WorldWideScience

Sample records for brain evolution implications

  1. DUF1220-Domain Copy Number Implicated in Human Brain-Size Pathology and Evolution

    Science.gov (United States)

    Dumas, Laura J.; O’Bleness, Majesta S.; Davis, Jonathan M.; Dickens, C. Michael; Anderson, Nathan; Keeney, J.G.; Jackson, Jay; Sikela, Megan; Raznahan, Armin; Giedd, Jay; Rapoport, Judith; Nagamani, Sandesh S.C.; Erez, Ayelet; Brunetti-Pierri, Nicola; Sugalski, Rachel; Lupski, James R.; Fingerlin, Tasha; Cheung, Sau Wai; Sikela, James M.

    2012-01-01

    DUF1220 domains show the largest human-lineage-specific increase in copy number of any protein-coding region in the human genome and map primarily to 1q21, where deletions and reciprocal duplications have been associated with microcephaly and macrocephaly, respectively. Given these findings and the high correlation between DUF1220 copy number and brain size across primate lineages (R2 = 0.98; p = 1.8 × 10−6), DUF1220 sequences represent plausible candidates for underlying 1q21-associated brain-size pathologies. To investigate this possibility, we used specialized bioinformatics tools developed for scoring highly duplicated DUF1220 sequences to implement targeted 1q21 array comparative genomic hybridization on individuals (n = 42) with 1q21-associated microcephaly and macrocephaly. We show that of all the 1q21 genes examined (n = 53), DUF1220 copy number shows the strongest association with brain size among individuals with 1q21-associated microcephaly, particularly with respect to the three evolutionarily conserved DUF1220 clades CON1(p = 0.0079), CON2 (p = 0.0134), and CON3 (p = 0.0116). Interestingly, all 1q21 DUF1220-encoding genes belonging to the NBPF family show significant correlations with frontal-occipital-circumference Z scores in the deletion group. In a similar survey of a nondisease population, we show that DUF1220 copy number exhibits the strongest correlation with brain gray-matter volume (CON1, p = 0.0246; and CON2, p = 0.0334). Notably, only DUF1220 sequences are consistently significant in both disease and nondisease populations. Taken together, these data strongly implicate the loss of DUF1220 copy number in the etiology of 1q21-associated microcephaly and support the view that DUF1220 domains function as general effectors of evolutionary, pathological, and normal variation in brain size. PMID:22901949

  2. Gorilla and Orangutan Brains Conform to the Primate Cellular Scaling Rules: Implications for Human Evolution

    OpenAIRE

    Herculano-Houzel, Suzana; Kaas, Jon H.

    2011-01-01

    Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great apes that might have evolved bodies that are unusually large, on the basis of our recent finding that ...

  3. Brain evolution by brain pathway duplication

    OpenAIRE

    Chakraborty, Mukta; Jarvis, Erich D

    2015-01-01

    Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel ...

  4. Evolution of Brain and Language

    Science.gov (United States)

    Schoenemann, P. Thomas

    2009-01-01

    The evolution of language and the evolution of the brain are tightly interlinked. Language evolution represents a special kind of adaptation, in part because language is a complex behavior (as opposed to a physical feature) but also because changes are adaptive only to the extent that they increase either one's understanding of others, or one's…

  5. Genes and human brain evolution

    OpenAIRE

    Geschwind, Daniel H.; Konopka, Genevieve

    2012-01-01

    Several genes were duplicated during human evolution. It seems that one such duplication gave rise to a gene that may have helped to make human brains bigger and more adaptable than those of our ancestors.

  6. On the Relationships of Postcanine Tooth Size with Dietary Quality and Brain Volume in Primates: Implications for Hominin Evolution

    Directory of Open Access Journals (Sweden)

    Juan Manuel Jiménez-Arenas

    2014-01-01

    Full Text Available Brain volume and cheek-tooth size have traditionally been considered as two traits that show opposite evolutionary trends during the evolution of Homo. As a result, differences in encephalization and molarization among hominins tend to be interpreted in paleobiological grounds, because both traits were presumably linked to the dietary quality of extinct species. Here we show that there is an essential difference between the genus Homo and the living primate species, because postcanine tooth size and brain volume are related to negative allometry in primates and show an inverse relationship in Homo. However, when size effects are removed, the negative relationship between encephalization and molarization holds only for platyrrhines and the genus Homo. In addition, there is no general trend for the relationship between postcanine tooth size and dietary quality among the living primates. If size and phylogeny effects are both removed, this relationship vanishes in many taxonomic groups. As a result, the suggestion that the presence of well-developed postcanine teeth in extinct hominins should be indicative of a poor-quality diet cannot be generalized to all extant and extinct primates.

  7. Brain Research: Implications for Learning.

    Science.gov (United States)

    Soares, Louise M.; Soares, Anthony T.

    Brain research has illuminated several areas of the learning process: (1) learning as association; (2) learning as reinforcement; (3) learning as perception; (4) learning as imitation; (5) learning as organization; (6) learning as individual style; and (7) learning as brain activity. The classic conditioning model developed by Pavlov advanced…

  8. Darwin's evolution theory, brain oscillations, and complex brain function in a new "Cartesian view".

    Science.gov (United States)

    Başar, Erol; Güntekin, Bahar

    2009-01-01

    Comparatively analyses of electrophysiological correlates across species during evolution, alpha activity during brain maturation, and alpha activity in complex cognitive processes are presented to illustrate a new multidimensional "Cartesian System" brain function. The main features are: (1) The growth of the alpha activity during evolution, increase of alpha during cognitive processes, and decrease of the alpha entropy during evolution provide an indicator for evolution of brain cognitive performance. (2) Human children younger than 3 years are unable to produce higher cognitive processes and do not show alpha activity till the age of 3 years. The mature brain can perform higher cognitive processes and demonstrates regular alpha activity. (3) Alpha activity also is significantly associated with highly complex cognitive processes, such as the recognition of facial expressions. The neural activity reflected by these brain oscillations can be considered as constituent "building blocks" for a great number of functions. An overarching statement on the alpha function is presented by extended analyzes with multiple dimensions that constitute a "Cartesian Hyperspace" as the basis for oscillatory function. Theoretical implications are considered.

  9. Darwin's evolution theory, brain oscillations, and complex brain function in a new "Cartesian view".

    Science.gov (United States)

    Başar, Erol; Güntekin, Bahar

    2009-01-01

    Comparatively analyses of electrophysiological correlates across species during evolution, alpha activity during brain maturation, and alpha activity in complex cognitive processes are presented to illustrate a new multidimensional "Cartesian System" brain function. The main features are: (1) The growth of the alpha activity during evolution, increase of alpha during cognitive processes, and decrease of the alpha entropy during evolution provide an indicator for evolution of brain cognitive performance. (2) Human children younger than 3 years are unable to produce higher cognitive processes and do not show alpha activity till the age of 3 years. The mature brain can perform higher cognitive processes and demonstrates regular alpha activity. (3) Alpha activity also is significantly associated with highly complex cognitive processes, such as the recognition of facial expressions. The neural activity reflected by these brain oscillations can be considered as constituent "building blocks" for a great number of functions. An overarching statement on the alpha function is presented by extended analyzes with multiple dimensions that constitute a "Cartesian Hyperspace" as the basis for oscillatory function. Theoretical implications are considered. PMID:18805445

  10. Metabolic correlates of hominid brain evolution.

    Science.gov (United States)

    Leonard, William R; Robertson, Marcia L; Snodgrass, J Josh; Kuzawa, Christopher W

    2003-09-01

    Large brain sizes in humans have important metabolic consequences as humans expend a relatively larger proportion of their resting energy budget on brain metabolism than other primates or non-primate mammals. The high costs of large human brains are supported, in part, by diets that are relatively rich in energy and other nutrients. Among living primates, the relative proportion of metabolic energy allocated to the brain is positively correlated with dietary quality. Humans fall at the positive end of this relationship, having both a very high quality diet and a large brain size. Greater encephalization also appears to have consequences for aspects of body composition. Comparative primate data indicate that humans are 'under-muscled', having relatively lower levels of skeletal muscle than other primate species of similar size. Conversely, levels of body fatness are relatively high in humans, particularly in infancy. These greater levels of body fatness and reduced levels of muscle mass allow human infants to accommodate the growth of their large brains in two important ways: (1) by having a ready supply of stored energy to 'feed the brain', when intake is limited and (2) by reducing the total energy costs of the rest of the body. Paleontological evidence indicates that the rapid brain evolution observed with the emergence of Homo erectus at approximately 1.8 million years ago was likely associated with important changes in diet and body composition. PMID:14527625

  11. On the Evolution of the Mammalian Brain.

    Science.gov (United States)

    Torday, John S; Miller, William B

    2016-01-01

    Hobson and Friston have hypothesized that the brain must actively dissipate heat in order to process information (Hobson et al., 2014). This physiologic trait is functionally homologous with the first instantation of life formed by lipids suspended in water forming micelles- allowing the reduction in entropy (heat dissipation). This circumvents the Second Law of Thermodynamics permitting the transfer of information between living entities, enabling them to perpetually glean information from the environment, that is felt by many to correspond to evolution per se. The next evolutionary milestone was the advent of cholesterol, embedded in the cell membranes of primordial eukaryotes, facilitating metabolism, oxygenation and locomotion, the triadic basis for vertebrate evolution. Lipids were key to homeostatic regulation of calcium, forming calcium channels. Cell membrane cholesterol also fostered metazoan evolution by forming lipid rafts for receptor-mediated cell-cell signaling, the origin of the endocrine system. The eukaryotic cell membrane exapted to all complex physiologic traits, including the lung and brain, which are molecularly homologous through the function of neuregulin, mediating both lung development and myelinization of neurons. That cooption later exapted as endothermy during the water-land transition (Torday, 2015a), perhaps being the functional homolog for brain heat dissipation and conscious/mindful information processing. The skin and brain similarly share molecular homologies through the "skin-brain" hypothesis, giving insight to the cellular-molecular "arc" of consciousness from its unicellular origins to integrated physiology. This perspective on the evolution of the central nervous system clarifies self-organization, reconciling thermodynamic and informational definitions of the underlying biophysical mechanisms, thereby elucidating relations between the predictive capabilities of the brain and self-organizational processes. PMID:27147985

  12. On the evolution of the mammalian brain

    Directory of Open Access Journals (Sweden)

    John Steven Torday

    2016-04-01

    Full Text Available Hobson and Friston have hypothesized that the brain must actively dissipate heat in order to process information (Virtual reality and consciousness inference in dreaming. Front Psychol. 2014 Oct 9;5:1133.. This physiologic trait is functionally homologous with the first instantation of life formed by lipids suspended in water forming micelles- allowing the reduction in entropy (heat dissipation, circumventing the Second Law of Thermodynamics permitting the transfer of information between living entities, enabling them to perpetually glean information from the environment (= evolution. The next evolutionary milestone was the advent of cholesterol, embedded in the cell membranes of primordial eukaryotes, facilitating metabolism, oxygenation and locomotion, the triadic basis for vertebrate evolution. Lipids were key to homeostatic regulation of calcium, forming calcium channels. Cell membrane cholesterol also fostered metazoan evolution by forming lipid rafts for receptor-mediated cell-cell signaling, the origin of the endocrine system. The eukaryotic cell membrane exapted to all complex physiologic traits, including the lung and brain, which are molecularly homologous through the function of neuregulin, mediating both lung development and myelinization of neurons. That cooption later exapted as endothermy during the water-land transition (Torday JS. A Central Theory of Biology. Med Hypotheses. 2015 Jul;85(1:49-57, perhaps being the functional homolog for brain heat dissipation and consciousness/mind. The skin and brain similarly share molecular homologies through the ‘skin-brain’ hypothesis, giving insight to the cellular-molecular ‘arc’ of consciousness from its unicellular origins to integrated physiology. This perspective on the evolution of the central nervous system clarifies self-organization, reconciling thermodynamic and informational definitions of the underlying biophysical mechanisms, thereby elucidating relations between the

  13. On the Evolution of the Mammalian Brain

    Science.gov (United States)

    Torday, John S.; Miller, William B.

    2016-01-01

    Hobson and Friston have hypothesized that the brain must actively dissipate heat in order to process information (Hobson et al., 2014). This physiologic trait is functionally homologous with the first instantation of life formed by lipids suspended in water forming micelles- allowing the reduction in entropy (heat dissipation). This circumvents the Second Law of Thermodynamics permitting the transfer of information between living entities, enabling them to perpetually glean information from the environment, that is felt by many to correspond to evolution per se. The next evolutionary milestone was the advent of cholesterol, embedded in the cell membranes of primordial eukaryotes, facilitating metabolism, oxygenation and locomotion, the triadic basis for vertebrate evolution. Lipids were key to homeostatic regulation of calcium, forming calcium channels. Cell membrane cholesterol also fostered metazoan evolution by forming lipid rafts for receptor-mediated cell-cell signaling, the origin of the endocrine system. The eukaryotic cell membrane exapted to all complex physiologic traits, including the lung and brain, which are molecularly homologous through the function of neuregulin, mediating both lung development and myelinization of neurons. That cooption later exapted as endothermy during the water-land transition (Torday, 2015a), perhaps being the functional homolog for brain heat dissipation and conscious/mindful information processing. The skin and brain similarly share molecular homologies through the “skin-brain” hypothesis, giving insight to the cellular-molecular “arc” of consciousness from its unicellular origins to integrated physiology. This perspective on the evolution of the central nervous system clarifies self-organization, reconciling thermodynamic and informational definitions of the underlying biophysical mechanisms, thereby elucidating relations between the predictive capabilities of the brain and self-organizational processes. PMID

  14. Schizophrenia, abnormal connection, and brain evolution.

    Science.gov (United States)

    Randall, P L

    1983-03-01

    Abnormalities of functional connection between specialized areas in the human brain may underlie the symptoms which constitute the schizophrenia syndrome. Callosal and intrahemispheric fibres may be equally involved. The clinical emergence of symptoms in the later stages of brain maturation may be dependent on myelination of these fibre groups, both of which have extended myelination cycles. Ontogenetically earlier variants of the same mechanism could theoretically result in dyslexia and the syndromes of Kanner and Gilles de la Tourette. As new and unique extensions of specialized function emerge within the evolving brain, biological trial and error of connection both within and between them may produce individuals possessing phylogenetically advanced abilities, or equally, others possessing a wide range of abnormalities including those which comprise the schizophrenia syndrome. A dormant phenotypic potential for schizophrenia may exist in individuals who never develop symptoms during the course of a lifetime though some of these may become clinically apparent under the influence of various precipitating factors. It is concluded that abnormal functional connection and its normal and "supernormal" counterparts may be natural, essential, and inevitable consequences of brain evolution, and that this may have been so throughout the history of vertebrate brain evolution.

  15. Evolution, brain, and the nature of language.

    Science.gov (United States)

    Berwick, Robert C; Friederici, Angela D; Chomsky, Noam; Bolhuis, Johan J

    2013-02-01

    Language serves as a cornerstone for human cognition, yet much about its evolution remains puzzling. Recent research on this question parallels Darwin's attempt to explain both the unity of all species and their diversity. What has emerged from this research is that the unified nature of human language arises from a shared, species-specific computational ability. This ability has identifiable correlates in the brain and has remained fixed since the origin of language approximately 100 thousand years ago. Although songbirds share with humans a vocal imitation learning ability, with a similar underlying neural organization, language is uniquely human. PMID:23313359

  16. Evolution, brain, and the nature of language.

    Science.gov (United States)

    Berwick, Robert C; Friederici, Angela D; Chomsky, Noam; Bolhuis, Johan J

    2013-02-01

    Language serves as a cornerstone for human cognition, yet much about its evolution remains puzzling. Recent research on this question parallels Darwin's attempt to explain both the unity of all species and their diversity. What has emerged from this research is that the unified nature of human language arises from a shared, species-specific computational ability. This ability has identifiable correlates in the brain and has remained fixed since the origin of language approximately 100 thousand years ago. Although songbirds share with humans a vocal imitation learning ability, with a similar underlying neural organization, language is uniquely human.

  17. Phylogeny and adaptive evolution of the brain-development gene microcephalin (MCPH1 in cetaceans

    Directory of Open Access Journals (Sweden)

    Montgomery Stephen H

    2011-04-01

    Full Text Available Abstract Background Representatives of Cetacea have the greatest absolute brain size among animals, and the largest relative brain size aside from humans. Despite this, genes implicated in the evolution of large brain size in primates have yet to be surveyed in cetaceans. Results We sequenced ~1240 basepairs of the brain development gene microcephalin (MCPH1 in 38 cetacean species. Alignments of these data and a published complete sequence from Tursiops truncatus with primate MCPH1 were utilized in phylogenetic analyses and to estimate ω (rate of nonsynonymous substitution/rate of synonymous substitution using site and branch models of molecular evolution. We also tested the hypothesis that selection on MCPH1 was correlated with brain size in cetaceans using a continuous regression analysis that accounted for phylogenetic history. Our analyses revealed widespread signals of adaptive evolution in the MCPH1 of Cetacea and in other subclades of Mammalia, however, there was not a significant positive association between ω and brain size within Cetacea. Conclusion In conjunction with a recent study of Primates, we find no evidence to support an association between MCPH1 evolution and the evolution of brain size in highly encephalized mammalian species. Our finding of significant positive selection in MCPH1 may be linked to other functions of the gene.

  18. Temporal and spatial evolution of brain network topology during the first two years of life.

    Science.gov (United States)

    Gao, Wei; Gilmore, John H; Giovanello, Kelly S; Smith, Jeffery Keith; Shen, Dinggang; Zhu, Hongtu; Lin, Weili

    2011-01-01

    The mature brain features high wiring efficiency for information transfer. However, the emerging process of such an efficient topology remains elusive. With resting state functional MRI and a large cohort of normal pediatric subjects (n = 147) imaged during a critical time period of brain development, 3 wk- to 2 yr-old, the temporal and spatial evolution of brain network topology is revealed. The brain possesses the small world topology immediately after birth, followed by a remarkable improvement in whole brain wiring efficiency in 1 yr olds and becomes more stable in 2 yr olds. Regional developments of brain wiring efficiency and the evolution of functional hubs suggest differential development trend for primary and higher order cognitive functions during the first two years of life. Simulations of random errors and targeted attacks reveal an age-dependent improvement of resilience. The lower resilience to targeted attack observed in 3 wk old group is likely due to the fact that there are fewer well-established long-distance functional connections at this age whose elimination might have more profound implications in the overall efficiency of information transfer. Overall, our results offer new insights into the temporal and spatial evolution of brain topology during early brain development.

  19. Temporal and spatial evolution of brain network topology during the first two years of life.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available The mature brain features high wiring efficiency for information transfer. However, the emerging process of such an efficient topology remains elusive. With resting state functional MRI and a large cohort of normal pediatric subjects (n = 147 imaged during a critical time period of brain development, 3 wk- to 2 yr-old, the temporal and spatial evolution of brain network topology is revealed. The brain possesses the small world topology immediately after birth, followed by a remarkable improvement in whole brain wiring efficiency in 1 yr olds and becomes more stable in 2 yr olds. Regional developments of brain wiring efficiency and the evolution of functional hubs suggest differential development trend for primary and higher order cognitive functions during the first two years of life. Simulations of random errors and targeted attacks reveal an age-dependent improvement of resilience. The lower resilience to targeted attack observed in 3 wk old group is likely due to the fact that there are fewer well-established long-distance functional connections at this age whose elimination might have more profound implications in the overall efficiency of information transfer. Overall, our results offer new insights into the temporal and spatial evolution of brain topology during early brain development.

  20. Task-Based Cohesive Evolution of Dynamic Brain Networks

    Science.gov (United States)

    Davison, Elizabeth

    2014-03-01

    Applications of graph theory to neuroscience have resulted in significant progress towards a mechanistic understanding of the brain. Functional network representation of the brain has linked efficient network structure to psychometric intelligence and altered configurations with disease. Dynamic graphs provide us with tools to further study integral properties of the brain; specifically, the mathematical convention of hyperedges has allowed us to study the brain's cross-linked structure. Hyperedges capture the changes in network structure by identifying groups of brain regions with correlation patterns that change cohesively through time. We performed a hyperedge analysis on functional MRI data from 86 subjects and explored the cohesive evolution properties of their functional brain networks as they performed a series of tasks. Our results establish the hypergraph as a useful measure in understanding functional brain dynamics over tasks and reveal characteristic differences in the co-evolution structure of task-specific networks.

  1. Evolution, development, and plasticity of the human brain: from molecules to bones

    Directory of Open Access Journals (Sweden)

    Branka eHrvoj-Mihic

    2013-10-01

    Full Text Available Neuroanatomical, molecular, and paleontological evidence is examined in light of human brain evolution. The brain of extant humans differs from the brains of other primates in its overall size and organization, and differences in size and organization of specific cortical areas and subcortical structures implicated into complex cognition and social and emotional processing. The human brain is also characterized by functional lateralizations, reflecting specializations of the cerebral hemispheres in humans for different types of processing, facilitating fast and reliable communication between neural cells in an enlarged brain. The features observed in the adult brain reflect human-specific patterns of brain development. Compared to the brains of other primates, the human brain takes longer to mature, promoting an extended period for establishing cortical microcircuitry and its modifications. Together, these features may underlie the prolonged period of learning and acquisition of technical and social skills necessary for survival, creating a unique cognitive and behavioral niche typical of our species.The neuroanatomical findings are in concordance with molecular analyses, which suggest a trend toward heterochrony in the expression of genes implicated in different functions. These include synaptogenesis, neuronal maturation and plasticity in humans, mutations in genes implicated in neurite outgrowth and plasticity, and an increased role of regulatory mechanisms, potentially promoting fast modification of neuronal morphologies in response to new computational demands. At the same time, endocranial casts of fossil hominins provide an insight into the timing of the emergence of uniquely human features in the course of evolution. We conclude by proposing several ways of combining comparative neuroanatomy, molecular biology and insights gained from fossil endocasts in future research.

  2. Mind, Brain and Education: A Decade of Evolution

    Science.gov (United States)

    Schwartz, Marc

    2015-01-01

    This article examines the evolution of Mind, Brain, and Education (MBE), the field, alongside that of the International Mind, Brain and Education Society (IMBES). The reflections stem mostly from my observations while serving as vice president, president-elect, and president of IMBES during the past 10 years. The article highlights the evolution…

  3. Plausible mechanisms for brain structural and size changes in human evolution.

    Science.gov (United States)

    Blazek, Vladimir; Brùzek, Jaroslav; Casanova, Manuel F

    2011-09-01

    Encephalization has many contexts and implications. On one hand, it is concerned with the transformation of eating habits, social relationships and communication, cognitive skills and the mind. Along with the increase in brain size on the other hand, encephalization is connected with the creation of more complex brain structures, namely in the cerebral cortex. It is imperative to inquire into the mechanisms which are linked with brain growth and to find out which of these mechanisms allow it and determine it. There exist a number of theories for understanding human brain evolution which originate from neurological sciences. These theories are the concept of radial units, minicolumns, mirror neurons, and neurocognitive networks. Over the course of evolution, it is evident that a whole range of changes have taken place in regards to heredity. These changes include new mutations of genes in the microcephalin complex, gene duplications, gene co-expression, and genomic imprinting. This complex study of the growth and reorganization of the brain and the functioning of hereditary factors and their external influences creates an opportunity to consider the implications of cultural evolution and cognitive faculties.

  4. The Holographic Brain: Implications for Training Design.

    Science.gov (United States)

    Jones, James R.

    Without special training, most people predominantly process data in one of four ways. Few achieve a coveted whole brain state that integrates such important but separate brain functions as logic and intuition. With new training techniques that exploit the holographic properties of the brain, organizations may be able to tap powerful whole brain…

  5. Effect of cocaine dependence on brain connections: clinical implications.

    Science.gov (United States)

    Ma, Liangsuo; Steinberg, Joel L; Moeller, F Gerard; Johns, Sade E; Narayana, Ponnada A

    2015-01-01

    Cocaine dependence (CD) is associated with several cognitive deficits. Accumulating evidence, based on human and animal studies, has led to models for interpreting the neural basis of cognitive functions as interactions between functionally related brain regions. In this review, we focus on magnetic resonance imaging (MRI) studies using brain connectivity techniques as related to CD. The majority of these brain connectivity studies indicated that cocaine use is associated with altered brain connectivity between different structures, including cortical-striatal regions and default mode network. In cocaine users some of the altered brain connectivity measures are associated with behavioral performance, history of drug use, and treatment outcome. The implications of these brain connectivity findings to the treatment of CD and the pros and cons of the major brain connectivity techniques are discussed. Finally potential future directions in cocaine use disorder research using brain connectivity techniques are briefly described. PMID:26512421

  6. Not all brains are made the same: new views on brain scaling in evolution.

    Science.gov (United States)

    Herculano-Houzel, Suzana

    2011-01-01

    Evolution has generated mammalian brains that vary by a factor of over 100,000 in mass. Despite such tremendous diversity, brain scaling in mammalian evolution has tacitly been considered a homogeneous phenomenon in terms of numbers of neurons, neuronal density, and the ratio between glial and neuronal cells, with brains of different sizes viewed as similarly scaled-up or scaled-down versions of a shared basic plan. According to this traditional view, larger brains would have more neurons, smaller neuronal densities (and, hence, larger neurons), and larger glia/neuron ratios than smaller brains. Larger brains would also have a cerebellum that maintains its relative size constant and a cerebral cortex that becomes relatively larger to the point that brain evolution is often equated with cerebral cortical expansion. Here I review our recent data on the numbers of neuronal and nonneuronal cells that compose the brains of 28 mammalian species belonging to 3 large clades (Eulipotyphla, Glires, and Primata, plus the related Scandentia) and show that, contrary to the traditional notion of shared brain scaling, both the cerebral cortex and the cerebellum scale in size as clade-specific functions of their numbers of neurons. As a consequence, neuronal density and the glia/neuron ratio do not scale universally with structure mass and, most importantly, mammalian brains of a similar size can hold very different numbers of neurons. Remarkably, the increased relative size of the cerebral cortex in larger brains does not reflect an increased relative concentration of neurons in the structure. Instead, the cerebral cortex and cerebellum appear to gain neurons coordinately across mammalian species. Brain scaling in evolution, hence, should no longer be equated with an increasing dominance of the cerebral cortex but rather with the concerted addition of neurons to both the cerebral cortex and the cerebellum. Strikingly, all brains appear to gain nonneuronal cells in a similar

  7. Immune System to Brain Signaling: Neuropsychopharmacological Implications

    OpenAIRE

    Capuron, Lucile; Miller, Andrew H.

    2011-01-01

    There has been an explosion in our knowledge of the pathways and mechanisms by which the immune system can influence the brain and behavior. In the context of inflammation, pro-inflammatory cytokines can access the central nervous system and interact with a cytokine network in the brain to influence virtually every aspect of brain function relevant to behavior including neurotransmitter metabolism, neuroendocrine function, synaptic plasticity, and neurocircuits that regulate mood, motor activ...

  8. Human brain evolution and the "Neuroevolutionary Time-depth Principle:" Implications for the Reclassification of fear-circuitry-related traits in DSM-V and for studying resilience to warzone-related posttraumatic stress disorder.

    Science.gov (United States)

    Bracha, H Stefan

    2006-07-01

    The DSM-III, DSM-IV, DSM-IV-TR and ICD-10 have judiciously minimized discussion of etiologies to distance clinical psychiatry from Freudian psychoanalysis. With this goal mostly achieved, discussion of etiological factors should be reintroduced into the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V). A research agenda for the DSM-V advocated the "development of a pathophysiologically based classification system". The author critically reviews the neuroevolutionary literature on stress-induced and fear circuitry disorders and related amygdala-driven, species-atypical fear behaviors of clinical severity in adult humans. Over 30 empirically testable/falsifiable predictions are presented. It is noted that in DSM-IV-TR and ICD-10, the classification of stress and fear circuitry disorders is neither mode-of-acquisition-based nor brain-evolution-based. For example, snake phobia (innate) and dog phobia (overconsolidational) are clustered together. Similarly, research on blood-injection-injury-type-specific phobia clusters two fears different in their innateness: 1) an arguably ontogenetic memory-trace-overconsolidation-based fear (hospital phobia) and 2) a hardwired (innate) fear of the sight of one's blood or a sharp object penetrating one's skin. Genetic architecture-charting of fear-circuitry-related traits has been challenging. Various, non-phenotype-based architectures can serve as targets for research. In this article, the author will propose one such alternative genetic architecture. This article was inspired by the following: A) Nesse's "Smoke-Detector Principle", B) the increasing suspicion that the "smooth" rather than "lumpy" distribution of complex psychiatric phenotypes (including fear-circuitry disorders) may in some cases be accounted for by oligogenic (and not necessarily polygenic) transmission, and C) insights from the initial sequence of the chimpanzee genome and comparison with the human genome by the Chimpanzee Sequencing

  9. Human brain evolution and the "Neuroevolutionary Time-depth Principle:" Implications for the Reclassification of fear-circuitry-related traits in DSM-V and for studying resilience to warzone-related posttraumatic stress disorder.

    Science.gov (United States)

    Bracha, H Stefan

    2006-07-01

    The DSM-III, DSM-IV, DSM-IV-TR and ICD-10 have judiciously minimized discussion of etiologies to distance clinical psychiatry from Freudian psychoanalysis. With this goal mostly achieved, discussion of etiological factors should be reintroduced into the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V). A research agenda for the DSM-V advocated the "development of a pathophysiologically based classification system". The author critically reviews the neuroevolutionary literature on stress-induced and fear circuitry disorders and related amygdala-driven, species-atypical fear behaviors of clinical severity in adult humans. Over 30 empirically testable/falsifiable predictions are presented. It is noted that in DSM-IV-TR and ICD-10, the classification of stress and fear circuitry disorders is neither mode-of-acquisition-based nor brain-evolution-based. For example, snake phobia (innate) and dog phobia (overconsolidational) are clustered together. Similarly, research on blood-injection-injury-type-specific phobia clusters two fears different in their innateness: 1) an arguably ontogenetic memory-trace-overconsolidation-based fear (hospital phobia) and 2) a hardwired (innate) fear of the sight of one's blood or a sharp object penetrating one's skin. Genetic architecture-charting of fear-circuitry-related traits has been challenging. Various, non-phenotype-based architectures can serve as targets for research. In this article, the author will propose one such alternative genetic architecture. This article was inspired by the following: A) Nesse's "Smoke-Detector Principle", B) the increasing suspicion that the "smooth" rather than "lumpy" distribution of complex psychiatric phenotypes (including fear-circuitry disorders) may in some cases be accounted for by oligogenic (and not necessarily polygenic) transmission, and C) insights from the initial sequence of the chimpanzee genome and comparison with the human genome by the Chimpanzee Sequencing

  10. Evolution of brain-body allometry in Lake Tanganyika cichlids.

    Science.gov (United States)

    Tsuboi, Masahito; Kotrschal, Alexander; Hayward, Alexander; Buechel, Severine Denise; Zidar, Josefina; Løvlie, Hanne; Kolm, Niclas

    2016-07-01

    Brain size is strongly associated with body size in all vertebrates. This relationship has been hypothesized to be an important constraint on adaptive brain size evolution. The essential assumption behind this idea is that static (i.e., within species) brain-body allometry has low ability to evolve. However, recent studies have reported mixed support for this view. Here, we examine brain-body static allometry in Lake Tanganyika cichlids using a phylogenetic comparative framework. We found considerable variation in the static allometric intercept, which explained the majority of variation in absolute and relative brain size. In contrast, the slope of the brain-body static allometry had relatively low variation, which explained less variation in absolute and relative brain size compared to the intercept and body size. Further examination of the tempo and mode of evolution of static allometric parameters confirmed these observations. Moreover, the estimated evolutionary parameters indicate that the limited observed variation in the static allometric slope could be a result of strong stabilizing selection. Overall, our findings suggest that the brain-body static allometric slope may represent an evolutionary constraint in Lake Tanganyika cichlids. PMID:27241216

  11. Increased morphological asymmetry, evolvability and plasticity in human brain evolution

    OpenAIRE

    Gómez-Robles, Aida; Hopkins, William D.; Sherwood, Chet C.

    2013-01-01

    The study of hominin brain evolution relies mostly on evaluation of the endocranial morphology of fossil skulls. However, only some general features of external brain morphology are evident from endocasts, and many anatomical details can be difficult or impossible to examine. In this study, we use geometric morphometric techniques to evaluate inter- and intraspecific differences in cerebral morphology in a sample of in vivo magnetic resonance imaging scans of chimpanzees and humans, with spec...

  12. Social fishes and single mothers: brain evolution in African cichlids

    OpenAIRE

    Gonzalez-Voyer, Alejandro; Winberg, Svante; Kolm, Niclas

    2008-01-01

    As with any organ, differences in brain size—after adequate control of allometry—are assumed to be a response to selection. With over 200 species and an astonishing diversity in niche preferences and social organization, Tanganyikan cichlids present an excellent opportunity to study brain evolution. We used phylogenetic comparative analyses of sexed adults from 39 Tanganyikan cichlid species in a multiple regression framework to investigate the influence of ecology, sexual selection and paren...

  13. Evolution of alternative splicing in primate brain transcriptomes

    OpenAIRE

    Lin, Lan; Shen, Shihao; Jiang, Peng; Sato, Seiko; Davidson, Beverly L.; Xing, Yi

    2010-01-01

    Alternative splicing is a predominant form of gene regulation in higher eukaryotes. The evolution of alternative splicing provides an important mechanism for the acquisition of novel gene functions. In this work, we carried out a genome-wide phylogenetic survey of lineage-specific splicing patterns in the primate brain, via high-density exon junction array profiling of brain transcriptomes of humans, chimpanzees and rhesus macaques. We identified 509 genes showing splicing differences among t...

  14. On the evolution of the mammalian brain

    OpenAIRE

    John Steven Torday; Miller, William B.

    2016-01-01

    Hobson and Friston have hypothesized that the brain must actively dissipate heat in order to process information (Virtual reality and consciousness inference in dreaming. Front Psychol. 2014 Oct 9;5:1133.). This physiologic trait is functionally homologous with the first instantation of life formed by lipids suspended in water forming micelles- allowing the reduction in entropy (heat dissipation), circumventing the Second Law of Thermodynamics permitting the transfer of information between li...

  15. Spectral properties of the temporal evolution of brain network structure

    Science.gov (United States)

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.

  16. Spectral properties of the temporal evolution of brain network structure.

    Science.gov (United States)

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems. PMID:26723151

  17. Brain size of Homo floresiensis and its evolutionary implications.

    Science.gov (United States)

    Kubo, Daisuke; Kono, Reiko T; Kaifu, Yousuke

    2013-06-01

    The extremely small endocranial volume (ECV) of LB1, the type specimen of Homo floresiensis, poses a challenge in our understanding of human brain evolution. Some researchers hypothesize dramatic dwarfing of relative brain size from Homo erectus presumably without significant decrease in intellectual function, whereas others expect a lesser degree of brain diminution from a more primitive, small-brained form of hominin currently undocumented in eastern Asia. However, inconsistency in the published ECVs for LB1 (380-430 cc), unclear human intraspecific brain-body size scaling and other uncertainties have hampered elaborative modelling of its brain size reduction. In this study, we accurately determine the ECV of LB1 using high-resolution micro-CT scan. The ECV of LB1 thus measured, 426 cc, is larger than the commonly cited figure in previous studies (400 cc). Coupled with brain-body size correlation in Homo sapiens calculated based on a sample from 20 worldwide modern human populations, we construct new models of the brain size reduction in the evolution of H. floresiensis. The results show a more significant contribution of scaling effect than previously claimed. PMID:23595271

  18. MCPH1: a window into brain development and evolution

    Directory of Open Access Journals (Sweden)

    Jeannette eNardelli

    2015-03-01

    Full Text Available The development of the mammalian cerebral cortex involves a series of mechanisms: from patterning, progenitor cell proliferation and differentiation, to neuronal migration. Many factors influence the development of the cerebral cortex to its normal size and neuronal composition. Of these, the mechanisms that influence the proliferation and differentiation of neural progenitor cells are of particular interest, as they may have the greatest consequence on brain size, not only during development but also in evolution. In this context, causative genes of human autosomal recessive primary microcephaly, such as ASPM and MCPH1, are attractive candidates, as many of them show positive selection during primate evolution. MCPH1 causes microcephaly in mice and humans and is involved in a diverse array of molecular functions beyond brain development, including DNA repair and chromosome condensation. Positive selection of MCPH1 in the primate lineage has led to much insight and discussion of its role in brain size evolution. In this review, we will present an overview of MCPH1 from these multiple angles, and whilst its specific role in brain size regulation during development and evolution remain elusive, the pieces of the puzzle will be discussed with the aim of putting together the full picture of this fascinating gene.

  19. Evolution of the human brain : when bigger is better

    NARCIS (Netherlands)

    Hofman, Michel A

    2014-01-01

    Comparative studies of the brain in mammals suggest that there are general architectural principles governing its growth and evolutionary development. We are beginning to understand the geometric, biophysical and energy constraints that have governed the evolution and functional organization of the

  20. Ageing and diabetes: implications for brain function

    NARCIS (Netherlands)

    Gispen, W.H.; Biessels, G.J.; Heide, L.P. van der; Kamal, A.; Bleys, R.L.A.W.

    2002-01-01

    Diabetes mellitus is associated with moderate cognitive deficits and neurophysiological and structural changes in the brain, a condition that may be referred to as diabetic encephalopathy. Diabetes increases the risk of dementia, particularly in the elderly. The emerging view is that the diabetic br

  1. Reflecting on the philosophical implications of evolution

    Directory of Open Access Journals (Sweden)

    I.H. Horn

    2003-08-01

    Full Text Available Evolution as paradigm is a prescribed topic in contemporary South African education. This means that macro-evolution – the idea that life evolved progressively from inert matter to humankind’s coming into being – must form the foundation of South African education. The aim of this article is to reflect, in a spirit of respectful yet critical enquiry, on three issues with regard to macro-evolution: First, the theory of macro-evolution is placed in its historical context which indicates that although this theory owes its widespread acceptance to Charles Darwin, it did not originate with him. Second, the scientific status of the theory of macro-evolution is scrutinised. Karl Popper’s view of this theory as a metaphysical framework for research is given, accompanied by a brief discussion. Third, three evolutionary worldviews are identified and discussed.

  2. Social cognition and brain morphology: implications for developmental brain dysfunction.

    Science.gov (United States)

    Evans, David W; Lazar, Steven M; Boomer, K B; Mitchel, Aaron D; Michael, Andrew M; Moore, Gregory J

    2015-06-01

    The social-cognitive deficits associated with several neurodevelopmental and neuropsychiatric disorders have been linked to structural and functional brain anomalies. Given the recent appreciation for quantitative approaches to behavior, in this study we examined the brain-behavior links in social cognition in healthy young adults from a quantitative approach. Twenty-two participants were administered quantitative measures of social cognition, including the social responsiveness scale (SRS), the empathizing questionnaire (EQ) and the systemizing questionnaire (SQ). Participants underwent a structural, 3-T magnetic resonance imaging (MRI) procedure that yielded both volumetric (voxel count) and asymmetry indices. Model fitting with backward elimination revealed that a combination of cortical, limbic and striatal regions accounted for significant variance in social behavior and cognitive styles that are typically associated with neurodevelopmental and neuropsychiatric disorders. Specifically, as caudate and amygdala volumes deviate from the typical R > L asymmetry, and cortical gray matter becomes more R > L asymmetrical, overall SRS and Emotion Recognition scores increase. Social Avoidance was explained by a combination of cortical gray matter, pallidum (rightward asymmetry) and caudate (deviation from rightward asymmetry). Rightward asymmetry of the pallidum was the sole predictor of Interpersonal Relationships and Repetitive Mannerisms. Increased D-scores on the EQ-SQ, an indication of greater systemizing relative to empathizing, was also explained by deviation from the typical R > L asymmetry of the caudate.These findings extend the brain-behavior links observed in neurodevelopmental disorders to the normal distribution of traits in a healthy sample. PMID:24788335

  3. Evolutionary and developmental implications of asymmetric brain folding in a large primate pedigree.

    Science.gov (United States)

    Atkinson, Elizabeth G; Rogers, Jeffrey; Cheverud, James M

    2016-03-01

    Bilateral symmetry is a fundamental property of the vertebrate central nervous system. Local deviations from symmetry provide various types of information about the development, evolution, and function of elements within the CNS, especially the cerebral hemispheres. Here, we quantify the pattern and extent of asymmetry in cortical folding within the cerebrum of Papio baboons and assess the evolutionary and developmental implications of the findings. Analyses of directional asymmetry show a population-level trend in length measurements indicating that baboons are genetically predisposed to be asymmetrical, with the right side longer than the left in the anterior cerebrum while the left side is longer than the right posteriorly. We also find a corresponding bias to display a right frontal petalia (overgrowth of the anterior pole of the cerebral cortex on the right side). By quantifying fluctuating asymmetry, we assess canalization of brain features and the susceptibility of the baboon brain to developmental perturbations. We find that features are differentially canalized depending on their ontogenetic timing. We further deduce that development of the two hemispheres is to some degree independent. This independence has important implications for the evolution of cerebral hemispheres and their separate specialization. Asymmetry is a major feature of primate brains and is characteristic of both brain structure and function. PMID:26813679

  4. The History and Evolution of Experimental Traumatic Brain Injury Models.

    Science.gov (United States)

    Povlishock, John

    2016-01-01

    This narrative provides a brief history of experimental animal model development for the study of traumatic brain injury. It draws upon a relatively rich history of early animal modeling that employed higher order animals to assess concussive brain injury while exploring the importance of head movement versus stabilization in evaluating the animal's response to injury. These themes are extended to the development of angular/rotational acceleration/deceleration models that also exploited brain movement to generate both the morbidity and pathology typically associated with human traumatic brain injury. Despite the significance of these early model systems, their limitations and overall practicality are discussed. Consideration is given to more contemporary rodent animal models that replicate individual/specific features of human injury, while via various transgenic technologies permitting the evaluation of injury-mediated pathways. The narrative closes on a reconsideration of higher order, porcine animal models of injury and their implication for preclinical/translational research. PMID:27604709

  5. Metabolic costs and evolutionary implications of human brain development.

    Science.gov (United States)

    Kuzawa, Christopher W; Chugani, Harry T; Grossman, Lawrence I; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R; Wildman, Derek E; Sherwood, Chet C; Leonard, William R; Lange, Nicholas

    2014-09-01

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain's glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain-body metabolic trade-offs using the ratios of brain glucose uptake to the body's resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate.

  6. The quantum brain theory and implications

    CERN Document Server

    Stern, A

    1994-01-01

    While for the majority of physicists the problem of the deciphering of the brain code, the intelligence code, is a matter for future generations, the author boldly and forcefully disagrees. Breaking with the dogma of classical logic he develops in the form of the conversion postulate a concrete working hypothesis for the actual thought mechanism. The reader is invited on a fascinating mathematical journey to the very edges of modern scientific knowledge. From lepton and quark to mind, from cognition to a logic analogue of the Schrödinger equation, from Fibonacci numbers to logic quantum numb

  7. Origin and evolution of deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Vittorio Alessandro eSironi

    2011-08-01

    Full Text Available This paper briefly describes how the electrical stimulation, used since antiquity to modulate the nervous system, has been a fundamental tool of neurophysiologic investigation in the second half of the 18th century and was subsequently used by the early 20th century, even for therapeutic purposes. In mid-20th century the advent of stereotactic procedures has allowed the drift from lesional to stimulating technique of deep nuclei of the brain for therapeutic purposes. In this way, DBS was born, that, over the last two decades, has led to positive results for the treatment of medically refractory Parkinson's disease, essential tremor and dystonia. In recent years, the indications for therapeutic use of DBS have been extended to epilepsy, Tourette's syndrome, psychiatric diseases (depression, obsessive-compulsive disorder, some kinds of headache, eating disorders and the minimally conscious state. The potentials of the DBS for therapeutic use are fascinating, but there are still many unresolved technical and ethical problems, concerning the identification of the targets for each disease, the selection of the patients and the evaluation of the results.

  8. Evolution of Brain Tumor and Stability of Geometric Invariants

    Directory of Open Access Journals (Sweden)

    K. Tawbe

    2008-01-01

    Full Text Available This paper presents a method to reconstruct and to calculate geometric invariants on brain tumors. The geometric invariants considered in the paper are the volume, the area, the discrete Gauss curvature, and the discrete mean curvature. The volume of a tumor is an important aspect that helps doctors to make a medical diagnosis. And as doctors seek a stable calculation, we propose to prove the stability of some invariants. Finally, we study the evolution of brain tumor as a function of time in two or three years depending on patients with MR images every three or six months.

  9. Modeling evolution using the probability of fixation: history and implications.

    Science.gov (United States)

    McCandlish, David M; Stoltzfus, Arlin

    2014-09-01

    Many models of evolution calculate the rate of evolution by multiplying the rate at which new mutations originate within a population by a probability of fixation. Here we review the historical origins, contemporary applications, and evolutionary implications of these "origin-fixation" models, which are widely used in evolutionary genetics, molecular evolution, and phylogenetics. Origin-fixation models were first introduced in 1969, in association with an emerging view of "molecular" evolution. Early origin-fixation models were used to calculate an instantaneous rate of evolution across a large number of independently evolving loci; in the 1980s and 1990s, a second wave of origin-fixation models emerged to address a sequence of fixation events at a single locus. Although origin fixation models have been applied to a broad array of problems in contemporary evolutionary research, their rise in popularity has not been accompanied by an increased appreciation of their restrictive assumptions or their distinctive implications. We argue that origin-fixation models constitute a coherent theory of mutation-limited evolution that contrasts sharply with theories of evolution that rely on the presence of standing genetic variation. A major unsolved question in evolutionary biology is the degree to which these models provide an accurate approximation of evolution in natural populations.

  10. Evolution in invasive plants: implications for biological control

    OpenAIRE

    Müller-Schärer, Heinz; Schaffner, Urs; Steinger, Thomas

    2005-01-01

    Evidence is increasing that invasive plants can undergo rapid adaptive evolution during the process of range expansion. Here, we argue that evolutionary change during invasions will also affect plant–antagonist inter-actions and, thus, will have important implications for biological control programmes targeted at invasive plants. We explore how altered selection in the new range might influence the evolution of plant defence (resistance and tolerance) and life history. The degree to which suc...

  11. Brain evolution and development: adaptation, allometry and constraint.

    Science.gov (United States)

    Montgomery, Stephen H; Mundy, Nicholas I; Barton, Robert A

    2016-09-14

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  12. Brain evolution and development: adaptation, allometry and constraint

    Science.gov (United States)

    Barton, Robert A.

    2016-01-01

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  13. Imaging of Brain Dopamine Pathways: Implications for Understanding Obesity

    OpenAIRE

    Wang, Gene-Jack; Volkow, Nora D.; Panayotis K Thanos; Fowler, Joanna S.

    2009-01-01

    Obesity is typically associated with abnormal eating behaviors. Brain imaging studies in humans implicate the involvement of dopamine (DA)-modulated circuits in pathologic eating behavior(s). Food cues increase striatal extracellular DA, providing evidence for the involvement of DA in the nonhedonic motivational properties of food. Food cues also increase metabolism in the orbitofrontal cortex indicating the association of this region with the motivation for food consumption. Similar to drug-...

  14. Archaebacterial rhodopsin sequences: Implications for evolution

    Science.gov (United States)

    Lanyi, J. K.

    1991-01-01

    It was proposed over 10 years ago that the archaebacteria represent a separate kingdom which diverged very early from the eubacteria and eukaryotes. It follows that investigations of archaebacterial characteristics might reveal features of early evolution. So far, two genes, one for bacteriorhodopsin and another for halorhodopsin, both from Halobacterium halobium, have been sequenced. We cloned and sequenced the gene coding for the polypeptide of another one of these rhodopsins, a halorhodopsin in Natronobacterium pharaonis. Peptide sequencing of cyanogen bromide fragments, and immuno-reactions of the protein and synthetic peptides derived from the C-terminal gene sequence, confirmed that the open reading frame was the structural gene for the pharaonis halorhodopsin polypeptide. The flanking DNA sequences of this gene, as well as those of other bacterial rhodopsins, were compared to previously proposed archaebacterial consensus sequences. In pairwise comparisons of the open reading frame with DNA sequences for bacterio-opsin and halo-opsin from Halobacterium halobium, silent divergences were calculated. These indicate very considerable evolutionary distance between each pair of genes, even in the dame organism. In spite of this, three protein sequences show extensive similarities, indicating strong selective pressures.

  15. Clearance systems in the brain-implications for Alzheimer disease.

    Science.gov (United States)

    Tarasoff-Conway, Jenna M; Carare, Roxana O; Osorio, Ricardo S; Glodzik, Lidia; Butler, Tracy; Fieremans, Els; Axel, Leon; Rusinek, Henry; Nicholson, Charles; Zlokovic, Berislav V; Frangione, Blas; Blennow, Kaj; Ménard, Joël; Zetterberg, Henrik; Wisniewski, Thomas; de Leon, Mony J

    2015-08-01

    Accumulation of toxic protein aggregates-amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles-is the pathological hallmark of Alzheimer disease (AD). Aβ accumulation has been hypothesized to result from an imbalance between Aβ production and clearance; indeed, Aβ clearance seems to be impaired in both early and late forms of AD. To develop efficient strategies to slow down or halt AD, it is critical to understand how Aβ is cleared from the brain. Extracellular Aβ deposits can be removed from the brain by various clearance systems, most importantly, transport across the blood-brain barrier. Findings from the past few years suggest that astroglial-mediated interstitial fluid (ISF) bulk flow, known as the glymphatic system, might contribute to a larger portion of extracellular Aβ (eAβ) clearance than previously thought. The meningeal lymphatic vessels, discovered in 2015, might provide another clearance route. Because these clearance systems act together to drive eAβ from the brain, any alteration to their function could contribute to AD. An understanding of Aβ clearance might provide strategies to reduce excess Aβ deposits and delay, or even prevent, disease onset. In this Review, we describe the clearance systems of the brain as they relate to proteins implicated in AD pathology, with the main focus on Aβ. PMID:26195256

  16. Functional constraints in the evolution of brain circuits

    Science.gov (United States)

    Bosman, Conrado A.; Aboitiz, Francisco

    2015-01-01

    Regardless of major anatomical and neurodevelopmental differences, the vertebrate isocortex shows a remarkably well-conserved organization. In the isocortex, reciprocal connections between excitatory and inhibitory neurons are distributed across multiple layers, encompassing modular, dynamical and recurrent functional networks during information processing. These dynamical brain networks are often organized in neuronal assemblies interacting through rhythmic phase relationships. Accordingly, these oscillatory interactions are observed across multiple brain scale levels, and they are associated with several sensory, motor, and cognitive processes. Most notably, oscillatory interactions are also found in the complete spectrum of vertebrates. Yet, it is unknown why this functional organization is so well conserved in evolution. In this perspective, we propose some ideas about how functional requirements of the isocortex can account for the evolutionary stability observed in microcircuits across vertebrates. We argue that isocortex architectures represent canonical microcircuits resulting from: (i) the early selection of neuronal architectures based on the oscillatory excitatory-inhibitory balance, which lead to the implementation of compartmentalized oscillations and (ii) the subsequent emergence of inferential coding strategies (predictive coding), which are able to expand computational capacities. We also argue that these functional constraints may be the result of several advantages that oscillatory activity contributes to brain network processes, such as information transmission and code reliability. In this manner, similarities in mesoscale brain circuitry and input-output organization between different vertebrate groups may reflect evolutionary constraints imposed by these functional requirements, which may or may not be traceable to a common ancestor. PMID:26388716

  17. Continuity, divergence and the evolution of brain language pathways

    Directory of Open Access Journals (Sweden)

    James eRilling

    2012-01-01

    Full Text Available Recently, the assumption of evolutionary continuity between humans and non-human primates has been used to bolster the hypothesis that human language is mediated especially by the ventral extreme capsule pathway that mediates auditory object recognition in macaques. Here, we argue for the importance of evolutionary divergence in understanding brain language evolution. We present new comparative data reinforcing our previous conclusion that the dorsal arcuate fasciculus pathway was more significantly modified than the ventral extreme capsule pathway in human evolution. Twenty-six adult human and twenty six adult chimpanzees were imaged with diffusion-weighted MRI and probabilistic tractography was used to track and compare the dorsal and ventral language pathways. Based on these and other data, we argue that the arcuate fasciculus is likely to be the pathway most essential for higher-order aspects of human language such as syntax and lexical-semantics.

  18. Genetic architecture supports mosaic brain evolution and independent brain–body size regulation

    OpenAIRE

    Hager, Reinmar; Lu, Lu; Rosen, Glenn D.; Williams, Robert W.

    2012-01-01

    The mammalian brain consists of distinct parts that fulfil different functions. Finlay and Darlington have argued that evolution of the mammalian brain is constrained by developmental programs, suggesting that different brain parts are not free to respond individually to selection and evolve independent of other parts or overall brain size. However, comparisons among mammals with matched brain weights often reveal greater differences in brain part size, arguing against strong developmental co...

  19. Developmental modes and developmental mechanisms can channel brain evolution

    Directory of Open Access Journals (Sweden)

    Christine J Charvet

    2011-02-01

    Full Text Available Anseriform birds (ducks and geese as well as parrots and songbirds have evolved a disproportionately enlarged telencephalon compared with many other birds. However, parrots and songbirds differ from anseriform birds in their mode of development. Whereas ducks and geese are precocial (e.g., hatchlings feed on their own, parrots and songbirds are altricial (e.g., hatchlings are fed by their parents. We here consider how developmental modes may limit and facilitate specific changes in the mechanisms of brain development. We suggest that altriciality facilitates the evolution of telencephalic expansion by delaying telencephalic neurogenesis. We further hypothesize that delays in telencephalic neurogenesis generate delays in telencephalic maturation, which in turn foster neural adaptations that facilitate learning. Specifically, we propose that delaying telencephalic neurogenesis was a prerequisite for the evolution of neural circuits that allow parrots and songbirds to produce learned vocalizations. Overall, we argue that developmental modes have influenced how some lineages of birds increased the size of their telencephalon and that this, in turn, has influenced subsequent changes in brain circuits and behavior.

  20. Developmental Modes and Developmental Mechanisms can Channel Brain Evolution.

    Science.gov (United States)

    Charvet, Christine J; Striedter, Georg F

    2011-01-01

    Anseriform birds (ducks and geese) as well as parrots and songbirds have evolved a disproportionately enlarged telencephalon compared with many other birds. However, parrots and songbirds differ from anseriform birds in their mode of development. Whereas ducks and geese are precocial (e.g., hatchlings feed on their own), parrots and songbirds are altricial (e.g., hatchlings are fed by their parents). We here consider how developmental modes may limit and facilitate specific changes in the mechanisms of brain development. We suggest that altriciality facilitates the evolution of telencephalic expansion by delaying telencephalic neurogenesis. We further hypothesize that delays in telencephalic neurogenesis generate delays in telencephalic maturation, which in turn foster neural adaptations that facilitate learning. Specifically, we propose that delaying telencephalic neurogenesis was a prerequisite for the evolution of neural circuits that allow parrots and songbirds to produce learned vocalizations. Overall, we argue that developmental modes have influenced how some lineages of birds increased the size of their telencephalon and that this, in turn, has influenced subsequent changes in brain circuits and behavior.

  1. Cosmic evolution: the context for astrobiology and its cultural implications

    Science.gov (United States)

    Dick, Steven J.

    2012-10-01

    Astrobiology must be seen in the context of cosmic evolution, the 13.7 billion-year master narrative of the universe. The idea of an evolving universe dates back only to the 19th century, and became a guiding principle for astronomical research only in the second half of the 20th century. The modern synthesis in evolutionary biology hastened the acceptance of the idea in its cosmic setting, as did the confirmation of the Big Bang theory for the origin of the universe. NASA programmes such as Origins incorporated it as a guiding principle. Cosmic evolution encompasses physical, biological and cultural evolution, and may result in a physical, biological or postbiological universe, each with its own implications for long-term human destiny, and each imbuing the meaning of life with different values. It has the status of an increasingly accepted worldview that is beginning to have a profound effect not only in science but also in religion and philosophy.

  2. Endocasts-the direct evidence and recent advances in the study of human brain evolution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Brain evolution is one of the most important aspects of human evolution, usually studied through endocasts. Analysis of fossil hominid endocasts allows inferences on functional anatomy, physiology, and phylogeny. In this paper, we describe the general features of endocast studies and review some of the major topics in paleoneurology. These are: absolute and relative brain size evolution; brain shape variation; brain asymmetry and lateralization; middle meningeal vessels and venous sinuses; application of computed tomography and virtual imaging; the history of Chinese brain endocast studies. In particular, this review emphasizes endocast studies on Chinese hominin fossils.

  3. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion.

    Directory of Open Access Journals (Sweden)

    Natalay Kouprina

    2004-05-01

    Full Text Available Primary microcephaly (MCPH is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size.

  4. Rate of evolution in brain-expressed genes in humans and other primates.

    Directory of Open Access Journals (Sweden)

    Hurng-Yi Wang

    2007-02-01

    Full Text Available Brain-expressed genes are known to evolve slowly in mammals. Nevertheless, since brains of higher primates have evolved rapidly, one might expect acceleration in DNA sequence evolution in their brain-expressed genes. In this study, we carried out full-length cDNA sequencing on the brain transcriptome of an Old World monkey (OWM and then conducted three-way comparisons among (i mouse, OWM, and human, and (ii OWM, chimpanzee, and human. Although brain-expressed genes indeed appear to evolve more rapidly in species with more advanced brains (apes > OWM > mouse, a similar lineage effect is observable for most other genes. The broad inclusion of genes in the reference set to represent the genomic average is therefore critical to this type of analysis. Calibrated against the genomic average, the rate of evolution among brain-expressed genes is probably lower (or at most equal in humans than in chimpanzee and OWM. Interestingly, the trend of slow evolution in coding sequence is no less pronounced among brain-specific genes, vis-à-vis brain-expressed genes in general. The human brain may thus differ from those of our close relatives in two opposite directions: (i faster evolution in gene expression, and (ii a likely slowdown in the evolution of protein sequences. Possible explanations and hypotheses are discussed.

  5. Evolution of oxytocin pathways in the brain of vertebrates.

    Science.gov (United States)

    Knobloch, H Sophie; Grinevich, Valery

    2014-01-01

    The central oxytocin system transformed tremendously during the evolution, thereby adapting to the expanding properties of species. In more basal vertebrates (paraphyletic taxon Anamnia, which includes agnathans, fish and amphibians), magnocellular neurosecretory neurons producing homologs of oxytocin reside in the wall of the third ventricle of the hypothalamus composing a single hypothalamic structure, the preoptic nucleus. This nucleus further diverged in advanced vertebrates (monophyletic taxon Amniota, which includes reptiles, birds, and mammals) into the paraventricular and supraoptic nuclei with accessory nuclei (AN) between them. The individual magnocellular neurons underwent a process of transformation from primitive uni- or bipolar neurons into highly differentiated neurons. Due to these microanatomical and cytological changes, the ancient release modes of oxytocin into the cerebrospinal fluid were largely replaced by vascular release. However, the most fascinating feature of the progressive transformations of the oxytocin system has been the expansion of oxytocin axonal projections to forebrain regions. In the present review we provide a background on these evolutionary advancements. Furthermore, we draw attention to the non-synaptic axonal release in small and defined brain regions with the aim to clearly distinguish this way of oxytocin action from the classical synaptic transmission on one side and from dendritic release followed by a global diffusion on the other side. Finally, we will summarize the effects of oxytocin and its homologs on pro-social reproductive behaviors in representatives of the phylogenetic tree and will propose anatomically plausible pathways of oxytocin release contributing to these behaviors in basal vertebrates and amniots. PMID:24592219

  6. Evolution of oxytocin pathways in the brain of vertebrates

    Directory of Open Access Journals (Sweden)

    H. Sophie Knobloch

    2014-02-01

    Full Text Available The central oxytocin system transformed tremendously during the evolution, thereby adapting to the expanding properties of species. In more basal vertebrates (paraphyletic taxon Anamnia, which includes agnathans, fish and amphibians, magnocellular neurosecretory neurons producing oxytocin, vasopressin and their homologs reside in the wall of the third ventricle of the hypothalamus composing a single hypothalamic structure, the preoptic nucleus. This nucleus further diverged in advanced vertebrates (monophyletic taxon Amniota, which includes reptiles, birds and mammals into the paraventricular and supraoptic nuclei with accessory nuclei between them. The individual magnocellular neurons underwent a process of transformation from primitive uni- or bipolar neurons into highly differentiated neurons. Due to these microanatomical and cytological changes, the ancient release modes of oxytocin into the cerebrospinal fluid were largely replaced by vascular release. However, the most fascinating feature of the progressive transformations of the oxytocin system has been the expansion of oxytocin axonal projections to forebrain regions. In the present review we provide a background on these evolutionary advancements. Furthermore, we draw attention to the non-synaptic axonal release in small and defined brain regions with the aim to clearly distinguish this way of oxytocin action from the classical synaptic transmission on one side and from dendritic release followed by a global diffusion on the other side. Finally, we will summarize the effects of oxytocin and its homologs on pro-social reproductive behaviors in representatives of the phylogenetic tree and will propose anatomically plausible pathways of oxytocin release contributing to these behaviors in basal vertebrates and amniots.

  7. Third brain ventricle deformation analysis using fractional differentiation and evolution strategy in brain cine-MRI

    Science.gov (United States)

    Nakib, Amir; Aiboud, Fazia; Hodel, Jerome; Siarry, Patrick; Decq, Philippe

    2010-03-01

    In this paper, we present an original method to evaluate the deformations in the third cerebral ventricle on a brain cine- MR imaging. First, a segmentation process, based on a fractional differentiation method, is directly applied on a 2D+t dataset to detect the contours of the region of interest (i.e. lamina terminalis). Then, the successive segmented contours are matched using a procedure of global alignment, followed by a morphing process, based on the Covariance Matrix Adaptation Evolution Strategy (CMAES). Finally, local measurements of deformations are derived from the previously determined matched contours. The validation step is realized by comparing our results with the measurements achieved on the same patients by an expert.

  8. Developmental origins of mosaic brain evolution: Morphometric analysis of the developing zebra finch brain.

    Science.gov (United States)

    Charvet, Christine J; Striedter, Georg F

    2009-05-10

    In adult zebra finches (Taeniopygia guttata), the telencephalon occupies 64% of the entire brain. This fraction is similar to what is seen in parrots, but many other birds possess a significantly smaller telencephalon. The aim of the present study was to determine the developmental time course and cellular basis of telencephalic enlargement in zebra finches, and then to compare these findings with what is known about telencephalic enlargement in other birds. To this end we estimated the volumes of all major brain regions from serial sections in embryonic and post-hatching zebra finches. We also labeled proliferating cells with antibodies against proliferating cell nuclear antigen and phosphorylated histone H3. An important finding to emerge from this work is that the telencephalon of zebra finches at hatching contains a thick proliferative subventricular zone (SVZ) that extends from the subpallium into the dorsal pallium. The data also show that the onset and offset of telencephalic neurogenesis are both delayed in zebra finches relative to quail (Galliformes). This delay in neurogenesis, in conjunction with the expanded SVZ, probably accounts for most of the telencephalic enlargement in passerines such as the zebra finch. In addition, passerines enlarged their telencephalon by decreasing the proportional size of their midbrain tectum. Because the presumptive tectum is proportionally smaller in zebra finches than quail before neurogenesis begins, this difference in tectum size cannot be due to evolutionary alterations in neurogenesis timing. Collectively these findings indicate that several different developmental mechanisms underlie the evolution of a large telencephalon in passerines.

  9. Optogenetics, sex, and violence in the brain: implications for psychiatry.

    Science.gov (United States)

    Anderson, David J

    2012-06-15

    Pathological aggression and the inability to control aggressive impulses takes a tremendous toll on society. Yet aggression is a normal component of the innate behavior repertoire of most vertebrate animal species as well as of many invertebrates. Progress in understanding the etiology of disorders of aggressive behavior, whether genetic or environmental in nature, therefore requires an understanding of the brain circuitry that controls normal aggression. Efforts to understand this circuitry at the level of specific neuronal populations have been constrained by the limited resolution of classical methodologies, such as electrical stimulation and electrolytic lesion. The availability of new, genetically based tools for mapping and manipulating neural circuits at the level of specific, genetically defined neuronal subtypes provides an opportunity to investigate the functional organization of aggression circuitry with cellular resolution. However, these technologies are optimally applied in the mouse, where there has been surprisingly little traditional work on the functional neuroanatomy of aggression. Here we discuss recent, initial efforts to apply optogenetics and other state-of-the-art methods to the dissection of aggression circuitry in the mouse. We find, surprisingly, that neurons necessary and sufficient for inter-male aggression are located within the ventrolateral subdivision of the ventromedial hypothalamic nucleus, a structure traditionally associated with reproductive behavior. These neurons are intermingled with neurons activated during male-female mating, with approximately 20% overlap between the populations. We discuss the significance of these findings with respect to neuroethological and neuroanatomical perspectives on the functional organization of innate behaviors and their potential implications for psychiatry.

  10. Ontogenetic Shape Change in the Chicken Brain: Implications for Paleontology.

    Directory of Open Access Journals (Sweden)

    Soichiro Kawabe

    Full Text Available Paleontologists have investigated brain morphology of extinct birds with little information on post-hatching changes in avian brain morphology. Without the knowledge of ontogenesis, assessing brain morphology in fossil taxa could lead to misinterpretation of the phylogeny or neurosensory development of extinct species. Hence, it is imperative to determine how avian brain morphology changes during post-hatching growth. In this study, chicken brain shape was compared at various developmental stages using three-dimensional (3D geometric morphometric analysis and the growth rate of brain regions was evaluated to explore post-hatching morphological changes. Microscopic MRI (μMRI was used to acquire in vivo data from living and post-mortem chicken brains. The telencephalon rotates caudoventrally during growth. This change in shape leads to a relative caudodorsal rotation of the cerebellum and myelencephalon. In addition, all brain regions elongate rostrocaudally and this leads to a more slender brain shape. The growth rates of each brain region were constant and the slopes from the growth formula were parallel. The dominant pattern of ontogenetic shape change corresponded with interspecific shape changes due to increasing brain size. That is, the interspecific and ontogenetic changes in brain shape due to increased size have similar patterns. Although the shape of the brain and each brain region changed considerably, the volume ratio of each brain region did not change. This suggests that the brain can change its shape after completing functional differentiation of the brain regions. Moreover, these results show that consideration of ontogenetic changes in brain shape is necessary for an accurate assessment of brain morphology in paleontological studies.

  11. The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size

    Science.gov (United States)

    Miller, Geoffrey F.; Penke, Lars

    2007-01-01

    Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…

  12. Orbital Dynamics, Environmental Heterogeneity, and the Evolution of the Human Brain

    Science.gov (United States)

    Grove, Matt

    2012-01-01

    Many explanations have been proposed for the evolution of our anomalously large brains, including social, ecological, and epiphenomenal hypotheses. Recently, an additional hypothesis has emerged, suggesting that advanced cognition and, by inference, increases in brain size, have been driven over evolutionary time by the need to deal with…

  13. Brain-lung crosstalk: Implications for neurocritical care patients

    OpenAIRE

    Mrozek, Ségolène; Constantin, Jean-Michel; Geeraerts, Thomas

    2015-01-01

    Major pulmonary disorders may occur after brain injuries as ventilator-associated pneumonia, acute respiratory distress syndrome or neurogenic pulmonary edema. They are key points for the management of brain-injured patients because respiratory failure and mechanical ventilation seem to be a risk factor for increased mortality, poor neurological outcome and longer intensive care unit or hospital length of stay. Brain and lung strongly interact via complex pathways from the brain to the lung b...

  14. Comparative primate neurobiology and the evolution of brain language systems.

    Science.gov (United States)

    Rilling, James K

    2014-10-01

    Human brain specializations supporting language can be identified by comparing human with non-human primate brains. Comparisons with chimpanzees are critical in this endeavor. Human brains are much larger than non-human primate brains, but human language capabilities cannot be entirely explained by brain size. Human brain specializations that potentially support our capacity for language include firstly, wider cortical minicolumns in both Broca's and Wernicke's areas compared with great apes; secondly, leftward asymmetries in Broca's area volume and Wernicke's area minicolumn width that are not found in great apes; and thirdly, arcuate fasciculus projections beyond Wernicke's area to a region of expanded association cortex in the middle and inferior temporal cortex involved in processing word meaning.

  15. Brain-Based Education: Its Pedagogical Implications and Research Relevance

    Science.gov (United States)

    Laxman, Kumar; Chin, Yap Kueh

    2010-01-01

    The brain, being the organ of learning, must be understood if classrooms are to be places of meaningful learning. Understanding the brain has the potential to alter the foundation of education, transform traditional classrooms to interactive learning environments and promote better instructional approaches amongst teachers. Brain-based education…

  16. Theoretical Implications of Contemporary Brain Science for Japanese EFL Learning

    Science.gov (United States)

    Clayton, John Lloyd

    2015-01-01

    Recent advances in brain science show that adult native Japanese speakers utilize a different balance of language processing routes in the brain as compared to native English speakers. Biologically this represents the remarkable flexibility of the human brain to adapt universal human cognitive processes to fit the specific needs of linguistic and…

  17. Implications of Brain Research for Teaching Young Adolescents. What Research Says.

    Science.gov (United States)

    Wilson, Lucinda M.; Horch, Hadley Wilson

    2002-01-01

    Summarizes research findings related to brain maturation during the adolescent years and highlights implications for the middle level educator, focusing on the types of classroom activities most compatible with attention and memory. Examines possible gender differences in how adolescents learn, the effects of stress on the brain, and implications…

  18. The immune system mediates blood-brain barrier damage; Possible implications for pathophysiology of neuropsychiatric illnesses

    NARCIS (Netherlands)

    VanderWerf, YD; DeJongste, MJL; terHorst, GJ

    1995-01-01

    The immune system mediates blood-brain barrier damage; possible implications for pathophysiology of neuropsychiatric illnesses. In this investigation the effects of immune activation on the brain are characterized In order to study this, we used a model for chronic immune activation, the myocardial

  19. Brain size and thermoregulation during the evolution of the genus Homo.

    Science.gov (United States)

    Naya, Daniel E; Naya, Hugo; Lessa, Enrique P

    2016-01-01

    Several hypotheses have been proposed to explain the evolution of an energetically costly brain in the genus Homo. Some of these hypotheses are based on the correlation between climatic factors and brain size recorded for this genus during the last millions of years. In this study, we propose a complementary climatic hypothesis that is based on the mechanistic connection between temperature, thermoregulation, and size of internal organs in endothermic species. We hypothesized that global cooling during the last 3.2 my may have imposed an increased energy expenditure for thermoregulation, which in the case of hominids could represent a driver for the evolution of an expanded brain, or at least, it could imply the relaxation of a negative selection pressure acting upon this costly organ. To test this idea, here we (1) assess variation in the energetic costs of thermoregulation and brain maintenance for the last 3.2 my, and (2) evaluate the relationship between Earth temperature and brain maintenance cost for the same period, taking into account the effects of body mass and fossil age. We found that: (1) the energetic cost associated with brain enlargement represents an important fraction (between 47.5% and 82.5%) of the increase in energy needed for thermoregulation; (2) fossil age is a better predictor of brain maintenance cost than Earth temperature, suggesting that (at least) another factor correlated with time was more relevant than ambient temperature in brain size evolution; and (3) there is a significant negative correlation between the energetic cost of brain and Earth temperature, even after accounting for the effect of body mass and fossil age. Thus, our results expand the current energetic framework for the study of brain size evolution in our lineage by suggesting that a fall in Earth temperature during the last millions of years may have facilitated brain enlargement.

