WorldWideScience

Sample records for brain electrical activity

  1. Complex networks in brain electrical activity

    CERN Document Server

    Ruffini, G; Grau, C; Marco, J; Ray, C

    2005-01-01

    We analyze the complex networks associated with brain electrical activity. Multichannel EEG measurements are first processed to obtain 3D voxel activations using the tomographic algorithm LORETA. Then, the correlation of the current intensity activation between voxel pairs is computed to produce a voxel cross-correlation coefficient matrix. Using several correlation thresholds, the cross-correlation matrix is then transformed into a network connectivity matrix and analyzed. To study a specific example, we selected data from an earlier experiment focusing on the MMN brain wave. The resulting analysis highlights significant differences between the spatial activations associated with Standard and Deviant tones, with interesting physiological implications. When compared to random data networks, physiological networks are more connected, with longer links and shorter path lengths. Furthermore, as compared to the Deviant case, Standard data networks are more connected, with longer links and shorter path lengths--i....

  2. Relationships between parameters of gallbladder motility and brain electrical activity

    OpenAIRE

    Marfiyan, Olena M; Zukow, Walery; Popovych, Milentyna V; Ganyk, Lyubov M; Kit, Yevgen I; Ivanyts’ka, Oksana M; Kyjenko, Valeriy M

    2016-01-01

    Marfiyan Olena M, Zukow Walery, Popovych Milentyna V, Ganyk Lyubov M, Kit Yevgen I, Ivanyts’ka Oksana M, Kyjenko Valeriy M. Relationships between parameters of gallbladder motility and brain electrical activity. Journal of Education, Health and Sport. 2016;6(8):11-20. eISSN 2391-8306. DOI http://dx.doi.org/10.5281/zenodo.59271 http://ojs.ukw.edu.pl/index.php/johs/article/view/3728 https://pbn.nauka.gov.pl/sedno-webapp/works/740334     The journal has had 7 ...

  3. Quantitative Brain Electrical Activity in the Initial Screening of Mild Traumatic Brain Injuries

    OpenAIRE

    O'Neil, Brian; Prichep, Leslie S.; Naunheim, Roseanne; Chabot, Robert

    2012-01-01

    Introduction: The incidence of emergency department (ED) visits for Traumatic Brain Injury (TBI) in the United States exceeds 1,000,000 cases/year with the vast majority classified as mild (mTBI). Using existing computed tomography (CT) decision rules for selecting patients to be referred for CT, such as the New Orleans Criteria (NOC), approximately 70% of those scanned are found to have a negative CT. This study investigates the use of quantified brain electrical activity to assess its possi...

  4. Brain-Computer Interface Based on Motor Imagery: the Most Relevant Sources of Electrical Brain Activity

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Snášel, V.; Bobrov, P.; Mokienko, O.; Tintěra, J.; Rydlo, J.

    Cham: Springer, 2014 - (Snášel, V.; Krömer, P.; Köppen, M.; Schaefer, G.), s. 153-163. (Advances in Intelligent Systems and Computing. 223). ISBN 978-3-319-00929-2. ISSN 2194-5357. [Online World Conference on Soft Computing in Industrial Applications /17./. Anywhere on Earth, 10.12.2012-21.12.2012)] Grant ostatní: GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Institutional support: RVO:67985807 Keywords : Image and Signal Processing * Brain-Computer Interface * Independent Component Analysis * EEG Pattern Classification * fMRI * Motor Image ry * Pattern Recognition Subject RIV: IN - Informatics, Computer Science http://dap.vsb.cz/wsc17conf/brain-computer-interface-based-on-motor- image ry---the-most-relevant-sources-of-electrical-brain-activity

  5. 3D segmented model of head for modelling electrical activity of brain

    Directory of Open Access Journals (Sweden)

    Egill A. Friðgeirsson

    2012-03-01

    Full Text Available Computer simulation and modelling of the human body and its behaviour are very useful tools in situations where it is either too risky to perform an invasive procedure or too costly for in vivo experiments or simply impossible for ethical reasons. In this paper we describe a method to model the electrical behaviour of human brain from segmented MR images. The aim of the work is to use these models to predict the electrical activity of human brain under normal and pathological conditions. The image processing software package MIMICS is used for 3D volume segmentation of MR images. These models have detailed 3D representation of major tissue surfaces within the head, with over 12 different tissues segmented. In addition, computational tools in Matlab were developed for calculating normal vectors on the brain surface and for associating this information to the equivalent electrical dipole sources as an input into the model.

  6. Manganese-enhanced MR imaging of brain activation evoked by noxious peripheral electrical stimulation.

    Science.gov (United States)

    Cha, Myeounghoon; Lee, Kyuhong; Lee, Chulhyun; Cho, Jee-Hyun; Cheong, Chaejoon; Sohn, Jin-Hun; Lee, Bae Hwan

    2016-02-01

    As imaging technology develops, magnetic resonance imaging (MRI) has furthered our understanding of brain function by clarifying the anatomical structure and generating functional imaging data related to information processing in pain conditions. Recent studies have reported that manganese (Mn(2+))-enhanced MRI (MEMRI) provides valuable information about the functions of the central nervous system. The aim of this study was to identify specific brain regions activated during noxious electric stimulation using high-resolution MEMRI. Male Sprague Dawley rats were divided into three groups: naïve, sham electrical stimulation, and noxious electric stimulation. Under urethane with α-chloralose mixture anesthesia, a catheter was placed in the external carotid artery to administrate 20% mannitol and manganese chloride (25mM MnCl2). Noxious electric stimulation (2Hz, 10V) was applied to the hind paw with a needle electrode. Stimulation-induced neuronal activation was detected using 4.7-T MRI. In response to noxious electrical stimulation, remarkable Mn(2+)-enhanced signals were observed in the agranular insular cortex, auditory cortex, primary somatosensory cortex of the hind limb, and granular and dysgranular insular cortex, which correspond to sensory tactile electric stimulus to the hindpaws. These results indicate that the combination of MEMRI with activity-induced Mn(2+)-dependent contrast can delineate functional areas in the rat brain. PMID:26733299

  7. Timing of intervention affects brain electrical activity in children exposed to severe psychosocial neglect.

    Directory of Open Access Journals (Sweden)

    Ross E Vanderwert

    Full Text Available BACKGROUND: Early psychosocial deprivation has profound effects on brain activity in the young child. Previous reports have shown increased power in slow frequencies of the electroencephalogram (EEG, primarily in the theta band, and decreased power in higher alpha and beta band frequencies in infants and children who have experienced institutional care. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the consequences of removing infants from institutions and placing them into a foster care intervention on brain electrical activity when children were 8 years of age. We found the intervention was successful for increasing high frequency EEG alpha power, with effects being most pronounced for children placed into foster care before 24 months of age. CONCLUSIONS/SIGNIFICANCE: The dependence on age of placement for the effects observed on high frequency EEG alpha power suggests a sensitive period after which brain activity in the face of severe psychosocial deprivation is less amenable to recovery.

  8. Empathy is associated with dynamic change in prefrontal brain electrical activity during positive emotion in children

    OpenAIRE

    Light, Sharee N.; James A Coan; Zahn-Waxler, Carolyn; Frye, Corrina; Goldsmith, H. Hill; Davidson, Richard J.

    2009-01-01

    Empathy is the combined ability to interpret the emotional states of others and experience resultant, related emotions. The relation between prefrontal electroencephalographic asymmetry and emotion in infants and children is well known. The relationship between positive emotion (assessed via parent-report), empathy (measured via observation) and second-by-second brain electrical activity (recorded during a pleasurable task) was investigated using a sample of 128 six to ten year olds. Contentm...

  9. Brain electric activity during the preattentive perception of speech sounds in tonal languages

    OpenAIRE

    Naiphinich Kotchabhakdi; Chittin Chindaduangratn; Wichian Sittiprapaporn

    2004-01-01

    The present study was intended to make electrophysiological investigations into the preattentive perception of native and non-native speech sounds. We recorded the mismatch negativity, elicited by single syllable change of both native and non-native speech-sound contrasts in tonal languages. EEGs were recorded and low-resolution brain electromagnetic tomography (LORETA) was utilized to explore the neural electrical activity. Our results suggested that the left hemisphere was predominant in th...

  10. Glasgow Coma Scale, brain electric activity mapping and Glasgow Outcome Scale after hyperbaric oxygen treatment of severe brain injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To study the effect of hyperbaric oxygen (HBO) treatment of severe brain injury.Methods: Fifty-five patients were divided into a treatment group (n = 35 receiving HBO therapy ) and a control group (n = 20 receiving dehydrating, cortical steroid and antibiotic therapy) to observe the alteration of clinic GCS (Glasgow Coma Scale), brain electric activity mapping (BEAM), prognosis and GOS (Glasgow Outcome Scale) before and after hyperbaric oxygen treatment.Results: In the treatment group GCS, BEAM and GOS were improved obviously after 3 courses of treatment,GCS increased from 5.1 to 14.6 ( P < 0.01-0.001 ), the BEAM abnormal rate reduced from 94.3% to 38% (P <0.01-0.001 ), the GOS good-mild disability rate was 83.7%, and the middle-severe disability rate was 26.3%compared with the control group. There was a statistic significant difference between the two groups (P < 0.01-0.001).Conclusions: Hyperbaric oxygen treatment could improve obviously GCS, BEAM and GOS of severe brain injury patients, and effectively reduce the mortality and morbidity. It is an effective method to treat severe brain injury. two g

  11. On the Photonic Cellular Interaction and the Electric Activity of Neurons in the Human Brain

    International Nuclear Information System (INIS)

    The subject of Ultraweak Photon Emission (UPE) by biological systems is very fascinating, and both evidence of its effects and applications are growing rapidly due to improvements in experimental techniques. Since the relevant equipment should be ultrasensitive with high quantum efficiencies and very low noise levels, the subject of UPE is still hotly debated and some of the interpretations need stronger empirical evidence to be accepted at face value. In this paper we first review different types of interactions between light and living systems based on recent publications. We then discuss the feasibility of UPE production in the human brain. The subject of UPE in the brain is still in early stages of development and needs more accurate experimental methods for proper analysis. In this work we also discuss a possible role of mitochondria in the production of UPE in the neurons of the brain and the plausibility of their effects on microtubules (MTs). MTs have been implicated as playing an important role in the signal and information processing taking place in the mammalian (especially human) brain. Finally, we provide a short discussion about the feasible effects of MTs on electric neural activity in the human brain.

  12. Brain electric activity during the preattentive perception of speech sounds in tonal languages

    Directory of Open Access Journals (Sweden)

    Naiphinich Kotchabhakdi

    2004-05-01

    Full Text Available The present study was intended to make electrophysiological investigations into the preattentive perception of native and non-native speech sounds. We recorded the mismatch negativity, elicited by single syllable change of both native and non-native speech-sound contrasts in tonal languages. EEGs were recorded and low-resolution brain electromagnetic tomography (LORETA was utilized to explore the neural electrical activity. Our results suggested that the left hemisphere was predominant in the perception of native speech sounds, whereas the non-native speech sound was perceived predominantly by the right hemisphere, which may be explained by the specialization in processing the prosodic and emotional components of speech formed in this hemisphere.

  13. Multichannel biomagnetic system for study of electrical activity in the brain and heart.

    Science.gov (United States)

    Schneider, S; Hoenig, E; Reichenberger, H; Abraham-Fuchs, K; Moshage, W; Oppelt, A; Stefan, H; Weikl, A; Wirth, A

    1990-09-01

    The authors designed a multichannel system for noninvasive measurement of the extremely weak magnetic fields generated by the brain and the heart. It uses a flat array of 37 superconducting magnetic field-sensing coils connected to sophisticated superconducting quantum interference devices. To prevent interference from external electromagnetic fields, the system is operated inside a shielded room. Complete sets of coherent data, even from spontaneous events, can be recorded. System performance was evaluated with phantom measurements and evoked-response studies. A spatial resolution of a few millimeters and a temporal resolution of a millisecond were obtained. First results in patients with partial epilepsy and investigations of the cardiac conductive pathway indicate that biomagnetism is now ready for a systematic clinical evaluation. Interpretation of measurements was facilitated by highlighting biomagnetically localized electrical activity in three-dimensional digital magnetic resonance images. PMID:2389043

  14. Gender difference in electrical brain activity during presentation of various film excerpts with different emotional content.

    Science.gov (United States)

    Dimpfel, W; Wedekind, W; Keplinger, I

    2003-05-30

    Electrical activity of the human brain has been monitored using socalled charge mode (Laplacian estimates) during the exposure with short video film excerpts of 7 min duration. Eighty subjects (50% male and female) watched 5 different film excerpts (disney, animal, comedy, erotic and sex scenes) separated by 3 min pause. Comparison to a reference period of 7 min without video exposure revealed strong decreases in alpha and beta power starting from the electrode position T6 (right temporal) and spread to other brain areas with stronger attentional stimuli e.g. during the erotic and sex films. Highly statistically significant differences were observed between male and female in temporal areas, who in general developed stronger decreases than males. Females on the other hand produced significant increases in fronto-central delta and theta power which could be interpreted as expression of higher appreciation, whereas the decreases in alpha power in general are understood as signs of higher attention. The data are further proof that recording the computer aided quantitative EEG is a very fruitful and promising approach in psychophysiology. PMID:12844473

  15. Brain electrical activity and subjective experience during altered states of consciousness: ganzfeld and hypnagogic states.

    Science.gov (United States)

    Wackermann, Jiri; Pütz, Peter; Büchi, Simone; Strauch, Inge; Lehmann, Dietrich

    2002-11-01

    Manifestations of experimentally induced altered states of consciousness in the brain's electrical activity as well as in subjective experience were explored via the hypnagogic state at sleep onset, and the state induced by exposure to an unstructured perceptual field (ganzfeld). Twelve female paid volunteers participated in sessions involving sleep onset, ganzfeld, and eyes-closed relaxed waking, and were repeatedly prompted for recall of their momentary mentation, according to a predefined schedule. Nineteen channel EEG, two channels EOG and EMG were recorded simultaneously. The mentation reports were followed by the subjects' ratings of their experience on a number of ordinal scales. Two-hundred and forty-one mentation reports were collected. EEG epochs immediately preceding the mentation reports were FFT-analysed and the spectra compared between states. The ganzfeld EEG spectrum, showing no signs of decreased vigilance, was very similar to the EEG spectrum of waking states, even showed a minor acceleration of alpha activity. The subjective experience data were reduced to four principal components: Factor I represented the subjective vigilance dimension, as confirmed by correlations with EEG spectral indices. Only Factor IV, the 'absorption' dimension, differentiated between the ganzfeld state (more absorption) and other states. In waking states and in ganzfeld, the subjects estimated elapsed time periods significantly shorter than in states at sleep onset. The results did not support the assumption of a hypnagogic nature of the ganzfeld imagery. Dream-like imagery can occur in various global functional states of the brain; hypnagogic and ganzfeld-induced states should be conceived as special cases of a broader class of 'hypnagoid' phenomena. PMID:12433389

  16. CLINICAL STUDY OF ISCHEMIC PENUMBRA REGION IN BRAIN ELECTRICAL ACTIVITY MAPPING

    Institute of Scientific and Technical Information of China (English)

    Liu Qingrui; Liu Mingshun; Gu Lanjie; Mei Fengjun

    2000-01-01

    Department of Neurology, Fourth Affiliated Hospital. Hebei Medical University, Shijiazhuang ABSTRACT OBJETIVE To study features and clinical usage of ischemic penumbra region(IPR) in brain electrical activity mapping(BEAM).BACKGROUND To explore the functional improvement index of IPR untraumaticly. METH0DS 69 patients with acute cerebral infarction were divided into two groups according to different therapeutic time window--early treatment group( 32 cases, treatment in 12 hours)and contral group (37 cases, treatment in 12-72 hours).They were analysed in BEAM pre-and post-treatment Results: BEAM showed that the power of infarcted core was decreased and IPR became smaller in slow waves significantly after treatment in early treatment group and this change was in good agreement with improvement of clinical functions and SPECT DISCUSSION The key to treat acute cerebral infarction was to improve functions of IPR as 8oos as possible, BEAM could show the location and size of IPR. CONCLUSION BEAM was one of important index in evaluating the function of IPR.

  17. Evaluation of the brain activation induced by functional electrical stimulation and voluntary contraction using functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Joa Kyung-Lim

    2012-07-01

    Full Text Available Abstract Background To observe brain activation induced by functional electrical stimulation, voluntary contraction, and the combination of both using functional magnetic resonance imaging (fMRI. Methods Nineteen healthy young men were enrolled in the study. We employed a typical block design that consisted of three sessions: voluntary contraction only, functional electrical stimulation (FES-induced wrist extension, and finally simultaneous voluntary and FES-induced movement. MRI acquisition was performed on a 3.0 T MR system. To investigate activation in each session, one-sample t-tests were performed after correcting for false discovery rate (FDR; p t-test was performed using a contrast map (p  Results In the voluntary contraction alone condition, brain activation was observed in the contralateral primary motor cortex (MI, thalamus, bilateral supplementary motor area (SMA, primary sensory cortex (SI, secondary somatosensory motor cortex (SII, caudate, and cerebellum (mainly ipsilateral. During FES-induced wrist movement, brain activation was observed in the contralateral MI, SI, SMA, thalamus, ipsilateral SII, and cerebellum. During FES-induced movement combined with voluntary contraction, brain activation was found in the contralateral MI, anterior cingulate cortex (ACC, SMA, ipsilateral cerebellum, bilateral SII, and SI. The activated brain regions (number of voxels of the MI, SI, cerebellum, and SMA were largest during voluntary contraction alone and smallest during FES alone. SII-activated brain regions were largest during voluntary contraction combined with FES and smallest during FES contraction alone. The brain activation extent (maximum t score of the MI, SI, and SII was largest during voluntary contraction alone and smallest during FES alone. The brain activation extent of the cerebellum and SMA during voluntary contraction alone was similar during FES combined with voluntary contraction; however, cerebellum and SMA activation

  18. Activity-dependent plasticity of electrical synapses: increasing evidence for its presence and functional roles in the mammalian brain.

    Science.gov (United States)

    Haas, Julie S; Greenwald, Corey M; Pereda, Alberto E

    2016-01-01

    Gap junctions mediate electrical synaptic transmission between neurons. While the actions of neurotransmitter modulators on the conductance of gap junctions have been extensively documented, increasing evidence indicates they can also be influenced by the ongoing activity of neural networks, in most cases via local interactions with nearby glutamatergic synapses. We review here early evidence for the existence of activity-dependent regulatory mechanisms as well recent examples reported in mammalian brain. The ubiquitous distribution of both neuronal connexins and the molecules involved suggest this phenomenon is widespread and represents a property of electrical transmission in general. PMID:27230776

  19. Localization of Brain Electrical Activity Sources and Hemodynamic Activity Foci during Motor Imagery

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Mokienko, O.; Bobrov, P.; Chernikova, L.; Konovalov, R.

    2014-01-01

    Roč. 40, č. 3 (2014), s. 273-283. ISSN 0362-1197 Grant ostatní: GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Institutional support: RVO:67985807 Keywords : brain computer interface * independent component analysis * EEG pattern classification * motor imagery * inverse EEG problem Subject RIV: IN - Informatics, Computer Science

  20. On the photonic cellular interaction and the electric activity of neurons in the human brain

    Czech Academy of Sciences Publication Activity Database

    Salari, V.; Tuszynski, J. A.; Bokkon, I.; Rahnama, M.; Cifra, Michal

    Vol. 329. Bristol: IOP, 2011 - (Cifra, M.; Pokorny, J.; Kučera, O.), 012006 ISSN 1742-6588. [9th International Frohlich's Symposium on Electrodynamic Activity of Living Cells - Including Microtubule Coherent Modes and Cancer Cell Physics. Praha (CZ), 01.07.2011-03.07.2011] Institutional support: RVO:67985882 Keywords : Electric activity * Cellular interaction * Empirical evidence Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  1. Significance probability mapping: an aid in the topographic analysis of brain electrical activity.

    Science.gov (United States)

    Duffy, F H; Bartels, P H; Burchfiel, J L

    1981-05-01

    We illustrate the application of significance probability mapping (SPM) to the analysis of topographic maps of spectral analyzed EEG and visual evoked potential (VEP) activity from patients with brain tumors, boys with dyslexia, and control subjects. When the VEP topographic plots of tumor patients were displayed as number of standard deviations from a reference mean, more subjects were correctly identified than by inspection of the underlying raw data. When topographic plots of EEG alpha activity obtained while listening to speech or music were compared by t statistic to plots of resting alpha activity, regions of cortex presumably activated by speech or music were delineated. DIfferent regions were defined in dyslexic boys and controls. We propose that SPM will prove valuable in the regional localization of normal and abnormal functions in other clinical situations. PMID:6165544

  2. A brain electrical signature of left-lateralized semantic activation from single words.

    Science.gov (United States)

    Koppehele-Gossel, Judith; Schnuerch, Robert; Gibbons, Henning

    2016-01-01

    Lesion and imaging studies consistently indicate a left-lateralization of semantic language processing in human temporo-parietal cortex. Surprisingly, electrocortical measures, which allow a direct assessment of brain activity and the tracking of cognitive functions with millisecond precision, have not yet been used to capture this hemispheric lateralization, at least with respect to posterior portions of this effect. Using event-related potentials, we employed a simple single-word reading paradigm to compare neural activity during three tasks requiring different degrees of semantic processing. As expected, we were able to derive a simple temporo-parietal left-right asymmetry index peaking around 300ms into word processing that neatly tracks the degree of semantic activation. The validity of this measure in specifically capturing verbal semantic activation was further supported by a significant relation to verbal intelligence. We thus posit that it represents a promising tool to monitor verbal semantic processing in the brain with little technological effort and in a minimal experimental setup. PMID:27156035

  3. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding

    DEFF Research Database (Denmark)

    Kirov, Roumen; Weiss, Carsten; Siebner, Hartwig R;

    2009-01-01

    The application of transcranial slow oscillation stimulation (tSOS; 0.75 Hz) was previously shown to enhance widespread endogenous EEG slow oscillatory activity when applied during a sleep period characterized by emerging endogenous slow oscillatory activity. Processes of memory consolidation...... typically occurring during this state of sleep were also enhanced. Here, we show that the same tSOS applied in the waking brain also induced an increase in endogenous EEG slow oscillations (0.4-1.2 Hz), although in a topographically restricted fashion. Applied during wakefulness tSOS, additionally, resulted...... in a marked and widespread increase in EEG theta (4-8 Hz) activity. During wake, tSOS did not enhance consolidation of memories when applied after learning, but improved encoding of hippocampus-dependent memories when applied during learning. We conclude that the EEG frequency and related memory...

  4. Thirty minute transcutaneous electric acupoint stimulation modulates resting state brain activities: a perfusion and BOLD fMRI study.

    Science.gov (United States)

    Jiang, Yin; Hao, Ying; Zhang, Yue; Liu, Jing; Wang, Xiaoying; Han, Jisheng; Fang, Jing; Zhang, Jue; Cui, Cailian

    2012-05-31

    Increasing neuroimaging studies have focused on the sustained after effects of acupuncture, especially for the changes of brain activities in rest. However, short-period stimuli have mostly been chosen in these works. The present study aimed to investigate how the resting state brain activities in healthy subjects were modulated by relatively long-period (30 min) acupuncture, a widely used modality in clinical practice. Transcutaneous electric acupoint stimulation (TEAS) or intermittent minimal TEAS (MTEAS) were given for 30 min to 40 subjects. Functional MRI (fMRI) data were collected including the pre-stimulation resting state and the post-stimulation resting state, using dual-echo arterial spin labeling (ASL) techniques, representing both cerebral blood flow (CBF) signals and blood oxygen-dependent level (BOLD) signals simultaneously. Following 30 min TEAS, but not MTEAS, the mean global CBF decreased, and a significant decrease of regional CBF was observed in SI, insula, STG, MOG and IFG. Functional connectivity analysis showed more secure and spatially extended connectivity of both the DMN and SMN after 30 min TEAS. Our results implied that modulation of the regional brain activities and network connectivity induced by thirty minute TEAS may associate with the acupuncture-related therapeutic effects. Furthermore, the resting state regional CBF quantified by ASL perfusion fMRI may serve as a potential biomarker in future acupuncture studies. PMID:22541167

  5. Topographic mapping of spontaneous and induced electrical activity of brain for people exposed to ionizing radiation as a result of ChNPP accident

    International Nuclear Information System (INIS)

    80 patients have been examined to study neurophysiological manifestations of the functional state of brain. Some features of the functional state of brain in the remote-in-time period (3 to 5 years since the accident) caused by ionizing radiation influence have been disclosed. For examined persons as compared to reference prevailing paroxysmal and spontaneous electrical activity of brain has been observed. 9 refs

  6. Neuronal activation by electrical neuromuscular stimulation in hemiplegic patients demonstrated with 99m-Tc-ECD brain SPECT

    International Nuclear Information System (INIS)

    Electrical neuromuscular stimulation (ENS) has been shown to improve volitional movement of upper limbs and decrease muscle hypertonia in hemiplegic patients. Aim: The purpose of this study was to demonstrate regional cerebral perfusion changes secondary to neuronal activation after ENS using 99mTc-ECD SPECT and to correlate these findings with clinical improvement. Materials and Methods: Nine hemiplegic and 3 paraparetic patients, with 14 to 59 years of age, 10 males and 2 females, were studied. ENS was performed for 14 weeks in 45-minute sessions on the muscles involved in hand opening and closing. Each patient was submitted to neurological examination before and after treatment and underwent three 99mTc-ECD SPECT studies: a pre-treatment study; a study performed during the first ENS session; and the third study during the last ENS session (after 14 weeks of treatment). Visual analysis of brain SPECT images was performed by two experienced nuclear physicians. Region-to-pons ratio (R/PO) was obtained for 15 brain regions. An asymmetry index (AI) was also calculated for all regions using the equation: AI=2X(R-L)/(R+L), where R is right and L is left. The visual and semi-quantitative results were compared in the three studies. Results: Visual analysis revealed perfusion improvement mainly in areas adjacent to the brain lesion (penumbra) but also in the contra-lateral cerebral hemisphere. Perfusion improvement was found in the frontal lobe (5 patients), fronto-parietal (1), fronto-temporal (1), temporal (2), basal ganglia (5) and in the thalami (1). In the pre-treatment study, 8 patients showed cerebellar diaschisis, which decreased during treatment in 2 patients and increased in 2. The asymmetry index showed significant variability among the three studies in 8 regions. The R/PO ratio did not correlate with the visual analysis. Neurological examination showed significant improvement in 10 patients, 9 of which showed perilesional brain perfusion improvement

  7. Sources of Electrical Brain Activity Most Relevant to Performance of Brain-Computer Interface Based on Motor Imagery

    Czech Academy of Sciences Publication Activity Database

    Frolov, A.; Húsek, Dušan; Bobrov, P.; Mokienko, O.; Tintěra, J.

    Rijeka: InTech, 2013 - (Fazel-Rezai, R.), s. 175-193 ISBN 978-953-51-1134-4 R&D Projects: GA ČR GAP202/10/0262 Grant ostatní: GA MŠk(CZ) ED1.1.00/02.0070 Institutional support: RVO:67985807 Keywords : brain computer interface * BCI * EEG * fMRI * signal separation * inverse EEG task Subject RIV: IN - Informatics, Computer Science

  8. Medical station for image processing and visualization of the brain electrical activity on a three-dimensional reconstruction of the patient's head

    Directory of Open Access Journals (Sweden)

    Manuel Guillermo Forero

    2010-04-01

    Full Text Available This paper presents a review of some researchs in the computer graphics field conducted by OHWAHA to solve medical problems. Particulary, a frame work to generate a three-dimensional human head model from a stack of brain images obtained by magnetic resonance is introduced. The envisaged system is suitable to display on the 3D head model the brain electrical activity obtained from electroencephalografy.

  9. Effects of on-board storage and electrical stunning of wild cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) on brain and heart activity

    NARCIS (Netherlands)

    Lambooij, E.; Digre, H.; Reimert, H.G.M.; Aursand, I.G.; Grimso, L.; Vis, van de J.W.

    2012-01-01

    Cod and haddock captured with commercial trawling gear were taken immediately after landing on deck to on-board storage in dry bins for measuring brain and heart activity, and behaviour. Other groups were first stored in holding tanks and then electrically stunned with a prototype "dry stunner". For

  10. Interactions between noradrenaline and corticosteroids in the brain: from electrical activity to cognitive performance

    OpenAIRE

    Krugers, Harmen J.; Henk eKarst; Marian eJoels

    2012-01-01

    One of the core reactions in response to a stressful situation is the activation of the hypothalamus–pituitary–adrenal (HPA) axis which increases the release of glucocorticoid hormones from the adrenal glands. In concert with other neuro-modulators, such as (nor)adrenaline, these hormones enable and promote cognitive adaptation to stressful events. Recent studies have demonstrated that glucocorticoid hormones and noradrenaline, via their receptors, can both rapidly and persistently regulate t...

  11. The Effects of Age and Sex on Mental Rotation Performance, Verbal Performance, and Brain Electrical Activity

    OpenAIRE

    Roberts, Jonathan E.

    2001-01-01

    In adult populations, it is generally accepted there is an overall male advantage on spatial tasks and an overall female advantage on verbal tasks. These differences are inconsistent in children. The present study examined relations among age, sex, EEG hemispheric activation, and performance on spatial and verbal tasks. Thirty-two eight-year-olds (16 boys) and 32 college students (16 men) had EEG recorded at baseline and while performing a computerized 2-dimensional Gingerbread Man mental ...

  12. Interactions between noradrenaline and corticosteroids in the brain: from electrical activity to cognitive performance

    Directory of Open Access Journals (Sweden)

    Harmen J Krugers

    2012-04-01

    Full Text Available One of the core reactions in response to a stressful situation is the activation of the hypothalamus–pituitary–adrenal (HPA axis which increases the release of glucocorticoid hormones from the adrenal glands. In concert with other neuro-modulators, such as (noradrenaline, these hormones enable and promote cognitive adaptation to stressful events. Recent studies have demonstrated that glucocorticoid hormones and noradrenaline, via their receptors, can both rapidly and persistently regulate the function of excitatory synapses which are critical for storage of information. Here we will review how glucocorticoids and noradrenaline alone and in synergy dynamically tune these synapses in the hippocampus and amygdala, and discuss how these hormones interact to promote behavioral adaptation to stressful situations.

  13. Deep Brain Electrical Stimulation in Epilepsy

    Science.gov (United States)

    Rocha, Luisa L.

    2008-11-01

    The deep brain electrical stimulation has been used for the treatment of neurological disorders such as Parkinson's disease, chronic pain, depression and epilepsy. Studies carried out in human brain indicate that the application of high frequency electrical stimulation (HFS) at 130 Hz in limbic structures of patients with intractable temporal lobe epilepsy abolished clinical seizures and significantly decreased the number of interictal spikes at focus. The anticonvulsant effects of HFS seem to be more effective in patients with less severe epilepsy, an effect associated with a high GABA tissue content and a low rate of cell loss. In addition, experiments using models of epilepsy indicate that HFS (pulses of 60 μs width at 130 Hz at subthreshold current intensity) of specific brain areas avoids the acquisition of generalized seizures and enhances the postictal seizure suppression. HFS is also able to modify the status epilepticus. It is concluded that the effects of HFS may be a good strategy to reduce or avoid the epileptic activity.

  14. Early changes of cortical blood flow, brain temperature and electrical activity after whole-body irradiation of the monkey (Macaca fascicularis) (dose range: 3-20 Gy)

    International Nuclear Information System (INIS)

    A polyparametric investigation was carried out on 31 monkeys chronically wearing bioinstrumentation allowing to get and process simultaneously local brain blood flow, cerebral temperature, and energies in various frequency bands of the brain electrical activity. This method, which supplied data during several consecutive days, made it possible to study both the biological rhythms at the level of the various parameters, and their fast variations. The effects of whole-body gamma or neutron-gamma irradiation were studied in the 3-20 Gy dose range. Immediate changes after exposure demonstrated different radiosensitivities at the level of the rhythms of the various parameters, and/or their recovery, as well as dose-effect relationships

  15. The effects of typical and atypical antipsychotics on the electrical activity of the brain in a rat model

    Directory of Open Access Journals (Sweden)

    Oytun Erbaş

    2013-09-01

    Full Text Available Objective: Antipsychotic drugs are known to have strongeffect on the bioelectric activity in the brain. However,some studies addressing the changes on electroencephalography(EEG caused by typical and atypical antipsychoticdrugs are conflicting. We aimed to compare the effectsof typical and atypical antipsychotics on the electricalactivity in the brain via EEG recordings in a rat model.Methods: Thirty-two Sprague Dawley adult male ratswere used in the study. The rats were divided into fivegroups, randomly (n=7, for each group. The first groupwas used as control group and administered 1 ml/kg salineintraperitoneally (IP. Haloperidol (1 mg/kg (group 2,chlorpromazine (5 mg/kg (group 3, olanzapine (1 mg/kg(group 4, ziprasidone (1 mg/ kg (group 5 were injectedIP for five consecutive days. Then, EEG recordings ofeach group were taken for 30 minutes.Results: The percentages of delta and theta waves inhaloperidol, chlorpromazine, olanzapine and ziprasidonegroups were found to have a highly significant differencecompared with the saline administration group (p<0.001.The theta waves in the olanzapine and ziprasidonegroups were increased compared with haloperidol andchlorpromazine groups (p<0.05.Conclusion: The typical and atypical antipsychotic drugsmay be risk factor for EEG abnormalities. This studyshows that antipsychotic drugs should be used with caution.J Clin Exp Invest 2013; 4 (3: 279-284Key words: Haloperidol, chlorpromazine, olanzapine,ziprasidone, EEG, rat

  16. 海洛因依赖者的脑电地形图%MAPS OF BRAIN ELECTRICAL ACTIVITY OF HEROIN ADDICTS

    Institute of Scientific and Technical Information of China (English)

    杨宝元; 张国印; 徐本树; 铁恩贵

    2001-01-01

    目的:了解海洛因依赖者存在戒断症状时的脑电地形图的特征。方法:用脑电图机记录32例有戒断症状的海洛因依赖者及34例正常人的脑电地形图并用计算机进行定量分析。结果:与对照组比较,海洛因依赖者(1)慢波频段(δ、θ)功率值增高;(2)α1、α2功率值减低;(3)快波频段(β1、β2)的枕区(O1、O2)功率值增高。结论:从脑电生理角度观察海洛因对大脑功能的损害是有意义的。%Objective: To study the character of the brain electricalactivity maps(BEAM) of heroin addicts with withdrawal syndromes. Method: The brain electrical activity maps ( BEAM ) of 32 heroin addicts with withdrawal syndromes and 34 normal controls were recorded with electroencephalograph and quantitatively analysed with computer. Result: In the BEAM of heroin addicts with withdrawal syndromes, the power values of slow wave(δ,θ) increased; α1 , α2 decreased; rapid wave frequency sect (β1, β2) in occipital area (O1,O2)increased. Conclusion: Observation of brain electrical physiology has some value in the assessment of the damage of cerebral function caused by heroin.

  17. Effects of the South American psychoactive beverage ayahuasca on regional brain electrical activity in humans: a functional neuroimaging study using low-resolution electromagnetic tomography.

    Science.gov (United States)

    Riba, Jordi; Anderer, Peter; Jané, Francesc; Saletu, Bernd; Barbanoj, Manel J

    2004-01-01

    Ayahuasca, a South American psychotropic plant tea obtained from Banisteriopsis caapi and Psychotria viridis, combines monoamine oxidase-inhibiting beta-carboline alkaloids with N,N-dimethyltryptamine (DMT), a psychedelic agent showing 5-HT(2A) agonist activity. In a clinical research setting, ayahuasca has demonstrated a combined stimulatory and psychedelic effect profile, as measured by subjective effect self-assessment instruments and dose-dependent changes in spontaneous brain electrical activity, which parallel the time course of subjective effects. In the present study, the spatial distribution of ayahuasca-induced changes in brain electrical activity was investigated by means of low-resolution electromagnetic tomography (LORETA). Electroencephalography recordings were obtained from 18 volunteers after the administration of a dose of encapsulated freeze-dried ayahuasca containing 0.85 mg DMT/kg body weight and placebo. The intracerebral power density distribution was computed with LORETA from spectrally analyzed data, and subjective effects were measured by means of the Hallucinogen Rating Scale (HRS). Statistically significant differences compared to placebo were observed for LORETA power 60 and 90 min after dosing, together with increases in all six scales of the HRS. Ayahuasca decreased power density in the alpha-2, delta, theta and beta-1 frequency bands. Power decreases in the delta, alpha-2 and beta-1 bands were found predominantly over the temporo-parieto-occipital junction, whereas theta power was reduced in the temporomedial cortex and in frontomedial regions. The present results suggest the involvement of unimodal and heteromodal association cortex and limbic structures in the psychological effects elicited by ayahuasca. PMID:15179026

  18. Resting and reactive frontal brain electrical activity (EEG among a non-clinical sample of socially anxious adults: Does concurrent depressive mood matter?

    Directory of Open Access Journals (Sweden)

    Elliott A Beaton

    2008-03-01

    Full Text Available Elliott A Beaton1, Louis A Schmidt2, Andrea R Ashbaugh2,5, Diane L Santesso2, Martin M Antony1,3,4, Randi E McCabe1,31Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; 2Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada; 3Anxiety Treatment and Research Centre, St. Joseph’s Healthcare, Hamilton, Ontario, Canada; 4Department of Psychology, Ryerson University, Toronto, Ontario, Canada; 5Concordia University, Montreal, Quebec, CanadaAbstract: A number of studies have noted that the pattern of resting frontal brain electrical activity (EEG is related to individual differences in affective style in healthy infants, children, and adults and some clinical populations when symptoms are reduced or in remission. We measured self-reported trait shyness and sociability, concurrent depressive mood, and frontal brain electrical activity (EEG at rest and in anticipation of a speech task in a non-clinical sample of healthy young adults selected for high and low social anxiety. Although the patterns of resting and reactive frontal EEG asymmetry did not distinguish among individual differences in social anxiety, the pattern of resting frontal EEG asymmetry was related to trait shyness after controlling for concurrent depressive mood. Individuals who reported a higher degree of shyness were likely to exhibit greater relative right frontal EEG activity at rest. However, trait shyness was not related to frontal EEG asymmetry measured during the speech-preparation task, even after controlling for concurrent depressive mood. These findings replicate and extend prior work on resting frontal EEG asymmetry and individual differences in affective style in adults. Findings also highlight the importance of considering concurrent emotional states of participants when examining psychophysiological correlates of personality.Keywords: social anxiety, shyness, sociability

  19. [Frequency-spatial organization of brain electrical activity in creative verbal thinking: role of the gender factor].

    Science.gov (United States)

    Razumnikova, O M; Bryzgalova, A O

    2005-01-01

    Gender differences in EEG patterns associated with verbal creativity were studied by EEG mapping. The EEGs of 18 males and 21 females (right-handed university students) were recorded during a performance of Remote Associates Task (RAT) compared with the letter-fluency and simple associate's tasks. Gender differences were found in a factor structure of the indices of verbal thinking and a score of generating words was greater in women than men. No significant gender differences in originality of associations were revealed, however, gender-related differences in the EEG-patterns were found at the final and initial stages of RAT. In men, the beta2-power was increased in both hemispheres at the beginning of test. To the end of testing, the power of oscillations in the beta2 band increased only in the central part of the cortex. In women, the beta2-power was increased to a greater extent in the right than in the left hemisphere at the initial stage of task performance, whereas the final stage was characterized by a relative decrease in beta-activity in parietotemporal cortical regions and increase in the left prefrontal region. It is suggested that the verbal creative thinking in men is based mostly on "insight" strategy whereas women additionally involve the "intellectual" strategy. PMID:16217962

  20. Fueling and imaging brain activation

    Directory of Open Access Journals (Sweden)

    Gerald A Dienel

    2012-07-01

    Full Text Available Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models.

  1. Electrical Tongue Stimulation Normalizes Activity Within the Motion-Sensitive Brain Network in Balance-Impaired Subjects as Revealed by Group Independent Component Analysis

    OpenAIRE

    Wildenberg, Joseph C.; Tyler, Mitchell E.; Danilov, Yuri P; Kaczmarek, Kurt A.; Meyerand, Mary E.

    2011-01-01

    Multivariate analysis of functional magnetic resonance imaging (fMRI) data allows investigations into network behavior beyond simple activations of individual regions. We apply group independent component analysis to fMRI data collected in a previous study looking at the sustained neuromodulatory effects of electrical tongue stimulation in balance-impaired individuals. Twelve subjects with balance disorders viewed optic flow in an fMRI scanner before and after 5 days of electrical tongue stim...

  2. Repetitive transcranial magnetic stimulation activates specific regions in rat brain

    OpenAIRE

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive ther...

  3. Neurocortical electrical activity tomography in chronic schizophrenics

    Directory of Open Access Journals (Sweden)

    Veiga Heloisa

    2003-01-01

    Full Text Available Functional imaging of brain electrical activity was performed in 25 chronic medicated schizophrenics and 40 controls, analyzing the classical frequency bands (delta, theta, alpha, and beta of 19-channel EEG during resting state to identify brain regions with deviant activity of different functional significances, using LORETA (Low Resolution Tomography and SPM99 (Statistical Parametric Mapping. Patients differed from controls due to an excess of slow activity comprising delta + theta frequency bands (inhibitory pattern located at the right middle frontal gyrus, right inferior frontal gyrus, and right insula, as well as at the bilateral anterior cingulum with a left preponderance. The high temporal resolution of EEG enables the specification of the deviations not only as an excess or a deficit of brain electrical activity, but also as inhibitory (delta, theta, normal (alpha, and excitatory (beta activities. These deviations point out to an impaired functional brain state consisting of inhibited frontal and prefrontal areas that may result in inadequate treatment of externally or internally generated information.

  4. Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses.

    Science.gov (United States)

    Sperdin, Holger F; Spierer, Lucas; Becker, Robert; Michel, Christoph M; Landis, Theodor

    2015-04-01

    Subliminal perception is strongly associated to the processing of meaningful or emotional information and has mostly been studied using visual masking. In this study, we used high density 256-channel EEG coupled with an liquid crystal display (LCD) tachistoscope to characterize the spatio-temporal dynamics of the brain response to visual checkerboard stimuli (Experiment 1) or blank stimuli (Experiment 2) presented without a mask for 1 ms (visible), 500 µs (partially visible), and 250 µs (subliminal) by applying time-wise, assumption-free nonparametric randomization statistics on the strength and on the topography of high-density scalp-recorded electric field. Stimulus visibility was assessed in a third separate behavioral experiment. Results revealed that unmasked checkerboards presented subliminally for 250 µs evoked weak but detectable visual evoked potential (VEP) responses. When the checkerboards were replaced by blank stimuli, there was no evidence for the presence of an evoked response anymore. Furthermore, the checkerboard VEPs were modulated topographically between 243 and 296 ms post-stimulus onset as a function of stimulus duration, indicative of the engagement of distinct configuration of active brain networks. A distributed electrical source analysis localized this modulation within the right superior parietal lobule near the precuneus. These results show the presence of a brain response to submillisecond unmasked subliminal visual stimuli independently of their emotional saliency or meaningfulness and opens an avenue for new investigations of subliminal stimulation without using visual masking. PMID:25487054

  5. Look at Epilepsy: Electrical Outbursts in the Brain

    Science.gov (United States)

    ... our exit disclaimer . Subscribe A Look at Epilepsy Electrical Outbursts in the Brain When you hear the ... epilepsy. Prevent head injuries by wearing seatbelts and bicycle helmets, and make sure kids are properly secured ...

  6. Comparison of detection results of hypoxic-ischemic encephalopathy at different degrees in infant patients between brain electrical activity mapping, transcranial Doppler sonography and computer tomography examinations

    Institute of Scientific and Technical Information of China (English)

    Dongruo He; Xiaoying Xu; Yinghui Zhang; Guochao Han

    2006-01-01

    BACKGROUND; It has been proved that brain electrical activity mapping (BEAM) and transcranial Doppler (TCD) detection can reflect the function of brain cell and its diseased degree of infant patients with moderate to severe hypoxic-ischemic encephalopathy (HIE).OBJECTIVE: To observe the abnormal results of HIE at different degrees detected with BEAM and TCD in infant patients, and compare the detection results at the same time point between BEAM, TCD and computer tomography (CT) examinations.DESTGN: Contrast observation.SETTING: Departments of Neuro-electrophysiology and Pediatrics, Second Affiliated Hospital of Qiqihar Medical College.PARTICTPANTS: Totally 416 infant patients with HIE who received treatment in the Department of Newborn Infants, Second Affiliated Hospital of Qiqihar Medical College during January 2001 and December 2005. The infant patients, 278 male and 138 female, were at embryonic 37 to 42 weeks and weighing 2.0 to 4.1 kg, and they were diagnosed with CT and met the diagnostic criteria of HIE of newborn infants compiled by Department of Neonatology, Pediatric Academy, Chinese Medical Association. According to diagnostic criteria, 130patients were mild abnormal, 196 moderate abnormal and 90 severe abnormal. The relatives of all the infant patients were informed of the experiment.METHODS: BEAM and TCD examinations were performed in the involved 416 infant patients with HIE at different degrees with DYD2000 16-channel BEAM instrument and EME-2000 ultrasonograph before preliminary diagnosis treatment (within 1 month after birth) and 1,3,6,12 and 24 months after birth, and detected results were compared between BEAM, TCD and CT examinations.MATN OUTCOME MEASURES: Comparison of detection results of HIE at different time points in infant patients between BEAM, TCD and CT examinations. RESULTS: All the 416 infant patients with HIE participated in the result analysis. ① Comparison of the detected results in infant patients with mild HIE at different

  7. Resting state brain activity and functional brain mapping

    Institute of Scientific and Technical Information of China (English)

    Zhao Xiaohu; Wang Peijun; Tang Xiaowei

    2007-01-01

    Functional brain imaging studies commonly use either resting or passive task states as their control conditions, and typically identify the activation brain region associated with a specific task by subtracting the resting from the active task conditions. Numerous studies now suggest, however, that the resting state may not reflect true mental "rest" conditions. The mental activity that occurs during"rest" might therefore greatly influence the functional neuroimaging observations that are collected through the usual subtracting analysis strategies. Exploring the ongoing mental processes that occur during resting conditions is thus of particular importance for deciphering functional brain mapping results and obtaining a more comprehensive understanding of human brain functions. In this review article, we will mainly focus on the discussion of the current research background of functional brain mapping at resting state and the physiological significance of the available neuroimaging data.

  8. Electric Field Encephalography as a tool for functional brain research: a modeling study.

    Directory of Open Access Journals (Sweden)

    Yury Petrov

    Full Text Available We introduce the notion of Electric Field Encephalography (EFEG based on measuring electric fields of the brain and demonstrate, using computer modeling, that given the appropriate electric field sensors this technique may have significant advantages over the current EEG technique. Unlike EEG, EFEG can be used to measure brain activity in a contactless and reference-free manner at significant distances from the head surface. Principal component analysis using simulated cortical sources demonstrated that electric field sensors positioned 3 cm away from the scalp and characterized by the same signal-to-noise ratio as EEG sensors provided the same number of uncorrelated signals as scalp EEG. When positioned on the scalp, EFEG sensors provided 2-3 times more uncorrelated signals. This significant increase in the number of uncorrelated signals can be used for more accurate assessment of brain states for non-invasive brain-computer interfaces and neurofeedback applications. It also may lead to major improvements in source localization precision. Source localization simulations for the spherical and Boundary Element Method (BEM head models demonstrated that the localization errors are reduced two-fold when using electric fields instead of electric potentials. We have identified several techniques that could be adapted for the measurement of the electric field vector required for EFEG and anticipate that this study will stimulate new experimental approaches to utilize this new tool for functional brain research.

  9. Economic substitutability of electrical brain stimulation, food, and water.

    OpenAIRE

    Green, L.; Rachlin, H

    1991-01-01

    Concurrent variable-ratio schedules of electrical brain stimulation, food, and water were paired in various combinations as reinforcement of rats' lever presses. Relative prices of the concurrent reinforcers were varied by changing the ratio of the response requirements on the two levers. Economic substitutability, measured by the sensitivity of response ratio to changes in relative price, was highest with brain stimulation reinforcement of presses on both levers and lowest with food reinforc...

  10. Measuring the local electrical conductivity of human brain tissue

    Science.gov (United States)

    Akhtari, M.; Emin, D.; Ellingson, B. M.; Woodworth, D.; Frew, A.; Mathern, G. W.

    2016-02-01

    The electrical conductivities of freshly excised brain tissues from 24 patients were measured. The diffusion-MRI of the hydrogen nuclei of water molecules from regions that were subsequently excised was also measured. Analysis of these measurements indicates that differences between samples' conductivities are primarily due to differences of their densities of solvated sodium cations. Concomitantly, the sample-to-sample variations of their diffusion constants are relatively small. This finding suggests that non-invasive in-vivo measurements of brain tissues' local sodium-cation density can be utilized to estimate its local electrical conductivity.

  11. The restless brain: how intrinsic activity organizes brain function.

    Science.gov (United States)

    Raichle, Marcus E

    2015-05-19

    Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease. PMID:25823869

  12. Changes in the spectral composition of animal-brain electrical activity under the influence of nonthermal millimeter-wave radiation on acupuncture points

    Energy Technology Data Exchange (ETDEWEB)

    Khramov, R.N.; Vorob`ev, V.V.

    1994-07-01

    The frequency spectra (0-26 Hz) of electrograms (EG) of the preoptic region of the hypothalamus were studied in chronic experiments on nine awake rabbits under the influence of nonthermal millimeter-bank (55-75 GHz) electromagnetic fields on various acupuncture points: (I) the auricular {open_quotes}heart{close_quotes} point (after F. G. Portnov); (II) the cranial acupoint (TR-20; the {open_quotes}hypothalamus{close_quotes} point after R. Voll); and (III) the {open_quotes}longevity{close_quotes} acupoint (E-36). Irradiation of point I was accompanied by significant suppression of hypothalamic electrical activity at 5 and 16 Hz and enhancement at 7-8, 12, and 26 Hz. Irradiation of point II, and III were, respectively, 31%, 21%, and 5% (p < 0.05, U-criterion). These results suggest that acupuncture points I and II are more sensitive to millimeter-band radiation than is point III. The presence of individual characteristics of the effects and their change after stress to sign inversion were shown in rat experiments in which the acupuncture points were irradiated.

  13. Active tactile exploration using a brain-machine-brain interface.

    Science.gov (United States)

    O'Doherty, Joseph E; Lebedev, Mikhail A; Ifft, Peter J; Zhuang, Katie Z; Shokur, Solaiman; Bleuler, Hannes; Nicolelis, Miguel A L

    2011-11-10

    Brain-machine interfaces use neuronal activity recorded from the brain to establish direct communication with external actuators, such as prosthetic arms. It is hoped that brain-machine interfaces can be used to restore the normal sensorimotor functions of the limbs, but so far they have lacked tactile sensation. Here we report the operation of a brain-machine-brain interface (BMBI) that both controls the exploratory reaching movements of an actuator and allows signalling of artificial tactile feedback through intracortical microstimulation (ICMS) of the primary somatosensory cortex. Monkeys performed an active exploration task in which an actuator (a computer cursor or a virtual-reality arm) was moved using a BMBI that derived motor commands from neuronal ensemble activity recorded in the primary motor cortex. ICMS feedback occurred whenever the actuator touched virtual objects. Temporal patterns of ICMS encoded the artificial tactile properties of each object. Neuronal recordings and ICMS epochs were temporally multiplexed to avoid interference. Two monkeys operated this BMBI to search for and distinguish one of three visually identical objects, using the virtual-reality arm to identify the unique artificial texture associated with each. These results suggest that clinical motor neuroprostheses might benefit from the addition of ICMS feedback to generate artificial somatic perceptions associated with mechanical, robotic or even virtual prostheses. PMID:21976021

  14. Percussion and electrical stunning of Atlantic salmon (Salmo salar) after dewatering and subsequent effect on brain and heart activities nd subsequent

    NARCIS (Netherlands)

    Lambooij, E.; Grimsboe, E.; Vis, van de J.W.; Reimert, H.G.M.; Nortvedt, R.; Roth, B.

    2010-01-01

    The overall objective of the study was to evaluate a percussive and an electrical stunning method under laboratory conditions in Atlantic salmon. Evidence of unconsciousness and insensibility of the salmon was provided on the electroencephalogram (EEG) by the appearance of slow waves and spikes, fol

  15. Optical mapping of brain activity

    Czech Academy of Sciences Publication Activity Database

    Fejtová, M.; Otáhal, Jakub; Kubová, Hana; Konopková, Renata

    Praha: ČVUT Praha, 2006. s. 21-22. ISBN 80-01-03439-9. [Workshop CVUT. 20.02.2006-24.02.2006, Praha] R&D Projects: GA AV ČR 1QS501210509 Institutional research plan: CEZ:AV0Z50110509 Keywords : optical mapping * intrinsic signals * brain Subject RIV: ED - Physiology

  16. Electric field calculations in brain stimulation based on finite elements

    DEFF Research Database (Denmark)

    Windhoff, Mirko; Opitz, Alexander; Thielscher, Axel

    2013-01-01

    The need for realistic electric field calculations in human noninvasive brain stimulation is undisputed to more accurately determine the affected brain areas. However, using numerical techniques such as the finite element method (FEM) is methodologically complex, starting with the creation...... high-quality head models from magnetic resonance images and their usage in subsequent field calculations based on the FEM. The pipeline starts by extracting the borders between skin, skull, cerebrospinal fluid, gray and white matter. The quality of the resulting surfaces is subsequently improved...... the successful usage of the pipeline in six subjects, including field calculations for transcranial magnetic stimulation and transcranial direct current stimulation. The quality of the head volume meshes is validated both in terms of capturing the underlying anatomy and of the well-shapedness of the mesh...

  17. Brain electric fields, belief in the paranormal, and reading of emotion words

    OpenAIRE

    Gianotti, Lorena R R

    2008-01-01

    The present work reports two experiments on brain electric correlates of cognitive and emotional functions. (1) Studying paranormal belief, 35-channel resting EEG (10 believers and 13 skeptics) was analyzed with "Low Resolution Electromagnetic Tomography" (LORETA) in seven frequency bands. LORETA gravity centers of all bands shifted to the left in believers vs. sceptics, and showed that believers had stronger left fronto-temporo-parietal activity than skeptics. Self-rating of affective attitu...

  18. Electrical stimulation of cerebellar fastigial nucleus protects rat brain, in vitro, from staurosporine-induced apoptosis.

    Science.gov (United States)

    Zhou, P; Qian, L; Glickstein, S B; Golanov, E V; Pickel, V M; Reis, D J

    2001-10-01

    Electrical stimulation of the cerebellar fastigial nucleus (FN) elicits a prolonged ( approximately 10 days) and substantial (50-80%) protection against ischemic and excitotoxic injuries. The mechanism(s) of protection are unknown. We investigated whether FN stimulation directly protects brain cells against apoptotic cell death in an in vitro rat brain slice culture model. Rats were electrically stimulated in FN or, as control, the cerebellar dentate nucleus (DN). Coronal slices through the forebrain were explanted, exposed to staurosporine, harvested, and analyzed for caspase-3 activity by a fluorescence assay. FN, but not DN, stimulation significantly reduced staurosporine-induced caspase-3 activity by 39 +/- 7% at 3 h, 31 +/- 3% at 6 h and 26 +/- 4% at 10 h of incubation. Immunocytochemistry revealed FN-specific reductions in activated caspase-3 mainly in glial-like cells throughout the forebrain. FN stimulation also results in a 56.5% reduction in cytochrome c release upon staurosporine incubation. We conclude that neuroprotection elicited from FN stimulation can directly modify the sensitivity of brain cells to apoptotic stimuli and thereby suppress staurosporine induced apoptosis in adult rat brain slices. This model indicates that neuroprotection can be studied in vitro and provides new insight into the potential role of glial cells in ischemic protection of neurons induced by FN stimulation. PMID:11677261

  19. [Synchronized, oscillatory brain activity in visual perception].

    Science.gov (United States)

    Braunitzer, Gábor

    2008-09-30

    The present study investigates one of the most promising developments of the brain-mind question, namely the possible links between synchronized oscillatory brain activity and certain (visual) perceptual processes. Through a review of the relevant literature, the author introduces the reader to the most important theories of coherent perception ('binding'), and makes an attempt to show how synchronization of EEG-registrable oscillatory activities from various frequency bands might explain binding. Finally, a number of clinical problems are also mentioned, regarding which the presented theoretical framework might deserve further consideration. PMID:18841649

  20. Telomerase activity in 144 brain tumours.

    OpenAIRE

    Sano, T; Asai, A.; Mishima, K.; Fujimaki, T.; Kirino, T.

    1998-01-01

    Unlimited proliferation in immortalized cells is believed to be highly dependent on the activity of telomerase, a ribonucleoprotein that synthesizes telomeric repeats onto chromosome ends. Using a polymerase chain reaction-based telomeric repeat amplification protocol (TRAP) assay, we analysed telomerase activity in 99 benign and 45 malignant brain tumours. The TRAP assay results were quantitated by normalizing the telomerase activity of each specimen to that of human glioma cell line T98G to...

  1. Regional brain activity correlates of nicotine dependence.

    Science.gov (United States)

    Rose, Jed E; Behm, Frederique M; Salley, Alfred N; Bates, James E; Coleman, R Edward; Hawk, Thomas C; Turkington, Timothy G

    2007-12-01

    Fifteen smokers participated in a study investigating brain correlates of nicotine dependence. Dependence was reduced by having subjects switch to denicotinized cigarettes for 2 weeks while wearing nicotine skin patches. Positron emission tomography (PET) scans assessed regional cerebral metabolic rate for glucose (rCMRglc) after overnight nicotine abstinence on three occasions: (1) at baseline; (2) after 2 weeks of exposure to denicotinized cigarettes+nicotine patches; and (3) 2 weeks after returning to smoking the usual brands of cigarettes. Craving for cigarettes and scores on the Fagerström Test of Nicotine Dependence (FTND) questionnaire decreased at the second session relative to the first and last sessions. Regional brain metabolic activity (normalized to whole brain values) at session 2 also showed a significant decrease in the right hemisphere anterior cingulate cortex. Exploratory post hoc analyses showed that the change in craving across sessions was negatively correlated with the change in rCMRglc in several structures within the brain reward system, including the ventral striatum, orbitofrontal cortex and pons. The between-session difference in thalamus activity (right hemisphere) was positively correlated with the difference in FTND scores. Correlational analyses also revealed that reported smoking for calming effects was associated with a decrease (at session 2) in thalamus activity (bilaterally) and with an increase in amygdala activity (left hemisphere). Reported smoking to enhance pleasurable relaxation was associated with an increase in metabolic activity of the dorsal striatum (caudate, putamen) at session 2. These findings suggest that reversible changes in regional brain metabolic activity occur in conjunction with alterations in nicotine dependence. The results also highlight the likely role of thalamic gating processes as well as striatal reward and corticolimbic regulatory pathways in the maintenance of cigarette addiction. PMID:17356570

  2. Modulation of Brain Activity during Phonological Familiarization

    Science.gov (United States)

    Majerus, S.; Van der Linden, M.; Collette, F.; Laureys, S.; Poncelet, M.; Degueldre, C.; Delfiore, G.; Luxen, A.; Salmon, E.

