WorldWideScience

Sample records for brain drug delivery

  1. A new brain drug delivery strategy: focused ultrasound-enhanced intranasal drug delivery.

    Directory of Open Access Journals (Sweden)

    Hong Chen

    Full Text Available Central nervous system (CNS diseases are difficult to treat because of the blood-brain barrier (BBB, which prevents most drugs from entering into the brain. Intranasal (i.n. administration is a promising approach for drug delivery to the brain, bypassing the BBB; however, its application has been restricted to particularly potent substances and it does not offer localized delivery to specific brain sites. Focused ultrasound (FUS in combination with microbubbles can deliver drugs to the brain at targeted locations. The present study proposed to combine these two different platform techniques (FUS+i.n. for enhancing the delivery efficiency of intranasally administered drugs at a targeted location. After i.n. administration of 40 kDa fluorescently-labeled dextran as the model drug, FUS targeted at one region within the caudate putamen of mouse brains was applied in the presence of systemically administered microbubbles. To compare with the conventional FUS technique, in which intravenous (i.v. drug injection is employed, FUS was also applied after i.v. injection of the same amount of dextran in another group of mice. Dextran delivery outcomes were evaluated using fluorescence imaging of brain slices. The results showed that FUS+i.n. enhanced drug delivery within the targeted region compared with that achieved by i.n. only. Despite the fact that the i.n. route has limited drug absorption across the nasal mucosa, the delivery efficiency of FUS+i.n. was not significantly different from that of FUS+i.v.. As a new drug delivery platform, the FUS+i.n. technique is potentially useful for treating CNS diseases.

  2. Nanoparticle functionalization for brain targeting drug delivery and diagnostic

    DEFF Research Database (Denmark)

    Gomes, Maria João; Mendes, Bárbara; Martins, Susana

    2016-01-01

    carriers to cross the BBB and achieve brain, and their functionalization strategies are described; and finally the delivery of nanoparticles to the target moiety, as diagnostics or therapeutics. Therefore, this chapter is focused on how the nanoparticle surface may be functionalized for drug delivery......-mediated drug transport across the BBB, where nanoparticles take advantage of physiological receptor-mediated transport processes....

  3. Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier

    Directory of Open Access Journals (Sweden)

    Ravi Kant Upadhyay

    2014-01-01

    Full Text Available Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.

  4. Impacts of Blood-Brain Barrier in Drug Delivery and Targeting of Brain Tumors

    Directory of Open Access Journals (Sweden)

    Yadollah Omidi

    2012-02-01

    Full Text Available Introduction: Entry of blood circulating agents into the brain is highly selectively controlled by specific transport machineries at the blood brain barrier (BBB, whose excellent barrier restrictiveness make brain drug delivery and targeting very challenging. Methods: Essential information on BBB cellular microenvironment were reviewed and discussed towards impacts of BBB on brain drug delivery and targeting. Results: Brain capillary endothelial cells (BCECs form unique biological structure and architecture in association with astrocytes and pericytes, in which microenvironment the BCECs express restrictive tight junctional complexes that block the paracellular inward/outward traverse of biomolecules/compounds. These cells selectively/specifically control the transportation process through carrier and/or receptor mediated transport machineries that can also be exploited for the delivery of pharmaceuticals into the brain. Intelligent molecular therapies should be designed using such transport machineries for the efficient delivery of designated drugs into the brain. For better clinical outcomes, these smart pharmaceuticals should be engineered as seamless nanosystems to provide simultaneous imaging and therapy (multimodal theranostics. Conclusion: The exceptional functional presence of BBB selectively controls inward and outward transportation mechanisms, thus advanced smart multifunctional nanomedicines are needed for the effective brain drug delivery and targeting. Fully understanding the biofunctions of BBB appears to be a central step for engineering of intelligent seamless therapeutics consisting of homing device for targeting, imaging moiety for detecting, and stimuli responsive device for on-demand liberation of therapeutic agent.

  5. Which drug or drug delivery system can change clinical practice for brain tumor therapy?

    OpenAIRE

    Siegal, Tali

    2013-01-01

    The prognosis and treatment outcome for primary brain tumors have remained unchanged despite advances in anticancer drug discovery and development. In clinical trials, the majority of promising experimental agents for brain tumors have had limited impact on survival or time to recurrence. These disappointing results are partially explained by the inadequacy of effective drug delivery to the CNS. The impediments posed by the various specialized physiological barriers and active efflux mechanis...

  6. Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery

    Science.gov (United States)

    Wu, Shih-Ying; Fix, Samantha M.; Arena, Christopher B.; Chen, Cherry C.; Zheng, Wenlan; Olumolade, Oluyemi O.; Papadopoulou, Virginie; Novell, Anthony; Dayton, Paul A.; Konofagou, Elisa E.

    2018-02-01

    Focused ultrasound with nanodroplets could facilitate localized drug delivery after vaporization with potentially improved in vivo stability, drug payload, and minimal interference outside of the focal zone compared with microbubbles. While the feasibility of blood-brain barrier (BBB) opening using nanodroplets has been previously reported, characterization of the associated delivery has not been achieved. It was hypothesized that the outcome of drug delivery was associated with the droplet’s sensitivity to acoustic energy, and can be modulated with the boiling point of the liquid core. Therefore, in this study, octafluoropropane (OFP) and decafluorobutane (DFB) nanodroplets were used both in vitro for assessing their relative vaporization efficiency with high-speed microscopy, and in vivo for delivering molecules with a size relevant to proteins (40 kDa dextran) to the murine brain. It was found that at low pressures (300-450 kPa), OFP droplets vaporized into a greater number of microbubbles compared to DFB droplets at higher pressures (750-900 kPa) in the in vitro study. In the in vivo study, successful delivery was achieved with OFP droplets at 300 kPa and 450 kPa without evidence of cavitation damage using ¼ dosage, compared to DFB droplets at 900 kPa where histology indicated tissue damage due to inertial cavitation. In conclusion, the vaporization efficiency of nanodroplets positively impacted the amount of molecules delivered to the brain. The OFP droplets due to the higher vaporization efficiency served as better acoustic agents to deliver large molecules efficiently to the brain compared with the DFB droplets.

  7. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood-Brain Barrier.

    Science.gov (United States)

    Georgieva, Julia V; Hoekstra, Dick; Zuhorn, Inge S

    2014-11-17

    The blood-brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood-brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier-drug system ("Trojan horse complex") is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain.

  8. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood–Brain Barrier

    Directory of Open Access Journals (Sweden)

    Julia V. Georgieva

    2014-11-01

    Full Text Available The blood–brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood–brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier–drug system (“Trojan horse complex” is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain.

  9. Drug delivery to the human brain via the cerebrospinal fluid

    International Nuclear Information System (INIS)

    Howden, L.; Aroussi, A.; Vloeberghs, M.

    2003-01-01

    This Study investigates the flow of Cerebrospinal Fluid (CSF) inside the human ventricular system with particular emphasis on drug path flow for the purpose of medical drug injections. The investigation is conducted using the computational fluid dynamics package FLUENT. The role of the ventricular system is very important in protecting the brain from injury by cushioning it against the cranium during sudden movements. If for any reason the passage of CSF through the ventricular system is blocked (usually by stenosis) then a condition known as Hydrocephalus occurs, where by the blocked CSF causes the Intra Cranial Pressure (ICP) inside the brain to rise. If this is not treated then severe brain damage and death can occur. Previous work conducted by the authors on this subject has focused on the technique of ventriculostomy to treat hydrocephalus. The present study carries on from the previous work but focuses on delivering medical drugs to treat brain tumors that are conventionally not accessible and which require complicated surgical procedures to remove them. The study focuses on the possible paths for delivering drugs to tumors in the human nervous system through conventionally accessible locations without major surgery. The results of the investigation have shown that it is possible to reach over 95% of the ventricular system by injection of drugs however the results also show that there are many factors that can affect the drug flow paths through the ventricular system and thus the areas reachable, by these drugs. (author)

  10. Drug delivery to the human brain via the cerebrospinal fluid

    Energy Technology Data Exchange (ETDEWEB)

    Howden, L.; Aroussi, A. [Univ. of Nottingham, School of Mechanical, Material, Manufacturing Engineering and Managements, Nottingham (United Kingdom)]. E-mail: eaxljh@nottingham.ac.uk; Vloeberghs, M. [Queens Medical Centre, Dept. of Child Health, Nottingham (United Kingdom)

    2003-07-01

    This Study investigates the flow of Cerebrospinal Fluid (CSF) inside the human ventricular system with particular emphasis on drug path flow for the purpose of medical drug injections. The investigation is conducted using the computational fluid dynamics package FLUENT. The role of the ventricular system is very important in protecting the brain from injury by cushioning it against the cranium during sudden movements. If for any reason the passage of CSF through the ventricular system is blocked (usually by stenosis) then a condition known as Hydrocephalus occurs, where by the blocked CSF causes the Intra Cranial Pressure (ICP) inside the brain to rise. If this is not treated then severe brain damage and death can occur. Previous work conducted by the authors on this subject has focused on the technique of ventriculostomy to treat hydrocephalus. The present study carries on from the previous work but focuses on delivering medical drugs to treat brain tumors that are conventionally not accessible and which require complicated surgical procedures to remove them. The study focuses on the possible paths for delivering drugs to tumors in the human nervous system through conventionally accessible locations without major surgery. The results of the investigation have shown that it is possible to reach over 95% of the ventricular system by injection of drugs however the results also show that there are many factors that can affect the drug flow paths through the ventricular system and thus the areas reachable, by these drugs. (author)

  11. Ultrasound-mediated drug delivery to the brain : principles, progress and prospects

    NARCIS (Netherlands)

    Dasgupta, Anshuman; Liu, Mengjiao; Ojha, Tarun|info:eu-repo/dai/nl/41330874X; Storm, G|info:eu-repo/dai/nl/073356328; Kiessling, Fabian; Lammers, Twan|info:eu-repo/dai/nl/304824577

    2016-01-01

    The blood–brain barrier (BBB) limits drug delivery to the central nervous system. When combined with microbubbles, ultrasound can transiently permeate blood vessels in the brain. This approach, which can be referred to as sonoporation or sonopermeabilization, holds significant promise for shuttling

  12. Ultrasound-mediated drug delivery to the brain: principles, progress and prospects

    NARCIS (Netherlands)

    Dasgupta, I.; Liu, M.; Ojha, T.; Storm, Gerrit; Kiessling, F.; Lammers, Twan Gerardus Gertudis Maria

    2016-01-01

    The blood–brain barrier (BBB) limits drug delivery to the central nervous system. When combined with microbubbles, ultrasound can transiently permeate blood vessels in the brain. This approach, which can be referred to as sonoporation or sonopermeabilization, holds significant promise for shuttling

  13. Self-assembled polymersomes conjugated with lactoferrin as novel drug carrier for brain delivery.

    Science.gov (United States)

    Yu, Yuan; Pang, Zhiqing; Lu, Wei; Yin, Qi; Gao, Huile; Jiang, Xinguo

    2012-01-01

    To develop a novel brain drug delivery system based on self-assembled poly(ethyleneglycol)-poly (D,L-lactic-co-glycolic acid) (PEG-PLGA) polymersomes conjugated with lactoferrin (Lf-POS). The brain delivery properties of Lf-POS were investigated and optimized. Three formulations of Lf-POS, with different densities of lactoferrin on the surface of polymersomes, were prepared and characterized. The brain delivery properties in mice were investigated using 6-coumarin as a fluorescent probe loaded in Lf-POS (6-coumarin-Lf-POS). A neuroprotective peptide, S14G-humanin, was incorporated into Lf-POS (SHN-Lf-POS); a protective effect on the hippocampuses of rats treated by Amyloid-β(25-35) was investigated by immunohistochemical analysis. The results of brain delivery in mice demonstrated that the optimized number of lactoferrin conjugated per polymersome was 101. This obtains the greatest blood-brain barrier (BBB) permeability surface area(PS) product and percentage of injected dose per gram brain (%ID/g brain). Immunohistochemistry revealed the SHN-Lf-POS had a protective effect on neurons of rats by attenuating the expression of Bax and caspase-3 positive cells. Meanwhile, the activity of choline acetyltransferase (ChAT) had been increased compared with negative controls. These results suggest that lactoferrin functionalized self-assembled PEG-PLGA polymersomes could be a promising brain-targeting peptide drug delivery system via intravenous administration.

  14. Time-reversal acoustics and ultrasound-assisted convection-enhanced drug delivery to the brain

    OpenAIRE

    Olbricht, William; Sistla, Manjari; Ghandi, Gaurav; Lewis, George; Sarvazyan, Armen

    2013-01-01

    Time-reversal acoustics is an effective way of focusing ultrasound deep inside heterogeneous media such as biological tissues. Convection-enhanced delivery is a method of delivering drugs into the brain by infusing them directly into the brain interstitium. These two technologies are combined in a focusing system that uses a “smart needle” to simultaneously infuse fluid into the brain and provide the necessary feedback for focusing ultrasound using time-reversal acoustics. The effects of time...

  15. Nano-enabled drug delivery systems for brain cancer and Alzheimer's disease: research patterns and opportunities.

    Science.gov (United States)

    Ma, Jing; Porter, Alan L; Aminabhavi, Tejraj M; Zhu, Donghua

    2015-10-01

    "Tech mining" applies bibliometric and text analytic methods to scientific literature of a target field. In this study, we compare the evolution of nano-enabled drug delivery (NEDD) systems for two different applications - viz., brain cancer (BC) and Alzheimer's disease (AD) - using this approach. In this process, we derive research intelligence from papers indexed in MEDLINE. Review by domain specialists helps understand the macro-level disease problems and pathologies to identify commonalities and differences between BC and AD. Results provide a fresh perspective on the developmental pathways for NEDD approaches that have been used in the treatment of BC and AD. Results also point toward finding future solutions to drug delivery issues that are critical to medical practitioners and pharmaceutical scientists addressing the brain. Drug delivery to brain cells has been very challenging due to the presence of the blood-brain barrier (BBB). Suitable and effective nano-enabled drug delivery (NEDD) system is urgently needed. In this study, the authors utilized "tech-mining" tools to describe and compare various choices of delivery system available for the diagnosis, as well as treatment, of brain cancer and Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting.

    Science.gov (United States)

    Singh, Indu; Swami, Rajan; Pooja, Deep; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna

    2016-01-01

    Delivery of drugs to brain is a subtle task in the therapy of many severe neurological disorders. Solid lipid nanoparticles (SLN) easily diffuse the blood-brain barrier (BBB) due to their lipophilic nature. Furthermore, ligand conjugation on SLN surface enhances the targeting efficiency. Lactoferin (Lf) conjugated SLN system is first time attempted for effective brain targeting in this study. Preparation of Lf-modified docetaxel (DTX)-loaded SLN for proficient delivery of DTX to brain. DTX-loaded SLN were prepared using emulsification and solvent evaporation method and conjugation of Lf on SLN surface (C-SLN) was attained through carbodiimide chemistry. These lipidic nanoparticles were evaluated by DLS, AFM, FTIR, XRD techniques and in vitro release studies. Colloidal stability study was performed in biologically simulated environment (normal saline and serum). These lipidic nanoparticles were further evaluated for its targeting mechanism for uptake in brain tumour cells and brain via receptor saturation studies and distribution studies in brain, respectively. Particle size of lipidic nanoparticles was found to be optimum. Surface morphology (zeta potential, AFM) and surface chemistry (FTIR) confirmed conjugation of Lf on SLN surface. Cytotoxicity studies revealed augmented apoptotic activity of C-SLN than SLN and DTX. Enhanced cytotoxicity was demonstrated by receptor saturation and uptake studies. Brain concentration of DTX was elevated significantly with C-SLN than marketed formulation. It is evident from the cytotoxicity, uptake that SLN has potential to deliver drug to brain than marketed formulation but conjugating Lf on SLN surface (C-SLN) further increased the targeting potential for brain tumour. Moreover, brain distribution studies corroborated the use of C-SLN as a viable vehicle to target drug to brain. Hence, C-SLN was demonstrated to be a promising DTX delivery system to brain as it possessed remarkable biocompatibility, stability and efficacy than

  17. Convection-enhanced drug delivery to the brain: therapeutic potential and neuropathological considerations.

    Science.gov (United States)

    Barua, Neil U; Gill, Steven S; Love, Seth

    2014-03-01

    Convection-enhanced delivery (CED) describes a direct method of drug delivery to the brain through intraparenchymal microcatheters. By establishing a pressure gradient at the tip of the infusion catheter in order to exploit bulk flow through the interstitial spaces of the brain, CED offers a number of advantages over conventional drug delivery methods-bypass of the blood-brain barrier, targeted distribution through large brain volumes and minimization of systemic side effects. Despite showing early promise, CED is yet to fulfill its potential as a mainstream strategy for the treatment of neurological disease. Substantial research effort has been dedicated to optimize the technology for CED and identify the parameters, which govern successful drug distribution. It seems likely that successful clinical translation of CED will depend on suitable catheter technology being used in combination with drugs with optimal physicochemical characteristics, and on neuropathological analysis in appropriate preclinical models. In this review, we consider the factors most likely to influence the success or failure of CED, and review its application to the treatment of high-grade glioma, Parkinson's disease (PD) and Alzheimer's disease (AD). © 2013 International Society of Neuropathology.

  18. Ultrasound for Drug and Gene Delivery to the Brain

    OpenAIRE

    Hynynen, Kullervo

    2008-01-01

    Noninvasive, transient, and local image-guided blood-brain barrier disruption (BBBD) has been demonstrated with focused ultrasound exposure in animal models. Most studies have combined low pressure amplitude and low time average acoustic power burst sonications with intra-vascular injection of pre-formed micro-bubbles to produce BBBD without damage to the neurons. The BBB has been shown to be healed within a few hours after the exposure. The combination of focused ultrasound beams with MR ima...

  19. Characterization of Nanodiamond-based anti-HIV drug Delivery to the Brain.

    Science.gov (United States)

    Roy, Upal; Drozd, Vadym; Durygin, Andriy; Rodriguez, Jesse; Barber, Paul; Atluri, Venkata; Liu, Xiaohua; Voss, Thomas G; Saxena, Surendra; Nair, Madhavan

    2018-01-25

    Human Immunodeficiency Virus Type 1 (HIV-1) remains one of the leading causes of death worldwide. Present combination antiretroviral therapy has substantially improved HIV-1 related pathology. However, delivery of therapeutic agents to the HIV reservoir organ like Central nervous system (CNS) remains a major challenge primarily due to the ineffective transmigration of drugs through Blood Brain Barrier (BBB). The recent advent of nanomedicine-based drug delivery has stimulated the development of innovative systems for drug delivery. In this regard, particular focus has been given to nanodiamond due to its natural biocompatibility and non-toxic nature-making it a more efficient drug carrier than other carbon-based materials. Considering its potential and importance, we have characterized unmodified and surface-modified (-COOH and -NH 2 ) nanodiamond for its capacity to load the anti-HIV-1 drug efavirenz and cytotoxicity, in vitro. Overall, our study has established that unmodified nanodiamond conjugated drug formulation has significantly higher drug loading capacity than surface-modified nanodiamond with minimum toxicity. Further, this nanodrug formulation was characterized by its drug dissolution profile, transmigration through the BBB, and its therapeutic efficacy. The present biological characterizations provide a foundation for further study of in-vivo pharmacokinetics and pharmacodynamics of nanodiamond-based anti-HIV drugs.

  20. Nanotech revolution for the anti-cancer drug delivery through blood-brain barrier.

    Science.gov (United States)

    Caraglia, M; De Rosa, G; Salzano, G; Santini, D; Lamberti, M; Sperlongano, P; Lombardi, A; Abbruzzese, A; Addeo, R

    2012-03-01

    Nanotechnology-based drug delivery was born as a chance for pharmaceutical weapons to be delivered in the body sites where drug action is required. Specifically, the incorporation of anti-cancer agents in nanodevices of 100-300 nm allows their delivery in tissues that have a fenestrated vasculature and a reduced lymphatic drainage. These two features are typical of neoplastic tissues and, therefore, allow the accumulation of nanostructured devices in tumours. An important issue of anti-cancer pharmacological strategies is the overcoming of anatomical barriers such as the bloodbrain- barrier (BBB) that protects brain from toxicological injuries but, at the same time, makes impossible for most of the pharmacological agents with anti-cancer activity to reach tumour cells placed in the brain and derived from either primary tumours or metastases. In fact, only highly lipophilic molecules can passively diffuse through BBB to reach central nervous system (CNS). Another possibility is to use nanotechnological approaches as powerful tools to across BBB, by both prolonging the plasma half-life of the drugs and crossing fenestrations of BBB damaged by brain metastases. Moreover, modifications of nanocarrier surface with specific endogenous or exogenous ligands can promote the crossing of intact BBB as in the case of primary brain tumours. This aim can be achieved through the binding of the nanodevices to carriers or receptors expressed by the endothelial cells of BBB and that can favour the internalization of the nanostructured devices delivering anti-cancer drugs. This review summarizes the most meaningful advances in the field of nanotechnologies for brain delivery of drugs.

  1. Time-reversal acoustics and ultrasound-assisted convection-enhanced drug delivery to the brain.

    Science.gov (United States)

    Olbricht, William; Sistla, Manjari; Ghandi, Gaurav; Lewis, George; Sarvazyan, Armen

    2013-08-01

    Time-reversal acoustics is an effective way of focusing ultrasound deep inside heterogeneous media such as biological tissues. Convection-enhanced delivery is a method of delivering drugs into the brain by infusing them directly into the brain interstitium. These two technologies are combined in a focusing system that uses a "smart needle" to simultaneously infuse fluid into the brain and provide the necessary feedback for focusing ultrasound using time-reversal acoustics. The effects of time-reversal acoustics-focused ultrasound on the spatial distribution of infused low- and high-molecular weight tracer molecules are examined in live, anesthetized rats. Results show that exposing the rat brain to focused ultrasound significantly increases the penetration of infused compounds into the brain. The addition of stabilized microbubbles enhances the effect of ultrasound exposure.

  2. Design of Drug Delivery Methods for the Brain and Central Nervous System

    Science.gov (United States)

    Lueshen, Eric

    Due to the impermeability of the blood-brain barrier (BBB) to macromolecules delivered systemically, drug delivery to the brain and central nervous system (CNS) is quite difficult and has become an area of intense research. Techniques such as convection-enhanced intraparenchymal delivery and intrathecal magnetic drug targeting offer a means of circumventing the blood-brain barrier for targeted delivery of therapeutics. This dissertation focuses on three aspects of drug delivery: pharmacokinetics, convection-enhanced delivery, and intrathecal magnetic drug targeting. Classical pharmacokinetics mainly uses black-box curve fitting techniques without biochemical or biological basis. This dissertation advances the state-of-the-art of pharmacokinetics and pharmacodynamics by incorporating first principles and biochemical/biotransport mechanisms in the prediction of drug fate in vivo. A whole body physiologically-based pharmacokinetics (PBPK) modeling framework is engineered which creates multiscale mathematical models for entire organisms composed of organs, tissues, and a detailed vasculature network to predict drug bioaccumulation and to rigorously determine kinetic parameters. These models can be specialized to account for species, weight, gender, age, and pathology. Systematic individual therapy design using the proposed mechanistic PBPK modeling framework is also a possibility. Biochemical, anatomical, and physiological scaling laws are also developed to accurately project drug kinetics in humans from small animal experiments. Our promising results demonstrate that the whole-body mechanistic PBPK modeling approach not only elucidates drug mechanisms from a biochemical standpoint, but offers better scaling precision. Better models can substantially accelerate the introduction of drug leads to clinical trials and eventually to the market by offering more understanding of the drug mechanisms, aiding in therapy design, and serving as an accurate dosing tool. Convection

  3. Drug delivery in overcoming the blood–brain barrier: role of nasal mucosal grafting

    Directory of Open Access Journals (Sweden)

    Marianecci C

    2017-01-01

    Full Text Available Carlotta Marianecci,1 Federica Rinaldi,2 Patrizia Nadia Hanieh,1 Luisa Di Marzio,3 Donatella Paolino,4,5 Maria Carafa1 1Department of Drug Chemistry and Technology, University of Rome “Sapienza”, Rome, Italy; 2Center for Life Nano Science@Sapienza, Fondazione Istituto Italiano di Tecnologia, Rome, Italy; 3Department of Pharmacy, University “G. d’Annunzio”, Chieti, Italy; 4IRC FSH-Interregional Research Center for Food Safety & Health, Campus Universitario “S. Venuta”, University of Catanzaro “Magna Græcia”, Catanzaro, Italy; 5Department of Health Sciences, Campus Universitario “S. Venuta”, University of Catanzaro “Magna Græcia”, Catanzaro, Italy Abstract: The blood–brain barrier (BBB plays a fundamental role in protecting and maintaining the homeostasis of the brain. For this reason, drug delivery to the brain is much more difficult than that to other compartments of the body. In order to bypass or cross the BBB, many strategies have been developed: invasive techniques, such as temporary disruption of the BBB or direct intraventricular and intracerebral administration of the drug, as well as noninvasive techniques. Preliminary results, reported in the large number of studies on the potential strategies for brain delivery, are encouraging, but it is far too early to draw any conclusion about the actual use of these therapeutic approaches. Among the most recent, but still pioneering, approaches related to the nasal mucosa properties, the permeabilization of the BBB via nasal mucosal engrafting can offer new potential opportunities. It should be emphasized that this surgical procedure is quite invasive, but the implication for patient outcome needs to be compared to the gold standard of direct intracranial injection, and evaluated whilst keeping in mind that central nervous system diseases and lysosomal storage diseases are chronic and severely debilitating and that up to now no therapy seems to be completely

  4. Recent advances in medicinal chemistry and pharmaceutical technology--strategies for drug delivery to the brain.

    Science.gov (United States)

    Denora, Nunzio; Trapani, Adriana; Laquintana, Valentino; Lopedota, Angela; Trapani, Giuseppe

    2009-01-01

    This paper provides a mini-review of some recent approaches for the treatment of brain pathologies examining both medicinal chemistry and pharmaceutical technology contributions. Medicinal chemistry-based strategies are essentially aimed at the chemical modification of low molecular weight drugs in order to increase their lipophilicity or the design of appropriate prodrugs, although this review will focus primarily on the use of prodrugs and not analog development. Recently, interest has been focused on the design and evaluation of prodrugs that are capable of exploiting one or more of the various endogenous transport systems at the level of the blood brain barrier (BBB). The technological strategies are essentially non-invasive methods of drug delivery to malignancies of the central nervous system (CNS) and are based on the use of nanosystems (colloidal carriers) such as liposomes, polymeric nanoparticles, solid lipid nanoparticles, polymeric micelles and dendrimers. The biodistribution of these nanocarriers can be manipulated by modifying their surface physico-chemical properties or by coating them with surfactants and polyethylene-glycols (PEGs). Liposomes, surfactant coated polymeric nanoparticles, and solid lipid nanoparticles are promising systems for delivery of drugs to tumors of the CNS. This mini-review discusses issues concerning the scope and limitations of both the medicinal chemistry and technological approaches. Based on the current findings, it can be concluded that crossing of the BBB and drug delivery to CNS is extremely complex and requires a multidisciplinary approach such as a close collaboration and common efforts among researchers of several scientific areas, particularly medicinal chemists, biologists and pharmaceutical technologists.

  5. Targeted liposomes for drug delivery across the blood-brain barrier

    NARCIS (Netherlands)

    van Rooy, I.

    2011-01-01

    Our brain is protected by the blood-brain barrier (BBB). This barrier is formed by specialized endothelial cells of the brain vasculature and prevents toxic substances from entering the brain. The downside of this barrier is that many drugs that have been developed to cure brain diseases cannot

  6. Imaging of Cells and Nanoparticles : Implications for Drug Delivery to the Brain

    NARCIS (Netherlands)

    Stojanov, Katica; Zuhorn, Inge S.; Dierckx, Rudi A. J. O.; de Vries, Erik F. J.

    2012-01-01

    A major challenge in the development of central nervous system drugs is to obtain therapeutic effective drug concentrations inside the brain. Many potentially effective drugs have never reached clinical application because of poor brain penetration. Currently, devices are being developed that may

  7. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system

    Science.gov (United States)

    Aryal, Muna; Arvanitis, Costas D.; Alexander, Phillip M.; McDannold, Nathan

    2014-01-01

    The physiology of the vasculature in the central nervous system (CNS), which includes the blood-brain barrier (BBB) and other factors, complicates the delivery of most drugs to the brain. Different methods have been used to bypass the BBB, but they have limitations such as being invasive, non-targeted or requiring the formulation of new drugs. Focused ultrasound (FUS), when combined with circulating microbubbles, is a noninvasive method to locally and transiently disrupt the BBB at discrete targets. This review provides insight on the current status of this unique drug delivery technique, experience in preclinical models, and potential for clinical translation. If translated to humans, this method would offer a flexible means to target therapeutics to desired points or volumes in the brain, and enable the whole arsenal of drugs in the CNS that are currently prevented by the BBB. PMID:24462453

  8. Intranasal delivery of antipsychotic drugs.

    Science.gov (United States)

    Katare, Yogesh K; Piazza, Justin E; Bhandari, Jayant; Daya, Ritesh P; Akilan, Kosalan; Simpson, Madeline J; Hoare, Todd; Mishra, Ram K

    2017-06-01

    Antipsychotic drugs are used to treat psychotic disorders that afflict millions globally and cause tremendous emotional, economic and healthcare burdens. However, the potential of intranasal delivery to improve brain-specific targeting remains unrealized. In this article, we review the mechanisms and methods used for brain targeting via the intranasal (IN) route as well as the potential advantages of improving this type of delivery. We extensively review experimental studies relevant to intranasal delivery of therapeutic agents for the treatment of psychosis and mental illnesses. We also review clinical studies in which intranasal delivery of peptides, like oxytocin (7 studies) and desmopressin (1), were used as an adjuvant to antipsychotic treatment with promising results. Experimental animal studies (17) investigating intranasal delivery of mainstream antipsychotic drugs have revealed successful targeting to the brain as suggested by pharmacokinetic parameters and behavioral effects. To improve delivery to the brain, nanotechnology-based carriers like nanoparticles and nanoemulsions have been used in several studies. However, human studies assessing intranasal delivery of mainstream antipsychotic drugs are lacking, and the potential toxicity of nanoformulations used in animal studies has not been explored. A brief discussion of future directions anticipates that if limitations of low aqueous solubility of antipsychotic drugs can be overcome and non-toxic formulations used, IN delivery (particularly targeting specific tissues within the brain) will gain more importance moving forward given the inherent benefits of IN delivery in comparison to other methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Nose-to-Brain Delivery of Peptide Drugs Enhanced by Coadministration of Cell-penetrating Peptides: Therapeutic Potential for Dementia.

    Science.gov (United States)

    Kamei, Noriyasu

    2017-01-01

    Recent reports suggest that peptide drugs such as insulin have the potential to serve as therapeutics in neurodegenerative diseases such as Alzheimer's disease. However, the transport of these drugs to the therapeutic target, the brain, is significantly hindered by the blood-brain barrier (BBB). Intranasal administration appears to be an ideal solution for drug delivery to the brain, bypassing the BBB, however the entry of peptide drugs into neuronal and epithelial cells in the olfactory mucosa remains low. In this study, we therefore examined whether intranasal coadministration of cell-penetrating peptides (CPPs) could improve nose-to-brain drug transport. In both mice and rats, we found that direct transport of insulin into the brain was significantly facilitated when coadministered with amphipathic CPP penetratin, and eventually insulin reached the deeper regions of the brain such as the hippocampus. In the mouse line senescence-accelerated mouse prone-8 (SAMP8), spatial learning tests demonstrated that long-term intranasal coadministration of insulin with penetratin improved mild memory loss in the early stages of dementia. In contrast, the severe cognitive dysfunction in the aged SAMP8 mice was preserved despite intranasal coadministration of insulin with penetratin. The immunohistological examination of the hippocampus suggested that enhanced nose-to-brain delivery of insulin had a partial neuroprotective effect but unexpectedly increased amyloid β plaque deposition. In conclusion, intranasal coadministration of insulin with CPPs has the potential to serve as a therapeutic for mild cognitive dysfunction. To identify suitable pharmacotherapy for dementia with severe pathology, further studies of nose-to-brain delivery of molecularly appropriate biopharmaceuticals are necessary.

  10. Analyzing collaboration networks and developmental patterns of nano-enabled drug delivery (NEDD for brain cancer

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2015-07-01

    Full Text Available The rapid development of new and emerging science & technologies (NESTs brings unprecedented challenges, but also opportunities. In this paper, we use bibliometric and social network analyses, at country, institution, and individual levels, to explore the patterns of scientific networking for a key nano area – nano-enabled drug delivery (NEDD. NEDD has successfully been used clinically to modulate drug release and to target particular diseased tissues. The data for this research come from a global compilation of research publication information on NEDD directed at brain cancer. We derive a family of indicators that address multiple facets of research collaboration and knowledge transfer patterns. Results show that: (1 international cooperation is increasing, but networking characteristics change over time; (2 highly productive institutions also lead in influence, as measured by citation to their work, with American institutes leading; (3 research collaboration is dominated by local relationships, with interesting information available from authorship patterns that go well beyond journal impact factors. Results offer useful technical intelligence to help researchers identify potential collaborators and to help inform R&D management and science & innovation policy for such nanotechnologies.

  11. Stroke and Drug Delivery--In Vitro Models of the Ischemic Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Tornabene, Erica; Brodin, Birger

    2016-01-01

    Stroke is a major cause of death and disability worldwide. Both cerebral hypoperfusion and focal cerebral infarcts are caused by a reduction of blood flow to the brain, leading to stroke and subsequent brain damage. At present, only few medical treatments of stroke are available, with the Food...... and Drug Administration-approved tissue plasminogen activator for treatment of acute ischemic stroke being the most prominent example. A large number of potential drug candidates for treatment of ischemic brain tissue have been developed and subsequently failed in clinical trials. A deeper understanding...... of permeation pathways across the barrier in ischemic and postischemic brain endothelium is important for development of new medical treatments. The blood-brain barrier, that is, the endothelial monolayer lining the brain capillaries, changes properties during an ischemic event. In vitro models of the blood-brain...

  12. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain

    Directory of Open Access Journals (Sweden)

    Shanshan Liu

    2018-01-01

    Full Text Available Epilepsy is considered as a common and diverse set of chronic neurological disorders and its symptoms can be controlled by antiepileptic drugs (AEDs. The presence of p-glycoprotein and multi-drug resistance transporters in the blood-brain barrier could prevent the entry of AEDs into the brain, causing drug resistant epilepsy. To overcome this problem, we propose using carboxymethyl chitosan nanoparticles as a carrier to deliver carbamazepine (CBZ intra-nasally with the purpose to bypass the blood-brain barrier thus to enhance the brain drug concentration and the treatment efficacy. Results so far indicate that the developed CBZ-NPs have small particle size (218.76 ± 2.41 nm with high drug loading (around 35% and high entrapment efficiency (around 80%. The in vitro release profiles of CBZ from the NPs are in accordance with the Korsmeyer-peppas model. The in vivo results show that both encapsulation of CBZ in nanoparticles and the nasal route determined the enhancement of the drug bioavailability and brain targeting characteristics.

  13. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging

    Directory of Open Access Journals (Sweden)

    Estrada Giovani

    2010-03-01

    Full Text Available Abstract Nanotechnology has brought a variety of new possibilities into biological discovery and clinical practice. In particular, nano-scaled carriers have revolutionalized drug delivery, allowing for therapeutic agents to be selectively targeted on an organ, tissue and cell specific level, also minimizing exposure of healthy tissue to drugs. In this review we discuss and analyze three issues, which are considered to be at the core of nano-scaled drug delivery systems, namely functionalization of nanocarriers, delivery to target organs and in vivo imaging. The latest developments on highly specific conjugation strategies that are used to attach biomolecules to the surface of nanoparticles (NP are first reviewed. Besides drug carrying capabilities, the functionalization of nanocarriers also facilitate their transport to primary target organs. We highlight the leading advantage of nanocarriers, i.e. their ability to cross the blood-brain barrier (BBB, a tightly packed layer of endothelial cells surrounding the brain that prevents high-molecular weight molecules from entering the brain. The BBB has several transport molecules such as growth factors, insulin and transferrin that can potentially increase the efficiency and kinetics of brain-targeting nanocarriers. Potential treatments for common neurological disorders, such as stroke, tumours and Alzheimer's, are therefore a much sought-after application of nanomedicine. Likewise any other drug delivery system, a number of parameters need to be registered once functionalized NPs are administered, for instance their efficiency in organ-selective targeting, bioaccumulation and excretion. Finally, direct in vivo imaging of nanomaterials is an exciting recent field that can provide real-time tracking of those nanocarriers. We review a range of systems suitable for in vivo imaging and monitoring of drug delivery, with an emphasis on most recently introduced molecular imaging modalities based on optical

  14. Characterizing Focused-Ultrasound Mediated Drug Delivery to the Heterogeneous Primate Brain In Vivo with Acoustic Monitoring

    Science.gov (United States)

    Wu, Shih-Ying; Sanchez, Carlos Sierra; Samiotaki, Gesthimani; Buch, Amanda; Ferrera, Vincent P.; Konofagou, Elisa E.

    2016-11-01

    Focused ultrasound with microbubbles has been used to noninvasively and selectively deliver pharmacological agents across the blood-brain barrier (BBB) for treating brain diseases. Acoustic cavitation monitoring could serve as an on-line tool to assess and control the treatment. While it demonstrated a strong correlation in small animals, its translation to primates remains in question due to the anatomically different and highly heterogeneous brain structures with gray and white matteras well as dense vasculature. In addition, the drug delivery efficiency and the BBB opening volume have never been shown to be predictable through cavitation monitoring in primates. This study aimed at determining how cavitation activity is correlated with the amount and concentration of gadolinium delivered through the BBB and its associated delivery efficiency as well as the BBB opening volume in non-human primates. Another important finding entails the effect of heterogeneous brain anatomy and vasculature of a primate brain, i.e., presence of large cerebral vessels, gray and white matter that will also affect the cavitation activity associated with variation of BBB opening in different tissue types, which is not typically observed in small animals. Both these new findings are critical in the primate brain and provide essential information for clinical applications.

  15. Delivery of antihuman African trypanosomiasis drugs across the blood-brain and blood-CSF barriers.

    Science.gov (United States)

    Sekhar, Gayathri N; Watson, Christopher P; Fidanboylu, Mehmet; Sanderson, Lisa; Thomas, Sarah A

    2014-01-01

    Human African trypanosomiasis (HAT or sleeping sickness) is a potentially fatal disease caused by the parasite, Trypanosoma brucei sp. The parasites are transmitted by the bite of insect vectors belonging to the genus Glossina (tsetse flies) and display a life cycle strategy that is equally spread between human and insect hosts. T.b. gambiense is found in western and central Africa whereas, T.b. rhodesiense is found in eastern and southern Africa. The disease has two clinical stages: a blood stage after the bite of an infected tsetse fly, followed by a central nervous system (CNS) stage where the parasite penetrates the brain; causing death if left untreated. The blood-brain barrier (BBB) makes the CNS stage difficult to treat because it prevents 98% of all known compounds from entering the brain, including some anti-HAT drugs. Those that do enter the brain are toxic compounds in their own right and have serious side effects. There are only a few drugs available to treat HAT and those that do are stage specific. This review summarizes the incidence, diagnosis, and treatment of HAT and provides a close examination of the BBB transport of anti-HAT drugs and an overview of the latest drugs in development. © 2014 Elsevier Inc. All rights reserved.

  16. Revisiting intra-arterial drug delivery for treating brain diseases or is it "déjà-vu, all over again"?

    Directory of Open Access Journals (Sweden)

    Shailendra Joshi

    2014-01-01

    Full Text Available For over six decades intra-arterial (IA drugs have been sporadically used for the treatment of lethal brain diseases. In recent years considerable advance has been made in the IA treatment of retinoblastomas, liver and locally invasive breast cancers, but relatively little progress has been made in the treatment of brain cancers. High resting blood flow and the presence of the blood-brain barrier (BBB, makes IA delivery to the brain tissue far more challenging, compared to other organs. The lack of advance in the field is also partly due to the inability to understand the complex pharmacokinetics of IA drugs as it is difficult to track drug concentrations in sub-second time frame by conventional chemical methods. The advances in optical imaging now provide unprecedented insights into the pharmacokinetics of IA drug and optical tracer delivery. Novel delivery methods, improved IA drug formulations, and optical pharmacokinetics, present us with untested paradigms in pharmacology that could lead to new therapeutic interventions for brain cancers and stroke. The object of this review is to bring into focus the current practice, problems, and the potential of IA drug delivery for treating brain diseases. A concerted effort is needed at basic sciences (pharmacology and drug imaging, and translational (drug delivery techniques and protocol development levels by the interventional neuroradiology community to advance the field.