  20. Conclusions: implications of the Liang Bua excavations for hominin evolution and biogeography.

    Science.gov (United States)

    Morwood, M J; Jungers, W L

    2009-11-01

    Excavations at Liang Bua, on the Indonesian island of Flores, have yielded a stratified sequence of stone artifacts and faunal remains spanning the last 95k.yr., which includes the skeletal remains of two human species, Homo sapiens in the Holocene and Homo floresiensis in the Pleistocene. This paper summarizes and focuses on some of the evidence for Homo floresiensis in context, as presented in this Special Issue edition of the Journal of Human Evolution and elsewhere. Attempts to dismiss the Pleistocene hominins (and the type specimen LB1 in particular) as pathological pygmy humans are not compatible with detailed analyses of the skull, teeth, brain endocast, and postcranium. We initially concluded that H. floresiensis may have evolved by insular dwarfing of a larger-bodied hominin species over 880k.yr. or more. However, recovery of additional specimens and the numerous primitive morphological traits seen throughout the skeleton suggest instead that it is more likely to be a late representative of a small-bodied lineage that exited Africa before the emergence of Homo erectus sensu lato. Homo floresiensis is clearly not an australopithecine, but does retain many aspects of anatomy (and perhaps behavior) that are probably plesiomorphic for the genus Homo. We also discuss some of the other implications of this tiny, endemic species for early hominin dispersal and evolution (e.g., for the "Out of Africa 1" paradigm and more specifically for colonizing Southeast Asia), and we present options for future research in the region. PMID:19913680

  1. Slip of the tongue: Implications for evolution and language development.

    Science.gov (United States)

    Forrester, Gillian S; Rodriguez, Alina

    2015-08-01

    A prevailing theory regarding the evolution of language implicates a gestural stage prior to the emergence of speech. In support of a transition of human language from a gestural to a vocal system, articulation of the hands and the tongue are underpinned by overlapping left hemisphere dominant neural regions. Behavioral studies demonstrate that human adults perform sympathetic mouth actions in imitative synchrony with manual actions. Additionally, right-handedness for precision manual actions in children has been correlated with the typical development of language, while a lack of hand bias has been associated with psychopathology. It therefore stands to reason that sympathetic mouth actions during fine precision motor action of the hands may be lateralized. We employed a fine-grained behavioral coding paradigm to provide the first investigation of tongue protrusions in typically developing 4-year old children. Tongue protrusions were investigated across a range of cognitive tasks that required varying degrees of manual action: precision motor action, gross motor action and no motor actions. The rate of tongue protrusions was influenced by the motor requirements of the task and tongue protrusions were significantly right-biased for only precision manual motor action (p<.001). From an evolutionary perspective, tongue protrusions can drive new investigations regarding how an early human communication system transitioned from hand to mouth. From a developmental perspective, the present study may serve to reveal patterns of tongue protrusions during the motor development of typically developing children. PMID:25966841

  2. Predator-driven brain size evolution in natural populations of Trinidadian killifish (Rivulus hartii).

    Science.gov (United States)

    Walsh, Matthew R; Broyles, Whitnee; Beston, Shannon M; Munch, Stephan B

    2016-07-13

    Vertebrates exhibit extensive variation in relative brain size. It has long been assumed that this variation is the product of ecologically driven natural selection. Yet, despite more than 100 years of research, the ecological conditions that select for changes in brain size are unclear. Recent laboratory selection experiments showed that selection for larger brains is associated with increased survival in risky environments. Such results lead to the prediction that increased predation should favour increased brain size. Work on natural populations, however, foreshadows the opposite trajectory of evolution; increased predation favours increased boldness, slower learning, and may thereby select for a smaller brain. We tested the influence of predator-induced mortality on brain size evolution by quantifying brain size variation in a Trinidadian killifish, Rivulus hartii, from communities that differ in predation intensity. We observed strong genetic differences in male (but not female) brain size between fish communities; second generation laboratory-reared males from sites with predators exhibited smaller brains than Rivulus from sites in which they are the only fish present. Such trends oppose the results of recent laboratory selection experiments and are not explained by trade-offs with other components of fitness. Our results suggest that increased male brain size is favoured in less risky environments because of the fitness benefits associated with faster rates of learning and problem-solving behaviour. PMID:27412278

  3. Evolution of brain size in the Palaeognath lineage, with an emphasis on new zealand ratites.

    Science.gov (United States)

    Corfield, Jeremy R; Wild, J Martin; Hauber, Mark E; Parsons, Stuart; Kubke, M Fabiana

    2008-01-01

    Brain size in vertebrates varies principally with body size. Although many studies have examined the variation of brain size in birds, there is little information on Palaeognaths, which include the ratite lineage of kiwi, emu, ostrich and extinct moa, as well as the tinamous. Therefore, we set out to determine to what extent the evolution of brain size in Palaeognaths parallels that of other birds, i.e., Neognaths, by analyzing the variation in the relative sizes of the brain and cerebral hemispheres of several species of ratites and tinamous. Our results indicate that the Palaeognaths possess relatively smaller brains and cerebral hemispheres than the Neognaths, with the exception of the kiwi radiation (Apteryx spp.). The external morphology and relatively large size of the brain of Apteryx, as well as the relatively large size of its telencephalon, contrast with other Palaeognaths, including two species of historically sympatric moa, suggesting that unique selective pressures towards increasing brain size accompanied the evolution of kiwi. Indeed, the size of the cerebral hemispheres with respect to total brain size of kiwi is rivaled only by a handful of parrots and songbirds, despite a lack of evidence of any advanced behavioral/cognitive abilities such as those reported for parrots and crows. In addition, the enlargement in brain and telencephalon size of the kiwi occurs despite the fact that this is a precocial bird. These findings form an exception to, and hence challenge, the current rules that govern changes in relative brain size in birds.

  4. Neuroecology of cartilaginous fishes: the functional implications of brain scaling.

    Science.gov (United States)

    Yopak, K E

    2012-04-01

    It is a widely accepted view that neural development can reflect morphological adaptations and sensory specializations. The aim of this review is to give a broad overview of the current status of brain data available for cartilaginous fishes and examine how perspectives on allometric scaling of brain size across this group of fishes has changed within the last 50 years with the addition of new data and more rigorous statistical analyses. The current knowledge of neuroanatomy in cartilaginous fishes is reviewed and data on brain size (encephalization, n = 151) and interspecific variation in brain organization (n = 84) has been explored to ascertain scaling relationships across this clade. It is determined whether similar patterns of brain organization, termed cerebrotypes, exist in species that share certain lifestyle characteristics. Clear patterns of brain organization exist across cartilaginous fishes, irrespective of phylogenetic grouping and, although this study was not a functional analysis, it provides further evidence that chondrichthyan brain structures might have developed in conjunction with specific behaviours or enhanced cognitive capabilities. Larger brains, with well-developed telencephala and large, highly foliated cerebella are reported in species that occupy complex reef or oceanic habitats, potentially identifying a reef-associated cerebrotype. In contrast, benthic and benthopelagic demersal species comprise the group with the smallest brains, with a relatively reduced telencephalon and a smooth cerebellar corpus. There is also evidence herein of a bathyal cerebrotype; deep-sea benthopelagic sharks possess relatively small brains and show a clear relative hypertrophy of the medulla oblongata. Despite the patterns observed and documented, significant gaps in the literature have been highlighted. Brain mass data are only currently available on c. 16% of all chondrichthyan species, and only 8% of species have data available on their brain

  5. Allomaternal care, life history and brain size evolution in mammals

    OpenAIRE

    Isler, K.; van Schaik, C. P.

    2012-01-01

    Humans stand out among the apes by having both an extremely large brain and a relatively high reproductive output, which has been proposed to be a consequence of cooperative breeding. Here, we test for general correlates of allomaternal care in a broad sample of 445 mammal species, by examining life history traits, brain size, and different helping behaviors, such as provisioning, carrying, huddling or protecting the offspring and the mother. As predicted from an energetic-cost perspective, a...

  6. Brain structure evolution in a basal vertebrate clade: evidence from phylogenetic comparative analysis of cichlid fishes

    Directory of Open Access Journals (Sweden)

    Kolm Niclas

    2009-09-01

    Full Text Available Abstract Background The vertebrate brain is composed of several interconnected, functionally distinct structures and much debate has surrounded the basic question of how these structures evolve. On the one hand, according to the 'mosaic evolution hypothesis', because of the elevated metabolic cost of brain tissue, selection is expected to target specific structures mediating the cognitive abilities which are being favored. On the other hand, the 'concerted evolution hypothesis' argues that developmental constraints limit such mosaic evolution and instead the size of the entire brain varies in response to selection on any of its constituent parts. To date, analyses of these hypotheses of brain evolution have been limited to mammals and birds; excluding Actinopterygii, the basal and most diverse class of vertebrates. Using a combination of recently developed phylogenetic multivariate allometry analyses and comparative methods that can identify distinct rates of evolution, even in highly correlated traits, we studied brain structure evolution in a highly variable clade of ray-finned fishes; the Tanganyikan cichlids. Results Total brain size explained 86% of the variance in brain structure volume in cichlids, a lower proportion than what has previously been reported for mammals. Brain structures showed variation in pair-wise allometry suggesting some degree of independence in evolutionary changes in size. This result is supported by variation among structures on the strength of their loadings on the principal size axis of the allometric analysis. The rate of evolution analyses generally supported the results of the multivariate allometry analyses, showing variation among several structures in their evolutionary patterns. The olfactory bulbs and hypothalamus were found to evolve faster than other structures while the dorsal medulla presented the slowest evolutionary rate. Conclusion Our results favor a mosaic model of brain evolution, as certain

  7. Pedogenesis evolution of mine technosols: focus onto organic matter implication

    Science.gov (United States)

    Grégoire, Pascaud; Marilyne, Soubrand; Laurent, Lemee; Husseini Amelène, El-Mufleh Al; Marion, Rabiet; Emmanuel, Joussein

    2014-05-01

    Keywords: Mine technosols, pedogenesis, organic matter, environmental impact, pyr-GC-MS Technosols include soils subject to strong anthropogenic pressure and particularly to soil influenced by human transformed materials. In this context, abandoned mine sites contain a large amount of transformed waste materials often enriched with metals and/or metalloids. The natural evolution of technosols (pedogenesis) may induces the change in contaminants behaviour in term of stability of bearing phases, modification of pH oxydo-reduction conditions, organic matter turnover, change in permeability, or influence of vegetation cover. The fate of these elements in the soil can induce major environmental problems (contamination of biosphere and water resource). This will contribute to a limited potential use of these soils, which represent yet a large area around the world. The initial contamination of the parental material suggests that the pedological cover would stabilize the soil; however, the chemical reactivity must be taken in consideration particularly with respect to potential metal leachings. In this case, it is quite important to understand the development of soil in this specific context. Consequently, the global aims of this study are to understand the functioning of mine Technosols focusing onto the organic matter implication in their pedogenesis. Indeed, soil organic matter constitutes an heterogeneous fraction of organic compounds that plays an important role in the fate and the transport of metals and metalloids in soils. Three different soil profiles were collected representative to various mining context (contamination, time, climat), respectively to Pb-Ag, Sn and Au exploitations. Several pedological parameters were determined like CEC, pH, %Corg, %Ntot, C/N ratio, grain size distribution and chemical composition. The evolution of the nature of organic matter in Technosol was studied by elemental analyses and thermochemolysis was realized on the total and

  8. Plasticity in the Developing Brain: Implications for Rehabilitation

    Science.gov (United States)

    Johnston, Michael V.

    2009-01-01

    Neuronal plasticity allows the central nervous system to learn skills and remember information, to reorganize neuronal networks in response to environmental stimulation, and to recover from brain and spinal cord injuries. Neuronal plasticity is enhanced in the developing brain and it is usually adaptive and beneficial but can also be maladaptive…

  9. Resting state brain networks and their implications in neurodegenerative disease

    Science.gov (United States)

    Sohn, William S.; Yoo, Kwangsun; Kim, Jinho; Jeong, Yong

    2012-10-01

    Neurons are the basic units of the brain, and form network by connecting via synapses. So far, there have been limited ways to measure the brain networks. Recently, various imaging modalities are widely used for this purpose. In this paper, brain network mapping using resting state fMRI will be introduced with several applications including neurodegenerative disease such as Alzheimer's disease, frontotemporal lobar degeneration and Parkinson's disease. The resting functional connectivity using intrinsic functional connectivity in mouse is useful since we can take advantage of perturbation or stimulation of certain nodes of the network. The study of brain connectivity will open a new era in understanding of brain and diseases thus will be an essential foundation for future research.

  10. Ammonia Bearing Species on Ceres: Implication on Origin and Evolution

    Science.gov (United States)

    De Sanctis, M. C.; Ammannito, E.; Raponi, A.; Marchi, S.; Ciarniello, M.; McSween, H. Y., Jr.; McCord, T. B.; Capaccioni, F.; Capria, M. T.; Carrorro, F. G.; Longobardo, A.; Tosi, F.; Fonte, S.; Giardino, M.; Palomba, E.; Magni, G.; Zambon, F.; Pieters, C. M.; McFadden, L. A.; Raymond, C. A.

    2015-12-01

    The Visible and Infrared Mapping Spectrometer (VIR) on board the Dawn spacecraft observed Ceres' surface acquiring spectra since January 2015. Here we report the average Ceres spectrum, including the spectral range previously precluded from telescopic measurements due to telluric atmospheric absorptions. The data indicate that the surface is very dark: average albedo of 0.090 ±0.006 at 0.55 µm, consistent with HST data (Li et al., 2006). Ceres' average spectrum is characterized by a prominent absorption band at 2.7 micron. Weaker absorption bands are observed between 3.05-3.1, 3.3-3.4 and 3.9-4 micron; the visible and near-IR ranges lack prominent bands. We modelled the spectra of Ceres using Hapke theory. Results of the spectral modelling indicate that extensive water ice is not present in surface spectra acquired so far. The best fit is obtained with a mixture of ammoniated phyllosilicates mixed with other clays, Mg-carbonates, and dark material, like magnetite (De Sanctis et al. 2015, submitted). The presence of ammonia bearing materials across the surface has implications for the origin of Ceres and its internal structure and evolution. Higher spatial resolution spectra are being acquired to address the small scale mineralogy across this dwarf planet. References: Li, et al., Photometric analysis of 1 Ceres and surface mapping from HST observations. Icarus 182, 143-160 (2006). De Sanctis et al., Ammoniated phyllosilicates on dwarf planet Ceres reveal an outer solar system origin, Nature submitted, (2015). This work is supported the Italian Space Agencies, NASA, and from the German Space Agency. Support of the Dawn Instrument, Operations, and Science Teams is acknowledged.

  11. The evolution of the female sexual response concept: Treatment implications

    Directory of Open Access Journals (Sweden)

    Damjanović Aleksandar

    2013-01-01

    Full Text Available Sexual dysfunctions have been the most prevalent group of sexual disorders and include a large number of populations of both sexes. The research of sexual behavior and treatment of women with sexual distress arises many questions related to differences in sexual response of men and women. The conceptualization of this response in modern sexology has changed over time. The objective of our paper was to present the changes and evolution of the female’s sexual response concept in a summarized and integrated way, to analyze the expanded and revised definitions of the female sexual response as well as implications and recommendations of new approaches to diagnostics and treatment according to the established changes. The lack of adequate empirical basis of the female sexual response model is a critical question in the literature dealing with this issue. Some articles report that linear models demonstrate more correctly and precisely the sexual response of women with normal sexual functions in relation to women with sexual dysfunction. Modification of this model later resulted in a circular model which more adequately presented the sexual response of women with sexual function disorder than of women with normal sexual function. The nonlinear model of female sexual response constructed by Basson incorporates the value of emotional intimacy, sexual stimulus and satisfaction with the relationship. Female functioning is significantly affected by multiple psychosocial factors such as satisfaction with the relationship, self-image, earlier negative sexual experience, etc. Newly revised, expanded definitions of female sexual dysfunction try to contribute to new knowledge about a highly contextual nature of woman’s sexuality so as to enhance clinical treatment of dysfunctions. The definitions emphasize the evaluation of the context of women’s problematic sexual experiences.

  12. Coherence in a simple network: Implication for brain function

    OpenAIRE

    Ye, Zhen

    2000-01-01

    In a many body system, constituents interact with each other, forming a recursive pattern of interaction and giving rise to many interesting phenomena. Based upon concepts of the modern many body theory, a model for a generic many body system is developed. A novel approach is proposed to investigate the general features in such a system. An interesting phase transition in the system is found. Possible link to brain dynamics is discussed. It is shown how some of the basic brain processes, such...

  13. The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth.

    Science.gov (United States)

    Kotrschal, Alexander; Corral-Lopez, Alberto; Szidat, Sönke; Kolm, Niclas

    2015-11-01

    One key hypothesis in the study of brain size evolution is the expensive tissue hypothesis; the idea that increased investment into the brain should be compensated by decreased investment into other costly organs, for instance the gut. Although the hypothesis is supported by both comparative and experimental evidence, little is known about the potential changes in energetic requirements or digestive traits following such evolutionary shifts in brain and gut size. Organisms may meet the greater metabolic requirements of larger brains despite smaller guts via increased food intake or better digestion. But increased investment in the brain may also hamper somatic growth. To test these hypotheses we here used guppy (Poecilia reticulata) brain size selection lines with a pronounced negative association between brain and gut size and investigated feeding propensity, digestive efficiency (DE), and juvenile growth rate. We did not find any difference in feeding propensity or DE between large- and small-brained individuals. Instead, we found that large-brained females had slower growth during the first 10 weeks after birth. Our study provides experimental support that investment into larger brains at the expense of gut tissue carries costs that are not necessarily compensated by a more efficient digestive system.

  14. Hyaluronan oligosaccharides perturb lymphocyte slow rolling on brain vascular endothelial cells: Implications for inflammatory demyelinating disease

    OpenAIRE

    Winkler, Clayton W.; Foster, Scott C.; Itakura, Asako; Matsumoto, Steven G.; Asari, Akira; McCarty, Owen J. T.; Sherman, Larry S.

    2013-01-01

    Inflammatory demyelinating diseases like multiple sclerosis are characterized by mononuclear cell infiltration into the central nervous system. The glycosaminoglycan hyaluronan and its receptor, CD44, are implicated in the initiation and progression of a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Digestion of hyaluronan tethered to brain vascular endothelial cells by a hyaluronidase blocks the slow rolling of lymphocytes along activated brain vascular ...

  15. Stone tools, language and the brain in human evolution

    OpenAIRE

    Stout, Dietrich; Chaminade, Thierry

    2012-01-01

    Long-standing speculations and more recent hypotheses propose a variety of possible evolutionary connections between language, gesture and tool use. These arguments have received important new support from neuroscientific research on praxis, observational action understanding and vocal language demonstrating substantial functional/anatomical overlap between these behaviours. However, valid reasons for scepticism remain as well as substantial differences in detail between alternative evolution...

  16. Brain evolution, the determinates of food choice, and the omnivore's dilemma.

    Science.gov (United States)

    Armelagos, George J

    2014-01-01

    A coevolutionary paradigm using a biocultural perspective can help to unravel the complex interactions that led to the contemporary pattern of eating. Evolutionary history helps to understand the adaptation of diet and its nutritional implications. Anatomical and behavioral changes linked to changing dietary patterns in the Paleolithic resulted in an adaptive framework that affects modern diet. The evolution of an expanding brain, a shrinking large intestine, and lengthening small intestine necessitated a demand for nutritionally dense foods. The key to these changes is an understanding of the response to the omnivore's dilemma. Omnivores in their search for new items to feed their varied diet (neophilia) have a challenge when they fear (neophobia) novel items that may be poisonous and can cause death. The inborn mechanism initiates palate fatigue (sensory-specific satiety) ensuring a variety of foods will be eaten. Variety will limit the impact of toxins ingested and provide a more balanced diet. The development of cuisine, a momentous event in history, mediated the conflict, and changed the course of human evolution. The cuisine, a biocultural construct, defines which items found in nature are edible, how these products are transformed into food, the flavors used to add a sensory dimension to foods, and rules of eating or etiquette. Etiquette defines how, when, and with whom we eat. Patterns of eating in the modern setting are the end product of the way that Homo sapiens evolved and resolved the omnivore's dilemma. Control of fire and cooking expanded the range of available foods by creating a class of foods that are "predigested." An essential element to the evolution of the human diet was the transition to agriculture as the primary mode of subsistence. The Neolithic revolution dramatically narrowed the dietary niche by decreasing the variety of available foods, with the shift to intensive agriculture creating a dramatic decline in human nutrition. The recent

  17. Human Brain Expansion during Evolution Is Independent of Fire Control and Cooking.

    Science.gov (United States)

    Cornélio, Alianda M; de Bittencourt-Navarrete, Ruben E; de Bittencourt Brum, Ricardo; Queiroz, Claudio M; Costa, Marcos R

    2016-01-01

    What makes humans unique? This question has fascinated scientists and philosophers for centuries and it is still a matter of intense debate. Nowadays, human brain expansion during evolution has been acknowledged to explain our empowered cognitive capabilities. The drivers for such accelerated expansion remain, however, largely unknown. In this sense, studies have suggested that the cooking of food could be a pre-requisite for the expansion of brain size in early hominins. However, this appealing hypothesis is only supported by a mathematical model suggesting that the increasing number of neurons in the brain would constrain body size among primates due to a limited amount of calories obtained from diets. Here, we show, by using a similar mathematical model, that a tradeoff between body mass and the number of brain neurons imposed by dietary constraints during hominin evolution is unlikely. Instead, the predictable number of neurons in the hominin brain varies much more in function of foraging efficiency than body mass. We also review archeological data to show that the expansion of the brain volume in the hominin lineage is described by a linear function independent of evidence of fire control, and therefore, thermal processing of food does not account for this phenomenon. Finally, we report experiments in mice showing that thermal processing of meat does not increase its caloric availability in mice. Altogether, our data indicate that cooking is neither sufficient nor necessary to explain hominin brain expansion. PMID:27199631

  18. Brain CB2 Receptors: Implications for Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Michelle Roche

    2010-08-01

    Full Text Available Although previously thought of as the peripheral cannabinoid receptor, it is now accepted that the CB2 receptor is expressed in the central nervous system on microglia, astrocytes and subpopulations of neurons. Expression of the CB2 receptor in the brain is significantly lower than that of the CB1 receptor. Conflicting findings have been reported on the neurological effects of pharmacological agents targeting the CB2 receptor under normal conditions. Under inflammatory conditions, CB2 receptor expression in the brain is enhanced and CB2 receptor agonists exhibit potent anti-inflammatory effects. These findings have prompted research into the CB2 receptor as a possible target for the treatment of neuroinflammatory and neurodegenerative disorders. Neuroinflammatory alterations are also associated with neuropsychiatric disorders and polymorphisms in the CB2 gene have been reported in depression, eating disorders and schizophrenia. This review will examine the evidence to date for a role of brain CB2 receptors in neuropsychiatric disorders.

  19. Convergent evolution of brain morphology and communication modalities in lizards

    Institute of Scientific and Technical Information of China (English)

    Christopher D.ROBINSON; Michael S.PATTON; Brittney M.ANDRE; Michele A.JOHNSON

    2015-01-01

    Animals communicate information within their environments via visual,chemical,auditory,and/or tactile modalities.The use of each modalityis generally linked to particular brain regions,but it is not yet known whether the cellular morphology of neurons in these regions has evolved in association with the relative use of a modality.We investigated relationships between the behavioral use of communication modalities and neural morphologies in six lizard species.Two of these species (Anolis carolinensis and Leiocephalus carinatus) primarily use visual signals to communicate with conspecifics and detect potential prey,and two (Aspidoscelis gularis and Scincella lateralis) communicate and forage primarily using chemical signals.Two other species (Hemidactylus turcicus and Sceloporus olivaceus) use both visual and chemical signals.For each species,we performed behavioral observations and quantified rates of visual and chemical behaviors.We then cryosectioned brain tissues from 9-10 males of each species and measured the soma size and density of neurons in two brain regions associated with visual behaviors (the lateral geniculate nucleus and the nucleus rotundus) and one region associated with chemical behaviors (the nucleus sphericus).With analyses conducted in a phylogenetic context,we found that species that performed higher rates of visual displays had a denser lateral geniculatc nucleus,and species that used a higher proportion of chemical displays had larger somas in the nucleus sphericus.These relationships suggest that neural morphologies in the brain have evolved convergently in species with similar communication behaviors [Current Zoology 61 (2):281-291,2015].

  20. [Contribution of brain function analysis to the evolution of neurorehabilitation].

    Science.gov (United States)

    Miyai, Ichiro; Mihara, Masahito; Hattori, Noriaki; Hatakenaka, Megumi; Kawano, Teiji; Yagura, Hajime

    2012-01-01

    Recent studies of functional neuroimaging and clinical neurophysiology have implied that functional recovery after stroke is associated with use-dependent plasticity of the damaged brain. However the property of the reorganized neural network depends on site and size of the lesion, which makes it difficult to assess what the adaptive plasticity is. From clinical point of view there is accumulating randomized controlled trials for the benefit of task-oriented rehabilitative intervention including constraint-induced movement therapy, robotics, and body-weight supported treadmill training. However dose-matched control intervention is usually as effective as a specific intervention. This raises a question regarding the specificity of a task-oriented intervention. Second question is whether such intervention goes beyond the biological destiny of human. Specifically there is no known strategy enhancing recovery of severely impaired hand. To augment functional gain, several methods of neuro-modulation may bring break-through on the assumption that they induce greater adaptive plasticity. Such neuro-modulative methods include neuropharmacological modulation, brain stimulation using transcranial magnetic stimulation and direct current stimulation, peripheral nerve stimulation, neurofeedback using real-time fMRI and real-time fNIRS, and brain-machine interface. A preliminary randomized controlled trial regarding real-time feedback of premotor activities revealed promising results for recovery of paretic hand in patients with stroke. PMID:23196554

  1. The evolution of complex brains and behaviors in African cichlid fishes

    Directory of Open Access Journals (Sweden)

    Caroly A. Shumway

    2010-02-01

    Full Text Available In this review, I explore the effects of both social organization and the physical environment, specifically habitat complexity, on the brains and behavior of highly visual African cichlid fishes, drawing on examples from primates and birds where appropriate. In closely related fishes from the monophyletic Ectodinii clade of Lake Tanganyika, both forces influence cichlid brains and behavior. Considering social influences first, visual acuity differs with respect to social organization (monogamy versus polygyny. Both the telencephalon and amygdalar homologue, area Dm, are larger in monogamous species. Monogamous species are found to have more vasotocin-immunoreactive cells in the preoptic area of the brain. Habitat complexity also influences brain and behavior in these fishes. Total brain size, telencephalic and cerebellar size are positively correlated with habitat complexity. Visual acuity and spatial memory are enhanced in cichlids living in more complex environments. However habitat complexity and social forces affect cichlid brains differently. Taken together, our field data and plasticity data suggest that some of the species-specific neural effects of habitat complexity could be the consequence of the corresponding social correlates. Environmental forces, however, exert a broader effect on brain structures than social ones do, suggesting allometric expansion of the brain structures in concert with brain size and/or co-evolution of these structures [Current Zoology 56 (1: 144–156 2010].

  2. Coherence in a simple network Implication for brain function

    CERN Document Server

    Ye, Z

    2000-01-01

    In a many body system, constituents interact with each other, forming a recursive pattern of interaction and giving rise to many interesting phenomena. Based upon concepts of the modern many body theory, a model for a generic many body system is developed. A novel approach is proposed to investigate the general features in such a system. An interesting phase transition in the system is found. Possible link to brain dynamics is discussed. It is shown how some of the basic brain processes, such as learning and memory, find therein a natural explanation.

  3. Evolution of brain and culture: the neurological and cognitive journey from Australopithecus to Albert Einstein.

    Science.gov (United States)

    Falk, Dean

    2016-06-20

    Fossil and comparative primatological evidence suggest that alterations in the development of prehistoric hominin infants kindled three consecutive evolutionary-developmental (evo-devo) trends that, ultimately, paved the way for the evolution of the human brain and cognition. In the earliest trend, infants' development of posture and locomotion became delayed because of anatomical changes that accompanied the prolonged evolution of bipedalism. Because modern humans have inherited these changes, our babies are much slower than other primates to reach developmental milestones such as standing, crawling, and walking. The delay in ancestral babies' physical development eventually precipitated an evolutionary reversal in which they became increasing unable to cling independently to their mothers. For the first time in prehistory, babies were, thus, periodically deprived of direct physical contact with their mothers. This prompted the emergence of a second evo-devo trend in which infants sought contact comfort from caregivers using evolved signals, including new ways of crying that are conserved in modern babies. Such signaling stimulated intense reciprocal interactions between prehistoric mothers and infants that seeded the eventual emergence of motherese and, subsequently, protolanguage. The third trend was for an extreme acceleration in brain growth that began prior to the last trimester of gestation and continued through infants' first postnatal year (early "brain spurt"). Conservation of this trend in modern babies explains why human brains reach adult sizes that are over three times those of chimpanzees. The fossil record of hominin cranial capacities together with comparative neuroanatomical data suggest that, around 3 million years ago, early brain spurts began to facilitate an evolutionary trajectory for increasingly large adult brains in association with neurological reorganization. The prehistoric increase in brain size eventually caused parturition to become

  4. Evolution of brain and culture: the neurological and cognitive journey from Australopithecus to Albert Einstein.

    Science.gov (United States)

    Falk, Dean

    2016-06-20

    Fossil and comparative primatological evidence suggest that alterations in the development of prehistoric hominin infants kindled three consecutive evolutionary-developmental (evo-devo) trends that, ultimately, paved the way for the evolution of the human brain and cognition. In the earliest trend, infants' development of posture and locomotion became delayed because of anatomical changes that accompanied the prolonged evolution of bipedalism. Because modern humans have inherited these changes, our babies are much slower than other primates to reach developmental milestones such as standing, crawling, and walking. The delay in ancestral babies' physical development eventually precipitated an evolutionary reversal in which they became increasing unable to cling independently to their mothers. For the first time in prehistory, babies were, thus, periodically deprived of direct physical contact with their mothers. This prompted the emergence of a second evo-devo trend in which infants sought contact comfort from caregivers using evolved signals, including new ways of crying that are conserved in modern babies. Such signaling stimulated intense reciprocal interactions between prehistoric mothers and infants that seeded the eventual emergence of motherese and, subsequently, protolanguage. The third trend was for an extreme acceleration in brain growth that began prior to the last trimester of gestation and continued through infants' first postnatal year (early "brain spurt"). Conservation of this trend in modern babies explains why human brains reach adult sizes that are over three times those of chimpanzees. The fossil record of hominin cranial capacities together with comparative neuroanatomical data suggest that, around 3 million years ago, early brain spurts began to facilitate an evolutionary trajectory for increasingly large adult brains in association with neurological reorganization. The prehistoric increase in brain size eventually caused parturition to become

  5. Plasticity of brain wave network interactions and evolution across physiologic states

    Directory of Open Access Journals (Sweden)

    Kang K. L. Liu

    2015-10-01

    Full Text Available Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very

  6. Plasticity of brain wave network interactions and evolution across physiologic states.

    Science.gov (United States)

    Liu, Kang K L; Bartsch, Ronny P; Lin, Aijing; Mantegna, Rosario N; Ivanov, Plamen Ch

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of

  7. Plasticity of brain wave network interactions and evolution across physiologic states

    Science.gov (United States)

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of

  8. The implications of brain connectivity in the neuropsychology of autism.

    Science.gov (United States)

    Maximo, Jose O; Cadena, Elyse J; Kana, Rajesh K

    2014-03-01

    Autism is a neurodevelopmental disorder that has been associated with atypical brain functioning. Functional connectivity MRI (fcMRI) studies examining neural networks in autism have seen an exponential rise over the last decade. Such investigations have led to the characterization of autism as a distributed neural systems disorder. Studies have found widespread cortical underconnectivity, local overconnectivity, and mixed results suggesting disrupted brain connectivity as a potential neural signature of autism. In this review, we summarize the findings of previous fcMRI studies in autism with a detailed examination of their methodology, in order to better understand its potential and to delineate the pitfalls. We also address how a multimodal neuroimaging approach (incorporating different measures of brain connectivity) may help characterize the complex neurobiology of autism at a global level. Finally, we also address the potential of neuroimaging-based markers in assisting neuropsychological assessment of autism. The quest for a neural marker for autism is still ongoing, yet new findings suggest that aberrant brain connectivity may be a promising candidate.

  9. Brain expressed microRNAs implicated in schizophrenia etiology

    DEFF Research Database (Denmark)

    Hansen, Thomas; Olsen, Line; Lindow, Morten;

    2007-01-01

    Protein encoding genes have long been the major targets for research in schizophrenia genetics. However, with the identification of regulatory microRNAs (miRNAs) as important in brain development and function, miRNAs genes have emerged as candidates for schizophrenia-associated genetic factors...

  10. Functional craniology and brain evolution: from paleontology to biomedicine

    OpenAIRE

    Emiliano eBruner; José Manuel eDe la Cuétara; Michael eMasters; Hideki eAmano; Naomichi eOgihara

    2014-01-01

    Anatomical systems are organized through a network of structural and functional relationships among their elements. This network of relationships is the result of evolution, it represents the actual target of selection, and it generates the set of rules orienting and constraining the morphogenetic processes. Understanding the relationship among cranial and cerebral components is necessary to investigate the factors that have influenced and characterized our neuroanatomy, and possible drawback...

  11. Adolescent Brain and Cognitive Developments: Implications for Clinical Assessment in Traumatic Brain Injury

    Science.gov (United States)

    Ciccia, Angela Hein; Meulenbroek, Peter; Turkstra, Lyn S.

    2009-01-01

    Adolescence is a time of significant physical, social, and emotional developments, accompanied by changes in cognitive and language skills. Underlying these are significant developments in brain structures and functions including changes in cortical and subcortical gray matter and white matter tracts. Among the brain regions that develop during…

  12. Detecting positive darwinian selection in brain-expressed genes during human evolution

    Institute of Scientific and Technical Information of China (English)

    QI XueBin; Alice A. LIN; Luca L. CAVALLI-SFORZA; WANG Jun; SU Bing; YANG Su; ZHENG HongKun; WANG YinQiu; LIAO ChengHong; LIU Ying; CHEN XiaoHua; SHI Hong; YU XiaoJing

    2007-01-01

    To understand the genetic basis that underlies the phenotypic divergence between human and nonhuman primates, we screened a total of 7176 protein-coding genes expressed in the human brain and compared them with the chimpanzee orthologs to identify genes that show evidence of rapid evolution in the human lineage. Our results showed that the nonsynonymous/synonymous substitution (Ka/Ks) ratio for genes expressed in the brain of human and chimpanzee is 0.3854, suggesting that the brain-expressed genes are under functional constraint. The X-linked human brain-expressed genes evolved more rapidly than autosomal ones. We further dissected the molecular evolutionary patterns of 34 candidate genes by sequencing representative primate species to identify lineage-specific adaptive evolution. Fifteen out of the 34 candidate genes showed evidence of positive Darwinian selection in human and/or chimpanzee lineages. These genes are predicted to play diverse functional roles in embryonic development, spermatogenesis and male fertility, signal transduction, sensory nociception, and neural function. This study together with others demonstrated the usefulness and power of phylogenetic comparison of multiple closely related species in detecting lineage-specific adaptive evolution, and the identification of the positively selected brain-expressed genes may add new knowledge to the understanding of molecular mechanism of human origin.

  13. Evolutionary development of embryonic cerebrospinal fluid composition and regulation: an open research field with implications for brain development and function.

    Science.gov (United States)

    Bueno, David; Garcia-Fernàndez, Jordi

    2016-01-01

    Within the consolidated field of evolutionary development, there is emerging research on evolutionary aspects of central nervous system development and its implications for adult brain structure and function, including behaviour. The central nervous system is one of the most intriguing systems in complex metazoans, as it controls all body and mind functions. Its failure is responsible for a number of severe and largely incurable diseases, including neurological and neurodegenerative ones. Moreover, the evolution of the nervous system is thought to be a critical step in the adaptive radiation of vertebrates. Brain formation is initiated early during development. Most embryological, genetic and evolutionary studies have focused on brain neurogenesis and regionalisation, including the formation and function of organising centres, and the comparison of homolog gene expression and function among model organisms from different taxa. The architecture of the vertebrate brain primordium also reveals the existence of connected internal cavities, the cephalic vesicles, which in fetuses and adults become the ventricular system of the brain. During embryonic and fetal development, brain cavities and ventricles are filled with a complex, protein-rich fluid called cerebrospinal fluid (CSF). However, CSF has not been widely analysed from either an embryological or evolutionary perspective. Recently, it has been demonstrated in higher vertebrates that embryonic cerebrospinal fluid has key functions in delivering diffusible signals and nutrients to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. Moreover, it has been shown that the composition and homeostasis of CSF are tightly controlled in a time-dependent manner from the closure of the anterior neuropore, just before the initiation of primary neurogenesis, up to the formation of functional choroid plexuses. In

  14. Evolutionary development of embryonic cerebrospinal fluid composition and regulation: an open research field with implications for brain development and function.

    Science.gov (United States)

    Bueno, David; Garcia-Fernàndez, Jordi

    2016-03-15

    Within the consolidated field of evolutionary development, there is emerging research on evolutionary aspects of central nervous system development and its implications for adult brain structure and function, including behaviour. The central nervous system is one of the most intriguing systems in complex metazoans, as it controls all body and mind functions. Its failure is responsible for a number of severe and largely incurable diseases, including neurological and neurodegenerative ones. Moreover, the evolution of the nervous system is thought to be a critical step in the adaptive radiation of vertebrates. Brain formation is initiated early during development. Most embryological, genetic and evolutionary studies have focused on brain neurogenesis and regionalisation, including the formation and function of organising centres, and the comparison of homolog gene expression and function among model organisms from different taxa. The architecture of the vertebrate brain primordium also reveals the existence of connected internal cavities, the cephalic vesicles, which in fetuses and adults become the ventricular system of the brain. During embryonic and fetal development, brain cavities and ventricles are filled with a complex, protein-rich fluid called cerebrospinal fluid (CSF). However, CSF has not been widely analysed from either an embryological or evolutionary perspective. Recently, it has been demonstrated in higher vertebrates that embryonic cerebrospinal fluid has key functions in delivering diffusible signals and nutrients to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. Moreover, it has been shown that the composition and homeostasis of CSF are tightly controlled in a time-dependent manner from the closure of the anterior neuropore, just before the initiation of primary neurogenesis, up to the formation of functional choroid plexuses. In

  15. Evolution of the aging brain transcriptome and synaptic regulation.

    Directory of Open Access Journals (Sweden)

    Patrick M Loerch

    Full Text Available Alzheimer's disease and other neurodegenerative disorders of aging are characterized by clinical and pathological features that are relatively specific to humans. To obtain greater insight into how brain aging has evolved, we compared age-related gene expression changes in the cortex of humans, rhesus macaques, and mice on a genome-wide scale. A small subset of gene expression changes are conserved in all three species, including robust age-dependent upregulation of the neuroprotective gene apolipoprotein D (APOD and downregulation of the synaptic cAMP signaling gene calcium/calmodulin-dependent protein kinase IV (CAMK4. However, analysis of gene ontology and cell type localization shows that humans and rhesus macaques have diverged from mice due to a dramatic increase in age-dependent repression of neuronal genes. Many of these age-regulated neuronal genes are associated with synaptic function. Notably, genes associated with GABA-ergic inhibitory function are robustly age-downregulated in humans but not in mice at the level of both mRNA and protein. Gene downregulation was not associated with overall neuronal or synaptic loss. Thus, repression of neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that may alter neural networks and contribute to age-related cognitive changes.

  16. Fossil skulls reveal that blood flow rate to the brain increased faster than brain volume during human evolution

    Science.gov (United States)

    Seymour, Roger S.; Bosiocic, Vanya; Snelling, Edward P.

    2016-08-01

    The evolution of human cognition has been inferred from anthropological discoveries and estimates of brain size from fossil skulls. A more direct measure of cognition would be cerebral metabolic rate, which is proportional to cerebral blood flow rate (perfusion). The hominin cerebrum is supplied almost exclusively by the internal carotid arteries. The sizes of the foramina that transmitted these vessels in life can be measured in hominin fossil skulls and used to calculate cerebral perfusion rate. Perfusion in 11 species of hominin ancestors, from Australopithecus to archaic Homo sapiens, increases disproportionately when scaled against brain volume (the allometric exponent is 1.41). The high exponent indicates an increase in the metabolic intensity of cerebral tissue in later Homo species, rather than remaining constant (1.0) as expected by a linear increase in neuron number, or decreasing according to Kleiber's Law (0.75). During 3 Myr of hominin evolution, cerebral tissue perfusion increased 1.7-fold, which, when multiplied by a 3.5-fold increase in brain size, indicates a 6.0-fold increase in total cerebral blood flow rate. This is probably associated with increased interneuron connectivity, synaptic activity and cognitive function, which all ultimately depend on cerebral metabolic rate.

  17. Progress on the paternal brain: theory, animal models, human brain research, and mental health implications.

    Science.gov (United States)

    Swain, J E; Dayton, C J; Kim, P; Tolman, R M; Volling, B L

    2014-01-01

    With a secure foundation in basic research across mammalian species in which fathers participate in the raising of young, novel brain-imaging approaches are outlining a set of consistent brain circuits that regulate paternal thoughts and behaviors in humans. The newest experimental paradigms include increasingly realistic baby-stimuli to provoke paternal cognitions and behaviors with coordinated hormone measures to outline brain networks that regulate motivation, reflexive caring, emotion regulation, and social brain networks with differences and similarities to those found in mothers. In this article, on the father brain, we review all brain-imaging studies on PubMed to date on the human father brain and introduce the topic with a selection of theoretical models and foundational neurohormonal research on animal models in support of the human work. We discuss potentially translatable models for the identification and treatment of paternal mood and father-child relational problems, which could improve infant mental health and developmental trajectories with potentially broad public health importance.

  18. Head motions while riding roller coasters: Implications for brain injury

    OpenAIRE

    Pfister, Bryan J.; Chickola, Larry; Smith, Douglas H.

    2009-01-01

    The risk of traumatic brain injury (TBI) while riding roller coasters has received substantial attention. Case reports of TBI around the time of riding roller coasters have led many medical professionals to assert that the high gravitational forces (G-forces) induced by roller coasters pose a significant TBI risk. Head injury research, however, has shown that G-forces alone cannot predict TBI. Established head injury criterions and procedures were employed to compare the potential of TBI betw...

  19. Neurolinguistic Annotated Bibliography (Brain Research and Language Function) with Implications for Education.

    Science.gov (United States)

    Davis, Wesley K.

    This bibliography presents annotations of 91 journal articles, books, chapters in books, and conference papers dating from 1967 to 1984 concerning neurolinguistics, language processing, and educational implications of brain research. The annotated bibliography includes eight items on neuroanatomy and language function; 20 items on neurolinguistics…

  20. O6-Methylguanine-DNA methyltransferase deficiency in developing brain: Implications for brain tumorigenesis

    OpenAIRE

    Bobola, Michael S.; Blank, A.; Berger, Mitchel S.; Silber, John R

    2007-01-01

    The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) is a cardinal defense against the mutagenic and carcinogenic effects of alkylating agents. We have reported evidence that absence of detectable MGMT activity (MGMT− phenotype) in human brain is a predisposing factor for primary brain tumors that affects ca. 12% of individuals [J.R. Silber, et. al. Proc. Natl. Acad. Sci. USA 93 (1996) 6941–6946]. We report here that MGMT− phenotype in the brain of children and adults, and the...

  1. Convergent evolution of complex brains and high intelligence.

    Science.gov (United States)

    Roth, Gerhard

    2015-12-19

    Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates.

  2. Convergent evolution of complex brains and high intelligence.

    Science.gov (United States)

    Roth, Gerhard

    2015-12-19

    Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. PMID:26554042

  3. Brain imaging and psychotherapy: methodological considerations and practical implications.

    Science.gov (United States)

    Linden, David E J

    2008-11-01

    The development of psychotherapy has been based on psychological theories and clinical effects. However, an investigation of the neurobiological mechanisms of psychological interventions is also needed in order to improve indication and prognosis, inform the choice of parallel pharmacotherapy, provide outcome measures and potentially even aid the development of new treatment protocols. This neurobiological investigation can be informed by animal models, for example of learning and conditioning, but will essentially need the non-invasive techniques of functional neuroimaging in order to assess psychotherapy effects on patients' brains, which will be reviewed here. Most research so far has been conducted in obsessive compulsive disorder (OCD), anxiety disorders and depression. Effects in OCD were particularly exciting in that both cognitive behavioural therapy and medication with a selective serotonin inhibitor led to a reduction in blood flow in the caudate nucleus. In phobia, brief courses of behavioural therapy produced marked reductions of paralimbic responses to offensive stimuli in line with the clinical improvement. Findings in depression are less consistent, with both increases and decreases in prefrontal metabolism being reported. However, they are important in pointing to different mechanisms for the clinical effects of pharmacotherapy (more "bottom up") and psychotherapy (more "top down"). For the future it would be desirable if the findings of psychotherapy changes to brain activation patterns were confirmed in larger groups with homogenous imaging protocols. Functional imaging has already made great contributions to the understanding of the neural correlates of psychopathology. For example, evidence converges to suggest that the subgenual cingulate is crucial for mood regulation. One current clinical application of these findings is deep brain stimulation in areas highlighted by such imaging studies. I will discuss their initial application in depression

  4. Brain expressed microRNAs implicated in schizophrenia etiology

    DEFF Research Database (Denmark)

    Hansen, Thomas; Olsen, Line; Lindow, Morten;

    2007-01-01

    Protein encoding genes have long been the major targets for research in schizophrenia genetics. However, with the identification of regulatory microRNAs (miRNAs) as important in brain development and function, miRNAs genes have emerged as candidates for schizophrenia-associated genetic factors....... Indeed, the growing understanding of the regulatory properties and pleiotropic effects that miRNA have on molecular and cellular mechanisms, suggests that alterations in the interactions between miRNAs and their mRNA targets may contribute to phenotypic variation....

  5. Friends with social benefits: host-microbe interactions as a driver of brain evolution and development?

    Science.gov (United States)

    Stilling, Roman M; Bordenstein, Seth R; Dinan, Timothy G; Cryan, John F

    2014-01-01

    The tight association of the human body with trillions of colonizing microbes that we observe today is the result of a long evolutionary history. Only very recently have we started to understand how this symbiosis also affects brain function and behavior. In this hypothesis and theory article, we propose how host-microbe associations potentially influenced mammalian brain evolution and development. In particular, we explore the integration of human brain development with evolution, symbiosis, and RNA biology, which together represent a "social triangle" that drives human social behavior and cognition. We argue that, in order to understand how inter-kingdom communication can affect brain adaptation and plasticity, it is inevitable to consider epigenetic mechanisms as important mediators of genome-microbiome interactions on an individual as well as a transgenerational time scale. Finally, we unite these interpretations with the hologenome theory of evolution. Taken together, we propose a tighter integration of neuroscience fields with host-associated microbiology by taking an evolutionary perspective.

  6. Friends with Social Benefits: Host-Microbe Interactions as a Driver of Brain Evolution and Development?

    Directory of Open Access Journals (Sweden)

    Roman M Stilling

    2014-10-01

    Full Text Available The tight association of the human body with trillions of colonizing microbes that we observe today is the result of a long evolutionary history. Only very recently have we started to understand how this symbiosis also affects brain function and behaviour. Here in this hypothesis and theory article, we propose how host-microbe associations potentially influenced mammalian brain evolution and development. In particular, we explore the integration of human brain development with evolution, symbiosis, and RNA biology, which together represent a ‘social triangle’ that drives human social behaviour and cognition. We argue that, in order to understand how inter-kingdom communication can affect brain adaptation and plasticity, it is inevitable to consider epigenetic mechanisms as important mediators of genome-microbiome interactions on an individual as well as a transgenerational time scale. Finally, we unite these interpretations with the hologenome theory of evolution. Taken together, we propose a tighter integration of neuroscience fields with host-associated microbiology by taking an evolutionary perspective.

  7. The interneuron energy hypothesis: Implications for brain disease.

    Science.gov (United States)

    Kann, Oliver

    2016-06-01

    Fast-spiking, inhibitory interneurons - prototype is the parvalbumin-positive (PV+) basket cell - generate action potentials at high frequency and synchronize the activity of numerous excitatory principal neurons, such as pyramidal cells, during fast network oscillations by rhythmic inhibition. For this purpose, fast-spiking, PV+ interneurons have unique electrophysiological characteristics regarding action potential kinetics and ion conductances, which are associated with high energy expenditure. This is reflected in the neural ultrastructure by enrichment with mitochondria and cytochrome c oxidase, indicating the dependence on oxidative phosphorylation for adenosine-5'-triphosphate (ATP) generation. The high energy expenditure is most likely required for membrane ion transport in dendrites and the extensive axon arbor as well as for presynaptic release of neurotransmitter, gamma-aminobutyric acid (GABA). Fast-spiking, PV+ interneurons are central for the emergence of gamma oscillations (30-100Hz) that provide a fundamental mechanism of complex information processing during sensory perception, motor behavior and memory formation in networks of the hippocampus and the neocortex. Conversely, shortage in glucose and oxygen supply (metabolic stress) and/or excessive formation of reactive oxygen and nitrogen species (oxidative stress) may render these interneurons to be a vulnerable target. Dysfunction in fast-spiking, PV+ interneurons might set a low threshold for impairment of fast network oscillations and thus higher brain functions. This pathophysiological mechanism might be highly relevant for cerebral aging as well as various acute and chronic brain diseases, such as stroke, vascular cognitive impairment, epilepsy, Alzheimer's disease and schizophrenia. PMID:26284893

  8. THE SIGNIFICANCE OF THE SUBPLATE FOR EVOLUTION AND DEVELOPMENTAL PLASTICITY OF THE HUMAN BRAIN

    Directory of Open Access Journals (Sweden)

    MILOS eJUDAS

    2013-08-01

    Full Text Available The human life-history is characterized by long development and introduction of new developmental stages, such as childhood and adolescence. The developing brain had important role in these life-history changes because it is expensive tissue which uses up to 80% of resting metabolic rate in the newborn and continues to use almost 50% of it during the first 5 postnatal years. Our hominid ancestors managed to lift-up metabolic constraints to increase in brain size by several interrelated ecological, behavioral and social adaptations, such as dietary change, invention of cooking, creation of family-bonded reproductive units, and life-history changes. This opened new vistas for the developing brain, because it became possible to metabolically support transient patterns of brain organization as well as developmental brain plasticity for much longer period and with much greater number of neurons and connectivity combinations in comparison to apes. This included the shaping of cortical connections through the interaction with infant's social environment, which probably enhanced typically human evolution of language, cognition and self-awareness. In this review, we propose that the transient subplate zone and its postnatal remnant (interstitial neurons of the gyral white matter probably served as the main playground for evolution of these developmental shifts, and describe various features that makes human subplate uniquely positioned to have such a role in comparison with other primates.

  9. The evolution of tianxia cosmology and its philosophical implications

    Institute of Scientific and Technical Information of China (English)

    Liu Junping

    2006-01-01

    The terminology tianxia has both historical evolution and cultural and philosophical connotations.This concept not only denotes a geographical and spatial meaning,but also implies the moral construct of metaphysics.A systematic study of its historical and cultural repercussions can show that the evolution of the meaning"tianxia"not only embodies the cosmological construction,moral belief and SeIf-identity of the Chinese nation,but also manifests the historical processes of modern China evolving from"tianxia"to a modern nation-state.Meanwhile,the deconstruction of the tianxia cosmology has shattered the old Chinese concept of a single united tianxia,or the whole world under one Heaven.Also,"Confucian China"has been increasingly losing its vitality and strong hold on the people,while the concept of nation-state has gained its way into people's consciousness,which has added more diversity and open-mindedness to the concept of tianxia.

  10. The evolution of the female sexual response concept: Treatment implications

    OpenAIRE

    Damjanović Aleksandar; Duišin Dragana; Barišić Jasmina

    2013-01-01

    Sexual dysfunctions have been the most prevalent group of sexual disorders and include a large number of populations of both sexes. The research of sexual behavior and treatment of women with sexual distress arises many questions related to differences in sexual response of men and women. The conceptualization of this response in modern sexology has changed over time. The objective of our paper was to present the changes and evolution of the female’s sexual response concept in a summari...

  11. Analysis of ribosomal protein gene structures: implications for intron evolution.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Many spliceosomal introns exist in the eukaryotic nuclear genome. Despite much research, the evolution of spliceosomal introns remains poorly understood. In this paper, we tried to gain insights into intron evolution from a novel perspective by comparing the gene structures of cytoplasmic ribosomal proteins (CRPs and mitochondrial ribosomal proteins (MRPs, which are held to be of archaeal and bacterial origin, respectively. We analyzed 25 homologous pairs of CRP and MRP genes that together had a total of 527 intron positions. We found that all 12 of the intron positions shared by CRP and MRP genes resulted from parallel intron gains and none could be considered to be "conserved," i.e., descendants of the same ancestor. This was supported further by the high frequency of proto-splice sites at these shared positions; proto-splice sites are proposed to be sites for intron insertion. Although we could not definitively disprove that spliceosomal introns were already present in the last universal common ancestor, our results lend more support to the idea that introns were gained late. At least, our results show that MRP genes were intronless at the time of endosymbiosis. The parallel intron gains between CRP and MRP genes accounted for 2.3% of total intron positions, which should provide a reliable estimate for future inferences of intron evolution.

  12. Traumatic brain injury alters methionine metabolism: implications for pathophysiology

    Directory of Open Access Journals (Sweden)

    Pramod K Dash

    2016-04-01

    Full Text Available Methionine is an essential proteinogenic amino acid that is obtained from the diet. In addition to its requirement for protein biosynthesis, methionine is metabolized to generate metabolites that play key roles in a number of cellular functions. Metabolism of methionine via the transmethylation pathway generates S-adenosylmethionine (SAM that serves as the principal methyl (-CH3 donor for DNA and histone methyltransferases to regulate epigenetic changes in gene expression. SAM is also required for methylation of other cellular proteins that serve various functions and phosphatidylcholine synthesis that participate in cellular signaling.. Under conditions of oxidative stress, homocysteine (which is derived from SAM enters the transsulfuration pathway to generate glutathione, an important cytoprotective molecule against oxidative damage. As both experimental and clinical studies have shown that traumatic brain injury (TBI alters DNA and histone methylation and causes oxidative stress, we examined if TBI alters the plasma levels of methionine and its metabolites in human patients. Blood samples were collected from healthy volunteers (n = 20 and patients with mild TBI (GCS > 12; n = 20 or severe TBI (GCS < 8; n = 20 within the first 24 hours of injury. The levels of methionine and its metabolites in the plasma samples were analyzed by either liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry (LC-MS or GC-MS. Severe TBI decreased the levels of methionine, SAM, betaine and 2-methylglycine as compared to healthy volunteers, indicating a decrease in metabolism through the transmethylation cycle. In addition, precursors for the generation of glutathione, cysteine and glycine were also found to be decreased as were intermediate metabolites of the gamma-glutamyl cycle (gamma-glutamyl amino acids and 5-oxoproline. Mild TBI also decreased the levels of methionine, α-ketobutyrate, 2 hydroxybutyrate and glycine, albeit to lesser

  13. Skull Flexure from Blast Waves: A Mechanism for Brain Injury with Implications for Helmet Design

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2009-04-30

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well-researched, the mechanisms by which blasts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that non-lethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design.

  14. GABAergic Neuronal Precursor Grafting: Implications in Brain Regeneration and Plasticity

    Directory of Open Access Journals (Sweden)

    Manuel Alvarez Dolado

    2011-01-01

    Full Text Available Numerous neurological disorders are caused by a dysfunction of the GABAergic system that impairs or either stimulates its inhibitory action over its neuronal targets. Pharmacological drugs have generally been proved very effective in restoring its normal function, but their lack of any sort of spatial or cell type specificity has created some limitations in their use. In the last decades, cell-based therapies using GABAergic neuronal grafts have emerged as a promising treatment, since they may restore the lost equilibrium by cellular replacement of the missing/altered inhibitory neurons or modulating the hyperactive excitatory system. In particular, the discovery that embryonic ganglionic eminence-derived GABAergic precursors are able to disperse and integrate in large areas of the host tissue after grafting has provided a strong rationale for exploiting their use for the treatment of diseased brains. GABAergic neuronal transplantation not only is efficacious to restore normal GABAergic activities but can also trigger or sustain high neuronal plasticity by promoting the general reorganization of local neuronal circuits adding new synaptic connections. These results cast new light on dynamics and plasticity of adult neuronal assemblies and their associated functions disclosing new therapeutic opportunities for the near future.

  15. Ipsilateral motor pathways after stroke: implications for noninvasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Lynley V Bradnam

    2013-05-01

    Full Text Available In humans the two cerebral hemispheres have essential roles in controlling the upper limb. The purpose of this article is to draw attention to the potential importance of ipsilateral descending pathways for functional recovery after stroke, and the use of noninvasive brain stimulation (NBS protocols of the contralesional primary motor cortex (M1. Conventionally NBS is used to suppress contralesional M1, and to attenuate transcallosal inhibition onto the ipsilesional M1. There has been little consideration of the fact that contralesional M1 suppression may also reduce excitability of ipsilateral descending pathways that may be important for paretic upper limb control for some patients. One such ipsilateral pathway is the cortico-reticulo-propriospinal pathway (CRPP. In this review we outline a neurophysiological model to explain how contralesional M1 may gain control of the paretic arm via the CRPP. We conclude that the relative importance of the CRPP for motor control in individual patients must be considered before using NBS to suppress contralesional M1. Neurophysiological, neuroimaging and clinical assessments can assist this decision making and facilitate the translation of NBS into the clinical setting.

  16. Head motions while riding roller coasters: implications for brain injury.

    Science.gov (United States)

    Pfister, Bryan J; Chickola, Larry; Smith, Douglas H

    2009-12-01

    The risk of traumatic brain injury (TBI) while riding roller coasters has received substantial attention. Case reports of TBI around the time of riding roller coasters have led many medical professionals to assert that the high gravitational forces (G-forces) induced by roller coasters pose a significant TBI risk. Head injury research, however, has shown that G-forces alone cannot predict TBI. Established head injury criterions and procedures were employed to compare the potential of TBI between daily activities and roller coaster riding. Three-dimensional head motions were measured during 3 different roller coaster rides, a pillow fight, and car crash simulations. Data was analyzed and compared with published data, using similar analyses of head motions. An 8.05 m/s car crash lead to the largest head injury criterion measure of 28.1 and head impact power of 3.41, over 6 times larger than the roller coaster rides of 4.1 and 0.36. Notably, the linear and rotational components of head acceleration during roller coaster rides were milder than those induced by many common activities. As such, there appears to be an extremely low risk of TBI due to the head motions induced by roller coaster rides. PMID:19901817

  17. The evolution of the language faculty: clarifications and implications.

    Science.gov (United States)

    Fitch, W Tecumseh; Hauser, Marc D; Chomsky, Noam

    2005-09-01

    In this response to Pinker and Jackendoff's critique, we extend our previous framework for discussion of language evolution, clarifying certain distinctions and elaborating on a number of points. In the first half of the paper, we reiterate that profitable research into the biology and evolution of language requires fractionation of "language" into component mechanisms and interfaces, a non-trivial endeavor whose results are unlikely to map onto traditional disciplinary boundaries. Our terminological distinction between FLN and FLB is intended to help clarify misunderstandings and aid interdisciplinary rapprochement. By blurring this distinction, Pinker and Jackendoff mischaracterize our hypothesis 3 which concerns only FLN, not "language" as a whole. Many of their arguments and examples are thus irrelevant to this hypothesis. Their critique of the minimalist program is for the most part equally irrelevant, because very few of the arguments in our original paper were tied to this program; in an online appendix we detail the deep inaccuracies in their characterization of this program. Concerning evolution, we believe that Pinker and Jackendoff's emphasis on the past adaptive history of the language faculty is misplaced. Such questions are unlikely to be resolved empirically due to a lack of relevant data, and invite speculation rather than research. Preoccupation with the issue has retarded progress in the field by diverting research away from empirical questions, many of which can be addressed with comparative data. Moreover, offering an adaptive hypothesis as an alternative to our hypothesis concerning mechanisms is a logical error, as questions of function are independent of those concerning mechanism. The second half of our paper consists of a detailed response to the specific data discussed by Pinker and Jackendoff. Although many of their examples are irrelevant to our original paper and arguments, we find several areas of substantive disagreement that could be

  18. The evolution of the language faculty: clarifications and implications.

    Science.gov (United States)

    Fitch, W Tecumseh; Hauser, Marc D; Chomsky, Noam

    2005-09-01

    In this response to Pinker and Jackendoff's critique, we extend our previous framework for discussion of language evolution, clarifying certain distinctions and elaborating on a number of points. In the first half of the paper, we reiterate that profitable research into the biology and evolution of language requires fractionation of "language" into component mechanisms and interfaces, a non-trivial endeavor whose results are unlikely to map onto traditional disciplinary boundaries. Our terminological distinction between FLN and FLB is intended to help clarify misunderstandings and aid interdisciplinary rapprochement. By blurring this distinction, Pinker and Jackendoff mischaracterize our hypothesis 3 which concerns only FLN, not "language" as a whole. Many of their arguments and examples are thus irrelevant to this hypothesis. Their critique of the minimalist program is for the most part equally irrelevant, because very few of the arguments in our original paper were tied to this program; in an online appendix we detail the deep inaccuracies in their characterization of this program. Concerning evolution, we believe that Pinker and Jackendoff's emphasis on the past adaptive history of the language faculty is misplaced. Such questions are unlikely to be resolved empirically due to a lack of relevant data, and invite speculation rather than research. Preoccupation with the issue has retarded progress in the field by diverting research away from empirical questions, many of which can be addressed with comparative data. Moreover, offering an adaptive hypothesis as an alternative to our hypothesis concerning mechanisms is a logical error, as questions of function are independent of those concerning mechanism. The second half of our paper consists of a detailed response to the specific data discussed by Pinker and Jackendoff. Although many of their examples are irrelevant to our original paper and arguments, we find several areas of substantive disagreement that could be

  19. The Fact of Evolution: Implications for Science Education

    Science.gov (United States)

    Hofmann, James R.; Weber, Bruce H.

    Creationists who object to evolution in the science curriculum of public schools often cite Jonathan Well's book Icons of Evolution in their support (Wells2000). In the third chapter of his book Wells claims that neither paleontological nor molecular evidence supports the thesis that the history of life is an evolutionary process of descent from preexisting ancestors. We argue that Wells inappropriately relies upon ambiguities inherent in the term `Darwinian' and the phrase `Darwin'stheory'. Furthermore, he does not accurately distinguish between the overwhelming evidence that supports the thesis of common descent and controversies that pertain to causal mechanisms such as natural selection. We also argue that Wells' attempts to undermine the evidence in support of common descent are flawed and his characterization of the relevant data is misleading. In particular, his assessment of the `Cambrian explosion' does not do justice to the fossil record. Nor do his selective references to debate about molecular and paleontological phylogenies constitute a case against common descent. We conclude that the fossil and molecular evidence is more than sufficient to warrant science educators to present common descent as a well-established scientific fact. We also argue that diagrams depicting the `tree of life' can be pedagogically useful as simplified representations of the history of life.

  20. Manual praxis in stone tool manufacture: implications for language evolution.

    Science.gov (United States)

    Ruck, Lana

    2014-12-01

    Alternative functions of the left-hemisphere dominant Broca's region have induced hypotheses regarding the evolutionary parallels between manual praxis and language in humans. Many recent studies on Broca's area reveal several assumptions about the cognitive mechanisms that underlie both functions, including: (1) an accurate, finely controlled body schema, (2) increasing syntactical abilities, particularly for goal-oriented actions, and (3) bilaterality and fronto-parietal connectivity. Although these characteristics are supported by experimental paradigms, many researchers have failed to acknowledge a major line of evidence for the evolutionary development of these traits: stone tools. The neuroscience of stone tool manufacture is a viable proxy for understanding evolutionary aspects of manual praxis and language, and may provide key information for evaluating competing hypotheses on the co-evolution of these cognitive domains in our species.

  1. Metabolic Genes within Cyanophage Genomes: Implications for Diversity and Evolution

    Directory of Open Access Journals (Sweden)

    E-Bin Gao

    2016-09-01

    Full Text Available Cyanophages, a group of viruses specifically infecting cyanobacteria, are genetically diverse and extensively abundant in water environments. As a result of selective pressure, cyanophages often acquire a range of metabolic genes from host genomes. The host-derived genes make a significant contribution to the ecological success of cyanophages. In this review, we summarize the host-derived metabolic genes, as well as their origin and roles in cyanophage evolution and important host metabolic pathways, such as the light-dependent reactions of photosynthesis, the pentose phosphate pathway, nutrient acquisition and nucleotide biosynthesis. We also discuss the suitability of the host-derived metabolic genes as potential diagnostic markers for the detection of genetic diversity of cyanophages in natural environments.

  2. Dental patterning in the earliest sharks: Implications for tooth evolution.

    Science.gov (United States)

    Maisey, John G; Turner, Susan; Naylor, Gavin J P; Miller, Randall F

    2014-05-01

    Doliodus problematicus is the oldest known fossil shark-like fish with an almost intact dentition (Emsian, Lower Devonian, c. 397Ma). We provide a detailed description of the teeth and dentition in D. problematicus, based on tomographic analysis of NBMG 10127 (New Brunswick Museum, Canada). Comparisons with modern shark dentitions suggest that Doliodus was a ram-feeding predator with a dentition adapted to seizing and disabling prey. Doliodus provides several clues about the early evolution of the "shark-like" dentition in chondrichthyans and also raises new questions about the evolution of oral teeth in jawed vertebrates. As in modern sharks, teeth in Doliodus were replaced in a linguo-labial sequence within tooth families at fixed positions along the jaws (12-14 tooth families per jaw quadrant in NBMG 10127). Doliodus teeth were replaced much more slowly than in modern sharks. Nevertheless, its tooth formation was apparently as highly organized as in modern elasmobranchs, in which future tooth positions are indicated by synchronized expression of shh at fixed loci within the dental epithelium. Comparable dental arrays are absent in osteichthyans, placoderms, and many "acanthodians"; a "shark-like" dentition, therefore, may be a synapomorphy of chondrichthyans and gnathostomes such as Ptomacanthus. The upper anterior teeth in Doliodus were not attached to the palatoquadrates, but were instead supported by the ethmoid region of the prechordal basicranium, as in some other Paleozoic taxa (e.g., Triodus, Ptomacanthus). This suggests that the chondrichthyan dental lamina was originally associated with prechordal basicranial cartilage as well as jaw cartilage, and that the modern elasmobranch condition (in which the oral dentition is confined to the jaws) is phylogenetically advanced. Thus, oral tooth development in modern elasmobranchs does not provide a complete developmental model for chondrichthyans or gnathostomes.

  3. Dental patterning in the earliest sharks: Implications for tooth evolution.

    Science.gov (United States)

    Maisey, John G; Turner, Susan; Naylor, Gavin J P; Miller, Randall F

    2014-05-01

    Doliodus problematicus is the oldest known fossil shark-like fish with an almost intact dentition (Emsian, Lower Devonian, c. 397Ma). We provide a detailed description of the teeth and dentition in D. problematicus, based on tomographic analysis of NBMG 10127 (New Brunswick Museum, Canada). Comparisons with modern shark dentitions suggest that Doliodus was a ram-feeding predator with a dentition adapted to seizing and disabling prey. Doliodus provides several clues about the early evolution of the "shark-like" dentition in chondrichthyans and also raises new questions about the evolution of oral teeth in jawed vertebrates. As in modern sharks, teeth in Doliodus were replaced in a linguo-labial sequence within tooth families at fixed positions along the jaws (12-14 tooth families per jaw quadrant in NBMG 10127). Doliodus teeth were replaced much more slowly than in modern sharks. Nevertheless, its tooth formation was apparently as highly organized as in modern elasmobranchs, in which future tooth positions are indicated by synchronized expression of shh at fixed loci within the dental epithelium. Comparable dental arrays are absent in osteichthyans, placoderms, and many "acanthodians"; a "shark-like" dentition, therefore, may be a synapomorphy of chondrichthyans and gnathostomes such as Ptomacanthus. The upper anterior teeth in Doliodus were not attached to the palatoquadrates, but were instead supported by the ethmoid region of the prechordal basicranium, as in some other Paleozoic taxa (e.g., Triodus, Ptomacanthus). This suggests that the chondrichthyan dental lamina was originally associated with prechordal basicranial cartilage as well as jaw cartilage, and that the modern elasmobranch condition (in which the oral dentition is confined to the jaws) is phylogenetically advanced. Thus, oral tooth development in modern elasmobranchs does not provide a complete developmental model for chondrichthyans or gnathostomes. PMID:24347366

  4. Evolution of Martian atmospheric argon: Implications for sources of volatiles

    Science.gov (United States)

    Hutchins, Kevin S.; Jakosky, Bruce M.