    2005-01-01

    We measured brain activity in 12 adults for the repetition of auditorily presented words and nonwords, before and after repeated exposure to their phonological form. The nonword phoneme combinations were either of high (HF) or low (LF) phonotactic frequency. After familiarization, we observed, for both word and nonword conditions, decreased…

  3. Modulation of brain activity during phonological familiarization

    OpenAIRE

    Majerus, Steve; Van der Linden, Martial; Collette, Fabienne; Laureys, Steven; Poncelet, Martine; Degueldre, Christian; Delfiore, Guy; Luxen, André; Salmon, Eric

    2005-01-01

    We measured brain activity in 12 adults for the repetition of auditorily presented words and nonwords, before and after repeated exposure to their phonological form. The nonword phoneme combinations were either of high (HF) or low (LF) phonotactic frequency. After familiarization, we observed, for both word and nonword conditions, decreased activation in the left posterior superior temporal gyrus, in the bilateral temporal pole and middle temporal gyri. At the same time, interaction analysis ...

  4. Hybrid Optical–Electrical Brain Computer Interfaces, Practices and Possibilities

    OpenAIRE

    Ward, Tomas

    2013-01-01

    In this chapter we present an overview of the area of electroencephalographyfunctional near infrared spectroscopy (EEG-fNIRS) measurement as an activity monitoring technology for brain computer interfacing applications. Our interest in this compound neural interfacing technology is motivated by a need for a motor cortical conditioning technology suitable for use in a neurorehabilitation setting [15, 50]. Specifically we seek BCI technology that allows a patient with a paretic ...

  5. Imaging electrical activity of neurons with metamaterial nanosensors

    OpenAIRE

    Beletskiy, Roman V.

    2013-01-01

    A technology for recording electrical activity of large neuron populations at arbitrary depth in brain tissues with less than cell spatial and millisecond temporal resolutions was the most craving dream of neuroscientists and a long pursued goal of engineers for decades. Even though many imaging techniques have been devised up to date, none of them is capable to deliver either quantitatively valid data nor able to meet contradictory requirements posed for sensors to be safe, non-invasive and ...

  6. Electrical stunning and exsanguination decrease the extracellular volume in the broiler brain as studied with brain impendance recordings.

    Science.gov (United States)

    Savenije, B; Lambooij, E; Pieterse, C; Korf, J

    2000-07-01

    Electrical stunning in the process of slaughtering poultry is used to induce unconsciousness and immobilize the animal for easier processing. Unconsciousness is a function of brain damage. Brain damage has been studied with brain impedance recordings under ischemic conditions. This experiment studies brain impedance as a response to a general epileptiform insult caused by electrical stunning and ischemia caused by exsanguination. Brain impedance was recorded in 10 broiler chickens for each of three killing methods: whole body electrical stunning, which induces cardiac arrest; head only electrical stunning followed by exsanguination; and exsanguination without stunning. Brain impedance was converted into relative extracellular volume (ECV) values. Results showed that, immediately after electrical stunning, the ECV decreased 5.5% from base ECV. With exsanguination only, the ECV decreased from base ECV only after 4 min after neck cutting. The ECV decrease after 10 min did not differ between treatments. With a time of 228 s to reach one-half of the ECV decrease found at 10 min, electrical stunning resulted in a much faster change in ECV than exsanguination only (373 s). Within the head only stunning group, six animals showed a response similar to that found with whole body stunning; the other four animals responded similarly to the animals that were exsanguinated only. It was concluded that brain impedance recordings used with electrical stunning reflect brain damage. This damage was both epileptic and ischemic in nature. Whole body stunning induced immediate brain damage, suggesting that an adequate stun was delivered. The dual response found with head only stunning might indicate that this stunning method does not always produce an adequate stun. PMID:10901211

  7. Preliminary study of Alzheimer's Disease diagnosis based on brain electrical signals using wireless EEG

    Science.gov (United States)

    Handayani, N.; Akbar, Y.; Khotimah, S. N.; Haryanto, F.; Arif, I.; Taruno, W. P.

    2016-03-01

    This research aims to study brain's electrical signals recorded using EEG as a basis for the diagnosis of patients with Alzheimer's Disease (AD). The subjects consisted of patients with AD, and normal subjects are used as the control. Brain signals are recorded for 3 minutes in a relaxed condition and with eyes closed. The data is processed using power spectral analysis, brain mapping and chaos test to observe the level of complexity of EEG's data. The results show a shift in the power spectral in the low frequency band (delta and theta) in AD patients. The increase of delta and theta occurs in lobus frontal area and lobus parietal respectively. However, there is a decrease of alpha activity in AD patients where in the case of normal subjects with relaxed condition, brain alpha wave dominates the posterior area. This is confirmed by the results of brain mapping. While the results of chaos analysis show that the average value of MMLE is lower in AD patients than in normal subjects. The level of chaos associated with neural complexity in AD patients with lower neural complexity is due to neuronal damage caused by the beta amyloid plaques and tau protein in neurons.

  8. Brain Activation During Singing: "Clef de Sol Activation" Is the "Concert" of the Human Brain.

    Science.gov (United States)

    Mavridis, Ioannis N; Pyrgelis, Efstratios-Stylianos

    2016-03-01

    Humans are the most complex singers in nature, and the human voice is thought by many to be the most beautiful musical instrument. Aside from spoken language, singing represents a second mode of acoustic communication in humans. The purpose of this review article is to explore the functional anatomy of the "singing" brain. Methodologically, the existing literature regarding activation of the human brain during singing was carefully reviewed, with emphasis on the anatomic localization of such activation. Relevant human studies are mainly neuroimaging studies, namely functional magnetic resonance imaging and positron emission tomography studies. Singing necessitates activation of several cortical, subcortical, cerebellar, and brainstem areas, served and coordinated by multiple neural networks. Functionally vital cortical areas of the frontal, parietal, and temporal lobes bilaterally participate in the brain's activation process during singing, confirming the latter's role in human communication. Perisylvian cortical activity of the right hemisphere seems to be the most crucial component of this activation. This also explains why aphasic patients due to left hemispheric lesions are able to sing but not speak the same words. The term clef de sol activation is proposed for this crucial perisylvian cortical activation due to the clef de sol shape of the topographical distribution of these cortical areas around the sylvian fissure. Further research is needed to explore the connectivity and sequence of how the human brain activates to sing. PMID:26966964

  9. Science Activities in Energy: Electrical Energy.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 16 activities relating to electrical energy. Activities are simple, concrete experiments for fourth, fifth and sixth grades which illustrate principles and problems relating to energy. Each activity is outlined in a single card which is introduced by a question. A teacher's…

  10. Physical activity and brain plasticity in late adulthood

    OpenAIRE

    Erickson, Kirk I.; Gildengers, Ariel G.; Butters, Meryl A.

    2013-01-01

    The human brain shrinks with advancing age, but recent research suggests that it is also capable of remarkable plasticity, even in late life. In this review we summarize the research linking greater amounts of physical activity to less cortical atrophy, better brain function, and enhanced cognitive function, and argue that physical activity takes advantage of the brain's natural capacity for plasticity. Further, although the effects of physical activity on the brain are relatively widespread,...

  11. Temperament, character and serotonin activity in the human brain

    DEFF Research Database (Denmark)

    Tuominen, L; Salo, J; Hirvonen, J;

    2013-01-01

    The psychobiological model of personality by Cloninger and colleagues originally hypothesized that interindividual variability in the temperament dimension 'harm avoidance' (HA) is explained by differences in the activity of the brain serotonin system. We assessed brain serotonin transporter (5-HTT...

  12. Inferring brain-computational mechanisms with models of activity measurements

    OpenAIRE

    Kriegeskorte, Nikolaus; Diedrichsen, Jörn

    2016-01-01

    High-resolution functional imaging is providing increasingly rich measurements of brain activity in animals and humans. A major challenge is to leverage such data to gain insight into the brain's computational mechanisms. The first step is to define candidate brain-computational models (BCMs) that can perform the behavioural task in question. We would then like to infer, which of the candidate BCMs best accounts for measured brain-activity data. Here we describe a method that complements each...

  13. Electrical measurement of sweat activity

    International Nuclear Information System (INIS)

    A multichannel logger for long-term measurements of sweat activity is presented. The logger uses skin surface electrodes for unipolar admittance measurements in the stratum corneum. The logger is developed with emphasis on clinical use. The portability of the logger enables recording of sweat activity under circumstances such as daily errands, exercise and sleep. Measurements have been done on 24 healthy volunteers during relaxation and exercise with heart rate monitoring. Recordings of sweat activity during sleep have been done on two healthy subjects. Early results show good agreement with the literature on sweating physiology and electrodermal activity. Results are presented showing measurements related to physical exercise, dermatomes, distribution of sweat glands and sympathetic activity. This study examines the normal sweating patterns for the healthy population, and we present results with the first 24 healthy volunteers. Comparing these results with similar measurements on hyperhidrosis patients will make it possible to find the most useful parameters for diagnosis and treatment evaluation

  14. Interactions between cardiac, respiratory, and brain activity in humans

    Science.gov (United States)

    Musizza, Bojan; Stefanovska, Aneta

    2005-05-01

    The electrical activity of the heart (ECG), respiratory function and electric activity of the brain (EEG) were simultaneously recorded in conscious, healthy humans. Instantaneous frequencies of the heart beat, respiration and α-waves were then determined from 30-minutes recordings. The instantaneous cardiac frequency was defined as the inverse value of the time interval between two consecutive R-peaks. The instantaneous respiratory frequency was obtained from recordings of the excursions of thorax by application of the Hilbert transform. To obtain the instantaneous frequency of α-waves, the EEG signal recorded from the forehead was first analysed using the wavelet transform. Then the frequency band corresponding to α-waves was extracted and the Hilbert transform applied. Synchronization analysis was performed and the direction of coupling was ascertained, using pairs of instantaneous frequencies in each case. It is shown that the systems are weakly bidirectionally coupled. It was confirmed that, in conscious healthy humans, respiration drives cardiac activity. We also demonstrate from these analyses that α-activity drives both respiration and cardiac activity.

  15. Core networks for visual-concrete and abstract thought content: a brain electric microstate analysis.

    Science.gov (United States)

    Lehmann, Dietrich; Pascual-Marqui, Roberto D; Strik, Werner K; Koenig, Thomas

    2010-01-01

    Commonality of activation of spontaneously forming and stimulus-induced mental representations is an often made but rarely tested assumption in neuroscience. In a conjunction analysis of two earlier studies, brain electric activity during visual-concrete and abstract thoughts was studied. The conditions were: in study 1, spontaneous stimulus-independent thinking (post-hoc, visual imagery or abstract thought were identified); in study 2, reading of single nouns ranking high or low on a visual imagery scale. In both studies, subjects' tasks were similar: when prompted, they had to recall the last thought (study 1) or the last word (study 2). In both studies, subjects had no instruction to classify or to visually imagine their thoughts, and accordingly were not aware of the studies' aim. Brain electric data were analyzed into functional topographic brain images (using LORETA) of the last microstate before the prompt (study 1) and of the word-type discriminating event-related microstate after word onset (study 2). Conjunction analysis across the two studies yielded commonality of activation of core networks for abstract thought content in left anterior superior regions, and for visual-concrete thought content in right temporal-posterior inferior regions. The results suggest that two different core networks are automatedly activated when abstract or visual-concrete information, respectively, enters working memory, without a subject task or instruction about the two classes of information, and regardless of internal or external origin, and of input modality. These core machineries of working memory thus are invariant to source or modality of input when treating the two types of information. PMID:19646538

  16. Brain Activity in Response to Visual Symmetry

    Directory of Open Access Journals (Sweden)

    Marco Bertamini

    2014-12-01

    Full Text Available A number of studies have explored visual symmetry processing by measuring event related potentials and neural oscillatory activity. There is a sustained posterior negativity (SPN related to the presence of symmetry. There is also functional magnetic resonance imaging (MRI activity in extrastriate visual areas and in the lateral occipital complex. We summarise the evidence by answering six questions. (1 Is there an automatic and sustained response to symmetry in visual areas? Answer: Yes, and this suggests automatic processing of symmetry. (2 Which brain areas are involved in symmetry perception? Answer: There is an extended network from extrastriate areas to higher areas. (3 Is reflection special? Answer: Reflection is the optimal stimulus for a more general regularity-sensitive network. (4 Is the response to symmetry independent of view angle? Answer: When people classify patterns as symmetrical or random, the response to symmetry is view-invariant. When people attend to other dimensions, the network responds to residual regularity in the image. (5 How are brain rhythms in the two hemispheres altered during symmetry perception? Answer: Symmetry processing (rather than presence produces more alpha desynchronization in the right posterior regions. Finally, (6 does symmetry processing produce positive affect? Answer: Not in the strongest sense, but behavioural measures reveal implicit positive evaluation of abstract symmetry.

  17. Timing and sequence of brain activity in top-down control of visual-spatial attention.

    OpenAIRE

    Tineke Grent-'t-Jong; Woldorff, Marty G.

    2007-01-01

    Recent brain imaging studies using functional magnetic resonance imaging (fMRI) have implicated a frontal-parietal network in the top-down control of attention. However, little is known about the timing and sequence of activations within this network. To investigate these timing questions, we used event-related electrical brain potentials (ERPs) and a specially designed visual-spatial attentional-cueing paradigm, which were applied as part of a multi-methodological approach that included a cl...

  18. Brain activities during synchronized tapping task.

    Science.gov (United States)

    Hiroyasu, Tomoyuki; Murakami, Akiho; Mao Gto; Yokouchi, Hisatake

    2015-08-01

    This study aims to investigate how people process information about other people to determine a response during human-to-human cooperative work. As a preliminary study, the mechanism of cooperative work was examined using interaction between a machine and a human. This machine was designed to have an "other person" model that simulates an emotional model of another person. The task performed in the experiment was a synchronized tapping task. Two models were prepared for this experiment, a simple model that does not employ the other person model and a synchronized model that employs the other person model. Subjects performed cooperative work with these machines. During the experiment, brain activities were measured using functional near-infrared spectroscopy. It was observed that the left inferior frontal gyrus was activated more with the synchronized model than the simple model. PMID:26737670

  19. Wada-test, functional magnetic resonance imaging and direct electrical stimulation - brain mapping methods

    International Nuclear Information System (INIS)

    Modern neurosurgery requires accurate preoperative and intraoperative localization of brain pathologies but also of brain functions. The presence of individual variations in healthy subjects and the shift of brain functions in brain diseases provoke the introduction of various methods for brain mapping. The aim of this paper was to analyze the most widespread methods for brain mapping: Wada-test, functional magnetic resonance imaging (fMRI) and intraoperative direct electrical stimulation (DES). This study included 4 patients with preoperative brain mapping using Wada-test and fMRI. Intraoperative mapping with DES during awake craniotomy was performed in one case. The histopathological diagnosis was low-grade glioma in 2 cases, cortical dysplasia (1 patient) and arteriovenous malformation (1 patient). The brain mapping permits total lesion resection in three of four patients. There was no new postoperative deficit despite surgery near or within functional brain areas. Brain plasticity provoking shift of eloquent areas from their usual locations was observed in two cases. The brain mapping methods allow surgery in eloquent brain areas recognized in the past as 'forbidden areas'. Each method has advantages and disadvantages. The precise location of brain functions and pathologies frequently requires combination of different brain mapping methods. (authors)

  20. Functional magnetic resonance imaging of higher brain activity

    International Nuclear Information System (INIS)

    Functional magnetic resonance images (fMRIs) exhibit small differences in the magnetic resonance signal intensity in positions corresponding to focal areas of brain activation. These signal are caused by variation in the oxygenation state of the venous vasculature. Using this non-invasive and dynamic method, it is possible to localize functional brain activation, in vivo, in normal individuals, with an accuracy of millimeters and a temporal resolution of seconds. Though a series of technical difficulties remain, fMRI is increasingly becoming a key method for visualizing the working brain, and uncovering the topographical organization of the human brain, and understanding the relationship between brain and the mind

  1. On a Quantum Model of Brain Activities

    Science.gov (United States)

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2010-01-01

    One of the main activities of the brain is the recognition of signals. A first attempt to explain the process of recognition in terms of quantum statistics was given in [6]. Subsequently, details of the mathematical model were presented in a (still incomplete) series of papers (cf. [7, 2, 5, 10]). In the present note we want to give a general view of the principal ideas of this approach. We will introduce the basic spaces and justify the choice of spaces and operations. Further, we bring the model face to face with basic postulates any statistical model of the recognition process should fulfill. These postulates are in accordance with the opinion widely accepted in psychology and neurology.

  2. Vibrotactile aid and brain cortical activity.

    Science.gov (United States)

    Suárez, H; Cibils, D; Caffa, C; Silveira, A; Basalo, S; Svirsky, M

    1997-03-01

    Six profoundly deaf patients were studied with mapping evoked potentials (MEP) using an acoustic signal passed through the vibrotactile prosthesis. This stimulus produced an activation of the central sulcus brain cortex. When the proSthesis was placed in the presenternal area it showed N1 P1 potentials with higher voltage and a more defined cortical dipole inversion than when the prosthesis was placed in the arm or abdomen: thus the presternal stimulation is considered an adequate place for the use of vibrotactile stimulation. The MEP were recorded in 2 patients after a period of audiological training and they showed new earlier potentials. These suggest plastic changes in the processing of an acoustic signal sent from the presternal skin by the somatosensory pathway after training and involving learning procedures. PMID:9105450

  3. Сhanges of brain bioelectric activity by diabetic encephalopathy

    OpenAIRE

    Vitaly P. Omelchenko; Elena A. Timoshenko

    2011-01-01

    This article focuses on the analysis of brain bioelectric activity by diabetic encephalopathy. Paid attention to the establishment of EEG parameters and patients psychological characteristics interrelation.

  4. Electrical Stimulation of the Suprahyoid Muscles in Brain-injured Patients with Dysphagia: A Pilot Study

    OpenAIRE

    Beom, Jaewon; Kim, Sang Jun; Han, Tai Ryoon

    2011-01-01

    Objective To investigate the therapeutic effects of repetitive electrical stimulation of the suprahyoid muscles in brain-injured patients with dysphagia. Method Twenty-eight brain-injured patients who showed reduced laryngeal elevation and supraglottic penetration or subglottic aspiration during a videofluoroscopic swallowing study (VFSS) were selected. The patients received either conventional dysphagia management (CDM) or CDM with repetitive electrical stimulation of the suprahyoid muscles ...

  5. Imaging electrical activity of neurons with metamaterial nanosensors

    CERN Document Server

    Beletskiy, Roman V

    2013-01-01

    A technology for recording electrical activity of large neuron populations at arbitrary depth in brain tissues with less than cell spatial and millisecond temporal resolutions was the most craving dream of neuroscientists and a long pursued goal of engineers for decades. Even though many imaging techniques have been devised up to date, none of them is capable to deliver either quantitatively valid data nor able to meet contradictory requirements posed for sensors to be safe, non-invasive and reliably working either within cultured cell populations or during chronic implantations in vivo. In my research project, I design and justify a novel nanobiosensors, capable to detect and optically report the electric fields across cellular membrane and investigate properties of that specially engineered plasmonic nanoantennas. In the following literature survey, I observe the current state of electrophysiology methods and after recalling the basics of fluorescence, discuss benefits and drawbacks of today's voltage sensi...

  6. Measurable benefits on brain activity from the practice of educational leisure

    Directory of Open Access Journals (Sweden)

    Carmen eRequena

    2014-03-01

    Full Text Available Even if behavioural studies relate leisure practices to the preservation of memory in old persons, there is unsubstantial evidence of the import of leisure on brain activity. Aim of this study was to compare the brain activity of elderly retired people who engage in different types of leisure activities. Methods: quasi-experimental study over a sample of 60 elderly, retired subjects distributed into three groups according to the leisure activities they practised: educational leisure (G1, memory games (G2 and card games (G3. Applied measures include the conceptual distinction between free time and leisure, the Test of Organization of Free Time (TOFT measuring 24 clock divisions, and EEG register during 12 word list memorizing. The results show that the type of leisure activity is associated with significant quantitative differences regarding the use of free time. G1 devotes more time to leisure activities than G2 (p = 0.007 and G3 (p = 0.034. G1 rests more actively than the other two groups (p=0.001. The electrical localization of brain activity indicated a reverse tendency of activation according to the bands and groups. Discussion. Engaging in educational leisure activities is a useful practice to protect healthy brain compensation strategies. Future longitudinal research may verify the causal relation between practicing educational leisure activities and functional brain aging.

  7. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain.

    OpenAIRE

    Kohen, R; Yamamoto, Y.; Cundy, K C; Ames, B N

    1988-01-01

    Carnosine, homocarnosine, and anserine are present in high concentrations in the muscle and brain of many animals and humans. However, their exact function is not clear. The antioxidant activity of these compounds has been examined by testing their peroxyl radical-trapping ability at physiological concentrations. Carnosine, homocarnosine, anserine, and other histidine derivatives all showed antioxidant activity. All of these compounds showing peroxyl radical-trapping activity were also electr...

  8. The effects of physical activity on brain structure

    OpenAIRE

    AdamThomas; PeterABandettini

    2012-01-01

    Aerobic activity is a powerful stimulus for improving mental health and for generating structural changes in the brain. We review the literature documenting these structural changes and explore exactly where in the brain these changes occur as well as the underlying substrates of the changes including neural, glial, and vasculature components. Aerobic activity has been shown to produce different types of changes in the brain. The presence of novel experiences or learning is an especially imp...

  9. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  10. Inhibition of brain tumor cell proliferation by alternating electric fields

    International Nuclear Information System (INIS)

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields

  11. Artifact suppression and analysis of brain activities with electroencephalography signals

    Institute of Scientific and Technical Information of China (English)

    Md. Rashed-Al-Mahfuz; Md. Rabiul Islam; Keikichi Hirose; Md. Khademul Islam Molla

    2013-01-01

    Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.

  12. Finer discrimination of brain activation with local multivariate distance

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The organization of human brain function is diverse on different spatial scales.Various cognitive states are alwavs represented as distinct activity patterns across the specific brain region on fine scales.Conventional univariate analysis of functional MRI data seeks to determine how a particular cognitive state is encoded in brain activity by analyzing each voxel separately without considering the fine-scale patterns information contained in the local brain regions.In this paper,a local multivariate distance mapping(LMDM)technique is proposed to detect the brain activation and to map the fine-scale brain activity patterns.LMDM directly represents the local brain activity with the patterns across multiple voxels rather than individual voxels,and it employs the multivariate distance between different patterns to discriminate the brain state on fine scales.Experiments with simulated and real fMRI data demonstrate that LMDM technique can dramatically increase the sensitivity of the detection for the fine-scale brain activity pettems which contain the subtle information of the experimental conditions.

  13. Electrically sensing protease activity with nanopores

    Science.gov (United States)

    Kukwikila, Mikiembo; Howorka, Stefan

    2010-11-01

    The enzymatic activity of a protease was electrically detected using nanopore recordings. A peptide substrate was tethered to microscale beads, and cleavage by the enzyme trypsin released a soluble fragment that was electrophoretically driven through the α-hemolysin protein pore, leading to detectable blockades in the ionic current. Owing to its simplicity, this approach to sense enzymatic activity may be applied to other proteases.

  14. Potential Moderators of Physical Activity on Brain Health

    Directory of Open Access Journals (Sweden)

    Regina L. Leckie

    2012-01-01

    Full Text Available Age-related cognitive decline is linked to numerous molecular, structural, and functional changes in the brain. However, physical activity is a promising method of reducing unfavorable age-related changes. Physical activity exerts its effects on the brain through many molecular pathways, some of which are regulated by genetic variants in humans. In this paper, we highlight genes including apolipoprotein E (APOE, brain derived neurotrophic factor (BDNF, and catechol-O-methyltransferase (COMT along with dietary omega-3 fatty acid, docosahexaenoic acid (DHA, as potential moderators of the effect of physical activity on brain health. There are a growing number of studies indicating that physical activity might mitigate the genetic risks for disease and brain dysfunction and that the combination of greater amounts of DHA intake with physical activity might promote better brain function than either treatment alone. Understanding whether genes or other lifestyles moderate the effects of physical activity on neurocognitive health is necessary for delineating the pathways by which brain health can be enhanced and for grasping the individual variation in the effectiveness of physical activity interventions on the brain and cognition. There is a need for future research to continue to assess the factors that moderate the effects of physical activity on neurocognitive function.

  15. Brain activity and fatigue during prolonged exercise in the heat

    DEFF Research Database (Denmark)

    Hyldig, Tino Hoffmann

    2001-01-01

    We hypothesized that fatigue due to hyperthermia during prolonged exercise in the heat is in part related to alterations in frontal cortical brain activity. The electroencephalographic activity (EEG) of the frontal cortex of the brain was measured in seven cyclists [maximal O2 uptake (VO2max) 4...

  16. Electrical Vehicles Activities Around the World

    DEFF Research Database (Denmark)

    Schauer, Gerd; Garcia-Valle, Rodrigo

    2013-01-01

    concept. Large research programs have been initiated by different regions, national states, and international research cooperation. These activities accelerate the development and definition of standardized solutions. Market introduction of electric vehicles needs the construction of an additional...... infrastructure as well. Indeed, electricity is widespread, but new business models need special controllable charging pods and fast-charging stations to guarantee mobility, even if they are only relatively seldom used. An examination of different market research shows a lot of effort in Europe, North America......, and the Asian region. Helpful information was collected by studying the experience of roll-out programs in the different countries...

  17. Network-dependent modulation of brain activity during sleep

    OpenAIRE

    Watanabe, T.; Kan, S.; Koike, T.; Misaki, M; Konishi, S.; Miyauchi, S; Miyahsita, Y.; Masuda, N.

    2014-01-01

    Brain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network activity of human brains changes within a given sleep stage. Here, we investigated modulation of network activity within sleep stages by applying the pairwise maximum entropy mod...

  18. In vivo electrical conductivity imaging of a canine brain using a 3 T MREIT system

    International Nuclear Information System (INIS)

    Magnetic resonance electrical impedance tomography (MREIT) aims at producing high-resolution cross-sectional conductivity images of an electrically conducting object such as the human body. Following numerous phantom imaging experiments, the most recent study demonstrated successful conductivity image reconstructions of postmortem canine brains using a 3 T MREIT system with 40 mA imaging currents. Here, we report the results of in vivo animal imaging experiments using 5 mA imaging currents. To investigate any change of electrical conductivity due to brain ischemia, canine brains having a regional ischemic model were scanned along with separate scans of canine brains having no disease model. Reconstructed multi-slice conductivity images of in vivo canine brains with a pixel size of 1.4 mm showed a clear contrast between white and gray matter and also between normal and ischemic regions. We found that the conductivity value of an ischemic region decreased by about 10–14%. In a postmortem brain, conductivity values of white and gray matter decreased by about 4–8% compared to those in a live brain. Accumulating more experience of in vivo animal imaging experiments, we plan to move to human experiments. One of the important goals of our future work is the reduction of the imaging current to a level that a human subject can tolerate. The ability to acquire high-resolution conductivity images will find numerous clinical applications not supported by other medical imaging modalities. Potential applications in biology, chemistry and material science are also expected

  19. Metabolic dysfunction in the brain: implications of astrocyte activation

    OpenAIRE

    Sonia Luz Albarracin

    2015-01-01

    Astrocytes are the most abundant cells in the central nervous system (CNS). They participate in different processes such as maintaining the blood–brain barrier and ion homeostasis, uptake and turnover of neurotransmitters, and formation of synapses. In addition, astrocytes also respond to brain insults to prevent the damage. For instance, astrocyte activation plays a central role in the cellular response to brain insults like trauma, infections, stroke, tumorigenesis, and neurodegeneration....

  20. Intrinsic Brain Activity in Altered States of Consciousness

    Science.gov (United States)

    Boly, M.; Phillips, C.; Tshibanda, L.; Vanhaudenhuyse, A.; Schabus, M.; Dang-Vu, T.T.; Moonen, G.; Hustinx, R.; Maquet, P.; Laureys, S.

    2010-01-01

    Spontaneous brain activity has recently received increasing interest in the neuroimaging community. However, the value of resting-state studies to a better understanding of brain–behavior relationships has been challenged. That altered states of consciousness are a privileged way to study the relationships between spontaneous brain activity and behavior is proposed, and common resting-state brain activity features observed in various states of altered consciousness are reviewed. Early positron emission tomography studies showed that states of extremely low or high brain activity are often associated with unconsciousness. However, this relationship is not absolute, and the precise link between global brain metabolism and awareness remains yet difficult to assert. In contrast, voxel-based analyses identified a systematic impairment of associative frontoparieto–cingulate areas in altered states of consciousness, such as sleep, anesthesia, coma, vegetative state, epileptic loss of consciousness, and somnambulism. In parallel, recent functional magnetic resonance imaging studies have identified structured patterns of slow neuronal oscillations in the resting human brain. Similar coherent blood oxygen level–dependent (BOLD) systemwide patterns can also be found, in particular in the default-mode network, in several states of unconsciousness, such as coma, anesthesia, and slow-wave sleep. The latter results suggest that slow coherent spontaneous BOLD fluctuations cannot be exclusively a reflection of conscious mental activity, but may reflect default brain connectivity shaping brain areas of most likely interactions in a way that transcends levels of consciousness, and whose functional significance remains largely in the dark. PMID:18591474

  1. Mapping human brain activity in vivo.

    OpenAIRE

    Mazziotta, J.C.

    1994-01-01

    A wide range of structural and functional techniques now exists to map the human brain in health and disease. These approaches span the gamut from external tomographic imaging devices (positron-emission tomography, single photon-emission computed tomography, magnetic resonance imaging, computed tomography), to surface detectors (electroencephalography, magnetoencephalography, transcranial magnetic stimulation), to measurements made directly on the brain's surface or beneath it (intrinsic sign...

  2. Brain activity associated with illusory correlations in animal phobia.

    Science.gov (United States)

    Wiemer, Julian; Schulz, Stefan M; Reicherts, Philipp; Glotzbach-Schoon, Evelyn; Andreatta, Marta; Pauli, Paul

    2015-07-01

    Anxiety disorder patients were repeatedly found to overestimate the association between disorder-relevant stimuli and aversive outcomes despite random contingencies. Such an illusory correlation (IC) might play an important role in the return of fear after extinction learning; yet, little is known about how this cognitive bias emerges in the brain. In a functional magnetic resonance imaging study, 18 female patients with spider phobia and 18 healthy controls were exposed to pictures of spiders, mushrooms and puppies followed randomly by either a painful electrical shock or nothing. In advance, both patients and healthy controls expected more shocks after spider pictures. Importantly, only patients with spider phobia continued to overestimate this association after the experiment. The strength of this IC was predicted by increased outcome aversiveness ratings and primary sensory motor cortex activity in response to the shock after spider pictures. Moreover, increased activation of the left dorsolateral prefrontal cortex (dlPFC) to spider pictures predicted the IC. These results support the theory that phobia-relevant stimuli amplify unpleasantness and sensory motor representations of aversive stimuli, which in turn may promote their overestimation. Hyper-activity in dlPFC possibly reflects a pre-occupation of executive resources with phobia-relevant stimuli, thus complicating the accurate monitoring of objective contingencies and the unlearning of fear. PMID:25411452

  3. Active microwave computed brain tomography: the response to a challenge.

    Science.gov (United States)

    Almirall, H; Broquetas, A; Jofre, L

    1991-02-01

    The potential application of active microwave techniques to brain imaging is studied by numerical simulations and experimentally using a recently developed cylindrical microwave scanner. The potential advantages and limitations of this method in static and dynamic brain imaging are presented and compared with other imaging techniques. PMID:2062119

  4. A reliable method for intracranial electrode implantation and chronic electrical stimulation in the mouse brain

    OpenAIRE

    Jeffrey, Melanie; Lang, Min; Gane, Jonathan; Wu, Chiping; Burnham, W McIntyre; Zhang, Liang

    2013-01-01

    Background Electrical stimulation of brain structures has been widely used in rodent models for kindling or modeling deep brain stimulation used clinically. This requires surgical implantation of intracranial electrodes and subsequent chronic stimulation in individual animals for several weeks. Anchoring screws and dental acrylic have long been used to secure implanted intracranial electrodes in rats. However, such an approach is limited when carried out in mouse models as the thin mouse skul...

  5. [Interest of EEG recording during direct electrical stimulation for brain mapping function in surgery].

    Science.gov (United States)

    Trebuchon, A; Guye, M; Tcherniack, V; Tramoni, E; Bruder, N; Metellus, P

    2012-06-01

    Brain tumor surgery is at risk when lesions are located in eloquent areas. The interindividual anatomo-functional variability of the central nervous system implies that brain surgery within eloquent regions may induce neurological sequelae. Brain mapping using intraoperative direct electrical stimulation in awake patients has been for long validated as the standard for functional brain mapping. Direct electrical stimulation inducing a local transient electrical and functional disorganization is considered positive if the task performed by the patient is disturbed. The brain area stimulated is then considered as essential for the function tested. However, the exactitude of the information provided by this technique is cautious because the actual impact of cortical direct electrical stimulation is not known. Indeed, the possibility of false negative (insufficient intensity of the stimulation due to the heterogeneity of excitability threshold of different cortical areas) or false positive (current spread, interregional signal propagation responsible for remote effects, which make difficult the interpretation of positive or negative behavioural effects) constitute a limitation of this technique. To improve the sensitivity and specificity of this technique, we used an electrocorticographic recording system allowing a real time visualization of the local. We provide here evidence that direct cortical stimulation combined with electrocorticographic recording could be useful to detect remote after discharge and to adjust stimulation parameters. In addition this technique offers new perspective to better assess connectivity of cerebral networks. PMID:22683402

  6. Invasive and transcranial photoacoustic imaging of the vascular response to brain electrical stimulation

    Science.gov (United States)

    Tsytsarev, Vassiliy; Yao, Junjie; Hu, Song; Li, Li; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.

    2010-02-01

    Advances in the brain functional imaging greatly facilitated the understanding of neurovascular coupling. For monitoring of the microvascular response to the brain electrical stimulation in vivo we used optical-resolution photoacoustic microscopy (OR-PAM) through the cranial openings as well as transcranially. Both types of the vascular response, vasoconstriction and vasodilatation, were clearly observed with good spatial and temporal resolution. Obtained results confirm one of the primary points of the neurovascular coupling theory that blood vessels could present vasoconstriction or vasodilatation in response to electrical stimulation, depending on the balance between inhibition and excitation of the different parts of the elements of the neurovascular coupling system.

  7. Investigation of Brain Arterial Circle Malformations Using Electrical Modelling and Simulation

    Directory of Open Access Journals (Sweden)

    Klara Capova

    2006-01-01

    Full Text Available The paper deals with the cerebral arterial system investigation by means of electrical modelling and simulations. The main attention is paid to the brain arterial circle malformations (stenoses and aneurysms and their determination and evaluation by computer-aided methods as tools of a non-invasive diagnostics. The compensation possibilities of brain arterial circle in case of presence of concrete arterial malformations are modelled and simulated. The simulation results of brain arteries blood pressures and volume flow velocities time dependences are presented and discussed under various health conditions.

  8. Spatial heterogeneity analysis of brain activation in fMRI

    Directory of Open Access Journals (Sweden)

    Lalit Gupta

    2014-01-01

    Full Text Available In many brain diseases it can be qualitatively observed that spatial patterns in blood oxygenation level dependent (BOLD activation maps appear more (diffusively distributed than in healthy controls. However, measures that can quantitatively characterize this spatial distributiveness in individual subjects are lacking. In this study, we propose a number of spatial heterogeneity measures to characterize brain activation maps. The proposed methods focus on different aspects of heterogeneity, including the shape (compactness, complexity in the distribution of activated regions (fractal dimension and co-occurrence matrix, and gappiness between activated regions (lacunarity. To this end, functional MRI derived activation maps of a language and a motor task were obtained in language impaired children with (Rolandic epilepsy and compared to age-matched healthy controls. Group analysis of the activation maps revealed no significant differences between patients and controls for both tasks. However, for the language task the activation maps in patients appeared more heterogeneous than in controls. Lacunarity was the best measure to discriminate activation patterns of patients from controls (sensitivity 74%, specificity 70% and illustrates the increased irregularity of gaps between activated regions in patients. The combination of heterogeneity measures and a support vector machine approach yielded further increase in sensitivity and specificity to 78% and 80%, respectively. This illustrates that activation distributions in impaired brains can be complex and more heterogeneous than in normal brains and cannot be captured fully by a single quantity. In conclusion, heterogeneity analysis has potential to robustly characterize the increased distributiveness of brain activation in individual patients.

  9. Predicting the electric field distribution in the brain for the treatment of glioblastoma

    International Nuclear Information System (INIS)

    The use of alternating electric fields has been recently proposed for the treatment of recurrent glioblastoma. In order to predict the electric field distribution in the brain during the application of such tumor treating fields (TTF), we constructed a realistic head model from MRI data and placed transducer arrays on the scalp to mimic an FDA-approved medical device. Values for the tissue dielectric properties were taken from the literature; values for the device parameters were obtained from the manufacturer. The finite element method was used to calculate the electric field distribution in the brain. We also included a ‘virtual lesion’ in the model to simulate the presence of an idealized tumor. The calculated electric field in the brain varied mostly between 0.5 and 2.0 V cm − 1 and exceeded 1.0 V cm − 1 in 60% of the total brain volume. Regions of local field enhancement occurred near interfaces between tissues with different conductivities wherever the electric field was perpendicular to those interfaces. These increases were strongest near the ventricles but were also present outside the tumor’s necrotic core and in some parts of the gray matter–white matter interface. The electric field values predicted in this model brain are in reasonably good agreement with those that have been shown to reduce cancer cell proliferation in vitro. The electric field distribution is highly non-uniform and depends on tissue geometry and dielectric properties. This could explain some of the variability in treatment outcomes. The proposed modeling framework could be used to better understand the physical basis of TTF efficacy through retrospective analysis and to improve TTF treatment planning. (paper)

  10. Сhanges of brain bioelectric activity by diabetic encephalopathy

    Directory of Open Access Journals (Sweden)

    Vitaly P. Omelchenko

    2011-05-01

    Full Text Available This article focuses on the analysis of brain bioelectric activity by diabetic encephalopathy. Paid attention to the establishment of EEG parameters and patients psychological characteristics interrelation.

  11. Human brain activity patterns beyond the isoelectric line of extreme deep coma.

    Directory of Open Access Journals (Sweden)

    Daniel Kroeger

    Full Text Available The electroencephalogram (EEG reflects brain electrical activity. A flat (isoelectric EEG, which is usually recorded during very deep coma, is considered to be a turning point between a living brain and a deceased brain. Therefore the isoelectric EEG constitutes, together with evidence of irreversible structural brain damage, one of the criteria for the assessment of brain death. In this study we use EEG recordings for humans on the one hand, and on the other hand double simultaneous intracellular recordings in the cortex and hippocampus, combined with EEG, in cats. They serve to demonstrate that a novel brain phenomenon is observable in both humans and animals during coma that is deeper than the one reflected by the isoelectric EEG, and that this state is characterized by brain activity generated within the hippocampal formation. This new state was induced either by medication applied to postanoxic coma (in human or by application of high doses of anesthesia (isoflurane in animals leading to an EEG activity of quasi-rhythmic sharp waves which henceforth we propose to call ν-complexes (Nu-complexes. Using simultaneous intracellular recordings in vivo in the cortex and hippocampus (especially in the CA3 region we demonstrate that ν-complexes arise in the hippocampus and are subsequently transmitted to the cortex. The genesis of a hippocampal ν-complex depends upon another hippocampal activity, known as ripple activity, which is not overtly detectable at the cortical level. Based on our observations, we propose a scenario of how self-oscillations in hippocampal neurons can lead to a whole brain phenomenon during coma.

  12. Imaging of brain activity by positron emission tomography

    International Nuclear Information System (INIS)

    Brain function is associated with regional energy metabolism and blood flow increase. Such brain activity is visualized by using external scintigraphy. Positron emission tomography (PET) is the currently available most superior technique, allowing three-dimensional imaging of subtle blood flow. In this article, imaging methods and application of PET are discussed in terms of the following items: (1) measurement of cerebral glucose consumption, (2) PET in persons with visual impairment, (3) association between brain function and regional cerebral blood flow, (4) measurement of cerebral blood flow, (5) method for decreasing noise in PET imaging, (6) anatomic standardization of PET images, and (7) speech load and regional cerebral activity images. (N.K.)

  13. Contributions of Glycogen to Astrocytic Energetics during Brain Activation

    OpenAIRE

    Dienel, Gerald A.; Nancy F Cruz

    2014-01-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net g...

  14. Inhibitory effects of matrine on electrical signals and amino acid neurotransmitters in hippocampal brain slices

    Institute of Scientific and Technical Information of China (English)

    Xuping Wang; Jiping Chen; Guizhi Zhao; Dan Shou; Xuezhi Hong; Jianmin Zhang

    2009-01-01

    BACKGROUND: Studies on electrical signals of hippocampal brain slices in vivo have shown that matrine inhibits benzylpenicillin sodium-induced activation of neuronal signal transduction.OBJECTIVE: To verify the inhibition effect of matrine on activation of electrical signals in rat brain slices and the role matrine plays in hippocampal amino acid transmitter release.DESIGN, TIME AND SETTING: The in vitro, neurophysiological, controlled experiment was performed in the Zhejiang Province Key Laboratory of Cardio-cerebrovascular Disease and Nerve System Drugs Appraisement and Chinese Traditional Medicine Screening and Research between July 2003 and May 2004. The in vivo, neuronal, biochemical experiment was performed in the Zhejiang Province Key Laboratory of Chinese Traditional Medicine Quality Standardization from July 2005 to December 2006.MATERIALS: Forty healthy, Sprague Dawley rats, 7-8 weeks old, and 120 healthy, ICR mice, 5-6weeks old, were included in this study, irrespective of gender. Matrine powder was provided by the National Institute for the Control of Pharmaceutical and Biological Products, China. Matrine injection was purchased from Zhuhai Biochemical Pharmaceutical Factory, China. Penicillin was bought from Shijiazhuang Pharmaceutical Group Co., Ltd., China.METHODS: (1) Rats were randomly assigned to four groups: control, penicillin model, and matrine high-dose and low-dose, with 10 rats in each group. The control group was perfused with artificial cerebrospinal fluid, in the remaining three groups, hippocampal brain slices were perfused with normal artificial cerebrospinal fluid containing 1x106 U/L penicillin for the first 10 minutes. The penicillin model group received artificial cerebrospinal fluid for an additional 30 minutes, while the matrine high-dose and low-dose groups received 0.1 g/L and 0.05 g/L matdne, respectively, for an additional 30 minutes. (2) Mice were randomly assigned to four groups (n=30). The matrine high-,medium-, and low

  15. Interleukin 6 modulates acetylcholinesterase activity of brain neurons

    International Nuclear Information System (INIS)

    Classically, radiation injuries results in a peripheral inflammatory process, and we have previously observed an early systemic interleukin 6 (IL-6) release following whole-body irradiation. Besides, we have demonstrated an early decrease of rat or primate brain acetylcholinesterase (AChE) activity a gamma exposure. The object of the present study is to find possible IL-6 systemic effects on the brain AChE activity. We show that, though intravenous (i.v.) or intra-cerebro-ventricular (ICV) injection of IL-6 can induce a drop in rat brain AChE activity, this cytokine induces only a slight decrease of the AChE release in cultured brain cells. (author)

  16. The effects of physical activity on brain structure

    Directory of Open Access Journals (Sweden)

    Adam eThomas

    2012-03-01

    Full Text Available Aerobic activity is a powerful stimulus for improving mental health and for generating structural changes in the brain. We review the literature documenting these structural changes and explore exactly where in the brain these changes occur as well as the underlying substrates of the changes including neural, glial, and vasculature components. Aerobic activity has been shown to produce different types of changes in the brain. The presence of novel experiences or learning is an especially important component in how these changes are manifest. We also discuss the distinct time courses of structural brain changes with both aerobic activity and learning as well as how these effects might differ in diseased and elderly groups.

  17. TRANSLATION OF BRAIN ACTIVITY INTO SLEEP

    OpenAIRE

    Krueger, James M.

    2012-01-01

    Cytokines including tumor necrosis factor alpha (TNF) play a role in sleep regulation in health and disease. Hypothalamic and cerebral cortical levels of TNF mRNA or TNF protein have diurnal variations with higher levels associated with greater sleep propensity. Sleep loss is associated with enhanced brain TNF. Central or systemic TNF injections enhance sleep. Inhibition of TNF using the soluble TNF receptor, or anti-TNF antibodies, or a TNF siRNA reduces spontaneous sleep. Mice lacking the T...

  18. Brain Activity Monitoring for Assessing Satisfaction

    OpenAIRE

    Paola Johanna Rodríguez Carrillo; Jovani Alberto Jiménez Builes; Fabio Paternò

    2015-01-01

    Satisfaction is a dimension of usability for which quantitative metrics cannot be calculated during user interactions. Measurement is subjective and depends on the ability to interpret questionnaires and on the memory of the user. This paper represents an attempt to develop an automatic quantitative metric of satisfaction, developed using a Brain Computer Interface to monitor the mental states (Attention/Meditation) of users. Based on these results, we are able to establish a correlation betw...

  19. Cognitive Control of Language Production in Bilinguals Involves a Partly Independent Process within the Domain-General Cognitive Control Network: Evidence from Task-switching and Electrical Brain Activity

    Science.gov (United States)

    Magezi, David A.; Khateb, Asaid; Mouthon, Michael; Spierer, Lucas; Annoni, Jean-Marie

    2012-01-01

    In highly proficient, early bilinguals, behavioural studies of the cost of switching language or task suggest qualitative differences between language control and domain-general cognitive control. By contrast, several neuroimaging studies have shown an overlap of the brain areas involved in language control and domain-general cognitive control.…

  20. Electric current-induced lymphatic activation.

    Science.gov (United States)

    Kajiya, Kentaro; Matsumoto-Okazaki, Yuko; Sawane, Mika; Fukada, Kaedeko; Takasugi, Yuya; Akai, Tomonori; Saito, Naoki; Mori, Yuichiro

    2014-12-01

    The lymphatic system in skin plays important roles in drainage of wastes and in the afferent phase of immune response. We previously showed that activation of vascular endothelial growth factor receptor (VEGFR), specifically the VEGFC/VEGFR-3 pathway, attenuates oedema and inflammation by promoting lymphangiogenesis, suggesting a protective role of lymphatic vessels against skin inflammation. However, it remains unknown how physical stimuli promote lymphatic function. Here, we show that lymphatic endothelial cells (LECs) are activated by direct-current (DC) electrical stimulation, which induced extension of actin filaments of LECs, increased calcium influx into LECs, and increased phosphorylation of p38 mitogen-activated protein kinase (MAPK). An inhibitor of focal adhesion kinase, which plays a role in cellular adhesion and motility, diminished the DC-induced extension of F-actin and abrogated p38 phosphorylation. Time-lapse imaging revealed that pulsed-DC stimulation promoted proliferation and migration of LECs. Overall, these results indicate that electro-stimulation activates lymphatic function by activating p38 MAPK. PMID:25308203

  1. Activation of NF-κB mediates astrocyte swelling and brain edema in traumatic brain injury.

    Science.gov (United States)

    Jayakumar, Arumugam R; Tong, Xiao Y; Ruiz-Cordero, Roberto; Bregy, Amade; Bethea, John R; Bramlett, Helen M; Norenberg, Michael D

    2014-07-15

    Brain edema and associated increased intracranial pressure are major consequences of traumatic brain injury (TBI). While astrocyte swelling (cytotoxic edema) represents a major component of the brain edema in the early phase of TBI, its mechanisms are unclear. One factor known to be activated by trauma is nuclear factor-κB (NF-κB). Because this factor has been implicated in the mechanism of cell swelling/brain edema in other neurological conditions, we examined whether NF-κB might also be involved in the mediation of post-traumatic astrocyte swelling/brain edema. Here we show an increase in NF-κB activation in cultured astrocytes at 1 and 3 h after trauma (fluid percussion injury, FPI), and that BAY 11-7082, an inhibitor of NF-κB, significantly blocked the trauma-induced astrocyte swelling. Increased activities of nicotinamide adenine dinucleotide phosphate-oxidase and the Na(+), K(+), 2Cl(-) cotransporter were also observed in cultured astrocytes after trauma, and BAY 11-7082 reduced these effects. We also examined the role of NF-κB in the mechanism of cell swelling by using astrocyte cultures derived from transgenic (Tg) mice with a functional inactivation of astrocytic NF-κB. Exposure of cultured astrocytes from wild-type mice to in vitro trauma (3 h) caused a significant increase in cell swelling. By contrast, traumatized astrocyte cultures derived from NF-κB Tg mice showed no swelling. We also found increased astrocytic NF-κB activation and brain water content in rats after FPI, while BAY 11-7082 significantly reduced such effects. Our findings strongly suggest that activation of astrocytic NF-κB represents a key element in the process by which cytotoxic brain edema occurs after TBI. PMID:24471369

  2. Brain Activity Monitoring for Assessing Satisfaction

    Directory of Open Access Journals (Sweden)

    Paola Johanna Rodríguez Carrillo

    2015-06-01

    Full Text Available Satisfaction is a dimension of usability for which quantitative metrics cannot be calculated during user interactions. Measurement is subjective and depends on the ability to interpret questionnaires and on the memory of the user. This paper represents an attempt to develop an automatic quantitative metric of satisfaction, developed using a Brain Computer Interface to monitor the mental states (Attention/Meditation of users. Based on these results, we are able to establish a correlation between the state of Attention and the users' level of satisfaction.

  3. Human brain activity with functional NIR optical imager

    Science.gov (United States)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  4. Regional organisation of brain activity during paradoxical sleep (PS).

    Science.gov (United States)

    Maquet, P; Ruby, P; Schwartz, S; Laureys, S; Albouy, G; Dang-Vu, T; Desseilles, M; Boly, M; Melchior, G; Peigneux, P

    2004-07-01

    Human brain function is regionally organised during paradoxical sleep (PS) in a very different way than during wakefulness or slow wave sleep. The important activity in the pons and in the limbic/paralimbic areas constitutes the key feature of the functional neuroanatomy of PS, together with a relative quiescence of prefrontal and parietal associative cortices. Two questions are still outstanding. What neurocognitive and neurophysiological mechanisms may explain this original organization of brain function during PS? How the pattern of regional brain function may relate to dream content? Although some clues are already available, the experimental answer to both questions is still pending. PMID:15493545

  5. Principal tools for exploring the brain and mapping its activity

    International Nuclear Information System (INIS)

    The electro-encephalography (EEG), magneto-encephalography (MEG), scanner, positron computed tomography, single photon emission computed tomography (SPECT) and NMR imaging are the main methods used to explore human brain and to do a mapping of its activity. These methods are described into details (principle, visualization, uses, advantages, disadvantages). They can be useful to detect the possible anomalies of the human brain. (O.M.)

  6. Synchronous brain activity across individuals inderlies shared psychological perspectives.

    OpenAIRE

    Lahnakoski, Juha M.; Glerean, Enrico; Jääskeläinen, Iiro P.; Hyönä, Jukka; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri

    2014-01-01

    For successful communication, we need to understand the external world consistently with others. This task requires sufficiently similar cognitive schemas or psychological perspectives that act as filters to guide the selection, interpretation and storage of sensory information, perceptual objects and events. Here we show that when individuals adopt a similar psychological perspective during natural viewing, their brain activity becomes synchronized in specific brain regions. We measured brai...

  7. Distributed patterns of brain activity that lead to forgetting

    OpenAIRE

    Ilke eOztekin; David eBadre

    2011-01-01

    HUMAN NEUROSCIENCE Distributed patterns of brain activity that lead to forgetting Ilke Öztekin1* and David Badre2,3 1 Department of Psychology, Koç University, Istanbul, Turkey 2 Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, USA 3 Brown Institute for Brain Sciences, Brown University, Providence, RI, USA Proactive interference (PI), in which irrelevant information from prior learning disrupts memory performance, is widely...

  8. Glutamate Release by Primary Brain Tumors Induces Epileptic Activity

    OpenAIRE

    Buckingham, Susan C.; Campbell, Susan L.; Haas, Brian R.; Montana, Vedrana; Robel, Stefanie; Ogunrinu, Toyin; Sontheimer, Harald

    2011-01-01

    Epileptic seizures are a common and poorly understood co-morbidity for individuals with primary brain tumors. To investigate peritumoral seizure etiology, we implanted patient-derived glioma cells into scid mice. Within 14–18 days, glioma-bearing animals developed spontaneous, recurring abnormal EEG events consistent with epileptic activity that progressed over time. Acute brain slices from these animals showed significant glutamate release from the tumor mediated by the system xc − cystine/g...

  9. Early life stress affects limited regional brain activity in depression

    OpenAIRE

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic reso...

  10. Deep Brain Stimulation Alleviates Parkinsonian Bradykinesia by Regularizing Pallidal Activity

    OpenAIRE

    Dorval, Alan D.; Kuncel, Alexis M.; Birdno, Merrill J.; Turner, Dennis A.; Grill, Warren M.

    2010-01-01

    Deep brain stimulation (DBS) of the basal ganglia can alleviate the motor symptoms of Parkinson's disease although the therapeutic mechanisms are unclear. We hypothesize that DBS relieves symptoms by minimizing pathologically disordered neuronal activity in the basal ganglia. In human participants with parkinsonism and clinically effective deep brain leads, regular (i.e., periodic) high-frequency stimulation was replaced with irregular (i.e., aperiodic) stimulation at the same mean frequency ...

  11. Synchronous brain activity across individuals underlies shared psychological perspectives.

    Science.gov (United States)

    Lahnakoski, Juha M; Glerean, Enrico; Jääskeläinen, Iiro P; Hyönä, Jukka; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri

    2014-10-15

    For successful communication, we need to understand the external world consistently with others. This task requires sufficiently similar cognitive schemas or psychological perspectives that act as filters to guide the selection, interpretation and storage of sensory information, perceptual objects and events. Here we show that when individuals adopt a similar psychological perspective during natural viewing, their brain activity becomes synchronized in specific brain regions. We measured brain activity with functional magnetic resonance imaging (fMRI) from 33 healthy participants who viewed a 10-min movie twice, assuming once a 'social' (detective) and once a 'non-social' (interior decorator) perspective to the movie events. Pearson's correlation coefficient was used to derive multisubject voxelwise similarity measures (inter-subject correlations; ISCs) of functional MRI data. We used k-nearest-neighbor and support vector machine classifiers as well as a Mantel test on the ISC matrices to reveal brain areas wherein ISC predicted the participants' current perspective. ISC was stronger in several brain regions--most robustly in the parahippocampal gyrus, posterior parietal cortex and lateral occipital cortex--when the participants viewed the movie with similar rather than different perspectives. Synchronization was not explained by differences in visual sampling of the movies, as estimated by eye gaze. We propose that synchronous brain activity across individuals adopting similar psychological perspectives could be an important neural mechanism supporting shared understanding of the environment. PMID:24936687

  12. Acupuncture inhibits cue-induced heroin craving and brain activation

    Institute of Scientific and Technical Information of China (English)

    Xinghui Cai; Xiaoge Song; Chuanfu Li; Chunsheng Xu; Xiliang Li; Qi Lu

    2012-01-01

    Previous research using functional MRI has shown that specific brain regions associated with drug dependence and cue-elicited heroin craving are activated by environmental cues.Craving is an important trigger of heroin relapse,and acupuncture may inhibit craving.In this study,we performed functional MRI in heroin addicts and control subjects.We compared differences in brain activation between the two groups during heroin cue exposure,heroin cue exposure plus acupuncture at the Zusanli point(ST36)without twirling of the needle,and heroin cue exposure plus acupuncture at the Zusanli point with twirling of the needle.Heroin cue exposure elicited significant activation in craving-related brain regions mainly in the frontal lobes and callosal gyri.Acupuncture without twirling did not significantly affect the range of brain activation induced by heroin cue exposure,but significantly changed the extent of the activation in the heroin addicts group.Acupuncture at the Zusanli.point with twirling of the needle significantly decreased both the range and extent of activation induced by heroin cue exposure compared with heroin cue exposure plus acupuncture without twirling of the needle.These experimental findings indicate that presentation of heroin cues can induce activation in craving-related brain regions,which are involved in reward,learning and memory,cognition and emotion.Acupuncture at the Zusanli point can rapidly suppress the activation of specific brain regions related to craving,supporting its potential as an intervention for drug craving.

  13. Active control of electric potential of spacecraft

    Science.gov (United States)

    Goldstein, R.

    1977-01-01

    Techniques are discussed for controlling the potential of a spacecraft by means of devices which release appropriate charged particles from the spacecraft to the environment. Attention is given to electron emitters, ion emitters, a basic electron emitter arrangement, techniques for sensing electric field or potential, and flight experiments on active potential control. It is recommended to avoid differential charging on spacecraft surfaces because it can severely affect the efficacy of emitters. Discharging the frame of a spacecraft with dielectric surfaces involves the risk of stressing the dielectric material excessively. The spacecraft should, therefore, be provided with grounded conductive surfaces. It is pointed out that particles released by control systems can return to the spacecraft.