  17. Brain targeted nanoparticulate drug delivery system of rasagiline via intranasal route.

    Science.gov (United States)

    Mittal, Deepti; Md, Shadab; Hasan, Quamrul; Fazil, Mohammad; Ali, Asgar; Baboota, Sanjula; Ali, Javed

    2016-01-01

    The aim of the present study was to prepare and evaluate a rasagiline-loaded chitosan glutamate nanoparticles (RAS-CG-NPs) by ionic gelation of CG with tripolyphosphate anions (TPP). RAS-loaded CG-NPs were characterized for particle size, size distribution, encapsulation efficiency and in vitro drug release. The mean particles size, polydispersity index (PDI) and encapsulation efficiency was found to be 151.1 ± 10.31, 0.380 ± 0.01 and 96.43 ± 4.23, respectively. Biodistribution of RAS formulations in the brain and blood of mice following intranasal (i.n.) and intravenous (i.v.) administration was performed using HPLC analytical method. The drug concentrations in brain following the i.n. of CG-NPs were found to be significantly higher at all the time points compared to both drug (i.n.) and drug CG-NPs (i.v.). The Cmax (999.25 ng/ml) and AUC (2086.60 ng h/ml) of formulation CG-NPs (i.n) were found to be significantly higher than CG-NPs (i.v.) and RAS solution (i.n.). The direct transport percentage (DTP%) values of RAS-loaded CG-NPs (i.n.) as compared to drug solution (i.n.) increased from 66.27 ± 1.8 to 69.27 ± 2.1%. The results showed significant enhancement of bioavailability in brain, after administration of the RAS-loaded CG-NPs which could be a substantial achievement of direct nose to brain targeting in Parkinson's disease therapy.

  18. Nose-to-Brain Delivery of Antiviral Drugs: A Way to Overcome Their Active Efflux?

    Directory of Open Access Journals (Sweden)

    Alessandro Dalpiaz

    2018-03-01

    Full Text Available Although several viruses can easily infect the central nervous system (CNS, antiviral drugs often show dramatic difficulties in penetrating the brain from the bloodstream since they are substrates of active efflux transporters (AETs. These transporters, located in the physiological barriers between blood and the CNS and in macrophage membranes, are able to recognize their substrates and actively efflux them into the bloodstream. The active transporters currently known to efflux antiviral drugs are P-glycoprotein (ABCB1 or P-gp or MDR1, multidrug resistance-associated proteins (ABCC1 or MRP1, ABCC4 or MRP4, ABCC5 or MRP5, and breast cancer resistance protein (ABCG2 or BCRP. Inhibitors of AETs may be considered, but their co-administration causes serious unwanted effects. Nasal administration of antiviral drugs is therefore proposed in order to overcome the aforementioned problems, but innovative devices, formulations (thermoreversible gels, polymeric micro- and nano-particles, solid lipid microparticles, nanoemulsions, absorption enhancers (chitosan, papaverine, and mucoadhesive agents (chitosan, polyvinilpyrrolidone are required in order to selectively target the antiviral drugs and, possibly, the AET inhibitors in the CNS. Moreover, several prodrugs of antiretroviral agents can inhibit or elude the AET systems, appearing as interesting substrates for innovative nasal formulations able to target anti-Human Immunodeficiency Virus (HIV agents into macrophages of the CNS, which are one of the most important HIV Sanctuaries of the body.

  19. Role of Transporters in Central Nervous System Drug Delivery and Blood-Brain Barrier Protection: Relevance to Treatment of Stroke

    Directory of Open Access Journals (Sweden)

    Hrvoje Brzica

    2017-03-01

    Full Text Available Ischemic stroke is a leading cause of morbidity and mortality in the United States. The only approved pharmacologic treatment for ischemic stroke is thrombolysis via recombinant tissue plasminogen activator (r-tPA. A short therapeutic window and serious adverse events (ie, hemorrhage, excitotoxicity greatly limit r-tPA therapy, which indicates an essential need to develop novel stroke treatment paradigms. Transporters expressed at the blood-brain barrier (BBB provide a significant opportunity to advance stroke therapy via central nervous system delivery of drugs that have neuroprotective properties. Examples of such transporters include organic anion–transporting polypeptides (Oatps and organic cation transporters (Octs. In addition, multidrug resistance proteins (Mrps are transporter targets in brain microvascular endothelial cells that can be exploited to preserve BBB integrity in the setting of stroke. Here, we review current knowledge on stroke pharmacotherapy and demonstrate how endogenous BBB transporters can be targeted for improvement of ischemic stroke treatment.

  20. Nanoparticle mediated P-glycoprotein silencing for improved drug delivery across the blood-brain barrier: a siRNA-chitosan approach.

    Directory of Open Access Journals (Sweden)

    Jostein Malmo

    Full Text Available The blood-brain barrier (BBB, composed of tightly organized endothelial cells, limits the availability of drugs to therapeutic targets in the central nervous system. The barrier is maintained by membrane bound efflux pumps efficiently transporting specific xenobiotics back into the blood. The efflux pump P-glycoprotein (P-gp, expressed at high levels in brain endothelial cells, has several drug substrates. Consequently, siRNA mediated silencing of the P-gp gene is one possible strategy how to improve the delivery of drugs to the brain. Herein, we investigated the potential of siRNA-chitosan nanoparticles in silencing P-gp in a BBB model. We show that the transfection of rat brain endothelial cells mediated effective knockdown of P-gp with subsequent decrease in P-gp substrate efflux. This resulted in increased cellular delivery and efficacy of the model drug doxorubicin.

  1. Transient disruption of vascular barriers using focused ultrasound and microbubbles for targeted drug delivery in the brain

    Science.gov (United States)

    Aryal, Muna

    The physiology of the vasculature in the central nervous system (CNS) which includes the blood-brain-barrier (BBB) and other factors, prevents the transport of most anticancer agents to the brain and restricts delivery to infiltrating brain tumors. The heterogeneous vascular permeability in tumor vessels (blood-tumor barrier; BTB), along with several other factors, creates additional hurdles for drug treatment of brain tumors. Different methods have been used to bypass the BBB/BTB, but they have their own limitations such as being invasive, non-targeted or requiring the formulation of new drugs. Magnetic Resonance Imaging guided Focused Ultrasound (MRIgFUS), when combined with circulating microbubbles, is an emerging noninvasive method to temporarily permeabilize the BBB and BTB. The purpose of this thesis was to use this alternative approach to deliver chemotherapeutic agents through the BBB/BTB for brain tumor treatment in a rodent model to overcome the hinderances encountered in prior approaches tested for drug delivery in the CNS. The results presented in thesis demonstrate that MRIgFUS can be used to achieve consistent and reproducible BBB/BTB disruption in rats. It enabled us to achieve clinically-relevant concentrations of doxorubicin (~ 4.8+/-0.5 microg/g) delivered to the brain with the sonication parameters (0.69 MHz; 0.55 MPa; 10 ms bursts; 1 Hz PRF; 60 s duration), microbubble concentration (Definity, 10 microl/kg), and liposomoal doxorubicin (Lipo-DOX) dose (5.67 mg/kg) used. The resulting doxorubicin concentration was reduced by 32% when the agent was injected 10 minute after the last sonication. Three weekly sessions of FUS and Lipo-DOX appeared to be safe in the rat brain, despite some minor tissue damage. Importantly, the severe neurotoxicity seen in earlier works using other approaches does not appear to occur with delivery via FUS-BBB disruption. The resuls from three weekly treatments of FUS and Lipo-DOX in a rat glioma model are highly

  2. Drug delivery and formulations.

    Science.gov (United States)

    Breitkreutz, Jörg; Boos, Joachim

    2011-01-01

    Paediatric drug delivery is a major challenge in drug development. Because of the heterogeneous nature of the patient group, ranging from newborns to adolescents, there is a need to use appropriate excipients, drug dosage forms and delivery devices for different age groups. So far, there is a lack of suitable and safe drug formulations for children, especially for the very young and seriously ill patients. The new EU legislation will enforce paediatric clinical trials and drug development. Current advances in paediatric drug delivery include interesting new concepts such as fast-dissolving drug formulations, including orodispersible tablets and oral thin strips (buccal wafers), and multiparticulate dosage forms based on mini-tabletting or pelletization technologies. Parenteral administration is likely to remain the first choice for children in the neonatal period and for emergency cases. Alternative routes of administration include transdermal, pulmonary and nasal drug delivery systems. A few products are already available on the market, but others still need further investigations and clinical proof of concept.

  3. Supersaturating drug delivery systems

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Grohganz, Holger

    2017-01-01

    Amorphous solid dispersions (ASDs) are probably the most common and important supersaturating drug delivery systems for the formulation of poorly water-soluble compounds. These delivery systems are able to achieve and maintain a sustained drug supersaturation which enables improvement...... of the bioavailability of poorly water-soluble drugs by increasing the driving force for drug absorption. However, ASDs often require a high weight percentage of carrier (usually a hydrophilic polymer) to ensure molecular mixing of the drug in the carrier and stabilization of the supersaturated state, often leading...... strategy for poorly-soluble drugs. While the current research on co-amorphous formulations is focused on preparation and characterization of these systems, more detailed research on their supersaturation and precipitation behavior and the effect of co-formers on nucleation and crystal growth inhibition...

  4. Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery.

    Directory of Open Access Journals (Sweden)

    Ching-Hsiang Fan

    Full Text Available The use of focused ultrasound (FUS with microbubbles has been proven to induce transient blood-brain barrier opening (BBB-opening. However, FUS-induced inertial cavitation of microbubbles can also result in erythrocyte extravasations. Here we investigated whether induction of submicron bubbles to oscillate at their resonant frequency would reduce inertial cavitation during BBB-opening and thereby eliminate erythrocyte extravasations in a rat brain model. FUS was delivered with acoustic pressures of 0.1-4.5 MPa using either in-house manufactured submicron bubbles or standard SonoVue microbubbles. Wideband and subharmonic emissions from bubbles were used to quantify inertial and stable cavitation, respectively. Erythrocyte extravasations were evaluated by in vivo post-treatment magnetic resonance susceptibility-weighted imaging, and finally by histological confirmation. We found that excitation of submicron bubbles with resonant frequency-matched FUS (10 MHz can greatly limit inertial cavitation while enhancing stable cavitation. The BBB-opening was mainly caused by stable cavitation, whereas the erythrocyte extravasation was closely correlated with inertial cavitation. Our technique allows extensive reduction of inertial cavitation to induce safe BBB-opening. Furthermore, the safety issue of BBB-opening was not compromised by prolonging FUS exposure time, and the local drug concentrations in the brain tissues were significantly improved to 60 times (BCNU; 18.6 µg versus 0.3 µg by using chemotherapeutic agent-loaded submicron bubbles with FUS. This study provides important information towards the goal of successfully translating FUS brain drug delivery into clinical use.

  5. Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery studies.

    Science.gov (United States)

    Li, Guanglei; Simon, Melissa J; Cancel, Limary M; Shi, Zhong-Dong; Ji, Xinying; Tarbell, John M; Morrison, Barclay; Fu, Bingmei M

    2010-08-01

    The blood-brain barrier (BBB) is a major obstacle for drug delivery to the brain. To seek for in vitro BBB models that are more accessible than animals for investigating drug transport across the BBB, we compared four in vitro cultured cell models: endothelial monoculture (bEnd3 cell line), coculture of bEnd3 and primary rat astrocytes (coculture), coculture with collagen type I and IV mixture, and coculture with Matrigel. The expression of the BBB tight junction proteins in these in vitro models was assessed using RT-PCR and immunofluorescence. We also quantified the hydraulic conductivity (L (p)), transendothelial electrical resistance (TER) and diffusive solute permeability (P) of these models to three solutes: TAMRA, Dextran 10K and Dextran 70K. Our results show that L (p) and P of the endothelial monoculture and coculture models are not different from each other. Compared with in vivo permeability data from rat pial microvessels, P of the endothelial monoculture and coculture models are not significantly different from in vivo data for Dextran 70K, but they are 2-4 times higher for TAMRA and Dextran 10K. This suggests that the endothelial monoculture and all of the coculture models are fairly good models for studying the transport of relatively large solutes across the BBB.

  6. Mucoadhesive drug delivery systems

    Directory of Open Access Journals (Sweden)

    Rahamatullah Shaikh

    2011-01-01

    Full Text Available Mucoadhesion is commonly defined as the adhesion between two materials, at least one of which is a mucosal surface. Over the past few decades, mucosal drug delivery has received a great deal of attention. Mucoadhesive dosage forms may be designed to enable prolonged retention at the site of application, providing a controlled rate of drug release for improved therapeutic outcome. Application of dosage forms to mucosal surfaces may be of benefit to drug molecules not amenable to the oral route, such as those that undergo acid degradation or extensive first-pass metabolism. The mucoadhesive ability of a dosage form is dependent upon a variety of factors, including the nature of the mucosal tissue and the physicochemical properties of the polymeric formulation. This review article aims to provide an overview of the various aspects of mucoadhesion, mucoadhesive materials, factors affecting mucoadhesion, evaluating methods, and finally various mucoadhesive drug delivery systems (buccal, nasal, ocular, gastro, vaginal, and rectal.

  7. Drug delivery with living cells

    NARCIS (Netherlands)

    Fliervoet, Lies A L; Mastrobattista, Enrico

    2016-01-01

    The field of drug delivery has grown tremendously in the past few decades by developing a wide range of advanced drug delivery systems. An interesting category is cell-based drug delivery, which includes encapsulation of drugs inside cells or attached to the surface and subsequent transportation

  8. Drugs and the Brain.

    Science.gov (United States)

    National Institutes of Health (DHHS), Bethesda, MD.

    This booklet explores various aspects of drug addiction, with a special focus on drugs' effects on the brain. A brief introduction presents information on the rampant use of drugs in society and elaborates the distinction between drug abuse and drug addiction. Next, a detailed analysis of the brain and its functions is given. Drugs target the more…

  9. Magnetic targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Timothy Wiedmann

    2009-10-01

    Full Text Available Lung cancer is the most common cause of death from cancer in both men and women. Treatment by intravenous or oral administration of chemotherapy agents results in serious and often treatment-limiting side effects. Delivery of drugs directly to the lung by inhalation of an aerosol holds the promise of achieving a higher concentration in the lung with lower blood levels. To further enhance the selective lung deposition, it may be possible to target deposition by using external magnetic fields to direct the delivery of drug coupled to magnetic particles. Moreover, alternating magnetic fields can be used to induce particle heating, which in turn controls the drug release rate with the appropriate thermal sensitive material.With this goal, superparamagetic nanoparticles (SPNP were prepared and characterized, and enhanced magnetic deposition was demonstrated in vitro and in vivo. SPNPs were also incorporated into a lipid-based/SPNP aerosol formulation, and drug release was shown to be controlled by thermal activation. Because of the inherent imaging potential of SPNPs, this use of nanotechnology offers the possibility of coupling the diagnosis of lung cancer to drug release, which perhaps will ultimately provide the “magic bullet” that Paul Ehrlich originally sought.

  10. Brain Delivery of Drug and MRI Contrast Agent: Detection and Quantitative Determination of Brain Deposition of CPT-Glu Using LC-MS/MS and Gd-DTPA Using Magnetic Resonance Imaging

    Science.gov (United States)

    Tabanor, Kayann; Lee, Phil; Kiptoo, Paul; Choi, In-Young; Sherry, Erica B.; Eagle, Cheyenne Sun; Williams, Todd D.; Siahaan, Teruna J.

    2015-01-01

    Successful treatment and diagnosis of neurological diseases depend on reliable delivery of molecules across the blood-brain barrier (BBB), which restricts penetration of pharmaceutical drugs and diagnostic agents into the brain. Thus, developing new non-invasive strategies to improve drug delivery across the BBB is critically needed. This study was aimed at evaluating the activity of HAV6 peptide (Ac-SHAVSS-NH2) in improving brain delivery of camptothecin-glutamate (CPT-Glu) conjugate and gadolinium-diethylenetriaminepentaacetate (Gd-DTPA) contrast agent in Sprague-Dawley rats. Brain delivery of both CPT-Glu and Gd-DTPA was evaluated in an in situ rat brain perfusion model in the presence and absence of HAV6 peptide (1.0 mM). Gd-DTPA (0.6 mmol/kg) was intravenously (i.v.) administered with and without HAV6 peptide (0.019 mmol/kg) in rats. The detection and quantification of CPT-Glu and Gd-DTPA in the brain were carried out by LC-MS/MS and quantitative magnetic resonance imaging (MRI), respectively. Rats perfused with CPT-Glu in combination with HAV6 had significantly higher deposition of drug in the brain compared to CPT-Glu alone. MRI results also showed that administration of Gd-DTPA in the presence of HAV6 peptide led to significant accumulation of Gd-DTPA in various regions of the brain in both the in situ rat brain perfusion and in vivo studies. All observations taken together indicate that HAV6 peptide can disrupt the BBB and enhance delivery of small molecules into the brain. PMID:26705088

  11. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: an in vitro and in vivo evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Swami, Rajan; Singh, Indu [National Institute of Pharmaceutical Education & Research (NIPER), Department of Pharmaceutics (India); Kulhari, Hitesh [CSIR-Indian Institute of Chemical Technology, Medicinal Chemistry & Pharmacology Division (India); Jeengar, Manish Kumar [National Institute of Pharmaceutical Education & Research (NIPER), Departmentof Pharmacology (India); Khan, Wahid, E-mail: wahid@niperhyd.ac.in; Sistla, Ramakrishna, E-mail: sistla@iict.res.in, E-mail: rksistla@yahoo.com [National Institute of Pharmaceutical Education & Research (NIPER), Department of Pharmaceutics (India)

    2015-06-15

    Dendrimers which are discrete nanostructures/nanoparticles are emerging as promising candidates for many nanomedicine applications. Ligand-conjugated dendrimer facilitate the delivery of therapeutics in a targeted manner. Small molecules such as p-hydroxyl benzoic acid (pHBA) were found to have high affinity for sigma receptors which are prominent in most parts of central nervous system and tumors. The aim of this study was to synthesize pHBA-dendrimer conjugates as colloidal carrier for site-specific delivery of practically water insoluble drug, docetaxel (DTX) to brain tumors and to determine its targeting efficiency. pHBA, a small molecule ligand was coupled to the surface amine groups of generation 4-PAMAM dendrimer via a carbodiimide reaction and loaded with DTX. The conjugation was confirmed by {sup 1}HNMR and FT-IR spectroscopy. In vitro release of drug from DTX-loaded pHBA-conjugated dendrimer was found to be less as compared to unconjugated dendrimers. The prepared drug delivery system exhibited good physico-chemical stability and decrease in hemolytic toxicity. Cell viability and cell uptake studies were performed against U87MG human glioblastoma cells and formulations exerted considerable anticancer effect than plain drug. Conjugation of dendrimer with pHBA significantly enhanced the brain uptake of DTX which was shown by the recovery of a higher percentage of the dose from the brain following administration of pHBA-conjugated dendrimers compared with unconjugated dendrimer or formulation in clinical use (Taxotere{sup ®}). Therefore, pHBA conjugated dendrimers could be an efficient delivery vehicle for the targeting of anticancer drugs to brain tumors.

  12. Sonophoresis in transdermal drug deliverys.

    Science.gov (United States)

    Park, Donghee; Park, Hyunjin; Seo, Jongbum; Lee, Seunghun

    2014-01-01

    Transdermal drug delivery (TDD) has several significant advantages compared to oral drug delivery, including elimination of pain and sustained drug release. However, the use of TDD is limited by low skin permeability due to the stratum corneum (SC), the outermost layer of the skin. Sonophoresis is a technique that temporarily increases skin permeability such that various medications can be delivered noninvasively. For the past several decades, various studies of sonophoresis in TDD have been performed focusing on parameter optimization, delivery mechanism, transport pathway, or delivery of several drug categories including hydrophilic and high molecular weight compounds. Based on these various studies, several possible mechanisms of sonophoresis have been suggested. For example, cavitation is believed to be the predominant mechanism responsible for drug delivery in sonophoresis. This review presents details of various studies on sonophoresis including the latest trends, delivery of various therapeutic drugs, sonophoresis pathways and mechanisms, and outlook of future studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Emerging Frontiers in Drug Delivery.

    Science.gov (United States)

    Tibbitt, Mark W; Dahlman, James E; Langer, Robert

    2016-01-27

    Medicine relies on the use of pharmacologically active agents (drugs) to manage and treat disease. However, drugs are not inherently effective; the benefit of a drug is directly related to the manner by which it is administered or delivered. Drug delivery can affect drug pharmacokinetics, absorption, distribution, metabolism, duration of therapeutic effect, excretion, and toxicity. As new therapeutics (e.g., biologics) are being developed, there is an accompanying need for improved chemistries and materials to deliver them to the target site in the body, at a therapeutic concentration, and for the required period of time. In this Perspective, we provide an historical overview of drug delivery and controlled release followed by highlights of four emerging areas in the field of drug delivery: systemic RNA delivery, drug delivery for localized therapy, oral drug delivery systems, and biologic drug delivery systems. In each case, we present the barriers to effective drug delivery as well as chemical and materials advances that are enabling the field to overcome these hurdles for clinical impact.

  14. Lactoferrin-modified rotigotine nanoparticles for enhanced nose-to-brain delivery: LESA-MS/MS-based drug biodistribution, pharmacodynamics, and neuroprotective effects

    Directory of Open Access Journals (Sweden)

    Yan X

    2018-01-01

    Full Text Available Xiuju Yan,1,* Lixiao Xu,1,* Chenchen Bi,1 Dongyu Duan,1 Liuxiang Chu,1 Xin Yu,1 Zimei Wu,1 Aiping Wang,1,2 Kaoxiang Sun1,2 1School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University, Ministry of Education, Yantai University, Yantai, Shandong Province, 2State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd, Yantai, Shandong Province, People’s Republic of China *These authors contributed equally to this work Introduction: Efficient delivery of rotigotine into the brain is crucial for obtaining maximum therapeutic efficacy for Parkinson’s disease (PD. Therefore, in the present study, we prepared lactoferrin-modified rotigotine nanoparticles (Lf-R-NPs and studied their biodistribution, pharmacodynamics, and neuroprotective effects following nose-to-brain delivery in the rat 6-hydroxydopamine model of PD.Materials and methods: The biodistribution of rotigotine nanoparticles (R-NPs and Lf-R-NPs after intranasal administration was assessed by liquid extraction surface analysis coupled with tandem mass spectrometry. Contralateral rotations were quantified to evaluate pharmacodynamics. Tyrosine hydroxylase and dopamine transporter immunohistochemistry were performed to compare the neuroprotective effects of levodopa, R-NPs, and Lf-R-NPs.Results: Liquid extraction surface analysis coupled with tandem mass spectrometry analysis, used to examine rotigotine biodistribution, showed that Lf-R-NPs more efficiently supplied rotigotine to the brain (with a greater sustained amount of the drug delivered to this organ, and with more effective targeting to the striatum than R-NPs. The pharmacodynamic study revealed a significant difference (P<0.05 in contralateral rotations between rats treated with Lf-R-NPs and those treated with R-NPs. Furthermore, Lf

  15. Preparation of surface multiple-coated polylactide acid drug-loaded nanoparticles for intranasal delivery and evaluation on its brain-targeting efficiency.

    Science.gov (United States)

    Bian, Junjie; Yuan, Zhixiang; Chen, Xiaoliang; Gao, Yuan; Xu, Chaoqun; Shi, Jianyou

    2016-01-01

    To prepare a mixture of multiple-coated aniracetam nasal polylactic-acid nanoparticles (M-C-PLA-NP) and evaluate its stability preliminarily in vitro and its brain-targeting efficiency in vivo. The solvent diffusion-evaporation combined with magnetic stirring method has been chosen for the entrapment of aniracetam. The M-C-PLA-NP was characterized with respect to its morphology, particle size, size distribution and aniracetam entrapment efficiency. The in vivo distribution was studied in male SD rats after an intranasal administration. In vitro release of M-C-PLA-NP showed two components with an initial rapid release due to the surface-associated drug and followed by a slower exponential release of aniracetam, which was dissolved in the core. The AUC0 → 30 min of M-C-PLA-NP in brain tissues resulted in a 5.19-fold increase compared with aniracetam solution. The ratios of AUC in brain to that in other tissues obtained after nasal application of M-C-PLA-NP were significantly higher than those of aniracetam solution. Therefore, it can be concluded that M-C-PLA-NP demonstrated its potential on increasing the brain-targeting efficiency of drugs and will be used as novel brain-targeting agent for nasal drug delivery.

  16. Ceramic drug-delivery devices.

    Science.gov (United States)

    Lasserre, A; Bajpai, P K

    1998-01-01

    A variety of ceramics and delivery systems have been used to deliver chemicals, biologicals, and drugs at various rates for desired periods of time from different sites of implantation. In vitro and in vivo studies have shown that ceramics can successfully be used as drug-delivery devices. Matrices, inserts, reservoirs, cements, and particles have been used to deliver a large variety of therapeutic agents such as antibiotics, anticancer drugs, anticoagulants, analgesics, growth factors, hormones, steroids, and vaccines. In this article, the advantages and disadvantages of conventional drug-delivery systems and the different approaches used to deliver chemical and biological agents by means of ceramic systems will be reviewed.

  17. Bioresponsive matrices in drug delivery

    Directory of Open Access Journals (Sweden)

    Ye George JC

    2010-11-01

    Full Text Available Abstract For years, the field of drug delivery has focused on (1 controlling the release of a therapeutic and (2 targeting the therapeutic to a specific cell type. These research endeavors have concentrated mainly on the development of new degradable polymers and molecule-labeled drug delivery vehicles. Recent interest in biomaterials that respond to their environment have opened new methods to trigger the release of drugs and localize the therapeutic within a particular site. These novel biomaterials, usually termed "smart" or "intelligent", are able to deliver a therapeutic agent based on either environmental cues or a remote stimulus. Stimuli-responsive materials could potentially elicit a therapeutically effective dose without adverse side effects. Polymers responding to different stimuli, such as pH, light, temperature, ultrasound, magnetism, or biomolecules have been investigated as potential drug delivery vehicles. This review describes the most recent advances in "smart" drug delivery systems that respond to one or multiple stimuli.

  18. Oral delivery of anticancer drugs

    DEFF Research Database (Denmark)

    Thanki, Kaushik; Gangwal, Rahul P; Sangamwar, Abhay T

    2013-01-01

    The present report focuses on the various aspects of oral delivery of anticancer drugs. The significance of oral delivery in cancer therapeutics has been highlighted which principally includes improvement in quality of life of patients and reduced health care costs. Subsequently, the challenges...... incurred in the oral delivery of anticancer agents have been especially emphasized. Sincere efforts have been made to compile the various physicochemical properties of anticancer drugs from either literature or predicted in silico via GastroPlus™. The later section of the paper reviews various emerging...... trends to tackle the challenges associated with oral delivery of anticancer drugs. These invariably include efflux transporter based-, functional excipient- and nanocarrier based-approaches. The role of drug nanocrystals and various others such as polymer based- and lipid based...

  19. Extracellular vesicles for drug delivery

    NARCIS (Netherlands)

    Vader, Pieter; Mol, Emma A; Pasterkamp, Gerard; Schiffelers, Raymond M

    2016-01-01

    Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained

  20. Ultrasound mediated transdermal drug delivery.

    Science.gov (United States)

    Azagury, Aharon; Khoury, Luai; Enden, Giora; Kost, Joseph

    2014-06-01

    Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injections. However, the stratum corneum serves as a barrier that limits the penetration of substances to the skin. Application of ultrasound (US) irradiation to the skin increases its permeability (sonophoresis) and enables the delivery of various substances into and through the skin. This review presents the main findings in the field of sonophoresis in transdermal drug delivery as well as transdermal monitoring and the mathematical models associated with this field. Particular attention is paid to the proposed enhancement mechanisms and future trends in the fields of cutaneous vaccination and gene therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Microwave Assisted Drug Delivery

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    In this work, the microwave radiation is adopted for remote activation of pharmaceutical drug capsules inside the human body in order to release drugs at a pre-determined time and location. An array of controllable transmitting sources is used to produce a constructive interference at a certain...... focus point inside the body, where the drugs are then released from the specially designed capsules. An experimental setup for microwave activation has been developed and tested on a body phantom that emulates the human torso. A design of sensitive receiving structures for integration with a drug...

  2. Biomaterials for drug delivery patches.

    Science.gov (United States)

    Santos, Lúcia F; Correia, Ilídio J; Silva, A Sofia; Mano, João F

    2018-06-15

    The limited efficiency of conventional drugs has been instigated the development of new and more effective drug delivery systems (DDS). Transdermal DDS, are associated with numerous advantages such its painless application and less frequent replacement and greater flexibility of dosing, features that triggered the research and development of such devices. Such systems have been produced using either biopolymer; or synthetic polymers. Although the first ones are safer, biocompatible and present a controlled degradation by human enzymes or water, the second ones are the most currently available in the market due to their greater mechanical resistance and flexibility, and non-degradation over time. This review highlights the most recent advances (mainly in the last five years) of patches aimed for transdermal drug delivery, focusing on the different materials (natural, synthetic and blends) and latest designs for the development of such devices, emphasizing also their combination with drug carriers that enable enhanced drug solubility and a more controlled release of the drug over the time. The benefits and limitations of different patches formulations are considered with reference to their appliance to transdermal drug delivery. Furthermore, a record of the currently available patches on the market is given, featuring their most relevant characteristics. Finally, a list of most recent/ongoing clinical trials regarding the use of patches for skin disorders is detailed and critical insights on the current state of patches for transdermal drug delivery are also provided. Copyright © 2018. Published by Elsevier B.V.

  3. Microcontainers for Intestinal Drug Delivery

    DEFF Research Database (Denmark)

    Tentor, Fabio; Mazzoni, Chiara; Keller, Stephan Sylvest

    Among all the drug administration routes, the oral one is the most preferred by the patients being less invasive, faster and easier. Oral drug delivery systems designed to target the intestine are produced by powder technology and capsule formulations. Those systems including micro- and nano...

  4. Albumin-based drug delivery

    DEFF Research Database (Denmark)

    Larsen, Maja Thim; Kuhlmann, Matthias; Hvam, Michael Lykke

    2016-01-01

    The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however, challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery enabling technologies. Albumin is a natural transport protein with multiple ligand...... binding sites, cellular receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension and targeted intracellular delivery of drugs attached by covalent...... conjugation, genetic fusions, association or ligand-mediated association. This review will give an overview of albumin-based products with focus on the natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug delivery platform....

  5. Polymer architecture and drug delivery.

    Science.gov (United States)

    Qiu, Li Yan; Bae, You Han

    2006-01-01

    Polymers occupy a major portion of materials used for controlled release formulations and drug-targeting systems because this class of materials presents seemingly endless diversity in topology and chemistry. This is a crucial advantage over other classes of materials to meet the ever-increasing requirements of new designs of drug delivery formulations. The polymer architecture (topology) describes the shape of a single polymer molecule. Every natural, seminatural, and synthetic polymer falls into one of categorized architectures: linear, graft, branched, cross-linked, block, star-shaped, and dendron/dendrimer topology. Although this topic spans a truly broad area in polymer science, this review introduces polymer architectures along with brief synthetic approaches for pharmaceutical scientists who are not familiar with polymer science, summarizes the characteristic properties of each architecture useful for drug delivery applications, and covers recent advances in drug delivery relevant to polymer architecture.

  6. Mathematical modeling of drug delivery.

    Science.gov (United States)

    Siepmann, J; Siepmann, F

    2008-12-08

    Due to the significant advances in information technology mathematical modeling of drug delivery is a field of steadily increasing academic and industrial importance with an enormous future potential. The in silico optimization of novel drug delivery systems can be expected to significantly increase in accuracy and easiness of application. Analogous to other scientific disciplines, computer simulations are likely to become an integral part of future research and development in pharmaceutical technology. Mathematical programs can be expected to be routinely used to help optimizing the design of novel dosage forms. Good estimates for the required composition, geometry, dimensions and preparation procedure of various types of delivery systems will be available, taking into account the desired administration route, drug dose and release profile. Thus, the number of required experimental studies during product development can be significantly reduced, saving time and reducing costs. In addition, the quantitative analysis of the physical, chemical and potentially biological phenomena, which are involved in the control of drug release, offers another fundamental advantage: The underlying drug release mechanisms can be elucidated, which is not only of academic interest, but a pre-requisite for an efficient improvement of the safety of the pharmaco-treatments and for effective trouble-shooting during production. This article gives an overview on the current state of the art of mathematical modeling of drug delivery, including empirical/semi-empirical and mechanistic realistic models. Analytical as well as numerical solutions are described and various practical examples are given. One of the major challenges to be addressed in the future is the combination of mechanistic theories describing drug release out of the delivery systems with mathematical models quantifying the subsequent drug transport within the human body in a realistic way. Ideally, the effects of the design

  7. Transferrin receptor antibody-modified α-cobrotoxin-loaded nanoparticles enable drug delivery across the blood–brain barrier by intranasal administration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lin; Zhang, Xiangyi [Zhejiang University School of Medicine, Department of Pharmacology, First Affiliated Hospital (China); Li, Wuchao [ZheJiang Chinese Medical University, College of Pharmaceutical Science (China); Sun, Haozhen; Lou, Yan; Zhang, Xingguo, E-mail: xgzhang@zju.edu.cn [Zhejiang University School of Medicine, Department of Pharmacology, First Affiliated Hospital (China); Li, Fanzhu [ZheJiang Chinese Medical University, College of Pharmaceutical Science (China)

    2013-11-15

    A novel drug carrier for brain delivery, maleimide–poly(ethyleneglycol)–poly(lactide) (maleimide–PEG–PLA) nanoparticles (NPs) conjugated with mouse–anti-rat monoclonal antibody OX26 (OX26–NPs), was developed and its brain delivery property was evaluated. The diblock copolymers of maleimide–PEG–PLA were synthesized and applied to α-cobrotoxin (αCT)-loaded NPs which were characterized by transmission electron micrograph imaging, Fourier-transform IR, and X-ray diffraction. The NPs encapsulating αCT had a round and vesicle-like shape with a mean diameter around 100 nm, and the OX26 had covalently conjugated to the surface of NPs. MTT studies in brain microvascular endothelial cells (BMEC) revealed a moderate decrease in the cell viability of αCT, when incorporated in OX26–NPs compared to free αCT in solution. A higher affinity of the OX26–αCT–NPs to the BMEC was shown in comparison to αCT–NPs. Then, OX26–αCT–NPs were intranasally (i.n.) administered to rats, and αCT in the periaqueductal gray was monitored for up to 480 min using microdialysis technique in free-moving rats, with i.n. αCT–NPs, i.n. OX26–αCT–NPs, intramuscular injection (i.m.) αCT–NPs, and i.m. OX26–αCT–NPs. The brain transport results showed that the corresponding absolute bioavailability (F{sub abs}) of i.n. OX26–αCT–NPs were about 125 and 155 % with i.n. αCT–NPs and i.m. OX26–αCT–NPs, respectively, and it was found that both the C{sub max} and AUC of the four groups were as follows: i.n. OX26–αCT–NPs > i.n. αCT–NPs > i.m. OX26–αCT–NPs > i.m. αCT–NPs, while αCT solution, as control groups, could hardly enter the brain. These results indicated that OX26–NPs are promising carriers for peptide brain delivery.

  8. Transferrin receptor antibody-modified α-cobrotoxin-loaded nanoparticles enable drug delivery across the blood-brain barrier by intranasal administration

    Science.gov (United States)

    Liu, Lin; Zhang, Xiangyi; Li, Wuchao; Sun, Haozhen; Lou, Yan; Zhang, Xingguo; Li, Fanzhu

    2013-11-01

    A novel drug carrier for brain delivery, maleimide-poly(ethyleneglycol)-poly(lactide) (maleimide-PEG-PLA) nanoparticles (NPs) conjugated with mouse-anti-rat monoclonal antibody OX26 (OX26-NPs), was developed and its brain delivery property was evaluated. The diblock copolymers of maleimide-PEG-PLA were synthesized and applied to α-cobrotoxin (αCT)-loaded NPs which were characterized by transmission electron micrograph imaging, Fourier-transform IR, and X-ray diffraction. The NPs encapsulating αCT had a round and vesicle-like shape with a mean diameter around 100 nm, and the OX26 had covalently conjugated to the surface of NPs. MTT studies in brain microvascular endothelial cells (BMEC) revealed a moderate decrease in the cell viability of αCT, when incorporated in OX26-NPs compared to free αCT in solution. A higher affinity of the OX26-αCT-NPs to the BMEC was shown in comparison to αCT-NPs. Then, OX26-αCT-NPs were intranasally (i.n.) administered to rats, and αCT in the periaqueductal gray was monitored for up to 480 min using microdialysis technique in free-moving rats, with i.n. αCT-NPs, i.n. OX26-αCT-NPs, intramuscular injection (i.m.) αCT-NPs, and i.m. OX26-αCT-NPs. The brain transport results showed that the corresponding absolute bioavailability ( F abs) of i.n. OX26-αCT-NPs were about 125 and 155 % with i.n. αCT-NPs and i.m. OX26-αCT-NPs, respectively, and it was found that both the C max and AUC of the four groups were as follows: i.n. OX26-αCT-NPs > i.n. αCT-NPs > i.m. OX26-αCT-NPs > i.m. αCT-NPs, while αCT solution, as control groups, could hardly enter the brain. These results indicated that OX26-NPs are promising carriers for peptide brain delivery.

  9. Nasal drug delivery : A direct approach to the cerebrospinal fluid?

    NARCIS (Netherlands)

    Berg, Mascha van den

    2005-01-01

    With the growing number of patients suffering from central nervous system (CNS) diseases a suitable approach for drug targeting to the brain becomes more and more important. This is a major problem in drug delivery research, due to the tight blood-brain barrier (BBB) that prevents the influx of

  10. Advances in buccal drug delivery.

    Science.gov (United States)

    Birudaraj, Raj; Mahalingam, Ravichandran; Li, Xiaoling; Jasti, Bhaskara R

    2005-01-01

    The buccal route offers an attractive alternative for systemic drug delivery of drugs because of better patient compliance, ease of dosage form removal in emergencies, robustness, and good accessibility. Use of buccal mucosa for drug absorption was first attempted by Sobrero in 1847, and since then much research was done to deliver drugs through this route. Today, research is more focused on the development of suitable delivery devices, permeation enhancement, and buccal delivery of drugs that undergo a first-pass effect, such as cardiovascular drugs, analgesics, and peptides. In addition, studies have been conducted on the development of controlled or slow release delivery systems for systemic and local therapy of diseases in the oral cavity. In this review, the anatomy and physiology of buccal mucosa, followed by discussion of recent literature on the buccal permeation enhancement, and pathways of enhancement for various molecules are detailed. In addition, bioadhesion theories from historic perspective and current status are discussed. The various dosage forms on the market and in different stages of development are also reviewed.

