes of sleep. Here, we show that the glymphatic system is responsible for state-dependent changes in brain lacta......-lymphatic clearance. This analysis provides fundamental new insight into brain energy metabolism by demonstrating that glucose that is not fully oxidized can be exported as lactate via glymphatic-lymphatic fluid transport.......Brain lactate concentration is higher during wakefulness than in sleep. However, it is unknown why arousal is linked to an increase in brain lactate and why lactate declines within minutes of sleep. Here, we show that the glymphatic system is responsible for state-dependent changes in brain lactate...... concentration. Suppression of glymphatic function via acetazolamide treatment, cisterna magna puncture, aquaporin 4 deletion, or changes in body position reduced the decline in brain lactate normally observed when awake mice transition into sleep or anesthesia. Concurrently, the same manipulations diminished...

  5. Linking brain, mind and behavior.

    Science.gov (United States)

    Makeig, Scott; Gramann, Klaus; Jung, Tzyy-Ping; Sejnowski, Terrence J; Poizner, Howard

    2009-08-01

    Cortical brain areas and dynamics evolved to organize motor behavior in our three-dimensional environment also support more general human cognitive processes. Yet traditional brain imaging paradigms typically allow and record only minimal participant behavior, then reduce the recorded data to single map features of averaged responses. To more fully investigate the complex links between distributed brain dynamics and motivated natural behavior, we propose the development of wearable mobile brain/body imaging (MoBI) systems that continuously capture the wearer's high-density electrical brain and muscle signals, three-dimensional body movements, audiovisual scene and point of regard, plus new data-driven analysis methods to model their interrelationships. The new imaging modality should allow new insights into how spatially distributed brain dynamics support natural human cognition and agency.

  6. Postnatal brain development

    DEFF Research Database (Denmark)

    Jernigan, Terry L; Baaré, William F C; Stiles, Joan

    2011-01-01

    After birth, there is striking biological and functional development of the brain's fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact...... in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain-behavior associations in children, including genetic variation, behavioral interventions...... constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes...

  7. Postnatal brain development

    DEFF Research Database (Denmark)

    Jernigan, Terry L; Baaré, William F C; Stiles, Joan

    2011-01-01

    After birth, there is striking biological and functional development of the brain's fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact...... constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes...... in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain-behavior associations in children, including genetic variation, behavioral interventions...

  8. Scintigraphy of the cerebrospinal fluid

    International Nuclear Information System (INIS)

    Touya, E.; Perillo, W.; Paez, A.; Osorio, A.; Ferrando, R.; Lago, G.; Garcia Guelfi, A.; Ferrari, M.

    1977-01-01

    Eight years of experience in scintigraphy of cerebrospinal fluid (CSF) with 113 Insup(m)-colloid is reported. Two hundred cases are discussed. On the basis of the clinical diagnosis, the cases are divided into five groups: (1) spinal cord compression; (2) hydrocephalus of the adult and child; (3) control of extracranial CSF shunts; (4) CSF fistula; and (5) brain tumour. It is concluded that the radiopharmaceutical used has no limitations except in the study of the hydrocephalus of the adult. For those services remote from the production centres, it is a convenient option for CSF scintigraphy. (author)

  9. Effects of growth hormone-releasing hormone on sleep and brain interstitial fluid amyloid-β in an APP transgenic mouse model.

    Science.gov (United States)

    Liao, Fan; Zhang, Tony J; Mahan, Thomas E; Jiang, Hong; Holtzman, David M

    2015-07-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by impairment of cognitive function, extracellular amyloid plaques, intracellular neurofibrillary tangles, and synaptic and neuronal loss. There is substantial evidence that the aggregation of amyloid β (Aβ) in the brain plays a key role in the pathogenesis of AD and that Aβ aggregation is a concentration dependent process. Recently, it was found that Aβ levels in the brain interstitial fluid (ISF) are regulated by the sleep-wake cycle in both humans and mice; ISF Aβ is higher during wakefulness and lower during sleep. Intracerebroventricular infusion of orexin increased wakefulness and ISF Aβ levels, and chronic sleep deprivation significantly increased Aβ plaque formation in amyloid precursor protein transgenic (APP) mice. Growth hormone-releasing hormone (GHRH) is a well-documented sleep regulatory substance which promotes non-rapid eye movement sleep. GHRHR(lit/lit) mice that lack functional GHRH receptor have shorter sleep duration and longer wakefulness during light periods. The current study was undertaken to determine whether manipulating sleep by interfering with GHRH signaling affects brain ISF Aβ levels in APPswe/PS1ΔE9 (PS1APP) transgenic mice that overexpress mutant forms of APP and PSEN1 that cause autosomal dominant AD. We found that intraperitoneal injection of GHRH at dark onset increased sleep and decreased ISF Aβ and that delivery of a GHRH antagonist via reverse-microdialysis suppressed sleep and increased ISF Aβ. The diurnal fluctuation of ISF Aβ in PS1APP/GHRHR(lit/lit) mice was significantly smaller than that in PS1APP/GHRHR(lit/+) mice. However despite decreased sleep in GHRHR deficient mice, this was not associated with an increase in Aβ accumulation later in life. One of several possibilities for the finding is the fact that GHRHR deficient mice have GHRH-dependent but sleep-independent factors which protect against Aβ deposition. Copyright © 2014

  10. Anti-high mobility group box-1 antibody therapy for traumatic brain injury.

    Science.gov (United States)

    Okuma, Yu; Liu, Keyue; Wake, Hidenori; Zhang, Jiyong; Maruo, Tomoko; Date, Isao; Yoshino, Tadashi; Ohtsuka, Aiji; Otani, Naoki; Tomura, Satoshi; Shima, Katsuji; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Takahashi, Hideo K; Mori, Shuji; Nishibori, Masahiro

    2012-09-01

    High mobility group box-1 (HMGB1) plays an important role in triggering inflammatory responses in many types of diseases. In this study, we examined the involvement of HMGB1 in traumatic brain injury (TBI) and evaluated the ability of intravenously administered neutralizing anti-HMGB1 monoclonal antibody (mAb) to attenuate brain injury. Traumatic brain injury was induced in rats or mice by fluid percussion. Anti-HMGB1 mAb or control mAb was administered intravenously after TBI. Anti-HMGB1 mAb remarkably inhibited fluid percussion-induced brain edema in rats, as detected by T2-weighted magnetic resonance imaging; this was associated with inhibition of HMGB1 translocation, protection of blood-brain barrier (BBB) integrity, suppression of inflammatory molecule expression, and improvement of motor function. In contrast, intravenous injection of recombinant HMGB1 dose-dependently produced the opposite effects. Experiments using receptor for advanced glycation end product (RAGE)(-/-) , toll-like receptor-4 (TLR4)(-/-) , and TLR2(-/-) mice suggested the involvement of RAGE as the predominant receptor for HMGB1. Anti-HMGB1 mAb may provide a novel and effective therapy for TBI by protecting against BBB disruption and reducing the inflammatory responses induced by HMGB1. Copyright © 2012 American Neurological Association.

  11. Downhole Fluid Analyzer Development

    Energy Technology Data Exchange (ETDEWEB)

    Bill Turner

    2006-11-28

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  12. Ivy Sign on Fluid-Attenuated Inversion Recovery Images in Moyamoya Disease: Correlation with Clinical Severity and Old Brain Lesions.

    Science.gov (United States)

    Seo, Kwon-Duk; Suh, Sang Hyun; Kim, Yong Bae; Kim, Ji Hwa; Ahn, Sung Jun; Kim, Dong-Seok; Lee, Kyung-Yul

    2015-09-01

    Leptomeningeal collateral, in moyamoya disease (MMD), appears as an ivy sign on fluid-attenuated inversion-recovery (FLAIR) images. There has been little investigation into the relationship between presentation of ivy signs and old brain lesions. We aimed to evaluate clinical significance of ivy signs and whether they correlate with old brain lesions and the severity of clinical symptoms in patients with MMD. FLAIR images of 83 patients were reviewed. Each cerebral hemisphere was divided into 4 regions and each region was scored based on the prominence of the ivy sign. Total ivy score (TIS) was defined as the sum of the scores from the eight regions and dominant hemispheric ivy sign (DHI) was determined by comparing the ivy scores from each hemisphere. According to the degree of ischemic symptoms, patients were classified into four subgroups: 1) nonspecific symptoms without motor weakness, 2) single transient ischemic attack (TIA), 3) recurrent TIA, or 4) complete stroke. TIS was significantly different as follows: 4.86±2.55 in patients with nonspecific symptoms, 5.89±3.10 in patients with single TIA, 9.60±3.98 in patients with recurrent TIA and 8.37±3.39 in patients with complete stroke (p=0.003). TIS associated with old lesions was significantly higher than those not associated with old lesions (9.35±4.22 vs. 7.49±3.37, p=0.032). We found a significant correlation between DHI and motor symptoms (p=0.001). Because TIS has a strong tendency with severity of ischemic motor symptom and the presence of old lesions, the ivy sign may be useful in predicting severity of disease progression.

  13. Physical Properties of Low-Molecular Weight Polydimethylsiloxane Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Christine Cardinal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Graham, Alan [Univ. of Colorado, Denver, CO (United States); Nemer, Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Phinney, Leslie M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Garcia, Robert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soehnel, Melissa Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stirrup, Emily Kate [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Physical property measurements including viscosity, density, thermal conductivity, and heat capacity of low-molecular weight polydimethylsiloxane (PDMS) fluids were measured over a wide temperature range (-50°C to 150°C when possible). Properties of blends of 1 cSt and 20 cSt PDMS fluids were also investigated. Uncertainties in the measurements are cited. These measurements will provide greater fidelity predictions of environmental sensing device behavior in hot and cold environments.

  14. Cerebrospinal Fluid Proteomics Reveals Potential Pathogenic Changes in the Brains of SIV-infected Monkeys

    OpenAIRE

    Pendyala, Gurudutt; Trauger, Sunia A.; Kalisiak, Ewa; Ellis, Ronald J.; Siuzdak, Gary; Fox, Howard S.

    2009-01-01

    The HIV-1-associated neurocognitive disorder occurs in approximately one-third of infected individuals. It has persisted in the current era of anti-retroviral therapy, and its study is complicated by the lack of biomarkers for this condition. Since the cerebrospinal fluid is the most proximal biofluid to the site of pathology, we studied the cerebrospinal fluid in a nonhuman primate model for HIV-1-associated neurocognitive disorder. Here we present a simple and efficient liquid chromatograph...

  15. Testing and development of an instrument for self-report of participation and related environmental factors - Your Ideas about Participation and Environment (YIPE) among adults with brain injury.

    Science.gov (United States)

    Hawley, Rachael; Madden, Rosamond H; Brentnall, Jennie; Serratore, Deborah; Grant, Samantha; Luft, Inbal; Bundy, Anita

    2016-11-01

    To examine the usability of the self-report instrument, Your Ideas about Participation and Environment (YIPE), among adults with a brain injury by exploring the value and acceptability of the instrument. A qualitative descriptive research design was used for the purpose of testing and developing the YIPE for use among adults with a brain injury. The study involved administering the YIPE followed by in-depth interviewing about the experience of taking the instrument with seven adults with a brain injury, recruited through a community-based support service organization. A descriptive thematic approach was used to analyse the content of the interview data, categorize common ideas and identify areas for improvement within the instrument. Participants were generally positive about the importance of the participation and environment topics and willing to engage in self report. The YIPE (2012), resulting from changes made to the language and structure, was found to be more useable, valued and accepted by these participants than the previous version, YIPE (2011). The YIPE was found to be a useful tool among study participants. The YIPE topics were found to have importance and relevance when considering participants' satisfaction with areas of life and aspects of environment requiring change. More development of the tool is required in terms of the wording, format and method of administration to improve the overall usability of the instrument. Implications for Rehabilitation The preliminary results from this small sample study illustrated that people with brain injury were able to use an International Classification of Functioning, Disability and Health-based tool, and confirmed the importance of considering both participation and the environment together. People with cognitive impairments associated with brain injury reported on areas of everyday life where they were satisfied or dissatisfied. They related their satisfaction to environmental factors that were facilitators

  16. Magnetic resonance characteristics and susceptibility weighted imaging of the brain in gadolinium encephalopathy.

    Science.gov (United States)

    Samardzic, Dejan; Thamburaj, Krishnamoorthy

    2015-01-01

    To report the brain imaging features on magnetic resonance imaging (MRI) in inadvertent intrathecal gadolinium administration. A 67-year-old female with gadolinium encephalopathy from inadvertent high dose intrathecal gadolinium administration during an epidural steroid injection was studied with multisequence 3T MRI. T1-weighted imaging shows pseudo-T2 appearance with diffusion of gadolinium into the brain parenchyma, olivary bodies, and membranous labyrinth. Nulling of cerebrospinal fluid (CSF) signal is absent on fluid attenuation recovery (FLAIR). Susceptibility-weighted imaging (SWI) demonstrates features similar to subarachnoid hemorrhage. CT may demonstrate a pseudo-cerebral edema pattern given the high attenuation characteristics of gadolinium. Intrathecal gadolinium demonstrates characteristic imaging features on MRI of the brain and may mimic subarachnoid hemorrhage on susceptibility-weighted imaging. Identifying high dose gadolinium within the CSF spaces on MRI is essential to avoid diagnostic and therapeutic errors. Copyright © 2013 by the American Society of Neuroimaging.

  17. Origin and timing of Dauphiné twins in quartz cement in fractured sandstones from diagenetic environments: Insight from fluid inclusions

    Science.gov (United States)

    Fall, András; Ukar, Estibalitz; Laubach, Stephen E.

    2016-09-01

    Electron backscattered diffraction techniques (EBSD) show that Dauphiné twins in quartz are widespread in many tectonometamorphic environments. Our study documents that under diagenetic temperatures (fluid inclusions. Fracture wall-parallel and wall-normal inclusion trails contain coexisting aqueous and hydrocarbon gas inclusions, so homogenization temperatures of aqueous inclusions record true trapping temperatures. Inclusions in alignments normal to fracture walls are large and irregularly shaped compared to those aligned parallel to walls, but both show similar liquid-to-vapor ratios. Stacking transmitted light images with scanning electron microscope cathodoluminescence (SEM-CL) and EBSD images demonstrates that Dauphiné twin boundaries are localized along wall-normal inclusion trails. Trapping temperatures for wall-normal inclusion trails are usually higher than those aligned parallel to the fracture wall. Wall-normal fluid inclusion assemblage temperatures typically match the highest temperatures of wall-parallel assemblages trapped during sequential widening, but not necessarily the most recent. In context of burial histories for these samples, this temperature pattern implies that wall-normal assemblages form at discrete times during or after crack-seal fracture widening. Localization in isolated, potentially high-stress quartz deposits in fractures is compatible with a mechanical origin for these Dauphiné twins. Punctuated temperature values and discrepant sizes and shapes of inclusions in wall-normal trails implies that twinning is a by-product of the formation of the wall-normal inclusion assemblages. The association of Dauphiné twins and fluid inclusion assemblages from which temperature and possibly timing can be inferred provides a way to research timing as well as magnitude of paleostress in some diagenetic settings.

  18. Clinical usefulness of fluid-attenuated inversion recovery (FLAIR) sequences in intracranial lesions focusing on emergent cases

    Energy Technology Data Exchange (ETDEWEB)

    Kuramochi, Masashi; Niitsu, Mamoru; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Wada, Mitsuyoshi

    1997-06-01

    Fluid-Attenuated Inversion Recovery (FLAIR) Pulse Sequences with inversion times of 1700 ms and echo times of 110 ms were used to demonstrate the brain of cerebrovascular disease (CVD) and brain trauma. The long inversion times and long echo times nulls the signal from cerebrospinal fluid and produces heavy T{sub 2} weighting images. We compared FLAIR Pulse Sequences with T{sub 2} weighted image Pulse Sequences for signal intensities of CVD and trauma. FLAIR Pulse Sequences is useful to detect at the periphery of the cerebral hemispheres, but infratentorial small infarctions often cannot be detected for its iso-intensity and slight intensity changes. In all patient of traumatic-subarachnoid hemorrhage (t-SAH) can be definitely detected high signal intensity of the cerebral hemispheres. (author)

  19. How the embryonic chick brain twists.

    Science.gov (United States)

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Forsch, Nickolas; Taber, Larry A

    2016-11-01

    During early development, the tubular embryonic chick brain undergoes a combination of progressive ventral bending and rightward torsion, one of the earliest organ-level left-right asymmetry events in development. Existing evidence suggests that bending is caused by differential growth, but the mechanism for the predominantly rightward torsion of the embryonic brain tube remains poorly understood. Here, we show through a combination of in vitro experiments, a physical model of the embryonic morphology and mechanics analysis that the vitelline membrane (VM) exerts an external load on the brain that drives torsion. Our theoretical analysis showed that the force is of the order of 10 micronewtons. We also designed an experiment to use fluid surface tension to replace the mechanical role of the VM, and the estimated magnitude of the force owing to surface tension was shown to be consistent with the above theoretical analysis. We further discovered that the asymmetry of the looping heart determines the chirality of the twisted brain via physical mechanisms, demonstrating the mechanical transfer of left-right asymmetry between organs. Our experiments also implied that brain flexure is a necessary condition for torsion. Our work clarifies the mechanical origin of torsion and the development of left-right asymmetry in the early embryonic brain. © 2016 The Author(s).