  14. BrainK for Structural Image Processing: Creating Electrical Models of the Human Head.

    Science.gov (United States)

    Li, Kai; Papademetris, Xenophon; Tucker, Don M

    2016-01-01

    BrainK is a set of automated procedures for characterizing the tissues of the human head from MRI, CT, and photogrammetry images. The tissue segmentation and cortical surface extraction support the primary goal of modeling the propagation of electrical currents through head tissues with a finite difference model (FDM) or finite element model (FEM) created from the BrainK geometries. The electrical head model is necessary for accurate source localization of dense array electroencephalographic (dEEG) measures from head surface electrodes. It is also necessary for accurate targeting of cerebral structures with transcranial current injection from those surface electrodes. BrainK must achieve five major tasks: image segmentation, registration of the MRI, CT, and sensor photogrammetry images, cortical surface reconstruction, dipole tessellation of the cortical surface, and Talairach transformation. We describe the approach to each task, and we compare the accuracies for the key tasks of tissue segmentation and cortical surface extraction in relation to existing research tools (FreeSurfer, FSL, SPM, and BrainVisa). BrainK achieves good accuracy with minimal or no user intervention, it deals well with poor quality MR images and tissue abnormalities, and it provides improved computational efficiency over existing research packages. PMID:27293419

  15. Magnetism and Electricity Activity "Attracts" Student Interest

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    Electricity and magnetism are intimately linked, this relationship forming the basis of the modern electric utility system and the generation of bulk electrical energy. There is rich literature from which to teach students the basics, but nothing drives the point home like having them learn from firsthand experience--and that is what this…

  16. Analysis of electrical brain waves in neurotoxicology: γ-hydroxybutyrate.

    Science.gov (United States)

    Binienda, Z K; Beaudoin, M A; Thorn, B T; Ali, S F

    2011-03-01

    Advances in computer technology have allowed quantification of the electroencephalogram (EEG) and expansion of quantitative EEG (qEEG) analysis in neurophysiology, as well as clinical neurology, with great success. Among the variety of techniques in this field, frequency (spectral) analysis using Fast Fourier Transforms (FFT) provides a sensitive tool for time-course studies of different compounds acting on particular neurotransmitter systems. Studies presented here include Electrocorticogram (ECoG) analysis following exposure to a glutamic acid analogue - domoic acid (DOM), psychoactive indole alkaloid - ibogaine, as well as cocaine and gamma-hydroxybutyrate (GHB). The ECoG was recorded in conscious rats via a tether and swivel system. The EEG signal frequency analysis revealed an association between slow-wave EEG activity delta and theta and the type of behavioral seizures following DOM administration. Analyses of power spectra obtained in rats exposed to cocaine alone or after pretreatment with ibogaine indicated the contribution of the serotonergic system in ibogaine mediated response to cocaine (increased power in alpha(1) band). Ibogaine also lowered the threshold for cocaine-induced electrographic seizures (increased power in the low-frequency bands, delta and theta). Daily intraperitoneal administration of cocaine for two weeks was associated with a reduction in slow-wave ECoG activity 24 hrs following the last injection when compared with controls. Similar decreased cortical activity in low-frequency bands observed in chronic cocaine users has been associated with reduced metabolic activity in the frontal cortex. The FFT analyses of power spectra relative to baseline indicated a significant energy increase over all except beta(2) frequency bands following exposure to 400 and 800 mg/kg GHB. The EEG alterations detected in rats following exposure to GHB resemble absence seizures observed in human petit mal epilepsy. Spectral analysis of the EEG signals

  17. Inferring brain-computational mechanisms with models of activity measurements.

    Science.gov (United States)

    Kriegeskorte, Nikolaus; Diedrichsen, Jörn

    2016-10-01

    High-resolution functional imaging is providing increasingly rich measurements of brain activity in animals and humans. A major challenge is to leverage such data to gain insight into the brain's computational mechanisms. The first step is to define candidate brain-computational models (BCMs) that can perform the behavioural task in question. We would then like to infer which of the candidate BCMs best accounts for measured brain-activity data. Here we describe a method that complements each BCM by a measurement model (MM), which simulates the way the brain-activity measurements reflect neuronal activity (e.g. local averaging in functional magnetic resonance imaging (fMRI) voxels or sparse sampling in array recordings). The resulting generative model (BCM-MM) produces simulated measurements. To avoid having to fit the MM to predict each individual measurement channel of the brain-activity data, we compare the measured and predicted data at the level of summary statistics. We describe a novel particular implementation of this approach, called probabilistic representational similarity analysis (pRSA) with MMs, which uses representational dissimilarity matrices (RDMs) as the summary statistics. We validate this method by simulations of fMRI measurements (locally averaging voxels) based on a deep convolutional neural network for visual object recognition. Results indicate that the way the measurements sample the activity patterns strongly affects the apparent representational dissimilarities. However, modelling of the measurement process can account for these effects, and different BCMs remain distinguishable even under substantial noise. The pRSA method enables us to perform Bayesian inference on the set of BCMs and to recognize the data-generating model in each case.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574316

  18. Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature

    Directory of Open Access Journals (Sweden)

    Aslihan Selimbeyoglu

    2010-05-01

    Full Text Available In this review, we summarize the subjective experiential phenomena and behavioral changes that are caused by electrical stimulation of the cerebral cortex or subcortical nuclei in awake and conscious human subjects. Our comprehensive review contains a detailed summary of the data obtained from electrical brain stimulation (EBS in humans in the last 100 years. Findings from the EBS studies may provide an additional layer of information about the neural correlates of cognition and behavior in healthy human subjects, or the neuroanatomy of illusions and hallucinations in patients with psychosis, and the anatomy of seizure signs and symptoms in patients with epilepsy. In addition to a comprehensive overview of published reports in the last hundred years, we discuss some of the fundamental concepts, issues, and remaining questions that have defined the field of EBS. We also review the current state of knowledge about the mechanism of action of EBS suggesting that the modulation of activity within a localized, but distributed, neuroanatomical network might explain the perceptual and behavioral phenomena that are reported during focal electrical stimulation of the human brain.

  19. Predators inhibit brain cell proliferation in natural populations of electric fish, Brachyhypopomus occidentalis.

    Science.gov (United States)

    Dunlap, Kent D; Tran, Alex; Ragazzi, Michael A; Krahe, Rüdiger; Salazar, Vielka L

    2016-02-10

    Compared with laboratory environments, complex natural environments promote brain cell proliferation and neurogenesis. Predators are one important feature of many natural environments, but, in the laboratory, predatory stimuli tend to inhibit brain cell proliferation. Often, laboratory predatory stimuli also elevate plasma glucocorticoids, which can then reduce brain cell proliferation. However, it is unknown how natural predators affect cell proliferation or whether glucocorticoids mediate the neurogenic response to natural predators. We examined brain cell proliferation in six populations of the electric fish, Brachyhypopomus occidentalis, exposed to three forms of predator stimuli: (i) natural variation in the density of predatory catfish; (ii) tail injury, presumably from predation attempts; and (iii) the acute stress of capture. Populations with higher predation pressure had lower density of proliferating (PCNA+) cells, and fish with injured tails had lower proliferating cell density than those with intact tails. However, plasma cortisol did not vary at the population level according to predation pressure or at the individual level according to tail injury. Capture stress significantly increased cortisol, but only marginally decreased cell proliferation. Thus, it appears that the presence of natural predators inhibits brain cell proliferation, but not via mechanisms that depend on changes in basal cortisol levels. This study is the first demonstration of predator-induced alteration of brain cell proliferation in a free-living vertebrate. PMID:26842566

  20. Unbundling of HEP's core activities and the electricity price

    International Nuclear Information System (INIS)

    At the height of proposals and discussions with regard to unbundling of the core business activities of the electricity industry: electricity generation, transmission and distribution, the unbundling conditions and their impact on electricity prices are rarely mentioned. The purpose and the objective of the electricity market liberalisation and restructuring of HEP should be a lower electricity price at the doorstep of the final costumers. Based on earlier analyses it can be said that the average cost of the core activities, i.e. electricity generation, transmission and distribution, is above the average electricity sale price to final customers in the tariff system. Hereinafter it will be shown how much electricity costs and how the electricity price is formed. (author)

  1. What kind of noise is brain noise? Anomalous scaling behavior of the resting brain activity fluctuations.

    Directory of Open Access Journals (Sweden)

    Daniel eFraiman

    2012-07-01

    Full Text Available The study of spontaneous fluctuations of brain activity, often referred as brain noise, is getting increasing attention in functional magnetic resonance imaging (fMRI studies. Despite important efforts, much of the statistical properties of such fluctuations remain largely unknown. This work scrutinize these fluctuations looking at specific statistical properties which are relevant to clarify its dynamical origins. Here, three statistical features which clearly differentiate brain data from naive expectations for random processes are uncovered: First, the variance of the fMRI mean signal as a function of the number of averaged voxels remains constant across a wide range of observed clusters sizes. Second, the anomalous behavior of the variance is originated by bursts of synchronized activity across regions, regardless of their widely different sizes. Finally, the correlation length (i.e., the length at which the correlation strength between two regions vanishes as well as mutual information diverges with the cluster's size considered, such that arbitrarily large clusters exhibit the same collective dynamics than smaller ones. These three properties are known to be exclusive of complex systems exhibiting critical dynamics, where the spatio-temporal dynamics show these peculiar type of fluctuations. Thus, these findings are fully consistent with previous reports of brain critical dynamics, and are relevant for the interpretation of the role of fluctuations and variability in brain function in health and disease.

  2. Interactions between occlusion and human brain function activities.

    Science.gov (United States)

    Ohkubo, C; Morokuma, M; Yoneyama, Y; Matsuda, R; Lee, J S

    2013-02-01

    There are few review articles in the area of human research that focus on the interactions between occlusion and brain function. This systematic review discusses the effect of occlusion on the health of the entire body with a focus on brain function. Available relevant articles in English from 1999 to 2011 were assessed in an online database and as hard copies in libraries. The selected 19 articles were classified into the following five categories: chewing and tongue movements, clenching and grinding, occlusal splints and occlusal interference, prosthetic rehabilitation, and pain and stimulation. The relationships between the brain activity observed in the motor and sensory cortices and movements of the oral and maxillofacial area, such as those produced by gum chewing, tapping and clenching, were investigated. It was found that the sensorimotor cortex was also affected by the placement of the occlusal interference devices, splints and implant prostheses. Brain activity may change depending on the strength of the movements in the oral and maxillofacial area. Therefore, mastication and other movements stimulate the activity in the cerebral cortex and may be helpful in preventing degradation of a brain function. However, these findings must be verified by evidence gathered from more subjects. PMID:22624951

  3. Brain Activation during Sentence Comprehension among Good and Poor Readers

    OpenAIRE

    Meyler, Ann; Keller, Timothy A.; Cherkassky, Vladimir L.; Lee, Donghoon; Hoeft, Fumiko; Whitfield-Gabrieli, Susan; Gabrieli, John D. E.; Just, Marcel Adam

    2007-01-01

    This study sought to increase current understanding of the neuro-psychological basis of poor reading ability by using fMRI to examine brain activation during a visual sentence comprehension task among good and poor readers in the third (n = 32) and fifth (n = 35) grades. Reading ability, age, and the combination of both factors made unique contributions to cortical activation. The main finding was of parietotemporal underactivation (less activation than controls) among poor readers at the 2 g...

  4. Physical Activity, Brain Plasticity, and Alzheimer’s Disease

    OpenAIRE

    Erickson, Kirk I.; Weinstein, Andrea M.; Lopez, Oscar L.

    2012-01-01

    In this review we summarize the epidemiological, cross-sectional, and interventional studies examining the association between physical activity and brain volume, function, and risk for Alzheimer’s disease. The epidemiological literature provides compelling evidence that greater amounts of physical activity are associated with a reduced risk of dementia in late life. In addition, randomized interventions using neuroimaging tools have reported that participation in physical activity increases ...

  5. The effects of trypsin on rat brain astrocyte activation

    OpenAIRE

    Masoud Fereidoni; Farzaneh Sabouni; Ali Moghimi; Shirin Hosseini

    2013-01-01

    Background Astrocytes are cells within the central nervous system which are activated in a wide spectrum of infections, and autoimmune and neurodegenerative diseases. In pathologic states, they produce inflammatory cytokines, chemokines, and nitric oxide (NO), and sometimes they induce apoptosis. Their protease-activated receptors (PARs) can be activated by proteases, e.g. thrombin and trypsin, which are important in brain inflammation. The current study aimed to investigate the effects of di...

  6. Active filter to improve the energetic efficiency in electric installations.

    OpenAIRE

    Amarís Duarte, Hortensia; Robles Muñoz, Guillermo

    2009-01-01

    The Department of Electrical Engineering of the University Carlos III of Madrid has developed a prototype of active filter to compensate the disturbances that a nonlinear load produces. The active filters appears like the dynamic solution that best fits to the needs of compensation of electrical disturbances in industrial facilities. This active filter allows correcting the power factor of the installation. With this improvement, electrical consumes are reduced, which results in significa...

  7. Brain activation studies with PET and functional MRI

    International Nuclear Information System (INIS)

    Application of PET and functional MRI in brain activation studies is reviewed. 3D-PET images obtained repeatedly after intravenous injection of about 370 MBq of H215O can detect a faint blood flow change in the brain. Functional MRI can also detect the blood flow change in the brain due to blood oxygen level-dependent effect. Echo-planar imaging is popular in MRI with 1.5 or 3 T. Images are analyzed by statistical parametric mapping with correction of cerebral regions, anatomical normalization and statistics. PET data give the blood flow change by the H215O incorporation into the brain and MRI data, by the scarce tissue oxygen consumption despite the change. Actual images during the cognition task-performance and of frequent artifacts are given. PET is suitable for studies of brain functions like sensibility and emotion and functional MRI, like cortex functions and clinical practices in identification of functional regions prior to surgery and evaluation of functional recovery of damaged brain. (K.H.)

  8. Improving Electrical Impedance Tomography of brain function with a novel servo-controlled electrode helmet

    OpenAIRE

    Avery, J. P.

    2015-01-01

    Electrical Impedance Tomography (EIT) is a medical imaging technique which reconstructs the internal conductivity of an object from boundary measurements. EIT has the potential to provide a novel means of imaging in acute stroke, epilepsy or traumatic brain injury. Previous studies, whilst demonstrating the potential of the technique, have not been successful clinically.The work in this thesis aims to address fundamental limitations including measurement drift in electronic hardware, lack of ...

  9. Radio electric asymmetric brain stimulation in the treatment of behavioral and psychiatric symptoms in Alzheimer disease

    OpenAIRE

    Mannu P; Rinaldi S; Fontani V; Castagna A

    2011-01-01

    Piero Mannu1, Salvatore Rinaldi1,2, Vania Fontani1, Alessandro Castagna11Rinaldi Fontani Institute, Department of Neuro Psycho Physio Pathology, Florence, Italy; 2Medical School of Occupational Medicine, University of Florence, Florence, ItalyPurpose: Behavioral and psychiatric symptoms of dementia (BPSD) are common in Alzheimer's disease (AD) and disrupt the effective management of AD patients. The present study explores the use of radio electric asymmetric brain stimulation (REAC) i...

  10. Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells.

    Directory of Open Access Journals (Sweden)

    Asaph Zylbertal

    2015-12-01

    Full Text Available Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here, we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. We show that mitral cells in the accessory olfactory bulb (AOB, which plays a major role in mammalian social behavior, may respond to a brief sensory stimulation with persistent firing. By combining electrical recordings, Ca2+ and Na+ imaging, and realistic computational modeling, we explored the mechanisms underlying the persistent activity in AOB mitral cells. We found that the exceptionally slow inward current that underlies this activity is governed by prolonged dynamics of intracellular Na+ ([Na+]i, which affects neuronal electrical activity via several pathways. Specifically, elevated dendritic [Na+]i reverses the Na+-Ca2+ exchanger activity, thus modifying the [Ca2+]i set-point. This process, which relies on ubiquitous membrane mechanisms, is likely to play a role in other neuronal types in various brain regions.

  11. Brain activation during micturition in women

    NARCIS (Netherlands)

    Blok, Bertil F.M.; Sturms, Leontien M.; Holstege, Gert

    1998-01-01

    Experiments in the cat have led to a concept of how the CNS controls micturition. In a previous study this concept was tested in a PET study in male volunteers, It was demonstrated that specific brainstem and forebrain areas are activated during micturition, It was unfortunate that this study did no

  12. Intrinsic Brain Activity in Altered States of Consciousness: How Conscious Is the Default Mode of Brain Function?

    OpenAIRE

    Boly, M; Phillips, C.; Tshibanda, L; Vanhaudenhuyse, A.; Schabus, M.; Dang-Vu, T.T.; Moonen, G.; Hustinx, R.; Maquet, P; Laureys, S.

    2008-01-01

    Spontaneous brain activity has recently received increasing interest in the neuroimaging community. However, the value of resting-state studies to a better understanding of brain–behavior relationships has been challenged. That altered states of consciousness are a privileged way to study the relationships between spontaneous brain activity and behavior is proposed, and common resting-state brain activity features observed in various states of altered consciousness are reviewed. Early positro...

  13. Calcium-activated potassium channels mediated blood-brain tumor barrier opening in a rat metastatic brain tumor model

    OpenAIRE

    2007-01-01

    Background The blood-brain tumor barrier (BTB) impedes the delivery of therapeutic agents to brain tumors. While adequate delivery of drugs occurs in systemic tumors, the BTB limits delivery of anti-tumor agents into brain metastases. Results In this study, we examined the function and regulation of calcium-activated potassium (KCa) channels in a rat metastatic brain tumor model. We showed that intravenous infusion of NS1619, a KCa channel agonist, and bradykinin selectively enhanced BTB perm...

  14. Brain monoamine oxidase A activity predicts trait aggression.

    Science.gov (United States)

    Alia-Klein, Nelly; Goldstein, Rita Z; Kriplani, Aarti; Logan, Jean; Tomasi, Dardo; Williams, Benjamin; Telang, Frank; Shumay, Elena; Biegon, Anat; Craig, Ian W; Henn, Fritz; Wang, Gene-Jack; Volkow, Nora D; Fowler, Joanna S

    2008-05-01

    The genetic deletion of monoamine oxidase A (MAO A), an enzyme that breaks down the monoamine neurotransmitters norepinephrine, serotonin, and dopamine, produces aggressive phenotypes across species. Therefore, a common polymorphism in the MAO A gene (MAOA, Mendelian Inheritance in Men database number 309850, referred to as high or low based on transcription in non-neuronal cells) has been investigated in a number of externalizing behavioral and clinical phenotypes. These studies provide evidence linking the low MAOA genotype and violent behavior but only through interaction with severe environmental stressors during childhood. Here, we hypothesized that in healthy adult males the gene product of MAO A in the brain, rather than the gene per se, would be associated with regulating the concentration of brain amines involved in trait aggression. Brain MAO A activity was measured in vivo in healthy nonsmoking men with positron emission tomography using a radioligand specific for MAO A (clorgyline labeled with carbon 11). Trait aggression was measured with the multidimensional personality questionnaire (MPQ). Here we report for the first time that brain MAO A correlates inversely with the MPQ trait measure of aggression (but not with other personality traits) such that the lower the MAO A activity in cortical and subcortical brain regions, the higher the self-reported aggression (in both MAOA genotype groups) contributing to more than one-third of the variability. Because trait aggression is a measure used to predict antisocial behavior, these results underscore the relevance of MAO A as a neurochemical substrate of aberrant aggression. PMID:18463263

  15. Comparison of brain activation to purposefully activate a tool in healthy subjects and brain tumor patients using fMRI

    International Nuclear Information System (INIS)

    The purpose of this study was to determine the functional organization of the human brain involved in tool-manipulation. Blood Oxygen Level Dependent was measured by functional magnetic resonance imaging in seventeen right-handed healthy volunteers and two brain tumor patients during two tool-manipulation tasks: simulated tightening a bolt with a screwdriver (Simulation), and tightening a bolt with a screwdriver (Real). Subjects performed the experiment without watching the tasks. Bilateral pre-supplementary motor areas, bilateral cerebellar posterior lobes, right ventral premotor area, right calcarine sulcus, and cerebellar vermis were activated during Real but not during Simulation tasks in healthy volunteers. In addition, brain tumor patients activated the prefrontal areas. Our results suggest that the human brain mechanisms for tool-manipulation have a neural-network comprised of presupplementary motor area, ventral premotor area, and bilateral cerebellar posterior lobes. In the patients with brain dusfurction diee to tumors, activation at the prefrontal area provided function compensation without motor paralysis. (author)

  16. Early life stress affects limited regional brain activity in depression.

    Science.gov (United States)

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  17. Early life stress affects limited regional brain activity in depression

    Science.gov (United States)

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  18. Smart Moves: Powering up the Brain with Physical Activity

    Science.gov (United States)

    Conyers, Marcus; Wilson, Donna

    2015-01-01

    The Common Core State Standards emphasize higher-order thinking, problem solving, and the creation, retention, and application of knowledge. Achieving these standards creates greater cognitive demands on students. Recent research suggests that active play and regular exercise have a positive effect on brain regions associated with executive…

  19. Alcohol dependence and anxiety increase error-related brain activity.

    NARCIS (Netherlands)

    Schellekens, A.F.A.; Bruijn, E.R. de; Lankveld, C.A. van; Hulstijn, W.; Buitelaar, J.K.; Jong, C.A.J. de; Verkes, R.J.

    2010-01-01

    AIMS: Detection of errors is crucial for efficient goal-directed behaviour. The ability to monitor behaviour is found to be diminished in patients with substance dependence, as reflected in decreased error-related brain activity, i.e. error-related negativity (ERN). The ERN is also decreased in othe

  20. Alcohol dependence and anxiety increase error-related brain activity

    NARCIS (Netherlands)

    Schellekens, A.F.A.; Bruijn, E.R.A. de; Lankveld, C.A.A. van; Hulstijn, W.; Buitelaar, J.K.; Jong, C.A.J. de; Verkes, R.J.

    2010-01-01

    Aims Detection of errors is crucial for efficient goal-directed behaviour. The ability to monitor behaviour is found to be diminished in patients with substance dependence, as reflected in decreased error-related brain activity, i.e. error-related negativity (ERN). The ERN is also decreased in other

  1. Towards a fourth spatial dimension of brain activity.

    Science.gov (United States)

    Tozzi, Arturo; Peters, James F

    2016-06-01

    Current advances in neurosciences deal with the functional architecture of the central nervous system, paving the way for general theories that improve our understanding of brain activity. From topology, a strong concept comes into play in understanding brain functions, namely, the 4D space of a "hypersphere's torus", undetectable by observers living in a 3D world. The torus may be compared with a video game with biplanes in aerial combat: when a biplane flies off one edge of gaming display, it does not crash but rather it comes back from the opposite edge of the screen. Our thoughts exhibit similar behaviour, i.e. the unique ability to connect past, present and future events in a single, coherent picture as if we were allowed to watch the three screens of past-present-future "glued" together in a mental kaleidoscope. Here we hypothesize that brain functions are embedded in a imperceptible fourth spatial dimension and propose a method to empirically assess its presence. Neuroimaging fMRI series can be evaluated, looking for the topological hallmark of the presence of a fourth dimension. Indeed, there is a typical feature which reveal the existence of a functional hypersphere: the simultaneous activation of areas opposite each other on the 3D cortical surface. Our suggestion-substantiated by recent findings-that brain activity takes place on a closed, donut-like trajectory helps to solve long-standing mysteries concerning our psychological activities, such as mind-wandering, memory retrieval, consciousness and dreaming state. PMID:27275375

  2. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  3. Radio electric asymmetric brain stimulation in the treatment of behavioral and psychiatric symptoms in Alzheimer disease

    Directory of Open Access Journals (Sweden)

    Mannu P

    2011-07-01

    Full Text Available Piero Mannu1, Salvatore Rinaldi1,2, Vania Fontani1, Alessandro Castagna11Rinaldi Fontani Institute, Department of Neuro Psycho Physio Pathology, Florence, Italy; 2Medical School of Occupational Medicine, University of Florence, Florence, ItalyPurpose: Behavioral and psychiatric symptoms of dementia (BPSD are common in Alzheimer's disease (AD and disrupt the effective management of AD patients. The present study explores the use of radio electric asymmetric brain stimulation (REAC in patients who have had a poor response to pharmacological treatment.Patients and methods: Eight patients (five females and three males; mean [±standard deviation] age at study baseline: 69.9 ± 3.0 years diagnosed with AD according to the DSM-IV-TR criteria (mean onset age of AD: 65.4 ± 3.5 years were cognitively and psychometrically assessed with the Mini-Mental State Examination (MMSE, the Activity of Daily Living (ADL, the Instrumental Activity of Daily Living (IADL, and the Neuropsychiatric Inventory (NPI, prior to and after each of 2 REAC treatment cycles.Results: Scores on the MMSE and all subscales of the NPI (frequency, severity, and distress, the ADL, and the IADL were significantly improved following the initial REAC treatment. There was further significant improvement in all measurements (with a tendency for improvement in the IADL after the second REAC treatment cycle.Conclusion: The improvement of cognitive and behavioral/psychiatric functioning following REAC treatment suggests that this innovative approach may be an effective, safe, and tolerable alternative to pharmacological treatment of AD patients, especially in the area of BPSD. Elderly patients suffering from other types of dementia may also benefit from REAC treatment.Keywords: anxiety, depression, insomnia, behavioral and psychiatric symptoms of dementia (BPSD

  4. Altered brain activity for phonological manipulation in dyslexic Japanese children

    Science.gov (United States)

    Yamamoto, Hisako; Oba, Kentaro; Terasawa, Yuri; Moriguchi, Yoshiya; Uchiyama, Hitoshi; Seki, Ayumi; Koeda, Tatsuya; Inagaki, Masumi

    2013-01-01

    Because of unique linguistic characteristics, the prevalence rate of developmental dyslexia is relatively low in the Japanese language. Paradoxically, Japanese children have serious difficulty analysing phonological processes when they have dyslexia. Neurobiological deficits in Japanese dyslexia remain unclear and need to be identified, and may lead to better understanding of the commonality and diversity in the disorder among different linguistic systems. The present study investigated brain activity that underlies deficits in phonological awareness in Japanese dyslexic children using functional magnetic resonance imaging. We developed and conducted a phonological manipulation task to extract phonological processing skills and to minimize the influence of auditory working memory on healthy adults, typically developing children, and dyslexic children. Current experiments revealed that several brain regions participated in manipulating the phonological information including left inferior and middle frontal gyrus, left superior temporal gyrus, and bilateral basal ganglia. Moreover, dyslexic children showed altered activity in two brain regions. They showed hyperactivity in the basal ganglia compared with the two other groups, which reflects inefficient phonological processing. Hypoactivity in the left superior temporal gyrus was also found, suggesting difficulty in composing and processing phonological information. The altered brain activity shares similarity with those of dyslexic children in countries speaking alphabetical languages, but disparity also occurs between these two populations. These are initial findings concerning the neurobiological impairments in dyslexic Japanese children. PMID:24052613

  5. Conformable actively multiplexed high-density surface electrode array for brain interfacing

    Science.gov (United States)

    Rogers, John; Kim, Dae-Hyeong; Litt, Brian; Viventi, Jonathan

    2015-01-13

    Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein.

  6. The effects of hyperammonemia in learning and brain metabolic activity.

    Science.gov (United States)

    Arias, Natalia; Fidalgo, Camino; Felipo, Vicente; Arias, Jorge L

    2014-03-01

    Ammonia is thought to be central in the development of hepatic encephalopathy. However, the specific relation of ammonia with brain energy depletions and learning has not been studied. Our work attempts to reproduce an increase in rat cerebral ammonia level, study the hyperamonemic animals' performance of two learning tasks, an allocentric (ALLO) and a cue guided (CG) task, and elucidate the contribution of hyperammonemia to the differential energy requirements of the brain limbic system regions involved in these tasks. To assess these goals, four groups of animals were used: a control (CHA) CG group (n = 10), a CHA ALLO group (n = 9), a hyperammonemia (HA) CG group (n = 7), and HA ALLO group (n = 8). Oxidative metabolism of the target brain regions were assessed by histochemical labelling of cytochrome oxidase (C.O.). The behavioural results revealed that the hyperammonemic rats were not able to reach the behavioural criterion in either of the two tasks, in contrast to the CHA groups. The metabolic brain consumption revealed increased C.O. activity in the anterodorsal thalamus when comparing the HA ALLO group with the CHA ALLO group. Significant differences between animals trained in the CG task were observed in the prelimbic, infralimbic, parietal, entorhinal and perirhinal cortices, the anterolateral and anteromedial striatum, and the basolateral and central amygdala. Our findings may provide fresh insights to reveal how the differential damage to the brain limbic structures involved in these tasks differs according to the degree of task difficulty. PMID:24415107

  7. Xanthine oxidase activity regulates human embryonic brain cells growth

    Directory of Open Access Journals (Sweden)

    Kevorkian G. A.

    2011-10-01

    Full Text Available Aim. Involvement of Xanthine Oxidase (XO; EC1.1.3.22 in cellular proliferation and differentiation has been suggested by the numerous investigations. We have proposed that XO might have undoubtedly important role during the development, maturation as well as the death of human embryos brain cells. Methods. Human abortion material was utilized for the cultivation of brain cells (E90. XO activity was measured by the formation of uric acid in tissue. Cell death was detected by the utility of Trypan Blue dye. Results. Allopurinol suppressed the XO activity in the brain tissue (0.12 ± 0.02; 0.20 ± 0.03 resp., p < 0.05. On day 12th the number of cells in the culture treated with the Allopurinol at the early stage of development was higher in comparison with the Control (2350.1 ± 199.0 vs 2123 ± 96 and higher in comparison with the late period of treatment (1479.6 ± 103.8, p < < 0.05. In all groups, the number of the dead cells was less than in Control, indicating the protective nature of Allopurinol as an inhibitor of XO. Conclusions. Allopurinol initiates cells proliferation in case of the early treatment of the human brain derived cell culture whereas at the late stages it has an opposite effect.

  8. Relationship between changes of N-methyl-D-aspartate receptor activity and brain edema after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the relationship between the changes of N-methyl-D-aspartate (NMDA) receptor activity and brain edema after injury in rats.   Methods: The brain injury models were made by using a free-falling body. The treatment model was induced by means of injecting AP5 into lateral ventricle before brain injury; water contents in brain cortex were measured with dry-wet method; and NMDA receptor activity was detected with a radio ligand binding assay.   Results: The water contents began to increase at 30 minutes and reached the peak at 6 hours after brain injury. The maximal binding (Bmax) of NMDA receptor increased significantly at 15 minutes and reached the peak at 30 minutes, then decreased gradually and had the lowest value 6 hours after brain injury. Followed the treatment with AP5, NMDA receptor activity in the injured brain showed a normal value; and the water contents were lower than that of AP5-free injury group 24 hours after brain injury.   Conclusions: It suggests that excessive activation of NMDA receptor may be one of the most important factors to induce the secondary cerebral impairments, and AP5 may protect the brain from edema after brain injury.

  9. Brain activation study during urine withhold by 99Tcm-HMPAO SPECT brain imaging

    International Nuclear Information System (INIS)

    Objective: Lose of urinary continence control is related with the pathological process of many brain damages. The aim of this study was to identify cerebral activation areas during withholding urine in healthy subjects with cerebral perfusion agent [99Tcm-hexamethylpropylene amine oxime (HMPAO)]. Methods: Fifteen right-handed healthy male volunteers (age ranged 24 to 45 years old) was recruited. All had two brain perfusion SPECT scans (15 volunteers with 30 scans). One was at resting state with empty bladder and the other was at urine withholding state with full bladder. The images were analyzed by neurological statistical image analysis software (NEUROSTAT) and was displayed on Z-score images at a significance threshold of P<0.05 with correction for multiple comparisons. Results: As compared with resting, the urine withholding state showed a significant increase cerebral perfusion in bilateral inferior frontal gyri, the right superior and middle temporal gyri, with the most significant in the right inferior frontal gyms. Conclusions: Although the control of urinary continence in healthy men was associated with bilateral inferior frontal gyri and the right superior and middle temporal gyri, the results showed that the right inferior frontal gyms might also be important. Moreover, the combination of brain perfusion SPECT and NEUROSTAT was a rather easy method for further understanding the mechanism of urinary control in brain and could be popularized as a research tool for clinical use. (authors)

  10. Functional spectroscopy: Limitations and value of a new method for examining brain activity using MRT

    International Nuclear Information System (INIS)

    The possibility of examining brain activity by means of localised spectroscopy was studied in relation to its neurological basis. Measurements on 18 normals during optical stimulation showed an improvement in signal to noise ratio compared with functional imaging of almost one order of magnitude. Time dependent measurements during stimulation by a 500 ms light impulse showed definite delay of increased blood flow when compared with oxygen utilisation. The excellent signal to noise ratio and the inherent stability of the method permits reliable detection of weak effects such as are caused by finger tapping or electrical stimulation. (orig.)

  11. Coherence of brain electrical activity: a quality of life indicator in Alzheimer’s disease?Coerência da atividade elétrica cerebral: indicador da qualidade de vida na doença de Alzheimer?

    Directory of Open Access Journals (Sweden)

    Lineu Corrêa Fonseca

    2015-05-01

    Full Text Available Objective To investigate the relationships between quality of life (QOL and clinical and electroencephalogram (EEG aspects in patients with Alzheimer’s disease (AD. Method Twenty-eight patients with mild or moderate AD, 31 with Parkinson’s disease (PD, and 27 normal controls (NC were submitted to: CERAD neuropsychological battery, Hamilton Depression and Anxiety Rating Scales, Functional Activities Questionnaire, QOL scale for patients with AD, and quantitative EEG measures. Results AD and PD patients had similar QOL (31.0 ± 5.8; 31.7 ± 4.8, respectively, worse than that of NC (37.5 ± 6.3. AD patients had lower global interhemispheric theta coherence (0.49 ± 0.04; 0.52 ± 0.05; 0.52 ± 0.05; respectively than PD and NC. Multiple linear regression for QOL of AD patients revealed that global interhemispheric theta coherence, and Hamilton depression scores were significant factors (coefficients; 58.2 and -0.27, respectively; R2, 0.377. Conclusion Interhemispheric coherence correlates with QOL regardless of cognitive and functional variables and seems to be a neurophysiological indicator of QOL in AD patients.

  12. Magnetic and electrical responses of the human brain to texture-defined form and to textons.

    Science.gov (United States)

    Regan, D; He, P

    1995-09-01

    1. We searched for a neurophysical correlate of preattentive texture discrimination by recording magnetic and electric evoked responses from the human brain during the first few hundred milliseconds following the presentation of texture-defined (TD) checkerboard form. The only two textons that changed when the TD checkerboard appeared or disappeared were the local orientation and line termination textons. (Textons are conspicuous local features within a texture pattern). 2. Our evidence that the magnetic response to TD form cannot be explained in terms of responses to the two associated textons is as follows: 1) by dissociating the two responses we showed that the magnetic response to TD form is almost entirely independent of the magnetic response to the local orientation texton; 2) a further distinction between the two responses is that their distributions over the head are different; and 3) the magnetic response to TD form differs from the magnetic response to the line termination texton in both distribution over the head and waveform. We conclude that this evidence identifies the existence of a brain response correlate of preattentive texture discrimination. 3. We also recorded brain responses to luminance-defined (LD) checkerboard form. Our grounds for concluding that magnetic brain responses to the onset of checkerboard form are generated by different and independent neural systems for TD and LD form are as follows: 1) magnetic responses to the onset of TD form and LD form had different distributions over the skull, had different waveforms, and depended differently on check size; and 2) the waveform of the response to superimposed TD and LD checks closely approximated the linear sum of responses to TD checks and LD checks alone. 4. One possible explanation for the observed differences between the magnetic and electric evoked responses is that responses to both onset and offset of TD form predominantly involve neurons aligned parallel to the skull, whereas that

  13. How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition

    DEFF Research Database (Denmark)

    Siebner, Hartwig R; Hartwigsen, Gesa; Kassuba, Tanja;

    2009-01-01

    cortex is at the time the stimulus is applied: if many neurones are close to firing threshold then the more of them are recruited by the pulse than at rest. Many studies have noted this context-dependent modulation. However, it is often assumed that the excitability of an area has a simple relationship......Transcranial magnetic stimulation (TMS) uses a magnetic field to "carry" a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse...... in the human brain. This transient neurodisruption has been termed a "virtual lesion". Smaller intensities of stimulation produce less activity; in such cases, cognitive operations can probably continue but are disrupted because of the added noisy input from the TMS pulse. It is usually argued that...

  14. MRI Brain Activation During Instruction of Dyslexic Children

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-08-01

    Full Text Available Ten children with dyslexia and 11 normal readers performed tasks of phoneme mapping (assigning sounds to letters and morpheme mapping (relating suffixed words to their roots during fMRI scanning, before and after 28 hours of comprehensive reading instruction, in a study of the effects of reading instruction on brain activation in children with dyslexia at University of Washington, Seattle, WA.

  15. Baseline brain activity fluctuations predict somatosensory perception in humans

    OpenAIRE

    Boly, M; Balteau, E.; Schnakers, C; Degueldre, C.; Moonen, G.; Luxen, A.; Phillips, C.; Peigneux, P; Maquet, P; Laureys, S.

    2007-01-01

    In perceptual experiments, within-individual fluctuations in perception are observed across multiple presentations of the same stimuli, a phenomenon that remains only partially understood. Here, by means of thulium–yttrium/aluminum–garnet laser and event-related functional MRI, we tested whether variability in perception of identical stimuli relates to differences in prestimulus, baseline brain activity. Results indicate a positive relationship between conscious perception of low-intensity so...

  16. Anatomical Atlas-Guided Diffuse Optical Tomography of Brain Activation

    OpenAIRE

    Custo, Anna; Boas, David A.; Tsuzuki, Daisuke; Dan, Ippeita; Mesquita, Rickson; Fischl, Bruce; Grimson, W. Eric L.; Wells, Williams

    2009-01-01

    We describe a neuro imaging protocol that utilizes an anatomical atlas of the human head to guide Diffuse optical tomography of human brain activation. The protocol is demonstrated by imaging the hemodynamic response to median nerve stimulation in three healthy subjects, and comparing the images obtained using a head atlas with the images obtained using the subject-specific head anatomy. The results indicate that using the head atlas anatomy it is possible to reconstruct the location of the b...

  17. Working Memory Updating Function Training Influenced Brain Activity

    OpenAIRE

    Zhao, Xin; Zhou, Renlai; Fu, Li

    2013-01-01

    Recent studies demonstrated that working memory could be improved by training. We recruited healthy adult participants and used adaptive running working memory training tasks with a double-blind design, combined with the event-related potentials (ERPs) approach, to explore the influence of updating function training on brain activity. Participants in the training group underwent training for 20 days. Compared with the control group, the training group's accuracy (ACC) in the two-back working ...

  18. Regional distribution of SGLT activity in rat brain in vivo

    OpenAIRE

    Yu, Amy S.; Hirayama, Bruce A.; Timbol, Gerald; Liu, Jie; Diez-Sampedro, Ana; Kepe, Vladimir; Satyamurthy, Nagichettiar; Huang, Sung-Cheng; Wright, Ernest M.; Barrio, Jorge R.

    2012-01-01

    Na+-glucose cotransporter (SGLT) mRNAs have been detected in many organs of the body, but, apart from kidney and intestine, transporter expression, localization, and functional activity, as well as physiological significance, remain elusive. Using a SGLT-specific molecular imaging probe, α-methyl-4-deoxy-4-[18F]fluoro-d-glucopyranoside (Me-4-FDG) with ex vivo autoradiography and immunohistochemistry, we mapped in vivo the regional distribution of functional SGLTs in rat brain. Since Me-4-FDG ...

  19. Individual Variability in Brain Activity: A Nuisance or an Opportunity?

    Science.gov (United States)

    Van Horn, John Darrell; Grafton, Scott T; Miller, Michael B

    2008-12-01

    Functional imaging research has been heavily influenced by results based on population-level inference. However, group average results may belie the unique patterns of activity present in the individual that ordinarily are considered random noise. Recent advances in the evolution of MRI hardware have led to significant improvements in the stability and reproducibility of blood oxygen level dependent (BOLD) measurements. These enhancements provide a unique opportunity for closer examination of individual patterns of brain activity. Three objectives can be accomplished by considering brain scans at the individual level; (1) Mapping functional anatomy at a fine grained analysis; (2) Determining if an individual scan is normative with respect to a reference population; and (3) Understanding the sources of intersubject variability in brain activity. In this review, we detail these objectives, briefly discuss their histories and present recent trends in the analyses of individual variability. Finally, we emphasize the unique opportunities and challenges for understanding individual differences through international collaboration among Pacific Rim investigators. PMID:19777073

  20. Treating the brain deep down: Brain surgery for anorexia nervosa?

    OpenAIRE

    Nestler, Eric J.

    2013-01-01

    Using brain surgery, specific areas in the brain can be stimulated with electrical impulses to reversibly change their activity and alleviate symptoms related to mental illnesses. This so-called deep brain stimulation and other methodological advances that even more selectively activate specific group of neurons can give us clues as to what neural circuitry is involved in a particular mental disorder and whether therapeutic activation of these brain areas and neurons may be effective. In ‘Bed...

  1. Sub-millimeter resolution electrical conductivity images of brain tissues using magnetic resonance-based electrical impedance tomography

    International Nuclear Information System (INIS)

    Recent magnetic resonance (MR)-based electrical impedance tomography (MREIT) of in vivo animal and human subjects enabled the imaging of electromagnetic properties, such as conductivity and permittivity, on tissue structure and function with a few millimeter pixel size. At those resolutions, the conductivity contrast might be sufficient to distinguish different tissue type for certain applications. Since the precise measurement of electrical conductivity under the tissue levels can provide alternative information in a wide range of biomedical applications, it is necessary to develop high-resolution MREIT technique to enhance its availability. In this study, we provide the experimental evaluation of sub-millimeter resolution conductivity imaging method using a 3T MR scanner combined with a multi-echo MR pulse sequence, multi-channel RF coil, and phase optimization method. From the phantom and animal imaging results, sub-millimeter resolution exhibited similar signal-to-noise ratio of MR magnitude and noise levels in magnetic flux density comparing to the existing millimeter resolution. The reconstructed conductivity images at sub-millimeter resolution can distinguish different brain tissues with a pixel size as small as 350 μm

  2. Sub-millimeter resolution electrical conductivity images of brain tissues using magnetic resonance-based electrical impedance tomography

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Tong In; Jeong, Woo Chul; Sajib, Saurav Z. K.; Kim, Hyung Joong, E-mail: bmekim@khu.ac.kr; Woo, Eung Je [Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Kim, Hyun Bum [Department of East-West Medical Science, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Kyung, Eun Jung [Department of Pharmacology, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Kwon, Oh In [Department of Mathematics, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2015-07-13

    Recent magnetic resonance (MR)-based electrical impedance tomography (MREIT) of in vivo animal and human subjects enabled the imaging of electromagnetic properties, such as conductivity and permittivity, on tissue structure and function with a few millimeter pixel size. At those resolutions, the conductivity contrast might be sufficient to distinguish different tissue type for certain applications. Since the precise measurement of electrical conductivity under the tissue levels can provide alternative information in a wide range of biomedical applications, it is necessary to develop high-resolution MREIT technique to enhance its availability. In this study, we provide the experimental evaluation of sub-millimeter resolution conductivity imaging method using a 3T MR scanner combined with a multi-echo MR pulse sequence, multi-channel RF coil, and phase optimization method. From the phantom and animal imaging results, sub-millimeter resolution exhibited similar signal-to-noise ratio of MR magnitude and noise levels in magnetic flux density comparing to the existing millimeter resolution. The reconstructed conductivity images at sub-millimeter resolution can distinguish different brain tissues with a pixel size as small as 350 μm.

  3. Sub-millimeter resolution electrical conductivity images of brain tissues using magnetic resonance-based electrical impedance tomography

    Science.gov (United States)

    Oh, Tong In; Kim, Hyun Bum; Jeong, Woo Chul; Sajib, Saurav Z. K.; Kyung, Eun Jung; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2015-07-01

    Recent magnetic resonance (MR)-based electrical impedance tomography (MREIT) of in vivo animal and human subjects enabled the imaging of electromagnetic properties, such as conductivity and permittivity, on tissue structure and function with a few millimeter pixel size. At those resolutions, the conductivity contrast might be sufficient to distinguish different tissue type for certain applications. Since the precise measurement of electrical conductivity under the tissue levels can provide alternative information in a wide range of biomedical applications, it is necessary to develop high-resolution MREIT technique to enhance its availability. In this study, we provide the experimental evaluation of sub-millimeter resolution conductivity imaging method using a 3T MR scanner combined with a multi-echo MR pulse sequence, multi-channel RF coil, and phase optimization method. From the phantom and animal imaging results, sub-millimeter resolution exhibited similar signal-to-noise ratio of MR magnitude and noise levels in magnetic flux density comparing to the existing millimeter resolution. The reconstructed conductivity images at sub-millimeter resolution can distinguish different brain tissues with a pixel size as small as 350 μm.

  4. Early oxygen-utilization and brain activity in preterm infants.

    Directory of Open Access Journals (Sweden)

    Maria Luisa Tataranno

    Full Text Available The combined monitoring of oxygen supply and delivery using Near-InfraRed spectroscopy (NIRS and cerebral activity using amplitude-integrated EEG (aEEG could yield new insights into brain metabolism and detect potentially vulnerable conditions soon after birth. The relationship between NIRS and quantitative aEEG/EEG parameters has not yet been investigated. Our aim was to study the association between oxygen utilization during the first 6 h after birth and simultaneously continuously monitored brain activity measured by aEEG/EEG. Forty-four hemodynamically stable babies with a GA < 28 weeks, with good quality NIRS and aEEG/EEG data available and who did not receive morphine were included in the study. aEEG and NIRS monitoring started at NICU admission. The relation between regional cerebral oxygen saturation (rScO2 and cerebral fractional tissue oxygen extraction (cFTOE, and quantitative measurements of brain activity such as number of spontaneous activity transients (SAT per minute (SAT rate, the interval in seconds (i.e. time between SATs (ISI and the minimum amplitude of the EEG in μV (min aEEG were evaluated. rScO2 was negatively associated with SAT rate (β=-3.45 [CI=-5.76- -1.15], p=0.004 and positively associated with ISI (β=1.45 [CI=0.44-2.45], p=0.006. cFTOE was positively associated with SAT rate (β=0.034 [CI=0.009-0.059], p=0.008 and negatively associated with ISI (β=-0.015 [CI=-0.026- -0.004], p=0.007. Oxygen delivery and utilization, as indicated by rScO2 and cFTOE, are directly related to functional brain activity, expressed by SAT rate and ISI during the first hours after birth, showing an increase in oxygen extraction in preterm infants with increased early electro-cerebral activity. NIRS monitored oxygenation may be a useful biomarker of brain vulnerability in high-risk infants.

  5. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation

    OpenAIRE

    Zhen Feng; Ying-jun Zhong; Liang Wang; Tian-qi Wei

    2015-01-01

    In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In additio...

  6. Spatiotemporal dynamics of large-scale brain activity

    Science.gov (United States)

    Neuman, Jeremy

    Understanding the dynamics of large-scale brain activity is a tough challenge. One reason for this is the presence of an incredible amount of complexity arising from having roughly 100 billion neurons connected via 100 trillion synapses. Because of the extremely high number of degrees of freedom in the nervous system, the question of how the brain manages to properly function and remain stable, yet also be adaptable, must be posed. Neuroscientists have identified many ways the nervous system makes this possible, of which synaptic plasticity is possibly the most notable one. On the other hand, it is vital to understand how the nervous system also loses stability, resulting in neuropathological diseases such as epilepsy, a disease which affects 1% of the population. In the following work, we seek to answer some of these questions from two different perspectives. The first uses mean-field theory applied to neuronal populations, where the variables of interest are the percentages of active excitatory and inhibitory neurons in a network, to consider how the nervous system responds to external stimuli, self-organizes and generates epileptiform activity. The second method uses statistical field theory, in the framework of single neurons on a lattice, to study the concept of criticality, an idea borrowed from physics which posits that in some regime the brain operates in a collectively stable or marginally stable manner. This will be examined in two different neuronal networks with self-organized criticality serving as the overarching theme for the union of both perspectives. One of the biggest problems in neuroscience is the question of to what extent certain details are significant to the functioning of the brain. These details give rise to various spatiotemporal properties that at the smallest of scales explain the interaction of single neurons and synapses and at the largest of scales describe, for example, behaviors and sensations. In what follows, we will shed some

  7. Abdominal surgery activates nesfatin-1 immunoreactive brain nuclei in rats.

    Science.gov (United States)

    Stengel, Andreas; Goebel, Miriam; Wang, Lixin; Taché, Yvette

    2010-02-01

    Abdominal surgery-induced postoperative gastric ileus is well established to induce Fos expression in specific brain nuclei in rats within 2-h after surgery. However, the phenotype of activated neurons has not been thoroughly characterized. Nesfatin-1 was recently discovered in the rat hypothalamus as a new anorexigenic peptide that also inhibits gastric emptying and is widely distributed in rat brain autonomic nuclei suggesting an involvement in stress responses. Therefore, we investigated whether abdominal surgery activates nesfatin-1-immunoreactive (ir) neurons in the rat brain. Two hours after abdominal surgery with cecal palpation under short isoflurane anesthesia or anesthesia alone, rats were transcardially perfused and brains processed for double immunohistochemical labeling of Fos and nesfatin-1. Abdominal surgery, compared to anesthesia alone, induced Fos expression in neurons of the supraoptic nucleus (SON), paraventricular nucleus (PVN), locus coeruleus (LC), Edinger-Westphal nucleus (EW), rostral raphe pallidus (rRPa), nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM). Double Fos/nesfatin-1 labeling showed that of the activated cells, 99% were nesfatin-1-immunoreactive in the SON, 91% in the LC, 82% in the rRPa, 74% in the EW and VLM, 71% in the anterior parvicellular PVN, 47% in the lateral magnocellular PVN, 41% in the medial magnocellular PVN, 14% in the NTS and 9% in the medial parvicellular PVN. These data established nesfatin-1 immunoreactive neurons in specific nuclei of the hypothalamus and brainstem as part of the neuronal response to abdominal surgery and suggest a possible implication of nesfatin-1 in the alterations of food intake and gastric transit associated with such a stressor. PMID:19944727

  8. A statistical analysis of electrical cerebral activity

    International Nuclear Information System (INIS)

    The aim of this work was to study the statistical properties of the amplitude of the electroencephalographic signal. The experimental method is described (implantation of electrodes, acquisition and treatment of data). The program of the mathematical analysis is given (calculation of probability density functions, study of stationarity) and the validity of the tests discussed. The results concerned ten rabbits. Trips of EEG were sampled during 40 s. with very short intervals (500 μs). The probability density functions established for different brain structures (especially the dorsal hippocampus) and areas, were compared during sleep, arousal and visual stimulus. Using a Χ2 test, it was found that the Gaussian distribution assumption was rejected in 96.7 per cent of the cases. For a given physiological state, there was no mathematical reason to reject the assumption of stationarity (in 96 per cent of the cases). (author)

  9. Immature pattern of brain activity in Rett syndrome

    DEFF Research Database (Denmark)

    Nielsen, J B; Friberg, L; Lou, H;

    1990-01-01

    Seven girls with Rett syndrome, a progressive degenerative encephalopathy affecting girls, were studied with single photon emission computed tomography and compared with an aged-matched control group of nine normal children. Global cerebral blood flow was significantly lower in Rett syndrome (54 vs...... 69 mL/100 g per minute), and the flows in prefrontal and temporoparietal association regions of the telencephalon were markedly reduced, whereas the primary sensorimotor regions were relatively spared. The flow distribution in Rett syndrome is very similar to the distribution of brain metabolic...... activity in infants of a few months of age. The abnormal regional cerebral blood flow distribution most likely reflects the widespread functional disturbances in the brain of patients with Rett syndrome, whereas computed tomographic and neuropathologic examination only reveal slight changes when compared...

  10. Source localization of brain activity using helium-free interferometer

    International Nuclear Information System (INIS)

    To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-Tc) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localization of neuromagnetic activity is indeed possible using high-Tc SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-Tc SQUID-based MEG systems.

  11. Carbon monoxide affects electrical and contractile activity of rat myocardium

    OpenAIRE

    Porokhnya Maria V; Haertdinov Nail N; Abramochkin Denis V; Zefirov Andrew L; Sitdikova Gusel F

    2011-01-01

    Abstract Background Carbon monoxide (CO) is a toxic gas, which also acts in the organism as a neurotransmitter. It is generated as a by-product of heme breakdown catalyzed by heme oxygenase. We have investigated changes in electrical and contractile activity of isolated rat atrial and ventricular myocardium preparations under the influence of CO. Methods Standard microelectrode technique was used for intracellular registration of electrical activity in isolated preparations of atrial and vent...

  12. Classification of types of stuttering symptoms based on brain activity.

    Directory of Open Access Journals (Sweden)

    Jing Jiang

    Full Text Available Among the non-fluencies seen in speech, some are more typical (MT of stuttering speakers, whereas others are less typical (LT and are common to both stuttering and fluent speakers. No neuroimaging work has evaluated the neural basis for grouping these symptom types. Another long-debated issue is which type (LT, MT whole-word repetitions (WWR should be placed in. In this study, a sentence completion task was performed by twenty stuttering patients who were scanned using an event-related design. This task elicited stuttering in these patients. Each stuttered trial from each patient was sorted into the MT or LT types with WWR put aside. Pattern classification was employed to train a patient-specific single trial model to automatically classify each trial as MT or LT using the corresponding fMRI data. This model was then validated by using test data that were independent of the training data. In a subsequent analysis, the classification model, just established, was used to determine which type the WWR should be placed in. The results showed that the LT and the MT could be separated with high accuracy based on their brain activity. The brain regions that made most contribution to the separation of the types were: the left inferior frontal cortex and bilateral precuneus, both of which showed higher activity in the MT than in the LT; and the left putamen and right cerebellum which showed the opposite activity pattern. The results also showed that the brain activity for WWR was more similar to that of the LT and fluent speech than to that of the MT. These findings provide a neurological basis for separating the MT and the LT types, and support the widely-used MT/LT symptom grouping scheme. In addition, WWR play a similar role as the LT, and thus should be placed in the LT type.

  13. Electrical Dynamic Simulation Activities in Forsmark NPP

    International Nuclear Information System (INIS)

    The original power system analysis was done in the seventies in former ASEA AB software. For approximate twenty years no major new studies was done because of limited numbers of renewal projects. In the end of the nineties the plant started to update the selectivity planning and study of the loading of the safety bus-bars. The simulation and start of the development of simulation models was done in a tool named Simpow. Simpow was also an ASEA/ABB AB software developed from the program used in the seventies. To continue to work with Simpow was a decision made after doing an extensive review of on the marked available commercially software. Also at that time we start to do our first attempt building electrical simulation models of unit 1 and 2 according to the original documentation. The development of models for the unit 1, 2 and 3 became more intensive some years after the millennium. Partly because of event July 25, 2006 and also because of the renewal of unit 1 and 2 and had subsequently been initiated for unit 3 also. Today we have initiated a conversion of our models to a new program called PowerFactory. That due to the withdrawal of support and development on SIMPOW a couple of years ago. To development relevance, accuracy and detail, models are an important issue for FKA (Forsmark Kraftgrupp AB). The model is initially created according to the plant documentation and also including requested information from the original supplier. Continued development and updates of the model is done according to the data received from the contractors via the demands according to requirements in our technical documents on different electrical components in renewal projects. The development of the model is driven by known weaknesses, depending of the type of studies and necessary data related to events. An important part that will be described is to have a verified simulation tool and validated models. An example is that the models have been validated by making start and

  14. The Effects of Physical Activity, Education, and Body Mass Index on the Aging Brain

    OpenAIRE

    Ho, April J.; Raji, Cyrus A.; Becker, James T.; Lopez, Oscar L.; Kuller, Lewis H.; Hua, Xue; Dinov, Ivo D.; Stein, Jason L; Rosano, Caterina; Toga, Arthur W.; Thompson, Paul M.

    2010-01-01

    Normal human aging is accompanied by progressive brain tissue loss and cognitive decline; however, several factors are thought to influence brain aging. We applied tensor-based morphometry to high-resolution brain MRI scans to determine whether educational level or physical activity was associated with brain tissue volumes in the elderly, particularly in regions susceptible to age-related atrophy. We mapped the 3D profile of brain volume differences in 226 healthy elderly subjects (130F/96M; ...

  15. Brain Activity Associated with Emoticons: An fMRI Study

    Science.gov (United States)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe that brain activities associated with emoticons by using fMRI. In communication over a computer network, we use abstract faces such as computer graphics (CG) avatars and emoticons. These faces convey users' emotions and enrich their communications. However, the manner in which these faces influence the mental process is as yet unknown. The human brain may perceive the abstract face in an entirely different manner, depending on its level of reality. We conducted an experiment using fMRI in order to investigate the effects of emoticons. The results show that right inferior frontal gyrus, which associated with nonverbal communication, is activated by emoticons. Since the emoticons were created to reflect the real human facial expressions as accurately as possible, we believed that they would activate the right fusiform gyrus. However, this region was not found to be activated during the experiment. This finding is useful in understanding how abstract faces affect our behaviors and decision-making in communication over a computer network.

  16. Changes in music tempo entrain movement related brain activity.

    Science.gov (United States)

    Daly, Ian; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Roesch, Etienne; Weaver, James; Williams, Duncan; Miranda, Eduardo; Nasuto, Slawomir J

    2014-01-01

    The neural mechanisms of music listening and appreciation are not yet completely understood. Based on the apparent relationship between the beats per minute (tempo) of music and the desire to move (for example feet tapping) induced while listening to that music it is hypothesised that musical tempo may evoke movement related activity in the brain. Participants are instructed to listen, without moving, to a large range of musical pieces spanning a range of styles and tempos during an electroencephalogram (EEG) experiment. Event-related desynchronisation (ERD) in the EEG is observed to correlate significantly with the variance of the tempo of the musical stimuli. This suggests that the dynamics of the beat of the music may induce movement related brain activity in the motor cortex. Furthermore, significant correlations are observed between EEG activity in the alpha band over the motor cortex and the bandpower of the music in the same frequency band over time. This relationship is observed to correlate with the strength of the ERD, suggesting entrainment of motor cortical activity relates to increased ERD strength. PMID:25571015

  17. Baseline brain activity fluctuations predict somatosensory perception in humans

    Science.gov (United States)

    Boly, M.; Balteau, E.; Schnakers, C.; Degueldre, C.; Moonen, G.; Luxen, A.; Phillips, C.; Peigneux, P.; Maquet, P.; Laureys, S.