  11. Nanotechnology based targeted drug delivery.

    Science.gov (United States)

    Ruggiero, Carmelina; Pastorino, Laura; Herrera, Oscar L

    2010-01-01

    NANOTECHNOLOGY is having a great impact on many industrial applications, such as manufacturing, semiconductors, nanostructured materials and biotechnology. As relates to the latter, nanobiotechnology focuses on the ability to work at the molecular and atomic level to fabricate structures combining biological materials and synthetic materials, taking into account engineering, physics, chemistry, genomics and proteomics. The main goals relate to biosensors, nanosized microchips, and more generally to medical applications at the molecular level. Nanotechnology has been recently extensively applied to treatment and diagnosis of diseases and the new term nanomedicine has been introduced, for which several definitions have so far been proposed [1]-[3] which focus on the use of engineered nano-devices and nanostructures for diagnosis and treatment. One of the key aspects of nanomedicine is targeted drug delivery by nanoscale drug carriers. At present, 95 % of all new potential therapeutics have poor pharmaco kinetics and biopharmaceutical properties, there is therefore a great need to develop drug delivery [4] systems that convey the therapeutically active molecules only to the site of action, without affecting other organs and tissues [5]. This allows to lower required doses of drugs and to increase their therapeutic indices and safety profiles. It is possible to fabricate nanoparticles or nanocapsules with different properties as relates to drug encapsulation and release. A great amount of nanoscale systems for drug delivery has been investigated; they include liposomes, dendrimers, quantum dots, nanotubes, polymeric biodegradable nanoparticles and nanocapsules [6].

  12. Brain Tumor Targeting of Magnetic Nanoparticles for Potential Drug Delivery: Effect of Administration Route and Magnetic Field Topography

    Science.gov (United States)

    Chertok, Beata; David, Allan E.; Yang, Victor C.

    2011-01-01

    Our previous studies demonstrated feasibility of magnetically-mediated retention of iron-oxide nanoparticles in brain tumors after intravascular administration. The purpose of this study was to elucidate strategies for further improvement of this promising approach. In particular, we explored administration of the nanoparticles via a non-occluded carotid artery as a way to increase the passive exposure of tumor vasculature to nanoparticles for subsequent magnetic entrapment. However, aggregation of nanoparticles in the afferent vasculature interfered with tumor targeting. The magnetic setup employed in our experiments was found to generate a relatively uniform magnetic flux density over a broad range, exposing the region of the afferent vasculature to high magnetic force. To overcome this problem, the magnetic setup was modified with a 9-mm diameter cylindrical NdFeB magnet to exhibit steeper magnetic field topography. Six-fold reduction of the magnetic force at the injection site, achieved with this modification, alleviated the aggregation problem under the conditions of intact carotid blood flow. Using this setup, carotid administration was found to present 1.8-fold increase in nanoparticle accumulation in glioma compared to the intravenous route at 350 mT. This increase was found to be in reasonable agreement with the theoretically estimated 1.9-fold advantage of carotid administration, Rd. The developed approach is expected to present an even greater advantage when applied to drug-loaded nanoparticles exhibiting higher values of Rd. PMID:21763736

  13. Ultrasound Molecular Imaging and Drug Delivery.

    Science.gov (United States)

    Caskey, Charles F

    2017-06-01

    Ultrasound is a rapidly advancing field with many emerging diagnostic and therapeutic applications. For diagnostics, new vascular targets are routinely identified and mature technologies are being translated to humans, while other recent innovations may bring about the creation of acoustic reporter genes and micron-scale resolution with ultrasound. As a cancer therapy, ultrasound is being explored as an adjuvant to immune therapies and to deliver acoustically or thermally active drugs to tumor regions. Ultrasound-enhanced delivery across the blood brain barrier (BBB) could potentially be very impactful for brain cancers and neurodegenerative diseases where the BBB often impedes the delivery of therapeutic molecules. In this minireview, we provide an overview of these topics in the field of ultrasound that are especially relevant to the interests of World Molecular Imaging Society.

  14. Microfabricated injectable drug delivery system

    Science.gov (United States)

    Krulevitch, Peter A.; Wang, Amy W.

    2002-01-01

    A microfabricated, fully integrated drug delivery system capable of secreting controlled dosages of multiple drugs over long periods of time (up to a year). The device includes a long and narrow shaped implant with a sharp leading edge for implantation under the skin of a human in a manner analogous to a sliver. The implant includes: 1) one or more micromachined, integrated, zero power, high and constant pressure generating osmotic engine; 2) low power addressable one-shot shape memory polymer (SMP) valves for switching on the osmotic engine, and for opening drug outlet ports; 3) microfabricated polymer pistons for isolating the pressure source from drug-filled microchannels; 4) multiple drug/multiple dosage capacity, and 5) anisotropically-etched, atomically-sharp silicon leading edge for penetrating the skin during implantation. The device includes an externally mounted controller for controlling on-board electronics which activates the SMP microvalves, etc. of the implant.

  15. Ultrasound mediated nanoparticle drug delivery

    Science.gov (United States)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  16. Food, physiology and drug delivery.

    Science.gov (United States)

    Varum, F J O; Hatton, G B; Basit, A W

    2013-12-05

    Gastrointestinal physiology is dynamic and complex at the best of times, and a multitude of known variables can affect the overall bioavailability of drugs delivered via the oral route. Yet while the influences of food and beverage intake as just two of these variables on oral drug delivery have been extensively documented in the wider literature, specific information on their effects remains sporadic, and is not so much contextually reviewed. Food co-ingestion with oral dosage forms can mediate several changes to drug bioavailability, yet the precise mechanisms underlying this have yet to be fully elucidated. Likewise, the often detrimental effects of alcohol (ethanol) on dosage form performance have been widely observed experimentally, but knowledge of which has only moderately impacted on clinical practice. Here, we attempt to piece together the available subject matter relating to the influences of both solid and liquid foodstuffs on the gastrointestinal milieu and the implications for oral drug delivery, with particular emphasis on the behaviour of modified-release dosage forms, formulation robustness and drug absorption. Providing better insight into these influences, and exemplifying cases where formulations have been developed or modified to circumvent their associated problems, can help to appropriately direct the design of future in vitro digestive modelling systems as well as oral dosage forms resilient to these effects. Moreover, this will help to better our understanding of the impact of food and alcohol intake on normal gut behaviour and function. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Drug delivery device including electrolytic pump

    KAUST Repository

    Foulds, Ian G.

    2016-03-31

    Systems and methods are provided for a drug delivery device and use of the device for drug delivery. In various aspects, the drug delivery device combines a “solid drug in reservoir” (SDR) system with an electrolytic pump. In various aspects an improved electrolytic pump is provided including, in particular, an improved electrolytic pump for use with a drug delivery device, for example an implantable drug delivery device. A catalytic reformer can be incorporated in a periodically pulsed electrolytic pump to provide stable pumping performance and reduced actuation cycle.

  18. Hydrogel nanoparticles in drug delivery.

    Science.gov (United States)

    Hamidi, Mehrdad; Azadi, Amir; Rafiei, Pedram

    2008-12-14

    Hydrogel nanoparticles have gained considerable attention in recent years as one of the most promising nanoparticulate drug delivery systems owing to their unique potentials via combining the characteristics of a hydrogel system (e.g., hydrophilicity and extremely high water content) with a nanoparticle (e.g., very small size). Several polymeric hydrogel nanoparticulate systems have been prepared and characterized in recent years, based on both natural and synthetic polymers, each with its own advantages and drawbacks. Among the natural polymers, chitosan and alginate have been studied extensively for preparation of hydrogel nanoparticles and from synthetic group, hydrogel nanoparticles based on poly (vinyl alcohol), poly (ethylene oxide), poly (ethyleneimine), poly (vinyl pyrrolidone), and poly-N-isopropylacrylamide have been reported with different characteristics and features with respect to drug delivery. Regardless of the type of polymer used, the release mechanism of the loaded agent from hydrogel nanoparticles is complex, while resulting from three main vectors, i.e., drug diffusion, hydrogel matrix swelling, and chemical reactivity of the drug/matrix. Several crosslinking methods have been used in the way to form the hydrogel matix structures, which can be classified in two major groups of chemically- and physically-induced crosslinking.

  19. PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood-brain barrier.

    Science.gov (United States)

    Fornaguera, C; Dols-Perez, A; Calderó, G; García-Celma, M J; Camarasa, J; Solans, C

    2015-08-10

    Neurodegenerative diseases have an increased prevalence and incidence nowadays, mainly due to aging of the population. In addition, current treatments lack efficacy, mostly due to the presence of the blood-brain barrier (BBB) that limits the penetration of the drugs to the central nervous system. Therefore, novel drug delivery systems are required. Polymeric nanoparticles have been reported to be appropriate for this purpose. Specifically, the use of poly-(lactic-co-glycolic acid) (PLGA) seems to be advantageous due to its biocompatibility and biodegradability that ensure safe therapies. In this work, a novel approximation to develop loperamide-loaded nanoparticles is presented: their preparation by nano-emulsion templating using a low-energy method (the phase inversion composition, PIC, method). This nano-emulsification approach is a simple and very versatile technology, which allows a precise size control and it can be performed at mild process conditions. Drug-loaded PLGA nanoparticles were obtained using safe components by solvent evaporation of template nano-emulsions. Characterization of PLGA nanoparticles was performed, together with the study of the BBB crossing. The in vivo results of measuring the analgesic effect using the hot-plate test evidenced that the designed PLGA loperamide-loaded nanoparticles are able to efficiently cross the BBB, with high crossing efficiencies when their surface is functionalized with an active targeting moiety (a monoclonal antibody against the transferrin receptor). These results, together with the nanoparticle characterization performed here are expected to provide sufficient evidences to end up to clinical trials in the near future. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Ultrasound-guided drug delivery in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Sayan Mullick; Lee, Tae Hwa; Willmann, Jugen K. [Dept. of Radiology, Stanford University School of Medicine, Stanford (United States)

    2017-07-15

    Recent advancements in ultrasound and microbubble (USMB) mediated drug delivery technology has shown that this approach can improve spatially confined delivery of drugs and genes to target tissues while reducing systemic dose and toxicity. The mechanism behind enhanced delivery of therapeutics is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscillations and destruction of microbubbles. In this review, progress and challenges of USMB mediated drug delivery are summarized, with special focus on cancer therapy.

  1. Ultrasound-guided drug delivery in cancer

    International Nuclear Information System (INIS)

    Chowdhury, Sayan Mullick; Lee, Tae Hwa; Willmann, Jugen K.

    2017-01-01

    Recent advancements in ultrasound and microbubble (USMB) mediated drug delivery technology has shown that this approach can improve spatially confined delivery of drugs and genes to target tissues while reducing systemic dose and toxicity. The mechanism behind enhanced delivery of therapeutics is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscillations and destruction of microbubbles. In this review, progress and challenges of USMB mediated drug delivery are summarized, with special focus on cancer therapy

  2. Microspheres and Nanotechnology for Drug Delivery.

    Science.gov (United States)

    Jóhannesson, Gauti; Stefánsson, Einar; Loftsson, Thorsteinn

    2016-01-01

    Ocular drug delivery to the posterior segment of the eye can be accomplished by invasive drug injections into different tissues of the eye and noninvasive topical treatment. Invasive treatment involves the risks of surgical trauma and infection, and conventional topical treatments are ineffective in delivering drugs to the posterior segment of the eye. In recent years, nanotechnology has become an ever-increasing part of ocular drug delivery. In the following, we briefly review microspheres and nanotechnology for drug delivery to the eye, including different forms of nanotechnology such as nanoparticles, microparticles, liposomes, microemulsions and micromachines. The permeation barriers and anatomical considerations linked to ocular drug delivery are discussed and a theoretical overview on drug delivery through biological membranes is given. Finally, in vitro, in vivo and human studies of x03B3;-cyclodextrin nanoparticle eyedrop suspensions are discussed as an example of nanotechnology used for drug delivery to the eye. © 2016 S. Karger AG, Basel.

  3. Self-nanoemulsifying drug delivery systems for oral insulin delivery

    DEFF Research Database (Denmark)

    Li, Ping; Tan, Angel; Prestidge, Clive A

    2014-01-01

    This study aims at evaluating the combination of self-nanoemulsifying drug delivery systems (SNEDDS) and enteric-coated capsules as a potential delivery strategy for oral delivery of insulin. The SNEDDS preconcentrates, loaded with insulin-phospholipid complex at different levels (0, 2.5 and 10% w...

  4. Multifunctional Nanoparticles for Drug Delivery Applications Imaging, Targeting, and Delivery

    CERN Document Server

    Prud'homme, Robert

    2012-01-01

    This book clearly demonstrates the progression of nanoparticle therapeutics from basic research to applications. Unlike other books covering nanoparticles used in medical applications, Multifunctional Nanoparticles for Drug Delivery Applications presents the medical challenges that can be reduced or even overcome by recent advances in nanoscale drug delivery. Each chapter highlights recent progress in the design and engineering of select multifunctional nanoparticles with topics covering targeting, imaging, delivery, diagnostics, and therapy.

  5. A REVIEW ON OSMOTIC DRUG DELIVERY SYSTEM

    OpenAIRE

    Harnish Patel; Upendra Patel; Hiren Kadikar; Bhavin Bhimani; Dhiren Daslaniya; Ghanshyam Patel

    2012-01-01

    Conventional oral drug delivery systems supply an instantaneous release of drug, which cannot control the release of the drug and effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the process of osmosis. Osmotic devices are the most promising strategy based systems for controlled drug delivery. They are the most reliable con...

  6. Collagen macromolecular drug delivery systems

    International Nuclear Information System (INIS)

    Gilbert, D.L.

    1988-01-01

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t 1/2 and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and 14 C-inulin release rates were evaluated subcutaneously in rats

  7. Kidney–targeted drug delivery systems

    Directory of Open Access Journals (Sweden)

    Peng Zhou

    2014-02-01

    Full Text Available Kidney-targeted drug delivery systems represent a promising technology to improve drug efficacy and safety in the treatment of renal diseases. In this review, we summarize the strategies that have been employed to develop kidney-targeted drug delivery systems. We also describe how macromolecular carriers and prodrugs play crucial roles in targeting drugs to particular target cells in the kidney. New technologies render it possible to create renal targeting conjugates and other delivery systems including nanoparticles and liposomes present promising strategies to achieve the goal of targeting drugs to the kidney.

  8. Microemulsion Drug Delivery Systems for Radiopharmacy Studies

    Directory of Open Access Journals (Sweden)

    Emre Ozgenc

    2016-11-01

    Full Text Available Microemulsions have been used increasingly for last year’s because of ideal properties like favorable drug delivery, ease of preparation and physical stability. They have been improved the solubility and efficacy of the drug and reduce the side effects. Use of radiolabeled microemulsions plays an alternative role in drug delivery systems by investigating the formation, stability and application of microemulsions in radiopharmacy. Gama scintigraphic method is well recognized for developing and detecting the biodistribution of newly developed drugs or formulation. This review will focus on how radionuclides are able to play role with characterization studies of microemulsion drug delivery systems.

  9. Nanoparticles for intracellular-targeted drug delivery

    International Nuclear Information System (INIS)

    Paulo, Cristiana S O; Pires das Neves, Ricardo; Ferreira, Lino S

    2011-01-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  10. Biomedical materials, devices and drug delivery systems by radiation techniques

    International Nuclear Information System (INIS)

    Kaetsu, Isao.

    1996-01-01

    The study of radiation polymerization in a super-cooled state started in 1966 and has been applied to the immobilization of biofunctional materials since 1973. In the last twenty years, application has been concentrated on the immobilization of drugs and hormones for the purpose of drug delivery systems. Very recently, the author has proposed a concept of environmental signal responsive chemical delivery system, as a new generation of controlled release and delivery systems. The study and development of materials, devices and systems is described. The signal responsive delivery system consists of a sensor part and a controlled delivery part. Therefore, the use of immobilization techniques for the biochip sensor and the hydrogel actuator has been investigated. As a future goal, systems for brain research are to be designed and studied. (author)

  11. Nanotechnology and Drug Delivery Part 2: Nanostructures for Drug ...

    African Journals Online (AJOL)

    Some challenges associated with the technology as it relates to drug effectiveness, toxicity, stability, pharmacokinetics and drug regulatory control are discussed in this review. Clearly, nanotechnology is a welcome development that is set to transform drug delivery and drug supply chain management, if optimally developed ...

  12. Thiolated polymers as mucoadhesive drug delivery systems.

    Science.gov (United States)

    Duggan, Sarah; Cummins, Wayne; O' Donovan, Orla; Hughes, Helen; Owens, Eleanor

    2017-03-30

    Mucoadhesion is the process of binding a material to the mucosal layer of the body. Utilising both natural and synthetic polymers, mucoadhesive drug delivery is a method of controlled drug release which allows for intimate contact between the polymer and a target tissue. It has the potential to increase bioavailability, decrease potential side effects and offer protection to more sensitive drugs such as proteins and peptide based drugs. The thiolation of polymers has, in the last number of years, come to the fore of mucoadhesive drug delivery, markedly improving mucoadhesion due to the introduction of free thiol groups onto the polymer backbone while also offering a more cohesive polymeric matrix for the slower and more controlled release of drug. This review explores the concept of mucoadhesion and the recent advances in both the polymers and the methods of thiolation used in the synthesis of mucoadhesive drug delivery devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Biodegradable polymeric nanocarriers for pulmonary drug delivery.

    Science.gov (United States)

    Rytting, Erik; Nguyen, Juliane; Wang, Xiaoying; Kissel, Thomas

    2008-06-01

    Pulmonary drug delivery is attractive for both local and systemic drug delivery as a non-invasive route that provides a large surface area, thin epithelial barrier, high blood flow and the avoidance of first-pass metabolism. Nanoparticles can be designed to have several advantages for controlled and targeted drug delivery, including controlled deposition, sustained release, reduced dosing frequency, as well as an appropriate size for avoiding alveolar macrophage clearance or promoting transepithelial transport. This review focuses on the development and application of biodegradable polymers to nanocarrier-based strategies for the delivery of drugs, peptides, proteins, genes, siRNA and vaccines by the pulmonary route. The selection of natural or synthetic materials is important in designing particles or nanoparticle clusters with the desired characteristics, such as biocompatibility, size, charge, drug release and polymer degradation rate.

  14. Liposomal Drug Delivery of Anticancer Agents

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob

    In the first part of the thesis the work towards a new generation of liposomal drug delivery systems for anticancer agents is described. The drug delivery system takes advantage of the elevated level of secretory phospholipase A2 (sPLA2) IIA in many tumors and the enhanced permeability......-trans retinoic acid, α-tocopheryl succinate and calcitriol were examined for their ability to be incorporated into the investigated drug delivery system and syntheses of the phospholipid prodrugs are described. The majority of the phospholipid prodrugs were able to form particles with diameters close to 100 nm...... that upon sPLA2 triggering the formulated phospholipid prodrugs displayed IC50 values in range from 3–36 μM and complete cell death was observed when higher drug concentrations were applied. Promising for the drug delivery system the majority of the phospholipid prodrugs remain non-toxic in the absence...

  15. Nanocomposite thin films for triggerable drug delivery.

    Science.gov (United States)

    Vannozzi, Lorenzo; Iacovacci, Veronica; Menciassi, Arianna; Ricotti, Leonardo

    2018-05-01

    Traditional drug release systems normally rely on a passive delivery of therapeutic compounds, which can be partially programmed, prior to injection or implantation, through variations in the material composition. With this strategy, the drug release kinetics cannot be remotely modified and thus adapted to changing therapeutic needs. To overcome this issue, drug delivery systems able to respond to external stimuli are highly desirable, as they allow a high level of temporal and spatial control over drug release kinetics, in an operator-dependent fashion. Areas covered: On-demand drug delivery systems actually represent a frontier in this field and are attracting an increasing interest at both research and industrial level. Stimuli-responsive thin films, enabled by nanofillers, hold a tremendous potential in the field of triggerable drug delivery systems. The inclusion of responsive elements in homogeneous or heterogeneous thin film-shaped polymeric matrices strengthens and/or adds intriguing properties to conventional (bare) materials in film shape. Expert opinion: This Expert Opinion review aims to discuss the approaches currently pursued to achieve an effective on-demand drug delivery, through nanocomposite thin films. Different triggering mechanisms allowing a fine control on drug delivery are described, together with current challenges and possible future applications in therapy and surgery.

  16. Bioadhesive polymeric platforms for transmucosal drug delivery ...

    African Journals Online (AJOL)

    Of the various routes of drug delivery, the oral route is often preferred by the patient. However, peroral administration of drugs has disadvantages such as hepatic first-pass metabolism and enzymatic degradation within the gastrointestinal tract which constitutes a hindrance to oral administration of certain classes of drugs, ...

  17. Adolescent Brain Development and Drugs

    Science.gov (United States)

    Winters, Ken C.; Arria, Amelia

    2011-01-01

    Research now suggests that the human brain is still maturing during adolescence. The developing brain may help explain why adolescents sometimes make decisions that are risky and can lead to safety or health concerns, including unique vulnerabilities to drug abuse. This article explores how this new science may be put to use in our prevention and…

  18. Liposomal Conjugates for Drug Delivery to the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Frieder Helm

    2015-04-01

    Full Text Available Treatments of central nervous system (CNS diseases often fail due to the blood–brain barrier. Circumvention of this obstacle is crucial for any systemic treatment of such diseases to be effective. One approach to transfer drugs into the brain is the use of colloidal carrier systems—amongst others, liposomes. A prerequisite for successful drug delivery by colloidal carriers to the brain is the modification of their surface, making them invisible to the reticuloendothelial system (RES and to target them to specific surface epitopes at the blood–brain barrier. This study characterizes liposomes conjugated with cationized bovine serum albumin (cBSA as transport vectors in vitro in porcine brain capillary endothelial cells (PBCEC and in vivo in rats using fluorescently labelled liposomes. Experiments with PBCEC showed that sterically stabilized (PEGylated liposomes without protein as well as liposomes conjugated to native bovine serum albumin (BSA were not taken up. In contrast, cBSA-liposomes were taken up and appeared to be concentrated in intracellular vesicles. Uptake occurred in a concentration and time dependent manner. Free BSA and free cBSA inhibited uptake. After intravenous application of cBSA-liposomes, confocal fluorescence microscopy of brain cryosections from male Wistar rats showed fluorescence associated with liposomes in brain capillary surrounding tissue after 3, 6 and 24 h, for liposomes with a diameter between 120 and 150 nm, suggesting successful brain delivery of cationized-albumin coupled liposomes.

  19. Protein-Based Drug-Delivery Materials

    Directory of Open Access Journals (Sweden)

    Dave Jao

    2017-05-01

    Full Text Available There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function—including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments—are summarized at the end of this review.

  20. Smart Drug Delivery Systems in Cancer Therapy.

    Science.gov (United States)

    Unsoy, Gozde; Gunduz, Ufuk

    2018-02-08

    Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics. Advances in drug delivery systems provide reduced side effects, longer circulation half-life and improved pharmacokinetics. Smart drug delivery systems have been achieved successfully in the case of cancer. These nanocarriers can serve as an intelligent system by considering the differences of tumor microenvironment from healthy tissue, such as low pH, low oxygen level, or high enzymatic activity of matrix metalloproteinases. The performance of anti-cancer agents used in cancer diagnosis and therapy is improved by enhanced cellular internalization of smart nanocarriers and controlled drug release. Here, we review targeting, cellular internalization; controlled drug release and toxicity of smart drug delivery systems. We are also emphasizing the stimulus responsive controlled drug release from smart nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Genetically engineered nanocarriers for drug delivery

    Directory of Open Access Journals (Sweden)

    Shi P

    2014-03-01

    Full Text Available Pu Shi, Joshua A Gustafson, J Andrew MacKayDepartment of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USAAbstract: Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins.Keywords: polymeric drug carrier, non-polymeric drug carrier, gene delivery, GE drug carriers

  2. The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system? [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Norman R. Saunders

    2016-03-01

    transporters, that provide an important component of the barrier functions by either preventing entry of or expelling numerous molecules including toxins, drugs, and other xenobiotics. In this review, we summarize these influx and efflux mechanisms in normal developing and adult brain, as well as indicating their likely involvement in a wide range of neuropathologies. There have been extensive attempts to overcome the barrier mechanisms that prevent the entry of many drugs of therapeutic potential into the brain. We outline those that have been tried and discuss why they may so far have been largely unsuccessful. Currently, a promising approach appears to be focal, reversible disruption of the blood-brain barrier using focused ultrasound, but more work is required to evaluate the method before it can be tried in patients. Overall, our view is that much more fundamental knowledge of barrier mechanisms and development of new experimental methods will be required before drug targeting to the brain is likely to be a successful endeavor. In addition, such studies, if applied to brain pathologies such as stroke, trauma, or multiple sclerosis, will aid in defining the contribution of brain barrier pathology to these conditions, either causative or secondary.

  3. Porous silicon for drug delivery systems

    Science.gov (United States)

    Abramova, E. N.; Khort, A. M.; Yakovenko, A. G.; Kornilova, D. S.; Slipchenko, E. A.; Prokhorov, D. I.; Shvets, V. I.

    2018-01-01

    The article deals with main principles of the formation of porous silicon (por-Si) to produce containers for drug delivery systems. Most important por-Si characteristics to produce nanocontainers with required parameters are determined.

  4. Chitosan microspheres in novel drug delivery systems.

    Science.gov (United States)

    Mitra, Analava; Dey, Baishakhi

    2011-07-01

    The main aim in the drug therapy of any disease is to attain the desired therapeutic concentration of the drug in plasma or at the site of action and maintain it for the entire duration of treatment. A drug on being used in conventional dosage forms leads to unavoidable fluctuations in the drug concentration leading to under medication or overmedication and increased frequency of dose administration as well as poor patient compliance. To minimize drug degradation and loss, to prevent harmful side effects and to increase drug bioavailability various drug delivery and drug targeting systems are currently under development. Handling the treatment of severe disease conditions has necessitated the development of innovative ideas to modify drug delivery techniques. Drug targeting means delivery of the drug-loaded system to the site of interest. Drug carrier systems include polymers, micelles, microcapsules, liposomes and lipoproteins to name some. Different polymer carriers exert different effects on drug delivery. Synthetic polymers are usually non-biocompatible, non-biodegradable and expensive. Natural polymers such as chitin and chitosan are devoid of such problems. Chitosan comes from the deacetylation of chitin, a natural biopolymer originating from crustacean shells. Chitosan is a biocompatible, biodegradable, and nontoxic natural polymer with excellent film-forming ability. Being of cationic character, chitosan is able to react with polyanions giving rise to polyelectrolyte complexes. Hence chitosan has become a promising natural polymer for the preparation of microspheres/nanospheres and microcapsules. The techniques employed to microencapsulate with chitosan include ionotropic gelation, spray drying, emulsion phase separation, simple and complex coacervation. This review focuses on the preparation, characterization of chitosan microspheres and their role in novel drug delivery systems.

  5. Influence of microemulsions on cutaneous drug delivery

    DEFF Research Database (Denmark)

    Kreilgaard, Mads

    2002-01-01

    In attempt to increase cutaneous drug delivery, microemulsion vehicles have been more and more frequently employed over recent years. Microemulsion formulations have been shown to be superior for both transdermal and dermal delivery of particularly lipophilic compounds, but also hydrophilic compo...

  6. Therapeutic Ultrasound Enhancement of Drug Delivery to Soft Tissues

    Science.gov (United States)

    Lewis, George; Wang, Peng; Lewis, George; Olbricht, William

    2009-04-01

    Effects of exposure to 1.58 MHz focused ultrasound on transport of Evans Blue Dye (EBD) in soft tissues are investigated when an external pressure gradient is applied to induce convective flow through the tissue. The magnitude of the external pressure gradient is chosen to simulate conditions in brain parenchyma during convection-enhanced drug delivery (CED) to the brain. EBD uptake and transport are measured in equine brain, avian muscle and agarose brain-mimicking phantoms. Results show that ultrasound enhances EBD uptake and transport, and the greatest enhancement occurs when the external pressure gradient is applied. The results suggest that exposure of the brain parenchyma to ultrasound could enhance penetration of material infused into the brain during CED therapy.

  7. BUCCAL DRUG DELIVERY USING ADHESIVE POLYMERIC PATCHES

    OpenAIRE

    R. Venkatalakshmi

    2012-01-01

    The buccal mucosa has been investigated for local drug therapy and the systemic delivery of therapeutic peptides and other drugs that are subjected to first-pass metabolism or are unstable within the rest of the gastrointestinal tract. The mucosa of the oral cavity presents a formidable barrier to drug penetration, and one method of optimizing drug delivery is by the use of adhesive dosage forms and the mucosa has a rich blood supply and it is relatively permeable. The buccal mucosa is very s...

  8. Ion-Responsive Drug Delivery Systems.

    Science.gov (United States)

    Yoshida, Takayuki; Shakushiro, Kohsuke; Sako, Kazuhiro

    2018-02-08

    Some kinds of cations and anions are contained in body fluids such as blood, interstitial fluid, gastrointestinal juice, and tears at relatively high concentration. Ionresponsive drug delivery is available to design the unique dosage formulations which provide optimized drug therapy with effective, safe and convenient dosing of drugs. The objective of the present review was to collect, summarize, and categorize recent research findings on ion-responsive drug delivery systems. Ions in body fluid/formulations caused structural changes of polymers/molecules contained in the formulations, allow formulations exhibit functions. The polymers/molecules responding to ions were ion-exchange resins/fibers, anionic or cationic polymers, polymers exhibiting transition at lower critical solution temperature, self-assemble supramolecular systems, peptides, and metalorganic frameworks. The functions of ion-responsive drug delivery systems were categorized to controlled drug release, site-specific drug release, in situ gelation, prolonged retention at the target sites, and enhancement of drug permeation. Administration of the formulations via oral, ophthalmic, transdermal, and nasal routes has showed significant advantages in the recent literatures. Many kinds of drug delivery systems responding to ions have been reported recently for several administration routes. Improvement and advancement of these systems can maximize drugs potential and contribute to patients in the world. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Nanomedicine Drug Delivery across Mucous Membranes

    Science.gov (United States)

    Lancina, Michael George, III

    Control over the distribution of therapeutic compounds is a complex and somewhat overlooked field of pharmaceutical research. When swallowing a pill or receiving an injection, it is commonly assumed that drug will spread throughout the body in a more or less uniform concentration and find its way to wherever it is needed. In truth, drug biodistribuition is highly non-uniform and dependent on a large number of factors. The development of advanced drug delivery systems to control biodistribution can produce significant advances in clinical treatments without the need to discover new therapeutic compounds. This work focuses on a number of nanostructured materials designed to improve drug delivery by direct and efficient transfer of drugs across one of the body's external mucous membranes. Chapter 1 outlines the central concept that unites these studies: nanomaterials and cationic particles can be used to delivery therapeutic compounds across mucous membranes. Special attention is given to dendritic nanoparticles. In chapter 2, uses for dendrimers in ocular drug delivery are presented. The studies are divided into two main groups: topical and injectable formulations. Chapter 3 does not involve dendrimers but instead another cationic particle used in transmembrane drug delivery, chitosan. Next, a dendrimer based nanofiber mat was used to deliver anti-glaucoma drugs in chapter 4. A three week in vivo efficacy trial showed dendrimer nanofiber mats outperformed traditional eye drops in terms of intra-ocular pressure decrease in a normotensive rat model. Finally, we have developed a new dendrimer based anti-glaucoma drug in chapter 5. Collectively, these studies demonstrate some of the potential applications for nanotechnology to improve transmembrane drug delivery. These particles and fibers are able to readily adhere and penetrate across epithelial cell lays. Utilizing these materials to improve drug absorption through these portals has the potential to improve the

  10. The nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overview.

    Science.gov (United States)

    Djupesland, Per G; Messina, John C; Mahmoud, Ramy A

    2014-06-01

    The intricate pathophysiology of brain disorders, difficult access to the brain, and the complexity and high risks and costs of drug development represent major hurdles for improving therapies. Nose-to-brain drug transport offers an attractive alternative or addition to formulation-only strategies attempting to enhance drug penetration into the CNS. Although still a matter of controversy, many studies in animals claim direct nose-to-brain transport along the olfactory and trigeminal nerves, circumventing the traditional barriers to CNS entry. Some clinical trials in man also suggest nose-to-brain drug delivery, although definitive proof in man is lacking. This review focuses on new nasal delivery technologies designed to overcome inherent anatomical and physiological challenges and facilitate more efficient and targeted drug delivery for CNS disorders.

  11. Microfluidic device for drug delivery

    Science.gov (United States)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2010-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  12. Microneedles for drug and vaccine delivery

    Science.gov (United States)

    Kim, Yeu-Chun; Park, Jung-Hwan; Prausnitz, Mark R.

    2012-01-01

    Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990’s when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encapsulate drug and fully dissolve in the skin and (iv) hollow microneedles for drug infusion into the skin. As shown in more than 350 papers now published in the field, microneedles have been used to deliver a broad range of different low molecular weight drugs, biotherapeutics and vaccines, including published human studies with a number of small-molecule and protein drugs and vaccines. Influenza vaccination using a hollow microneedle is in widespread clinical use and a number of solid microneedle products are sold for cosmetic purposes. In addition to applications in the skin, microneedles have also been adapted for delivery of bioactives into the eye and into cells. Successful application of microneedles depends on device function that facilitates microneedle insertion and possible infusion into skin, skin recovery after microneedle removal, and drug stability during manufacturing, storage and delivery, and on patient outcomes, including lack of pain, skin irritation and skin infection, in addition to drug efficacy and safety. Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications. PMID:22575858

  13. Chrono pharmacotherapy: A pulsatile Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huma Hameed

    2015-01-01

    Full Text Available Chronopharmacotherapy refers to a treatment in which controlled drug delivery is achieved according to circadian rhythms of disease by enhancing therapeutic outcomes and minimizing side effects. Colon targeting has gained great importance not only for the treatment of local diseases such as Crohn’s disease, inflammatory bowel disease and ulcerative colitis but also very important in systemic delivery of proteins/peptides, antiasthmatic drugs, antidiabetic agents and antihypertensive drugs, which mostly show their efficacy based on circadian rhythms of the body.Colon drug delivery is one of the difficult approaches to achieve the targeted and desired outcomes through pulsatile drug delivery by avoiding dose dumping.The main reasonbehind the use of pulsatile delivery is provision ofconstant drug release where a zero-order release is notpreferred. Chronopharmacotherapy in colon targeting play its role bymany systems such ascapsular systems, pulsatile system and osmotic systems, which are based on use of rupturable membranes and biodegradable polymers.The objective of this review article is to provide latest knowledge about drugs with chrono-pharmacological behavior entails night time dosing specially to the colon.

  14. Calcium phosphate ceramics in drug delivery

    Science.gov (United States)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  15. The use of bisphosphonates for bone-specific drug delivery

    NARCIS (Netherlands)

    Farbod, K.

    2016-01-01

    The pharmacological efficacy of conventional drug formulations can be improved through the use of drug delivery systems. Controlled drug delivery systems are intended to deliver drugs locally at predetermined rates for predefined periods of time. By delivering pharmacologically high concentrations

  16. Drugs and drug delivery systems targeting amyloid-β in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Morgan Robinson

    2015-07-01

    Full Text Available Alzheimer's disease (AD is a devastating neurodegenerative disorder with no cure and limited treatment solutions that are unable to target any of the suspected causes. Increasing evidence suggests that one of the causes of neurodegeneration is the overproduction of amyloid beta (Aβ and the inability of Aβ peptides to be cleared from the brain, resulting in self-aggregation to form toxic oligomers, fibrils and plaques. One of the potential treatment options is to target Aβ and prevent self-aggregation to allow for a natural clearing of the brain. In this paper, we review the drugs and drug delivery systems that target Aβ in relation to Alzheimer's disease. Many attempts have been made to use anti-Aβ targeting molecules capable of targeting Aβ (with much success in vitro and in vivo animal models, but the major obstacle to this technique is the challenge posed by the blood brain barrier (BBB. This highly selective barrier protects the brain from toxic molecules and pathogens and prevents the delivery of most drugs. Therefore novel Aβ aggregation inhibitor drugs will require well thought-out drug delivery systems to deliver sufficient concentrations to the brain.

  17. Mucoadhesive Buccal Drug Delivery System

    OpenAIRE

    Pooja P.Thakkar; Meghana J.Chaudhari; Ami M.Soni; Dharti P.Pandya; Darshan A.Modi

    2012-01-01

    The buccal region of the oral cavity is an attractive target for administration of the drug of choice,particularly in overcoming deficiencies associated with the latter mode of administration. Problems suchas high first-pass metabolism and drug degradation in the gastrointestinal environment can becircumvented by administering the drug via the buccal route. Mucoadhesion can be defined as a state inwhich two components, of which one is of biological origin are held together for extended period...

  18. Influence of microemulsions on cutaneous drug delivery

    DEFF Research Database (Denmark)

    Kreilgaard, Mads

    2002-01-01

    In attempt to increase cutaneous drug delivery, microemulsion vehicles have been more and more frequently employed over recent years. Microemulsion formulations have been shown to be superior for both transdermal and dermal delivery of particularly lipophilic compounds, but also hydrophilic...... compounds appear to benefit from application in microemulsions compared to conventional vehicles, like hydrogels, emulsions and liposomes. The favourable drug delivery properties of microemulsions appear to mainly be attributed to the excellent solubility properties. However, the vehicles may also act...... as penetration enhancers depending on the oil/surfactant constituents, which involves a risk of inducing local irritancy. The correlation between microemulsion structure/composition and drug delivery potential is not yet fully elucidated. However, a few studies have indicated that the internal structure...

  19. Drug delivery systems in domestic animal species.

    Science.gov (United States)

    Brayden, David J; Oudot, Emilie J M; Baird, Alan W

    2010-01-01

    Delivery of biologically active agents to animals is often perceived to be the poor relation of human drug delivery. Yet this field has a long and successful history of species-specific device and formulation development, ranging from simple approaches and devices used in production animals to more sophisticated formulations and approaches for a wide range of species. While several technologies using biodegradable polymers have been successfully marketed in a range of veterinary and human products, the transfer of delivery technologies has not been similarly applied across species. This may be due to a combination of specific technical requirements for use of devices in different species, inter-species pharmacokinetic, pharmacodynamic and physiological differences, and distinct market drivers for drug classes used in companion and food-producing animals. This chapter reviews selected commercialised and research-based parenteral and non-parenteral veterinary drug delivery technologies in selected domestic species. Emphasis is also placed on the impact of endogenous drug transporters on drug distribution characteristics in different species. In vitro models used to investigate carrier-dependent transport are reviewed. Species-specific expression of transporters in several tissues can account for inter-animal or inter-species pharmacokinetic variability, lack of predictability of drug efficacy, and potential drug-drug interactions.

  20. A cyclically actuated electrolytic drug delivery device

    KAUST Repository

    Yi, Ying

    2015-01-01

    This work, focusing on an implantable drug delivery system, presents the first prototype electrolytic pump that combines a catalytic reformer and a cyclically actuated mode. These features improve the release performance and extend the lifetime of the device. Using our platinum (Pt)-coated carbon fiber mesh that acts as a catalytic reforming element, the cyclical mode is improved because the faster recombination rate allows for a shorter cycling time for drug delivery. Another feature of our device is that it uses a solid-drug-in-reservoir (SDR) approach, which allows small amounts of a solid drug to be dissolved in human fluid, forming a reproducible drug solution for long-term therapies. We have conducted proof-of-principle drug delivery studies using such an electrolytic pump and solvent blue 38 as the drug substitute. These tests demonstrate power-controlled and pulsatile release profiles of the chemical substance, as well as the feasibility of this device. A drug delivery rate of 11.44 ± 0.56 μg min-1 was achieved by using an input power of 4 mW for multiple pulses, which indicates the stability of our system. © The Royal Society of Chemistry 2015.

  1. Lipid-Based Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Hina Shrestha

    2014-01-01

    Full Text Available The principle objective of formulation of lipid-based drugs is to enhance their bioavailability. The use of lipids in drug delivery is no more a new trend now but is still the promising concept. Lipid-based drug delivery systems (LBDDS are one of the emerging technologies designed to address challenges like the solubility and bioavailability of poorly water-soluble drugs. Lipid-based formulations can be tailored to meet a wide range of product requirements dictated by disease indication, route of administration, cost consideration, product stability, toxicity, and efficacy. These formulations are also a commercially viable strategy to formulate pharmaceuticals, for topical, oral, pulmonary, or parenteral delivery. In addition, lipid-based formulations have been shown to reduce the toxicity of various drugs by changing the biodistribution of the drug away from sensitive organs. However, the number of applications for lipid-based formulations has expanded as the nature and type of active drugs under investigation have become more varied. This paper mainly focuses on novel lipid-based formulations, namely, emulsions, vesicular systems, and lipid particulate systems and their subcategories as well as on their prominent applications in pharmaceutical drug delivery.