    We have examined processes affecting isotopes of argon (36Ar, 38Ar, 40Ar) in order to determine important atmospheric sources and sinks. Our simple model for argon evolution incorporates production of radiogenic argon in the mantle, outgassing of all argon species by extrusive and intrusive volcanism, and loss to space by knock-on sputtering above the exobase. Sputtering has been shown previously to be an important loss process for atmospheric species, especially isotopes of noble gases, which have few other mechanisms of escape. The integrated evolution of argon (36Ar, 38Ar, and 40Ar, respectively) is modeled in terms of these variables: (1) the planetary concentration of potassium, (2) the fraction of juvenile argon released catastrophically during the first 600 Myr., (3) potential variation in the time-history of sputtering loss from that suggested by Luhmann et al. [1992], and (4) the volume of total outgassing to the surface as compared to outgassing contributed by volcanic release. Our results indicate that Mars has lost between 85-95% of 36Ar and 70-88% of outgassed 40Ar. Due to this substantial loss, the planet must have outgassed the equivalent of between 10 and 100 times the total volume of gases released by extrusive and intrusive volcanics. This indicates that volcanic outgassing, alone, is insufficient to explain the present-day abundances of 36Ar and 40Ar in the Martian atmosphere. Similar calculations for 20Ne suggest outgassed volumes of between 100 and 1800 times in excess of that due to volcanism. This results in a distinct Ne/Ar elemental fractionation, with a preference for outgassing argon, of the order of 10 to 17. Although the results must be evaluated within the model uncertainties, the results are compelling in that they unequivocally show the existence of additional sources of atmospheric volatiles and helps define a means to identify them.

  5. Implication of evolution and diversity in arbuscular and ectomycorrhizal symbioses.

    Science.gov (United States)

    Buscot, François

    2015-01-01

    Being highly sensitive to ecological variations, symbiotic associations should inherently have a limited occurrence in nature. To circumvent this sensitivity and reach their universal distribution, symbioses used three strategies during their evolution, which all generated high biodiversity levels: (i) specialization to a specific environment, (ii) protection of one partner via its internalization into the other, (iii) frequent partner exchange. Mycorrhizal associations follow the 3rd strategy, but also present traits of internalization. As most ancient type, arbuscular mycorrhiza (AM) formed by a monophyletic fungal group with reduced species richness did constantly support the mineral nutrition of terrestrial plants and enabled their ecological radiation and actual biodiversity level. In contrast ectomycorrhiza (EM) evolved later and independently within different taxa of fungi able to degrade complex organic plant residues, and the diversity levels of EM fungal and tree partners are balanced. Despite their different origins and diversity levels, AM and EM fungi display similar patterns of diversity dynamics in ecosystems. At each time or succession interval, a few dominant and many rare fungi are recruited by plants roots from a wide reservoir of propagules. However, the dominant fungal partners are frequently replaced in relation to changes in the vegetation or ecological conditions. While the initial establishment of AM and EM fungal communities corresponds to a neutral recruitment, their further succession is rather driven by niche differentiation dynamics. PMID:25239593

  6. The Formation of Dust Lanes: Implications for Galaxy Evolution

    Science.gov (United States)

    Dalcanton, Julianne J.; Yoachim, Peter; Bernstein, Rebecca A.

    2004-06-01

    From a survey of edge-on disks, we find that disk galaxies show a sharp, mass-dependent transition in the structure of their dusty ISM. In more massive, rapidly rotating disks with Vc>120kms-1, we see the well-defined dust lanes traditionally associated with edge-on galaxies. However, in more slowly rotating, lower mass galaxies with Vclower characteristic velocities in the presence of disk instabilities, leading to smaller gas scale heights and the appearance of narrow dust lanes. The drop in velocity dispersion may be due either to a switch in the driving mechanism for turbulence from supernovae to gravitational instabilities or to a change in the response of the ISM to supernovae after the ISM has collapsed to a dense layer. We hypothesize that the drop in gas scale height may lead to significant increases in the star formation rate when disk instabilities are present. First, the collapse of the gas layer increases the typical gas density, reducing the star formation timescale. Second, the star formation efficiency increases because of lower turbulent velocities. These two effects can combine to produce a sharp increase in the star formation rate with little change in the gas surface density and may therefore provide an explanation for the Kennicutt surface density threshold for star formation. Our data also suggest that star formation will be systematically less efficient in low-mass disks with Vceffective nucleosynthetic yield is reduced because the star formation timescale becomes longer than the gas accretion timescale, suppressing the metallicity. This effect can possibly produce the observed fall-off in metallicity at rotation speeds Vc~120kms-1. The latter observation lends support to theories in which bulges in late-type galaxies grow through secular evolution in response to disk instabilities. We include in this paper relationships between the surface density and the vertical stellar velocity dispersion as a function of galaxy rotation speed, which may

  7. Reorganization of the injured brain: Implications for studies of the neural substrate of cognition

    Directory of Open Access Journals (Sweden)

    Jesper eMogensen

    2011-01-01

    Full Text Available In the search for a neural substrate of cognitive processes, a frequently utilized method is the scrutiny of posttraumatic symptoms exhibited by individuals suffering focal injury to the brain. For instance, the presence or absence of conscious awareness within a particular domain may, combined with knowledge of which regions of the brain have been injured, provide important data in the search for neural correlates of consciousness. Like all studies addressing the consequences of brain injury, however, such research has to face the fact that in most cases, posttraumatic impairments are accompanied by a functional recovery during which symptoms are reduced or eliminated. The apparent contradiction between localization and recovery, respectively, of functions constitutes a problem to almost all aspects of cognitive neuroscience. Several lines of investigation indicate that although the brain remains highly plastic throughout life, the posttraumatic plasticity does not recreate a copy of the neural mechanisms lost to injury. Instead, the uninjured parts of the brain are functionally reorganized in a manner which – in spite of not recreating the basic information processing lost to injury – is able to allow a more or less complete return of the surface phenomena (including manifestations of consciousness originally impaired by the trauma. A novel model (the REF-model of these processes is presented – and some of its implications discussed relative to studies of the neural substrates of cognition and consciousness.

  8. Metabolism as a tool for understanding human brain evolution: lipid energy metabolism as an example.

    Science.gov (United States)

    Wang, Shu Pei; Yang, Hao; Wu, Jiang Wei; Gauthier, Nicolas; Fukao, Toshiyuki; Mitchell, Grant A

    2014-12-01

    Genes and the environment both influence the metabolic processes that determine fitness. To illustrate the importance of metabolism for human brain evolution and health, we use the example of lipid energy metabolism, i.e. the use of fat (lipid) to produce energy and the advantages that this metabolic pathway provides for the brain during environmental energy shortage. We briefly describe some features of metabolism in ancestral organisms, which provided a molecular toolkit for later development. In modern humans, lipid energy metabolism is a regulated multi-organ pathway that links triglycerides in fat tissue to the mitochondria of many tissues including the brain. Three important control points are each suppressed by insulin. (1) Lipid reserves in adipose tissue are released by lipolysis during fasting and stress, producing fatty acids (FAs) which circulate in the blood and are taken up by cells. (2) FA oxidation. Mitochondrial entry is controlled by carnitine palmitoyl transferase 1 (CPT1). Inside the mitochondria, FAs undergo beta oxidation and energy production in the Krebs cycle and respiratory chain. (3) In liver mitochondria, the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) pathway produces ketone bodies for the brain and other organs. Unlike most tissues, the brain does not capture and metabolize circulating FAs for energy production. However, the brain can use ketone bodies for energy. We discuss two examples of genetic metabolic traits that may be advantageous under most conditions but deleterious in others. (1) A CPT1A variant prevalent in Inuit people may allow increased FA oxidation under nonfasting conditions but also predispose to hypoglycemic episodes. (2) The thrifty genotype theory, which holds that energy expenditure is efficient so as to maximize energy stores, predicts that these adaptations may enhance survival in periods of famine but predispose to obesity in modern dietary environments.

  9. Molecular evolution of the human SRPX2 gene that causes brain disorders of the Rolandic and Sylvian speech areas

    Directory of Open Access Journals (Sweden)

    Levasseur Anthony

    2007-10-01

    Full Text Available Abstract Background The X-linked SRPX2 gene encodes a Sushi Repeat-containing Protein of unknown function and is mutated in two disorders of the Rolandic/Sylvian speech areas. Since it is linked to defects in the functioning and the development of brain areas for speech production, SRPX2 may thus have participated in the adaptive organization of such brain regions. To address this issue, we have examined the recent molecular evolution of the SRPX2 gene. Results The complete coding region was sequenced in 24 human X chromosomes from worldwide populations and in six representative nonhuman primate species. One single, fixed amino acid change (R75K has been specifically incorporated in human SRPX2 since the human-chimpanzee split. The R75K substitution occurred in the first sushi domain of SRPX2, only three amino acid residues away from a previously reported disease-causing mutation (Y72S. Three-dimensional structural modeling of the first sushi domain revealed that Y72 and K75 are both situated in the hypervariable loop that is usually implicated in protein-protein interactions. The side-chain of residue 75 is exposed, and is located within an unusual and SRPX-specific protruding extension to the hypervariable loop. The analysis of non-synonymous/synonymous substitution rate (Ka/Ks ratio in primates was performed in order to test for positive selection during recent evolution. Using the branch models, the Ka/Ks ratio for the human branch was significantly different (p = 0.027 from that of the other branches. In contrast, the branch-site tests did not reach significance. Genetic analysis was also performed by sequencing 9,908 kilobases (kb of intronic SRPX2 sequences. Despite low nucleotide diversity, neither the HKA (Hudson-Kreitman-Aguadé test nor the Tajima's D test reached significance. Conclusion The R75K human-specific variation occurred in an important functional loop of the first sushi domain of SRPX2, indicating that this evolutionary

  10. An Improved Brain Storm Optimization with Differential Evolution Strategy for Applications of ANNs

    Directory of Open Access Journals (Sweden)

    Zijian Cao

    2015-01-01

    Full Text Available Brain Storm Optimization (BSO algorithm is a swarm intelligence algorithm inspired by human being’s behavior of brainstorming. The performance of BSO is maintained by the creating process of ideas, but when it cannot find a better solution for some successive iterations, the result will be so inefficient that the population might be trapped into local optima. In this paper, we propose an improved BSO algorithm with differential evolution strategy and new step size method. Firstly, differential evolution strategy is incorporated into the creating operator of ideas to allow BSO jump out of stagnation, owing to its strong searching ability. Secondly, we introduce a new step size control method that can better balance exploration and exploitation at different searching generations. Finally, the proposed algorithm is first tested on 14 benchmark functions of CEC 2005 and then is applied to train artificial neural networks. Comparative experimental results illustrate that the proposed algorithm performs significantly better than the original BSO.

  11. Evolution of public cooperation in a monitored society with implicated punishment and within-group enforcement

    Science.gov (United States)

    Chen, Xiaojie; Sasaki, Tatsuya; Perc, Matjaž

    2015-11-01

    Monitoring with implicated punishment is common in human societies to avert freeriding on common goods. But is it effective in promoting public cooperation? We show that the introduction of monitoring and implicated punishment is indeed effective, as it transforms the public goods game to a coordination game, thus rendering cooperation viable in infinite and finite well-mixed populations. We also show that the addition of within-group enforcement further promotes the evolution of public cooperation. However, although the group size in this context has nonlinear effects on collective action, an intermediate group size is least conductive to cooperative behaviour. This contradicts recent field observations, where an intermediate group size was declared optimal with the conjecture that group-size effects and within-group enforcement are responsible. Our theoretical research thus clarifies key aspects of monitoring with implicated punishment in human societies, and additionally, it reveals fundamental group-size effects that facilitate prosocial collective action.

  12. Evolution of public cooperation in a monitored society with implicated punishment and within-group enforcement

    Science.gov (United States)

    Chen, Xiaojie; Sasaki, Tatsuya; Perc, Matjaž

    2015-01-01

    Monitoring with implicated punishment is common in human societies to avert freeriding on common goods. But is it effective in promoting public cooperation? We show that the introduction of monitoring and implicated punishment is indeed effective, as it transforms the public goods game to a coordination game, thus rendering cooperation viable in infinite and finite well-mixed populations. We also show that the addition of within-group enforcement further promotes the evolution of public cooperation. However, although the group size in this context has nonlinear effects on collective action, an intermediate group size is least conductive to cooperative behaviour. This contradicts recent field observations, where an intermediate group size was declared optimal with the conjecture that group-size effects and within-group enforcement are responsible. Our theoretical research thus clarifies key aspects of monitoring with implicated punishment in human societies, and additionally, it reveals fundamental group-size effects that facilitate prosocial collective action. PMID:26597333

  13. Evolution of public cooperation in a monitored society with implicated punishment and within-group enforcement.

    Science.gov (United States)

    Chen, Xiaojie; Sasaki, Tatsuya; Perc, Matjaž

    2015-11-24

    Monitoring with implicated punishment is common in human societies to avert freeriding on common goods. But is it effective in promoting public cooperation? We show that the introduction of monitoring and implicated punishment is indeed effective, as it transforms the public goods game to a coordination game, thus rendering cooperation viable in infinite and finite well-mixed populations. We also show that the addition of within-group enforcement further promotes the evolution of public cooperation. However, although the group size in this context has nonlinear effects on collective action, an intermediate group size is least conductive to cooperative behaviour. This contradicts recent field observations, where an intermediate group size was declared optimal with the conjecture that group-size effects and within-group enforcement are responsible. Our theoretical research thus clarifies key aspects of monitoring with implicated punishment in human societies, and additionally, it reveals fundamental group-size effects that facilitate prosocial collective action.

  14. Microevolutionary, macroevolutionary, ecological and taxonomical implications of punctuational theories of adaptive evolution.

    Science.gov (United States)

    Flegr, Jaroslav

    2013-01-16

    Punctuational theories of evolution suggest that adaptive evolution proceeds mostly, or even entirely, in the distinct periods of existence of a particular species. The mechanisms of this punctuated nature of evolution suggested by the various theories differ. Therefore the predictions of particular theories concerning various evolutionary phenomena also differ.Punctuational theories can be subdivided into five classes, which differ in their mechanism and their evolutionary and ecological implications. For example, the transilience model of Templeton (class III), genetic revolution model of Mayr (class IV) or the frozen plasticity theory of Flegr (class V), suggests that adaptive evolution in sexual species is operative shortly after the emergence of a species by peripatric speciation--while it is evolutionary plastic. To a major degree, i.e. throughout 98-99% of their existence, sexual species are evolutionarily frozen (class III) or elastic (class IV and V) on a microevolutionary time scale and evolutionarily frozen on a macroevolutionary time scale and can only wait for extinction, or the highly improbable return of a population segment to the plastic state due to peripatric speciation.The punctuational theories have many evolutionary and ecological implications. Most of these predictions could be tested empirically, and should be analyzed in greater depth theoretically. The punctuational theories offer many new predictions that need to be tested, but also provide explanations for a much broader spectrum of known biological phenomena than classical gradualistic evolutionary theories.

  15. Skull Flexure from Blast Waves: A New Mechanism for Brain Injury with Implications for Helmet Design

    CERN Document Server

    Moss, William C; Blackman, Eric G

    2008-01-01

    Traumatic brain injury [TBI] has become the signature injury of current military conflicts. The debilitating effects of TBI on society are long-lasting and costly. Although the mechanisms by which impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. Various mechanisms, including impacts caused by the blast, have been investigated, but blast-induced deformation of the skull has been neglected. Through the use of hydrodynamical numerical simulations, we have discovered that non-lethal blasts can induce sufficient flexure of the skull to generate potentially damaging loads in the brain, even if no impact occurs. This mechanism has implications for the diagnosis of TBI in soldiers and the design of protective equipment such as helmets.

  16. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2009-04-14

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts. The debilitating effects of TBI are long-lasting and costly. Although the mechanisms by which impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. Various possibilities have been investigated, but blast-induced deformation of the skull has been neglected. From numerical hydrodynamic simulations, we have discovered that nonlethal blasts can induce sufficient flexure of the skull to generate potentially damaging loads in the brain, even if no impact occurs. The possibility that this mechanism may contribute to TBI has implications for the diagnosis of soldiers and the design of protective equipment such as helmets.

  17. Modelling rate distributions using character compatibility: implications for morphological evolution among fossil invertebrates.

    Science.gov (United States)

    Wagner, Peter J

    2012-02-23

    Rate distributions are important considerations when testing hypotheses about morphological evolution or phylogeny. They also have implications about general processes underlying character evolution. Molecular systematists often assume that rates are Poisson processes with gamma distributions. However, morphological change is the product of multiple probabilistic processes and should theoretically be affected by hierarchical integration of characters. Both factors predict lognormal rate distributions. Here, a simple inverse modelling approach assesses the best single-rate, gamma and lognormal models given observed character compatibility for 115 invertebrate groups. Tests reject the single-rate model for nearly all cases. Moreover, the lognormal outperforms the gamma for character change rates and (especially) state derivation rates. The latter in particular is consistent with integration affecting morphological character evolution.

  18. New insight in expression, transport, and secretion of brain-derived neurotrophic factor: Implications in brainrelated diseases

    Institute of Scientific and Technical Information of China (English)

    Naoki; Adachi; Tadahiro; Numakawa; Misty; Richards; Shingo; Nakajima; Hiroshi; Kunugi

    2014-01-01

    Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has beenreported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia.

  19. High-resolution ultrasound evaluation of experimental brain abscess evolution: comparison with computed tomography and neuropathology

    Energy Technology Data Exchange (ETDEWEB)

    Enzmann, D.R.; Britt, R.H.; Lyons, B.; Carroll, B.; Wilson, D.A.; Buxton, J.

    1982-01-01

    Computed tomographic (CT) and high-resolution ultrasound (HRUS) imaging of experimental brain abscess were correlated with neuropathologic findings in nine mongrel dogs. The HRUS scan was more sensitive to different histologic features than the CT scan but both accurately delineated the evolution of the experimental brain abscess. All stages of abscess evolution were characterized by an appearance of an echogenic rim with a hypoechoic center. In the early stages the echogenicity of the abscess was related primarily to marked cellular infiltration while in the late stages extensive collagen deposition correlated closely with the echo pattern. The size of the abscess in the cerebritis stages appeared smaller on the HRUS scan than on the CT scan because the latter modality detected the extensive cerebritis around the developing necrotic center whereas the HRUS scan did not. This discrepancy disappeared in the capsule stages. The HRUS scan provided a more accurate depiction of the neuropathologic characteristics of the necrotic center than did the CT scan. Healing of the abscess, indicated by a decrease in size of the hypoechoic center, was accurately detected by the HRUS scan.

  20. High-resolution ultrasound evaluation of experimental brain abscess evolution: comparison with computed tomography and neuropathology

    International Nuclear Information System (INIS)

    Computed tomographic (CT) and high-resolution ultrasound (HRUS) imaging of experimental brain abscess were correlated with neuropathologic findings in nine mongrel dogs. The HRUS scan was more sensitive to different histologic features than the CT scan but both accurately delineated the evolution of the experimental brain abscess. All stages of abscess evolution were characterized by an appearance of an echogenic rim with a hypoechoic center. In the early stages the echogenicity of the abscess was related primarily to marked cellular infiltration while in the late stages extensive collagen deposition correlated closely with the echo pattern. The size of the abscess in the cerebritis stages appeared smaller on the HRUS scan than on the CT scan because the latter modality detected the extensive cerebritis around the developing necrotic center whereas the HRUS scan did not. This discrepancy disappeared in the capsule stages. The HRUS scan provided a more accurate depiction of the neuropathologic characteristics of the necrotic center than did the CT scan. Healing of the abscess, indicated by a decrease in size of the hypoechoic center, was accurately detected by the HRUS scan

  1. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  2. SYNAPTOSOMAL LACTATE DEHYDROGENASE ISOENZYME COMPOSITION IS SHIFTED TOWARD AEROBIC FORMS IN PRIMATE BRAIN EVOLUTION

    Science.gov (United States)

    Duka, Tetyana; Anderson, Sarah M.; Collins, Zachary; Raghanti, Mary Ann; Ely, John J.; Hof, Patrick R.; Wildman, Derek E.; Goodman, Morris; Grossman, Lawrence I.; Sherwood, Chet C.

    2014-01-01

    With the evolution of a relatively large brain size in haplorhine primates (i.e., tarsiers, monkeys, apes and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in the synaptosomal fraction from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoforms, LDHB, among haplorhines as compared to strepsirrhines (i.e., lorises and lemurs), while in total homogenate of neocortex and striatum there was no significant difference in the LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, displaying an especially remarkable elevation in the ratio of LDH-B to LDH-A in humans. The phylogenetic variation in LDH-B to LDH-A ratio was correlated with species typical brain mass, but not encephalization quotient. A significant LDHB increase in the sub-neuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement. PMID:24686273

  3. Recurrent evolution of life history ecotypes in sockeye salmon: implications for conservation and future evolution.

    Science.gov (United States)

    Wood, Chris C; Bickham, John W; John Nelson, R; Foote, Chris J; Patton, John C

    2008-05-01

    We examine the evolutionary history and speculate about the evolutionary future of three basic life history ecotypes that contribute to the biocomplexity of sockeye salmon (Oncorhynchus nerka). The 'recurrent evolution' (RE) hypothesis claims that the sea/river ecotype is ancestral, a 'straying' form with poorly differentiated (meta)population structure, and that highly structured populations of lake-type sockeye and kokanee have evolved repeatedly in parallel adaptive radiations between recurrent glaciations of the Pleistocene Epoch. Basic premises of this hypothesis are consistent with new, independent evidence from recent surveys of genetic variation in mitochondrial and microsatellite DNA: (1) sockeye salmon are most closely related to pink (O. gorbuscha) and chum (O. keta) salmon with sea-type life histories; (2) the sockeye life history ecotypes exist as polyphyletic lineages within large drainages and geographic regions; (3) the sea/river ecotype exhibits less genetic differentiation among populations than the lake or kokanee ecotypes both within and among drainages; and (4) genetic diversity is typically higher in the sea/river ecotype than in the lake and kokanee ecotypes. Anthropogenic modification of estuarine habitat and intensive coastal fisheries have likely reduced and fragmented historic metapopulations of the sea/river ecotype, particularly in southern areas. In contrast, the kokanee ecotype appears to be favoured by marine fisheries and predicted changes in climate.

  4. Scattering of Sculpted Light in Intact Brain Tissue, with implications for Optogenetics.

    Science.gov (United States)

    Favre-Bulle, Itia A; Preece, Daryl; Nieminen, Timo A; Heap, Lucy A; Scott, Ethan K; Rubinsztein-Dunlop, Halina

    2015-01-01

    Optogenetics uses light to control and observe the activity of neurons, often using a focused laser beam. As brain tissue is a scattering medium, beams are distorted and spread with propagation through neural tissue, and the beam's degradation has important implications in optogenetic experiments. To address this, we present an analysis of scattering and loss of intensity of focused laser beams at different depths within the brains of zebrafish larvae. Our experimental set-up uses a 488 nm laser and a spatial light modulator to focus a diffraction-limited spot of light within the brain. We use a combination of experimental measurements of back-scattered light in live larvae and computational modelling of the scattering to determine the spatial distribution of light. Modelling is performed using the Monte Carlo method, supported by generalised Lorenz-Mie theory in the single-scattering approximation. Scattering in areas rich in cell bodies is compared to that of regions of neuropil to identify the distinct and dramatic contributions that cell nuclei make to scattering. We demonstrate the feasibility of illuminating individual neurons, even in nucleus-rich areas, at depths beyond 100 μm using a spatial light modulator in combination with a standard laser and microscope optics. PMID:26108566

  5. Scattering of Sculpted Light in Intact Brain Tissue, with implications for Optogenetics

    Science.gov (United States)

    Favre-Bulle, Itia A.; Preece, Daryl; Nieminen, Timo A.; Heap, Lucy A.; Scott, Ethan K.; Rubinsztein-Dunlop, Halina

    2015-06-01

    Optogenetics uses light to control and observe the activity of neurons, often using a focused laser beam. As brain tissue is a scattering medium, beams are distorted and spread with propagation through neural tissue, and the beam’s degradation has important implications in optogenetic experiments. To address this, we present an analysis of scattering and loss of intensity of focused laser beams at different depths within the brains of zebrafish larvae. Our experimental set-up uses a 488 nm laser and a spatial light modulator to focus a diffraction-limited spot of light within the brain. We use a combination of experimental measurements of back-scattered light in live larvae and computational modelling of the scattering to determine the spatial distribution of light. Modelling is performed using the Monte Carlo method, supported by generalised Lorenz-Mie theory in the single-scattering approximation. Scattering in areas rich in cell bodies is compared to that of regions of neuropil to identify the distinct and dramatic contributions that cell nuclei make to scattering. We demonstrate the feasibility of illuminating individual neurons, even in nucleus-rich areas, at depths beyond 100 μm using a spatial light modulator in combination with a standard laser and microscope optics.

  6. On the Evolution of Terrestrial Planets: Implications of Evolutionary Paths and Evolving Lid-States

    Science.gov (United States)

    Weller, M. B.; Lenardic, A.

    2015-12-01

    Growing geodynamic and geochemical evidence suggests that plate tectonics may not have operated on the early Earth, with both the timing of its onset and the length of its activity far from certain [e.g., 1, 2, and references therein]. Accordingly, information from current observations and processes have the potential of sampling portions of the Earth that has both formed under and been modified by differing tectonic regimes. Here we use coupled 3D mantle convection and planetary tectonics simulations to explore evolutionary paths and planetary tectonic regimes. Early in the geologic lifetime of a terrestrial planet, high mantle temperatures favour stagnant-lids. As radiogenics decay, an initial stagnant-lid may yield into a high temperature mobile-lid state. The transition from an initial stagnant-lid is a function of yield strength, in addition to both internal and surface temperatures. Each lid-state has specific diagnostics and implications for internal parameters, and consequently planetary evolution. The implication within this framework is that a system with a different thermal evolution has the potential to migrate through tectonic regimes at the same 'thermal time' (e.g. temperature), but very different 'temporal times'. This indicate that multiple modes of convection and surface tectonics can potentially operate on a single planetary body at different times in its evolution, as consequence of changing internal parameters, surface temperatures, and differing thermal histories. We will discuss the implications of terrestrial worlds that can alternate, and be offset between multiple tectonic states over giga-year timescales. [1] O'Neill et. al. (2013b) Geol. Soc. London; [2] Weller et al. (2015) EPSL

  7. Reflections of evolution and culture in children's cognition. Implications for mathematical development and instruction.

    Science.gov (United States)

    Geary, D C

    1995-01-01

    An evolution-based framework for understanding biological and cultural influences on children's cognitive and academic development is presented. The utility of this framework is illustrated within the mathematical domain and serves as a foundation for examining current approaches to educational reform in the United States. Within this framework, there are two general classes of cognitive ability, biologically primary and biologically secondary. Biologically primary cognitive abilities appear to have evolved largely by means of natural or sexual selection. Biologically secondary cognitive abilities reflect the co-optation of primary abilities for purposes other than the original evolution-based function and appear to develop only in specific cultural contexts. A distinction between these classes of ability has important implications for understanding children's cognitive development and achievement. PMID:7872578

  8. The Co-evolution of Language and the Brain: A Review of Two Contrastive Views (Pinker & Deacon)

    DEFF Research Database (Denmark)

    Christensen, Ken Ramshøj

    2001-01-01

    This article is a review of two contrastive views on the co-evolution of language and the brain – The Language Instinct by Steven Pinker (1994) and The Symbolic Species by Terrence Deacon (1997). As language is a trait unique to mankind it can not be equated with nonlinguistic communication – human...... or nonhuman. This points to a special human brain architecture. Pinker’s claim is that certain areas on the left side of the brain constitute a language organ and that language acquisition is instinctual. To Deacon, however, those areas are non-language-specific computational centers. Moreover, they are parts...... in a larger symbolic computational chain controlled by regions in the frontal parts of the brain. To Deacon, a symbolic learning algorithm drives language acquisition. The increase in size of the human brain in relation to the body may be due to a “cognitive arms race”. Both Pinker and Deacon agree...

  9. Adrenal Disorders and the Paediatric Brain: Pathophysiological Considerations and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Vincenzo Salpietro

    2014-01-01

    Full Text Available Various neurological and psychiatric manifestations have been recorded in children with adrenal disorders. Based on literature review and on personal case-studies and case-series we focused on the pathophysiological and clinical implications of glucocorticoid-related, mineralcorticoid-related, and catecholamine-related paediatric nervous system involvement. Childhood Cushing syndrome can be associated with long-lasting cognitive deficits and abnormal behaviour, even after resolution of the hypercortisolism. Exposure to excessive replacement of exogenous glucocorticoids in the paediatric age group (e.g., during treatments for adrenal insufficiency has been reported with neurological and magnetic resonance imaging (MRI abnormalities (e.g., delayed myelination and brain atrophy due to potential corticosteroid-related myelin damage in the developing brain and the possible impairment of limbic system ontogenesis. Idiopathic intracranial hypertension (IIH, a disorder of unclear pathophysiology characterised by increased cerebrospinal fluid (CSF pressure, has been described in children with hypercortisolism, adrenal insufficiency, and hyperaldosteronism, reflecting the potential underlying involvement of the adrenal-brain axis in the regulation of CSF pressure homeostasis. Arterial hypertension caused by paediatric adenomas or tumours of the adrenal cortex or medulla has been associated with various hypertension-related neurological manifestations. The development and maturation of the central nervous system (CNS through childhood is tightly regulated by intrinsic, paracrine, endocrine, and external modulators, and perturbations in any of these factors, including those related to adrenal hormone imbalance, could result in consequences that affect the structure and function of the paediatric brain. Animal experiments and clinical studies demonstrated that the developing (i.e., paediatric CNS seems to be particularly vulnerable to alterations induced by

  10. Evolution of binary stars and its implications for evolutionary population synthesis

    CERN Document Server

    Han, Z; Zhang, F; Podsiadlowski, Ph

    2009-01-01

    Most stars are members of binaries, and the evolution of a star in a close binary system differs from that of an ioslated star due to the proximity of its companion star. The components in a binary system interact in many ways and binary evolution leads to the formation of many peculiar stars, including blue stragglers and hot subdwarfs. We will discuss binary evolution and the formation of blue stragglers and hot subdwarfs, and show that those hot objects are important in the study of evolutionary population synthesis (EPS), and conclude that binary interactions should be included in the study of EPS. Indeed, binary interactions make a stellar population younger (hotter), and the far-ultraviolet (UV) excess in elliptical galaxies is shown to be most likely resulted from binary interactions. This has major implications for understanding the evolution of the far-UV excess and elliptical galaxies in general. In particular, it implies that the far-UV excess is not a sign of age, as had been postulated prviously ...

  11. Microevolutionary, macroevolutionary, ecological and taxonomical implications of punctuational theories of adaptive evolution

    Directory of Open Access Journals (Sweden)

    Flegr Jaroslav

    2013-01-01

    Full Text Available Abstract Punctuational theories of evolution suggest that adaptive evolution proceeds mostly, or even entirely, in the distinct periods of existence of a particular species. The mechanisms of this punctuated nature of evolution suggested by the various theories differ. Therefore the predictions of particular theories concerning various evolutionary phenomena also differ. Punctuational theories can be subdivided into five classes, which differ in their mechanism and their evolutionary and ecological implications. For example, the transilience model of Templeton (class III, genetic revolution model of Mayr (class IV or the frozen plasticity theory of Flegr (class V, suggests that adaptive evolution in sexual species is operative shortly after the emergence of a species by peripatric speciation – while it is evolutionary plastic. To a major degree, i.e. throughout 98-99% of their existence, sexual species are evolutionarily frozen (class III or elastic (class IV and V on a microevolutionary time scale and evolutionarily frozen on a macroevolutionary time scale and can only wait for extinction, or the highly improbable return of a population segment to the plastic state due to peripatric speciation. The punctuational theories have many evolutionary and ecological implications. Most of these predictions could be tested empirically, and should be analyzed in greater depth theoretically. The punctuational theories offer many new predictions that need to be tested, but also provide explanations for a much broader spectrum of known biological phenomena than classical gradualistic evolutionary theories. Reviewers This article was reviewed by Claus Wilke, Pierre Pantarotti and David Penny (nominated by Anthony Poole.

  12. Précis of Foundations of language: brain, meaning, grammar, evolution.

    Science.gov (United States)

    Jackendoff, Ray

    2003-12-01

    The goal of this study is to reintegrate the theory of generative grammar into the cognitive sciences. Generative grammar was right to focus on the child's acquisition of language as its central problem, leading to the hypothesis of an innate Universal Grammar. However, generative grammar was mistaken in assuming that the syntactic component is the sole course of combinatoriality, and that everything else is "interpretive." The proper approach is a parallel architecture, in which phonology, syntax, and semantics are autonomous generative systems linked by interface components. The parallel architecture leads to an integration within linguistics, and to a far better integration with the rest of cognitive neuroscience. It fits naturally into the larger architecture of the mind/brain and permits a properly mentalistic theory of semantics. It results in a view of linguistic performance in which the rules of grammar are directly involved in processing. Finally, it leads to a natural account of the incremental evolution of the language capacity.

  13. Selectionist models of perceptual and motor systems and implications for functionalist theories of brain function

    Science.gov (United States)

    Reeke, George N.; Sporns, Olaf

    1990-06-01

    Functionalism is at present widely accepted as a working basis for cognitive science and artificial intelligence. This view holds that psychological phenomena can be adequately described in terms of functional processes carried out in the brain, and that these processes can be understood independently of the detailed structure and mode of development of the brain. In the functionalist view, the brain is analogous to a computer; both can properly be described at the level of symbolic representations and algorithms. However, an analysis of the structure, development, and evolution of the brain makes it highly unlikely that it could be a Turing machine or that brain algorithms could be either acquired by experience in the world or transmitted between generations. An alternative view is that the brain is a selective system in which two different domains of stochastic variation, the world and neural repertoires, become mapped onto each other in an individual, historical manner. Neural systems capable of such mapping can generalize and can deal with novelty in an open-ended environment. Several models have been constructed to test these ideas, including automata of a new kind that can recognize and associate patterns of sensory input by selective mechanisms. In an approach called synthetic neural modelling, the environment, the phenotype, and the nervous system of such an automaton are integrated into a single computer model. One example is Darwin III, a sessile “creature” with an eye and a multi-jointed arm having a sense of touch; its environment consists of simple shapes moving on a featureless background; its nervous system consists of some 50 000 cells of 50 different kinds connected by about 620 000 synaptic junctions. Darwin III can be trained to track moving objects with its eye, to reach out and touch objects with its arm, to categorize objects according to combinations of visual and tactile cues, and to respond in a positive or negative way to such objects

  14. Evolution of the brain: from behavior to consciousness in 3.4 billion years.

    Science.gov (United States)

    Oró, John J

    2004-06-01

    Once life began as single-cell organisms, evolution favored those able to seek nutrients and avoid risks. Receptors sensed the environment, memory traces were laid, and adaptive responses were made. Environmental stress, at times as dramatic as the collision of an asteroid, resulted in extinctions that favored small predators with dorsal nerve cords and cranially positioned brains. Myelination, and later thermoregulation, led to increasingly efficient neural processing. As somatosensory, visual, and auditory input increased, a neocortex developed containing both sensory and motor neural maps. Hominids, with their free hands, pushed cortical development further and began to make simple stone tools. Tools and increasing cognition allowed procurement of a richer diet that led to a smaller gut, thus freeing more energy for brain expansion. Multimodal association areas, initially developed for processing incoming sensory information, blossomed and began to provide the organism with an awareness of self and environment. Advancements in memory storage and retrieval gave the organism a sense of continuity through time. This developing consciousness eventually left visible traces, which today are dramatically evident on cave walls in France and Spain. We will take this journey from the single cell to human consciousness.

  15. Novel insights into early neuroanatomical evolution in penguins from the oldest described penguin brain endocast.

    Science.gov (United States)

    Proffitt, J V; Clarke, J A; Scofield, R P

    2016-08-01

    Digital methodologies for rendering the gross morphology of the brain from X-ray computed tomography data have expanded our current understanding of the origin and evolution of avian neuroanatomy and provided new perspectives on the cognition and behavior of birds in deep time. However, fossil skulls germane to extracting digital endocasts from early stem members of extant avian lineages remain exceptionally rare. Data from early-diverging species of major avian subclades provide key information on ancestral morphologies in Aves and shifts in gross neuroanatomical structure that have occurred within those groups. Here we describe data on the gross morphology of the brain from a mid-to-late Paleocene penguin fossil from New Zealand. This most basal and geochronologically earliest-described endocast from the penguin clade indicates that described neuroanatomical features of early stem penguins, such as lower telencephalic lateral expansion, a relatively wider cerebellum, and lack of cerebellar folding, were present far earlier in penguin history than previously inferred. Limited dorsal expansion of the wulst in the new fossil is a feature seen in outgroup waterbird taxa such as Gaviidae (Loons) and diving Procellariiformes (Shearwaters, Diving Petrels, and allies), indicating that loss of flight may not drastically affect neuroanatomy in diving taxa. Wulst enlargement in the penguin lineage is first seen in the late Eocene, at least 25 million years after loss of flight and cooption of the flight stroke for aquatic diving. Similar to the origin of avian flight, major shifts in gross brain morphology follow, but do not appear to evolve quickly after, acquisition of a novel locomotor mode. Enlargement of the wulst shows a complex pattern across waterbirds, and may be linked to sensory modifications related to prey choice and foraging strategy. PMID:26916364

  16. Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Hunter

    Full Text Available Key pathological hallmarks of Alzheimer's disease (AD, including amyloid plaques, cerebral amyloid angiopathy (CAA and neurofibrillary tangles do not completely account for cognitive impairment, therefore other factors such as cardiovascular and cerebrovascular pathologies, may contribute to AD. In order to elucidate the microvascular changes that contribute to aging and disease, direct neuropathological staining and immunohistochemistry, were used to quantify the structural integrity of the microvasculature and its innervation in three oldest-old cohorts: 1 nonagenarians with AD and a high amyloid plaque load; 2 nonagenarians with no dementia and a high amyloid plaque load; 3 nonagenarians without dementia or amyloid plaques. In addition, a non-demented (ND group (average age 71 years with no amyloid plaques was included for comparison. While gray matter thickness and overall brain mass were reduced in AD compared to ND control groups, overall capillary density was not different. However, degenerated string capillaries were elevated in AD, potentially suggesting greater microvascular "dysfunction" compared to ND groups. Intriguingly, apolipoprotein ε4 carriers had significantly higher string vessel counts relative to non-ε4 carriers. Taken together, these data suggest a concomitant loss of functional capillaries and brain volume in AD subjects. We also demonstrated a trend of decreasing vesicular acetylcholine transporter staining, a marker of cortical cholinergic afferents that contribute to arteriolar vasoregulation, in AD compared to ND control groups, suggesting impaired control of vasodilation in AD subjects. In addition, tyrosine hydroxylase, a marker of noradrenergic vascular innervation, was reduced which may also contribute to a loss of control of vasoconstriction. The data highlight the importance of the brain microcirculation in the pathogenesis and evolution of AD.

  17. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Tansey Malú G

    2008-10-01

    Full Text Available Abstract The role of tumor necrosis factor (TNF as an immune mediator has long been appreciated but its function in the brain is still unclear. TNF receptor 1 (TNFR1 is expressed in most cell types, and can be activated by binding of either soluble TNF (solTNF or transmembrane TNF (tmTNF, with a preference for solTNF; whereas TNFR2 is expressed primarily by microglia and endothelial cells and is preferentially activated by tmTNF. Elevation of solTNF is a hallmark of acute and chronic neuroinflammation as well as a number of neurodegenerative conditions including ischemic stroke, Alzheimer's (AD, Parkinson's (PD, amyotrophic lateral sclerosis (ALS, and multiple sclerosis (MS. The presence of this potent inflammatory factor at sites of injury implicates it as a mediator of neuronal damage and disease pathogenesis, making TNF an attractive target for therapeutic development to treat acute and chronic neurodegenerative conditions. However, new and old observations from animal models and clinical trials reviewed here suggest solTNF and tmTNF exert different functions under normal and pathological conditions in the CNS. A potential role for TNF in synaptic scaling and hippocampal neurogenesis demonstrated by recent studies suggest additional in-depth mechanistic studies are warranted to delineate the distinct functions of the two TNF ligands in different parts of the brain prior to large-scale development of anti-TNF therapies in the CNS. If inactivation of TNF-dependent inflammation in the brain is warranted by additional pre-clinical studies, selective targeting of TNFR1-mediated signaling while sparing TNFR2 activation may lessen adverse effects of anti-TNF therapies in the CNS.

  18. Plasticity of brain wave network interactions and evolution across physiologic states

    OpenAIRE

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other a...

  19. The Evolution of Galaxy Number Density at z < 8 and its Implications

    CERN Document Server

    Conselice, Christopher J; Duncan, Kenneth; Mortlock, Alice

    2016-01-01

    The evolution of the number density of galaxies in the universe, and thus also the total number of galaxies, is a fundamental question with implications for a host of astrophysical problems including galaxy evolution and cosmology. However there has never been a detailed study of this important measurement, nor a clear path to answer it. To address this we use observed galaxy stellar mass functions up to $z\\sim8$ to determine how the number densities of galaxies changes as a function of time and mass limit. We show that the increase in the total number density of galaxies ($\\phi_{\\rm T}$), more massive than M$_{*} = 10^{6}$ M_0, decreases as $\\phi_{\\rm T} \\sim t^{-1}$, where $t$ is the age of the universe. We further show that this evolution turns-over and rather increases with time at higher mass lower limits of M$_{*}>10^{7}$ M_0. By using the M$_{*}=10^{6}$ M_0 lower limit we further show that the total number of galaxies in the universe up to $z = 10$ is $2.0^{+0.7}_{-0.6} \\times 10^{12}$ (two trillion), ...

  20. Water in the lunar interior: Implications for early evolution of the moon.

    Science.gov (United States)

    Goswami, Jitendranath

    2016-07-01

    Water in the lunar interior: Implications for early evolution of the moon. J. N. Goswami*, A. Basu Sarbadhikari and K. K. Marhas Physical Research Laboratory, Ahmedabad-38009 Water and other volatiles present in lunar interior can significantly affect the early evolution of the moon. Lunar volcanic glasses and in olivine hosted melt inclusions, suggest water content ranging from ~700 to 1400 ppm in the deep lunar interior (≥500 km). Apatite in lunar basalts, that sampled magma at a shallower depth (partition coefficient of water between apatite and basaltic melt, we infer values of ~ 100-160 ppm (water), 80-90 ppm (F) and 10-20 ppm (Cl) in the parent magma of 15555 that sampled a lunar depth of 150-200 km. These values are much lower than those for lunar volcanic glasses and melt inclusions trapped in them and strongly suggest a non-uniform distribution of water and other volatiles in the lunar interior. Presence of water in lunar mantle could have significantly affected the early evolution of Moon and, in particular helped in sustaining a lunar core dynamo for an extended duration and can also influence thermo-chemical processes, e.g. differential degree of melting, in different mantle source regions during the early evolutionary stages of the Moon.

  1. A general theory of evolution based on energy efficiency: its implications for diseases.

    Science.gov (United States)

    Yun, Anthony J; Lee, Patrick Y; Doux, John D; Conley, Buford R

    2006-01-01

    We propose a general theory of evolution based on energy efficiency. Life represents an emergent property of energy. The earth receives energy from cosmic sources such as the sun. Biologic life can be characterized by the conversion of available energy into complex systems. Direct energy converters such as photosynthetic microorganisms and plants transform light energy into high-energy phosphate bonds that fuel biochemical work. Indirect converters such as herbivores and carnivores predominantly feed off the food chain supplied by these direct converters. Improving energy efficiency confers competitive advantage in the contest among organisms for energy. We introduce a term, return on energy (ROE), as a measure of energy efficiency. We define ROE as a ratio of the amount of energy acquired by a system to the amount of energy consumed to generate that gain. Life-death cycling represents a tactic to sample the environment for innovations that allow increases in ROE to develop over generations rather than an individual lifespan. However, the variation-selection strategem of Darwinian evolution may define a particular tactic rather than an overarching biological paradigm. A theory of evolution based on competition for energy and driven by improvements in ROE both encompasses prior notions of evolution and portends post-Darwinian mechanisms. Such processes may involve the exchange of non-genetic traits that improve ROE, as exemplified by cognitive adaptations or memes. Under these circumstances, indefinite persistence may become favored over life-death cycling, as increases in ROE may then occur more efficiently within a single lifespan rather than over multiple generations. The key to this transition may involve novel methods to address the promotion of health and cognitive plasticity. We describe the implications of this theory for human diseases. PMID:16122878

  2. Soft X-ray Irradiation of Silicates: Implications on Dust Evolution in Protoplanetary Disks

    CERN Document Server

    Ciaravella, A; Chen, Y -J; Caro, G M Muñoz; Huang, C -H; Jiménez-Escobar, A; Venezia, A M

    2016-01-01

    The processing of energetic photons on bare silicate grains was simulated experimentally on silicate ?lms submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted solgel technique. Its chemical composition reflects the Mg2SiO4 stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may have relevant implications in the evolution of silicate materials in X-ray irradiated protoplanetary disks.

  3. Soft X-Ray Irradiation of Silicates: Implications for Dust Evolution in Protoplanetary Disks

    Science.gov (United States)

    Ciaravella, A.; Cecchi-Pestellini, C.; Chen, Y.-J.; Muñoz Caro, G. M.; Huang, C.-H.; Jiménez-Escobar, A.; Venezia, A. M.

    2016-09-01

    The processing of energetic photons on bare silicate grains was simulated experimentally on silicate films submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted sol-gel technique. Its chemical composition reflects the Mg2SiO4 stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may have relevant implications in the evolution of silicate materials in X-ray-irradiated protoplanetary disks.

  4. Amphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns

    Science.gov (United States)

    Meulemans, Daniel; Bronner-Fraser, Marianne

    2002-01-01

    The neural crest is a uniquely vertebrate cell type present in the most basal vertebrates, but not in cephalochordates. We have studied differences in regulation of the neural crest marker AP-2 across two evolutionary transitions: invertebrate to vertebrate, and agnathan to gnathostome. Isolation and comparison of amphioxus, lamprey and axolotl AP-2 reveals its extensive expansion in the vertebrate dorsal neural tube and pharyngeal arches, implying co-option of AP-2 genes by neural crest cells early in vertebrate evolution. Expression in non-neural ectoderm is a conserved feature in amphioxus and vertebrates, suggesting an ancient role for AP-2 genes in this tissue. There is also common expression in subsets of ventrolateral neurons in the anterior neural tube, consistent with a primitive role in brain development. Comparison of AP-2 expression in axolotl and lamprey suggests an elaboration of cranial neural crest patterning in gnathostomes. However, migration of AP-2-expressing neural crest cells medial to the pharyngeal arch mesoderm appears to be a primitive feature retained in all vertebrates. Because AP-2 has essential roles in cranial neural crest differentiation and proliferation, the co-option of AP-2 by neural crest cells in the vertebrate lineage was a potentially crucial event in vertebrate evolution.

  5. Molecular Evidence for Convergence and Parallelism in Evolution of Complex Brains of Cephalopod Molluscs: Insights from Visual Systems.

    Science.gov (United States)

    Yoshida, M A; Ogura, A; Ikeo, K; Shigeno, S; Moritaki, T; Winters, G C; Kohn, A B; Moroz, L L

    2015-12-01

    Coleoid cephalopods show remarkable evolutionary convergence with vertebrates in their neural organization, including (1) eyes and visual system with optic lobes, (2) specialized parts of the brain controlling learning and memory, such as vertical lobes, and (3) unique vasculature supporting such complexity of the central nervous system. We performed deep sequencing of eye transcriptomes of pygmy squids (Idiosepius paradoxus) and chambered nautiluses (Nautilus pompilius) to decipher the molecular basis of convergent evolution in cephalopods. RNA-seq was complemented by in situ hybridization to localize the expression of selected genes. We found three types of genomic innovations in the evolution of complex brains: (1) recruitment of novel genes into morphogenetic pathways, (2) recombination of various coding and regulatory regions of different genes, often called "evolutionary tinkering" or "co-option", and (3) duplication and divergence of genes. Massive recruitment of novel genes occurred in the evolution of the "camera" eye from nautilus' "pinhole" eye. We also showed that the type-2 co-option of transcription factors played important roles in the evolution of the lens and visual neurons. In summary, the cephalopod convergent morphological evolution of the camera eyes was driven by a mosaic of all types of gene recruitments. In addition, our analysis revealed unexpected variations of squids' opsins, retinochromes, and arrestins, providing more detailed information, valuable for further research on intra-ocular and extra-ocular photoreception of the cephalopods.

  6. The practices of do-it-yourself brain stimulation: implications for ethical considerations and regulatory proposals.

    Science.gov (United States)

    Wexler, Anna

    2016-04-01

    Scientists and neuroethicists have recently drawn attention to the ethical and regulatory issues surrounding the do-it-yourself (DIY) brain stimulation community, which comprises individuals stimulating their own brains with transcranial direct current stimulation (tDCS) for self-improvement. However, to date, existing regulatory proposals and ethical discussions have been put forth without engaging those involved in the DIY tDCS community or attempting to understand the nature of their practices. I argue that to better contend with the growing ethical and safety concerns surrounding DIY tDCS, we need to understand the practices of the community. This study presents the results of a preliminary inquiry into the DIY tDCS community, with a focus on knowledge that is formed, shared and appropriated within it. I show that when making or acquiring a device, DIYers (as some members call themselves) produce a body of knowledge that is completely separate from that of the scientific community, and share it via online forums, blogs, videos and personal communications. However, when applying tDCS, DIYers draw heavily on existing scientific knowledge, posting links to academic journal articles and scientific resources and adopting the standardised electrode placement system used by scientists. Some DIYers co-opt scientific knowledge and modify it by creating their own manuals and guides based on published papers. Finally, I explore how DIYers cope with the methodological limitations inherent in self-experimentation. I conclude by discussing how a deeper understanding of the practices of DIY tDCS has important regulatory and ethical implications. PMID:26324456

  7. Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: Therapeutic implications.

    Science.gov (United States)

    Saavedra, Juan M; Sánchez-Lemus, Enrique; Benicky, Julius

    2011-01-01

    Poor adaptation to stress, alterations in cerebrovascular function and excessive brain inflammation play critical roles in the pathophysiology of many psychiatric and neurological disorders such as major depression, schizophrenia, post traumatic stress disorder, Parkinson's and Alzheimer's diseases and traumatic brain injury. Treatment for these highly prevalent and devastating conditions is at present very limited and many times inefficient, and the search for novel therapeutic options is of major importance. Recently, attention has been focused on the role of a brain regulatory peptide, Angiotensin II, and in the translational value of the blockade of its physiological AT(1) receptors. In addition to its well-known cardiovascular effects, Angiotensin II, through AT(1) receptor stimulation, is a pleiotropic brain modulatory factor involved in the control of the reaction to stress, in the regulation of cerebrovascular flow and the response to inflammation. Excessive brain AT(1) receptor activity is associated with exaggerated sympathetic and hormonal response to stress, vulnerability to cerebrovascular ischemia and brain inflammation, processes leading to neuronal injury. In animal models, inhibition of brain AT(1) receptor activity with systemically administered Angiotensin II receptor blockers is neuroprotective; it reduces exaggerated stress responses and anxiety, prevents stress-induced gastric ulcerations, decreases vulnerability to ischemia and stroke, reverses chronic cerebrovascular inflammation, and reduces acute inflammatory responses produced by bacterial endotoxin. These effects protect neurons from injury and contribute to increase the lifespan. Angiotensin II receptor blockers are compounds with a good margin of safety widely used in the treatment of hypertension and their anti-inflammatory and vascular protective effects contribute to reduce renal and cardiovascular failure. Inhibition of brain AT(1) receptors in humans is also neuroprotective

  8. Implications of WMAP observations on Li abundance and stellar evolution models

    CERN Document Server

    Richard, O; Richer, J; Richard, Olivier; Michaud, Georges; Richer, Jacques

    2004-01-01

    The WMAP determination of the baryon-to-photon ratio implies, through Big Bang nucleosynthesis, a cosmological Li abundance larger, by a factor of 2 to 3, than the Li abundance plateau observed in the oldest Pop II stars. It is however inescapable that there be a reduction by a factor of at least 1.6 to 2.0 of the surface Li abundance during the evolution of Pop II field stars with [Fe/H] < -1.5. That the observed Li be lower than cosmologically produced Li is expected from stellar evolution models. Since at turnoff most of the Li abundance reduction is caused by gravitational settling, the presence of Lithium 6 in some turnoff stars is also understood. Given that the WMAP implications for Li cosmological abundance and the Li Spite plateau can be naturally explained by gravitational settling in the presence of weak turbulence, there appears little need for exotic physics as suggested by some authors. Instead, there is a need for a better understanding of turbulent transport in the radiative zones of stars....

  9. Light enough to travel or wise enough to stay? Brain size evolution and migratory behavior in birds.

    Science.gov (United States)

    Vincze, Orsolya

    2016-09-01

    Brain size relative to body size is smaller in migratory than in nonmigratory birds. Two mutually nonexclusive hypotheses had been proposed to explain this association. On the one hand, the "energetic trade-off hypothesis" claims that migratory species were selected to have smaller brains because of the interplay between neural tissue volume and migratory flight. On the other hand, the "behavioral flexibility hypothesis" argues that resident species are selected to have higher cognitive capacities, and therefore larger brains, to enable survival in harsh winters, or to deal with environmental seasonality. Here, I test the validity and setting of these two hypotheses using 1466 globally distributed bird species. First, I show that the negative association between migration distance and relative brain size is very robust across species and phylogeny. Second, I provide strong support for the energetic trade-off hypothesis, by showing the validity of the trade-off among long-distance migratory species alone. Third, using resident and short-distance migratory species, I demonstrate that environmental harshness is associated with enlarged relative brain size, therefore arguably better cognition. My study provides the strongest comparative support to date for both the energetic trade-off and the behavioral flexibility hypotheses, and highlights that both mechanisms contribute to brain size evolution, but on different ends of the migratory spectrum. PMID:27436482

  10. BLOCKADE OF BRAIN ANGIOTENSIN II AT1 RECEPTORS AMELIORATES STRESS, ANXIETY, BRAIN INFLAMMATION AND ISCHEMIA: THERAPEUTIC IMPLICATIONS

    OpenAIRE

    Saavedra, Juan M.; Sánchez-Lemus, Enrique; BENICKY, Julius

    2010-01-01

    Poor adaptation to stress, alterations in cerebrovascular function and excessive brain inflammation play critical roles in the pathophysiology of many psychiatric and neurological disorders such as major depression, schizophrenia, post traumatic stress disorder, Parkinson's and Alzheimer's diseases and traumatic brain injury. Treatment for these highly prevalent and devastating conditions is at present very limited and many times inefficient, and the search for novel therapeutic options is of...

  11. Traumatic brain injury and the Americans with Disabilities Act: implications for the social work profession.

    Science.gov (United States)

    Cole, Portia L; Cecka, Dale Margolin

    2014-07-01

    The practice of social work has been greatly affected by the Americans with Disabilities Act of 1990 (ADA). Title I of the statute prohibits discrimination against people with disabilities, including the increasing number of workers who are returning to work after a traumatic brain injury (TBI). This article examines the extent to which the ADA protects those with TBI from being harassed, being denied reasonable workplace accommodations, or suffering other adverse actions related to perceived discrimination. To do so, it relies on judicial decisions from U.S. federal courts involving alleged workplace discrimination of this population. Implications for social work practice are noted with the intent of increasing ADA awareness among professionals providing services to people who meet the criteria for disability under the ADA as well as to those persons who do not. The authors hope to encourage social workers to rely on case law analysis as a mechanism to provide further evidence of the systematic problems faced by people with TBI and thus increase their visibility.

  12. Neuroscience and awareness in the dying human brain: Implications for organ donation practices.

    Science.gov (United States)

    Rady, Mohamed Y; Verheijde, Joseph L

    2016-08-01

    Consciousness has 2 components: wakefulness (arousal) and awareness (perception of the self and the external environment). Functional neuroimaging has identified 2 distinctive functional networks that mediate external awareness of the surrounding environment and internal awareness of the self. Recent studies suggest that awareness is not always associated with wakefulness. There is little clinical research that has specifically focused on determining awareness in the dying phase, after the cessation of systemic circulation. Pana et al (J Crit Care, http://dx.doi.org/10.1016/j.jcrc.2016.04.001) concluded from a retrospective analysis of published human and animal studies that the cessation of clinical brain function and spontaneous electroencephalography activity occurred within 30 seconds of circulatory arrest. They inferred from this that a 5-minute period of cessation of circulation constitutes a valid indicator that awareness has ceased. This aligns with the 5-minute no-touch time after the loss of arterial pulse, the current circulatory standard of death determination in non-heart-beating organ donation. We argue that the capacity for awareness may not be irreversibly lost after a relatively brief period of cessation of systemic circulation, and outline empirical data in support of the claim that awareness without wakefulness may be present. Obviously, if correct, this will have practical and ethical implications on organ donation practices. PMID:27288623

  13. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases.

    Science.gov (United States)

    Kabir, M Enamul; Safar, Jiri G

    2014-01-01

    There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrP(C)) to a misfolded pathogenic conformer (PrP(Sc)). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrP(Sc). Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrP(Sc) particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrP(Sc) conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrP(Sc) conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrP(Sc). Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and

  14. Loss of N-glycolylneuraminic acid in humans: Mechanisms, consequences, and implications for hominid evolution.

    Science.gov (United States)

    Varki, A

    2001-01-01

    The surface of all mammalian cells is covered with a dense and complex array of sugar chains, which are frequently terminated by members of a family of molecules called sialic acids. One particular sialic acid called N-glycolylneuraminic acid (Neu5Gc) is widely expressed on most mammalian tissues, but is not easily detectable on human cells. In fact, it provokes an immune response in adult humans. The human deficiency of Neu5Gc is explained by an inactivating mutation in the gene encoding CMP-N-acetylneuraminic acid hydroxylase, the rate-limiting enzyme in generating Neu5Gc in cells of other mammals. This deficiency also results in an excess of the precursor sialic acid N-acetylneuraminic acid (Neu5Ac) in humans. This mutation appears universal to modern humans, occurred sometime after our last common ancestor with the great apes, and happens to be one of the first known human-great ape genetic differences with an obvious biochemical readout. While the original selection mechanisms and major biological consequences of this human-specific mutation remain uncertain, several interesting clues are currently being pursued. First, there is evidence that the human condition can explain differences in susceptibility or resistance to certain microbial pathogens. Second, the functions of some endogenous receptors for sialic acids in the immune system may be altered by this difference. Third, despite the lack of any obvious alternate pathway for synthesis, Neu5Gc has been reported in human tumors and possibly in human fetal tissues, and traces have even been detected in normal human tissues. One possible explanation is that this represents accumulation of Neu5Gc from dietary sources of animal origin. Finally, a markedly reduced expression of hydroxylase in the brains of other mammals raises the possibility that the human-specific mutation of this enzyme could have played a role in human brain evolution.

  15. In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography.

    Science.gov (United States)

    Dowrick, T; Blochet, C; Holder, D

    2015-06-01

    In order to facilitate the imaging of haemorrhagic and ischaemic stroke using frequency difference electrical impedance tomography (EIT), impedance measurements of normal and ischaemic brain, and clotted blood during haemorrhage, were gathered using a four-terminal technique in an in vivo animal model, a first for ischaemic measurements. Differences of 5-10% in impedance were seen between the frequency spectrums of healthy and ischaemic brain, over the frequency range 0-3 kHz, while the spectrum of blood was predominately uniform. The implications of imaging blood/ischaemia in the brain using electrical impedance tomography are discussed, supporting the notion that it will be possible to differentiate stroke from haemorrhage. PMID:26006171

  16. IL-1alpha induces angiogenesis in brain endothelial cells in vitro: implications for brain angiogenesis after acute injury.

    Science.gov (United States)

    Salmeron, Kathleen; Aihara, Takuma; Redondo-Castro, Elena; Pinteaux, Emmanuel; Bix, Gregory

    2016-02-01

    Inflammation is a major contributor to neuronal injury and is associated with poor outcome after acute brain injury such as stroke. The pro-inflammatory cytokine interleukin (IL)-1 is a critical regulator of cerebrovascular inflammation after ischemic injury, mainly through action of both of its isoforms, IL-1α and IL-1β, at the brain endothelium. In contrast, the differential action of these ligands on endothelial activation and post-stroke angiogenesis is largely unknown. Here, we demonstrate that IL-1α is chronically elevated in the brain after experimental stroke suggesting that it is present during post-stroke angiogenic periods. Furthermore, we demonstrate that IL-1α is a potent mediator of endothelial activation and inducer of angiogenic markers in endothelial cells in vitro. Using brain endothelial cell lines, we found that IL-1α was significantly more potent than IL-1β at inducing endothelial cell activation, as measured by expression of the pro-angiogenic chemokine CXCL-1. IL-1α also induced strong expression of the angiogenic mediator IL-6 in a concentration-dependent manner. Furthermore, IL-1α induced significant proliferation and migration of endothelial cells, and promoted formation of tube-like structures that are established key hallmarks of angiogenesis in vitro. Finally, all of those responses were blocked by the IL-1 receptor antagonist (IL-1RA). In conclusion, our data highlights a potential new role for IL-1 in brain repair mechanisms and identifies IL-1α as a potential new therapy to promote post-stroke angiogenesis. Inflammation is a major contributor to neuronal injury and is associated with poor outcome after neurotrauma. We demonstrate that cytokine IL-1α is chronically elevated in the brain after experimental stroke suggesting that it is present chronically post-stroke. We demonstrate that IL-1α is a potent mediator of endothelial activation and inducer of angiogenic markers in endothelial cells. Our data highlights a new

  17. The evolution of the social brain: anthropoid primates contrast with other vertebrates

    OpenAIRE

    Shultz, Susanne; Dunbar, R. I. M.

    2007-01-01

    The social brain hypothesis argues that large brains have arisen over evolutionary time as a response to the social and ecological conflicts inherent in group living. We test predictions arising from the hypothesis using comparative data from birds and four mammalian orders (Carnivora, Artiodactyla, Chiroptera and Primates) and show that, across all non-primate taxa, relative brain size is principally related to pairbonding, but with enduring stable relationships in primates. We argue that th...

  18. Male and female brain evolution is subject to contrasting selection pressures in primates

    OpenAIRE

    Dunbar Robin IM

    2007-01-01

    Abstract The claim that differences in brain size across primate species has mainly been driven by the demands of sociality (the "social brain" hypothesis) is now widely accepted. Some of the evidence to support this comes from the fact that species that live in large social groups have larger brains, and in particular larger neocortices. Lindenfors and colleagues (BMC Biology 5:20) add significantly to our appreciation of this process by showing that there are striking differences between th...

  19. Reconsidering the evolution of brain, cognition, and behavior in birds and mammals

    OpenAIRE

    Romain eWillemet

    2013-01-01

    Despite decades of research, some of the most basic issues concerning the extraordinarily complex brains and behaviour of birds and mammals, such as the factors responsible for the diversity of brain size and composition, are still unclear. This is partly due to a number of conceptual and methodological issues. Determining species and group differences in brain composition requires accounting for the presence of taxon-cerebrotypes and the use of precise s...

  20. Primate brains, the 'island rule' and the evolution of Homo floresiensis

    OpenAIRE

    Montgomery, S. H.

    2013-01-01

    The taxonomic status of the small bodied hominin, Homo floresiensis, remains controversial. One contentious aspect of the debate concerns the small brain size estimated for specimen LB1 (Liang Bua 1). Based on intraspecific mammalian allometric relationships between brain and body size, it has been argued that the brain of LB1 is too small for its body mass and is therefore likely to be pathological. The relevance and general applicability of these scaling rules has, however, been challenged,...

  1. Identification of brain nuclei implicated in cocaine-primed reinstatement of conditioned place preference: a behaviour dissociable from sensitization.

    Directory of Open Access Journals (Sweden)

    Robyn Mary Brown

    Full Text Available Relapse prevention represents the primary therapeutic challenge in the treatment of drug addiction. As with humans, drug-seeking behaviour can be precipitated in laboratory animals by exposure to a small dose of the drug (prime. The aim of this study was to identify brain nuclei implicated in the cocaine-primed reinstatement of a conditioned place preference (CPP. Thus, a group of mice were conditioned to cocaine, had this place preference extinguished and were then tested for primed reinstatement of the original place preference. There was no correlation between the extent of drug-seeking upon reinstatement and the extent of behavioural sensitization, the extent of original CPP or the extinction profile of mice, suggesting a dissociation of these components of addictive behaviour with a drug-primed reinstatement. Expression of the protein product of the neuronal activity marker c-fos was assessed in a number of brain regions of mice that exhibited reinstatement (R mice versus those which did not (NR mice. Reinstatement generally conferred greater Fos expression in cortical and limbic structures previously implicated in drug-seeking behaviour, though a number of regions not typically associated with drug-seeking were also activated. In addition, positive correlations were found between neural activation of a number of brain regions and reinstatement behaviour. The most significant result was the activation of the lateral habenula and its positive correlation with reinstatement behaviour. The findings of this study question the relationship between primed reinstatement of a previously extinguished place preference for cocaine and behavioural sensitization. They also implicate activation patterns of discrete brain nuclei as differentiators between reinstating and non-reinstating mice.

  2. The ycf27 genes from cyanobacteria and eukaryotic algae: distribution and implications for chloroplast evolution.

    Science.gov (United States)

    Ashby, Mark K; Houmard, Jean; Mullineaux, Conrad W

    2002-08-27

    The two ycf27 genes from the filamentous cyanobacterium Tolypothrix PCC 7601 have been cloned and sequenced. These two genes, previously designated rpaA and rpaB, encode putative transcriptional regulators of the 'OmpR' family. In Synechocystis PCC 6803, homologous genes have been linked to the regulation of transfer of excitation energy from the phycobilisome to photosystem (PS) I and PSII respectively. Partial clones from Spirulina platensis, Dactylococcopsis salina and Synechococcus PCC 7002 have also been sequenced. A table of identity between the proteins confirms that RpaB belongs in the same family as the algal ycf27 proteins. However, RpaA is a rather different protein and should lose the designation ycf27. The loss of rpaB from the plastid genomes of eukaryotic algae is associated with the loss of phycobiliproteins, so it is likely that this gene performs a similar role in algae to that in cyanobacteria. The implications for chloroplast evolution are discussed along with the possible identity of the cognate histidine kinase gene in the plastid genomes.

  3. Water in granulites: implications for the nature and evolution of the lower continental crust

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaozhi; XIA Qunke; Etienne DELOULE; FAN Qicheng; HAO Yantao

    2007-01-01

    The lower continental crust is one of the most important sphere-layers in the deep earth, and is the direct place where the crust-mantle interactions occur. Granulites are the dominated rocks in the lower crust, and have critical implications for the knowledge of the composition, nature and evolution of the deep crust; fluids are important mediums influencing many geochemical, geophysical and geodynamical characteristics of the lower crust, and may also play a fundamental role in the petrogenesis of granulites and the formation of the lower crusts. In this paper, we review recent advances involved with the deep continental crust, granulites and fluids, and some longstanding debates. Combined with the Fourier-transform infrared spectroscopy (FTIR) analysis performed on the mineral assemblages (cpx, opx, plag and grt) in lower crustal granulite xenoliths and terrains (exposed section) from east China, it is suggested that structural water, dominated by OH, in these nominally anhydrous phases may constitute the most important water reservoir in the deep crust. This structual water may help to understand many lower crustal geological processes and phenomena (e. G. Seismic activities and electrical conductive anomalies), and influences from these water must be taken into consideration.

  4. Language as a multimodal phenomenon: implications for language learning, processing and evolution.

    Science.gov (United States)

    Vigliocco, Gabriella; Perniss, Pamela; Vinson, David

    2014-09-19

    Our understanding of the cognitive and neural underpinnings of language has traditionally been firmly based on spoken Indo-European languages and on language studied as speech or text. However, in face-to-face communication, language is multimodal: speech signals are invariably accompanied by visual information on the face and in manual gestures, and sign languages deploy multiple channels (hands, face and body) in utterance construction. Moreover, the narrow focus on spoken Indo-European languages has entrenched the assumption that language is comprised wholly by an arbitrary system of symbols and rules. However, iconicity (i.e. resemblance between aspects of communicative form and meaning) is also present: speakers use iconic gestures when they speak; many non-Indo-European spoken languages exhibit a substantial amount of iconicity in word forms and, finally, iconicity is the norm, rather than the exception in sign languages. This introduction provides the motivation for taking a multimodal approach to the study of language learning, processing and evolution, and discusses the broad implications of shifting our current dominant approaches and assumptions to encompass multimodal expression in both signed and spoken languages.

  5. The evolution of cursorial carnivores in the Tertiary: implications of elbow-joint morphology.

    Science.gov (United States)

    Andersson, Ki; Werdelin, Lars

    2003-11-01

    The evolution of cursorial adaptations in Tertiary (65-1.65 Myr ago) carnivores has been a contentious issue. Most such studies have focused on the relationship between hind limb proportions and running speed. Here, we show morphometrically that in extant carnivores, the elbow joint has evolved in two distinct directions with mutually exclusive implications for locomotor ability and prey procurement. Some carnivores retain supinatory ability, allowing them to manipulate prey and other items with the forepaws. Such carnivores can become very large. Other carnivores lose the ability to supinate and become cursors. This allows for only moderate size increase. Modern carnivores above ca. 20 kg body mass are committed to one or other of these strategies. This threshold coincides with a postulated threshold in carnivore physiology. The biaxial pattern mostly follows phylogenetic lines, but a strong selective regime can override this signal, as shown by the extant cheetah. Oligocene (33.7-23.8 Myr ago) and early-middle Miocene (23.8-11.2 Myr ago) carnivores follow the same pattern, though in the Miocene the pattern is shifted towards larger body mass, which may be owing to the extraordinary richness of browsing ungulates at this time.