  20. Comparison between cerebrospinal fluid and serum lactate concentrations in neurologic dogs with and without structural intracranial disease.

    Science.gov (United States)

    Benedicenti, Leontine; Gianotti, Giacomo; Galban, Evelyn M

    2018-04-01

    The objectives of this study were to investigate the relationship between cerebrospinal fluid lactate and serum concentrations in dogs with clinical signs of central nervous system disease and to establish if cerebrospinal fluid lactate (CSF) concentrations are higher in dogs with structural intracranial disease (Group Pos-MRI) compared to dogs that have clinical signs of intracranial disease but no structural brain disease (Group Neg-MRI) based on magnetic resonance imaging (MRI) findings. Using a prospective study canine blood and cerebrospinal fluid were collected in 24 dogs with neurological signs after undergoing brain MRI. Dogs were divided in 2 groups. No significant difference between serum lactate (1.57 ± 0.9 mmol/L) and CSF lactate concentration (1.34 ± 0.3 mmol/L) was detected. There was a direct correlation between CSF and serum lactate concentration ( R = 0.731; P = 0.01). No significant difference was found in CSF lactate concentration between the 2 groups of dogs ( P = 0.13).

  1. Glymphatic clearance controls state-dependent changes in brain lactate concentration.

    Science.gov (United States)

    Lundgaard, Iben; Lu, Minh Lon; Yang, Ezra; Peng, Weiguo; Mestre, Humberto; Hitomi, Emi; Deane, Rashid; Nedergaard, Maiken

    2017-06-01

    Brain lactate concentration is higher during wakefulness than in sleep. However, it is unknown why arousal is linked to an increase in brain lactate and why lactate declines within minutes of sleep. Here, we show that the glymphatic system is responsible for state-dependent changes in brain lactate concentration. Suppression of glymphatic function via acetazolamide treatment, cisterna magna puncture, aquaporin 4 deletion, or changes in body position reduced the decline in brain lactate normally observed when awake mice transition into sleep or anesthesia. Concurrently, the same manipulations diminished accumulation of lactate in cervical, but not in inguinal lymph nodes when mice were anesthetized. Thus, our study suggests that brain lactate is an excellent biomarker of the sleep-wake cycle and increases further during sleep deprivation, because brain lactate is inversely correlated with glymphatic-lymphatic clearance. This analysis provides fundamental new insight into brain energy metabolism by demonstrating that glucose that is not fully oxidized can be exported as lactate via glymphatic-lymphatic fluid transport.

  2. Resuscitation speed affects brain injury in a large animal model of traumatic brain injury and shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Jin, Guang; Johansson, Pär I

    2014-01-01

    as lesion size (3285.44¿±¿130.81 mm3 vs. 2509.41¿±¿297.44 mm3, p¿=¿0.04). This was also associated with decreased cardiac output (NS: 4.37¿±¿0.12 l/min vs. 6.35¿±¿0.10 l/min, p¿brain compared......BackgroundOptimal fluid resuscitation strategy following combined traumatic brain injury (TBI) and hemorrhagic shock (HS) remain controversial and the effect of resuscitation infusion speed on outcome is not well known. We have previously reported that bolus infusion of fresh frozen plasma (FFP......) protects the brain compared with bolus infusion of 0.9% normal saline (NS). We now hypothesize reducing resuscitation infusion speed through a stepwise infusion speed increment protocol using either FFP or NS would provide neuroprotection compared with a high speed resuscitation protocol.Methods23...

  3. Mechanics of the brain: perspectives, challenges, and opportunities.

    Science.gov (United States)

    Goriely, Alain; Geers, Marc G D; Holzapfel, Gerhard A; Jayamohan, Jayaratnam; Jérusalem, Antoine; Sivaloganathan, Sivabal; Squier, Waney; van Dommelen, Johannes A W; Waters, Sarah; Kuhl, Ellen

    2015-10-01

    The human brain is the continuous subject of extensive investigation aimed at understanding its behavior and function. Despite a clear evidence that mechanical factors play an important role in regulating brain activity, current research efforts focus mainly on the biochemical or electrophysiological activity of the brain. Here, we show that classical mechanical concepts including deformations, stretch, strain, strain rate, pressure, and stress play a crucial role in modulating both brain form and brain function. This opinion piece synthesizes expertise in applied mathematics, solid and fluid mechanics, biomechanics, experimentation, material sciences, neuropathology, and neurosurgery to address today's open questions at the forefront of neuromechanics. We critically review the current literature and discuss challenges related to neurodevelopment, cerebral edema, lissencephaly, polymicrogyria, hydrocephaly, craniectomy, spinal cord injury, tumor growth, traumatic brain injury, and shaken baby syndrome. The multi-disciplinary analysis of these various phenomena and pathologies presents new opportunities and suggests that mechanical modeling is a central tool to bridge the scales by synthesizing information from the molecular via the cellular and tissue all the way to the organ level.

  4. Numerical simulation of cerebrospinal fluid hydrodynamics in the healing process of hydrocephalus patients

    Science.gov (United States)

    Gholampour, S.; Fatouraee, N.; Seddighi, A. S.; Seddighi, A.

    2017-05-01

    Three-dimensional computational models of the cerebrospinal fluid (CSF) flow and brain tissue are presented for evaluation of their hydrodynamic conditions before and after shunting for seven patients with non-communicating hydrocephalus. One healthy subject is also modeled to compare deviated patients data to normal conditions. The fluid-solid interaction simulation shows the CSF mean pressure and pressure amplitude (the superior index for evaluation of non-communicating hydrocephalus) in patients at a greater point than those in the healthy subject by 5.3 and 2 times, respectively.

  5. Implementation of a computer-aided detection tool for quantification of intracranial radiologic markers on brain CT images

    Science.gov (United States)

    Aghaei, Faranak; Ross, Stephen R.; Wang, Yunzhi; Wu, Dee H.; Cornwell, Benjamin O.; Ray, Bappaditya; Zheng, Bin

    2017-03-01

    Aneurysmal subarachnoid hemorrhage (aSAH) is a form of hemorrhagic stroke that affects middle-aged individuals and associated with significant morbidity and/or mortality especially those presenting with higher clinical and radiologic grades at the time of admission. Previous studies suggested that blood extravasated after aneurysmal rupture was a potentially clinical prognosis factor. But all such studies used qualitative scales to predict prognosis. The purpose of this study is to develop and test a new interactive computer-aided detection (CAD) tool to detect, segment and quantify brain hemorrhage and ventricular cerebrospinal fluid on non-contrasted brain CT images. First, CAD segments brain skull using a multilayer region growing algorithm with adaptively adjusted thresholds. Second, CAD assigns pixels inside the segmented brain region into one of three classes namely, normal brain tissue, blood and fluid. Third, to avoid "black-box" approach and increase accuracy in quantification of these two image markers using CT images with large noise variation in different cases, a graphic User Interface (GUI) was implemented and allows users to visually examine segmentation results. If a user likes to correct any errors (i.e., deleting clinically irrelevant blood or fluid regions, or fill in the holes inside the relevant blood or fluid regions), he/she can manually define the region and select a corresponding correction function. CAD will automatically perform correction and update the computed data. The new CAD tool is now being used in clinical and research settings to estimate various quantitatively radiological parameters/markers to determine radiological severity of aSAH at presentation and correlate the estimations with various homeostatic/metabolic derangements and predict clinical outcome.

  6. Damage Control Resuscitation Supplemented with Vasopressin in a Severe Polytrauma Model with Traumatic Brain Injury and Uncontrolled Internal Hemorrhage.

    Science.gov (United States)

    Dickson, J Michael; Wang, Xu; St John, Alexander E; Lim, Esther B; Stern, Susan A; White, Nathan J

    2018-03-14

    Traumatic brain injury (TBI) and hemorrhagic shock (HS) are the leading causes of traumatic death worldwide and particularly on the battlefield. They are especially challenging when present simultaneously (polytrauma), and clear blood pressure end points during fluid resuscitation are not well described for this situation. The goal of this study is to evaluate for any benefit of increasing blood pressure using a vasopressor on brain blood flow during initial fluid resuscitation in a swine polytrauma model. We used a swine polytrauma model with simultaneous TBI, femur fracture, and HS with uncontrolled noncompressible internal bleeding from an aortic tear injury. Five animals were assigned to each of three experimental groups (hydroxyethyl starch only [HES], HES + 0.4 U/kg vasopressin, and no fluid resuscitation [No Fluids]). Fluids were given as two 10 mL/kg boluses according to tactical field care guidelines. Primary outcomes were mean arterial blood pressure (MAP) and brain blood flow at 60 min. Secondary outcomes were blood flows in the heart, intestine, and kidney; arterial blood lactate level; and survival at 6 hr. Organ blood flow was measured using injection of colored microspheres. Five animals were tested in each of the three groups. There was a statistically significant increase in MAP with vasopressin compared with other experimental groups, but no significant increase in brain blood flow during the first 60 min of resuscitation. The vasopressin group also exhibited greater total internal hemorrhage volume and rate. There was no difference in survival at 6 hours. In this experimental swine polytrauma model, increasing blood pressure with vasopressin did not improve brain perfusion, likely due to increased internal hemorrhage. Effective hemostasis should remain the top priority for field treatment of the polytrauma casualty with TBI.

  7. Generalized Fluid System Simulation Program (GFSSP) - Version 6

    Science.gov (United States)

    Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul

    2015-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.

  8. Brain core temperature of patients with mild traumatic brain injury as assessed by DWI-thermometry

    International Nuclear Information System (INIS)

    Tazoe, Jun; Yamada, Kei; Akazawa, Kentaro; Sakai, Koji; Mineura, Katsuyoshi

    2014-01-01

    The aim of this study was to assess the brain core temperature of patients with mild traumatic brain injury (mTBI) using a noninvasive temperature measurement technique based on the diffusion coefficient of the cerebrospinal fluid. This retrospective study used the data collected from April 2008 to June 2011. The patient group comprised 20 patients with a Glasgow Coma Scale score of 14 or 15 who underwent magnetic resonance imaging within 30 days after head trauma. The normal control group comprised 14 subjects who volunteered for a brain checkup (known in Japan as ''brain dock''). We compared lateral ventricular (LV) temperature between patient and control groups. Follow-up studies were performed for four patients. LV temperature measurements were successfully performed for both patients and controls. Mean (±standard deviation) measured LV temperature was 36.9 ± 1.5 C in patients, 38.7 ± 1.8 C in follow-ups, and 37.9 ± 1.2 C in controls, showing a significant difference between patients and controls (P = 0.017). However, no significant difference was evident between patients and follow-ups (P = 0.595) or between follow-ups and controls (P = 0.465). A reduction in brain core temperature was observed in patients with mTBI, possibly due to a global decrease in metabolism. (orig.)

  9. The family environment predicts long-term academic achievement and classroom behavior following traumatic brain injury in early childhood.

    Science.gov (United States)

    Durber, Chelsea M; Yeates, Keith Owen; Taylor, H Gerry; Walz, Nicolay Chertkoff; Stancin, Terry; Wade, Shari L

    2017-07-01

    This study examined how the family environment predicts long-term academic and behavioral functioning in school following traumatic brain injury (TBI) in early childhood. Using a concurrent cohort, prospective design, 15 children with severe TBI, 39 with moderate TBI, and 70 with orthopedic injury (OI) who were injured when they were 3-7 years of age were compared on tests of academic achievement and parent and teacher ratings of school performance and behavior on average 6.83 years postinjury. Soon after injury and at the longer term follow-up, families completed measures of parental psychological distress, family functioning, and quality of the home environment. Hierarchical linear regression analyses examined group differences in academic outcomes and their associations with measures of the early and later family environment. The severe TBI group, but not the moderate TBI group, performed worse than did the OI group on all achievement tests, parent ratings of academic performance, and teacher ratings of internalizing problems. Higher quality early and late home environments predicted stronger academic skills and better classroom behavior for children with both TBI and OI. The early family environment more consistently predicted academic achievement, whereas the later family environment more consistently predicted classroom functioning. The quality of the home environment predicted academic outcomes more strongly than did parental psychological distress or family functioning. TBI in early childhood has long-term consequences for academic achievement and school performance and behavior. Higher quality early and later home environments predict better school outcomes for both children with TBI and children with OI. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Contrast enhancement of the cerebrospinal fluid on MRI in two cases of spirochaetal meningitis

    International Nuclear Information System (INIS)

    Good, C.D.; Jaeger, H.R.

    2000-01-01

    We report two patients with meningitis due to spirochaetal infection, both of whom showed diffusely enhancing meninges around the brain and spinal cord. In addition, there was enhancement of the cerebrospinal fluid after intravenous administration of Gd-DTPA. (orig.)

  11. Memory Impairment in Korsakoff's Psychosis: A Correlation with Brain Noradrenergic Activity.

    Science.gov (United States)

    McEntee, William J.; Mair, Robert G.

    1978-01-01

    The concentration of the primary brain metabolite of norepinephrine is diminished in the lumbar spinal fluid of patients with Korsakoff's syndrome. The extent of its reduction is correlated with measures of memory impairment. (BB)

  12. Experimental and theoretical studies of levitated quantum fluids

    International Nuclear Information System (INIS)

    Schmidt, J.; Halley, J.W.; Giese, C.F.

    1998-01-01

    We describe the opportunities for improved scientific understanding and technical manipulation of cryogenic fields, particularly molecular hydrogen, by the use of carefully designed magnetic field configurations produced with assemblies of permanent magnets. We discuss the levitation of hydrogen in order to perfect technical means for handling this and other cryogenic fluids. The development of the techniques to be explored here provide extraordinary opportunities for improved methods for handling rocket fuels and cryogenic fluids in low gravity environments

  13. Numerical analysis and experiment research on fluid orbital performance of vane type propellant management device

    International Nuclear Information System (INIS)

    Hu, Q; Li, Y; Pan, H L; Liu, J T; Zhuang, B T

    2015-01-01

    Vane type propellant management device (PMD) is one of the key components of the vane-type surface tension tank (STT), and its fluid orbital performance directly determines the STT's success or failure. In present paper, numerical analysis and microgravity experiment study on fluid orbital performance of a vane type PMD were carried out. By using two-phase flow model of volume of fluid (VOF), fluid flow characteristics in the tank with the vane type PMD were numerically calculated, and the rules of fluid transfer and distribution were gotten. A abbreviate model test system of the vane type PMD is established and microgravity drop tower tests were performed, then fluid management and transmission rules of the vane type PMD were obtained under microgravity environment. The analysis and tests results show that the vane type PMD has good and initiative fluid orbital management ability and meets the demands of fluid orbital extrusion in the vane type STT. The results offer valuable guidance for the design and optimization of the new generation of vane type PMD, and also provide a new approach for fluid management and control in space environment

  14. A balanced view of the cerebrospinal fluid composition and functions: Focus on adult humans.

    Science.gov (United States)

    Spector, Reynold; Robert Snodgrass, S; Johanson, Conrad E

    2015-11-01

    In this review, a companion piece to our recent examination of choroid plexus (CP), the organ that secretes the cerebrospinal fluid (CSF), we focus on recent information in the context of reliable older data concerning the composition and functions of adult human CSF. To accomplish this, we define CSF, examine the methodology employed in studying the CSF focusing on ideal or near ideal experiments and discuss the pros and cons of several widely used analogical descriptions of the CSF including: the CSF as the "third circulation," the CSF as a "nourishing liquor," the similarities of the CSF/choroid plexus to the glomerular filtrate/kidney and finally the CSF circulation as part of the "glymphatic system." We also consider the close interrelationship between the CSF and extracellular space of brain through gap junctions and the paucity of data suggesting that the cerebral capillaries secrete a CSF-like fluid. Recently human CSF has been shown to be in dynamic flux with heart-beat, posture and especially respiration. Functionally, the CSF provides buoyancy, nourishment (e.g., vitamins) and endogenous waste product removal for the brain by bulk flow into the venous (arachnoid villi and nerve roots) and lymphatic (nasal) systems, and by carrier-mediated reabsorptive transport systems in CP. The CSF also presents many exogenous compounds to CP for metabolism or removal, indirectly cleansing the extracellular space of brain (e.g., of xenobiotics like penicillin). The CSF also carries hormones (e.g., leptin) from blood via CP or synthesized in CP (e.g., IGF-2) to the brain. In summary the CP/CSF, the third circulation, performs many functions comparable to the kidney including nourishing the brain and contributing to a stable internal milieu for the brain. These tasks are essential to normal adult brain functioning. Copyright © 2015. Published by Elsevier Inc.