  2. A wireless actuating drug delivery system

    International Nuclear Information System (INIS)

    Jo, Won-Jun; Baek, Seung-Ki; Park, Jung-Hwan

    2015-01-01

    A wireless actuating drug delivery system was devised. The system is based on induction heating for drug delivery. In this study, thermally generated nitrogen gas produced by induction heating of azobisisobutyronitrile (AIBN) was utilized for pressure-driven release of the drug. The delivery device consists of an actuator chamber, a drug reservoir, and a microchannel. A semicircular copper disc (5 and 6 mm in diameter and 100 µm thick), and thermal conductive tape were integrated as the heating element in the actuator chamber. The final device was 2.7 mm thick. 28 µl of drug solution were placed in the reservoir and the device released the drug quickly at the rate of 6 µl s −1 by induction heating at 160 µT of magnetic intensity. The entire drug solution was released and dispersed after subcutaneous implantation under identical experimental condition. This study demonstrates that the device was simply prepared and drug delivery could be achieved by wireless actuation of a thin, pressure-driven actuator. (paper)

  3. Development and Evaluation of Chronotherapeutic Drug Delivery ...

    African Journals Online (AJOL)

    Purpose: To develop an oral capsule-based chronomodulated drug delivery system of salbutamol sulphate for the treatment of nocturnal asthma. Methods: The basic design of the proposed dosage form entails an insoluble cross-linked capsule body filled with drug-loaded pellets sealed with hydrocolloid plug and a soluble ...

  4. Cellulose based polymeric systems in drug delivery

    Science.gov (United States)

    The pharmaceutical industry requires the development of biodegradable, biocompatible, non toxic, site specific drug delivery polymers, which can be easily coupled with drugs to be delivered orally, topically, locally, or parenterally. The use of the most abundant biopolymer, cellulose along with its...

  5. Chemical Penetration Enhancers for Transdermal Drug Delivery ...

    African Journals Online (AJOL)

    for transdermal administration. The permeation of drug through skin can be enhanced by both chemical penetration enhancement and physical methods. In this review, we have discussed the chemical penetration enhancement technology for transdermal drug delivery as well as the probable mechanisms of action.

  6. A pulsed mode electrolytic drug delivery device

    KAUST Repository

    Yi, Ying

    2015-09-14

    This paper reports the design of a proof-of-concept drug delivery device that is actuated using the bubbles formed during electrolysis. The device uses a platinum (Pt) coated nickel (Ni) metal foam and a solid drug in reservoir (SDR) approach to improve the device\\'s performance. This electrochemically-driven pump has many features that are unlike conventional drug delivery devices: it is capable of pumping periodically and being refilled automatically; it features drug release control; and it enables targeted delivery. Pt-coated metal foam is used as a catalytic reforming element, which reduces the period of each delivery cycle. Two methods were used for fabricating the Pt-coated metal: sputtering and electroplating. Of these two methods, the sputtered Pt-coated metal foam has a higher pumping rate; it also has a comparable recombination rate when compared to the electroplated Pt-coated metal foam. The only drawback of this catalytic reformer is that it consumes nickel scaffold. Considering long-term applications, the electroplated Pt metal foam was selected for drug delivery, where a controlled drug release rate of 2.2 μg ± 0.3 μg per actuation pulse was achieved using 4 mW of power.

  7. A pulsed mode electrolytic drug delivery device

    International Nuclear Information System (INIS)

    Yi, Ying; Foulds, Ian G; Buttner, Ulrich; Carreno, Armando A A; Conchouso, David

    2015-01-01

    This paper reports the design of a proof-of-concept drug delivery device that is actuated using the bubbles formed during electrolysis. The device uses a platinum (Pt) coated nickel (Ni) metal foam and a solid drug in reservoir (SDR) approach to improve the device’s performance. This electrochemically-driven pump has many features that are unlike conventional drug delivery devices: it is capable of pumping periodically and being refilled automatically; it features drug release control; and it enables targeted delivery. Pt-coated metal foam is used as a catalytic reforming element, which reduces the period of each delivery cycle. Two methods were used for fabricating the Pt-coated metal: sputtering and electroplating. Of these two methods, the sputtered Pt-coated metal foam has a higher pumping rate; it also has a comparable recombination rate when compared to the electroplated Pt-coated metal foam. The only drawback of this catalytic reformer is that it consumes nickel scaffold. Considering long-term applications, the electroplated Pt metal foam was selected for drug delivery, where a controlled drug release rate of 2.2 μg  ±  0.3 μg per actuation pulse was achieved using 4 mW of power. (paper)

  8. Loading of microcontainers for oral drug delivery

    DEFF Research Database (Denmark)

    Marizza, Paolo

    The pharmaceutical research is facing several obstacles in the development of drug products for the oral delivery. The main problem deals with the intrinsic chemical nature of the new drug candidates, which are often poorly soluble and barely absorbed in the gastro-intestinal tract. Furthermore......, they are usually degraded before they are absorbed. These combined factors considerably reduce the bioavailability of many active ingredients. Several strategies have been developed to overcome these challenges. One of them are microfabricated drug delivery devices. Microreservoir based-systems are characterized....... The loading techniques developed in this thesis represent a novelty in the field of microfabricated drug delivery devices. The methods utilized in this research work are potentially integrated in the fabrication process of biopolymer microcontainers....

  9. Polymeric gels for intravaginal drug delivery.

    Science.gov (United States)

    Cook, Michael T; Brown, Marc B

    2018-01-28

    Intravaginal drug delivery can elicit a local effect, or deliver drugs systemically without hepatic first pass metabolism. There are a number of emerging areas in intravaginal drug delivery, but the vagina is a challenging route of administration, due to the clearance mechanisms present which result in poor retention of dosage forms, and the potential for irritation and other adverse reactions. Gel formulations are desirable due to the ease of application, spreading and that they cause little to no discomfort to the patient. However, these dosage forms, in particular, are poorly retained and traditional gels typically have little control over drug release rates. This has led to a large number of studies on improving the retention of vaginal gels and modulating the controlled release of drugs from the gel matrix. This review outlines the anatomy and physiology of the vagina, focussing on areas relevant to drug delivery. Medical applications of vaginally administered medicines is then discussed, followed by an overview of polymeric gels in intravaginal drug delivery. The sensorial properties of intravaginal gels, and how these relate to user compliance are also summarised. Finally, some important barriers to marketing approval are described. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Drug Delivery Research: The Invention Cycle.

    Science.gov (United States)

    Park, Kinam

    2016-07-05

    Controlled drug delivery systems have been successful in introducing improved formulations for better use of existing drugs and novel delivery of biologicals. The initial success of producing many oral products and some injectable depot formulations, however, reached a plateau, and the progress over the past three decades has been slow. This is likely due to the difficulties of formulating hydrophilic, high molecular weight drugs, such as proteins and nucleic acids, for targeting specific cells, month-long sustained delivery, and pulsatile release. Since the approaches that have served well for delivery of small molecules are not applicable to large molecules, it is time to develop new methods for biologicals. The process of developing future drug delivery systems, termed as the invention cycle, is proposed, and it starts with clearly defining the problems for developing certain formulations. Once the problems are well-defined, creative imagination examines all potential options and selects the best answer and alternatives. Then, innovation takes over to generate unique solutions for developing new formulations that resolve the previously identified problems. Ultimately, the new delivery systems will have to go through a translational process to produce the final formulations for clinical use. The invention cycle also emphasizes examining the reasons for success of certain formulations, not just the reasons for failure of many systems. Implementation of the new invention cycle requires new mechanisms of funding the younger generation of scientists and a new way of identifying their achievements, thereby releasing them from the burden of short-termism.

  11. Trojan Microparticles for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Thierry F. Vandamme

    2012-01-01

    Full Text Available During the last decade, the US Food and Drug Administration (FDA have regulated a wide range of products, (foods, cosmetics, drugs, devices, veterinary, and tobacco which may utilize micro and nanotechnology or contain nanomaterials. Nanotechnology allows scientists to create, explore, and manipulate materials in nano-regime. Such materials have chemical, physical, and biological properties that are quite different from their bulk counterparts. For pharmaceutical applications and in order to improve their administration (oral, pulmonary and dermal, the nanocarriers can be spread into microparticles. These supramolecular associations can also modulate the kinetic releases of drugs entrapped in the nanoparticles. Different strategies to produce these hybrid particles and to optimize the release kinetics of encapsulated drugs are discussed in this review.

  12. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs

    DEFF Research Database (Denmark)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe...... biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral...... delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract...

  13. Local drug delivery to prevent restenosis.

    Science.gov (United States)

    Seedial, Stephen M; Ghosh, Soumojit; Saunders, R Scott; Suwanabol, Pasithorn A; Shi, Xudong; Liu, Bo; Kent, K Craig

    2013-05-01

    Despite significant advances in vascular biology, bioengineering, and pharmacology, restenosis remains a limitation to the overall efficacy of vascular reconstructions, both percutaneous and open. Although the pathophysiology of intimal hyperplasia is complex, a number of drugs and molecular tools have been identified that can prevent restenosis. Moreover, the focal nature of this process lends itself to treatment with local drug administration. This article provides a broad overview of current and future techniques for local drug delivery that have been developed to prevent restenosis after vascular interventions. A systematic electronic literature search using PubMed was performed for all accessible published articles through September 2012. In an effort to remain current, additional searches were performed for abstracts presented at relevant societal meetings, filed patents, clinical trials, and funded National Institutes of Health awards. The efficacy of local drug delivery has been demonstrated in the coronary circulation with the current clinical use of drug-eluting stents. Until recently, however, drug-eluting stents were not found to be efficacious in the peripheral circulation. Further pursuit of intraluminal devices has led to the development of balloon-based technologies, with a recent surge in trials involving drug-eluting balloons. Early data appear encouraging, particularly for treatment of superficial femoral artery lesions, and several devices have recently received the Conformité Européene mark in Europe. Investigators have also explored the periadventitial application of biomaterials containing antirestenotic drugs, an approach that could be particularly useful for surgical bypass or endarterectomy. In the past, systemic drug delivery has been unsuccessful; however, there has been recent exploration of intravenous delivery of drugs designed specifically to target injured or reconstructed arteries. Our review revealed a multitude of additional

  14. Mucus as a Barrier to Drug Delivery

    DEFF Research Database (Denmark)

    Bøgh, Marie; Nielsen, Hanne Mørck

    2015-01-01

    -established as essential tools in drug research and development, but traditionally, mucus-containing models have only rarely been applied. However, a number of mucus-containing in vitro models have recently been described in the literature and their properties and applications will be reviewed and discussed. Finally...... barrier to drug delivery. Current knowledge of mucus characteristics and barrier properties, as achieved by state-of-the-art methodologies, is the topic of this MiniReview emphasizing the gastrointestinal mucus and an overall focus on oral drug delivery. Cell culture-based in vitro models are well......, studies of peptide and protein drug diffusion in and through mucus and studies of mucus-penetrating nanoparticles are included to illustrate the mucus as a potentially important barrier to obtain sufficient bioavailability of orally administered drugs, and thus an important parameter to address...

  15. Nanoparticles and nanofibers for topical drug delivery

    Science.gov (United States)

    Goyal, Ritu; Macri, Lauren K.; Kaplan, Hilton M.; Kohn, Joachim

    2016-01-01

    This review provides the first comprehensive overview of the use of both nanoparticles and nanofibers for topical drug delivery. Researchers have explored the use of nanotechnology, specifically nanoparticles and nanofibers, as drug delivery systems for topical and transdermal applications. This approach employs increased drug concentration in the carrier, in order to increase drug flux into and through the skin. Both nanoparticles and nanofibers can be used to deliver hydrophobic and hydrophilic drugs and are capable of controlled release for a prolonged period of time. The examples presented provide significant evidence that this area of research has—and will continue to have — a profound impact on both clinical outcomes and the development of new products. PMID:26518723

  16. [Nanoparticles as drug delivery systems in ophthalmology].

    Science.gov (United States)

    Löscher, M; Hurst, J; Strudel, L; Spitzer, M S; Schnichels, S

    2018-03-01

    Nanoparticles are perfectly suited as drug delivery systems due to their size and the diversity of materials used. They are able to penetrate biological barriers, can directly deliver drugs to the target site and provide a sustained release profile. Having long been established in oncology, in the last decade research has started to take a closer look at the potential of nanoparticles for ocular drug delivery. Obstacles, such as poor delivery of drugs via eye drops and the side effects of invasive methods, such as placing implants as drug depots could be overcome. Among the most relevant investigated structures are polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles, dendrimers and cyclodextrins. Besides the composition of the nanoparticle itself, its efficacy and stability can be optimized through coatings; however, long-term stability, standardization of production and toxicity remain the major challenges. The preclinical and partly clinical results obtained so far will hopefully give impulse to the idea of applying nanoparticles for optimized ocular drug delivery in the near future.

  17. Oral Delivery of Protein Drugs Bioencapsulated in Plant Cells.

    Science.gov (United States)

    Kwon, Kwang-Chul; Daniell, Henry

    2016-08-01

    Plants cells are now approved by the FDA for cost-effective production of protein drugs (PDs) in large-scale current Good Manufacturing Practice (cGMP) hydroponic growth facilities. In lyophilized plant cells, PDs are stable at ambient temperature for several years, maintaining their folding and efficacy. Upon oral delivery, PDs bioencapsulated in plant cells are protected in the stomach from acids and enzymes but are subsequently released into the gut lumen by microbes that digest the plant cell wall. The large mucosal area of the human intestine offers an ideal system for oral drug delivery. When tags (receptor-binding proteins or cell-penetrating peptides) are fused to PDs, they efficiently cross the intestinal epithelium and are delivered to the circulatory or immune system. Unique tags to deliver PDs to human immune or nonimmune cells have been developed recently. After crossing the epithelium, ubiquitous proteases cleave off tags at engineered sites. PDs are also delivered to the brain or retina by crossing the blood-brain or retinal barriers. This review highlights recent advances in PD delivery to treat Alzheimer's disease, diabetes, hypertension, Gaucher's or ocular diseases, as well as the development of affordable drugs by eliminating prohibitively expensive purification, cold chain and sterile delivery.

  18. Polymeric Micelles for Acyclovir Drug Delivery

    OpenAIRE

    Sawdon, Alicia J.; Peng, Ching-An

    2014-01-01

    Polymeric prodrug micelles for delivery of acyclovir (ACV) were synthesized. First, ACV was used directly to initiate ring-opening polymerization of ε-caprolactone to form ACV-polycaprolactone (ACV-PCL). Through conjugation of hydrophobic ACV-PCL with hydrophilic methoxy poly(ethylene glycol) (MPEG) or chitosan, polymeric micelles for drug delivery were formed. 1H NMR, FTIR, and gel permeation chromatography were employed to show successful conjugation of MPEG or chitosan to hydrophobic ACV-P...

  19. Assessment of cutaneous drug delivery using microdialysis

    DEFF Research Database (Denmark)

    Kreilgaard, Mads

    2002-01-01

    During the last decade microdialysis has been successfully applied to assess cutaneous drug delivery of numerous substances, indicating the large potential for bioequivalence/bioavailability evaluation of topical formulations. The technique has been shown to be minimally invasive and supply...... pharmacokinetic information directly in the target organ for cutaneous drug delivery with high temporal resolution without further intervention with the tissue after implantation. However, there are a few challenges that need to be addressed before microdialysis can be regarded as a generally applicable routine...... technique for cutaneous drug delivery assessments. Firstly, the technique is currently not suitable for sampling of highly lipophilic compounds and, secondly, more studies are desirable for elucidation of the variables associated with the technique to increase reproducibility. The present literature...

  20. Ultrasound triggered image-guided drug delivery

    International Nuclear Information System (INIS)

    Boehmer, Marcel R.; Klibanov, Alexander L.; Tiemann, Klaus; Hall, Christopher S.; Gruell, Holger; Steinbach, Oliver C.

    2009-01-01

    The integration of therapeutic interventions with diagnostic imaging has been recognized as one of the next technological developments that will have a major impact on medical treatments. Important advances in this field are based on a combination of progress in guiding and monitoring ultrasound energy, novel drug classes becoming available, the development of smart delivery vehicles, and more in depth understanding of the mechanisms of the cellular and molecular basis of diseases. Recent research demonstrates that both pressure sensitive and temperature sensitive delivery systems hold promise for local treatment. The use of ultrasound for the delivery of drugs has been demonstrated in particular the field of cardiology and oncology for a variety of therapeutics ranging from small drug molecules to biologics and nucleic acids.

  1. Polymer carriers for targeted drug delivery and controlled drug release

    Czech Academy of Sciences Publication Activity Database

    Ulbrich, Karel; Pechar, Michal; Etrych, Tomáš; Jelínková, Markéta; Kovář, Marek; Říhová, Blanka

    2003-01-01

    Roč. 10, č. 1 (2003), s. 3-4 ISSN 1211-5894 R&D Projects: GA ČR GA305/02/1425; GA AV ČR IAA4050201 Institutional research plan: CEZ:AV0Z5020903; CEZ:AV0Z4050913 Keywords : HPMA copolymers * drug targeting * drug delivery Subject RIV: CD - Macromolecular Chemistry

  2. Drug Delivery and Nanoformulations for the Cardiovascular System.

    Science.gov (United States)

    Geldenhuys, W J; Khayat, M T; Yun, J; Nayeem, M A

    2017-02-01

    Therapeutic delivery to the cardiovascular system may play an important role in the successful treatment of a variety of disease state, including atherosclerosis, ischemic-reperfusion injury and other types of microvascular diseases including hypertension. In this review we evaluate the different options available for the development of suitable delivery systems that include the delivery of small organic compounds [adenosin A 2A receptor agonist (CGS 21680), CYP-epoxygenases inhibitor (N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide, trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy] benzoic acid), soluble epoxide hydrolase inhibitor (N-methylsulfonyl-12,12-dibromododec-11-enamide), PPARγ agonist (rosiglitazone) and PPARγ antagonist (T0070907)], nanoparticles, peptides, and siRNA to the cardiovascular system. Effective formulations of nanoproducts have significant potential to overcome physiological barriers and improve therapeutic outcomes in patients. As per the literature covering targeted delivery to the cardiovascular system, we found that this area is still at infancy stage, as compare to the more mature fields of tumor cancer or brain delivery (e.g. blood-brain barrier permeability) with fewer publications focused on the targeted drug delivery technologies. Additionally, we show how pharmacology needs to be well understood when considering the cardiovascular system. Therefore, we discussed in this review various receptors agonists, antagonists, activators and inhibitors which will have effects on cardiovascular system.

  3. Plasmon resonant liposomes for controlled drug delivery

    Science.gov (United States)

    Knights-Mitchell, Shellie S.; Romanowski, Marek

    2015-03-01

    Nanotechnology use in drug delivery promotes a reduction in systemic toxicity, improved pharmacokinetics, and better drug bioavailability. Liposomes continue to be extensively researched as drug delivery systems (DDS) with formulations such as Doxil® and Ambisome® approved by FDA and successfully marketed in the United States. However, the limited ability to precisely control release of active ingredients from these vesicles continues to challenge the broad implementation of this technology. Moreover, the full potential of the carrier to sequester drugs until it can reach its intended target has yet to be realized. Here, we describe a liposomal DDS that releases therapeutic doses of an anticancer drug in response to external stimulus. Earlier, we introduced degradable plasmon resonant liposomes. These constructs, obtained by reducing gold on the liposome surface, facilitate spatial and temporal release of drugs upon laser light illumination that ultimately induces an increase in temperature. In this work, plasmon resonant liposomes have been developed to stably encapsulate and retain doxorubicin at physiological conditions represented by isotonic saline at 37o C and pH 7.4. Subsequently, they are stimulated to release contents either by a 5o C increase in temperature or by laser illumination (760 nm and 88 mW/cm2 power density). Successful development of degradable plasmon resonant liposomes responsive to near-infrared light or moderate hyperthermia can provide a new delivery method for multiple lipophilic and hydrophilic drugs with pharmacokinetic profiles that limit clinical utility.

  4. Drug delivery approaches for breast cancer

    Directory of Open Access Journals (Sweden)

    Singh SK

    2017-08-01

    Full Text Available Santosh Kumar Singh,1 Shriti Singh,2 James W Lillard Jr,1 Rajesh Singh1 1Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA; 2Department of Kriya Sharir, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India Abstract: Breast cancer is one of the most common cancers affecting women worldwide. The controlled release of drugs to the precise site of the disease using a nanocarrier vehicle increases the therapeutic efficiency of the drugs. Nanotechnology-based approaches used to endorse clinical improvement from a disease also help to understand the interaction of malignant cells with their microenvironment. Receptor-based targeting is another approach for drug delivery which is undergoing clinical trials. Nanoparticles (NPs delivery has been proven to promise high loading capacity, less toxicity, and stability of the drugs or biomolecules compared to traditional chemotherapeutic drugs. The goal of this review is to present the current problems of breast cancer therapy and discuss the NP-based targeting to overcome the hurdles of conventional drug therapy approach. Keywords: breast cancer, nanoparticles, drug delivery systems

  5. Drug Discovery, Design and Delivery

    Science.gov (United States)

    2012-06-28

    benzoate) nanoparticles by nanoprecipitation with and without a lipophilic probe ( coumarin ) to study stability and drug release. The advantage of this...degradation. Addition of a lipophilic molecule such as coumarin 6 to the media allows for up to 1.6% of the polymer weight to be entrapped during...indicate that 78% of the coumarin 6 was encapsulated within the polymer matrix of the nanoparticle, and the residual surface-bond coumarin 6 was quickly

  6. Delivery of amphotericin B nanosuspensions to the brain and determination of activity against Balamuthia mandrillaris amebas.

    Science.gov (United States)

    Lemke, Andreas; Kiderlen, Albrecht F; Petri, Boris; Kayser, Oliver

    2010-08-01

    Amphotericin B was formulated as nanosuspensions to develop a nanoparticulate brain delivery system. Nanosuspensions were produced with different surfactant solutions by high-pressure homogenization and then characterized by laser diffractometry and photon correlation spectroscopy. Before in vitro and in vivo testing all nanosuspensions were investigated for protein adsorption by two-dimensional polyacrylamide gel electrophoresis to predict brain-targeting capacities. Selected nanosuspensions were tested for amebicidal activity against Balamuthia mandrillaris, an agent of lethal encephalitis. Our results indicate that nanosuspensions coated with polysorbate 80 and sodium cholate markedly increased drug brain delivery and inhibited the parasite in vitro, though less in vivo. From the clinical editor: The antifungal Amphotericin B was formulated as nanosuspensions to develop a nanoparticulate brain delivery system. The results indicate that nanosuspensions coated with polysorbate 80 and sodium cholate markedly increased drug brain delivery and inhibited the parasite in vitro, though less in vivo. 2010 Elsevier Inc. All rights reserved.

  7. MRI-Guided Focused Ultrasound as a New Method of Drug Delivery

    Directory of Open Access Journals (Sweden)

    M. Thanou

    2013-01-01

    Full Text Available Ultrasound-mediated drug delivery under the guidance of an imaging modality can improve drug disposition and achieve site-specific drug delivery. The term focal drug delivery has been introduced to describe the focal targeting of drugs in tissues with the help of imaging and focused ultrasound. Focal drug delivery aims to improve the therapeutic profile of drugs by improving their specificity and their permeation in defined areas. Focused-ultrasound- (FUS- mediated drug delivery has been applied with various molecules to improve their local distribution in tissues. FUS is applied with the aid of microbubbles to enhance the permeability of bioactive molecules across BBB and improve drug distribution in the brain. Recently, FUS has been utilised in combination with MRI-labelled liposomes that respond to temperature increase. This strategy aims to “activate” nanoparticles to release their cargo locally when triggered by hyperthermia induced by FUS. MRI-guided FUS drug delivery provides the opportunity to improve drug bioavailability locally and therefore improve the therapeutic profiles of drugs. This drug delivery strategy can be directly translated to clinic as MRg FUS is a promising clinically therapeutic approach. However, more basic research is required to understand the physiological mechanism of FUS-enhanced drug delivery.

  8. Degradable Polymersomes for Targeted Drug Delivery

    Science.gov (United States)

    Petersen, Matthew Alan

    Chemotherapy today is often accompanied by major side effects due to delivery of toxic drugs to healthy tissue in addition to diseased cells. Targeted drug delivery offers the possibility of minimizing these side effects by specific delivery to cancer cells using targeted nanocarriers that enhance drug accumulation in tumors and facilitate target-specific cellular uptake. Polymersomes, vesicles self-assembled from polymeric amphiphiles, are an attractive targeted vehicle, as they are capable of encapsulating both hydrophobic and hydrophilic drugs, have lengthy circulation times in vivo, and can employ degradable functionality for triggered release of payload and clearance from the body. This thesis reports on efforts to enhance the capabilities of degradable polymersomes for targeted delivery. First, targeting functionality is incorporated into polymersomes of the block copolymer poly(ethylene oxide)-b-poly(gamma-methyl-epsilon-caprolactone) by incorporating the reactive vinyl sulfone group into the amphiphile's hydrophilic terminus, allowing site-selective reaction with cysteine-functionalized targeting peptides following self-assembly. The performance of targeted delivery using this polymersome is then evaluated in vitro. Binding and delivery to model cell lines for targeted and bystander cells is tracked using nontargeted polymersomes and compared to that for polymersomes using a high- or low-affinity ligand. Polymer degradation is also tracked both in simple media and during cellular delivery. Finally, a new monomer is developed incorporating acid-labile acetal functionality into a cyclic polyester. The polymerization of this monomer to two distinct polymers is also characterized and the degradation behavior of both polymers evaluated.

  9. Drug delivery system and radiation therapy

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    2005-01-01

    This paper describes the review of radiation therapy, neutron capture therapy (NCT) and drug delivery system for the latter. In cancer radiation therapy, there are problems of body movement like breathing, needless irradiation of normal tissues, difficulty to decide the correct irradiation position and tumor morphology. NCT has advantages to overcome these, and since boron has a big cross section for thermal neutron, NPT uses the reaction 10 B(n, α) 7 Li in the target cancer which previously incorporated the boron-containing drug. During the period 1966-1996, 246 patients were treated with this in Japan and the treatment has been continued thereafter. The tasks for NCT are developments of drug delivery system efficient to deliver the drug into the tumor and of convenient neutron source like the accelerator. (S.I.)

  10. Nanofibrillar cellulose films for controlled drug delivery.

    Science.gov (United States)

    Kolakovic, Ruzica; Peltonen, Leena; Laukkanen, Antti; Hirvonen, Jouni; Laaksonen, Timo

    2012-10-01

    Nanofibrillar cellulose (NFC) (also referred to as cellulose nanofibers, nanocellulose, microfibrillated, or nanofibrillated cellulose) has gotten recent and wide attention in various research areas. Here, we report the application of nanofibrillar cellulose as a matrix-former material for long-lasting (up to three months) sustained drug delivery. Film-like matrix systems with drug loadings between 20% and 40% were produced by a filtration method. This simple production method had an entrapment efficacy>90% and offers a possibility for the film thickness adjustment as well as applicability in the incorporation of heat sensitive compounds. The films had excellent mechanical properties suitable for easy handling and shape tailoring of the drug release systems. They were characterized in terms of the internal morphology, and the physical state of the encapsulated drug. The drug release was assessed by dissolution tests, and suitable mathematical models were used to explain the releasing kinetics. The drug release was sustained for a three month period with very close to zero-order kinetics. It is assumed that the nanofibrillar cellulose film sustains the drug release by forming a tight fiber network around the incorporated drug entities. The results indicate that the nanofibrillar cellulose is a highly promising new material for sustained release drug delivery applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Some Recent Advances in Transdermal Drug Delivery Systems ...

    African Journals Online (AJOL)

    Some Recent Advances in Transdermal Drug Delivery Systems. ... Advances in Transdermal Drug Delivery Systems. EC Ibezim, B Kabele-Toge, CO Anie, C Njoku. Abstract. Transdermal delivery systems are forms of drug delivery involving the dermis, as distinct from topical, oral or other forms of parenteral dosage forms.

  12. MODELING OF TARGETED DRUG DELIVERY PART II. MULTIPLE DRUG ADMINISTRATION

    Directory of Open Access Journals (Sweden)

    A. V. Zaborovskiy

    2017-01-01

    Full Text Available In oncology practice, despite significant advances in early cancer detection, surgery, radiotherapy, laser therapy, targeted therapy, etc., chemotherapy is unlikely to lose its relevance in the near future. In this context, the development of new antitumor agents is one of the most important problems of cancer research. In spite of the importance of searching for new compounds with antitumor activity, the possibilities of the “old” agents have not been fully exhausted. Targeted delivery of antitumor agents can give them a “second life”. When developing new targeted drugs and their further introduction into clinical practice, the change in their pharmacodynamics and pharmacokinetics plays a special role. The paper describes a pharmacokinetic model of the targeted drug delivery. The conditions under which it is meaningful to search for a delivery vehicle for the active substance were described. Primary screening of antitumor agents was undertaken to modify them for the targeted delivery based on underlying assumptions of the model.

  13. Optically generated ultrasound for enhanced drug delivery

    Science.gov (United States)

    Visuri, Steven R.; Campbell, Heather L.; Da Silva, Luiz

    2002-01-01

    High frequency acoustic waves, analogous to ultrasound, can enhance the delivery of therapeutic compounds into cells. The compounds delivered may be chemotherapeutic drugs, antibiotics, photodynamic drugs or gene therapies. The therapeutic compounds are administered systemically, or preferably locally to the targeted site. Local delivery can be accomplished through a needle, cannula, or through a variety of vascular catheters, depending on the location of routes of access. To enhance the systemic or local delivery of the therapeutic compounds, high frequency acoustic waves are generated locally near the target site, and preferably near the site of compound administration. The acoustic waves are produced via laser radiation interaction with an absorbing media and can be produced via thermoelastic expansion, thermodynamic vaporization, material ablation, or plasma formation. Acoustic waves have the effect of temporarily permeabilizing the membranes of local cells, increasing the diffusion of the therapeutic compound into the cells, allowing for decreased total body dosages, decreased side effects, and enabling new therapies.

  14. Specific drug delivery to the kidney

    NARCIS (Netherlands)

    Haas, M; Moolenaar, F; Meijer, DKF; de Zeeuw, D

    2002-01-01

    The mesangial cells of the glomerulus, the proximal tubular cells and the interstitial fibroblasts are the first choice targets for renal drug delivery since they play a pivotal role in many disease processes in the kidney. In the present review, only targeting to the proximal tubular cell is

  15. Fluorescence optical imaging in anticancer drug delivery

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Lucas, H.; Janoušková, Olga; Chytil, Petr; Mueller, T.; Mäder, K.

    2016-01-01

    Roč. 226, 28 March (2016), s. 168-181 ISSN 0168-3659 R&D Projects: GA ČR(CZ) GA15-02986S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : fluorescence imaging * drug delivery * theranostics Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.786, year: 2016

  16. Current perspectives on intrathecal drug delivery

    Directory of Open Access Journals (Sweden)

    Bottros MM

    2014-11-01

    Full Text Available Michael M Bottros,1 Paul J Christo2 1Division of Pain Medicine, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, 2Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA Abstract: Advances in intrathecal analgesia and intrathecal drug delivery systems have allowed for a range of medications to be used in the control of pain and spasticity. This technique allows for reduced medication doses that can decrease the side effects typically associated with oral or parenteral drug delivery. Recent expert panel consensus guidelines have provided care paths in the treatment of nociceptive, neuropathic, and mixed pain syndromes. While the data for pain relief, adverse effect reduction, and cost-effectiveness with cancer pain control are compelling, the evidence is less clear for noncancer pain, other than spasticity. Physicians should be aware of mechanical, pharmacological, surgical, and patient-specific complications, including possible granuloma formation. Newer intrathecal drug delivery systems may allow for better safety and quality of life outcomes. Keywords: pain control, intrathecal analgesia, drug delivery systems

  17. loaded, colon-targeted drug delivery system

    African Journals Online (AJOL)

    controlled delivery of 5-flurouracil (5-FU) in cancer patients. Method: Nine different miCAP formulations were prepared ... osmotically-controlled devices, pro-drug systems,. pH-dependent devices, and systems in which the ..... are very useful tools in the investigation of the thermal properties of miCAPs, and they provide.

  18. Fractional laser-assisted drug delivery

    DEFF Research Database (Denmark)

    Erlendsson, Andrés M; Doukas, Apostolos G; Farinelli, William A

    2016-01-01

    BACKGROUND AND OBJECTIVE: Ablative fractional laser (AFXL) is rapidly evolving as one of the foremost techniques for cutaneous drug delivery. While AFXL has effectively improved topical drug-induced clearance rates of actinic keratosis, treatment of basal cell carcinomas (BCCs) has been challenging......, potentially due to insufficient drug uptake in deeper skin layers. This study sought to investigate a standardized method to actively fill laser-generated channels by altering pressure, vacuum, and pressure (PVP), enquiring its effect on (i) relative filling of individual laser channels; (ii) cutaneous...

  19. Transporter-Guided Delivery of Nanoparticles to Improve Drug Permeation across Cellular Barriers and Drug Exposure to Selective Cell Types

    Directory of Open Access Journals (Sweden)

    Longfa Kou

    2018-01-01

    Full Text Available Targeted nano-drug delivery systems conjugated with specific ligands to target selective cell-surface receptors or transporters could enhance the efficacy of drug delivery and therapy. Transporters are expressed differentially on the cell-surface of different cell types, and also specific transporters are expressed at higher than normal levels in selective cell types under pathological conditions. They also play a key role in intestinal absorption, delivery via non-oral routes (e.g., pulmonary route and nasal route, and transfer across biological barriers (e.g., blood–brain barrier and blood–retinal barrier. As such, the cell-surface transporters represent ideal targets for nano-drug delivery systems to facilitate drug delivery to selective cell types under normal or pathological conditions and also to avoid off-target adverse side effects of the drugs. There is increasing evidence in recent years supporting the utility of cell-surface transporters in the field of nano-drug delivery to increase oral bioavailability, to improve transfer across the blood–brain barrier, and to enhance delivery of therapeutics in a cell-type selective manner in disease states. Here we provide a comprehensive review of recent advancements in this interesting and important area. We also highlight certain key aspects that need to be taken into account for optimal development of transporter-assisted nano-drug delivery systems.

  20. Oral transmucosal drug delivery for pediatric use.

    Science.gov (United States)

    Lam, Jenny K W; Xu, Yingying; Worsley, Alan; Wong, Ian C K

    2014-06-01

    The formulation of medicines for children remains a challenge. An ideal pediatric formulation must allow accurate dose administration and be in a dosage form that can be handled by the target age group. It is also important to consider the choices and the amount of excipients used in the formulation for this vulnerable age group. Although oral formulations are generally acceptable to most pediatric patients, they are not suitable for drugs with poor oral bioavailability or when a rapid clinical effect is required. In recent years, oral transmucosal delivery has emerged as an attractive route of administration for pediatric patients. With this route of administration, a drug is absorbed through the oral mucosa, therefore bypassing hepatic first pass metabolism and thus avoiding drug degradation or metabolism in the gastrointestinal tract. The high blood flow and relatively high permeability of the oral mucosa allow a quick onset of action to be achieved. It is a simple and non-invasive route of drug administration. However, there are several barriers that need to be overcome in the development of oral transmucosal products. This article aims to provide a comprehensive review of the current development of oral transmucosal delivery specifically for the pediatric population in order to achieve systemic drug delivery. The anatomical and physiological properties of the oral mucosa of infants and young children are carefully examined. The different dosage forms and formulation strategies that are suitable for young patients are discussed. © 2013.

  1. Chitosan magnetic nanoparticles for drug delivery systems.

    Science.gov (United States)

    Assa, Farnaz; Jafarizadeh-Malmiri, Hoda; Ajamein, Hossein; Vaghari, Hamideh; Anarjan, Navideh; Ahmadi, Omid; Berenjian, Aydin

    2017-06-01

    The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.

  2. Multifunctional High Drug Loading Nanocarriers for Cancer Drug Delivery

    Science.gov (United States)

    Jin, Erlei

    2011-12-01

    Most anticancer drugs have poor water-solubility, rapid blood clearance, low tumor-selectivity and severe systemic toxicity to healthy tissues. Thus, polymeric nanocarriers have been widely explored for anticancer drugs to solve these problems. However, polymer nanocarriers developed to date still suffer drawbacks including low drug loading contents, premature drug release, slow cellular internalization, slow intracellular drug release and thereby low therapeutic efficiency in cancer thermotherapy. Accordingly, in this dissertation, functional nanocapsules and nanoparticles including high drug loading liposome-like nanocapsules, high drug loading phospholipid-mimic nanocapsules with fast intracellular drug release, high drug loading charge-reversal nanocapsules, TAT based long blood circulation nanoparticles and charge-reversal nuclear targeted nanoparticles are designed and synthesized. These functional carriers have advantages such as high drug loading contents without premature drug release, fast cellular internalization and intracellular drug release, nuclear targeted delivery and long blood circulation. As a result, all these drug carriers show much higher in vitro and in vivo anti-cancer activities.

  3. Amphiphilic block copolymers for drug delivery.

    Science.gov (United States)

    Adams, Monica L; Lavasanifar, Afsaneh; Kwon, Glen S

    2003-07-01

    Amphiphilic block copolymers (ABCs) have been used extensively in pharmaceutical applications ranging from sustained-release technologies to gene delivery. The utility of ABCs for delivery of therapeutic agents results from their unique chemical composition, which is characterized by a hydrophilic block that is chemically tethered to a hydrophobic block. In aqueous solution, polymeric micelles are formed via the association of ABCs into nanoscopic core/shell structures at or above the critical micelle concentration. Upon micellization, the hydrophobic core regions serve as reservoirs for hydrophobic drugs, which may be loaded by chemical, physical, or electrostatic means, depending on the specific functionalities of the core-forming block and the solubilizate. Although the Pluronics, composed of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide), are the most widely studied ABC system, copolymers containing poly(L-amino acid) and poly(ester) hydrophobic blocks have also shown great promise in delivery applications. Because each ABC has unique advantages with respect to drug delivery, it may be possible to choose appropriate block copolymers for specific purposes, such as prolonging circulation time, introduction of targeting moieties, and modification of the drug-release profile. ABCs have been used for numerous pharmaceutical applications including drug solubilization/stabilization, alteration of the pharmacokinetic profile of encapsulated substances, and suppression of multidrug resistance. The purpose of this minireview is to provide a concise, yet detailed, introduction to the use of ABCs and polymeric micelles as delivery agents as well as to highlight current and past work in this area. Copyright 2003 Wiley-Liss, Inc. and the American Pharmacists Association

  4. Pharmaceutical technology, biopharmaceutics and drug delivery.

    Science.gov (United States)

    Youn, Yu Seok; Lee, Beom-Jin

    2011-03-01

    The 40th annual international conference of the Korean Society of Pharmaceutical Sciences and Technology on Pharmaceutical Technology, Biopharmaceutics and Drug Delivery was held on 2-3 December 2010 in Jeju Special Self-Governing Providence, Korea, to celebrate its 40th anniversary. A comprehensive review of a wide spectrum of recent topics on pharmaceutical technology, biopharmaceutics and drug delivery was presented. Invited lectures and poster presentations over 2 days were divided into six parallel sessions covering areas such as biotechnology, biopharmaceutics, drug delivery, formulation/manufacture, regulatory science and frontier science. Among these, there were two sessions related to regulatory science and biopharmaceutics that were co-sponsored by the Korea Food and Drug Administration. In fact, this conference provided an opportunity for many investigators to discuss their research, collect new information and to promote the advancement of knowledge in each pharmaceutical area. This conference report summarizes the keynote podium presentations provided by many distinguished speakers, including Gordon L Amidon of the University of Michigan.