  6. Implications of diesel emissions control failures to emission factors and road transport NOx evolution

    Science.gov (United States)

    Ntziachristos, Leonidas; Papadimitriou, Giannis; Ligterink, Norbert; Hausberger, Stefan

    2016-09-01

    Diesel NOx emissions have been at the forefront of research and regulation scrutiny as a result of failures of late vehicle technologies to deliver on-road emissions reductions. The current study aims at identifying the actual emissions levels of late light duty vehicle technologies, including Euro 5 and Euro 6 ones. Mean NOx emission factor levels used in the most popular EU vehicle emission models (COPERT, HBEFA and VERSIT+) are compared with latest emission information collected in the laboratory over real-world driving cycles and on the road using portable emissions measurement systems (PEMS). The comparison shows that Euro 5 passenger car (PC) emission factors well reflect on road levels and that recently revealed emissions control failures do not call for any significant corrections. However Euro 5 light commercial vehicles (LCVs) and Euro 6 PCs in the 2014-2016 period exhibit on road emission levels twice as high as used in current models. Moreover, measured levels vary a lot for Euro 6 vehicles. Scenarios for future evolution of Euro 6 emission factors, reflecting different degree of effectiveness of emissions control regulations, show that total NOx emissions from diesel Euro 6 PC and LCV may correspond from 49% up to 83% of total road transport emissions in 2050. Unless upcoming and long term regulations make sure that light duty diesel NOx emissions are effectively addressed, this will have significant implications in meeting future air quality and national emissions ceilings targets.

  7. Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution.

    Science.gov (United States)

    Zeng, Jia; Konopka, Genevieve; Hunt, Brendan G; Preuss, Todd M; Geschwind, Dan; Yi, Soojin V

    2012-09-01

    DNA methylation is a pervasive epigenetic DNA modification that strongly affects chromatin regulation and gene expression. To date, it remains largely unknown how patterns of DNA methylation differ between closely related species and whether such differences contribute to species-specific phenotypes. To investigate these questions, we generated nucleotide-resolution whole-genome methylation maps of the prefrontal cortex of multiple humans and chimpanzees. Levels and patterns of DNA methylation vary across individuals within species according to the age and the sex of the individuals. We also found extensive species-level divergence in patterns of DNA methylation and that hundreds of genes exhibit significantly lower levels of promoter methylation in the human brain than in the chimpanzee brain. Furthermore, we investigated the functional consequences of methylation differences in humans and chimpanzees by integrating data on gene expression generated with next-generation sequencing methods, and we found a strong relationship between differential methylation and gene expression. Finally, we found that differentially methylated genes are strikingly enriched with loci associated with neurological disorders, psychological disorders, and cancers. Our results demonstrate that differential DNA methylation might be an important molecular mechanism driving gene-expression divergence between human and chimpanzee brains and might potentially contribute to the evolution of disease vulnerabilities. Thus, comparative studies of humans and chimpanzees stand to identify key epigenomic modifications underlying the evolution of human-specific traits. PMID:22922032

  8. Brain, mind and machine: what are the implications of deep brain stimulation for perceptions of personal identity, agency and free will?

    Science.gov (United States)

    Lipsman, Nir; Glannon, Walter

    2013-11-01

    Brain implants, such as Deep Brain Stimulation (DBS), which are designed to improve motor, mood and behavioural pathology, present unique challenges to our understanding of identity, agency and free will. This is because these devices can have visible effects on persons' physical and psychological properties yet are essentially undetectable when operating correctly. They can supplement and compensate for one's inherent abilities and faculties when they are compromised by neuropsychiatric disorders. Further, unlike talk therapy or pharmacological treatments, patients need not 'do' anything for the treatment to take effect. If one accepts, as we argue here, that brain implants are unique among implantable types of devices, then this can have significant implications for what it means to persist as the same person and be the source of one's thoughts and actions. By examining two of the most common indications for DBS in current use, namely in the motor (Parkinson's Disease) and psychiatric (Major Depression) domains, we further argue that although DBS, as it is currently applied, does not necessarily represent a unique threat to personal identity and agency per se, it introduces an unprecedented 'third party' into the debate on these concepts. In this way, DBS can be used as a tool to begin probing, both conceptually and empirically, some of philosophy's most perennial metaphysical questions.

  9. Male and female brain evolution is subject to contrasting selection pressures in primates

    Directory of Open Access Journals (Sweden)

    Dunbar Robin IM

    2007-05-01

    Full Text Available Abstract The claim that differences in brain size across primate species has mainly been driven by the demands of sociality (the "social brain" hypothesis is now widely accepted. Some of the evidence to support this comes from the fact that species that live in large social groups have larger brains, and in particular larger neocortices. Lindenfors and colleagues (BMC Biology 5:20 add significantly to our appreciation of this process by showing that there are striking differences between the two sexes in the social mechanisms and brain units involved. Female sociality (which is more affiliative is related most closely to neocortex volume, but male sociality (which is more competitive and combative is more closely related to subcortical units (notably those associated with emotional responses. Thus different brain units have responded to different selection pressures.

  10. Evolution of Temperature Fluctuation in a Thermal bath and, its implications in Hadronic and Heavy-Ion Collisions

    CERN Document Server

    Bhattacharya, Trambak; Sahoo, Raghunath; Samantray, Prasant

    2016-01-01

    The evolution equation for inhomogeneous and anisotropic temperature fluctuations inside a medium is derived within the ambit of Boltzmann Transport Equation. Also, taking some existing realistic inputs we have analyzed the Fourier space variation of temperature fluctuation for the medium created after heavy-ion collisions. The effect of viscosity on the variation of fluctuations is investigated. Further, possible implications in hadronic and heavy-ion collisions are explored.

  11. Detecting lineage-specific adaptive evolution of brain-expressed genes in human using rhesus macaque as outgroup

    DEFF Research Database (Denmark)

    Yu, Xiao-Jing; Zheng, Hong-Kun; Wang, Jun;

    2006-01-01

    Comparative genetic analysis between human and chimpanzee may detect genetic divergences responsible for human-specific characteristics. Previous studies have identified a series of genes that potentially underwent Darwinian positive selection during human evolution. However, without a closely...... related species as outgroup, it is difficult to identify human-lineage-specific changes, which is critical in delineating the biological uniqueness of humans. In this study, we conducted phylogeny-based analyses of 2633 human brain-expressed genes using rhesus macaque as the outgroup. We identified 47...... candidate genes showing strong evidence of positive selection in the human lineage. Genes with maximal expression in the brain showed a higher evolutionary rate in human than in chimpanzee. We observed that many immune-defense-related genes were under strong positive selection, and this trend was more...

  12. Imaging Vascular Disease and Amyloid in the Aging Brain: Implications for Treatment

    OpenAIRE

    Villeneuve, Sylvia; Jagust, William J.

    2015-01-01

    Vascular risk factors (e.g. hypertension, dyslipidemia and diabetes) are well known risk factors for Alzheimer’ disease. These vascular risk factors lead to vascular brain injuries, which also increase the likelihood of dementia. The advent of amyloid PET imaging has helped establish that vascular risk factors also lead to Alzheimer’s disease via pathways that are independent from vascular brain injuries, at least, when vascular brain injuries are measured as white matter lesions and infarcts...

  13. MeCP2 and the enigmatic organization of brain chromatin. Implications for depression and cocaine addiction.

    Science.gov (United States)

    Ausió, Juan

    2016-01-01

    Methyl CpG binding protein 2 (MeCP2) is a highly abundant chromosomal protein within the brain. It is hence not surprising that perturbations in its genome-wide distribution, and at particular loci within this tissue, can result in widespread neurological disorders that transcend the early implications of this protein in Rett syndrome (RTT). Yet, the details of its role and involvement in chromatin organization are still poorly understood. This paper focuses on what is known to date about all of this with special emphasis on the relation to different epigenetic modifications (DNA methylation, histone acetylation/ubiquitination, MeCP2 phosphorylation and miRNA). We showcase all of the above in two particular important neurological functional alterations in the brain: depression (major depressive disorder [MDD]) and cocaine addiction, both of which affect the MeCP2 homeostasis and result in significant changes in the overall levels of these epigenetic marks. PMID:27213019

  14. 人类大脑容量及语言进化的分子生物学证据与质疑%Controversial Researches on Molecular Evolution of Language and Brain Size

    Institute of Scientific and Technical Information of China (English)

    俞建梁

    2015-01-01

    Language and larger brain size than other primates are the deifning features of human beings. The evolution of language and brain size has been the research hotspot all the time. Over the past 20 years the research in the evolution of language and brain size through molecular biology, which transcends the disputes between nature and nurture in language aquisition, has made great achievement. But many test results are incongruous or even controversial over the questions whether the evolution of FOXP2 might underlie linguistic behavior and whether the evolution of genes such as MCPH1, ASPM and etc. has undergone positive selection or implicated in the brain size and intelligence. The discussion of these questions allows us to understand the current situation of the molecular evolution of language and brain size, and the developmental trend of biolinguistics.%语言和拥有比其他灵长类动物更大的脑容量是人类的显著特征。语言与大脑的进化一直是人们研究的热点。过去近20年有关人类语言与脑容量进化的分子生物学研究超越了思辨层面的先天论和后天论之争,取得了许多重要的发现。但许多研究结果相左,有的甚至相互矛盾:FOXP2基因的进化是否与语言相关;MCPH1、ASPM等基因的进化是否受到正向选择、是否影响大脑容量以及是否与智力有关等等。这些问题在分子生物学领域引起了诸多争论和质疑。对这些问题的了解有助于认识当前有关语言与大脑容量进化的研究现状和生物语言学的发展动态。

  15. Nutritional contributions of insects to primate diets: implications for primate evolution.

    Science.gov (United States)

    Rothman, Jessica M; Raubenheimer, David; Bryer, Margaret A H; Takahashi, Maressa; Gilbert, Christopher C

    2014-06-01

    Insects and other invertebrates form a portion of many living and extinct primate diets. We review the nutritional profiles of insects in comparison with other dietary items, and discuss insect nutrients in relation to the nutritional needs of living primates. We find that insects are incorporated into some primate diets as staple foods whereby they are the majority of food intake. They can also be incorporated as complements to other foods in the diet, providing protein in a diet otherwise dominated by gums and/or fruits, or be incorporated as supplements to likely provide an essential nutrient that is not available in the typical diet. During times when they are very abundant, such as in insect outbreaks, insects can serve as replacements to the usual foods eaten by primates. Nutritionally, insects are high in protein and fat compared with typical dietary items like fruit and vegetation. However, insects are small in size and for larger primates (>1 kg) it is usually nutritionally profitable only to consume insects when they are available in large quantities. In small quantities, they may serve to provide important vitamins and fatty acids typically unavailable in primate diets. In a brief analysis, we found that soft-bodied insects are higher in fat though similar in chitin and protein than hard-bodied insects. In the fossil record, primates can be defined as soft- or hard-bodied insect feeders based on dental morphology. The differences in the nutritional composition of insects may have implications for understanding early primate evolution and ecology.

  16. Evolution and function of the upper molar talon and its dietary implications in microbats.

    Science.gov (United States)

    Gutzwiller, Sarah C; Hunter, John P

    2015-11-01

    The evolution of mammalian molars has been marked by transitions representing significant changes in shape and function. One such transition is the addition and elaboration of the talon, the distolingual region of the ancestral tribosphenic upper molar of therian mammals and some extinct relatives. This study uses suborder Microchiroptera as a case study to explore the adaptive implications of the expansion of the talon on the tribosphenic molar, specifically focusing on the talon's role in the compression and shear of food during breakdown. Three-dimensional computer renderings of casts of the upper left first molars were created for microbat species of a variety of dietary categories (frugivore, etc.) and physical properties of food (hard and soft). Relief Index (RFI) was measured to estimate the topography and function of the whole tooth and of the talon and trigon (the remaining primitive tribosphenic region) individually, in order to examine 1) how the shape of the whole tooth, trigon, and talon reflects the compromise between their crushing and shearing functions, 2) how whole tooth, trigon, and talon function differs according to diet, and 3) how the presence of the talon affects overall molar function. Results suggest that RFI of both the whole tooth and the trigon varies according to dietary groups, with frugivores having greater crushing function when compared with the other groups. The talon, however, consistently has low RFI (a flatter topography), and its presence lowers the RFI of the whole tooth across all dietary categories, suggesting that the talon is primarily functioning in crushing during food breakdown. The potential benefits of a crushing talon for microbats of various dietary groups are discussed. PMID:26473768

  17. Pathogen evolution across the agro-ecological interface: implications for disease management.

    Science.gov (United States)

    Burdon, Jeremy J; Thrall, Peter H

    2008-02-01

    Infectious disease is a major causal factor in the demography of human, plant and animal populations. While it is generally accepted in medical, veterinary and agricultural contexts that variation in host resistance and pathogen virulence and aggressiveness is of central importance to understanding patterns of infection, there has been remarkably little effort to directly investigate causal links between population genetic structure and disease dynamics, and even less work on factors influencing host-pathogen coevolution. The lack of empirical evidence is particularly surprising, given the potential for such variation to not only affect disease dynamics and prevalence, but also when or where new diseases or pathotypes emerge. Increasingly, this lack of knowledge has led to calls for an integrated approach to disease management, incorporating both ecological and evolutionary processes. Here, we argue that plant pathogens occurring in agro-ecosystems represent one clear example where the application of evolutionary principles to disease management would be of great benefit, as well as providing model systems for advancing our ability to generalize about the long-term coevolutionary dynamics of host-pathogen systems. We suggest that this is particularly the case given that agro-ecological host-pathogen interactions represent a diversity of situations ranging from those that only involve agricultural crops through to those that also include weedy crop relatives or even unrelated native plant communities. We begin by examining some of the criteria that are important in determining involvement in agricultural pathogen evolution by noncrop plants. Throughout we use empirical examples to illustrate the fact that different processes may dominate in different systems, and suggest that consideration of life history and spatial structure are central to understanding dynamics and direction of the interaction. We then discuss the implications that such interactions have for

  18. Young children's acceptance of within-species variation: Implications for essentialism and teaching evolution.

    Science.gov (United States)

    Emmons, Natalie A; Kelemen, Deborah A

    2015-11-01

    Neglecting within-species variation plays a crucial role in students' misconceptions about adaptation by natural selection. Prior research on the development of this propensity suggests that this neglect is due to a strong early-arising essentialist bias to treat species as invariant. Across two studies, we examined the strength of this bias by exploring 5- and 6-year-olds' and 7- and 8-year-olds' assumptions about variation in contexts similar to those used in a recent early educational intervention teaching adaptation. In Study 1, children heard about fictitious animals' physical and behavioral traits and their beneficial functions. They then judged whether all other species members would vary or be invariant on those traits. Across age groups, children showed a marginal essentialist tendency to reject variation. In Study 2, the same method was used, but all references to beneficial trait functions were removed. The 5- and 6-year-olds' responding did not differ from Study 1, but the 7- and 8-year-olds' acceptance of variation increased to above chance rates. Parental religious and evolution beliefs correlated with younger children's responses but not with older children's responses. Together, the findings suggest that under certain facilitative contexts children display greater abilities to represent variation than assumptions of a robust and inflexible essentialist bias would predict. By 7 to 8 years of age, children displayed autonomy from their parents' beliefs and tended to expect variation. However, priming their teleological intuitions undermined their non-essentialist expectations. Theoretical and educational implications are discussed. PMID:26101878

  19. Evolution and function of the upper molar talon and its dietary implications in microbats.

    Science.gov (United States)

    Gutzwiller, Sarah C; Hunter, John P

    2015-11-01

    The evolution of mammalian molars has been marked by transitions representing significant changes in shape and function. One such transition is the addition and elaboration of the talon, the distolingual region of the ancestral tribosphenic upper molar of therian mammals and some extinct relatives. This study uses suborder Microchiroptera as a case study to explore the adaptive implications of the expansion of the talon on the tribosphenic molar, specifically focusing on the talon's role in the compression and shear of food during breakdown. Three-dimensional computer renderings of casts of the upper left first molars were created for microbat species of a variety of dietary categories (frugivore, etc.) and physical properties of food (hard and soft). Relief Index (RFI) was measured to estimate the topography and function of the whole tooth and of the talon and trigon (the remaining primitive tribosphenic region) individually, in order to examine 1) how the shape of the whole tooth, trigon, and talon reflects the compromise between their crushing and shearing functions, 2) how whole tooth, trigon, and talon function differs according to diet, and 3) how the presence of the talon affects overall molar function. Results suggest that RFI of both the whole tooth and the trigon varies according to dietary groups, with frugivores having greater crushing function when compared with the other groups. The talon, however, consistently has low RFI (a flatter topography), and its presence lowers the RFI of the whole tooth across all dietary categories, suggesting that the talon is primarily functioning in crushing during food breakdown. The potential benefits of a crushing talon for microbats of various dietary groups are discussed.

  20. Young Children's Changing Conceptualizations of Brain Function: Implications for Teaching Neuroscience in Early Elementary Settings

    Science.gov (United States)

    Marshall, Peter J.; Comalli, Christina E.

    2012-01-01

    Research Findings: Two exploratory studies explored young children's views of brain function and whether these views can be modified through exposure to a brief classroom intervention. In Study 1, children aged 4-13 years reported that the brain is used for "thinking," although older children were more likely than younger children to also endorse…

  1. Imaging of Cells and Nanoparticles : Implications for Drug Delivery to the Brain

    NARCIS (Netherlands)

    Stojanov, Katica; Zuhorn, Inge S.; Dierckx, Rudi A. J. O.; de Vries, Erik F. J.

    2012-01-01

    A major challenge in the development of central nervous system drugs is to obtain therapeutic effective drug concentrations inside the brain. Many potentially effective drugs have never reached clinical application because of poor brain penetration. Currently, devices are being developed that may im

  2. Brain Research: Environment and Emotions. Implications for Teaching Information Literacy Skills

    Science.gov (United States)

    Morris, Betty J.

    2004-01-01

    Library media specialists need to embrace brain research and implement its findings into the teaching of information literary skills. Research in the past two decades has used imaging techniques to allow the study of brain functions when listening to music versus composing a song or when recalling a noun or verb. Imaging allows researchers to look…

  3. Animal Research on Effects of Experience on Brain and Behavior: Implications for Rehabilitation.

    Science.gov (United States)

    Rosenzweig, Mark R.

    2002-01-01

    This article first considers how plasticity of the brain in response to differential experience was discovered in research with laboratory rats around 1960. Animal research soon followed on effects of enriched experience as therapy for brain dysfunction. Relations between animal research and some human therapies are considered. (Contains…

  4. A fossil brain from the Cretaceous of European Russia and avian sensory evolution

    OpenAIRE

    Kurochkin, Evgeny N; Gareth J Dyke; Saveliev, Sergei V.; Pervushov, Evgeny M; Popov, Evgeny V

    2007-01-01

    Fossils preserving traces of soft anatomy are rare in the fossil record; even rarer is evidence bearing on the size and shape of sense organs that provide us with insights into mode of life. Here, we describe unique fossil preservation of an avian brain from the Volgograd region of European Russia. The brain of this Melovatka bird is similar in shape and morphology to those of known fossil ...

  5. The evolution of brain waves in altered states of consciousness (REM sleep and meditation)

    OpenAIRE

    Irina E. Chiş

    2009-01-01

    Aim: The aim of this study was to investigate the brain activity in REM sleep andmeditation; it was also studied in which way an appropriate musical background would affect theevolution of brain waves in these altered states of consciousness. Material and Method: The recordingswere done with a portable electroencephalograph, on a homogeneous group of human subjects (menaged 30-50 years). The subjects were monitored in their own bed, the length of sleep and how earlythey went to bed was up to ...

  6. Patterns of distant brain recurrences after radiosurgery alone for newly diagnosed brain metastases: Implications for salvage therapy

    International Nuclear Information System (INIS)

    Introduction: Single modality radiosurgery (RS) is an established treatment option for patients with brain metastases (BM) with the aim of achieving optimal local control while avoiding toxicity from whole brain radiotherapy (WBRT). Published studies generally lack detailed data on distant brain recurrence (DBR) rates and characteristics. This study describes the patterns of DBR and consequences for salvage treatment in a group of patients treated with RS alone for 1–3 BM. Materials and methods: Between 2002 and 2012, 443 patients were treated with RS alone in doses ranging 15–24 Gy in 1–3 fractions. Patient selection for RS was performed using triple dose gadolinium-enhanced MRI scans, obtained with slice distance of 2 mm (until 2008), 1.5 mm (2008–2012), and of 1 mm (from 2012). During follow-up, a DBR was observed in 147 patients, but in 20 of these patients (14%) these “new lesions” could retrospectively be seen on the planning MRI scan. These missed metastases had a median size of 2 mm, and in order to study real DBR patterns, these patients were excluded from analysis. Results: Actuarial DBR rates at 6, 12 and 24 months in the remaining 423 patients were 21%, 41% and 54%, respectively, with a median time to DBR of 5.6 months. In 42% of DBR, a single new lesion was seen, in 70% there were ⩽3 new lesions. Median diameter of the DBR was 6 mm; 97% of lesions were ⩽30 mm. Salvage therapy was delivered in 82% of DBR patients, consisting of WBRT (46%), repeated RS (27%), or systemic treatment (9%). A RPA classification system (DBR-RPA), based on WHO performance status and interval between initial RS and diagnosis of DBR, was developed to estimate life expectancy after the development of DBR, which can be used to guide salvage therapy. Conclusions: In this study of patients treated with RS alone, only 25% of treated patients needed salvage treatment for DBR, and ultimately only 18% of all patients underwent WBRT at any time during follow-up. A three

  7. Can fat explain the human brain's big bang evolution?-Horrobin's leads for comparative and functional genomics.

    Science.gov (United States)

    Erren, T C; Erren, M

    2004-04-01

    When David Horrobin suggested that phospholipid and fatty acid metabolism played a major role in human evolution, his 'fat utilization hypothesis' unified intriguing work from paleoanthropology, evolutionary biology, genetic and nervous system research in a novel and coherent lipid-related context. Interestingly, unlike most other evolutionary concepts, the hypothesis allows specific predictions which can be empirically tested in the near future. This paper summarizes some of Horrobin's intriguing propositions and suggests as to how approaches of comparative genomics published in Cell, Nature, Science and elsewhere since 1997 may be used to examine his evolutionary hypothesis. Indeed, systematic investigations of the genomic clock in the species' mitochondrial DNA, the Y and autosomal chromosomes as evidence of evolutionary relationships and distinctions can help to scrutinize associated predictions for their validity, namely that key mutations which differentiate us from Neanderthals and from great apes are in the genes coding for proteins which regulate fat metabolism, and particularly the phospholipid metabolism of the synapses of the brain. It is concluded that beyond clues to humans' relationships with living primates and to the Neanderthals' cognitive performance and their disappearance, the suggested molecular clock analyses may provide crucial insights into the biochemical evolution-and means of possible manipulation-of our brain.

  8. MT-Stabilizer, Dictyostatin, Exhibits Prolonged Brain Retention and Activity: Potential Therapeutic Implications

    Science.gov (United States)

    2013-01-01

    Inclusions comprising the microtubule (MT)-stabilizing protein, tau, are found within neurons in the brains of patients with Alzheimer’s disease and related neurodegenerative disorders that are broadly referred to as tauopathies. The sequestration of tau into inclusions is believed to cause a loss of tau function, such that MT structure and function are compromised, leading to neuronal damage. Recent data reveal that the brain-penetrant MT-stabilizing agent, epothilone D (EpoD), improves cognitive function and decreases both neuron loss and tau pathology in transgenic mouse models of tauopathy. There is thus a need to identify additional MT-stabilizing compounds with blood–brain barrier (BBB) permeability and slow brain clearance, as observed with EpoD. We report here that the MT-stabilizing natural product, dictyostatin, crosses the BBB in mice and has extended brain retention. Moreover, a single administration of dictyostatin to mice causes prolonged stabilization of MTs in the brain. In contrast, the structurally related MT-stabilizer, discodermolide, shows significantly less brain exposure. Thus, dictyostatin merits further investigation as a potential tauopathy therapeutic. PMID:24900764

  9. MT-Stabilizer, Dictyostatin, Exhibits Prolonged Brain Retention and Activity: Potential Therapeutic Implications.

    Science.gov (United States)

    Brunden, Kurt R; Gardner, Nicola M; James, Michael J; Yao, Yuemang; Trojanowski, John Q; Lee, Virginia M-Y; Paterson, Ian; Ballatore, Carlo; Smith, Amos B

    2013-09-12

    Inclusions comprising the microtubule (MT)-stabilizing protein, tau, are found within neurons in the brains of patients with Alzheimer's disease and related neurodegenerative disorders that are broadly referred to as tauopathies. The sequestration of tau into inclusions is believed to cause a loss of tau function, such that MT structure and function are compromised, leading to neuronal damage. Recent data reveal that the brain-penetrant MT-stabilizing agent, epothilone D (EpoD), improves cognitive function and decreases both neuron loss and tau pathology in transgenic mouse models of tauopathy. There is thus a need to identify additional MT-stabilizing compounds with blood-brain barrier (BBB) permeability and slow brain clearance, as observed with EpoD. We report here that the MT-stabilizing natural product, dictyostatin, crosses the BBB in mice and has extended brain retention. Moreover, a single administration of dictyostatin to mice causes prolonged stabilization of MTs in the brain. In contrast, the structurally related MT-stabilizer, discodermolide, shows significantly less brain exposure. Thus, dictyostatin merits further investigation as a potential tauopathy therapeutic.

  10. Adaptive changes of rhythmic EEG oscillations in space implications for brain-machine interface applications.

    Science.gov (United States)

    Cheron, G; Cebolla, A M; Petieau, M; Bengoetxea, A; Palmero-Soler, E; Leroy, A; Dan, B

    2009-01-01

    The dramatic development of brain machine interfaces has enhanced the use of human brain signals conveying mental action for controlling external actuators. This chapter will outline current evidences that the rhythmic electroencephalographic activity of the brain is sensitive to microgravity environment. Experiments performed in the International Space Station have shown significant changes in the power of the astronauts' alpha and mu oscillations in resting condition, and other adaptive modifications in the beta and gamma frequency range during the immersion in virtual navigation. In this context, the dynamic aspects of the resting or default condition of the awaken brain, the influence of the "top-down" dynamics, and the possibility to use a more constrained configuration by a new somatosensory-evoked potential (gating approach) are discussed in the sense of future uses of brain computing interface in space mission. Although, the state of the art of the noninvasive BCI approach clearly demonstrates their ability and the great expectance in the field of rehabilitation for the restoration of defective communication between the brain and external world, their future application in space mission urgently needs a better understanding of brain neurophysiology, in particular in aspects related to neural network rhythmicity in microgravity. PMID:19607999

  11. The birth of new neurons in the maternal brain: Hormonal regulation and functional implications.

    Science.gov (United States)

    Leuner, Benedetta; Sabihi, Sara

    2016-04-01

    The maternal brain is remarkably plastic and exhibits multifaceted neural modifications. Neurogenesis has emerged as one of the mechanisms by which the maternal brain exhibits plasticity. This review highlights what is currently known about peripartum-associated changes in adult neurogenesis and the underlying hormonal mechanisms. We also consider the functional consequences of neurogenesis in the peripartum brain and extent to which this process may play a role in maternal care, cognitive function and postpartum mood. Finally, while most work investigating the effects of parenting on adult neurogenesis has focused on mothers, a few studies have examined fathers and these results are also discussed. PMID:26969795

  12. Effects of early life adverse experiences on the brain: implications from maternal separation models in rodents

    OpenAIRE

    Mayumi eNishi; Noriko eHorii-Hayashi; Takayo eSasagawa

    2014-01-01

    During postnatal development, adverse early life experiences can affect the formation of neuronal circuits and exert long-lasting influences on neural function. Many studies have shown that daily repeated MS, an animal model of early life stress, can modulate the hypothalamic-pituitary-adrenal axis (HPA axis) and can affect subsequent brain function and emotional behavior during adulthood. However, the molecular basis of the long-lasting effects of early life stress on brain function has not ...

  13. Mechanisms of Brain Aging Regulation by Insulin: Implications for Neurodegeneration in Late-Onset Alzheimer's Disease

    OpenAIRE

    Schuh, Artur F.; Rieder, Carlos M.; Rizzi, Liara; Chaves, Márcia; Roriz-Cruz, Matheus

    2011-01-01

    Insulin and IGF seem to be important players in modulating brain aging. Neurons share more similarities with islet cells than any other human cell type. Insulin and insulin receptors are diffusely found in the brain, especially so in the hippocampus. Caloric restriction decreases insulin resistance, and it is the only proven mechanism to expand lifespan. Conversely, insulin resistance increases with age, obesity, and sedentarism, all of which have been shown to be risk factors for late-onset ...

  14. Chronic P-glycoprotein inhibition increases the brain concentration of escitalopram: potential implications for treating depression.

    Science.gov (United States)

    O'Brien, Fionn E; Moloney, Gerard M; Scott, Karen A; O'Connor, Richard M; Clarke, Gerard; Dinan, Timothy G; Griffin, Brendan T; Cryan, John F

    2015-12-01

    Recent preclinical studies have revealed a functionally important role for the drug efflux pump P-glycoprotein (P-gp) at the blood-brain barrier in limiting brain levels and thus antidepressant-like activity of certain antidepressant drugs. Specifically, acute administration of P-gp inhibitors, such as verapamil and cyclosporin A (CsA), has been shown to augment brain concentrations and functional activity of the antidepressant escitalopram in rodents. However, depression is a chronic disorder and current treatments require prolonged administration to elicit their full therapeutic effect. Thus, it is important to investigate whether acute findings in relation to P-gp inhibition translate to chronic paradigms. To this end, the present study investigates whether chronic treatment with the P-gp inhibitor verapamil and the antidepressant escitalopram results in enhanced brain distribution and antidepressant-like effects of escitalopram. Verapamil (10 mg·kg(-1) i.p.) and escitalopram (0.1 mg·kg(-1) i.p.) were administered once daily for 22 days. On the final day of treatment, brain regions and plasma were collected for analysis of cortical and plasma escitalopram concentrations, and to determine the hippocampal expression of genes previously reported to be altered by chronic antidepressant treatment. Verapamil treatment resulted in a greater than twofold increase in brain levels of escitalopram, without altering plasma levels. Neither gene expression analysis nor behavioral testing revealed an augmentation of responses to escitalopram treatment due to verapamil administration. Taken together, these data demonstrate for the first time that P-gp inhibition can yield elevated brain concentrations of an antidepressant after chronic treatment. The functional relevance of these increased brain levels requires further elaboration. PMID:27022464

  15. Brain intersections of aesthetics and morals: perspectives from biology, neuroscience, and evolution.

    Science.gov (United States)

    Zaidel, D W; Nadal, M

    2011-01-01

    For centuries, only philosophers debated the relationship between aesthetics and morality. Recently, with advances in neuroscience, the debate has moved to include the brain and an evolved neural underpinning linking aesthetic reactions and moral judgment. Biological survival emphasizes mate selection strategies, and the ritual displays have been linked to human aesthetics in the arts, in faces, and in various daily decision making. In parallel, cultural human practices have evolved to emphasize altruism and morality. This article explores the biological background and discusses the neuroscientific evidence for shared brain pathways for aesthetics and morals.

  16. On the potential for lunar highlands Mg-suite extrusive volcanism and implications concerning crustal evolution

    Science.gov (United States)

    Prissel, Tabb C.; Whitten, Jennifer L.; Parman, Stephen W.; Head, James W.

    2016-10-01

    The lunar magnesian-suite (Mg-suite) was produced during the earliest periods of magmatic activity on the Moon. Based on the cumulate textures of the samples and a lack of evidence for Mg-suite extrusives in both the sample and remote sensing databases, several petrogenetic models deduce a predominantly intrusive magmatic history for Mg-suite lithologies. Considering that ∼18% of the lunar surface is covered by mare basalt flows, which are substantially higher in density than estimated Mg-suite magmas (∼2900 versus ∼2700 kg/m3), the apparent absence of low-density Mg-suite volcanics is surprising. Were Mg-suite magmas predominantly intrusive, or have their extrusive equivalents been covered by subsequent impact ejecta and/or later stage volcanism? If Mg-suite magmas were predominantly intrusive, what prevented these melts from erupting? Or, if they are present as extrusives, what regions of the Moon are most likely to contain Mg-suite volcanic deposits? This study investigates buoyancy-driven ascent of Mg-suite parental melts and is motivated by recent measurements of crustal density from GRAIL. Mg-suite dunite, troctolite, and spinel anorthosite parental melts (2742, 2699, and 2648 kg/m3, respectively) are considered, all of which have much lower melt densities relative to mare basalts and picritic glasses. Mg-suite parental melts are more dense than most of the crust and would not be expected to buoyantly erupt. However, about 10% of the lunar crust is greater in density than Mg-suite melts. These areas are primarily within the nearside southern highlands and South Pole-Aitken (SP-A) basin. Mg-suite extrusions and/or shallow intrusions were possible within these regions, assuming crustal density structure at >4.1 Ga was similar to the present day crust. We review evidence for Mg-suite activity within both the southern highlands and SP-A and discuss the implications concerning crustal evolution as well as Mg-suite petrogenesis. Lower crustal densities

  17. Hard X-ray irradiation of cosmic silicate analogs: structural evolution and astrophysical implications

    Science.gov (United States)

    Gavilan, L.; Jäger, C.; Simionovici, A.; Lemaire, J. L.; Sabri, T.; Foy, E.; Yagoubi, S.; Henning, T.; Salomon, D.; Martinez-Criado, G.

    2016-03-01

    Context. Protoplanetary disks, interstellar clouds, and active galactic nuclei contain X-ray-dominated regions. X-rays interact with the dust and gas present in such environments. While a few laboratory X-ray irradiation experiments have been performed on ices, X-ray irradiation experiments on bare cosmic dust analogs have been scarce up to now. Aims: Our goal is to study the effects of hard X-rays on cosmic dust analogs via in situ X-ray diffraction. By using a hard X-ray synchrotron nanobeam, we seek to simulate cumulative X-ray exposure on dust grains during their lifetime in these astrophysical environments and provide an upper limit on the effect of hard X-rays on dust grain structure. Methods: We prepared enstatite (MgSiO3) nanograins, which are analogs to cosmic silicates, via the melting-quenching technique. These amorphous grains were then annealed to obtain polycrystalline grains. These were characterized via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) before irradiation. Powder samples were prepared in X-ray transparent substrates and were irradiated with hard X-rays nanobeams (29.4 keV) provided by beamline ID16B of the European Synchrotron Radiation Facility (Grenoble). X-ray diffraction images were recorded in transmission mode, and the ensuing diffractograms were analyzed as a function of the total X-ray exposure time. Results: We detected the amorphization of polycrystalline silicates embedded in an organic matrix after an accumulated X-ray exposure of 6.4 × 1027 eV cm-2. Pure crystalline silicate grains (without resin) do not exhibit amorphization. None of the amorphous silicate samples (pure and embedded in resin) underwent crystallization. We analyze the evolution of the polycrystalline sample embedded in an organic matrix as a function of X-ray exposure. Conclusions: Loss of diffraction peak intensity, peak broadening, and the disappearance of discrete spots and arcs reveal the amorphization

  18. MicroRNAs and fetal brain development: Implications for ethanol teratology during the second trimester period of neurogenesis.

    Directory of Open Access Journals (Sweden)

    Rajesh eMiranda

    2012-05-01

    Full Text Available Maternal ethanol consumption during pregnancy can lead to a stereotypic cluster of fetal craniofacial, cardiovascular, skeletal and neurological deficits that are collectively termed the Fetal Alcohol Spectrum Disorder (FASD. Fetal ethanol exposure is a leading non-genetic cause of mental retardation. Mechanisms underlying the etiology of ethanol teratology are varied and complex. This review will focus on the developing brain as an important and vulnerable ethanol target. Near the end of the first trimester, and during the second trimester, fetal neural stem cells (NSCs produce most of the neurons of the adult brain, and ethanol has been shown to influence NSC renewal and maturation. We will discuss the neural developmental and teratological implications of the biogenesis and function of microRNAs (miRNAs, a class of small non-protein-coding RNAs that control the expression of gene networks by translation repression. A small but growing body of research has identified ethanol-sensitive miRNAs at different stages of NSC and brain maturation. While many microRNAs appear to be vulnerable to ethanol at specific developmental stages, a few, like the miR-9 family, appear to exhibit broad vulnerability to ethanol across multiple stages of NSC differentiation. An assessment of the regulation and function of these miRNAs provides important clues about the mechanisms that underlie fetal vulnerability to alterations in the maternal-fetal environment and yields insights into the genesis of FASD.

  19. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size

    Directory of Open Access Journals (Sweden)

    Suzana eHerculano-Houzel

    2014-08-01

    Full Text Available Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution.

  20. Simulating the Evolution of Functional Brain Networks in Alzheimer’s Disease: Exploring Disease Dynamics from the Perspective of Global Activity

    Science.gov (United States)

    Li, Wei; Wang, Miao; Zhu, Wenzhen; Qin, Yuanyuan; Huang, Yue; Chen, Xi

    2016-01-01

    Functional brain connectivity is altered during the pathological processes of Alzheimer’s disease (AD), but the specific evolutional rules are insufficiently understood. Resting-state functional magnetic resonance imaging indicates that the functional brain networks of individuals with AD tend to be disrupted in hub-like nodes, shifting from a small world architecture to a random profile. Here, we proposed a novel evolution model based on computational experiments to simulate the transition of functional brain networks from normal to AD. Specifically, we simulated the rearrangement of edges in a pathological process by a high probability of disconnecting edges between hub-like nodes, and by generating edges between random pair of nodes. Subsequently, four topological properties and a nodal distribution were used to evaluate our model. Compared with random evolution as a null model, our model captured well the topological alteration of functional brain networks during the pathological process. Moreover, we implemented two kinds of network attack to imitate the damage incurred by the brain in AD. Topological changes were better explained by ‘hub attacks’ than by ‘random attacks’, indicating the fragility of hubs in individuals with AD. This model clarifies the disruption of functional brain networks in AD, providing a new perspective on topological alterations. PMID:27677360

  1. The Role of Metaphor in Darwin and the Implications for Teaching Evolution

    Science.gov (United States)

    Pramling, Niklas

    2009-01-01

    This article is about the role of metaphor in scientific knowledge formation and reasoning. These issues are studied by means of an example of the theory of evolution through natural selection. The premise is that the theory of evolution contains a set of problems regarding metaphor. A second premise is that these problems have to be handled in…

  2. The Effects of Video Games on Cognition and Brain Structure: Potential Implications for Neuropsychiatric Disorders.

    Science.gov (United States)

    Shams, Tahireh A; Foussias, George; Zawadzki, John A; Marshe, Victoria S; Siddiqui, Ishraq; Müller, Daniel J; Wong, Albert H C

    2015-09-01

    Video games are now a ubiquitous form of entertainment that has occasionally attracted negative attention. Video games have also been used to test cognitive function, as therapeutic interventions for neuropsychiatric disorders, and to explore mechanisms of experience-dependent structural brain changes. Here, we review current research on video games published from January 2011 to April 2014 with a focus on studies relating to mental health, cognition, and brain imaging. Overall, there is evidence that specific types of video games can alter brain structure or improve certain aspects of cognitive functioning. Video games can also be useful as neuropsychological assessment tools. While research in this area is still at a very early stage, there are interesting results that encourage further work in this field, and hold promise for utilizing this technology as a powerful therapeutic and experimental tool.

  3. The Effects of Video Games on Cognition and Brain Structure: Potential Implications for Neuropsychiatric Disorders.

    Science.gov (United States)

    Shams, Tahireh A; Foussias, George; Zawadzki, John A; Marshe, Victoria S; Siddiqui, Ishraq; Müller, Daniel J; Wong, Albert H C

    2015-09-01

    Video games are now a ubiquitous form of entertainment that has occasionally attracted negative attention. Video games have also been used to test cognitive function, as therapeutic interventions for neuropsychiatric disorders, and to explore mechanisms of experience-dependent structural brain changes. Here, we review current research on video games published from January 2011 to April 2014 with a focus on studies relating to mental health, cognition, and brain imaging. Overall, there is evidence that specific types of video games can alter brain structure or improve certain aspects of cognitive functioning. Video games can also be useful as neuropsychological assessment tools. While research in this area is still at a very early stage, there are interesting results that encourage further work in this field, and hold promise for utilizing this technology as a powerful therapeutic and experimental tool. PMID:26216589

  4. Neural changes in the primate brain correlated with the evolution of complex motor skills.

    Science.gov (United States)

    Yamazaki, Y; Hikishima, K; Saiki, M; Inada, M; Sasaki, E; Lemon, R N; Price, C J; Okano, H; Iriki, A

    2016-01-01

    Complex motor skills of eventual benefit can be learned after considerable trial and error. What do structural brain changes that accompany such effortful long-term learning tell us about the mechanisms for developing innovative behavior? Using MRI, we monitored brain structure before, during and after four marmosets learnt to use a rake, over a long period of 10-13 months. Throughout learning, improvements in dexterity and visuo-motor co-ordination correlated with increased volume in the lateral extrastriate cortex. During late learning, when the most complex behavior was maintained by sustained motivation to acquire the skill, the volume of the nucleus accumbens increased. These findings reflect the motivational state required to learn, and show accelerated function in higher visual cortex that is consistent with neurocognitive divergence across a spectrum of primate species. PMID:27498966

  5. A role for nautilus in studies of the evolution of brain and behavior

    OpenAIRE

    Crook, Robyn J.; Basil, Jennifer A

    2008-01-01

    Nautilus is an ancient remnant of a largely extinct cephalopod lineage.1 Its status within its clade is the subject of ongoing debate—its morphology, behavior and neuroanatomy may or may not be representative of an ancestral condition, and therefore its value as a model for ancestral cephalopods is uncertain. While the nautilus brain is simpler than that of more derived cephalopods2 (coleoids), it is plausible that this is a secondary simplification related to ecology, and not a precursor to ...

  6. (r)Evolution in Brain-Computer Interface Technologies for Play: (non)Users in Mind

    OpenAIRE

    Cloyd, Tristan Dane

    2014-01-01

    This dissertation addresses user responses to the introduction of Brain-Computer Interface technologies (BCI) for gaming and consumer applications in the early part of the 21st century. BCI technology has emerged from the contexts of interrelated medical, academic, and military research networks including an established computer and gaming industry. First, I show that the emergence and development of BCI technology are based on specific economic, socio-cultural, and material factors, and seco...

  7. The evolution of brain lateralization: a game-theoretical analysis of population structure.

    OpenAIRE

    Ghirlanda, Stefano; Vallortigara, Giorgio

    2004-01-01

    In recent years, it has become apparent that behavioural and brain lateralization at the population level is the rule rather than the exception among vertebrates. The study of these phenomena has so far been the province of neurology and neuropsychology. Here, we show how such research can be integrated with evolutionary biology to understand lateralization more fully. In particular, we address the fact that, within a species, left- and right-type individuals often occur in proportions differ...

  8. The evolution of brain waves in altered states of consciousness (REM sleep and meditation

    Directory of Open Access Journals (Sweden)

    Irina E. Chiş

    2009-12-01

    Full Text Available Aim: The aim of this study was to investigate the brain activity in REM sleep andmeditation; it was also studied in which way an appropriate musical background would affect theevolution of brain waves in these altered states of consciousness. Material and Method: The recordingswere done with a portable electroencephalograph, on a homogeneous group of human subjects (menaged 30-50 years. The subjects were monitored in their own bed, the length of sleep and how earlythey went to bed was up to them. This was made to avoid errors that could compromise the wholestudy. Results: It was shown that an appropriate musical background has a positive effect on brainactivity and especially on alpha waves. There were no significant results regarding REM sleep, althougha slight increase in the frequency by which the periods of REM sleep occurred was noticed. On theother hand, in meditation, the appropriate musical background had a major influence on the period inwhich the subjects entered the alpha state. This period was considerably reduced. Conclusion: Anadequate type of music can help our brain entering in, and maintaining the alpha state.

  9. Implications of astrocytes in mediating the protective effects of Selective Estrogen Receptor Modulators upon brain damage

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-04-01

    Full Text Available Selective Estrogen Receptor Modulators (SERMs are steroidal or non-steroidal compounds that are already used in clinical practice for the treatment of breast cancer, osteoporosis and menopausal symptoms. While SERMs actions in the breast, bone, and uterus have been well characterized, their actions in the brain are less well understood. Previous works have demonstrated the beneficial effects of SERMs in different chronic neurodegenerative diseases like Alzheimer, Parkinson’s disease and Multiple sclerosis, as well as acute degeneration as stroke and traumatic brain injury. Moreover, these compounds exhibit similar protective actions as those of estradiol in the Central Nervous System, overt any secondary effect. For these reasons, in the past few years, there has been a growing interest in the neuroprotective effects exerted directly or indirectly by SERMs in the SNC. In this context, astrocytes play an important role in the maintenance of brain metabolism, and antioxidant support to neurons, thus indicating that better protection of astrocytes are an important asset targeting neuronal protection. Moreover, various clinical and experimental studies have reported that astrocytes are essential for the neuroprotective effects of SERMs during neuronal injuries, as these cells express different estrogen receptors in cell membrane, demonstrating that part of SERMs effects upon injury may be mediated by astrocytes. The present work highlights the current evidence on the protective mechanisms of SERMs, such as tamoxifen and raloxifene, in the SNC, and their modulation of astrocytic properties as promising therapeutic targets during brain damage.

  10. Vitamins and nutrients as primary treatments in experimental brain injury: Clinical implications for nutraceutical therapies.

    Science.gov (United States)

    Vonder Haar, Cole; Peterson, Todd C; Martens, Kris M; Hoane, Michael R

    2016-06-01

    With the numerous failures of pharmaceuticals to treat traumatic brain injury in humans, more researchers have become interested in combination therapies. This is largely due to the multimodal nature of damage from injury, which causes excitotoxicity, oxidative stress, edema, neuroinflammation and cell death. Polydrug treatments have the potential to target multiple aspects of the secondary injury cascade, while many previous therapies focused on one particular aspect. Of specific note are vitamins, minerals and nutrients that can be utilized to supplement other therapies. Many of these have low toxicity, are already FDA approved and have minimal interactions with other drugs, making them attractive targets for therapeutics. Over the past 20 years, interest in supplementation and supraphysiologic dosing of nutrients for brain injury has increased and indeed many vitamins and nutrients now have a considerable body of the literature backing their use. Here, we review several of the prominent therapies in the category of nutraceutical treatment for brain injury in experimental models, including vitamins (B2, B3, B6, B9, C, D, E), herbs and traditional medicines (ginseng, Gingko biloba), flavonoids, and other nutrients (magnesium, zinc, carnitine, omega-3 fatty acids). While there is still much work to be done, several of these have strong potential for clinical therapies, particularly with regard to polydrug regimens. This article is part of a Special Issue entitled SI:Brain injury and recovery. PMID:26723564

  11. Traumatic brain injury increases levels of miR-21 in extracellular vesicles: implications for neuroinflammation.

    Science.gov (United States)

    Harrison, Emily B; Hochfelder, Colleen G; Lamberty, Benjamin G; Meays, Brittney M; Morsey, Brenda M; Kelso, Matthew L; Fox, Howard S; Yelamanchili, Sowmya V

    2016-08-01

    Traumatic brain injury (TBI) is an important health concern and effective treatment strategies remain elusive. Understanding the complex multicellular response to TBI may provide new avenues for intervention. In the context of TBI, cell-cell communication is critical. One relatively unexplored form of cell-cell communication in TBI is extracellular vesicles (EVs). These membrane-bound vesicles can carry many different types of cargo between cells. Recently, miRNA in EVs have been shown to mediate neuroinflammation and neuronal injury. To explore the role of EV-associated miRNA in TBI, we isolated EVs from the brain of injured mice and controls, purified RNA from brain EVs, and performed miRNA sequencing. We found that the expression of miR-212 decreased, while miR-21, miR-146, miR-7a, and miR-7b were significantly increased with injury, with miR-21 showing the largest change between conditions. The expression of miR-21 in the brain was primarily localized to neurons near the lesion site. Interestingly, adjacent to these miR-21-expressing neurons were activated microglia. The concurrent increase in miR-21 in EVs with the elevation of miR-21 in neurons, suggests that miR-21 is secreted from neurons as potential EV cargo. Thus, this study reveals a new potential mechanism of cell-cell communication not previously described in TBI. PMID:27516962

  12. Brain activity in advantageous and disadvantageous situations: implications for reward/punishment sensitivity in different situations.

    Directory of Open Access Journals (Sweden)

    Guangheng Dong

    Full Text Available OBJECTIVE: This study modeled win and lose trials in a simple gambling task to examine the effect of entire win-lose situations (WIN, LOSS, or TIE on single win/lose trials and related neural underpinnings. METHODS: The behavior responses and brain activities of 17 participants were recorded by an MRI scanner while they performed a gambling task. Different conditions were compared to determine the effect of the task on the behavior and brain activity of the participants. Correlations between brain activity and behavior were calculated to support the imaging results. RESULTS: In win trials, LOSS caused less intense posterior cingulate activity than TIE. In lose trials, LOSS caused more intense activity in the right superior temporal gyrus, bilateral superior frontal gyrus, bilateral anterior cingulate, bilateral insula cortex, and left orbitofrontal cortex than WIN and TIE. CONCLUSIONS: The experiences of the participants in win trials showed great similarity among different win-lose situations. However, the brain activity and behavior responses of the participants in lose trials indicated that they experienced stronger negative emotion in LOSS. The participants also showed an increased desire to win in LOSS than in WIN or TIE conditions.

  13. Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation after Brain Damage

    Science.gov (United States)

    Kleim, Jeffrey A.; Jones, Theresa A.

    2008-01-01

    Purpose: This paper reviews 10 principles of experience-dependent neural plasticity and considerations in applying them to the damaged brain. Method: Neuroscience research using a variety of models of learning, neurological disease, and trauma are reviewed from the perspective of basic neuroscientists but in a manner intended to be useful for the…

  14. Brain tumor delineation based on CT and MR imaging. Implications for radiotherapy treatment planning

    NARCIS (Netherlands)

    Heesters, M A; Wijrdeman, H K; Struikmans, H; Witkamp, T; Moerland, M A

    1993-01-01

    This paper deals with the impact MRI may have on radiotherapy treatment planning of brain tumors. The authors analyzed differences in size and position of treatment fields as indicated by three observers (two radiotherapists and one neuroradiologist) using CT or MR based radiotherapy planning proced

  15. Recent Developments in Understanding Brain Aging: Implications for Alzheimer's Disease and Vascular Cognitive Impairment.

    Science.gov (United States)

    Deak, Ferenc; Freeman, Willard M; Ungvari, Zoltan; Csiszar, Anna; Sonntag, William E

    2016-01-01

    As the population of the Western world is aging, there is increasing awareness of age-related impairments in cognitive function and a rising interest in finding novel approaches to preserve cerebral health. A special collection of articles in The Journals of Gerontology: Biological Sciences and Medical Sciences brings together information of different aspects of brain aging, from latest developments in the field of neurodegenerative disorders to cerebral microvascular mechanisms of cognitive decline. It is emphasized that although the cellular changes that occur within aging neurons have been widely studied, more research is required as new signaling pathways are discovered that can potentially protect cells. New avenues for research targeting cellular senescence, epigenetics, and endocrine mechanisms of brain aging are also discussed. Based on the current literature it is clear that understanding brain aging and reducing risk for neurological disease with age requires searching for mechanisms and treatment options beyond the age-related changes in neuronal function. Thus, comprehensive approaches need to be developed that address the multiple, interrelated mechanisms of brain aging. Attention is brought to the importance of maintenance of cerebromicrovascular health, restoring neuroendocrine balance, and the pressing need for funding more innovative research into the interactions of neuronal, neuroendocrine, inflammatory and microvascular mechanisms of cognitive impairment, and Alzheimer's disease. PMID:26590911

  16. Blood-Brain Barrier Abnormalities Caused by HIV-1 gp120: Mechanistic and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Louboutin

    2012-01-01

    Full Text Available The blood-brain barrier (BBB is compromised in many systemic and CNS diseases, including HIV-1 infection of the brain. We studied BBB disruption caused by HIV-1 envelope glycoprotein 120 (gp120 as a model. Exposure to gp120, whether acute [by direct intra-caudate-putamen (CP injection] or chronic [using SV(gp120, an experimental model of ongoing production of gp120] disrupted the BBB, and led to leakage of vascular contents. Gp120 was directly toxic to brain endothelial cells. Abnormalities of the BBB reflect the activity of matrix metalloproteinases (MMPs. These target laminin and attack the tight junctions between endothelial cells and BBB basal laminae. MMP-2 and MMP-9 were upregulated following gp120-injection. Gp120 reduced laminin and tight junction proteins. Reactive oxygen species (ROS activate MMPs. Injecting gp120 induced lipid peroxidation. Gene transfer of antioxidant enzymes protected against gp120-induced BBB abnormalities. NMDA upregulates the proform of MMP-9. Using the NMDA receptor (NMDAR-1 inhibitor, memantine, we observed partial protection from gp120-induced BBB injury. Thus, (1 HIV-envelope gp120 disrupts the BBB; (2 this occurs via lesions in brain microvessels, MMP activation and degradation of vascular basement membrane and vascular tight junctions; (3 NMDAR-1 activation plays a role in this BBB injury; and (4 antioxidant gene delivery as well as NMDAR-1 antagonists may protect the BBB.

  17. Tryptophan as an evolutionarily conserved signal to brain serotonin : Molecular evidence and psychiatric implications

    NARCIS (Netherlands)

    Russo, Sascha; Kema, Ido P.; Bosker, Fokko; Haavik, Jan; Korf, Jakob

    2009-01-01

    The role of serotonin (5-HT) in psychopathology has been investigated for decades. Among others, symptoms of depression, panic, aggression and suicidality have been associated with serotonergic dysfunction. Here we summarize the evidence that low brain 5-HT signals a metabolic imbalance that is evol

  18. Age-related changes in brain support cells: Implications for stroke severity.

    Science.gov (United States)

    Sohrabji, Farida; Bake, Shameena; Lewis, Danielle K

    2013-10-01

    Stroke is one of the leading causes of adult disability and the fourth leading cause of mortality in the US. Stroke disproportionately occurs among the elderly, where the disease is more likely to be fatal or lead to long-term supportive care. Animal models, where the ischemic insult can be controlled more precisely, also confirm that aged animals sustain more severe strokes as compared to young animals. Furthermore, the neuroprotection usually seen in younger females when compared to young males is not observed in older females. The preclinical literature thus provides a valuable resource for understanding why the aging brain is more susceptible to severe infarction. In this review, we discuss the hypothesis that stroke severity in the aging brain may be associated with reduced functional capacity of critical support cells. Specifically, we focus on astrocytes, that are critical for detoxification of the brain microenvironment and endothelial cells, which play a crucial role in maintaining the blood brain barrier. In view of the sex difference in stroke severity, this review also discusses studies of middle-aged acyclic females as well as the effects of the estrogen on astrocytes and endothelial cells.

  19. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Lauren P. Klosinski

    2015-12-01

    Full Text Available White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical.

  20. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease.

    Science.gov (United States)

    Klosinski, Lauren P; Yao, Jia; Yin, Fei; Fonteh, Alfred N; Harrington, Michael G; Christensen, Trace A; Trushina, Eugenia; Brinton, Roberta Diaz

    2015-12-01

    White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical. PMID:26844268

  1. Brain Chemistry and Behaviour: An Update on Neuroscience Research and Its Implications for Understanding Drug Addiction

    Science.gov (United States)

    Robinson, Emma S. J.

    2011-01-01

    Psychiatric disorders such as drug addiction represent one of the biggest challenges to society. This article reviews clinical and basic science research to illustrate how developments in research methodology have enabled neuroscientists to understand more about the brain mechanisms involved in addiction biology. Treating addiction represents a…

  2. Academic Brain Drain: Impact and Implications for Public Higher Education Quality in Kenya

    Science.gov (United States)

    Odhiambo, George O.

    2013-01-01

    The flight of human capital is a phenomenon that has been of concern to academics and development practitioners for decades. Unfortunately, there is no systematic record of the number of skilled professionals that many African countries have continued to lose to the developed world. Termed the "brain drain", it represents the loss of…

  3. Sub-chronic iron overload triggers oxidative stress development in rat brain: implications for cell protection.

    Science.gov (United States)

    Piloni, Natacha E; Perazzo, Juan C; Fernandez, Virginia; Videla, Luis A; Puntarulo, Susana

    2016-02-01

    This work was aimed to test the hypothesis that sub-chronic administration of iron-dextran (Fe-dextran) (six doses of 50 mg Fe-dextran/kg) to rats triggers a transient oxidative stress in brain and mechanisms of cellular antioxidant defence. After 2 h of administration of the 6th dose, a significant increase of total Fe, the labile Fe pool (LIP), the lipid radical (LR(•))/α-tocopherol (α-T) content ratio were observed, as compared to values in control brain homogenates. The ascorbyl radical (A(•))/ascorbate (AH(-)) content ratio and the oxidation rate of 2',7'-dichlorodihidrofluorescein (DCFH-DA) were significantly higher in Fe-dextran treated rats, as compared to values in brain from control rats after 4 h treatment. An increase in both catalase (CAT) and superoxide dismutase (SOD) activity was observed at 8 and 1-2 h, respectively. No significant changes were detected in the nuclear factor-κB (NF-κB) levels in nuclear extracts from rat brains after 1-8 h of Fe-dextran administration. After 2 h of Fe administration Fe concentration in cortex, striatum and hippocampus was significantly increased as compared to the same areas from control animals. Both, CAT and SOD activities were significantly increased in cortex after Fe administration over control values, without changes in striatum and hippocampus. Taken as a whole, sub-chronic Fe administration enhances the steady state concentration of Fe in the brain LIP that favors the settlement of an initial oxidative stress condition, both at hydrophilic and lipophilic compartments, resulting in cellular protection evidenced by antioxidant enzyme upregulation. PMID:26677163

  4. Cerebral Metabolism Following Traumatic Brain Injury: New Discoveries with Implications for Treatment

    Directory of Open Access Journals (Sweden)

    George A Brooks

    2015-02-01

    Full Text Available Because it is the product of glycolysis and main substrate for mitochondrial respiration, lactate is the central metabolic intermediate in cerebral energy substrate delivery. Our recent studies on healthy controls and patients following TBI using [6,6-2H2]glucose and [3-13C]lactate, along with cerebral blood flow and arterial-venous (jugular bulb difference measurements for oxygen, metabolite levels, isotopic enrichments and 13CO2 show a massive and previously unrecognized mobilization of lactate from corporeal (muscle, skin and other glycogen reserves in TBI patients who were studied 5.72.2 days after injury at which time brain oxygen consumption and glucose uptake (CMRO2 and CMRgluc, respectively were depressed. By tracking the incorporation of the 13C from lactate tracer we found that gluconeogenesis (GNG from lactate accounted for 67.1%, of whole-body glucose appearance rate (Ra in TBI, which was compared to 15.2% in healthy, well-nourished controls. Simultaneous cerebral exchange measurements showed that fractional lactate extraction (FExlac, 12.5% was undiminished following TBI, and as in controls close to 100% of lactate taken up was oxidized in TBI. Hence, 68% of the carbohydrate energy (CHO = glucose + lactate taken up and used by the injured brain came from lactate, either directly by vascular delivery of lactate (9%, or indirectly by GNG from lactate and its contribution to CMRgluc (59%. By comparison, lactate contributed 25% of the CHO energy taken up by brains of healthy postabsorptive control subjects, either directly (12%, or indirectly (13%. As such, a Lactate Shuttle mechanism makes substrate available, both directly and indirectly for the body and brain in healthy individuals and TBI patients. Because CMRlac was maintained, whereas CMRgluc was suppressed following TBI, our recent results support use of exogenous lactate-containing formulations as means to augment nutritive support to the injured brain.

  5. Second Conference on Early Mars: Geologic Hydrologic, and Climatic Evolution and the Implications for Life

    Science.gov (United States)

    2004-01-01

    Some of the topics addressed by the conference paper abstracts included in this document include: martian terrain, terrestrial biological activity and mineral deposits with implications for life on Mars, the martian crust and mantle, weathering and erosion on Mars, evidence for ancient martian environmental and climatic conditions, with implications for the existence of surface and ground water on Mars and the possibility for life, martian valleys, and evidence for water and lava flow on the surface of Mars.

  6. Big brains, small worlds; material culture and the evolution of the mind

    OpenAIRE

    Coward, Fiona; Gamble, Clive

    2009-01-01

    New developments in neuroimaging have demonstrated that the basic capacities underpinning human social skills are shared by our closest extant primate relatives. The challenge for archaeologists is to explain how complex human societies evolved from this shared pattern of face-to-face social interaction. We argue that a key process was the gradual incorporation of material culture into social networks over the course of hominin evolution. Here we use three long-term processes in hominin evolu...

  7. Adaptations to vision-for-action in primate brain evolution: Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by Michael A. Arbib

    Science.gov (United States)

    Hecht, Erin

    2016-03-01

    As Arbib [1] notes, the two-streams hypothesis [5] has provided a powerful explanatory framework for understanding visual processing. The inferotemporal ventral stream recognizes objects and agents - "what" one is seeing. The dorsal "how" or "where" stream through parietal cortex processes motion, spatial location, and visuo-proprioceptive relationships - "vision for action." Hickock and Poeppel's [3] extension of this model to the auditory system raises the question of deeper, multi- or supra-sensory themes in dorsal vs. ventral processing. Petrides and Pandya [10] postulate that the evolution of language may have been influenced by the fact that the dorsal stream terminates in posterior Broca's area (BA44) while the ventral stream terminates in anterior Broca's area (BA45). In an intriguing potential parallel, a recent ALE metanalysis of 54 fMRI studies found that semantic processing is located more anteriorly and superiorly than syntactic processing in Broca's area [13]. But clearly, macaques do not have language, nor other likely pre- or co-adaptations to language, such as complex imitation and tool use. What changed in the brain that enabled these functions to evolve?

  8. Forelimb preferences in quadrupedal marsupials and their implications for laterality evolution in mammals

    OpenAIRE

    Giljov, Andrey; Karenina, Karina; Malashichev, Yegor

    2013-01-01

    Background Acquisition of upright posture in evolution has been argued to facilitate manual laterality in primates. Owing to the high variety of postural habits marsupials can serve as a suitable model to test whether the species-typical body posture shapes forelimb preferences in non-primates or this phenomenon emerged only in the course of primate evolution. In the present study we aimed to explore manual laterality in marsupial quadrupeds and compare them with the results in the previously...

  9. Implications of immune-to-brain communication for sickness and pain

    OpenAIRE

    Watkins, Linda R; Maier, Steven F.

    1999-01-01

    This review presents a view of hyperalgesia and allodynia not typical of the field as a whole. That is, exaggerated pain is presented as one of many natural consequences of peripheral infection and injury. The constellation of changes that results from such immune challenges is called the sickness response. This sickness response results from immune-to-brain communication initiated by proinflammatory cytokines released by activated immune cells. In response to signals ...

  10. Cystamine metabolism and brain transport properties: clinical implications for neurodegenerative diseases.

    Science.gov (United States)

    Bousquet, Mélanie; Gibrat, Claire; Ouellet, Mélissa; Rouillard, Claude; Calon, Frédéric; Cicchetti, Francesca

    2010-09-01

    Cystamine has shown significant neuroprotective properties in preclinical studies of Parkinson's disease (PD) and Huntington's disease (HD). Cysteamine, its FDA-approved reduced form, is scheduled to be tested for clinical efficacy in HD patients. Here, we studied the key cystamine metabolites, namely cysteamine, hypotaurine and taurine, as well as cysteine, in order to identify which one is more distinctively responsible for the neuroprotective action of cystamine. After a single administration of cystamine (10, 50 or 200 mg/kg), naïve mice were perfused with phosphate-buffered saline (PBS) at 1, 3, 12, 24 or 48 h post-injection and brain and plasma samples were analyzed by two distinct HPLC methods. Although plasma levels remained under the detection threshold, significant increases in cysteamine brain levels were detected with the 50 and 200 mg/kg doses in mice perfused 1 and 3 h following cystamine injection. To further assess cysteamine as the candidate molecule for pre-clinical and clinical trials in PD, we evaluated its capacity to cross the blood brain barrier. Using an in situ cerebral perfusion technique, we determined that the brain transport coefficient (Clup) of cysteamine (259 μM) was 0.15 ± 0.02 μL/g/s and was increased up to 0.34 ± 0.07 μL/g/s when co-perfused in the presence of cysteine. Taken together, these results strongly suggest that cysteamine is the neuroactive metabolite of cystamine and may further support its therapeutic use in neurodegenerative diseases, particularly in HD and PD. PMID:20569301

  11. Implications of MMP9 for Blood Brain Barrier Disruption and Hemorrhagic Transformation Following Ischemic Stroke

    OpenAIRE

    Renée J Turner; Sharp, Frank R.

    2016-01-01

    Numerous studies have documented increases in matrix metalloproteinases (MMPs), specifically MMP-9 levels following stroke, with such perturbations associated with disruption of the blood brain barrier (BBB), increased risk of hemorrhagic complications, and worsened outcome. Despite this, controversy remains as to which cells release MMP-9 at the normal and pathological BBB, with even less clarity in the context of stroke. This may be further complicated by the influence of tissue plasminogen...

  12. Causality, Symmetry, Brain, Evolution, DNA and a new Theory of Physics

    Science.gov (United States)

    Pissanetzky, Sergio

    2012-10-01

    THEORY. Except for black holes, our world is causal. In Physics, causal sets formalize causality. The easiest way to explain the importance of causets is: all finite algorithms and computer programs are causets. Let S be a causet model of a dynamical system. S has a symmetry of the action: set P of legal permutations of S. Hence all causets have conservation laws. Permutations in P represent trajectories in state space. But P is non-conservative. New Physics: an action functional F was observed. When F is minimized over P, conservative subset P* is obtained. In P*, conserved quantities emerge as group-theoretical block systems over S. Block systems are also causets, and iteration leads to a network of blocks. This is a new theory of Physics. PREDICTIONS. (1) Brain's dendritic trees must be optimally short. Cuntz (June 2012) observed a 2/3 optimally short power law. (2) Causal hierarchies. Fuster(2005) observes identical hierarchies in cortex. DNA (Sept 2012) is described as hierarchical networks. (3) Action functional. Lerner (Aug 2012) proposed an action functional and minimum entropy on trajectories of dynamical processes. Friston (2003) proposed an energy functional. (4) Simple computer-brain experiments (Pissanetzky 2011a). REFERENCES: www.SciControls.com.

  13. Device-based brain stimulation to augment fear extinction: implications for PTSD treatment and beyond.

    Science.gov (United States)

    Marin, Marie-France; Camprodon, Joan A; Dougherty, Darin D; Milad, Mohammed R

    2014-04-01

    Conditioned fear acquisition and extinction paradigms have been widely used both in animals and humans to examine the neurobiology of emotional memory. Studies have also shown that patients suffering from posttraumatic stress disorder (PTSD) exhibit deficient extinction recall along with dysfunctional activation of the fear extinction network, including the ventromedial prefrontal cortex, amygdala, and hippocampus. A great deal of overlap exists between this fear extinction network and brain regions associated with symptom severity in PTSD. This suggests that the neural nodes of fear extinction could be targeted to reduce behavioral deficits that may subsequently translate into symptom improvement. In this article, we discuss potential applications of brain stimulation and neuromodulation methods, which, combined with a mechanistic understanding of the neurobiology of fear extinction, could be used to further our understanding of the pathophysiology of anxiety disorders and develop novel therapeutic tools. To this end, we discuss the following stimulation approaches: deep-brain stimulation, vagus nerve stimulation, transcranial direct current stimulation, and transcranial magnetic stimulation. We propose new translational research avenues that, from a systems neuroscience perspective, aim to expand our understanding of circuit dynamics and fear processing toward the practical development of clinical tools, to be used alone or in combination with behavioral therapies.

  14. The role of microglia in brain maintenance: implications for Rett syndrome.

    Science.gov (United States)

    Derecki, Noël C; Cronk, James C; Kipnis, Jonathan

    2013-03-01

    The role of microglia in central nervous system (CNS) pathology has been studied extensively, and more recently, examination of microglia in the healthy brain has yielded important insights into their many functions. It was long assumed that microglia were essentially quiescent cells, unless provoked into activation, which was considered a hallmark of disease. More recently, however, it has become increasingly clear that they are extraordinarily dynamic cells, constantly sampling their environment and adjusting to exquisitely delicate stimuli. Along these lines, our laboratory has identified a new and unexpected role for microglial phagocytosis - or lack thereof - in the pathophysiology of Rett syndrome, a neurodevelopmental disease caused by mutation of the gene encoding methyl-CpG binding protein (MECP)2. We have shown that specific expression of wild type Mecp2 in myeloid cells of Mecp2-null mice is sufficient to arrest major symptoms associated with this devastating disease. This beneficial effect, however, is abolished if phagocytic activity of microglia is inhibited. Here, we discuss microglial origins, the role of microglia in brain development and maintenance, and the phenomenon of microglial augmentation by myeloid progenitor cells in the adult brain. Finally, we address in some detail the beneficial roles of microglia as clinical targets in Rett syndrome and other neurological disorders.

  15. Effects of early life adverse experiences on brain activity: Implications from maternal separation models in rodents

    Directory of Open Access Journals (Sweden)

    Mayumi eNishi

    2014-06-01

    Full Text Available During postnatal development, adverse early life experiences can affect the formation of neuronal circuits and exert long-lasting influences on neural function. Many studies have shown that daily repeated MS, an animal model of early life stress, can modulate the hypothalamic-pituitary-adrenal axis (HPA axis and can affect subsequent brain function and emotional behavior during adulthood. However, the molecular basis of the long-lasting effects of early life stress on brain function has not been completely elucidated. In this review, we introduce various cases of MS in rodents and illustrate the alterations in HPA axis activity by focusing on corticosterone (CORT, an end product of the HPA axis in rodents. We then present a characterization of the brain regions affected by various patterns of MS, including repeated MS and single time MS at various stages before weaning, by investigating c-Fos expression, a biological marker of neuronal activity. These CORT and c-Fos studies suggest that repeated early life stress may affect neuronal function in region- and temporal-specific manners, indicating a critical period for habituation to early life stress. Next, we discuss how early life stress can impact behavior, namely by inducing depression, anxiety or eating disorders. Furthermore, alterations in gene expression in adult mice exposed to MS, especially epigenetic changes of DNA methylation, are discussed.