    2007-01-01

    In perceptual experiments, within-individual fluctuations in perception are observed across multiple presentations of the same stimuli, a phenomenon that remains only partially understood. Here, by means of thulium–yttrium/aluminum–garnet laser and event-related functional MRI, we tested whether variability in perception of identical stimuli relates to differences in prestimulus, baseline brain activity. Results indicate a positive relationship between conscious perception of low-intensity somatosensory stimuli and immediately preceding levels of baseline activity in medial thalamus and the lateral frontoparietal network, respectively, which are thought to relate to vigilance and “external monitoring.” Conversely, there was a negative correlation between subsequent reporting of conscious perception and baseline activity in a set of regions encompassing posterior cingulate/precuneus and temporoparietal cortices, possibly relating to introspection and self-oriented processes. At nociceptive levels of stimulation, pain-intensity ratings positively correlated with baseline fluctuations in anterior cingulate cortex in an area known to be involved in the affective dimension of pain. These results suggest that baseline brain-activity fluctuations may profoundly modify our conscious perception of the external world. PMID:17616583

  18. The sequential structure of brain activation predicts skill.

    Science.gov (United States)

    Anderson, John R; Bothell, Daniel; Fincham, Jon M; Moon, Jungaa

    2016-01-29

    In an fMRI study, participants were trained to play a complex video game. They were scanned early and then again after substantial practice. While better players showed greater activation in one region (right dorsal striatum) their relative skill was better diagnosed by considering the sequential structure of whole brain activation. Using a cognitive model that played this game, we extracted a characterization of the mental states that are involved in playing a game and the statistical structure of the transitions among these states. There was a strong correspondence between this measure of sequential structure and the skill of different players. Using multi-voxel pattern analysis, it was possible to recognize, with relatively high accuracy, the cognitive states participants were in during particular scans. We used the sequential structure of these activation-recognized states to predict the skill of individual players. These findings indicate that important features about information-processing strategies can be identified from a model-based analysis of the sequential structure of brain activation. PMID:26707716

  19. Electric fields of motor and frontal tDCS in a standard brain space: A computer simulation study.

    Science.gov (United States)

    Laakso, Ilkka; Tanaka, Satoshi; Mikkonen, Marko; Koyama, Soichiro; Sadato, Norihiro; Hirata, Akimasa

    2016-08-15

    The electric field produced in the brain is the main physical agent of transcranial direct current stimulation (tDCS). Inter-subject variations in the electric fields may help to explain the variability in the effects of tDCS. Here, we use multiple-subject analysis to study the strength and variability of the group-level electric fields in the standard brain space. Personalized anatomically-accurate models of 62 subjects were constructed from T1- and T2-weighted MRI. The finite-element method was used to computationally estimate the individual electric fields, which were registered to the standard space using surface based registration. Motor cortical and frontal tDCS were modelled for 16 electrode montages. For each electrode montage, the group-level electric fields had a consistent strength and direction in several brain regions, which could also be located at some distance from the electrodes. In other regions, the electric fields were more variable, and thus more likely to produce variable effects in each individual. Both the anode and cathode locations affected the group-level electric fields, both directly under the electrodes and elsewhere. For motor cortical tDCS, the electric fields could be controlled at the group level by moving the electrodes. However, for frontal tDCS, the group-level electric fields were more variable, and the electrode locations had only minor effects on the group average fields. Our results reveal the electric fields and their variability at the group level in the standard brain space, providing insights into the mechanisms of tDCS for plasticity induction. The data are useful for planning, analysing and interpreting tDCS studies. PMID:27188218

  20. Cortical activity in the left and right hemispheres during language-related brain functions

    DEFF Research Database (Denmark)

    Lassen, N A; Larsen, B

    1980-01-01

    The blood flow to a given brain region increases as the level of neural activity is augmented. Hence mapping of variations in regional cerebral blood flow affords a means of imaging the activity of various brain regions during various types of brain work. The paper summarizes the patterns of...... auditory feedback (absent in his case) is not a prerequisite for speaking....

  1. Modeling active electrolocation in weakly electric fish

    CERN Document Server

    Ammari, Habib; Garnier, Josselin

    2012-01-01

    In this paper, we provide a mathematical model for the electrolocation in weakly electric fishes. We first investigate the forward complex conductivity problem and derive the approx- imate boundary conditions on the skin of the fish. Then we provide a dipole approximation for small targets away from the fish. Based on this approximation, we obtain a non-iterative location search algorithm using multi-frequency measurements. We present numerical experi- ments to illustrate the performance and the stability of the proposed multi-frequency location search algorithm. Finally, in the case of disk- and ellipse-shaped targets, we provide a method to reconstruct separately the conductivity, the permittivity, and the size of the targets from multi-frequency measurements.

  2. Brain potentials evoked by intraepidermal electrical stimuli reflect the central sensitization of nociceptive pathways

    OpenAIRE

    Liang, M.; Lee, M. C.; O'Neill, J.; Dickenson, A.H.; Iannetti, G.D.

    2016-01-01

    Central sensitization (CS), the increased sensitivity of the central nervous system to somatosensory inputs, accounts for secondary hyperalgesia, a typical sign of several painful clinical conditions. Brain potentials elicited by mechanical punctate stimulation using flat-tip probes can provide neural correlates of CS, but their signal-to-noise ratio is limited by poor synchronisation of the afferent nociceptive input. Additionally, mechanical punctate stimulation does not activate nociceptor...

  3. Comparison of methods for optimal choice of the regularization parameter for linear electrical impedance tomography of brain function

    International Nuclear Information System (INIS)

    Electrical impedance tomography has the potential to provide a portable non-invasive method for imaging brain function. Clinical data collection has largely been undertaken with time difference data and linear image reconstruction methods. The purpose of this work was to determine the best method for selecting the regularization parameter of the inverse procedure, using the specific application of evoked brain activity in neonatal babies as an exemplar. The solution error norm and image SNR for the L-curve (LC), discrepancy principle (DP), generalized cross validation (GCV) and unbiased predictive risk estimator (UPRE) selection methods were evaluated in simulated data using an anatomically accurate finite element method (FEM) of the neonatal head and impedance changes due to blood flow in the visual cortex recorded in vivo. For simulated data, LC, GCV and UPRE were equally best. In human data in four neonatal infants, no significant differences were found among selection methods. We recommend that GCV or LC be employed for reconstruction of human neonatal images, as UPRE requires an empirical estimate of the noise variance

  4. Biological role of sialosyl transferase activity in rat brain

    International Nuclear Information System (INIS)

    The purpose of this dissertation is to obtain new evidence that will support or refute the existence of an ecto sialosyltransferse activity (STase) that has been described in the synaptic plasma membrane (SPM). This STase has been proposed to transfer sialic acid (NANA) to endogenous SPM gangliosides. Preparations of rat brain synaptosomes were assayed for STase by incubation with CMP-(14C)NANA, and measuring radioactivity transferred to the endogenous gangliosides. The activity was found to be 0.84 pmoles NANA transferred per mg protein per hour. The product specificity for STase was determined by the incorporation of label into individual ganglioside species. Subfractions were produced from rat brain that were enriched in Golgi membranes, synaptosomes, and SPM as judged by EM morphology and marker enzymes. The Golgi fraction had over 3 fold greater STase activity than synaptosomes, while SPM were enriched 2.5 fold over the synaptosomes from which they came. The labeling pattern of endogenous gangliosides was quite different by the Golgi STase. An unknown compound in the ganglioside extracts was specifically labeled, but gangliosides were not labeled with specificity by the Golgi transferase. The synaptosomal and SPM labeling patterns were identical and were characterized by GD3 specificity. Therefore the STase of SPM is not due to Golgi contamination. Intact neurons were assayed for STase by the use of brain cortical slices. Slices incubated that labeled CMP-NANA (available for cell surface reactions) produced the GD3-specific labeling pattern. These results suggest that the GD3-specific sialosyltransferase is a cell surface ecto-enzyme

  5. In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography.

    OpenAIRE

    Dowrick, T.; Blochet, C.; Holder, D

    2015-01-01

    In order to facilitate the imaging of haemorrhagic and ischaemic stroke using frequency difference electrical impedance tomography (EIT), impedance measurements of normal and ischaemic brain, and clotted blood during haemorrhage, were gathered using a four-terminal technique in an in vivo animal model, a first for ischaemic measurements. Differences of 5-10% in impedance were seen between the frequency spectrums of healthy and ischaemic brain, over the frequency range 0-3 kHz, while the spect...

  6. The Relationship Between Brain Oscillatory Activity and Therapeutic Effectiveness of Transcranial Magnetic Stimulation in the Treatment of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Andrew Francis Leuchter

    2013-02-01

    Full Text Available Major Depressive Disorder (MDD is marked by disturbances in brain functional connectivity. This connectivity is modulated by rhythmic oscillations of brain electrical activity, which enable coordinated functions across brain regions. Oscillatory activity plays a central role in regulating thinking and memory, mood, cerebral blood flow, and neurotransmitter levels, and restoration of normal oscillatory patterns is associated with effective treatment of MDD. Repetitive Transcranial Magnetic Stimulation (rTMS is a robust treatment for MDD, but the mechanism of action (MOA of its benefits for mood disorders remains incompletely understood. Benefits of rTMS have been tied to enhanced neuroplasticity in specific brain pathways. We summarize here the evidence that rTMS entrains and resets thalamocortical oscillators, normalizes regulation and facilitates reemergence of intrinsic cerebral rhythms, and through this mechanism restores normal brain function. This entrainment and resetting may be a critical step in engendering neuroplastic changes and the antidepressant effects of rTMS. It may be possible to modify the method of rTMS administration to enhance this mechanism of action and achieve better antidepressant effectiveness. We propose that rTMS can be administered: 1 synchronized to a patient’s individual alpha rhythm (IAF, or synchronized rTMS (sTMS; 2 as a low magnetic field strength sinusoidal wave form; and, 3 broadly to multiple brain areas simultaneously. We present here the theory and evidence indicating that these modifications could enhance the therapeutic effectiveness of rTMS for the treatment of MDD.

  7. Brain areas activated by uncertain reward-based decision-making in healthy volunteers

    OpenAIRE

    Guo, Zongjun; Chen, Juan; Liu, Shien; Li, Yuhuan; Sun, Bo; Gao, Zhenbo

    2013-01-01

    Reward-based decision-making has been found to activate several brain areas, including the ventrolateral prefrontal lobe, orbitofrontal cortex, anterior cingulate cortex, ventral striatum, and mesolimbic dopaminergic system. In this study, we observed brain areas activated under three degrees of uncertainty in a reward-based decision-making task (certain, risky, and ambiguous). The tasks were presented using a brain function audiovisual stimulation system. We conducted brain scans of 15 healt...

  8. Schizotypal perceptual aberrations of time: correlation between score, behavior and brain activity.

    Directory of Open Access Journals (Sweden)

    Shahar Arzy

    Full Text Available A fundamental trait of the human self is its continuum experience of space and time. Perceptual aberrations of this spatial and temporal continuity is a major characteristic of schizophrenia spectrum disturbances--including schizophrenia, schizotypal personality disorder and schizotypy. We have previously found the classical Perceptual Aberration Scale (PAS scores, related to body and space, to be positively correlated with both behavior and temporo-parietal activation in healthy participants performing a task involving self-projection in space. However, not much is known about the relationship between temporal perceptual aberration, behavior and brain activity. To this aim, we composed a temporal Perceptual Aberration Scale (tPAS similar to the traditional PAS. Testing on 170 participants suggested similar performance for PAS and tPAS. We then correlated tPAS and PAS scores to participants' performance and neural activity in a task of self-projection in time. tPAS scores correlated positively with reaction times across task conditions, as did PAS scores. Evoked potential mapping and electrical neuroimaging showed self-projection in time to recruit a network of brain regions at the left anterior temporal cortex, right temporo-parietal junction, and occipito-temporal cortex, and duration of activation in this network positively correlated with tPAS and PAS scores. These data demonstrate that schizotypal perceptual aberrations of both time and space, as reflected by tPAS and PAS scores, are positively correlated with performance and brain activation during self-projection in time in healthy individuals along the schizophrenia spectrum.

  9. Resuscitation therapy for traumatic brain injury-induced coma in rats:mechanisms of median nerve electrical stimulation

    Institute of Scientific and Technical Information of China (English)

    Zhen Feng; Ying-jun Zhong; Liang Wang; Tian-qi Wei

    2015-01-01

    In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually in-creased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our ifndings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the pre-frontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.

  10. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation

    Directory of Open Access Journals (Sweden)

    Zhen Feng

    2015-01-01

    Full Text Available In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our findings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the prefrontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.

  11. Intelligent Electric Power Systems with Active-Adaptive Electric Networks: Challenges for Simulation Tools

    Directory of Open Access Journals (Sweden)

    Ufa Ruslan A.

    2015-01-01

    Full Text Available The motivation of the presented research is based on the needs for development of new methods and tools for adequate simulation of intelligent electric power systems with active-adaptive electric networks (IES including Flexible Alternating Current Transmission System (FACTS devices. The key requirements for the simulation were formed. The presented analysis of simulation results of IES confirms the need to use a hybrid modelling approach.

  12. The effects of trypsin on rat brain astrocyte activation.

    Directory of Open Access Journals (Sweden)

    Masoud Fereidoni

    2013-12-01

    Full Text Available Astrocytes are cells within the central nervous system which are activated in a wide spectrum of infections, and autoimmune and neurodegenerative diseases. In pathologic states, they produce inflammatory cytokines, chemokines, and nitric oxide (NO, and sometimes they induce apoptosis. Their protease-activated receptors (PARs can be activated by proteases, e.g. thrombin and trypsin, which are important in brain inflammation. The current study aimed to investigate the effects of different concentrations of trypsin (1 to 100U/ml on cultured astrocytes.In the present study, two-day rat infants' brains were isolated and homogenized after meninges removal, then cultivated in DMEM + 10% FBS medium. 10 days later, astrocytes were harvested and recultivated for more purification (up to 95%, using Immunocytochemistry method, in order to be employed for tests. They were affected by different concentrations of trypsin (1, 5, 10, 15, 20, 40, 60, 80, and 100 U/ml. To reveal the inflammation progress, NO concentrations (the Griess test were assessed after 24 and 48 hours.The results showed that trypsin concentration up to 20 U/ml caused a significant increase in NO, in a dose-dependent manner, on cultured astrocytes (P < 0.001. Trypsin 20 U/ml increased NO production fivefold the control group (P < 0.001. At higher concentrations than 20 U/ml, NO production diminished (P < 0.001. At 100 U/ml, NO production was less than the control group (P < 0.001.Inflammatory effects of trypsin 5-20 U/ml are probably due to the stimulation of astrocytes' PAR-2 receptors and the increasing of the activation of NF-κB, PKC, MAPKs. Stimulation of astrocytes' PAR-2 receptors causes an increase in iNOS activation which in turn leads to NO production. However, higher trypsin concentration possibly made astrocyte apoptosis; therefore, NO production diminished. These assumptions need to be further investigated.

  13. Mind maps in service of the mental brain activity

    OpenAIRE

    JOSIPOVIĆ JELIĆ, ŽELJKA; Demarin, Vida; Šoljan, Ivana

    2014-01-01

    Tony Buzan is the creator of the mind maps who based his mnemonic techniques of brain mapping on the terms of awareness and wide brain functionality as well as on the ability of memorizing, reading and creativity. He conceived the idea that regular practice improves brain functions but he also introduced radiant thinking and mental literacy. One of the last enormous neuroscience ventures is to clarify the brain complexity and mind and to get a complete insight into the mental brain acti...

  14. Dynamic brain architectures in local brain activity and functional network efficiency associate with efficient reading in bilinguals.

    Science.gov (United States)

    Feng, Gangyi; Chen, Hsuan-Chih; Zhu, Zude; He, Yong; Wang, Suiping

    2015-10-01

    The human brain is organized as a dynamic network, in which both regional brain activity and inter-regional connectivity support high-level cognitive processes, such as reading. However, it is still largely unknown how the functional brain network organizes to enable fast and effortless reading processing in the native language (L1) but not in a non-proficient second language (L2), and whether the mechanisms underlying local activity are associated with connectivity dynamics in large-scale brain networks. In the present study, we combined activation-based and multivariate graph-theory analysis with functional magnetic resonance imaging data to address these questions. Chinese-English unbalanced bilinguals read narratives for comprehension in Chinese (L1) and in English (L2). Compared with L2, reading in L1 evoked greater brain activation and recruited a more globally efficient but less clustered network organization. Regions with both increased network efficiency and enhanced brain activation in L1 reading were mostly located in the fronto-temporal reading-related network (RN), whereas regions with decreased global network efficiency, increased clustering, and more deactivation in L2 reading were identified in the default mode network (DMN). Moreover, functional network efficiency was closely associated with local brain activation, and such associations were also modulated by reading efficiency in the two languages. Our results demonstrate that an economical and integrative brain network topology is associated with efficient reading, and further reveal a dynamic association between network efficiency and local activation for both RN and DMN. These findings underscore the importance of considering interregional connectivity when interpreting local BOLD signal changes in bilingual reading. PMID:26095088

  15. Natural image classification driven by human brain activity

    Science.gov (United States)

    Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao

    2016-03-01

    Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.

  16. Integrated Brain Circuits: Astrocytic Networks Modulate Neuronal Activity and Behavior

    Science.gov (United States)

    Halassa, Michael M.; Haydon, Philip G.

    2011-01-01

    The past decade has seen an explosion of research on roles of neuron-astrocyte interactions in the control of brain function. We highlight recent studies performed on the tripartite synapse, the structure consisting of pre- and postsynaptic elements of the synapse and an associated astrocytic process. Astrocytes respond to neuronal activity and neuro-transmitters, through the activation of metabotropic receptors, and can release the gliotransmitters ATP, D-serine, and glutamate, which act on neurons. Astrocyte-derived ATP modulates synaptic transmission, either directly or through its metabolic product adenosine. D-serine modulates NMDA receptor function, whereas glia-derived glutamate can play important roles in relapse following withdrawal from drugs of abuse. Cell type–specific molecular genetics has allowed a new level of examination of the function of astrocytes in brain function and has revealed an important role of these glial cells that is mediated by adenosine accumulation in the control of sleep and in cognitive impairments that follow sleep deprivation. PMID:20148679

  17. Targeted training modifies oscillatory brain activity in schizophrenia patients

    Directory of Open Access Journals (Sweden)

    Tzvetan G. Popov

    2015-01-01

    Full Text Available Effects of both domain-specific and broader cognitive remediation protocols have been reported for neural activity and overt performance in schizophrenia (SZ. Progress is limited by insufficient knowledge of relevant neural mechanisms. Addressing neuronal signal resolution in the auditory system as a mechanism contributing to cognitive function and dysfunction in schizophrenia, the present study compared effects of two neuroplasticity-based training protocols targeting auditory–verbal or facial affect discrimination accuracy and a standard rehabilitation protocol on magnetoencephalographic (MEG oscillatory brain activity in an auditory paired-click task. SZ were randomly assigned to either 20 daily 1-hour sessions over 4 weeks of auditory–verbal training (N = 19, similarly intense facial affect discrimination training (N = 19, or 4 weeks of treatment as usual (TAU, N = 19. Pre-training, the 57 SZ showed smaller click-induced posterior alpha power modulation than did 28 healthy comparison participants, replicating Popov et al. (2011b. Abnormally small alpha decrease 300–800 ms around S2 improved more after targeted auditory–verbal training than after facial affect training or TAU. The improvement in oscillatory brain dynamics with training correlated with improvement on a measure of verbal learning. Results replicate previously reported effects of neuroplasticity-based psychological training on oscillatory correlates of auditory stimulus differentiation, encoding, and updating and indicate specificity of cortical training effects.

  18. Multi-dimensional dynamics of human electromagnetic brain activity

    Directory of Open Access Journals (Sweden)

    Tetsuo eKida

    2016-01-01

    Full Text Available Magnetoencephalography (MEG and electroencephalography (EEG are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency, which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain.

  19. Electrical stimulation of the brain and the development of cortical visual prostheses: An historical perspective.

    Science.gov (United States)

    Lewis, Philip M; Rosenfeld, Jeffrey V

    2016-01-01

    Rapid advances are occurring in neural engineering, bionics and the brain-computer interface. These milestones have been underpinned by staggering advances in micro-electronics, computing, and wireless technology in the last three decades. Several cortically-based visual prosthetic devices are currently being developed, but pioneering advances with early implants were achieved by Brindley followed by Dobelle in the 1960s and 1970s. We have reviewed these discoveries within the historical context of the medical uses of electricity including attempts to cure blindness, the discovery of the visual cortex, and opportunities for cortex stimulation experiments during neurosurgery. Further advances were made possible with improvements in electrode design, greater understanding of cortical electrophysiology and miniaturisation of electronic components. Human trials of a new generation of prototype cortical visual prostheses for the blind are imminent. This article is part of a Special Issue entitled Hold Item. PMID:26348986

  20. Optical method of recording electrical activity in isolated rabbit hearts

    OpenAIRE

    Amanna, Ashwin E

    1993-01-01

    A recently developed optical method utilizes a single, implantable, optical fiber to record electrical activity from isolated hearts stained with voltage-sensitive dyes. This optical technique generates recordings of transmembrane potential from excitable myocardial tissue, and remain free from stimulus artifacts that accompany electro stimulation and hinder all standard electrode recording methods during the application of high-voltage electrical shocks. The fiber optic system...

  1. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.

    Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  2. An electrically-activated dynamic tissue-equivalent phantom for assessment of diffuse optical imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Hebden, Jeremy C; Brunker, Joanna; Correia, Teresa; Price, Ben D; Gibson, Adam P; Everdell, N L [Department of Medical Physics and Bioengineering, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2008-01-21

    A novel design of solid dynamic phantom with tissue-like optical properties is presented, which contains variable regions of contrast which are activated electrically. Reversible changes in absorption are produced by localized heating of targets impregnated with thermochromic pigment. A portable, battery-operated prototype has been constructed, and its optical and temporal characteristics have been investigated. The phantom has been developed as a means of assessing the performance of diffuse optical imaging systems, such as those used to monitor haemodynamic changes in the brain and other tissues. Images of the phantom have been reconstructed using data acquired with a continuous wave optical topography system.

  3. An electrically-activated dynamic tissue-equivalent phantom for assessment of diffuse optical imaging systems

    Science.gov (United States)

    Hebden, Jeremy C.; Brunker, Joanna; Correia, Teresa; Price, Ben D.; Gibson, Adam P.; Everdell, N. L.

    2008-01-01

    A novel design of solid dynamic phantom with tissue-like optical properties is presented, which contains variable regions of contrast which are activated electrically. Reversible changes in absorption are produced by localized heating of targets impregnated with thermochromic pigment. A portable, battery-operated prototype has been constructed, and its optical and temporal characteristics have been investigated. The phantom has been developed as a means of assessing the performance of diffuse optical imaging systems, such as those used to monitor haemodynamic changes in the brain and other tissues. Images of the phantom have been reconstructed using data acquired with a continuous wave optical topography system.

  4. An electrically-activated dynamic tissue-equivalent phantom for assessment of diffuse optical imaging systems

    International Nuclear Information System (INIS)

    A novel design of solid dynamic phantom with tissue-like optical properties is presented, which contains variable regions of contrast which are activated electrically. Reversible changes in absorption are produced by localized heating of targets impregnated with thermochromic pigment. A portable, battery-operated prototype has been constructed, and its optical and temporal characteristics have been investigated. The phantom has been developed as a means of assessing the performance of diffuse optical imaging systems, such as those used to monitor haemodynamic changes in the brain and other tissues. Images of the phantom have been reconstructed using data acquired with a continuous wave optical topography system

  5. Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

    Science.gov (United States)

    Sajib, Saurav Z. K.; Jeong, Woo Chul; Kyung, Eun Jung; Kim, Hyun Bum; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2016-06-01

    Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.

  6. Assessment of nerve morphology in nerve activation during electrical stimulation

    Science.gov (United States)

    Gomez-Tames, Jose; Yu, Wenwei

    2013-10-01

    The distance between nerve and stimulation electrode is fundamental for nerve activation in Transcutaneous Electrical Stimulation (TES). However, it is not clear the need to have an approximate representation of the morphology of peripheral nerves in simulation models and its influence in the nerve activation. In this work, depth and curvature of a nerve are investigated around the middle thigh. As preliminary result, the curvature of the nerve helps to reduce the simulation amplitude necessary for nerve activation from far field stimulation.

  7. The electric field distribution in the brain during TTFields therapy and its dependence on tissue dielectric properties and anatomy: a computational study

    International Nuclear Information System (INIS)

    Tumor treating fields (TTFields) are a non-invasive, anti-mitotic and approved treatment for recurrent glioblastoma multiforme (GBM) patients. In vitro studies have shown that inhibition of cell division in glioma is achieved when the applied alternating electric field has a frequency in the range of 200 kHz and an amplitude of 1–3 V cm−1. Our aim is to calculate the electric field distribution in the brain during TTFields therapy and to investigate the dependence of these predictions on the heterogeneous, anisotropic dielectric properties used in the computational model.A realistic head model was developed by segmenting MR images and by incorporating anisotropic conductivity values for the brain tissues. The finite element method (FEM) was used to solve for the electric potential within a volume mesh that consisted of the head tissues, a virtual lesion with an active tumour shell surrounding a necrotic core, and the transducer arrays.The induced electric field distribution is highly non-uniform. Average field strength values are slightly higher in the tumour when incorporating anisotropy, by about 10% or less. A sensitivity analysis with respect to the conductivity and permittivity of head tissues shows a variation in field strength of less than 42% in brain parenchyma and in the tumour, for values within the ranges reported in the literature. Comparing results to a previously developed head model suggests significant inter-subject variability.This modelling study predicts that during treatment with TTFields the electric field in the tumour exceeds 1 V cm−1, independent of modelling assumptions. In the future, computational models may be useful to optimize delivery of TTFields. (paper)

  8. The electric field distribution in the brain during TTFields therapy and its dependence on tissue dielectric properties and anatomy: a computational study

    Science.gov (United States)

    Wenger, Cornelia; Salvador, Ricardo; Basser, Peter J.; Miranda, Pedro C.

    2015-09-01

    Tumor treating fields (TTFields) are a non-invasive, anti-mitotic and approved treatment for recurrent glioblastoma multiforme (GBM) patients. In vitro studies have shown that inhibition of cell division in glioma is achieved when the applied alternating electric field has a frequency in the range of 200 kHz and an amplitude of 1-3 V cm-1. Our aim is to calculate the electric field distribution in the brain during TTFields therapy and to investigate the dependence of these predictions on the heterogeneous, anisotropic dielectric properties used in the computational model. A realistic head model was developed by segmenting MR images and by incorporating anisotropic conductivity values for the brain tissues. The finite element method (FEM) was used to solve for the electric potential within a volume mesh that consisted of the head tissues, a virtual lesion with an active tumour shell surrounding a necrotic core, and the transducer arrays. The induced electric field distribution is highly non-uniform. Average field strength values are slightly higher in the tumour when incorporating anisotropy, by about 10% or less. A sensitivity analysis with respect to the conductivity and permittivity of head tissues shows a variation in field strength of less than 42% in brain parenchyma and in the tumour, for values within the ranges reported in the literature. Comparing results to a previously developed head model suggests significant inter-subject variability. This modelling study predicts that during treatment with TTFields the electric field in the tumour exceeds 1 V cm-1, independent of modelling assumptions. In the future, computational models may be useful to optimize delivery of TTFields.

  9. Noninvasive transcranial focused ultrasonic-magnetic stimulation for modulating brain oscillatory activity

    Science.gov (United States)

    Yuan, Yi; Chen, Yudong; Li, Xiaoli

    2016-02-01

    A novel technique, transcranial focused ultrasonic-magnetic stimulation (tFUMS), has been developed for noninvasive brain modulation in vivo. tFUMS has a higher spatial resolution (stimulation on the neuromodulation. The results demonstrate that tFUMS can modulate brain oscillatory activities by stimulating brain tissues.

  10. Using Proton Magnetic Resonance Imaging and Spectroscopy to Understand Brain "Activation"

    Science.gov (United States)

    Baslow, Morris H.; Guilfoyle, David N.

    2007-01-01

    Upon stimulation, areas of the brain associated with specific cognitive processing tasks may undergo observable physiological changes, and measures of such changes have been used to create brain maps for visualization of stimulated areas in task-related brain "activation" studies. These perturbations usually continue throughout the period of the…

  11. ANL's electric vehicle battery activities for USABC

    Science.gov (United States)

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides advanced battery R&D technology transfer to industry; technical analyses, assessments, modeling, and databases; and independent testing and post-test analyses of advanced batteries. These capabilities and services are being offered to the US Advanced Battery Consortium (USABC) and Cooperative Research and Development Agreements (CRADA) are being negotiated for USABC-sponsored work at ANL. A small portion of DOE's cost share for USABC projects has been provided to ANL to continue R&D and testing activities on key technologies that were previously supported directly by DOE. This report summarizes progress on these USABC projects during the period of April 1 through September 30, 1992. In this report, the objective, background, technical progress, and status are described for each task. The work is organized into the following task areas: 1.0 Lithium/Sulfide Batteries; 2.0 Nickel/Metal Hydride Support 3.0 EV Battery Performance; and Life Evaluation.

  12. Tasting calories differentially affects brain activation during hunger and satiety.

    Science.gov (United States)

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2015-02-15

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose+maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between energy content and sweetness. However, there was an interaction between hunger state and energy content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in more activation during satiety compared to hunger. This finding indicates that these areas, which are known to be involved in processes that require approach and avoidance, are also involved in guiding ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a central role by integrating hunger state with stimulus relevance. PMID:25449847

  13. Brain electric stimulation in treatment of epilepsy%神经电刺激技术在癫痫治疗中的应用

    Institute of Scientific and Technical Information of China (English)

    杨辉

    2012-01-01

    The treatment of patients with refractory epilepsy has always been challenging. Despite the availability of multiple antiepileptic drugs, approximately 20% - 30% of patients continue to have seizures, and many are not candidates for epilepsy surgery. Currently available treatment options for these unfortunate patients are limited. Brain electric stimulation provides a nondestructive treatment for these patients. Studies of electrical stimulation of the brain in epilepsy treatment begin with the research on cerebellar stimulation. Until now, the potential targets have increased over the years, including cortex, cranial nerve and multiple brain nuclei. With the development of therapeutic brain devices for epilepsy, it is convinced that the brain electric stimulation will become more widely applied in treatment of epilepsy. This overview, combining with literatures and our experiences, briefly summarizes the application of brain electric stimulation in the treatment of epilepsy.

  14. Social anxiety disorder: radio electric asymmetric conveyor brain stimulation versus sertraline

    Directory of Open Access Journals (Sweden)

    Fontani V

    2011-11-01

    Full Text Available Vania Fontani1, Piero Mannu1,2, Alessandro Castagna1, Salvatore Rinaldi11Department of Neuro Psycho Physio Pathology, Rinaldi Fontani Institute, Florence; 2Psychic Studies Center, Cagliari, ItalyPurpose: Social anxiety disorder (SAD is a disabling condition that affects almost 5% of the general population. Many types of drugs have shown their efficacy in the treatment of SAD. There are also some data regarding psychotherapies, but no data are available today about the efficacy of brain stimulation techniques. The aim of the study is to compare the efficacy of noninvasive brain stimulation neuro psycho physical optimization (NPPO protocol performed by radio electric asymmetric conveyor (REAC with that of sertraline in adults with SAD.Patients and methods: Twenty SAD patients on sertraline were compared with 23 SAD patients who refused any drug treatment and who chose to be treated with NPPO-REAC brain stimulation. This was a 6-month, open-label, naturalistic study. Patients on sertraline received flexible doses, whereas NPPO-REAC patients received two 18-session cycles of treatment. Clinical Global Improvement scale items "much improved" or "very much improved" and Liebowitz Social Anxiety Scale total score variation on fear and avoidance components were used to detect the results. The statistical analysis was performed with t-test. All measures <0.05 have been considered statistically significant.Results: Ten of 23 subjects on NPPO-REAC and six of the 20 taking sertraline were much improved or very much improved 1 month after the first NPPO-REAC cycle (t1. Sixteen of the subjects on NPPO-REAC and ten of the subjects taking sertraline were much improved or very much improved 1 month after the second NPPO-REAC cycle (t2. In respect of the Liebowitz Social Anxiety Scale, at t1 NPPO-REAC resulted in statistically more efficacy for sertraline on both fear and avoidance total scores. At t2, NPPO-REAC resulted in statistically more efficacy for

  15. In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography.

    Science.gov (United States)

    Dowrick, T; Blochet, C; Holder, D

    2015-06-01

    In order to facilitate the imaging of haemorrhagic and ischaemic stroke using frequency difference electrical impedance tomography (EIT), impedance measurements of normal and ischaemic brain, and clotted blood during haemorrhage, were gathered using a four-terminal technique in an in vivo animal model, a first for ischaemic measurements. Differences of 5-10% in impedance were seen between the frequency spectrums of healthy and ischaemic brain, over the frequency range 0-3 kHz, while the spectrum of blood was predominately uniform. The implications of imaging blood/ischaemia in the brain using electrical impedance tomography are discussed, supporting the notion that it will be possible to differentiate stroke from haemorrhage. PMID:26006171

  16. The relations between seismically active and electrically conductive zones

    Directory of Open Access Journals (Sweden)

    A. I. Ruzajkin

    1997-06-01

    Full Text Available The higher electrical conductivity of rocks in the middle and lower parts of the Earth's crust is generally related to the presence of fluids in rocks. The metamorphic processes of dehydration contribute to release of fluids, above all, water; these processes are also responsible for an increase in rock porosity and fracturing. These processes influence the stressed-strained state of the medium under specific conditions. A probable mechanism of earthquake source formation on the contact of blocks with different rates of dehydration and, consequently, different electrical conductivity is discussed. The spatial positions of electrically conductive and seismically active zones are correlated and definite relations between them are found with special reference to the vast area of the Northern Tien Shan within Kirgizstan and some other regions. The greatest concentration of earthquake sources is observed mainly near the contacts between blocks with contrastingly different electrical conductivity values and on sites with a sharp drop in conductive-layer depths.

  17. Artifact suppression and analysis of brain activities with electroencephalography signals

    OpenAIRE

    Rashed-Al-Mahfuz, Md.; Islam, Md. Rabiul; Hirose, Keikichi; Molla, Md. Khademul Islam

    2013-01-01

    Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional bra...

  18. Mapping Social Behavior-Induced Brain Activation at Cellular Resolution in the Mouse

    OpenAIRE

    Yongsoo Kim; Kannan Umadevi Venkataraju; Kith Pradhan; Carolin Mende; Julian Taranda; Srinivas C. Turaga; Ignacio Arganda-Carreras; Lydia Ng; Michael J. Hawrylycz; Kathleen S. Rockland; H. Sebastian Seung; Pavel Osten

    2014-01-01

    Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate early gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP-positive neurons are computationally detected, their distribution is registered to a reference bra...

  19. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    OpenAIRE

    Bosma, I.; Stam, C.; Douw, L.; Bartolomei, F.; Heimans, J.; van Dijk; Postma, T.; Klein, M.; Reijneveld, J.

    2008-01-01

    Purpose: In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activity compared to healthy controls and that particularly global slowing correlates with neurocognitive dysfunction. Patient and methods Resting state MEG recordings were obtained from 17 LGG patients...

  20. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke

    OpenAIRE

    Szalay, Gergely; Martinecz, Bernadett; Lénárt, Nikolett; Környei, Zsuzsanna; Orsolits, Barbara; Judák, Linda; Császár, Eszter; Fekete, Rebeka; West, Brian L.; Katona, Gergely; Rózsa, Balázs; Dénes, Ádám

    2016-01-01

    Microglia are the main immune cells of the brain and contribute to common brain diseases. However, it is unclear how microglia influence neuronal activity and survival in the injured brain in vivo. Here we develop a precisely controlled model of brain injury induced by cerebral ischaemia combined with fast in vivo two-photon calcium imaging and selective microglial manipulation. We show that selective elimination of microglia leads to a striking, 60% increase in infarct size, which is reverse...

  1. Perceived causality influences brain activity evoked by biological motion.

    Science.gov (United States)

    Morris, James P; Pelphrey, Kevin A; McCarthy, Gregory

    2008-01-01

    Using functional magnetic resonance imaging (fMRI), we investigated brain activity in an observer who watched the hand and arm motions of an individual when that individual was, or was not, the cause of the motion. Subjects viewed a realistic animated 3D character who sat at a table containing four pistons. On Intended Motion trials, the character raised his hand and arm upwards. On Unintended Motion trials, the piston under one of the character's hands pushed the hand and arm upward with the same motion. Finally, during Non-Biological Motion control trials, a piston pushed a coffee mug upward in the same smooth motion. Hand and arm motions, regardless of intention, evoked significantly more activity than control trials in a bilateral region that extended ventrally from the posterior superior temporal sulcus (pSTS) region and which was more spatially extensive in the right hemisphere. The left pSTS near the temporal-parietal junction, robustly differentiated between the Intended Motion and Unintended Motion conditions. Here, strong activity was observed for Intended Motion trials, while Unintended Motion trials evoked similar activity as the coffee mug trials. Our results demonstrate a strong hemispheric bias in the role of the pSTS in the perception of causality of biological motion. PMID:18633843

  2. Acute moderate exercise enhances compensatory brain activation in older adults.

    Science.gov (United States)

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation. PMID:22300952

  3. Evaluation of drug-induced neurotoxicity based on metabolomics, proteomics and electrical activity measurements in complementary CNS in vitro models.

    Science.gov (United States)

    Schultz, Luise; Zurich, Marie-Gabrielle; Culot, Maxime; da Costa, Anaelle; Landry, Christophe; Bellwon, Patricia; Kristl, Theresa; Hörmann, Katrin; Ruzek, Silke; Aiche, Stephan; Reinert, Knut; Bielow, Chris; Gosselet, Fabien; Cecchelli, Romeo; Huber, Christian G; Schroeder, Olaf H-U; Gramowski-Voss, Alexandra; Weiss, Dieter G; Bal-Price, Anna

    2015-12-25

    The present study was performed in an attempt to develop an in vitro integrated testing strategy (ITS) to evaluate drug-induced neurotoxicity. A number of endpoints were analyzed using two complementary brain cell culture models and an in vitro blood-brain barrier (BBB) model after single and repeated exposure treatments with selected drugs that covered the major biological, pharmacological and neuro-toxicological responses. Furthermore, four drugs (diazepam, cyclosporine A, chlorpromazine and amiodarone) were tested more in depth as representatives of different classes of neurotoxicants, inducing toxicity through different pathways of toxicity. The developed in vitro BBB model allowed detection of toxic effects at the level of BBB and evaluation of drug transport through the barrier for predicting free brain concentrations of the studied drugs. The measurement of neuronal electrical activity was found to be a sensitive tool to predict the neuroactivity and neurotoxicity of drugs after acute exposure. The histotypic 3D re-aggregating brain cell cultures, containing all brain cell types, were found to be well suited for OMICs analyses after both acute and long term treatment. The obtained data suggest that an in vitro ITS based on the information obtained from BBB studies and combined with metabolomics, proteomics and neuronal electrical activity measurements performed in stable in vitro neuronal cell culture systems, has high potential to improve current in vitro drug-induced neurotoxicity evaluation. PMID:26026931

  4. Baseline and cognition activated brain SPECT imaging in depression

    International Nuclear Information System (INIS)

    Purpose: To evaluate the regional cerebral blood flow (rCBF) abnormalities through the semiquantitative analysis of the baseline and cognition activated rCBF imaging in unmedicated depressed patients. Methods: 27 depressed patients unmedicated by anti-depressants were enrolled. The diagnosis (depression of moderate degree with somatization) was confirmed by the ICD-10 criteria. 15 age matched normal controls were studied under identical conditions. Baseline and cognition activated 99mTc-ECD SPECT were performed on 21 of the 27 patients with depression and 13 of the 15 normal controls. Baseline 99mTc-ECD SPECT alone were performed on the rest 6 patients with depression and 2 normal controls. The cognitive activation is achieved by Wisconsin Card Sorting Test (WCST). 1110 MBq of 99mTc-ECD was administered by intravenous bolus injection 5 minutes after the onset of the WCST. Semi-quantitative analysis was conducted with the 7th, 8th, 9th, 10th, 11th slices of the transaxial imaging. rCBF ratios of every ROI were calculated using the average tissue activity in the region divided by the maximum activity in the cerebellum. Results: 1) The baseline rCBF of left frontal (0.720) and left temporal lobe (0.720) were decreased significantly in depressed patients comparing with those of the control subjects. 2) The activated rCBF of left frontal lobe (0.719) and left temporal lobe (0.690), left parietal lobe (0.701) were decreased evidently than those of the controls. Conclusions: 1) Hypoperfusions of left frontal and left temporal cortexes were identified in patients with depression. 2) The hypoperfusion of left frontal and left temporal cortexes may be the cause of cognition disorder and depressed mood in patients with depression. 3) Cognition activated brain perfusion imaging is helpful for making a more accurate diagnosis of depression

  5. Rapid Eye Movement and Sleep Twitches Can Enhance Brain Activity

    Directory of Open Access Journals (Sweden)

    Somia Gul

    2015-12-01

    Full Text Available Rapid eye movement sleep, or REM, is one of the five stages of sleep that most people experience nightly. It is characterized by quick, random movements of the eyes and paralysis of the muscles. We have conducted a survey based on questions related to sleeping habits and pattern of their dream. Purpose of this survey is to prove a hypothesis that says ‘rapid eye movement or sleep twitches can enhance your brain activity’. We have selected normal or healthy subjects related to different ages, gender and professions. Questionnaires were filled by these subjects and we found that mostly people experience sleep twitches and they wake up with active state of mind. We also asked their level of alertness during day time and we found that subjects are alert mostly.

  6. Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions

    Directory of Open Access Journals (Sweden)

    Alexander Opitz

    2014-01-01

    Full Text Available The spatial extent of transcranial magnetic stimulation (TMS is of paramount interest for all studies employing this method. It is generally assumed that the induced electric field is the crucial parameter to determine which cortical regions are excited. While it is difficult to directly measure the electric field, one usually relies on computational models to estimate the electric field distribution. Direct electrical stimulation (DES is a local brain stimulation method generally considered the gold standard to map structure–function relationships in the brain. Its application is typically limited to patients undergoing brain surgery. In this study we compare the computationally predicted stimulation area in TMS with the DES area in six patients with tumors near precentral regions. We combine a motor evoked potential (MEP mapping experiment for both TMS and DES with realistic individual finite element method (FEM simulations of the electric field distribution during TMS and DES. On average, stimulation areas in TMS and DES show an overlap of up to 80%, thus validating our computational physiology approach to estimate TMS excitation volumes. Our results can help in understanding the spatial spread of TMS effects and in optimizing stimulation protocols to more specifically target certain cortical regions based on computational modeling.

  7. Recovery of brain and plasma cholinesterase activities in ducklings exposed to organophosphorus pesticides

    Science.gov (United States)

    Fleming, W.J.

    1981-01-01

    Brain and plasma cholinesterase (ChE) activities were determined for mallard ducklings (Anas platyrhynchos) exposed to dicrotophos and fenthion. Recovery rates of brain ChE did not differ between ducklings administered a single oral dose vs. a 2-week dietary dose of these organophosphates. Exposure to the organophosphates, followed by recovery of brain ChE, did not significantly affect the degree of brain ChE inhibition or the recovery of ChE activity at a subsequent exposure. Recovery of brain ChE activity followed the general model Y = a + b(logX) with rapid recovery to about 50% of normal, followed by a slower rate of recovery until normal ChE activity levels were attained. Fenthion and dicrotophos-inhibited brain ChE were only slightly reactivated in vitro by pyridine-2-aldoxime methiodide, which suggested that spontaneous reactivation was not a primary method of recovery of ChE activity. Recovery of brain ChE activity can be modeled for interpretation of sublethal inhibition of brain ChE activities in wild birds following environmental applications of organophosphates. Plasma ChE activity is inferior to brain ChE activity for environmental monitoring, because of its rapid recovery and large degree of variation among individuals.

  8. Transcranial Electrical Currents to Probe EEG Brain Rhythms and Memory Consolidation during Sleep in Humans

    OpenAIRE

    Marshall, Lisa; Kirov, Roumen; Brade, Julian; Mölle, Matthias; Born, Jan

    2011-01-01

    Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation (∼0.75 Hz) during non-rapid eye movement sleep (NonREM) sleep boosted endogenous slow oscillation activity and enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial direct current stimulation (tDCS) o...

  9. Is Brain Activity during Action Observation Modulated by the Perceived Fairness of the Actor?

    NARCIS (Netherlands)

    Etzel, Joset A; Valchev, Nikola; Gazzola, Valeria; Keysers, Christian

    2016-01-01

    Perceiving other people's actions triggers activity in premotor and parietal areas, brain areas also involved in executing and sensing our own actions. Paralleling this phenomenon, observing emotional states (including pain) in others is associated with activity in the same brain areas as activated

  10. Electric currents and fields induced in cells in the human brain by radiation from hand-held cellular telephones

    Science.gov (United States)

    King, Ronold W. P.

    2000-01-01

    After a review of recent work on the interaction of electromagnetic fields from cellular telephones with the human head, the structural and radiating properties of two common types of transceivers are determined. These include the impedance and current amplitude distribution of the antennas. The tangential electric field maintained by the antennas on the adjacent surface of the head is next determined. From this, the electric field propagating through the skull into the brain is analyzed and, from it, the electric field in spherical and long cylindrical cells is determined. It ranges from 27 to 13.5 V/m in the first 3 cm inside the skull. Of interest is the fact that the induced field in the interior of all cells, regardless of their shape, is the same as the incident field in the brain. It is hoped that biomedical scientists will review these results and determine possible biological effects.

  11. Brain Na+, K+-ATPase Activity In Aging and Disease

    Science.gov (United States)

    de Lores Arnaiz, Georgina Rodríguez; Ordieres, María Graciela López

    2014-01-01

    Na+/K+ pump or sodium- and potassium-activated adenosine 5’-triphosphatase (Na+, K+-ATPase), its enzymatic version, is a crucial protein responsible for the electrochemical gradient across the cell membranes. It is an ion transporter, which in addition to exchange cations, is the ligand for cardenolides. This enzyme regulates the entry of K+ with the exit of Na+ from cells, being the responsible for Na+/K+ equilibrium maintenance through neuronal membranes. This transport system couples the hydrolysis of one molecule of ATP to exchange three sodium ions for two potassium ions, thus maintaining the normal gradient of these cations in animal cells. Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required for the maintenance of the ionic gradients that underlie resting and action potentials which are involved in nerve impulse propagation, neurotransmitter release and cation homeostasis. Protein phosphorylation is a key process in biological regulation. At nervous system level, protein phosphorylation is the major molecular mechanism through which the function of neural proteins is modulted in response to extracellular signals, including the response to neurotransmitter stimuli. It is the major mechanism of neural plasticity, including memory processing. The phosphorylation of Na+, K+-ATPase catalytic subunit inhibits enzyme activity whereas the inhibition of protein kinase C restores the enzyme activity. The dephosphorylation of neuronal Na+, K+-ATPase is mediated by calcineurin, a serine / threonine phosphatase. The latter enzyme is involved in a wide range of cellular responses to Ca2+ mobilizing signals, in the regulation of neuronal excitability by controlling the activity of ion channels, in the release of neurotransmitters and hormones, as well as in synaptic plasticity and gene transcription. In the present article evidence showing Na+, K+-ATPase involvement in signaling pathways

  12. Brain Fingerprinting

    Directory of Open Access Journals (Sweden)

    ravi kumar

    2012-12-01

    Full Text Available Brain Fingerprinting is a scientific technique to determine whether or not specific information is stored in an individual's brain by measuring a electrical brain wave response to Word, phrases, or picture that are presented on computer screen. Brain Fingerprinting is a controversial forensic science technique that uses electroencephalograph y (EEG to determine whether specific information is stored in a subject's brain

  13. Computational and experimental analysis of TMS-induced electric field vectors critical to neuronal activation

    Science.gov (United States)

    Krieg, Todd D.; Salinas, Felipe S.; Narayana, Shalini; Fox, Peter T.; Mogul, David J.

    2015-08-01

    Objective. Transcranial magnetic stimulation (TMS) represents a powerful technique to noninvasively modulate cortical neurophysiology in the brain. However, the relationship between the magnetic fields created by TMS coils and neuronal activation in the cortex is still not well-understood, making predictable cortical activation by TMS difficult to achieve. Our goal in this study was to investigate the relationship between induced electric fields and cortical activation measured by blood flow response. Particularly, we sought to discover the E-field characteristics that lead to cortical activation. Approach. Subject-specific finite element models (FEMs) of the head and brain were constructed for each of six subjects using magnetic resonance image scans. Positron emission tomography (PET) measured each subject’s cortical response to image-guided robotically-positioned TMS to the primary motor cortex. FEM models that employed the given coil position, orientation, and stimulus intensity in experimental applications of TMS were used to calculate the electric field (E-field) vectors within a region of interest for each subject. TMS-induced E-fields were analyzed to better understand what vector components led to regional cerebral blood flow (CBF) responses recorded by PET. Main results. This study found that decomposing the E-field into orthogonal vector components based on the cortical surface geometry (and hence, cortical neuron directions) led to significant differences between the regions of cortex that were active and nonactive. Specifically, active regions had significantly higher E-field components in the normal inward direction (i.e., parallel to pyramidal neurons in the dendrite-to-axon orientation) and in the tangential direction (i.e., parallel to interneurons) at high gradient. In contrast, nonactive regions had higher E-field vectors in the outward normal direction suggesting inhibitory responses. Significance. These results provide critical new

  14. Distribution of Electric Currents in Solar Active Regions

    CERN Document Server

    Török, Tibor; Titov, Viacheslav S; Archontis, Vasilis; Mikić, Zoran; Linton, Mark G; Dalmasse, Kévin; Aulanier, Guillaume; Kliem, Bernhard

    2014-01-01

    There has been a long-lasting debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After t...

  15. Updated summary of state electric industry restructuring activities

    International Nuclear Information System (INIS)

    For over a year, The National Regulatory Research Institute has monitored the electric industry restructuring activity at state level. Included here is a quarterly summary of a more extensive report updated and posted monthly on NRRI's website. The brief article continues by reviewing legislation and litigation in restructuring

  16. Can Electrical Vestibular Noise Be Used for the Treatment of Brain Diseases?

    Science.gov (United States)

    Yamamoto, Yoshiharu; Soma, Rika; Struzik, Zbigniew R.; Kwak, Shin

    2005-11-01

    The therapy currently available for the treatment of degenerative neurological diseases is far from satisfactory, and a novel therapeutic strategy, especially for pharmacologically unresponsive patients, would be welcomed. The vestibular nerves are known to influence neuronal circuits in the medullary cardiovascular areas and, through the cerebellar vermis, the basal ganglia and the limbic system. By means of noisy galvanic vestibular stimulation (GVS), it may now be possible to ameliorate blunted responsiveness of degenerated neuronal circuits in the brains of multiple system atrophy (MSA) and/or Parkinson's disease (PD) patients, through a mechanism known as stochastic resonance. We evaluate the effect of 24-hour noisy GVS on long-term heart rate dynamics in seven MSA patients, and on daytime locomotor activity dynamics in twelve patients with either PD or levodopa unresponsive parkinsonism. Short-range heart rate variability and long-range anti-correlation of trunk activity are significantly increased by the noisy GVS compared with sham stimulation, suggestive of improved autonomic and motor responsiveness. The noisy GVS is effective in boosting the neuro-degenerative brains of MSA and/or PD patients, including those unresponsive to standard levodopa therapy.

  17. Remote monitoring of biodynamic activity using electric potential sensors

    Energy Technology Data Exchange (ETDEWEB)

    Harl, C J; Prance, R J; Prance, H [Centre for Physical Electronics and Quantum Technology, Department of Engineering and Design, School of Science and Technology, University of Sussex, Brighton, BN1 9QT (United Kingdom)], E-mail: c.j.harland@sussex.ac.uk

    2008-12-01

    Previous work in applying the electric potential sensor to the monitoring of body electrophysiological signals has shown that it is now possible to monitor these signals without needing to make any electrical contact with the body. Conventional electrophysiology makes use of electrodes which are placed in direct electrical contact with the skin. The electric potential sensor requires no cutaneous electrical contact, it operates by sensing the displacement current using a capacitive coupling. When high resolution body electrophysiology is required a strong (capacitive) coupling is used to maximise the collected signal. However, in remote applications where there is typically an air-gap between the body and the sensor only a weak coupling can be achieved. In this paper we demonstrate that the electric potential sensor can be successfully used for the remote sensing and monitoring of bioelectric activity. We show examples of heart-rate measurements taken from a seated subject using sensors mounted in the chair. We also show that it is possible to monitor body movements on the opposite side of a wall to the sensor. These sensing techniques have biomedical applications for non-contact monitoring of electrophysiological conditions and can be applied to passive through-the-wall surveillance systems for security applications.

  18. Optical imaging of neural and hemodynamic brain activity

    Science.gov (United States)

    Schei, Jennifer Lynn

    Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic

  19. Inhibitory effects of heterotopic noxious counter-stimulation on perception and brain activity related to Aβ-fibre activation.

    Science.gov (United States)

    Rustamov, Nabi; Tessier, Jessica; Provencher, Benjamin; Lehmann, Alexandre; Piché, Mathieu

    2016-07-01

    Heterotopic noxious counter-stimulation (HNCS) inhibits pain and pain processes through cerebral and cerebrospinal mechanisms. However, it is unclear whether HNCS inhibits non-nociceptive processes, which needs to be clarified for a better understanding of HNCS analgesia. The aim of this study was to examine the effects of HNCS on perception and scalp somatosensory evoked potentials (SEPs). Seventeen healthy volunteers participated in two counter-balanced sessions, including non-nociceptive (selective Aβ-fibre activation) or nociceptive electrical stimulation, combined with HNCS. HNCS was produced by a 20-min cold pressor test (left hand) adjusted individually to produce moderate pain (mean ± SEM: 42.5 ± 5.3 on a 0-100 scale, where 0 is no pain and 100 the worst pain imaginable). Non-nociceptive electrical stimulation was adjusted individually at 80% of pain threshold and produced a tactile sensation in every subject. Nociceptive electrical stimulation was adjusted individually at 120% of RIII-reflex threshold and produced moderate pain (45.3 ± 4.5). Shock sensation was significantly decreased by HNCS compared with baseline for non-nociceptive (P < 0.001) and nociceptive (P < 0.001) stimulation. SEP peak-to-peak amplitude at Cz was significantly decreased by HNCS for non-nociceptive (P < 0.01) and nociceptive (P < 0.05) stimulation. These results indicate that perception and brain activity related to Aβ-fibre activation are inhibited by HNCS. The mechanisms of this effect remain to be investigated to clarify whether it involves inhibition of spinal wide-dynamic-range neurons by diffuse noxious inhibitory controls, supraspinal processes or both. PMID:27086672

  20. Brain-Computer Interface Controlled Functional Electrical Stimulation System for Ankle Movement

    Directory of Open Access Journals (Sweden)

    King Christine E

    2011-08-01

    Full Text Available Abstract Background Many neurological conditions, such as stroke, spinal cord injury, and traumatic brain injury, can cause chronic gait function impairment due to foot-drop. Current physiotherapy techniques provide only a limited degree of motor function recovery in these individuals, and therefore novel therapies are needed. Brain-computer interface (BCI is a relatively novel technology with a potential to restore, substitute, or augment lost motor behaviors in patients with neurological injuries. Here, we describe the first successful integration of a noninvasive electroencephalogram (EEG-based BCI with a noninvasive functional electrical stimulation (FES system that enables the direct brain control of foot dorsiflexion in able-bodied individuals. Methods A noninvasive EEG-based BCI system was integrated with a noninvasive FES system for foot dorsiflexion. Subjects underwent computer-cued epochs of repetitive foot dorsiflexion and idling while their EEG signals were recorded and stored for offline analysis. The analysis generated a prediction model that allowed EEG data to be analyzed and classified in real time during online BCI operation. The real-time online performance of the integrated BCI-FES system was tested in a group of five able-bodied subjects who used repetitive foot dorsiflexion to elicit BCI-FES mediated dorsiflexion of the contralateral foot. Results Five able-bodied subjects performed 10 alternations of idling and repetitive foot dorsifiexion to trigger BCI-FES mediated dorsifiexion of the contralateral foot. The epochs of BCI-FES mediated foot dorsifiexion were highly correlated with the epochs of voluntary foot dorsifiexion (correlation coefficient ranged between 0.59 and 0.77 with latencies ranging from 1.4 sec to 3.1 sec. In addition, all subjects achieved a 100% BCI-FES response (no omissions, and one subject had a single false alarm. Conclusions This study suggests that the integration of a noninvasive BCI with a lower

  1. New Perspectives on Spontaneous Brain Activity: Dynamic Networks and Energy Matter

    Science.gov (United States)

    Tozzi, Arturo; Zare, Marzieh; Benasich, April A.

    2016-01-01

    Spontaneous brain activity has received increasing attention as demonstrated by the exponential rise in the number of published article on this topic over the last 30 years. Such “intrinsic” brain activity, generated in the absence of an explicit task, is frequently associated with resting-state or default-mode networks (DMN)s. The focus on characterizing spontaneous brain activity promises to shed new light on questions concerning the structural and functional architecture of the brain and how they are related to “mind”. However, many critical questions have yet to be addressed. In this review, we focus on a scarcely explored area, specifically the energetic requirements and constraints of spontaneous activity, taking into account both thermodynamical and informational perspectives. We argue that the “classical” definitions of spontaneous activity do not take into account an important feature, that is, the critical thermodynamic energetic differences between spontaneous and evoked brain activity. Spontaneous brain activity is associated with slower oscillations compared with evoked, task-related activity, hence it exhibits lower levels of enthalpy and “free-energy” (i.e., the energy that can be converted to do work), thus supporting noteworthy thermodynamic energetic differences between spontaneous and evoked brain activity. Increased spike frequency during evoked activity has a significant metabolic cost, consequently, brain functions traditionally associated with spontaneous activity, such as mind wandering, require less energy that other nervous activities. We also review recent empirical observations in neuroscience, in order to capture how spontaneous brain dynamics and mental function can be embedded in a non-linear dynamical framework, which considers nervous activity in terms of phase spaces, particle trajectories, random walks, attractors and/or paths at the edge of the chaos. This takes us from the thermodynamic free-energy, to the realm

  2. Multistability in Large Scale Models of Brain Activity.

    Directory of Open Access Journals (Sweden)

    Mathieu Golos

    2015-12-01

    Full Text Available Noise driven exploration of a brain network's dynamic repertoire has been hypothesized to be causally involved in cognitive function, aging and neurodegeneration. The dynamic repertoire crucially depends on the network's capacity to store patterns, as well as their stability. Here we systematically explore the capacity of networks derived from human connectomes to store attractor states, as well as various network mechanisms to control the brain's dynamic repertoire. Using a deterministic graded response Hopfield model with connectome-based interactions, we reconstruct the system's attractor space through a uniform sampling of the initial conditions. Large fixed-point attractor sets are obtained in the low temperature condition, with a bigger number of attractors than ever reported so far. Different variants of the initial model, including (i a uniform activation threshold or (ii a global negative feedback, produce a similarly robust multistability in a limited parameter range. A numerical analysis of the distribution of the attractors identifies spatially-segregated components, with a centro-medial core and several well-delineated regional patches. Those different modes share similarity with the fMRI independent components observed in the "resting state" condition. We demonstrate non-stationary behavior in noise-driven generalizations of the models, with different meta-stable attractors visited along the same time course. Only the model with a global dynamic density control is found to display robust and long-lasting non-stationarity with no tendency toward either overactivity or extinction. The best fit with empirical signals is observed at the edge of multistability, a parameter region that also corresponds to the highest entropy of the attractors.