  5. Drug Delivery Nanoparticles in Skin Cancers

    Science.gov (United States)

    Dianzani, Chiara; Zara, Gian Paolo; Maina, Giovanni; Pettazzoni, Piergiorgio; Pizzimenti, Stefania; Rossi, Federica; Gigliotti, Casimiro Luca; Ciamporcero, Eric Stefano; Daga, Martina; Barrera, Giuseppina

    2014-01-01

    Nanotechnology involves the engineering of functional systems at nanoscale, thus being attractive for disciplines ranging from materials science to biomedicine. One of the most active research areas of the nanotechnology is nanomedicine, which applies nanotechnology to highly specific medical interventions for prevention, diagnosis, and treatment of diseases, including cancer disease. Over the past two decades, the rapid developments in nanotechnology have allowed the incorporation of multiple therapeutic, sensing, and targeting agents into nanoparticles, for detection, prevention, and treatment of cancer diseases. Nanoparticles offer many advantages as drug carrier systems since they can improve the solubility of poorly water-soluble drugs, modify pharmacokinetics, increase drug half-life by reducing immunogenicity, improve bioavailability, and diminish drug metabolism. They can also enable a tunable release of therapeutic compounds and the simultaneous delivery of two or more drugs for combination therapy. In this review, we discuss the recent advances in the use of different types of nanoparticles for systemic and topical drug delivery in the treatment of skin cancer. In particular, the progress in the treatment with nanocarriers of basal cell carcinoma, squamous cell carcinoma, and melanoma has been reported. PMID:25101298

  6. Drug Delivery Nanoparticles in Skin Cancers

    Directory of Open Access Journals (Sweden)

    Chiara Dianzani

    2014-01-01

    Full Text Available Nanotechnology involves the engineering of functional systems at nanoscale, thus being attractive for disciplines ranging from materials science to biomedicine. One of the most active research areas of the nanotechnology is nanomedicine, which applies nanotechnology to highly specific medical interventions for prevention, diagnosis, and treatment of diseases, including cancer disease. Over the past two decades, the rapid developments in nanotechnology have allowed the incorporation of multiple therapeutic, sensing, and targeting agents into nanoparticles, for detection, prevention, and treatment of cancer diseases. Nanoparticles offer many advantages as drug carrier systems since they can improve the solubility of poorly water-soluble drugs, modify pharmacokinetics, increase drug half-life by reducing immunogenicity, improve bioavailability, and diminish drug metabolism. They can also enable a tunable release of therapeutic compounds and the simultaneous delivery of two or more drugs for combination therapy. In this review, we discuss the recent advances in the use of different types of nanoparticles for systemic and topical drug delivery in the treatment of skin cancer. In particular, the progress in the treatment with nanocarriers of basal cell carcinoma, squamous cell carcinoma, and melanoma has been reported.

  7. DNA Nanotechnology-Enabled Drug Delivery Systems.

    Science.gov (United States)

    Hu, Qinqin; Li, Hua; Wang, Lihua; Gu, Hongzhou; Fan, Chunhai

    2018-02-21

    Over the past decade, we have seen rapid advances in applying nanotechnology in biomedical areas including bioimaging, biodetection, and drug delivery. As an emerging field, DNA nanotechnology offers simple yet powerful design techniques for self-assembly of nanostructures with unique advantages and high potential in enhancing drug targeting and reducing drug toxicity. Various sequence programming and optimization approaches have been developed to design DNA nanostructures with precisely engineered, controllable size, shape, surface chemistry, and function. Potent anticancer drug molecules, including Doxorubicin and CpG oligonucleotides, have been successfully loaded on DNA nanostructures to increase their cell uptake efficiency. These advances have implicated the bright future of DNA nanotechnology-enabled nanomedicine. In this review, we begin with the origin of DNA nanotechnology, followed by summarizing state-of-the-art strategies for the construction of DNA nanostructures and drug payloads delivered by DNA nanovehicles. Further, we discuss the cellular fates of DNA nanostructures as well as challenges and opportunities for DNA nanostructure-based drug delivery.

  8. Polymeric multilayer capsules in drug delivery.

    Science.gov (United States)

    De Cock, Liesbeth J; De Koker, Stefaan; De Geest, Bruno G; Grooten, Johan; Vervaet, Chris; Remon, Jean Paul; Sukhorukov, Gleb B; Antipina, Maria N

    2010-09-17

    Recent advances in medicine and biotechnology have prompted the need to develop nanoengineered delivery systems that can encapsulate a wide variety of novel therapeutics such as proteins, chemotherapeutics, and nucleic acids. Moreover, these delivery systems should be "intelligent", such that they can deliver their payload at a well-defined time, place, or after a specific stimulus. Polymeric multilayer capsules, made by layer-by-layer (LbL) coating of a sacrificial template followed by dissolution of the template, allow the design of microcapsules in aqueous conditions by using simple building blocks and assembly procedures, and provide a previously unmet control over the functionality of the microcapsules. Polymeric multilayer capsules have recently received increased interest from the life science community, and many interesting systems have appeared in the literature with biodegradable components and biospecific functionalities. In this Review we give an overview of the recent breakthroughs in their application for drug delivery.

  9. Polysaccharide-Based Micelles for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2013-05-01

    Full Text Available Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date.

  10. Injected nanocrystals for targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2016-03-01

    Full Text Available Nanocrystals are pure drug crystals with sizes in the nanometer range. Due to the advantages of high drug loading, platform stability, and ease of scaling-up, nanocrystals have been widely used to deliver poorly water-soluble drugs. Nanocrystals in the blood stream can be recognized and sequestered as exogenous materials by mononuclear phagocytic system (MPS cells, leading to passive accumulation in MPS-rich organs, such as liver, spleen and lung. Particle size, morphology and surface modification affect the biodistribution of nanocrystals. Ligand conjugation and stimuli-responsive polymers can also be used to target nanocrystals to specific pathogenic sites. In this review, the progress on injected nanocrystals for targeted drug delivery is discussed following a brief introduction to nanocrystal preparation methods, i.e., top-down and bottom-up technologies.

  11. Microneedle Coating Techniques for Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Rita Haj-Ahmad

    2015-11-01

    Full Text Available Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates.

  12. Targeted Delivery of Protein Drugs by Nanocarriers

    Directory of Open Access Journals (Sweden)

    Antonella Battisti

    2010-03-01

    Full Text Available Recent advances in biotechnology demonstrate that peptides and proteins are the basis of a new generation of drugs. However, the transportation of protein drugs in the body is limited by their high molecular weight, which prevents the crossing of tissue barriers, and by their short lifetime due to immuno response and enzymatic degradation. Moreover, the ability to selectively deliver drugs to target organs, tissues or cells is a major challenge in the treatment of several human diseases, including cancer. Indeed, targeted delivery can be much more efficient than systemic application, while improving bioavailability and limiting undesirable side effects. This review describes how the use of targeted nanocarriers such as nanoparticles and liposomes can improve the pharmacokinetic properties of protein drugs, thus increasing their safety and maximizing the therapeutic effect.

  13. Pulmonary drug delivery system: newer patents.

    Science.gov (United States)

    Kaur, Shahid Sukhbir

    2017-09-01

    Inhalational route for drug delivery and desired effects has been known since centuries. This lung-targeted therapy has benefited asthmatics and those with chronic respiratory problems. The technique has evolved greatly from crude pots and pipes to modern sophisticated drug-dispensing devices. This mode is effective, rapid and safe. Its outcome, however, is majorly determined by drug formulation, device structure and patient's coordinating skill. In spite of great advances in this field, more efforts are required to meet the unmet needs. This noninvasive mode is being increasingly studied for transfer of drugs for systemic action with promising results. The present article is an attempt to capture the recent development and progress in this field and review relevant newer patents.

  14. Image-guided drug delivery : Preclinical applications and clinical translation

    NARCIS (Netherlands)

    Ojha, Tarun; Rizzo, Larissa; Storm, G; Kiessling, Fabian; Lammers, Twan

    2015-01-01

    Image-guided drug delivery refers to the combination of drug targeting and imaging. Preclinically, image-guided drug delivery can be used for several different purposes, including for monitoring biodistribution, target site accumulation, off-target localization, drug release and drug efficacy.

  15. Image-guided drug delivery: preclinical applications and clinical translation

    NARCIS (Netherlands)

    Ojha, Tarun; Rizzo, Larissa; Storm, Gerrit; Kiessling, Fabian; Lammers, Twan Gerardus Gertudis Maria

    2015-01-01

    Image-guided drug delivery refers to the combination of drug targeting and imaging. Preclinically, image-guided drug delivery can be used for several different purposes, including for monitoring biodistribution, target site accumulation, off-target localization, drug release and drug efficacy.

  16. Advanced drug delivery approaches against periodontitis.

    Science.gov (United States)

    Joshi, Deeksha; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Periodontitis is an inflammatory disease of gums involving the degeneration of periodontal ligaments, creation of periodontal pocket and resorption of alveolar bone, resulting in the disruption of the support structure of teeth. According to WHO, 10-15% of the global population suffers from severe periodontitis. The disease results from the growth of a diverse microflora (especially anaerobes) in the pockets and release of toxins, enzymes and stimulation of body's immune response. Various local or systemic approaches were used for an effective treatment of periodontitis. Currently, controlled local drug delivery approach is more favorable as compared to systemic approach because it mainly focuses on improving the therapeutic outcomes by achieving factors like site-specific delivery, low dose requirement, bypass of first-pass metabolism, reduction in gastrointestinal side effects and decrease in dosing frequency. Overall it provides a safe and effective mode of treatment, which enhances patient compliance. Complete eradication of the organisms from the sites was not achieved by using various surgical and mechanical treatments. So a number of polymer-based delivery systems like fibers, films, chips, strips, microparticles, nanoparticles and nanofibers made from a variety of natural and synthetic materials have been successfully tested to deliver a variety of drugs. These systems are biocompatible and biodegradable, completely fill the pockets, and have strong retention on the target site due to excellent mucoadhesion properties. The review summarizes various available and recently developing targeted delivery devices for the treatment of periodontitis.

  17. Advanced drug delivery systems: Nanotechnology of health design A review

    Directory of Open Access Journals (Sweden)

    Javad Safari

    2014-04-01

    Full Text Available Nanotechnology has finally and firmly entered the realm of drug delivery. Performances of intelligent drug delivery systems are continuously improved with the purpose to maximize therapeutic activity and to minimize undesirable side-effects. This review describes the advanced drug delivery systems based on micelles, polymeric nanoparticles, and dendrimers. Polymeric carbon nanotubes and many others demonstrate a broad variety of useful properties. This review emphasizes the main requirements for developing new nanotech-nology-based drug delivery systems.

  18. Biomimetics in drug delivery systems: A critical review.

    Science.gov (United States)

    Sheikhpour, Mojgan; Barani, Leila; Kasaeian, Alibakhsh

    2017-05-10

    Today, the advanced drug delivery systems have been focused on targeted drug delivery fields. The novel drug delivery is involved with the improvement of the capacity of drug loading in drug carriers, cellular uptake of drug carriers, and the sustained release of drugs within target cells. In this review, six groups of therapeutic drug carriers including biomimetic hydrogels, biomimetic micelles, biomimetic liposomes, biomimetic dendrimers, biomimetic polymeric carriers and biomimetic nanostructures, are studied. The subject takes advantage of the biomimetic methods of productions or the biomimetic techniques for the surface modifications, similar to what accrues in natural cells. Moreover, the effects of these biomimetic approaches for promoting the drug efficiency in targeted drug delivery are visible. The study demonstrates that the fabrication of biomimetic nanocomposite drug carriers could noticeably promote the efficiency of drugs in targeted drug delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. FAST DISSOLVING DRUG DELIVERY SYSTEM - A REVIEW

    OpenAIRE

    Sharma Ritika; Rajput Meenu; Prakash Pawan; Sharma Saurabh

    2011-01-01

    Tablet is the most popular among all dosage forms existing today because of its convenience of self administration, compactness and easy manufacturing; however in many cases immediate onset of action is required than conventional therapy. To overcome these drawbacks, immediate release pharmaceutical dosage form has emerged as alternative oral dosage forms. There are novel types of dosage forms that act very quickly after administration. Drug delivery systems are becoming sophisticated day by ...

  20. Silk Electrogel Based Gastroretentive Drug Delivery System

    Science.gov (United States)

    Wang, Qianrui

    Gastric cancer has become a global pandemic and there is imperative to develop efficient therapies. Oral dosing strategy is the preferred route to deliver drugs for treating the disease. Recent studies suggested silk electro hydrogel, which is pH sensitive and reversible, has potential as a vehicle to deliver the drug in the stomach environment. The aim of this study is to establish in vitro electrogelation e-gel based silk gel as a gastroretentive drug delivery system. We successfully extended the duration of silk e-gel in artificial gastric juice by mixing silk solution with glycerol at different ratios before the electrogelation. Structural analysis indicated the extended duration was due to the change of beta sheet content. The glycerol mixed silk e-gel had good doxorubicin loading capability and could release doxorubicin in a sustained-release profile. Doxorubicin loaded silk e-gels were applied to human gastric cancer cells. Significant cell viability decrease was observed. We believe that with further characterization as well as functional analysis, the silk e-gel system has the potential to become an effective vehicle for gastric drug delivery applications.

  1. Transdermal microneedles for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Teo, Ai Ling [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore); Shearwood, Christopher [School of Mechanical and Aerospace Engineering, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ng, Kian Chye [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore); Lu Jia [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore); Moochhala, Shabbir [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore)]. E-mail: mshabbir@dso.org.sg

    2006-07-25

    Transdermal drug delivery (TDD) has many advantages, the main one being the ability to maintain the prolonged release of drugs to attain optimal blood concentrations. Unfortunately, nature has provided a very effective protective barrier, the stratum corneum (sc), which limits TDD to certain types of drugs with specific properties. In order to enhance TDD, the idea of using microneedles to painlessly penetrate the sc barrier has previously been proposed. In this paper, we will review the different microneedles that are currently being developed as well as our own efforts in this area. Based on our experiences, we will offer our view on the key parameters for effective transdermal microneedle design as well as future directions in this area.

  2. Transdermal microneedles for drug delivery applications

    International Nuclear Information System (INIS)

    Teo, Ai Ling; Shearwood, Christopher; Ng, Kian Chye; Lu Jia; Moochhala, Shabbir

    2006-01-01

    Transdermal drug delivery (TDD) has many advantages, the main one being the ability to maintain the prolonged release of drugs to attain optimal blood concentrations. Unfortunately, nature has provided a very effective protective barrier, the stratum corneum (sc), which limits TDD to certain types of drugs with specific properties. In order to enhance TDD, the idea of using microneedles to painlessly penetrate the sc barrier has previously been proposed. In this paper, we will review the different microneedles that are currently being developed as well as our own efforts in this area. Based on our experiences, we will offer our view on the key parameters for effective transdermal microneedle design as well as future directions in this area

  3. Macrophage specific drug delivery in experimental leishmaniasis.

    Science.gov (United States)

    Basu, Mukul Kumar; Lala, Sanchaita

    2004-09-01

    Macrophage-specific delivery systems are the subject of much interest nowadays, because of the fact that macrophages act as host cells for many parasites and bacteria, which give rise to outbreak of so many deadly diseases(eg. leishmaniasis, tuberculosis etc.) in humans. To combat these deadly diseases initially macrophage specific liposomal delivery system were thought of and tested in vivo against experimental leishmaniasis in hamsters using a series of indigenous or synthetic antileishmanial compounds and the results were critically discussed. In vitro testing was also done against macrophages infected with Leishmania donovani, the causative agent for visceral leishmaniasis. The common problem of liposome therapy being their larger size, stability and storage, non-ionic surfactant vesicles, niosomes were prepared, for their different drug distribution and release characteristics compared to liposomes. When tested in vivo, the retention capacity of niosomes was found to be higher than that of liposomes due to the absence of lipid molecules and their smaller size. Thus the therapeutic efficacy of certain antileishmanial compounds was found to be better than that in the liposomal form. The niosomes, being cheaper, less toxic, biodegradable and non-immunogenic, were considered for sometime as suitable alternatives to liposomes as drug carriers. Besides the advent of other classical drugs carriers(e.g. neoglycoproteins), the biggest challenge came from polymeric delivery vehicles, specially the polymeric nanoparticles which were made of cost effective biodegradable polymers and different natural polymers. Because of very small size and highly stable nature, use of nanoparticles as effective drug carriers has been explored in experimental leishmaniasis using a series of antileishmanial compounds, both of indigenous and synthetic origin. The feasibility of application in vivo, when tested for biological as well as for other physicochemical parameters, the polymeric

  4. Inhalation drug delivery devices: technology update

    Directory of Open Access Journals (Sweden)

    Ibrahim M

    2015-02-01

    Full Text Available Mariam Ibrahim, Rahul Verma, Lucila Garcia-ContrerasDepartment of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USAAbstract: The pulmonary route of administration has proven to be effective in local and systemic delivery of miscellaneous drugs and biopharmaceuticals to treat pulmonary and non-pulmonary diseases. A successful pulmonary administration requires a harmonic interaction between the drug formulation, the inhaler device, and the patient. However, the biggest single problem that accounts for the lack of desired effect or adverse outcomes is the incorrect use of the device due to lack of training in how to use the device or how to coordinate actuation and aerosol inhalation. This review summarizes the structural and mechanical features of aerosol delivery devices with respect to mechanisms of aerosol generation, their use with different formulations, and their advantages and limitations. A technological update of the current state-of-the-art designs proposed to overcome current challenges of existing devices is also provided.Keywords: pulmonary delivery, asthma, nebulizers, metered dose inhaler, dry powder inhaler

  5. Protein-Based Nanomedicine Platforms for Drug Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Ma Ham, Aihui; Tang, Zhiwen; Wu, Hong; Wang, Jun; Lin, Yuehe

    2009-08-03

    Drug delivery systems have been developed for many years, however some limitations still hurdle the pace of going to clinical phase, for example, poor biodistribution, drug molecule cytotoxicity, tissue damage, quick clearance from the circulation system, solubility and stability of drug molecules. To overcome the limitations of drug delivery, biomaterials have to be developed and applied to drug delivery to protect the drug molecules and to enhance the drug’s efficacy. Protein-based nanomedicine platforms for drug delivery are platforms comprised of naturally self-assembled protein subunits of the same protein or a combination of proteins making up a complete system. They are ideal for drug delivery platforms due to their biocompatibility and biodegradability coupled with low toxicity. A variety of proteins have been used and characterized for drug delivery systems including the ferritin/apoferritin protein cage, plant derived viral capsids, the small Heat shock protein (sHsp) cage, albumin, soy and whey protein, collagen, and gelatin. There are many different types and shapes that have been prepared to deliver drug molecules using protein-based platforms including the various protein cages, microspheres, nanoparticles, hydrogels, films, minirods and minipellets. There are over 30 therapeutic compounds that have been investigated with protein-based drug delivery platforms for the potential treatment of various cancers, infectious diseases, chronic diseases, autoimmune diseases. In protein-based drug delivery platforms, protein cage is the most newly developed biomaterials for drug delivery and therapeutic applications. Their uniform sizes, multifunctions, and biodegradability push them to the frontier for drug delivery. In this review, the recent strategic development of drug delivery has been discussed with a special emphasis upon the polymer based, especially protein-based nanomedicine platforms for drug delivery. The advantages and disadvantages are also

  6. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    Directory of Open Access Journals (Sweden)

    Priya Bawa

    2011-12-01

    Full Text Available Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments.

  7. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery

    Science.gov (United States)

    Islam, Nazrul; Ferro, Vito

    2016-07-01

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made the pulmonary route of administration an exciting area of drug delivery research. Chitosan, a natural biodegradable and biocompatible polysaccharide has received enormous attention as a carrier for drug delivery. Recently, nanoparticles of chitosan (CS) and its synthetic derivatives have been investigated for the encapsulation and delivery of many drugs with improved targeting and controlled release. Herein, recent advances in the preparation and use of micro-/nanoparticles of chitosan and its derivatives for pulmonary delivery of various therapeutic agents (drugs, genes, vaccines) are reviewed. Although chitosan has wide applications in terms of formulations and routes of drug delivery, this review is focused on pulmonary delivery of drug-encapsulated nanoparticles of chitosan and its derivatives. In addition, the controversial toxicological effects of chitosan nanoparticles for lung delivery will also be discussed.

  8. Drug accumulation by means of noninvasive magnetic drug delivery system

    International Nuclear Information System (INIS)

    Chuzawa, M.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2011-01-01

    The medication is one of the most general treatment methods, but drugs diffuse in the normal tissues other than the target part by the blood circulation. Therefore, side effect in the medication, particularly for a drug with strong effect such as anti-cancer drug, are a serious issue. Drug Delivery System (DDS) which accumulates the drug locally in the human body is one of the techniques to solve the side-effects. Magnetic Drug Delivery System (MDDS) is one of the active DDSs, which uses the magnetic force. The objective of this study is to accumulate the ferromagnetic drugs noninvasively in the deep part of the body by using MDDS. It is necessary to generate high magnetic field and magnetic gradient at the target part to reduce the side-effects to the tissues with no diseases. The biomimetic model was composed, which consists of multiple model organs connected with diverged blood vessel model. The arrangement of magnetic field was examined to accumulate ferromagnetic drug particles in the target model organ by using a superconducting bulk magnet which can generate high magnetic fields. The arrangement of magnet was designed to generate high and stable magnetic field at the target model organ. The accumulation experiment of ferromagnetic particles has been conducted. In this study, rotating HTS bulk magnet around the axis of blood vessels by centering on the target part was suggested, and the model experiment for magnet rotation was conducted. As a result, the accumulation of the ferromagnetic particles to the target model organ in the deep part was confirmed.

  9. Formulation of Poloxamers for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Andrew M. Bodratti

    2018-01-01

    Full Text Available Poloxamers, also known as Pluronics®, are block copolymers of poly(ethylene oxide (PEO and poly(propylene oxide (PPO, which have an amphiphilic character and useful association and adsorption properties emanating from this. Poloxamers find use in many applications that require solubilization or stabilization of compounds and also have notable physiological properties, including low toxicity. Accordingly, poloxamers serve well as excipients for pharmaceuticals. Current challenges facing nanomedicine revolve around the transport of typically water-insoluble drugs throughout the body, followed by targeted delivery. Judicious design of drug delivery systems leads to improved bioavailability, patient compliance and therapeutic outcomes. The rich phase behavior (micelles, hydrogels, lyotropic liquid crystals, etc. of poloxamers makes them amenable to multiple types of processing and various product forms. In this review, we first present the general solution behavior of poloxamers, focusing on their self-assembly properties. This is followed by a discussion of how the self-assembly properties of poloxamers can be leveraged to encapsulate drugs using an array of processing techniques including direct solubilization, solvent displacement methods, emulsification and preparation of kinetically-frozen nanoparticles. Finally, we conclude with a summary and perspective.

  10. Drug delivery systems for antihypertensive agents.

    Science.gov (United States)

    Elliott; Prisant

    1997-12-01

    During the late 1980s and early 1990s, much research effort in the pharmaceutical industry was focused on the development of novel systems for sustained delivery of effective, but intrinsically short-acting, antihypertensive agents. This advance was motivated by a desire both to improve trough/peak ratios (as suggested by the US Food and Drug Administration [FDA]) and also to protect the proprietary patient life for older agents that would otherwise be susceptible to generic substitution. Additional benefits of such sustained-release systems include: improved side-effect profiles, shorter time from development to regulatory approval (because of the already established safety record of the immediate-release compound), improved compliance with medication, and reduced administrative cost. The latter two are presumably related to the fact that patients generally have to use fewer doses of sustained-release than immediate-release preparations. Disadvantages include: generally higher per-dose cost (which includes a licensing fee for the patented delivery system), altered efficacy and potential problems in patients with abnormal absorptive surfaces (gut or skin), and altgered first-pass metabolism rates (compared with immediate-release preparations). Some of the novel drug delivery systems that have already received FDA approval include: alginate matrix, Geomatrix, several formulations of pellet-based systems, several transdermal systems, and the Gastrointestinal therapeutic system (GITS), which releases the pharmacologically active agent at a predictable rate. A novel variant of this last system has been developed, based on the idea that the peak serum concentration of antihypertensive medication will occur just before or at the time of the greatest change in blood pressure (ie, the few hours around awakening). Data are now being gathered to convince authorities that this theoretically advantageous delivery system will be as effective in reducing rates of cardiovascular

  11. Brain delivery of insulin boosted by intranasal coadministration with cell-penetrating peptides.

    Science.gov (United States)

    Kamei, Noriyasu; Takeda-Morishita, Mariko

    2015-01-10

    Intranasal administration is considered as an alternative route to enable effective drug delivery to the central nervous system (CNS) by bypassing the blood-brain barrier. Several reports have proved that macromolecules can be transferred directly from the nasal cavity to the brain. However, strategies to enhance the delivery of macromolecules from the nasal cavity to CNS are needed because of their low delivery efficiencies via this route in general. We hypothesized that the delivery of biopharmaceuticals to the brain parenchyma can be facilitated by increasing the uptake of drugs by the nasal epithelium including supporting and neuronal cells to maximize the potentiality of the intranasal pathway. To test this hypothesis, the CNS-related model peptide insulin was intranasally coadministered with the cell-penetrating peptide (CPP) penetratin to mice. As a result, insulin coadministered with l- or d-penetratin reached the distal regions of the brain from the nasal cavity, including the cerebral cortex, cerebellum, and brain stem. In particular, d-penetratin could intranasally deliver insulin to the brain with a reduced risk of systemic insulin exposure. Thus, the results obtained in this study suggested that CPPs are potential tools for the brain delivery of peptide- and protein-based pharmaceuticals via intranasal administration. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Applications of polymeric nanocapsules in field of drug delivery systems.

    Science.gov (United States)

    Rong, Xinyu; Xie, Yinghua; Hao, Xiaomei; Chen, Tao; Wang, Yingming; Liu, Yuanyuan

    2011-09-01

    Drug-loaded polymeric nanocapsules have exhibited potential applications in the field of drug delivery systems in recent years. This article entails the biodegradable polymers generally used for preparing nanocapsules, which include both natural polymers and synthetic polymers. Furthermore, the article presents a general review of the different preparation methods: nanoprecipitation method, emulsion-diffusion method, double emulsification method, emulsion-coacervation method, layer-by-layer assembly method. In addition, the analysis methods of nanocapsule characteristics, such as mean size, morphology, surface characteristics, shell thickness, encapsulation efficiency, active substance release, dispersion stability, are mentioned. Also, the applications of nanocapsules as carriers for use in drug delivery systems are reviewed, which primarily involve targeting drug delivery, controlled/sustained release drug delivery systems, transdermal drug delivery systems and improving stability and bioavailability of drugs. Nanocapsules, prepared with different biodegradable polymers, have received more and more attention and have been regarded as one of the most promising drug delivery systems.

  13. Potential and problems in ultrasound-responsive drug delivery systems

    Directory of Open Access Journals (Sweden)

    Zhao YZ

    2013-04-01

    Full Text Available Ying-Zheng Zhao,1,3 Li-Na Du,2 Cui-Tao Lu,1 Yi-Guang Jin,2 Shu-Ping Ge3 1Wenzhou Medical College, Wenzhou City, Zhejiang Province, 2Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China; 3St Christopher’s Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA Abstract: Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future. Keywords: ultrasound, targeted therapy, clinical application

  14. Drug delivery from the oral cavity: a focus on mucoadhesive buccal drug delivery systems.

    Science.gov (United States)

    Shinkar, Dattatraya Manohar; Dhake, Avinash Sridhar; Setty, Chitral Mallikarjuna

    2012-01-01

    Since the early 1980s the concept of mucoadhesion has gained considerable interest in pharmaceutical technology. The various advantages associated with these systems made buccal drug delivery as a novel route of drug administration. It prolongs the residence time of the dosage form at the site of application. These systems remain in close contact with the absorption tissue, the mucous membrane, and thus contribute to improved and/or better therapeutic performance of the drug and of both local and systemic effects. This review highlights the anatomy and structure of oral mucosa, mechanism and theories of mucoadhesion, factors affecting mucoadhesion, characteristics and properties of desired mucoadhesive polymers, various types of dosage forms, and general considerations in design of mucoadhesive buccal dosage forms, permeation enhancers, and evaluation methods. Over the past few decades the mucoadhesive buccal drug delivery system has received a great deal of attention to develop mucoadhesive dosage forms to enable the prolonged retention at the site of action, providing a controlled release of drug for improved therapeutic outcome. Mucoadhesive drug delivery gives facility to include a permeation enhancer/enzyme inhibitor or pHmodifier in the formulation and versatility in designing as multidirectional or unidirectional release systems for local and systemic action. Local delivery to tissues of the oral cavity has a number of applications, including treatment of local conditions such as periodontal disease, bacterial and fungal infections, and aphthous stomatitis and vesiculo bullous diseases. For the treatment of chronic diseases, the mucoadhesive buccal drug delivery system allows easily accessibility and is generally well-accepted for administeringdrugs by systemic action.

  15. Recent advances of controlled drug delivery using microfluidic platforms.

    Science.gov (United States)

    Sanjay, Sharma T; Zhou, Wan; Dou, Maowei; Tavakoli, Hamed; Ma, Lei; Xu, Feng; Li, XiuJun

    2017-09-15

    Conventional systematically-administered drugs distribute evenly throughout the body, get degraded and excreted rapidly while crossing many biological barriers, leaving minimum amounts of the drugs at pathological sites. Controlled drug delivery aims to deliver drugs to the target sites at desired rates and time, thus enhancing the drug efficacy, pharmacokinetics, and bioavailability while maintaining minimal side effects. Due to a number of unique advantages of the recent microfluidic lab-on-a-chip technology, microfluidic lab-on-a-chip has provided unprecedented opportunities for controlled drug delivery. Drugs can be efficiently delivered to the target sites at desired rates in a well-controlled manner by microfluidic platforms via integration, implantation, localization, automation, and precise control of various microdevice parameters. These features accordingly make reproducible, on-demand, and tunable drug delivery become feasible. On-demand self-tuning dynamic drug delivery systems have shown great potential for personalized drug delivery. This review presents an overview of recent advances in controlled drug delivery using microfluidic platforms. The review first briefly introduces microfabrication techniques of microfluidic platforms, followed by detailed descriptions of numerous microfluidic drug delivery systems that have significantly advanced the field of controlled drug delivery. Those microfluidic systems can be separated into four major categories, namely drug carrier-free micro-reservoir-based drug delivery systems, highly integrated carrier-free microfluidic lab-on-a-chip systems, drug carrier-integrated microfluidic systems, and microneedles. Microneedles can be further categorized into five different types, i.e. solid, porous, hollow, coated, and biodegradable microneedles, for controlled transdermal drug delivery. At the end, we discuss current limitations and future prospects of microfluidic platforms for controlled drug delivery. Copyright

  16. Bioengineered microparticles for controlled drug delivery to the lungs

    OpenAIRE

    Sivadas, Neeraj

    2010-01-01

    Traditional formulations for pulmonary drug delivery mainly focused on two approaches: (i) Dissolving or suspending the drug in a solvent or propellant to produce liquid aerosols or (ii) Blending drug particulates with dry carrier particles typically composed of sugars. Although effective for localised delivery of small drug molecules, these methods did not meet the complex formulation and delivery challenges posed by the newer biotechnology-derived medicines. One of the many avenues being ex...

  17. Developing a Dissociative Nanocontainer for Peptide Drug Delivery

    Directory of Open Access Journals (Sweden)

    Patrick Kelly

    2015-10-01

    Full Text Available The potency, selectivity, and decreased side effects of bioactive peptides have propelled these agents to the forefront of pharmacological research. Peptides are especially promising for the treatment of neurological disorders and pain. However, delivery of peptide therapeutics often requires invasive techniques, which is a major obstacle to their widespread application. We have developed a tailored peptide drug delivery system in which the viral capsid of P22 bacteriophage is modified to serve as a tunable nanocontainer for the packaging and controlled release of bioactive peptides. Recent efforts have demonstrated that P22 nanocontainers can effectively encapsulate analgesic peptides and translocate them across blood-brain-barrier (BBB models. However, release of encapsulated peptides at their target site remains a challenge. Here a Ring Opening Metathesis Polymerization (ROMP reaction is applied to trigger P22 nanocontainer disassembly under physiological conditions. Specifically, the ROMP substrate norbornene (5-Norbornene-2-carboxylic acid is conjugated to the exterior of a loaded P22 nanocontainer and Grubbs II Catalyst is used to trigger the polymerization reaction leading to nanocontainer disassembly. Our results demonstrate initial attempts to characterize the ROMP-triggered release of cargo peptides from P22 nanocontainers. This work provides proof-of-concept for the construction of a triggerable peptide drug delivery system using viral nanocontainers.

  18. Polymeric micelles for acyclovir drug delivery.

    Science.gov (United States)

    Sawdon, Alicia J; Peng, Ching-An

    2014-10-01

    Polymeric prodrug micelles for delivery of acyclovir (ACV) were synthesized. First, ACV was used directly to initiate ring-opening polymerization of ɛ-caprolactone to form ACV-polycaprolactone (ACV-PCL). Through conjugation of hydrophobic ACV-PCL with hydrophilic methoxy poly(ethylene glycol) (MPEG) or chitosan, polymeric micelles for drug delivery were formed. (1)H NMR, FTIR, and gel permeation chromatography were employed to show successful conjugation of MPEG or chitosan to hydrophobic ACV-PCL. Through dynamic light scattering, zeta potential analysis, transmission electron microscopy, and critical micelle concentration (CMC), the synthesized ACV-tagged polymeric micelles were characterized. It was found that the average size of the polymeric micelles was under 200nm and the CMCs of ACV-PCL-MPEG and ACV-PCL-chitosan were 2.0mgL(-1) and 6.6mgL(-1), respectively. The drug release kinetics of ACV was investigated and cytotoxicity assay demonstrates that ACV-tagged polymeric micelles were non-toxic. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Challenges in modelling nanoparticles for drug delivery

    International Nuclear Information System (INIS)

    Barnard, Amanda S

    2016-01-01

    Although there have been significant advances in the fields of theoretical condensed matter and computational physics, when confronted with the complexity and diversity of nanoparticles available in conventional laboratories a number of modeling challenges remain. These challenges are generally shared among application domains, but the impacts of the limitations and approximations we make to overcome them (or circumvent them) can be more significant one area than another. In the case of nanoparticles for drug delivery applications some immediate challenges include the incompatibility of length-scales, our ability to model weak interactions and solvation, the complexity of the thermochemical environment surrounding the nanoparticles, and the role of polydispersivity in determining properties and performance. Some of these challenges can be met with existing technologies, others with emerging technologies including the data-driven sciences; some others require new methods to be developed. In this article we will briefly review some simple methods and techniques that can be applied to these (and other) challenges, and demonstrate some results using nanodiamond-based drug delivery platforms as an exemplar. (topical review)

  20. Nanodiamond and its application to drug delivery

    Directory of Open Access Journals (Sweden)

    Eiji Osawa

    2012-08-01

    Full Text Available Quasi-spherical diamond crystals having an average diameter of 3.7±0.6 nm are attracting much attention as an ideal material in carbon nanotechnology. In contrast to the other popular nanocarbons including fullerenes, carbon nanotubes and graphenes, our single-nanodiamond can be produced in uniform shape/size on industrial scale. Thus, the most serious problem in nanocarbon industry that persisted in the past 25 years, namely the technical failure to produce highly crystalline nanocarbons in narrow shape/size range does not exist in our diamond from the beginning. Among potential applications of the single-nanodiamond under development, this review concentrates on its highly promising role as a drug carrier, especially for therapeutic-resistant cancer. An interesting possibility of intercalation is proposed as the mechanism of drug transport through blood, which takes into accounts of the spontaneous formation of nanographene layer on the [111] facets, which is then extensively oxidized during oxidative soot removal process to give nanographene oxide partial surface, capable of intercalating drug molecules to prevent them from leaking and causing undesirable side effects during transportation to target malignant cells. A perspective of quantifying the drug delivery process by anticipating orders of magnitude in the number of administered detonation nanodiamond (DND particles is suggested.

  1. Avanafil Liposomes as Transdermal Drug Delivery for Erectile ...

    African Journals Online (AJOL)

    Conclusion: The developed avanafil liposomes represent a promising transdermal drug delivery system for the treatment of erectile dysfunction. ... skin, in recent years, transdermal drug delivery has been used to overcome the problems ... Drugs Technology Co., Ltd. [Hangzhou, China]. The egg phosphatidylcholine (PC), ...

  2. Fractional CO(2) laser-assisted drug delivery

    DEFF Research Database (Denmark)

    Haedersdal, Merete; Sakamoto, Fernanda H; Farinelli, William A

    2010-01-01

    Ablative fractional resurfacing (AFR) creates vertical channels that might assist the delivery of topically applied drugs into skin. The purpose of this study was to evaluate drug delivery by CO(2) laser AFR using methyl 5-aminolevulinate (MAL), a porphyrin precursor, as a test drug....

  3. Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tingting Lin

    2016-07-01

    Full Text Available Brain delivery of macromolecular therapeutics (e.g., proteins remains an unsolved problem because of the formidable blood–brain barrier (BBB. Although a direct pathway of nose-to-brain transfer provides an answer to circumventing the BBB and has already been intensively investigated for brain delivery of small drugs, new challenges arise for intranasal delivery of proteins because of their larger size and hydrophilicity. In order to overcome the barriers and take advantage of available pathways (e.g., epithelial tight junctions, uptake by olfactory neurons, transport into brain tissues, and intra-brain diffusion, a low molecular weight protamine (LMWP cell-penetrating peptide was utilized to facilitate nose-to-brain transport. Cell-penetrating peptides (CPP have been widely used to mediate macromolecular delivery through many kinds of biobarriers. Our results show that conjugates of LMWP–proteins are able to effectively penetrate into the brain after intranasal administration. The CPP-based intranasal method highlights a promising solution for protein therapy of brain diseases.

  4. Engineering bioceramic microstructure for customized drug delivery

    Science.gov (United States)

    Pacheco Gomez, Hernando Jose

    One of the most efficient approaches to treat cancer and infection is to use biomaterials as a drug delivery system (DDS). The goal is for the material to provide a sustained release of therapeutic drug dose locally to target the ill tissue without affecting other organs. Silica Calcium Phosphate nano composite (SCPC) is a drug delivery platform that successfully demonstrated the ability to bind and release several therapeutics including antibiotics, anticancer drugs, and growth factors. The aim of the present work is to analyze the role of SCPC microstructure on drug binding and release kinetics. The main crystalline phases of SCPC are alpha-cristobalite (SiO2, Cris) and beta-rhenanite (NaCaPO4, Rhe); therefore, these two phases were prepared and characterized separately. Structural and compositional features of Cris, Rhe and SCPC bioceramics demonstrated a significant influence on the loading capacity and release kinetics profile of Vancomycin (Vanc) and Cisplatin (Cis). Fourier Transform Infrared (FTIR) spectroscopy analyses demonstrated that the P-O functional group in Rhe and SCPC has high affinity to the (C=O and N-H) of Vanc and (N-H and O-H) of Cis. By contrast, a weak chemical interaction between the Si-O functional group in Cris and SCPC and the two drugs was observed. Vanc loading per unit surface area increased in the order 8.00 microg Vanc/m2 for Rhe > 4.49 microg Vanc /m2 for SCPC>3.01 microg Vanc /m2 for Cris (pDrug release kinetics was dependent on the carrier as well as on the kind of drug. Different burst release and sustained release rates were measured for Vanc and Cis from the same carrier. The percentages of drug amount released from Cris, Rhe and SCPC during the burst stage (the first 2h) were: 50%, 50%, and 46% of Vanc; and 53.4%, 36.6%, and 30.6 % of Cis, respectively. Burst release was found to correlate with the pore size distribution and surface area. Furthermore, the average rates of sustained release in the period 8-216h from Cris, Rhe

  5. Albumin nanostructures as advanced drug delivery systems.

    Science.gov (United States)

    Karimi, Mahdi; Bahrami, Sajad; Ravari, Soodeh Baghaee; Zangabad, Parham Sahandi; Mirshekari, Hamed; Bozorgomid, Mahnaz; Shahreza, Somayeh; Sori, Masume; Hamblin, Michael R

    2016-11-01

    One of the biggest impacts that the nanotechnology has made on medicine and biology, has been in the area of drug delivery systems (DDSs). Many drugs suffer from serious problems concerning insolubility, instability in biological environments, poor uptake into cells and tissues, sub-optimal selectivity for targets and unwanted side effects. Nanocarriers can be designed as DDSs to overcome many of these drawbacks. One of the most versatile building blocks to prepare these nanocarriers is the ubiquitous, readily available and inexpensive protein, serum albumin. Areas covered: This review covers the use of different types of albumin (human, bovine, rat, and chicken egg) to prepare nanoparticle and microparticle-based structures to bind drugs. Various methods have been used to modify the albumin structure. A range of targeting ligands can be attached to the albumin that can be recognized by specific cell receptors that are expressed on target cells or tissues. Expert opinion: The particular advantages of albumin used in DDSs include ready availability, ease of chemical modification, good biocompatibility, and low immunogenicity. The regulatory approvals that have been received for several albumin-based therapeutic agents suggest that this approach will continue to be successfully explored.