  16. Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain.

    Directory of Open Access Journals (Sweden)

    Sonja C Vernes

    2011-07-01

    Full Text Available Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2 causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP-chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections.

  17. Device-based brain stimulation to augment fear extinction: implications for PTSD treatment and beyond.

    Science.gov (United States)

    Marin, Marie-France; Camprodon, Joan A; Dougherty, Darin D; Milad, Mohammed R

    2014-04-01

    Conditioned fear acquisition and extinction paradigms have been widely used both in animals and humans to examine the neurobiology of emotional memory. Studies have also shown that patients suffering from posttraumatic stress disorder (PTSD) exhibit deficient extinction recall along with dysfunctional activation of the fear extinction network, including the ventromedial prefrontal cortex, amygdala, and hippocampus. A great deal of overlap exists between this fear extinction network and brain regions associated with symptom severity in PTSD. This suggests that the neural nodes of fear extinction could be targeted to reduce behavioral deficits that may subsequently translate into symptom improvement. In this article, we discuss potential applications of brain stimulation and neuromodulation methods, which, combined with a mechanistic understanding of the neurobiology of fear extinction, could be used to further our understanding of the pathophysiology of anxiety disorders and develop novel therapeutic tools. To this end, we discuss the following stimulation approaches: deep-brain stimulation, vagus nerve stimulation, transcranial direct current stimulation, and transcranial magnetic stimulation. We propose new translational research avenues that, from a systems neuroscience perspective, aim to expand our understanding of circuit dynamics and fear processing toward the practical development of clinical tools, to be used alone or in combination with behavioral therapies. PMID:24634247

  18. Hunter syndrome in an 11-year old girl on enzyme replacement therapy with idursulfase: brain magnetic resonance imaging features and evolution.

    Science.gov (United States)

    Manara, Renzo; Rampazzo, Angelica; Cananzi, Mara; Salviati, Leonardo; Mardari, Rodica; Drigo, Paola; Tomanin, Rosella; Gasparotto, Nicoletta; Priante, Elena; Scarpa, Maurizio

    2010-12-01

    Mucopolysaccharidosis type II (MPS-II, Hunter disease) is a X-linked recessive disorder. Affected females are extremely rare, mostly due to skewed X chromosome inactivation. A few papers outline MPS-II brain magnetic resonance imaging (MRI) "gestalt" in males, but neuroradiological reports on females are still lacking. We present an 11-year-old girl affected by the severe form of MPS-II who was followed up over a time span of 8 years, focusing on clinical and brain MRI evolution. In the last 2.5 years, the patient has been treated with enzyme replacement therapy (ERT) with idursulfase (Elaprase™, Shire Human Genetic Therapies AB, Sweden). On brain and cervical MRI examination, abnormalities in our patient did not differ from those detected in male patients: J-shaped pituitary sella, enlargement of perivascular spaces, brain atrophy, mild T2-hyperintensity in the paratrigonal white matter, diffuse platyspondylia, and mild odontoid dysplasia with odontoid cup. Brain atrophy progressed despite ERT introduction, whereas perivascular space enlargement did not change significantly before and after ERT. Cognitive impairment worsened independently from the course of white matter abnormality. Despite a profound knowledge of genetic and biochemical aspects in MPS-II, neuroradiology is still poorly characterized, especially in female patients. Spinal and brain involvement and its natural course and evolution after ERT introduction still need to be clarified. PMID:20052546

  19. Morphine induces expression of platelet-derived growth factor in human brain microvascular endothelial cells: implication for vascular permeability.

    Directory of Open Access Journals (Sweden)

    Hongxiu Wen

    Full Text Available Despite the advent of antiretroviral therapy, complications of HIV-1 infection with concurrent drug abuse are an emerging problem. Morphine, often abused by HIV-infected patients, is known to accelerate neuroinflammation associated with HIV-1 infection. Detailed molecular mechanisms of morphine action however, remain poorly understood. Platelet-derived growth factor (PDGF has been implicated in a number of pathological conditions, primarily due to its potent mitogenic and permeability effects. Whether morphine exposure results in enhanced vascular permeability in brain endothelial cells, likely via induction of PDGF, remains to be established. In the present study, we demonstrated morphine-mediated induction of PDGF-BB in human brain microvascular endothelial cells, an effect that was abrogated by the opioid receptor antagonist-naltrexone. Pharmacological blockade (cell signaling and loss-of-function (Egr-1 approaches demonstrated the role of mitogen-activated protein kinases (MAPKs, PI3K/Akt and the downstream transcription factor Egr-1 respectively, in morphine-mediated induction of PDGF-BB. Functional significance of increased PDGF-BB manifested as increased breach of the endothelial barrier as evidenced by decreased expression of the tight junction protein ZO-1 in an in vitro model system. Understanding the regulation of PDGF expression may provide insights into the development of potential therapeutic targets for intervention of morphine-mediated neuroinflammation.

  20. Cortical organization in insectivora: the parallel evolution of the sensory periphery and the brain.

    Science.gov (United States)

    Catania, K C

    2000-06-01

    Insectivores are traditionally described as a primitive group that has not changed much in the course of mammalian evolution. In contrast, recent studies reveal a great diversity of sensorimotor specializations among insectivores adapted to a number of different ecological niches, indicating that there has been significant diversification and change in the course of their evolution. Here the organization of sensory cortex is compared in the African hedgehog (Atelerix albiventris), the masked shrew (Sorex cinereus), the eastern mole (Scalopus aquaticus), and the star-nosed mole (Condylura cristata). Each of these four closely related species lives in a unique ecological niche, exhibits a different repertoire of behaviors, and has a different configuration of peripheral sensory receptors. Corresponding specializations of cortical sensory areas reveal a number of ways in which the cortex has evolved in parallel with changes to the sensory periphery. These specializations include expansion of cortical representations (cortical magnification), the addition or loss of cortical areas in the processing network, and the subdivision of areas into modules (barrels and stripes). PMID:10971016

  1. Epigenetics: definition, molecular bases and implications in human health and evolution

    Directory of Open Access Journals (Sweden)

    García-Robles Reggie

    2012-04-01

    Full Text Available Epigenetics refers to inheritable changes in DNA and histones that do not involve changes in thesequence of nucleotides and that modifies structure and chromatin condensation, thus affectinggene expression and phenotype. Epigenetic modifications are DNA methylation and histone modifications. Objective: A review of the literature on the concept of Epigenetics and its impacton health. Materials and methods: A review of the literature was performed on the concept ofepigenetics, its biological basis, the impact on health and disease and its relation to evolution.Results: Epigenetic mechanisms have become increasingly important because of the growingassociation with common complex diseases as well as its impact on health of future generationsand in human evolution. Conclusions: Epigenetics has a clear impact on the health of individualsin their offspring and with the evolution of the human species

  2. Post main sequence evolution of icy minor planets: Implications for water retention and white dwarf pollution

    CERN Document Server

    Malamud, Uri

    2016-01-01

    Most observations of polluted white dwarf atmospheres are consistent with accretion of water depleted planetary material. Among tens of known cases, merely two cases involve accretion of objects that contain a considerable mass fraction of water. The purpose of this study is to investigate the relative scarcity of these detections. Based on a new and highly detailed model, we evaluate the retention of water inside icy minor planets during the high luminosity stellar evolution that follows the main sequence. Our model fully considers the thermal, physical, and chemical evolution of icy bodies, following their internal differentiation as well as water depletion, from the moment of their birth and through all stellar evolution phases preceding the formation of the white dwarf. We also account for different initial compositions and formation times. Our results show that previous studies have either underestimated or overestimated water retention. We also reaffirm that water can survive in a variety of circumstanc...

  3. On the space and time evolution of regular or irregular human heart or brain signals

    CERN Document Server

    Tuncay, Caglar

    2011-01-01

    A coupled map is suggested to investigate various spatial or temporal designs in biology: Several cells (or tissues) in an organ are considered as connected to each other in terms of some molecular diffusions or electrical potential differences and so on. The biological systems (groups of cells) start from various initial conditions for spatial designs (or initial signals for temporal designs) and they evolve in time in terms of the mentioned interactions (connections) besides some individual feedings. The basic aim of the present contribution is to mimic various empirical data for the heart (in normal, quasi-stable, unstable and post operative physiological conditions) or brain (regular or irregular; for epilepsy) signals. The mentioned empirical data are borrowed from various literatures which are cited. The suggested model (to be used besides or instead of the artificial network models) involves simple mathematics and the related software is easy. The results may be considered as in good agreement with the...

  4. A theory of marks and mind: the effect of notational systems on hominid brain evolution and child development with an emphasis on exchanges between mothers and children.

    Science.gov (United States)

    Sheridan, Susan Rich

    2005-01-01

    A model of human language requires a theory of meaningful marks. Humans are the only species who use marks to think. A theory of marks identifies children's scribbles as significant behavior, while hypothesizing the importance of rotational systems to hominid brain evolution. By recognizing the importance of children's scribbles and drawings in developmental terms as well as in evolutionary terms, a marks-based rather than a predominantly speech-based theory of the human brain, language, and consciousness emerges. Combined research in anthropology, primatology, art history, neurology, child development (including research with deaf and blind children), gender studies and literacy suggests the importance of notational systems to human language, revealing the importance of mother/child interactions around marks and sounds to the development of an expressive, communicative, symbolic human brain. An understanding of human language is enriched by identifying marks carved on bone 1.9 million years ago as observational lunar calendar-keeping, pushing proto-literacy back dramatically. Neurologically, children recapitulate the meaningful marks of early hominins when they scribble and draw, reminding us that literacy belongs to humankind's earliest history. Even more than speech, such meaningful marks played - and continue to play - decisive roles in human brain evolution. The hominid brain required a model for integrative, transformative neural transfer. The research strongly suggests that humankind's multiple literacies (art, literature, scientific writing, mathematics and music) depended upon dyadic exchanges between hominid mothers and children, and that this exchange and sharing of visuo-spatial information drove the elaboration of human speech in terms of syntax, grammar and vocabulary. The human brain was spatial before it was linguistic. The child scribbles and draws before it speaks or writes. Children babble and scribble within the first two years of life. Hands

  5. Dissociative states in dreams and brain chaos: Implications for creative awareness

    Directory of Open Access Journals (Sweden)

    Petr eBob

    2015-09-01

    Full Text Available This article reviews recent findings indicating some common brain processes during dissociative states and dreaming with the aim to outline a perspective that neural chaotic states during dreaming can be closely related to dissociative states that may manifest in dreams scenery. These data are in agreement with various clinical findings that dissociated states can be projected into the dream scenery in REM sleep periods and dreams may represent their specific interactions that may uncover unusual psychological potential of creativity in psychotherapy, art and scientific discoveries.

  6. The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions.

    Science.gov (United States)

    Cheeseman, John M

    2015-04-01

    The effective development of salt tolerant crops requires an understanding that the evolution of halophytes, glycophytes and our major grain crops has involved significantly different processes. Halophytes (and other edaphic endemics) generally arose through colonization of habitats in severe disequilibrium by pre-adapted individuals, rather than by gradual adaptation from populations of 'glycophytes'. Glycophytes, by contrast, occur in low sodium ecosystems, where sodium was and is the major limiting nutrient in herbivore diets, suggesting that their evolution reflects the fact that low sodium individuals experienced lower herbivory and had higher fitness. For domestication/evolution of crop plants, the selective pressure was human imposed and involved humans co-opting functions of defense and reproductive security. Unintended consequences of this included loss of tolerance to various stresses and loss of the genetic variability needed to correct that. Understanding, combining and manipulating all three modes of evolution are now critical to the development of salt tolerant crops, particularly those that will offer food security in countries with few economic resources and limited infrastructure. Such efforts will require exploiting the genetic structures of recently evolved halophytes, the genetic variability of model plants, and endemic halophytes and 'minor' crops that already exist.

  7. The Evolution of International Competence of Chinese Hotel Corporations and Its Implications

    OpenAIRE

    Bo Lv; Liming Zhao

    2009-01-01

    Under the backgrounds of special situation of international development in Chinese hotel corporations, this paper analyzed the development path in the context of macroeconomic reform and explored the evolution processes of the Chinese international competence. In order to enter the higher level of the international competence, establishing the international strategy and carrying through the learning and innovation plan are absolutely necessarily steps.

  8. Chondroitin Sulfate Proteoglycans: Structure-Function Relationship with Implication in Neural Development and Brain Disorders

    Directory of Open Access Journals (Sweden)

    Speranta Avram

    2014-01-01

    Full Text Available Chondroitin sulfate proteoglycans (CSPGs are extracellular matrix components that contain two structural parts with distinct functions: a protein core and glycosaminoglycan (GAG side chains. CSPGs are known to be involved in important cell processes like cell adhesion and growth, receptor binding, or cell migration. It is recognized that the presence of CSPGs is critical in neuronal growth mechanisms including axon guidance following injury of nervous system components such as spinal cord and brain. CSPGs are upregulated in the central nervous system after injury and participate in the inhibition of axon regeneration mainly through their GAG side chains. Recently, it was shown that some CSPGs members like aggrecan, versican, and neurocan were strongly involved in brain disorders like bipolar disorder (BD, schizophrenia, and ADHD. In this paper, we present the chemical structure-biological functions relationship of CSPGs, both in health state and in genetic disorders, addressing methods represented by genome-wide and crystallographic data as well as molecular modeling and quantitative structure-activity relationship.

  9. Neurodegeneration of lateral habenula efferent fibers after intermittent cocaine administration: implications for deep brain stimulation.

    Science.gov (United States)

    Lax, Elad; Friedman, Alexander; Croitoru, Ofri; Sudai, Einav; Ben-Moshe, Hila; Redlus, Lior; Sasson, Efrat; Blumenfeld-Katzir, Tamar; Assaf, Yaniv; Yadid, Gal

    2013-12-01

    Deep brain stimulation (DBS) is an emerging technique for effective, non-pharmacological intervention in the course of neurological and neuropsychiatric diseases. Several brain targets have been suggested as suitable for DBS treatment of drug addiction. Previously, we showed that DBS of the lateral habenula (LHb) can reduce cocaine intake, facilitate extinction and attenuate drug-induced relapse in rats trained to self-administrate cocaine. Herein, we demonstrated that cocaine self-administration dose-dependently decreased connectivity between the LHb and midbrain, as shown by neurodegeneration of the main LHb efferent fiber, the fasciculus retroflexus (FR). FR degeneration, in turn, may have caused lack of response to LHb stimulation in rats trained to self-administer high-dose cocaine (1.5 mg/kg; i.v.). Furthermore, we show that the micro-structural changes caused by cocaine can be non-invasively detected using magnetic resonance imaging and diffusion tensor imaging. Detection of cocaine-induced alterations in FR anatomy can aid the selection of potential responders to LHb stimulation for treatment of drug addiction. PMID:23891640

  10. The lateralization of intrinsic networks in the aging brain implicates the effects of cognitive training

    Directory of Open Access Journals (Sweden)

    Cheng eLuo

    2016-03-01

    Full Text Available Lateralization of function is an important organization of human brain. The distribution of intrinsic networks in the resting brain is strongly related to the cognitive function, gender and age. In this study, the longitudinal design with one year duration was used to evaluate the cognitive training effects on the lateralization of intrinsic networks among healthy older adults. The subjects were divided into two groups randomly: one with multi-domain cognitive training in three month, the other as a wait-list control group. Resting state fMRI data were acquired before training and one year after training. We analyzed the functional lateralization in ten common resting state fMRI networks. We observed statically significant training effects on the lateralization of two important RSNs related to high-level cognition: right- and left- frontoparietal networks. Especially, the lateralization of left-frontoparietal network were retained well in training group, but decreased in control group. The increased lateralization with aging was observed on the cerebellum network, in which the lateralization was significantly increased in control group although the same change tendency was observed in training group. These findings indicate that the lateralization of the high-level cognitive intrinsic networks is sensitive to the multi-domain cognitive training. This study provides a neuroimaging evidence to support that the cognitive training should have advantages to the cognitive decline in healthy older adults.

  11. Brain imaging studies of the cocaine addict: Implications for reinforcement and addiction

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Fowler, J.S. [Brookhaven National Lab., Upton, NY (United States)]|[SUNY, Stony Brook, Stony Brook, NY (United States). Dept. of Psychiatry

    1995-07-01

    These studies document dopaminergic abnormalities in cocaine abusers. They also suggest a regulatory role of Dopamine (DA) in frontal metabolism. The correlation of striatal D{sub 2} receptor availability with metabolism was strongest for orbital frontal cortex (OFC) cingulate and prefrontal cortices. In cocaine abusers tested during early withdrawal (<1 week) the OFC was found to be hypermetabolic and metabolism in OFC and prefrontal cortices were found to be significantly associated with cocaine craving . Thus, we postulate that repeated and intermittent DA stimulation, as seen during a cocaine binge, activates the prefrontal and OFC cortices increasing the drive to compulsively self-administer cocaine. During cocaine discontinuation and protracted withdrawal and with decreased DA stimulation, these frontal cortical regions become hyponietabolic. Dopaminergic stimulation by a DA-enhancing drug and/or environmental conditioning will reactivate these frontal regions resetting the compulsion to self-administer cocaine and the inability to terminate this behavior. The pharmacokionetic studies with [11C]cocaine are consistent with behavioral and pharmacological studies in animals as well as in vitro studies which have revealed that while the mechanisms for cocaine`s reinforcing properties are complex, they partly involve the brain`s dopamine system and also highlight the importance of cocaine`s pharmacokinetic on its unique reinforcing properties.

  12. Clinical implications of brain atrophy by computed tomography in patients with age-related dementia

    International Nuclear Information System (INIS)

    The purpose of the present study is to clarify the clinical significance of brain atrophy by computed tomography in age-related dementia. Eighty elderly patients with clinical diagnosis of presenile or senile dementia whose mental states were assessed clinically and by several psychometric test were studied by computed tomography. Patients with suspected cerebrovascular disorders and normal pressure hydrocephalus were excluded. Three tomographic sections through anterior and posterior horns and cella media of lateral ventricles and cortex with intracranial space of 60 - 80 cm2 were evaluated. CSF spaces (%) were measured as an index of brain atrophy. The measurement of CSF spaces (%) was carried out by the computerized planimetric method to avoid visual definition of ventricular borders. In this study, CSF spaces comprised ventricular and subarachnoid spaces. Hasegawa's dementia scale, Bender-Gestalt test and Kohs' block design test were employed for the cognitive assessment of the subjects. In two sections through lateral ventricles, significant correlations were obtained between CSF spaces (%) and scores of Hasegawa's dementia scale and Kohs' block design test. Scores of Bender-Gestalt test did not correlate with CSF spaces (%) in these two sections. In the section through cortex, no correlation were found between CSF spaces (%) and scores of any psychometric test. Also, no positive correlations were obtained between age and CSF spaces (%) in the three sections. (author)

  13. Deep brain stimulation and ablation for obsessive compulsive disorder: evolution of contemporary indications, targets and techniques.

    Science.gov (United States)

    Tierney, Travis S; Abd-El-Barr, Muhammad M; Stanford, Arielle D; Foote, Kelly D; Okun, Michael S

    2014-06-01

    Surgical therapy for treatment-resistant obsessive compulsive disorder (OCD) remains an effective option for well-selected patients managed within a multidisciplinary setting. Historically, lesions within the limbic system have been used to control both obsessive thoughts and repetitive compulsions associated with this disease. We discuss classical targets as well as contemporary neuromodulatory approaches that have been shown to provide symptomatic relief. Recently, deep brain stimulation (DBS) of the anterior limb of the internal capsule/ventral striatum received Conformité Européene (CE) mark and Food and Drug Administration (FDA) approvals for treatment of intractable OCD. Remarkably, this is the first such approval for neurosurgical intervention in a strictly psychiatric indication in modern times. This target is discussed in detail along with alternative targets currently being proposed. We close with a discussion of gamma knife capsulotomy, a modality with deep historical roots. Further directions in the surgical treatment of OCD will require better preoperative predictors of postoperative responses, optimal selection of individualized targets, and rigorous reporting of adverse events and standardized outcomes. To meet these challenges, centers must be equipped with a multidisciplinary team and patient-centered approach to ensure adequate screening and follow up of patients with this difficult-to-treat condition. PMID:24099662

  14. Molecular characterization and developmental expression pattern of the chicken apolipoprotein D gene: implications for the evolution of vertebrate lipocalins.

    Science.gov (United States)

    Ganfornina, María D; Sánchez, Diego; Pagano, Aldo; Tonachini, Laura; Descalzi-Cancedda, Fiorella; Martínez, Salvador

    2005-01-01

    The insect Lazarillo and the mammalian apolipoprotein D (ApoD) are orthologous members of the lipocalin protein family. We report the cloning and embryonic expression of chicken ApoD, the first molecularly characterized nonmammalian ApoD. We also report the ApoD expression in mouse during postnatal development and some novel aspects of the expression of the paralogous lipocalin prostaglandin D-synthase (PGDS) and discuss these results in view of the lipocalin family evolution in vertebrates. ApoD is expressed in subsets of central nervous system (CNS) neurons and glia during late chicken embryogenesis. Contrary to mouse ApoD, no expression appears in neural crest-derived cephalic mesenchyme and blood vessel pericytes. Also, ApoD is expressed in developing chicken feathers. These expressions are corroborated by quantitative reverse transcriptase-polymerase chain reaction profiles. ApoD is expressed during mouse postnatal development in a subset of CNS neurons, astrocytes and oligodendrocytes, but also in meninges and pericytes. Chicken PGDS is expressed in brain meninges and perivascular cells. Our results suggest that the amniote last common ancestor expressed ApoD and PGDS in the brain during embryogenesis. ApoD appears restricted to ectodermal derivatives, whereas PGDS is expressed by derivatives of the three germ layers.

  15. Top Incomes and the Great Recession: Recent Evolutions and Policy Implications

    OpenAIRE

    Thomas Piketty; Emmanuel Saez

    2013-01-01

    This paper presents new findings from the World Top Incomes Database and discusses some of their policy implications. In particular, the paper provides updated top income series for the United States—including new estimates through 2010, showing a strong rebound of the top 1 percent income share, following the 2008–09 sharp fall. It also presents updated income series for other developed countries (including the United Kingdom, France, Germany, and Japan) and new series on wealth-income ratio...

  16. The maternal brain under stress: Consequences for adaptive peripartum plasticity and its potential functional implications.

    Science.gov (United States)

    Slattery, David A; Hillerer, Katharina M

    2016-04-01

    The peripartum period represents a time during which all mammalian species undergo substantial physiological and behavioural changes, which prepare the female for the demands of motherhood. In addition to behavioural and physiological alterations, numerous brain regions, such as the medial prefrontal cortex, olfactory bulb, medial amygdala and hippocampus are subject to substantial peripartum-associated neuronal, dendritic and synaptic plasticity. These changes, which are temporally- and spatially-distinct, are strongly influenced by gonadal and adrenal hormones, such as estrogen and cortisol/corticosterone, which undergo dramatic fluctuations across this period. In this review, we describe our current knowledge regarding these plasticity changes and describe how stress affects such normal adaptations. Finally, we discuss the mechanisms potentially underlying these neuronal, dendritic and synaptic changes and their functional relevance for the mother and her offspring. PMID:26828151

  17. Perceptions of communicative competence after traumatic brain injury: implications for ecologically-driven intervention targets.

    Science.gov (United States)

    Cannizzaro, Michael; Allen, Elizabeth M; Prelock, Patricia

    2011-12-01

    The present study investigated the relationship between non-verbal behaviours and perceptions of the communication abilities of an individual with anomia secondary to traumatic brain injury (TBI). Thirty-four university students studying Communication Sciences and Disorders were randomly assigned to watch or listen to six short clips of an individual with TBI engaged in conversation. Participants rated the individual on communication parameters from a modified version of the Pragmatic Protocol and four other dependent measures of communicative competence. A significant positive correlation was identified between perceptions of gestures and ratings of overall communicative competence, and between perceptions of hand and arm movements and ratings of overall communicative competence. Participant raters who viewed the individual's movements as inappropriate also rated her overall communication abilities less favourably. This finding highlights individuality in perception of communication competence and the importance of assessing communication partners' perceptions in a client's environment to determine socially relevant treatment goals.

  18. Implications of MMP9 for Blood Brain Barrier Disruption And Hemorrhagic Transformation Following Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Renee Jade Turner

    2016-03-01

    Full Text Available Numerous studies have documented increases in matrix metalloproteinases (MMPs, specifically MMP-9 levels following stroke, with such perturbations associated with disruption of the blood brain barrier (BBB, increased risk of hemorrhagic complications and worsened outcome. Despite this, controversy remains as to which cells release MMP-9 at the normal and pathological BBB, with even less clarity in the context of stroke. This may be further complicated by the influence of tissue plasminogen activator (tPA treatment. The aim of the present review is to examine the relationship between neutrophils, MMP-9 and tPA following ischemic stroke to elucidate which cells are responsible for the increases in MMP-9 and resultant barrier changes and hemorrhage observed following stroke.

  19. Implications of MMP9 for Blood Brain Barrier Disruption and Hemorrhagic Transformation Following Ischemic Stroke

    Science.gov (United States)

    Turner, Renée J.; Sharp, Frank R.

    2016-01-01

    Numerous studies have documented increases in matrix metalloproteinases (MMPs), specifically MMP-9 levels following stroke, with such perturbations associated with disruption of the blood brain barrier (BBB), increased risk of hemorrhagic complications, and worsened outcome. Despite this, controversy remains as to which cells release MMP-9 at the normal and pathological BBB, with even less clarity in the context of stroke. This may be further complicated by the influence of tissue plasminogen activator (tPA) treatment. The aim of the present review is to examine the relationship between neutrophils, MMP-9 and tPA following ischemic stroke to elucidate which cells are responsible for the increases in MMP-9 and resultant barrier changes and hemorrhage observed following stroke. PMID:26973468

  20. Evolution of NMDA receptor cytoplasmic interaction domains: implications for organisation of synaptic signalling complexes

    Directory of Open Access Journals (Sweden)

    Emes Richard D

    2008-01-01

    Full Text Available Abstract Background Glutamate gated postsynaptic receptors in the central nervous system (CNS are essential for environmentally stimulated behaviours including learning and memory in both invertebrates and vertebrates. Though their genetics, biochemistry, physiology, and role in behaviour have been intensely studied in vitro and in vivo, their molecular evolution and structural aspects remain poorly understood. To understand how these receptors have evolved different physiological requirements we have investigated the molecular evolution of glutamate gated receptors and ion channels, in particular the N-methyl-D-aspartate (NMDA receptor, which is essential for higher cognitive function. Studies of rodent NMDA receptors show that the C-terminal intracellular domain forms a signalling complex with enzymes and scaffold proteins, which is important for neuronal and behavioural plasticity Results The vertebrate NMDA receptor was found to have subunits with C-terminal domains up to 500 amino acids longer than invertebrates. This extension was specific to the NR2 subunit and occurred before the duplication and subsequent divergence of NR2 in the vertebrate lineage. The shorter invertebrate C-terminus lacked vertebrate protein interaction motifs involved with forming a signaling complex although the terminal PDZ interaction domain was conserved. The vertebrate NR2 C-terminal domain was predicted to be intrinsically disordered but with a conserved secondary structure. Conclusion We highlight an evolutionary adaptation specific to vertebrate NMDA receptor NR2 subunits. Using in silico methods we find that evolution has shaped the NMDA receptor C-terminus into an unstructured but modular intracellular domain that parallels the expansion in complexity of an NMDA receptor signalling complex in the vertebrate lineage. We propose the NR2 C-terminus has evolved to be a natively unstructured yet flexible hub organising postsynaptic signalling. The evolution of

  1. The Evolution of the Martian Hydrosphere and Its Implications for the Fate of a Primordial Ocean

    Science.gov (United States)

    Clifford, S. M.; Parker, T. J.

    1999-01-01

    The existence of a primordial ocean in the northern plains of Mars appears to have been an inevitable consequence of the hydraulic and thermal conditions that existed during the Early Noachian. In this abstract we demonstrate that the progressive crustal assimilation of this early surface reservoir of H2O (punctuated by possible episodes of less extensive flooding) was a natural consequence of the planet's subsequent climatic and geothermal evolution. Additional information is contained in the original extended abstract.

  2. Functional organization and its implication in evolution of the human protein-protein interaction network

    OpenAIRE

    Zhao Yiqiang; Mooney Sean D

    2012-01-01

    Abstract Background Based on the distinguishing properties of protein-protein interaction networks such as power-law degree distribution and modularity structure, several stochastic models for the evolution of these networks have been purposed, motivated by the idea that a validated model should reproduce similar topological properties of the empirical network. However, being able to capture topological properties does not necessarily mean it correctly reproduces how networks emerge and evolv...

  3. HOX genes in the sepiolid squid Euprymna scolopes: Implications for the evolution of complex body plans

    OpenAIRE

    Callaerts, Patrick; Lee, Patricia N.; Hartmann, Britta; Farfan, Claudia; Choy, Darrett W. Y.; Ikeo, Kazuho; Fischbach, Karl-Friedrich; Gehring, Walter J.; de Couet, H. Gert

    2002-01-01

    Molluscs display a rich diversity of body plans ranging from the wormlike appearance of aplacophorans to the complex body plan of the cephalopods with highly developed sensory organs, a complex central nervous system, and cognitive abilities unrivaled among the invertebrates. The aim of the current study is to define molecular parameters relevant to the developmental evolution of cephalopods by using the sepiolid squid Euprymna scolopes as a model system. Using PCR-based approaches, we identi...

  4. Variation in anthropoid vertebral formulae: implications for homology and homoplasy in hominoid evolution.

    Science.gov (United States)

    Williams, Scott A

    2012-03-01

    Variation in vertebral formulae within and among hominoid species has complicated our understanding of hominoid vertebral evolution. Here, variation is quantified using diversity and similarity indices derived from population genetics. These indices allow for testing models of hominoid vertebral evolution that call for disparate amounts of homoplasy, and by inference, different patterns of evolution. Results are interpreted in light of "short-backed" (J Exp Zool (Mol Dev Evol) 302B:241-267) and "long-backed" (J Exp Zool (Mol Dev Evol) 314B:123-134) ancestries proposed in different models of hominin vertebral evolution. Under the long-back model, we should expect reduced variation in vertebral formulae associated with adaptively driven homoplasy (independently and repeatedly reduced lumbar regions) and the relatively strong directional selection presumably associated with it, especially in closely related taxa that diverged relatively recently (e.g., Pan troglodytes and Pan paniscus). Instead, high amounts of intraspecific variation are observed among all hominoids except humans and eastern gorillas, taxa that have likely experienced strong stabilizing selection on vertebral formulae associated with locomotor and habitat specializations. Furthermore, analyses of interspecific similarity support an evolutionary scenario in which the vertebral formulae observed in western gorillas and chimpanzees represent a reasonable approximation of the ancestral condition for great apes and humans, from which eastern gorillas, humans, and bonobos derived their unique vertebral profiles. Therefore, these results support the short-back model and are compatible with a scenario of homology of reduced lumbar regions in hominoid primates. Fossil hominin vertebral columns are discussed and shown to support, rather than contradict, the short-back model. PMID:22532475

  5. Evolution in nuclear strategy in US and Russia and its implications in arms control

    Energy Technology Data Exchange (ETDEWEB)

    Sokov, N

    2003-07-01

    Today, there is a growing tendency in war-fighting scenarios to include limited use of nuclear weapons. New developments in nuclear policy could be attributed to changes in the international situation like the multiplication of low level conflicts and the threat of terrorism. This paper analyzes the evolution of the Russian nuclear doctrine, the transformation of the US nuclear policy and their consequences on arms control. (J.S.)

  6. AGN Feedback models: Correlations with star formation and observational implications of time evolution

    CERN Document Server

    Thacker, Robert J; Wurster, James; Hobbs, Alexander

    2014-01-01

    We examine the correlation between the star formation rate (SFR) and black hole accretion rate (BHAR) across a suite of different AGN feedback models, using the time evolution of a merger simulation. By considering three different stages of evolution, and a distinction between the nuclear and outer regions of star formation, we consider 63 different cases. Despite many of the feedback models fitting the M-\\sigma\\ relationship well, there are often distinct differences in the SFR-BHAR correlations, with close to linear trends only being present after the merger. Some of the models also show evolution in the SFR-BHAR parameter space that is at times directly across the long-term averaged SFR-BHAR correlation. This suggests that the observational SFR-BHAR correlation found for ensembles of galaxies is an approximate statistical trend, as suggested by Hickox et al. Decomposing the SFR into nuclear and outer components also highlights notable differences between models and there is only modest agreement with obser...

  7. Transverse zones controlling the structural evolution of the Zipaquira Anticline (Eastern Cordillera, Colombia): Regional implications

    Science.gov (United States)

    García, Helbert; Jiménez, Giovanny

    2016-08-01

    We report paleomagnetic, magnetic fabric and structural results from 21 sites collected in Cretaceous marine mudstones and Paleogene continental sandstones from the limbs, hinge and transverse zones of the Zipaquira Anticline (ZA). The ZA is an asymmetrical fold with one limb completely overturned by processes like gravity and salt tectonics, and marked by several axis curvatures. The ZA is controlled by at least two (2) transverse zones known as the Neusa and Zipaquira Transverse Zones (NTZ and ZTZ, respectively). Magnetic mineralogy methods were applied at different sites and the main carriers of the magnetic properties are paramagnetic components with some sites being controlled by hematite and magnetite. Magnetic fabric analysis shows rigid-body rotation for the back-limb in the ZA, while the forelimb is subjected to internal deformation. Structural and paleomagnetic data shows the influence of the NTZ and ZTZ in the evolution of the different structures like the ZA and the Zipaquira, Carupa, Rio Guandoque, Las Margaritas and Neusa faults, controlling several factors as vergence, extension, fold axis curvature and stratigraphic detatchment. Clockwise rotations unraveled a block segmentation following a discontinuos model caused by transverse zones and one site reported a counter clockwise rotation associated with a left-lateral strike slip component for transverse faults (e.g. the Neusa Fault). We propose that diverse transverse zones have been active since Paleogene times, playing an important role in the tectonic evolution of the Cundinamarca sub-basin and controlling the structural evolution of folds and faults with block segmentation and rotations.

  8. The Dearth of UV-bright Stars in M32: Implications for Stellar Evolution Theory

    Science.gov (United States)

    Sweigart, Allen V.; Kimble, Randy A.; Bowers, Charles W.

    2008-01-01

    Using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope, we have obtained deep far ultraviolet images of the compact elliptical galaxy M32. When combined with earlier near-ultraviolet images of the same field, these data enable the construction of an ultraviolet color-magnitude diagram of the hot horizontal branch (HB) population and other hot stars in late phases of stellar evolution. We find few post-asymptotic giant branch (PAGB) stars in the galaxy, implying that these stars either cross the HR diagram more rapidly than expected, and/or that they spend a significant fraction of their time enshrouded in circumstellar material. The predicted luminosity gap between the hot HB and its AGB-Manque (AGBM) progeny is less pronounced than expected, especially when compared to evolutionary tracks with enhanced helium abundances, implying that the presence of hot HB stars in this metal-rich population is not due to (Delta)Y/(Delta)Z greater than or approx. 4. Only a small fraction (approx. 2%) of the HB population is hot enough to produce significant UV emission, yet most of the W emission in this galaxy comes from the hot HB and AGBM stars, implying that PAGB stars are not a significant source of W emission even in those elliptical galaxies with a weak W excess. Subject headings: galaxies: evolution - galaxies: stellar content - galaxies: individual (M32) - stars: evolution - stars: horizontal branch

  9. Neogene marine isotopic evolution and the erosion of Lesser Himalayan strata: Implications for Cenozoic tectonic history

    Science.gov (United States)

    Myrow, Paul M.; Hughes, Nigel C.; Derry, Louis A.; Ryan McKenzie, N.; Jiang, Ganqing; Webb, A. Alexander G.; Banerjee, Dhiraj M.; Paulsen, Timothy S.; Singh, Birendra P.

    2015-05-01

    An extensive, northward deepening blanket of Neoproterozoic and Cambrian sedimentary rocks once extended from the Himalayan margin far onto the Indian craton. Cambrian deposits of this "upper Lesser Himalayan" succession, which include deposits of the "outer" Lesser Himalaya tectonic unit, are enriched in radiogenic 187Os. They make up part of a proximal marine facies belt that extends onto the craton and along strike from India to Pakistan. By contrast, age-equivalent facies in the Tethyan Himalaya are more distal in nature. Neoproterozoic to Cambrian strata of the upper Lesser Himalayan succession are now missing in much of the Lesser Himalaya, with their erosion exposing older Precambrian Lesser Himalayan strata. We suggest that exhumation and weathering of the upper Lesser Himalaya and related strata caused dramatic changes in the 187Os/188Os and 87Sr/86Sr Neogene record of seawater starting at ∼ 16 Ma. First-order estimates for the volume of upper Himalayan strata, as well as the volume of all LH rock eroded since this time, and geochemical box modeling, support this idea. Exhumation at 16 Ma is a fundamental event in the evolution of the Himalayan orogeny and the geochemical evolution of the oceans, and will be a critical part of the construction of future models of Himalayan thrust belt evolution.

  10. Circadian influences on dopamine circuits of the brain: regulation of striatal rhythms of clock gene expression and implications for psychopathology and disease.

    Science.gov (United States)

    Verwey, Michael; Dhir, Sabine; Amir, Shimon

    2016-01-01

    Circadian clock proteins form an autoregulatory feedback loop that is central to the endogenous generation and transmission of daily rhythms in behavior and physiology. Increasingly, circadian rhythms in clock gene expression are being reported in diverse tissues and brain regions that lie outside of the suprachiasmatic nucleus (SCN), the master circadian clock in mammals. For many of these extra-SCN rhythms, however, the region-specific implications are still emerging. In order to gain important insights into the potential behavioral, physiological, and psychological relevance of these daily oscillations, researchers have begun to focus on describing the neurochemical, hormonal, metabolic, and epigenetic contributions to the regulation of these rhythms. This review will highlight important sites and sources of circadian control within dopaminergic and striatal circuitries of the brain and will discuss potential implications for psychopathology and disease . For example, rhythms in clock gene expression in the dorsal striatum are sensitive to changes in dopamine release, which has potential implications for Parkinson's disease and drug addiction. Rhythms in the ventral striatum and limbic forebrain are sensitive to psychological and physical stressors, which may have implications for major depressive disorder. Collectively, a rich circadian tapestry has emerged that forces us to expand traditional views and to reconsider the psychopathological, behavioral, and physiological importance of these region-specific rhythms in brain areas that are not immediately linked with the regulation of circadian rhythms. PMID:27635233

  11. Criticism in the Self, Brain, Relationships, and Social Structure: Implications for Psychodynamic Psychiatry.

    Science.gov (United States)

    Shahar, Golan

    2016-01-01

    An integrative-psychodynamic theory of criticism in self and relationships is presented (Shahar, 2015). My theoretical starting point is the tension between Authenticity (A; our inherited potential, tantamount to Winnicott's True Self) and Self-Knowledge (SK; what we [think] we know about ourselves). Self-criticism, a formidable dimension of vulnerability to a wide array of psychopathologies, is construed as a distorted form of self-knowledge, reducing internal confusion at the expense of widening the gap between A and SK. Amalgamated by a genetic and neuroanatomic makeup, criticism of the self quickly translates into criticism-based interpersonal exchanges across the life span, culminating in an Axis of Criticism (ACRIM). A psychodynamic-integrative psychotherapy of malignant criticism in self and relationships is described. The article is concluded with some broad reflections on the implication of this work to the theory development and therapeutic action. PMID:27603804

  12. Evolution of the structure of tail feathers: implications for the theory of sexual selection.

    Science.gov (United States)

    Aparicio, José Miguel; Bonal, Raúl; Cordero, Pedro J

    2003-02-01

    Bird tails are extraordinarily variable in length and functionality. In some species, males have evolved exaggeratedly long tails as a result of sexual selection. Changes in tail length should be associated with changes in feather structure. The study of the evolution of feather structure in bird tails could give insight to understand the causes and means of evolution in relation to processes of sexual selection. In theory, three possible means of tail length evolution in relation to structural components might be expected: (1) a positive relationship between the increase in length and size of structural components maintaining the mechanical properties of the feather; (2) no relationship; that is, enlarging feather length without changes in the structural components; and (3) a negative relationship; that is, enlarging feather length by reducing structural components. These hypotheses were tested using phylogenetic analyses to examine changes in both degree of exaggeration in tail length and structural characteristics of tail feathers (rachis width and density of barbs) in 36 species, including those dimorphic and nondimorphic in tail length. The degree of sexual dimorphism in tail length was negatively correlated with both rachis width and density of barbs in males but not in females. Reinforcing this result, we found that dimorphism in tail length was negatively associated with dimorphism in tail feather structure (rachis width and density of barbs). These results support the third hypothesis, in which the evolution of long feathers occurs at the expense of making them simpler and therefore less costly to produce. However, we do not know the effects of enfeeblement on the costs of bearing. If the total costs increased, the enfeeblement of feathers could be explained as a reinforcement of the honesty of the signal. Alternatively, if total costs were reduced, the strategy could be explained by cheating processes. The study of female preferences for fragile tail

  13. Holocene denudation pattern across the South-Eastern Australian Escarpment and implications for its evolution

    Science.gov (United States)

    Godard, Vincent; Dosseto, Anthony; Bellier, Olivier; Bourlès, Didier; Fleury, Jules; Aster Team

    2016-04-01

    Developing a process based understanding of continental relief evolution requires to quantify rates of denudation and to compare their distribution with the evolution of geomorphic parameters. The analysis of denudation and exhumation spatial patterns based from cosmogenic nuclides and low temperature thermochronology are routinely used to document the processes associated with the geomorphic evolution of continental relief over various timescales. Passive margin escarpments are among some of the most salient continental geomorphic features outside of orogenic areas. Their evolution have been studied intensively over the long-term (several Ma to tens of Ma), using for example low-temperature thermochronology. However, datasets documenting their shorter-term (1-10 ka) dynamics are scarcer, and only a limited number of case studies have used quantitative techniques such as cosmogenic nuclides to document the denudation pattern across such escarpments. The South Eastern Australian Escarpment is such a place where cosmogenic nuclides have been intensively used over the last two decades to constrain processes of landscape evolution over short wavelength, with, for example the calibration of the soil production function. Such existing data and constraints provide an ideal setting to carry on further long-wavelength exploration of the dynamics of the whole escarpment. We have sampled 17 catchments across the South Eastern Australian Escarpment, starting from the coastal plain and moving westward up to the low relief plateau surface. The observed landscape denudation rates are 10-20 mm/ka in the coastal area and progressively increases up to ~60 mm/ka toward the edge of the escarpment. In the low-relief areas located west of the continental drainage divide denudation rates fall back to 10-20 mm/ka. This nearly four-fold contrast in denudation across the divide is characteristic of a major disequilibrium in the dynamics of the river network associated with a progressive

  14. THE EVOLUTION OF CIRCUMPLANETARY DISKS AROUND PLANETS IN WIDE ORBITS: IMPLICATIONS FOR FORMATION THEORY, OBSERVATIONS, AND MOON SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Shabram, Megan; Boley, Aaron C. [Department of Astronomy, University of Florida, 211 Bryant Space Center, Gainesville, FL 32611 (United States)

    2013-04-10

    Using radiation hydrodynamics simulations, we explore the evolution of circumplanetary disks around wide-orbit proto-gas giants. At large distances from the star ({approx}100 AU), gravitational instability followed by disk fragmentation can form low-mass substellar companions (massive gas giants and/or brown dwarfs) that are likely to host large disks. We examine the initial evolution of these subdisks and their role in regulating the growth of their substellar companions, as well as explore consequences of their interactions with circumstellar material. We find that subdisks that form in the context of GIs evolve quickly from a very massive state. Long-term accretion rates from the subdisk onto the proto-gas giant reach {approx}0.3 Jupiter masses kyr{sup -1}. We also find consistency with previous simulations, demonstrating that subdisks are truncated at {approx}1/3 of the companion's Hill radius and are thick, with (h/r) of {approx}> 0.2. The thickness of subdisks draws to question the use of thin-disk approximations for understanding the behavior of subdisks, and the morphology of subdisks has implications for the formation and extent of satellite systems. These subdisks create heating events in otherwise cold regions of the circumstellar disk and serve as planet formation beacons that can be detected by instruments such as ALMA.

  15. The RNA-world and co-evolution hypothesis and the origin of life: Implications, research strategies and perspectives

    Science.gov (United States)

    Lahav, Noam

    1993-01-01

    The applicability of the RNA-world and co-evolution hypothesis to the study of the very first stages of the origin of life is discussed. The discussion focuses on the basic differences between the two hypotheses and their implications, with regard to the reconstruction methodology, ribosome emergence, balance between ribozymes and protein enzymes, and their major difficultites. Additional complexities of the two hypotheses, such as membranes and the energy source of the first reactions, are not treated in the present work. A central element in the proposed experimental strategies is the study of the catalytic activites of very small peptides and RNA-like oligomers, according to existing, as well as to yet-to-be-invented scenarios of the two hypothesis under consideration. It is suggested that the novel directed molecular evolution technology, and molecular computational modeling, can be applied to this research. This strategy is assumed to be essential for the suggested goal of future studies of the origin of life, namely, the establishment of a `Primordial Darwinian entity'.

  16. The evolution and utility of ribosomal ITS sequences in Bambusinae and related species: divergence, pseudogenes, and implications for phylogeny

    Indian Academy of Sciences (India)

    Xui-Xing Song; Xu-Ping Gao; Ming-Yan Jiang; Guang-Li Liu; Xiao-Fang Yu; Qi-Bing Chen

    2012-08-01

    Ribosomal internal transcribed spacer (ITS) sequences are commonly used for phylogenetic reconstruction because they are highly reiterated as components of rDNA repeats, and hence are often subject to rapid homogenization through concerted evolution. Concerted evolution leads to intragenomic uniformity of repeats even between loci on nonhomologous chromosomes. However, a number of studies have shown that the ITS polymorphism within individuals is quite common. The molecular systematics of Bambusinae and related species were recently assessed by different teams using independently generated ITS sequences, and the results disagreed in some remarkable features. Here we compared the ITS sequences of the members of Bambusa s. l., the genera Dendrocalamus, Dinochloa, Gigantochloa, Guadua, Melocalamus, Monocladus, Oxytenanthera, Thyrsostachys, Pleioblastus, Pseudosasa and Schizostachyum. We have reanalysed the ITS sequences used by different research teams to reveal the underlying patterns of their different results. After excluding the sequences suspected to represent paralogous loci, a phylogenetic analysis of the subtribe Bambusinae species were performed using maximum parsimony and maximum-likelihood methods. The implications of the findings are discussed. The risk of incorporating ITS paralogues in plant evolutionary studies that can distort the phylogenetic signal should caution molecular systematists.

  17. Partial melting in one-plate planets: Implications for thermo-chemical and atmospheric evolution

    Science.gov (United States)

    Plesa, A.-C.; Breuer, D.

    2014-08-01

    In the present work, we investigate the influence of partial melting on mantle dynamics, crustal formation, and volcanic outgassing of a one-plate planet using a 2D mantle convection code. When melt is extracted to form crust, the mantle material left behind is more buoyant than its parent material and depleted in radioactive heat sources. The extracted heat-producing elements are then enriched in the crust, which also has an insulating effect due to its lower thermal conductivity compared to the mantle. In addition, partial melting can influence the mantle rheology through the dehydration (water depletion) of the mantle material by volcanic outgassing. As a consequence, the viscosity of water-depleted regions increases more than two orders of magnitude compared to water-saturated rocks resulting in slower cooling rates. The most important parameter influencing the thermo-chemical evolution is the assumed density difference between the primitive and the depleted mantle material (i.e., between peridotite and harzburgite). With small or negligible values of compositional buoyancy, crustal formation including crustal delamination is very efficient, also resulting in efficient processing and degassing of the mantle. The convecting mantle below the stagnant lid depletes continuously with time. In contrast, with increasing compositional buoyancy, crustal formation and mantle degassing are strongly suppressed although partial melting is substantially prolonged in the thermal evolution. The crust shows strong lateral variations in thickness, and crustal delamination is reduced and occurs only locally. Furthermore, two to four different mantle reservoirs can form depending on the initial temperature distribution. Two of these reservoirs can be sustained during the entire evolution - a scenario possibly valid for Mars as it may explain the isotope characteristic of the Martian meteorites.

  18. An Overview of Brain-Derived Neurotrophic Factor and Implications for Excitotoxic Vulnerability in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Patrick S. Murray

    2011-01-01

    Full Text Available The present paper examines the nature and function of brain-derived neurotrophic factor (BDNF in the hippocampal formation and the consequences of changes in its expression. The paper focuses on literature describing the role of BDNF in hippocampal development and neuroplasticity. BDNF expression is highly sensitive to developmental and environmental factors, and increased BDNF signaling enhances neurogenesis, neurite sprouting, electrophysiological activity, and other processes reflective of a general enhancement of hippocampal function. Such increases in activity may mediate beneficial effects such as enhanced learning and memory. However, the increased activity also comes at a cost: BDNF plasticity renders the hippocampus more vulnerable to hyperexcitability and/or excitotoxic damage. Exercise dramatically increases hippocampal BDNF levels and produces behavioral effects consistent with this phenomenon. In analyzing the literature regarding exercise-induced regulation of BDNF, this paper provides a theoretical model for how the potentially deleterious consequences of BDNF plasticity may be modulated by other endogenous factors. The peptide galanin may play such a role by regulating hippocampal excitability.

  19. Brain imaging studies of the cocaine addict: Implications for reinforcement and addiction

    International Nuclear Information System (INIS)

    These studies document dopaminergic abnormalities in cocaine abusers. They also suggest a regulatory role of Dopamine (DA) in frontal metabolism. The correlation of striatal D2 receptor availability with metabolism was strongest for orbital frontal cortex (OFC) cingulate and prefrontal cortices. In cocaine abusers tested during early withdrawal (<1 week) the OFC was found to be hypermetabolic and metabolism in OFC and prefrontal cortices were found to be significantly associated with cocaine craving . Thus, we postulate that repeated and intermittent DA stimulation, as seen during a cocaine binge, activates the prefrontal and OFC cortices increasing the drive to compulsively self-administer cocaine. During cocaine discontinuation and protracted withdrawal and with decreased DA stimulation, these frontal cortical regions become hyponietabolic. Dopaminergic stimulation by a DA-enhancing drug and/or environmental conditioning will reactivate these frontal regions resetting the compulsion to self-administer cocaine and the inability to terminate this behavior. The pharmacokionetic studies with [11C]cocaine are consistent with behavioral and pharmacological studies in animals as well as in vitro studies which have revealed that while the mechanisms for cocaine's reinforcing properties are complex, they partly involve the brain's dopamine system and also highlight the importance of cocaine's pharmacokinetic on its unique reinforcing properties

  20. Neutrotoxic effects of fructose administration in rat brain: implications for fructosemia

    Directory of Open Access Journals (Sweden)

    Ernesto A. Macongonde

    2015-08-01

    Full Text Available Fructose accumulates in tissue and body fluids of patients affected by hereditary fructose intolerance (HFI, a disorder caused by the deficiency of aldolase B. We investigated the effect of acute fructose administration on the biochemical profile and on the activities of the Krebs cycle enzymes in the cerebral cortex of young rats. Rats received a subcutaneous injection of NaCl (0.9 %; control group or fructose solution (5 μmol/g; treated group. Twelve or 24 h after the administration, the animals were euthanized and the cerebral cortices were isolated. Peripheral blood (to obtain the serum and cerebral spinal fluid (CSF from the animals were also collected. It was observed that albumin levels were decreased and cholesterol levels were increased in CSF of animals 12 h after the administration of fructose. In addition, serum lactate levels were increased 12 h after the administration, as compared to control group. Furthermore, malate dehydrogenase activity was increased in cerebral cortex from treated group 24 h after the administration of this carbohydrate. Herein we demonstrate that fructose administration alters biochemical parameters in CSF and serum and bioenergetics parameters in the cerebral cortex. These findings indicate a possible role of fructose on brain alterations found in HFI patients.

  1. Autobiographical memory and hyperassociativity in the dreaming brain: implications for memory consolidation in sleep

    Science.gov (United States)

    Horton, Caroline L.; Malinowski, Josie E.

    2015-01-01

    In this paper we argue that autobiographical memory (AM) activity across sleep and wake can provide insight into the nature of dreaming, and vice versa. Activated memories within the sleeping brain reflect one’s personal life history (autobiography). They can appear in largely fragmentary forms and differ from conventional manifestations of episodic memory. Autobiographical memories in dreams can be sampled from non-REM as well as REM periods, which contain fewer episodic references and become more bizarre across the night. Salient fragmented memory features are activated in sleep and re-bound with fragments not necessarily emerging from the same memory, thus de-contextualizing those memories and manifesting as experiences that differ from waking conceptions. The constructive nature of autobiographical recall further encourages synthesis of these hyper-associated images into an episode via recalling and reporting dreams. We use a model of AM to account for the activation of memories in dreams as a reflection of sleep-dependent memory consolidation processes. We focus in particular on the hyperassociative nature of AM during sleep. PMID:26191010

  2. Neuroimaging assessment of early and late neurobiological sequelae of traumatic brain injury: implications for CTE

    Directory of Open Access Journals (Sweden)

    Mark eSundman

    2015-09-01

    Full Text Available Traumatic brain injury (TBI has been increasingly accepted as a major external risk factor for neurodegenerative morbidity and mortality. Recent evidence indicates that the resultant chronic neurobiological sequelae following head trauma may, at least in part, contribute to a pathologically distinct disease known as Chronic Traumatic Encephalopathy (CTE. The clinical manifestation of CTE is variable, but the symptoms of this progressive disease include impaired memory and cognition, affective disorders (i.e., impulsivity, aggression, depression, suicidality, etc., and diminished motor control. Notably, mounting evidence suggests that the pathology contributing to CTE may be caused by repetitive exposure to subconcussive hits to the head, even in those with no history of a clinically evident head injury. Given the millions of athletes and military personnel with potential exposure to repetitive subconcussive insults and TBI, CTE represents an important public health issue. However, the incidence rates and pathological mechanisms are still largely unknown, primarily due to the fact that there is no in vivo diagnostic tool. The primary objective of this manuscript is to address this limitation and discuss potential neuroimaging modalities that may be capable of diagnosing CTE in vivo through the detection of tau and other known pathological features. Additionally, we will discuss the challenges of TBI research, outline the known pathology of CTE (with an emphasis on Tau, review current neuroimaging modalities to assess the potential routes for in vivo diagnosis, and discuss the future directions of CTE research.

  3. Recovery mechanisms of somatosensory function in stroke patients: implications of brain imaging studies

    Institute of Scientific and Technical Information of China (English)

    Sung Ho Jang

    2013-01-01

    Somatosensory dysfunction is associated with a high incidence of functional impairment and safety in patients with stroke.With developments in brain mapping techniques,many studies have addressed the recovery of various functions in such patients.However,relatively little is known about the mechanisms of recovery of somatosensory function.Based on the previous human studies,a review of 11 relevant studies on the mechanisms underlying the recovery of somatosensory function in stroke patients was conducted based on the following topics:(1) recovery of an injured somatosensory pathway,(2) peri-lesional reorganization,(3) contribution of the unaffected somatosensory cortex,(4) contribution of the secondary somatosensory cortex,and (5)mechanisms of recovery in patients with thalamic lesions.We believe that further studies in this field using combinations of diffusion tensor imaging,functional neuroimaging,and magnetoencephalography are needed.In addition,the clinical significance,critical period,and facilitatory strategies for each recovery mechanism should be clarified.

  4. Neutrotoxic effects of fructose administration in rat brain: implications for fructosemia.

    Science.gov (United States)

    Macongonde, Ernesto A; Costa, Naithan L F; Ferreira, Bruna K; Biella, Mairis S; Frederico, Marisa J S; Oliveira, Marcos R de; Ávila Júnior, Silvio; Silva, Fátima R M B; Ferreira, Gustavo C; Streck, Emilio L; Schuck, Patrícia F

    2015-08-01

    Fructose accumulates in tissue and body fluids of patients affected by hereditary fructose intolerance (HFI), a disorder caused by the deficiency of aldolase B. We investigated the effect of acute fructose administration on the biochemical profile and on the activities of the Krebs cycle enzymes in the cerebral cortex of young rats. Rats received a subcutaneous injection of NaCl (0.9 %; control group) or fructose solution (5 μmol/g; treated group). Twelve or 24 h after the administration, the animals were euthanized and the cerebral cortices were isolated. Peripheral blood (to obtain the serum) and cerebral spinal fluid (CSF) from the animals were also collected. It was observed that albumin levels were decreased and cholesterol levels were increased in CSF of animals 12 h after the administration of fructose. In addition, serum lactate levels were increased 12 h after the administration, as compared to control group. Furthermore, malate dehydrogenase activity was increased in cerebral cortex from treated group 24 h after the administration of this carbohydrate. Herein we demonstrate that fructose administration alters biochemical parameters in CSF and serum and bioenergetics parameters in the cerebral cortex. These findings indicate a possible role of fructose on brain alterations found in HFI patients.

  5. The mineralogic evolution of the Martian surface through time: Implications from chemical reaction path modeling studies

    Science.gov (United States)

    Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.

    1993-01-01

    Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.

  6. Body composition in Pan paniscus compared with Homo sapiens has implications for changes during human evolution

    OpenAIRE

    Zihlman, AL; Bolter, DR

    2015-01-01

    © 2015, National Academy of Sciences. All rights reserved. The human body has been shaped by natural selection during the past 4-5 million years. Fossils preserve bones and teeth but lack muscle, skin, fat, and organs. To understand the evolution of the human form, information about both soft and hard tissues of our ancestors is needed. Our closest living relatives of the genus Pan provide the best comparative model to those ancestors. Here, we present data on the body composition of 13 bonob...

  7. [From brain imaging to good teaching? implicating from neuroscience for research on learning and instruction].

    Science.gov (United States)

    Stubenrauch, Christa; Krinzinger, Helga; Konrad, Kerstin

    2014-07-01

    Psychiatric disorders in childhood and adolescence, in particular attention deficit disorder or specific learning disorders like developmental dyslexia and developmental dyscalculia, affect academic performance and learning at school. Recent advances in neuroscientific research have incited an intensive debate both in the general public and in the field of educational and instructional science as well as to whether and to what extent these new findings in the field of neuroscience might be of importance for school-related learning and instruction. In this review, we first summarize neuroscientific findings related to the development of attention, working memory and executive functions in typically developing children and then evaluate their relevance for school-related learning. We present an overview of neuroimaging studies of specific learning disabilities such as developmental dyslexia and developmental dyscalculia, and critically discuss their practical implications for educational and teaching practice, teacher training, early diagnosis as well as prevention and disorder-specific therapy. We conclude that the new interdisciplinary field of neuroeducation cannot be expected to provide direct innovative educational applications (e.g., teaching methods). Rather, the future potential of neuroscience lies in creating a deeper understanding of the underlying cognitive mechanisms and pathomechanisms of learning processes and learning disorders. PMID:25005903

  8. Shared brain activity for aesthetic and moral judgments: implications for the Beauty-is-Good stereotype.

    Science.gov (United States)

    Tsukiura, Takashi; Cabeza, Roberto

    2011-01-01

    The Beauty-is-Good stereotype refers to the assumption that attractive people possess sociably desirable personalities and higher moral standards. The existence of this bias suggests that the neural mechanisms for judging facial attractiveness and moral goodness overlap. To investigate this idea, we scanned participants with functional magnetic resonance imaging while they made attractiveness judgments about faces and goodness judgments about hypothetical actions. Activity in the medial orbitofrontal cortex increased as a function of both attractiveness and goodness ratings, whereas activity in the insular cortex decreased with both attractiveness and goodness ratings. Within each of these regions, the activations elicited by attractiveness and goodness judgments were strongly correlated with each other, supporting the idea of similar contributions of each region to both judgments. Moreover, activations in orbitofrontal and insular cortices were negatively correlated with each other, suggesting an opposing relationship between these regions during attractiveness and goodness judgments. These findings have implications for understanding the neural mechanisms of the Beauty-is-Good stereotype. PMID:20231177

  9. [From brain imaging to good teaching? implicating from neuroscience for research on learning and instruction].

    Science.gov (United States)

    Stubenrauch, Christa; Krinzinger, Helga; Konrad, Kerstin

    2014-07-01

    Psychiatric disorders in childhood and adolescence, in particular attention deficit disorder or specific learning disorders like developmental dyslexia and developmental dyscalculia, affect academic performance and learning at school. Recent advances in neuroscientific research have incited an intensive debate both in the general public and in the field of educational and instructional science as well as to whether and to what extent these new findings in the field of neuroscience might be of importance for school-related learning and instruction. In this review, we first summarize neuroscientific findings related to the development of attention, working memory and executive functions in typically developing children and then evaluate their relevance for school-related learning. We present an overview of neuroimaging studies of specific learning disabilities such as developmental dyslexia and developmental dyscalculia, and critically discuss their practical implications for educational and teaching practice, teacher training, early diagnosis as well as prevention and disorder-specific therapy. We conclude that the new interdisciplinary field of neuroeducation cannot be expected to provide direct innovative educational applications (e.g., teaching methods). Rather, the future potential of neuroscience lies in creating a deeper understanding of the underlying cognitive mechanisms and pathomechanisms of learning processes and learning disorders.

  10. Shared brain activity for aesthetic and moral judgments: implications for the Beauty-is-Good stereotype.

    Science.gov (United States)

    Tsukiura, Takashi; Cabeza, Roberto

    2011-01-01

    The Beauty-is-Good stereotype refers to the assumption that attractive people possess sociably desirable personalities and higher moral standards. The existence of this bias suggests that the neural mechanisms for judging facial attractiveness and moral goodness overlap. To investigate this idea, we scanned participants with functional magnetic resonance imaging while they made attractiveness judgments about faces and goodness judgments about hypothetical actions. Activity in the medial orbitofrontal cortex increased as a function of both attractiveness and goodness ratings, whereas activity in the insular cortex decreased with both attractiveness and goodness ratings. Within each of these regions, the activations elicited by attractiveness and goodness judgments were strongly correlated with each other, supporting the idea of similar contributions of each region to both judgments. Moreover, activations in orbitofrontal and insular cortices were negatively correlated with each other, suggesting an opposing relationship between these regions during attractiveness and goodness judgments. These findings have implications for understanding the neural mechanisms of the Beauty-is-Good stereotype.

  11. Modeling the evolution of a comet subsurface: Implications for 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Guilbert-Lepoutre, Aurélie; Rosenberg, Eric D.; Prialnik, Dina; Besse, Sébastien

    2016-09-01

    Modeling the evolution of comets is a complex task aiming at providing constraints on physical processes and internal properties that are inaccessible to observations, although they could potentially bring key elements to our understanding of the origins of these primitive objects. This field has made a tremendous step forward in the post-Giotto area, owing to detailed space- and ground-based observations, as well as detailed laboratory simulations of comet nuclei. In this paper we review studies that we believe are significant for interpreting the observations of 67P/Churyumov-Gerasimenko by the ESA/Rosetta mission, and provide new calculations where needed. These studies hold a strong statistical significance, which is exactly what is needed for this comet with an orbital evolution that cannot be traced back accurately for more than hundreds of years. We show that radial and lateral differentiation may have occurred on 67P's chaotic path to the inner solar system, and that internal inhomogeneities may result in an erratic activity pattern. Finally, we discuss the origins of circular depressions seen on several comets including 67P, and suggest that they could be considered as evidence of the past processing of subsurface layers.

  12. Molecular evolution of the infrared sensory gene TRPA1 in snakes and implications for functional studies.

    Science.gov (United States)

    Geng, Jie; Liang, Dan; Jiang, Ke; Zhang, Peng

    2011-01-01

    TRPA1 is a calcium ion channel protein recently identified as the infrared receptor in pit organ-containing snakes. Therefore, understanding the molecular evolution of TRPA1 may help to illuminate the origin of "heat vision" in snakes and reveal the molecular mechanism of infrared sensitivity for TRPA1. To this end, we sequenced the infrared sensory gene TRPA1 in 24 snake species, representing nine snake families and multiple non-snake outgroups. We found that TRPA1 is under strong positive selection in the pit-bearing snakes studied, but not in other non-pit snakes and non-snake vertebrates. As a comparison, TRPV1, a gene closely related to TRPA1, was found to be under strong purifying selection in all the species studied, with no difference in the strength of selection between pit-bearing snakes and non-pit snakes. This finding demonstrates that the adaptive evolution of TRPA1 specifically occurred within the pit-bearing snakes and may be related to the functional modification for detecting infrared radiation. In addition, by comparing the TRPA1 protein sequences, we identified 11 amino acid sites that were diverged in pit-bearing snakes but conserved in non-pit snakes and other vertebrates, 21 sites that were diverged only within pit-vipers but conserved in the remaining snakes. These specific amino acid substitutions may be potentially functional important for infrared sensing.

  13. The First Comprehensive Phylogeny of Coptis (Ranunculaceae and Its Implications for Character Evolution and Classification.

    Directory of Open Access Journals (Sweden)

    Kun-Li Xiang

    Full Text Available Coptis (Ranunculaceae contains 15 species and is one of the pharmaceutically most important plant genera in eastern Asia. Understanding of the evolution of morphological characters and phylogenetic relationships within the genus is very limited. Here, we present the first comprehensive phylogenetic analysis of the genus based on two plastid and one nuclear markers. The phylogeny was reconstructed using Bayesian inference, as well as maximum parsimony and maximum likelihood methods. The Swofford-Olsen-Waddell-Hillis and Bayesian tests were used to assess the strength of the conflicts between traditional taxonomic units and those suggested by the phylogenetic inferences. Evolution of morphological characters was inferred using Bayesian method to identify synapomorphies for the infrageneric lineages. Our data recognize two strongly supported clades within Coptis. The first clade contains subgenus Coptis and section Japonocoptis of subgenus Metacoptis, supported by morphological characters, such as traits of the central leaflet base, petal color, and petal shape. The second clade consists of section Japonocoptis of subgenus Metacoptis. Coptis morii is not united with C. quinquefolia, in contrast with the view that C. morii is a synonym of C. quinquefolia. Two varieties of C. chinensis do not cluster together. Coptis groenlandica and C. lutescens are reduced to C. trifolia and C. japonica, respectively. Central leaflet base, sepal shape, and petal blade carry a strong phylogenetic signal in Coptis, while leaf type, sepal and petal color, and petal shape exhibit relatively higher levels of evolutionary flexibility.

  14. The empirical mass distribution of hot B subdwarfs: Implications for stellar evolution theory

    Science.gov (United States)

    Van Grootel, V.; Fontaine, G.; Charpinet, S.; Brassard, P.; Green, E. M.

    2013-03-01

    Subdwarf B (sdB) stars are hot, compact, and evolved objects that form the very hot end of the horizontal branch, the so-called Extreme Horizontal Branch (EHB). Understanding the formation of sdB stars is one of the remaining challenges of stellar evolution theory. Several scenarios have been proposed to account for the existence of such objects, made of He-burning core surrounded by very thin H-rich envelope. They give quite different theoretical mass distributions for the resulting sdB stars. Detailed asteroseismic analyses, including mass estimates, of 15 pulsating hot B subdwarfs have been published since a decade. The masses have also been reliably determined by light curve modeling and spectroscopy for 7 sdB components of eclipsing and/or reflection effect binaries. These empirical mass distributions, although based on small-number statistics, can be compared with the expectations of stellar evolution theory. In particular, the two He white dwarfs merger scenario does not seem to be the dominant channel to form isolated sdB stars, while the post-red giant branch scenario is reinforced. This opens new questions on extreme mass loss of red giants to form EHB stars, possibly in connection with the recently discovered close substellar companions and planets orbiting sdB stars.

  15. Abundance Gradient from Open Clusters and Implications for the Galactic Disk Evolution

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We compile a new sample of 89 open clusters with ages, distances and metallicities available. We derive a radial iron gradient of about -0.099±0.008dex kpc-1(urweighted) for the whole sample, which is somewhat greater than the most recent determination of oxygen gradient from nebulae and young stars. By dividing the clusters into age groups, we show that the iron gradient was steeper in the past and has evolved slowly in time. Current data show a substantial scatter of the cluster metallicities indicating that the Galactic disk has undergone a very rapid, inhomogeneous enrichment. Also, based on a simple, but quite successful model of chemical evolution of the Milky Way disk, we make a detailed calculation of the iron abundance gradient and its time evolution. The predicted current iron gradient is about -0.072 dex kpc-1. The model also predicts a steady flattening of the iron gradient with time, which agrees with the result from our open cluster sample.

  16. Early Evolution of Earth's Geochemical Cycle and Biosphere: Implications for Mars Exobiology

    Science.gov (United States)

    DesMarais, David J.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Carbon (C) has played multiple key roles for life and its environment. C has formed organics, greenhouse gases, aquatic pH buffers, redox buffers, and magmatic constituents affecting plutonism and volcanism. These roles interacted across a network of reservoirs and processes known as the biogeochemical C cycle. Changes in the cycle over geologic time were driven by increasing solar luminosity, declining planetary heat flow, and continental and biological evolution. The early Archean C cycle was dominated by hydrothermal alteration of crustal rocks and by thermal emanations of CO2 and reduced species (eg., H2, Fe(2+) and sulfides). Bioorganic synthesis was achieved by nonphotosynthetic CO2-fixing bacteria (chemoautotrophs) and, possibly, bacteria (organotrophs) utilizing any available nonbiological organic C. Responding both to abundant solar energy and to a longterm decline in thermal sources of chemical energy and reducing power, the blaspheme first developed anoxygenic photosynthesis, then, ultimately, oxygenic photosynthesis. O2-photosynthesis played a central role in transforming the ancient environment and blaspheme to the modem world. The geochemical C cycles of early Earth and Mars were quite similar. The principal differences between the modem C cycles of these planets arose during the later evolution of their heat flows, crusts, atmospheres and, perhaps, their blasphemes.