  15. Visualisation of cerebrospinal fluid flow patterns in albino Xenopus larvae in vivo

    Directory of Open Access Journals (Sweden)

    Mogi Kazue

    2012-04-01

    Full Text Available Abstract Background It has long been known that cerebrospinal fluid (CSF, its composition and flow, play an important part in normal brain development, and ependymal cell ciliary beating as a possible driver of CSF flow has previously been studied in mammalian fetuses in vitro. Lower vertebrate animals are potential models for analysis of CSF flow during development because they are oviparous. Albino Xenopus laevis larvae are nearly transparent and have a straight, translucent brain that facilitates the observation of fluid flow within the ventricles. The aim of these experiments was to study CSF flow and circulation in vivo in the developing brain of living embryos, larvae and tadpoles of Xenopus laevis using a microinjection technique. Methods The development of Xenopus larval brain ventricles and the patterns of CSF flow were visualised after injection of quantum dot nanocrystals and polystyrene beads (3.1 or 5.8 μm in diameter into the fourth cerebral ventricle at embryonic/larval stages 30-53. Results The fluorescent nanocrystals showed the normal development of the cerebral ventricles from embryonic/larval stages 38 to 53. The polystyrene beads injected into stage 47-49 larvae revealed three CSF flow patterns, left-handed, right-handed and non-biased, in movement of the beads into the third ventricle from the cerebral aqueduct (aqueduct of Sylvius. In the lateral ventricles, anterior to the third ventricle, CSF flow moved anteriorly along the outer wall of the ventricle to the inner wall and then posteriorly, creating a semicircle. In the cerebral aqueduct, connecting the third and fourth cerebral ventricles, CSF flow moved rostrally in the dorsal region and caudally in the ventral region. Also in the fourth ventricle, clear dorso-ventral differences in fluid flow pattern were observed. Conclusions This is the first visualisation of the orchestrated CSF flow pattern in developing vertebrates using a live animal imaging approach. CSF flow

  16. Expression of human immunodeficiency virus in cerebrospinal fluid of children with progressive encephalopathy

    NARCIS (Netherlands)

    Epstein, L. G.; Goudsmit, J.; Paul, D. A.; Morrison, S. H.; Connor, E. M.; Oleske, J. M.; Holland, B.

    1987-01-01

    The retrovirus that causes acquired immune deficiency syndrome (AIDS) is now designated the human immunodeficiency virus (HIV). The cerebrospinal fluid (CSF) of 27 children with HIV infection was assayed for intra-blood-brain barrier (IBBB) synthesis of HIV-specific antibodies and for the presence

  17. In vitro evidence for the brain glutamate efflux hypothesis

    DEFF Research Database (Denmark)

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby

    2012-01-01

    resistance values of 1014 ± 70 O cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids......The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L......-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial...

  18. The effect of steroids on experimental brain edema induced by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, M [Kobe Univ. (Japan). School of Medicine; Kakei, M

    1975-04-01

    In order to study the effect of steroids on brain edema, complicated by radiotherapy to brain tumors, an experiment was carried out in rats. Five thousand rads of cobalt-60 were irradiated to the head only of a rat, and 20 mg/kg of water-soluble prednine was given intraperitoneally. A single administration of the whole dose increased the amount of brain fluid to 79.35 +- 0.30 g/ 100 g wet wt.. This value was not significantly different from that of the rat which had received only the 5,000 rad irradiation. In a rat which received prednine in 6 divided doses at intervals of 4 hours, the fluid amount reached 78.33 +- 0.52 g/ 100 g wet wt. and was clearly lower than that of the rat which had been irradiated only, 79.51 +- 0.23 g/ 100 g wet wt. neither was the value significantly different from that of a normal rat which had not been exposed 78.72 +- 0.82 g/ 100 g wet wt.. Therefore, fractional administration of prednine was demonstrated to be effective.

  19. "Celebration of the Neurons": The Application of Brain Based Learning in Classroom Environment

    Science.gov (United States)

    Duman, Bilal

    2007-01-01

    The purpose of this study is to investigate approaches and techniques related to how brain based learning used in classroom atmosphere. This general purpose were answered following the questions: (1) What is the aim of brain based learning? (2) What are general approaches and techniques that brain based learning used? and (3) How should be used…

  20. Reliable Actuator for Cryo Propellant Fluid Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Fluid handling applications in cryogenic and extreme environments require reliable actuation technology that can handle extreme temperatures, mechanical bind-up from...

  1. Shear-Induced Amyloid Formation in the Brain: I. Potential Vascular and Parenchymal Processes.

    Science.gov (United States)

    Trumbore, Conrad N

    2016-09-06

    Shear distortion of amyloid-beta (Aβ) solutions accelerates amyloid cascade reactions that may yield different toxic oligomers than those formed in quiescent solutions. Recent experiments indicate that cerebrospinal fluid (CSF) and interstitial fluid (ISF) containing Aβ flow through narrow brain perivascular pathways and brain parenchyma. This paper suggests that such flow causes shear distortion of Aβ molecules involving conformation changes that may be one of the initiating events in the etiology of Alzheimer's disease. Aβ shearing can occur in or around brain arteries and arterioles and is suggested as the origin of cerebral amyloid angiopathy deposits in cerebrovascular walls. Comparatively low flow rates of ISF within the narrow extracellular spaces (ECS) of the brain parenchyma are suggested as a possible initiating factor in both the formation of neurotoxic Aβ42 oligomers and amyloid fibrils. Aβ42 in slow-flowing ISF can gain significant shear energy at or near the walls of tortuous brain ECS flow paths, promoting the formation of a shear-distorted, excited state hydrophobic Aβ42* conformation. This Aβ42* molecule could possibly be involved in one of two paths, one involving rapid adsorption to a brain membrane surface, ultimately forming neurotoxic oligomers on membranes, and the other ultimately forming plaque within the ECS flow pathways. Rising Aβ concentrations combined with shear at or near critical brain membranes are proposed as contributing factors to Alzheimer's disease neurotoxicity. These hypotheses may be applicable in other neurodegenerative diseases, including tauopathies and alpha-synucleinopathies, in which shear-distorted proteins also may form in the brain ECS.

  2. Abnormal expression of cerebrospinal fluid cation chloride cotransporters in patients with Rett syndrome.

    Directory of Open Access Journals (Sweden)

    Sofia Temudo Duarte

    Full Text Available OBJECTIVE: Rett Syndrome is a progressive neurodevelopmental disorder caused mainly by mutations in the gene encoding methyl-CpG-binding protein 2. The relevance of MeCP2 for GABAergic function was previously documented in animal models. In these models, animals show deficits in brain-derived neurotrophic factor, which is thought to contribute to the pathogenesis of this disease. Neuronal Cation Chloride Cotransporters (CCCs play a key role in GABAergic neuronal maturation, and brain-derived neurotrophic factor is implicated in the regulation of CCCs expression during development. Our aim was to analyse the expression of two relevant CCCs, NKCC1 and KCC2, in the cerebrospinal fluid of Rett syndrome patients and compare it with a normal control group. METHODS: The presence of bumetanide sensitive NKCC1 and KCC2 was analysed in cerebrospinal fluid samples from a control pediatric population (1 day to 14 years of life and from Rett syndrome patients (2 to 19 years of life, by immunoblot analysis. RESULTS: Both proteins were detected in the cerebrospinal fluid and their levels are higher in the early postnatal period. However, Rett syndrome patients showed significantly reduced levels of KCC2 and KCC2/NKCC1 ratio when compared to the control group. CONCLUSIONS: Reduced KCC2/NKCC1 ratio in the cerebrospinal fluid of Rett Syndrome patients suggests a disturbed process of GABAergic neuronal maturation and open up a new therapeutic perspective.

  3. Novel culturing platform for brain slices and neuronal cells

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya

    2015-01-01

    In this paper we demonstrate a novel culturing system for brain slices and neuronal cells, which can control the concentration of nutrients and the waste removal from the culture by adjusting the fluid flow within the device. The entire system can be placed in an incubator. The system has been...... tested successfully with brain slices and PC12 cells. The culture substrate can be modified using metal electrodes and/or nanostructures for conducting electrical measurements while culturing and for better mimicking the in vivo conditions....

  4. CSF-ctDNA SMSEQ Analysis to Tailor the Treatment of a Patient with Brain Metastases: A Case Report

    Directory of Open Access Journals (Sweden)

    Wen-Tsung  Huang

    2018-02-01

    Full Text Available Brain metastases are the most common neurological complications of adult cancers, accounting for more than half of brain tumors. The incidence of brain metastases may be increasing due to improved detection of small lesions by advanced imaging technologies. Given the fast evolution of targeted and immunotherapy regimens, it is essential to serially assess brain malignancies during the disease course for disease monitoring and tailoring of the therapeutic management. For such serial and repetitive assessment, cerebrospinal fluid (CSF could be the biological fluid of choice to supplement cytology examination for the presence or absence of CNS malignancy, as well as provide extensive information on tumor mutational profile for personalization of treatment. The case described here emphasizes the importance of CSF-ctDNA analysis with the CellMax SMSEQ technology that led to treatment adjustment resulting in clinical remission of the patient.

  5. A Finite-Volume computational mechanics framework for multi-physics coupled fluid-stress problems

    International Nuclear Information System (INIS)

    Bailey, C; Cross, M.; Pericleous, K.

    1998-01-01

    Where there is a strong interaction between fluid flow, heat transfer and stress induced deformation, it may not be sufficient to solve each problem separately (i.e. fluid vs. stress, using different techniques or even different computer codes). This may be acceptable where the interaction is static, but less so, if it is dynamic. It is desirable for this reason to develop software that can accommodate both requirements (i.e. that of fluid flow and that of solid mechanics) in a seamless environment. This is accomplished in the University of Greenwich code PHYSICA, which solves both the fluid flow problem and the stress-strain equations in a unified Finite-Volume environment, using an unstructured computational mesh that can deform dynamically. Example applications are given of the work of the group in the metals casting process (where thermal stresses cause elasto- visco-plastic distortion)

  6. Glycoblotting method allows for rapid and efficient glycome profiling of human Alzheimer's disease brain, serum and cerebrospinal fluid towards potential biomarker discovery.

    Science.gov (United States)

    Gizaw, Solomon T; Ohashi, Tetsu; Tanaka, Masakazu; Hinou, Hiroshi; Nishimura, Shin-Ichiro

    2016-08-01

    Understanding of the significance of posttranslational glycosylation in Alzheimer's disease (AD) is of growing importance for the investigation of the pathogenesis of AD as well as discovery research of the disease-specific serum biomarkers. We designed a standard protocol for the glycoblotting combined with MALDI-TOFMS to perform rapid and quantitative profiling of the glycan parts of glycoproteins (N-glycans) and glycosphingolipids (GSLs) using human AD's post-mortem samples such as brain tissues (dissected cerebral cortices such as frontal, parietal, occipital, and temporal domains), serum and cerebrospinal fluid (CSF). The structural profiles of the major N-glycans released from glycoproteins and the total expression levels of the glycans were found to be mostly similar between the brain tissues of the AD patients and those of the normal control group. In contrast, the expression levels of the serum and CSF protein N-glycans such as bisect-type and multiply branched glycoforms were increased significantly in AD patient group. In addition, the levels of some gangliosides such as GM1, GM2 and GM3 appeared to alter in the AD patient brain and serum samples when compared with the normal control groups. Alteration of the expression levels of major N- and GSL-glycans in human brain tissues, serum and CSF of AD patients can be monitored quantitatively by means of the glycoblotting-based standard protocols. The changes in the expression levels of the glycans derived from the human post-mortem samples uncovered by the standardized glycoblotting method provides potential serum biomarkers in central nervous system disorders and can contribute to the insight into the molecular mechanisms in the pathogenesis of neurodegenerative diseases and future drug discovery. Most importantly, the present preliminary trials using human post-mortem samples of AD patients suggest that large-scale serum glycomics cohort by means of various-types of human AD patients as well as the normal

  7. Network Dynamics with BrainX3: A Large-Scale Simulation of the Human Brain Network with Real-Time Interaction

    OpenAIRE

    Xerxes D. Arsiwalla; Riccardo eZucca; Alberto eBetella; Enrique eMartinez; David eDalmazzo; Pedro eOmedas; Gustavo eDeco; Gustavo eDeco; Paul F.M.J. Verschure; Paul F.M.J. Verschure

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  8. Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction

    OpenAIRE

    Arsiwalla, Xerxes D.; Zucca, Riccardo; Betella, Alberto; Martínez, Enrique, 1961-; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F. M. J.

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  9. Structural Brain Abnormalities in Successfully Treated HIV Infection: Associations With Disease and Cerebrospinal Fluid Biomarkers

    NARCIS (Netherlands)

    van Zoest, Rosan A.; Underwood, Jonathan; de Francesco, Davide; Sabin, Caroline A.; Cole, James H.; Wit, Ferdinand W.; Caan, Matthan W. A.; Kootstra, Neeltje A.; Fuchs, Dietmar; Zetterberg, Henrik; Majoie, Charles B. L. M.; Portegies, Peter; Winston, Alan; Sharp, David J.; Gisslén, Magnus; Reiss, Peter; Winston, A.; Prins, M.; Schim van der Loeff, M. F.; Schouten, J.; Schmand, B.; Geurtsen, G. J.; Sharp, D. J.; Villaudy, J.; Berkhout, B.; Gisslén, M.; Pasternak, A.; Sabin, C. A.; Guaraldi, G.; Bürkle, A.; Libert, C.; Franceschi, C.; Kalsbeek, A.; Fliers, E.; Hoeijmakers, J.; Pothof, J.; van der Valk, M.; Bisschop, P. H.; Zaheri, S.; Burger, D.; Cole, J. H.; Zikkenheiner, W.; Janssen, F. R.; Underwood, J.; Kooij, K. W.; Doyle, N.; Verbraak, F.; Demirkaya, N.; Weijer, K.; Boeser-Nunnink, B.

    2018-01-01

    Background. Brain structural abnormalities have been reported in persons living with human immunodeficiency virus (HIV; PLWH) who are receiving suppressive combination antiretroviral therapy (cART), but their pathophysiology remains unclear. Methods. We investigated factors associated with brain

  10. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment.

    Science.gov (United States)

    Walker, Andrew M; Johnston, Clifton R; Rival, David E

    2012-11-01

    Although deployed in the vasculature to expand vessel diameter and improve blood flow, protruding stent struts can create complex flow environments associated with flow separation and oscillating shear gradients. Given the association between magnitude and direction of wall shear stress (WSS) and endothelial phenotype expression, accurate representation of stent-induced flow patterns is critical if we are to predict sites susceptible to intimal hyperplasia. Despite the number of stents approved for clinical use, quantification on the alteration of hemodynamic flow parameters associated with the Gianturco Z-stent is limited in the literature. In using experimental and computational models to quantify strut-induced flow, the majority of past work has assumed blood or representative analogs to behave as Newtonian fluids. However, recent studies have challenged the validity of this assumption. We present here the experimental quantification of flow through a Gianturco Z-stent wire in representative Newtonian and non-Newtonian blood analog environments using particle image velocimetry (PIV). Fluid analogs were circulated through a closed flow loop at physiologically appropriate flow rates whereupon PIV snapshots were acquired downstream of the wire housed in an acrylic tube with a diameter characteristic of the carotid artery. Hemodynamic parameters including WSS, oscillatory shear index (OSI), and Reynolds shear stresses (RSS) were measured. Our findings show that the introduction of the stent wire altered downstream hemodynamic parameters through a reduction in WSS and increases in OSI and RSS from nonstented flow. The Newtonian analog solution of glycerol and water underestimated WSS while increasing the spatial coverage of flow reversal and oscillatory shear compared to a non-Newtonian fluid of glycerol, water, and xanthan gum. Peak RSS were increased with the Newtonian fluid, although peak values were similar upon a doubling of flow rate. The introduction of the

  11. Fluids, evaporation and precipitates at Gale Crater

    OpenAIRE

    Schwenzer, S. P.; Bridges, J. C.; Leveille, R.; Wiens, R. C.; Mangold, N.; McAdam, A.; Conrad, P.; Kelley, S. P.; Westall, F.; Martín-Torres, F.; Zorzano, M.-P.

    2015-01-01

    The Mars Science Laboratory (MSL) mission landed in Gale Crater, Mars, on 6th August 2012, and has explored the Yellowknife Bay area. The detailed mineralogical and sedimentological studies provide a unique opportunity to characterise the secondary fluids associated with this habitable environment.

  12. The brain as a "hyper-network": the key role of neural networks as main producers of the integrated brain actions especially via the "broadcasted" neuroconnectomics.

    Science.gov (United States)

    Agnati, Luigi F; Marcoli, Manuela; Maura, Guido; Woods, Amina; Guidolin, Diego

    2018-06-01

    Investigations of brain complex integrative actions should consider beside neural networks, glial, extracellular molecular, and fluid channels networks. The present paper proposes that all these networks are assembled into the brain hyper-network that has as fundamental components, the tetra-partite synapses, formed by neural, glial, and extracellular molecular networks. Furthermore, peri-synaptic astrocytic processes by modulating the perviousness of extracellular fluid channels control the signals impinging on the tetra-partite synapses. It has also been surmised that global signalling via astrocytes networks and highly pervasive signals, such as electromagnetic fields (EMFs), allow the appropriate integration of the various networks especially at crucial nodes level, the tetra-partite synapses. As a matter of fact, it has been shown that astrocytes can form gap-junction-coupled syncytia allowing intercellular communication characterised by a rapid and possibly long-distance transfer of signals. As far as the EMFs are concerned, the concept of broadcasted neuroconnectomics (BNC) has been introduced to describe highly pervasive signals involved in resetting the information handling of brain networks at various miniaturisation levels. In other words, BNC creates, thanks to the EMFs, generated especially by neurons, different assemblages among the various networks forming the brain hyper-network. Thus, it is surmised that neuronal networks are the "core components" of the brain hyper-network that has as special "nodes" the multi-facet tetra-partite synapses. Furthermore, it is suggested that investigations on the functional plasticity of multi-partite synapses in response to BNC can be the background for a new understanding and perhaps a new modelling of brain morpho-functional organisation and integrative actions.