  3. Localisation of brain functions : stimuling brain activity and source reconstruction for classification/

    OpenAIRE

    Noirhomme, Quentin

    2006-01-01

    A key issue in understanding how the brain functions is the ability to correlate functional information with anatomical localisation. Functional information can be provided by a variety of techniques like positron emission tomography (PET), functional MRI (fMRI), electroencephalography (EEG), magnetoencephalography (MEG) or transcranial magnetic stimulation (TMS). All these methods provide different, but complementary, information about the functional areas of the brain. ...

  4. Objectively Measured Physical Activity Is Associated with Brain Volumetric Measurements in Multiple Sclerosis

    OpenAIRE

    Klaren, Rachel E; Hubbard, Elizabeth A.; Motl, Robert W.; Pilutti, Lara A.; Wetter, Nathan C.; Sutton, Bradley P.

    2015-01-01

    Background. Little is known about physical activity and its association with volumes of whole brain gray matter and white matter and deep gray matter structures in persons with multiple sclerosis (MS). Purpose. This study examined the association between levels of physical activity and brain volumetric measures from magnetic resonance imaging (MRI) in MS. Method. 39 persons with MS wore an accelerometer for a 7-day period and underwent a brain MRI. Normalized GM volume (NGMV), normalized WM v...

  5. Brain activity during driving with distraction: an immersive fMRI study

    OpenAIRE

    Tom A Schweizer; Karen Kan; Yuwen Hung; Fred Tam; Gary Naglie; Simon Graham

    2013-01-01

    Introduction: Non-invasive measurements of brain activity have an important role to play in understanding driving ability. The current study aimed to identify the neural underpinnings of human driving behavior by visualizing the areas of the brain involved in driving under different levels of demand, such as driving while distracted or making left turns at busy intersections. Materials and Methods: To capture brain activity during driving, we placed a driving simulator with a fully functio...

  6. Blood-Brain Barrier Active Efflux Transporters: ATP-Binding Cassette Gene Family

    OpenAIRE

    Löscher, Wolfgang; Potschka, Heidrun

    2005-01-01

    Summary: The blood-brain barrier (BBB) contributes to brain homeostasis by protecting the brain from potentially harmful endogenous and exogenous substances. BBB active drug efflux transporters of the ATP-binding cassette (ABC) gene family are increasingly recognized as important determinants of drug distribution to, and elimination from, the CNS. The ABC efflux transporter P-glycoprotein (Pgp) has been demonstrated as a key element of the BBB that can actively transport a huge variety of lip...

  7. The Energy Landscape of Neurophysiological Activity Implicit in Brain Network Structure

    OpenAIRE

    Gu, Shi; Cieslak, Matthew; Baird, Benjamin; Muldoon, Sarah F.; Grafton, Scott T; Pasqualetti, Fabio; Danielle S Bassett

    2016-01-01

    A critical mystery in neuroscience lies in determining how anatomical structure impacts the complex functional dynamics of human thought. How does large-scale brain circuitry constrain states of neuronal activity and transitions between those states? We address these questions using a maximum entropy model of brain dynamics informed by white matter tractography. We demonstrate that the most probable brain states -- characterized by minimal energy -- display common activation profiles across b...

  8. Time-invariant person-specific frequency templates in human brain activity

    OpenAIRE

    Doron, Itai; Hulata, Eyal; Baruchi, Itay; Towle, Vernon L.; Ben-Jacob, Eshel

    2006-01-01

    The various human brain tasks are performed at different locations and time scales. Yet, we discovered the existence of time-invariant (above an essential time scale) partitioning of the brain activity into personal state-specific frequency bands. For that, we perform temporal and ensemble averaging of best wavelet packet bases from multi-electrode EEG recordings. These personal frequency-bands provide new templates for quantitative analyses of brain function, e.g., normal vs. epileptic activ...

  9. Visual image reconstruction from human brain activity: A modular decoding approach

    International Nuclear Information System (INIS)

    Brain activity represents our perceptual experience. But the potential for reading out perceptual contents from human brain activity has not been fully explored. In this study, we demonstrate constraint-free reconstruction of visual images perceived by a subject, from the brain activity pattern. We reconstructed visual images by combining local image bases with multiple scales, whose contrasts were independently decoded from fMRI activity by automatically selecting relevant voxels and exploiting their correlated patterns. Binary-contrast, 10 x 10-patch images (2100 possible states), were accurately reconstructed without any image prior by measuring brain activity only for several hundred random images. The results suggest that our approach provides an effective means to read out complex perceptual states from brain activity while discovering information representation in multi-voxel patterns.

  10. Effect of transcutaneous electric stimulation on the cardiac electrical activity in New Zealand white rabbits

    Directory of Open Access Journals (Sweden)

    Wang ZHANG

    2015-10-01

    Full Text Available Objective To study the effect of transcutaneous electric stimulation on the cardiac electrical activity in New Zealand white rabbits, in order to search a safety threshold for clinical electrical stimulation therapy, as to provide the theoretical basis for the design of in vitro pacemaker. Methods New Zealand white rabbits were randomly assigned into 17 groups (6 each. Rabbits in 16 experimental groups were given 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 and 80V electrical stimulation, respectively, with the stimulating site designated at epigastric region. BL -420F biological function experimental system was employed to supply the power and acquire the ECG, with the output pulse electrical stimulation frequency set at 270 times/minute, and the stimulating wave as square wave. A control group was set, in which the stimulating voltage was set to 35V, the stimulant anode was located in the anterior chest area, and the cathode was on the skin surface of back corresponding to the site of the heart, and the rest was the same as in experimental groups. Results No stimulation rhythm was observed in rabbits of those experimental groups with voltage ≤35V, but all stimulation rhythm was observed in rabbits of control group. No arrhythmia occurred in rabbits of those experimental groups with voltage ≤30V, while the heart rate was slowed down after stimulation in rabbits of the experimental groups with voltage ≥45V stimulation. In rabbits receiving stimulation with voltage ≤35V there was no dystropy or light dystropy, but with no visible injury to the local tissues. No visible injury was observed in the rabbits undergoing stimulation with voltage ≤40V. Conclusion Pulse electric stimulation with voltage ≤35V in the epigastric region would not affect the cardiac electrical activity in rabbits, while stimulation with 35V will lead to all pacing rhythm of the heart without affecting the cardiac electrical activity in rabbits

  11. Enhancing Physical Activity and Brain Reorganization after Stroke

    Directory of Open Access Journals (Sweden)

    Janet H. Carr

    2011-01-01

    Full Text Available It is becoming increasingly clear that, if reorganization of brain function is to be optimal after stroke, there needs to be a reorganisation of the methods used in physical rehabilitation and the time spent in specific task practice, strength and endurance training, and aerobic exercise. Frequency and intensity of rehabilitation need to be increased so that patients can gain the energy levels and vigour necessary for participation in physical activity both during rehabilitation and after discharge. It is evident that many patients are discharged from inpatient rehabilitation severely deconditioned, meaning that their energy levels are too low for active participation in daily life. Physicians, therapists, and nursing staff responsible for rehabilitation practice should address this issue not only during inpatient rehabilitation but also after discharge by promoting and supporting community-based exercise opportunities. During inpatient rehabilitation, group sessions should be frequent and need to include specific aerobic training. Physiotherapy must take advantage of the training aids available, including exercise equipment such as treadmills, and of new developments in computerised feedback systems, robotics, and electromechanical trainers. For illustrative purposes, this paper focuses on the role of physiotherapists, but the necessary changes in practice and in attitude will require cooperation from many others.

  12. Brain Activity while Reading Sentences with Kanji Characters Expressing Emotions

    Science.gov (United States)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe the brain activity associated with kanji characters expressing emotion, which are places at the end of a sentence. Japanese people use a special kanji character in brackets at the end of sentences in text messages such as those sent through e-mail and messenger tools. Such kanji characters plays a role to expresses the sender's emotion (such as fun, laughter, sadness, tears), like emoticons. It is a very simple and effective way to convey the senders' emotions and his/her thoughts to the receiver. In this research, we investigate the effects of emotional kanji characters by using an fMRI study. The experimental results show that both the right and left inferior frontal gyrus, which have been implicated on verbal and nonverbal information, were activated. We found that we detect a sentence with an emotional kanji character as the verbal and nonverval information, and a sentence with emotional kanji characters enrich communication between the sender and the reciever.

  13. Carbon monoxide affects electrical and contractile activity of rat myocardium

    Directory of Open Access Journals (Sweden)

    Porokhnya Maria V

    2011-06-01

    Full Text Available Abstract Background Carbon monoxide (CO is a toxic gas, which also acts in the organism as a neurotransmitter. It is generated as a by-product of heme breakdown catalyzed by heme oxygenase. We have investigated changes in electrical and contractile activity of isolated rat atrial and ventricular myocardium preparations under the influence of CO. Methods Standard microelectrode technique was used for intracellular registration of electrical activity in isolated preparations of atrial and ventricular myocardium. Contractions of atrial myocardial stripes were registered via force transducer. Results CO (10-4 - 10-3 M caused prominent decrease of action potential duration (APD in working atrial myocardium as well as significant acceleration of sinus rhythm. In addition CO reduced force of contractions and other parameters of contractile activity. Inhibitor of heme oxygenase zinc protoporphyrin IX exerts opposite effects: prolongation of action potential, reduction of sinus rhythm rate and enhancement of contractile function. Therefore, endogenous CO, which may be generated in the heart due to the presence of active heme oxygenase, is likely to exert the same effects as exogenous CO applied to the perfusing medium. In ventricular myocardium preparations exogenous CO also induced shortening of action potential, while zinc protoporphyrin IX produced the opposite effect. Conclusions Thus, endogenous or exogenous carbon monoxide may act as an important regulator of electrical and contractile cardiac activity.

  14. 3-Hydroxyanthranilate oxygenase activity is increased in the brains of Huntington disease victims

    International Nuclear Information System (INIS)

    An excess of the tryptophan metabolite quinolinic acid in the brain has been hypothetically related to the pathogenesis of Huntington disease. Quinolinate's immediate biosynthetic enzyme, 3-hydroxyanthranilate oxygenase, has now been detected in human brain tissue. The activity of 3-hydroxyanthranilate oxygenase is increased in Huntington disease brains as compared to control brains. The increment is particularly pronounced in the striatum, which is known to exhibit the most prominent nerve-cell loss in Huntington disease. Thus, the Huntington disease brain has a disproportionately high capability to produce the endogenous excitotoxin quinolinic acid. This finding may be of relevance for clinical, neuropathologic, and biochemical features associated with Huntington disease

  15. Brain oscillatory activity during motor imagery in EEG-fMRI coregistration.

    Science.gov (United States)

    Formaggio, Emanuela; Storti, Silvia Francesca; Cerini, Roberto; Fiaschi, Antonio; Manganotti, Paolo

    2010-12-01

    The purpose of the present work was to investigate the correlation between topographical changes in brain oscillatory activity and the blood oxygenation level-dependent (BOLD) signal during a motor imagery (MI) task using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) coregistration. EEG was recorded in 7 healthy subjects inside a 1.5 T MR scanner during the imagination of the kinesthetic experience of movement. A Fast Fourier Transform was applied to EEG signal in the rest and active conditions. We used the event-related-synchronization (ERS)/desynchronization (ERD) approach to characterize where the imagination of movement produces a decrease in alpha and beta power. The mean alpha map showed ERD decrease localized over the contralateral sensory motor area (SM1c) and a light desynchronization in the ipsilateral sensory motor area (SM1i); whereas the mean beta map showed ERD decrease over the supplementary motor area (SMA). fMRI showed significant activation in SMA, SM1c, SM1i. The correlation is negative in the contralateral side and positive in the ipsilateral side. Using combined EEG-fMRI signals we obtained useful new information on the description of the changes in oscillatory activity in alpha and beta bands during MI and on the investigation of the sites of BOLD activity as possible sources in generating these rhythms. By correlating BOLD and ERD/ERS we may identify more accurately which regions contribute to changes of the electrical response. PMID:20850237

  16. Spatio-temporal dynamics of kind versus hostile intentions in the human brain: An electrical neuroimaging study.

    Science.gov (United States)

    Wang, Yiwen; Huang, Liang; Zhang, Wei; Zhang, Zhen; Cacioppo, Stephanie

    2015-01-01

    Neuroscience research suggests that inferring neutral intentions of other people recruits a specific brain network within the inferior fronto-parietal action observation network as well as a putative social network including brain areas subserving theory of mind, such as the posterior superior temporal sulcus (pSTS), the temporo-parietal junction (TPJ), and also the anterior cingulate cortex (ACC). Recent studies on harmful intentions have refined this network by showing the specific involvement of the ACC, amygdala, and ventromedial prefrontal cortex (vmPFC) in early stages (within 200 ms) of information processing. However, the functional dynamics for kind intentions within and among these networks remains unclear. To address this question, we measured electrical brain activity from 18 healthy adult participants while they were performing an intention inference task with three different types of intentions: kind, hostile and non-interactive. Electrophysiological results revealed that kind intentions were characterized by significantly larger peak amplitudes of N2 over the frontal sites than those for hostile and non-interactive intentions. On the other hand, there were no significant differences between hostile and non-interactive intentions at N2. The source analysis suggested that the vicinity of the left cingulate gyrus contributed to the N2 effect by subtracting the kindness condition from the non-interactive condition within 250-350 ms. At a later stage (i.e., during the 270-500 ms epoch), the peak amplitude of the P3 over the parietal sites and the right hemisphere was significantly larger for hostile intentions compared to the kind and non-interactive intentions. No significant differences were observed at P3 between kind and non-interactive intentions. The source analysis showed that the vicinity of the left anterior cingulate cortex contributed to the P3 effect by subtracting the hostility condition from the non-interactive condition within 450-550 ms

  17. Effects of sevoflurane on adenylate cyclase and phosphodiesterases activity in brain of rats

    International Nuclear Information System (INIS)

    Objective: To investigate the effects of sevoflurane on c adenylate cyclase (AC) and phosphodiesterases (PDE) activity in the cerebrocortex, hippocampus and brain stem of rats, and to examine the role of cAMP in sevoflurane anesthesia. Methods: Fourty SD rats were delaminately designed and allocated randomly to 5 groups inhaling 1.5% sevoflurane i.e., no recovery (recovery group, n=8) and one hour after righting reflexrecovery (aware group, n=8). The brain tissues were rapidly dissected into cerebrocortex and hippocampus and brain stem.Then the adenylate cyclase and phosphodiesterases activity were assessed. Results: So far as the activity of AC is concerned, compared with the control group, the activity of AC in the cerebrocortex, hippocampus and brain stem brain stem of induction group and anesthesia group, the cerebrocortex, and hippocampus in the recovery group were significantly increased; compared with those in the anesthesia group, the activity of AC in the cerebrocortex, hippocampus and brain stem of aware group were significantly decreased (P<0.05); For the activity of PDE, compared with the control group, the activity of PDE in the cerebrocortex, hippocampus and brain stem in the induction group and anesthesia group was significantly decreased, compared with that in anesthesia group, the activity of PDE in the cerebrocortex, hippocampus and brain stem of recovery group and aware group was significantly increased (P<0.05). Conclusion: cAMP may play an important role in sevoflurane anesthesia. (authors)

  18. Spatial Rotation and Recognizing Emotions: Gender Related Differences in Brain Activity

    Science.gov (United States)

    Jausovec, Norbert; Jausovec, Ksenija

    2008-01-01

    In three experiments, gender and ability (performance and emotional intelligence) related differences in brain activity--assessed with EEG methodology--while respondents were solving a spatial rotation tasks and identifying emotions in faces were investigated. The most robust gender related difference in brain activity was observed in the lower-2…

  19. Sex Differences in Brain Activity Related to General and Emotional Intelligence

    Science.gov (United States)

    Jausovec, Norbert; Jausovec, Ksenija

    2005-01-01

    The study investigated gender differences in resting EEG (in three individually determined narrow [alpha] frequency bands) related to the level of general and emotional intelligence. Brain activity of males decreased with the level of general intelligence, whereas an opposite pattern of brain activity was observed in females. This difference was…

  20. Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro.

    Directory of Open Access Journals (Sweden)

    Roberta Paolinelli

    Full Text Available Reproducing the characteristics and the functional responses of the blood-brain barrier (BBB in vitro represents an important task for the research community, and would be a critical biotechnological breakthrough. Pharmaceutical and biotechnology industries provide strong demand for inexpensive and easy-to-handle in vitro BBB models to screen novel drug candidates. Recently, it was shown that canonical Wnt signaling is responsible for the induction of the BBB properties in the neonatal brain microvasculature in vivo. In the present study, following on from earlier observations, we have developed a novel model of the BBB in vitro that may be suitable for large scale screening assays. This model is based on immortalized endothelial cell lines derived from murine and human brain, with no need for co-culture with astrocytes. To maintain the BBB endothelial cell properties, the cell lines are cultured in the presence of Wnt3a or drugs that stabilize β-catenin, or they are infected with a transcriptionally active form of β-catenin. Upon these treatments, the cell lines maintain expression of BBB-specific markers, which results in elevated transendothelial electrical resistance and reduced cell permeability. Importantly, these properties are retained for several passages in culture, and they can be reproduced and maintained in different laboratories over time. We conclude that the brain-derived endothelial cell lines that we have investigated gain their specialized characteristics upon activation of the canonical Wnt pathway. This model may be thus suitable to test the BBB permeability to chemicals or large molecular weight proteins, transmigration of inflammatory cells, treatments with cytokines, and genetic manipulation.

  1. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation

    Science.gov (United States)

    Howell, Bryan; McIntyre, Cameron C.

    2016-06-01

    Objective. Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. Approach. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Main results. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. Significance. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.

  2. The financing of public service activities in a deregulated electric market: the case of ''green electricity''

    International Nuclear Information System (INIS)

    Both the organization and financing of public service activities have been modified after the opening of energy networks to competition. These activities were traditionally financed by cross subsidies among consumers or by public subsidies (taxation). In a competitive framework two main solutions are generally adopted: financing by a special fund (all producers have to pay), financing by access fees on the transmission and distribution network (T.P.A.). Other solutions are nevertheless possible and this paper lays emphasis on decentralized financing by a voluntary contribution of consumers. This system is particularly adapted when the promotion of 'green electricity' has to be implemented (electricity produced by renewable sources). This system enables suppliers to know consumers' preferences and their ability to pay. (authors)

  3. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling.

    OpenAIRE

    Adrián Ponce-Alvarez; He, Biyu J.; Patric Hagmann; Gustavo Deco

    2015-01-01

    How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic reso...

  4. Brain-specific transcriptional regulator T-brain-1 controls brain wiring and neuronal activity in autism spectrum disorders

    OpenAIRE

    Tzyy-Nan eHuang; Yi-Ping eHsueh

    2015-01-01

    T-brain-1 (TBR1) is a brain-specific T-box transcription factor. In 1995, Tbr1 was first identified from a subtractive hybridization that compared mouse embryonic and adult telencephalons. Previous studies of Tbr1–/– mice have indicated critical roles for TBR1 in the development of the cerebral cortex, amygdala and olfactory bulb. Neuronal migration and axonal projection are two important developmental features controlled by TBR1. Recently, recurrent de novo disruptive mutations in the TBR1 g...

  5. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions

    Science.gov (United States)

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Edens, H. E.; Aulich, G. D.; McNutt, S.R.; Tytgat, Guy; Clark, E.

    2007-01-01

    By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.

  6. Active electric imaging: body-object interplay and object's "electric texture".

    Science.gov (United States)

    Caputi, Angel A; Aguilera, Pedro A; Pereira, Ana Carolina

    2011-01-01

    This article deals with the role of fish's body and object's geometry on determining the image spatial shape in pulse Gymnotiforms. This problem was explored by measuring local electric fields along a line on the skin in the presence and absence of objects. We depicted object's electric images at different regions of the electrosensory mosaic, paying particular attention to the perioral region where a fovea has been described. When sensory surface curvature increases relative to the object's curvature, the image details depending on object's shape are blurred and finally disappear. The remaining effect of the object on the stimulus profile depends on the strength of its global polarization. This depends on the length of the object's axis aligned with the field, in turn depending on fish body geometry. Thus, fish's body and self-generated electric field geometries are embodied in this "global effect" of the object. The presence of edges or local changes in impedance at the nearest surface of closely located objects adds peaks to the image profiles ("local effect" or "object's electric texture"). It is concluded that two cues for object recognition may be used by active electroreceptive animals: global effects (informing on object's dimension along the field lines, conductance, and position) and local effects (informing on object's surface). Since the field has fish's centered coordinates, and electrosensory fovea is used for exploration of surfaces, fish fine movements are essential to perform electric perception. We conclude that fish may explore adjacent objects combining active movements and electrogenesis to represent them using electrosensory information. PMID:21876730

  7. Active electric imaging: body-object interplay and object's "electric texture".

    Directory of Open Access Journals (Sweden)

    Angel A Caputi

    Full Text Available This article deals with the role of fish's body and object's geometry on determining the image spatial shape in pulse Gymnotiforms. This problem was explored by measuring local electric fields along a line on the skin in the presence and absence of objects. We depicted object's electric images at different regions of the electrosensory mosaic, paying particular attention to the perioral region where a fovea has been described. When sensory surface curvature increases relative to the object's curvature, the image details depending on object's shape are blurred and finally disappear. The remaining effect of the object on the stimulus profile depends on the strength of its global polarization. This depends on the length of the object's axis aligned with the field, in turn depending on fish body geometry. Thus, fish's body and self-generated electric field geometries are embodied in this "global effect" of the object. The presence of edges or local changes in impedance at the nearest surface of closely located objects adds peaks to the image profiles ("local effect" or "object's electric texture". It is concluded that two cues for object recognition may be used by active electroreceptive animals: global effects (informing on object's dimension along the field lines, conductance, and position and local effects (informing on object's surface. Since the field has fish's centered coordinates, and electrosensory fovea is used for exploration of surfaces, fish fine movements are essential to perform electric perception. We conclude that fish may explore adjacent objects combining active movements and electrogenesis to represent them using electrosensory information.

  8. Is Brain Activity during Action Observation Modulated by the Perceived Fairness of the Actor?

    OpenAIRE

    Etzel, Joset A.; Nikola Valchev; Valeria Gazzola; Christian Keysers

    2016-01-01

    Perceiving other people's actions triggers activity in premotor and parietal areas, brain areas also involved in executing and sensing our own actions. Paralleling this phenomenon, observing emotional states (including pain) in others is associated with activity in the same brain areas as activated when experiencing similar emotions directly. This emotion perception associated activity has been shown to be affected by the perceived fairness of the actor, and in-group membership more generally...

  9. Inflammatory transcription factors as activation markers and functional readouts in immune-to-brain communication.

    Science.gov (United States)

    Rummel, Christoph

    2016-05-01

    Immune-to-brain communication pathways involve humoral mediators, including cytokines, central modulation by neuronal afferents and immune cell trafficking to the brain. During systemic inflammation these pathways contribute to mediating brain-controlled sickness symptoms including fever. Experimentally, activation of these signaling pathways can be mimicked and studied when injecting animals with pathogen associated molecular patterns (PAMPS). One central component of the brain inflammatory response, which leads, for example, to fever induction, is transcriptional activation of brain cells via cytokines and PAMPS. We and others have studied the spatiotemporal activation and the physiological significance of transcription factors for the induction of inflammation within the brain and the manifestation of fever. Evidence has revealed a role of nuclear factor (NF)κB in the initiation, signal transducer and activator of transcription (STAT)3 in the maintenance and NF-interleukin (IL)6 in the maintenance or even termination of brain-inflammation and fever. Moreover, psychological stressors, such as exposure to a novel environment, leads to increased body core temperature and genomic NF-IL6-activation, suggesting a potential use of NF-IL6-immunohistochemistry as a multimodal brain cell activation marker and a role for NF-IL6 for differential brain activity. In addition, the nutritional status, as reflected by circulating levels of the cytokine-like hormone leptin, influence immune-to-brain communication and age-dependent changes in LPS-induced fever. Overall, transcription factors remain therapeutically important targets for the treatment of brain-inflammation and fever induction during infectious/non-infectious inflammatory and psychological stress. However, the exact physiological role and significance of these transcription factors requires to be further investigated. PMID:26348582

  10. Activity based models for countrywide electric vehicle power demand calculation

    OpenAIRE

    Knapen, Luk; Kochan, Bruno; BELLEMANS, Tom; JANSSENS, Davy; Wets, Geert

    2011-01-01

    Smart grid design depends on the availability of realistic data. In the near future, energy demand by electric vehicles will be a substantial component of the overall demand and peaks of required power could become critical in some regions. Transportation research has been using micro-simulation based activity-based models for traffic forecasting. The resulting trip length distribution allows to estimate to what extent internal combustion engine vehicles can be substituted...

  11. Extracellular electrical activity from the photoreceptors of midge

    Indian Academy of Sciences (India)

    A A Babrekar; G R Kulkarni; B B Nath; P B Vidyasagar

    2004-09-01

    The ontogeny of photosensitivity has been studied in a holometabolous insect, the midge Chironomus ramosus. The life cycle of midges shifts from an aquatic environment to a non-aquatic environment. Extracellular electrical activity of photoreceptor organs was recorded at larval and adult stages. We found an increase in photosensitivity as the larva metamorphosed to the adult stage. This is the first report of changes in photosensitivity during the development of any insect described in an ecological context.

  12. Material and physical model for evaluation of deep brain activity contribution to EEG recordings

    Science.gov (United States)

    Ye, Yan; Li, Xiaoping; Wu, Tiecheng; Li, Zhe; Xie, Wenwen

    2015-12-01

    Deep brain activity is conventionally recorded with surgical implantation of electrodes. During the neurosurgery, brain tissue damage and the consequent side effects to patients are inevitably incurred. In order to eliminate undesired risks, we propose that deep brain activity should be measured using the noninvasive scalp electroencephalography (EEG) technique. However, the deeper the neuronal activity is located, the noisier the corresponding scalp EEG signals are. Thus, the present study aims to evaluate whether deep brain activity could be observed from EEG recordings. In the experiment, a three-layer cylindrical head model was constructed to mimic a human head. A single dipole source (sine wave, 10 Hz, altering amplitudes) was embedded inside the model to simulate neuronal activity. When the dipole source was activated, surface potential was measured via electrodes attached on the top surface of the model and raw data were recorded for signal analysis. Results show that the dipole source activity positioned at 66 mm depth in the model, equivalent to the depth of deep brain structures, is clearly observed from surface potential recordings. Therefore, it is highly possible that deep brain activity could be observed from EEG recordings and deep brain activity could be measured using the noninvasive scalp EEG technique.

  13. Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization

    CERN Document Server

    Pascual-Marqui, Roberto D

    2007-01-01

    This paper deals with the EEG/MEG neuroimaging problem: given measurements of scalp electric potential differences (EEG: electroencephalogram) and extracranial magnetic fields (MEG: magnetoencephalogram), find the 3D distribution of the generating electric neuronal activity. This problem has no unique solution. Only particular solutions with "good" localization properties are of interest, since neuroimaging is concerned with the localization of brain function. In this paper, a general family of linear imaging methods with exact, zero error localization to point-test sources is presented. One particular member of this family is sLORETA (standardized low resolution brain electromagnetic tomography; Pascual-Marqui, Methods Find. Exp. Clin. Pharmacol. 2002, 24D:5-12; http://www.unizh.ch/keyinst/NewLORETA/sLORETA/sLORETA-Math01.pdf). It is shown here that sLORETA has no localization bias in the presence of measurement and biological noise. Another member of this family, denoted as eLORETA (exact low resolution bra...

  14. A Three Spatial Dimension Wave Latent Force Model for Describing Excitation Sources and Electric Potentials Produced by Deep Brain Stimulation

    OpenAIRE

    Alvarado, Pablo A.; Álvarez, Mauricio A.; Orozco, Álvaro A.

    2016-01-01

    Deep brain stimulation (DBS) is a surgical treatment for Parkinson's Disease. Static models based on quasi-static approximation are common approaches for DBS modeling. While this simplification has been validated for bioelectric sources, its application to rapid stimulation pulses, which contain more high-frequency power, may not be appropriate, as DBS therapeutic results depend on stimulus parameters such as frequency and pulse width, which are related to time variations of the electric fiel...

  15. Resting brain activity varies with dream recall frequency between subjects.

    Science.gov (United States)

    Eichenlaub, Jean-Baptiste; Nicolas, Alain; Daltrozzo, Jérôme; Redouté, Jérôme; Costes, Nicolas; Ruby, Perrine

    2014-06-01

    Dreaming is still poorly understood. Notably, its cerebral underpinning remains unclear. Neuropsychological studies have shown that lesions in the temporoparietal junction (TPJ) and/or the white matter of the medial prefrontal cortex (MPFC) lead to the global cessation of dream reports, suggesting that these regions of the default mode network have key roles in the dreaming process (forebrain 'dream-on' hypothesis). To test this hypothesis, we measured regional cerebral blood flow (rCBF) using [(15)O]H2O positron emission tomography in healthy subjects with high and low dream recall frequencies (DRFs) during wakefulness (rest) and sleep (rapid eye movement (REM) sleep, N2, and N3). Compared with Low recallers (0.5 ± 0.3 dream recall per week in average), High recallers (5.2 ± 1.4) showed higher rCBF in the TPJ during REM sleep, N3, and wakefulness, and in the MPFC during REM sleep and wakefulness. We demonstrate that the resting states of High recallers and Low recallers differ during sleep and wakefulness. It coheres with previous ERP results and confirms that a high/low DRF is associated with a specific functional organization of the brain. These results support the forebrain 'dream-on' hypothesis and suggest that TPJ and MPFC are not only involved in dream recall during wakefulness but also have a role in dreaming during sleep (production and/or encoding). Increased activity in the TPJ and MPFC might promote the mental imagery and/or memory encoding of dreams. Notably, increased activity in TPJ might facilitate attention orienting toward external stimuli and promote intrasleep wakefulness, facilitating the encoding of the dreams in memory. PMID:24549103

  16. Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints.

    Science.gov (United States)

    Keitel, Anne; Gross, Joachim

    2016-06-01

    The human brain can be parcellated into diverse anatomical areas. We investigated whether rhythmic brain activity in these areas is characteristic and can be used for automatic classification. To this end, resting-state MEG data of 22 healthy adults was analysed. Power spectra of 1-s long data segments for atlas-defined brain areas were clustered into spectral profiles ("fingerprints"), using k-means and Gaussian mixture (GM) modelling. We demonstrate that individual areas can be identified from these spectral profiles with high accuracy. Our results suggest that each brain area engages in different spectral modes that are characteristic for individual areas. Clustering of brain areas according to similarity of spectral profiles reveals well-known brain networks. Furthermore, we demonstrate task-specific modulations of auditory spectral profiles during auditory processing. These findings have important implications for the classification of regional spectral activity and allow for novel approaches in neuroimaging and neurostimulation in health and disease. PMID:27355236

  17. Cocaine is pharmacologically active in the nonhuman primate fetal brain

    OpenAIRE

    Benveniste, Helene; Fowler, Joanna S.; Rooney, William D; Scharf, Bruce A.; Backus, W. Walter; Izrailtyan, Igor; Knudsen, Gitte M; Hasselbalch, Steen G; Volkow, Nora D.

    2010-01-01

    Cocaine use during pregnancy is deleterious to the newborn child, in part via its disruption of placental blood flow. However, the extent to which cocaine can affect the function of the fetal primate brain is still an unresolved question. Here we used PET and MRI and show that in third-trimester pregnant nonhuman primates, cocaine at doses typically used by drug abusers significantly increased brain glucose metabolism to the same extent in the mother as in the fetus (∼100%). Inasmuch as brain...

  18. Decoding cognitive states and motor intentions from intracranial EEG: How promising is high-frequency brain activity for brain-machine interfaces?

    OpenAIRE

    Jerbi, Karim; Combrisson, Etienne; Dalal, Sarang,; Vidal, Juan; Hamame, Carlos,; Bertrand, Olivier; Berthoz, Alain; Kahane, Philippe; Lachaux, Jean-Philippe

    2013-01-01

    We provide a brief overview of our recent research into decoding cognitive states and motor intentions from intracranial EEG using high-frequency brain activity for brain-machine interfaces. Appears in: Korczyn AD et al. Epilepsy, cognition, and neuropsychiatry (Epilepsy, Brain, and Mind, part 2), Epilepsy Behav (in press), doi: 10.1016/j.yebeh.2013.03.012

  19. Individual human brain areas can be identified from their characteristic spectral activation fingerprints

    OpenAIRE

    Keitel, Anne; Gross, Joachim

    2016-01-01

    The human brain can be parcellated into diverse anatomical areas. We investigated whether rhythmic brain activity in these areas is characteristic and can be used for automatic classification. To this end, resting-state MEG data of 22 healthy adults was analysed. Power spectra of 1-s long data segments for atlas-defined brain areas were clustered into spectral profiles (“fingerprints”), using k-means and Gaussian mixture (GM) modelling. We demonstrate that individual areas can be identified f...

  20. The effect of Quinpirol and Sulpiride on the brain activity waves in conscious and aneasthetized rat

    OpenAIRE

    Komaki AR; Alaie H

    1998-01-01

    Brain's waves are produced by spontaneous activity of neurons. These waves are changed by neurotransmitters in the central nervous system (CNS). Concentration of these neurotransmitters can be changed by various drugs and total power of brain waves also increase or decrease by these drugs. In this research effect of Quinpirol and Sulpiride on the brain waves was investigated. Male wistar rats (weight 190-230) were aneasthetized with thiopental and two holes were made into the frontal and...

  1. DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    International Nuclear Information System (INIS)

    There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents

  2. Magnetogastrographic detection of gastric electrical response activity in humans

    International Nuclear Information System (INIS)

    The detection and characterization of gastric electrical activity has important clinical applications, including the early diagnosis of gastric diseases in humans. In mammals, this phenomenon has two important features: an electrical control activity (ECA) that manifests itself as an electric slow wave (with a frequency of 3 cycles per minute in humans) and an electrical response activity (ERA) that is characterized by spiking potentials during the plateau phase of the ECA. Whereas the ECA has been recorded in humans both invasively and non-invasively (magnetogastrography-MGG), the ERA has never been detected non-invasively in humans before. In this paper, we report on our progress towards the non-invasive detection of ERA from the human stomach using a procedure that involves the application of principal component analysis to MGG recordings, which were acquired in our case from ten normal human patients using a Superconducting QUantum Interference Device (SQUID) magnetometer. Both pre- and post-prandial recordings were acquired for each patient and 20 min of recordings (10 min of pre-prandial and 10 min of post-prandial data) were analysed for each patient. The mean percentage of ECA slow waves that were found to exhibit spikes of suspected ERA origin was 41% and 61% for pre- and post-prandial recordings, respectively, implying a 47% ERA increase post-prandially (P < 0.0001 at a 95% confidence level). The detection of ERA in humans is highly encouraging and points to the possible use of non-invasive ERA recordings as a valuable tool for the study of human gastric disorders

  3. Toward the restoration of hand use to a paralyzed monkey: brain-controlled functional electrical stimulation of forearm muscles.

    Directory of Open Access Journals (Sweden)

    Eric A Pohlmeyer

    Full Text Available Loss of hand use is considered by many spinal cord injury survivors to be the most devastating consequence of their injury. Functional electrical stimulation (FES of forearm and hand muscles has been used to provide basic, voluntary hand grasp to hundreds of human patients. Current approaches typically grade pre-programmed patterns of muscle activation using simple control signals, such as those derived from residual movement or muscle activity. However, the use of such fixed stimulation patterns limits hand function to the few tasks programmed into the controller. In contrast, we are developing a system that uses neural signals recorded from a multi-electrode array implanted in the motor cortex; this system has the potential to provide independent control of multiple muscles over a broad range of functional tasks. Two monkeys were able to use this cortically controlled FES system to control the contraction of four forearm muscles despite temporary limb paralysis. The amount of wrist force the monkeys were able to produce in a one-dimensional force tracking task was significantly increased. Furthermore, the monkeys were able to control the magnitude and time course of the force with sufficient accuracy to track visually displayed force targets at speeds reduced by only one-third to one-half of normal. Although these results were achieved by controlling only four muscles, there is no fundamental reason why the same methods could not be scaled up to control a larger number of muscles. We believe these results provide an important proof of concept that brain-controlled FES prostheses could ultimately be of great benefit to paralyzed patients with injuries in the mid-cervical spinal cord.

  4. The Development of control system via Brain Computer Interface (BCI - Functional Electrical Stimulation (FES for paraplegic subject

    Directory of Open Access Journals (Sweden)

    K. A. A. Rahman

    2012-12-01

    Full Text Available Brain is known to be one of the powerful systems in human body because of its ability to give command and communicate throughout the body. The spinal cord is the pathway for impulses from the brain to the body as well as from the body to the brain. However, the bounty of this pathway could be lost due to spinal cord injury (SCI and that results in a loss of function especially mobility. A combination of Brain Computer Interface (BCI and Functional Electrical Stimulation (FES is among one of the technique to regain the mobility function of human body which will be the focused area of this research. In this study, Electroencephalography (EEG system will be used to capture the brain signal which will then drive the FES. A paraplegic subject will be involved in this study. The subject will be required to move the knee joint with involvement few muscle contraction. Overall, in this paper the combination of BCI-FES methods for development of rehabilitation system will be proposed. From this preliminary study, it can be summarized that the combination between BCI and FES potentially would provide a better rehabilitation system for SCI patient in comparison to the conventional FES system.

  5. Test-retest reliability of fMRI brain activity during memory-encoding

    Directory of Open Access Journals (Sweden)

    David J Brandt

    2013-12-01

    Full Text Available The mechanisms underlying hemispheric specialization of memory are not completely understood. Functional magnetic resonance imaging (fMRI can be used to develop and test models of hemispheric specialization. In particular for memory tasks however, the interpretation of fMRI results is often hampered by the low reliability of the data. In the present study we therefore analyzed the test-retest reliability of fMRI brain activation related to an implicit memory encoding task, with a particular focus on brain activity of the medial temporal lobe (MTL. Fifteen healthy subjects were scanned with fMRI on two sessions (average retest interval 35 days using a commonly applied novelty encoding paradigm contrasting known and unknown stimuli. To assess brain lateralization, we used three different stimuli classes that differed in their verbalizability (words, scenes, fractals. Test-retest reliability of fMRI brain activation was assessed by an intraclass-correlation coefficient (ICC, describing the stability of inter-individual differences in the brain activation magnitude over time. We found as expected a left-lateralized brain activation network for the words paradigm, a bilateral network for the scenes paradigm, and predominantly right-hemispheric brain activation for the fractals paradigm. Although these networks were consistently activated in both sessions on the group level, across-subject reliabilities were only poor to fair (ICCs ≤ 0.45. Overall, the highest ICC values were obtained for the scenes paradigm, but only in strongly activated brain regions. In particular the reliability of brain activity of the MTL was poor for all paradigms. In conclusion, for novelty encoding paradigms the interpretation of fMRI results on a single subject level is hampered by its low reliability. More studies are needed to optimize the retest reliability of fMRI activation for memory tasks.

  6. Electrical impedance tomography system based on active electrodes

    International Nuclear Information System (INIS)

    Electrical impedance tomography (EIT) can image the distribution of ventilated lung tissue, and is thus a promising technology to help monitor patient breathing to help selection of mechanical ventilation parameters. Two key difficulties in EIT instrumentation make such monitoring difficult: (1) EIT data quality depends on good electrode contact and is sensitive to changes in contact quality, and (2) EIT electrodes are difficult and time consuming to place on patients. This paper presents the design and initial tests of an active electrode-based system to address these difficulties. Our active electrode EIT system incorporates an active electrode belt, a central voltage-driven current source, central analog to digital converters and digital to analog converters, a central FPGA-based demodulator and controller. The electrode belt is designed incorporating 32 active electrodes, each of which contains the electronic amplifiers, switches and associated logic. Tests show stable device performance with a convenient ease of use and good imaging ability in volunteer tests. (paper)

  7. Brain activity during driving with distraction: an immersive fMRI study

    Directory of Open Access Journals (Sweden)

    Tom A Schweizer

    2013-02-01

    Full Text Available Introduction: Non-invasive measurements of brain activity have an important role to play in understanding driving ability. The current study aimed to identify the neural underpinnings of human driving behavior by visualizing the areas of the brain involved in driving under different levels of demand, such as driving while distracted or making left turns at busy intersections. Methods: To capture brain activity during driving, we placed a driving simulator with a fully functional steering wheel and pedals in a 3.0 Tesla functional magnetic resonance imaging (fMRI system. To identify the brain areas involved while performing different real-world driving maneuvers, participants completed tasks ranging from simple (right turns to more complex (left turns at busy intersections. To assess the effects of driving while distracted, participants were asked to perform an auditory task while driving analogous to speaking on a hands-free device and driving. Results: A widely distributed brain network was identified, especially when making left turns at busy intersections compared to more simple driving tasks. During distracted driving, brain activation shifted dramatically from the posterior, visual and spatial areas to the prefrontal cortex. Conclusions: Our findings suggest that the distracted brain sacrificed areas in the posterior brain important for visual attention and alertness to recruit enough brain resources to perform a secondary, cognitive task. The present findings offer important new insights into the scientific understanding of the neuro-cognitive mechanisms of driving behavior and lay down an important foundation for future clinical research.

  8. Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms

    OpenAIRE

    Lim, L.W.; Prickaerts, J.; Huguet, G; Kadar, E; Hartung, H; Sharp, T; Y. Temel

    2015-01-01

    Deep brain stimulation (DBS) is a promising therapy for patients with refractory depression. However, key questions remain with regard to which brain target(s) should be used for stimulation, and which mechanisms underlie the therapeutic effects. Here, we investigated the effect of DBS, with low- and high-frequency stimulation (LFS, HFS), in different brain regions (ventromedial prefrontal cortex, vmPFC; cingulate cortex, Cg; nucleus accumbens (NAc) core or shell; lateral habenula, LHb; and v...

  9. The active electric sense of weakly electric fish: from electric organ discharge to sensory processing and behaviour

    Directory of Open Access Journals (Sweden)

    Krahe Rüdiger

    2016-01-01

    Full Text Available Sensory systems have been shaped by evolution to extract information that is relevant for decision making. In order to understand the mechanisms used by sensory systems for filtering the incoming stream of sensory input, it is important to have a quantitative understanding of the natural sensory scenes that are to be processed. Weakly electric fish lead a rather cryptic nocturnal life in often turbid tropical rainforest streams. They produce electric discharges and sense perturbations of their selfgenerated electric field for prey detection and navigation, and also use their active sense for communication in the context of courtship and aggression. The fact that they produce their electric signals throughout day and night permits the use of electrode arrays to track the movements of multiple individual fish and monitor their communication interactions, thus offering a window into their electrosensory world. This approach yields unprecedented access to information on the biology of these fishes and also on the statistical properties of the sensory scenes that are to be processed by their electrosensory system. The electrosensory system shares many organizational features with other sensory systems, in particular, the use of multiple topographic maps. In fact, the sensory surface (the skin is represented in three parallel maps in the hindbrain, with each map covering the receptor organ array with six different cell types that project to the next higher level of processing. Thus, the electroreceptive body surface is represented a total of 18 times in the hindbrain, with each representation having its specific filter properties and degree of response plasticity. Thus, the access to the sensory world of these fish as well as the manifold filtering of the sensory input makes these fish an excellent model system for exploring the cell-intrinsic and network characteristics underlying the extraction of behaviourally relevant sensory information.

  10. A REVIEW ON INFLUENCE OF MUSIC ON BRAIN ACTIVITY USING SIGNAL PROCESSING AND IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Dr. K. ADALARASU,

    2011-04-01

    Full Text Available As per clinical neuroscience, listening to music involves many brain activities and its study has advanced greatly in the last thirty years. Research shows that music has significant effect on our body and mind. Music has a positive effect on the hormone system and allows the brain to concentrate more easily and assimilate more information in less time, thereby boosting learning and information intake and thus augmenting cognitive skills. Studies have found that the silence between two musical notes triggers brain cells and neurons which are responsible for the development of sharp memory. Music at different pitches (for example, Madhyamavati, Sankarabarnam raga and so on elicits exceptionally emotions and is capable ofreliably affecting the mood of individuals, which in turn changes the brain activity. This article provides a brief overview of currently available signal processing and imaging techniques to study the influence of different music on human brain activity.

  11. The dynamics of cysteine proteinase activity in brain structures of irrigated rat descendants during ontogenetic development

    OpenAIRE

    Чорна, Валентина Іванівна; Лянна, Ольга Леонідівна

    2016-01-01

    The aim of the work was to investigate the kind of lysosomal cysteine cathepsin L activity dependency in brain structures of irradiated rat descendants during ontogenetic development. It was shown that fractional x-ray radiation (25 cGy) of the female rats induced different changes of cathepsin L activity levels and their redistribution in brain structures of female rats’ descendants during postnatal development with the advantages of nonsedimentational activity that had maximum at the 6th da...

  12. Transcranial Electric Field Stimulation

    OpenAIRE

    Arfaee, Arash

    2015-01-01

    Nervous stimulation with electric methods not only has a long history in the treatment of many conditions but also in the last two decades has been used increasingly as a powerful functional brain mapping tool alongside other imaging techniques. This technology has been used to record the stimulation-evoked activity of the stimulated location. This research describes work surrounding a novel technique for brain and nervous stimulation using the electric field as the medium; particularly tra...

  13. The relation of ongoing brain activity, evoked neural responses, and cognition

    Directory of Open Access Journals (Sweden)

    Sepideh Sadaghiani

    2010-06-01

    Full Text Available Ongoing brain activity has been observed since the earliest neurophysiological recordings and is found over a wide range of temporal and spatial scales. It is characterized by remarkably large spontaneous modulations. Here, we review evidence for the functional role of these ongoing activity fluctuations and argue that they constitute an essential property of the neural architecture underlying cognition. The role of spontaneous activity fluctuations is probably best understood when considering both their spatiotemporal structure and their functional impact on cognition. We first briefly argue against a ‘segregationist’ view on ongoing activity, both in time and space, countering this view with an emphasis on integration within a hierarchical spatiotemporal organization of intrinsic activity. We then highlight the flexibility and context-sensitivity of intrinsic functional connectivity that suggest its involvement in functionally relevant information processing. This role in information processing is pursued by reviewing how ongoing brain activity interacts with afferent and efferent information exchange of the brain with its environment. We focus on the relationship between the variability of ongoing and evoked brain activity, and review recent reports that tie ongoing brain activity fluctuations to variability in human perception and behavior. Finally, these observations are discussed within the framework of the free-energy principle which – applied to human brain function - provides a theoretical account for a non-random, coordinated interaction of ongoing and evoked activity in perception and behaviour.

  14. Regional cerebral blood flow in psychiatry: The resting and activated brains of schizophrenic patients

    International Nuclear Information System (INIS)

    The investigation of regional brain functioning in schizophrenia has been based on behavioral techniques. Although results are sometimes inconsistent, the behavioral observations suggest left hemispheric dysfunction and left hemispheric overreaction. Recent developments in neuroimaging technology make possible major refinements in assessing regional brain function. Both anatomical and physiological information now be used to study regional brain development in psychiatric disorders. This chapter describes the application of one method - the xenon-133 technique for measuring regional cerebral blood flow (rCBF) - in studying the resting and activated brains of schizoprenic patients

  15. Alterations in blood-brain barrier ICAM-1 expression and brain microglial activation after λ-carrageenan-induced inflammatory pain

    Science.gov (United States)

    Huber, J. D.; Campos, C. R.; Mark, K. S.; Davis, T. P.

    2014-01-01

    Previous studies showed that peripheral inflammatory pain increased blood-brain barrier (BBB) permeability and altered tight junction protein expression and the delivery of opioid analgesics to the brain. What remains unknown is which pathways and mediators during peripheral inflammation affect BBB function and structure. The current study investigated effects of λ-carrageenan-induced inflammatory pain (CIP) on BBB expression of ICAM-1. We also examined the systemic contribution of a number of proinflammatory cytokines and microglial activation in the brain to elucidate pathways involved in BBB disruption during CIP. We investigated ICAM-1 RNA and protein expression levels in isolated rat brain microvessels after CIP using RT-PCR and Western blot analyses, screened inflammatory cytokines during the time course of inflammation, assessed white blood cell counts, and probed for BBB and central nervous system stimulation and leukocyte transmigration using immunohistochemistry and flow cytometry. Results showed an early increase in ICAM-1 RNA and protein expression after CIP with no change in circulating levels of several proinflammatory cytokines. Changes in ICAM-1 protein expression were noted at 48 h. Immunohistochemistry showed that the induction of ICAM-1 was region specific with increased expression noted in the thalamus and frontal and parietal cortices, which directly correlated with increased expression of activated microglia. The findings of the present study were that CIP induces increased ICAM-1 mRNA and protein expression at the BBB and that systemic proinflammatory mediators play no apparent role in the early response (1–6 h); however, brain region-specific increases in micro-glial activation suggest a potential for a central-mediated response. PMID:16199477

  16. Brain Basics

    Medline Plus

    Full Text Available ... mainly involved in controlling movement and aiding the flow of information to the front of the brain, ... the neuron will fire. This enhances the electrical flow among brain cells required for normal function and ...

  17. Cocaine is pharmacologically active in the nonhuman primate fetal brain

    DEFF Research Database (Denmark)

    Benveniste, Helene; Fowler, Joanna S; Rooney, William D;

    2010-01-01

    Cocaine use during pregnancy is deleterious to the newborn child, in part via its disruption of placental blood flow. However, the extent to which cocaine can affect the function of the fetal primate brain is still an unresolved question. Here we used PET and MRI and show that in third-trimester ......Cocaine use during pregnancy is deleterious to the newborn child, in part via its disruption of placental blood flow. However, the extent to which cocaine can affect the function of the fetal primate brain is still an unresolved question. Here we used PET and MRI and show that in third......-trimester pregnant nonhuman primates, cocaine at doses typically used by drug abusers significantly increased brain glucose metabolism to the same extent in the mother as in the fetus (approximately 100%). Inasmuch as brain glucose metabolism is a sensitive marker of brain function, the current findings provide...... influenced by the state of pregnancy. Our findings have clinical implications because they imply that the adverse effects of prenatal cocaine exposure to the newborn child include not only cocaine's deleterious effects to the placental circulation, but also cocaine's direct pharmacological effect to the...

  18. Cocaine is pharmacologically active in the nonhuman primate fetal brain

    DEFF Research Database (Denmark)

    Benveniste, Helene; Fowler, Joanna S; Rooney, William D;

    2010-01-01

    Cocaine use during pregnancy is deleterious to the newborn child, in part via its disruption of placental blood flow. However, the extent to which cocaine can affect the function of the fetal primate brain is still an unresolved question. Here we used PET and MRI and show that in third-trimester ......Cocaine use during pregnancy is deleterious to the newborn child, in part via its disruption of placental blood flow. However, the extent to which cocaine can affect the function of the fetal primate brain is still an unresolved question. Here we used PET and MRI and show that in third......-trimester pregnant nonhuman primates, cocaine at doses typically used by drug abusers significantly increased brain glucose metabolism to the same extent in the mother as in the fetus (approximately 100%). Inasmuch as brain glucose metabolism is a sensitive marker of brain function, the current findings provide...... are influenced by the state of pregnancy. Our findings have clinical implications because they imply that the adverse effects of prenatal cocaine exposure to the newborn child include not only cocaine's deleterious effects to the placental circulation, but also cocaine's direct pharmacological effect...

  19. A geomagnetic storm decreases coherence of oscillations of electric potentials of a human brain

    International Nuclear Information System (INIS)

    Complete text of publication follows. Plenty of technological processes are known to be damaged by magnetic storms. But technology is controlled by men and their functional systems may be damages as well. We are going to consider the electro-neurophysiological aspect of the general problem formulated and investigated at first by V.I. Vernadsky and A.L. Schizevsky: men surrounded by geophysical fields including ones of cosmic origination. The effect formulated in the title was observed for a group of 13 students (practically healthy girls and boys from 18 to 23 years old). To control the main functional systems of the men under investigation, their electroencephalograms (EEG) were being registered along with electrocardiograms, respiratory rhythms, arterial blood pressure and other characteristics during a year. According to the EEG investigations during implementation of the proof-reading test in absence of magnetic storms, the values of the coherence function of time series of the theta-rhythm oscillations (f = 4 - 7.9 Hz, A = 20 μV) of electric potentials of the frontal and occipital parts of the head belong to the interval [0.3, 0.6] for nearly all of the students under investigation. (As the proof-reading test, it was necessary to choose given symbols from a random sequence of ones demonstrated at a monitor and to enter the number of the symbols discovered in a computer. Everyone was known that the time for determination of symbols is unlimited. On the other hand, nobody was known that the EEG and other registrations mentioned are connected with geophysical events). Let us formulate the main result: by implementation of the same test during a magnetic storm, 5 ≤ K ≤ 6, or no later then 24 hours after its beginning (different types of moderate magnetic storms occurred, the data of the IZMIRAN were used), the values of the theta-rhythm coherence function of all of the students of the group under consideration occurred to be decreased up to 0.1 or less

  20. Semantic brain areas are involved in gesture comprehension: An electrical neuroimaging study.

    Science.gov (United States)

    Proverbio, Alice Mado; Gabaro, Veronica; Orlandi, Andrea; Zani, Alberto

    2015-08-01

    While the mechanism of sign language comprehension in deaf people has been widely investigated, little is known about the neural underpinnings of spontaneous gesture comprehension in healthy speakers. Bioelectrical responses to 800 pictures of actors showing common Italian gestures (e.g., emblems, deictic or iconic gestures) were recorded in 14 persons. Stimuli were selected from a wider corpus of 1122 gestures. Half of the pictures were preceded by an incongruent description. ERPs were recorded from 128 sites while participants decided whether the stimulus was congruent. Congruent pictures elicited a posterior P300 followed by late positivity, while incongruent gestures elicited an anterior N400 response. N400 generators were investigated with swLORETA reconstruction. Processing of congruent gestures activated face- and body-related visual areas (e.g., BA19, BA37, BA22), the left angular gyrus, mirror fronto/parietal areas. The incongruent-congruent contrast particularly stimulated linguistic and semantic brain areas, such as the left medial and the superior temporal lobe. PMID:26011745

  1. AC Electric Field Activated Shape Memory Polymer Composite

    Science.gov (United States)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  2. Vasoactive intestinal peptide and electrical activity influence neuronal survival

    International Nuclear Information System (INIS)

    Blockage of electrical activity in dissociated spinal cord cultures results in a significant loss of neurons during a critical period in development. Decreases in neuronal cell numbers and 125I-labeled tetanus toxin fixation produced by electrical blockage with tetrodotoxin (TTX) were prevented by addition of vasoactive intestinal peptide (VIP) to the nutrient medium. The most effective concentration of VIP was 0.1 nM. At higher concentrations, the survival-enhancing effect of VIP on TTX-treated cultures was attenuated. Addition of the peptide alone had no significant effect on neuronal cell counts or tetanus toxin fixation. With the same experimental conditions, two closely related peptides, PHI-27 (peptide, histidyl-isoleucine amide) and secretin, were found not to increase the number of neurons in TTX-treated cultures. Interference with VIP action by VIP antiserum resulted in neuronal losses that were not significantly different from those observed after TTX treatment. These data indicate that under conditions of electrical blockade a neurotrophic action of VIP on neuronal survival can be demonstrated

  3. The effects of electrical stimulation or an electrolytic lesion in the mediodorsal thalamus of the rat on survival, body weight, food intake and running activity in the activity-based anorexia model

    OpenAIRE

    Luyten, Laura; Welkenhuysen, Marleen; van Kuyck, Kris; Fieuws, Steffen; Das, John; Sciot, Raf; Nuttin, Bart

    2009-01-01

    The glucose metabolism in the mediodorsal thalamus (MD) is increased in rats in the activity-based anorexia (ABA) model. In patients, electrical stimulation in hyperactive brain regions reduced symptoms in e.g. major depressive disorder and cluster headache. In two blinded randomised controlled experiments, we therefore examined the effects of high-frequency electrical stimulation and an electrolytic lesion in the MD in a validated rat model for anorexia nervosa. The ABA model was successfull...

  4. Photoacoustic imaging to detect rat brain activation after cocaine hydrochloride injection

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2011-03-01

    Photoacoustic imaging (PAI) was employed to detect small animal brain activation after the administration of cocaine hydrochloride. Sprague Dawley rats were injected with different concentrations (2.5, 3.0, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution through tail veins. The brain functional response to the injection was monitored by photoacoustic tomography (PAT) system with horizontal scanning of cerebral cortex of rat brain. Photoacoustic microscopy (PAM) was also used for coronal view images. The modified PAT system used multiple ultrasonic detectors to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The measured photoacoustic signal changes confirmed that cocaine hydrochloride injection excited high blood volume in brain. This result shows PAI can be used to monitor drug abuse-induced brain activation.

  5. Brain cholinesterase activity of nestling great egrets snowy egrets and black-crowned night-herons

    Science.gov (United States)

    Custer, T.W.; Ohlendorf, H.M.

    1989-01-01

    Inhibition of brain cholinesterase (ChE) activity in birds is often used to diagnose exposure or death from organophosphorus or carbamate pesticides. Brain ChE activity in the young of altricial species increases with age; however, this relationship has only been demonstrated in the European starling (Sturnus vulgaris). Brain ChE activity of nestling great egrets (Casmerodius albus) collected from a colony in Texas (USA) increased significantly with age and did not differ among individuals from different nests. Brain ChE activity of nestling snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax) collected in one colony each from Rhode Island, Texas and California (USA) also increased significantly with age and did not differ among individuals from different nests or colonies. This study further demonstrates that age must be considered when evaluating exposure of nestling altricial birds to ChE inhibitors.