  6. Current trends in microsponge drug delivery system.

    Science.gov (United States)

    Gangadharappa, H V; Gupta, N Vishal; Prasad M, Sarat Chandra; Shivakumar, H G

    2013-08-01

    Microsponge is a microscopic sphere capable of absorbing skin secretions, therefore reducing the oiliness of the skin. Microsponge having particle size of 10-25 microns in diameter, have wide range of entrapment of various ingredients in a single microsponges system and release them at desired rates. Conventional topical preparations have various disadvantages due to irritancy, odour, greasiness and patient compliance. In many topical dosage forms fail to reach the systemic circulation in sufficient amounts in few cases. These problems overcome by the usage of formulation as microsponge in the areas of research. Drug release in microsponge is done by the external stimuli like pH, temperature and rubbing. It has several advantageous over the other topical preparations in being non-allergenic, non-toxic, non-irritant and non- mutagenic. These microsponges are used in the sun screens, creams, ointments, over-the-counter skin care preparations, recently nanosponge were reported in literature used in delivery of drug by the use of cyclodextrins to enhance the solubility of poorly water soluble drugs, which are meant for topical application.

  7. Microneedle arrays for biosensing and drug delivery

    Science.gov (United States)

    Wang, Joseph; Windmiller, Joshua Ray; Narayan, Roger; Miller, Philip; Polsky, Ronen; Edwards, Thayne L.

    2017-08-22

    Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a^ device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce a probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.

  8. Microneedle arrays for biosensing and drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Joseph; Windmiller, Joshua Ray; Narayan, Roger; Miller, Philip

    2017-08-29

    Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce a probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.

  9. Drug delivery by organ-specific immunoliposomes

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Kazuo; Mori, Atsuhide; Hunag, Leaf (Tennessee Univ., Knoxville, TN (USA). Dept. of Biochemistry); Kennel, S.J. (Oak Ridge National Lab., TN (USA))

    1990-01-01

    Monoclonal antibodies highly specific to the mouse pulmonary endothelial cells were conjugated to liposomes. The resulting immunoliposomes showed high levels of lung accumulation when injected intravenously into mice. Optimal target binding and retention were achieved if the lipid composition included ganglioside GM{sub 1} to reduce the uptake of immunoliposomes by the reticuloendothelial system. Details of the construction and optimization of these organ-specific immunoliposomes are reviewed. The drug delivery potential of this novel liposome system was demonstrated in an experimental pulmonary metastasis model. Immunoliposomes containing a lipophilic prodrug of deoxyfluorouridine effectively prolonged the survival time of the tumor-bearing mice. This and other therapeutic applications of the immunoliposomes are discussed. 25 refs., 5 figs.

  10. Preactivated thiomers for vaginal drug delivery vehicles.

    Science.gov (United States)

    Friedl, Heike E; Dünnhaupt, Sarah; Waldner, Claudia; Bernkop-Schnürch, Andreas

    2013-10-01

    It was the purpose of this study to design and evaluate a chitosan derivative as mucoadhesive excipient for vaginal drug delivery systems. The chemical modification of chitosan was achieved by conjugation of thioglycolic acid (TGA) resulting in 1594 μmol thiol groups per gram of polymer followed by the linkage of mercaptonicotinic acid (MNA) to the immobilized thiol groups via disulfide bonding leading to 702 μmol ligand per gram of preactivated polymer. The mucoadhesive properties of these polymers within newly designed vaginal formulations (Chitosan-TGA and Chitosan-TGA-MNA) and commercially available vaginal formulations (Candibene®, Daktarin®, Dalacin®, GynoPevaryl®) were tested over a time period of 24 h via a mucoadhesion test system simulating vaginal conditions, tensile studies and mucus polymer interaction studies via viscosity measurements. Within the vaginal test system simulating vaginal in situ conditions, a 1.5-fold increase in mucoadhesion could be observed for preactivated thiomer formulations after 24 h in comparison to commercially available formulations. Similar results were achieved for tensile studies, as the chitosan-TGA-MNA containing formulation resulted in a 4.9-fold increase in total work of adhesion (TWA) in comparison to Candibene which showed the highest TWA value of all tested commercial formulations. Also in terms of rheology investigations of mucus/formulation mixtures, a 5.8-fold increase in dynamic viscosity for chitosan-TGA-MNA containing mixtures could be observed in comparison to the mucus-free control. In contrast, commercially available formulations achieved a maximum enhancement of 1.9-fold. These outcomes confirm that the newly developed polymer is a promising tool for vaginal drug delivery likely providing a prolonged vaginal residence time due to its comparatively high mucoadhesive properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. From nose to brain: understanding transport capacity and transport rate of drugs.

    Science.gov (United States)

    Wu, Hongbing; Hu, Kaili; Jiang, Xinguo

    2008-10-01

    The unique relationship between nasal cavity and cranial cavity tissues in anatomy and physiology makes intranasal delivery to the brain feasible. An intranasal delivery provides some drugs with short channels to bypass the blood-brain barrier (BBB), especially for those with fairly low brain concentrations after a routine delivery, thus greatly enhancing the therapeutic effect on brain diseases. In the past two decades, a good number of encouraging outcomes have been reported in the treatment of diseases of the brain or central nervous system (CNS) through nasal administration. In spite of the significant merit of bypassing the BBB, direct nose-to-brain delivery still bears the problems of low efficiency and volume for capacity due to the limited volume of the nasal cavity, the small area ratio of olfactory mucosa to nasal mucosa and the limitations of low dose and short retention time of drug absorption. It is crucial that selective distribution and retention time of drugs or preparations on olfactory mucosa should be enhanced so as to increase the direct delivery efficiency. In this article, we first briefly review the nose-to-brain transport pathways, before detailing the impacts on them, followed by a comprehensive summary of effective methods, including formulation modification, agglutinant-mediated transport and a brain-homing, peptide-mediated delivery based on phage display screening technique, with a view to providing a theoretic reference for elevating the therapeutic effects on brain diseases.

  12. Topical and transdermal drug delivery: principles and practice

    National Research Council Canada - National Science Library

    Benson, Heather A. E; Watkinson, Adam C

    2012-01-01

    .... Providing an overview of the current science in drug and cosmetic application to and through the skin, Topical and Transdermal Drug Delivery includes treatment of skin conditions, skin permeation...

  13. Stability of nanosuspensions in drug delivery.

    Science.gov (United States)

    Wang, Yancai; Zheng, Ying; Zhang, Ling; Wang, Qiwei; Zhang, Dianrui

    2013-12-28

    Nanosuspensions are nanosized colloidal dispersion systems that are stabilized by surfactants and/or polymers. Because nanosizing results in the creation of new interfaces and in a positive Gibbs free energy change, nanosuspensions are thermodynamically unstable systems with a tendency toward agglomeration or crystal growth. Despite extensive research on nanosuspension technology, stability remains a limitation for pharmaceutical or industrial applications of nanosuspensions. Furthermore, the empirical relationship between stabilizer efficacy and nanosuspension stability has not been well characterized. This review focuses on the issue of nanosuspension stability in drug delivery to present the state of the art of nanosuspensions. Therefore, this review will discuss unstable suspensions, methods and guidelines for selecting and optimizing stabilizers, approaches for enhancing stability, and other factors that influence nanosuspension stability. This review could serve as a reference for the educated selection of a stabilizer for a specific drug candidate and the optimization of the operational parameters for nanosuspension formulation, rather than the currently practiced trial-and-error approach. © 2013 Elsevier B.V. All rights reserved.

  14. Controlled drug delivery systems towards new frontiers in patient care

    CERN Document Server

    Rossi, Filippo; Masi, Maurizio

    2016-01-01

    This book offers a state-of-the-art overview of controlled drug delivery systems, covering the most important innovative applications. The principles of controlled drug release and the mechanisms involved in controlled release are clearly explained. The various existing polymeric drug delivery systems are reviewed, and new frontiers in material design are examined in detail, covering a wide range of polymer modification techniques. The concluding chapter is a case study focusing on use of a drug-eluting stent. The book is designed to provide the reader with a complete understanding of the mechanisms and design of controlled drug delivery systems, and to this end includes numerous step-by-step tutorials. It illustrates how chemical engineers can advance medical care by designing polymeric delivery systems that achieve either temporal or spatial control of drug delivery and thus ensure more effective therapy that eliminates the potential for both under-and overdosing.

  15. Chitosan Glutamate-Coated Niosomes: A Proposal for Nose-to-Brain Delivery

    Directory of Open Access Journals (Sweden)

    Federica Rinaldi

    2018-03-01

    Full Text Available The aim of this in vitro study is to prepare and characterize drug free and pentamidine loaded chitosan glutamate coated niosomes for intranasal drug delivery to reach the brain through intranasal delivery. Mucoadhesive properties and stability testing in various environments were evaluated to examine the potential of these formulations to be effective drug delivery vehicles for intranasal delivery to the brain. Samples were prepared using thin film hydration method. Changes in size and ζ-potential of coated and uncoated niosomes with and without loading of pentamidine in various conditions were assessed by dynamic light scattering (DLS, while size and morphology were also studied by atomic force microscopy (AFM. Bilayer properties and mucoadhesive behavior were investigated by fluorescence studies and DLS analyses, respectively. Changes in vesicle size and ζ-potential values were shown after addition of chitosan glutamate to niosomes, and when in contact with mucin solution. In particular, interactions with mucin were observed in both drug free and pentamidine loaded niosomes regardless of the presence of the coating. The characteristics of the proposed systems, such as pentamidine entrapment and mucin interaction, show promising results to deliver pentamidine or other possible drugs to the brain via nasal administration.

  16. Drug Delivery Systems: A New Frontier in Nano-technology

    Directory of Open Access Journals (Sweden)

    Chamindri Witharana

    2017-09-01

    Full Text Available Nano-technology is a recent advancement in science, defined as “Science, engineering, and technology conducted at the Nano scale” (National nanotechnology initiatives in USA. Applications of Nano-technology cover a vast range from basic material science, personal care applications, agriculture, and medicine. Nano-technology is used in field of medicine for treatment, diagnostic, monitoring, genetic engineering, and drug delivery. There are two main types of Nano Particles (NPs used in drug delivery; organic NPs and inorganic NPs. In drug delivery, the drug-Nano- Particle (NP conjugate should be able to deliver drugs to the target site without degradation in gastrointestinal track and without reducing drug activity. Further, it should attack to target cells without causing any adverse effects. The ultimate goal of NP drug delivery is to improve proper treatment, effectiveness, less side effects with safety and patient adherence as well as reduction in the cost.

  17. Galactosyl Pentadecene Reversibly Enhances Transdermal and Topical Drug Delivery

    Czech Academy of Sciences Publication Activity Database

    Kopečná, M.; Macháček, M.; Prchalová, Eva; Štěpánek, P.; Drašar, P.; Kotora, Martin; Vávrová, K.

    2017-01-01

    Roč. 34, č. 10 (2017), s. 2097-2108 ISSN 0724-8741 Institutional support: RVO:61388963 Keywords : galactoside * penetration enhancers * sugar * topical drug delivery * transdermal drug delivery Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Pharmacology and pharmacy Impact factor: 3.002, year: 2016

  18. Acoustic behavior of microbubbles and implications for drug delivery

    NARCIS (Netherlands)

    Kooiman, K.; Vos, H.J.; Versluis, Michel; de Jong, N.

    2014-01-01

    Ultrasound contrast agents are valuable in diagnostic ultrasound imaging, and they increasingly show potential for drug delivery. This review focuses on the acoustic behavior of flexible-coated microbubbles and rigid-coated microcapsules and their contribution to enhanced drug delivery. Phenomena

  19. Drug Delivery Approaches for the Treatment of Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Farideh Ordikhani

    2016-07-01

    Full Text Available Cervical cancer is a highly prevalent cancer that affects women around the world. With the availability of new technologies, researchers have increased their efforts to develop new drug delivery systems in cervical cancer chemotherapy. In this review, we summarized some of the recent research in systematic and localized drug delivery systems and compared the advantages and disadvantages of these methods.

  20. Targeted drug delivery to magnetic implants for therapeutic applications

    International Nuclear Information System (INIS)

    Yellen, Benjamin B.; Forbes, Zachary G.; Halverson, Derek S.; Fridman, Gregory; Barbee, Kenneth A.; Chorny, Michael; Levy, Robert; Friedman, Gary

    2005-01-01

    A new method for locally targeted drug delivery is proposed that employs magnetic implants placed directly in the cardiovascular system to attract injected magnetic carriers. Theoretical simulations and experimental results support the assumption that using magnetic implants in combination with externally applied magnetic field will optimize the delivery of magnetic drug to selected sites within a subject

  1. Nanoemulsion: an advanced mode of drug delivery system

    OpenAIRE

    Jaiswal, Manjit; Dudhe, Rupesh; Sharma, P. K.

    2014-01-01

    An advanced mode of drug delivery system has been developed to overcome the major drawbacks associated with conventional drug delivery systems. This review gives a detailed idea about a nanoemulsion system. Nanoemulsions are nano-sized emulsions, which are manufactured for improving the delivery of active pharmaceutical ingredients. These are the thermodynamically stable isotropic system in which two immiscible liquids are mixed to form a single phase by means of an emulsifying agent, i.e., s...

  2. Otic drug delivery systems: formulation principles and recent developments.

    Science.gov (United States)

    Liu, Xu; Li, Mingshuang; Smyth, Hugh; Zhang, Feng

    2018-04-25

    Disorders of the ear severely impact the quality of life of millions of people, but the treatment of these disorders is an ongoing, but often overlooked challenge particularly in terms of formulation design and product development. The prevalence of ear disorders has spurred significant efforts to develop new therapeutic agents, but perhaps less innovation has been applied to new drug delivery systems to improve the efficacy of ear disease treatments. This review provides a brief overview of physiology, major diseases, and current therapies used via the otic route of administration. The primary focuses are on the various administration routes and their formulation principles. The article also presents recent advances in otic drug deliveries as well as potential limitations. Otic drug delivery technology will likely evolve in the next decade and more efficient or specific treatments for ear disease will arise from the development of less invasive drug delivery methods, safe and highly controlled drug delivery systems, and biotechnology targeting therapies.

  3. Nanosized Minicells Generated by Lactic Acid Bacteria for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huu Ngoc Nguyen

    2017-01-01

    Full Text Available Nanotechnology has the ability to target specific areas of the body, controlling the drug release and significantly increasing the bioavailability of active compounds. Organic and inorganic nanoparticles have been developed for drug delivery systems. Many delivery systems are through clinical stages for development and market. Minicell, a nanosized cell generated by bacteria, is a potential particle for drug delivery because of its size, safety, and biodegradability. Minicells produced by bacteria could drive therapeutic agents against cancer, microbial infection, and other diseases by targeting. In addition, minicells generated by lactic acid bacteria being probiotics are more interesting than others because of their benefits like safety, immunological improvement, and biodegradation. This review aims to highlight the stages of development of nanoparticle for drug delivery and discuss their advantages and limitations to clarify minicells as a new opportunity for the development of potential nanoparticle for drug delivery.

  4. Enhanced therapeutic agent delivery through magnetic resonance imaging-monitored focused ultrasound blood-brain barrier disruption for brain tumor treatment: an overview of the current preclinical status.

    Science.gov (United States)

    Liu, Hao-Li; Yang, Hung-Wei; Hua, Mu-Yi; Wei, Kuo-Chen

    2012-01-01

    Malignant glioma is a severe primary CNS cancer with a high recurrence and mortality rate. The current strategy of surgical debulking combined with radiation therapy or chemotherapy does not provide good prognosis, tumor progression control, or improved patient survival. The blood-brain barrier (BBB) acts as a major obstacle to chemotherapeutic treatment of brain tumors by severely restricting drug delivery into the brain. Because of their high toxicity, chemotherapeutic drugs cannot be administered at sufficient concentrations by conventional delivery methods to significantly improve long-term survival of patients with brain tumors. Temporal disruption of the BBB by microbubble-enhanced focused ultrasound (FUS) exposure can increase CNS-blood permeability, providing a promising new direction to increase the concentration of therapeutic agents in the brain tumor and improve disease control. Under the guidance and monitoring of MR imaging, a brain drug-delivery platform can be developed to control and monitor therapeutic agent distribution and kinetics. The success of FUS BBB disruption in delivering a variety of therapeutic molecules into brain tumors has recently been demonstrated in an animal model. In this paper the authors review a number of critical studies that have demonstrated successful outcomes, including enhancement of the delivery of traditional clinically used chemotherapeutic agents or application of novel nanocarrier designs for actively transporting drugs or extending drug half-lives to significantly improve treatment efficacy in preclinical animal models.

  5. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Sabine Szunerits

    2018-02-01

    Full Text Available Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs, which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum, the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section “Frontiers in Bioengineering and Biotechnology,” the advances in this field

  6. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery

    Science.gov (United States)

    Szunerits, Sabine; Boukherroub, Rabah

    2018-01-01

    Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs), which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum, the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section “Frontiers in Bioengineering and Biotechnology,” the advances in this field and the handful of

  7. Marine Origin Polysaccharides in Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Matias J. Cardoso

    2016-02-01

    Full Text Available Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.

  8. Facile electrospinning of an efficient drug delivery system.

    Science.gov (United States)

    Mei, Lan; Wang, Yuelong; Tong, Aiping; Guo, Gang

    2016-01-01

    Electrospinning is a facile method for fabricating fibers with diameters in the order of several nanometers to a few micrometers. This technology has great potential for preparing drug delivery systems (DDSs) and has received a great deal of attention in recent years. When combined with certain nanocarriers, such as micelles, nanoparticles or vesicles, an electrospun fiber membrane becomes an efficient and helpful platform for the above-mentioned formulations to achieve sustained and targeted drug release. The developmental process of electrospinning technology is briefly summarized and the drugs and the materials electrospun into drug delivery systems are listed . The application of electrospinning technology in the biomedical field and its current progress are emphasized. A safe, efficient and multifunctional electrospinning drug delivery system is urgently needed, which requires further studies. Cross-disciplinary strategies that cover pharmaceutical science, material science and computer science may provide guidance in bringing electrospinning technology in drug delivery to fruition.

  9. Silk-Based Biomaterials for Sustained Drug Delivery

    Science.gov (United States)

    Yucel, Tuna; Lovett, Michael L.; Kaplan, David L.

    2014-01-01

    Silk presents a rare combination of desirable properties for sustained drug delivery, including aqueous-based purification and processing options without chemical cross-linkers, compatibility with common sterilization methods, controllable and surface-mediated biodegradation into non-inflammatory by-products, biocompatibility, utility in drug stabilization, and robust mechanical properties. A versatile silk-based toolkit is currently available for sustained drug delivery formulations of small molecule through macromolecular drugs, with a promise to mitigate several drawbacks associated with other degradable sustained delivery technologies in the market. Silk-based formulations utilize silk’s well-defined nano- through microscale structural hierarchy, stimuli-responsive self-assembly pathways and crystal polymorphism, as well as sequence and genetic modification options towards targeted pharmaceutical outcomes. Furthermore, by manipulating the interactions between silk and drug molecules, near-zero order sustained release may be achieved through diffusion- and degradation-based release mechanisms. Because of these desirable properties, there has been increasing industrial interest in silk-based drug delivery systems currently at various stages of the developmental pipeline from pre-clinical to FDA-approved products. Here, we discuss the unique aspects of silk technology as a sustained drug delivery platform and highlight the current state of the art in silk-based drug delivery. We also offer a potential early development pathway for silk-based sustained delivery products. PMID:24910193

  10. An experimental platform for systemic drug delivery to the retina.

    LENUS (Irish Health Repository)

    Campbell, Matthew

    2009-10-20

    Degenerative retinopathies, including age-related macular degeneration, diabetic retinopathy, and hereditary retinal disorders--major causes of world blindness--are potentially treatable by using low-molecular weight neuroprotective, antiapoptotic, or antineovascular drugs. These agents are, however, not in current systemic use owing to, among other factors, their inability to passively diffuse across the microvasculature of the retina because of the presence of the inner blood-retina barrier (iBRB). Moreover, preclinical assessment of the efficacies of new formulations in the treatment of such conditions is similarly compromised. We describe here an experimental process for RNAi-mediated, size-selective, transient, and reversible modulation of the iBRB in mice to molecules up to 800 Da by suppression of transcripts encoding claudin-5, a protein component of the tight junctions of the inner retinal vasculature. MRI produced no evidence indicative of brain or retinal edema, and the process resulted in minimal disturbance of global transcriptional patterns analyzed in neuronal tissue. We show that visual function can be improved in IMPDH1(-\\/-) mice, a model of autosomal recessive retinitis pigmentosa, and that the rate of photoreceptor cell death can be reduced in a model of light-induced retinal degeneration by systemic drug delivery after reversible barrier opening. These findings provide a platform for high-throughput drug screening in models of retinal degeneration, and they ultimately could result in the development of a novel "humanized" approach to therapy for conditions with little or no current forms of treatment.

  11. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Gorzelanny, Christian; Halter, Natalia

    2016-01-01

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248 +/- 94 nm to 600 +/- 201 nm, depending on the amount of phospholipid...... culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system....

  12. Advances and Challenges of Liposome Assisted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Lisa eSercombe

    2015-12-01

    Full Text Available The application of liposomes to assist drug delivery has already had a major impact on many biomedical areas. They have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. This enables effective delivery of encapsulated compounds to target sites while minimizing systemic toxicity. Liposomes present as an attractive delivery system due to their flexible physicochemical and biophysical properties, which allow easy manipulation to address different delivery considerations. Despite considerable research in the last 50 years and the plethora of positive results in preclinical studies, the clinical translation of liposome assisted drug delivery platforms has progressed incrementally. In this review, we will discuss the advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications. The translational obstacles of liposomal technology will also be presented.

  13. Polymeric Biomaterial and Lipid Based Nanoparticles for Oral Drug Delivery.

    Science.gov (United States)

    Dilnawaz, Fahima

    2017-01-01

    Oral drug delivery is widespread owing to its non-invasive nature which complements high patient compliance. However, the drug administration via oral route is quite challenging due to the presence of the biochemical barriers which hinders the uptake as well as access to blood stream. Apart from that, stability, poor solubility and bioavailability of administered drug via the gastrointestinal (GI) tract are also exigent. Till now various oral formulations were developed which releases the drug in a timely manner but lacks appropriate therapeutic concentration. Recently nanoparticles based drug delivery system has emerged as prominent strategy for optimizing the oral drug delivery and maximizing the treatment efficiency. Besides, different strategic polymeric nanoparticles are engineered for interaction both at extracellular and intracellular levels with gastrointestinal mucosa. The review article focuses on the polymeric and lipid based various nanocarriers that have been widely studied for the enhanced oral drug delivery of different therapeutic molecules and addresses recent progress of biocompatible and biodegradable polymeric nanoparticles approach for its improvement. The progress of numerous oral nanoparticulate drug delivery vehicles will be immensely helpful to improve therapeutic efficacy with reduced adverse side effects. Unlike other forms of administration, it will have better patient compliance and soothing effect. The oral drug delivery will certainly play a pivotal role soon in expanding the clinical repertoire and applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Polymer nanogels: a versatile nanoscopic drug delivery platform

    Science.gov (United States)

    Chacko, Reuben T.; Ventura, Judy; Zhuang, Jiaming; Thayumanavan, S.

    2012-01-01

    In this review we put the spotlight on crosslinked polymer nanogels, a promising platform that has the characteristics of an “ideal” drug delivery vehicle. Some of the key aspects of drug delivery vehicle design like stability, response to biologically relevant stimuli, passive targeting, active targeting, toxicity and ease of synthesis are discussed. We discuss several delivery systems in this light and highlight some examples of systems, which satisfy some or all of these design requirements. In particular, we point to the advantages that crosslinked polymeric systems bring to drug delivery. We review some of the synthetic methods of nanogel synthesis and conclude with the diverse applications in drug delivery where nanogels have been fruitfully employed. PMID:22342438

  15. Pectin-based colon-specific drug delivery

    Directory of Open Access Journals (Sweden)

    Shailendra Shukla

    2011-01-01

    Full Text Available Colon-specific drug delivery have a great importance in the delivery of drugs for the treatment of local colonic, as well as systemic diseases like Crohn′s disease, ulcerative colitis, colorectal cancer, amoebiasis, asthma, arthritis and inflammation which can be achieved by targeted delivery of drug to colon. Specific systemic absorption in the colon gave interesting possibilities for the delivery of protein and peptides. It contains relatively less proteolytic enzyme activities in the colon compared to the upper gastrointestinal tract (GIT. Recommended treatments included the administration of anti-inflammatory drugs, chemotherapeutic agents and antibiotics which must be released in the colon. Pectin is a naturally occurring polysaccharide has in recent years gained increasingly in importance in advance drug delivery. It was employed in pharmaceutical industry, health promotion and treatment. Owing to its gelling properties it has been used potentially as a carrier for drug delivery to the GIT, such as matrix tablets, gel beads, film-coated dose form. This review will discuss the important chemistry and general properties of pectin, its gel formation mechanism properties and its uses in novel drug delivery to the colon.

  16. Design, Characterization, and Optimization of Controlled Drug Delivery System Containing Antibiotic Drug/s.

    Science.gov (United States)

    Patel, Apurv; Dodiya, Hitesh; Shelate, Pragna; Shastri, Divyesh; Dave, Divyang

    2016-01-01

    The objective of this work was design, characterization, and optimization of controlled drug delivery system containing antibiotic drug/s. Osmotic drug delivery system was chosen as controlled drug delivery system. The porous osmotic pump tablets were designed using Plackett-Burman and Box-Behnken factorial design to find out the best formulation. For screening of three categories of polymers, six independent variables were chosen for Plackett-Burman design. Osmotic agent sodium chloride and microcrystalline cellulose, pore forming agent sodium lauryl sulphate and sucrose, and coating agent ethyl cellulose and cellulose acetate were chosen as independent variables. Optimization of osmotic tablets was done by Box-Behnken design by selecting three independent variables. Osmotic agent sodium chloride, pore forming agent sodium lauryl sulphate, and coating agent cellulose acetate were chosen as independent variables. The result of Plackett-Burman and Box-Behnken design and ANOVA studies revealed that osmotic agent and pore former had significant effect on the drug release up to 12 hr. The observed independent variables were found to be very close to predicted values of most satisfactory formulation which demonstrates the feasibility of the optimization procedure in successful development of porous osmotic pump tablets containing antibiotic drug/s by using sodium chloride, sodium lauryl sulphate, and cellulose acetate as key excipients.

  17. Design, Characterization, and Optimization of Controlled Drug Delivery System Containing Antibiotic Drug/s

    Directory of Open Access Journals (Sweden)

    Apurv Patel

    2016-01-01

    Full Text Available The objective of this work was design, characterization, and optimization of controlled drug delivery system containing antibiotic drug/s. Osmotic drug delivery system was chosen as controlled drug delivery system. The porous osmotic pump tablets were designed using Plackett-Burman and Box-Behnken factorial design to find out the best formulation. For screening of three categories of polymers, six independent variables were chosen for Plackett-Burman design. Osmotic agent sodium chloride and microcrystalline cellulose, pore forming agent sodium lauryl sulphate and sucrose, and coating agent ethyl cellulose and cellulose acetate were chosen as independent variables. Optimization of osmotic tablets was done by Box-Behnken design by selecting three independent variables. Osmotic agent sodium chloride, pore forming agent sodium lauryl sulphate, and coating agent cellulose acetate were chosen as independent variables. The result of Plackett-Burman and Box-Behnken design and ANOVA studies revealed that osmotic agent and pore former had significant effect on the drug release up to 12 hr. The observed independent variables were found to be very close to predicted values of most satisfactory formulation which demonstrates the feasibility of the optimization procedure in successful development of porous osmotic pump tablets containing antibiotic drug/s by using sodium chloride, sodium lauryl sulphate, and cellulose acetate as key excipients.

  18. Application of nanohydrogels in drug delivery systems: recent patents review.

    Science.gov (United States)

    Dalwadi, Chintan; Patel, Gayatri

    2015-01-01

    Nanohydrogel combines the advantages of hydrogel and nano particulate systems. Similar to the hydrogel and macrogel, nanohydrogel can protect the drug and control drug release by stimuli responsive conformation or biodegradable bond into the polymer networks. Nanohydrogel has drawn huge interest due to their potential applications, such as carrier in target-specific controlled drug delivery, absorbents, chemical/biological sensors, and bio-mimetic materials. Similar to the nanoparticles, stimuli responsive nanohydrogel can easily be delivered in the liquid form for parenteral drug delivery application. This review highlights the methods to prepare nanohydrogel based on natural and synthetic polymers for diverse applications in drug delivery. It also encompasses the drug loading and drug release mechanism of the nanohydrogel formulation and patents related to the composition and chemical methods for preparation of nanohydrogel formulation with current status in clinical trials.

  19. Neuroimaging in nuclear medicine: drug addicted brain

    International Nuclear Information System (INIS)

    Chung, Yong-An; Kim, Dae-Jin

    2006-01-01

    Addiction to illicit drugs in one of today's most important social issues. Most addictive drugs lead to irreversible parenchymal changes in the human brain. Neuroimaging data bring to light the pharmacodynamics and pharmacokinetics of the abused drugs, and demonstrate that addiction is a disease of the brain. Continuous researches better illustrate the neurochemical alterations in brain function, and attempt to discover the links to consequent behavioral changes. Newer hypotheses and theories follow the numerous results, and more rational methods of approaching therapy are being developed. Substance abuse is on the rise in Korea, and social interest in the matter as well. On the other hand, diagnosis and treatment of drug addiction is still very difficult, because how the abused substance acts in the brain, or how it leads to behavioral problems in not widely known. Therefore, understanding the mechanism of drug addiction can improve the process of diagnosing addict patients, planning therapy, and predicting the prognosis . Neuroimaging approaches by nuclear medicine methods are expected to objectively judge behavioral and neurochemical changes, and response to treatment. In addition, as genes associated with addictive behavior are discovered, functional nuclear medicine images will aid in the assessment of individuals. Reviewing published literature on neuroimaging regarding nuclear medicine is expected to be of assistance to the management of drug addict patients. What's more, means of applying nuclear medicine to the care of drug addict patients should be investigated further

  20. Drug delivery systems: Advanced technologies potentially applicable in personalized treatments.

    Science.gov (United States)

    Coelho, Jorge F; Ferreira, Paula C; Alves, Patricia; Cordeiro, Rosemeyre; Fonseca, Ana C; Góis, Joana R; Gil, Maria H

    2010-03-01

    Advanced drug delivery systems (DDS) present indubitable benefits for drug administration. Over the past three decades, new approaches have been suggested for the development of novel carriers for drug delivery. In this review, we describe general concepts and emerging research in this field based on multidisciplinary approaches aimed at creating personalized treatment for a broad range of highly prevalent diseases (e.g., cancer and diabetes). This review is composed of two parts. The first part provides an overview on currently available drug delivery technologies including a brief history on the development of these systems and some of the research strategies applied. The second part provides information about the most advanced drug delivery devices using stimuli-responsive polymers. Their synthesis using controlled-living radical polymerization strategy is described. In a near future it is predictable the appearance of new effective tailor-made DDS, resulting from knowledge of different interdisciplinary sciences, in a perspective of creating personalized medical solutions.

  1. 3D printing applications for transdermal drug delivery.

    Science.gov (United States)

    Economidou, Sophia N; Lamprou, Dimitrios A; Douroumis, Dennis

    2018-01-20

    The role of two and three-dimensional printing as a fabrication technology for sophisticated transdermal drug delivery systems is explored in literature. 3D printing encompasses a family of distinct technologies that employ a virtual model to produce a physical object through numerically controlled apparatuses. The applicability of several printing technologies has been researched for the direct or indirect printing of microneedle arrays or for the modification of their surface through drug-containing coatings. The findings of the respective studies are presented. The range of printable materials that are currently used or potentially can be employed for 3D printing of transdermal drug delivery (TDD) systems is also reviewed. Moreover, the expected impact and challenges of the adoption of 3D printing as a manufacturing technique for transdermal drug delivery systems, are assessed. Finally, this paper outlines the current regulatory framework associated with 3D printed transdermal drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. A review on electrospun nanofibers for oral drug delivery

    Directory of Open Access Journals (Sweden)

    Abbas Akhgari

    2017-10-01

    Full Text Available Nowadays, polymer nanofibers have gained attention due to remarkable characteristics such as high porosity and large surface area to volume ratio. Among their fabrication methods, electrospinning technique has been attracted as a simple and reproducible approach. It is a versatile, simple and cost-effective technique for the production of continuous nanofibers with acceptable characteristics such as high porosity, high surface area to volume ratio, high loading capacity and encapsulation efficiency, delivery of multiple drugs, and enhancement of drug solubility. Due to these properties electrospun nanofibers have been extensively used for different biomedical applications including wound dressing, tissue engineering, enzyme immobilization, artificial organs, and drug delivery. Different synthetic and natural polymers have been successfully electrospun into ultrafine fibers. Using electrospun nanofibers as vehicles for oral drug delivery has been investigated in different release manners- fast, biphasic or sustained release. This article presents a review on application of electrospinning technique in oral drug delivery.

  3. Recent developments in oral lipid-based drug delivery

    DEFF Research Database (Denmark)

    Thomas, N.; Rades, T.; Müllertz, A.

    2013-01-01

    The increasing number of poorly water-soluble drugs in development in the pharmaceutical industry has sparked interest in novel drug delivery options such as lipid-based drug delivery systems (LbDDS). Several LbDDS have been marketed successfully and have shown superior and more reliable...... bioavailability compared to conventional formulations. However, some reluctance in the broader application of LbDDS still appears, despite the growing commercial interest in lipids as a drug delivery platform. This reluctance might at least in part be related to the complexity associated with the development...... and characterization of LbDDS. In particular, the lack of standardized test protocols can be identified as the major obstacles for the broader application of LbDDS. This review seeks to summarize recent approaches in the field of lipid-based drug delivery that try to elucidate some critical steps in their development...

  4. Elastin-Like Recombinamers As Smart Drug Delivery Systems.

    Science.gov (United States)

    Arias, F Javier; Santos, Mercedes; Ibanez-Fonseca, Arturo; Pina, Maria Jesus; Serrano, Sofía

    2018-02-19

    Drug delivery systems that are able to control the release of bioactive molecules and designed to carry drugs to target sites are of particular interest for tissue therapy. Moreover, systems comprising materials that can respond to environmental stimuli and promote self-assembly and higher order supramolecular organization are especially useful in the biomedical field. Objetive: This review focuses on biomaterials suitable for this purpose and that include elastin-like recombinamers (ELRs), a class of proteinaceous polymers bioinspired by natural elastin, designed using recombinant technologies. The self-assembly and thermoresponsive behaviour of these systems, along with their biodegradability, biocompatibility and well-defined composition as a result of their tailormade design, make them particularly attractive for controlled drug delivery. ELR-based delivery systems that allow targeted delivery are reviewed, especially ELR-drug recombinant fusion constructs, ELR-drug systems chemically bioconjugated in their monomeric and soluble forms, and drug encapsulation by nanoparticle-forming ELRs. Subsequently, the review focuses on those drug carriers in which smart release is triggered by pH or temperature with a particular focus on cancer treatments. Systems for controlled drug release based on depots and hydrogels that act as both a support and reservoir in which drugs can be stored will be described, and their applications in drug delivery discussed. Finally, smart drug-delivery systems not based on ELRs, including those comprising proteins, synthetic polymers and non-polymeric systems, will also be briefly discussed. Several different constructions based on ELRs are potential candidates for controlled drug delivery to be applied in advanced biomedical treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Microbubble-mediated ultrasound drug-delivery and therapeutic monitoring.

    Science.gov (United States)

    Sennoga, Charles A; Kanbar, Emma; Auboire, Laurent; Dujardin, Paul-Armand; Fouan, Damien; Escoffre, Jean-Michel; Bouakaz, Ayache

    2017-09-01

    Recent developments in ultrasound imaging and ultrasound contrast agents (UCAs) improved diagnostic confidence in echography and set into motion their combined use as a tool for drug delivery and therapeutic monitoring. Non-invasive, precise and targeted delivery of drug molecules to pathological tissues by employing different mechanisms of drug release is becoming feasible. Areas covered: We sought to describe: the nature and features of UCAs; outline current contrast-specific imaging modes; before describing a variety of strategies for using ultrasound and microbubbles as a drug delivery system. Our expert opinion focusses on results and prospects of using ultrasound and microbubbles as a dual modality for drug delivery and therapeutic monitoring. Expert opinion: Today, ultrasound and microbubbles present a realistic prospect as drug delivery tools that have been demonstrated in a variety of animal models and clinical indications. Besides delivering drugs, ultrasound and microbubbles have demonstrated added value through therapeutic monitoring and assessment. Successful evaluation of the sonoporation mechanism(s), ultrasound parameters, drug type and dose will need to be addressed before translating this technology for clinic use. Ultimately, the development of a strategy for monitoring targeted delivery and its implementation in clinical practice would advance therapeutic treatment to a new qualitative level.

  6. Liquisolid tablets: a novel approach for drug delivery | Karmarkar ...

    African Journals Online (AJOL)

    Liquisolid system is a novel concept of drug delivery via oral route. This technique is applied to water insoluble drugs and lipophilic drugs to sustain their release. Formulation and manufacture of the liquisolid tablets is quite simple method according to new mathematical model described by Spireas et al. It involves ...

  7. A Controlled Drug-Delivery Experiment Using Alginate Beads

    Science.gov (United States)

    Farrell, Stephanie; Vernengo, Jennifer

    2012-01-01

    This paper describes a simple, cost-effective experiment which introduces students to drug delivery and modeling using alginate beads. Students produce calcium alginate beads loaded with drug and measure the rate of release from the beads for systems having different stir rates, geometries, extents of cross-linking, and drug molecular weight.…

  8. A study on nanodiamond-based drug delivery system

    International Nuclear Information System (INIS)

    Li Jing; Zhang Xiaoyong; Zhu Ying; Li Wenxin; Huang Qing

    2010-01-01

    A multifunctional drug delivery system based on nanodiamonds (NDs) has been developed. FITC, HCPT and TF were absorbed on NDs successively to form the multifunctional complex. The NDs and ND complex samples were characterized by TEM, FR-IR and UV-V. The results indicated that this drug delivery system is a high loading system. Efficacy of the drug delivery system on Hela cell was evaluated with MTT assays and fluorescence microscopy. The results show that multifunction of the NDs complex include fluorescence, targeting and high efficacy. (authors)

  9. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors

    International Nuclear Information System (INIS)

    Mohtaram, Nima Khadem; Montgomery, Amy; Willerth, Stephanie M

    2013-01-01

    This review highlights recent work on the use of biomaterial-based drug delivery systems to control the release of neurotrophic factors as a potential strategy for the treatment of neurological disorders. Examples of neurotrophic factors include the nerve growth factor, the glial cell line-derived neurotrophic factor, the brain-derived neurotrophic factor and neurotrophin-3. In particular, this review focuses on two methods of drug delivery: affinity-based and reservoir-based systems. We review the advantages and challenges associated with both types of drug delivery system and how these systems can be applied to neurological diseases and disorders. While a limited number of affinity-based delivery systems have been developed for the delivery of neurotrophic factors, we also examine the broad spectrum of reservoir-based delivery systems, including microspheres, electrospun nanofibers, hydrogels and combinations of these systems. Finally, conclusions are drawn about the current state of such drug delivery systems as applied to neural tissue engineering along with some thoughts on the future direction of the field. (topical review)

  10. Fractional laser-assisted drug delivery

    DEFF Research Database (Denmark)

    Taudorf, Elisabeth Hjardem; Lerche, C.M.; Erlendsson, A M

    2016-01-01

    BACKGROUND AND OBJECTIVE: Ablative fractional laser (AFXL) facilitates delivery of topical methotrexate (MTX). This study investigates impact of laser-channel depth on topical MTX-delivery. MATERIALS AND METHODS: MTX (1% [w/v]) diffused for 21 hours through AFXL-exposed porcine skin in in vitro F...