  13. Current approaches to enhance CNS delivery of drugs across the brain barriers

    Directory of Open Access Journals (Sweden)

    Lu CT

    2014-05-01

    Full Text Available Cui-Tao Lu,1 Ying-Zheng Zhao,2,3 Ho Lun Wong,4 Jun Cai,5 Lei Peng,2 Xin-Qiao Tian1 1The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China; 2Hainan Medical College, Haikou City, Hainan Province, People’s Republic of China; 3College of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, People’s Republic of China; 4School of Pharmacy, Temple University, Philadelphia, PA, USA; 5Departments of Pediatrics and Anatomical Sciences and Neurobiology, University of Louisville School of Medicine Louisville, KY, USA Abstract: Although many agents have therapeutic potentials for central nervous system (CNS diseases, few of these agents have been clinically used because of the brain barriers. As the protective barrier of the CNS, the blood–brain barrier and the blood–cerebrospinal fluid barrier maintain the brain microenvironment, neuronal activity, and proper functioning of the CNS. Different strategies for efficient CNS delivery have been studied. This article reviews the current approaches to open or facilitate penetration across these barriers for enhanced drug delivery to the CNS. These approaches are summarized into three broad categories: noninvasive, invasive, and miscellaneous techniques. The progresses made using these approaches are reviewed, and the associated mechanisms and problems are discussed. Keywords: drug delivery system, blood–brain barrier (BBB, central nervous system, brain-targeted therapy, cerebrospinal fluid (CSF

  14. Contrast media and the brain - the basis of computed tomography and magnetic resonance imaging enhancement: a review

    International Nuclear Information System (INIS)

    Sage, M.R.; Wilson, A.J.; Scroop, R.

    2000-01-01

    The blood, cerebrospinal fluid (CSF), and extracellular fluid of the parenchyma form the fluid compartments of the brain with three interfaces between, namely the blood-brain interface (BBB), the CSF-brain interface, and the blood-CSF interface. When either water-soluble iodinated contrast media (CM) or water-soluble paramagnetic CM are injected intravenously, they are rapidly brought into contact with both the BBB and the blood-CSF interface. It is the behaviour of the water-soluble CM at these two interfaces that determines the normal and abnormal enhancement patterns demonstrated by either CT or MRI. Unlike lipophilic solutes, current iodinated and MRI contrast media all have high affinities for plasma water, low affinities for plasma proteins and, in particular, extremely low partition coefficients. Therefore they do not penetrate the normal BBB. On the other hand, radiopharmaceuticals used in positron emission tomography (PET) and single photon emission computed tomography (SPECT) to demonstrate regional cerebral blood flow are highly lipophilic and readily cross the intact BBB completely during the first pass through the cerebral vasculature. It is the inability of the current iodinated and MRI contrast media to cross the normal intact BBB that is the basis of their use in CT and MRI studies of the brain. Copyright (1999) Blackwell Science Pty Ltd

  15. Fluid mechanics in fluids at rest.

    Science.gov (United States)

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  16. Fluid-cooled heat sink for use in cooling various devices

    Science.gov (United States)

    Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth; Narumanchi, Sreekant

    2017-09-12

    The disclosure provides a fluid-cooled heat sink having a heat transfer base, a shroud, and a plurality of heat transfer fins in thermal communication with the heat transfer base and the shroud, where the heat transfer base, heat transfer fins, and the shroud form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop of the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.

  17. The lymphatic mechanisms of brain cleaning: application of optical coherence tomography and fluorescence microscopy

    Science.gov (United States)

    Glushkovskaya-Semyachkina, O.; Abdurashitov, A.; Fedosov, I.; Namykin, A.; Pavlov, A.; Shirokov, A.; Shushunova, N.; Sindeeva, O.; Khorovodov, A.; Ulanova, M.; Sagatova, V.; Agranovich, I.; Bodrova, A.; Kurths, J.

    2018-04-01

    Here we studied the role of cerebral lymphatic system in the brain clearing using intraparenchymal injection of Evans Blue and gold nanorods assessed by optical coherent tomography and fluorescence microscopy. Our data clearly show that the cerebral lymphatic system plays an important role in the brain cleaning via meningeal lymphatic vessels but not cerebral veins. Meningeal lymphatic vessels transport fluid from the brain into the deep cervical node, which is the first anatomical "station" for lymph outflow from the brain. The lymphatic processes underlying brain clearing are more slowly vs. peripheral lymphatics. These results shed light on the lymphatic mechanisms responsible for brain clearing as well as interaction between the intra- and extracranial lymphatic compartment.

  18. Cerebrospinal Fluid Biomarkers in Alzheimer’s Disease—From Brain Starch to Bench and Bedside

    Directory of Open Access Journals (Sweden)

    Matthias Pawlowski

    2017-07-01

    Full Text Available Alzheimer’s disease is the most common cause of dementia. Over the last three decades, research has advanced dramatically and provided a detailed understanding of the molecular events underlying the pathogenesis of Alzheimer’s disease. In parallel, assays for the detection of biomarkers that reflect the typical Alzheimer’s disease-associated pathology have been developed and validated in myriads of clinical studies. Such biomarkers complement clinical diagnosis and improve diagnostic accuracy. The use of biomarkers will become even more important with the advent of disease-modifying therapies. Such therapies will likely be most beneficial when administered early in the disease course. Here, we summarise the development of the core Alzheimer’s disease cerebrospinal fluid biomarkers: amyloid-β and tau. We provide an overview of their role in cellular physiology and Alzheimer’s disease pathology, and embed their development as cerebrospinal fluid biomarkers into the historical context of Alzheimer’s disease research. Finally, we summarise recommendations for their use in clinical practice, and outline perspectives for novel cerebrospinal fluid candidate biomarkers.

  19. Fluid dynamics an introduction

    CERN Document Server

    Rieutord, Michel

    2015-01-01

    This book is dedicated to readers who want to learn fluid dynamics from the beginning. It assumes a basic level of mathematics knowledge that would correspond to that of most second-year undergraduate physics students and examines fluid dynamics from a physicist’s perspective. As such, the examples used primarily come from our environment on Earth and, where possible, from astrophysics. The text is arranged in a progressive and educational format, aimed at leading readers from the simplest basics to more complex matters like turbulence and magnetohydrodynamics. Exercises at the end of each chapter help readers to test their understanding of the subject (solutions are provided at the end of the book), and a special chapter is devoted to introducing selected aspects of mathematics that beginners may not be familiar with, so as to make the book self-contained.

  20. Variations of cytology, IL-8 and TNF-α of bronchoalveolar lavaage fluid after fiberoptic bronchoscopy in the patients with severe traumatic brain injury

    International Nuclear Information System (INIS)

    Zhu Weibing; Chu Chengchun; Zhang Yongjun; Gao Xiang; Liu Yajun; Tang Yanfen

    2007-01-01

    Objective: To investigate variations of cytology, IL-8 and TNF-α of bronchoalveolar lavage fluid (BALF) after fiberoptic bronchoscopy (FOB) in patients with severe traumatic brain injury. Methods: Sixty-eight patients with severe traumatic brain injury were divided into two groups: the FOB group and the control group. variations of cytology in BALF were observed by microscope, and the levels of IL-8 and TNF-α were analyzed by radioimmunoassay (RIA). Results: Compared with the control group, the counts of cells of BALF were significantly lower at the 7th and 9th day after treatment in the FOB group (P<0.01, respectively); the percentage of polymorphonuclear neutrophils (PMN) were significantly lower at the 5th, 7th, 9th day in the FOB group (P<0.01, respectively); the level of IL-8 was significantly lower at the 5th, 7th, 9th day in the FOB group (P<0.01, respectively); the level of TNF-α was significantly lower at the 5th , 7th, 9th day in the FOB group (P<0.01, respectively). Moreover, the level of IL-8 was positively correlated with the count of cells and the percentage of PMN of BALF (r=0.979, 0.982, P<0.01, respectively), and the level of TNF-α was also positively correlated with the count of cells and the percentage of PMN of BALF(r=0.953, 0.949, P<0.01, respectively). Conclusion: FOB could play an important role in ameliorating the inflammation of airway in the patients with severe traumatic brain injury, moreover, the level of IL-8 and TNF-α could reflect the status of inflammation of airway. (authors)

  1. Clearing Extracellular Alpha-Synuclein from Cerebrospinal Fluid: A New Therapeutic Strategy in Parkinson’s Disease

    Science.gov (United States)

    Padilla-Zambrano, Huber S.; Tomás-Zapico, Cristina; García, Benjamin Fernández

    2018-01-01

    This concept article aims to show the rationale of targeting extracellular α-Synuclein (α-Syn) from cerebrospinal fluid (CSF) as a new strategy to remove this protein from the brain in Parkinson’s disease (PD). Misfolding and intracellular aggregation of α-synuclein into Lewy bodies are thought to be crucial in the pathogenesis of PD. Recent research has shown that small amounts of monomeric and oligomeric α-synuclein are released from neuronal cells by exocytosis and that this extracellular alpha-synuclein contributes to neurodegeneration, progressive spreading of alpha-synuclein pathology, and neuroinflammation. In PD, extracellular oligomeric-α-synuclein moves in constant equilibrium between the interstitial fluid (ISF) and the CSF. Thus, we expect that continuous depletion of oligomeric-α-synuclein in the CSF will produce a steady clearance of the protein in the ISF, preventing transmission and deposition in the brain. PMID:29570693

  2. Fundamentals of Geophysical Fluid Dynamics

    Science.gov (United States)

    McWilliams, James C.

    2006-07-01

    Earth's atmosphere and oceans exhibit complex patterns of fluid motion over a vast range of space and time scales. These patterns combine to establish the climate in response to solar radiation that is inhomogeneously absorbed by the materials comprising air, water, and land. Spontaneous, energetic variability arises from instabilities in the planetary-scale circulations, appearing in many different forms such as waves, jets, vortices, boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the science of all these types of fluid motion. This textbook is a concise and accessible introduction to GFD for intermediate to advanced students of the physics, chemistry, and/or biology of Earth's fluid environment. The book was developed from the author's many years of teaching a first-year graduate course at the University of California, Los Angeles. Readers are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations. Covers the essential GFD required for atmospheric science and oceanography courses Mathematically rigorous, concise coverage of basic theory and applications to both oceans and atmospheres Author is a world expert; this book is based on the course he has taught for many years Exercises are included, with solutions available to instructors from solutions@cambridge.org

  3. Influence of Landmarks on Wayfinding and Brain Connectivity in Immersive Virtual Reality Environment

    Directory of Open Access Journals (Sweden)

    Greeshma Sharma

    2017-07-01

    the LM+ condition, exhibiting additional wiring cost associated with the cognitive demands when no landmark was available. These findings reveal pivotal role of the left-hemispheric region (especially, parietal cortex, which indicates the integration of available sensory cues and current memory requirements to encode contextual information of landmarks. Overall, this research helps to understand the role of brain regions and processes that are utilized when people use landmarks in navigating maze-like environments.

  4. CD11c-positive cells from brain, spleen, lung, and liver exhibit site-specific immune phenotypes and plastically adapt to new environments.

    Science.gov (United States)

    Immig, Kerstin; Gericke, Martin; Menzel, Franziska; Merz, Felicitas; Krueger, Martin; Schiefenhövel, Fridtjof; Lösche, Andreas; Jäger, Kathrin; Hanisch, Uwe-Karsten; Biber, Knut; Bechmann, Ingo

    2015-04-01

    The brain's immune privilege has been also attributed to the lack of dendritic cells (DC) within its parenchyma and the adjacent meninges, an assumption, which implies maintenance of antigens rather than their presentation in lymphoid organs. Using mice transcribing the green fluorescent protein under the promoter of the DC marker CD11c (itgax), we identified a juxtavascular population of cells expressing this DC marker and demonstrated their origin from bone marrow and local microglia. We now phenotypically compared this population with CD11c/CD45 double-positive cells from lung, liver, and spleen in healthy mice using seven-color flow cytometry. We identified unique, site-specific expression patterns of F4/80, CD80, CD86, CX3CR1, CCR2, FLT3, CD103, and MHC-II. Furthermore, we observed the two known CD45-positive populations (CD45(high) and CD45(int) ) in the brain, whereas liver, lung, and spleen exhibited a homogeneous CD45(high) population. CD11c-positive microglia lacked MHC-II expression and CD45(high) /CD11c-positive cells from the brain have a lower percentage of MHC-II-positive cells. To test whether phenotypical differences are fixed by origin or specifically develop due to environmental factors, we transplanted brain and spleen mononuclear cells on organotypic slice cultures from brain (OHSC) and spleen (OSSC). We demonstrate that adaption and ramification of MHC-II-positive splenocytes is paralleled by down-regulation of MHC-II, whereas brain-derived mononuclear cells neither ramified nor up-regulated MHC-II in OSSCs. Thus, brain-derived mononuclear cells maintain their MHC-II-negative phenotype within the environment of an immune organ. Intraparenchymal CD11c-positive cells share immunophenotypical characteristics of DCs from other organs but remain unique for their low MHC-II expression. © 2014 Wiley Periodicals, Inc.

  5. Study of brain atrophy using X-ray computed tomography

    International Nuclear Information System (INIS)

    Kawabata, Masayoshi

    1987-01-01

    Cerebrospinal fluid space-cranial cavity ratio (CCR) of 811 subjects with no brain damage were investigated using X-ray computed tomography. Brain volume of healthy adults aged 20 - 59 years was almost constant and decreased gradually after 60 years. CCR of men aged 20 - 49 years kept constant value and increased with aging after 50 years. CCR of women aged 20 - 59 years kept equal value and CCR increased with aging after 60 years. Brain atrophy with aging was investigated in this study also. In retrospective study, CCR of patients in any age diagnosed brain atrophy in daily CT reports were beyond the normal range of CCR of healthy subjects aged 20 - 49 years. In 48 patients with Parkinson's disease, almost of CCR of them were included within normal range of CCR in age-matched control. (author)

  6. Experiments and Modeling of G-Jitter Fluid Mechanics

    Science.gov (United States)

    Leslie, F. W.; Ramachandran, N.; Whitaker, Ann F. (Technical Monitor)

    2002-01-01

    While there is a general understanding of the acceleration environment onboard an orbiting spacecraft, past research efforts in the modeling and analysis area have still not produced a general theory that predicts the effects of multi-spectral periodic accelerations on a general class of experiments nor have they produced scaling laws that a prospective experimenter can use to assess how an experiment might be affected by this acceleration environment. Furthermore, there are no actual flight experimental data that correlates heat or mass transport with measurements of the periodic acceleration environment. The present investigation approaches this problem with carefully conducted terrestrial experiments and rigorous numerical modeling for better understanding the effect of residual gravity and gentler on experiments. The approach is to use magnetic fluids that respond to an imposed magnetic field gradient in much the same way as fluid density responds to a gravitational field. By utilizing a programmable power source in conjunction with an electromagnet, both static and dynamic body forces can be simulated in lab experiments. The paper provides an overview of the technique and includes recent results from the experiments.

  7. Brain-Based Education: Its Pedagogical Implications and Research Relevance

    Science.gov (United States)

    Laxman, Kumar; Chin, Yap Kueh

    2010-01-01

    The brain, being the organ of learning, must be understood if classrooms are to be places of meaningful learning. Understanding the brain has the potential to alter the foundation of education, transform traditional classrooms to interactive learning environments and promote better instructional approaches amongst teachers. Brain-based education…

  8. FluidCam 1&2 - UAV-based Fluid Lensing Instruments for High-Resolution 3D Subaqueous Imaging and Automated Remote Biosphere Assessment of Reef Ecosystems

    Science.gov (United States)

    Chirayath, V.; Instrella, R.

    2016-02-01

    We present NASA ESTO FluidCam 1 & 2, Visible and NIR Fluid-Lensing-enabled imaging payloads for Unmanned Aerial Vehicles (UAVs). Developed as part of a focused 2014 earth science technology grant, FluidCam 1&2 are Fluid-Lensing-based computational optical imagers designed for automated 3D mapping and remote sensing of underwater coastal targets from airborne platforms. Fluid Lensing has been used to map underwater reefs in 3D in American Samoa and Hamelin Pool, Australia from UAV platforms at sub-cm scale, which has proven a valuable tool in modern marine research for marine biosphere assessment and conservation. We share FluidCam 1&2 instrument validation and testing results as well as preliminary processed data from field campaigns. Petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk reefs demonstrate broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to improving bathymetry data for physical oceanographic models and understanding climate change's impact on coastal zones, global oxygen production, carbon sequestration.