  6. Differential responsiveness of the right parahippocampal region to electrical stimulation in fixed human brains: Implications for historical surgical stimulation studies?

    Science.gov (United States)

    Rouleau, Nicolas; Persinger, Michael A

    2016-07-01

    If structure dictates function within the living human brain, then the persistence of specific responses to weak electric currents in fixed, deceased brains could reflect "hardwired" properties. Different key structures from the left and right hemispheres of brains that had been fixed for over 20years with ethanol-formalin-acetic acid were stimulated with either 1-Hz, 7-Hz, 10-Hz, 20-Hz, or 30-Hz, sine-wave, square-wave, or pulsed currents while needle-recorded quantitative electroencephalographic responses were obtained. Differential responses occurred only within the right hippocampus and parahippocampal gyrus. The right hippocampus displayed frequency-independent increases in gamma power relative to the left hemispheric homologue. The parahippocampal region responded exclusively to 7-Hz pulsed currents with wideband (8-30Hz) power. These profiles are consistent with dynamic connections associated with memory and consciousness and may partially explain the interactions resultant of pulse type and hemisphere for experiential elicitations during the golden age of surgical stimulations. The results also indicate that there may be an essential "hardwiring" within the human brain that is maintained for decades when it is fixed appropriately. PMID:27208828

  7. Exploring the motivational brain: effects of implicit power motivation on brain activation in response to facial expressions of emotion

    OpenAIRE

    Schultheiss, Oliver C.; Wirth, Michelle M.; WAUGH, CHRISTIAN E.; Stanton, Steven J.; Meier, Elizabeth A.; Reuter-Lorenz, Patricia

    2008-01-01

    This study tested the hypothesis that implicit power motivation (nPower), in interaction with power incentives, influences activation of brain systems mediating motivation. Twelve individuals low (lowest quartile) and 12 individuals high (highest quartile) in nPower, as assessed per content coding of picture stories, were selected from a larger initial participant pool and participated in a functional magnetic resonance imaging study during which they viewed high-dominance (angry faces), low-...

  8. Human brain activation during sexual stimulation of the penis

    NARCIS (Netherlands)

    Georgiadis, [No Value; Holstege, G; Georgiadis, Janniko R.

    2005-01-01

    Penile sensory information is essential for reproduction, but almost nothing is known about how sexually salient inputs from the penis are processed in the brain. We used positron emission tomography to measure regional cerebral blood flow (rCBF) during various stages of male sexual performance. Com

  9. Changes in reward-induced brain activation in opiate addicts

    NARCIS (Netherlands)

    Martin-Soelch, C; Chevalley, AF; Kunig, G; Missimer, J; Magyar, S; Mino, A; Schultz, W; Leenders, KL

    2001-01-01

    Many studies indicate a role of the cerebral dopaminergic reward system in addiction. Motivated by these findings, we examined in opiate addicts whether brain regions involved in the reward circuitry also react to human prototypical rewards. We measured regional cerebral blood flow (rCBF) with (H2O)

  10. Steroid sulfatase and sulfuryl transferase activities in human brain tumors

    Czech Academy of Sciences Publication Activity Database

    Kříž, L.; Bičíková, M.; Mohapl, M.; Hill, M.; Černý, Ivan; Hampl, R.

    2008-01-01

    Roč. 109, č. 1 (2008), s. 31-39. ISSN 0960-0760 Institutional research plan: CEZ:AV0Z40550506 Keywords : dehydroepiandrosterone * steroid sulfatase * steroid sulfuryl transferase * brain Subject RIV: CC - Organic Chemistry Impact factor: 2.827, year: 2008

  11. Tasting calories differentially affects brain activation during hunger and satiety

    NARCIS (Netherlands)

    Rijn, van I.; Graaf, de C.; Smeets, P.A.M.

    2015-01-01

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three

  12. Breastfeeding, Brain Activation to Own Infant Cry, and Maternal Sensitivity

    Science.gov (United States)

    Kim, Pilyoung; Feldman, Ruth; Mayes, Linda C.; Eicher, Virginia; Thompson, Nancy; Leckman, James F.; Swain, James E.

    2011-01-01

    Background: Research points to the importance of breastfeeding for promoting close mother-infant contact and social-emotional development. Recent functional magnetic resonance imaging (fMRI) studies have identified brain regions related to maternal behaviors. However, little research has addressed the neurobiological mechanisms underlying the…

  13. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves

    DEFF Research Database (Denmark)

    Rossini, P M; Burke, D; Chen, R;

    2015-01-01

    whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation...... of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up...

  14. Changing Balance of Spinal Cord Excitability and Nociceptive Brain Activity in Early Human Development.

    Science.gov (United States)

    Hartley, Caroline; Moultrie, Fiona; Gursul, Deniz; Hoskin, Amy; Adams, Eleri; Rogers, Richard; Slater, Rebeccah

    2016-08-01

    In adults, nociceptive reflexes and behavioral responses are modulated by a network of brain regions via descending projections to the spinal dorsal horn [1]. Coordinated responses to noxious inputs manifest from a balance of descending facilitation and inhibition. In contrast, young infants display exaggerated and uncoordinated limb reflexes [2]. Our understanding of nociceptive processing in the infant brain has been advanced by the use of electrophysiological and hemodynamic imaging [3-6]. From approximately 35 weeks' gestation, nociceptive-specific patterns of brain activity emerge [7], whereas prior to this, non-specific bursts of activity occur in response to noxious, tactile, visual, and auditory stimulation [7-10]. During the preterm period, refinement of spinal cord excitability is also observed: reflex duration shortens, response threshold increases, and improved discrimination between tactile and noxious events occurs [2, 11, 12]. However, the development of descending modulation in human infants remains relatively unexplored. In 40 infants aged 28-42 weeks' gestation, we examined the relationship between nociceptive brain activity and spinal reflex withdrawal activity in response to a clinically essential noxious procedure. Nociceptive-specific brain activity increases in magnitude with gestational age, whereas reflex withdrawal activity decreases in magnitude, duration, and latency across the same developmental period. By recording brain and spinal cord activity in the same infants, we demonstrate that the maturation of nociceptive brain activity is concomitant with the refinement of noxious-evoked limb reflexes. We postulate that, consistent with studies in animals, infant reflexes are influenced by the development of top-down inhibitory modulation from maturing subcortical and cortical brain networks. PMID:27374336

  15. Brain acetylcholinesterase activity is markedly reduced in dominantly-inherited olivopontocerebellar atrophy.

    OpenAIRE

    Kish, S J; Schut, L; Simmons, J.; Gilbert, J.; Chang, L. J.; Rebbetoy, M

    1988-01-01

    The activity was measured of the acetylcholine catabolising enzyme acetylcholinesterase (AChE) in brain after necropsy of seven patients from one established pedigree with dominantly-inherited olivopontocerebellar atrophy (OPCA), a cerebellar ataxia disorder in which neuropathological changes are assumed to be primarily restricted to cerebellum, lower brain stem and spinal cord. Mean AChE activity was significantly reduced in cerebral (-51% to 65%) and cerebellar (-47%) cortex with a less sev...

  16. EEG-based local brain activity feedback training—tomographic neurofeedback

    OpenAIRE

    Herbert Bauer

    2014-01-01

    Along with the development of distributed EEG source modeling methods, basic approaches to local brain activity (LBA-) neurofeedback (NF) have been suggested. Meanwhile several attempts using LORETA and sLORETA have been published. This article specifically reports on “EEG-based LBA-feedback training” developed by Bauer et al. (2011). Local brain activity-feedback has the advantage over other sLORETA-based approaches in the way that feedback is exclusively controlled by EEG-generating sources...

  17. Temporal dynamics of musical emotions examined through intersubject synchrony of brain activity.

    OpenAIRE

    Trost, W.; Frühholz, S.; Cochrane, T.; Cojan, Y.; Vuilleumier, P.

    2015-01-01

    To study emotional reactions to music, it is important to consider the temporal dynamics of both affective responses and underlying brain activity. Here, we investigated emotions induced by music using functional magnetic resonance imaging (fMRI) with a data-driven approach based on intersubject correlations (ISC). This method allowed us to identify moments in the music that produced similar brain activity (i.e. synchrony) among listeners under relatively natural listening conditions. Continu...

  18. Energy landscape and dynamics of brain activity during human bistable perception.

    OpenAIRE

    Watanabe, Takamitsu; Masuda, Naoki; Magumi, Fukuda; Kanai, Ryota; Rees, Geraint

    2014-01-01

    Individual differences in the structure of parietal and prefrontal cortex predict the stability of bistable visual perception. However, the mechanisms linking such individual differences in brain structures to behavior remain elusive. Here we demonstrate a systematic relationship between the dynamics of brain activity, cortical structure and behavior underpinning bistable perception. Using fMRI inhumans, we find that the activity dynamics during bistable perception are well described as fluct...

  19. Age-Related Shifts in Brain Activity Dynamics during Task Switching

    OpenAIRE

    Jimura, Koji; Braver, Todd S.

    2009-01-01

    Cognitive aging studies have suggested that older adults show declines in both sustained and transient cognitive control processes. However, previous neuroimaging studies have primarily focused on age-related change in the magnitude, but not temporal dynamics, of brain activity. The present study compared brain activity dynamics in healthy old and young adults during task switching. A mixed blocked/event-related functional magnetic resonance imaging design enabled separation of transient and ...

  20. Linking human brain local activity fluctuations to structural and functional network architectures

    OpenAIRE

    Baria, A.T.; Mansour, A; Huang, L.; Baliki, M. N.; Cecchi, G. A.; Mesulam, M M; A. V. Apkarian

    2013-01-01

    Activity of cortical local neuronal populations fluctuates continuously, and a large proportion of these fluctuations are shared across populations of neurons. Here we seek organizational rules that link these two phenomena. Using neuronal activity, as identified by functional MRI (fMRI) and for a given voxel or brain region, we derive a single measure of full bandwidth brain-oxygenation-level-dependent (BOLD) fluctuations by calculating the slope, α, for the log-linear power spectrum. For th...

  1. Acquisitions in the Electricity Sector: Active vs. Passive Owners

    International Nuclear Information System (INIS)

    The starting point of this paper is a mixed oligopoly market consisting of n privately owned profit maximizing firms and 1 state-owned welfare maximizing firm. Motivated by the trend of mergers and acquisitions in the liberalized electricity markets, and by the debate about public or private ownership, the paper looks at two cases. In Case 1, the state-owned company acquires an ownership share in one of the private companies. In Case 2, the state-owned company is partially privatised. The paper focuses on differences in generated quantities and social surplus, depending on whether the investors behind the acquisitions are behaving as active or passive owners. One result shows that in the case of partial privatization, passive ownership provides the highest total industry generation, while active ownership induces maximum social surplus. (author)

  2. Acquisitions in the Electricity Sector: Active vs. Passive Owners

    Energy Technology Data Exchange (ETDEWEB)

    Nese, Gjermund

    2002-07-01

    The starting point of this paper is a mixed oligopoly market consisting of n privately owned profit maximizing firms and 1 state-owned welfare maximizing firm. Motivated by the trend of mergers and acquisitions in the liberalized electricity markets, and by the debate about public or private ownership, the paper looks at two cases. In Case 1, the state-owned company acquires an ownership share in one of the private companies. In Case 2, the state-owned company is partially privatised. The paper focuses on differences in generated quantities and social surplus, depending on whether the investors behind the acquisitions are behaving as active or passive owners. One result shows that in the case of partial privatization, passive ownership provides the highest total industry generation, while active ownership induces maximum social surplus. (author)

  3. Aberrant activity in degenerated retinas revealed by electrical imaging

    Directory of Open Access Journals (Sweden)

    Günther eZeck

    2016-02-01

    Full Text Available In this review I present and discuss the current understanding of aberrant electrical activity found in the ganglion cell layer (GCL of rod-degenerated (rd mouse retinas. The reported electrophysiological properties revealed by electrical imaging using high-density microelectrode arrays can be subdivided between spiking activity originating from retinal ganglion cells (RGCs and local field potentials reflecting strong trans-membrane currents within the GCL. RGCs in rod-degenerated retinas show increased and rhythmic spiking compared to age-matched wild-type retinas. Fundamental spiking frequencies range from 5 to 15 Hz in various mouse models. The rhythmic RGC spiking is driven by a presynaptic network comprising AII amacrine and bipolar cells. In the healthy retina this rhythm-generating circuit is inhibited by photoreceptor input. A unique physiological feature of rd retinas is rhythmic local field potentials (LFP manifested as spatially-restricted low-frequency (5–15 Hz voltage changes. Their spatiotemporal characterization revealed propagation and correlation with RGC spiking. LFPs rely on gap-junctional coupling and are shaped by glycinergic and by GABAergic transmission. The aberrant RGC spiking and LFPs provide a simple readout of the functionality of the remaining retinal circuitry which can be used in the development of improved vision restoration strategies.

  4. Moving the brain: Neuroimaging motivational changes of deep brain stimulation in obsessive-compulsive disorder

    NARCIS (Netherlands)

    M. Figee

    2013-01-01

    Deep brain stimulation (DBS) is a neurosurgical technique that involves the implantation of electrodes in the brain. DBS enables electrical modulation of abnormal brain activity for treatment of neuropsychiatric disorders such as obsessive-compulsive disorder (OCD). Mrs. D. has been suffering from O

  5. Unmasking local activity within local field potentials (LFPs) by removing distal electrical signals using independent component analysis.

    Science.gov (United States)

    Whitmore, Nathan W; Lin, Shih-Chieh

    2016-05-15

    Local field potentials (LFPs) are commonly thought to reflect the aggregate dynamics in local neural circuits around recording electrodes. However, we show that when LFPs are recorded in awake behaving animals against a distal reference on the skull as commonly practiced, LFPs are significantly contaminated by non-local and non-neural sources arising from the reference electrode and from movement-related noise. In a data set with simultaneously recorded LFPs and electroencephalograms (EEGs) across multiple brain regions while rats perform an auditory oddball task, we used independent component analysis (ICA) to identify signals arising from electrical reference and from volume-conducted noise based on their distributed spatial pattern across multiple electrodes and distinct power spectral features. These sources of distal electrical signals collectively accounted for 23-77% of total variance in unprocessed LFPs, as well as most of the gamma oscillation responses to the target stimulus in EEGs. Gamma oscillation power was concentrated in volume-conducted noise and was tightly coupled with the onset of licking behavior, suggesting a likely origin of muscle activity associated with body movement or orofacial movement. The removal of distal signal contamination also selectively reduced correlations of LFP/EEG signals between distant brain regions but not within the same region. Finally, the removal of contamination from distal electrical signals preserved an event-related potential (ERP) response to auditory stimuli in the frontal cortex and also increased the coupling between the frontal ERP amplitude and neuronal activity in the basal forebrain, supporting the conclusion that removing distal electrical signals unmasked local activity within LFPs. Together, these results highlight the significant contamination of LFPs by distal electrical signals and caution against the straightforward interpretation of unprocessed LFPs. Our results provide a principled approach to

  6. Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Directory of Open Access Journals (Sweden)

    Sharma Rakesh

    2004-05-01

    Full Text Available Abstract Functional magnetic resonance imaging (fMRI is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities.

  7. The brain activity of pain relief during hypnosis and placebo treatment

    Directory of Open Access Journals (Sweden)

    Svetlana Kirjanen

    2012-05-01

    Full Text Available Placebo treatment and hypnosis are both examples of top-down regulation and are used to treat pain. However, it is unclear whether hypnosis produces anything more than a placebo effect when measuring brain activity changes. This literature review examines research articles published from 1997 onwards regarding the neurophysiology of pain relief during hypnosis or placebo treatments using functional brain imaging (fMRI or PET. The focus was on acute produced nociceptive pain. There seems to be both similarities and clear differences in the brain activity changes between hypnosis and placebo treatments. These results show that hypnosis is not equal to common placebo in terms of brain activity thus questioning the suggestion that the pain reducing properties of hypnosis are just one form of placebo effect.

  8. Effects of acrylamide and acrylic acid on creatine kinase activity in the rat brain

    International Nuclear Information System (INIS)

    In vitro, both acrylamide and acrylic acid inhibited creatine kinase (CK) activity in rat brain homogenates, and acrylic acid was more potent than acrylamide. In vivo, however, when given i.p. 50 mg/kg per day for 8 days to rats, only acrylamide inhibited CK activity in the brain and caused apparent neurological signs. 14C in the brain 24 h after the injection of 14C-labelled chemicals was more than 7 times greater with acrylamide than with acrylic acid. The inhibition of CK activity by acrylamide varied in eight regions of the brain; from 54% in hypothalamus to 27% in cerebellar vermis. The regional difference of CK inhibition, however, did not agree well with either 14C distribution or with the distribution in regions which appear clinically or pathologically vulnerable to acrylamide. (orig.)

  9. Brain Basics

    Medline Plus

    Full Text Available ... illnesses, such as depression, can occur when this process does not work correctly. Communication between neurons can also be electrical, such as in areas of the brain that control movement. When electrical signals are abnormal, they can ...

  10. Dynamic Multiscale Modes of Resting State Brain Activity Detected by Entropy Field Decomposition.

    Science.gov (United States)

    Frank, Lawrence R; Galinsky, Vitaly L

    2016-09-01

    The ability of functional magnetic resonance imaging (FMRI) to noninvasively measure fluctuations in brain activity in the absence of an applied stimulus offers the possibility of discerning functional networks in the resting state of the brain. However, the reconstruction of brain networks from these signal fluctuations poses a significant challenge because they are generally nonlinear and nongaussian and can overlap in both their spatial and temporal extent. Moreover, because there is no explicit input stimulus, there is no signal model with which to compare the brain responses. A variety of techniques have been devised to address this problem, but the predominant approaches are based on the presupposition of statistical properties of complex brain signal parameters, which are unprovable but facilitate the analysis. In this article, we address this problem with a new method, entropy field decomposition, for estimating structure within spatiotemporal data. This method is based on a general information field-theoretic formulation of Bayesian probability theory incorporating prior coupling information that allows the enumeration of the most probable parameter configurations without the need for unjustified statistical assumptions. This approach facilitates the construction of brain activation modes directly from the spatial-temporal correlation structure of the data. These modes and their associated spatial-temporal correlation structure can then be used to generate space-time activity probability trajectories, called functional connectivity pathways, which provide a characterization of functional brain networks. PMID:27391678

  11. Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes.

    Science.gov (United States)

    Renier, Nicolas; Adams, Eliza L; Kirst, Christoph; Wu, Zhuhao; Azevedo, Ricardo; Kohl, Johannes; Autry, Anita E; Kadiri, Lolahon; Umadevi Venkataraju, Kannan; Zhou, Yu; Wang, Victoria X; Tang, Cheuk Y; Olsen, Olav; Dulac, Catherine; Osten, Pavel; Tessier-Lavigne, Marc

    2016-06-16

    Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization, and quantification of the activity of all neurons across the entire brain, which has not, to date, been achieved in the mammalian brain. We introduce a pipeline for high-speed acquisition of brain activity at cellular resolution through profiling immediate early gene expression using immunostaining and light-sheet fluorescence imaging, followed by automated mapping and analysis of activity by an open-source software program we term ClearMap. We validate the pipeline first by analysis of brain regions activated in response to haloperidol. Next, we report new cortical regions downstream of whisker-evoked sensory processing during active exploration. Last, we combine activity mapping with axon tracing to uncover new brain regions differentially activated during parenting behavior. This pipeline is widely applicable to different experimental paradigms, including animal species for which transgenic activity reporters are not readily available. PMID:27238021

  12. LSD-induced entropic brain activity predicts subsequent personality change.

    Science.gov (United States)

    Lebedev, A V; Kaelen, M; Lövdén, M; Nilsson, J; Feilding, A; Nutt, D J; Carhart-Harris, R L

    2016-09-01

    Personality is known to be relatively stable throughout adulthood. Nevertheless, it has been shown that major life events with high personal significance, including experiences engendered by psychedelic drugs, can have an enduring impact on some core facets of personality. In the present, balanced-order, placebo-controlled study, we investigated biological predictors of post-lysergic acid diethylamide (LSD) changes in personality. Nineteen healthy adults underwent resting state functional MRI scans under LSD (75µg, I.V.) and placebo (saline I.V.). The Revised NEO Personality Inventory (NEO-PI-R) was completed at screening and 2 weeks after LSD/placebo. Scanning sessions consisted of three 7.5-min eyes-closed resting-state scans, one of which involved music listening. A standardized preprocessing pipeline was used to extract measures of sample entropy, which characterizes the predictability of an fMRI time-series. Mixed-effects models were used to evaluate drug-induced shifts in brain entropy and their relationship with the observed increases in the personality trait openness at the 2-week follow-up. Overall, LSD had a pronounced global effect on brain entropy, increasing it in both sensory and hierarchically higher networks across multiple time scales. These shifts predicted enduring increases in trait openness. Moreover, the predictive power of the entropy increases was greatest for the music-listening scans and when "ego-dissolution" was reported during the acute experience. These results shed new light on how LSD-induced shifts in brain dynamics and concomitant subjective experience can be predictive of lasting changes in personality. Hum Brain Mapp 37:3203-3213, 2016. © 2016 Wiley Periodicals, Inc. PMID:27151536

  13. Brain activity associated with illusory correlations in animal phobia

    OpenAIRE

    Wiemer, Julian; Stefan M Schulz; Reicherts, Philipp; Glotzbach-Schoon, Evelyn; Andreatta, Marta; Pauli, Paul

    2014-01-01

    Anxiety disorder patients were repeatedly found to overestimate the association between disorder-relevant stimuli and aversive outcomes despite random contingencies. Such an illusory correlation (IC) might play an important role in the return of fear after extinction learning; yet, little is known about how this cognitive bias emerges in the brain. In a functional magnetic resonance imaging study, 18 female patients with spider phobia and 18 healthy controls were exposed to pictures of spider...

  14. Imaging and Quantification of Brain Serotonergic Activity using PET

    OpenAIRE

    Lundquist, Pinelopi

    2006-01-01

    This thesis investigates the potential of using positron emission tomography (PET) to study the biosynthesis and release of serotonin (5HT) at the brain serotonergic neuron. As PET requires probe compounds with specific attributes to enable imaging and quantification of biological processes, emphasis was placed on the evaluation of these attributes. The experiments established that the 5HT transporter radioligand [11C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile, [11C]DASB, ...

  15. MICROGLIA ACTIVATION AS A BIOMARKER FOR TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    CesarVBorlongan

    2013-03-01

    Full Text Available Traumatic brain injury (TBI has become the signature wound of wars in Afghanistan and Iraq. Injury may result from a mechanical force, a rapid acceleration-deceleration movement, or a blast wave. A cascade of secondary cell death events ensues after the initial injury. In particular, multiple inflammatory responses accompany TBI. A series of inflammatory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among the repertoire of immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Neuroprotective drug trials in TBI have failed, likely due to their sole focus on abrogating neuronal cell death and ignoring the microglia response despite these inflammatory cells’ detrimental effects on the brain. Another relevant point to consider is the veracity of results of animal experiments due to deficiencies in experimental design, such as incomplete or inadequate method description, data misinterpretation and reporting may introduce bias and give false-positive results. Thus, scientific publications should follow strict guidelines that include randomization, blinding, sample-size estimation and accurate handling of all data (Landis et al., 2012. A prolonged state of inflammation after brain injury may linger for years and predispose patients to develop other neurological disorders, such as Alzheimer’s disease. TBI patients display progressive and long-lasting impairments in their physical, cognitive, behavioral, and social performance. Here, we discuss inflammatory mechanisms that accompany TBI in an effort to increase our understanding of the dynamic pathological condition as the disease evolves over time and begin to translate these findings for defining new and existing inflammation-based biomarkers and treatments for TBI.

  16. Effects of various frequency electrical stimulation of the dorsal raphe nucleus on spontaneous firing activities in the rat subthalamic nucleus

    Institute of Scientific and Technical Information of China (English)

    Hongmei Ran; Dongming Gao

    2008-01-01

    BACKGROUND: Some investigations have demonstrated that exogenous 5-hydroxytryptamine increases the spontaneous firing rate of subthalamic nucleus (STN) neurons in the rat brain.OBJECTIVE: To validate the effect of electrical stimulation to the dorsal raphe nucleus (DRN) on the neu-ronal activities of the STN in rats, as well as analyze the differences in the effects of electrical stimulation at various frequencies.DESIGN, TIME AND SETTING: Experiments were performed from March 2007 to June 2007 in the Electrophysiology Laboratory of Liaoning Medical University with a randomized controlled animal study design.MATERIALS: Twenty-four healthy male Sprague-Dawley (SD) rats, weighing 250-350 g, were selected for this study. An A320R constant electrical stimulator was purchased from World Precision Instruments Com-pany (USA); a Spike 2 biological signal acquisition system was purchased from British CED Company. METHODS: Twenty-four SD rats were randomly assigned into a model group and a normal group, with 12 rats in each group. To mimic Parkinson's disease, rats in the model group were injected with 4 μL of 6-hydroxydopamine into the right striatum, then received deep brain stimulation. Rats in the normal group re-ceived deep brain stimulation in same brain region without modeling. Electrical stimulation (width, 0.06 ms; intensity, 0.2-0.6 mA; frequency, 20-130 Hz; train duration, 5 seconds) was delivered to the DRN. MAIN OUTCOME MEASURES: The firing rates of STN neurons were observed by extracellular record-ing using a biological signal acquisition system. RESULTS: DRN-high-frequency stimulation (DRN-HFS) induced excitation in 59% of the STN neurons in the normal group and 50% of the STN neurons in the model group; mean firing rates increased significantly from (7.14± 0.75) and (7.94 ± 0.61) Hz to (11.17 ± 1.49) and (12.11 ± 1.05) Hz, respectively (P < 0.01). Spontaneous firing rate increased significantly in 53% of neurons in normal rats in a frequency

  17. Assessment of Electrically Evoked Auditory Brain Stem Response of 30 Implanted Patients With Nucleus Multichannel Cochlear Implant

    Directory of Open Access Journals (Sweden)

    Dr. Soqrat Faghihzadeh

    2001-05-01

    Full Text Available Methods and Materials: Investigation of electrically evoked auditory brain stem response (EABR is a new issue, especially in implanted patients. Experiments were performed in C.I Center of Iranian Institute for Science and research expansion,1996 on 30 implanted patients with 22 spectra and MSP cochlear implant system and 30 normal subjects with the range of 3-33 years. Findings: I- EABR was obtained in the implanted patients. 2- Absolute latency of EABR waves is 1-1.5 ms shorter than ABR waves ‘P<0.05. 3-Absolute latency of wave V decreases as a function of electric stimulus magnitude (P<0.05. 4- No significant difference was observed in IPL Ill-V between ABR and EABR.

  18. Can Neural Activity Propagate by Endogenous Electrical Field?

    Science.gov (United States)

    Qiu, Chen; Shivacharan, Rajat S; Zhang, Mingming; Durand, Dominique M

    2015-12-01

    It is widely accepted that synaptic transmissions and gap junctions are the major governing mechanisms for signal traveling in the neural system. Yet, a group of neural waves, either physiological or pathological, share the same speed of ∼0.1 m/s without synaptic transmission or gap junctions, and this speed is not consistent with axonal conduction or ionic diffusion. The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments. Simulation results show that field effects alone can indeed mediate propagation across layers of neurons with speeds of 0.12 ± 0.09 m/s with pathological kinetics, and 0.11 ± 0.03 m/s with physiologic kinetics, both generating weak field amplitudes of ∼2-6 mV/mm. Further, the model predicted that propagation speed values are inversely proportional to the cell-to-cell distances, but do not significantly change with extracellular resistivity, membrane capacitance, or membrane resistance. In vitro recordings in mice hippocampi produced similar speeds (0.10 ± 0.03 m/s) and field amplitudes (2.5-5 mV/mm), and by applying a blocking field, the propagation speed was greatly reduced. Finally, osmolarity experiments confirmed the model's prediction that cell-to-cell distance inversely affects propagation speed. Together, these results show that despite their weak amplitude, electric fields can be solely responsible for spike propagation at ∼0.1 m/s. This phenomenon could be important to explain the slow propagation of epileptic activity and other normal propagations at similar speeds. PMID:26631463

  19. Beyond the Hypothesis of Serum Anticholinergic Activity in Alzheimer's Disease: Acetylcholine Neuronal Activity Modulates Brain-Derived Neurotrophic Factor Production and Inflammation in the Brain.

    Science.gov (United States)

    Hachisu, Mitsugu; Konishi, Kimiko; Hosoi, Misa; Tani, Masayuki; Tomioka, Hiroi; Inamoto, Atsuko; Minami, Sousuke; Izuno, Takuji; Umezawa, Kaori; Horiuchi, Kentaro; Hori, Koji

    2015-01-01

    The brain of Alzheimer's disease (AD) patients is characterized by neurodegeneration, especially an acetylcholine (ACh) neuronal deficit with accumulation of β-amyloid protein, which leads to oxygen stress and inflammation. The active oxygen directly damages the neuron by increasing intracellular Ca(2+). The inflammation is due to activation of the microglia, thereby producing cytokines which inhibit the production of brain-derived neurotrophic factor (BDNF). As the BDNF acts by neuronal protection, synaptogenesis and neurogenesis, the reduction of BDNF in the brain of AD patients worsens the symptoms of AD. On the other hand, treatment of AD patients with a cholinesterase inhibitor enhances ACh activity and inhibits inflammation. Then the expression of BDNF is restored and neuroprotection reestablished. However, there are several reports which showed controversial results concerning the relationship between BDNF and AD. We speculate that BDNF is related to some neurocognitive process and reflects neuronal activity in other neurodegenerative and neuropsychiatric disorders and that in the mild cognitive impairment stage, BDNF and choline acetyltransferase (ChAT) activities are hyperactivated because of a compensatory mechanism of AD pathology. In contrast, in the mild stage of AD, BDNF and ChAT activity are downregulated. PMID:26138497

  20. Electrical processes for the treatment of medium active liquid wastes

    International Nuclear Information System (INIS)

    Cross-flow electrokinetic dewatering has been developed on a lab-scale into an effective process for the treatment of such wastes as gravity-settled flocs, or sludges arising from fuel storage. The product may be concentrated to 25-42% solids while still remaining fluid, prior to immobilization - e.g. by addition of cement powder. Complete retention of activity in the concentrate was observed during the treatment of Harwell low-level waste sludges due to the high solids separation factor ( > 104). It is a low pressure, low temperature process - consuming only 0.03-0.13 kWh/L at permeation rates of 0.3-1.5 m/h (depending on the stream), corresponding to 1/67 - 1/15 that needed for evaporation. An advanced electrochemical ion-exchange system has been developed in which ionic material can be electrically adsorbed and eluted by polarity reversal > 1000 times, without any change in performance. Decontamination factors of about 2000 were achieved for Cs removal, up to 75% loading of the exchanger at flow rates of 8 bed volumes/h. Elution into water can give concentrates of >= 0.25 M - with consequent high volume reduction factors. Inorganic ion-exchangers have also demonstrated system selectivity for the removal of specific cations. Overall energy consumption is 3 (1/400 evaporation). Significant cost savings over conventional ion-exchange may accrue from the improved performance under electrical control, and the reduced volumes of waste requiring disposal. (author)

  1. Measurement of Brain Activation During an Upright Stepping Reaction Task Using Functional Near-Infrared Spectroscopy

    Science.gov (United States)

    Huppert, Theodore; Schmidt, Benjamin; Beluk, Nancy; Furman, Joseph; Sparto, Patrick

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive brain imaging technology that uses light to measure changes in cortical hemoglobin concentrations. FNIRS measurements are recorded through fiber optic cables, which allow the participant to wear the fNIRS sensors while standing upright. Thus, fNIRS technology is well suited to study cortical brain activity during upright balance, stepping, and gait tasks. In this study, fNIRS was used to measure changes in brain activation from the frontal, motor, and premotor brain regions during an upright step task that required subjects to step laterally in response to visual cues that required executive function control. We hypothesized that cognitive processing during complex stepping cues would elicit brain activation of the frontal cortex in areas involved in cognition. Our results show increased prefrontal activation associated with the processing of the stepping cues. Moreover, these results demonstrate the potential to use fNIRS to investigate cognitive processing during cognitively demanding balance and gait studies. Hum Brain Mapp 34:2817–2828, 2013. VC 2012 Wiley Periodicals, Inc. PMID:23161494

  2. Electric Double-layer Capacitor Based on Activated Carbon Material

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this study electric double-layer capacitors (EDLCs) based on activated carbon material and organic electrolyte (tetraethyl ammonium tetrafluoroborate) were explored. The fabrication method for EDLC is presented and the performance of EDLC was examined by using the cyclic voltammetry, constant-current charging and discharging technique, electrochemical impedance spectroscopy measurements. Influence of various components and design parameters on the performance of the capacitors were preliminarily investigated. Up to now, EDLC based on carbon materials can deliver 20.7 W/kg at the discharge rate ofI=0.3 mA, together with the energy density of 8.5 Wh/kg. Equivalent series resistance (ESR) is 0.716 Ω.cm2. The specific power of the capacitor is low and further attempts to raise the power capability of the capacitors are necessary. Some considerations are put forward to further improve the performance of EDLC.

  3. Promoting Active Learning in Electrical Engineering Basic Studies

    Directory of Open Access Journals (Sweden)

    Anu Lehtovuori

    2013-05-01

    Full Text Available Active learning, project-based teaching, and student collaboration are current trends in engineering education. Incorporating these have also been the goal of the basic studies development project EPOP started at the Aalto University School of Electrical Engineering in 2011. In the project, two obligatory basic courses in circuit analysis and electromagnetic field theory have been taught using interactive engagement during the spring of 2012. This paper presents the implementation of the teaching, including methods and evaluation with several concrete examples. As a result of the novel teaching, motivation and the engagement of students were at a high level during the whole course and learning results were better than those of the students participating the traditional lecture course.

  4. Conjugated polymer based active electric-controlled terahertz device

    Science.gov (United States)

    Zhong, Liang; Zhang, Bo; He, Ting; Lv, Longfeng; Hou, Yanbing; Shen, Jingling

    2016-03-01

    A modulation of terahertz response in a highly efficient, electric-controlled conjugated polymer-silicon hybrid device with low photo-excitation was investigated. The polymer-silicon forms a hybrid structure, where the active depletion region modifies the semiconductor conductivity in real time by applying an external bias voltage. The THz transmission was efficiently modulated by effective controlling. In a THz-TDS system, the modulation depth reached nearly 100% when the applied voltage was 3.8 V at an external laser intensity of 0.3 W/cm2. The saturation voltage decreased with increasing photo-excited intensity. In a THz-CW system, a significant decline in THz transmission was also observed with increasing applied bias voltage. This reduction in THz transmission is induced by the enhancement of carrier density.

  5. Effect of ions on the activity of brain acetylcholinesterase from tropical fish

    Directory of Open Access Journals (Sweden)

    Caio Rodrigo Dias Assis

    2015-07-01

    Full Text Available Objective: To investigate the effect of ions on brain acetylcholinesterase (AChE; EC 3.1.1.7 activities from economic important fish [pirarucu, Arapaima gigas; tambaqui, Colossoma macropomum; cobia, Rachycentron canadum (R. canadum and Nile tilapia, Oreochromis niloticus (O. niloticus] comparing with a commercial enzyme from electric eel [Electrophorus electricus (E. electricus]. Methods: The in vitro exposure was performed at concentrations ranging from 0.001 to 10 mmol/L (except for ethylene diamine tetraacetic acid; up to 150 mmol/L. Inhibition kinetics on R. canadum and O. niloticus were also observed through four methods (Michaelis-Menten, Lineweaver-Burk, Dixon and Cornish-Bowden plots in order to investigate the type of inhibition produced by some ions. Results: Hg 2+ , As 3+ , Cu 2+ , Zn 2+ , Cd 2+ caused inhibition in all the species under study. Ca 2+ , Mg 2+ and Mn 2+ induced slight activation in R. canadum enzyme while Pb 2+ , Ba 2+ , Fe 2+ , Li + inhibited the AChE from some of the analyzed species. The lowest IC 50 and Ki values were estimated for E. electricus AChE in presence of Hg 2+ , Pb 2+ , Zn 2+ . Under our experimental conditions, the results for R. canadum and O. niloticus, As 3+ , Cu 2+ , Cd 2+ , Pb 2+ and Zn 2+ showed a non- competitive/mixed-type inhibition, while Hg 2+ inhibited the enzyme in a mixed/competitive- like manner. Conclusions: E. electricus AChE activity was affected by ten of fifteen ions under study showing that this enzyme could undergo interference by these ions when used as pesticide biosensor in environmental analysis. This hindrance would be less relevant for the crude extracts.

  6. Development of positron tracer for in vivo estimation of brain MAO-B activity

    International Nuclear Information System (INIS)

    Both the specificity and the measurable range of enzyme activity of this method were found to be much dependent upon the enzymatic properties of substrate-tracer. The measurable range of brain enzyme activity was found to be from zero to the maximum value which was dependent upon two factors; the elimination rate of substratetracer from the brain (Ksub(el)) and the Vsub(max)/Ksub(m) value of substrate. The detectable range of changes in enzyme activity can be made wider by using another substrate as a tracer which has a lower Vsub(max)/Ksub(m) value or larger Ksub(el) value. The specificity can be also favorably designed by selection of substrate with various enzymatic or physico-chemical properties as a tracer. N, N-dimethyl phenylethylamine (DMPEA) was selected as a substrate-tracer for the estimation of brain MAO-B activity. Very high accumulation of radioactivity into mouse brain at 1 min after intravenous injection of 11C-DMPEA, and a long-term retention of radioactivity in the brain were observed. 11C-DMPEA seemed to be metabolized to 11C-dimethylamine by brain MAO, and be trapped by the blood-brain barrier. When various dosage of 1-deprenyl (a specific MAO-B inhibitor) were pretreated, brain radioactivity at 1 hr after injection of 11C-DMPEA significantly decreased in a dosage (1-deprenyl)-dependent way, while pretreatment with clorgyline (a specific MAO-A inhibitor) had no effect. This decrease in radioactivity might be due to the decrease of the production rate of labeled metabolite (11C-dimethylamine) in the brain. The relationship between the radioactivity remaining at 1 hr after injection and MAO-B activity remaining in the brain was quite paralle. 11C-DMPEA seems to be a specific radiotracer for the external detection of alterations in MAO-B activity in the brain with a fair sensitivity. (J.P.N.)

  7. A New Strategy of Drug Delivery: Electric Field Distribution in Brain Tumor Due to Electroporation

    OpenAIRE

    Shi, Junxing

    2014-01-01

    As the second leading cause of cancer-related deaths in children under 20, and the second leading cause of cancer-related deaths in males aged 20–39, there is a need to seek an effective treatment for brain tumors. While there may be various drugs for brain tumors, the problem is the lack of effective methods of delivery through cell membranes at a very specified and confined region. In order to tackle this specific problem of drug delivery, electroporation is introduced. Electroporation, the...

  8. Correlations between the Signal Complexity of Cerebral and Cardiac Electrical Activity: A Multiscale Entropy Analysis

    OpenAIRE

    Pei-Feng Lin; Men-Tzung Lo; Jenho Tsao; Yi-Chung Chang; Chen Lin; Yi-Lwun Ho

    2014-01-01

    The heart begins to beat before the brain is formed. Whether conventional hierarchical central commands sent by the brain to the heart alone explain all the interplay between these two organs should be reconsidered. Here, we demonstrate correlations between the signal complexity of brain and cardiac activity. Eighty-seven geriatric outpatients with healthy hearts and varied cognitive abilities each provided a 24-hour electrocardiography (ECG) and a 19-channel eye-closed routine electroencepha...

  9. Why mental arithmetic counts: brain activation during single digit arithmetic predicts high school math scores.

    Science.gov (United States)

    Price, Gavin R; Mazzocco, Michèle M M; Ansari, Daniel

    2013-01-01

    Do individual differences in the brain mechanisms for arithmetic underlie variability in high school mathematical competence? Using functional magnetic resonance imaging, we correlated brain responses to single digit calculation with standard scores on the Preliminary Scholastic Aptitude Test (PSAT) math subtest in high school seniors. PSAT math scores, while controlling for PSAT Critical Reading scores, correlated positively with calculation activation in the left supramarginal gyrus and bilateral anterior cingulate cortex, brain regions known to be engaged during arithmetic fact retrieval. At the same time, greater activation in the right intraparietal sulcus during calculation, a region established to be involved in numerical quantity processing, was related to lower PSAT math scores. These data reveal that the relative engagement of brain mechanisms associated with procedural versus memory-based calculation of single-digit arithmetic problems is related to high school level mathematical competence, highlighting the fundamental role that mental arithmetic fluency plays in the acquisition of higher-level mathematical competence. PMID:23283330

  10. TMS-EEG: A window into the neurophysiological effects of transcranial electrical stimulation in non-motor brain regions.

    Science.gov (United States)

    Hill, Aron T; Rogasch, Nigel C; Fitzgerald, Paul B; Hoy, Kate E

    2016-05-01

    Transcranial electrical stimulation (tES) techniques are able to induce changes in cortical excitability and plasticity through the administration of weak currents to the brain and are currently being used to manipulate a vast array of cognitive processes. Despite the widespread use of tES technologies within both research and remedial settings, their precise neurophysiological mechanisms of action are not well established outside of the motor cortex. The expanding use of tES within non-motor brain regions highlights the growing need for a more comprehensive understanding of the effects of stimulation across a diversity of cortical locations. The combination of transcranial magnetic stimulation with electroencephalography (TMS-EEG) provides a method of directly probing both local and widespread changes in brain neurophysiology, through the recording of TMS-evoked potentials and cortical oscillations. In this review we explore TMS-EEG as a tool for examining the impact of tES on cortical function and argue that multimodal approaches which combine tES with TMS-EEG could lead to a deeper understanding of the mechanisms which underlie tES-induced cognitive modulation. PMID:26959337

  11. RXPERIMENTAL AND CLINICAL STUDY OF CREATINE KINASE BB ACTIVITY FOR TH E DIAGNOSIS ON BRAIN DAMAGE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To study the differential diagnosis o n cerebral concussion and mild cerebral contusion value of the brain type creati n e kinase isoenzyme(CK-BB),and evaluate the seriousness of brain damage and prog nosis of the patients with acute head injury.Methods Chromatographic separating and fluorometric quant ifying technique was used to detect the CK-BB activity in the cerebrospinal flu id(CSF) of 117 patients with acute head injury and 12 patients with increased in tracranial pressure and 20 normal people.Results The CSF-CK-BB activity of the patients with acu te head injury was remarkably higher than that of the normal people and the CSF -CK-BB activity increased with the seriousness of brain damage.There was a clo se relationship between CSF-CK-BB activity and prognosis,and higher activity o f CSF-CK-BB indicated poor prognosis.Conclusion CSF-CK -BB activity could be used as a new index to diagnose brain damage and evaluate the seriousness of brain damage and prognosis.

  12. Impact of electrically activated water fractions on functional and processing properties of beef and pork

    OpenAIRE

    Віннікова, Людмила Григорівна; Пронькіна, Ксенія Володимирівна

    2015-01-01

    The article shows the influence of electrically activated water on functional and processing properties of beef and pork. It determines the dependence of pH, water-binding capacity, and losses during heating of test items on induced mixture of electrically activated water fractions. The article establishes that using electrically activated water fractions within ratio range of 30/70 – 100 % catholyte allows to purposefully change the active acidity of minced beef and pork; to change water-bin...

  13. Modeling the dynamics of human brain activity with recurrent neural networks

    OpenAIRE

    Güçlü, Umut; Marcel A J van Gerven

    2016-01-01

    Encoding models are used for predicting brain activity in response to sensory stimuli with the objective of elucidating how sensory information is represented in the brain. Encoding models typically comprise a nonlinear transformation of stimuli to features (feature model) and a linear transformation of features to responses (response model). While there has been extensive work on developing better feature models, the work on developing better response models has been rather limited. Here, we...

  14. Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness

    OpenAIRE

    Chow, Ho Ming; Horovitz, Silvina G.; Carr, Walter S.; Picchioni, Dante; Coddington, Nate; Fukunaga, Masaki; Xu, Yisheng; Balkin, Thomas J.; Duyn, Jeff H; Braun, Allen R.

    2013-01-01

    Rapid eye movement (REM) sleep constitutes a distinct “third state” of consciousness, during which levels of brain activity are commensurate with wakefulness, but conscious awareness is radically transformed. To characterize the temporal and spatial features of this paradoxical state, we examined functional interactions between brain regions using fMRI resting-state connectivity methods. Supporting the view that the functional integrity of the default mode network (DMN) reflects “level of con...

  15. The brain activity of pain relief during hypnosis and placebo treatment

    OpenAIRE

    Svetlana Kirjanen

    2012-01-01

    Placebo treatment and hypnosis are both examples of top-down regulation and are used to treat pain. However, it is unclear whether hypnosis produces anything more than a placebo effect when measuring brain activity changes. This literature review examines research articles published from 1997 onwards regarding the neurophysiology of pain relief during hypnosis or placebo treatments using functional brain imaging (fMRI or PET). The focus was on acute produced nociceptive pain. There seems to b...

  16. Brain Activation Patterns at Exhaustion in Rats That Differ in Inherent Exercise Capacity

    OpenAIRE

    Foley, Teresa E.; Leah R Brooks; Gilligan, Lori J.; Burghardt, Paul R.; Koch, Lauren G.; Britton, Steven L.; Monika Fleshner

    2012-01-01

    In order to further understand the genetic basis for variation in inherent (untrained) exercise capacity, we examined the brains of 32 male rats selectively bred for high or low running capacity (HCR and LCR, respectively). The aim was to characterize the activation patterns of brain regions potentially involved in differences in inherent running capacity between HCR and LCR. Using quantitative in situ hybridization techniques, we measured messenger ribonuclease (mRNA) levels of c-Fos, a mark...

  17. Visual Learning Alters the Spontaneous Activity of the Resting Human Brain: An fNIRS Study

    OpenAIRE

    Haijing Niu; Hao Li; Li Sun; Yongming Su; Jing Huang; Yan Song

    2014-01-01

    Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimina...

  18. Detection of short-term activity avalanches in human brain default mode network with ultrafast MR encephalography

    OpenAIRE

    Rajna, Zalán; Kananen, Janne; Keskinarkaus, Anja; Seppänen, Tapio; Kiviniemi, Vesa

    2015-01-01

    Recent studies pinpoint visually cued networks of avalanches with MEG/EEG data. Co-activation pattern (CAP) analysis can be used to detect single brain volume activity profiles and hemodynamic fingerprints of neuronal avalanches as sudden high signal activity peaks in classical fMRI data. In this study, we aimed to detect dynamic patterns of brain activity spreads with the use of ultrafast MR encephalography (MREG). MREG achieves 10 Hz whole brain sampling, allowing the estimation of spatial ...

  19. Pre-target oscillatory brain activity and the attentional blink.

    Science.gov (United States)

    Petro, Nathan M; Keil, Andreas

    2015-12-01

    Reporting the second of two targets within a stream of distracting words during rapid serial visual presentation (RSVP) is impaired when the targets are separated by a single distractor word, a deficit in temporal attention that has been referred to as the attentional blink (AB). Recent conceptual and empirical work has pointed to pre-target brain states as potential mediators of the AB effect. The current study examined differences in pre-target electrophysiology between correctly and incorrectly reported trials, considering amplitude and phase measures of alpha oscillations as well as the steady-state visual evoked potential (ssVEP) evoked by the RSVP stream. For incorrectly reported trials, relatively lower alpha-band power and greater ssVEP inter-trial phase locking were observed during extended time periods preceding presentation of the first target. These results suggest that facilitated processing of the pre-target distracter stream indexed by reduced alpha and heightened phase locking characterizes a dynamic brain state that predicts lower accuracy in terms of reporting the second target under strict temporal constraints. Findings align with hypotheses in which the AB effect is attributed to neurocognitive factors such as fluctuations in pre-target attention or to cognitive strategies applied at the trial level. PMID:26341931

  20. Altered sensorimotor activation patterns in idiopathic dystonia-an activation likelihood estimation meta-analysis of functional brain imaging studies

    DEFF Research Database (Denmark)

    Løkkegaard, Annemette; Herz, Damian M; Haagensen, Brian N;

    2016-01-01

    . Further, study size was usually small including different types of dystonia. Here we performed an activation likelihood estimation (ALE) meta-analysis of functional neuroimaging studies in patients with primary dystonia to test for convergence of dystonia-related alterations in task-related activity....... Hum Brain Mapp 37:547-557, 2016. © 2015 Wiley Periodicals, Inc....

  1. The Brain Fingerprinting Through Digital Electroencephalography Signal Technique

    Directory of Open Access Journals (Sweden)

    Dinesh Chandra Jain,

    2011-03-01

    Full Text Available A brain computer interaction has been developed to record the brain signal / electric activity through Digital Electroencephalography. The Brain Fingerprinting is a advanced computer-based technology to etermine the falsely accused innocent suspects of a crime accurately and scientifically by measuring brain-wave responses to crime-relevant words or pictures presented on a computer screen. By using lectroencephalography to ascertain the presence or absence of information into human brain.

  2. Hunger dependence of electrical brain self-stimulation in the pigeon

    OpenAIRE

    Delius, Juan; Pellander, Kirsti

    1982-01-01

    Contrary to recent evidence, further data showing that intracranial self-stimulation behaviour in the pigeon is frequently hunger-dependent is reported. A compilation of reinforcing brain loci in the pigeon suggests an association with two dopaminergic systems, the paleostriatal complex and the nucleus basalis system, the latter being known to be involved in the control of feeding.

  3. A hyperspectral time resolved DOT system to monitor physiological changes of the human brain activity

    Science.gov (United States)

    Lange, F.; Peyrin, F.; Montcel, B.

    2015-07-01

    Diffuse optical tomography (DOT) is a growing area of research in the field of biomedical optics and neurosciences. Over the past 20 years, technical development allowed a more and more accurate detection of the brain activation, both spatially and in the calculation of the variations of chromophores's concentrations such as Hemoglobin, cytochrome c oxidase, etc. In particular, time resolved systems are able to distinguish between superficial layers (skin, skull) and deep layers (brain) allowing the differentiation between the systemic response and the response of the brain. In order to increase the accuracy of the brain's activation detection, we have developed a Hyperspectral Time Resolved DOT system. It is composed of a compact supercontinuum laser within the picosecond range for the source part and of an ICCD camera coupled with an imaging spectrometer for the detection part. This allows a simultaneous detection of the spatial and spectral dimension, as well as the time of flight of photons. Through the information acquired by our system, we've been able to retrieve, to our knowledge, the first spectrum of the physiology of the human brain activity as function as depth. Here we present the instrument and show our first in-vivo results that are demonstrating its capabilities to distinguish between the skin's response and the brain's responses during a cognitive task. We are also focused on the detection of the Fast Optical Signal.

  4. Exercise is brain food: the effects of physical activity on cognitive function.

    Science.gov (United States)

    Ploughman, Michelle

    2008-07-01

    This commentary reviews selected biomedical and clinical research examining the relationship between physical exercise and cognitive function especially in youth with disability. Youth with physical disability may not benefit from the effects of exercise on cardiovascular fitness and brain health since they are less active than their non-disabled peers. In animal models, physical activity enhances memory and learning, promotes neurogenesis and protects the nervous system from injury and neurodegenerative disease. Neurotrophins, endogenous proteins that support brain plasticity likely mediate the beneficial effects of exercise on the brain. In clinical studies, exercise increases brain volume in areas implicated in executive processing, improves cognition in children with cerebral palsy and enhances phonemic skill in school children with reading difficulty. Studies examining the intensity of exercise required to optimize neurotrophins suggest that moderation is important. Sustained increases in neurotrophin levels occur with prolonged low intensity exercise, while higher intensity exercise, in a rat model of brain injury, elevates the stress hormone, corticosterone. Clearly, moderate physical activity is important for youth whose brains are highly plastic and perhaps even more critical for young people with physical disability. PMID:18781504

  5. Electromagnetic pulse activated brain microglia via the p38 MAPK pathway.

    Science.gov (United States)

    Yang, Long-Long; Zhou, Yan; Tian, Wei-Dong; Li, Hai-Juan; Kang-Chu-Li; Miao, Xia; An, Guang-Zhou; Wang, Xiao-Wu; Guo, Guo-Zhen; Ding, Gui-Rong

    2016-01-01

    Previously, we found that electromagnetic pulses (EMP) induced an increase in blood brain barrier permeability and the leakage of albumin from blood into brain tissue. Albumin is known to activate microglia cells. Thus, we hypothesised that microglia activation could occur in the brain after EMP exposure. To test this hypothesis, the morphology and secretory function of microglia cells, including the expression of OX-42 (a marker of microglia activation), and levels of TNF-α, IL-10, IL-1β, and NO were determined in the rat cerebral cortex after EMP exposure. In addition, to examine the signalling pathway of EMP-induced microglia activation, protein and phosphorylated protein levels of p38, JNK and ERK were determined. It was found that the expression of OX-42increased significantly at 1, 6 and 12h (paffect its secretory function both in vivo and in vitro, and the p38 pathway is involved in this process. PMID:26688329

  6. Detecting stable phase structures in EEG signals to classify brain activity amplitude patterns

    Institute of Scientific and Technical Information of China (English)

    Yusely RUIZ; Guang LI; Walter J. FREEMAN; Eduardo GONZALEZ

    2009-01-01

    Obtaining an electrocorticograms (ECoG) signal requires an invasive procedure in which brain activity is recorded from the cortical surface. In contrast, obtaining electroencephalograms (EEG) recordings requires the non-invasive procedure of recording the brain activity from the scalp surface, which allows EEG recordings to be performed more easily on healthy humans. In this work, a technique previously used to study spatial-temporal patterns of brain activity on animal ECoG was adapted for use on EEG. The main issues are centered on solving the problems introduced by the increment on the interelectrode distance and the procedure to detect stable frames. The results showed that spatial patterns of beta and gamma activity can also be extracted from the EEG signal by using stable frames as time markers for feature extraction. This adapted technique makes it possible to take advantage of the cognitive and phenomenological awareness of a normal healthy subject.

  7. Analysis of individual brain activation maps using hierarchical description and multiscale detection

    International Nuclear Information System (INIS)

    The authors propose a new method for the analysis of brain activation images that aims at detecting activated volumes rather than pixels. The method is based on Poisson process modeling, hierarchical description, and multiscale detection (MSD). Its performances have been assessed using both Monte Carlo simulated images and experimental PET brain activation data. As compared to other methods, the MSD approach shows enhanced sensitivity with a controlled overall type I error, and has the ability to provide an estimate of the spatial limits of the detected signals. It is applicable to any kind of difference image for which the spatial autocorrelation function can be approximated by a stationary Gaussian function

  8. Simulated ischaemia-reperfusion conditions increase xanthine dehydrogenase and oxidase activities in rat brain slices.

    Science.gov (United States)

    Battelli, M G; Buonamici, L; Virgili, M; Abbondanza, A; Contestabile, A

    1998-01-01

    Xanthine dehydrogenase and oxidase activities increased by 87% in rat brain slices after 30 min in vitro ischaemia. A further 41% increase was induced by 30 min simulated reperfusion of ischaemic slices. No conversion from the dehydrogenase to the oxidase activity was observed. The increment of enzyme activity was not due to neosynthesis of the enzyme, since it was not affected by the addition of cycloheximide during the ischaemic incubation. The increased oxygen-dependent form of the enzyme could aggravate the ischaemic brain injury by free radicals production, in particular after reperfusion. PMID:9460697

  9. Optical Control of Living Cells Electrical Activity by Conjugated Polymers.

    Science.gov (United States)

    Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2016-01-01

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported

  10. Brain activation-based sexual orientation in female-to-male transsexuals.

    Science.gov (United States)

    Kim, T-H; Kim, G-W; Kim, S-K; Jeong, G-W

    2016-01-01

    This study was performed to identify the sexual orientation in association with brain activation pattern in response to visual erotic stimuli in female-to-male (FtM) transsexuals by using functional magnetic resonance imaging (fMRI). Eleven FtM transsexuals who have had sex-reassignment surgery to alter their natal bodies with the gender-identity disorder were participated. Brain activation for sexual orientation was induced by visual stimuli with female and male erotic nude pictures compared with emotionally-neutral pictures. During viewing the erotic female pictures, the brain areas dominantly activated consist of the superior frontal gyrus, supplementary motor area, anterior/median cingulate gyri and hypothalamus, whereas during viewing male pictures, the brain areas with predominant activities were the middle frontal gyrus, precentral gyrus, middle temporal gyrus, fusiform gyrus, angular gyrus, precuneus, superior/middle occipital gyri, cerebellar cortex and vermis. These findings demonstrate that the brain activation patterns induced by viewing male or female erotic pictures show some correlation to the sexual orientation opposite to the genetic sex in FtM transsexuals. This study would be helpful to understand the neural mechanism associated with visual sexual arousal in patients with gender disorder. PMID:26581912

  11. Brain Basics

    Medline Plus

    Full Text Available ... Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a middle-aged woman ... new memories. hypothalmic-pituitary-adrenal (HPA) axis —A brain-body ... stress. impulse —An electrical communication signal sent between neurons ...

  12. Active control for performance enhancement of electrically controlled rotor

    Institute of Scientific and Technical Information of China (English)

    Lu Yang; Wang Chao

    2015-01-01

    Electrically controlled rotor (ECR) system has the potential to enhance the rotor perfor-mance by applying higher harmonic flap inputs. In order to explore the feasibility and effectiveness for ECR performance enhancement using closed-loop control method, firstly, an ECR rotor perfor-mance analysis model based on helicopter flight dynamic model is established, which can reflect the performance characteristics of ECR helicopter at high advance ratio. Based on the simulation platform, an active control method named adaptive T-matrix algorithm is adopted to explore the feasibility and effectiveness for ECR performance enhancement. The simulation results verify the effectiveness of this closed-loop control method. For the sample ECR helicopter, about 3%rotor power reduction is obtained with the optimum 2/rev flap inputs at the advance ratio of 0.34. And through analyzing the distributions of attack of angle and drag in rotor disk, the underlying physical essence of ECR power reduction is cleared. Furthermore, the influence of the key control parameters, including convergence factor and weighting matrix, on the effectiveness of closed-loop control for ECR performance enhancement is explored. Some useful results are summarized, which can be used to direct the future active control law design of ECR performance enhancement.