  17. Allometry of facial mobility in anthropoid primates: implications for the evolution of facial expression.

    Science.gov (United States)

    Dobson, Seth D

    2009-01-01

    Body size may be an important factor influencing the evolution of facial expression in anthropoid primates due to allometric constraints on the perception of facial movements. Given this hypothesis, I tested the prediction that observed facial mobility is positively correlated with body size in a comparative sample of nonhuman anthropoids. Facial mobility, or the variety of facial movements a species can produce, was estimated using a novel application of the Facial Action Coding System (FACS). I used FACS to estimate facial mobility in 12 nonhuman anthropoid species, based on video recordings of facial activity in zoo animals. Body mass data were taken from the literature. I used phylogenetic generalized least squares (PGLS) to perform a multiple regression analysis with facial mobility as the dependent variable and two independent variables: log body mass and dummy-coded infraorder. Together, body mass and infraorder explain 92% of the variance in facial mobility. However, the partial effect of body mass is much stronger than for infraorder. The results of my study suggest that allometry is an important constraint on the evolution of facial mobility, which may limit the complexity of facial expression in smaller species. More work is needed to clarify the perceptual bases of this allometric pattern.

  18. Whole planet coupling between climate, mantle, and core: Implications for rocky planet evolution

    Science.gov (United States)

    Foley, Bradford J.; Driscoll, Peter E.

    2016-05-01

    Earth's climate, mantle, and core interact over geologic time scales. Climate influences whether plate tectonics can take place on a planet, with cool climates being favorable for plate tectonics because they enhance stresses in the lithosphere, suppress plate boundary annealing, and promote hydration and weakening of the lithosphere. Plate tectonics plays a vital role in the long-term carbon cycle, which helps to maintain a temperate climate. Plate tectonics provides long-term cooling of the core, which is vital for generating a magnetic field, and the magnetic field is capable of shielding atmospheric volatiles from the solar wind. Coupling between climate, mantle, and core can potentially explain the divergent evolution of Earth and Venus. As Venus lies too close to the sun for liquid water to exist, there is no long-term carbon cycle and thus an extremely hot climate. Therefore, plate tectonics cannot operate and a long-lived core dynamo cannot be sustained due to insufficient core cooling. On planets within the habitable zone where liquid water is possible, a wide range of evolutionary scenarios can take place depending on initial atmospheric composition, bulk volatile content, or the timing of when plate tectonics initiates, among other factors. Many of these evolutionary trajectories would render the planet uninhabitable. However, there is still significant uncertainty over the nature of the coupling between climate, mantle, and core. Future work is needed to constrain potential evolutionary scenarios and the likelihood of an Earth-like evolution.

  19. Domain combination of the vertebrate-like TLR gene family: implications for their origin and evolution

    Indian Academy of Sciences (India)

    Baojun Wu; Tianxiao Huan; Jing Gong; Pin Zhou; Zengliang Bai

    2011-12-01

    Domain shuffling, which is an important mechanism in the evolution of multi-domain proteins, has shaped the evolutionary development of the immune system in animals. Toll and Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate and adaptive immune systems. Draft genome sequences provide the opportunity to compare the Toll/TLR gene repertoire among representative metazoans. In this study, we investigated the combination of Toll/interleukin-1 receptor (TIR) and leucine-rich repeat (LRR) domains of metazoan Toll/TLRs. Before Toll with both domains occurred in Cnidaria (sea anemone, Nematostella vectensis), through domain combinations, TIR-only and LRR-only proteins had already appeared in sponges (Amphimedon queenslandica). Although vertebrate-like TIR (V-TIR) domain already appeared in Cnidaria, the vertebrate-like TLR (V-TLR) with both domains appeared much later. The first combination between V-TIR domain and vertebrate-like LRR (V-LRR) domain for V-TLR may have occurred after the divergence of Cnidaria and bilateria. Then, another combination for V-TLR, a recombination of both domains, possibly occurred before or during the evolution of primitive vertebrates. Taken together, two rounds of domain combinations may thus have co-shaped the vertebrate TLRs.

  20. Evolution from dinucleus to mononucleus and its implication in the synthesis of superheavy nuclei

    International Nuclear Information System (INIS)

    The evolution of neck for the asymmetric system 58Fe + 244Pu at Ec.m. = 260 MeV has been studied with the coupled Langevin equations in two-dimensional collective space and the results compared to those obtained with a one-dimensional approach under the frozen assumption. It is found that the coupling between the radial and neck degrees of freedom reduces the drift velocity of neck growth and delays the transition from dinucleus to mononucleus. Besides, the coupling brings the system into a somehow elongated shape when the injection into the asymmetric fission valley takes place, hence, the fusion probability and the relevant evaporation residue (ER) cross-sections decrease. For the system 58Fe + 244Pu, the ER cross-sections decrease by about 30% as compared to those obtained under the frozen approximation. Therefore, we may arrive at the conclusion that for the heavy asymmetric systems such as 58Fe + 244Pu the coupling between different degrees of freedom has important effects on the evolution from dinucleus to mononucleus and the frozen approximation is basically not satisfied as far as the neck dynamics is concerned. However, as compared to the symmetric reactions, the influence of the neck dynamics on the fusion hindrance factor of heavy systems is much weaker for the asymmetric reactions. (orig.)

  1. Adaptation to salinity in mangroves: Implication on the evolution of salt-tolerance

    Institute of Scientific and Technical Information of China (English)

    LIANG Shan; ZHOU RenChao; DONG SuiSui; SHI SuHua

    2008-01-01

    A plant's adaptation to its environment is one of the most important issues in evolutionary biology. Mangroves are trees that inhabit the intertidal zones with high salinity, while salt tolerance competence of different species varies. Even congeneric species usually occupy distinct positions of intertidal zones due to differential ability of salt tolerance. Some species have different ecotypes that adapt well to littoral and terrestrial environments, respectively. These characteristics of mangroves make them ideal ecological models to study adaptation of mangroves to salinity. Here, we briefly depict adaptive traits of salt tolerance in mangroves with respect to anatomy, physiology and biochemistry, and review the major advances recently made on both the genetic and genomic levels. Results from studies on individual genes or whole genomes of mangroves have confirmed conclusions drawn from studies on anatomy, physiology and biochemistry, and have further indicated that specific patterns of gene expression might contribute to adaptive evolution of mangroves under high salinity. By integrating all information from mangroves and performing comparisons among species of mangroves and non-mangroves, we could give a general picture of adaptation of mangroves to salinity, thus providing a new avenue for further studies on a molecular basis of adaptive evolution of mangroves.

  2. Implications of behavioral architecture for the evolution of self-organized division of labor.

    Directory of Open Access Journals (Sweden)

    A Duarte

    Full Text Available Division of labor has been studied separately from a proximate self-organization and an ultimate evolutionary perspective. We aim to bring together these two perspectives. So far this has been done by choosing a behavioral mechanism a priori and considering the evolution of the properties of this mechanism. Here we use artificial neural networks to allow for a more open architecture. We study whether emergent division of labor can evolve in two different network architectures; a simple feedforward network, and a more complex network that includes the possibility of self-feedback from previous experiences. We focus on two aspects of division of labor; worker specialization and the ratio of work performed for each task. Colony fitness is maximized by both reducing idleness and achieving a predefined optimal work ratio. Our results indicate that architectural constraints play an important role for the outcome of evolution. With the simplest network, only genetically determined specialization is possible. This imposes several limitations on worker specialization. Moreover, in order to minimize idleness, networks evolve a biased work ratio, even when an unbiased work ratio would be optimal. By adding self-feedback to the network we increase the network's flexibility and worker specialization evolves under a wider parameter range. Optimal work ratios are more easily achieved with the self-feedback network, but still provide a challenge when combined with worker specialization.

  3. The evolution of preclinical Alzheimer’s disease: Implications for prevention trials

    Science.gov (United States)

    Sperling, Reisa; Mormino, Elizabeth; Johnson, Keith

    2014-01-01

    As the field begins to test the concept of preclinical neurodegenerative disease, the hypothetical stage of disease when the pathophysiological process has begun in the brain but clinical symptoms are not yet manifest, a number of intriguing questions have already arisen. In particular, in preclinical Alzheimer’s disease (AD), the temporal relationship of amyloid markers to markers of neurodegeneration and their relative utility in the prediction of cognitive decline among clinically normal older individuals remains to be fully elucidated. Secondary prevention trials in AD have already begun in both genetic-at-risk and amyloid-at-risk cohorts, with several more trials in the planning stages, that should provide critical answers about whether intervention at this very early stage of disease can truly bend the curve of clinical progression. PMID:25442939

  4. Brain response to a humanoid robot in areas implicated in the perception of human emotional gestures.

    Directory of Open Access Journals (Sweden)

    Thierry Chaminade

    Full Text Available BACKGROUND: The humanoid robot WE4-RII was designed to express human emotions in order to improve human-robot interaction. We can read the emotions depicted in its gestures, yet might utilize different neural processes than those used for reading the emotions in human agents. METHODOLOGY: Here, fMRI was used to assess how brain areas activated by the perception of human basic emotions (facial expression of Anger, Joy, Disgust and silent speech respond to a humanoid robot impersonating the same emotions, while participants were instructed to attend either to the emotion or to the motion depicted. PRINCIPAL FINDINGS: Increased responses to robot compared to human stimuli in the occipital and posterior temporal cortices suggest additional visual processing when perceiving a mechanical anthropomorphic agent. In contrast, activity in cortical areas endowed with mirror properties, like left Broca's area for the perception of speech, and in the processing of emotions like the left anterior insula for the perception of disgust and the orbitofrontal cortex for the perception of anger, is reduced for robot stimuli, suggesting lesser resonance with the mechanical agent. Finally, instructions to explicitly attend to the emotion significantly increased response to robot, but not human facial expressions in the anterior part of the left inferior frontal gyrus, a neural marker of motor resonance. CONCLUSIONS: Motor resonance towards a humanoid robot, but not a human, display of facial emotion is increased when attention is directed towards judging emotions. SIGNIFICANCE: Artificial agents can be used to assess how factors like anthropomorphism affect neural response to the perception of human actions.

  5. Brain circuits implicated in psychogenic paralysis in conversion disorders and hypnosis.

    Science.gov (United States)

    Vuilleumier, P

    2014-10-01

    Conversion disorders are defined as neurological symptoms arising without organic damage to the nervous system, presumably in relation to various emotional stress factors, but the exact neural substrates of these symptoms and the mechanisms responsible for their production remain poorly understood. In the past 15 years, novel insights have been gained with the advent of functional neuroimaging studies in patients suffering from conversion disorders in both motor and non-motor (e.g. somatosensory, visual) domains. Several studies have also compared brain activation patterns in conversion to those observed during hypnosis, where similar functional losses can be evoked by suggestion. The current review summarizes these recent results and the main neurobiological hypotheses proposed to account for conversion symptoms, in particular motor deficits. An emerging model points to an important role of ventromedial prefrontal cortex (VMPFC), precuneus, and perhaps other limbic structures (including amygdala), all frequently found to be hyperactivated in conversion disorders in parallel to impaired recruitment of primary motor and/or sensory pathways at the cortical or subcortical (basal ganglia) level. These findings are only partly shared with hypnosis, where increases in precuneus predominate, together with activation of attentional control systems, but without any activation of VMPFC. Both VMPFC and precuneus are key regions for access to internal representations about the self, integrating information from memory and imagery with affective relevance (in VMPFC) and sensory or agency representations (in precuneus). It is therefore postulated that conversion deficits might result from an alteration of conscious sensorimotor functions and self-awareness under the influence of affective and sensory representations generated in these regions, which might promote certain patterns of behaviors in response to self-relevant emotional states.

  6. A high-resolution speleothem record of western equatorial Pacific rainfall: Implications for Holocene ENSO evolution

    Science.gov (United States)

    Chen, Sang; Hoffmann, Sharon S.; Lund, David C.; Cobb, Kim M.; Emile-Geay, Julien; Adkins, Jess F.

    2016-05-01

    The El Niño-Southern Oscillation (ENSO) is the primary driver of interannual climate variability in the tropics and subtropics. Despite substantial progress in understanding ocean-atmosphere feedbacks that drive ENSO today, relatively little is known about its behavior on centennial and longer timescales. Paleoclimate records from lakes, corals, molluscs and deep-sea sediments generally suggest that ENSO variability was weaker during the mid-Holocene (4-6 kyr BP) than the late Holocene (0-4 kyr BP). However, discrepancies amongst the records preclude a clear timeline of Holocene ENSO evolution and therefore the attribution of ENSO variability to specific climate forcing mechanisms. Here we present δ18 O results from a U-Th dated speleothem in Malaysian Borneo sampled at sub-annual resolution. The δ18 O of Borneo rainfall is a robust proxy of regional convective intensity and precipitation amount, both of which are directly influenced by ENSO activity. Our estimates of stalagmite δ18 O variance at ENSO periods (2-7 yr) show a significant reduction in interannual variability during the mid-Holocene (3240-3380 and 5160-5230 yr BP) relative to both the late Holocene (2390-2590 yr BP) and early Holocene (6590-6730 yr BP). The Borneo results are therefore inconsistent with lacustrine records of ENSO from the eastern equatorial Pacific that show little or no ENSO variance during the early Holocene. Instead, our results support coral, mollusc and foraminiferal records from the central and eastern equatorial Pacific that show a mid-Holocene minimum in ENSO variance. Reduced mid-Holocene interannual δ18 O variability in Borneo coincides with an overall minimum in mean δ18 O from 3.5 to 5.5 kyr BP. Persistent warm pool convection would tend to enhance the Walker circulation during the mid-Holocene, which likely contributed to reduced ENSO variance during this period. This finding implies that both convective intensity and interannual variability in Borneo are driven by

  7. Genetic Variation of Goat Interferon Regulatory Factor 3 Gene and Its Implication in Goat Evolution.

    Science.gov (United States)

    Okpeku, Moses; Esmailizadeh, Ali; Adeola, Adeniyi C; Shu, Liping; Zhang, Yesheng; Wang, Yangzi; Sanni, Timothy M; Imumorin, Ikhide G; Peters, Sunday O; Zhang, Jiajin; Dong, Yang; Wang, Wen

    2016-01-01

    The immune systems are fundamentally vital for evolution and survival of species; as such, selection patterns in innate immune loci are of special interest in molecular evolutionary research. The interferon regulatory factor (IRF) gene family control many different aspects of the innate and adaptive immune responses in vertebrates. Among these, IRF3 is known to take active part in very many biological processes. We assembled and evaluated 1356 base pairs of the IRF3 gene coding region in domesticated goats from Africa (Nigeria, Ethiopia and South Africa) and Asia (Iran and China) and the wild goat (Capra aegagrus). Five segregating sites with θ value of 0.0009 for this gene demonstrated a low diversity across the goats' populations. Fu and Li tests were significantly positive but Tajima's D test was significantly negative, suggesting its deviation from neutrality. Neighbor joining tree of IRF3 gene in domesticated goats, wild goat and sheep showed that all domesticated goats have a closer relationship than with the wild goat and sheep. Maximum likelihood tree of the gene showed that different domesticated goats share a common ancestor and suggest single origin. Four unique haplotypes were observed across all the sequences, of which, one was particularly common to African goats (MOCH-K14-0425, Poitou and WAD). In assessing the evolution mode of the gene, we found that the codon model dN/dS ratio for all goats was greater than one. Phylogenetic Analysis by Maximum Likelihood (PAML) gave a ω0 (dN/dS) value of 0.067 with LnL value of -6900.3 for the first Model (M1) while ω2 = 1.667 in model M2 with LnL value of -6900.3 with positive selection inferred in 3 codon sites. Mechanistic empirical combination (MEC) model for evaluating adaptive selection pressure on particular codons also confirmed adaptive selection pressure in three codons (207, 358 and 408) in IRF3 gene. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat IRF3

  8. On the role of emerging voluntary control of vocalization in language evolution. Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by Michael A. Arbib

    Science.gov (United States)

    Coudé, Gino

    2016-03-01

    This comment will be focused on the role of monkey vocal control in the evolution of language. I will essentially reiterate the observations expressed in a commentary [1] about the book "How the brain got language: the mirror system hypothesis", written by Arbib [2]. I will hopefully clarify our suggestion that non-human primates vocal communication, in conjunction with gestures, could have had an active role in the emergence of the first voluntary forms of utterances that will later shape protospeech. This suggestion is mainly rooted in neurophysiological data about vocal control in monkey. I will very briefly summarize how neurophysiological data allowed us to suggest a possible role for monkey vocalization in language evolution. We conducted a study [3] in which we recorded from ventral premotor cortex (PMv) of macaques trained to emit vocalizations (i.e. coo-calls). The results showed that the rostro-lateral part of PMv contains neurons that fire during conditioned vocalization. The involvement of PMv in vocalization production was further supported by electrical microstimulation of the cortical sector where some of the vocalization neurons were found. Microstimulation elicited in some cases a combination of jaw, tongue and larynx movements. To us, the evolutionary implications of those results were obvious: a partial voluntary vocal control was already taking place in the primate PMv cortex some 25 million years ago.

  9. The sensitivity of Titan's current atmosphere to variations in solar EUV flux and implications for the evolution of the atmosphere

    Science.gov (United States)

    Mandt, K.; Bell, J. M.; Waite, J. H.

    2010-12-01

    K. E. Mandt, J. Bell, J. H. Waite, Jr. Southwest Research Institute, San Antonio, TX Stable isotope ratios are an important tool for tracing the evolution of an atmosphere. By carefully evaluating processes that fractionate the isotopes (e.g. escape and photochemistry), the inventory of a constituent can be tracked over geological time scales. For Saturn’s largest moon, Titan, the 14N/15N in N2 and the 12C/13C in CH4 can be used to constrain the initial size of the atmosphere and the amount of time that has passed since the current inventory of methane began outgassing into the atmosphere (see Lunine et al. [1999] and Mandt et al. [2009]). Because the processes that fractionate the isotopes are directly tied to the amount of solar EUV/UV energy deposited in the upper atmosphere, it is important to understand the sensitivity of the atmosphere to varying solar EUV flux. On short time scales, the EUV flux can vary by as much as a factor of two during the eleven-year solar cycle. On geologic time scales, the solar EUV flux is believed to have been about 2.5 times greater than the current flux about 2.5 billion years ago, and 6 times the current flux 3.5 billion years ago [Ribas et al. 2005]. Using a 1D version of the 3D Titan Global Ionosphere-Thermosphere Model (T-GITM), we will explore the impact of the eleven-year solar cycle variations on Titan’s upper atmosphere, focusing on the key fractionating processes of photochemistry and escape. We will then discuss the implications of these results for modeling the evolution of the atmosphere over geological time scales. Lunine, J. I., Y. L. Yung and R. D. Lorenz, 1999. On the volatile inventory of Titan from isotopic abundances in nitrogen and methane. Planetary and Space Science, 47, 1291-1303. Mandt, K. E., J. H. Waite, Jr., B. A. Magee, J. Bell, J. Lunine, O. Mousis, D. Cordier, 2009, Isotopic evolution of Titan’s main atmospheric constituents, Planetary and Space Science, 57, 1917-1930. Ribas, I., E. F. Guinan

  10. The early heat loss evolution of Mars and their implications for internal and environmental history.

    Science.gov (United States)

    Ruiz, Javier

    2014-01-01

    The time around 3.7 Ga ago was an epoch when substantial changes in Mars occurred: a substantial decline in aqueous erosion/degradation of landscape features; a change from abundant phyllosilicate formation to abundant acidic and evaporitic mineralogy; a change from olivine-rich volcanism to olivine-pyroxene volcanism; and maybe the cessation of the martian dynamo. Here I show that Mars also experienced profound changes in its internal dynamics in the same approximate time, including a reduction of heat flow and a drastic increasing of lithosphere strength. The reduction of heat flow indicates a limited cooling (or even a heating-up) of the deep interior for post-3.7 Ga times. The drastic increasing of lithosphere strength indicates a cold lithosphere above the inefficiently cooled (or even heated) interior. All those changes experienced by Mars were most probably linked and suggest the existence of profound interrelations between interior dynamics and environmental evolution of this planet. PMID:24614056

  11. Evolution of China’s Forestry Policies since 1949 and Experience and Implications

    Institute of Scientific and Technical Information of China (English)

    Yunhong; HU; Junjie; HE

    2013-01-01

    Since 1949,the Chinese Communist Party ( CPC) and government have formulated series of policies to promote construction and development of forestry. The evolution of forestry policies brings constant deepening of understanding of the Party and government about forestry development laws. Forestry policies evolve from emergency and provisional to systematic and overall functions,making them become more scientific,pertinent and prospective. Besides,formulation of forestry policies is gradually influenced by international factors. When formulating forestry policies,it is required to follow forestry development laws,keep pace with time,and make constant improvement in practice,to suit demands of times and social development,and prudently handle the relationship between economic benefits and ecological benefits of forestry.

  12. The Geobacillus pan-genome: implications for the evolution of the genus

    Directory of Open Access Journals (Sweden)

    Oliver Keoagile Ignatius Bezuidt

    2016-05-01

    Full Text Available The genus Geobacillus is comprised of a diverse group of spore-forming Gram-positive thermophilic bacterial species and is well known for both its ecological diversity and as a source of novel thermostable enzymes. Although the mechanisms underlying the thermophilicity of the organism and the thermostability of its macromolecules are reasonably well understood, relatively little is known of the evolutionary mechanisms, which underlie the structural and functional properties of members of this genus. In this study, we have compared 29 Geobacillus genomes, with a specific focus on the elements, which comprise the conserved core and flexible genomes. Based on comparisons of conserved core and flexible genomes, we present evidence of habitat delineation with specific Geobacillus genomes linked to specific niches. Interestingly, our analysis has shown that horizontal gene transfer is a major factor deriving the evolution of Geobacillus from Bacillus, with genetic contributions from other phylogenetically distant taxa.

  13. The Geobacillus Pan-Genome: Implications for the Evolution of the Genus.

    Science.gov (United States)

    Bezuidt, Oliver K; Pierneef, Rian; Gomri, Amin M; Adesioye, Fiyin; Makhalanyane, Thulani P; Kharroub, Karima; Cowan, Don A

    2016-01-01

    The genus Geobacillus is comprised of a diverse group of spore-forming Gram-positive thermophilic bacterial species and is well known for both its ecological diversity and as a source of novel thermostable enzymes. Although the mechanisms underlying the thermophilicity of the organism and the thermostability of its macromolecules are reasonably well understood, relatively little is known of the evolutionary mechanisms, which underlie the structural and functional properties of members of this genus. In this study, we have compared 29 Geobacillus genomes, with a specific focus on the elements, which comprise the conserved core and flexible genomes. Based on comparisons of conserved core and flexible genomes, we present evidence of habitat delineation with specific Geobacillus genomes linked to specific niches. Our analysis revealed that Geobacillus and Anoxybacillus share a high proportion of genes. Moreover, the results strongly suggest that horizontal gene transfer is a major factor deriving the evolution of Geobacillus from Bacillus, with genetic contributions from other phylogenetically distant taxa.

  14. Damping in flapping flight and its implications for manoeuvring, scaling and evolution.

    Science.gov (United States)

    Hedrick, Tyson L

    2011-12-15

    Flying animals exhibit remarkable degrees of both stability and manoeuvrability. Our understanding of these capabilities has recently been improved by the identification of a source of passive damping specific to flapping flight. Examining how this damping effect scales among different species and how it affects active manoeuvres as well as recovery from perturbations provides general insights into the flight of insects, birds and bats. These new damping models offer a means to predict manoeuvrability and stability for a wide variety of flying animals using prior reports of the morphology and flapping motions of these species. Furthermore, the presence of passive damping is likely to have facilitated the evolution of powered flight in animals by providing a stability benefit associated with flapping. PMID:22116750

  15. The evolution of high-temperature plasma in magnetar magnetospheres and its implications for giant flares

    Energy Technology Data Exchange (ETDEWEB)

    Takamoto, Makoto [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg D69117 (Germany); Kisaka, Shota [Institute of Particle and Nuclear Studies, KEK, 1-1, Oho, Tsukuba 305-0801 (Japan); Suzuki, Takeru K. [Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Terasawa, Toshio, E-mail: makoto.takamoto@mpi-hd.mpg.de, E-mail: kisaka@post.kek.jp, E-mail: stakeru@nagoya-u.jp, E-mail: terasawa@icrr.u-tokyo.ac.jp [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa city, Chiba 277-8582 (Japan)

    2014-05-20

    In this paper we propose a new mechanism describing the initial spike of giant flares in the framework of the starquake model. We investigate the evolution of a plasma on a closed magnetic flux tube in the magnetosphere of a magnetar in the case of a sudden energy release, and discuss the relationship with observations of giant flares. We perform one-dimensional, numerical simulations of the relativistic magnetohydrodynamics in Schwarzschild geometry. We assume energy is injected at the footpoints of the loop by a hot star surface containing random perturbations of the transverse velocity. Alfvén waves are generated and propagate upward, accompanying very hot plasma which is also continuously heated by nonlinearly generated compressive waves. We find that the front edges of the fireball regions collide at the top of the tube with their symmetrically launched counterparts. This collision results in an energy release that can describe the light curve of the initial spikes of giant flares.

  16. Morphological and functional diversity in therizinosaur claws and the implications for theropod claw evolution

    Science.gov (United States)

    Lautenschlager, Stephan

    2014-01-01

    Therizinosaurs are a group of herbivorous theropod dinosaurs from the Cretaceous of North America and Asia, best known for their iconically large and elongate manual claws. However, among Therizinosauria, ungual morphology is highly variable, reflecting a general trend found in derived theropod dinosaurs (Maniraptoriformes). A combined approach of shape analysis to characterize changes in manual ungual morphology across theropods and finite-element analysis to assess the biomechanical properties of different ungual shapes in therizinosaurs reveals a functional diversity related to ungual morphology. While some therizinosaur taxa used their claws in a generalist fashion, other taxa were functionally adapted to use the claws as grasping hooks during foraging. Results further indicate that maniraptoriform dinosaurs deviated from the plesiomorphic theropod ungual morphology resulting in increased functional diversity. This trend parallels modifications of the cranial skeleton in derived theropods in response to dietary adaptation, suggesting that dietary diversification was a major driver for morphological and functional disparity in theropod evolution. PMID:24807260

  17. The Implications of the Working Memory Model for the Evolution of Modern Cognition

    Directory of Open Access Journals (Sweden)

    Thomas Wynn

    2011-01-01

    Full Text Available What distinguishes the cognition of biologically modern humans from that of more archaic populations such as Neandertals? The norm in paleoanthropology has been to emphasize the role of language and symbolism. But the modern mind is more than just an archaic mind enhanced by symbol use. It also possesses an important problem solving and planning component. In cognitive neuroscience these advanced planning abilities have been extensively investigated through a formal model known as working memory. The working memory model is now well-enough established to provide a powerful lens through which paleoanthropologists can view the fossil and archaeological records. The challenge is methodological. The following essay reviews the controversial hypothesis that a recent enhancement of working memory capacity was the final piece in the evolution of modern cognition.

  18. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior

    Energy Technology Data Exchange (ETDEWEB)

    UC Davis; Cappa, Christopher D.; Wilson, Kevin R.

    2010-10-28

    Vacuum Ultraviolet (VUV) photoionization mass spectrometry has been used to measure the evolution of chemical composition for two distinct organic aerosol types as they are passed through a thermodenuder at different temperatures. The two organic aerosol types considered are primary lubricating oil (LO) aerosol and secondary aerosol from the alpha-pinene + O3 reaction (alphaP). The evolution of the VUV mass spectra for the two aerosol types with temperature are observed to differ dramatically. For LO particles, the spectra exhibit distinct changes with temperature in which the lower m/z peaks, corresponding to compounds with higher vapor pressures, disappear more rapidly than the high m/z peaks. In contrast, the alphaP aerosol spectrum is essentially unchanged by temperature even though the particles experience significant mass loss due to evaporation. The variations in the LO spectra are found to be quantitatively in agreement with expectations from absorptive partitioning theory whereas the alphaP spectra suggest that the evaporation of alphaP derived aerosol appears to not be governed by partitioning theory. We postulate that this difference arises from the alphaP particles existing as in a glassy state instead of having the expected liquid-like behavior. To reconcile these observations with decades of aerosol growth measurements, which indicate that OA formation is described by equilibrium partitioning, we present a conceptual model wherein the secondary OA is formed and then rapidly converted from an absorbing form to a non-absorbing form. The results suggest that although OA growth may be describable by equilibrium partitioning theory, the properties of organic aerosol once formed may differ significantly from the properties determined in the equilibrium framework.

  19. Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis

    Directory of Open Access Journals (Sweden)

    Klöpper Tobias H

    2012-08-01

    Full Text Available Abstract Background Membrane-bound organelles are a defining feature of eukaryotic cells, and play a central role in most of their fundamental processes. The Rab G proteins are the single largest family of proteins that participate in the traffic between organelles, with 66 Rabs encoded in the human genome. Rabs direct the organelle-specific recruitment of vesicle tethering factors, motor proteins, and regulators of membrane traffic. Each organelle or vesicle class is typically associated with one or more Rab, with the Rabs present in a particular cell reflecting that cell's complement of organelles and trafficking routes. Results Through iterative use of hidden Markov models and tree building, we classified Rabs across the eukaryotic kingdom to provide the most comprehensive view of Rab evolution obtained to date. A strikingly large repertoire of at least 20 Rabs appears to have been present in the last eukaryotic common ancestor (LECA, consistent with the 'complexity early' view of eukaryotic evolution. We were able to place these Rabs into six supergroups, giving a deep view into eukaryotic prehistory. Conclusions Tracing the fate of the LECA Rabs revealed extensive losses with many extant eukaryotes having fewer Rabs, and none having the full complement. We found that other Rabs have expanded and diversified, including a large expansion at the dawn of metazoans, which could be followed to provide an account of the evolutionary history of all human Rabs. Some Rab changes could be correlated with differences in cellular organization, and the relative lack of variation in other families of membrane-traffic proteins suggests that it is the changes in Rabs that primarily underlies the variation in organelles between species and cell types.

  20. A model for damage load and its implications for the evolution of bacterial aging.

    Directory of Open Access Journals (Sweden)

    Lin Chao

    2010-08-01

    Full Text Available Deleterious mutations appearing in a population increase in frequency until stopped by natural selection. The ensuing equilibrium creates a stable frequency of deleterious mutations or the mutational load. Here I develop the comparable concept of a damage load, which is caused by harmful non-heritable changes to the phenotype. A damage load also ensues when the increase of damage is opposed by selection. The presence of a damage load favors the evolution of asymmetrical transmission of damage by a mother to her daughters. The asymmetry is beneficial because it increases fitness variance, but it also leads to aging or senescence. A mathematical model based on microbes reveals that a cell lineage dividing symmetrically is immortal if lifetime damage rates do not exceed a threshold. The evolution of asymmetry allows the lineage to persist above the threshold, but the lineage becomes mortal. In microbes with low genomic mutation rates, it is likely that the damage load is much greater than the mutational load. In metazoans with higher genomic mutation rates, the damage and the mutational load could be of the same magnitude. A fit of the model to experimental data shows that Escherichia coli cells experience a damage rate that is below the threshold and are immortal under the conditions examined. The model estimates the asymmetry level of E. coli to be low but sufficient for persisting at higher damage rates. The model also predicts that increasing asymmetry results in diminishing fitness returns, which may explain why the bacterium has not evolved higher asymmetry.

  1. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior

    Science.gov (United States)

    Cappa, C. D.; Wilson, K. R.

    2011-03-01

    Vacuum Ultraviolet (VUV) photoionization mass spectrometry has been used to measure the evolution of chemical composition for two distinct organic aerosol types as they are passed through a thermodenuder at different temperatures. The two organic aerosol types considered are primary lubricating oil (LO) aerosol and secondary aerosol from the α-pinene + O3 reaction (αP). The evolution of the VUV mass spectra for the two aerosol types with temperature are observed to differ dramatically. For LO particles, the spectra exhibit distinct changes with temperature in which the lower m/z peaks, corresponding to compounds with higher vapor pressures, disappear more rapidly than the high m/z peaks. In contrast, the αP aerosol spectrum is essentially unchanged by temperature even though the particles experience significant mass loss due to evaporation. The variations in the LO spectra are found to be quantitatively in agreement with expectations from absorptive partitioning theory whereas the αP spectra suggest that the evaporation of αP derived aerosol appears to not be governed by partitioning theory. We postulate that this difference arises from diffusivity within the αP particles being sufficiently slow that they do not exhibit the expected liquid-like behavior and perhaps exist in a glassy state. To reconcile these observations with decades of aerosol growth measurements, which indicate that OA formation is described by equilibrium partitioning, we present a conceptual model wherein the secondary OA is formed and then rapidly converted from an absorbing form to a non-absorbing form. The results suggest that, although OA growth may be describable by equilibrium partitioning theory, the properties of organic aerosol once formed may differ significantly from the properties determined in the equilibrium framework.

  2. Decrease in circulating tryptophan availability to the brain after acute ethanol consumption by normal volunteers: implications for alcohol-induced aggressive behaviour and depression.

    Science.gov (United States)

    Badawy, A A; Morgan, C J; Lovett, J W; Bradley, D M; Thomas, R

    1995-10-01

    Acute ethanol consumption by fasting male volunteers decreases circulating trytophan (Trp) concentration and availability to the brain as determined by the ratio of (Trp) to the sum of its five competitors ([Trp]/[CAA]ratio). These effects of alcohol are specific to Trp, because levels of the 5 competitors are not increased. The decrease in circulating (Trp) is not associated with altered binding to albumin and may therefore be due to enhancement of hepatic Trp pyrrolase activity. It is suggested that, under these conditions brain serotonin synthesis is likely to be impaired and that, as a consequence, a possible strong depletion of brain serotonin in susceptible individuals may induce aggressive behaviour after alcohol consumption. The possible implications of these findings in the relationship between alcohol and depression are also briefly discussed.

  3. The Thermal Evolution of Mercury and the Implications for Volcanism, Topography and Geoid

    Science.gov (United States)

    Ziethe, Ruth; Benkhoff, Johannes

    2010-05-01

    Because of its close proximity to the Sun, the innermost planet of our solar system, Mercury, cannot be studied from the Earth against the dark sky. Among the terrestrial planets Mercury is not only the smallest, but also the densest (after correction for self-compression), has the oldest surface and is the least explored. Understanding this 'end member' among the earth-like planets seems to be crucial to improve the understanding of the formation of the solar system and the history of the Earth. For a long time only one spacecraft has visited Mercury up to now: MARINER 10. It imaged only about half of the planet's surface, while any details of the other hemisphere of Mercury have never been seen so far. Lately MESSENGER was launched and had two flybys on Mercury already, revealing a greater portion of the hermean surface and collecting more data. The BEPICOLOMBO spacecraft will be launched in 2014, arriving in 2020. Although MESSENGER will enter its orbit in 2011 already, the data basis remains relatively poor until then. We can therefore prepare ourselves for the upcoming results and perform test that allow some anticipation of the measured data. Because no material is available, which could have been analysed in a laboratory, numerical models are the most promising tool at the moment. The model shows the typical behaviour of a one-plate-planet, meaning the surface is not broken into several tectonic plates but the outside is a single rigid shell. The thermal evolution is generally charaterized by the growth of a massive lithosphere on top of the convecting mantle. The lower mantle and core cool comparatively little and stay at temperatures between 1900 K and 2000 K until about 2.0 Ga after the simulation was started. The stagnant lid comprises roughly half the mantle after only 0.5 Ga. Since the rigid lithosphere does not take part in the convection anymore, the heat coming from the interior (due to the cooling of the large core) can only be transported through

  4. The cultural evolution of language and brain: Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by Michael A. Arbib

    Science.gov (United States)

    Colagè, Ivan

    2016-03-01

    Michael A. Arbib's Mirror System Hypothesis (MSH) [1,2] is among the most elaborate attempts at disentangling the issue of language origin. I will focus on the role that cultural evolution, as distinct from biological (genetic) evolution, may have played in the emergence of "modern" human language (as contrasted with forms of proto-languages).

  5. Evolution of high-pressure mafic granulites and pelitic gneisses from NE Madagascar: Tectonic implications

    Science.gov (United States)

    Ishwar-Kumar, C.; Sajeev, K.; Windley, B. F.; Kusky, T. M.; Feng, P.; Ratheesh-Kumar, R. T.; Huang, Y.; Zhang, Y.; Jiang, X.; Razakamanana, T.; Yagi, K.; Itaya, T.

    2015-11-01

    The occurrence of high-pressure mafic-ultramafic bodies within major shear zones is one of the indicators of paleo-subduction. In mafic granulites of the Andriamena complex (north-eastern Madagascar) we document unusual textures including garnet-clinopyroxene-quartz coronas that formed after the breakdown of orthopyroxene-plagioclase-ilmenite. Textural evidence and isochemical phase diagram calculations in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2 system indicate a pressure-temperature (P-T) evolution from an isothermal (780 °C) pressure up to c. 24 kbar to decompression and cooling. Such a P-T trajectory is typically attained in a subduction zone setting where a gabbroic/ultramafic complex is subducted and later exhumed to the present crustal level during oceanic closure and final continental collision. The present results suggest that the presence of such deeply subducted rocks of the Andriamena complex is related to formation of the Betsimisaraka suture. LA-ICPMS U-Pb zircon dating of pelitic gneisses from the Betsimisaraka suture yields low Th/U ratios and protolith ages ranging from 2535 to 2625 Ma. A granitic gneiss from the Alaotra complex yields a zircon crystallization age of ca. 818 Ma and Th/U ratios vary from 1.08 to 2.09. K-Ar dating of muscovite and biotite from biotite-kyanite-sillimanite gneiss and garnet-biotite gneiss yields age of 486 ± 9 Ma and 459 ± 9 Ma respectively. We have estimated regional crustal thicknesses in NE Madagascar using a flexural inversion technique, which indicates the presence of an anomalously thick crust (c. 43 km) beneath the Antananarivo block. This result is consistent with the present concept that subduction beneath the Antananarivo block resulted in a more competent and thicker crust. The textural data, thermodynamic model, and geophysical evidence together provide a new insight to the subduction history, crustal thickening and evolution of the high-pressure Andriamena complex and its link to the terminal

  6. The Distribution of Antarctic Subglacial Lake Environments With Implications for Their Origin and Evolution

    Science.gov (United States)

    Blankenship, D. D.; Young, D. A.; Carter, S. P.

    2006-12-01

    Ice-penetrating radar records across the Antarctic Ice Sheet show regions with strong flat mirror-like reflections from the subglacial interface that are interpreted to be from subglacial lakes. The majority of subglacial lakes are found in East Antarctica, primarily in topographically low areas of basins beneath the thick ice divides. Occasionally lakes are observed "perched" at higher elevations within local depressions of rough morphological regions. In addition, a correlation between the "onset" of enhanced glacial flow and subglacial lakes was identified. The greatest concentration of known lakes was found in the vicinity of Dome C. A second grouping of lakes lying near Ridge B includes Lake Vostok and several smaller lakes. Subglacial lakes were also discovered near the South Pole, within eastern Wilkes Land, west of the Transantarctic Mountains, and within West Antarctica's Whitmore Mountains. Aside from Lake Vostok, typical lengths of subglacial lakes were found to range from a few to about 20 kilometers. A recent inventory includes 145 subglacial lakes. Approximately 81% of detected lakes lie at elevations less than a few hundred meters above sea level while the majority of the remaining lakes are "perched" at higher elevations. We present the locations from the subglacial lake inventory on local "ice divides" calculated from the satellite derived surface elevations with and find the distance of each lake from these divides. Most significantly, we found that 66% of the lakes identified lie within 50 km of a local ice divide and 88% lie within 100 km of a local divide. In particular, note that lakes located far from the Dome C/Ridge B cluster and even those associated with very narrow catchments lie either on or within a few tens of kilometers of the local divide marked by the catchment boundary. The distance correlation of subglacial lakes with local ice divides leads to a fundamental question for the evolution of subglacial lake environments: Does the

  7. Evolution of motion uncertainty in rectal cancer: implications for adaptive radiotherapy

    Science.gov (United States)

    Kleijnen, Jean-Paul J. E.; van Asselen, Bram; Burbach, Johannes P. M.; Intven, Martijn; Philippens, Marielle E. P.; Reerink, Onne; Lagendijk, Jan J. W.; Raaymakers, Bas W.

    2016-01-01

    Reduction of motion uncertainty by applying adaptive radiotherapy strategies depends largely on the temporal behavior of this motion. To fully optimize adaptive strategies, insight into target motion is needed. The purpose of this study was to analyze stability and evolution in time of motion uncertainty of both the gross tumor volume (GTV) and clinical target volume (CTV) for patients with rectal cancer. We scanned 16 patients daily during one week, on a 1.5 T MRI scanner in treatment position, prior to each radiotherapy fraction. Single slice sagittal cine MRIs were made at the beginning, middle, and end of each scan session, for one minute at 2 Hz temporal resolution. GTV and CTV motion were determined by registering a delineated reference frame to time-points later in time. The 95th percentile of observed motion (dist95%) was taken as a measure of motion. The stability of motion in time was evaluated within each cine-MRI separately. The evolution of motion was investigated between the reference frame and the cine-MRIs of a single scan session and between the reference frame and the cine-MRIs of several days later in the course of treatment. This observed motion was then converted into a PTV-margin estimate. Within a one minute cine-MRI scan, motion was found to be stable and small. Independent of the time-point within the scan session, the average dist95% remains below 3.6 mm and 2.3 mm for CTV and GTV, respectively 90% of the time. We found similar motion over time intervals from 18 min to 4 days. When reducing the time interval from 18 min to 1 min, a large reduction in motion uncertainty is observed. A reduction in motion uncertainty, and thus the PTV-margin estimate, of 71% and 75% for CTV and tumor was observed, respectively. Time intervals of 15 and 30 s yield no further reduction in motion uncertainty compared to a 1 min time interval.

  8. Evolution of genomic imprinting with biparental care: implications for Prader-Willi and Angelman syndromes.

    Directory of Open Access Journals (Sweden)

    Francisco Ubeda

    2008-08-01

    Full Text Available The term "imprinted gene" refers to genes whose expression is conditioned by their parental origin. Among theories to unravel the evolution of genomic imprinting, the kinship theory prevails as the most widely accepted, because it sheds light on many aspects of the biology of imprinted genes. While most assumptions underlying this theory have not escaped scrutiny, one remains overlooked: mothers are the only source of parental investment in mammals. But, is it reasonable to assume that fathers' contribution of resources is negligible? It is not in some key mammalian orders including humans. In this research, I generalize the kinship theory of genomic imprinting beyond maternal contribution only. In addition to deriving new conditions for the evolution of imprinting, I have found that the same gene may show the opposite pattern of expression when the investment of one parent relative to the investment of the other changes; the reversion, interestingly, does not require that fathers contribute more resources than mothers. This exciting outcome underscores the intimate connection between the kinship theory and the social structure of the organism considered. Finally, the insight gained from my model enabled me to explain the clinical phenotype of Prader-Willi syndrome. This syndrome is caused by the paternal inheritance of a deletion of the PWS/AS cluster of imprinted genes in human Chromosome 15. As such, children suffering from this syndrome exhibit a striking biphasic phenotype characterized by poor sucking and reduced weight before weaning but by voracious appetite and obesity after weaning. Interest in providing an evolutionary explanation to such phenotype is 2-fold. On the one hand, the kinship theory has been doubted as being able to explain the symptoms of patients with Prader-Willi. On the other hand, the post-weaning symptoms remain as one of the primary concern of pediatricians treating children with Prader-Willi. In this research, I

  9. Outcomes of co-infection by two potyviruses: implications for the evolution of manipulative strategies.

    Science.gov (United States)

    Salvaudon, Lucie; De Moraes, Consuelo M; Mescher, Mark C

    2013-04-01

    Recent studies have documented effects of plant viruses on host plants that appear to enhance transmission by insect vectors. But, almost no empirical work has explored the implications of such apparent manipulation for interactions among co-infecting pathogens. We examined single and mixed infections of two potyviruses, watermelon mosaic virus (WMV) and zucchini yellow mosaic virus (ZYMV), that frequently co-occur in cucurbitaceae populations and share the same aphid vectors. We found that ZYMV isolates replicated at similar rates in single and mixed infections, whereas WMV strains accumulated to significantly lower levels in the presence of ZYMV. Furthermore, ZYMV induced changes in leaf colour and volatile emissions that enhanced aphid (Aphis gossypii) recruitment to infected plants. By contrast, WMV did not elicit strong effects on plant-aphid interactions. Nevertheless, WMV was still readily transmitted from mixed infections, despite fairing poorly in in-plant competition. These findings suggest that pathogen effects on host-vector interactions may well influence competition among co-infecting pathogens. For example, if non-manipulative pathogens benefit from the increased vector traffic elicited by manipulative competitors, their costs of competition may be mitigated to some extent. Conversely, the benefits of manipulation may be limited by free-rider effects in systems where there is strong competition among pathogens for host resources and/or access to vectors. PMID:23407835

  10. Adaptive Evolution of cry Genes in Bacillus thuringiensis:Implications for Their Specificity Determination

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The cry gene family, produced during the late exponential phase of growth in Bacillus thuringiensis, is a large, still-growing family of homologous genes, in which each gene encodes a protein with strong specific activity against only one or a few insect species. Extensive studies are mostly focusing on the structural and functional relationships of Cry proteins, and have revealed several residues or domains that are important for the target recognition and receptor attachment. In this study,we have employed a maximum likelihood method to detect evidence of adaptive evolution in Cry proteins, and have identified 24 positively selected residues, which are all located in Domain Ⅱ or Ⅲ. Combined with known data from mutagenesis studies, the majority of these residues, at the molecular level, contribute much to the insect specificity determination. We postulate that the potential pressures driving the diversification of Cry proteins may be in an attempt to adapt for the "arm race" between δ-endotoxins and the targeted insects, or to enlarge their target spectra, hence result in the functional divergence. The sites identified to be under positive selection would provide targets for further structural and functional analyses on Cry proteins.

  11. Organics Produced by Irradiation of Frozen and Liquid HCN Solutions: Implications for Chemical Evolution Studies

    Science.gov (United States)

    Colín-García, M.; Negrón-Mendoza, A.; Ramos-Bernal, S.

    2009-04-01

    Hydrogen cyanide (HCN), an important precursor of organic compounds, is widely present in extraterrestrial environments. HCN is also readily synthesized in prebiotic simulation experiments. To gain insight into the radiation chemistry of one of the most important and highly versatile constituents of cometary ices, we examined the behavior of over-irradiated frozen and liquid HCN solutions under ionizing radiation. The samples were exposed to gamma radiation at a dose range from 0 up to 419 kGy. Ultraviolet spectroscopy and gas chromatography were used to follow the process. The analyses confirmed that gamma-ray irradiation of liquid HCN solutions generates several organic products. Many of them are essential to life; we verified the presence of carboxylic acids (some of them members of the Krebs cycle) as well as free amino acids and urea. These are the first studies to reveal the presence of these compounds in experiments performed at low temperatures and bulk irradiation. Organic material was produced even at low temperatures and low radiation doses. This work strongly supports the presumption that, as a parent molecule, HCN played a central essential role in the process of chemical evolution on early Earth, comets, and other extraterrestrial environments.

  12. Seismic Interpretation of the Nam Con Son Basin and its Implication for the Tectonic Evolution

    Directory of Open Access Journals (Sweden)

    Nguyen Quang Tuan

    2016-08-01

    Full Text Available The Nam Con Son Basin covering an area of circa 110,000 km2 is characterized by complex tectonic settings of the basin which has not fully been understood. Multiple faults allowed favourable migration passageways for hydrocarbons to go in and out of traps. Despite a large amount of newly acquired seismic and well data there is no significant update on the tectonic evolution and history of the basin development. In this study, the vast amount of seismic and well data were integrated and reinterpreted to define the key structural events in the Nam Con Son Basin. The results show that the basin has undergone two extentional phases. The first N - S extensional phase terminated at around 30 M.a. forming E - W trending grabens which are complicated by multiple half grabens filled by Lower Oligocene sediments. These grabens were reactivated during the second NW - SE extension (Middle Miocene, that resulted from the progressive propagation of NE-SW listric fault from the middle part of the grabens to the margins, and the large scale building up of roll-over structure. Further to the SW, the faults of the second extentional phase turn to NNE-SSW and ultimately N - S in the SW edge of the basin. Most of the fault systems were inactive by Upper Miocene except for the N - S fault system which is still active until recent time.

  13. The Geobacillus Pan-Genome: Implications for the Evolution of the Genus

    Science.gov (United States)

    Bezuidt, Oliver K.; Pierneef, Rian; Gomri, Amin M.; Adesioye, Fiyin; Makhalanyane, Thulani P.; Kharroub, Karima; Cowan, Don A.

    2016-01-01

    The genus Geobacillus is comprised of a diverse group of spore-forming Gram-positive thermophilic bacterial species and is well known for both its ecological diversity and as a source of novel thermostable enzymes. Although the mechanisms underlying the thermophilicity of the organism and the thermostability of its macromolecules are reasonably well understood, relatively little is known of the evolutionary mechanisms, which underlie the structural and functional properties of members of this genus. In this study, we have compared 29 Geobacillus genomes, with a specific focus on the elements, which comprise the conserved core and flexible genomes. Based on comparisons of conserved core and flexible genomes, we present evidence of habitat delineation with specific Geobacillus genomes linked to specific niches. Our analysis revealed that Geobacillus and Anoxybacillus share a high proportion of genes. Moreover, the results strongly suggest that horizontal gene transfer is a major factor deriving the evolution of Geobacillus from Bacillus, with genetic contributions from other phylogenetically distant taxa. PMID:27252683

  14. The Composition of the Sagittarius Dwarf Spheroidal Galaxy and Implications for Nucleosynthesis and Chemical Evolution

    CERN Document Server

    McWilliam, A; William, Andrew Mc; Smecker-Hane, Tammy A.

    2004-01-01

    We outline the results of a study of the chemical composition of 14 stars in the Sagittarius dwarf spheroidal galaxy (Sgr dSph). For the Sgr dSph stars with [Fe/H]>-1 the abundances are highly unusual, showing a striking enhancement in heavy s-process elements, increasing with [Fe/H], deficiencies of the alpha- elements (O, Si, Ca, and Ti), deficiencies of Al and Na, and deficiencies of the iron-peak elements Mn and Cu. Our abundances suggest that the composition of the metal-rich Sgr dSph stars is dominated by the ejecta of an old, metal-poor population, including products of AGB stars and type Ia supernovae (SN). We suggest two scenarios to explain the observations: Prolonged chemical evolution in a galaxy experiencing significant mass-loss, and chemical enrichment with episodic bursts of star formation. The Galactic globular cluster Omega Cen, and the Fornax dwarf galaxy show similar abundance patterns, which suggests that those systems evolved similar to the Sgr dSph.

  15. Observations of dwarfs in nearby voids: implications for galaxy formation and evolution

    CERN Document Server

    Pustilnik, Simon A

    2014-01-01

    The intermediate results of the ongoing study of deep samples of ~200 galaxies residing in nearby voids, are presented. Their properties are probed via optical spectroscopy, ugri surface photometry, and HI 21-cm line measurements, with emphasis on their evolutionary status. We derive directly the hydrogen mass M(HI), the ratio M(HI)/L_B and the evolutionary parameter gas-phase O/H. Their luminosities and integrated colours are used to derive stellar mass M(*) and the second evolutionary parameter -- gas mass-fraction f_g. The colours of the outer parts, typically representative of the galaxy oldest stellar population, are used to estimate the upper limits on time since the beginning of the main SF episode. We compare properties of void galaxies with those of the similar late-type galaxies in denser environments. Most of void galaxies show smaller O/H for their luminosity, in average by ~30%, indicating slower evolution. Besides, the fraction of ~10% of the whole void sample or ~30% of the least luminous void ...

  16. The Evolution of Pristine Gas: Implications for Milky Way Halo Stars

    Science.gov (United States)

    Sarmento, Richard J.; Scannapieco, Evan; Pan, Liubin

    2016-06-01

    We implement a new subgrid model for turbulent mixing to accurately follow the cosmological evolution of the first stars, the mixing of their supernova ejecta and the impact on the chemical composition of the Galactic Halo. Using the cosmological adaptive mesh refinement code RAMSES, we implement a model for the pollution of pristine gas as described in Pan et al. (2013). This allows us to account for the fraction of Z generated by Pop III supernovae. These metals are taken up by second-generation stars and are likely to lead to unique abundance signatures characteristic of carbon enhanced, metal poor (CEMP) stars. As an illustrative example, we associate primordial metals with abundance ratios used by Keller at al (2014) to explain the source of metals in the star SMSS J031300.36- 670839.3, finding good agreement with the observed [Fe/H], [C/H], [O/H] and [Mg/Ca] ratios in CEMP Milky Way (MW) halo stars.

  17. Evolution Of Massive Black Hole Binaries In Rotating Stellar Nuclei: Implications For Gravitational Wave Detection

    CERN Document Server

    Rasskazov, Alexander

    2016-01-01

    We compute the isotropic gravitational wave (GW) background produced by binary supermassive black holes (SBHs) in galactic nuclei. In our model, massive binaries evolve at early times via gravitational-slingshot interaction with nearby stars, and at later times by the emission of GWs. Our expressions for the rate of binary hardening in the "stellar" regime are taken from the recent work of Vasiliev et al., who show that in the non-axisymmetric galaxies expected to form via mergers, stars are supplied to the center at high enough rates to ensure binary coalescence on Gyr timescales. We also include, for the first time, the extra degrees of freedom associated with evolution of the binary's orbital plane; in rotating nuclei, interaction with stars causes the orientation and the eccentricity of a massive binary to change in tandem, leading in some cases to very high eccentricities (e>0.9) before the binary enters the GW-dominated regime. We argue that previous studies have over-estimated the mean ratio of SBH mas...

  18. Interactions between topographically and thermally forced stationary waves: implications for ice-sheet evolution

    Directory of Open Access Journals (Sweden)

    Johan Liakka

    2012-01-01

    Full Text Available This study examines mutual interactions between stationary waves and ice sheets using a dry atmospheric primitive-equation model coupled to a three-dimensional thermomechanical ice-sheet model. The emphasis is on how non-linear interactions between thermal and topographical forcing of the stationary waves influence the ice-sheet evolution by changing the ablation. Simulations are conducted in which a small ice cap, on an idealised Northern Hemisphere continent, evolves to an equilibrium continental-scale ice sheet. In the absence of stationary waves, the equilibrium ice sheet arrives at symmetric shape with a zonal equatorward margin. In isolation, the topographically induced stationary waves have essentially no impact on the equilibrium features of the ice sheet. The reason is that the temperature anomalies are located far from the equatorward ice margin. When forcing due to thermal cooling is added to the topographical forcing, thermally induced perturbation winds amplify the topographically induced stationary-wave response, which that serves to increase both the equatorward extent and the volume of the ice sheet. Roughly, a 10% increase in the ice volume is reported here. Hence, the present study suggests that the topographically induced stationary-wave response can be substantially enhanced by the high albedo of ice sheets.

  19. The Amphioxus SoxB Family: Implications for the Evolution of Vertebrate Placodes

    Directory of Open Access Journals (Sweden)

    Daniel Meulemans, Marianne Bronner-Fraser

    2007-01-01

    Full Text Available Cranial placodes are regions of thickened ectoderm that give rise to sense organs and ganglia in the vertebrate head. Homologous structures are proposed to exist in urochordates, but have not been found in cephalochordates, suggesting the first chordates lacked placodes. SoxB genes are expressed in discrete subsets of vertebrate placodes. To investigate how placodes arose and diversified in the vertebrate lineage we isolated the complete set of SoxB genes from amphioxus and analyzed their expression in embryos and larvae. We find that while amphioxus possesses a single SoxB2 gene, it has three SoxB1 paralogs. Like vertebrate SoxB1 genes, one of these paralogs is expressed in non-neural ectoderm destined to give rise to sensory cells. When considered in the context of other amphioxus placode marker orthologs, amphioxus SoxB1 expression suggests a diversity of sensory cell types utilizing distinct placode-type gene programs was present in the first chordates. Our data supports a model for placode evolution and diversification whereby the full complement of vertebrate placodes evolved by serial recruitment of distinct sensory cell specification programs to anterior pre-placodal ectoderm.

  20. Geomorphological evolution of badlands based on the dynamics of palaeo-channels and their implications

    Indian Academy of Sciences (India)

    V Ranga; S N Mohapatra; P Pani

    2015-07-01

    The badlands along the lower Chambal valley represent the worst case of water erosion in India. These badlands are believed to have developed due to neo-tectonic activities and, probably, strengthening of southwest monsoon in late Pleistocene–Holocene. Due to neo-tectonic activities, the Chambal River has undergone many changes before reaching to its present planform. This study reports palaeo-channels on the Chambal River’s right flank along its lower reaches. Salient features of the palaeo-channels and their relation to present spatial pattern of badlands are studied. These palaeo-channels have significantly influenced the development of badlands along the lower Chambal River and have given them distinct and conspicuous spatial patterns. In the light of the evidences, a modified schematic geomorphic evolution of badlands development is also proposed starting from a pre-incision scenario till the present day situation. A major modification in the proposed model is the multi-channel planform of the Chambal River before its incision.

  1. Whole genome comparative studies between chicken and turkey and their implications for avian genome evolution

    Directory of Open Access Journals (Sweden)

    Carré Wilfrid

    2008-04-01

    Full Text Available Abstract Background Comparative genomics is a powerful means of establishing inter-specific relationships between gene function/location and allows insight into genomic rearrangements, conservation and evolutionary phylogeny. The availability of the complete sequence of the chicken genome has initiated the development of detailed genomic information in other birds including turkey, an agriculturally important species where mapping has hitherto focused on linkage with limited physical information. No molecular study has yet examined conservation of avian microchromosomes, nor differences in copy number variants (CNVs between birds. Results We present a detailed comparative cytogenetic map between chicken and turkey based on reciprocal chromosome painting and mapping of 338 chicken BACs to turkey metaphases. Two inter-chromosomal changes (both involving centromeres and three pericentric inversions have been identified between chicken and turkey; and array CGH identified 16 inter-specific CNVs. Conclusion This is the first study to combine the modalities of zoo-FISH and array CGH between different avian species. The first insight into the conservation of microchromosomes, the first comparative cytogenetic map of any bird and the first appraisal of CNVs between birds is provided. Results suggest that avian genomes have remained relatively stable during evolution compared to mammalian equivalents.

  2. Molecular Gas Content of HI Monsters and Implications to Cold Gas Content Evolution in Galaxies

    CERN Document Server

    Lee, Cheoljong; Yun, Min S; Cybulski, Ryan; Narayanan, G; Erickson, N

    2014-01-01

    We present 12CO (J=1-0) observations of a sample of local galaxies (0.043e10Msun from the ALFALFA survey and 8 LSBs with a comparable M(HI) (>1.5e10Msun). Our sample selection is purely based on the amount of neutral hydrogen, thereby providing a chance to study how atomic and molecular gas relate to each other in these HI-massive systems. We have detected CO in 15 out of 20 ALFALFA selected galaxies and 4 out of 8 LSBs with molecular gas mass M(H2) of (1-11)e9Msun. Their total cold gas masses of (2-7e10Msun make them some of the most gas-massive galaxies identified to date in the Local Universe. Observed trends associated with HI, H2, and stellar properties of the HI massive galaxies and the field comparison sample are analyzed in the context of theoretical models of galaxy cold gas content and evolution, and the importance of total gas content and improved recipes for handling spatially differentiated behaviors of disk and halo gas are identified as potential areas of improvement for the modeling.

  3. Following The Cosmic Evolution Of Pristine Gas I: Implications For Milky Way Halo Stars

    CERN Document Server

    Sarmento, Richard; Pan, Liubin

    2016-01-01

    We make use of new subgrid model of turbulent mixing to accurately follow the cosmological evolution of the first stars, the mixing of their supernova ejecta, and the impact on the chemical composition of the Galactic Halo. Using the cosmological adaptive mesh refinement code RAMSES, we implement a model for the pollution of pristine gas as described in Pan et al. (2013). Tracking the metallicity of Pop III stars with metallicities below a critical value allows us to account for the fraction of Z < Zcrit stars formed even in regions in which the gas' average metallicity is well above Zcrit. We demonstrate that such partially-mixed regions account for 0.5 to 0.7 of all Pop III stars formed up to z = 5. Additionally, we track the creation and transport of "primordial metals" generated by Pop III supernovae (SNe). These metals are taken up by second-generation stars and likely lead to unique abundance signatures characteristic of carbon enhanced, metal poor (CEMP) stars. As an illustrative example, we associa...

  4. Microstructural analysis of faulting in quartzite, Assynt, NW Scotland: Implications for fault zone evolution

    Science.gov (United States)

    Knipe, Robert J.; Lloyd, Geoffrey E.

    1994-03-01

    Macroscopic fracture arrays, microstructures and interpreted deformation mechanisms are used to assess the development of a minor reverse fault (backthrust) in quartzite from the Moine Thrust Zone, Assynt, NW Scotland. Fracturing dominates the faulting via the progression: intragranular extension microcracks; transgranular, cataclasite absent extension fractures; through-going, cataclasite filled shear microfaults, within which fracturing and particulate flow operate. However, both diffusive mass transfer (DMT) and intracrystalline plasticity (low temperature plasticity, LTP) processes also contribute to the fault zone deformation and lead to distinct associations of deformation mechanisms (e.g., DMT-fracture and LTP-fracture or low-temperature ductile fracture, LTDF). Over a large range of scales the fault zone consists of blocks of relatively intact rock separated by narrow zones of intense deformation where fracture processes dominate. The populations of fragments/blocks of different sizes in the fault zone have a power-law relationship which is related to the dimension of the fault zone. These observations are used to develop a general model for fault zone evolution based on the distribution of deformation features as a function of either time or space. A systematic variation in the deformation rate: time histories is recognised, associated with different positions within the fault zone. Thus, the fault zone preserves elements of the “birth, life and death” sequences associated with the displacement history and strain accommodation.

  5. Revisiting the origin of modern humans in China and its implications for global human evolution

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The debates over the origin of modern humans have long been centered on two competing theories:the "Out-of-Africa"(single-place origin) theory and the "Multi-regional Evolution" theory.China is an extremely important region where many ancient human fossils were collected along with numerous associated faunal remains and artefacts.These cultural remains,unearthed from different areas in the country and covering a long time span,will help clarify the controversy.The study of cultural materials in China is expected to shed important light on biological evolutionary patterns and social and technical developments of those early humans as well as their environmental conditions.Based on the analysis of Chinese fossils and associated materials,in conjunction with some genetic studies,this paper aims at evaluating each of the two theories in order to stimulate more discussions.Our study suggests that the evolutionary model of "Continuity with Hybridization" is most relevant in reflecting the current understanding of human evolutionary history in China.Furthermore,we propose that the concept of regional diversity of evolutionary models should be seriously considered to illustrate different evolutionary modes applied to different parts of the world.

  6. Environmental and genetic sources of diversification in the timing of seed germination: implications for the evolution of bet hedging.

    Science.gov (United States)

    Simons, Andrew M; Johnston, Mark O

    2006-11-01

    .468) observed for a cohort's germination fraction over two seasons. We discuss implications of the results for the evolution of bet hedging and highlight the need for further empirical study of the causal components of diversification.

  7. The Jianchuan Basin, Yunnan: Implications on the Evolution of SE Tibet During the Eocene

    Science.gov (United States)

    Gourbet, L.; Mahéo, G.; Leloup, P. H.; Jean-Louis, P.; Sorrel, P.; Eymard, I.; Antoine, P. O.; Sterb, M.; Wang, G.; Cao, K.; Chevalier, M. L.; Lu, H.

    2015-12-01

    The Jianchuan basin, Yunnan Province, China, is the widest continental Cenozoic sedimentary basin in the southeastern Tibetan plateau. It is located ~10 km east of the Red River fault zone. Climatic simulations and palaeoenvironment studies suggest that SE Asia has experienced a variable intensity monsoon system for 40 Ma. Because sediments can record deformation, climate and environment changes, the Jianchuan basin provides the opportunity to assess the relative role of climate and tectonics on the Tibetan plateau formation. Sediments consist of floodplain siltites, massive fluvial sandstone, few carbonate levels, coal and volcanosedimentary deposits. U/Pb dating of zircons from dykes, volcanodetrital deposits and lava flows respectively cutting and interbedded within the sediments was performed by in-situ LA-ICPMS. All ages range from 38 to 35 Ma. Such absolute dating is confirmed by palaeontological evidence. Dental remains of Zaisanamynodonwere found in coal deposits. This giant Rhino lived in Asia during the Ergilian (late Eocene). Our data allow us to propose a revised stratigraphy for the Jianchuan basin: contrary to what was suggested by previous studies, i.e. a continuous sedimentation from the Paleocene to the Miocene, nearly no sedimentation occurred after 34 Ma. Combined with a sedimentological analysis, the data indicate that during the late Eocene, the Jianchuan area was covered by a large (>15 km) braided river system that coexisted with local transient lakes, in a moderate-slope and semi-arid environment. This major sedimentation event was followed by a period of more humid conditions that may be related to an intensification of the monsoon. The end of the sedimentation seems to be contemporaneous with the Ailao Shan-Red River fault activation. The new stratigraphy has also implications for regional studies that need robust age constraints, for example for reconstructing palaeoelevation or provenance of sediments.

  8. Low temperature thermochronology in the Eastern Alps: Implications for structural and topographic evolution

    Science.gov (United States)

    Wölfler, Andreas; Stüwe, Kurt; Danišík, Martin; Evans, Noreen J.

    2012-01-01

    According to new apatite fission track, zircon- and apatite (U–Th)/He data, we constrain the near-surface history of the southeastern Tauern Window and adjacent Austrolapine units. The multi-system thermochronological data demonstrate that age-elevation correlations may lead to false implications about exhumation and cooling in the upper crust. We suggest that isothermal warping in the Penninic units that are in the position of a footwall, is due to uplift, erosion and the buildup of topography. Additionally we propose that exhumation rates in the Penninic units did not increase during the Middle Miocene, thus during the time of lateral extrusion. In contrast, exhumation rates of the Austroalpine hangingwall did increase from the Paleogene to the Neogene and the isotherms in this unit were not warped. The new zircon (U–Th)/He ages as well as zircon fission track ages from the literature document a Middle Miocene exhumation pulse which correlates with a period of enhanced sediment accumulation during that time. However, enhanced sedimentation- and exhumation rates at the Miocene/Pliocene boundary, as observed in the Western- and Central Alps, cannot be observed in the Eastern Alps. This contradicts a climatic trigger for surface uplift, and makes a tectonic trigger and/or deep-seated mechanism more obvious to explain surface uplift in the Eastern Alps. In combination with already published geochronological ages, our new data demonstrate Oligocene to Late Miocene fault activity along the Möll valley fault that constitutes a major shear zone in the Eastern Alps. In this context we suggest a geometrical and temporal relationship of the Katschberg-, Polinik–Möll valley- and Mur–Mürz faults that define the extruding wedge in the eastern part of the Eastern Alps. Equal deformation- and fission track cooling ages along the Katschberg–Brenner- and Simplon normal faults demonstrate overall Middle Miocene extension in the whole alpine arc. PMID:27065501

  9. Hormones and phenotypic plasticity: Implications for the evolution of integrated adaptive phenotypes

    Institute of Scientific and Technical Information of China (English)

    Sean C.LEMA; Jun KITANO

    2013-01-01

    It is generally accepted that taxa exhibit genetic variation in phenotypic plasticity,but many questions remain unanswered about how divergent plastic responses evolve under dissimilar ecological conditions.Hormones are signaling molecules that act as proximate mediators of phenotype expression by regulating a variety of cellular,physiological,and behavioral responses.Hormones not only change cellular and physiological states but also influence gene expression directly or indirectly,thereby linking environmental conditions to phenotypic development.Studying how hormonal pathways respond to environmental variation and how those responses differ between individuals,populations,and species can expand our understanding of the evolution of phenotypic plasticity.Here,we explore the ways that the study of hormone signaling is providing new insights into the underlying proximate bases for individual,population or species variation in plasticity.Using several studies as exemplars,we examine how a 'norm of reaction' approach can be used in investigations of hormone-mediated plasticity to inform the following:1) how environmental cues affect the component hormones,receptors and enzymes that comprise any endocrine signaling pathway,2) how genetic and epigenetic variation in endocrine-associated genes can generate variation in plasticity among these diverse components,and 3) how phenotypes mediated by the same hormone can be coupled and decoupled via independent plastic responses of signaling components across target tissues.Future studies that apply approaches such as reaction norms and network modeling to questions concerning how hormones link environmental stimuli to ecologically-relevant phenotypic responses should help unravel how phenotypic plasticity evolves.

  10. Fish Ecology and Evolution in the World's Oxygen Minimum Zones and Implications of Ocean Deoxygenation.

    Science.gov (United States)

    Gallo, N D; Levin, L A

    2016-01-01

    Oxygen minimum zones (OMZs) and oxygen limited zones (OLZs) are important oceanographic features in the Pacific, Atlantic, and Indian Ocean, and are characterized by hypoxic conditions that are physiologically challenging for demersal fish. Thickness, depth of the upper boundary, minimum oxygen levels, local temperatures, and diurnal, seasonal, and interannual oxycline variability differ regionally, with the thickest and shallowest OMZs occurring in the subtropics and tropics. Although most fish are not hypoxia-tolerant, at least 77 demersal fish species from 16 orders have evolved physiological, behavioural, and morphological adaptations that allow them to live under the severely hypoxic, hypercapnic, and at times sulphidic conditions found in OMZs. Tolerance to OMZ conditions has evolved multiple times in multiple groups with no single fish family or genus exploiting all OMZs globally. Severely hypoxic conditions in OMZs lead to decreased demersal fish diversity, but fish density trends are variable and dependent on region-specific thresholds. Some OMZ-adapted fish species are more hypoxia-tolerant than most megafaunal invertebrates and are present even when most invertebrates are excluded. Expansions and contractions of OMZs in the past have affected fish evolution and diversity. Current patterns of ocean warming are leading to ocean deoxygenation, causing the expansion and shoaling of OMZs, which is expected to decrease demersal fish diversity and alter trophic pathways on affected margins. Habitat compression is expected for hypoxia-intolerant species, causing increased susceptibility to overfishing for fisheries species. Demersal fisheries are likely to be negatively impacted overall by the expansion of OMZs in a warming world. PMID:27573051

  11. Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution.