  9. A case of burn encephalopathy with reversible brain atrophy on brain computed tomography (CT)

    International Nuclear Information System (INIS)

    Hirose, Hisaaki; Suzuki, Koh-ichirou; Nakamura, Yoshihiro; Kido, Kun-ichi; Sato, Masaharu; Fujii, Chiho; Kohama, Akitsugu

    1985-01-01

    We present an interesting case of burn encephalopathy. The patient is a three-year-old girl with second to third degree and 30 % scald burn. She developed central nervous symptom on the second day with high fever and systemic convulsions and was transferred to our clinic on the third day from a local hospital. Her level of consciousness was 30 to 100 (3-3-9 formula) and she developed extra-pyramidal involuntary movement; these neurological signs persisted untill 66th day when she spoke for the first time since admission. Her EEG showed diffuse brain dysfunction and CT showed marked brain atrophy. She began to improve after around 50 days systematically as well as neurologically and was discharged after four months. EEG, CT findings and neurological signs were normal 1.5 years later. We could not find a case of reversible brain atrophy in the reports on burn encephalopathy or other neurological disorders except for the cases of long-term steroid administration on autoimmune diseases or ACTH therapy on infantile spasm. In our case, the reversible brain atrophy might be caused by the rise of endogenous steroid under burn stress, or transient malfunction of cerebro-spinal fluid absorption, or some other causes. (author)

  10. Brain CT and MRI findings in fat embolism syndrome

    International Nuclear Information System (INIS)

    Suzuki, Shin; Hayashi, Takaki; Ri, Kyoshichi

    1996-01-01

    To elucidate brain CT and MRI findings in fat embolism syndrome (FES), we retrospectively analyzed images from 5 patients with FES during the acute and subacute stages. Brain CT examinations demonstrated brain edema in 2 patients and transient spotty low density lesions in 2 patients. Three patients showed no abnormalities. Brain MRI, however, showed brain abnormalities in all patients during the acute stages. These were revealed as spotty high signal intensity lesions on T2WI, and some showed low intensity on T1WI. These spotty lesions were considered to reflect edematous fluid occurring as a result of the unique pathophysiological condition of FES. While the spotty high signal intensity lesions on T2WI were distributed in the cerebrum, cerebellum, brain stem, thalamus, basal ganglia, internal capsule and corpus callosum, cerebral and cerebellar spotty lesions were characteristically located along the boundary zones of the major vascular territories. This characteristic location might be induced by a hypoxic brain condition in FES because the numerous fat globules present in this condition can block entire brain capillaries. This characteristic signal location on T2WI is a useful indicator for differentiating FES from the primary intra-axial brain injury in patients with multifocal trauma. (author)

  11. Nanowired Drug Delivery Across the Blood-Brain Barrier in Central Nervous System Injury and Repair.

    Science.gov (United States)

    Sharma, Aruna; Menon, Preeti; Muresanu, Dafin F; Ozkizilcik, Asya; Tian, Z Ryan; Lafuente, José V; Sharma, Hari S

    2016-01-01

    The blood-brain barrier (BBB) is a physiological regulator of transport of essential items from blood to brain for the maintenance of homeostasis of the central nervous system (CNS) within narrow limits. The BBB is also responsible for export of harmful or metabolic products from brain to blood to keep the CNS fluid microenvironment healthy. However, noxious insults to the brain caused by trauma, ischemia or environmental/chemical toxins alter the BBB function to small as well as large molecules e.g., proteins. When proteins enter the CNS fluid microenvironment, development of brain edema occurs due to altered osmotic balance between blood and brain. On the other hand, almost all neurodegenerative diseases and traumatic insults to the CNS and subsequent BBB dysfunction lead to edema formation and cell injury. To treat these brain disorders suitable drug therapy reaching their brain targets is needed. However, due to edema formation or only a focal disruption of the BBB e.g., around brain tumors, many drugs are unable to reach their CNS targets in sufficient quantity. This results in poor therapeutic outcome. Thus, new technology such as nanodelivery is needed for drugs to reach their CNS targets and be effective. In this review, use of nanowires as a possible novel tool to enhance drug delivery into the CNS in various disease models is discussed based on our investigations. These data show that nanowired delivery of drugs may have superior neuroprotective ability to treat several CNS diseases effectively indicating their role in future therapeutic strategies.

  12. Quantification of Temozolomide in Nonhuman Primate Fluids by Isocratic Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry to Study Brain Tissue Penetration Following Intranasal or Intravenous Delivery

    Directory of Open Access Journals (Sweden)

    Cody J. Peer

    2016-02-01

    Full Text Available A sensitive and selective ultra-high performance liquid chromatography-tandem mass spectrometric method was developed for the quantification of temozolomide (TMZ in nonhuman primate (NHP plasma, cerebrospinal fluid (CSF, and brain extracellular fluid (ECF following microdialysis. Ethyl acetate was used to extract the plasma and CSF samples, using theophylline as the internal standard (IS. ECF samples were diluted with acetonitrile prior to analysis. TMZ was separated on a Waters UPLC® BEH C18 column with an isocratic mobile phase of ammonium acetate (10 mM-0.1% formic acid/acetonitrile (30:70, v/v in a positive-ion multiple reaction monitoring mode (m/z 195.5→137.6 for TMZ; m/z 181.5→124.2 for IS. The retention time of TMZ and theophylline was 0.45 min with a total run time of 2.5 min. The method was validated over the range from 5–2000 ng/mL in NHP plasma, CSF, and ECF with respect to linearity, accuracy, precision, selectivity, and stability. This method was successfully applied toward the measurement of pharmacokinetic samples following various routes of drug administration.

  13. Pathways for insulin access to the brain: the role of the microvascular endothelial cell.

    Science.gov (United States)

    Meijer, Rick I; Gray, Sarah M; Aylor, Kevin W; Barrett, Eugene J

    2016-11-01

    Insulin affects multiple important central nervous system (CNS) functions including memory and appetite, yet the pathway(s) by which insulin reaches brain interstitial fluid (bISF) has not been clarified. Recent studies demonstrate that to reach bISF, subarachnoid cerebrospinal fluid (CSF) courses through the Virchow-Robin space (VRS) which sheaths penetrating pial vessels down to the capillary level. Whether insulin predominantly enters the VRS and bISF by local transport through the blood-brain barrier, or by being secreted into the CSF by the choroid plexus, is unknown. We injected 125 I-TyrA14-insulin or regular insulin intravenously and compared the rates of insulin reaching subarachnoid CSF with its plasma clearance by brain tissue samples (an index of microvascular endothelial cell binding/uptake/transport). The latter process was more than 40-fold more rapid. We then showed that selective insulin receptor blockade or 4 wk of high-fat feeding each inhibited microvascular brain 125 I-TyrA14-insulin clearance. We further confirmed that 125 I-TyrA14-insulin was internalized by brain microvascular endothelial cells, indicating that the in vivo tissue association reflected cellular transport, not simply microvascular tracer binding. Copyright © 2016 the American Physiological Society.

  14. Age-related brain atrophy and mental deterioration - a study with computed tomography

    International Nuclear Information System (INIS)

    Ito, M.; Hatazawa, J.; Yamaura, H.; Matsuzawa, T.

    1981-01-01

    The relation of brain atrophy measured with computed tomography (CT) to mental deterioration on living people was studied. A newly improved technique for quantitative measurement of brain atrophy was developed. The pixels inside the head slices were divided into three parts; brain skull, and cerebrospinal fluid according to their CT number. The volume of brain, CSF, and cranial cavity were calculated by counting the number of pixels of each tissue. Results from 130 normal brains showed that the CSF volume was constant at about 16 ml through 20-39 years old. After 40 years the mean CSF volume increased drastically and reached 71 ml in the seventies. The volume of the brain was standardized for comparison between different-sized heads (brain volume index: BVI). The mean BVI decreased with statistical significance after 40 years of age. Mental function of these persons were evaluated using Hasegawa's dementia rating scale for the elderly. Progression of brain atrophy accompanied loss of mental activities (p<0.01). (author)

  15. Brain core temperature of patients with mild traumatic brain injury as assessed by DWI-thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Tazoe, Jun; Yamada, Kei; Akazawa, Kentaro [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science, Kyoto City, Kyoto (Japan); Sakai, Koji [Kyoto University, Department of Human Health Science, Graduate School of Medicine, Kyoto (Japan); Mineura, Katsuyoshi [Kyoto Prefectural University of Medicine, Department of Neurosurgery, Graduate School of Medical Science, Kyoto City, Kyoto (Japan)

    2014-10-15

    The aim of this study was to assess the brain core temperature of patients with mild traumatic brain injury (mTBI) using a noninvasive temperature measurement technique based on the diffusion coefficient of the cerebrospinal fluid. This retrospective study used the data collected from April 2008 to June 2011. The patient group comprised 20 patients with a Glasgow Coma Scale score of 14 or 15 who underwent magnetic resonance imaging within 30 days after head trauma. The normal control group comprised 14 subjects who volunteered for a brain checkup (known in Japan as ''brain dock''). We compared lateral ventricular (LV) temperature between patient and control groups. Follow-up studies were performed for four patients. LV temperature measurements were successfully performed for both patients and controls. Mean (±standard deviation) measured LV temperature was 36.9 ± 1.5 C in patients, 38.7 ± 1.8 C in follow-ups, and 37.9 ± 1.2 C in controls, showing a significant difference between patients and controls (P = 0.017). However, no significant difference was evident between patients and follow-ups (P = 0.595) or between follow-ups and controls (P = 0.465). A reduction in brain core temperature was observed in patients with mTBI, possibly due to a global decrease in metabolism. (orig.)

  16. Longitudinal genetic analysis of brain volumes in normal elderly male twins

    OpenAIRE

    Lessov-Schlaggar, Christina N.; Hardin, Jill; DeCarli, Charles; Krasnow, Ruth E.; Reed, Terry; Wolf, Philip A.; Swan, Gary E.; Carmelli, Dorit

    2010-01-01

    This study investigated the role of genetic and environmental influences on individual differences in brain volumes measured at two time points in normal elderly males from the National Heart, Lung, and Blood Institute Twin Study. The MRI scans were conducted four years apart on 33 monozygotic and 33 dizygotic male twin pairs, aged 68 to 77 years when first scanned. Volumetric measures of total brain and total cerebrospinal fluid were significantly heritable at baseline (over 70%). For both v...

  17. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haar, Peter J [Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA (United States); Broaddus, William C; Chen Zhijian; Gillies, George T [Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA (United States); Fatouros, Panos P; Corwin, Frank D, E-mail: wbroaddus@mcvh-vcu.ed [Department of Radiology, Virginia Commonwealth University, Richmond, VA (United States)

    2010-06-21

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s){sup -1} in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  18. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    Science.gov (United States)

    Haar, Peter J.; Broaddus, William C.; Chen, Zhi-jian; Fatouros, Panos P.; Gillies, George T.; Corwin, Frank D.

    2010-06-01

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s)-1 in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  19. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    International Nuclear Information System (INIS)

    Haar, Peter J; Broaddus, William C; Chen Zhijian; Gillies, George T; Fatouros, Panos P; Corwin, Frank D

    2010-01-01

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s) -1 in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  20. In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate.

    Science.gov (United States)

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby; Nielsen, Carsten Uhd; Brodin, Birger

    2012-05-01

    The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial resistance values of 1014 ± 70 Ω cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids accumulated in the cocultures when applied from the abluminal side. The transcellular transport kinetics were characterized with a K(m) of 69 ± 15 μM and a J(max) of 44 ± 3.1 pmol min(-1) cm(-2) for L-aspartate and a K(m) of 138 ± 49 μM and J(max) of 28 ± 3.1 pmol min(-1) cm(-2) for L-glutamate. The EAAT inhibitor, DL-threo-ß-Benzyloxyaspartate, inhibited transendothelial brain-to-blood fluxes of L-glutamate and L-aspartate. Expression of EAAT-1 (Slc1a3), -2 (Slc1a2), and -3 (Slc1a1) mRNA in the endothelial cells was confirmed by conventional PCR and localization of EAAT-1 and -3 in endothelial cells was shown with immunofluorescence. Overall, the findings suggest that the blood-brain barrier itself may participate in regulating brain L-glutamate concentrations. Copyright © 2012 Wiley Periodicals, Inc.

  1. ViRPET--combination of virtual reality and PET brain imaging

    Science.gov (United States)

    Majewski, Stanislaw; Brefczynski-Lewis, Julie

    2017-05-23

    Various methods, systems and apparatus are provided for brain imaging during virtual reality stimulation. In one example, among others, a system for virtual ambulatory environment brain imaging includes a mobile brain imager configured to obtain positron emission tomography (PET) scans of a subject in motion, and a virtual reality (VR) system configured to provide one or more stimuli to the subject during the PET scans. In another example, a method for virtual ambulatory environment brain imaging includes providing stimulation to a subject through a virtual reality (VR) system; and obtaining a positron emission tomography (PET) scan of the subject while moving in response to the stimulation from the VR system. The mobile brain imager can be positioned on the subject with an array of imaging photodetector modules distributed about the head of the subject.

  2. Perspectives in Fluid Dynamics

    Science.gov (United States)

    Batchelor, G. K.; Moffatt, H. K.; Worster, M. G.

    2002-12-01

    With applications ranging from modelling the environment to automotive design and physiology to astrophysics, conventional textbooks cannot hope to give students much information on what topics in fluid dynamics are currently being researched, or how to choose between them. This book rectifies matters. It consists of eleven chapters that introduce and review different branches of the subject for graduate-level courses, or for specialists seeking introductions to other areas. Hb ISBN (2001): 0-521-78061-6

  3. Mitochondrial targeted neuron focused genes in hippocampus of rats with traumatic brain injury.

    Science.gov (United States)

    Sharma, Pushpa; Su, Yan A; Barry, Erin S; Grunberg, Neil E; Lei, Zhang

    2012-09-01

    Mild traumatic brain injury (mTBI) represents a major health problem in civilian populations as well as among the military service members due to (1) lack of effective treatments, and (2) our incomplete understanding about the progression of secondary cell injury cascades resulting in neuronal cell death due to deficient cellular energy metabolism and damaged mitochondria. The aim of this study was to identify and delineate the mitochondrial targeted genes responsible for altered brain energy metabolism in the injured brain. Rats were either grouped into naïve controls or received lateral fluid percussion brain injury (2-2.5 atm) and followed up for 7 days. Rats were either grouped into naïve controls or received lateral fluid percussion brain injury (2-2.5 atm) and followed for 7 days. The severity of brain injury was evaluated by the neurological severity scale-revised (NSS-R) at 3 and 5 days post TBI and immunohistochemical analyses at 7 days post TBI. The expression profiles of mitochondrial-targeted genes across the hippocampus from TBI and naïe rats were also examined by oligo-DNA microarrays. NSS-R scores of TBI rats (5.4 ± 0.5) in comparison to naïe rats (3.9 ± 0.5) and H and E staining of brain sections suggested a mild brain injury. Bioinformatics and systems biology analyses showed 31 dysregulated genes, 10 affected canonical molecular pathways including a number of genes involved in mitochondrial enzymes for oxidative phosphorylation, mitogen-activated protein Kinase (MAP), peroxisome proliferator-activated protein (PPAP), apoptosis signaling, and genes responsible for long-term potentiation of Alzheimer's and Parkinson's diseases. Our results suggest that dysregulated mitochondrial-focused genes in injured brains may have a clinical utility for the development of future therapeutic strategies aimed at the treatment of TBI.

  4. BRAIN DEATH DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    Calixto Machado

    2009-10-01

    Full Text Available Brain death (BD diagnosis should be established based on the following set of principles, i.e. excluding major confusing factors, identifying the cause of coma, determining irreversibility, and precisely testing brainstem reflexes at all levels of the brainstem. Nonetheless, most criteria for BD diagnosis do not mention that this is not the only way of diagnosing death. The Cuban Commission for the Determination of Death has emphasized the aforesaid three possible situations for diagnosing death: a outside intensive care environment (without life support physicians apply the cardio-circulatory and respiratory criteria; b in forensic medicine circumstances, physicians utilize cadaveric signs (they do not even need a stethoscope; c in the intensive care environment (with life support when cardiorespiratory arrest occurs physicians utilize the cardio-circulatory and respiratory criteria. This methodology of diagnosing death, based on finding any of the death signs, is not related to the concept that there are different types of death. The irreversible loss of cardio-circulatory and respiratory functions can only cause death when ischemia and anoxia are prolonged enough to produce an irreversible destruction of the brain. The sign of irreversible loss of brain functions, that is to say BD diagnosis, is fully reviewed.

  5. Pressure measurements in harsh environments

    International Nuclear Information System (INIS)

    Cook, C.W.; Ames, E.S.

    1979-01-01

    A fluid coupled plate (FCP) gage was designed which allows pressure measurements to be made in harsh environments (including debris) using conventional pressure transducers. The pressure transducer is isolated by means of a rigid force plate which is supported by a bellows having one corrugation. This portion of the gage is machined from a single piece of material. The interior of the gage is filled with a phenol fluid which has a low compressibility

  6. LRP1 in Brain Vascular Smooth Muscle Cells Mediates Local Clearance of Alzheimer's Amyloid-β

    OpenAIRE

    Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun

    2012-01-01

    Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer’s disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-...