  13. Buckling of Dielectric Elastomeric Plates for Electrically Active Microfludic Pumps

    Science.gov (United States)

    Holmes, Douglas; Tavakol, Behrouz; Bozlar, Michael; Froehlicher, Guillaume; Stone, Howard; Aksay, Ilhan

    2013-11-01

    Fluid flow can be directed and controlled by a variety of mechanisms within industrial and biological environments. Advances in microfluidic technology have required innovative ways to control fluid flow on a small scale, and the ability to actively control fluid flow within microfluidic devices is crucial for advancements in nanofluidics, biomedical fluidic devices, and digital microfluidics. In this work, we present a means for microfluidic control via the electrical actuation of thin, flexible valves within microfluidic channels. These structures consist of a dielectric elastomer confined between two compliant electrodes that can be actively and reversibly buckle out of plane to pump fluids from an applied voltage. The out-of-plane deformation can be quantified using two parameters: net change in surface area and the shape of deformation. Change in surface area depends on the voltage, while the deformation shape, which significantly affects the flow rate, is a function of voltage, and the pressure and volume of the chambers on each side of the thin plate. The use of solid electrodes enables a robust and reversible pumping mechanism that will have will enable advancements in rapid microfluidic diagnostics, adaptive materials, and artificial muscles.

  14. Active control for performance enhancement of electrically controlled rotor

    Directory of Open Access Journals (Sweden)

    Lu Yang

    2015-10-01

    Full Text Available Electrically controlled rotor (ECR system has the potential to enhance the rotor performance by applying higher harmonic flap inputs. In order to explore the feasibility and effectiveness for ECR performance enhancement using closed-loop control method, firstly, an ECR rotor performance analysis model based on helicopter flight dynamic model is established, which can reflect the performance characteristics of ECR helicopter at high advance ratio. Based on the simulation platform, an active control method named adaptive T-matrix algorithm is adopted to explore the feasibility and effectiveness for ECR performance enhancement. The simulation results verify the effectiveness of this closed-loop control method. For the sample ECR helicopter, about 3% rotor power reduction is obtained with the optimum 2/rev flap inputs at the advance ratio of 0.34. And through analyzing the distributions of attack of angle and drag in rotor disk, the underlying physical essence of ECR power reduction is cleared. Furthermore, the influence of the key control parameters, including convergence factor and weighting matrix, on the effectiveness of closed-loop control for ECR performance enhancement is explored. Some useful results are summarized, which can be used to direct the future active control law design of ECR performance enhancement.

  15. Mitochondrial monoaminoxidase activity and serotonin content in rat brain after whole-body γ-irradiation

    International Nuclear Information System (INIS)

    It is shown that γ-irradiation of albino rats with a dose of 30 Gy leads to pronounced phase changes in monoaminoxidase activity and serotonin content in rat brain at early times after whole-body exposure. These is a similar direction of changes in the activity of the enzyme and in the content of the substrate adequate to the latter

  16. Optical Topography of Evoked Brain Activity during Mental Tasks Involving Whole Number Operations

    Science.gov (United States)

    Ortiz, Enrique

    2014-01-01

    Students start to memorize arithmetic facts from early elementary school mathematics activities. Their fluency or lack of fluency with these facts could affect their efforts as they carry out mental calculations as adults. This study investigated participants' levels of brain activation and possible reasons for these levels as they solved…

  17. Recurrent activity in higher order, modality non-specific brain regions

    DEFF Research Database (Denmark)

    Lou, Hans Olav Christensen; Joensson, Morten; Biermann-Ruben, Katja;

    2011-01-01

    It has been proposed that the workings of the brain are mainly intrinsically generated recurrent neuronal activity, with sensory inputs as modifiers of such activity in both sensory and higher order modality non-specific regions. This is supported by the demonstration of recurrent neuronal activi...

  18. Electrical resistivity imaging of seismically active frontal Himalaya

    International Nuclear Information System (INIS)

    Complete text of publication follows. Given the sensitivity of resistivity to rheology, magnetotelluric measurement are undertaken to study deep crustal electrical structures and their possible linkage to the space-depth distribution of seismicity. Magnetotelluric investigations at Thirty three sites along Bijnaur-Mallari profile cutting across major litho tectonic units of Himalaya starting from Indo Ganges plain, Siwalik, Lesser, Higher Himalaya to Tethys Himalaya. Observing the low solar activity during the survey period each site was occupied for five days. Longer occupancy allowed estimation of impedance tensor at periods greater than 500 sec at most of the stations. However at few stations electric field recordings were very noisy perhaps due to unbalanced power network of the region. This is reflected in larger error bars in estimated impedance tensors. Skewness and other dimensionality parameter indicate the validity of 2-D regional model. Robust impedance decomposition for the period band of 10 Hz- 1000 sec of eleven stations reveal that EM strike coincides with the geologic fabric. Considering regional strike EM field were decoupled in TE, TM mode and then inverted for frequency dependent conductivity distribution along the profile. The most conspicuous feature of the inverted resistivity section is the low resistivity zone at a shallow depth of 10 km beneath the Indo-Gangetic Plains that dips down at a low-angle and extends as a continuous plane right up to the northern limit of the profile. The geometry of this layer is correlated with the basement thrust separating the top of the under thrusting Indian Plate from the over-riding sedimentary wedge of lesser Himalaya. The paper will discuss the tectonic and rheological significance of the results of resistivity imaging using magnetotelluric method along the profile from Bijnaur to Mallari.

  19. Mapping Metabolic Brain Activity in Three Models of Hepatic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Natalia Arias

    2013-01-01

    Full Text Available Cirrhosis is a common disease in Western countries. Liver failure, hyperammonemia, and portal hypertension are the main factors that contribute to human cirrhosis that frequently leads to a neuropsychiatric disorder known as hepatic encephalopathy (HE. In this study, we examined the differential contribution of these leading factors to the oxidative metabolism of diverse brain limbic system regions frequently involved in memory process by histochemical labelling of cytochrome oxidase (COx. We have analyzed cortical structures such as the infralimbic and prelimbic cotices, subcortical structures such as hippocampus and ventral striatum, at thalamic level like the anterodorsal, anteroventral, and mediodorsal thalamus, and, finally, the hypothalamus, where the mammillary nuclei (medial and lateral were measured. The severest alteration is found in the model that mimics intoxication by ammonia, followed by the thioacetamide-treated group and the portal hypertension group. No changes were found at the mammillary bodies for any of the experimental groups.

  20. Whitening of Background Brain Activity via Parametric Modeling

    Directory of Open Access Journals (Sweden)

    Nidal Kamel

    2007-01-01

    Full Text Available Several signal subspace techniques have been recently suggested for the extraction of the visual evoked potential signals from brain background colored noise. The majority of these techniques assume the background noise as white, and for colored noise, it is suggested to be whitened, without further elaboration on how this might be done. In this paper, we investigate the whitening capabilities of two parametric techniques: a direct one based on Levinson solution of Yule-Walker equations, called AR Yule-Walker, and an indirect one based on the least-squares solution of forward-backward linear prediction (FBLP equations, called AR-FBLP. The whitening effect of the two algorithms is investigated with real background electroencephalogram (EEG colored noise and compared in time and frequency domains.

  1. Concomitant treatment of brain metastasis with Whole Brain Radiotherapy [WBRT] and Temozolomide [TMZ] is active and improves Quality of Life

    International Nuclear Information System (INIS)

    Brain metastases (BM) represent one of the most frequent complications related to cancer, and their treatment continues to evolve. We have evaluated the activity, toxicity and the impact on Quality of Life (QoL) of a concomitant treatment with whole brain radiotherapy (WBRT) and Temozolomide (TMZ) in patients with brain metastases from solid tumors in a prospective Simon two stage study. Fifty-nine patients were enrolled and received 30 Gy WBRT with concomitant TMZ (75 mg/m2/day) for ten days, and subsequently TMZ (150 mg/m2/day) for up to six cycles. The primary end points were clinical symptoms and radiologic response. Five patients had a complete response, 21 patients had a partial response, while 18 patients had stable disease. The overall response rate (45%) exceeded the target activity per study design. The median time to progression was 9 months. Median overall survival was 13 months. The most frequent toxicities included grade 3 neutropenia (15%) and anemia (13%), and only one patient developed a grade 4 thrombocytopenia. Age, Karnofsky performance status, presence of extracranial metastases and the recursive partitioning analysis (RPA) were found to be predictive factors for response in patients. Overall survival (OS) and progression-free survival (PFS) were dependent on age and on the RPA class. We conclude that this treatment is well tolerated, with an encouraging objective response rate, and a significant improvement in quality of life (p < 0.0001) demonstrated by FACT-G analysis. All patients answered the questionnaires and described themselves as 'independent' and able to act on their own initiatives. Our study found a high level of satisfaction for QoL, this provides useful information to share with patients in discussions regarding chemotherapy treatment of these lesions

  2. Adaptive integration of local region information to detect fine-scale brain activity patterns

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With the rapid development of functional magnetic resonance imaging (fMRI) technology, the spatial resolution of fMRI data is continuously growing. This pro- vides us the possibility to detect the fine-scale patterns of brain activities. The es- tablished univariate and multivariate methods to analyze fMRI data mostly focus on detecting the activation blobs without considering the distributed fine-scale pat- terns within the blobs. To improve the sensitivity of the activation detection, in this paper, multivariate statistical method and univariate statistical method are com- bined to discover the fine-grained activity patterns. For one voxel in the brain, a local homogenous region is constructed. Then, time courses from the local ho- mogenous region are integrated with multivariate statistical method. Univariate statistical method is finally used to construct the interests of statistic for that voxel. The approach has explicitly taken into account the structures of both activity pat- terns and existing noise of local brain regions. Therefore, it could highlight the fine-scale activity patterns of the local regions. Experiments with simulated and real fMRI data demonstrate that the proposed method dramatically increases the sensitivity of detection of fine-scale brain activity patterns which contain the subtle information about experimental conditions.

  3. Oxytocin receptor gene and racial ingroup bias in empathy-related brain activity.

    Science.gov (United States)

    Luo, Siyang; Li, Bingfeng; Ma, Yina; Zhang, Wenxia; Rao, Yi; Han, Shihui

    2015-04-15

    The human brain responds more strongly to racial ingroup than outgroup individuals' pain. This racial ingroup bias varies across individuals and has been attributed to social experiences. What remains unknown is whether the racial ingroup bias in brain activity is associated with a genetic polymorphism. We investigated genetic associations of racial ingroup bias in the brain activity to racial ingroup and outgroup faces that received painful or non-painful stimulations by scanning A/A and G/G homozygous of the oxytocin receptor gene polymorphism (OXTR rs53576) using functional MRI. We found that G/G compared to A/A individuals showed stronger activity in the anterior cingulate and supplementary motor area (ACC/SMA) in response to racial ingroup members' pain, whereas A/A relative to G/G individuals exhibited greater activity in the nucleus accumbens (NAcc) in response to racial outgroup members' pain. Moreover, the racial ingroup bias in ACC/SMA activity positively predicted participants' racial ingroup bias in implicit attitudes and NAcc activity to racial outgroup individuals' pain negatively predicted participants' motivations to reduce racial outgroup members' pain. Our results suggest that the two variants of OXTR rs53576 are associated with racial ingroup bias in brain activities that are linked to implicit attitude and altruistic motivation, respectively. PMID:25637390

  4. On the Modeling of Electrical Effects Experienced by Space Explorers During Extra Vehicular Activities: Intracorporal Currents, Resistances, and Electric Fields

    Science.gov (United States)

    Cela, Carlos J.; Loizos, Kyle; Lazzi, Gianluca; Hamilton, Douglas; Lee, Raphael C.

    2011-01-01

    Recent research has shown that space explorers engaged in Extra Vehicular Activities (EVAs) may be exposed, under certain conditions, to undesired electrical currents. This work focuses on determining whether these undesired induced electrical currents could be responsible for involuntary neuromuscular activity in the subjects, possibly caused by either large diameter peripheral nerve activation or reflex activity from cutaneous afferent stimulation. An efficient multiresolution variant of the admittance method along with a millimeter-resolution model of a male human body were used to calculate induced electric fields, resistance between contact electrodes used to simulate the potential exposure condition, and currents induced in the human body model. Results show that, under realistic exposure conditions using a 15V source, current density magnitudes and total current injected are well above previously reported startle reaction thresholds. This indicates that, under the considered conditions, the subjects could experience involuntary motor response.

  5. Altered resting-state brain activity at functional MRI during automatic memory consolidation of fear conditioning.

    Science.gov (United States)

    Feng, Tingyong; Feng, Pan; Chen, Zhencai

    2013-07-26

    Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms of fear acquisition and extinction. However, the neural mechanism of automatic memory consolidation of fear conditioning is still unclear. To address this question, we measured brain activity following fear acquisition using resting-state functional magnetic resonance imaging (rs-fMRI). In the current study, we used a marker of fMRI, amplitude of low-frequency (0.01-0.08Hz) fluctuation (ALFF) to quantify the spontaneous brain activity. Brain activity correlated to fear memory consolidation was observed in parahippocampus, insula, and thalamus in resting-state. Furthermore, after acquired fear conditioning, compared with control group some brain areas showed ALFF increased in ventromedial prefrontal cortex (vmPFC) and anterior cingulate cortex (ACC) in the experimental group, whereas some brain areas showed decreased ALFF in striatal regions (caudate, putamen). Moreover, the change of ALFF in vmPFC was positively correlated with the subjective fear ratings. These findings suggest that the parahippocampus, insula, and thalamus are the neural substrates of fear memory consolidation. The difference in activity could be attributed to a homeostatic process in which the vmPFC and ACC were involved in the fear recovery process, and change of ALFF in vmPFC predicts subjective fear ratings. PMID:23726994

  6. Objectively Measured Physical Activity Is Associated with Brain Volumetric Measurements in Multiple Sclerosis

    Science.gov (United States)

    Klaren, Rachel E.; Hubbard, Elizabeth A.; Motl, Robert W.; Pilutti, Lara A.; Wetter, Nathan C.; Sutton, Bradley P.

    2015-01-01

    Background. Little is known about physical activity and its association with volumes of whole brain gray matter and white matter and deep gray matter structures in persons with multiple sclerosis (MS). Purpose. This study examined the association between levels of physical activity and brain volumetric measures from magnetic resonance imaging (MRI) in MS. Method. 39 persons with MS wore an accelerometer for a 7-day period and underwent a brain MRI. Normalized GM volume (NGMV), normalized WM volume (NWMV), and deep GM structures were calculated from 3D T1-weighted structural brain images. We conducted partial correlations (pr) controlling for demographic and clinical variables. Results. Moderate-to-vigorous physical activity (MVPA) was significantly associated with NGMV (pr = 0.370, p < 0.05), NWMV (pr = 0.433, p < 0.01), hippocampus (pr = 0.499, p < 0.01), thalamus (pr = 0.380, p < 0.05), caudate (pr = 0.539, p < 0.01), putamen (pr = 0.369, p < 0.05), and pallidum (pr = 0.498, p < 0.01) volumes, when controlling for sex, age, clinical course of MS, and Expanded Disability Status Scale score. There were no associations between sedentary and light physical activity with MRI outcomes. Conclusion. Our results provide the first evidence that MVPA is associated with volumes of whole brain GM and WM and deep GM structures that are involved in motor and cognitive functions in MS. PMID:26146460

  7. Objectively Measured Physical Activity Is Associated with Brain Volumetric Measurements in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Rachel E. Klaren

    2015-01-01

    Full Text Available Background. Little is known about physical activity and its association with volumes of whole brain gray matter and white matter and deep gray matter structures in persons with multiple sclerosis (MS. Purpose. This study examined the association between levels of physical activity and brain volumetric measures from magnetic resonance imaging (MRI in MS. Method. 39 persons with MS wore an accelerometer for a 7-day period and underwent a brain MRI. Normalized GM volume (NGMV, normalized WM volume (NWMV, and deep GM structures were calculated from 3D T1-weighted structural brain images. We conducted partial correlations (pr controlling for demographic and clinical variables. Results. Moderate-to-vigorous physical activity (MVPA was significantly associated with NGMV (pr=0.370, p<0.05, NWMV (pr=0.433, p<0.01, hippocampus (pr=0.499, p<0.01, thalamus (pr=0.380, p<0.05, caudate (pr=0.539, p<0.01, putamen (pr=0.369, p<0.05, and pallidum (pr=0.498, p<0.01 volumes, when controlling for sex, age, clinical course of MS, and Expanded Disability Status Scale score. There were no associations between sedentary and light physical activity with MRI outcomes. Conclusion. Our results provide the first evidence that MVPA is associated with volumes of whole brain GM and WM and deep GM structures that are involved in motor and cognitive functions in MS.

  8. Brain activation patterns at exhaustion in rats that differ in inherent exercise capacity.

    Science.gov (United States)

    Foley, Teresa E; Brooks, Leah R; Gilligan, Lori J; Burghardt, Paul R; Koch, Lauren G; Britton, Steven L; Fleshner, Monika

    2012-01-01

    In order to further understand the genetic basis for variation in inherent (untrained) exercise capacity, we examined the brains of 32 male rats selectively bred for high or low running capacity (HCR and LCR, respectively). The aim was to characterize the activation patterns of brain regions potentially involved in differences in inherent running capacity between HCR and LCR. Using quantitative in situ hybridization techniques, we measured messenger ribonuclease (mRNA) levels of c-Fos, a marker of neuronal activation, in the brains of HCR and LCR rats after a single bout of acute treadmill running (7.5-15 minutes, 15° slope, 10 m/min) or after treadmill running to exhaustion (15-51 minutes, 15° slope, initial velocity 10 m/min). During verification of trait differences, HCR rats ran six times farther and three times longer prior to exhaustion than LCR rats. Running to exhaustion significantly increased c-Fos mRNA activation of several brain areas in HCR, but LCR failed to show significant elevations of c-Fos mRNA at exhaustion in the majority of areas examined compared to acutely run controls. Results from these studies suggest that there are differences in central c-Fos mRNA expression, and potential brain activation patterns, between HCR and LCR rats during treadmill running to exhaustion and these differences could be involved in the variation in inherent running capacity between lines. PMID:23028992

  9. Brain activation patterns at exhaustion in rats that differ in inherent exercise capacity.

    Directory of Open Access Journals (Sweden)

    Teresa E Foley

    Full Text Available In order to further understand the genetic basis for variation in inherent (untrained exercise capacity, we examined the brains of 32 male rats selectively bred for high or low running capacity (HCR and LCR, respectively. The aim was to characterize the activation patterns of brain regions potentially involved in differences in inherent running capacity between HCR and LCR. Using quantitative in situ hybridization techniques, we measured messenger ribonuclease (mRNA levels of c-Fos, a marker of neuronal activation, in the brains of HCR and LCR rats after a single bout of acute treadmill running (7.5-15 minutes, 15° slope, 10 m/min or after treadmill running to exhaustion (15-51 minutes, 15° slope, initial velocity 10 m/min. During verification of trait differences, HCR rats ran six times farther and three times longer prior to exhaustion than LCR rats. Running to exhaustion significantly increased c-Fos mRNA activation of several brain areas in HCR, but LCR failed to show significant elevations of c-Fos mRNA at exhaustion in the majority of areas examined compared to acutely run controls. Results from these studies suggest that there are differences in central c-Fos mRNA expression, and potential brain activation patterns, between HCR and LCR rats during treadmill running to exhaustion and these differences could be involved in the variation in inherent running capacity between lines.

  10. In Vivo Mesoscopic Voltage-Sensitive Dye Imaging of Brain Activation

    Science.gov (United States)

    Tang, Qinggong; Tsytsarev, Vassiliy; Frank, Aaron; Wu, Yalun; Chen, Chao-Wei; Erzurumlu, Reha S.; Chen, Yu

    2016-04-01

    Functional mapping of brain activity is important in elucidating how neural networks operate in the living brain. The whisker sensory system of rodents is an excellent model to study peripherally evoked neural activity in the central nervous system. Each facial whisker is represented by discrete modules of neurons all along the pathway leading to the neocortex. These modules are called “barrels” in layer 4 of the primary somatosensory cortex. Their location (approximately 300–500 μm below cortical surface) allows for convenient imaging of whisker-evoked neural activity in vivo. Fluorescence laminar optical tomography (FLOT) provides depth-resolved fluorescence molecular information with an imaging depth of a few millimeters. Angled illumination and detection configurations can improve both resolution and penetration depth. We applied angled FLOT (aFLOT) to record 3D neural activities evoked in the whisker system of mice by deflection of a single whisker in vivo. A 100 μm capillary and a pair of microelectrodes were inserted to the mouse brain to test the capability of the imaging system. The results show that it is possible to obtain 3D functional maps of the sensory periphery in the brain. This approach can be broadly applicable to functional imaging of other brain structures.

  11. Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms.

    Science.gov (United States)

    Lim, L W; Prickaerts, J; Huguet, G; Kadar, E; Hartung, H; Sharp, T; Temel, Y

    2015-01-01

    Deep brain stimulation (DBS) is a promising therapy for patients with refractory depression. However, key questions remain with regard to which brain target(s) should be used for stimulation, and which mechanisms underlie the therapeutic effects. Here, we investigated the effect of DBS, with low- and high-frequency stimulation (LFS, HFS), in different brain regions (ventromedial prefrontal cortex, vmPFC; cingulate cortex, Cg; nucleus accumbens (NAc) core or shell; lateral habenula, LHb; and ventral tegmental area) on a variety of depressive-like behaviors using rat models. In the naive animal study, we found that HFS of the Cg, vmPFC, NAc core and LHb reduced anxiety levels and increased motivation for food. In the chronic unpredictable stress model, there was a robust depressive-like behavioral phenotype. Moreover, vmPFC HFS, in a comparison of all stimulated targets, produced the most profound antidepressant effects with enhanced hedonia, reduced anxiety and decreased forced-swim immobility. In the following set of electrophysiological and histochemical experiments designed to unravel some of the underlying mechanisms, we found that vmPFC HFS evoked a specific modulation of the serotonergic neurons in the dorsal raphe nucleus (DRN), which have long been linked to mood. Finally, using a neuronal mapping approach by means of c-Fos expression, we found that vmPFC HFS modulated a brain circuit linked to the DRN and known to be involved in affect. In conclusion, HFS of the vmPFC produced the most potent antidepressant effects in naive rats and rats subjected to stress by mechanisms also including the DRN. PMID:25826110

  12. Differences between chronological and brain age are related to education and self-reported physical activity.

    Science.gov (United States)

    Steffener, Jason; Habeck, Christian; O'Shea, Deirdre; Razlighi, Qolamreza; Bherer, Louis; Stern, Yaakov

    2016-04-01

    This study investigated the relationship between education and physical activity and the difference between a physiological prediction of age and chronological age (CA). Cortical and subcortical gray matter regional volumes were calculated from 331 healthy adults (range: 19-79 years). Multivariate analyses identified a covariance pattern of brain volumes best predicting CA (R(2) = 47%). Individual expression of this brain pattern served as a physiologic measure of brain age (BA). The difference between CA and BA was predicted by education and self-report measures of physical activity. Education and the daily number of flights of stairs climbed (FOSC) were the only 2 significant predictors of decreased BA. Effect sizes demonstrated that BA decreased by 0.95 years for each year of education and by 0.58 years for 1 additional FOSC daily. Effects of education and FOSC on regional brain volume were largely driven by temporal and subcortical volumes. These results demonstrate that higher levels of education and daily FOSC are related to larger brain volume than predicted by CA which supports the utility of regional gray matter volume as a biomarker of healthy brain aging. PMID:26973113

  13. Brain mapping

    Directory of Open Access Journals (Sweden)

    Blaž Koritnik

    2004-08-01

    Full Text Available Cartography of the brain ("brain mapping" aims to represent the complexities of the working brain in an understandable and usable way. There are four crucial steps in brain mapping: (1 acquiring data about brain structure and function, (2 transformation of data into a common reference, (3 visualization and interpretation of results, and (4 databasing and archiving. Electrophysiological and functional imaging methods provide information about function of the human brain. A prerequisite for multisubject, multidimensional and multimodal mapping is transformation of individual images to match a standard brain template. To produce brain maps, color, contours, and other visual cues are used to differentiate metabolic rates, electrical field potentials, receptor densities, and other attributes of structure or function. Databases are used to organize and archive data records. By relating the maps to cognitive functions and psychological models, brain mapping offers a prerequisite for the understanding of organizational principles of the human brain.

  14. Patterns of brain activity in normals and schizophrenics with positron emission tomography

    International Nuclear Information System (INIS)

    The authors investigated the functional interaction among brain areas under baseline and upon activation by a visual task to compare the response of normal subjects from the ones of chronic schizophrenics. Cerebral metabolic images were obtained on twelve healthy volunteers an eighteen schizophrenics with positron emission tomography and 11-C-Deoxyglucose. Correlation coefficients among the relative metabolic values (region of interest divided by the average of whole brain gray matter) of 11 brain regions; frontal, parietal, temporal and occipital left and right lobes, left and right basal ganglia and thalamus were computed for the baseline and for the task. Under baseline, normals showed more functional correlations than schizophrenics. Both groups showed a thalamo-occipital (positive) and thalamo-frontal (negative) interaction. The highest correlations among homologous brain areas were the frontal, occipital and basal ganglia

  15. Hierarchical clustering of brain activity during human nonrapid eye movement sleep

    Science.gov (United States)

    Boly, Mélanie; Perlbarg, Vincent; Marrelec, Guillaume; Schabus, Manuel; Laureys, Steven; Doyon, Julien; Pélégrini-Issac, Mélanie; Maquet, Pierre; Benali, Habib

    2012-01-01

    Consciousness is reduced during nonrapid eye movement (NREM) sleep due to changes in brain function that are still poorly understood. Here, we tested the hypothesis that impaired consciousness during NREM sleep is associated with an increased modularity of brain activity. Cerebral connectivity was quantified in resting-state functional magnetic resonance imaging times series acquired in 13 healthy volunteers during wakefulness and NREM sleep. The analysis revealed a modification of the hierarchical organization of large-scale networks into smaller independent modules during NREM sleep, independently from EEG markers of the slow oscillation. Such modifications in brain connectivity, possibly driven by sleep ultraslow oscillations, could hinder the brain's ability to integrate information and account for decreased consciousness during NREM sleep. PMID:22451917

  16. The use of dendrograms to describe the electrical activity of motoneurons underlying behaviors in leeches

    OpenAIRE

    Juárez-Hernández, León J.; Bisson, Giacomo; Torre, Vincent

    2013-01-01

    The present manuscript aims at identifying patterns of electrical activity recorded from neurons of the leech nervous system, characterizing specific behaviors. When leeches are at rest, the electrical activity of neurons and motoneurons is poorly correlated. When leeches move their head and/or tail, in contrast, action potential (AP) firing becomes highly correlated. When the head or tail suckers detach, specific patterns of electrical activity are detected. During elongation and contraction...

  17. Qualitative and quantitative measurement of human brain activity using pixel subtraction algorithm

    International Nuclear Information System (INIS)

    To develop an automated quantification program, which is called FALBA (Functional and Anatomical Labeling of Brain Activation), and to provide information on the brain centers, brain activity (%) and hemispheric lateralization index on the basis of a brain activation map obtained from functional MR imaging. The 3-dimensional activation MR images were processed by a statistical parametric mapping program (SPM99, The Wellcome Department of Cognitive Neurology, University College London, UK) and MRIcro software (www.micro.com). The 3-dimensional images were first converted into 2-dimensional sectional images, and then overlapped with the corresponding T1-weighted images. Then, the image dataset was extended to -59 mm to 83 mm with a 2 mm slice-gap, giving 73 axial images. By using a pixeI subtraction method, the differences in the R, G, B values between the T1-weighted images and the activation images were extracted, in order to produce black and white (B/W) differentiation images, in which each pixel is represented by 24-bit R, G, B true colors. Subsequently, another pixel differentiation method was applied to two template images, namely one functional and one anatomical index image, in order to generate functional and anatomical differentiation images containing regional brain activation information based on the Brodmann's and anatomical areas, respectively. In addition, the regional brain lateralization indices were automatically determined, in order to evaluate the hemispheric predominance, with the positive (+) and negative (-) indices showing left and right predominance, respectively. The manual counting method currently used is time consuming and has limited accuracy and reliability in the case of the activated cerebrocortical regions. The FALBA program we developed was 240 times faster than the manual counting method: -10 hours for manual accounting and -2.5 minutes for the FALBA program using a Pentium IV processor. Compared with the FALBA program, the manual

  18. Computation of induced electric field for the sacral nerve activation

    Science.gov (United States)

    Hirata, Akimasa; Hattori, Junya; Laakso, Ilkka; Takagi, Airi; Shimada, Takuo

    2013-11-01

    The induced electric field/current in the sacral nerve by stimulation devices for the treatment of bladder overactivity is investigated. Implanted and transcutaneous electrode configurations are considered. The electric field induced in the sacral nerve by the implanted electrode is largely affected by its surrounding tissues, which is attributable to the variation in the input impedance of the electrode. In contrast, the electric field induced by the transcutaneous electrode is affected by the tissue conductivity and anatomical composition of the body. In addition, the electric field induced in the subcutaneous fat in close proximity of the electrode is comparable with the estimated threshold electric field for pain. These computational findings explain the clinically observed weakness and side effect of each configuration. For the transcutaneous stimulator, we suggest that the electrode contact area be increased to reduce the induced electric field in the subcutaneous fat.

  19. Computation of induced electric field for the sacral nerve activation

    International Nuclear Information System (INIS)

    The induced electric field/current in the sacral nerve by stimulation devices for the treatment of bladder overactivity is investigated. Implanted and transcutaneous electrode configurations are considered. The electric field induced in the sacral nerve by the implanted electrode is largely affected by its surrounding tissues, which is attributable to the variation in the input impedance of the electrode. In contrast, the electric field induced by the transcutaneous electrode is affected by the tissue conductivity and anatomical composition of the body. In addition, the electric field induced in the subcutaneous fat in close proximity of the electrode is comparable with the estimated threshold electric field for pain. These computational findings explain the clinically observed weakness and side effect of each configuration. For the transcutaneous stimulator, we suggest that the electrode contact area be increased to reduce the induced electric field in the subcutaneous fat. (paper)

  20. Tacit Knowledge Capture and the Brain-Drain at Electrical Utilities

    Science.gov (United States)

    Perjanik, Nicholas Steven

    As a consequence of an aging workforce, electric utilities are at risk of losing their most experienced and knowledgeable electrical engineers. In this research, the problem was a lack of understanding of what electric utilities were doing to capture the tacit knowledge or know-how of these engineers. The purpose of this qualitative research study was to explore the tacit knowledge capture strategies currently used in the industry by conducting a case study of 7 U.S. electrical utilities that have demonstrated an industry commitment to improving operational standards. The research question addressed the implemented strategies to capture the tacit knowledge of retiring electrical engineers and technical personnel. The research methodology involved a qualitative embedded case study. The theories used in this study included knowledge creation theory, resource-based theory, and organizational learning theory. Data were collected through one time interviews of a senior electrical engineer or technician within each utility and a workforce planning or training professional within 2 of the 7 utilities. The analysis included the use of triangulation and content analysis strategies. Ten tacit knowledge capture strategies were identified: (a) formal and informal on-boarding mentorship and apprenticeship programs, (b) formal and informal off-boarding mentorship programs, (c) formal and informal training programs, (d) using lessons learned during training sessions, (e) communities of practice, (f) technology enabled tools, (g) storytelling, (h) exit interviews, (i) rehiring of retirees as consultants, and (j) knowledge risk assessments. This research contributes to social change by offering strategies to capture the know-how needed to ensure operational continuity in the delivery of safe, reliable, and sustainable power.

  1. Is Brain Activity during Action Observation Modulated by the Perceived Fairness of the Actor?

    Directory of Open Access Journals (Sweden)

    Joset A Etzel

    Full Text Available Perceiving other people's actions triggers activity in premotor and parietal areas, brain areas also involved in executing and sensing our own actions. Paralleling this phenomenon, observing emotional states (including pain in others is associated with activity in the same brain areas as activated when experiencing similar emotions directly. This emotion perception associated activity has been shown to be affected by the perceived fairness of the actor, and in-group membership more generally. Here, we examine whether action observation associated brain activity is also affected by the perceived social fairness of the actors. Perceived fairness was manipulated using an alternating iterated Prisoner's Dilemma game between the participant and two confederates, one of whom played fairly and the other unfairly. During fMRI scanning the participants watched movies of the confederates performing object-directed hand actions, and then performed hand actions themselves. Mass-univariate analysis showed that observing the actions triggered robust activation in regions associated with action execution, but failed to identify a strong modulation of this activation based on perceived fairness. Multivariate pattern analysis, however, identified clusters potentially carrying information about the perceived fairness of the actor in the middle temporal gyrus, left postcentral gyrus, right inferior parietal lobule, right middle cingulate cortex, right angular gyrus, and right superioroccipital gyrus. Despite being identified by a whole-brain searchlight analysis (and so without anatomical restriction, these clusters fall into areas frequently associated with action observation. We conclude that brain activity during action observation may be modulated by perceived fairness, but such modulation is subtle; robust activity is associated with observing the actions of both fair and unfair individuals.

  2. Is Brain Activity during Action Observation Modulated by the Perceived Fairness of the Actor?

    Science.gov (United States)

    Etzel, Joset A; Valchev, Nikola; Gazzola, Valeria; Keysers, Christian

    2016-01-01

    Perceiving other people's actions triggers activity in premotor and parietal areas, brain areas also involved in executing and sensing our own actions. Paralleling this phenomenon, observing emotional states (including pain) in others is associated with activity in the same brain areas as activated when experiencing similar emotions directly. This emotion perception associated activity has been shown to be affected by the perceived fairness of the actor, and in-group membership more generally. Here, we examine whether action observation associated brain activity is also affected by the perceived social fairness of the actors. Perceived fairness was manipulated using an alternating iterated Prisoner's Dilemma game between the participant and two confederates, one of whom played fairly and the other unfairly. During fMRI scanning the participants watched movies of the confederates performing object-directed hand actions, and then performed hand actions themselves. Mass-univariate analysis showed that observing the actions triggered robust activation in regions associated with action execution, but failed to identify a strong modulation of this activation based on perceived fairness. Multivariate pattern analysis, however, identified clusters potentially carrying information about the perceived fairness of the actor in the middle temporal gyrus, left postcentral gyrus, right inferior parietal lobule, right middle cingulate cortex, right angular gyrus, and right superioroccipital gyrus. Despite being identified by a whole-brain searchlight analysis (and so without anatomical restriction), these clusters fall into areas frequently associated with action observation. We conclude that brain activity during action observation may be modulated by perceived fairness, but such modulation is subtle; robust activity is associated with observing the actions of both fair and unfair individuals. PMID:26820995

  3. Evaluation of cerebral electrical activity and cardiac output after patent ductus arteriosus ligation in preterm infants.

    LENUS (Irish Health Repository)

    Leslie, A T F S

    2013-11-01

    To characterize and investigate the relationship between systemic blood flow and pre- and postoperative cerebral electrical activity in preterm neonates undergoing patent ductus arteriosus (PDA) ligation.

  4. Explorative investigation of biomarkers of brain damage and coagulation system activation in clinical stroke differentiation

    DEFF Research Database (Denmark)

    Undén, Johan; Strandberg, Karin; Malm, Jan;

    2009-01-01

    INTRODUCTION: A simple and accurate method of differentiating ischemic stroke and intracerebral hemorrhage (ICH) is potentially useful to facilitate acute therapeutic management. Blood measurements of biomarkers of brain damage and activation of the coagulation system may potentially serve as novel...... diagnostic tools for stroke subtypes. METHODS: Ninety-seven stroke patients were prospectively investigated in a multicenter design with blood levels of brain biomarkers S100B, neuron specific enolase (NSE), glial fibrillary acidic protein (GFAP) as well as a coagulation biomarker, activated protein C...... exploratory study indicated that blood levels of biomarkers GFAP and APC-PCI, prior to neuroimaging, may rule out ICH in a mixed stroke population....

  5. Modulation of IκB kinase autophosphorylation and activity following brain ischemia

    Institute of Scientific and Technical Information of China (English)

    SHENWan-Hua; ZHANGHun-Yi; 等

    2003-01-01

    ATIM:To investigate the effects of different antagonists on the alteration of IκB kinase(IKK)activity in rat hipoocampus folluwing global brain ischemia,METHODS:Using 4-vessel occlusion(4-VO)as brain ischemia model,IKK protein expression was examined by immunoblotting and immunoprecipitation,and IKK activity was assayed by in vitro kinase assay.RESULTS:There was no alteration of IKK protein expression following ischemia or ischemia/reperfusion different time points,but IKK activity reached its peak level at ischemia 30min.Pretreatment with N-methyl-D-aspartate(NMDA)receptor antagonist ketamine,non-NMDA receptor antagonist DNQX,or NFκB inhibitor PDTC decreased the IKK activity following brain ischemia 30min.The increase in substrate myelin basic protein(MBP)phosphorylation by IKK is associated with an increase in autophosphorylation of IKK,which can also be antagonized by ketamine,DNQX,and PDTC,CONCLUSION:NMDA receptor and non-NMDA receptor mediate the increase of IKK activity following global brain ischemia in rat hippocampus,which contributes to the alterations of expression and activity of downstream factor NF-κB.

  6. The time-course and spatial distribution of brain activity associated with sentence processing.

    Science.gov (United States)

    Brennan, Jonathan; Pylkkänen, Liina

    2012-04-01

    Sentence comprehension involves a host of highly interrelated processes, including syntactic parsing, semantic composition, and pragmatic inferencing. In neuroimaging, a primary paradigm for examining the brain bases of sentence processing has been to compare brain activity elicited by sentences versus unstructured lists of words. These studies commonly find an effect of increased activity for sentences in the anterior temporal lobes (aTL). Together with neuropsychological data, these findings have motivated the hypothesis that the aTL is engaged in sentence level combinatorics. Combinatoric processing during language comprehension, however, occurs within tens and hundreds of milliseconds, i.e., at a time-scale much faster than the temporal resolution of hemodynamic measures. Here, we examined the time-course of sentence-level processing using magnetoencephalography (MEG) to better understand the temporal profile of activation in this common paradigm and to test a key prediction of the combinatoric hypothesis: because sentences are interpreted incrementally, word-by-word, activity associated with basic linguistic combinatorics should be time-locked to word-presentation. Our results reveal increased anterior temporal activity for sentences compared to word lists beginning approximately 250 ms after word onset. We also observed increased activation in a network of other brain areas, extending across posterior temporal, inferior frontal, and ventral medial areas. These findings confirm a key prediction of the combinatoric hypothesis for the aTL and further elucidate the spatio-temporal characteristics of sentence-level computations in the brain. PMID:22248581

  7. Brain activity in advantageous and disadvantageous situations: implications for reward/punishment sensitivity in different situations.

    Directory of Open Access Journals (Sweden)

    Guangheng Dong

    Full Text Available OBJECTIVE: This study modeled win and lose trials in a simple gambling task to examine the effect of entire win-lose situations (WIN, LOSS, or TIE on single win/lose trials and related neural underpinnings. METHODS: The behavior responses and brain activities of 17 participants were recorded by an MRI scanner while they performed a gambling task. Different conditions were compared to determine the effect of the task on the behavior and brain activity of the participants. Correlations between brain activity and behavior were calculated to support the imaging results. RESULTS: In win trials, LOSS caused less intense posterior cingulate activity than TIE. In lose trials, LOSS caused more intense activity in the right superior temporal gyrus, bilateral superior frontal gyrus, bilateral anterior cingulate, bilateral insula cortex, and left orbitofrontal cortex than WIN and TIE. CONCLUSIONS: The experiences of the participants in win trials showed great similarity among different win-lose situations. However, the brain activity and behavior responses of the participants in lose trials indicated that they experienced stronger negative emotion in LOSS. The participants also showed an increased desire to win in LOSS than in WIN or TIE conditions.

  8. Watching TV news as a memory task -- brain activation and age effects

    Directory of Open Access Journals (Sweden)

    Frings Lars

    2010-08-01

    Full Text Available Abstract Background Neuroimaging studies which investigate brain activity underlying declarative memory processes typically use artificial, unimodal laboratory stimuli. In contrast, we developed a paradigm which much more closely approximates real-life situations of information encoding. Methods In this study, we tested whether ecologically valid stimuli - clips of a TV news show - are apt to assess memory-related fMRI activation in healthy participants across a wide age range (22-70 years. We contrasted brain responses during natural stimulation (TV news video clips with a control condition (scrambled versions of the same clips with reversed audio tracks. After scanning, free recall performance was assessed. Results The memory task evoked robust activation of a left-lateralized network, including primarily lateral temporal cortex, frontal cortex, as well as the left hippocampus. Further analyses revealed that - when controlling for performance effects - older age was associated with greater activation of left temporal and right frontal cortex. Conclusion We demonstrate the feasibility of assessing brain activity underlying declarative memory using a natural stimulation paradigm with high ecological validity. The preliminary result of greater brain activation with increasing age might reflect an attempt to compensate for decreasing episodic memory capacity associated with aging.

  9. Regional Brain Activation during Meditation Shows Time and Practice Effects: An Exploratory FMRI Study

    Directory of Open Access Journals (Sweden)

    E. Baron Short

    2010-01-01

    Full Text Available Meditation involves attentional regulation and may lead to increased activity in brain regions associated with attention such as dorsal lateral prefrontal cortex (DLPFC and anterior cingulate cortex (ACC. Using functional magnetic resonance imaging, we examined whether DLPFC and ACC were activated during meditation. Subjects who meditate were recruited and scanned on a 3.0 Tesla scanner. Subjects meditated for four sessions of 12 min and performed four sessions of a 6 min control task. Individual and group t-maps were generated of overall meditation response versus control response and late meditation response versus early meditation response for each subject and time courses were plotted. For the overall group (n = 13, and using an overall brain analysis, there were no statistically significant regional activations of interest using conservative thresholds. A region of interest analysis of the entire group time courses of DLPFC and ACC were statistically more active throughout meditation in comparison to the control task. Moreover, dividing the cohort into short (n = 8 and long-term (n = 5 practitioners (>10 years revealed that the time courses of long-term practitioners had significantly more consistent and sustained activation in the DLPFC and the ACC during meditation versus control in comparison to short-term practitioners. The regional brain activations in the more practised subjects may correlate with better sustained attention and attentional error monitoring. In summary, brain regions associated with attention vary over the time of a meditation session and may differ between long- and short-term meditation practitioners.

  10. Hierarchical brain networks active in approach and avoidance goal pursuit

    Directory of Open Access Journals (Sweden)

    Jeffrey Martin Spielberg

    2013-06-01

    Full Text Available Effective approach/avoidance goal pursuit is critical for attaining long-term health and well-being. Research on the neural correlates of key goal pursuit processes (e.g., motivation has long been of interest, with lateralization in prefrontal cortex being a particularly fruitful target of investigation. However, this literature has often been limited by a lack of spatial specificity and has not delineated the precise aspects of approach/avoidance motivation involved. Additionally, the relationships among brain regions (i.e., network connectivity vital to goal pursuit remain largely unexplored. Specificity in location, process, and network relationship is vital for moving beyond gross characterizations of function and identifying the precise cortical mechanisms involved in motivation. The present paper integrates research using more spatially specific methodologies (e.g., functional magnetic resonance imaging with the rich psychological literature on approach/avoidance to propose an integrative network model that takes advantage of the strengths of each of these literatures.

  11. The origin of net electric currents in solar active regions

    CERN Document Server

    Dalmasse, K; Démoulin, P; Kliem, B; Török, T; Pariat, E

    2015-01-01

    There is a recurring question in solar physics about whether or not electric currents are neutralized in active regions (ARs). This question was recently revisited using three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetic flux emergence into the solar atmosphere. Such simulations showed that flux emergence can generate a substantial net current in ARs. Another source of AR currents are photospheric horizontal flows. Our aim is to determine the conditions for the occurrence of net vs. neutralized currents with this second mechanism. Using 3D MHD simulations, we systematically impose line-tied, quasi-static, photospheric twisting and shearing motions to a bipolar potential magnetic field. We find that such flows: (1) produce both {\\it direct} and {\\it return} currents, (2) induce very weak compression currents - not observed in 2.5D - in the ambient field present in the close vicinity of the current-carrying field, and (3) can generate force-free magnetic fields with a net current...

  12. The active electric sense of weakly electric fish: from electric organ discharge to sensory processing and behaviour

    OpenAIRE

    Krahe Rüdiger

    2016-01-01

    Sensory systems have been shaped by evolution to extract information that is relevant for decision making. In order to understand the mechanisms used by sensory systems for filtering the incoming stream of sensory input, it is important to have a quantitative understanding of the natural sensory scenes that are to be processed. Weakly electric fish lead a rather cryptic nocturnal life in often turbid tropical rainforest streams. They produce electric discharges and sense perturbations of thei...

  13. Brain activity modification produced by a single radioelectric asymmetric brain stimulation pulse: a new tool for neuropsychiatric treatments. Preliminary fMRI study

    Directory of Open Access Journals (Sweden)

    Castagna A

    2011-10-01

    Full Text Available Salvatore Rinaldi1,2, Vania Fontani1, Alessandro Castagna1 1Department of Neuro-Psycho-Physio Pathology, Rinaldi Fontani Institute, Florence, Italy; 2Medical School of Occupational Medicine, University of Florence, Florence, Italy Purpose: Radioelectric asymmetric brain stimulation technology with its treatment protocols has shown efficacy in various psychiatric disorders. The aim of this work was to highlight the mechanisms by which these positive effects are achieved. The current study was conducted to determine whether a single 500-millisecond radioelectric asymmetric conveyor (REAC brain stimulation pulse (BSP, applied to the ear, can effect a modification of brain activity that is detectable using functional magnetic resonance imaging (fMRI. Methods: Ten healthy volunteers, six females and four males, underwent fMRI during a simple finger-tapping motor task before and after receiving a single 500-millisecond REAC-BSP. Results: The fMRI results indicate that the average variation in task-induced encephalic activation patterns is lower in subjects following the single REAC pulse. Conclusion: The current report demonstrates that a single REAC-BSP is sufficient to modulate brain activity in awake subjects, able to be measured using fMRI. These initial results open new perspectives into the understanding of the effects of weak and brief radio pulses upon brain activity, and provide the basis for further indepth studies using REAC-BSP and fMRI. Keywords: fMRI, brain stimulation, brain modulation, REAC, neuropsychiatric treatments

  14. NOX Activity in Brain Aging: Exacerbation by High Fat Diet

    OpenAIRE

    Bruce-Keller, Annadora J.; White, Christy L.; Gupta, Sunita; Knight, Alecia G.; Pistell, Paul J.; Ingram, Donald K.; Morrison, Christopher D.; Keller, Jeffrey N.

    2010-01-01

    This study describes how age and high fat diet affect the profile of NADPH oxidase (NOX). Specifically, NOX activity and subunit expression were evaluated in the frontal cerebral cortex of 7-, 16-, and 24-month old mice following a 4-month exposure to either Western diet (WD, 41% calories from fat) or very high fat lard diet (VHFD, 60% calories from fat). Data reveal a significant effect of age in on NOX activity, and show that NOX activity was only increased by VHFD, and only in 24-month old...

  15. Simplified methods for in vivo measurement of acetylcholinesterase activity in rodent brain

    International Nuclear Information System (INIS)

    Simplified methods for in vivo studies of acetylcholinesterase (AChE) activity in rodent brain were evaluated using N-[11C]methylpiperidinyl propionate ([11C]PMP) as an enzyme substrate. Regional mouse brain distributions were determined at 1 min (representing initial brain uptake) and 30 min (representing trapped product) after intravenous [11C]PMP administration. Single time point tissue concentrations (percent injected dose/gram at 30 min), tissue concentration ratios (striatum/cerebellum and striatum/cortex ratios at 30 min), and regional tissue retention fractions (defined as percent injected dose 30 min/percent injected dose 1 min) were evaluated as measures of AChE enzymatic activity in mouse brain. Studies were carried out in control animals and after dosing with phenserine, a selective centrally active AChE inhibitor; neostigmine, a peripheral cholinesterase inhibitor; and a combination of the two drugs. In control and phenserine-treated animals, absolute tissue concentrations and regional retention fractions provide good measures of dose-dependent inhibition of brain AChE; tissue concentration ratios, however, provide erroneous conclusions. Peripheral inhibition of cholinesterases, which changes the blood pharmacokinetics of the radiotracer, diminishes the sensitivity of all measures to detect changes in central inhibition of the enzyme. We conclude that certain simple measures of AChE hydrolysis rates for [11C]PMP are suitable for studies where alterations of the peripheral blood metabolism of the tracer are kept to a minimum

  16. Brain's reward circuits mediate itch relief. a functional MRI study of active scratching.

    Directory of Open Access Journals (Sweden)

    Alexandru D P Papoiu

    Full Text Available Previous brain imaging studies investigating the brain processing of scratching used an exogenous intervention mimicking scratching, performed not by the subjects themselves, but delivered by an investigator. In real life, scratching is a conscious, voluntary, controlled motor response to itching, which is directed to the perceived site of distress. In this study we aimed to visualize in real-time by brain imaging the core mechanisms of the itch-scratch cycle when scratching was performed by subjects themselves. Secondly, we aimed to assess the correlations between brain patterns of activation and psychophysical ratings of itch relief or pleasurability of scratching. We also compared the patterns of brain activity evoked by self-scratching vs. passive scratching. We used a robust tridimensional Arterial Spin Labeling fMRI technique that is less sensitive to motion artifacts: 3D gradient echo and spin echo (GRASE--Propeller. Active scratching was accompanied by a higher pleasurability and induced a more pronounced deactivation of the anterior cingulate cortex and insula, in comparison with passive scratching. A significant involvement of the reward system including the ventral tegmentum of the midbrain, coupled with a mechanism deactivating the periaqueductal gray matter (PAG, suggests that itch modulation operates in reverse to the mechanism known to suppress pain. Our findings not only confirm a role for the central networks processing reward in the pleasurable aspects of scratching, but also suggest they play a role in mediating itch relief.

  17. Anticonvulsant action of gamma-irradiated diazepam with correlation to certain brain amino acids and electrocorticogram activity in experimental animals

    International Nuclear Information System (INIS)

    The effect of sterilization by gamma irradiation (215 KGy) of diazepam on is anticonvulsant action, on norma and depleted cerebral gamma aminobutyric acid (GABA), on glutamic acid, as well as electrocorticogram activity (ECOG) was determined in the experimental animals. For the evaluation of the anticonvulsant action of either diazepam (D) or irradiated diazepam (ID), pentyl ene tetrazole seizure test, was used and the protective dose 50 (PD50) was determined in adult male mice. GABA, the main central inhibitory transmitter which is implicated in the mechanism of the anticonvulsant action of D and its precursor glutamic acid, were electrophoretically separated and spectrophotometrical evaluated. Moreover, brain electrical activity was recorded using an electroencephalograph apparatus. Although the PD50 of ID as well the effect on normal brain cerebral GABA and glutamic acids did not differ significantly from that of D, yet there was certain variabilities. Thus, the effect of D was about 4 times more potent than the ID on elevating depleted cerebral GABA. Also, electrocorticogram records demonstrated that D produced a slight inhibition while ID induced a decrease in B rhythm with remarkable in the amplitude of ECOG waves. The same pattern of effects were obtained when D or ID were used in combination with INH (250 mg kg-1). 1 tab. 1 fig

  18. SHIFTING OF ACTIVATION CENTER IN THE BRAIN DURING MUSCLE FATIGUE: AN EXPLANATION OF MINIMAL CENTRAL FATIGUE?

    OpenAIRE

    Liu, Jing Z; Lewandowski, Beth; Karakasis, Chris; Yao, Bing; Siemionow, Vlodek; Sahgal, Vinod; Yue, Guang H

    2007-01-01

    Accumulating evidence suggests that the overall level of cortical activation controlling a voluntary motor task that leads to significant muscle fatigue does not decrease as much as the activation level of the motoneuron pool projecting to the muscle. One possible explanation for this “muscle fatigue>cortical fatigue” phenomenon is that the brain is an organ with built-in redundancies: it has multiple motor centers and parallel pathways, and the center of activation may shift from one locatio...

  19. Differential Brain Activation in Anorexia Nervosa to Fat and Thin Words During a Stroop Task

    OpenAIRE

    Redgrave, Graham W.; Bakker, Arnold; Nicholas T Bello; Caffo, Brian S.; Coughlin, Janelle W.; Guarda, Angela S.; McEntee, Julie E.; Pekar, James J.; Reinblatt, Shauna P; Verduzco, Guillermo; Moran, Timothy H.

    2008-01-01

    We measured brain activation in six anorexia nervosa patients and six healthy controls performing a novel emotional Stroop task using Fat, Thin, and Neutral words, and words made of XXXXs. Reaction times increased in the patient group in Thin and Fat conditions. In the Thin-XXXX contrast, patients showed greater activation than controls at the junction of left insula, frontal and temporal lobes and in left middle and medial frontal gyri. In the Fat-XXXX contrast, controls showed greater activ...

  20. Rapid eye movement sleep deprivation induces an increase in acetylcholinesterase activity in discrete rat brain regions

    Directory of Open Access Journals (Sweden)

    Benedito M.A.C.

    2001-01-01

    Full Text Available Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei are involved in the generation of rapid eye movement (REM sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase, the enzyme which inactivates acetylcholine (Ach in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1 were assayed photometrically. The results (mean ± SD obtained showed a statistically significant (Student t-test increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025 and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05. Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05 and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05 were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity

  1. Decoding attentional shifts from motor preparatory brain activity

    OpenAIRE

    Jeff Bednark

    2015-01-01

    Background: According to the premotor theory of attention, movement preparation and shifts of attention are intrinsically linked because they are controlled by shared sensorimotor mechanisms. However, the precise nature of the coupling between attention and voluntary movement preparation is unclear. In the present study, we used multivariate pattern analysis (MVPA) of fMRI activity to investigate whether shifts of attention towards an effector are encoded in the pre-movement activity. Meth...

  2. Brain-Activity-Driven Real-Time Music Emotive Control

    OpenAIRE

    Giraldo, Sergio; Ramirez, Rafael

    2013-01-01

    Active music listening has emerged as a study field that aims to enable listeners to interactively control music. Most of active music listening systems aim to control music aspects such as playback, equalization, browsing, and retrieval, but few of them aim to control expressive aspects of music to convey emotions. In this study our aim is to enrich the music listening experience by allowing listeners to control expressive parameters in music performances using their perceived emotional stat...

  3. Electrical brain responses in language-impaired children reveal grammar-specific deficits.

    Directory of Open Access Journals (Sweden)

    Elisabeth Fonteneau

    Full Text Available BACKGROUND: Scientific and public fascination with human language have included intensive scrutiny of language disorders as a new window onto the biological foundations of language and its evolutionary origins. Specific language impairment (SLI, which affects over 7% of children, is one such disorder. SLI has received robust scientific attention, in part because of its recent linkage to a specific gene and loci on chromosomes and in part because of the prevailing question regarding the scope of its language impairment: Does the disorder impact the general ability to segment and process language or a specific ability to compute grammar? Here we provide novel electrophysiological data showing a domain-specific deficit within the grammar of language that has been hitherto undetectable through behavioural data alone. METHODS AND FINDINGS: We presented participants with Grammatical(G-SLI, age-matched controls, and younger child and adult controls, with questions containing syntactic violations and sentences containing semantic violations. Electrophysiological brain responses revealed a selective impairment to only neural circuitry that is specific to grammatical processing in G-SLI. Furthermore, the participants with G-SLI appeared to be partially compensating for their syntactic deficit by using neural circuitry associated with semantic processing and all non-grammar-specific and low-level auditory neural responses were normal. CONCLUSIONS: The findings indicate that grammatical neural circuitry underlying language is a developmentally unique system in the functional architecture of the brain, and this complex higher cognitive system can be selectively impaired. The findings advance fundamental understanding about how cognitive systems develop and all human language is represented and processed in the brain.

  4. Electric passenger and goods vehicles: A review of UK activities

    International Nuclear Information System (INIS)

    The production of electric-powered vehicles has been reduced to only a few hundred, after several thousand had been produced in Great Britain during the past five years. In the framework of this article, the different components of electric-powered vehicles are being examined regarding the economical situation: such as the vehicle itself, the batteries, the motor and the vehicle control. (BWI)

  5. Learned EEG-based regulation of motor-related brain oscillations during application of transcranial electric currents: feasibility and limitations

    Directory of Open Access Journals (Sweden)

    Surjo R Soekadar

    2014-03-01

    Full Text Available Objective: Transcranial direct current stimulation (tDCS improves motor learning and can influence emotional processing or attention. However, it remained unclear whether learned electroencephalography (EEG-based brain-machine interface (BMI control during tDCS is feasible and how application of transcranial electric currents during BMI control would interfere with feature-extraction of physiological brain signals. Here we tested this combination and evaluated stimulation-dependent artifacts across different EEG frequencies and stability of motor imagery-based BMI control. Approach: Ten healthy volunteers were invited to two BMI-sessions, each comprising two 60-trial blocks. During the trials, modulation of mu-rhythms (8-15Hz associated with motor imagery recorded over C4 was translated into online cursor movements on a computer screen. During block 2, either sham (session A or anodal tDCS (session B was applied at 1mA with the stimulation electrode placed 1cm anterior of C4. Main results: tDCS was associated with a significant signal power increase in the lower frequencies most evident in the signal spectrum of the EEG channel closest to the stimulation electrode. Stimulation-dependent signal power increase exhibited a decay of 12dB per decade, leaving frequencies above 9Hz unaffected. Analysis of BMI control performance did not indicate a difference between blocks and tDCS conditions. Conclusion: Application of tDCS during learned EEG-based self-regulation of brain oscillations above 9Hz is feasible and safe, and might improve applicability of BMI systems in patient populations.