    Science.gov (United States)

    Robbins, L J; Lalonde, S V; Saito, M A; Planavsky, N J; Mloszewska, A M; Pecoits, E; Scott, C; Dupont, C L; Kappler, A; Konhauser, K O

    2013-07-01

    Here, we explore enrichments in paleomarine Zn as recorded by authigenic iron oxides including Precambrian iron formations, ironstones, and Phanerozoic hydrothermal exhalites. This compilation of new and literature-based iron formation analyses track dissolved Zn abundances and constrain the magnitude of the marine reservoir over geological time. Overall, the iron formation record is characterized by a fairly static range in Zn/Fe ratios throughout the Precambrian, consistent with the shale record (Scott et al., 2013, Nature Geoscience, 6, 125-128). When hypothetical partitioning scenarios are applied to this record, paleomarine Zn concentrations within about an order of magnitude of modern are indicated. We couple this examination with new chemical speciation models to interpret the iron formation record. We present two scenarios: first, under all but the most sulfidic conditions and with Zn-binding organic ligand concentrations similar to modern oceans, the amount of bioavailable Zn remained relatively unchanged through time. Late proliferation of Zn in eukaryotic metallomes has previously been linked to marine Zn biolimitation, but under this scenario the expansion in eukaryotic Zn metallomes may be better linked to biologically intrinsic evolutionary factors. In this case, zinc's geochemical and biological evolution may be decoupled and viewed as a function of increasing need for genome regulation and diversification of Zn-binding transcription factors. In the second scenario, we consider Archean organic ligand complexation in such excess that it may render Zn bioavailability low. However, this is dependent on Zn-organic ligand complexes not being bioavailable, which remains unclear. In this case, although bioavailability may be low, sphalerite precipitation is prevented, thereby maintaining a constant Zn inventory throughout both ferruginous and euxinic conditions. These results provide new perspectives and constraints on potential couplings between the

  12. Bedrock gorges in the central mainland Kachchh: Implications for landscape evolution

    Indian Academy of Sciences (India)

    M G Thakkar; B Goyal; A K Patidar; D M Maurya; L S Chamyal

    2006-04-01

    Kachchh possesses a fault-controlled first-order topography and several geomorphic features indicative of active tectonics.Though coseismic neotectonic activity is believed to be the major factor in the evolution of the landscape,detailed documentation and analysis of vital landscape features like drainage characteristics,bedrock gorges and terraces are lacking.The present study is a site-speci fic documentation of gorges developed in the central part of the mainland Kachchh.We analyzed and interpreted four gorges occurring on either side of Katrol Hill Fault (KHF).The Khari river gorge is endowed with six levels of bedrock terraces,some of which are studded with large potholes and flutings.Since no active development of potholes is observed along the rivers in the present day hyper-arid conditions,we infer an obvious linkage of gorges to the humid phases,which provided high energy runoff for the formation of gorges and distinct bedrock terraces and associated erosional features.Development of gorges within the miliolites and incision in the fluvial deposits to the south of the KHF indicates that the gorges were formed during Early Holocene.However,ubi-quitous occurrence of gorges along the streams to the south of KHF,the uniformly N40°E trend of the gorges,their close association with transverse faults and the short length of the exceptionally well developed Khari river gorge in the low-relief rocky plain to the north of KHF suggests an important role of neotectonic movements.

  13. Evolution of calcite growth morphology in the presence of magnesium: Implications for the dolomite problem

    Science.gov (United States)

    Hong, Mina; Xu, Jie; Teng, Henry H.

    2016-01-01

    The effect of magnesium on calcite growth morphology was known to occur as step rounding in some cases and surface segmentation in others. What remains unknown are the conditions for and the relations between the different effects, suggesting a lack of comprehensive understanding of the fundamental cause. Here we investigated the evolution of spiral hillock morphology on calcite cleavage surfaces in solutions with increasing Ca to Mg ratios and supersaturation levels using in situ atomic force microscopy. We isolated the effects of Mg and saturation by conducting experiments under conditions of constant pH, ionic strength, and Ca2+/CO32-. Our results revealed three types of morphological variations, ranging from step rounding in one direction (type I), to all directions (type II), and finally to a mosaic-like surface segmentation associated with monolayer buckling and step bunching (type III). These results suggest that the effect of magnesium on calcite growth depends upon multiple parameters including the concentration of Mg in solution, the step speed, as well as the extensiveness of Mg for Ca substitution in calcite lattice. We propose that the morphological variation may be understood by a model taken into consideration of (1) the lifespan and flux size of Mg ions at kinks in comparison to step kinetics, and (2) the diffusion and alignment of point defects created by the substitution of Mg for Ca in the crystal lattice. Stress calculations show that the maximum amount of Mg which calcite lattice can sustain before plastic deformation is ∼40%, suggesting that lattice stress due to the mismatch between MgCO3 and CaCO3 is likely the ultimate cause for the difficulty of ambient condition dolomite crystallization.

  14. Ultraviolet irradiation of bacteria under anaerobic conditions: implications for Prephanerozoic evolution

    International Nuclear Information System (INIS)

    The history of the rise of atmospheric oxygen and subsequent time of development of an ultraviolet light screening ozone layer has far reaching consequences in interpreting Prephanerozoic (4.5 to 0.6 billion years ago) evolution and ecology. A special anaerobic glove box was constructed to study the relative sensitivities of different groups of bacteria to uv light under varying conditions. Although there is no concensus concerning the oxygen concentration in the early atmosphere, total anoxic conditions were assumed in these studies. The flux of the uv radiation at 253.7 nm within the chamber is slightly higher than calculated from estimates of the present solar luminosity constant at this wavelength. Strict anaerobes, possibly direct decendants from early reducing conditions on Earth (e.g. Clostridium), facultative anaerobes (e.g. Escherichia, Enterobacter), and aerobes (e.g. Pseudomonas) were irradiated and examined for survival as a function of uv dosage. In these studies, photoreactivation, the amelioration of uv damage by visible light, was demonstrated for the first time to exist in an obligate anaerobe. The number of cells in unprotected cultures, exposed to 20 minutes of uv radiation is generally reduced by 99.9%. However, several mechanisms of protection were found: (1) photoreactivation, (2) absorption of uv by nitrates in aqueous irradiation media, (3) intertwiningof growing filaments into cohesive structures called mats, e.g. the matting habit, (4) dark enzymatic repair of photodamage; and (5) inherent radiation resistance. These experimental results coupled with a literature review of uv effects strongly suggests that the Berkner-Marshall hypothesis is no longer tenable

  15. Hormones and phenotypic plasticity: Implications for the evolution of integrated adaptive phenotypes

    Directory of Open Access Journals (Sweden)

    Sean C. LEMA, Jun KITANO

    2013-08-01

    Full Text Available It is generally accepted that taxa exhibit genetic variation in phenotypic plasticity, but many questions remain unanswered about how divergent plastic responses evolve under dissimilar ecological conditions. Hormones are signaling molecules that act as proximate mediators of phenotype expression by regulating a variety of cellular, physiological, and behavioral responses. Hormones not only change cellular and physiological states but also influence gene expression directly or indirectly, thereby linking environmental conditions to phenotypic development. Studying how hormonal pathways respond to environmental variation and how those responses differ between individuals, populations, and species can expand our understanding of the evolution of phenotypic plasticity. Here, we explore the ways that the study of hormone signaling is providing new insights into the underlying proximate bases for individual, population or species variation in plasticity. Using several studies as exemplars, we examine how a ‘norm of reaction’ approach can be used in investigations of hormone-mediated plasticity to inform the following: 1 how environmental cues affect the component hormones, receptors and enzymes that comprise any endocrine signaling pathway, 2 how genetic and epigenetic variation in endocrine-associated genes can generate variation in plasticity among these diverse components, and 3 how phenotypes mediated by the same hormone can be coupled and decoupled via independent plastic responses of signaling components across target tissues. Future studies that apply approaches such as reaction norms and network modeling to questions concerning how hormones link environmental stimuli to ecologically-relevant phenotypic responses should help unravel how phenotypic plasticity evolves [Current Zoology 59 (4: 506–525, 2013].

  16. Delimitation and phylogeny of Aletris (Nartheciaceae) with implications for perianth evolution

    Institute of Scientific and Technical Information of China (English)

    Yi-Min ZHAO; Wei WANG; Shu-Ren ZHANG

    2012-01-01

    Aletris,containing approximately 21 species,is the largest genus in Nartheciaceae,and is disjunctively distributed in eastern Asia and eastern North America.Its delimitation has been controversial because it is uncertain whether Metanarthecium should be included in the genus.Although there are a few molecular phylogenetic studies on Aletris,the interspecific relationships within the genus have never been evaluated in a phylogenetic context.Here we used two cpDNA loci,matK and trnL-F,to delimitate A letris and discuss the phylogeny within the genus.Phylogenetic analyses showed Metanarthecium might be distantly related to Aletris.This is also supported by morphological,palynological,cytological,and phytochemical data.Therefore,Metanarthecium should be excluded from Aletris.Within Aletris,there are two major clades:A.farinosa and A.lutea of eastern North America and A.glabra of eastern Asia form clade A; and the remaining Asian species form clade B.The Asian clade includes three subclades:subclade Ⅰ (two varieties ofA.pauciflora,and A.glandulifera and A.megalantha),subclade Ⅱ (three samples of A.laxiflora),and subclade Ⅲ (all other sampled Asian species).Based on phylogenetic relationships,A.pauciflora var.khasiana deserves a specific status,and A.gracilipes,formerly a synonym ofA.laxiflora,should be reinstated.The reconstruction of the perianth evolution indicates that perianth connate halfway and glabrous on abaxial surface are plesiomorphic for Aletris and Nartheciaceae.Farinose-glutinous perianth is a diagnostic character for clade A.

  17. Post-Gondwana geomorphic evolution of southwestern Africa: Implications for hte controls on landscape development from observations and numerical experiments

    Science.gov (United States)

    Gilchrist, Alan R.; Kooi, Henk; Beaumont, Christopher

    1994-01-01

    The relationship between morphology and surficial geology is used to quantify the denudation that has occurred across southwestern Africa sicne the fragmentation of Gondwana during the Early Mesozoic. Two main points emerge. Signficant denudation, of the order of kilometers, is widespread except in the Kalahari region of the continental interior. The denudation is systematically distributed so that the continental exterior catchment, draining directly to the Cape basin, is denuded to a greater depth than the interior catchment inland of the Great Escarpment. The analysis also implies tha the majority of the denudation occurred before the beginning of the Cenozoic for both teh exerior and interior catchments. Existing models of landscape development are reviewed, and implications of the denudation chronology are incorporated into a revised conceptual model. This revision implies tha thte primary effect of rifting on the subsequent landscape evolution is that it generates two distinct drainage regimes. A marginal upwarp, or rift flank uplift, separates rejuvenated rivers that drain into the subsiding rift from rivers in the continetal interior that are deflected but not rejuvenated. The two catchments evolve independently unless they are integrated by breaching of hte marginal upwarp. If this occurs, the exterior baselevel is communicated to the interior catchment that is denuded accordingly. Denudation rates generally decrease as the margin evolves, and this decrease is reinforced by the exposure of substrate that is resistant to denudation and/or a change to a more arid climate. The observations do not reveal a particular style of smaller-scale landscape evolution, sucha s escarpment retreat, that is responsible for the differential denudation across the region. It is proposed that numerical model experiments, which reflect the observational insights at the large scale, may identify the smaller-scale controls on escarpment development if the model and natural

  18. Post-Gondwana geomorphic evolution of southwestern Africa: Implications for hte controls on landscape development from observations and numerical experiments

    Science.gov (United States)

    Gilchrist, Alan R.; Kooi, Henk; Beaumont, Christopher

    1994-06-01

    The relationship between morphology and surficial geology is used to quantify the denudation that has occurred across southwestern Africa sicne the fragmentation of Gondwana during the Early Mesozoic. Two main points emerge. Signficant denudation, of the order of kilometers, is widespread except in the Kalahari region of the continental interior. The denudation is systematically distributed so that the continental exterior catchment, draining directly to the Cape basin, is denuded to a greater depth than the interior catchment inland of the Great Escarpment. The analysis also implies tha the majority of the denudation occurred before the beginning of the Cenozoic for both teh exerior and interior catchments. Existing models of landscape development are reviewed, and implications of the denudation chronology are incorporated into a revised conceptual model. This revision implies tha thte primary effect of rifting on the subsequent landscape evolution is that it generates two distinct drainage regimes. A marginal upwarp, or rift flank uplift, separates rejuvenated rivers that drain into the subsiding rift from rivers in the continetal interior that are deflected but not rejuvenated. The two catchments evolve independently unless they are integrated by breaching of hte marginal upwarp. If this occurs, the exterior baselevel is communicated to the interior catchment that is denuded accordingly. Denudation rates generally decrease as the margin evolves, and this decrease is reinforced by the exposure of substrate that is resistant to denudation and/or a change to a more arid climate. The observations do not reveal a particular style of smaller-scale landscape evolution, sucha s escarpment retreat, that is responsible for the differential denudation across the region. It is proposed that numerical model experiments, which reflect the observational insights at the large scale, may identify the smaller-scale controls on escarpment development if the model and natural

  19. Lsamp is implicated in the regulation of emotional and social behavior by use of alternative promoters in the brain.

    Science.gov (United States)

    Philips, Mari-Anne; Lilleväli, Kersti; Heinla, Indrek; Luuk, Hendrik; Hundahl, Christian Ansgar; Kongi, Karina; Vanaveski, Taavi; Tekko, Triin; Innos, Jürgen; Vasar, Eero

    2015-01-01

    Limbic system-associated membrane protein (LSAMP) is a neural cell adhesion molecule involved in neurite formation and outgrowth. The purpose of the present study was to characterize the distribution of alternatively transcribed Lsamp isoforms in the mouse brain and its implications on the regulation of behavior. Limbic system-associated membrane protein 1b transcript was visualized by using a mouse strain expressing beta-galactosidase under the control of Lsamp 1b promoter. The distribution of Lsamp 1a transcript and summarized expression of the Lsamp transcripts was investigated by non-radioactive in situ RNA hybridization analysis. Cross-validation was performed by using radioactive in situ hybridization with oligonucleotide probes. Quantitative RT-PCR was used to study correlations between the expression of Lsamp isoforms and behavioral parameters. The expression pattern of two promoters differs remarkably from the developmental initiation at embryonic day 12.5. Limbic system-associated membrane protein 1a promoter is active in "classic" limbic structures where the hippocampus and amygdaloid area display the highest expression. Promoter 1b is mostly active in the thalamic sensory nuclei and cortical sensory areas, but also in areas that regulate stress and arousal. Higher levels of Lsamp 1a transcript had significant correlations with all of the measures indicating higher trait anxiety in the elevated plus-maze test. Limbic system-associated membrane protein transcript levels in the hippocampus and ventral striatum correlated with behavioral parameters in the social interaction test. The data are in line with decreased anxiety and alterations in social behavior in Lsamp-deficient mice. We propose that Lsamp is involved in emotional and social operating systems by complex regulation of two alternative promoters.

  20. The Ocean and Crust of a Rapidly Accreting Neutron Star Implications for Magnetic Field Evolution and Thermonuclear Flashes

    CERN Document Server

    Brown, E F; Brown, Edward F.; Bildsten, Lars

    1998-01-01

    We investigate the atmosphere, ocean, and crust of neutron stars accreting at rates sufficiently high (typically in excess of the local Eddington limit) to stabilize the burning of accreted hydrogen and helium. For hydrogen-rich accretion at global rates in excess of 10^-8 solar masses per year (typical of a few neutron stars), we discuss the thermal state of the deep ocean and crust and their coupling to the neutron star core, which is heated by conduction (from the crust) and cooled by neutrino emission. We estimate the Ohmic diffusion time in the hot, deep crust and find that it is noticeably shortened (to less than 10^8 yr) from the values characteristic of the colder crusts in slowly accreting neutron stars. We speculate on the implications of these calculations for magnetic field evolution in the bright accreting X-ray sources. We also explore the consequences of rapid compression at local accretion rates exceeding ten times the Eddington rate. This rapid accretion heats the atmosphere/ocean to temperat...

  1. Avalonian crustal controls on basin evolution: implications for the Mesozoic basins of the southern North Sea

    Science.gov (United States)

    Smit, Jeroen; van Wees, Jan-Diederik; Cloetingh, Sierd

    2015-04-01

    Little is known of the Southern North Sea Basin's (SNSB) Pre-Permian basement due to a lack of outcrop and cores. The nature and structure of the East Avalonian crust and lithosphere remain even less constrained in the absence of deep seismic (refraction) lines. However, various studies have hinted at the importance of the Reactivation of the Early Carboniferous fault network during each consecutive Mesozoic and Cenozoic tectonic phase, demonstrating the key role of weak zones from the Early Carboniferous structural grain in partitioning of structural deformation and vertical basin motions at various scales. Although the older basin history and the basement attract increasing attention, the Pre-Permian tectonics of the SNSB remains little studied with most attention focused on the Permian and younger history. The strong dispersal of existing constraints requires a comprehensive study from Denmark to the UK, i.e. the East Avalonian microplate, bordered by the Variscan Rheïc suture, the Atlantic and Baltica. Based on an extensive literature study and the reinterpretation of publicly available data, linking constraints from the crust and mantle to stratigraphic-sedimentological information, we complement the map of Early Carboniferous rifting of East Avalonia and propose a new tectonic scenario. From the reinterpretation of the boundary between Avalonia and Baltica we propose a new outline for the Avalonian microplate with implications for the tectonics of the North German Basin. Furthermore, we highlight the nature and extent of the major crustal/lithospheric domains with contrasting structural behaviour and the major boundaries that separate them. Results shed light on the effects of long lived differences in crustal fabric that are responsible for spatial heterogeneity in stress and strain magnitudes and zonations of fracturing, burial history and temperature history. The geomechanical control of large crustal-scale fault structures will provide the constraints

  2. Mechanism of noradrenaline-induced stimulation of Na-K ATPase activity in the rat brain: implications on REM sleep deprivation-induced increase in brain excitability.

    Science.gov (United States)

    Mallick, Birendra Nath; Singh, Sudhuman; Singh, Abhishek

    2010-03-01

    Rapid eye movement (REM) sleep is a unique phenomenon expressed in all higher forms of animals. Its quantity varies in different species and with ageing; it is also affected in several psycho-somatic disorders. Several lines of studies showed that after REM sleep loss, the levels of noradrenaline (NA) increase in the brain. The NA in the brain modulates neuronal Na-K ATPase activity, which helps maintaining the brain excitability status. The detailed mechanism of increase in NA level after REM sleep loss and the effect of NA on stimulation of Na-K ATPase in the neurons have been discussed. The findings have been reviewed and discussed with an aim to understand the role of REM sleep in maintaining brain excitability status.

  3. Patterns and Implications of Gene Gain and Loss in the Evolution of Prochlorococcus

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla; Kettler, Gregory C.; Martiny, Adam C.; Huang, Katherine; Zucker, Jeremy; Coleman, Maureen L.; Rodrigue, Sebastien; Chen, Feng; Lapidus, Alla; Ferriera, Steven; Johnson, Justin; Steglich, Claudia; Church, George M.; Richardson, Paul; Chisholm, Sallie W.

    2007-07-30

    Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans and is the smallest known oxygenic phototroph. Numerous isolatesfrom diverse areas of the world's oceans have been studied and shown to be physiologically and genetically distinct. All isolates described thus far can be assigned to either a tightly clustered high-light (HL)-adapted clade, or a more divergent low-light (LL)-adapted group. The 16S rRNA sequences of the entire Prochlorococcus group differ by at most 3percent, and the four initially published genomes revealed patterns of genetic differentiation that help explain physiological differences among the isolates. Here we describe the genomes of eight newly sequenced isolates and combine them with the first four genomes for a comprehensive analysis of the core (shared by all isolates) and flexible genes of the Prochlorococcus group, and the patterns of loss and gain of the flexible genes over the course of evolution. There are 1,273 genes that represent the core shared by all 12 genomes. They are apparently sufficient, according to metabolic reconstruction, to encode a functional cell. We describe a phylogeny for all 12 isolates by subjecting their complete proteomes to three different phylogenetic analyses. For each non-core gene, we used a maximum parsimony method to estimate which ancestor likely first acquired or lost each gene. Many of the genetic differences among isolates, especially for genes involved in outer membrane synthesis and nutrient transport, are found within the same clade. Nevertheless, we identified some genes defining HL and LL ecotypes, and clades within these broad ecotypes, helping to demonstrate the basis of HL and LL adaptations in Prochlorococcus. Furthermore, our estimates of gene gain events allow us to identify highly variable genomic islands that are not apparent through simple pairwise comparisons. These results emphasize the functional roles, especially those connected to outer

  4. Patterns and implications of gene gain and loss in the evolution of Prochlorococcus.

    Directory of Open Access Journals (Sweden)

    Gregory C Kettler

    2007-12-01

    Full Text Available Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans and is the smallest known oxygenic phototroph. Numerous isolates from diverse areas of the world's oceans have been studied and shown to be physiologically and genetically distinct. All isolates described thus far can be assigned to either a tightly clustered high-light (HL-adapted clade, or a more divergent low-light (LL-adapted group. The 16S rRNA sequences of the entire Prochlorococcus group differ by at most 3%, and the four initially published genomes revealed patterns of genetic differentiation that help explain physiological differences among the isolates. Here we describe the genomes of eight newly sequenced isolates and combine them with the first four genomes for a comprehensive analysis of the core (shared by all isolates and flexible genes of the Prochlorococcus group, and the patterns of loss and gain of the flexible genes over the course of evolution. There are 1,273 genes that represent the core shared by all 12 genomes. They are apparently sufficient, according to metabolic reconstruction, to encode a functional cell. We describe a phylogeny for all 12 isolates by subjecting their complete proteomes to three different phylogenetic analyses. For each non-core gene, we used a maximum parsimony method to estimate which ancestor likely first acquired or lost each gene. Many of the genetic differences among isolates, especially for genes involved in outer membrane synthesis and nutrient transport, are found within the same clade. Nevertheless, we identified some genes defining HL and LL ecotypes, and clades within these broad ecotypes, helping to demonstrate the basis of HL and LL adaptations in Prochlorococcus. Furthermore, our estimates of gene gain events allow us to identify highly variable genomic islands that are not apparent through simple pairwise comparisons. These results emphasize the functional roles, especially those connected to

  5. Temporal evolution of wildfire ash and its implications for water pollution

    Science.gov (United States)

    Santin, Cristina; Doerr, Stefan H.; Otero, Xose L.; Chafer, Chris J.

    2015-04-01

    soluble major and trace elements. 'Aged ash' was richer in soil-derived elements (Al, Si and Fe) and exhibited higher bulk density and a lower rainfall storage capacity. We will discuss the similarities and differences between 'fresh' and 'aged' ash properties and identify the potential main threats to water quality derived from each of them. The water contamination potential from wildfire ash varies depending, among other factors, on the time between the production and transport of the ash into the hydrological system. Therefore, to evaluate the threat of wildfire ash to water quality, not only its intrinsic characteristics, but also its temporal evolution in conjunction with the probability of ash erosion to occur at a given time, need to be evaluated. These additional parameters highlight the complexity of the interaction of many different factors in the post-fire landscape.

  6. Detrital zircon age populations from the Moine Supergroup, Scotland, and their implications for tectonic evolution

    Science.gov (United States)

    Kindgren, Kelly; Steltenpohl, Mark; Strachan, Rob; Law, Rick; Cawood, Peter; Schwartz, Joshua

    2016-04-01

    absence of detrital grains younger than ~1050 Ma in the lower unit suggests evolution in the nature of rock units exposed in the source and/or a stratigraphic break between the upper and lower units of the succession. Furthermore, the age profile of the lower unit is consistent with, but not limited to, the interpretation that it correlates with the Torridon Group of the foreland, which has been argued to represent a foreland basin to the end Mesoproterozoic Grenville orogenic belt.

  7. Pharmaco-thermodynamics of deuterium-induced oedema in living rat brain via 1H2O MRI: implications for boron neutron capture therapy of malignant brain tumours

    International Nuclear Information System (INIS)

    In addition to its common usage as a tracer in metabolic and physiological studies, deuterium possesses anti-tumoural activity and confers protection against γ-irradiation. A more recent interest in deuterium emanates from the search for alternatives capable of improving neutron penetrance whilst reducing healthy tissue radiation dose deposition in boron neutron capture therapy of malignant brain tumours. Despite this potential clinical application, deuterium induces brain oedema, which is detrimental to neutron capture therapy. In this study, five adult male rats were titrated with deuterated drinking water while brain oedema was monitored via water proton magnetic resonance imaging. This report concludes that deuterium, as well as deuterium-induced brain oedema, possesses a uniform brain bio-distribution. At a steady-state blood fluid deuteration value of 16%, when the deuterium isotope fraction in drinking water was 25%, a mean oedematous volume change of 9 ± 2% (p-value <0.001) was observed in the rat brain-this may account for neurological and behavioural abnormalities found in mammals drinking highly deuterated water. In addition to characterizing the pharmaco-thermodynamics of deuterium-induced oedema, this report also estimates the impact of oedema on thermal neutron enhancement and effective dose reduction factors using simple linear transport calculations. While body fluid deuteration enhances thermal neutron flux penetrance and reduces dose deposition, oedema has the opposite effect because it increases the volume of interest, e.g., the brain volume. Thermal neutron enhancement and effective dose reduction factors could be reduced by as much as ∼10% in the presence of a 9% water volume increase (oedema)

  8. Whole Planet Coupling from Climate to Core: Implications for the Evolution of Rocky Planets and their Prospects for Habitability

    Science.gov (United States)

    Foley, B. J.; Driscoll, P. E.

    2015-12-01

    for preserving hydrogen, and therefore water, on the surface. Thus whole planet coupling between the magnetic field, atmosphere, mantle, and core is possible. We lay out the basic physics governing whole planet coupling, and discuss the implications this coupling has for the evolution of rocky planets and their prospects for hosting life.

  9. Brain cancer spreads

    DEFF Research Database (Denmark)

    Perryman, Lara; Erler, Janine Terra

    2014-01-01

    The discovery that ~20% of patients with brain cancer have circulating tumor cells breaks the dogma that these cells are confined to the brain and has important clinical implications (Müller et al., this issue).......The discovery that ~20% of patients with brain cancer have circulating tumor cells breaks the dogma that these cells are confined to the brain and has important clinical implications (Müller et al., this issue)....

  10. Human Development XIII: The Connection Between the Structure of the Overtone System and the Tone Language of Music. Some Implications for Our Understanding of the Human Brain

    Directory of Open Access Journals (Sweden)

    Søren Ventegodt

    2008-01-01

    Full Text Available The functioning brain behaves like one highly-structured, coherent, informational field. It can be popularly described as a “coherent ball of energy”, making the idea of a local highly-structured quantum field that carries the consciousness very appealing. If that is so, the structure of the experience of music might be a quite unique window into a hidden quantum reality of the brain, and even of life itself. The structure of music is then a mirror of a much more complex, but similar, structure of the energetic field of the working brain. This paper discusses how the perception of music is organized in the human brain with respect to the known tone scales of major and minor. The patterns used by the brain seem to be similar to the overtones of vibrating matter, giving a positive experience of harmonies in major. However, we also like the minor scale, which can explain brain patterns as fractal-like, giving a symmetric “downward reflection” of the major scale into the minor scale. We analyze the implication of beautiful and ugly tones and harmonies for the model. We conclude that when it comes to simple perception of harmonies, the most simple is the most beautiful and the most complex is the most ugly, but in music, even the most disharmonic harmony can be beautiful, if experienced as a part of a dynamic release of musical tension. This can be taken as a general metaphor of painful, yet meaningful, and developing experiences in human life.

  11. Three and half million year vegetation history of South West Africa and its implications for human evolution

    Science.gov (United States)

    Maslin, M. A.; Pancost, R. D.

    2010-12-01

    Ocean Drilling Program Site 1085 provides a continuous marine sediment record off South West Africa for at least the last three and half million years. The n-alkane carbon isotope record from this site records past vegetation and provides an indication of the moisture availability of SW Africa over this time period. We compared the n-alkane carbon isotope record with the soil carbonate carbon isotope records of East Africa to better understand the vegetation dynamics of Africa over the Plio-Pleistocene. In SW Africa very little variation, and no trend, is observed in the n-alkane carbon isotope record over 3 million years, suggesting stable long-term conditions despite large changes in East African tectonics and global climate. Slightly higher n-alkane carbon isotope values occur between 3.5 and 2.7 Ma suggesting slightly drier conditions than today. Between 2.5 and 2.7 Ma there is a shift to more negative n-alkane carbon isotope values suggesting slightly wetter conditions during a ~0.2 Ma episode that coincides with the intensification of Northern Hemisphere Glaciation (iNHG). From 2.5 to 0.4 Ma the n-alkane carbon isotope values are very consistent, varying by less than ±0.5 per mil and suggesting little or no long-term change in the moisture availability of South West Africa over the last 2.5 million years. This is in marked contrast to the East African long-term drying trend that was punctuated by periodic extreme wet and dry periods. The comparison of the climate history of these two regions suggests that Southern Africa may have been a safe refuge for hominins and other animals during the last 3.5 Myrs and thus important implications for our understand of early human evolution.

  12. Brain glycogen

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Müller, Margit S; Walls, Anne B;

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia....... In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies-it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic...... activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms...

  13. Spatiotemporal 16p11.2 protein network implicates cortical late mid-fetal brain development and KCTD13-Cul3-RhoA pathway in psychiatric diseases.

    Science.gov (United States)

    Lin, Guan Ning; Corominas, Roser; Lemmens, Irma; Yang, Xinping; Tavernier, Jan; Hill, David E; Vidal, Marc; Sebat, Jonathan; Iakoucheva, Lilia M

    2015-02-18

    The psychiatric disorders autism and schizophrenia have a strong genetic component, and copy number variants (CNVs) are firmly implicated. Recurrent deletions and duplications of chromosome 16p11.2 confer a high risk for both diseases, but the pathways disrupted by this CNV are poorly defined. Here we investigate the dynamics of the 16p11.2 network by integrating physical interactions of 16p11.2 proteins with spatiotemporal gene expression from the developing human brain. We observe profound changes in protein interaction networks throughout different stages of brain development and/or in different brain regions. We identify the late mid-fetal period of cortical development as most critical for establishing the connectivity of 16p11.2 proteins with their co-expressed partners. Furthermore, our results suggest that the regulation of the KCTD13-Cul3-RhoA pathway in layer 4 of the inner cortical plate is crucial for controlling brain size and connectivity and that its dysregulation by de novo mutations may be a potential determinant of 16p11.2 CNV deletion and duplication phenotypes.

  14. The role of docosahexaenoic and the marine food web as determinants of evolution and hominid brain development: the challenge for human sustainability.

    Science.gov (United States)

    Crawford, Michael A; Broadhurst, C Leigh

    2012-01-01

    Life originated on this planet about 3 billion years ago. For the first 2.5 billion years of life there was ample opportunity for DNA modification. Yet there is no evidence of significant change in life forms during that time. It was not until about 600 million years ago, when the oxygen tension rose to a point where air-breathing life forms became thermodynamically possible, that a major change can be abruptly seen in the fossil record. The sudden appearance of the 32 phyla in the Cambrian fossil record was also associated with the appearance of intracellular detail not seen in previous life forms. That detail was provided by cell membranes made with lipids (membrane fats) as structural essentials. Lipids thus played a major, as yet unrecognised, role as determinants in evolution. The compartmentalisation of intracellular, specialist functions as in the nucleus, mitochondria, reticulo-endothelial system and plasma membrane led to cellular specialisation and then speciation. Thus, not only oxygen but also the marine lipids were drivers in the Cambrian explosion. Docosahexaenoic acid (DHA) (all-cis-docosa-4,7,10,13,16,19-hexaenoic acid, C22:6ω3 or C22:6, n-3, DHA) is a major feature of marine lipids. It requires six oxygen atoms to insert its six double bonds, so it would not have been abundant before oxidative metabolism became plentiful. DHA provided the membrane backbone for the emergence of new photoreceptors that converted photons into electricity, laying the foundation for the evolution of other signalling systems, the nervous system and the brain. Hence, the ω3 DHA from the marine food web must have played a critical role in human evolution. There is also clear evidence from molecular biology that DHA is a determinant of neuronal migration, neurogenesis and the expression of several genes involved in brain growth and function. That same process was essential to the ultimate cerebral expansion in human evolution. There is now incontrovertible support of this

  15. The role of docosahexaenoic and the marine food web as determinants of evolution and hominid brain development: the challenge for human sustainability.

    Science.gov (United States)

    Crawford, Michael A; Broadhurst, C Leigh

    2012-01-01

    Life originated on this planet about 3 billion years ago. For the first 2.5 billion years of life there was ample opportunity for DNA modification. Yet there is no evidence of significant change in life forms during that time. It was not until about 600 million years ago, when the oxygen tension rose to a point where air-breathing life forms became thermodynamically possible, that a major change can be abruptly seen in the fossil record. The sudden appearance of the 32 phyla in the Cambrian fossil record was also associated with the appearance of intracellular detail not seen in previous life forms. That detail was provided by cell membranes made with lipids (membrane fats) as structural essentials. Lipids thus played a major, as yet unrecognised, role as determinants in evolution. The compartmentalisation of intracellular, specialist functions as in the nucleus, mitochondria, reticulo-endothelial system and plasma membrane led to cellular specialisation and then speciation. Thus, not only oxygen but also the marine lipids were drivers in the Cambrian explosion. Docosahexaenoic acid (DHA) (all-cis-docosa-4,7,10,13,16,19-hexaenoic acid, C22:6ω3 or C22:6, n-3, DHA) is a major feature of marine lipids. It requires six oxygen atoms to insert its six double bonds, so it would not have been abundant before oxidative metabolism became plentiful. DHA provided the membrane backbone for the emergence of new photoreceptors that converted photons into electricity, laying the foundation for the evolution of other signalling systems, the nervous system and the brain. Hence, the ω3 DHA from the marine food web must have played a critical role in human evolution. There is also clear evidence from molecular biology that DHA is a determinant of neuronal migration, neurogenesis and the expression of several genes involved in brain growth and function. That same process was essential to the ultimate cerebral expansion in human evolution. There is now incontrovertible support of this

  16. The evolution of a brain abscess the complementary roles of radionuclide (RN) and computed tomography (CT) scans

    International Nuclear Information System (INIS)

    Serial /sup 99m/Tc glucoheptonate brain scans demonstrated a brain abscess in a patient from the earliest phase of acute focal encephalitis (cerebritis) through the capsule formation and the recovery phase. The role of the RN and CT scans in the diagnosis of the early stage of cerebritis and the complementary nature of RN and CT scans in intracranial infections, particularly abscesses, are discussed. Guidelines for the use of RN and CT scans are suggested

  17. The evolution of a brain abscess the complementary roles of radionuclide (RN) and computed tomography (CT) scans

    Energy Technology Data Exchange (ETDEWEB)

    Masucci, E.F.; Sauerbrunn, B.J.

    1982-04-01

    Serial /sup 99m/Tc glucoheptonate brain scans demonstrated a brain abscess in a patient from the earliest phase of acute focal encephalitis (cerebritis) through the capsule formation and the recovery phase. The role of the RN and CT scans in the diagnosis of the early stage of cerebritis and the complementary nature of RN and CT scans in intracranial infections, particularly abscesses, are discussed. Guidelines for the use of RN and CT scans are suggested.

  18. Non-local quantum evolution of entangled ensemble states in neural nets and its significance for brain function and a theory of consciousness

    CERN Document Server

    Bieberich, E

    1999-01-01

    Current quantum theories of consciousness suggest a configuration space of an entangled ensemble state as global work space for conscious experience. This study will describe a procedure for adjustment of the singlet evolution of a quantum computation to a classical signal input by action potentials. The computational output of an entangled state in a single neuron will be selected in a network environment by "survival of the fittest" coupling with other neurons. Darwinian evolution of this coupling will result in a binding of action potentials to a convoluted orbit of phase-locked oscillations with harmonic, m-adic, or fractal periodicity. Progressive integration of signal inputs will evolve a present memory space independent from the history of construction. Implications for mental processes, e.g., associative memory, creativity, and consciousness will be discussed. A model for the generation of quantum coherence in a single neuron will be suggested.

  19. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer's disease.

    Science.gov (United States)

    Cunnane, Stephen C; Courchesne-Loyer, Alexandre; St-Pierre, Valérie; Vandenberghe, Camille; Pierotti, Tyler; Fortier, Mélanie; Croteau, Etienne; Castellano, Christian-Alexandre

    2016-03-01

    Brain glucose uptake is impaired in Alzheimer's disease (AD). A key question is whether cognitive decline can be delayed if this brain energy defect is at least partly corrected or bypassed early in the disease. The principal ketones (also called ketone bodies), β-hydroxybutyrate and acetoacetate, are the brain's main physiological alternative fuel to glucose. Three studies in mild-to-moderate AD have shown that, unlike with glucose, brain ketone uptake is not different from that in healthy age-matched controls. Published clinical trials demonstrate that increasing ketone availability to the brain via moderate nutritional ketosis has a modest beneficial effect on cognitive outcomes in mild-to-moderate AD and in mild cognitive impairment. Nutritional ketosis can be safely achieved by a high-fat ketogenic diet, by supplements providing 20-70 g/day of medium-chain triglycerides containing the eight- and ten-carbon fatty acids octanoate and decanoate, or by ketone esters. Given the acute dependence of the brain on its energy supply, it seems reasonable that the development of therapeutic strategies aimed at AD mandates consideration of how the underlying problem of deteriorating brain fuel supply can be corrected or delayed. PMID:26766547

  20. In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography.

    OpenAIRE

    Dowrick, T.; Blochet, C.; Holder, D

    2015-01-01

    In order to facilitate the imaging of haemorrhagic and ischaemic stroke using frequency difference electrical impedance tomography (EIT), impedance measurements of normal and ischaemic brain, and clotted blood during haemorrhage, were gathered using a four-terminal technique in an in vivo animal model, a first for ischaemic measurements. Differences of 5-10% in impedance were seen between the frequency spectrums of healthy and ischaemic brain, over the frequency range 0-3 kHz, while the spect...

  1. Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces

    OpenAIRE

    Panzeri, Stefano; Safaai, Houman; De Feo, Vito; Vato, Alessandro

    2016-01-01

    Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stim...

  2. Opiates Upregulate Adhesion Molecule Expression in Brain MicroVascular Endothelial Cells (BMVEC: Implications for Altered Blood Brain Barrier (BBB Permeability

    Directory of Open Access Journals (Sweden)

    Madhavan P.N. Nair

    2006-01-01

    Full Text Available The blood-brain barrier (BBB is an intricate cellular system composed of vascular endothelial cells and perivascular astrocytes that restrict the passage of immunocompetent cells into the central nervous system (CNS. Expression of the adhesion molecules, intercellular adhesion molecule 1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 on brain microvascular endothelial cells (BMVEC and their interaction with human immunodeficiency virus (HIV-1 viral proteins may help enhance viral adhesion and virus-cell fusion resulting in increased infectivity. Additionally, transmigration through the BBB is facilitated by both endothelial and monocyte/macrophage-derived nitric oxide (NO. Dysregulated production of NO by BMVEC due to opiates and HIV-1 viral protein interactions play a pivotal role in brain endothelial injury, resulting in the irreversible loss of BBB integrity, which may lead to enhanced infiltration of virus-carrying cells across the BBB. Opioids act as co-factors in the neuropathogenesis of HIV-1 by facilitating BBB dysfunction however, no studies have been done to investigate the role of opiates alone or in combination with HIV-1 viral proteins on adhesion molecule expression in BMVEC. We hypothesize that opiates such as heroin and morphine in conjunction with the HIV-1 viral protein gp120 increase the expression of adhesion molecules ICAM-1 and VCAM-1 and these effects are mediated via the modulation of NO. Results show that opiates alone and in synergy with gp120 increase both the genotypic and phenotypic expression of ICAM-1 and VCAM-1 by BMVEC, additionally, these opiate induced effects may be the result of increased NO production. These studies will provide a better understanding of how opiate abuse in conjunction with HIV-1 infection facilitates the breakdown of the BBB and exacerbates the neuropathogenesis of HIV-1. Elucidation of the mechanisms of BBB modulation will provide new therapeutic approaches to maintain BBB integrity

  3. Burkholderia pseudomallei penetrates the brain via destruction of the olfactory and trigeminal nerves: implications for the pathogenesis of neurological melioidosis.

    Science.gov (United States)

    St John, James A; Ekberg, Jenny A K; Dando, Samantha J; Meedeniya, Adrian C B; Horton, Rachel E; Batzloff, Michael; Owen, Suzzanne J; Holt, Stephanie; Peak, Ian R; Ulett, Glen C; Mackay-Sim, Alan; Beacham, Ifor R

    2014-01-01

    ABSTRACT Melioidosis is a potentially fatal disease that is endemic to tropical northern Australia and Southeast Asia, with a mortality rate of 14 to 50%. The bacterium Burkholderia pseudomallei is the causative agent which infects numerous parts of the human body, including the brain, which results in the neurological manifestation of melioidosis. The olfactory nerve constitutes a direct conduit from the nasal cavity into the brain, and we have previously reported that B. pseudomallei can colonize this nerve in mice. We have now investigated in detail the mechanism by which the bacteria penetrate the olfactory and trigeminal nerves within the nasal cavity and infect the brain. We found that the olfactory epithelium responded to intranasal B. pseudomallei infection by widespread crenellation followed by disintegration of the neuronal layer to expose the underlying basal layer, which the bacteria then colonized. With the loss of the neuronal cell bodies, olfactory axons also degenerated, and the bacteria then migrated through the now-open conduit of the olfactory nerves. Using immunohistochemistry, we demonstrated that B. pseudomallei migrated through the cribriform plate via the olfactory nerves to enter the outer layer of the olfactory bulb in the brain within 24 h. We also found that the bacteria colonized the thin respiratory epithelium in the nasal cavity and then rapidly migrated along the underlying trigeminal nerve to penetrate the cranial cavity. These results demonstrate that B. pseudomallei invasion of the nerves of the nasal cavity leads to direct infection of the brain and bypasses the blood-brain barrier. IMPORTANCE Melioidosis is a potentially fatal tropical disease that is endemic to northern Australia and Southeast Asia. It is caused by the bacterium Burkholderia pseudomallei, which can infect many organs of the body, including the brain, and results in neurological symptoms. The pathway by which the bacteria can penetrate the brain is unknown, and

  4. Fodrin in centrosomes: implication of a role of fodrin in the transport of gamma-tubulin complex in brain.

    Directory of Open Access Journals (Sweden)

    Sasidharan Shashikala

    Full Text Available Gamma-tubulin is the major protein involved in the nucleation of microtubules from centrosomes in eukaryotic cells. It is present in both cytoplasm and centrosome. However, before centrosome maturation prior to mitosis, gamma-tubulin concentration increases dramatically in the centrosome, the mechanism of which is not known. Earlier it was reported that cytoplasmic gamma-tubulin complex isolated from goat brain contains non-erythroid spectrin/fodrin. The major role of erythroid spectrin is to help in the membrane organisation and integrity. However, fodrin or non-erythroid spectrin has a distinct pattern of localisation in brain cells and evidently some special functions over its erythroid counterpart. In this study, we show that fodrin and γ-tubulin are present together in both the cytoplasm and centrosomes in all brain cells except differentiated neurons and astrocytes. Immunoprecipitation studies in purified centrosomes from brain tissue and brain cell lines confirm that fodrin and γ-tubulin interact with each other in centrosomes. Fodrin dissociates from centrosome just after the onset of mitosis, when the concentration of γ-tubulin attains a maximum at centrosomes. Further it is observed that the interaction between fodrin and γ-tubulin in the centrosome is dependent on actin as depolymerisation of microfilaments stops fodrin localization. Image analysis revealed that γ-tubulin concentration also decreased drastically in the centrosome under this condition. This indicates towards a role of fodrin as a regulatory transporter of γ-tubulin to the centrosomes for normal progression of mitosis.

  5. The 13th J. A. F. Stevenson memorial lecture. Sexual differentiation of the brain: possible mechanisms and implications.

    Science.gov (United States)

    Gorski, R A

    1985-06-01

    The mammalian brain appears to be inherently feminine and the action of testicular hormones during development is necessary for the differentiation of the masculine brain both in terms of functional potential and actual structure. Experimental evidence for this statement is reviewed in this discussion. Recent discoveries of marked structural sex differences in the central nervous system, such as the sexually dimorphic nucleus of the preoptic area in the rat, offer model systems to investigate potential mechanisms by which gonadal hormones permanently modify neuronal differentiation. Although effects of these steroids on neurogenesis and neuronal migration and specification have not been conclusively eliminated, it is currently believed, but not proven, that the principle mechanism of steroid action is to maintain neuronal survival during a period of neuronal death. The structural models of the sexual differentiation of the central nervous system also provide the opportunity to identify sex differences in neurochemical distribution. Two examples in the rat brain are presented: the distribution of serotonin-immunoreactive fibers in the medial preoptic nucleus and of tyrosine hydroxylase-immunoreactive fibers and cells in the anteroventral periventricular nucleus. It is likely that sexual dimorphisms will be found to be characteristic of many neural and neurochemical systems. The final section of this review raises the possibility that the brain of the adult may, in response to steroid action, be morphologically plastic, and considers briefly the likelihood that the brain of the human species is also influenced during development by the hormonal environment.

  6. Brain metabolite changes in subcortical regions after exposure to cuprizone for 6 weeks: potential implications for schizophrenia.

    Science.gov (United States)

    Yan, Gen; Xuan, Yinghua; Dai, Zhuozhi; Shen, Zhiwei; Zhang, Guishan; Xu, Haiyun; Wu, Renhua

    2015-01-01

    Cuprizone is a copper chelating agent able to selectively damage the white matter in the mouse brain. Recent studies have reported behavioral abnormalities relevant to some of schizophrenia symptoms. While associating white matter damage to the behavioral abnormalities, these previous studies did not rule out the possible impairment in neuronal functions in cuprizone-exposed mice. The aim of this study was to examine brain metabolites of the cuprizone-exposed mice by proton magnetic resonance spectroscopy ((1)H-MRS). The examined brain regions were the caudoputamen, midbrain, and thalamus; these subcortical regions showed different susceptibilities to cuprizone in terms of demyelination and oligodendrocyte loss in previous studies. Young C57BL/6 mice were fed a standard rodent chow without or with cuprizone (0.2 %) for 6 weeks. At the end, open-field and Y-maze tests were performed to measure the emotional and cognitive behaviors of the animals, followed by (1)H-MRS procedure to evaluate the brain metabolites. Cuprizone-exposure increased anxiety levels and impaired spatial working memory. The same treatment increased T2 signal intensity in the cerebral cortex, hippocampus, and caudoputamen, but not in the thalamus. Cuprizone-exposure decreased the concentrations of NAA and NAA+NAAG in caudoputamen, but not in thalamus and midbrain. It decreased levels of Cr+PCr, GPC+PCh and myo-inositol in all the three brain regions. These results provided neurochemical evidence for the impairment in neuronal functions by cuprizone treatment. PMID:25347963

  7. Vulnerability imposed by diet and brain trauma for anxiety-like phenotype: implications for post-traumatic stress disorders.

    Directory of Open Access Journals (Sweden)

    Ethika Tyagi

    Full Text Available Mild traumatic brain injury (mTBI, cerebral concussion is a risk factor for the development of psychiatric illness such as posttraumatic stress disorder (PTSD. We sought to evaluate how omega-3 fatty acids during brain maturation can influence challenges incurred during adulthood (transitioning to unhealthy diet and mTBI and predispose the brain to a PTSD-like pathobiology. Rats exposed to diets enriched or deficient in omega-3 fatty acids (n-3 during their brain maturation period, were transitioned to a western diet (WD when becoming adult and then subjected to mTBI. TBI resulted in an increase in anxiety-like behavior and its molecular counterpart NPY1R, a hallmark of PTSD, but these effects were more pronounced in the animals exposed to n-3 deficient diet and switched to WD. The n-3 deficiency followed by WD disrupted BDNF signaling and the activation of elements of BDNF signaling pathway (TrkB, CaMKII, Akt and CREB in frontal cortex. TBI worsened these effects and more prominently in combination with the n-3 deficiency condition. Moreover, the n-3 deficiency primed the immune system to the challenges imposed by the WD and brain trauma as evidenced by results showing that the WD or mTBI affected brain IL1β levels and peripheral Th17 and Treg subsets only in animals previously conditioned to the n-3 deficient diet. These results provide novel evidence for the capacity of maladaptive dietary habits to lower the threshold for neurological disorders in response to challenges.

  8. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function

    Directory of Open Access Journals (Sweden)

    Zhang Rui

    2011-10-01

    Full Text Available Abstract Background Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. Results We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. Conclusions RHOXF2 is a fast-evolving homeobox gene in primates. The rapid

  9. RM-06IN VITRO CLONAL EVOLUTION OF GLIOBLASTOMA (GBM) BRAIN TUMOUR INITIATING CELLS (BTIC) TO MODEL TUMOUR RECURRENCE

    OpenAIRE

    Qazi, Maleeha; Vora, Parvez; Venugopal, Chitra; McFarlane, Nicole; Hallett, Robin; Singh, Sheila

    2014-01-01

    Glioblastoma (GBM) is the most common and highly aggressive primary adult brain tumour. Despite multimodal therapy, patients on average experience relapse at 9 months and median survival rarely extends beyond 15 months. Targeting the cells that drive GBM formation as well as its inevitable and rapid recurrence has remained a major challenge, likely due to intra-tumoral heterogeneity. At the genetic level, this heterogeneity has prompted a molecular classification of GBM based on differential ...

  10. Inadequate supply of vitamins and DHA in the elderly: implications for brain aging and Alzheimer-type dementia.

    Science.gov (United States)

    Mohajeri, M Hasan; Troesch, Barbara; Weber, Peter

    2015-02-01

    Alzheimer's disease (AD) is the most prevalent, severe, and disabling cause of dementia worldwide. To date, AD therapy is primarily targeted toward palliative treatment of symptoms rather than prevention of disease progression. So far, no pharmacologic interventions have changed the onset or progression of AD and their use is accompanied by side effects. The major obstacle in managing AD and designing therapeutic strategies is the difficulty in retarding neuronal loss in the diseased brain once the pathologic events leading to neuronal death have started. Therefore, a promising alternative strategy is to maintain a healthy neuronal population in the aging brain for as long as possible. One factor evidently important for neuronal health and function is the optimal supply of nutrients necessary for maintaining normal functioning of the brain. Mechanistic studies, epidemiologic analyses, and randomized controlled intervention trials provide insight to the positive effects of docosahexaenoic acid (DHA) and micronutrients such as the vitamin B family, and vitamins E, C, and D, in helping neurons to cope with aging. These nutrients are inexpensive in use, have virtually no side effects when used at recommended doses, are essential for life, have established modes of action, and are broadly accepted by the general public. This review provides some evidence that the use of vitamins and DHA for the aging population in general, and for individuals at risk in particular, is a viable alternative approach to delaying brain aging and for protecting against the onset of AD pathology. PMID:25592004

  11. Blood-brain barrier transport and protein binding of flumazenil and iomazenil in the rat: implications for neuroreceptor studies

    DEFF Research Database (Denmark)

    Videbaek, C; Ott, P; Paulson, O B;

    1999-01-01

    The calculated fraction of receptor ligands available for blood-brain barrier passage in vivo (f(avail)) may differ from in vitro (f(eq)) measurements. This study evaluates the protein-ligand interaction for iomazenil and flumazenil in rats by comparing f(eq) and f(avail). Repeated measurements...

  12. Investigating the Educational Implications of Embodied Cognition: A Model Interdisciplinary Inquiry in Mind, Brain, and Education Curricula

    Science.gov (United States)

    Osgood-Campbell, Elisabeth

    2015-01-01

    Much educational neuroscience research investigates connections between cognition, neuroscience, and educational theory and practice without reference to the body. In contrast, proponents of embodied cognition posit that the bodily action and perception play a central role in cognitive development. Some researchers within the field of Mind, Brain,…

  13. Brain volume of the newly-discovered species Rhynchocyon udzungwensis (Mammalia: Afrotheria: Macroscelidea: implications for encephalization in sengis.

    Directory of Open Access Journals (Sweden)

    Jason A Kaufman

    Full Text Available The Gray-faced Sengi (Rhynchocyon udzungwensis is a newly-discovered species of sengi (elephant-shrew and is the largest known extant representative of the order Macroscelidea. The discovery of R. udzungwensis provides an opportunity to investigate the scaling relationship between brain size and body size within Macroscelidea, and to compare this allometry among insectivorous species of Afrotheria and other eutherian insectivores. We performed a spin-echo magnetic resonance imaging (MRI scan on a preserved adult specimen of R. udzungwensis using a 7-Tesla high-field MR imaging system. The brain was manually segmented and its volume was compiled into a dataset containing previously-published allometric data on 56 other species of insectivore-grade mammals including representatives of Afrotheria, Soricomorpha and Erinaceomorpha. Results of log-linear regression indicate that R. udzungwensis exhibits a brain size that is consistent with the allometric trend described by other members of its order. Inter-specific comparisons indicate that macroscelideans as a group have relatively large brains when compared with similarly-sized terrestrial mammals that also share a similar diet. This high degree of encephalization within sengis remains robust whether sengis are compared with closely-related insectivorous afrotheres, or with more-distantly-related insectivorous laurasiatheres.

  14. Brain volume of the newly-discovered species Rhynchocyon udzungwensis (Mammalia: Afrotheria: Macroscelidea): implications for encephalization in sengis.

    Science.gov (United States)

    Kaufman, Jason A; Turner, Gregory H; Holroyd, Patricia A; Rovero, Francesco; Grossman, Ari

    2013-01-01

    The Gray-faced Sengi (Rhynchocyon udzungwensis) is a newly-discovered species of sengi (elephant-shrew) and is the largest known extant representative of the order Macroscelidea. The discovery of R. udzungwensis provides an opportunity to investigate the scaling relationship between brain size and body size within Macroscelidea, and to compare this allometry among insectivorous species of Afrotheria and other eutherian insectivores. We performed a spin-echo magnetic resonance imaging (MRI) scan on a preserved adult specimen of R. udzungwensis using a 7-Tesla high-field MR imaging system. The brain was manually segmented and its volume was compiled into a dataset containing previously-published allometric data on 56 other species of insectivore-grade mammals including representatives of Afrotheria, Soricomorpha and Erinaceomorpha. Results of log-linear regression indicate that R. udzungwensis exhibits a brain size that is consistent with the allometric trend described by other members of its order. Inter-specific comparisons indicate that macroscelideans as a group have relatively large brains when compared with similarly-sized terrestrial mammals that also share a similar diet. This high degree of encephalization within sengis remains robust whether sengis are compared with closely-related insectivorous afrotheres, or with more-distantly-related insectivorous laurasiatheres.

  15. The Importance of Vocal Affect to Bimodal Processing of Emotion: Implications for Individuals with Traumatic Brain Injury

    Science.gov (United States)

    Zupan, Barbra; Neumann, Dawn; Babbage, Duncan R.; Willer, Barry

    2009-01-01

    Persons with traumatic brain injury (TBI) often have difficulty recognizing emotion in others. This is likely due to difficulties in interpreting non-verbal cues of affect. Although deficits in interpreting facial cues of affect are being widely explored, interpretation of vocal cues of affect has received much less attention. Accurate…

  16. Differential responsiveness of the right parahippocampal region to electrical stimulation in fixed human brains: Implications for historical surgical stimulation studies?

    Science.gov (United States)

    Rouleau, Nicolas; Persinger, Michael A

    2016-07-01

    If structure dictates function within the living human brain, then the persistence of specific responses to weak electric currents in fixed, deceased brains could reflect "hardwired" properties. Different key structures from the left and right hemispheres of brains that had been fixed for over 20years with ethanol-formalin-acetic acid were stimulated with either 1-Hz, 7-Hz, 10-Hz, 20-Hz, or 30-Hz, sine-wave, square-wave, or pulsed currents while needle-recorded quantitative electroencephalographic responses were obtained. Differential responses occurred only within the right hippocampus and parahippocampal gyrus. The right hippocampus displayed frequency-independent increases in gamma power relative to the left hemispheric homologue. The parahippocampal region responded exclusively to 7-Hz pulsed currents with wideband (8-30Hz) power. These profiles are consistent with dynamic connections associated with memory and consciousness and may partially explain the interactions resultant of pulse type and hemisphere for experiential elicitations during the golden age of surgical stimulations. The results also indicate that there may be an essential "hardwiring" within the human brain that is maintained for decades when it is fixed appropriately. PMID:27208828

  17. Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces.

    Science.gov (United States)

    Panzeri, Stefano; Safaai, Houman; De Feo, Vito; Vato, Alessandro

    2016-01-01

    Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state) that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brain. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately. PMID:27147955

  18. Implications of the dependence of neuronal activity on neural network states for the design of brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Stefano ePanzeri

    2016-04-01

    Full Text Available Brain-machine interfaces (BMIs can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brains. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  19. Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces.

    Science.gov (United States)

    Panzeri, Stefano; Safaai, Houman; De Feo, Vito; Vato, Alessandro

    2016-01-01

    Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state) that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brain. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  20. Two possible driving forces supporting the evolution of animal communication. Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by Michael A. Arbib

    Science.gov (United States)

    Moulin-Frier, Clément; Verschure, Paul F. M. J.

    2016-03-01

    In the target paper [1], M.A. Arbib proposes a quite exhaustive review of the (often computational) models developed during the last decades that support his detailed scenario on language evolution (the Mirror System Hypothesis, MSH). The approach considers that language evolved from a mirror system for grasping already present in LCA-m (the last common ancestor of macaques and humans), to a simple imitation system for grasping present in LCA-c (the last common ancestor of chimpanzees and humans), to a complex imitation system for grasping that developed in the hominid line since that ancestor. MSH considers that this complex imitation system is a key evolutionary step for a language-ready brain, providing all the required elements for an open-ended gestural communication system. The transition from the gestural (bracchio-manual and visual) to the vocal (articulatory and auditory) domain is supposed to be a less important evolutionary step.

  1. Neuropeptides as mediators of the early-life impact on the brain; implications for alcohol use disorders

    Directory of Open Access Journals (Sweden)

    Ingrid Nylander

    2012-07-01

    Full Text Available The brain is constantly exposed to external and internal input and to function in an ever-changing environment we are dependent on processes that enable the brain to adapt to new stimuli. Exposure to postnatal environmental stimuli can interfere with vital adaption processes and cause long-term changes in physiological function and behaviour. Early-life alterations in brain function may result in impaired ability to adapt to new situations, in altered sensitivity to challenges later in life and thereby mediate risk or protection for psychopathology such as alcohol use disorders (AUD. In clinical research the studies of mechanisms, mediators and causal relation between early environmental factors and vulnerability to AUD are restricted and attempts are made to find valid animal models for studies of the early-life influence on the brain. This review focuses on rodent models and the effects of adverse and naturalistic conditions on peptide networks within the brain and pituitary gland. Importantly, the consequences of alcohol addiction are not discussed but rather neurobiological alterations that can cause risk consumption and vulnerability to addiction. The article reviews earlier results and includes new data with emphasis on endogenous opioid peptides but also oxytocin and vasopressin. These peptides are vital for developmental processes and it is hypothesized that early-life changes in peptide networks may interfere with neuronal processes and thereby contribute the individual vulnerability for AUD. The summarized results indicate a link between early-life rearing conditions, opioids and ethanol consumption and that the ethanol-induced effects and the treatment with opioid antagonists later in life are dependent on early-life experiences. Endogenous opioids are therefore of interest to further study in the early-life impact on individual differences in vulnerability to AUD and treatment outcome.

  2. The Architecture of the Pollen Hoarding Syndrome in Honey Bees: Implications for Understanding Social Evolution, Behavioral Syndromes, and Selective Breeding

    OpenAIRE

    Rueppell, Olav

    2013-01-01

    International audience Social evolution has influenced every aspect of contemporary honey bee biology, but the details are difficult to reconstruct. The reproductive ground plan hypothesis of social evolution proposes that central regulators of the gonotropic cycle of solitary insects have been co-opted to coordinate social complexity in honey bees, such as the division of labor among workers. The predicted trait associations between reproductive physiology and social behavior have been id...

  3. Live-cell imaging to detect phosphatidylserine externalization in brain endothelial cells exposed to ionizing radiation: implications for the treatment of brain arteriovenous malformations.

    Science.gov (United States)

    Zhao, Zhenjun; Johnson, Michael S; Chen, Biyi; Grace, Michael; Ukath, Jaysree; Lee, Vivienne S; McRobb, Lucinda S; Sedger, Lisa M; Stoodley, Marcus A

    2016-06-01

    OBJECT Stereotactic radiosurgery (SRS) is an established intervention for brain arteriovenous malformations (AVMs). The processes of AVM vessel occlusion after SRS are poorly understood. To improve SRS efficacy, it is important to understand the cellular response of blood vessels to radiation. The molecular changes on the surface of AVM endothelial cells after irradiation may also be used for vascular targeting. This study investigates radiation-induced externalization of phosphatidylserine (PS) on endothelial cells using live-cell imaging. METHODS An immortalized cell line generated from mouse brain endothelium, bEnd.3 cells, was cultured and irradiated at different radiation doses using a linear accelerator. PS externalization in the cells was subsequently visualized using polarity-sensitive indicator of viability and apoptosis (pSIVA)-IANBD, a polarity-sensitive probe. Live-cell imaging was used to monitor PS externalization in real time. The effects of radiation on the cell cycle of bEnd.3 cells were also examined by flow cytometry. RESULTS Ionizing radiation effects are dose dependent. Reduction in the cell proliferation rate was observed after exposure to 5 Gy radiation, whereas higher radiation doses (15 Gy and 25 Gy) totally inhibited proliferation. In comparison with cells treated with sham radiation, the irradiated cells showed distinct pseudopodial elongation with little or no spreading of the cell body. The percentages of pSIVA-positive cells were significantly higher (p = 0.04) 24 hours after treatment in the cultures that received 25- and 15-Gy doses of radiation. This effect was sustained until the end of the experiment (3 days). Radiation at 5 Gy did not induce significant PS externalization compared with the sham-radiation controls at any time points (p > 0.15). Flow cytometric analysis data indicate that irradiation induced growth arrest of bEnd.3 cells, with cells accumulating in the G2 phase of the cell cycle. CONCLUSIONS Ionizing radiation

  4. Ancient homeobox gene loss and the evolution of chordate brain and pharynx development : deductions from amphioxus gene expression

    OpenAIRE

    Butts, Thomas; Holland, Peter W. H.; Ferrier, David Ellard Keith

    2010-01-01

    Homeobox genes encode a large superclass of transcription factors with widespread roles in animal development. Within chordates there are over 100 homeobox genes in the invertebrate cephalochordate amphioxus and over 200 in humans. Set against this general trend of increasing gene number in vertebrate evolution, some ancient homeobox genes that were present in the last common ancestor of chordates have been lost from vertebrates. Here, we describe the embryonic expression of four amphioxus de...

  5. Evident and latent plasticity across the rice diterpene synthase family with potential implications for the evolution of diterpenoid metabolism in the cereals

    Science.gov (United States)

    Morrone, Dana; Hillwig, Matthew L.; Mead, Matthew E.; Lowry, Luke; Fulton, D. Bruce; Peters, Reuben J.

    2013-01-01

    SYNOPSIS The evolution of natural products biosynthetic pathways can be envisioned to occur via a number of mechanisms. Here we provide evidence that latent plasticity plays a role in such metabolic evolution. In particular, rice (Oryza sativa) produces both ent- and syn-copalyl diphosphate (CPP), which are substrates for downstream diterpene synthases. Here we report that several members of this enzymatic family exhibit dual reactivity with some pairing of ent-, syn-, or normal CPP stereochemistry. Evident plasticity was observed, as a previously reported ent-sandaracopimaradiene synthase also converts syn-CPP to syn-labda-8(17),12E,14-triene, which can be found in planta. Notably, normal CPP is not naturally found in rice. Thus, the presence of diterpene synthases that react with this non-native metabolite reveals latent enzymatic/metabolic plasticity, providing biochemical capacity for utilization of such a novel substrate (i.e., normal CPP) that may arise during evolution, the implications of which are discussed. PMID:21323642

  6. Magma evolution and ascent at the Craters of the Moon and neighboring volcanic fields, southern Idaho, USA: implications for the evolution of polygenetic and monogenetic volcanic fields

    Science.gov (United States)

    Putirka, Keith D.; Kuntz, Mel A.; Unruh, Daniel M.; Vaid, Nitin

    2009-01-01

    The evolution of polygenetic and monogenetic volcanic fields must reflect differences in magma processing during ascent. To assess their evolution we use thermobarometry and geochemistry to evaluate ascent paths for neighboring, nearly coeval volcanic fields in the Snake River Plain, in south-central Idaho, derived from (1) dominantly Holocene polygenetic evolved lavas from the Craters of the Moon lava field (COME) and (2) Quaternary non-evolved, olivine tholeiites (NEOT) from nearby monogenetic volcanic fields. These data show that NEOT have high magmatic temperatures (1205 + or - 27 degrees C) and a narrow temperature range (50 degrees C). Prolonged storage of COME magmas allows them to evolve to higher 87Sr/86Sr and SiO2, and lower MgO and 143Nd/144Nd. Most importantly, ascent paths control evolution: NEOT often erupt near the axis of the plain where high-flux (Yellowstone-related), pre-Holocene magmatic activity replaces granitic middle crust with basaltic sills, resulting in a net increase in NEOT magma buoyancy. COME flows erupt off-axis, where felsic crustal lithologies sometimes remain intact, providing a barrier to ascent and a source for crustal contamination. A three-stage ascent process explains the entire range of erupted compositions. Stage 1 (40-20 km): picrites are transported to the middle crust, undergoing partial crystallization of olivine + or - clinopyroxene. COME magmas pass through unarmored conduits and assimilate 1% or less of ancient gabbroic crust having high Sr and 87Sr/86Sr and low SiO2. Stage 2 (20-10 km): magmas are stored within the middle crust, and evolve to moderate MgO (10%). NEOT magmas, reaching 10% MgO, are positively buoyant and migrate through the middle crust. COME magmas remain negatively buoyant and so crystallize further and assimilate middle crust. Stage 3 (15-0 km): final ascent and eruption occurs when volatile contents, increased by differentiation, are sufficient (1-2 wt % H2O) to provide magma buoyancy through the

  7. Assessing Quantitative Changes in Intrinsic Thalamic Networks in Blast and Nonblast Mild Traumatic Brain Injury: Implications for Mechanisms of Injury.

    Science.gov (United States)

    Nathan, Dominic E; Bellgowan, Julie F; Oakes, Terrence R; French, Louis M; Nadar, Sreenivasan R; Sham, Elyssa B; Liu, Wei; Riedy, Gerard

    2016-06-01

    In the global war on terror, the increased use of improvised explosive devices has resulted in increased incidence of blast-related mild traumatic brain injury (mTBI). Diagnosing mTBI is both challenging and controversial due to heterogeneity of injury location, trauma intensity, transient symptoms, and absence of focal biomarkers on standard clinical imaging modalities. The goal of this study is to identify a brain biomarker that is sensitive to mTBI injury. Research suggests the thalamus may be sensitive to changes induced by mTBI. A significant number of connections to and from various brain regions converge at the thalamus. In addition, the thalamus is involved in information processing, integration, and regulation of specific behaviors and mood. In this study, changes in task-free thalamic networks as quantified by graph theory measures in mTBI blast (N = 186), mTBI nonblast (N = 80), and controls (N = 21) were compared. Results show that the blast mTBI group had significant hyper-connectivity compared with the controls and nonblast mTBI group. However, after controlling for post-traumatic stress symptoms (PTSS), the blast mTBI group was not different from the controls, but the nonblast mTBI group showed significant hypo-connectivity. The results suggest that there are differences in the mechanisms of injury related to mTBI as reflected in the architecture of the thalamic networks. However, the effect of PTSS and its relationship to mTBI is difficult to distinguish and warrants more research.

  8. Phasic Sleep Events Shape Cognitive Function after Traumatic Brain Injury: Implications for the Study of Sleep in Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Carolyn E. Jones

    2016-06-01

    Full Text Available The biological functions of sleep have long eluded the medical and research community. In four consecutive issues of AIMS Neuroscience, original and review manuscripts were recently published regarding the mechanisms and function of sleep. These articles highlight the well-timed topic of quantitative sleep markers and cognitive functioning as one of extensive interest within the field of neuroscience. Our commentary on the original research performed by Cote, Milner, and Speth (2015 brings attention to the importance of examining individual differences in sleep and cognition in subjects with traumatic brain injury (TBI, and provides support for conducting similar sleep analyses in neurodevelopmental disorders.

  9. Altered free radical metabolism in acute mountain sickness: implications for dynamic cerebral autoregulation and blood-brain barrier function

    DEFF Research Database (Denmark)

    Bailey, D M; Evans, K A; James, P E;

    2008-01-01

    We tested the hypothesis that dynamic cerebral autoregulation (CA) and blood-brain barrier (BBB) function would be compromised in acute mountain sickness (AMS) subsequent to a hypoxia-mediated alteration in systemic free radical metabolism. Eighteen male lowlanders were examined in normoxia (21% O...... developed clinical AMS (AMS+) and were more hypoxaemic relative to subjects without AMS (AMS-). A more marked increase in the venous concentration of the ascorbate radical (A(*-)), lipid hydroperoxides (LOOH) and increased susceptibility of low-density lipoprotein (LDL) to oxidation was observed during...

  10. Gradual disintegration of the floral symmetry gene network is implicated in the evolution of a wind-pollination syndrome.