  7. Computational fluid dynamics (CFD) simulation of CO2 emission from a thermal power plant in an urban environment.

    Science.gov (United States)

    Toja-Silva, Francisco; Chen, Jia; Hachinger, Stephan

    2017-04-01

    Climate change, a societal challenge for the European Union, is affecting all regions in Europe and has a profound impact on society and environment. It is now clear that the present global warming period is due to the strong anthropogenic greenhouse gas (GHG) emission, occurring at an unprecedented rate. Therefore, the identification and control of the greenhouse gas sources has a great relevance. Since the GHG emissions from cities are the largest human contribution to climate change, the present investigation focuses on the urban environment. Bottom-up annual emission inventories are compiled for most countries. However, a rigorous approach requires to perform experimental measurements in order to verify the official estimates. Measurements of column-averaged dry-air mole fractions of GHG (XGHG) can be used for this. To comprehensively detect and quantify GHG emission sources, these punctual column data, however, have to be extended to the surrounding urban map, requiring a deep understanding of the gas transport. The resulting emission estimation will serve several practical purposes, e.g. the verification of official emission rates and the determination of trends in urban emissions. They will enable the administration to make targeted and economically efficient decisions about mitigation options, and help to stop unintentional and furtive releases. With this aim, this investigation presents a completely new approach to the analysis of the carbon dioxide (CO2) emissions from fossil fuel thermal power plants in urban environments by combining differential column measurements with computational fluid dynamics (CFD) simulations in order to deeply understand the experimental conditions. The case study is a natural gas-fueled cogeneration (combined heat and power, CHP) thermal power plant inside the city of Munich (Germany). The software used for the simulations (OpenFOAM) was modified in order to use the most advanced RANS turbulence modeling (i.e. Durbin) and

  8. Introduction to thermal and fluid engineering

    CERN Document Server

    Kraus, Allan D; Aziz, Abdul; Ghajar, Afshin J

    2011-01-01

    The Thermal/Fluid Sciences: Introductory ConceptsThermodynamicsFluid MechanicsHeat TransferEngineered Systems and ProductsHistorical DevelopmentThe Thermal/Fluid Sciences and the EnvironmentThermodynamics: Preliminary Concepts and DefinitionsThe Study of ThermodynamicsSome DefinitionsDimensions and UnitsDensity and Related PropertiesPressureTemperature and the Zeroth Law of ThermodynamicsProblem-Solving MethodologyEnergy and the First Law of ThermodynamicsKinetic, Potential, and Internal EnergyWorkHeatThe First Law of ThermodynamicsThe Energy Balance for Closed SystemsThe Ideal Gas ModelIdeal Gas Enthalpy and Specific HeatsProcesses of an Ideal GasProperties of Pure, Simple Compressible SubstancesThe State PostulateP-v-T RelationshipsThermodynamic Property DataThe T-s and h-s DiagramsReal Gas BehaviorEquations of StateThe Polytropic Process for an Ideal GasControl Volume Mass and Energy Analysis The Control VolumeConservation of MassConservation of Energy for a Control VolumeSpecific Heats of Incompressible S...

  9. Incidence of Brain Atrophy and Decline in Mini-Mental State Examination Score After Whole-Brain Radiotherapy in Patients With Brain Metastases: A Prospective Study

    International Nuclear Information System (INIS)

    Shibamoto, Yuta; Baba, Fumiya; Oda, Kyota; Hayashi, Shinya; Kokubo, Masaki; Ishihara, Shun-Ichi; Itoh, Yoshiyuki; Ogino, Hiroyuki; Koizumi, Masahiko

    2008-01-01

    Purpose: To determine the incidence of brain atrophy and dementia after whole-brain radiotherapy (WBRT) in patients with brain metastases not undergoing surgery. Methods and Materials: Eligible patients underwent WBRT to 40 Gy in 20 fractions with or without a 10-Gy boost. Brain magnetic resonance imaging or computed tomography and Mini-Mental State Examination (MMSE) were performed before and soon after radiotherapy, every 3 months for 18 months, and every 6 months thereafter. Brain atrophy was evaluated by change in cerebrospinal fluid-cranial ratio (CCR), and the atrophy index was defined as postradiation CCR divided by preradiation CCR. Results: Of 101 patients (median age, 62 years) entering the study, 92 completed WBRT, and 45, 25, and 10 patients were assessable at 6, 12, and 18 months, respectively. Mean atrophy index was 1.24 ± 0.39 (SD) at 6 months and 1.32 ± 0.40 at 12 months, and 18% and 28% of the patients had an increase in the atrophy index by 30% or greater, respectively. No apparent decrease in mean MMSE score was observed after WBRT. Individually, MMSE scores decreased by four or more points in 11% at 6 months, 12% at 12 months, and 0% at 18 months. However, about half the decrease in MMSE scores was associated with a decrease in performance status caused by systemic disease progression. Conclusions: Brain atrophy developed in up to 30% of patients, but it was not necessarily accompanied by MMSE score decrease. Dementia after WBRT unaccompanied by tumor recurrence was infrequent

  10. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Tryggvason, Tryggvi

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...

  11. Metabolic clearance of insulin from the cerebrospinal fluid in the anesthetized rat

    International Nuclear Information System (INIS)

    Manin, M.; Broer, Y.; Balage, M.; Rostene, W.; Grizard, J.

    1990-01-01

    Infusion of 125I-(Tyr A14)-insulin at tracer doses into the cerebrospinal fluid (CSF) resulted in a slow rate of increase in the CSF-labeled insulin during the first 2 hours with a plateau thereafter. Labeled insulin was cleared from the CSF at a higher rate than 3H-inulin, a marker of CSF bulk flow. The labeled insulin was mainly distributed in all the ventricular and periventricular brain regions. Small amounts of degraded insulin appeared in the CSF. Coinfusion with an excess of unlabeled insulin impaired the clearance and degradation of labeled insulin. It also inhibited the labeling in medial hypothalamus, olfactory bulbs and brain stem. In contrast, coinfusion of ribonuclease B (used to test the specificity of uptake) was without any effect. It was concluded that there is an active insulin intake from CSF into brain specific compartments that is presumably essential for the effects of insulin on brain function

  12. Anxiolytic-Like Actions of Fatty Acids Identified in Human Amniotic Fluid

    Directory of Open Access Journals (Sweden)

    Rosa Isela García-Ríos

    2013-01-01

    Full Text Available Eight fatty acids (C12–C18 were previously identified in human amniotic fluid, colostrum, and milk in similar proportions but different amounts. Amniotic fluid is well known to be the natural environment for development in mammals. Interestingly, amniotic fluid and an artificial mixture of fatty acids contained in amniotic fluid produce similar anxiolytic-like actions in Wistar rats. We explored whether the lowest amount of fatty acids contained in amniotic fluid with respect to colostrum and milk produces such anxiolytic-like effects. Although a trend toward a dose-response effect was observed, only an amount of fatty acids that was similar to amniotic fluid fully mimicked the effect of diazepam (2 mg/kg, i.p. in the defensive burying test, an action devoid of effects on locomotor activity and motor coordination. Our results confirm that the amount of fatty acids contained in amniotic fluid is sufficient to produce anxiolytic-like effects, suggesting similar actions during intrauterine development.

  13. Psychobiology of the amniotic environment.

    Science.gov (United States)

    Benassi, Luigi; Accorsi, Francesca; Marconi, Lorenza; Benassi, Gianluca

    2004-01-01

    Water, basic element of amniotic fluid (A.F.), is closely related to Life, Fertility and Motherhood in several cultures and religions. Through material evidences of an essential growth medium and useful diagnostic source, a new concept grow up: the fluid as a first real environment in which fetus lives and acts. Many studies confirm that in A.F. fetus starts his character-building, his memory and his intelligence. The fluid seems to be the first means of learning and acknowledgement. Sounds, smells and tastes are perceived as well as emotions and fears. Urinoterapy and staminal cells sampling shows how A.F. can be considered as an additional terapeutic resource.

  14. Fluid inclusion studies of calcite veins from Yucca Mountain, Nevada, Tuffs: Environment of formation

    Energy Technology Data Exchange (ETDEWEB)

    Roedder, E. [Harvard Univ., Cambridge, MA (United States); Whelan, J.F. [Geological Survey, Denver, CO (United States); Vaniman, D.T. [Los Alamos National Lab., NM (United States)

    1994-12-31

    Calcite vein and vug fillings at four depths (130-314m), all above the present water table in USW G-1 bore hole at Yucca Mountain, Nevada, contain primary fluid inclusions with variable vapor/liquid raitos: Most of these inclusions are either full of liquid or full of vapor. The liquid-filled inclusions show that most of the host calcite crystallized from fluids at <100{degrees}C. The vapor-filled inclusions provide evidence that a separate vapor phase was present in the fluid during crystallization. Studies of these vapor-filled inclusions on the microscope crushing stage were interpreted in an earlier paper as indicating trapping of an air-water-CO{sub 2} vapor phase at ``<100{degrees}C``. Our new studies reveal the additional presence of major methane in the vapor-filled inclusion, indicating even lower temperatures of trapping, perhaps at near-surface temperatures. They also show that the host calcite crystals grew from a flowing film of water on the walls of fractures open to the atmosphere, the vapor-filled inclusions representing bubbles that exsolved from this film onto the crystal surface.

  15. Power distribution transformers using natural ester fluids as dielectric and coolant

    Directory of Open Access Journals (Sweden)

    Jorge Iván Silva-Ortega

    2016-12-01

    Full Text Available Researches related to the use of Natural Ester Fluids as a refrigerant of power transformers have been developed in other countries with successful results. In Colombia there is no a procedure to control the use of these esters in electrical apparatus, so the current implementations are regulated by NTC 1465 standards for mineral esters. This new proposal involves the composition and the most relevant properties (the ignition resistance, impact on the lifetime of the insulating papers and the impact on the environment, which makes the application of natural esters fluids advantageous not only to preserve the environment but also to get a better performance of power transformers.

  16. Cerebrospinal fluid flow. Pt. 3

    International Nuclear Information System (INIS)

    Schroth, G.; Klose, U.

    1992-01-01

    Cardiac- and respiration-related movements of the cerebrospinal fluid (CSF) were investigated by MRI in 71 patients. In most patients with arteriosclerotic occlusive vascular disease CSF pulsations are normal. Decreased pulsatile flow is detectable in those with arteriovenous malformations, intracranial air and following lumbar puncture and withdrawal of CSF. Increased pulsatile flow in the cerebral aqueduct was found in 2 patients with large aneurysms, idiopathic communicating syringomyelia and in most cases of normal pressure hydrocephalus (NPH). CSF flow in the cervical spinal canal is, however, reduced or normal in NPH, indicating reduction of the unfolding ability of the surface of the brain and/or inhibition of rapid CSF movements in the subrachnoid space over its convexity. (orig.)

  17. Intracranial Fluid Redistribution During a Spaceflight Analog

    Science.gov (United States)

    Koppelmans, Vincent; Pasternak, Ofer; Bloomberg, Jacob J.; De Dios, Yiri E.; Wood, Scott J.; Riascos, Roy; Reuter-Lorenz, Patrica A.; Kofman, Igor S.; Mulavara, Ajitkumar P.; Seidler, Rachael D.

    2017-01-01

    The neural correlates of spaceflight-induced sensorimotor impairments are unknown. Head down-tilt bed rest (HDBR) serves as a microgravity analog because it mimics the headward fluid shift and limb unloading of spaceflight. We investigated focal brain white matter (WM) changes and fluid shifts during 70 days of 6 deg HDBR in 16 subjects who were assessed pre (2x), during (3x), and post-HDBR (2x). Changes over time were compared to those in control subjects (n=12) assessed four times over 90 days. Diffusion MRI was used to assess WM microstructure and fluid shifts. Free-Water Imaging, derived from diffusion MRI, was used to quantify the distribution of intracranial extracellular free water (FW). Additionally, we tested whether WM and FW changes correlated with changes in functional mobility and balance measures. HDBR resulted in FW increases in fronto-temporal regions and decreases in posterior-parietal regions that largely recovered by two weeks post-HDBR. WM microstructure was unaffected by HDBR. FW decreased in the post-central gyrus and precuneus. We previously reported that gray matter increases in these regions were associated with less HDBR-induced balance impairment, suggesting adaptive structural neuroplasticity. Future studies are warranted to determine causality and underlying mechanisms.

  18. Platelet activating factor induces transient blood-brain barrier opening to facilitate edaravone penetration into the brain.

    Science.gov (United States)

    Fang, Weirong; Zhang, Rui; Sha, Lan; Lv, Peng; Shang, Erxin; Han, Dan; Wei, Jie; Geng, Xiaohan; Yang, Qichuan; Li, Yunman

    2014-03-01

    The blood-brain barrier (BBB) greatly limits the efficacy of many neuroprotective drugs' delivery to the brain, so improving drug penetration through the BBB has been an important focus of research. Here we report that platelet activating factor (PAF) transiently opened BBB and facilitated neuroprotectant edaravone penetration into the brain. Intravenous infusion with PAF induced a transient BBB opening in rats, reflected by increased Evans blue leakage and mild edema formation, which ceased within 6 h. Furthermore, rat regional cerebral blood flow (rCBF) declined acutely during PAF infusion, but recovered slowly. More importantly, this transient BBB opening significantly increased the penetration of edaravone into the brain, evidenced by increased edaravone concentrations in tissue interstitial fluid collected by microdialysis and analyzed by Ultra-performance liquid chromatograph combined with a hybrid quadrupole time-of-flight mass spectrometer (UPLC-MS/MS). Similarly, incubation of rat brain microvessel endothelial cells monolayer with 1 μM PAF for 1 h significantly increased monolayer permeability to (125)I-albumin, which recovered 1 h after PAF elimination. However, PAF incubation with rat brain microvessel endothelial cells for 1 h did not cause detectable cytotoxicity, and did not regulate intercellular adhesion molecule-1, matrix-metalloproteinase-9 and P-glycoprotein expression. In conclusion, PAF could induce transient and reversible BBB opening through abrupt rCBF decline, which significantly improved edaravone penetration into the brain. Platelet activating factor (PAF) transiently induces BBB dysfunction and increases BBB permeability, which may be due to vessel contraction and a temporary decline of regional cerebral blood flow (rCBF) triggered by PAF. More importantly, the PAF induced transient BBB opening facilitates neuroprotectant edaravone penetration into brain. The results of this study may provide a new approach to improve drug delivery into

  19. Mechanisms that determine the internal environment of the developing brain

    DEFF Research Database (Denmark)

    Liddelow, Shane A; Dziegielewska, Katarzyna M; Ek, C Joakim

    2013-01-01

    We provide comprehensive identification of embryonic (E15) and adult rat lateral ventricular choroid plexus transcriptome, with focus on junction-associated proteins, ionic influx transporters and channels. Additionally, these data are related to new structural and previously published permeability...... studies. Results reveal that most genes associated with intercellular junctions are expressed at similar levels at both ages. In total, 32 molecules known to be associated with brain barrier interfaces were identified. Nine claudins showed unaltered expression, while two claudins (6 and 8) were expressed......, a large number of previously unidentified ion channel and transporter genes were identified for the first time in plexus epithelium. These results, in addition to data obtained from electron microscopical and physiological permeability experiments in immature brains, indicate that exchange between blood...

  20. Modelling Ecological Cognitive Rehabilitation Therapies for Building Virtual Environments in Brain Injury.

    Science.gov (United States)

    Martínez-Moreno, J M; Sánchez-González, P; Luna, M; Roig, T; Tormos, J M; Gómez, E J

    2016-01-01

    Brain Injury (BI) has become one of the most common causes of neurological disability in developed countries. Cognitive disorders result in a loss of independence and patients' quality of life. Cognitive rehabilitation aims to promote patients' skills to achieve their highest degree of personal autonomy. New technologies such as virtual reality or interactive video allow developing rehabilitation therapies based on reproducible Activities of Daily Living (ADLs), increasing the ecological validity of the therapy. However, the lack of frameworks to formalize and represent the definition of this kind of therapies can be a barrier for widespread use of interactive virtual environments in clinical routine. To provide neuropsychologists with a methodology and an instrument to design and evaluate cognitive rehabilitation therapeutic interventions strategies based on ADLs performed in interactive virtual environments. The proposed methodology is used to model therapeutic interventions during virtual ADLs considering cognitive deficit, expected abnormal interactions and therapeutic hypotheses. It allows identifying abnormal behavioural patterns and designing interventions strategies in order to achieve errorless-based rehabilitation. An ADL case study ('buying bread') is defined according to the guidelines established by the ADL intervention model. This case study is developed, as a proof of principle, using interactive video technology and is used to assess the feasibility of the proposed methodology in the definition of therapeutic intervention procedures. The proposed methodology provides neuropsychologists with an instrument to design and evaluate ADL-based therapeutic intervention strategies, attending to solve actual limitation of virtual scenarios, to be use for ecological rehabilitation of cognitive deficit in daily clinical practice. The developed case study proves the potential of the methodology to design therapeutic interventions strategies; however our current

  1. Testing of CFC replacement fluids for arc-induced toxic by-products

    Energy Technology Data Exchange (ETDEWEB)

    Cravey, W.R.; Goerz, D.A.; Hawley-Fedder, R.A.

    1993-06-01

    The authors have developed a unique test-stand for quantifying the generation of perfluoroisobutylene (PFIB) in chlorofluorocarbon (CFC) replacement fluids when they are subjected to high electrical stress/breakdown environments. PFIB is an extremely toxic gas with a threshold limit value of 10 ppbv as set by the American Conference of Governmental Industrial Hygienists. They have tested several new fluids from various manufacturers for their potential to generate PFIB. Their goal is to determine breakdown characteristics and quantify toxic by-products of these replacement fluids to determine a safe, usable alternative for present CFC`s.

  2. A novel liquid chromatography/tandem mass spectrometry method for the quantification of glycine as biomarker in brain microdialysis and cerebrospinal fluid samples within 5min.