  6. Brain activation during phonological and semantic processing of Chinese characters in deaf signers

    Science.gov (United States)

    Li, Yanyan; Peng, Danling; Liu, Li; Booth, James R.; Ding, Guosheng

    2014-01-01

    Previous studies found altered brain function in deaf individuals reading alphabetic orthographies. However, it is not known whether similar alterations of brain function are characteristic of non-alphabetic writing systems and whether alterations are specific to certain kinds of lexical tasks. Here we examined differences in brain activation between Chinese congenitally deaf individuals (CD) and hearing controls (HC) during character reading tasks requiring phonological and semantic judgments. For both tasks, we found that CD showed less activation than HC in left inferior frontal gyrus, but greater activation in several right hemisphere regions including inferior frontal gyrus, angular gyrus, and inferior temporal gyrus. Although many group differences were similar across tasks, greater activation in right middle frontal gyrus was more pronounced for the rhyming compared to the meaning task. Finally, within the deaf individuals better performance on the rhyming task was associated with less activation in right inferior parietal lobule and angular gyrus. Our results in Chinese CD are broadly consistent with previous studies in alphabetic languages suggesting greater engagement of inferior frontal gyrus and inferior parietal cortex for reading that is largely independent of task, with the exception of right middle frontal gyrus for phonological processing. The brain behavior correlations potentially indicate that CD that more efficiently use the right hemisphere are better readers. PMID:24795593

  7. Brain antioxidant markers, cognitive performance and acetylcholinesterase activity of rats: efficiency of Sonchus asper

    Directory of Open Access Journals (Sweden)

    Khan Rahmat

    2012-05-01

    Full Text Available Abstract Background Sonchus asper (SA is traditionally used as a folk medicine to treat mental disorders in Pakistan. The aim of this study was to investigate the effect of polyphenolic rich methanolic fraction of SA on cognitive performance, brain antioxidant activities and acetylcholinesterase activity in male rats. Methods 30 male Sprague–Dawley rats were equally divided into three groups in this study. Animals of group I (control received saline (vehicle, group II received SA (50 mg/kg body weight (b.w., and group III treated with SA (100 mg/kg b.w., orally in dimethyl sulphoxide (DMSO for 7 days. The effect of SA was checked on rat cognitive performance, brain antioxidatant and acetylcholinesterase activities. Evaluation of learning and memory was assessed by a step-through a passive avoidance test on day 6 after two habituation trials and an initial acquisition trial on day 5. Antioxidant potential was determined by measuring activities of superoxide dismutase (SOD, catalase (CAT, contents of thiobarbituric acid reactive substances (TBARS and reduced glutathione (GSH in whole-brain homogenates. Acetylcholinesterase (AChE activity was determined by the colorimetric method. Results Results showed that 100 mg/kg b.w., SA treated rats exhibited a significant improvement in learning and memory (step-through latency time. SA administration reduced lipid peroxidation products and elevated glutathione levels in the SA100-treated group. Furthermore, salt and detergent soluble AChE activity was significantly decreased in both SA-treated groups. Short-term orally supplementation of SA showed significant cognitive enhancement as well as elevated brain antioxidant enzymes and inhibited AChE activity. Conclusion These findings stress the critical impact of Sonchus asper bioactive components on brain function.

  8. Bovine growth hormone transgenic mice display alterations in locomotor activity and brain monoamine neurochemistry.

    Science.gov (United States)

    Söderpalm, B; Ericson, M; Bohlooly, M; Engel, J A; Törnell, J

    1999-12-01

    Recent clinical and experimental data indicate a role for GH in mechanisms related to anhedonia/hedonia, psychic energy, and reward. In the present study we have investigated whether bovine GH (bGH) transgenic mice and nontransgenic controls differ in spontaneous locomotor activity, a behavioral response related to brain dopamine (DA) and reward mechanisms, as well as in locomotor activity response to drugs of abuse known to interfere with brain DA systems. The animals were tested for locomotor activity once a week for 4 weeks. When first exposed to the test apparatus, bGH transgenic animals displayed significantly more locomotor activity than controls during the entire registration period (1 h). One week later, after acute pretreatment with saline, the two groups did not differ in locomotor activity, whereas at the third test occasion, bGH mice were significantly more stimulated by d-amphetamine (1 mg/kg, ip) than controls. At the fourth test, a tendency for a larger locomotor stimulatory effect of ethanol (2.5 g/kg, ip) was observed in bGH transgenic mice. bGH mice displayed increased tissue levels of serotonin and 5-hydroxyindoleacetic acid in several brain regions, decreased DA levels in the brain stem, and decreased levels of the DA metabolite 3,4-dihydroxyphenylacetic acid in the mesencephalon and diencephalon, compared with controls. In conclusion, bGH mice display more spontaneous locomotor activity than nontransgenic controls in a novel environment and possibly also a disturbed habituation process. The finding that bGH mice were also more sensitive to d-amphetamine-induced locomotor activity may suggest that the behavioral differences observed are related to differences in brain DA systems, indicating a hyperresponsiveness of these systems in bGH transgenic mice. These findings may constitute a neurochemical basis for the reported psychic effects of GH in humans. PMID:10579325

  9. Brain activity related to integrative processes in visual object recognition

    DEFF Research Database (Denmark)

    Gerlach, Christian; Aaside, C T; Humphreys, G W;

    2002-01-01

    involvement of re-entrant activation from stored structural knowledge. Evidence in favor of this interpretation comes from the additional finding that activation of the anterior part of the left fusiform gyrus and a more anterior part of the right inferior temporal gyrus, areas previously associated with......We report evidence from a PET activation study that the inferior occipital gyri (likely to include area V2) and the posterior parts of the fusiform and inferior temporal gyri are involved in the integration of visual elements into perceptual wholes (single objects). Of these areas, the fusiform and...... perceptual and memorial processes can be dissociated on both functional and anatomical grounds. No evidence was obtained for the involvement of the parietal lobes in the integration of single objects....

  10. Linking brain-wide multivoxel activation patterns to behaviour: Examples from language and math.

    Science.gov (United States)

    Raizada, Rajeev D S; Tsao, Feng-Ming; Liu, Huei-Mei; Holloway, Ian D; Ansari, Daniel; Kuhl, Patricia K

    2010-05-15

    A key goal of cognitive neuroscience is to find simple and direct connections between brain and behaviour. However, fMRI analysis typically involves choices between many possible options, with each choice potentially biasing any brain-behaviour correlations that emerge. Standard methods of fMRI analysis assess each voxel individually, but then face the problem of selection bias when combining those voxels into a region-of-interest, or ROI. Multivariate pattern-based fMRI analysis methods use classifiers to analyse multiple voxels together, but can also introduce selection bias via data-reduction steps as feature selection of voxels, pre-selecting activated regions, or principal components analysis. We show here that strong brain-behaviour links can be revealed without any voxel selection or data reduction, using just plain linear regression as a classifier applied to the whole brain at once, i.e. treating each entire brain volume as a single multi-voxel pattern. The brain-behaviour correlations emerged despite the fact that the classifier was not provided with any information at all about subjects' behaviour, but instead was given only the neural data and its condition-labels. Surprisingly, more powerful classifiers such as a linear SVM and regularised logistic regression produce very similar results. We discuss some possible reasons why the very simple brain-wide linear regression model is able to find correlations with behaviour that are as strong as those obtained on the one hand from a specific ROI and on the other hand from more complex classifiers. In a manner which is unencumbered by arbitrary choices, our approach offers a method for investigating connections between brain and behaviour which is simple, rigorous and direct. PMID:20132896

  11. Brain areas activated by uncertain reward-based decision-making in healthy volunteers

    Institute of Scientific and Technical Information of China (English)

    Zongjun Guo; Juan Chen; Shien Liu; Yuhuan Li; Bo Sun; Zhenbo Gao

    2013-01-01

    Reward-based decision-making has been found to activate several brain areas, including the ven-trolateral prefrontal lobe, orbitofrontal cortex, anterior cingulate cortex, ventral striatum, and meso-limbic dopaminergic system. In this study, we observed brain areas activated under three degrees of uncertainty in a reward-based decision-making task (certain, risky, and ambiguous). The tasks were presented using a brain function audiovisual stimulation system. We conducted brain scans of 15 healthy volunteers using a 3.0T magnetic resonance scanner. We used SPM8 to analyze the location and intensity of activation during the reward-based decision-making task, with respect to the three conditions. We found that the orbitofrontal cortex was activated in the certain reward con-dition, while the prefrontal cortex, precentral gyrus, occipital visual cortex, inferior parietal lobe, ce-rebel ar posterior lobe, middle temporal gyrus, inferior temporal gyrus, limbic lobe, and midbrain were activated during the ‘risk’ condition. The prefrontal cortex, temporal pole, inferior temporal gyrus, occipital visual cortex, and cerebel ar posterior lobe were activated during ambiguous deci-sion-making. The ventrolateral prefrontal lobe, frontal pole of the prefrontal lobe, orbitofrontal cortex, precentral gyrus, inferior temporal gyrus, fusiform gyrus, supramarginal gyrus, inferior parietal lo-bule, and cerebel ar posterior lobe exhibited greater activation in the‘risk’ than in the‘certain’ con-dition (P<0.05). The frontal pole and dorsolateral region of the prefrontal lobe, as wel as the ce-rebel ar posterior lobe, showed significantly greater activation in the ‘ambiguous’ condition com-pared to the ‘risk’ condition (P < 0.05). The prefrontal lobe, occipital lobe, parietal lobe, temporal lobe, limbic lobe, midbrain, and posterior lobe of the cerebel um were activated during deci-sion-making about uncertain rewards. Thus, we observed different levels and regions of

  12. Brain in Space: A Teacher's Guide with Activities for Neuroscience

    Science.gov (United States)

    Sullivan, Walter W., Jr.

    1998-01-01

    The lessons and activities in this guide will engage your students in the excitement of space life science investigations after the Neurolab Spacelab mission. It is the authors' goal that the information in this guide will inspire both you and your students to become interested and active participants in this space mission. Few experiences can compare with the excitement and thrill of watching a Shuttle launch. This guide provides an opportunity for you and your students to go one step further by conducting the experiments on Earth that are relevent to the research conducted in space.

  13. The relationship between inflammatory activity and brain atrophy in natalizumab treated patients

    Energy Technology Data Exchange (ETDEWEB)

    Magraner, M., E-mail: majomagbe@ono.com [Multiple Sclerosis Unit, Neurology Service, Hospital Universitari i Politecnic La Fe, Bulevar Sur s/n, 46026 Valencia (Spain); Coret, F., E-mail: coret_fra@gva.es [Multiple Sclerosis Unit, Neurology Service, Hospital Clinic de Valencia, Avda Blasco Ibanez 17, 46010 Valencia (Spain); Casanova, B., E-mail: Casanova_bon@gva.es [Multiple Sclerosis Unit, Neurology Service, Hospital Universitari i Politecnic La Fe, Bulevar Sur s/n, 46026 Valencia (Spain)

    2012-11-15

    Objective: To assess the evolution of brain atrophy and its relationship with inflammatory activity in RRMS patients treated with natalizumab. Methods: Eighteen RRMS patients were prospectively followed up for 18 months after starting natalizumab therapy. Patients were monitored monthly and assessed for signs of relapses, adverse events or disability increase. MRI scans were performed before starting natalizumab and every six months. Cross-sectional T2 lesion volume (T2LV) and the normalized brain volume (NBV) at baseline and 18 months MRI scans were calculated using the Steronauta{sup Registered-Sign} and SIENAx softwares, respectively. Longitudinal Percentage of Brain Volume Change (PBVC) was estimated with SIENA. Linkage between inflammatory activity and brain atrophy was studied. Results: Natalizumab reduced ARR by 67% and cumulative CEL by 87.5%. T2 lesion volume decreased from 1000 mm{sup 3}, to 960 mm{sup 3} (p = 0.006) and NBV decreased from 1.55 Multiplication-Sign 10{sup 5} mm{sup 3} to 1.42 Multiplication-Sign 10{sup 5} mm{sup 3} (p = 0.025). Global PBVC from baseline to 18 months was -2.5%, predominantly during the first six months (0-6 months PBVC -1.7%; 6-12 months PBVC -0.74%; 12-18 months PBVC -0.50%). The number of relapses before treatment was correlated to the PBVC during the first semester (Pearson's coefficient -0.520, p = 0.003), while the number of basal CEL or baseline T2LV did not correlate with brain atrophy rate. During follow-up, nine patients had clinical or radiological inflammatory activity. Their PBVC was significantly higher in the first semester (-2.3% to -1.1%, p = 0.002). Conclusions: Natalizumab reduced relapse rate and CEL in MRI. Brain atrophy predominated in the first semester and was related to previous inflammatory activity.

  14. Visualisation of multi-dimensional medical images with application to brain electrical impedance tomography

    OpenAIRE

    Zhang, Yan

    2007-01-01

    Medical imaging plays an important role in modem medicine. With the increasing complexity and information presented by medical images, visualisation is vital for medical research and clinical applications to interpret the information presented in these images. The aim of this research is to investigate improvements to medical image visualisation, particularly for multi-dimensional medical image datasets. A recently developed medical imaging technique known as Electrical Impedance Tomograp...

  15. Why and how physical activity promotes experience-induced brain plasticity

    Directory of Open Access Journals (Sweden)

    Gerd eKempermann

    2010-12-01

    Full Text Available Adult hippocampal neurogenesis is an unusual case of brain plasticity, since new neurons (and not just neurites and synapses are added to the network in an activity-dependent way. At the behavioral level the plasticity-inducing stimuli include both physical and cognitive activity. In reductionistic animal studies these types of activity can be studied separately in paradigms like voluntary wheel running and environmental enrichment. In both of these, adult neurogenesis is increased but the net effect is primarily due to different mechanisms at the cellular level. Locomotion appears to stimulate the precursor cells, from which adult neurogenesis originates, to increased proliferation and maintenance over time, whereas environmental enrichment, as well as learning, predominantly promotes survival of immature neurons, that is the progeny of the proliferating precursor cells. Surprisingly, these effects are additive: boosting the potential for adult neurogenesis by physical activity increases the recruitment of cells following cognitive stimulation in an enriched environment. Why is that? We argue that locomotion actually serves as an intrinsic feedback mechanism, signaling to the brain, including its neural precursor cells, that the likelihood of cognitive challenges increases. In the wild (other than in front of a TV, no separation of physical and cognitive activity occurs. Physical activity might thus be much more than a generally healthy garnish to leading an active life but an evolutionarily fundamental aspect of activity, which is needed to provide the brain and its systems of plastic adaptation with the appropriate regulatory input and feedback.

  16. Methionine sulfoxide reductase regulates brain catechol-O-methyl transferase activity.

    Science.gov (United States)

    Moskovitz, Jackob; Walss-Bass, Consuelo; Cruz, Dianne A; Thompson, Peter M; Bortolato, Marco

    2014-10-01

    Catechol-O-methyl transferase (COMT) plays a key role in the degradation of brain dopamine (DA). Specifically, low COMT activity results in higher DA levels in the prefrontal cortex (PFC), thereby reducing the vulnerability for attentional and cognitive deficits in both psychotic and healthy individuals. COMT activity is markedly reduced by a non-synonymous single-nucleotide polymorphism (SNP) that generates a valine-to-methionine substitution on the residue 108/158, by means of as-yet incompletely understood post-translational mechanisms. One post-translational modification is methionine sulfoxide, which can be reduced by the methionine sulfoxide reductase (Msr) A and B enzymes. We used recombinant COMT proteins (Val/Met108) and mice (wild-type (WT) and MsrA knockout) to determine the effect of methionine oxidation on COMT activity and COMT interaction with Msr, through a combination of enzymatic activity and Western blot assays. Recombinant COMT activity is positively regulated by MsrA, especially under oxidative conditions, whereas brains of MsrA knockout mice exhibited lower COMT activity (as compared with their WT counterparts). These results suggest that COMT activity may be reduced by methionine oxidation, and point to Msr as a key molecular determinant for the modulation of COMT activity in the brain. The role of Msr in modulating cognitive functions in healthy individuals and schizophrenia patients is yet to be determined. PMID:24735585

  17. Berberine inhibits inflammatory activation of rat brain microglia

    Institute of Scientific and Technical Information of China (English)

    Kyong Nyon Nam; Jae-Hong Kim; Hoon-Ji Jung; Jung-Mi Park; Sang-Kwan Moon; Young-Suk Kim; Sun Yeou Kim; Eunjoo H.Lee

    2010-01-01

    Chronic activation of microglial cells endangers neuronal survival through the release of various proinflammatory and neurotoxic factors.Berberine,the effective ingredient of Coptidis Rhizoma and Cortex Phellodendri,has a wide range of pharmacological functions,including anti-inflammatory,anti-atherosclerotic and anti-cancer effects.The neuroprotective potential of berberine has previously been demonstrated.The present study aimed to examine whether berberine could repress microglial activation and can be considered a potential therapeutic candidate to target neurodegenerative diseases.Primary microglial cells and BV2 microglial cells were cultured and stimulated with bacterial lipopolysaccharide(LPS).Berberine chloride was treated prior to LPS or simultaneously with LPS stimulation.Results revealed that berberine was effective at inhibiting nitric oxide release from primary microglial cells when cells were exposed to the compound prior to LPS or simultaneously with LPS.It also reduced the LPS-stimulated production of tumor necrosis factor-α,interleukin-1β,prostaglandin E2,and intracellular reactive oxygen species and nuclear factor-kappa activation.Additionally,berberine reduced nitric oxide release from microglia stimulated with interferon-γ and amyloid β.These results suggest that berberine provides neuroprotection by reducing the production of various neurotoxic molecules from activated microglia.

  18. Regional brain activation associated with addiction of computer games in adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Y. H.; Shin, O. J.; Ko, Y. W.; Kim, H. J.; Yun, M. J.; Lee, J. D. [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2001-07-01

    Excessive computer game (CG) playing may cause not only behavioral addiction, but also potential negative effects on developing brain. It is necessary to reveal how brain is affected by excessive use of CG playing and behavioral addiction of it. By using PET, we address the issue seeking to identifying patterns of regional brain activation associated with behavioral addiction and excessive use of CG playing by adolescents. 6 normal control and 8 adolescents who were met by the criteria of behavioral addiction on the survey as addiction groups with an addiction of CG playing were participated. Initial screening survey which is the adapted version of DSM-IV for pathologic gambling was done. PET were performed twice in each participants both during resting state and after 20 min playing of CG. Psychological test including Youth Self Report (YSR), memory and attention test and vocabulary item from KWAIS were performed. Scores of the vocabulary item from KWAIS and social competence from YSR were significantly lower in the addiction group. On PET, addiction group showed higher resting metabolism on inferior frontal, premotor, prefrontal and superior temporal area. Adolescents with addiction of CG revealed different patterns of regional brain activation comparing to control groups. These suggest behavioral addiction and excessive use of CG may result in functional alteration of developing brain in adolescents.

  19. Regional brain activation associated with addiction of computer games in adolescents

    International Nuclear Information System (INIS)

    Excessive computer game (CG) playing may cause not only behavioral addiction, but also potential negative effects on developing brain. It is necessary to reveal how brain is affected by excessive use of CG playing and behavioral addiction of it. By using PET, we address the issue seeking to identifying patterns of regional brain activation associated with behavioral addiction and excessive use of CG playing by adolescents. 6 normal control and 8 adolescents who were met by the criteria of behavioral addiction on the survey as addiction groups with an addiction of CG playing were participated. Initial screening survey which is the adapted version of DSM-IV for pathologic gambling was done. PET were performed twice in each participants both during resting state and after 20 min playing of CG. Psychological test including Youth Self Report (YSR), memory and attention test and vocabulary item from KWAIS were performed. Scores of the vocabulary item from KWAIS and social competence from YSR were significantly lower in the addiction group. On PET, addiction group showed higher resting metabolism on inferior frontal, premotor, prefrontal and superior temporal area. Adolescents with addiction of CG revealed different patterns of regional brain activation comparing to control groups. These suggest behavioral addiction and excessive use of CG may result in functional alteration of developing brain in adolescents

  20. BrainModes: a principled approach to modeling and measuring large-scale neuronal activity.

    Science.gov (United States)

    Breakspear, Michael J; Daffertshofer, Andreas; Ritter, Petra

    2009-09-30

    Complex systems, such as the brain, exhibit multiple levels of organization due to processes which support the separation of scales across time and/or space. That is, cooperative phenomena--or "modes" of activity--occurring at one scale give rise to coherent spatiotemporal structures at a coarser scale. In turn, structures at the coarser scale constrain--and hence influence--emerging activity at a finer scale. BrainModes is an annual scientific summit which seeks to bring together experimental, computational and theoretical neuroscientists engaged at different levels of organization, with the goal of advancing a principled approach to understanding brain function based on the concept of cooperative phenomena in complex systems. Phenomena of particular interest include synchronization, stochastic influences, and spatiotemporal processes in both healthy and pathological states such as seizures. This Special Issue reports the 2008 BrainModes Workshop, held in Amsterdam (December 2008) which focused on the application of this framework to the analysis of brain oscillations and synchronization phenomena across time scales. PMID:19607859

  1. Decoding Subjective Intensity of Nociceptive Pain from Pre-stimulus and Post-stimulus Brain Activities.

    Science.gov (United States)

    Tu, Yiheng; Tan, Ao; Bai, Yanru; Hung, Yeung Sam; Zhang, Zhiguo

    2016-01-01

    Pain is a highly subjective experience. Self-report is the gold standard for pain assessment in clinical practice, but it may not be available or reliable in some populations. Neuroimaging data, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have the potential to be used to provide physiology-based and quantitative nociceptive pain assessment tools that complements self-report. However, existing neuroimaging-based nociceptive pain assessments only rely on the information in pain-evoked brain activities, but neglect the fact that the perceived intensity of pain is also encoded by ongoing brain activities prior to painful stimulation. Here, we proposed to use machine learning algorithms to decode pain intensity from both pre-stimulus ongoing and post-stimulus evoked brain activities. Neural features that were correlated with intensity of laser-evoked nociceptive pain were extracted from high-dimensional pre- and post-stimulus EEG and fMRI activities using partial least-squares regression (PLSR). Further, we used support vector machine (SVM) to predict the intensity of pain from pain-related time-frequency EEG patterns and BOLD-fMRI patterns. Results showed that combining predictive information in pre- and post-stimulus brain activities can achieve significantly better performance in classifying high-pain and low-pain and in predicting the rating of perceived pain than only using post-stimulus brain activities. Therefore, the proposed pain prediction method holds great potential in basic research and clinical applications. PMID:27148029

  2. Decoding Subjective Intensity of Nociceptive Pain from Pre-stimulus and Post-stimulus Brain Activities

    Science.gov (United States)

    Tu, Yiheng; Tan, Ao; Bai, Yanru; Hung, Yeung Sam; Zhang, Zhiguo

    2016-01-01

    Pain is a highly subjective experience. Self-report is the gold standard for pain assessment in clinical practice, but it may not be available or reliable in some populations. Neuroimaging data, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have the potential to be used to provide physiology-based and quantitative nociceptive pain assessment tools that complements self-report. However, existing neuroimaging-based nociceptive pain assessments only rely on the information in pain-evoked brain activities, but neglect the fact that the perceived intensity of pain is also encoded by ongoing brain activities prior to painful stimulation. Here, we proposed to use machine learning algorithms to decode pain intensity from both pre-stimulus ongoing and post-stimulus evoked brain activities. Neural features that were correlated with intensity of laser-evoked nociceptive pain were extracted from high-dimensional pre- and post-stimulus EEG and fMRI activities using partial least-squares regression (PLSR). Further, we used support vector machine (SVM) to predict the intensity of pain from pain-related time-frequency EEG patterns and BOLD-fMRI patterns. Results showed that combining predictive information in pre- and post-stimulus brain activities can achieve significantly better performance in classifying high-pain and low-pain and in predicting the rating of perceived pain than only using post-stimulus brain activities. Therefore, the proposed pain prediction method holds great potential in basic research and clinical applications. PMID:27148029

  3. Chick embryos have the same pattern of hypoxic lower-brain activation as fetal mammals.

    Science.gov (United States)

    Landry, Jeremy P; Hawkins, Connor; Lee, Aaron; Coté, Alexandra; Balaban, Evan; Pompeiano, Maria

    2016-01-01

    cFos expression (indicating a particular kind of neuronal activation) was examined in embryonic day (E) 18 chick embryos after exposure to 4 h of either normoxia (21% O2), modest hypoxia (15% O2), or medium hypoxia (10% O2). Eight regions of the brainstem and hypothalamus were surveyed, including seven previously shown to respond to hypoxia in late-gestation mammalian fetuses (Breen et al., 1997; Nitsos and Walker, 1999b). Hypoxia-related changes in chick embryo brain activation mirrored those found in fetal mammals with the exception of the medullary Raphe, which showed decreased hypoxic activation, compared with no change in mammals. This difference may be explained by the greater anapyrexic responses of chick embryos relative to mammalian fetuses. Activation in the A1/C1 region was examined in more detail to ascertain whether an O2-sensitive subpopulation of these cells containing heme oxygenase 2 (HMOX2) may drive hypoxic brain responses before the maturation of peripheral O2-sensing. HMOX2-positive and -negative catecholaminergic cells and interdigitating noncatecholaminergic HMOX2-positive cells all showed significant changes in cFos expression to hypoxia, with larger population responses seen in the catecholaminergic cells. Hypoxia-induced activation of lower-brain regions studied here was significantly better correlated with activation of the nucleus of the solitary tract (NTS) than with that of HMOX2-containing A1/C1 neurons. Together, these observations suggest that (1) the functional circuitry controlling prenatal brain responses to hypoxia is strongly conserved between birds and mammals, and (2) NTS neurons are a more dominant driving force for prenatal hypoxic cFos brain responses than O2-sensing A1/C1 neurons. PMID:25964066

  4. Brain functional near infrared spectroscopy in human infants : cerebral cortical haemodynamics coupled to neuronal activation in response to sensory stimulation

    OpenAIRE

    Bartocci, Marco

    2006-01-01

    The assessment of cortical activation in the neonatal brain is crucial in the study of brain development, as it provides precious information for how the newborn infant processes external or internal stimuli. Thus far functional studies of neonates aimed to assess cortical responses to certain external stimuli are very few, due to the lack of suitable techniques to monitor brain activity of the newborn. Near Infrared Spectroscopy (NIRS) has been found to be suitable for func...

  5. Does erotic stimulus presentation design affect brain activation patterns? Event-related vs. blocked fMRI designs

    OpenAIRE

    Klemen Jane; Vollstädt-Klein Sabine; Bühler Mira; Smolka Michael N

    2008-01-01

    Abstract Background Existing brain imaging studies, investigating sexual arousal via the presentation of erotic pictures or film excerpts, have mainly used blocked designs with long stimulus presentation times. Methods To clarify how experimental functional magnetic resonance imaging (fMRI) design affects stimulus-induced brain activity, we compared brief event-related presentation of erotic vs. neutral stimuli with blocked presentation in 10 male volunteers. Results Brain activation differed...

  6. Entrainment of chaotic activities in brain and heart during MBSR mindfulness training.

    Science.gov (United States)

    Gao, Junling; Fan, Jicong; Wu, Bonnie Wai Yan; Zhang, Zhiguo; Chang, Chunqi; Hung, Yeung-Sam; Fung, Peter Chin Wan; Sik, Hin Hung

    2016-03-11

    The activities of the brain and the heart are dynamic, chaotic, and possibly intrinsically coordinated. This study aims to investigate the effect of Mindfulness-Based Stress Reduction (MBSR) program on the chaoticity of electronic activities of the brain and the heart, and to explore their potential correlation. Electroencephalogram (EEG) and electrocardiogram (ECG) were recorded at the beginning of an 8-week standard MBSR training course and after the course. EEG spectrum analysis was carried out, wavelet entropies (WE) of EEG (together with reconstructed cortical sources) and heart rate were calculated, and their correlation was investigated. We found enhancement of EEG power of alpha and beta waves and lowering of delta waves power during MBSR training state as compared to normal resting state. Wavelet entropy analysis indicated that MBSR mindfulness meditation could reduce the chaotic activities of both EEG and heart rate as a change of state. However, longitudinal change of trait may need more long-term training. For the first time, our data demonstrated that the chaotic activities of the brain and the heart became more coordinated during MBSR training, suggesting that mindfulness training may increase the entrainment between mind and body. The 3D brain regions involved in the change in mental states were identified. PMID:26784361

  7. Prion Protein M129V Polymorphism Affects Retrieval-Related Brain Activity

    Science.gov (United States)

    Buchmann, Andreas; Mondadori, Christian R. A.; Hanggi, Jurgen; Aerni, Amanda; Vrticka, Pascal; Luechinger, Roger; Boesiger, Peter; Hock, Christoph; Nitsch, Roger M.; de Quervain, Dominique J.-F.; Papassotiropoulos, Andreas; Henke, Katharina

    2008-01-01

    The prion protein Met129Val polymorphism has recently been related to human long-term memory with carriers of either the 129[superscript MM] or the 129[superscript MV] genotype recalling 17% more words than 129[superscript VV] carriers at 24 h following learning. Here, we sampled genotype differences in retrieval-related brain activity at 30 min…

  8. Development of a Conceptual Model to Predict Physical Activity Participation in Adults with Brain Injuries

    Science.gov (United States)

    Driver, Simon

    2008-01-01

    The purpose was to examine psychosocial factors that influence the physical activity behaviors of adults with brain injuries. Two differing models, based on Harter's model of self-worth, were proposed to examine the relationship between perceived competence, social support, physical self-worth, affect, and motivation. Adults numbering 384 with…

  9. The Physiochemistry of Capped Nanosilver Predicts Its Biological Activity in Rat Brain Endothelial Cells (REBEC4)

    Science.gov (United States)

    The “capping” or coating of nanosilver (nanoAg) extends its potency by limiting its oxidation and aggregation and stabilizing its size and shape. The ability of such coated nanoAg to alter the permeability and activate oxidative stress pathways in rat brain endothelia...

  10. Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers.

    Science.gov (United States)

    Fink, Andreas; Graif, Barbara; Neubauer, Aljoscha C

    2009-07-01

    Neuroscientific research on creativity has revealed valuable insights into possible brain correlates underlying this complex mental ability domain. However, most of the studies investigated brain activity during the performance of comparatively simple (verbal) type of tasks and the majority of studies focused on samples of the normal population. In this study we investigate EEG activity in professional dancers (n=15) who have attained a high level of expertise in this domain. This group was compared with a group of novices (n=17) who have only basic experience in dancing and completed no comprehensive training in this field. The EEG was recorded during performance of two different dancing imagery tasks which differed with respect to creative demands. In the first task participants were instructed to mentally perform a dance which should be as unique and original as possible (improvisation dance). In the waltz task they were asked to imagine dancing the waltz, a standard dance which involves a sequence of monotonous steps (lower creative demands). In addition, brain activity was also measured during performance of the Alternative Uses test. We observed evidence that during the generation of alternative uses professional dancers show stronger alpha synchronization in posterior parietal brain regions than novice dancers. During improvisation dance, professional dancers exhibited more right-hemispheric alpha synchronization than the group of novices did, while during imagining dancing the waltz no significant group differences emerged. The findings complement and extend existing findings on the relationship between EEG alpha activity and creative thinking. PMID:19269335

  11. Effect of X-irradiation on acetylcholinesterase activity in the brain of mouse Mus booduga

    International Nuclear Information System (INIS)

    Acetylcholinesterase (AChE; E.C. 1.1.7) activity in the brain of lethally X-irradiated mouse, Mus booduga decreased progressively from 2 hours to 5 days of post-irradiation periods. A general loss of affinity to substrate during early days of post-irradiation, and a subsequent tendency towards normalization were noticed. (auth.)

  12. High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations

    OpenAIRE

    Suresh Muthukumaraswamy

    2013-01-01

    In recent years high-frequency brain activity in the gamma-frequency band (30–80 Hz) and above has become the focus of a growing body of work in MEG/EEG research. Unfortunately, high-frequency neural activity overlaps entirely with the spectral bandwidth of muscle activity (~20–300 Hz). It is becoming appreciated that artifacts of muscle activity may contaminate a number of non-invasive reports of high-frequency activity. In this review, the spectral, spatial, and temporal characteristics of ...

  13. Brain activation during word identification and word recognition

    DEFF Research Database (Denmark)

    Jernigan, Terry L.; Ostergaard, Arne L.; Law, Ian;

    1998-01-01

    subjects performed the word identification (reading) and recognition memory tasks used previously by Ostergaard. The results are the direct comparisons of the two tasks and the effects of stimulus degradation on blood flow patterns during the tasks. Clear differences between word identification and word...... dramatically alter the degree to which word priming shows a dissociation from word recognition; i.e., effects of a number of factors on priming paralleled their effects on recognition memory tests when the words were degraded at test. In the present study, cerebral blood flow changes were measured while...... recognition were observed: the latter task evoked considerably more prefrontal activity and stronger cerebellar activation. Stimulus degradation was associated with focal increases in bilateral fusiform regions within the occipital lobe. No task, degradation, or item repetition effects were demonstrated in...

  14. Effect of target probability on pre-stimulus brain activity.

    Science.gov (United States)

    Lucci, G; Berchicci, M; Perri, R L; Spinelli, D; Di Russo, F

    2016-05-13

    Studies on perceptual decision-making showed that manipulating the proportion of target and non-target stimuli affects the behavioral performance. Tasks with high frequency of targets are associated to faster response times (RTs) conjunctively to higher number of errors (reflecting a response bias characterized by speed/accuracy trade-off) when compared to conditions with low frequency of targets. Electroencephalographic studies well described modulations of post-stimulus event-related potentials as effect of the stimulus probability; in contrast, in the present study we focused on the pre-stimulus preparatory activities subtending the response bias. Two versions of a Go/No-go task characterized by different proportion of Go stimuli (88% vs. 12%) were adopted. In the task with frequent go trials, we observed a strong enhancement in the motor preparation as indexed by the Bereitschaftspotential (BP, previously associated with activity within the supplementary motor area), faster RTs, and larger commission error rate than in the task with rare go trials. Contemporarily with the BP, a right lateralized prefrontal negativity (lateral pN, previously associated with activity within the dorsolateral prefrontal cortex) was larger in the task with rare go trial. In the post-stimulus processing stage, we confirmed that the N2 and the P3 components were larger for rare trials, irrespective of the Go/No-go stimulus category. The increase of activities recorded in the preparatory phase related to frequency of targets is consistent with the view proposed in accumulation models of perceptual decision for which target frequency affects the subjective baseline, reducing the distance between the starting-point and the response boundary, which determines the response speed. PMID:26912279

  15. Alterations in monoamine oxidase activity of the mouse brain and liver after mixed neutron-gamma irradiation

    International Nuclear Information System (INIS)

    The activity of monoamine oxidase (MAO) was determined in mouse brain and liver after exposure to different kinds of ionizing radiation and after pretreatment with a radioprotective agent. After a lethal dose of mixed neutron-gamma irradiation the MAO activity decreased in the brain and increased in the liver. In contrast, after a lethal dose of 60Co-gamma irradiation enzyme activity was considerably increased in the brain while in the liver it increased like after mixed neutron-gamma irradiation. AET (S2-aminoethyl-isothiuronium-Br x HBr), when administered in a radioprotective dose, inhibited MAO activity in the brain, while it increased in the liver. Even more marked changes of enzyme activity were observed in both brain and liver after AET pretreatment and mixed neutron-gamma irradiation. The possible role of lipid peroxidation in alteration of MAO activity is discussed. (author)

  16. Cognitive activity, cognitive function, and brain diffusion characteristics in old age.

    Science.gov (United States)

    Arfanakis, Konstantinos; Wilson, Robert S; Barth, Christopher M; Capuano, Ana W; Vasireddi, Anil; Zhang, Shengwei; Fleischman, Debra A; Bennett, David A

    2016-06-01

    The objective of this work was to test the hypotheses that a) more frequent cognitive activity in late life is associated with higher brain diffusion anisotropy and lower trace of the diffusion tensor, and b) brain diffusion characteristics partially mediate the association of late life cognitive activity with cognition. As part of a longitudinal cohort study, 379 older people without dementia rated their frequency of participation in cognitive activities, completed a battery of cognitive function tests, and underwent diffusion tensor imaging. We used tract-based spatial statistics to test the association between late life cognitive activity and brain diffusion characteristics. Clusters with statistically significant findings defined regions of interest in which we tested the hypothesis that diffusion characteristics partially mediate the association of late life cognitive activity with cognition. More frequent cognitive activity in late life was associated with higher level of global cognition after adjustment for age, sex, education, and indicators of early life cognitive enrichment (p = 0.001). More frequent cognitive activity was also related to higher fractional anisotropy in the left superior and inferior longitudinal fasciculi, left fornix, and corpus callosum, and lower trace in the thalamus (p < 0.05, FWE-corrected). After controlling for fractional anisotropy or trace from these regions, the regression coefficient for the association of late life cognitive activity with cognition was reduced by as much as 26 %. These findings suggest that the association of late life cognitive activity with cognition may be partially mediated by brain diffusion characteristics. PMID:25982658

  17. Comparison of two treatments for coxarthrosis: local hyperthermia versus radio electric asymmetrical brain stimulation

    Directory of Open Access Journals (Sweden)

    Castagna A

    2011-07-01

    Full Text Available Alessandro Castagna1, Salvatore Rinaldi1,2, Vania Fontani1, Piero Mannu1, Matteo Lotti Margotti11Rinaldi Fontani Institute, Department of Neuro Psycho Physio Pathology, 2Medical School of Occupational Medicine, University of Florence, Florence, ItalyBackground: It is well known that psychological components are very important in the aging process and may also manifest in psychogenic movement disorders, such as coxarthrosis. This study analyzed the medical records of two similar groups of patients with coxarthrosis (n = 15 in each who were treated in two different clinics for rehabilitation therapy.Methods: Patients in Group A were treated with a course of traditional physiotherapy, including sessions of local hyperthermia. Group B patients were treated with only a course of radioelectric asymmetrical brain stimulation (REAC to improve their motor behavior.Results: Group A showed a significant decrease in symptoms of pain and stiffness, and an insignificant improvement in range of motion and muscle bulk. A single patient in this group developed worsened symptoms, and pain did not resolve completely in any patient. The patients in Group B had significantly decreased levels of pain and stiffness, and a significant improvement in range of motion and muscle bulk. No patients worsened in Group B, and the pain resolved completely in one patient.Conclusion: Both treatments were shown to be tolerable and safe. Patients who underwent REAC treatment appeared to have slightly better outcomes, with an appreciable improvement in both their physical and mental states. These aspects are particularly important in the elderly, in whom functional limitation is often associated with or exacerbated by a psychogenic component.Keywords: coxarthrosis, anti-aging, motor behavior, radioelectric asymmetric brain stimulation

  18. Dopaminergic modulation of the spectral characteristics in the rat brain oscillatory activity

    International Nuclear Information System (INIS)

    Highlights: ► The oscillatory activity recorded at different locations of the rat brain present a power law characteristic (PLC). ► Dopaminergic drugs are able to modify the power law spectral characteristic of the oscillatory activity. ► Drugs with opposite effects over the dopaminergic system (agonists/antagonists), induce opposite changes in the PLC. ► There is a fulcrum point for the modulation of the PLC around 20 Hz. ► The brain operates in a state of self-organized criticality (SOC) sensitive to dopaminergic modulation. - Abstract: Oscillatory activity can be widely recorded in the brain. It has been demonstrated to play an important role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of a variety of diseases. In frequency domain, neurophysiological recordings show a power spectrum (PSD) following a log (PSD) ∝ log (f)−β, that reveals an intrinsic feature of many complex systems in nature: the presence of a scale-free dynamics characterized by a power-law component (PLC). Here we analyzed the influence of dopaminergic drugs over the PLC of the oscillatory activity recorded from different locations of the rat brain. Dopamine (DA) is a neurotransmitter that is required for a number of physiological functions like normal feeding, locomotion, posturing, grooming and reaction time. Alterations in the dopaminergic system cause vast effects in the dynamics of the brain activity, that may be crucial in the pathophysiology of neurological (like Parkinson’s disease) or psychiatric (like schizophrenia) diseases. Our results show that drugs with opposite effects over the dopaminergic system, induce opposite changes in the characteristics of the PLC: DA agonists/antagonists cause the PLC to swing around a fulcrum point in the range of 20 Hz. Changes in the harmonic component of the spectrum were also detected. However, differences between recordings are better explained by the modulation of the PLC than

  19. Age-related shifts in brain activity dynamics during task switching.

    Science.gov (United States)

    Jimura, Koji; Braver, Todd S

    2010-06-01

    Cognitive aging studies have suggested that older adults show declines in both sustained and transient cognitive control processes. However, previous neuroimaging studies have primarily focused on age-related change in the magnitude, but not temporal dynamics, of brain activity. The present study compared brain activity dynamics in healthy old and young adults during task switching. A mixed blocked/event-related functional magnetic resonance imaging design enabled separation of transient and sustained neural activity associated with cognitive control. Relative to young adults, older adults exhibited not only decreased sustained activity in the anterior prefrontal cortex (aPFC) during task-switching blocks but also increased transient activity on task-switch trials. Another pattern of age-related shift in dynamics was present in the lateral PFC (lPFC) and posterior parietal cortex (PPC), with younger adults showing a cue-related response during task-switch trials in lPFC and PPC, whereas older adults exhibited switch-related activation during the cue period in PPC only. In all 3 regions, these qualitatively distinct patterns of brain activity predicted qualitatively distinct patterns of behavioral performance across the 2 age groups. Together, these results suggest that older adults may shift from a proactive to reactive cognitive control strategy as a means of retaining relatively preserved behavioral performance in the face of age-related neurocognitive changes. PMID:19805420

  20. Association of the interleukin 1 beta gene and brain spontaneous activity in amnestic mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Zhuang Liying

    2012-12-01

    Full Text Available Abstract Purpose The inflammatory response has been associated with the pathogenesis of Alzheimer’s disease (AD. The purpose of this study is to determine whether the rs1143627 polymorphism of the interleukin-1 beta (IL-1β gene moderates functional magnetic resonance imaging (fMRI-measured brain regional activity in amnestic mild cognitive impairment (aMCI. Methods Eighty older participants (47 with aMCI and 33 healthy controls were recruited for this study. All of the participants were genotyped for variant rs1143627 in the IL1B gene and were scanned using resting-state fMRI. Brain activity was assessed by amplitude of low-frequency fluctuation (ALFF. Results aMCI patients had abnormal ALFF in many brain regions, including decreases in the inferior frontal gyrus, the superior temporal lobe and the middle temporal lobe, and increases in the occipital cortex (calcarine, parietal cortex (Pcu and cerebellar cortex. The regions associated with an interaction of group X genotypes of rs1143627 C/T were the parietal cortex (left Pcu, frontal cortex (left superior, middle, and medial gyrus, right anterior cingulum, occipital cortex (left middle lobe, left cuneus and the bilateral posterior lobes of the cerebellum. Regarding the behavioral significance, there were significant correlations between ALFF in different regions of the brain and with the cognitive scores of each genotype group. Conclusions The present study provided evidence that aMCI patients had abnormal ALFF in many brain regions. Specifically, the rs1143627 C/T polymorphism of the IL1B gene may modulate regional spontaneous brain activity in aMCI patients.

  1. Electro-dewatering of activated sludge: Electrical resistance analysis.

    Science.gov (United States)

    Conrardy, Jean-Baptiste; Vaxelaire, Jean; Olivier, Jérémy

    2016-09-01

    The significant risk of ohmic heating and the high electric energy consumption at terminal stages of the dewatering are two problems that hamper the development of the electro-dewatering (EDW) technology. In the future prospect of studying these two issues, it is important to provide and analyse quantitative data relative to the behavior of the electric resistance in EDW. It was the main goal of this study. It showed that the electric resistance of the complete system (cake + filter cloth) depended on the cake dryness. It increased sharply when the solids content exceeded around 45%.The solids loading also influenced the apparent resistance at the beginning of the process. The electric resistance of the filter cloth represented about 20% of the total resistance. It remained relatively constant over the process except at the terminal stage where it generally increased sharply. The use of conductive filter, such as metallic cloth, enabled to decrease the electric resistance and reduce the energy consumption of the process. The electric resistance decreased across the cake from the anode to the cathode. This behavior may be explained by several phenomena such as the ions migration and their interaction with the solid, the decrease of dry solids content from the anode to the cathode and the gas presence at the anode (due to electrolysis reaction). PMID:27192354

  2. Hypoxia-ischemia or excitotoxin-induced tissue plasminogen activator- dependent gelatinase activation in mice neonate brain microvessels.

    Directory of Open Access Journals (Sweden)

    Priscilla L Omouendze

    Full Text Available Hypoxia-ischemia (HI and excitotoxicity are validated causes of neonatal brain injuries and tissue plasminogen activator (t-PA participates in the processes through proteolytic and receptor-mediated pathways. Brain microvascular endothelial cells from neonates in culture, contain and release more t-PA and gelatinases upon glutamate challenge than adult cells. We have studied t-PA to gelatinase (MMP-2 and MMP-9 activity links in HI and excitotoxicity lesion models in 5 day-old pups in wild type and in t-PA or its inhibitor (PAI-1 genes inactivated mice. Gelatinolytic activities were detected in SDS-PAGE zymograms and by in situ fluorescent DQ-gelatin microscopic zymographies. HI was achieved by unilateral carotid ligature followed by a 40 min hypoxia (8%O₂. Excitotoxic lesions were produced by intra parenchymal cortical (i.c. injections of 10 µg ibotenate (Ibo. Gel zymograms in WT cortex revealed progressive extinction of MMP-2 and MMP-9 activities near day 15 or day 8 respectively. MMP-2 expression was the same in all strains while MMP-9 activity was barely detectable in t-PA⁻/⁻ and enhanced in PAI-1⁻/⁻ mice. HI or Ibo produced activation of MMP-2 activities 6 hours post-insult, in cortices of WT mice but not in t-PA⁻/⁻ mice. In PAI-1⁻/⁻ mice, HI or vehicle i.c. injection increased MMP-2 and MMP-9 activities. In situ zymograms using DQ-gelatin revealed vessel associated gelatinolytic activity in lesioned areas in PAI-1⁻/⁻ and in WT mice. In WT brain slices incubated ex vivo, glutamate (200 µM induced DQ-gelatin activation in vessels. The effect was not detected in t-PA⁻/⁻ mice, but was restored by concomitant exposure to recombinant t-PA (20 µg/mL. In summary, neonatal brain lesion paradigms and ex vivo excitotoxic glutamate evoked t-PA-dependent gelatinases activation in vessels. Both MMP-2 and MMP-9 activities appeared t-PA-dependent. The data suggest that vascular directed protease inhibition may have

  3. Wireless micropower instrumentation for multimodal acquisition of electrical and chemical neural activity.

    Science.gov (United States)

    Mollazadeh, M; Murari, K; Cauwenberghs, G; Thakor, N

    2009-12-01

    The intricate coupling between electrical and chemical activity in neural pathways of the central nervous system, and the implication of this coupling in neuropathologies, such as Parkinson's disease, motivates simultaneous monitoring of neurochemical and neuropotential signals. However, to date, neurochemical sensing has been lacking in integrated clinical instrumentation as well as in brain-computer interfaces (BCI). Here, we present an integrated system capable of continuous acquisition of data modalities in awake, behaving subjects. It features one channel each of a configurable neuropotential and a neurochemical acquisition system. The electrophysiological channel is comprised of a 40-dB gain, fully differential amplifier with tunable bandwidth from 140 Hz to 8.2 kHz. The amplifier offers input-referred noise below 2 muV rms for all bandwidth settings. The neurochemical module features a picoampere sensitivity potentiostat with a dynamic range spanning six decades from picoamperes to microamperes. Both systems have independent on-chip, configurable DeltaSigma analog-to-digital converters (ADCs) with programmable digital gain and resolution. The system was also interfaced to a wireless power harvesting and telemetry module capable of powering up the circuits, providing clocks for ADC operation, and telemetering out the data at up to 32 kb/s over 3.5 cm with a bit-error rate of less than 10(-5). Characterization and experimental results from the electrophysiological and neurochemical modules as well as the full system are presented. PMID:23853286

  4. Secondary Activation of Commercial Activated Carbon and its Application in Electric Double Layer Capacitor

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The cheap commercial activated carbon (AC) was improved through the secondary activation under steam in the presence of FeCl2 catalyst in the temperature range of 800-950℃ and its application in electric double layer capacitors (EDLCs) with organic electrolyte was studied. The re-activation of AC results in the increases in both specific capacitance and high rate capability of EDLCs. For AC treated under optimized conditions, its discharge specific capacitance increases up to 55.65 F/g, an increase of about 33% as compared to the original AC, and the high rate capability was increased significantly. The good performances of EDLC with improved AC were correlated to the increasing mesoporous ratio.

  5. Effects of endosulfan on brain acetylcholinesterase activity in juvenile bluegill sunfish

    International Nuclear Information System (INIS)

    The effects of endosulfan upon brain acetylcholinesterase (AChE) activity were measured in juvenile blue gill sunfish (Lepomis macrochirus). Based on exposure durations of 0, 24, 48, 72, and 96 h and 1 week at 1.0 μg/L (just below the LC50 of 1.2 μg/L for this species), step-wise decreases in AChE activity were noted, corresponding to 0%, 3.57%, 12.65%, 14.23%, 16.31%, and 3.11% inhibition, respectively. Total brain protein concentrations were measured to test the accuracy of the Ache data with no significant anomalies. The duration of exposure was related to the reduction in the AChE activities which reflected the biotoxicity of endosulfan. The changes in the AChE activities will certainly affect the normal behavior of the juvenile blue gill which is detrimental to their very existence in the natural habitat

  6. Can we predict burnout severity from empathy-related brain activity?

    Science.gov (United States)

    Tei, S; Becker, C; Kawada, R; Fujino, J; Jankowski, K F; Sugihara, G; Murai, T; Takahashi, H

    2014-01-01

    Empathy cultivates deeper interpersonal relationships and is important for socialization. However, frequent exposure to emotionally-demanding situations may put people at risk for burnout. Burnout has become a pervasive problem among medical professionals because occupational burnout may be highly sensitive to empathy levels. To better understand empathy-induced burnout among medical professionals, exploring the relationship between burnout severity and strength of empathy-related brain activity may be key. However, to our knowledge, this relationship has not yet been explored. We studied the relationship between self-reported burnout severity scores and psychological measures of empathic disposition, emotional dissonance and alexithymia in medical professionals to test two contradictory hypotheses: Burnout is explained by (1) 'compassion fatigue'; that is, individuals become emotionally over involved; and (2) 'emotional dissonance'; that is, a gap between felt and expressed emotion, together with reduced emotional regulation. Then, we tested whether increased or decreased empathy-related brain activity measured by fMRI was associated with burnout severity scores and psychological measures. The results showed that burnout severity of medical professionals is explained by 'reduced' empathy-related brain activity. Moreover, this reduced brain activity is correlated with stronger emotional dissonance and alexithymia scores and also greater empathic disposition. We speculate that reduced emotion recognition (that is, alexithymia) might potentially link with stronger emotional dissonance and greater burnout severity alongside empathy-related brain activity. In this view, greater empathic disposition in individuals with higher burnout levels might be due to greater difficulty identifying their own emotional reactions. Our study sheds new light on the ability to predict empathy-induced burnout. PMID:24893064

  7. Trpc2 gene impacts on maternal aggression, accessory olfactory bulb anatomy, and brain activity

    OpenAIRE

    Hasen, Nina S.; Gammie, Stephen C.

    2009-01-01

    The trpc2 gene codes for an ion channel found in the vomeronasal organ (VNO). Studies using the trpc2−/− (KO) mouse have exploited the gene's role in signal transduction to explore the VNO's role in pheromonally-mediated behaviors. To date, no study has evaluated the impact of the trpc2 gene on activity within the brain. Here, we examine the gene's effect on brain regions governing maternal aggression. We intruder-tested lactating dams and then quantified Fos immunoreactivity (Fos-IR) in the ...

  8. Pinostrobin from Cajanus cajan (L.) Millsp. inhibits sodium channel-activated depolarization of mouse brain synaptoneurosomes.

    Science.gov (United States)

    Nicholson, Russell A; David, Laurence S; Pan, Rui Le; Liu, Xin Min

    2010-10-01

    This investigation focuses on the in vitro neuroactive properties of pinostrobin, a substituted flavanone from Cajanus cajan (L.) Millsp. of the Fabaceae family. We demonstrate that pinostrobin inhibits voltage-gated sodium channels of mammalian brain (IC(50)=23 µM) based on the ability of this substance to suppress the depolarizing effects of the sodium channel-selective activator veratridine in a synaptoneurosomal preparation from mouse brain. The resting membrane potential of synaptoneurosomes was unaffected by pinostrobin. The pharmacological profile of pinostrobin resembles that of depressant drugs that block sodium channels. PMID:20472040

  9. Brain Activation During Working Memory Is Altered in Patients With Type 1 Diabetes During Hypoglycemia

    OpenAIRE

    McCartney, Richard L.; Flores, Veronica; Bolo, Nicolas R.; Musen, Gail; Jacobson, Alan Marc; Weinger, Katie; Renshaw, Perry Franklin; Simonson, Donald Craig

    2011-01-01

    OBJECTIVE To investigate the effects of acute hypoglycemia on working memory and brain function in patients with type 1 diabetes. RESEARCH DESIGN AND METHODS Using blood oxygen level–dependent (BOLD) functional magnetic resonance imaging during euglycemic (5.0 mmol/L) and hypoglycemic (2.8 mmol/L) hyperinsulinemic clamps, we compared brain activation response to a working-memory task (WMT) in type 1 diabetic subjects (n = 16) with that in age-matched nondiabetic control subjects (n = 16). Beh...

  10. Recent development in noninvasive brain activity measurement by functional magnetic resonance imaging (fMRI)

    International Nuclear Information System (INIS)

    fMRI (functional magnetic resonance imaging) is a non-invasive brain imaging technique with which the distribution of neural activity is estimated by measuring local blood flow changes. Blood-oxygenation-level-dependent (BOLD) method measures changes in the density of deoxidized hemoglobin in blood caused by blood flow changes, while other methods have been developed to measure the blood flow changes directly. Effort has been expended to realize a submillimeter spatial resolution by using higher static magnetic field. fMRI has been carried out with various mental tasks, and many important findings have been made on the localization of higher brain functions. (author)

  11. Mining for associations between text and brain activation in a functional neuroimaging database

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai; Balslev, D.

    2004-01-01

    We describe a method for mining a neuroimaging database for associations between text and brain locations. The objective is to discover association rules between words indicative of cognitive function as described in abstracts of neuroscience papers and sets of reported stereotactic Talairach...... coordinates. We invoke a simple probabilistic framework in which kernel density estimates are used to model distributions of brain activation foci conditioned on words in a given abstract. The principal associations are found in the joint probability density between words and voxels. We show that the...

  12. Brain activation during self- and other-reflection in bipolar disorder with a history of psychosis : Comparison to schizophrenia

    NARCIS (Netherlands)

    Zhang, Liwen; Opmeer, Esther M.; Ruhe, Henricus G.; Aleman, Andre; van der Meer, Lisette

    2015-01-01

    Objectives: Reflecting on the self and on others activates specific brain areas and contributes to metacognition and social cognition. The aim of the current study is to investigate brain activation during self-and other-reflection in patients with bipolar disorder (BD). In addition, we examined whe

  13. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state

    Directory of Open Access Journals (Sweden)

    Yan-li Yang

    2015-01-01

    Full Text Available It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  14. Modeling of activation data in the BrainMapTM database: Detection of outliers

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai

    2002-01-01

    We describe a system for meta-analytical modeling of activation foci from functional neuroimaging studies. Our main vehicle is a set of density models in Talairach space capturing the distribution of activation foci in sets of experiments labeled by lobar anatomy. One important use of such densit...... atlases for outlier detection. Hum. Brain Mapping 15:146-156, 2002. © 2002 Wiley-Liss, Inc....

  15. Methionine sulfoxide reductase regulates brain catechol-O-methyl transferase activity

    OpenAIRE

    Moskovitz, Jackob; Walss-Bass, Consuelo; Cruz, Dianne A.; Thompson, Peter M.; Bortolato, Marco

    2014-01-01

    Catechol-O-methyl transferase (COMT) plays a key role in the degradation of brain dopamine (DA). Specifically, low COMT activity results in higher DA levels in the prefrontal cortex (PFC), thereby reducing the vulnerability for attentional and cognitive deficits in both psychotic and healthy individuals. COMT activity is markedly reduced by a non-synonymous SNP that generates a valine-to-methionine substitution on the residue 108/158, by means of as-yet incompletely understood posttranslation...

  16. Sex Differences in Brain Aromatase Activity: Genomic and Non-Genomic Controls

    OpenAIRE

    JacquesBalthazart; NobuhiroHarada; AnneT.M.Konkle; CornelliaVoigt; GregoryFBall

    2011-01-01

    Aromatization of testosterone into estradiol in the preoptic area plays a critical role in the activation of male copulation in quail and in many other vertebrate species. Aromatase expression in quail and in other birds is higher than in rodents and other mammals, which has facilitated the study of the controls and functions of this enzyme. Over relatively long time periods (days to months), brain aromatase activity and transcription are markedly (4-6 fold) increased by genomic actions of se...

  17. Differential brain activity states during the perception and nonperception of illusory motion as revealed by magnetoencephalography

    OpenAIRE

    Crowe, David A.; Leuthold, Arthur C.; Georgopoulos, Apostolos P.

    2010-01-01

    We studied visual perception using an annular random-dot motion stimulus called the racetrack. We recorded neural activity using magnetoencephalography while subjects viewed variants of this stimulus that contained no inherent motion or various degrees of embedded motion. Subjects reported seeing rotary motion during viewing of all stimuli. We found that, in the absence of any motion signals, patterns of brain activity differed between states of motion perception and nonperception. Furthermor...

  18. Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression

    OpenAIRE

    Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M.; Pradhan, Kith; Henn, Fritz A.; Shea, Stephen; Osten, Pavel; Li, Bo

    2016-01-01

    Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helpl...

  19. A Valuable and Promising Method for Recording Brain Activity in Behaving Newborn Rodents

    OpenAIRE

    Blumberg, Mark S.; Sokoloff, Greta; Tiriac, Alexandre; Del Rio-Bermudez, Carlos

    2015-01-01

    Neurophysiological recording of brain activity has been critically important to the field of neuroscience, but has contributed little to the field of developmental psychobiology. The reasons for this can be traced largely to methodological difficulties associated with recording neural activity in behaving newborn rats and mice. Over the last decade, however, the evolution of methods for recording from head-fixed newborns has heralded a new era in developmental neurophysiology. Here, we review...

  20. Acute Stress Differentially Affects Aromatase Activity in Specific Brain Nuclei of Adult Male and Female Quail

    OpenAIRE

    Dickens, Molly J; Cornil, Charlotte; Balthazart, Jacques

    2011-01-01

    The rapid and temporary suppression of reproductive behavior is often assumed to be an important feature of the adaptive acute stress response. However, how this suppression operates at the mechanistic level is poorly understood. The enzyme aromatase converts testosterone to estradiol in the brain to activate reproductive behavior in male Japanese quail (Coturnix japonica). The discovery of rapid and reversible modification of aromatase activity (AA) provides a potential mechanism for fast, s...