  11. The Science of Addiction: Drugs, Brains, and Behavior

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues The Science of Addiction: Drugs, Brains, and Behavior Past Issues / ... brain structure and function. Advances in brain imaging science make it possible to see inside the brain ...

  12. From drug delivery systems to drug release, dissolution, IVIVC, BCS, BDDCS, bioequivalence and biowaivers.

    Science.gov (United States)

    Karalis, Vangelis; Magklara, Eleni; Shah, Vinod P; Macheras, Panos

    2010-09-01

    This is a summary report of the conference on drug absorption and bioequivalence issues held in Titania Hotel in Athens (Greece) from the 28(th) to the 30(th) of May 2009. The conference included presentations which were mainly divided into three sections. The first section focused on modern drug delivery systems such as polymer nanotechnology, cell immobilization techniques to deliver drugs into the brain, nanosized liposomes used in drug eluting stents, encapsulation of drug implants in biocompatible polymers, and application of differential scanning calorimetry as a tool to study liposomal stability. The importance of drug release and dissolution were also discussed by placing special emphasis on camptothecins and oral prolonged release formulations. The complexity of the luminal environment and the value of dissolution in lyophilized products were also highlighted. The second session of the conference included presentations on the Biopharmaceutics Classification Scheme (BCS), the Biopharmaceutics Drug Disposition Classification System (BDDCS), and the role of transporters in the classification of drugs. The current status of biowaivers and a modern view on non-linear in vitro-in vivo (IVIVC) correlations were also addressed. Finally, this section ended with a special topic on biorelevant dissolution media and methods. The third day of the conference was dedicated to bioequivalence. Emphasis was placed on high within-subject variability and its impact on study design. Two unresolved issues of bioequivalence were also discussed: the use of generic antiepileptic drugs and the role of metabolites in bioequivalence assessment. Finally, the conference closed with a presentation of the current regulatory status of WHO and EMEA.

  13. Biophysics of Cell Membrane Lipids in Cancer Drug Resistance: Implications for Drug Transport and Drug Delivery with Nanoparticles

    Science.gov (United States)

    Peetla, Chiranjeevi; Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

    2013-01-01

    In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcoming drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance. PMID:24055719

  14. Atopic Dermatitis: Drug Delivery Approaches in Disease Management.

    Science.gov (United States)

    Lalan, Manisha; Baweja, Jitendra; Misra, Ambikanandan

    2015-01-01

    In this review, we describe the very basic of atopic dermatitis (AD), the established management strategies, and the advances in drug delivery approaches for successful therapeutic outcomes. The multifactorial pathophysiology of AD has given rise to the clinician's paradigm of topical and systemic therapy and potential combinations. However, incomplete remission of skin disorders like AD is a major challenge to be overcome. Recurrence is thought to be due to genetic and immunological etiologies and shortcomings in drug delivery. This difficulty has sparked research in nanocarrier-based delivery approaches as well as molecular biology-inspired stratagems to deal with the immunological imbalance and to address insufficiencies of delivery propositions. In this review, we assess various novel drug delivery strategies in terms of their success and utility. We present a brief compilation and assessment of management modalities to sensitize the readers to therapeutic scenario in AD.

  15. Micro fabrication of biodegradable polymer drug delivery devices

    DEFF Research Database (Denmark)

    Nagstrup, Johan

    . Furthermore, they are often degraded before they can be absorbed. The result is low bioavailability of the drugs. To overcome these challenges, better drug delivery systems need to be developed. Recently, micro systems have emerged as promising candidates to solve the challenges of poor solubility, low......The pharmaceutical industry is presently facing several obstacles in developing oral drug delivery systems. This is primarily due to the nature of the discovered drug candidates. The discovered drugs often have poor solubility and low permeability across the gastro intestinal epithelium...... permeability and degradation. These systems are for the majority based on traditional materials used in micro technology, such as SU-8, silicon, poly(methyl methacrylate). The next step in developing these new drug delivery systems is to replace classical micro fabrication materials with biodegradable polymers...

  16. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    Science.gov (United States)

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  17. 76 FR 51038 - Guidance for Industry on Residual Drug in Transdermal and Related Drug Delivery Systems...

    Science.gov (United States)

    2011-08-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-D-0246] Guidance for Industry on Residual Drug in Transdermal and Related Drug Delivery Systems; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA...

  18. The nasal delivery of nanoencapsulated statins – an approach for brain delivery

    Directory of Open Access Journals (Sweden)

    Clementino A

    2016-12-01

    efficiency (EE; 98%. Size distribution was further confirmed by nanoparticle tracking analysis and electron microscopy. The particles showed a relatively fast release of simvastatin in vitro (35.6%±4.2% in 6 hours in simulated nasal fluid. Blank nanoparticles did not show cytotoxicity, evidencing that the formulation is safe for nasal administration, while cytotoxicity of simvastatin-loaded nanoparticles (IC50 was found to be three times lower than the drug solution (9.92 vs 3.50 µM. In rats, a significantly higher radioactivity was evidenced in the brain after nasal delivery of simvastatin-loaded nanoparticles in comparison to the administration of a similar dose of simvastatin suspension. Conclusion: The SVT-LCNs developed presented some of the most desirable characteristics for mucosal delivery, that is, small particle size, positive surface charge, long-term stability, high EE, and mucoadhesion. In addition, they displayed two exciting features: First was their biodegradability by enzymes present in the mucus layer, such as lysozyme. This indicates a new Trojan-horse strategy which may enhance drug release in the proximity of the nasal mucosa. Second was their ability to enhance the nose-to-brain transport as evidenced by preliminary gamma scintigraphy studies. Keywords: nose-to-brain, simvastatin, nanoparticles, neurodegenerative diseases, gamma scintigraphy, small-angle X-ray scattering (SAXS, lysozyme, biodegradable nanoparticles

  19. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle.

    Science.gov (United States)

    Lu, Wei; Wan, Jin; She, Zhenjue; Jiang, Xinguo

    2007-03-12

    Cationic bovine serum albumin (CBSA) conjugated poly(ethyleneglycol)-poly(lactide) (PEG-PLA) nanoparticle (CBSA-NP), was designed as a novel drug carrier for brain delivery. In this paper, three formulations of CBSA-NP with different surface CBSA density as well as native bovine serum albumin conjugated nanoparticle (BSA-NP) and CBSA unconjugated pegylated nanoparticle (NP), were formulated. Their brain transcytosis across the blood-brain barrier (BBB) coculture and brain delivery in mice were investigated using 6-coumarin as fluorescent probe. By using free CBSA as specific inhibitor, it was evidenced that CBSA-NP crossed the brain capillary endothelium through absorptive mediated transcytosis. The result of transcytosis across the BBB coculture and brain delivery in mice proved that the increase of surface CBSA density of the nanoparticle enhanced the BBB permeability-surface area but decreased blood AUC. The optimized CBSA number conjugated per averaged nanoparticle was 110, with the maleimide-PEG-PLA/methoxy-PEG-PLA weight ratio 1:10, which can acquire the greatest percentage of injected dose per gram brain (%ID/g brain) by 2.3-fold compared with NP. Besides, "accelerated blood clearance phenomenon" was found through evaluating blood clearance profile of CBSA-NP post-injection of single dose or over a period of successive high doses of CBSA-NP. Understanding these issues is important for the future development of CBSA-NP as a brain delivery carrier and for the attenuation of toxicity or immunological responses to the nanodevice following a consequence of nanomedication.

  20. Buccoadhesive drug delivery systems--extensive review on recent patents.

    Science.gov (United States)

    Pathan, Shadab A; Iqbal, Zeenat; Sahani, Jasjeet K; Talegaonkar, Sushma; Khar, Roop K; Ahmad, Farhan J

    2008-01-01

    Peroral administration of drugs, although most preferred by both clinicians and patients has several disadvantages such as hepatic first pass metabolism and enzymatic degradation within the GI tract, that prohibit oral administration of certain classes of drugs especially peptides and proteins. Consequently, other absorptive mucosae are considered as potential sites for administration of these drugs. Among the various transmucosal routes studied the buccal mucosa offers several advantages for controlled drug delivery for extended period of time. The mucosa is well supplied with both vascular and lymphatic drainage and first-pass metabolism in the liver and pre-systemic elimination in the gastrointestinal tract is avoided. The area is well suited for a retentive device and appears to be acceptable to the patient. With the right dosage form, design and formulation, the permeability and the local environment of the mucosa can be controlled and manipulated in order to accommodate drug permeation. Buccal drug delivery is thus a promising area for continued research with the aim of systemic and local delivery of orally inefficient drugs as well as feasible and attractive alternative for non-invasive delivery of potent protein and peptide drug molecules. Extensive review pertaining specifically to the patents relating to buccal drug delivery is currently available. However, many patents e.g. US patents 6, 585,997; US20030059376A1 etc. have been mentioned in few articles. It is the objective of this article to extensively review buccal drug delivery by discussing the recent patents available. Buccal dosage forms will also be reviewed with an emphasis on bioadhesive polymeric based delivery systems.

  1. Carbon nanotubes for delivery of small molecule drugs.

    Science.gov (United States)

    Wong, Bin Sheng; Yoong, Sia Lee; Jagusiak, Anna; Panczyk, Tomasz; Ho, Han Kiat; Ang, Wee Han; Pastorin, Giorgia

    2013-12-01

    In the realm of drug delivery, carbon nanotubes (CNTs) have gained tremendous attention as promising nanocarriers, owing to their distinct characteristics, such as high surface area, enhanced cellular uptake and the possibility to be easily conjugated with many therapeutics, including both small molecules and biologics, displaying superior efficacy, enhanced specificity and diminished side effects. While most CNT-based drug delivery system (DDS) had been engineered to combat cancers, there are also emerging reports that employ CNTs as either the main carrier or adjunct material for the delivery of various non-anticancer drugs. In this review, the delivery of small molecule drugs is expounded, with special attention paid to the current progress of in vitro and in vivo research involving CNT-based DDSs, before finally concluding with some consideration on inevitable complications that hamper successful disease intervention with CNTs. © 2013.

  2. A Microfluidic Ion Pump for In Vivo Drug Delivery

    KAUST Repository

    Uguz, Ilke

    2017-05-15

    Implantable devices offer an alternative to systemic delivery of drugs for the treatment of neurological disorders. A microfluidic ion pump (µFIP), capable of delivering a drug without the solvent through electrophoresis, is developed. The device is characterized in vitro by delivering γ-amino butyric acid to a target solution, and demonstrates low-voltage operation, high drug-delivery capacity, and high ON/OFF ratio. It is also demonstrated that the device is suitable for cortical delivery in vivo by manipulating the local ion concentration in an animal model and altering neural behavior. These results show that µFIPs represent a significant step forward toward the development of implantable drug-delivery systems.

  3. Emerging Technologies of Polymeric Nanoparticles in Cancer Drug Delivery

    International Nuclear Information System (INIS)

    Brewer, E.; Coleman, J.; Lowman, A.

    2011-01-01

    Polymeric nanomaterials have the potential to improve upon present chemotherapy delivery methods. They successfully reduce side effects while increasing dosage, increase residence time in the body, offer a sustained and tunable release, and have the ability to deliver multiple drugs in one carrier. However, traditional nanomaterial formulations have not produced highly therapeutic formulations to date due to their passive delivery methods and lack of rapid drug release at their intended site. In this paper, we have focused on a few smart technologies that further enhance the benefits of typical nanomaterials. Temperature and pH-responsive drug delivery devices were reviewed as methods for triggering release of encapsulating drugs, while aptamer and ligand conjugation were discussed as methods for targeted and intracellular delivery, with emphases on in vitro and in vivo works for each method.

  4. Nanomaterial-based drug delivery carriers for cancer therapy

    CERN Document Server

    Feng, Tao

    2017-01-01

    This brief summarizes different types of organic and inorganic nanomaterials for drug delivery in cancer therapy. It highlights that precisely designed nanomaterials will be the next-generation therapeutic agents for cancer treatment.

  5. Emerging Technologies of Polymeric Nanoparticles in Cancer Drug Delivery

    Directory of Open Access Journals (Sweden)

    Erik Brewer

    2011-01-01

    Full Text Available Polymeric nanomaterials have the potential to improve upon present chemotherapy delivery methods. They successfully reduce side effects while increasing dosage, increase residence time in the body, offer a sustained and tunable release, and have the ability to deliver multiple drugs in one carrier. However, traditional nanomaterial formulations have not produced highly therapeutic formulations to date due to their passive delivery methods and lack of rapid drug release at their intended site. In this paper, we have focused on a few “smart” technologies that further enhance the benefits of typical nanomaterials. Temperature and pH-responsive drug delivery devices were reviewed as methods for triggering release of encapsulating drugs, while aptamer and ligand conjugation were discussed as methods for targeted and intracellular delivery, with emphases on in vitro and in vivo works for each method.

  6. Multiparticulate Drug Delivery Systems for Controlled Release | Dey ...

    African Journals Online (AJOL)

    Pharmaceutical invention and research are increasingly focusing on delivery systems which enhance desirable therapeutic objectives while minimising side effects. Recent trends indicate that multiparticulate drug delivery systems are especially suitable for achieving controlled or delayed release oral formulations with low ...

  7. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation

    Directory of Open Access Journals (Sweden)

    Reshmy Rajan

    2011-01-01

    Full Text Available Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes as transdermal delivery systems of active substances. For a drug to be absorbed and distributed into organs and tissues and eliminated from the body, it must pass through one or more biological membranes/barriers at various locations. Such a movement of drug across the membrane is called as drug transport. For the drugs to be delivered to the body, they should cross the membranous barrier. The concept of these delivery systems was designed in an attempt to concentrate the drug in the tissues of interest, while reducing the amount of drug in the remaining tissues. Hence, surrounding tissues are not affected by the drug. In addition, loss of drug does not happen due to localization of drug, leading to get maximum efficacy of the medication. Therefore, the phospholipid based carrier systems are of considerable interest in this era.

  8. Mucus-penetrating nanoparticles for vaginal and gastrointestinal drug delivery

    Science.gov (United States)

    Ensign-Hodges, Laura

    A method that could provide more uniform and longer-lasting drug delivery to mucosal surfaces holds the potential to greatly improve the effectiveness of prophylactic and therapeutic approaches for numerous diseases and conditions, including sexually transmitted infections and inflammatory bowel disease. However, the body's natural defenses, including adhesive, rapidly cleared mucus linings coating nearly all entry points to the body not covered by skin, has limited the effectiveness of drug and gene delivery by nanoscale delivery systems. Here, we investigate the use of muco-inert mucus-penetrating nanoparticles (MPP) for improving vaginal and gastrointestinal drug delivery. Conventional hydrophobic nanoparticles strongly adhere to mucus, facilitating rapid clearance from the body. Here, we demonstrate that mucoadhesive polystyrene nanoparticles (conventional nanoparticles, CP) become mucus-penetrating in human cervicovaginal mucus (CVM) after pretreatment with sufficient concentrations of Pluronic F127. Importantly, the diffusion rate of large MPP did not change in F127 pretreated CVM, implying there is no affect on the native pore structure of CVM. Additionally, there was no increase in inflammatory cytokine release in the vaginal tract of mice after daily application of 1% F127 for one week. Importantly, HSV virus remains adherent in F127-pretreated CVM. Mucosal epithelia use osmotic gradients for fluid absorption and secretion. We hypothesized that hypotonically-induced fluid uptake could be advantageous for rapidly delivering drugs through mucus to the vaginal epithelium. We evaluated hypotonic formulations for delivering water-soluble drugs and for drug delivery with MPP. Hypotonic formulations markedly increased the rate at which drugs and MPP reached the epithelial surface. Additionally, hypotonic formulations greatly enhanced drug and MPP delivery to the entire epithelial surface, including deep into the vaginal folds (rugae) that isotonic formulations

  9. Chitosan nanoparticles as drug delivery carriers for biomedical engineering

    International Nuclear Information System (INIS)

    Shi, L.E.S.; Chen, M.; XINF, L.Y.; Guo, X.F.; Zhao, L.M.

    2011-01-01

    Chitosan is a rather abundant material, which has been widely used in food industrial and bioengineering aspects, including in encapsulating active food ingredients, in enzyme immobilization, and as a carrier for drug delivery, due to its significant biological and chemical properties such as biodegradable, biocompatible, bioactive and polycationic. This review discussed preparation and applications of chitosan nanoparticles in the biomedical engineering field, namely as a drug delivery carrier for biopharmaceuticals. (author)

  10. Natural polymers, gums and mucilages as excipients in drug delivery.

    Science.gov (United States)

    Kumar, Shobhit; Gupta, Satish Kumar

    2012-01-01

    Use of natural polymers, gums and mucilages in drug delivery systems has been weighed down by the synthetic materials. Natural based excipients offered advantages such as non-toxicity, less cost and abundantly availablity. Aqueous solubility of natural excipients plays an important role in their selection for designing immediate, controlled or sustained release formulations. This review article provide an overview of natural gum, polymers and mucilages as excipients in dosage forms as well as novel drug delivery systems.

  11. Molecularly imprinted polymers as the future drug delivery devices.

    Science.gov (United States)

    Luliński, Piotr

    2013-01-01

    In recent years, the investigations of new drug delivery systems have been directed on the development of some "intelligent" drug delivery devices that are able to directly respond to the patient's individual needs. New drug delivery systems should maximize the efficiency of administrated therapeutic agents and improve the patient's quality of life. Introduction of the new drug delivery devices is an important scientific goal, which could be achieved by combining new technologies and intelligent biomaterials. Molecular imprinting technology has a high potential for the preparation of optimized drug delivery forms. Here, molecularly imprinted polymers (MIPs) are promising new materials for such purposes, but their application in this field is nowadays at a developing stage. In this review, the principles of molecular imprinting and the recognition-release mechanisms of polymeric matrices are discussed. The potential application of molecularly imprinted materials as the future drug delivery systems with various administering routes (transdermal, ocular or oral) are presented, and some future prospects for the imprinted polymers are outlined.

  12. Critical Assessment of Implantable Drug Delivery Devices in Glaucoma Management

    Directory of Open Access Journals (Sweden)

    Dharani Manickavasagam

    2013-01-01

    Full Text Available Glaucoma is a group of heterogeneous disorders involving progressive optic neuropathy that can culminate into visual impairment and irreversible blindness. Effective therapeutic interventions must address underlying vulnerability of retinal ganglion cells (RGCs to degeneration in conjunction with correcting other associated risk factors (such as elevated intraocular pressure. However, realization of therapeutic outcomes is heavily dependent on suitable delivery system that can overcome myriads of anatomical and physiological barriers to intraocular drug delivery. Development of clinically viable sustained release systems in glaucoma is a widely recognized unmet need. In this regard, implantable delivery systems may relieve the burden of chronic drug administration while potentially ensuring high intraocular drug bioavailability. Presently there are no FDA-approved implantable drug delivery devices for glaucoma even though there are several ongoing clinical studies. The paper critically assessed the prospects of polymeric implantable delivery systems in glaucoma while identifying factors that can dictate (a patient tolerability and acceptance, (b drug stability and drug release profiles, (c therapeutic efficacy, and (d toxicity and biocompatibility. The information gathered could be useful in future research and development efforts on implantable delivery systems in glaucoma.

  13. Ophthalmic Drug Delivery Systems for Antibiotherapy—A Review

    Directory of Open Access Journals (Sweden)

    Marion Dubald

    2018-01-01

    Full Text Available The last fifty years, ophthalmic drug delivery research has made much progress, challenging scientists about the advantages and limitations of this drug delivery approach. Topical eye drops are the most commonly used formulation in ocular drug delivery. Despite the good tolerance for patients, this topical administration is only focus on the anterior ocular diseases and had a high precorneal loss of drugs due to the tears production and ocular barriers. Antibiotics are popularly used in solution or in ointment for the ophthalmic route. However, their local bioavailability needs to be improved in order to decrease the frequency of administrations and the side effects and to increase their therapeutic efficiency. For this purpose, sustained release forms for ophthalmic delivery of antibiotics were developed. This review briefly describes the ocular administration with the ocular barriers and the currently topical forms. It focuses on experimental results to bypass the limitations of ocular antibiotic delivery with new ocular technology as colloidal and in situ gelling systems or with the improvement of existing forms as implants and contact lenses. Nanotechnology is presently a promising drug delivery way to provide protection of antibiotics and improve pathway through ocular barriers and deliver drugs to specific target sites.

  14. Micro-Fluidic Device for Drug Delivery

    Science.gov (United States)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2014-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  15. Delivery of Chemotherapeutics Across the Blood–Brain Barrier: Challenges and Advances

    Science.gov (United States)

    Doolittle, Nancy D.; Muldoon, Leslie L.; Culp, Aliana Y.; Neuwelt, Edward A.

    2017-01-01

    The blood–brain barrier (BBB) limits drug delivery to brain tumors. We utilize intraarterial infusion of hyperosmotic mannitol to reversibly open the BBB by shrinking endothelial cells and opening tight junctions between the cells. This approach transiently increases the delivery of chemotherapy, antibodies, and nanoparticles to brain. Our preclinical studies have optimized the BBB disruption (BBBD) technique and clinical studies have shown its safety and efficacy. The delivery of methotrexate-based chemotherapy in conjunction with BBBD provides excellent outcomes in primary central nervous system lymphoma (PCNSL) including stable or improved cognitive function in survivors a median of 12 years (range 2–26 years) after diagnosis. The addition of rituximab to chemotherapy with BBBD for PCNSL can be safely accomplished with excellent overall survival. Our translational studies of thiol agents to protect against platinum-induced toxicities led to the development of a two-compartment model in brain tumor patients. We showed that delayed high-dose sodium thiosulfate protects against carboplatin-induced hearing loss, providing the framework for large cooperative group trials of hearing chemoprotection. Neuroimaging studies have identified that ferumoxytol, an iron oxide nanoparticle blood pool agent, appears to be a superior contrast agent to accurately assess therapy-induced changes in brain tumor vasculature, in brain tumor response to therapy, and in differentiating central nervous system lesions with inflammatory components. This chapter reviews the breakthroughs, challenges, and future directions for BBBD. PMID:25307218

  16. Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems

    International Nuclear Information System (INIS)

    Hwang, Tae Heon; Kim, Jin Bum; Yang, Da Som; Ryu, WonHyoung; Park, Yong-il

    2013-01-01

    Microfluidic drug delivery systems consisting of a drug reservoir and microfluidic channels have shown the possibility of simple and robust modulation of drug release rate. However, the difficulty of loading a small quantity of drug into drug reservoirs at a micro-scale limited further development of such systems. Electrohydrodynamic (EHD) printing was employed to fill micro-reservoirs with controlled amount of drugs in the range of a few hundreds of picograms to tens of micrograms with spatial resolution of as small as 20 µm. Unlike most EHD systems, this system was configured in combination with an inverted microscope that allows in situ targeting of drug loading at micrometer scale accuracy. Methylene blue and rhodamine B were used as model drugs in distilled water, isopropanol and a polymer solution of a biodegradable polymer and dimethyl sulfoxide (DMSO). Also tetracycline-HCl/DI water was used as actual drug ink. The optimal parameters of EHD printing to load an extremely small quantity of drug into microscale drug reservoirs were investigated by changing pumping rates, the strength of an electric field and drug concentration. This targeted EHD technique was used to load drugs into the microreservoirs of PDMS microfluidic drug delivery devices and their drug release performance was demonstrated in vitro. (paper)

  17. Engineering Microneedle Patches for Vaccination and Drug Delivery to Skin.

    Science.gov (United States)

    Prausnitz, Mark R

    2017-06-07

    Microneedle patches (MNPs) contain arrays of solid needles measuring hundreds of microns in length that deliver drugs and vaccines into skin in a painless, easy-to-use manner. Optimal MNP design balances multiple interdependent parameters that determine mechanical strength, skin-insertion reliability, drug delivery efficiency, painlessness, manufacturability, and other features of MNPs that affect their performance. MNPs can be made by adapting various microfabrication technologies for delivery of small-molecule drugs, biologics, and vaccines targeted to the skin, which can have pharmacokinetic and immunologic advantages. A small number of human clinical trials, as well as a large and growing market for MNP products for cosmetics, indicate that MNPs can be used safely, efficaciously, and with strong patient acceptance. More advanced clinical trials and commercial-scale manufacturing will facilitate development of MNPs to realize their potential to dramatically increase patient access to otherwise-injectable drugs and to improve drug performance via skin delivery.

  18. NMR characterisation and transdermal drug delivery potential of microemulsion systems

    DEFF Research Database (Denmark)

    Kreilgaard, Mads; Pedersen, E J; Jaroszewski, J W

    2000-01-01

    The purpose of this study was to investigate the influence of structure and composition of microemulsions (Labrasol/Plurol Isostearique/isostearylic isostearate/water) on their transdermal delivery potential of a lipophilic (lidocaine) and a hydrophilic model drug (prilocaine hydrochloride......), and to compare the drug delivery potential of microemulsions to conventional vehicles. Self-diffusion coefficients determined by pulsed-gradient spin-echo NMR spectroscopy and T(1) relaxation times were used to characterise the microemulsions. Transdermal flux of lidocaine and prilocaine hydrochloride through...... and transdermal flux was indicated. The increased transdermal drug delivery from microemulsion formulations was found to be due mainly to the increased solubility of drugs and appeared to be dependent on the drug mobility in the individual vehicle. The microemulsions did not perturb the skin barrier, indicating...

  19. Design of an implantable device for ocular drug delivery.

    Science.gov (United States)

    Lee, Jae-Hwan; Pidaparti, Ramana M; Atkinson, Gary M; Moorthy, Ramana S

    2012-01-01

    Ocular diseases, such as, glaucoma, age-related macular degeneration (AMD), diabetic retinopathy, and retinitis pigmentosa require drug management in order to prevent blindness and affecting million of adults in USA and worldwide. There is an increasing need to develop devices for drug delivery to address ocular diseases. This study focuses on the design, simulation, and development of an implantable ocular drug delivery device consisting of micro-/nanochannels embedded between top and bottom covers with a drug reservoir made from polydimethylsiloxane (PDMS) which is silicon-based organic and biodegradable polymer. Several simulations were carried out with six different micro-channel configurations in order to see the feasibility for ocular drug delivery applications. Based on the results obtained, channel design of osmotic I and osmotic II satisfied the diffusion rates required for ocular drug delivery. Finally, a prototype illustrating the three components of the drug delivery design is presented. In the future, the device will be tested for its functionality and diffusion characteristics.

  20. Design of an Implantable Device for Ocular Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jae-Hwan Lee

    2012-01-01

    Full Text Available Ocular diseases, such as, glaucoma, age-related macular degeneration (AMD, diabetic retinopathy, and retinitis pigmentosa require drug management in order to prevent blindness and affecting million of adults in USA and worldwide. There is an increasing need to develop devices for drug delivery to address ocular diseases. This study focuses on the design, simulation, and development of an implantable ocular drug delivery device consisting of micro-/nanochannels embedded between top and bottom covers with a drug reservoir made from polydimethylsiloxane (PDMS which is silicon-based organic and biodegradable polymer. Several simulations were carried out with six different micro-channel configurations in order to see the feasibility for ocular drug delivery applications. Based on the results obtained, channel design of osmotic I and osmotic II satisfied the diffusion rates required for ocular drug delivery. Finally, a prototype illustrating the three components of the drug delivery design is presented. In the future, the device will be tested for its functionality and diffusion characteristics.

  1. Computational and experimental model of transdermal iontophorethic drug delivery system.

    Science.gov (United States)

    Filipovic, Nenad; Saveljic, Igor; Rac, Vladislav; Graells, Beatriz Olalde; Bijelic, Goran

    2017-11-30

    The concept of iontophoresis is often applied to increase the transdermal transport of drugs and other bioactive agents into the skin or other tissues. It is a non-invasive drug delivery method which involves electromigration and electroosmosis in addition to diffusion and is shown to be a viable alternative to conventional administration routs such as oral, hypodermic and intravenous injection. In this study we investigated, experimentally and numerically, in vitro drug delivery of dexamethasone sodium phosphate to porcine skin. Different current densities, delivery durations and drug loads were investigated experimentally and introduced as boundary conditions for numerical simulations. Nernst-Planck equation was used for calculation of active substance flux through equivalent model of homogeneous hydrogel and skin layers. The obtained numerical results were in good agreement with experimental observations. A comprehensive in-silico platform, which includes appropriate numerical tools for fitting, could contribute to iontophoretic drug-delivery devices design and correct dosage and drug clearance profiles as well as to perform much faster in-silico experiments to better determine parameters and performance criteria of iontophoretic drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Filled carbon nanotubes in biomedical imaging and drug delivery.

    Science.gov (United States)

    Martincic, Markus; Tobias, Gerard

    2015-04-01

    Carbon nanotubes have been advocated as promising candidates in the biomedical field in the areas of diagnosis and therapy. In terms of drug delivery, the use of carbon nanotubes can overcome some limitations of 'free' drugs by improving the formulation of poorly water-soluble drugs, allowing targeted delivery and even enabling the co-delivery of two or more drugs for combination therapy. Two different approaches are currently being explored for the delivery of diagnostic and therapeutic agents by carbon nanotubes, namely attachment of the payload to the external sidewalls or encapsulation into the inner cavities. Although less explored, the latter confers additional stability to the chosen diagnostic or therapeutic agents, and leaves the backbone structure of the nanotubes available for its functionalization with dispersing and targeting moieties. Several drug delivery systems and diagnostic agents have been developed in the last years employing the inner tubular cavities of carbon nanotubes. The research discussed in this review focuses on the use of carbon nanotubes that contain in their interior drug molecules and diagnosis-related compounds. The approaches employed for the development of such nanoscale vehicles along with targeting and releasing strategies are discussed. The encapsulation of both biomedical contrast agents and drugs inside carbon nanotubes is further expanding the possibilities to allow an early diagnosis and treatment of diseases.

  3. New perspectives on lipid and surfactant based drug delivery systems for oral delivery of poorly soluble drugs

    DEFF Research Database (Denmark)

    Müllertz, Anette; Ogbonna, Anayo; Ren, Shan

    2010-01-01

    The aim of this review is to highlight relevant considerations when implementing a rational strategy for the development of lipid and surfactant based drug delivery system and to discuss shortcomings and challenges to the current classification of these delivery systems. We also aim to offer sugg...

  4. Probenecid Treatment Enhances Retinal and Brain Delivery of N-4-Benzoylaminophenylsulfonylglycine, An Anionic Aldose Reductase Inhibitor

    Science.gov (United States)

    Sunkara, Gangadhar; Ayalasomayajula, Surya P.; DeRuiter, Jack; Kompella, Uday B.

    2009-01-01

    Anion efflux transporters are expected to minimize target tissue delivery of N-[4-(benzoylaminophenyl)sulfonyl]glycine (BAPSG), a novel carboxylic acid aldose reductase inhibitor, which exists as a monocarboxylate anion at physiological conditions. Therefore, the objective of this study was to determine whether BAPSG delivery to various eye tissues including the retina and the brain can be enhanced by probenecid, a competitive inhibitor of anion transporters. To determine the influence of probenecid on eye and brain distribution of BAPSG, probenecid was administered intraperitoneally (120 mg/kg body weight; i.p.) 20 minutes prior to BAPSG (50 mg/kg; i.p.) administration. Drug disposition in various eye tissues including the retina and the brain was determined at 15 min, 1, 2 and 4 hr after BAPSG dose in male Sprauge-Dawley rats. To determine whether probenecid alters plasma clearance of BAPSG, influence of probenecid (120 mg/kg; i.p.) on the plasma pharmacokinetics of intravenously administered BAPSG (15 mg/kg) was studied as well. Finally, the effect of probenecid co-administration on the ocular tissue distribution of BAPSG was assessed in rabbits following topical (eye drop) administration. Following pretreatment with probenecid in the rat study, retinal delivery at 1 hr was increased by about 11 fold (2580 vs 244 ng/gm; pprobenecid pretreatment, significant BAPSG levels were detectable in the brain (45 ± 20 ng/gm) at 1 hr, unlike controls where the drug was not detectable. Plasma concentrations, plasma elimination half-life, and total body clearance of intravenously administered BAPSG were not altered by i.p. probenecid pretreatment. In the topical dosing study, a significant decline in BAPSG delivery was observed in the iris-ciliary body but no significant changes were observed in other tissues of the anterior segment of the eye including tears. Thus, inhibition of anion transporters is a useful approach to elevate retinal and brain delivery of BAPSG. PMID

  5. Polymeric Micro- and Nanofabricatced Devices for Oral Drug Delivery

    Science.gov (United States)

    Fox, Cade Brylee

    While oral drug administration is by far the most preferred route, it is accompanied by many barriers that limit drug uptake such as the low pH of the stomach, metabolic and proteolytic enzymes, and limited permeability of the intestinal epithelium. As a result, many drugs ranging from small molecules to biological therapeutics have limited oral bioavailability, precluding them from oral administration. To address this issue, microfabrication has been applied to create planar, asymmetric devices capable of binding to the lining of the gastrointestinal tract and releasing drug at high concentrations, thereby increasing oral drug uptake. While the efficacy of these devices has been validated in vitro and in vivo, modifying their surfaces with nanoscale features has potential to refine their properties for enhanced drug delivery. This dissertation first presents an approach to fabricate polymeric microdevices coated with nanowires in a rapid, high throughput manner. The nanowires demonstrate rapid drug localization onto the surface of these devices via capillary action and increased adhesion to epithelial tissue, suggesting that this fabrication technique can be used to create devices with enhanced properties for oral drug delivery. Also presented are microdevices sealed with nanostraw membranes. The nanostraw membranes provide sustained drug release by limiting drug efflux from the devices, prevent drug degradation by limiting influx of outside biomolecules, and enhance device bioadhesion by penetrating into the mucus layer of the intestinal lining. Finally, an approach that dramatically increases the capacity and efficiency of drug loading into microdevices over previous methods is presented. A picoliter-volume printer is used to print drug directly into device reservoirs in an automated fashion. The technologies presented here expand the capabilities of microdevices for oral drug delivery by incorporating nanoscale structures that enhance device bioadhesion

  6. NANOSUSPENSIONS: A NOVEL DRUG DELIVERY APPROACH

    OpenAIRE

    Koteshwara K.B.; Reddy M S; Naha Anup; Nampoothiri Madhavan

    2011-01-01

    Nanosuspension is a sub-micron colloidal dispersion of pure particles of drug stabilized by surfactants. Nanosuspensions can be produced such that nanocrystalsappear in final products. Drug Nanosuspensions can be used as intermediateproduct. Formulations of Nanosuspensions are most suitable for drugs with high log P value. Of the various methods like bottom up, precipitation and top down technologies, top down is the most preferred one. Particle size, size distribution and crystalline state a...

  7. Liposome-based drug delivery in breast cancer treatment

    International Nuclear Information System (INIS)

    Park, John W

    2002-01-01

    Drug delivery systems can in principle provide enhanced efficacy and/or reduced toxicity for anticancer agents. Long circulating macromolecular carriers such as liposomes can exploit the 'enhanced permeability and retention' effect for preferential extravasation from tumor vessels. Liposomal anthracyclines have achieved highly efficient drug encapsulation, resulting in significant anticancer activity with reduced cardiotoxicity, and include versions with greatly prolonged circulation such as liposomal daunorubicin and pegylated liposomal doxorubicin. Pegylated liposomal doxorubucin has shown substantial efficacy in breast cancer treatment both as monotherapy and in combination with other chemotherapeutics. Additional liposome constructs are being developed for the delivery of other drugs. The next generation of delivery systems will include true molecular targeting; immunoliposomes and other ligand-directed constructs represent an integration of biological components capable of tumor recognition with delivery technologies

  8. Effects of Psychostimulant Drugs on Developing Brain

    Directory of Open Access Journals (Sweden)

    Ibrahim Durukan

    2013-08-01

    Full Text Available Although psychostimulants have been used for the treatment of attention deficit hyperactivity disorder for approximately 70 years, little is known about the long term effects of these drugs on developing brain. The observable effects of psychostimulants are influenced by the timing of exposure, the age of examination after drug exposure and sex. Preclinical studies point out that chronic psychostimulant exposure before adolescence cause reverse sensitization or tolerance and this leads to reduction in stimulant effectiveness in adolesecence and adulthood. Preclinical studies show the potential long term effects of psychostimulants. But it is necessary to investigate the relationship between preclinical effects and clinical practice. A developmental approach is needed to understand the impact of pediatric medications on the brain that includes assessment at multiple ages to completely characterize the long term effects of these medications. The aim of this paper is to review the effects of psychostimulants on developing brain.

  9. Aptamer-Gated Nanoparticles for Smart Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huseyin Avni Oktem

    2011-08-01

    Full Text Available Aptamers are functional nucleic acid sequences which can bind specific targets. An artificial combinatorial methodology can identify aptamer sequences for any target molecule, from ions to whole cells. Drug delivery systems seek to increase efficacy and reduce side-effects by concentrating the therapeutic agents at specific disease sites in the body. This is generally achieved by specific targeting of inactivated drug molecules. Aptamers which can bind to various cancer cell types selectively and with high affinity have been exploited in a variety of drug delivery systems for therapeutic purposes. Recent progress in selection of cell-specific aptamers has provided new opportunities in targeted drug delivery. Especially functionalization of nanoparticles with such aptamers has drawn major attention in the biosensor and biomedical areas. Moreover, nucleic acids are recognized as an attractive building materials in nanomachines because of their unique molecular recognition properties and structural features. A active controlled delivery of drugs once targeted to a disease site is a major research challenge. Stimuli-responsive gating is one way of achieving controlled release of nanoparticle cargoes. Recent reports incorporate the structural properties of aptamers in controlled release systems of drug delivering nanoparticles. In this review, the strategies for using functional nucleic acids in creating smart drug delivery devices will be explained. The main focus will be on aptamer-incorporated nanoparticle systems for drug delivery purposes in order to assess the future potential of aptamers in the therapeutic area. Special emphasis will be given to the very recent progress in controlled drug release based on molecular gating achieved with aptamers.

  10. Facilitating Intracellular Drug Delivery by Ultrasound-Activated Microbubbles

    NARCIS (Netherlands)

    Lammertink, BHA

    2017-01-01

    The goal of this thesis was to investigate the combination of ultrasound and microbubbles (USMB) for intracellular delivery of (model) drugs in vitro. We have focused on clinically approved drugs, i.e. cisplatin, and microbubbles, i.e. SonoVue™, to facilitate clinical translation. In addition, model

  11. Vaginal drug delivery systems: A Review of Current Status | Dobaria ...

    African Journals Online (AJOL)

    Among the various routes of drug delivery, the vaginal route offers many advantages due to its large permeation area, rich vascularization, avoidance of first pass metabolism and relatively low enzymatic activity. Several studies have shown that the vaginal cavity is an effective route for drug administration intended mainly ...

  12. Wet Process Induced Phase Transited Drug Delivery System as a ...

    African Journals Online (AJOL)

    Nx 6110

    The drug release was found to be independent of the pH but dependent on the osmotic pressure of the dissolution medium. The results of in vivo toxicity studies may support the use of phase transited asymmetric membrane capsules as a means for delivery of gastro-intestinal irritant drugs in a controlled manner through ...

  13. Synthesis, characterization and drug-delivery activity of rifampin ...

    Indian Academy of Sciences (India)

    Poly(vinyl alcohol) (PVA) has wide applications in film industries owing to the hydrophilicity and biocompatibility. In recent times the application of PVA is extended to drug-delivery field. Unfortunately, the thermal stability of PVA is very poor. In order to increase the thermal stability, the drugs were chemically conjugated with ...