    Science.gov (United States)

    Voehringer, Patrizia; Fuertig, René; Ferger, Boris

    2013-11-15

    Glycine is an important amino acid neurotransmitter in the central nervous system (CNS) and a useful biomarker to indicate biological activity of drugs such as glycine reuptake inhibitors (GRI) in the brain. Here, we report how a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the fast and reliable analysis of glycine in brain microdialysates and cerebrospinal fluid (CSF) samples has been established. Additionally, we compare this method with the conventional approach of high performance liquid chromatography (HPLC) coupled to fluorescence detection (FD). The present LC-MS/MS method did not require any derivatisation step. Fifteen microliters of sample were injected for analysis. Glycine was detected by a triple quadrupole mass spectrometer in the positive electrospray ionisation (ESI) mode. The total running time was 5min. The limit of quantitation (LOQ) was determined as 100nM, while linearity was given in the range from 100nM to 100μM. In order to demonstrate the feasibility of the LC-MS/MS method, we measured glycine levels in striatal in vivo microdialysates and CSF of rats after administration of the commercially available glycine transporter 1 (GlyT1) inhibitor LY 2365109 (10mg/kg, p.o.). LY 2365109 produced 2-fold and 3-fold elevated glycine concentrations from 1.52μM to 3.6μM in striatal microdialysates and from 10.38μM to 36μM in CSF, respectively. In conclusion, we established a fast and reliable LC-MS/MS method, which can be used for the quantification of glycine in brain microdialysis and CSF samples in biomarker studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Interference of scalp and skull with dynamic isotope studies of brain

    International Nuclear Information System (INIS)

    Oldendorf, W.H.

    1972-01-01

    The overlying scalp and skull create artifacts in external brain counting measurements in which isotope appears in these tissues. It is much less of a problem in dynamic studies since high levels of superficial isotope are not found in the first few seconds after introduction into the blood by any anatomic route. Diffusible tracers concentrate somewhat less in the scalp and skull than in the brain immediately after injection by any route. Nondiffusible tracers of low molecular weight attain a much higher concentration in the scalp than the brain only after about the first minute because of passage from plasma to scalp extracellular fluid. This equilibration does not occur in brain because of the blood-brain barrier. Scalp and skull thus create much less of a problem with brief dynamic studies than with chronic long-term studies. Some physical considerations of external collimation are discussed, and means are suggested to minimize superficial isotope contributions to brain counts. (U.S.)

  4. How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability.

    Science.gov (United States)

    Blair, Clancy

    2006-04-01

    This target article considers the relation of fluid cognitive functioning to general intelligence. A neurobiological model differentiating working memory/executive function cognitive processes of the prefrontal cortex from aspects of psychometrically defined general intelligence is presented. Work examining the rise in mean intelligence-test performance between normative cohorts, the neuropsychology and neuroscience of cognitive function in typically and atypically developing human populations, and stress, brain development, and corticolimbic connectivity in human and nonhuman animal models is reviewed and found to provide evidence of mechanisms through which early experience affects the development of an aspect of cognition closely related to, but distinct from, general intelligence. Particular emphasis is placed on the role of emotion in fluid cognition and on research indicating fluid cognitive deficits associated with early hippocampal pathology and with dysregulation of the hypothalamic-pituitary-adrenal axis stress-response system. Findings are seen to be consistent with the idea of an independent fluid cognitive construct and to assist with the interpretation of findings from the study of early compensatory education for children facing psychosocial adversity and from behavior genetic research on intelligence. It is concluded that ongoing development of neurobiologically grounded measures of fluid cognitive skills appropriate for young children will play a key role in understanding early mental development and the adaptive success to which it is related, particularly for young children facing social and economic disadvantage. Specifically, in the evaluation of the efficacy of compensatory education efforts such as Head Start and the readiness for school of children from diverse backgrounds, it is important to distinguish fluid cognition from psychometrically defined general intelligence.

  5. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    Science.gov (United States)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  6. Clinical value of determination HIV viral load in the cerebrospinal fluid of HIV-infected patients

    Directory of Open Access Journals (Sweden)

    V. B. Musatov

    2015-01-01

    Full Text Available Aim. To analyze the concentration of HIV RNA in the cerebrospinal fluid and to evaluate its significance in the pathology of the central nervous system among HIV infected persons.Materials: We examined 36 patients with HIV infection with signs of pathology of the central nervous system. All patients was done completed a standard investigation of cerebrospinal fluid, cytological examination and detection viral load of HIV in the cerebrospinal fluid and serum.Results. A different of opportunistic and HIV-related disease was diagnosed in 29 patients. The most frequent pathology of the nervous system (12 cases is a diffuse HIV-associated brain damage occurring in 7 patients in the form of aseptic non purulent meningitis and in 5 patients in the form of encephalitis. The average value of the absolute and relative count of CD4-lymphocytes in patients amounted 147,0 cells/μl (40,0; 408,75 and 10.0% (4,00; 18,50. Pathological changes in cellular composition and protein concentration of cerebrospinal fluid detected in 19 cases. Replication of HIV in the cerebrospinal fluid are detected in 31 of 32 patients not receiving antiretroviral therapy, including 17 patients with normal values of cerebrospinal fluid. The average HIV viral load in the cerebrospinal fluid was 15 133,0 copies/ml (2501,0; 30624,0 or 4,18 (3,35; 4,48 lg HIV RNA, average HIV viral load in serum – 62 784,0 copies/ml (6027,5; 173869,0 or 4,80 4,80 (3,7; 5,2 lg HIV RNA. The concentration of HIV in the cerebrospinal fluid was significantly lower than in serum (4,18 and 4,80 lg HIV RNA, p=0.027. 4 patients with severe, multietiology damage of the central nervous system viral, microbial and fungal etiology, there was an inverse relationship between the concentration of HIV in the cerebrospinal fluid and in serum, the concentrations of HIV was higher in the cerebrospinal fluid.Conclusion: Among the majority of HIV-infected patients with signs of the central

  7. Passive Devices for Advanced Fluid Management aboard Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Acute challenges are faced by the designers of fluid systems for spacecraft because of the persistently unfamiliar and unforgiving low-g environment. For example,...

  8. Perinatal ω-3 polyunsaturated fatty acid supply modifies brain zinc homeostasis during adulthood

    Science.gov (United States)

    Jayasooriya, Anura P.; Ackland, M. Leigh; Mathai, Michael L.; Sinclair, Andrew J.; Weisinger, Harrison S.; Weisinger, Richard S.; Halver, John E.; Kitajka, Klára; Puskás, László G.

    2005-01-01

    Dietary ω-3 polyunsaturated fatty acid (PUFA) influences the expression of a number of genes in the brain. Zinc transporter (ZnT) 3 has been identified as a putative transporter of zinc into synaptic vesicles of neurons and is found in brain areas such as hippocampus and cortex. Neuronal zinc is involved in the formation of amyloid plaques, a major characteristic of Alzheimer's disease. The present study evaluated the influence of dietary ω-3 PUFA on the expression of the ZnT3 gene in the brains of adult male Sprague-Dawley rats. The rats were raised and/or maintained on a control (CON) diet that contained ω-3 PUFA or a diet deficient (DEF) in ω-3 PUFA. ZnT3 gene expression was analyzed by using real-time PCR, free zinc in brain tissue was determined by zinquin staining, and total zinc concentrations in plasma and cerebrospinal fluid were determined by atomic absorption spectrophotometry. Compared with CON-raised animals, DEF-raised animals had increased expression of ZnT3 in the brain that was associated with an increased level of free zinc in the hippocampus. In addition, compared with CON-raised animals, DEF-raised animals had decreased plasma zinc level. No difference in cerebrospinal fluid zinc level was observed. The results suggest that overexpression of ZnT3 due to a perinatal ω-3 PUFA deficiency caused abnormal zinc metabolism in the brain. Conceivably, the influence of dietary ω-3 PUFA on brain zinc metabolism could explain the observation made in population studies that the consumption of fish is associated with a reduced risk of dementia and Alzheimer's disease. PMID:15883362

  9. Perinatal omega-3 polyunsaturated fatty acid supply modifies brain zinc homeostasis during adulthood.

    Science.gov (United States)

    Jayasooriya, Anura P; Ackland, M Leigh; Mathai, Michael L; Sinclair, Andrew J; Weisinger, Harrison S; Weisinger, Richard S; Halver, John E; Kitajka, Klára; Puskás, László G

    2005-05-17

    Dietary omega-3 polyunsaturated fatty acid (PUFA) influences the expression of a number of genes in the brain. Zinc transporter (ZnT) 3 has been identified as a putative transporter of zinc into synaptic vesicles of neurons and is found in brain areas such as hippocampus and cortex. Neuronal zinc is involved in the formation of amyloid plaques, a major characteristic of Alzheimer's disease. The present study evaluated the influence of dietary omega-3 PUFA on the expression of the ZnT3 gene in the brains of adult male Sprague-Dawley rats. The rats were raised and/or maintained on a control (CON) diet that contained omega-3 PUFA or a diet deficient (DEF) in omega-3 PUFA. ZnT3 gene expression was analyzed by using real-time PCR, free zinc in brain tissue was determined by zinquin staining, and total zinc concentrations in plasma and cerebrospinal fluid were determined by atomic absorption spectrophotometry. Compared with CON-raised animals, DEF-raised animals had increased expression of ZnT3 in the brain that was associated with an increased level of free zinc in the hippocampus. In addition, compared with CON-raised animals, DEF-raised animals had decreased plasma zinc level. No difference in cerebrospinal fluid zinc level was observed. The results suggest that overexpression of ZnT3 due to a perinatal omega-3 PUFA deficiency caused abnormal zinc metabolism in the brain. Conceivably, the influence of dietary omega-3 PUFA on brain zinc metabolism could explain the observation made in population studies that the consumption of fish is associated with a reduced risk of dementia and Alzheimer's disease.

  10. Role of scintigraphy and computer-assisted tomography in brain examination

    International Nuclear Information System (INIS)

    Akerman, M.; Oproiu, A.; Comoy, C.; Guiot, G.

    1981-01-01

    To assess the role of computer-assisted tomography (CAT) and scintigraphy in brain exploration, the authors analysed: (1) the diagnostic effectiveness of the two methods in 300 patients examined over a period of seven months; (2) the role assigned to each investigation in 169 patients operated on for intracranial lesion during the same period. The isotopic brain examination always included an initial angiographic study after the intravenous injection of a technetium compound. Study of the circulation of the cerebrospinal fluid was made with 111 In-DTPA. The detection efficiency of CAT is higher than for scintigraphy in expansive processes, whereas, conversely, in cerebrovascular accidents of ischaemic origin, isotope angiography coupled with static imaging enables one to gain more information on cerebral perfusion than CAT. Similarly, when studying the cerebrospinal fluid, scintigraphy provides a greater amount of specific data on the mechanisms governing hydrocephalus, the mode of operation of a shunt, or the site of a cerebrospinal fluid fistula. Within a neurosurgical context, CAT by and large takes precedence in brain examination, but the investigation is usually accompanied by scintigraphy or a conventional neuroradiological examination. Scintigraphy was performed on 66% of the patients, whereas for neuroradiological examination the figure was 44%. Most of the scintigraphy came after CAT so as to obtain additional diagnostic information on the vascularization, the nature and, on occasion, the exact location of the lesion revealed by CAT. In more than one case out of two, scintigraphy provides enough additional information for one to avoid neuroradiological examination, which is more 'aggressive' and more dangerous. Hence scintigraphy represents an effective complement to CAT and can compete with the conventional neuroradiological technique. (author)

  11. [Research advances of fluid bio-mechanics in bone].

    Science.gov (United States)

    Chen, Zebin; Huo, Bo

    2017-04-01

    It has been found for more than one century that when experiencing mechanical loading, the structure of bone will adapt to the changing mechanical environment, which is called bone remodeling. Bone remodeling is charaterized as two processes of bone formation and bone resorption. A large number of studies have confirmed that the shear stress is resulted from interstitial fluid flow within bone cavities under mechanical loading and it is the key factor of stimulating the biological responses of bone cells. This review summarizes the major research progress during the past years, including the biological response of bone cells under fluid flow, the pressure within bone cavities, the theoretical modeling, numerical simulation and experiments about fluid flow within bone, and finally analyzes and predicts the possible tendency in this field in the future.

  12. Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency

    International Nuclear Information System (INIS)

    Monnot, Andrew D.; Behl, Mamta; Ho, Sanna; Zheng, Wei

    2011-01-01

    Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+ 55%) and decrease (− 56%) in CSF Cu levels (p < 0.05), respectively; however, neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+ 92%) and significantly slower (− 53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p < 0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.

  13. Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Monnot, Andrew D.; Behl, Mamta; Ho, Sanna; Zheng, Wei, E-mail: wzheng@purdue.edu

    2011-11-15

    Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+ 55%) and decrease (- 56%) in CSF Cu levels (p < 0.05), respectively; however, neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+ 92%) and significantly slower (- 53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p < 0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.

  14. Dreaming and the brain: from phenomenology to neurophysiology.

    Science.gov (United States)

    Nir, Yuval; Tononi, Giulio

    2010-02-01

    Dreams are a remarkable experiment in psychology and neuroscience, conducted every night in every sleeping person. They show that the human brain, disconnected from the environment, can generate an entire world of conscious experiences by itself. Content analysis and developmental studies have promoted understanding of dream phenomenology. In parallel, brain lesion studies, functional imaging and neurophysiology have advanced current knowledge of the neural basis of dreaming. It is now possible to start integrating these two strands of research to address fundamental questions that dreams pose for cognitive neuroscience: how conscious experiences in sleep relate to underlying brain activity; why the dreamer is largely disconnected from the environment; and whether dreaming is more closely related to mental imagery or to perception. Published by Elsevier Ltd.

  15. Dreaming and the brain: from phenomenology to neurophysiology

    Science.gov (United States)

    Nir, Yuval; Tononi, Giulio

    2009-01-01

    Dreams are a most remarkable experiment in psychology and neuroscience, conducted every night in every sleeping person. They show that our brain, disconnected from the environment, can generate by itself an entire world of conscious experiences. Content analysis and developmental studies have furthered our understanding of dream phenomenology. In parallel, brain lesion studies, functional imaging, and neurophysiology have advanced our knowledge of the neural basis of dreaming. It is now possible to start integrating these two strands of research in order to address some fundamental questions that dreams pose for cognitive neuroscience: how conscious experiences in sleep relate to underlying brain activity; why the dreamer is largely disconnected from the environment; and whether dreaming is more closely related to mental imagery or to perception. PMID:20079677

  16. Imaging method of brain surface anatomy structures using conventional T2-weighted MR images

    International Nuclear Information System (INIS)

    Hatanaka, Masahiko; Machida, Yoshio; Yoshida, Tadatoki; Katada, Kazuhiro.

    1992-01-01

    As a non-invasive technique for visualizing the brain surface structure by MRI, surface anatomy scanning (SAS) and the multislice SAS methods have been developed. Both techniques require additional MRI scanning to obtain images for the brain surface. In this paper, we report an alternative method to obtain the brain surface image using conventional T2-weighted multislice images without any additional scanning. The power calculation of the image pixel values, which is incorporated in the routine processing, has been applied in order to enhance the cerebrospinal fluid (CSF) contrast. We think that this method is one of practical approaches for imaging the surface anatomy of the brain. (author)

  17. An Improved Method for Collection of Cerebrospinal Fluid from Anesthetized Mice

    DEFF Research Database (Denmark)

    Lim, Nastasia K-H; Moestrup, Visse Theresia Skov; Zhang, Xiao

    2017-01-01

    a technique that improves on current methods of collection to minimize contamination from blood and allow for the abundant collection of CSF (on average 10-15 µL can be collected). This technique can be used with other dissection methods for tissue collection from mice, as it does not impact any tissues......The cerebrospinal fluid (CSF) is a valuable body fluid for analysis in neuroscience research. It is one of the fluids in closest contact with the central nervous system and thus, can be used to analyze the diseased state of the brain or spinal cord without directly accessing these tissues. However......, in mice it is difficult to obtain from the cisterna magna due to its closeness to blood vessels, which often contaminate samples. The area for CSF collection in mice is also difficult to dissect to and often only small samples are obtained (maximum of 5-7 µL or less). This protocol describes in detail...

  18. Study on Control of Brain Temperature for Brain Hypothermia Treatment

    Science.gov (United States)

    Gaohua, Lu; Wakamatsu, Hidetoshi

    The brain hypothermia treatment is an attractive therapy for the neurologist because of its neuroprotection in hypoxic-ischemic encephalopathy patients. The present paper deals with the possibility of controlling the brain and other viscera in different temperatures from the viewpoint of system control. It is theoretically attempted to realize the special brain hypothermia treatment to cool only the head but to warm the body by using the simple apparatus such as the cooling cap, muffler and warming blanket. For this purpose, a biothermal system concerning the temperature difference between the brain and the other thoracico-abdominal viscus is synthesized from the biothermal model of hypothermic patient. The output controllability and the asymptotic stability of the system are examined on the basis of its structure. Then, the maximum temperature difference to be realized is shown dependent on the temperature range of the apparatus and also on the maximum gain determined from the coefficient matrices A, B and C of the biothermal system. Its theoretical analysis shows the realization of difference of about 2.5°C, if there is absolutely no constraint of the temperatures of the cooling cap, muffler and blanket. It is, however, physically unavailable. Those are shown by simulation example of the optimal brain temperature regulation using a standard adult database. It is thus concluded that the surface cooling and warming apparatus do no make it possible to realize the special brain hypothermia treatment, because the brain temperature cannot be cooled lower than those of other viscera in an appropriate temperature environment. This study shows that the ever-proposed good method of clinical treatment is in principle impossible in the actual brain hypothermia treatment.