    Science.gov (United States)

    Preston, Jill C; Martinez, Ciera C; Hileman, Lena C

    2011-02-01

    Angiosperms exhibit staggering diversity in floral form, and evolution of floral morphology is often correlated with changes in pollination syndrome. The showy, bilaterally symmetrical flowers of the model species Antirrhinum majus (Plantaginaceae) are highly specialized for bee pollination. In A. majus, Cycloidea (CYC), Dichotoma (DICH), Radialis (RAD), and Divaricata (DIV) specify the development of floral bilateral symmetry. However, it is unclear to what extent evolution of these genes has resulted in flower morphological divergence among closely related members of Plantaginaceae differing in pollination syndrome. We compared floral symmetry genes from insect-pollinated Digitalis purpurea, which has bilaterally symmetrical flowers, with those from closely related Aragoa abietina and wind-pollinated Plantago major, both of which have radially symmetrical flowers. We demonstrate that Plantago, but not Aragoa, species have lost a dorsally expressed CYC-like gene and downstream targets RAD and DIV. Furthermore, the single P. major CYC-like gene is expressed across all regions of the flower, similar to expression of its ortholog in closely related Veronica serpyllifolia. We propose that changes in the expression of duplicated CYC-like genes led to the evolution of radial flower symmetry in Aragoa/Plantago, and that further disintegration of the symmetry gene pathway resulted in the wind-pollination syndrome of Plantago. This model underscores the potential importance of gene loss in the evolution of ecologically important traits. PMID:21282634

  11. The Nature of the Language Faculty and Its Implications for Evolution of Language (Reply to Fitch, Hauser, and Chomsky)

    Science.gov (United States)

    Jackendoff, Ray; Pinker, Steven

    2005-01-01

    In a continuation of the conversation with Fitch, Chomsky, and Hauser on the evolution of language, we examine their defense of the claim that the uniquely human, language-specific part of the language faculty (the ''narrow language faculty'') consists only of recursion, and that this part cannot be considered an adaptation to communication. We…

  12. Shared human-chimpanzee pattern of perinatal femoral shaft morphology and its implications for the evolution of hominin locomotor adaptations.

    Directory of Open Access Journals (Sweden)

    Naoki Morimoto

    Full Text Available BACKGROUND: Acquisition of bipedality is a hallmark of human evolution. How bipedality evolved from great ape-like locomotor behaviors, however, is still highly debated. This is mainly because it is difficult to infer locomotor function, and even more so locomotor kinematics, from fossil hominin long bones. Structure-function relationships are complex, as long bone morphology reflects phyletic history, developmental programs, and loading history during an individual's lifetime. Here we discriminate between these factors by investigating the morphology of long bones in fetal and neonate great apes and humans, before the onset of locomotion. METHODOLOGY/PRINCIPAL FINDINGS: Comparative morphometric analysis of the femoral diaphysis indicates that its morphology reflects phyletic relationships between hominoid taxa to a greater extent than taxon-specific locomotor adaptations. Diaphyseal morphology in humans and chimpanzees exhibits several shared-derived features, despite substantial differences in locomotor adaptations. Orangutan and gorilla morphologies are largely similar, and likely represent the primitive hominoid state. CONCLUSIONS/SIGNIFICANCE: These findings are compatible with two possible evolutionary scenarios. Diaphyseal morphology may reflect retained adaptive traits of ancestral taxa, hence human-chimpanzee shared-derived features may be indicative of the locomotor behavior of our last common ancestor. Alternatively, diaphyseal morphology might reflect evolution by genetic drift (neutral evolution rather than selection, and might thus be more informative about phyletic relationships between taxa than about locomotor adaptations. Both scenarios are consistent with the hypothesis that knuckle-walking in chimpanzees and gorillas resulted from convergent evolution, and that the evolution of human bipedality is unrelated to extant great ape locomotor specializations.

  13. Tracing the origin of functional and conserved domains in the human proteome: implications for protein evolution at the modular level

    Directory of Open Access Journals (Sweden)

    Guda Chittibabu

    2006-11-01

    Full Text Available Abstract Background The functional repertoire of the human proteome is an incremental collection of functions accomplished by protein domains evolved along the Homo sapiens lineage. Therefore, knowledge on the origin of these functionalities provides a better understanding of the domain and protein evolution in human. The lack of proper comprehension about such origin has impelled us to study the evolutionary origin of human proteome in a unique way as detailed in this study. Results This study reports a unique approach for understanding the evolution of human proteome by tracing the origin of its constituting domains hierarchically, along the Homo sapiens lineage. The uniqueness of this method lies in subtractive searching of functional and conserved domains in the human proteome resulting in higher efficiency of detecting their origins. From these analyses the nature of protein evolution and trends in domain evolution can be observed in the context of the entire human proteome data. The method adopted here also helps delineate the degree of divergence of functional families occurred during the course of evolution. Conclusion This approach to trace the evolutionary origin of functional domains in the human proteome facilitates better understanding of their functional versatility as well as provides insights into the functionality of hypothetical proteins present in the human proteome. This work elucidates the origin of functional and conserved domains in human proteins, their distribution along the Homo sapiens lineage, occurrence frequency of different domain combinations and proteome-wide patterns of their distribution, providing insights into the evolutionary solution to the increased complexity of the human proteome.

  14. Development of the nervous system in hatchlings of Spadella cephaloptera (Chaetognatha), and implications for nervous system evolution in Bilateria.

    Science.gov (United States)

    Rieger, Verena; Perez, Yvan; Müller, Carsten H G; Lacalli, Thurston; Hansson, Bill S; Harzsch, Steffen

    2011-06-01

    Chaetognaths (arrow worms) play an important role as predators in planktonic food webs. Their phylogenetic position is unresolved, and among the numerous hypotheses, affinities to both protostomes and deuterostomes have been suggested. Many aspects of their life history, including ontogenesis, are poorly understood and, though some aspects of their embryonic and postembryonic development have been described, knowledge of early neural development is still limited. This study sets out to provide new insights into neurogenesis of newly hatched Spadella cephaloptera and their development during the following days, with attention to the two main nervous centers, the brain and the ventral nerve center. These were examined with immunohistological methods and confocal laser-scan microscopic analysis, using antibodies against tubulin, FMRFamide, and synapsin to trace the emergence of neuropils and the establishment of specific peptidergic subsystems. At hatching, the neuronal architecture of the ventral nerve center is already well established, whereas the brain and the associated vestibular ganglia are still rudimentary. The development of the brain proceeds rapidly over the next 6 days to a state that resembles the adult pattern. These data are discussed in relation to the larval life style and behaviors such as feeding. In addition, we compare the larval chaetognath nervous system and that of other bilaterian taxa in order to extract information with phylogenetic value. We conclude that larval neurogenesis in chaetognaths does not suggest an especially close relationship to either deuterostomes or protostomes, but instead displays many apomorphic features. PMID:21671921

  15. Lateral ventricular cerebrospinal fluid diffusivity as a potential neuroimaging marker of brain temperature in multiple sclerosis: a hypothesis and implications.

    Science.gov (United States)

    Hasan, Khader M; Lincoln, John A; Nelson, Flavia M; Wolinsky, Jerry S; Narayana, Ponnada A

    2015-04-01

    In this retrospective study we tested the hypothesis that the net effect of impaired electrical conduction and therefore increased heat dissipation in multiple sclerosis (MS) results in elevated lateral ventricular (LV) cerebrospinal fluid (CSF) diffusivity as a measure of brain temperature estimated in vivo using diffusion tensor imaging (DTI). We used validated DTI-based segmentation methods to obtain normalized LV-CSF volume and its corresponding CSF diffusivity in 108 MS patients and 103 healthy controls in the age range of 21-63 years. The LV CSF diffusivity was ~2% higher in MS compared to controls that correspond to a temperature rise of ~1°C that could not be explained by changes in the CSF viscosity due to altered CSF protein content in MS. The LV diffusivity decreased with age in healthy controls (r=-0.29; p=0.003), but not in MS (r=0.15; p=0.11), possibly related to MS pathology. Age-adjusted LV diffusivity increased with lesion load (r=0.518; p=1×10(-8)). Our data suggest that the total brain lesion load is the primary contributor to the increase in LV CSF diffusivity in MS. These findings suggest that LV diffusivity is a potential in vivo biomarker of the mismatch between heat generation and dissipation in MS. We also discuss limitations and possible confounders. PMID:25485790

  16. Papio Cranium from the Hominin-Bearing Site of Malapa: Implications for the Evolution of Modern Baboon Cranial Morphology and South African Plio-Pleistocene Biochronology.

    Directory of Open Access Journals (Sweden)

    Christopher C Gilbert

    Full Text Available A new partial cranium (UW 88-886 of the Plio-Pleistocene baboon Papio angusticeps from Malapa is identified, described and discussed. UW 88-886 represents the only non-hominin primate yet recovered from Malapa and is important both in the context of baboon evolution as well as South African hominin site biochronology. The new specimen may represent the first appearance of modern baboon anatomy and coincides almost perfectly with molecular divergence date estimates for the origin of the modern P. hamadryas radiation. The fact that the Malapa specimen is dated between ~2.026-2.36 million years ago (Ma also has implications for the biochronology of other South African Plio-Pleistocene sites where P. angusticeps is found.

  17. The Risk Factors of Symptomatic Communicating Hydrocephalus After Stereotactic Radiosurgery for Unilateral Vestibular Schwannoma: The Implication of Brain Atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jung Ho [Department of Neurosurgery, Seoul National University Bundang Hospital, Gyeonggi-do (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Dong Gyu, E-mail: gknife@plaza.snu.ac.kr [Department of Neurosurgery, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of); Chung, Hyun-Tai; Paek, Sun Ha; Park, Chul-Kee [Department of Neurosurgery, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Chae-Yong [Department of Neurosurgery, Seoul National University Bundang Hospital, Gyeonggi-do (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of); Hwang, Seung-Sik [Department of Social and Preventive Medicine, Inha University School of Medicine, Incheon (Korea, Republic of); Park, Jeong-Hoon [Department of Neurosurgery, Seoul National University Bundang Hospital, Gyeonggi-do (Korea, Republic of); Kim, Young-Hoon [Department of Neurosurgery, Seoul National University Bundang Hospital, Gyeonggi-do (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Jin Wook; Kim, Yong Hwy; Song, Sang Woo; Kim, In Kyung; Jung, Hee-Won [Department of Neurosurgery, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2012-11-15

    Purpose: To identify the effect of brain atrophy on the development of symptomatic communicating hydrocephalus (SCHCP) after stereotactic radiosurgery (SRS) for sporadic unilateral vestibular schwannomas (VS). Methods and Materials: A total of 444 patients with VS were treated with SRS as a primary treatment. One hundred eighty-one patients (40.8%) were male, and the mean age of the patients was 53 {+-} 13 years (range, 11-81 years). The mean follow-up duration was 56.8 {+-} 35.8 months (range, 12-160 months). The mean tumor volume was 2.78 {+-} 3.33 cm{sup 3} (range, 0.03-23.30 cm{sup 3}). The cross-sectional area of the lateral ventricles (CALV), defined as the combined area of the lateral ventricles at the level of the mammillary body, was measured on coronal T1-weighted magnetic resonance images as an indicator of brain atrophy. Results: At distant follow-up, a total of 25 (5.6%) patients had SCHCP. The median time to symptom development was 7 months (range, 1-48 months). The mean CALV was 334.0 {+-} 194.0 mm{sup 2} (range, 44.70-1170 mm{sup 2}). The intraclass correlation coefficient was 0.988 (95% confidence interval [CI], 0.976-0.994; p < 0.001). In multivariate analysis, the CALV had a significant relationship with the development of SCHCP (p < 0.001; odds ration [OR] = 1.005; 95% CI, 1.002-1.007). Tumor volume and female sex also had a significant association (p < 0.001; OR = 1.246; 95% CI, 1.103-1.409; p < 0.009; OR = 7.256; 95% CI, 1.656-31.797, respectively). However, age failed to show any relationship with the development of SCHCP (p = 0.364). Conclusion: Brain atrophy may be related to de novo SCHCP after SRS, especially in female patients with a large VS. Follow-up surveillance should be individualized, considering the risk factors involved for each patient, for prompt diagnosis of SCHCP.

  18. The Risk Factors of Symptomatic Communicating Hydrocephalus After Stereotactic Radiosurgery for Unilateral Vestibular Schwannoma: The Implication of Brain Atrophy

    International Nuclear Information System (INIS)

    Purpose: To identify the effect of brain atrophy on the development of symptomatic communicating hydrocephalus (SCHCP) after stereotactic radiosurgery (SRS) for sporadic unilateral vestibular schwannomas (VS). Methods and Materials: A total of 444 patients with VS were treated with SRS as a primary treatment. One hundred eighty-one patients (40.8%) were male, and the mean age of the patients was 53 ± 13 years (range, 11–81 years). The mean follow-up duration was 56.8 ± 35.8 months (range, 12–160 months). The mean tumor volume was 2.78 ± 3.33 cm3 (range, 0.03–23.30 cm3). The cross-sectional area of the lateral ventricles (CALV), defined as the combined area of the lateral ventricles at the level of the mammillary body, was measured on coronal T1-weighted magnetic resonance images as an indicator of brain atrophy. Results: At distant follow-up, a total of 25 (5.6%) patients had SCHCP. The median time to symptom development was 7 months (range, 1–48 months). The mean CALV was 334.0 ± 194.0 mm2 (range, 44.70–1170 mm2). The intraclass correlation coefficient was 0.988 (95% confidence interval [CI], 0.976–0.994; p < 0.001). In multivariate analysis, the CALV had a significant relationship with the development of SCHCP (p < 0.001; odds ration [OR] = 1.005; 95% CI, 1.002–1.007). Tumor volume and female sex also had a significant association (p < 0.001; OR = 1.246; 95% CI, 1.103–1.409; p < 0.009; OR = 7.256; 95% CI, 1.656–31.797, respectively). However, age failed to show any relationship with the development of SCHCP (p = 0.364). Conclusion: Brain atrophy may be related to de novo SCHCP after SRS, especially in female patients with a large VS. Follow-up surveillance should be individualized, considering the risk factors involved for each patient, for prompt diagnosis of SCHCP.

  19. Specific retention of the protostome-specific PsGEF may parallel with the evolution of mushroom bodies in insect and lophotrochozoan brains

    Directory of Open Access Journals (Sweden)

    Kohno Keigo

    2009-05-01

    Full Text Available Abstract Background Gene gain and subsequent retention or loss during evolution may be one of the underlying mechanisms involved in generating the diversity of metazoan nervous systems. However, the causal relationships acting therein have not been studied extensively. Results We identified the gene PsGEF (protostome-specific GEF, which is present in all the sequenced genomes of insects and limpet but absent in those of sea anemones, deuterostomes, and nematodes. In Drosophila melanogaster, PsGEF encodes a short version of a protein with the C2 and PDZ domains, as well as a long version with the C2, PDZ, and RhoGEF domains through alternative splicing. Intriguingly, the exons encoding the RhoGEF domain are specifically deleted in the Daphnia pulex genome, suggesting that Daphnia PsGEF contains only the C2 and PDZ domains. Thus, the distribution of PsGEF containing the C2, PDZ, and RhoGEF domains among metazoans appears to coincide with the presence of mushroom bodies. Mushroom bodies are prominent neuropils involved in the processing of multiple sensory inputs as well as associative learning in the insect, platyhelminth, and annelid brains. In the adult Drosophila brain, PsGEF is expressed in mushroom bodies, antennal lobe, and optic lobe, where it is necessary for the correct axon branch formation of alpha/beta neurons in mushroom bodies. PsGEF genetically interacts with Rac1 but not other Rho family members, and the RhoGEF domain of PsGEF induces actin polymerization in the membrane, thus resulting in the membrane ruffling that is observed in cultured cells with activated forms of Rac. Conclusion The specific acquisition of PsGEF by the last common ancestor of protostomes followed by its retention or loss in specific animal species during evolution demonstrates that there are some structural and/or functional features common between insect and lophotrochozoan nervous systems (for example, mushroom bodies, which are absent in all deuterostomes

  20. Comparative genomic analysis of the proteasome β5t subunit gene : implications for the origin and evolution of thymoproteasomes

    OpenAIRE

    Sutoh, Yoichi; Kondo, Mizuho; Ohta, Yuko; Ota, Tatsuya; Tomaru, Utano; Flajnik, Martin F.; Kasahara, Masanori

    2012-01-01

    The thymoproteasome is a recently discovered, specialized form of 20S proteasomes expressed exclusively in the thymic cortex. Although the precise molecular mechanism by which the thymoproteasome exerts its function remains to be elucidated, accumulating evidence indicates that it plays a crucial role in positive selection of T cells. In the present study, we analyzed the evolution of the β5t subunit, a β-type catalytic subunit uniquely present in thymoproteasomes. The gene coding for the β5t...

  1. Comparative genomic analysis of the proteasome β5t subunit gene: implications for the origin and evolution of thymoproteasomes

    OpenAIRE

    Sutoh, Yoichi; Kondo, Mizuho; Ohta, Yuko; Ota, Tatsuya; Tomaru, Utano; Flajnik, Martin F.; Kasahara, Masanori

    2011-01-01

    The thymoproteasome is a recently discovered, specialized form of 20S proteasomes expressed exclusively in the thymic cortex. Although the precise molecular mechanism by which the thymoproteasome exerts its function remains to be elucidated, accumulating evidence indicates that it plays a crucial role in positive selection of T cells. In the present study, we analyzed the evolution of the β5t subunit, a β-type catalytic subunit uniquely present in thymoproteasomes. The gene coding for the β5t...

  2. Language system organization in a quadrilingual with a brain tumor: Implications for understanding of the language network.

    Science.gov (United States)

    Połczyńska, Monika M; Benjamin, Christopher F A; Japardi, Kevin; Frew, Andrew; Bookheimer, Susan Y

    2016-06-01

    In pre-neurosurgery language mapping it is critical to identify language-specific regions in multilingual speakers. We conducted pre-operative functional magnetic resonance imaging, and intraoperative language mapping in the unique case of a highly proficient quadrilingual with a left frontal brain tumor who acquired her second language at age 5, and her third and fourth languages at 15. We found a predominantly different organization in each language with only a few areas shared by all 4 languages. Contrary to existing evidence, impairment across languages was not related to age of acquisition, amount of exposure, or language similarity. This case suggests that the functional structure of the language system may be highly idiosyncratic in multilingual individuals and supports detailed study in this group to inform neurocognitive models of language. PMID:27143224

  3. Stratigraphic assessment of the Arcelia Teloloapan area, southern Mexico: implications for southern Mexico's post-Neocomian tectonic evolution

    Science.gov (United States)

    Cabral-Cano, E.; Lang, H. R.; Harrison, C. G. A.

    2000-10-01

    Stratigraphic assessment of the "Tierra Caliente Metamorphic Complex" (TCMC) between Arcelia and Teloloapan in southern Mexico, based on photo interpretation of Landsat Thematic Mapper images and field mapping at the 1:100,000 scale, tests different tectonic evolution scenarios that bear directly on the evolution of the southern North American plate margin. The regional geology, emphasizing the stratigraphy of a portion of the TCMC within the area between Arcelia and Teloloapan is presented. Stratigraphic relationships with units in adjacent areas are also described. The base of the stratigraphic section is a chlorite grade metamorphic sequence that includes the Taxco Schist, the Roca Verde Taxco Viejo Formation, and the Almoloya Phyllite Formation. These metamorphic units, as thick as 2.7 km, are covered disconformably by a sedimentary sequence, 2.9 km thick, composed of the Cretaceous marine Pochote, Morelos, and Mexcala Formations, as well as undifferentiated Tertiary continental red beds and volcanic rocks. The geology may be explained as the evolution of Mesozoic volcanic and sedimentary environments developed upon attenuated continental crust. Our results do not support accretion of the Guerrero terrane during Laramide (Late Cretaceous-Paleogene) time.

  4. Tectonic evolution of Tarim basin in Cambrian–Ordovician and its implication for reservoir development, NW China

    Indian Academy of Sciences (India)

    Yu Bingsong; Ruan Zhuang; Zhang Cong; Pan Yinglu; Lin Changsong; Wang Lidong

    2016-03-01

    In order to find the impact of regional tectonic evolution of Tarim basin on the inside distribution of sedimentary facies and reservoir development, this paper, based on the research of plate-tectonic evolution of Tarim basin, conducts an in-depth analysis on the basin’s inside sedimentary response to the Eopaleozoicregional geodynamic reversion from extension to convergence around Tarim plate, and concludes that the regional geodynamic environment of surrounding areas closely contributes to the formation and evolution of paleo-uplifts, differentiation of sedimentary facies in platform, distribution of high-energyreef and bank facies belts, conversion of sedimentary base level from fall to rise, obvious change of lithology from dolomite to limestone, and formation of several unconformity surfaces in Ordovician system in the basin. A series of sedimentary responses in the basin are controlled by regional dynamic setting, which not only controls the distribution of reservoirs in reef and bank facies but also restricts the development and distribution of karst reservoirs controlled by the unconformity surfaces. This offers the macro geological evidences for us to further analyze and evaluate the distribution of favorable reservoirs.

  5. Tectonic evolution of Tarim basin in Cambrian-Ordovician and its implication for reservoir development, NW China

    Science.gov (United States)

    Bingsong, Yu; Zhuang, Ruan; Cong, Zhang; Yinglu, Pan; Changsong, Lin; Lidong, Wang

    2016-03-01

    In order to find the impact of regional tectonic evolution of Tarim basin on the inside distribution of sedimentary facies and reservoir development, this paper, based on the research of plate-tectonic evolution of Tarim basin, conducts an in-depth analysis on the basin's inside sedimentary response to the Eopaleozoic regional geodynamic reversion from extension to convergence around Tarim plate, and concludes that the regional geodynamic environment of surrounding areas closely contributes to the formation and evolution of paleo-uplifts, differentiation of sedimentary facies in platform, distribution of high-energy reef and bank facies belts, conversion of sedimentary base level from fall to rise, obvious change of lithology from dolomite to limestone, and formation of several unconformity surfaces in Ordovician system in the basin. A series of sedimentary responses in the basin are controlled by regional dynamic setting, which not only controls the distribution of reservoirs in reef and bank facies but also restricts the development and distribution of karst reservoirs controlled by the unconformity surfaces. This offers the macro geological evidences for us to further analyze and evaluate the distribution of favorable reservoirs.

  6. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity.

    Science.gov (United States)

    Long, Thomas C; Saleh, Navid; Tilton, Robert D; Lowry, Gregory V; Veronesi, Bellina

    2006-07-15

    Concerns with the environmental and health risk of widely distributed, commonly used nanoparticles are increasing. Nanosize titanium dioxide (TiO2) is used in air and water remediation and in numerous products designed for direct human use and consumption. Its effectiveness in deactivating pollutants and killing microorganisms relates to photoactivation and the resulting free radical activity. This property, coupled with its multiple potential exposure routes, indicates that nanosize TiO2 could pose a risk to biological targets that are sensitive to oxidative stress damage (e.g., brain). In this study, brain microglia (BV2) were exposed to a physicochemically characterized (i.e., dispersion stability, particle size distribution, and zeta potential) nanomaterial, Degussa P25, and cellular expressions of reactive oxygen species were measured with fluorescent probes. P25's zeta potentials, measured in cell culture media and physiological buffer were -11.6 +/- 1.2 mV and -9.25 +/- 0.73 mV, respectively. P25 aggregation was rapid in both media and buffer with the hydrodynamic diameter of stable P25 aggregates ranging from 826 nm to 2368 nm depending on the concentration. The biological response of BV2 microglia to noncytotoxic (2.5-120 ppm) concentrations of P25 was a rapid (<5 min) and sustained (120 min) release of reactive oxygen species. The time course of this release suggested that P25 not only stimulated the immediate "oxidative burst" response in microglia but also interfered with mitochondrial energy production. Transmission electron microscopy indicated that small groups of nanosized particles and micron-sized aggregates were engulfed bythe microglia and sequestered as intracytoplasmic aggregates after 6 and 18 h exposure to P25 (2.5 ppm). Cell viability was maintained at all test concentrations (2.5-120 ppm) over the 18 h exposure period. These data indicate that mouse microglia respond to Degussa P25 with cellular and morphological expressions of free

  7. Excess soluble CD40L contributes to blood brain barrier permeability in vivo: implications for HIV-associated neurocognitive disorders.

    Directory of Open Access Journals (Sweden)

    Donna C Davidson

    Full Text Available Despite the use of anti-retroviral therapies, a majority of HIV-infected individuals still develop HIV-Associated Neurocognitive Disorders (HAND, indicating that host inflammatory mediators, in addition to viral proteins, may be contributing to these disorders. Consistently, we have previously shown that levels of the inflammatory mediator soluble CD40L (sCD40L are elevated in the circulation of HIV-infected, cognitively impaired individuals as compared to their infected, non-impaired counterparts. Recent studies from our group suggest a role for the CD40/CD40L dyad in blood brain barrier (BBB permeability and interestingly, sCD40L is thought to regulate BBB permeability in other inflammatory disorders of the CNS. Using complementary multiphoton microscopy and quantitative analyses in wild-type and CD40L deficient mice, we now reveal that the HIV transactivator of transcription (Tat can induce BBB permeability in a CD40L-dependent manner. This permeability of the BBB was found to be the result of aberrant platelet activation induced by Tat, since depletion of platelets prior to treatment reversed Tat-induced BBB permeability. Furthermore, Tat treatment led to an increase in granulocyte antigen 1 (Gr1 positive monocytes, indicating an expansion of the inflammatory subset of cells in these mice, which were found to adhere more readily to the brain microvasculature in Tat treated animals. Exploring the mechanisms by which the BBB becomes compromised during HIV infection has the potential to reveal novel therapeutic targets, thereby aiding in the development of adjunct therapies for the management of HAND, which are currently lacking.

  8. Excess soluble CD40L contributes to blood brain barrier permeability in vivo: implications for HIV-associated neurocognitive disorders.

    Science.gov (United States)

    Davidson, Donna C; Hirschman, Michael P; Sun, Anita; Singh, Meera V; Kasischke, Karl; Maggirwar, Sanjay B

    2012-01-01

    Despite the use of anti-retroviral therapies, a majority of HIV-infected individuals still develop HIV-Associated Neurocognitive Disorders (HAND), indicating that host inflammatory mediators, in addition to viral proteins, may be contributing to these disorders. Consistently, we have previously shown that levels of the inflammatory mediator soluble CD40L (sCD40L) are elevated in the circulation of HIV-infected, cognitively impaired individuals as compared to their infected, non-impaired counterparts. Recent studies from our group suggest a role for the CD40/CD40L dyad in blood brain barrier (BBB) permeability and interestingly, sCD40L is thought to regulate BBB permeability in other inflammatory disorders of the CNS. Using complementary multiphoton microscopy and quantitative analyses in wild-type and CD40L deficient mice, we now reveal that the HIV transactivator of transcription (Tat) can induce BBB permeability in a CD40L-dependent manner. This permeability of the BBB was found to be the result of aberrant platelet activation induced by Tat, since depletion of platelets prior to treatment reversed Tat-induced BBB permeability. Furthermore, Tat treatment led to an increase in granulocyte antigen 1 (Gr1) positive monocytes, indicating an expansion of the inflammatory subset of cells in these mice, which were found to adhere more readily to the brain microvasculature in Tat treated animals. Exploring the mechanisms by which the BBB becomes compromised during HIV infection has the potential to reveal novel therapeutic targets, thereby aiding in the development of adjunct therapies for the management of HAND, which are currently lacking.

  9. Transferring cognitive tasks between brain imaging modalities: implications for task design and results interpretation in FMRI studies.

    Science.gov (United States)

    Warbrick, Tracy; Reske, Martina; Shah, N Jon

    2014-01-01

    As cognitive neuroscience methods develop, established experimental tasks are used with emerging brain imaging modalities. Here transferring a paradigm (the visual oddball task) with a long history of behavioral and electroencephalography (EEG) experiments to a functional magnetic resonance imaging (fMRI) experiment is considered. The aims of this paper are to briefly describe fMRI and when its use is appropriate in cognitive neuroscience; illustrate how task design can influence the results of an fMRI experiment, particularly when that task is borrowed from another imaging modality; explain the practical aspects of performing an fMRI experiment. It is demonstrated that manipulating the task demands in the visual oddball task results in different patterns of blood oxygen level dependent (BOLD) activation. The nature of the fMRI BOLD measure means that many brain regions are found to be active in a particular task. Determining the functions of these areas of activation is very much dependent on task design and analysis. The complex nature of many fMRI tasks means that the details of the task and its requirements need careful consideration when interpreting data. The data show that this is particularly important in those tasks relying on a motor response as well as cognitive elements and that covert and overt responses should be considered where possible. Furthermore, the data show that transferring an EEG paradigm to an fMRI experiment needs careful consideration and it cannot be assumed that the same paradigm will work equally well across imaging modalities. It is therefore recommended that the design of an fMRI study is pilot tested behaviorally to establish the effects of interest and then pilot tested in the fMRI environment to ensure appropriate design, implementation and analysis for the effects of interest. PMID:25285453

  10. Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels: Implication in the pathogenesis of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Gjumrakch Aliev

    2008-06-01

    Full Text Available Gjumrakch Aliev1, Eldar Gasimov2, Mark E Obrenovich3, Kathryn Fischbach1, Justin C Shenk1, Mark A Smith3, George Perry3,41Department of Biology and 4College of Sciences, University of Texas at San Antonio, San Antonio, Texas, USA; 2Department of Histology and Embryology, Baku Medical University, Baku, Azerbaijan; 3Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USAAbstract: The pathogenesis that is primarily responsible for Alzheimer’s disease (AD and cerebrovascular accidents (CVA appears to involve chronic hypoperfusion. We studied the ultrastructural features of vascular lesions and mitochondria in brain vascular wall cells from human AD biopsy samples and two transgenic mouse models of AD, yeast artificial chromosome (YAC and C57B6/SJL Tg (+, which overexpress human amyloid beta precursor protein (AβPP. In situ hybridization using probes for normal and 5 kb deleted human and mouse mitochondrial DNA (mtDNA was performed along with immunocytochemistry using antibodies against the Aβ peptide processed from AβPP, 8-hydroxy-2’-guanosine (8OHG, and cytochrome c oxidase (COX. More amyloid deposition, oxidative stress markers as well as mitochondrial DNA deletions and structural abnormalities were present in the vascular walls of the human AD samples and the AβPP-YAC and C57B6/SJL Tg (+ transgenic mice compared to age-matched controls. Ultrastructural damage in perivascular cells highly correlated with endothelial lesions in all samples. Therefore, pharmacological interventions, directed at correcting the chronic hypoperfusion state, may change the natural course of the development of dementing neurodegeneration.Keywords: atherosclerosis, Alzheimer’s disease, transgenic animals, brain hypoperfusion, vascular and mitochondrial lesions, electron microscopy

  11. Potential fluid biomarkers for pathological brain changes in Alzheimer's disease: Implication for the screening of cognitive frailty

    Science.gov (United States)

    Ruan, Qingwei; D'Onofrio, Grazia; Sancarlo, Daniele; Greco, Antonio; Yu, Zhuowei

    2016-01-01

    Cognitive frailty (CF) overlaps with early neuropathological alterations associated with aging-related major neurocognitive disorders, including Alzheimer's disease (AD). Fluid biomarkers for these pathological brain alterations allow for early diagnosis in the preclinical stages of AD, and for objective prognostic assessments in clinical intervention trials. These biomarkers may also be helpful in the screening of CF. The present study reviewed the literature and identified systematic reviews of cohort studies and other authoritative reports. The selection criteria for potentially suitable fluid biomarkers included: i) Frequent use in studies of fluid-derived markers and ii) evidence of novel measurement techniques for fluid-derived markers. The present study focused on studies that assessed these biomarkers in AD, mild cognitive impairment and non-AD demented subjects. At present, widely used fluid biomarkers include cerebrospinal fluid (CSF), total tau, phosphorylated tau and amyloid-β levels. With the development of novel measurement techniques and improvements in understanding regarding the mechanisms underlying aging-related major neurocognitive disorders, numerous novel biomarkers associated with various aspects of AD neuropathology are being explored. These include specific measurements of Aβ oligomer or monomer forms, tau proteins in the peripheral plasma and CSF, and novel markers of synaptic dysfunction, neuronal damage and apoptosis, neuronal activity alteration, neuroinflammation, blood brain barrier dysfunction, oxidative stress, metabolites, mitochondrial function and aberrant lipid metabolism. The proposed panels of fluid biomarkers may be useful in the early diagnosis of AD, prediction of the progression of AD from preclinical stages to the dementia stage, and the differentiation of AD from non-AD dementia. In combination with physical frailty, the present study surmised that these biomarkers may also be used as biomarkers for CF, thus contribute

  12. Morphodynamics of the erosional phase of crevasse-splay evolution and implications for river sediment diversion function

    Science.gov (United States)

    Yuill, Brendan T.; Khadka, Ashok K.; Pereira, João; Allison, Mead A.; Meselhe, Ehab A.

    2016-04-01

    Despite being a primarily depositional landform, a crevasse splay experiences an initial evolutionary phase that is primarily erosional as sediment-laden river water spills from a main river channel and incises a new route through the river banks and levee into an interdistributary basin or floodplain. This phase sets the dimensions and the conveyance properties of the crevasse, which, in turn, influences the continued expansion or closure of the crevasse channel. However, little is known about the controlling morphodynamics or how the erosional processes transition to depositional processes during this phase. The objective of this study is to investigate these phenomena at the West Bay sediment diversion (Louisiana, USA) using coupled field observations and numerical modeling. The West Bay diversion was cut into a lower Mississippi River levee to mimic the function of a crevasse-splay, i.e., to divert river water and sediment to an adjacent receiving basin for land-building purposes. Bathymetric measurements show that the diversion channel experienced significant natural morphologic evolution during the initial decade (2004-2014). Hydrodynamic and sediment transport modeling suggests that this evolution initially increased the discharge of flow and sediment through the crevasse as the channel became wider and deeper and altered its orientation relative to the main river flow direction. After 5 years, the model results predict that further evolution led to monotonically reduced diversion discharges. During this time, natural and engineered sediment deposition in the receiving basin decreased predicted basin-flow velocities and promoted a backwater effect that reduced the sediment transport capacity of the diversion channel. Observations during the final 2 years show that much of the initial erosion around the diversion had abated indicating that diversion morphology may have stabilized. A modeling sensitivity analysis confirmed that the observed changes to channel

  13. The Songbird Neurogenomics (SoNG Initiative: Community-based tools and strategies for study of brain gene function and evolution

    Directory of Open Access Journals (Sweden)

    Lewin Harris A

    2008-03-01

    coordinated set of 25 planned experiments by 16 research groups probing fundamental links between genome, brain, evolution and behavior in songbirds. Energetic application of genomic resources to research using songbirds should help illuminate how complex neural and behavioral traits emerge and evolve.

  14. ON THE INTERMEDIATE-REDSHIFT CENTRAL STELLAR MASS-HALO MASS RELATION, AND IMPLICATIONS FOR THE EVOLUTION OF THE MOST MASSIVE GALAXIES SINCE z ∼ 1

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, Francesco; Buchan, Stewart [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Guo, Hong; Zheng, Zheng [Department of Physics and Astronomy, University of Utah, UT 84112 (United States); Bouillot, Vincent [Centre for Astrophysics, Cosmology and Gravitation, Department of Mathematics and Applied Mathematics, University of Cape Town, Cape Town 7701 (South Africa); Rettura, Alessandro [Jet Propulsion Laboratory, California Institute of Technology, MS 169-234, Pasadena, CA 91109 (United States); Meert, Alan; Bernardi, Mariangela; Sheth, Ravi; Vikram, Vinu [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Kravtsov, Andrey [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Marchesini, Danilo [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Behroozi, Peter [Kavli Institute for Particle Astrophysics and Cosmology, Stanford, CA 94305 (United States); Maraston, Claudia; Capozzi, Diego [Institute of Cosmology and Gravitation, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Ascaso, Begoña; Huertas-Company, Marc [GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 5 Place Jules Janssen, F-92195 Meudon (France); Lemaux, Brian C. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Gal, Roy R. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Lubin, Lori M., E-mail: F.Shankar@soton.ac.uk [University of California, One Shields Avenue, Davis, CA 95616 (United States); and others

    2014-12-20

    The stellar mass-halo mass relation is a key constraint in all semi-analytic, numerical, and semi-empirical models of galaxy formation and evolution. However, its exact shape and redshift dependence remain under debate. Several recent works support a relation in the local universe steeper than previously thought. Based on comparisons with a variety of data on massive central galaxies, we show that this steepening holds up to z ∼ 1 for stellar masses M {sub star} ≳ 2 × 10{sup 11} M {sub ☉}. Specifically, we find significant evidence for a high-mass end slope of β ≳ 0.35-0.70 instead of the usual β ≲ 0.20-0.30 reported by a number of previous results. When including the independent constraints from the recent Baryon Oscillation Spectroscopic Survey clustering measurements, the data, independent of any systematic errors in stellar masses, tend to favor a model with a very small scatter (≲ 0.15 dex) in stellar mass at fixed halo mass, in the redshift range z < 0.8 and for M {sub star} > 3 × 10{sup 11} M {sub ☉}, suggesting a close connection between massive galaxies and host halos even at relatively recent epochs. We discuss the implications of our results with respect to the evolution of the most massive galaxies since z ∼ 1.

  15. Fat-Free Body Mass but not Fat Mass is Associated with Reduced Gray Matter Volume of Cortical Brain Regions Implicated in Autonomic and Homeostatic Regulation

    Science.gov (United States)

    Weise, Christopher M; Thiyyagura, Pradeep; Reiman, Eric M; Chen, Kewei; Krakoff, Jonathan

    2014-01-01

    Obesity has been associated with alterations of both functional and structural aspects of the human central nervous system. In obese individuals both fat mass (FM; primarily consisting of adipose tissue) and fat-free mass (FFM; all non-adipose tissues) are increased and it remains unknown whether these compartments have separate effects on human brain morphology. We used voxel-based morphometry to investigate the relationships between measures of body composition and regional gray matter volume (GMV) in 76 healthy adults with a wide range of adiposity (24F/52M; age 32.1±8.8y; percentage of body fat [PFAT%] 25.5±10.9%; BMI 29.8±8.9). Faf-free mass index (FFMI kg*m-2) showed negative associations in bilateral temporal regions, the bilateral medial and caudolateral OFC, and the left insula. Fat mass index (FMI kg*m-2) showed similar, but less extensive negative associations within temporal cortical regions and the left caudolateral orbitofrontal cortex (OFC). In addition, negative associations were seen for FMI with GMV of the cerebellum. Associations of FFMI with temporal and medial orbitofrontal GMV appeared to be independent of adiposity. No associations were seen between measures of adiposity (i.e. FM and PFAT) and GMV when adjusted for FFM. The majority of regions that we find associated with FFM have been implicated in the regulation of eating behavior and show extensive projections to central autonomic and homeostatic core structures. These data indicate that not adipose tissue or relative adiposity itself, but obesity related increases in absolute tissue mass and particularly FFM may have a more predominant effect on the human brain. This might be explained by the high metabolic demand of FFM and related increases in total energy needs. PMID:22974975

  16. The BRAIN Initiative: developing technology to catalyse neuroscience discovery.

    Science.gov (United States)

    Jorgenson, Lyric A; Newsome, William T; Anderson, David J; Bargmann, Cornelia I; Brown, Emery N; Deisseroth, Karl; Donoghue, John P; Hudson, Kathy L; Ling, Geoffrey S F; MacLeish, Peter R; Marder, Eve; Normann, Richard A; Sanes, Joshua R; Schnitzer, Mark J; Sejnowski, Terrence J; Tank, David W; Tsien, Roger Y; Ugurbil, Kamil; Wingfield, John C

    2015-05-19

    The evolution of the field of neuroscience has been propelled by the advent of novel technological capabilities, and the pace at which these capabilities are being developed has accelerated dramatically in the past decade. Capitalizing on this momentum, the United States launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to develop and apply new tools and technologies for revolutionizing our understanding of the brain. In this article, we review the scientific vision for this initiative set forth by the National Institutes of Health and discuss its implications for the future of neuroscience research. Particular emphasis is given to its potential impact on the mapping and study of neural circuits, and how this knowledge will transform our understanding of the complexity of the human brain and its diverse array of behaviours, perceptions, thoughts and emotions.

  17. The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains

    Science.gov (United States)

    Clifford, Stephen M.; Parker, Timothy J.

    2001-01-01

    In this paper we consider the hydraulic and thermal conditions that gave rise to the elevated source regions of the Late Hesperian outflow channels and explore their implications for the evolution of the Martian hydrosphere. We find that if the outflow channel floodwaters were derived from a subpermafrost aquifer, then it implies that, throughout the planet's first billion years of evolution, as much as one third of its surface was covered by standing bodies of water and ice. Following the development of the global dichotomy, the bulk of this water would have existed as an ice-covered ocean in the northern plains. We demonstrate that the progressive crustal assimilation of this early surface reservoir of H2O (punctuated by possible episodes of less extensive flooding) was a natural consequence of the planet's subsequent climatic and geothermal evolution-potentially cycling the equivalent of a km-deep global ocean of water through the atmosphere and subsurface every approx. 10(exp 9) years. In response to the long-term decline in planetary heat flow, the progressive coldtrapping of H2O into the growing cryosphere is expected to have significantly depleted the original inventory of groundwater-a development that could well explain the apparent decline in outflow channel activity observed during the Amazonian. Although primarily a theoretical analysis, our findings appear remarkably consistent with the geomorphic and topographic evidence that Mars once possessed a primordial ocean and that a substantial relic of that body continues to survive as massive ice deposits within the northern plains. Confirmation of the presence of such deposits, combined with the potential detection of a global-scale groundwater system, would provide persuasive support for the validity of this analysis.

  18. Meso-Cenozoic thermal-rheological evolution in Jiyang sub-basin, Bohai Bay Basin and its implication for basin extension revealed by numerical modelling

    Science.gov (United States)

    Li, Lu; Qiu, Nansheng; Xu, Wei

    2016-04-01

    Jiyang sub-basin is an oil-rich depression located in the southeast of Bohai Bay Basin, which is one of the most important hydrocarbon area in east of China. The thermal-rheological structure of the lithosphere can explain the dynamics evolution processes of basins, continental margins and orogenic belts, which directly reflects the characteristics of the lithosphere geodynamics. Nevertheless it is poorly to understand the evolution of lithospheric thermal-rheological structure in Jiyang sub-basin and its implication for basin extension. In this study, two dimensional numerical modelling is applied to calculate the paleo-temperature field and the thermo-lithospheric structure, which are used to estimate the evolution of lithospheric thermal-rheological structure. The results of study show that in Mesozoic the lithosphere was of relative rigidity and stable, as featured by large thickness and strength whereas after late Cretaceous the lithospheric strength decreased rapidly. The analysis of thermal-rheological properties shows that the lithospheric thermo-lithospheric structure is sandwiched-like with two ductile layers and two brittle layers. The upper crust is usually brittle. The brittle layers appear at outer 20km of the crust, below 20km ductile deformation predominates. There is also a 10km brittle layer on the top of the upper mantle. The integrated lithospheric yield strength is about 1.3-4.5×1012N/m, showing a weak lithosphere which may support the idea that the extension achieved by the ductile flow below the brittle layers. Keywords: lithospheric thermal-rheological structure; Jiyang sub-basin; Numerical modeling

  19. Importance of initial buoyancy field on evolution of mantle thermal structure:Implications of surface boundary conditions

    Institute of Scientific and Technical Information of China (English)

    Petar Glisovic; Alessandro M. Forte

    2015-01-01

    Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition). As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid) boundary condition. A rigid boundary condition dem-onstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like) on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs), especially below the Pacific. The evolution of sub-duction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique slow feature

  20. The evolution of public relations and the use of the internet: the implications for health care organizations.

    Science.gov (United States)

    Berkowitz, Eric N

    2007-01-01

    Over the past several years the discipline and practice of public relations has evolved. Historically, this field within health care organizations was a one-way management of communications and often was reactive in nature dealing with a crisis situation with an organization. Recent theoretical development within the discipline suggests that public relations involves more relationship building with key constituencies and on-going-dialogue. Concomitant with this evolution is the technological development of the internet. Most particularly is the use of podcasting and blogging as key tools which have been underutilized by health car providers but have significant potential in both communication and relationship opportunities as discussed in this article. PMID:19042531

  1. The evolution of public relations and the use of the internet: the implications for health care organizations.

    Science.gov (United States)

    Berkowitz, Eric N

    2007-01-01

    Over the past several years the discipline and practice of public relations has evolved. Historically, this field within health care organizations was a one-way management of communications and often was reactive in nature dealing with a crisis situation with an organization. Recent theoretical development within the discipline suggests that public relations involves more relationship building with key constituencies and on-going-dialogue. Concomitant with this evolution is the technological development of the internet. Most particularly is the use of podcasting and blogging as key tools which have been underutilized by health car providers but have significant potential in both communication and relationship opportunities as discussed in this article.

  2. On ultrasound-induced microbubble oscillation in a capillary blood vessel and its implications for the blood-brain barrier

    Science.gov (United States)

    Wiedemair, W.; Tuković, Ž.; Jasak, H.; Poulikakos, D.; Kurtcuoglu, V.

    2012-02-01

    The complex interaction between an ultrasound-driven microbubble and an enclosing capillary microvessel is investigated by means of a coupled, multi-domain numerical model using the finite volume formulation. This system is of interest in the study of transient blood-brain barrier disruption (BBBD) for drug delivery applications. The compliant vessel structure is incorporated explicitly as a distinct domain described by a dedicated physical model. Red blood cells (RBCs) are taken into account as elastic solids in the blood plasma. We report the temporal and spatial development of transmural pressure (Ptm) and wall shear stress (WSS) at the luminal endothelial interface, both of which are candidates for the yet unknown mediator of BBBD. The explicit introduction of RBCs shapes the Ptm and WSS distributions and their derivatives markedly. While the peak values of these mechanical wall parameters are not affected considerably by the presence of RBCs, a pronounced increase in their spatial gradients is observed compared to a configuration with blood plasma alone. The novelty of our work lies in the explicit treatment of the vessel wall, and in the modelling of blood as a composite fluid, which we show to be relevant for the mechanical processes at the endothelium.

  3. Chronic stress and brain plasticity: Mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders.

    Science.gov (United States)

    Radley, Jason; Morilak, David; Viau, Victor; Campeau, Serge

    2015-11-01

    Stress responses entail neuroendocrine, autonomic, and behavioral changes to promote effective coping with real or perceived threats to one's safety. While these responses are critical for the survival of the individual, adverse effects of repeated exposure to stress are widely known to have deleterious effects on health. Thus, a considerable effort in the search for treatments to stress-related CNS disorders necessitates unraveling the brain mechanisms responsible for adaptation under acute conditions and their perturbations following chronic stress exposure. This paper is based upon a symposium from the 2014 International Behavioral Neuroscience Meeting, summarizing some recent advances in understanding the effects of stress on adaptive and maladaptive responses subserved by limbic forebrain networks. An important theme highlighted in this review is that the same networks mediating neuroendocrine, autonomic, and behavioral processes during adaptive coping also comprise targets of the effects of repeated stress exposure in the development of maladaptive states. Where possible, reference is made to the similarity of neurobiological substrates and effects observed following repeated exposure to stress in laboratory animals and the clinical features of stress-related disorders in humans. PMID:26116544

  4. Positron emission tomography studies in eating disorders: multireceptor brain imaging, correlates with behavior and implications for pharmacotherapy

    International Nuclear Information System (INIS)

    Modern imaging techniques that visualize disease-specific organ neurotransmitter or protein receptor sites are increasingly able to define pathological processes on a molecular level. One of those imaging modalities, positron emission tomography (PET), for the assessment of brain neuroreceptor binding has revolutionized the in vivo assessment of biologic markers that may be related to human behavior. Such studies may help identify chemical targets that may be directly related to psychiatric pathology and, thus, opportunities for pharmacological intervention. In this review, we describe results from PET studies in eating disorders (EDs). Eating disorders are frequently debilitating illnesses that are quite homogeneous in their presentation. Those studies that identified particular serotonin and dopamine receptor alterations can distinguish recovered ED subjects from controls as well as ED subgroups. Furthermore, correlations of receptor binding with behavioral constructs, such as harm avoidance or novelty seeking, could be found. These recognized receptors may now help us to move away from rather nonspecific treatment approaches in psychiatric research and clinic to the possibility of more syndrome- and symptom-specific treatment approaches

  5. R-loops in proliferating cells but not in the brain: implications for AOA2 and other autosomal recessive ataxias.

    Directory of Open Access Journals (Sweden)

    Abrey J Yeo

    Full Text Available Disruption of the Setx gene, defective in ataxia oculomotor apraxia type 2 (AOA2 leads to the accumulation of DNA/RNA hybrids (R-loops, failure of meiotic recombination and infertility in mice. We report here the presence of R-loops in the testes from other autosomal recessive ataxia mouse models, which correlate with fertility in these disorders. R-loops were coincident in cells showing high basal levels of DNA double strand breaks and in those cells undergoing apoptosis. Depletion of Setx led to high basal levels of R-loops and these were enhanced further by DNA damage both in vitro and in vivo in tissues with proliferating cells. There was no evidence for accumulation of R-loops in the brains of mice where Setx, Atm, Tdp1 or Aptx genes were disrupted. These data provide further evidence for genome destabilization as a consequence of disrupted transcription in the presence of DNA double strand breaks arising during DNA replication or recombination. They also suggest that R-loop accumulation does not contribute to the neurodegenerative phenotype in these autosomal recessive ataxias.

  6. Positron emission tomography studies in eating disorders: multireceptor brain imaging, correlates with behavior and implications for pharmacotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Guido K. [Department of Child and Adolescent Psychiatry, Center for Eating Disorders Research, School of Medicine, University of California San Diego, San Diego, CA 92123 (United States); Kaye, Walter H. [Department of Psychiatry, Western Psychiatric Institute and Clinic, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2005-10-01

    Modern imaging techniques that visualize disease-specific organ neurotransmitter or protein receptor sites are increasingly able to define pathological processes on a molecular level. One of those imaging modalities, positron emission tomography (PET), for the assessment of brain neuroreceptor binding has revolutionized the in vivo assessment of biologic markers that may be related to human behavior. Such studies may help identify chemical targets that may be directly related to psychiatric pathology and, thus, opportunities for pharmacological intervention. In this review, we describe results from PET studies in eating disorders (EDs). Eating disorders are frequently debilitating illnesses that are quite homogeneous in their presentation. Those studies that identified particular serotonin and dopamine receptor alterations can distinguish recovered ED subjects from controls as well as ED subgroups. Furthermore, correlations of receptor binding with behavioral constructs, such as harm avoidance or novelty seeking, could be found. These recognized receptors may now help us to move away from rather nonspecific treatment approaches in psychiatric research and clinic to the possibility of more syndrome- and symptom-specific treatment approaches.

  7. Evolution and Development of Dual Ingestion Systems in Mammals: Notes on a New Thesis and Its Clinical Implications

    Science.gov (United States)

    Alberts, Jeffrey R.; Pickler, Rita H.

    2012-01-01

    Traditionally, the development of oral feeding is viewed as a continuous, unitary process in which reflex-dominated sucking behavior gives rise to a more varied and volitional feeding behavior. In contrast, we consider the thesis that the infant develops two separable ingestive systems, one for suckling and one for feeding. First, we apply an evolutionary perspective, recognizing that suckling-feeding is a universal, mammalian developmental sequence. We find that in mammalian evolution, feeding systems in offspring were established prior to the evolution of lactation, and therefore suckling is a separable feature that was added to feeding. We next review an experimental literature that characterizes suckling and feeding as separable in terms of their topography, sensory controls, physiological controls, neural substrates, and experience-based development. Together, these considerations constitute a view of “dual ingestive systems.” The thesis, then, is that suckling is not a simple precursor of feeding but is a complete behavior that emerges, forms, and then undergoes a dissolution that overlaps with the emergence of independent feeding. This thesis guides us to focus differently on the challenges of properly managing and facilitating oral ingestion in infants, especially those born preterm, prior to the developmental onset of suckling. PMID:23028391

  8. The Cerro Bitiche Andesitic Field: petrological diversity and implications for magmatic evolution of mafic volcanic centers from the northern Puna

    Science.gov (United States)

    Maro, Guadalupe; Caffe, Pablo J.

    2016-07-01

    The Cerro Bitiche Andesitic Field (CBAF) is one of the two largest mafic volcanic fields in northern Puna (22-24° S) and is spatially and temporally associated with ignimbrites erupted from some central Andean Altiplano-Puna Volcanic Complex calderas. The CBAF comprises seven scoria cones and widespread high-K calcalkaline lava flows that cover an area of 200 km2. Although all erupted rocks have a relatively narrow chemical range (56-62 % SiO2, 3-6 % MgO), there is a broad diversity of mineral compositions and textures. The least evolved lavas (˜58-61 % SiO2) are high-Mg andesites with scarce (<10 %) microphenocrysts of either olivine or orthopyroxene. The small compositional range and low phenocryst content indicate evolution controlled by low percentages (<10 %) of fractional crystallization of olivine and clinopyroxene of magmas similar to the least evolved rocks from the field, accompanied by assimilation during rapid ascent through the crust. Evolved andesites (˜62 wt% SiO2), on the other hand, are porphyritic rocks with plagioclase + orthopyroxene + biotite and ubiquitous phenocryst disequilibrium textures. These magmas were likely stored in crustal reservoirs, where they experienced convection caused by mafic magma underplating, magma mixing, and/or assimilation. Trace element and mineral compositions of CBAF lavas provide evidence for complex evolution of distinct magma batches.

  9. Evolution and Development of Dual Ingestion Systems in Mammals: Notes on a New Thesis and Its Clinical Implications

    Directory of Open Access Journals (Sweden)

    Jeffrey R. Alberts

    2012-01-01

    Full Text Available Traditionally, the development of oral feeding is viewed as a continuous, unitary process in which reflex-dominated sucking behavior gives rise to a more varied and volitional feeding behavior. In contrast, we consider the thesis that the infant develops two separable ingestive systems, one for suckling and one for feeding. First, we apply an evolutionary perspective, recognizing that suckling-feeding is a universal, mammalian developmental sequence. We find that in mammalian evolution, feeding systems in offspring were established prior to the evolution of lactation, and therefore suckling is a separable feature that was added to feeding. We next review an experimental literature that characterizes suckling and feeding as separable in terms of their topography, sensory controls, physiological controls, neural substrates, and experience-based development. Together, these considerations constitute a view of “dual ingestive systems.” The thesis, then, is that suckling is not a simple precursor of feeding but is a complete behavior that emerges, forms, and then undergoes a dissolution that overlaps with the emergence of independent feeding. This thesis guides us to focus differently on the challenges of properly managing and facilitating oral ingestion in infants, especially those born preterm, prior to the developmental onset of suckling.

  10. The Evolution of Circumplanetary Disks around Planets in Wide Orbits: Implications for Formation Theory, Observations, and Moon Systems

    CERN Document Server

    Shabram, Megan

    2013-01-01

    Using radiation hydrodynamics simulations, we explore the evolution of circumplanetary disks around wide-orbit proto-gas giants. At large distances from the star (~100 AU), gravitational instability followed by disk fragmentation can form low-mass substellar companions (massive gas giants and/or brown dwarfs) that are likely to host large disks. We examine the initial evolution of these subdisks and their role in regulating the growth of their substellar companions, as well as explore consequences of their interactions with circumstellar material. We find that subdisks that form in the context of GIs evolve quickly from a very massive state. Long-term accretion rates from the subdisk onto the proto-gas giant reach ~0.3 Jupiter masses per kyr. We also find consistency with previous simulations, demonstrating that subdisks are truncated at ~1/3 of the companion's Hill radius and are thick, with (h/r) of great than or equal to 0.2. The thickness of subdisks draws to question the use of thin-disk approximations f...

  11. The dynamical evolution of dwarf planet (136108) Haumea's collisional family: General properties and implications for the trans-Neptunian belt

    CERN Document Server

    Lykawka, Patryk Sofia; Mukai, Tadashi; Nakamura, Akiko M

    2011-01-01

    Recently, the first collisional family was identified in the trans-Neptunian belt. The family consists of Haumea and at least ten other ~100km-sized trans-Neptunian objects (TNOs) located in the region a = 42 - 44.5 AU. In this work, we model the long-term orbital evolution of an ensemble of fragments representing hypothetical post-collision distributions at the time of the family's birth. We consider three distinct scenarios, in which the kinetic energy of dispersed particles were varied such that their mean ejection velocities (veje) were of order 200 m/s, 300 m/s and 400 m/s, respectively. Each simulation considered resulted in collisional families that reproduced that currently observed. The results suggest that 60-75% of the fragments created in the collision will remain in the trans-Neptunian belt, even after 4 Gyr of dynamical evolution. The surviving particles were typically concentrated in wide regions of orbital element space centred on the initial impact location, with their orbits spread across a ...

  12. Organic Carbon Isotopic Evolution during the Ediacaran-Cambrian Transition Interval in Eastern Guizhou, South China: Paleoenvironmental and Stratigraphic Implications

    Institute of Scientific and Technical Information of China (English)

    YANG Xinglian; ZHU Maoyan; GUO Qingjun; ZHAO Yuanlong

    2007-01-01

    Secular variations of carbon isotopic composition of organic carbon can be used in the study of global environmental variation, the carbon cycle, stratigraphic delimitation, and biological evolution, etc. Organic carbon isotopic analysis of the Nangao and Zhalagou sections in eastern Guizhou reveals a negative excursion near the Precambrian-Cambrian boundary that correlates with a distinct carbonate carbon isotopic negative excursion at this boundary globally. Our results also demonstrate that several alternating positive and negative shifts occur in the Meishucunian, and an obvious negative anomaly appears at the boundary between the Meishucunian and Qiongzhusian. The isotope values are stable in the middle and lower parts but became more positive in the upper part of the Qiongzhusian. Evolution of organic carbon isotopes from the two sections in the deepwater facies can be well correlated with that of the carbonate carbon isotopes from the section in the shallow water facies. Integrated with other stratigraphic tools, we can precisely establish a lower Cambrian stratigraphic framework from shallow shelf to deep basin of the Yangtze Platform.

  13. The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs - Implications for stellar and Galactic chemical evolution

    CERN Document Server

    Smiljanic, R; Bragaglia, A; Donati, P; Magrini, L; Friel, E; Jacobson, H; Randich, S; Ventura, P; Lind, K; Bergemann, M; Nordlander, T; Morel, T; Pancino, E; Tautvaisiene, G; Adibekyan, V; Tosi, M; Vallenari, A; Gilmore, G; Bensby, T; Francois, P; Koposov, S; Lanzafame, A C; Recio-Blanco, A; Bayo, A; Carraro, G; Casey, A R; Costado, M T; Franciosini, E; Heiter, U; Hill, V; Hourihane, A; Jofre, P; Lardo, C; de Laverny, P; Lewis, J; Monaco, L; Morbidelli, L; Sacco, G G; Sbordone, L; Sousa, S G; Worley, C C; Zaggia, S

    2016-01-01

    Stellar evolution models predict that internal mixing should cause some sodium overabundance at the surface of red giants more massive than ~ 1.5--2.0 Msun. The surface aluminium abundance should not be affected. Nevertheless, observational results disagree about the presence and/or the degree of the Na and Al overabundances. In addition, Galactic chemical evolution models adopting different stellar yields lead to quite different predictions for the behavior of [Na/Fe] and [Al/Fe] versus [Fe/H]. Overall, the observed trends of these abundances with metallicity are not well reproduced. We readdress both issues, using new Na and Al abundances determined within the Gaia-ESO Survey, using two samples: i) more than 600 dwarfs of the solar neighborhood and of open clusters and ii) low- and intermediate-mass clump giants in six open clusters. Abundances of Na in giants with mass below ~2.0 Msun, and of Al in giants below ~3.0 Msun, seem to be unaffected by internal mixing processes. For more massive giants, the Na o...

  14. The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs. Implications for stellar and Galactic chemical evolution

    Science.gov (United States)

    Smiljanic, R.; Romano, D.; Bragaglia, A.; Donati, P.; Magrini, L.; Friel, E.; Jacobson, H.; Randich, S.; Ventura, P.; Lind, K.; Bergemann, M.; Nordlander, T.; Morel, T.; Pancino, E.; Tautvaišienė, G.; Adibekyan, V.; Tosi, M.; Vallenari, A.; Gilmore, G.; Bensby, T.; François, P.; Koposov, S.; Lanzafame, A. C.; Recio-Blanco, A.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Franciosini, E.; Heiter, U.; Hill, V.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2016-05-01

    Context. Stellar evolution models predict that internal mixing should cause some sodium overabundance at the surface of red giants more massive than ~1.5-2.0 M⊙. The surface aluminium abundance should not be affected. Nevertheless, observational results disagree about the presence and/or the degree of Na and Al overabundances. In addition, Galactic chemical evolution models adopting different stellar yields lead to very different predictions for the behavior of [Na/Fe] and [Al/Fe] versus [Fe/H]. Overall, the observed trends of these abundances with metallicity are not well reproduced. Aims: We readdress both issues, using new Na and Al abundances determined within the Gaia-ESO Survey. Our aim is to obtain better observational constraints on the behavior of these elements using two samples: i) more than 600 dwarfs of the solar neighborhood and of open clusters and ii) low- and intermediate-mass clump giants in six open clusters. Methods: Abundances were determined using high-resolution UVES spectra. The individual Na abundances were corrected for nonlocal thermodynamic equilibrium effects. For the Al abundances, the order of magnitude of the corrections was estimated for a few representative cases. For giants, the abundance trends with stellar mass are compared to stellar evolution models. For dwarfs, the abundance trends with metallicity and age are compared to detailed chemical evolution models. Results: Abundances of Na in stars with mass below ~2.0 M⊙, and of Al in stars below ~3.0 M⊙, seem to be unaffected by internal mixing processes. For more massive stars, the Na overabundance increases with stellar mass. This trend agrees well with predictions of stellar evolutionary models. For Al, our only cluster with giants more massive than 3.0 M⊙, NGC 6705, is Al enriched. However, this might be related to the environment where the cluster was formed. Chemical evolution models that well fit the observed [Na/Fe] vs. [Fe/H] trend in solar neighborhood dwarfs

  15. FROM BRAIN DRAIN TO BRAIN NETWORKING

    Directory of Open Access Journals (Sweden)

    Irina BONCEA

    2015-06-01

    Full Text Available Scientific networking is the most accessible way a country can turn the brain drain into brain gain. Diaspora’s members offer valuable information, advice or financial support from the destination country, without being necessary to return. This article aims to investigate Romania’s potential of turning brain drain into brain networking, using evidence from the medical sector. The main factors influencing the collaboration with the country of origin are investigated. The conclusions suggest that Romania could benefit from the diaspora option, through an active implication at institutional level and the implementation of a strategy in this area.

  16. Evaluating the usability of a single UK community acquired brain injury (ABI) rehabilitation service website: implications for research methodology and website design.

    Science.gov (United States)

    Newby, Gavin; Groom, Christina

    2010-04-01

    Information provision is an important resource for those living with acquired brain injury (ABI) and their families. Web-based health information services are now common additions to health service provision. Ideally, they should be easy to use and provide useful, relevant and accurate information. ABI injuries do not affect individuals in the same way, and survivors can have a wide range of abilities and impairments. Therefore, any informational resource intended for this group should take account of their needs and help to compensate for their limitations. This pilot study recruited a group of individuals with ABI (of a median Extended Glasgow Outcome Scale rating of "lower moderate disability") who were clients of a UK National Health Service rehabilitation service and asked them to assess a specialised website provided by that service and hosted by their employing Primary Care Trust organisation. Participants completed a practical task and then gave their opinions on various aspects of website design, and content. They were also asked to suggest improvements and recommend additions. Overall the results were favourable. However, improvements in the legibility, layout and writing style were identified. There were also requests to add more information on the existing topics and add additional topics. The discussion also evaluates the utility of the methodology and the implications of the results for others considering constructing their own website.

  17. A new molecular model for Congo Red-β amyloid interaction: implications for diagnosis and inhibition of brain plaque formation in Alzheimer's disease

    Science.gov (United States)

    Zhang, Kristine A.; Li, Yat

    2015-08-01

    Alzheimer's disease (AD), an age-related neurodegenerative disorder, is the seventh leading cause of death in the United States. One strong pathological indicator of AD is senile plaques, which are aggregates of fibrils formed from amyloid β (Aβ) peptides. Thus, detection and inhibition of Aβ aggregation are critical for the prevention and treatment of AD. Congo red (CR) is one of the most widely used dye molecules for probing as well as inhabiting Aβ aggregation. However, the nature of interaction between CR and Aβ is not well understood. In this research, we systematically studied the interaction between CR and Aβ using a combination of optical techniques, including electronic absorption, fluorescence, Raman scattering, and circular dichroism, to provide detailed information with molecular specificity and high sensitivity. Compared to CR alone, interaction of the dye with Aβ results in a new absorption peak near 540 nm and significantly enhanced photoluminescence as well as Raman signal. Our results led us to propose a new model suggesting that CR exists primarily in a micellar form, resembling H-aggregates, in water and dissociates into monomers upon interaction with Aβ. This model has significant implications for the development of new strategies to detect and inhibit brain plaques for treatment of neurological diseases like AD.

  18. Rainsplash-induced mound development beneath desert shrubs: Modulation of sediment transport and storage, with implications for hillslope evolution

    Science.gov (United States)

    Roberts, A. S.; Furbish, D. J.

    2009-12-01

    Studies of mound development beneath desert shrubs by rainsplash transport have focused on the physics of rainsplash transport, as well as on mound characteristics. However, there has been no attempt to examine the relationship between the life cycles of desert shrub populations, sediment storage, sediment transport rates, and ultimately hillslope evolution. Our work examines the timescales over which the presence of a shrub community on a desert hillslope reduces rates of sediment transport and modulates the local divergence of the sediment flux, thereby influencing the rate of hillslope evolution. Mounds develop beneath shrubs as a result of preferential movement of sediment from areas not covered by canopy to areas beneath shrub canopies, where grains are protected from raindrop impacts. The sediment flux immediately downslope of a shrub is reduced as a mound develops. Conversely, removal of canopy cover (i.e. shrub mortality) results in a local increase in sediment flux immediately downslope of a shrub as mound material becomes exposed to rainsplash transport. A hillslope supporting a desert shrub community and mound development experiences an overall lowering of downslope transport rates compared to an unvegetated desert hillslope. Here we develop a numerically-based model for desert hillslopes, supported by field observations of rainsplash mounds in the Cibola National Forest, New Mexico, to investigate how sediment that is stored and released in conjunction with a dynamic shrub population affects desert hillslope evolution. Modeling suggest that it can take on the order of a century for sediment in a mound to be released downslope by rainsplash processes following the death of a shrub. Even as local sediment transport rates increase and decrease in proximity to shrub mounds throughout the life cycle of an individual shrub, sediment transport rates at the hillslope scale are likely to be reduced for as long as the shrub community remains viable. Our work

  19. An integrated approach to taphonomy and faunal change in the Shungura formation (Ethiopia) and its implication for hominid evolution.

    Science.gov (United States)

    Alemseged, Zeresenay

    2003-04-01

    Environmental and faunal changes through time have been recorded for many African Plio-Pleistocene sites. Fossil evidence suggests that there is a continuous, if not uniform, transformation of the fauna and flora from the Pliocene through the end of Pleistocene. However, discerning major biotic turnovers and linking them to global and regional climatic changes have been complicated by many factors, notably taphonomy and discontinuity of the fossil evidence, notwithstanding the considerable work of some researchers (e.g., Vrba, E.S., 1988. Late Pliocene climatic events and hominid evolution, in: Grine, F. (Ed.), Evolutionary History of the "Robust" Australopithecines. De Gruyter, New York, pp. 405-426, Vrba, E.S., 1995. The fossil record of African (Mammalia, Bovidae) in relation to human evolution and paleoclimate, in: Vrba, E.S., Denton, G.H., Partridge, T.C., Burkle, L.H. (Eds.), Paleoclimate and Evolution, with Emphasis on Human Origins. Yale University Press, New Haven, pp. 385-424). A sample of over 22,000 fossils collected by the French Omo Expedition, from the Shungura Formation of Ethiopia, was analyzed using an integrated approach to investigate taphonomic and faunal change patterns. The following results are obtained: (1) Univariate and multivariate studies support continuous faunal change from Member A through Member G of the Shungura sequence; (2) Correspondence analysis (CA) on extant bovids in African game parks shows that bovid tribes and genera are generally characterized by habitat specificity; (3) Taphonomic studies demonstrate that the relative abundance of different skeletal elements varies according to depositional environment; (4) CA on 73 localities of the Shungura Formation and 19 mammalian taxa points to a major faunal change around the base of Member G dated to ca. 2.3 Ma. This transformation is characterized by a change to open and edaphic grassland as a dominant type of environment; (5) This major faunal change correlates in time with

  20. Comparative analysis of deutocerebral neuropils in Chilopoda (Myriapoda: implications for the evolution of the arthropod olfactory system and support for the Mandibulata concept

    Directory of Open Access Journals (Sweden)

    Sombke Andy

    2012-01-01

    Full Text Available Abstract Background Originating from a marine ancestor, the myriapods most likely invaded land independently of the hexapods. As these two evolutionary lineages conquered land in parallel but separately, we are interested in comparing the myriapod chemosensory system to that of hexapods to gain insights into possible adaptations for olfaction in air. Our study connects to a previous analysis of the brain and behavior of the chilopod (centipede Scutigera coleoptrata in which we demonstrated that these animals do respond to volatile substances and analyzed the structure of their central olfactory pathway. Results Here, we examined the architecture of the deutocerebral brain areas (which process input from the antennae in seven additional representatives of the Chilopoda, covering all major subtaxa, by histology, confocal laser-scan microscopy, and 3D reconstruction. We found that in all species that we studied the majority of antennal afferents target two separate neuropils, the olfactory lobe (chemosensory, composed of glomerular neuropil compartments and the corpus lamellosum (mechanosensory. The numbers of olfactory glomeruli in the different chilopod taxa ranged from ca. 35 up to ca. 90 and the shape of the glomeruli ranged from spheroid across ovoid or drop-shape to elongate. Conclusion A split of the afferents from the (first pair of antennae into separate chemosensory and mechanosensory components is also typical for Crustacea and Hexapoda, but this set of characters is absent in Chelicerata. We suggest that this character set strongly supports the Mandibulata hypothesis (Myriapoda + (Crustacea + Hexapoda as opposed to the Myriochelata concept (Myriapoda + Chelicerata. The evolutionary implications of our findings, particularly the plasticity of glomerular shape, are discussed.