  19. A new approach for simple radioisotope cisternography examination in cerebrospinal fluid leakage detection.

    Science.gov (United States)

    Hoshino, Hiromitsu; Higuchi, Tetsuya; Achmad, Arifudin; Taketomi-Takahashi, Ayako; Fujimaki, Hiroya; Tsushima, Yoshito

    2016-01-01

    We developed a new quantitative interpretation technique of radioisotope cisternography (RIC) for the diagnosis of spontaneous cerebrospinal fluid hypovolemia (SCH). RIC studies performed for suspected SCH were evaluated. (111)In-DTPA RIC images were taken at 0, 1, 3, 6, and 24-h after radioisotope injection following the current protocol. Regions of interest (ROI) were selected on 3-h images to include brain, spine, bladder or the whole body. The accumulative radioactivity counts were calculated for quantitative analysis. Final diagnoses of SCH were established based on the diagnostic criteria recently proposed by Schievink and colleagues. Thirty-five patients were focused on. Twenty-one (60.0%) patients were diagnosed as having SCH according to the Schievink criteria. On the 3-h images, direct cerebrospinal fluid leakage sign was detected in nine of 21 SCH patients (42.9%), as well as three patients with suspected iatrogenic leakage. Compared to non-SCH patients, SCH patients showed higher bladder accumulation at 3-h images (P = 0.0002), and higher brain clearance between the 6- and 24-h images (P leakage was not observed. 1- and 6-h images did not provide any additional information in any patients. A new simple ROI setting method, in which only the 3-h whole body and 24-h brain images were necessary, was sufficient to diagnose SCH.

  20. An optical brain computer interface for environmental control.

    Science.gov (United States)

    Ayaz, Hasan; Shewokis, Patricia A; Bunce, Scott; Onaral, Banu

    2011-01-01

    A brain computer interface (BCI) is a system that translates neurophysiological signals detected from the brain to supply input to a computer or to control a device. Volitional control of neural activity and its real-time detection through neuroimaging modalities are key constituents of BCI systems. The purpose of this study was to develop and test a new BCI design that utilizes intention-related cognitive activity within the dorsolateral prefrontal cortex using functional near infrared (fNIR) spectroscopy. fNIR is a noninvasive, safe, portable and affordable optical technique with which to monitor hemodynamic changes, in the brain's cerebral cortex. Because of its portability and ease of use, fNIR is amenable to deployment in ecologically valid natural working environments. We integrated a control paradigm in a computerized 3D virtual environment to augment interactivity. Ten healthy participants volunteered for a two day study in which they navigated a virtual environment with keyboard inputs, but were required to use the fNIR-BCI for interaction with virtual objects. Results showed that participants consistently utilized the fNIR-BCI with an overall success rate of 84% and volitionally increased their cerebral oxygenation level to trigger actions within the virtual environment.

  1. Generalized Fluid System Simulation Program, Version 5.0-Educational

    Science.gov (United States)

    Majumdar, A. K.

    2011-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems.

  2. Visualization and Quantitative Assessment of the Brain Distribution of Insulin through Nose-to-Brain Delivery Based on the Cell-Penetrating Peptide Noncovalent Strategy.

    Science.gov (United States)

    Kamei, Noriyasu; Shingaki, Tomotaka; Kanayama, Yousuke; Tanaka, Misa; Zochi, Riyo; Hasegawa, Koki; Watanabe, Yasuyoshi; Takeda-Morishita, Mariko

    2016-03-07

    Our recent work suggested that intranasal coadministration with the cell-penetrating peptide (CPP) penetratin increased the brain distribution of the peptide drug insulin. The present study aimed to distinctly certify the ability of penetratin to facilitate the nose-to-brain delivery of insulin by quantitatively evaluating the distribution characteristics in brain using radioactive (64)Cu-NODAGA-insulin. Autoradiography and analysis using a gamma counter of brain areas demonstrated that the accumulation of radioactivity was greatest in the olfactory bulb, the anterior part of the brain closest to the administration site, at 15 min after intranasal administration of (64)Cu-NODAGA-insulin with l- or d-penetratin. The brain accumulation of (64)Cu-NODAGA-insulin with penetratin was confirmed by ELISA using unlabeled insulin in which intact insulin was delivered to the brain after intranasal coadministration with l- or d-penetratin. By contrast, quantification of cerebrospinal fluid (CSF) samples showed increased insulin concentration in only the anterior portion of the CSF at 15 min after intranasal coadministration with l-penetratin. This study gives the first concrete proof that penetratin can accelerate the direct transport of insulin from the nasal cavity to the brain parenchyma. Further optimization of intranasal administration with CPP may increase the efficacy of delivery of biopharmaceuticals to the brain while reducing the risk of systemic drug exposure.

  3. Microbial Metabolism in Serpentinite Fluids

    Science.gov (United States)

    Crespo-Medina, M.; Brazelton, W. J.; Twing, K. I.; Kubo, M.; Hoehler, T. M.; Schrenk, M. O.

    2013-12-01

    Serpentinization is the process in which ultramafic rocks, characteristic of the upper mantle, react with water liberating mantle carbon and reducing power to potenially support chemosynthetic microbial communities. These communities may be important mediators of carbon and energy exchange between the deep Earth and the surface biosphere. Our work focuses on the Coast Range Ophiolite Microbial Observatory (CROMO) in Northern California where subsurface fluids are accessible through a series of wells. Preliminary analyses indicate that the highly basic fluids (pH 9-12) have low microbial diversity, but there is limited knowledge about the metabolic capabilities of these communties. Metagenomic data from similar serpentine environments [1] have identified Betaproteobacteria belonging to the order Burkholderiales and Gram-positive bacteria from the order Clostridiales as key components of the serpentine microbiome. In an effort to better characterize the microbial community, metabolism, and geochemistry at CROMO, fluids from two representative wells (N08B and CSWold) were sampled during recent field campaigns. Geochemical characterization of the fluids includes measurements of dissolved gases (H2, CO, CH4), dissolved inorganic and organic carbon, volatile fatty acids, and nutrients. The wells selected can be differentiated in that N08B had higher pH (10-11), lower dissolved oxygen, and cell counts ranging from 105-106 cells mL-1 of fluid, with an abundance of the betaproteobacterium Hydrogenophaga. In contrast, fluids from CSWold have slightly lower pH (9-9.5), DO, and conductivity, as well as higher TDN and TDP. CSWold fluid is also characterized for having lower cell counts (~103 cells mL-1) and an abundance of Dethiobacter, a taxon within the phylum Clostridiales. Microcosm experiments were conducted with the purpose of monitoring carbon fixation, methanotrophy and metabolism of small organic compounds, such as acetate and formate, while tracing changes in fluid

  4. Steady-State VEP-Based Brain-Computer Interface Control in an Immersive 3D Gaming Environment

    Directory of Open Access Journals (Sweden)

    Burke R

    2005-01-01

    Full Text Available This paper presents the application of an effective EEG-based brain-computer interface design for binary control in a visually elaborate immersive 3D game. The BCI uses the steady-state visual evoked potential (SSVEP generated in response to phase-reversing checkerboard patterns. Two power-spectrum estimation methods were employed for feature extraction in a series of offline classification tests. Both methods were also implemented during real-time game play. The performance of the BCI was found to be robust to distracting visual stimulation in the game and relatively consistent across six subjects, with 41 of 48 games successfully completed. For the best performing feature extraction method, the average real-time control accuracy across subjects was 89%. The feasibility of obtaining reliable control in such a visually rich environment using SSVEPs is thus demonstrated and the impact of this result is discussed.

  5. Summary of United States Geological Survey investigations of fluid-rock-waste reactions in evaporite environments under repository conditions

    International Nuclear Information System (INIS)

    Stewart, D.B.; Jones, B.F.; Roedder, E.; Potter, R.W. II

    1980-01-01

    The interstitial and inclusion fluids contained in rock salt and anhydrite, though present in amounts less than 1 weight per cent, are chemically aggressive and may react with canisters or wastes. The three basic types of fluids are: (1) bitterns residual from saline mineral precipitation including later recrystallization reactions; (2) brines containing residual solutes from the formation of evaporite that have been extensively modified by reactions with contiguous carbonate of clastic rocks; and (3) re-solution brines resulting from secondary dehydration of evaporite minerals or solution of saline minerals by undersaturated infiltrating waters. Fluid composition can indicate that meteoric flow systems have contacted evaporites or that fluids from evaporites have migrated into other formations. The movement of fluids trapped in fluid inclusions in salt from southeast New Mexico is most sensitive to ambient temperature and to inclusion size, although several other factors such as thermal gradient and vapour/liquid ratio are also important. There is no evidence of a threshold temperature for movement of inclusions. Empirical data are given for determining the amount of brine reaching the heat source if the temperature, approximate amount of total dissolved solids, and Ca:Mg ratio in the brine are known. SrCl 2 and CsCl can reach high concentrations in saturated NaCl solutions and greatly depress the liquidus. The possibility that such fluids, if generated, could migrate from a high-level waste repository must be minimized because the fluid would contain its own radiogenic energy source in the first decades after repository closure, thus changing the thermal evolution of the repository from designed values. (author)

  6. Vitamin B6 vitamer concentrations in cerebrospinal fluid differ between preterm and term newborn infants

    NARCIS (Netherlands)

    Albersen, Monique; Groenendaal, Floris; van der Ham, Maria; de Koning, Tom J; Bosma, Marjolein; Visser, Wouter F; Visser, Gepke; de Sain-van der Velden, Monique G M; Verhoeven-Duif, Nanda M

    BACKGROUND AND OBJECTIVE: Vitamin B(6) plays a pivotal role in brain development and functioning. Differences in vitamin B(6) homeostasis between preterm and term newborn infants have been reported. The authors sought to investigate whether B(6) vitamers in cerebrospinal fluid (CSF) of preterm and

  7. Complex fluids in biological systems experiment, theory, and computation

    CERN Document Server

    2015-01-01

    This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solut...

  8. The brain response to peripheral insulin declines with age: a contribution of the blood-brain barrier?

    Science.gov (United States)

    Sartorius, Tina; Peter, Andreas; Heni, Martin; Maetzler, Walter; Fritsche, Andreas; Häring, Hans-Ulrich; Hennige, Anita M

    2015-01-01

    It is a matter of debate whether impaired insulin action originates from a defect at the neural level or impaired transport of the hormone into the brain. In this study, we aimed to investigate the effect of aging on insulin concentrations in the periphery and the central nervous system as well as its impact on insulin-dependent brain activity. Insulin, glucose and albumin concentrations were determined in 160 paired human serum and cerebrospinal fluid (CSF) samples. Additionally, insulin was applied in young and aged mice by subcutaneous injection or intracerebroventricularly to circumvent the blood-brain barrier. Insulin action and cortical activity were assessed by Western blotting and electrocorticography radiotelemetric measurements. In humans, CSF glucose and insulin concentrations were tightly correlated with the respective serum/plasma concentrations. The CSF/serum ratio for insulin was reduced in older subjects while the CSF/serum ratio for albumin increased with age like for most other proteins. Western blot analysis in murine whole brain lysates revealed impaired phosphorylation of AKT (P-AKT) in aged mice following peripheral insulin stimulation whereas P-AKT was comparable to levels in young mice after intracerebroventricular insulin application. As readout for insulin action in the brain, insulin-mediated cortical brain activity instantly increased in young mice subcutaneously injected with insulin but was significantly reduced and delayed in aged mice during the treatment period. When insulin was applied intracerebroventricularly into aged animals, brain activity was readily improved. This study discloses age-dependent changes in insulin CSF/serum ratios in humans. In the elderly, cerebral insulin resistance might be partially attributed to an impaired transport of insulin into the central nervous system.

  9. Pressure-controlled drainage of cerebrospinal fluid: clinical experience with a new type of ventricular catheter (Ventcontrol MTC)and an integrated Piezo-resistive sensor at its tip: technical note.

    Science.gov (United States)

    Piek, J; Raes, P

    1996-01-01

    We described a new ventricular catheter that is the combination of a "classic" ventricular catheter with a piezo-resistive transducer at its tip. The device allows parallel recordings of intraventricular fluid pressure via a chip and a fluid-filled external transducer, drainage of cerebrospinal fluid from the ventricle or injection of fluid into the ventricle with simultaneous monitoring of intracranial pressure, and recording of brain tissue pressure in cases of misplacement or dislocation of the ventricular catheter or in cases of progressively narrowing ventricles caused by brain edema. Clinical tests in various situations at different pressure ranges (total recording time, 1356 h in 13 patients) gave excellent correlations of both pressures. Application of the device is especially indicated in clinical situations in which pressure-controlled drainage is desirable, occlusion of ventricular bolts is likely, or pressure-volume tests are needed.

  10. Magnetic fluids stabilized by polypropylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, A.V., E-mail: lav@icmm.r [Institute of Continuous Media Mechanics, UB RAS, Academic Korolev Str. 1, Perm 614013 (Russian Federation); Lysenko, S.N. [Institute of Technical Chemistry, UB RAS, Academic Korolev Str. 3, Perm 614013 (Russian Federation)

    2011-05-15

    A series of samples of magnetic fluids stabilized with low-molecular weight polypropylene glycol (PPG) of different molecular masses were synthesized. The use of PPG allowed the maximum extension of the carrier fluid range to include ethyl- and butyl-acetate, ethanol, butanol, acetone, carbon tetrachloride, toluene, kerosene and PPG itself. Magnetic and rheological properties of the samples were investigated. Based on the results of investigation it has been concluded that magnetic nanoparticles are covered by a monolayer of surfactant molecules. At low temperatures the propanol-based sample preserves fluidity up to -115 {sup o}C. Measurement of critical temperatures of other base fluids showed that alcohols are the best carrier medium. Coagulation stability of the ethanol-based ferrocolloid with respect to water and kerosene was explored. It has been found that kerosene, whose fraction by weight exceeds 22.5%, does not mix with the colloid. This effect can be used to produce magneto-controllable extractors of ethyl alcohol. Under the action of water the colloid coagulates, which allows one to substitute the carrier fluid and to separate the colloid into fractions. - Research highlights: PPG stabilizes the magnetic particles in the polar and non-polar media. The minimum operating temperature reaches -115 {sup o}C. Alcohols are the best environment for PPG-stabilized particles. PPG magnetic fluids can be used as magnetic extractors of alcohol. PPG MF can be divided into fractions by partial coagulation with water.

  11. ''Brain-science and education''. Towards human security and well-being

    International Nuclear Information System (INIS)

    Koizumi, Hideaki

    2005-01-01

    This lecture discusses concepts of learning and education that have been expressed in terms of the viewpoint of natural science, and proposes a new way of studying learning and education based on functional brain imaging such as fMRI, MEG, and OT (Optical Topography). From a biological viewpoint, they are related to brain development because the brain is an adaptable information processor that is open to environmental stimuli. Stimuli cause new neuronal connections to form, which allow better adaptation to the environment. Thus, education should be designed to guide and inspire the construction of the basic architecture for information processing in the brain by preparing and controlling the input stimuli given to the learners. Education is the process in which learning is guided to provide an optimal environment. This new approach to study of learning and education is called brain science and education.'' (S. Ohno)

  12. Time-reversal acoustics and ultrasound-assisted convection-enhanced drug delivery to the brain.

    Science.gov (United States)

    Olbricht, William; Sistla, Manjari; Ghandi, Gaurav; Lewis, George; Sarvazyan, Armen

    2013-08-01

    Time-reversal acoustics is an effective way of focusing ultrasound deep inside heterogeneous media such as biological tissues. Convection-enhanced delivery is a method of delivering drugs into the brain by infusing them directly into the brain interstitium. These two technologies are combined in a focusing system that uses a "smart needle" to simultaneously infuse fluid into the brain and provide the necessary feedback for focusing ultrasound using time-reversal acoustics. The effects of time-reversal acoustics-focused ultrasound on the spatial distribution of infused low- and high-molecular weight tracer molecules are examined in live, anesthetized rats. Results show that exposing the rat brain to focused ultrasound significantly increases the penetration of infused compounds into the brain. The addition of stabilized microbubbles enhances the effect of ultrasound exposure.

  13. Fluid Phase Separation (FPS) experiment for flight on a space shuttle Get Away Special (GAS) canister

    Science.gov (United States)

    Peters, Bruce; Wingo, Dennis; Bower, Mark; Amborski, Robert; Blount, Laura; Daniel, Alan; Hagood, Bob; Handley, James; Hediger, Donald; Jimmerson, Lisa

    1990-01-01

    The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid which will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on the Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS-42. The design and the production of a fluid phase separation experiment for rapid implementation at low cost is presented.

  14. Connection Between Thermodynamics and Dynamics of Simple Fluids in Pores: Impact of Fluid-Fluid Interaction Range and Fluid-Solid Interaction Strength.

    Science.gov (United States)

    Krekelberg, William P; Siderius, Daniel W; Shen, Vincent K; Truskett, Thomas M; Errington, Jeffrey R

    2017-08-03

    Using molecular simulations, we investigate how the range of fluid-fluid (adsorbate-adsorbate) interactions and the strength of fluid-solid (adsorbate-adsorbent) interactions impact the strong connection between distinct adsorptive regimes and distinct self-diffusivity regimes reported in [Krekelberg, W. P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J. R. Langmuir 2013 , 29 , 14527-14535]. Although increasing the fluid-fluid interaction range changes both the thermodynamics and the dynamic propert