  14. Bacterial membrane vesicles as novel nanosystems for drug delivery

    Directory of Open Access Journals (Sweden)

    Jain S

    2017-08-01

    Full Text Available Sapna Jain, Jonathan Pillai Implants, Devices and Drug Delivery Systems Laboratory, Centre for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana, India Abstract: Bacterial membrane vesicles (BMVs are closed spherical nanostructures that are shed naturally and ubiquitously by most bacterial species both in vivo and in vitro. Researchers have elucidated their roles in long-distance transport of a wide array of cargoes, such as proteins, toxins, antigens, virulence factors, microbicidal agents and antibiotics. Given that these natural carriers are important players in intercellular communication, it has been hypothesized that they are equally well attuned for transport and delivery of exogenous therapeutic cargoes. Additionally, BMVs appear to possess specific properties that enable their utilization as drug delivery vehicles. These include their ability to evade the host immune system, protection of the therapeutic payload and natural stability. Using bioengineering approaches, BMVs have been applied as carriers of therapeutic moieties in vaccines and for targeted delivery in cancer. In this article, we explore BMVs from the perspective of understanding their applicability to drug delivery. BMV biology, including biogenesis, physiology and pathology, is briefly reviewed. Practical issues related to bioprocessing, loading of therapeutic moieties and characterization for enabling scalability and commercial viability are evaluated. Finally, challenges to clinical translation and rational design approaches for novel BMV formulations are presented. Although the realization of the full potential of BMVs in drug delivery hinges on the development of scalable approaches for their production as well as the refinement of targeting and loading methods, they are promising candidates for development of a novel generation of drug delivery vehicles in future. Keywords: bacteria, membrane vesicles, immune system

  15. Advances in iontophoresis for drug delivery | Dehghan ...

    African Journals Online (AJOL)

    Iontophoresis is an exciting technology that was initially investigated 250 years ago. Simply defined, it is the application of an electrical potential that maintains a constant electric current across the skin or barrier that enhances the delivery of ionized as well as unionized moieties. In the past few years, different types of

  16. Dry powder inhalers for pulmonary drug delivery

    NARCIS (Netherlands)

    Frijlink, H.W.; De Boer, A.H.

    2004-01-01

    The pulmonary route is an interesting route for drug administration, both for effective local therapy (asthma, chronic obstructive pulmonary disease or cystic fibrosis) and for the systemic administration of drugs (e.g., peptides and proteins). Well-designed dry powder inhalers are highly efficient

  17. Biopharmaceutical aspects of oral drug delivery

    NARCIS (Netherlands)

    Faassen, Werenfriedus Adrianus

    2004-01-01

    Most drugs display their therapeutic activity on specific places in the human body and should reach the systemic circulation in order to be transported towards the site of action. Irrespective of the route of administration the same sequence of steps are of relevance for the exposure to a drug:

  18. Solid lipid nanoparticles for parenteral drug delivery

    NARCIS (Netherlands)

    Wissing, S.A.; Kayser, Oliver; Muller, R.H.

    2004-01-01

    This review describes the use of nanoparticles based on solid lipids for the parenteral application of drugs. Firstly, different types of nanoparticles based on solid lipids such as "solid lipid nanoparticles" (SLN), "nanostructured lipid carriers" (NLC) and "lipid drug conjugate" (LDC)

  19. PEGylated Silk Nanoparticles for Anticancer Drug Delivery

    DEFF Research Database (Denmark)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew

    2015-01-01

    clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines...

  20. Soft Interaction in Liposome Nanocarriers for Therapeutic Drug Delivery

    Directory of Open Access Journals (Sweden)

    Domenico Lombardo

    2016-06-01

    Full Text Available The development of smart nanocarriers for the delivery of therapeutic drugs has experienced considerable expansion in recent decades, with the development of new medicines devoted to cancer treatment. In this respect a wide range of strategies can be developed by employing liposome nanocarriers with desired physico-chemical properties that, by exploiting a combination of a number of suitable soft interactions, can facilitate the transit through the biological barriers from the point of administration up to the site of drug action. As a result, the materials engineer has generated through the bottom up approach a variety of supramolecular nanocarriers for the encapsulation and controlled delivery of therapeutics which have revealed beneficial developments for stabilizing drug compounds, overcoming impediments to cellular and tissue uptake, and improving biodistribution of therapeutic compounds to target sites. Herein we present recent advances in liposome drug delivery by analyzing the main structural features of liposome nanocarriers which strongly influence their interaction in solution. More specifically, we will focus on the analysis of the relevant soft interactions involved in drug delivery processes which are responsible of main behaviour of soft nanocarriers in complex physiological fluids. Investigation of the interaction between liposomes at the molecular level can be considered an important platform for the modeling of the molecular recognition processes occurring between cells. Some relevant strategies to overcome the biological barriers during the drug delivery of the nanocarriers are presented which outline the main structure-properties relationships as well as their advantages (and drawbacks in therapeutic and biomedical applications.

  1. External triggering and triggered targeting strategies for drug delivery

    Science.gov (United States)

    Wang, Yanfei; Kohane, Daniel S.

    2017-06-01

    Drug delivery systems that are externally triggered to release drugs and/or target tissues hold considerable promise for improving the treatment of many diseases by minimizing nonspecific toxicity and enhancing the efficacy of therapy. These drug delivery systems are constructed from materials that are sensitive to a wide range of external stimuli, including light, ultrasound, electrical and magnetic fields, and specific molecules. The responsiveness conferred by these materials allows the release of therapeutics to be triggered on demand and remotely by a physician or patient. In this Review, we describe the rationales for such systems and the types of stimuli that can be deployed, and provide an outlook for the field.

  2. Chitosan and its derivatives as promising drug delivery carriers

    CERN Document Server

    Prabaharan, M

    2012-01-01

    Chitosan, a natural based polymer obtained by alkaline deacetylation of chitin, is non-toxic, biocompatible, and biodegradable. These properties make chitosan a good candidate for the development of conventional and novel drug delivery systems. Recently, there has been a growing interest in the chemical modification of chitosan in order to improve its solubility and widen its applications. Chemical modification of chitosan is useful for the association of bioactive molecules to the polymer and controlling the drug release profile. Chemical modification will introduce desired properties and enlarge the field of the potential applications of chitosan with the choice of various types of side chains. In this monograph, recent studies on the various types of chitosan microspheres are discussed from the viewpoint of drug delivery applications. Moreover, different types of chitosan derivatives developed as controlled drug delivery carriers and their preparation methods are discussed in detail. The modifications disc...

  3. Cubosomes and hexosomes as versatile platforms for drug delivery

    DEFF Research Database (Denmark)

    Mat Azmi, Intan Diana Binti; Moghimi, Seyed M; Yaghmur, Anan

    2015-01-01

    Nonlamellar liquid crystalline phases are attractive platforms for drug solubilization and targeted delivery. The attractiveness of this formulation principle is linked to the nanostructural versatility, compatiblity, digestiblity and bioadhesive properties of their lipid constituents......, and the capability of solubilizing and sustaining the release of amphiphilic, hydrophobic and hydrophilic drugs. Nonlamellar liquid crystalline phases offer two distinct promising strategies in the development of drug delivery systems. These comprise formation of ISAsomes (internally self-assembled 'somes......' or particles) such as cubosomes and hexosomes, and in situ formation of parenteral dosage forms with tunable nanostructures at the site of administration. This review outlines the unique features of cubosomes and hexosomes and their potential utilization as promising platforms for drug delivery....

  4. Lipid nanocarriers (LNC) and their applications in ocular drug delivery.

    Science.gov (United States)

    Puglia, Carmelo; Offerta, Alessia; Carbone, Claudia; Bonina, Francesco; Pignatello, Rosario; Puglisi, Giovanni

    2015-01-01

    The peculiar physio-anatomical structure of the eye and the poor physico-chemical properties of many drug molecules are often responsible for the inefficient treatment of ocular diseases by conventional dosage forms, and justify the development of innovative ocular drug delivery systems. Lipid-based nanocarriers (LNC) are among the newer and interesting colloidal drug delivery systems; they show the capability to improve the local bioavailability of drugs administered by various ocular routes and, therefore, their therapeutic efficacy. Furthermore, their extreme biodegradability and biocompatible chemical nature have secured them the title of 'nanosafe carriers.' This review treats the main features of LNC [namely, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and lipid-drug conjugates (LDC)]; examples and advantages of the application of these colloidal carrier systems for the ophthalmic administration of drugs are presented.

  5. Carbon nanotubes buckypapers for potential transdermal drug delivery

    International Nuclear Information System (INIS)

    Schwengber, Alex; Prado, Héctor J.; Zilli, Darío A.; Bonelli, Pablo R.

    2015-01-01

    Drug loaded buckypapers based on different types of carbon nanotubes (CNTs) were prepared and characterized in order to evaluate their potentialities for the design of novel transdermal drug delivery systems. Lab-synthesized CNTs as well as commercial samples were employed. Clonidine hydrochloride was used as model drug, and the influence of composition of the drug loaded buckypapers and processing variables on in vitro release profiles was investigated. To examine the influence of the drug nature the evaluation was further extended to buckypapers prepared with flurbiprofen and one type of CNTs, their selection being based on the results obtained with the former drug. Scanning electronic microscopy images indicated that the model drugs were finely dispersed on the CNTs. Differential scanning calorimetry, and X-ray diffraction pointed to an amorphous state of both drugs in the buckypapers. A higher degree of CNT–drug superficial interactions resulted in a slower release of the drug. These interactions were in turn affected by the type of CNTs employed (single wall or multiwall CNTs), their functionalization with hydroxyl or carboxyl groups, the chemical structure of the drug, and the CNT:drug mass ratio. Furthermore, the application of a second layer of drug free CNTs on the loaded buckypaper, led to decelerate the drug release and to reduce the burst effect. - Highlights: • Drug loaded buckypapers from carbon nanotubes were prepared and characterized. • Their potentialities for transdermal drug delivery applications were evaluated. • Characteristics of carbon nanotubes and the structure of the drug affected release • A higher carbon nanotube:drug mass ratio decelerated release • Up to one week controlled release profiles were obtained for the drug flurbiprofen

  6. Carbon nanotubes buckypapers for potential transdermal drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Schwengber, Alex [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Prado, Héctor J. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Cátedra de Tecnología Farmacéutica II, Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Zilli, Darío A. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Bonelli, Pablo R. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); and others

    2015-12-01

    Drug loaded buckypapers based on different types of carbon nanotubes (CNTs) were prepared and characterized in order to evaluate their potentialities for the design of novel transdermal drug delivery systems. Lab-synthesized CNTs as well as commercial samples were employed. Clonidine hydrochloride was used as model drug, and the influence of composition of the drug loaded buckypapers and processing variables on in vitro release profiles was investigated. To examine the influence of the drug nature the evaluation was further extended to buckypapers prepared with flurbiprofen and one type of CNTs, their selection being based on the results obtained with the former drug. Scanning electronic microscopy images indicated that the model drugs were finely dispersed on the CNTs. Differential scanning calorimetry, and X-ray diffraction pointed to an amorphous state of both drugs in the buckypapers. A higher degree of CNT–drug superficial interactions resulted in a slower release of the drug. These interactions were in turn affected by the type of CNTs employed (single wall or multiwall CNTs), their functionalization with hydroxyl or carboxyl groups, the chemical structure of the drug, and the CNT:drug mass ratio. Furthermore, the application of a second layer of drug free CNTs on the loaded buckypaper, led to decelerate the drug release and to reduce the burst effect. - Highlights: • Drug loaded buckypapers from carbon nanotubes were prepared and characterized. • Their potentialities for transdermal drug delivery applications were evaluated. • Characteristics of carbon nanotubes and the structure of the drug affected release • A higher carbon nanotube:drug mass ratio decelerated release • Up to one week controlled release profiles were obtained for the drug flurbiprofen.

  7. Development and evaluation of Desvenlafaxine loaded PLGA-chitosan nanoparticles for brain delivery

    Directory of Open Access Journals (Sweden)

    Gui-Feng Tong

    2017-09-01

    Full Text Available Depression is a debilitating psychiatric condition that remains the second most common cause of disability worldwide. Currently, depression affects more than 4 per cent of the world’s population. Most of the drugs intended for clinical management of depression augment the availability of neurotransmitters at the synapse by inhibiting their neuronal reuptake. However, the therapeutic efficacy of antidepressants is often compromised as they are unable to reach brain by the conventional routes of administration. The purpose of the present study was to reconnoiter the potential of mucoadhesive PLGA-chitosan nanoparticles for the delivery of encapsulated Desvenlafaxine to the brain by nose to brain delivery route for superior pharmacokinetic and pharmacodynamic profile of Desvenlafaxine. Desvenlafaxine loaded PLGA-chitosan nanoparticles were prepared by solvent emulsion evaporation technique and optimized for various physiochemical characteristics. The antidepressant efficacy of optimized Desvenlafaxine was evaluated in various rodent depression models together with the biochemical estimation of monoamines in their brain. Further, the levels of Desvenlafaxine in brain and blood plasma were determined at various time intervals for calculation of different pharmacokinetic parameters. The optimized Desvenlafaxine loaded PLGA-chitosan nanoparticles (∼172 nm/+35 mV on intranasal administration significantly reduced the symptoms of depression and enhanced the level of monoamines in the brain in comparison with orally administered Desvenlafaxine. Nose to brain delivery of Desvenlafaxine PLGA-chitosan nanoparticles also enhanced the pharmacokinetic profile of Desvenlafaxine in brain together with their brain/blood ratio at different time points. Thus, intranasal mucoadhesive Desvenlafaxine PLGA-chitosan nanoparticles could be potentially used for the treatment of depression.

  8. Silk Fibroin-Based Nanoparticles for Drug Delivery

    Science.gov (United States)

    Zhao, Zheng; Li, Yi; Xie, Mao-Bin

    2015-01-01

    Silk fibroin (SF) is a protein-based biomacromolecule with excellent biocompatibility, biodegradability and low immunogenicity. The development of SF-based nanoparticles for drug delivery have received considerable attention due to high binding capacity for various drugs, controlled drug release properties and mild preparation conditions. By adjusting the particle size, the chemical structure and properties, the modified or recombinant SF-based nanoparticles can be designed to improve the therapeutic efficiency of drugs encapsulated into these nanoparticles. Therefore, they can be used to deliver small molecule drugs (e.g., anti-cancer drugs), protein and growth factor drugs, gene drugs, etc. This paper reviews recent progress on SF-based nanoparticles, including chemical structure, properties, and preparation methods. In addition, the applications of SF-based nanoparticles as carriers for therapeutic drugs are also reviewed. PMID:25749470

  9. Enema ion compositions for enhancing colorectal drug delivery

    OpenAIRE

    Maisel, Katharina; Chattopadhyay, Sumon; Moench, Thomas; Hendrix, Craig; Cone, Richard; Ensign, Laura M.; Hanes, Justin

    2015-01-01

    Delivering drugs to the colorectum by enema has advantages for treating or preventing both local and systemic diseases. However, the properties of the enema itself are not typically exploited for improving drug delivery. Sodium ions are actively pumped out of the lumen of the colon, which is followed by osmotically-driven water absorption, so we hypothesized that this natural mechanism could be exploited to drive nanoparticles and drugs to the colorectal tissue surface. Here, we report that s...

  10. NOVEL APROACHES ON BUCCAL MUCOADHESIVE DRUG DELIVERY SYSTEM

    OpenAIRE

    Dibyalochan Mohanty* , C. Gurulatha, Dr.Vasudha Bakshi, B. Mavya

    2018-01-01

    Among novel drug delivery system ,Buccal mucoadhesive systems have attracted great attention in recent years due to their ability to adhere and remain on the oral mucosa and to release their drug content gradually ,bioadhesion refers to any bond formed between two biological surface or a bond between a biological and a systemic surface. Buccal mucosa is preferred for both systemic and local drug action. The mucosa has a rich blood supply and it relatively permeable. Buccal mucoadhesive films ...

  11. Approaches in topical ocular drug delivery and developments in the use of contact lenses as drug-delivery devices.

    Science.gov (United States)

    Mehta, Prina; Haj-Ahmad, Rita; Al-Kinani, Ali; Arshad, Muhammad Sohail; Chang, Ming-Wei; Alany, Raid G; Ahmad, Zeeshan

    2017-07-01

    Drug-delivery approaches have diversified over the last two decades with the emergence of nanotechnologies, smart polymeric systems and multimodal functionalities. The intended target for specific treatment of disease is the key defining developing parameter. One such area which has undergone significant advancements relates to ocular delivery. This has been expedited by the development of material advancement, mechanistic concepts and through the deployment of advanced process technologies. This review will focus on the developments within lens-based drug delivery while touching on conventional and current methods of topical ocular drug delivery. A summary table will provide quick reference to note the key findings in this area. In addition, the review also elucidates current theranostic and diagnostic approaches based on ocular lenses.

  12. Development of novel drug delivery prototypes devices for targeted delivery drug therapy at the molecular level in aqueous media.

    Science.gov (United States)

    George, Roy; Oberhozer, Theunis Gerhardus; Perchyonok, Victoria Tamara

    2011-09-01

    A novel approach in target specific molecular prototype drug delivery system concerns the attempt to employ radical affording substances (RAS) or radical quenching substances (RQS) as prodrugs able to produce irreversible damage on the desired target and therefore to stimulate cellular apoptosis. However, radical species generated can react quickly within the chemical environment prior to reaching its proper site of action. In this short communication, we report our investigations towards developing two alternative novel, simple, flexible and effective drug delivery systems that provide optimal dosage of drugs precisely where and when needed and therefore achieve and sustain a complex delivery profile. We have demonstrated the application of two effective molecular prototype delivery systems able to harness free radical reactivity within the laboratory where biological processes can be studied and controlled, leading to the prevention of disease and the development of new treatments for disease states mediated by free radicals.

  13. Nanotechnology-based drug delivery of ropinirole for Parkinson's disease.

    Science.gov (United States)

    Barcia, Emilia; Boeva, Liudmila; García-García, Luis; Slowing, Karla; Fernández-Carballido, Ana; Casanova, Yaquelyn; Negro, Sofía

    2017-11-01

    A new drug delivery system is developed for ropinirole (RP) for the treatment of Parkinson's disease (PD) consisting of biodegradable poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs). The formulation selected was prepared with 8 mg RP and 50 mg PLGA 502. This formulation exhibited mean encapsulation efficiency of 74.8 ± 8.2%, mean particle size lower than 155 nm, the zeta potential of -14.25 ± 0.43 mV and zero-order in vitro release of RP (14.13 ± 0.17 μg/h/10 mg NPs) for 5 d. Daily doses of the neurotoxin rotenone (2 mg/kg) given i.p. to male Wistar rats induced neuronal and behavioral changes similar to those of PD. Once neurodegeneration was established (15 d) animals received RP in saline (1 mg/kg/d for 35 d) or encapsulated within PLGA NPs (amount of NPs equivalent to 1 mg/kg/d RP every 3 d for 35 d). Brain histology and immunochemistry (Nissl-staining, glial fibrillary acidic protein and tyrosine hydroxylase immunohistochemistry) and behavioral testing (catalepsy, akinesia, rotarod and swim test) showed that RP-loaded PLGA NPs were able to revert PD-like symptoms of neurodegeneration in the animal model assayed.

  14. Towards soft robotic devices for site-specific drug delivery.

    Science.gov (United States)

    Alici, Gursel

    2015-01-01

    Considerable research efforts have recently been dedicated to the establishment of various drug delivery systems (DDS) that are mechanical/physical, chemical and biological/molecular DDS. In this paper, we report on the recent advances in site-specific drug delivery (site-specific, controlled, targeted or smart drug delivery are terms used interchangeably in the literature, to mean to transport a drug or a therapeutic agent to a desired location within the body and release it as desired with negligibly small toxicity and side effect compared to classical drug administration means such as peroral, parenteral, transmucosal, topical and inhalation) based on mechanical/physical systems consisting of implantable and robotic drug delivery systems. While we specifically focus on the robotic or autonomous DDS, which can be reprogrammable and provide multiple doses of a drug at a required time and rate, we briefly cover the implanted DDS, which are well-developed relative to the robotic DDS, to highlight the design and performance requirements, and investigate issues associated with the robotic DDS. Critical research issues associated with both DDSs are presented to describe the research challenges ahead of us in order to establish soft robotic devices for clinical and biomedical applications.

  15. Using DNA nanotechnology to produce a drug delivery system

    International Nuclear Information System (INIS)

    La, Thi Huyen; Nguyen, Thi Thu Thuy; Pham, Van Phuc; Nguyen, Thi Minh Huyen; Le, Quang Huan

    2013-01-01

    Drug delivery to cancer cells in chemotherapy is one of the most advanced research topics. The effectiveness of the current cancer treatment drugs is limited because they are not capable of distinguishing between cancer cells and normal cells so that they kill not only cancer cells but also normal ones. To overcome this disadvantage by profiting from the differences in physical and chemical properties between cancer and normal cells, nanoparticles (NPs) delivering a drug are designed in a specific manner such that they can distinguish the cancer cells from the normal ones and are targeted only to the cancer cells. Currently, there are various drug delivery systems with many advantages, but sharing some common disadvantages such as difficulty with controlling the size, low encapsulation capacity and low stability. With the development and success of DNA nanotechnology, DNA strands are used to create effective drug delivery NPs with precisely controlled size and structure, safety and high stability. This article presents our study on drug encapsulation in DNA nanostructure which loaded docetaxel and curcumin in a desire to create a new and effective drug delivery system with high biological compatibility. (paper)

  16. Using DNA nanotechnology to produce a drug delivery system

    Science.gov (United States)

    Huyen La, Thi; Thu Thuy Nguyen, Thi; Phuc Pham, Van; Huyen Nguyen, Thi Minh; Huan Le, Quang

    2013-03-01

    Drug delivery to cancer cells in chemotherapy is one of the most advanced research topics. The effectiveness of the current cancer treatment drugs is limited because they are not capable of distinguishing between cancer cells and normal cells so that they kill not only cancer cells but also normal ones. To overcome this disadvantage by profiting from the differences in physical and chemical properties between cancer and normal cells, nanoparticles (NPs) delivering a drug are designed in a specific manner such that they can distinguish the cancer cells from the normal ones and are targeted only to the cancer cells. Currently, there are various drug delivery systems with many advantages, but sharing some common disadvantages such as difficulty with controlling the size, low encapsulation capacity and low stability. With the development and success of DNA nanotechnology, DNA strands are used to create effective drug delivery NPs with precisely controlled size and structure, safety and high stability. This article presents our study on drug encapsulation in DNA nanostructure which loaded docetaxel and curcumin in a desire to create a new and effective drug delivery system with high biological compatibility. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November, 2012, Ha Long, Vietnam.

  17. REVIEW ON TRANSUNGUAL DRUG DELIVERY SYSTEM

    OpenAIRE

    Jeremiah M Christi*, Chintan Aundhia, Avinash Seth, Nirmal Shah, Dip Kondhia, Snehal Patel

    2017-01-01

    Topical therapy is highly desirable in treating nail disorders due to its localized effects, which results in minimal adverse systemic events and possibly improved adherence. The absorption of drugs into the nail unit, to the nail plate, is highly desirable to treat nail disorders; however, the effectiveness of topical therapies is limited by minimal drug permeability through the nail plate. Nail permeability is however quite low and limits topical therapy to early/mild disease states such as...

  18. Synthesis and Applications of Cellulose Derivatives for Drug Delivery

    Science.gov (United States)

    Marks, Joyann Audrene

    In an effort to produce new derivatives of cellulose for drug delivery applications, methods were developed to regioselectively modify C-6 halo cellulose esters to produce cationic derivatives via nucleophilic substitution. Reaction of C-6 substituted bromo and iodo cellulose with trialkylated amines and phosphines produced new cationic ammonium and phosphonium cellulose derivatives which can be explored as delivery agents for nucleic acids, proteins and other anionic drug molecules. It was anticipated that these new derivatives would not only be capable of complexing anionic drug molecules but would have greatly improved aqueous solubility compared to their precursors. The phosphonium derivatives described in this work are an obvious example of such improved solubility properties. Given the importance of cellulose derivatives in making amorphous dispersions with critical drugs, it has also been important to analyze commercially available polymers for the potential impact in oral drug delivery formulations. To do so pairwise blends of cellulosics and synthetic polymers commonly used as excipients were tested for miscibility using techniques such as DSC, mDSC, FTIR and film clarity. Miscible combinations highlight the potential to use combinations of polymers currently available commercially to provide drug delivery solutions for specific drug formulations. The use of melt extrusion in processing some of these drug/polymer dispersions provides a means of highlighting the capability for the use of these cellulosics in melt extruded amorphous dispersions. This solvent free, high pressure method significantly reduces cost and time and can be applied on a large scale. The analysis of long chain cellulose esters and ultimately the novel omega carboxy esters for melt processability significantly impacts the possibilities available for use of those excellent drug delivery agents on a much larger scale.

  19. A nanoengineered peptidic delivery system with specificity for human brain capillary endothelial cells

    DEFF Research Database (Denmark)

    Wu, Linping; Moghimi, Seyed Moein

    2016-01-01

    by the human brain capillary endothelial cell line hCMEC/D3 was confirmed by live-cell fluorescent microscopy and quantified by flow cytometry. Recognition and internalization was medicated by two receptors leading to endolysosomal accumulation. Furthermore, the network was capable of delivering functional si......The blood–brain-barrier (BBB) is a formidable obstacle for successful translocation of many drug molecules from the systemic circulation into the brain, and therefore a major challenge for neurotherapeutics. Nanoparticles may offer some opportunities for delivery of bioactive molecules into brain......, without manipulating the integrity of the BBB. This may be achieved by simultaneous and appropriate nanoparticle surface decoration with polymers that protect nanoparticles against rapid interception by body's defenses and ligands specific for cerebral capillary endothelial cells. To date, the binding...

  20. Contact lenses for ophthalmic drug delivery.

    Science.gov (United States)

    Hui, Alex

    2017-09-01

    Contact lenses as a means to deliver pharmaceuticals to the eye have seen a significant increase in research interest in the past few years. This review will detail the in vitro experiments which have investigated use of these contact lenses in the context of the desired pharmacological treatment goals in the management of infectious, inflammatory, allergic and glaucomatous diseases of the eye. The techniques researchers have employed to modify and tailor drug release rates from these materials, including the use of vitamin E diffusion barriers, modified ionicity, molecular imprinting and incorporation of drug reservoirs, will be discussed, as well as their impact on drug release kinetics. Finally, the demonstration of the feasibility of these materials when applied in vivo in animal models as well as in humans with and without disease will be presented and their results discussed relating to their implications for the future of the field. © 2017 Optometry Australia.

  1. Nanomedicine: Drug Delivery Systems and Nanoparticle Targeting

    International Nuclear Information System (INIS)

    Youn, Hye Won; Kang, Keon Wook; Chung, Jun Key; Lee, Dong Soo

    2008-01-01

    Applications of nanotechnology in the medical field have provided the fundamentals of tremendous improvement in precise diagnosis and customized therapy. Recent advances in nanomedicine have led to establish a new concept of theragnosis, which utilizes nanomedicines as a therapeutic and diagnostic tool at the same time. The development of high affinity nanoparticles with large surface area and functional groups multiplies diagnostic and therapeutic capacities. Considering the specific conditions related to the disease of individual patient, customized therapy requires the identification of disease target at the cellular and molecular level for reducing side effects and enhancing therapeutic efficiency. Well-designed nanoparticles can minimize unnecessary exposure of cytotoxic drugs and maximize targeted localization of administrated drugs. This review will focus on major pharmaceutical nanomaterials and nanoparticles as key components of designing and surface engineering for targeted theragnostic drug development

  2. Status of surfactants as penetration enhancers in transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Iti Som

    2012-01-01

    Full Text Available Surfactants are found in many existing therapeutic, cosmetic, and agro-chemical preparations. In recent years, surfactants have been employed to enhance the permeation rates of several drugs via transdermal route. The application of transdermal route to a wider range of drugs is limited due to significant barrier to penetration across the skin which is associated with the outermost stratum corneum layer. Surfactants have effects on the permeability characteristics of several biological membranes including skin. They have the potential to solubilize lipids within the stratum corneum. The penetration of the surfactant molecule into the lipid lamellae of the stratum corneum is strongly dependent on the partitioning behavior and solubility of surfactant. Surfactants ranging from hydrophobic agents such as oleic acid to hydrophilic sodium lauryl sulfate have been tested as permeation enhancer to improve drug delivery. This article reviews the status of surfactants as permeation enhancer in transdermal drug delivery of various drugs.

  3. Nanostructured materials for selective recognition and targeted drug delivery

    International Nuclear Information System (INIS)

    Kotrotsiou, O; Kotti, K; Dini, E; Kammona, O; Kiparissides, C

    2005-01-01

    Selective recognition requires the introduction of a molecular memory into a polymer matrix in order to make it capable of rebinding an analyte with a very high specificity. In addition, targeted drug delivery requires drug-loaded vesicles which preferentially localize to the sites of injury and avoid uptake into uninvolved tissues. The rapid evolution of nanotechnology is aiming to fulfill the goal of selective recognition and optimal drug delivery through the development of molecularly imprinted polymeric (MIP) nanoparticles, tailor-made for a diverse range of analytes (e.g., pharmaceuticals, pesticides, amino acids, etc.) and of nanostructured targeted drug carriers (e.g., liposomes and micelles) with increased circulation lifetimes. In the present study, PLGA microparticles containing multilamellar vesicles (MLVs), and MIP nanoparticles were synthesized to be employed as drug carriers and synthetic receptors respectively

  4. Nanoparticle-based drug delivery systems: promising approaches against infections

    Energy Technology Data Exchange (ETDEWEB)

    Ranghar, Shweta; Sirohi, Parul [Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad (India); Verma, Pritam; Agarwal, Vishnu, E-mail: vishnu_agarwal02@rediffmail.com [Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad (India)

    2014-03-15

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  5. Nanostructured lipid carriers system: recent advances in drug delivery.

    Science.gov (United States)

    Iqbal, Md Asif; Md, Shadab; Sahni, Jasjeet Kaur; Baboota, Sanjula; Dang, Shweta; Ali, Javed

    2012-12-01

    Nanostructured lipid carrier (NLC) is second generation smarter drug carrier system having solid matrix at room temperature. This carrier system is made up of physiological, biodegradable and biocompatible lipid materials and surfactants and is accepted by regulatory authorities for application in different drug delivery systems. The availability of many products in the market in short span of time reveals the success story of this delivery system. Since the introduction of the first product, around 30 NLC preparations are commercially available. NLC exhibit superior advantages over other colloidal carriers viz., nanoemulsions, polymeric nanoparticles, liposomes, SLN etc. and thus, have been explored to more extent in pharmaceutical technology. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes NLC versatile delivery system for various routes of administration. The present review gives insights on the definitions and characterization of NLC as colloidal carriers including the production techniques and suitable formulations. This review paper also highlights the importance of NLC in pharmaceutical applications for the various routes of drug delivery viz., topical, oral, pulmonary, ocular and parenteral administration and its future perspective as a pharmaceutical carrier.

  6. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Warangkana Lohcharoenkal

    2014-01-01

    Full Text Available Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  7. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy

    Science.gov (United States)

    Lohcharoenkal, Warangkana; Wang, Liying; Chen, Yi Charlie

    2014-01-01

    Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy. PMID:24772414

  8. Pulmonary drug delivery strategies: A concise, systematic review

    Directory of Open Access Journals (Sweden)

    J S Patil

    2012-01-01

    Full Text Available Because of limitations associated with the conventional treatment of various chronic diseases a growing attention has been given to the development of targeted drug delivery systems. Pulmonary route of drug delivery gaining much importance in the present day research field as it enables to target the drug delivery directly to lung both for local and systemic treatment. Over the last 2 decades, the systemic absorption of a broad range of therapeutics after pulmonary application has been demonstrated in animals as well as in humans. This review was prepared with an aim to discuss the technical, physiological, and efficacy aspects of the novel pulmonary route of drug targeting. The review also focuses on the mechanisms of pulmonary drug administration along with compatibility of the excipients employed, devices used, and techniques of particulate dosage production. This review was prepared based on the method of extensive literature survey on the topics covering all the aspects discussed in the present subject. Hence, the better understanding of complexes and challenges facing the development of pulmonary drug delivery system offer an opportunity to the pharmaceutical scientist in minimizing the clinical and technical gaps.

  9. Use of radiopharmaceuticals in the development of drug delivery systems

    International Nuclear Information System (INIS)

    Frier, M.

    1997-01-01

    Full text. Nuclear medicine imaging techniques have great potential in the study of the behaviour of drug formulations and drug delivery systems in human subjects. No other technique can locate so precisely the site of disintegration of a tablet in the Gl tract, the depth of penetration of a nebulized solution into the lung, or the residence time of a drug on the cornea. By using the gamma camera to image the in vivo distribution of pharmaceutical formulations radio labelled with a suitable gamma emitting radionuclide, images may be used to quantify the biodistribution, release and kinetics of drug formulations and delivery from novel carrier systems and devices. Radionuclide tracer techniques allow correlation between the observed pharmacological effects and the precise site of delivery. The strength of the technique lies in the quantitative nature of radionuclide images. Example will be shown of studies which examine the rate of transit of orally-administered formulations through the GI tract, as well as describing the development of devices for specific targeting of drugs to the colon. Data will also demonstrate the effectiveness of devices such as spacers in pulmonary drug delivery, in both normal volunteers, and in asthmatic subjects. Such studies not only provide data on the nature and characteristics of a product, such as reliability and reproducibility but, may also be used in submission to Regulatory Authorities in product registration dossiers

  10. A review of nebulized drug delivery in COPD

    Directory of Open Access Journals (Sweden)

    Tashkin DP

    2016-10-01

    Full Text Available Donald P Tashkin Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA Abstract: Current guidelines recommend inhaled pharmacologic therapy as the preferred route of administration for treating COPD. Bronchodilators (β2-agonists and antimuscarinics are the mainstay of pharmacologic therapy in patients with COPD, with long-acting agents recommended for patients with moderate to severe symptoms or those who are at a higher risk for COPD exacerbations. Dry powder inhalers and pressurized metered dose inhalers are the most commonly used drug delivery devices, but they may be inadequate in various clinical scenarios (eg, the elderly, the cognitively impaired, and hospitalized patients. As more drugs become available in solution formulations, patients with COPD and their caregivers are becoming increasingly satisfied with nebulized drug delivery, which provides benefits similar to drugs delivered by handheld inhalers in both symptom relief and improved quality of life. This article reviews recent innovations in nebulized drug delivery and the important role of nebulized therapy in the treatment of COPD. Keywords: COPD, nebulized drug delivery, pharmacologic therapy

  11. Nanoparticle-based drug delivery systems: promising approaches against infections

    International Nuclear Information System (INIS)

    Ranghar, Shweta; Sirohi, Parul; Verma, Pritam; Agarwal, Vishnu

    2014-01-01

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  12. Strategies for improving drug delivery: nanocarriers and microenvironmental priming.

    Science.gov (United States)

    Khalid, Ayesha; Persano, Stefano; Shen, Haifa; Zhao, Yuliang; Blanco, Elvin; Ferrari, Mauro; Wolfram, Joy

    2017-07-01

    The ultimate goal in the field of drug delivery is to exclusively direct therapeutic agents to pathological tissues in order to increase therapeutic efficacy and eliminate side effects. This goal is challenging due to multiple transport obstacles in the body. Strategies that improve drug transport exploit differences in the characteristics of normal and pathological tissues. Within the field of oncology, these concepts have laid the groundwork for a new discipline termed transport oncophysics. Areas covered: Efforts to improve drug biodistribution have mainly focused on nanocarriers that enable preferential accumulation of drugs in diseased tissues. A less common approach to enhance drug transport involves priming strategies that modulate the biological environment in ways that favor localized drug delivery. This review discusses a variety of priming and nanoparticle design strategies that have been used for drug delivery. Expert opinion: Combinations of priming agents and nanocarriers are likely to yield optimal drug distribution profiles. Although priming strategies have yet to be widely implemented, they represent promising solutions for overcoming biological transport barriers. In fact, such strategies are not restricted to priming the tumor microenvironment but can also be directed toward healthy tissue in order to reduce nanoparticle uptake.

  13. Designer lipids for drug delivery: from heads to tails

    Science.gov (United States)

    Kohli, Aditya G.; Kierstead, Paul H.; Venditto, Vincent J.; Walsh, Colin L.; Szoka, Francis C.

    2014-01-01

    For four decades, liposomes composed of both naturally occurring and synthetic lipids have been investigated as delivery vehicles for low molecular weight and macromolecular drugs. These studies paved the way for the clinical and commercial success of a number of liposomal drugs, each of which required a tailored formulation; one liposome size does not fit all drugs! Instead, the physicochemical properties of the liposome must be matched to the pharmacology of the drug. An extensive biophysical literature demonstrates that varying lipid composition can influence the size, membrane stability, in vivo interactions, and drug release properties of a liposome. In this review we focus on recently described synthetic lipid headgroups, linkers and hydrophobic domains that can provide control over the intermolecular forces, phase preference, and macroscopic behavior of liposomes. These synthetic lipids further our understanding of lipid biophysics, promote targeted drug delivery, and improve liposome stability. We further highlight the immune reactivity of novel synthetic headgroups as a key design consideration. For instance it was originally thought that synthetic PEGylated lipids were immunologically inert; however, it’s been observed that under certain conditions PEGylated lipids induce humoral immunity. Such immune activation may be a limitation to the use of other engineered lipid headgroups for drug delivery. In addition to the potential immunogenicity of engineered lipids, future investigations on liposome drugs in vivo should pay particular attention to the location and dynamics of payload release. PMID:24816069

  14. Delivery of aerosolized drugs encapsulated in liposomes

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yung-Sung; Lyons, C.R. [Univ. of New Mexico, Albuquerque, NM (United States); Schmid, M.H.

    1995-12-01

    Mycobacterium tuberculosis (Mtb) is an infectious disease that resides in the human lung. Due to the difficulty in completely killing off the disease in infected individuals, Mtb has developed drug-resistant forms and is on the rise in the human population. Therefore, ITRI and the University of New Mexico are collaborating to explore the treatment of Mtb by an aerosolized drug delivered directly to the lungs. In conclusion, it is feasible to obtain an appropriate size and concentration of the liposomes before and after aerosolization.

  15. Self-assembled amphiphilic core-shell nanocarriers in line with the modern strategies for brain delivery.

    Science.gov (United States)

    Elezaby, Reham S; Gad, Heba A; Metwally, Abdelkader A; Geneidi, Ahmed S; Awad, Gehanne A

    2017-09-10

    Disorders of the central nervous system (CNS) represent increasing social and economic problems all over the world which makes the effective transport of drugs to the brain a crucial need. In the last decade, many strategies were introduced to deliver drugs to the brain trying to overcome the challenge of the blood brain barrier (BBB) using both invasive and non-invasive methods. Non-invasive strategy represented in the application of nanocarriers became very common. One of the most hopeful nanoscopic carriers for brain delivery is core-shell nanocarriers or polymeric micelles (PMs). They are more advantageous than other nanocarriers. They offer small size, ease of preparation, ease of sterilization and the possibility of surface modification with various ligands. Hence, the aim of this review is to discuss modern strategies for brain delivery, micelles as a successful delivery system for the brain and how micelles could be modified to act as "magic bullets" for brain delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    Science.gov (United States)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state

  17. Applications of polymers in intraocular drug delivery systems

    Directory of Open Access Journals (Sweden)

    Ali Mohammed Alhalafi

    2017-01-01

    Full Text Available We are entering a new era of ophthalmic pharmacology where new drugs are rapidly being developed for the treatment of anterior and posterior segment of the eye disease. The pharmacokinetics of drug delivery to the eye remains a very active area of ophthalmic research. Intraocular drug delivery systems allow the release of the drug, bypassing the blood–ocular barrier. The main advantage of these preparations is that they can release the drug over a long time with one single administration. These pharmaceutical systems are of great important in the treatment of the posterior segment diseases, and they can be prepared from biodegradable or nonbiodegradable polymers. Biodegradable polymers have the advantage of disappearing from the site of action after releasing the drug. The majority of intraocular devices are prepared from nonbiodegradable polymers, and they can release controlled amounts of drugs for months. Nonbiodegradable polymers include silicone, polyvinyl alcohol, and ethylene-vinyl acetate. The polymers usually employed to prepare nanoparticles for the topical ophthalmic route are poly (acrylic acid derivatives (polyalquilcyanocrylates, albumin, poly-μ-caprolactone, and chitosan. Dendrimers are a recent class of polymeric materials with unique nanostructure which has been studied to discover their role in the delivery of therapeutics and imaging agents. Hydrogels are polymers that can swell in aqueous solvent system, and they hold the solvents in a swollen cross-linked gel for delivery. This review exhibits the current literature regarding applications of polymers in ophthalmic drug delivery systems including pharmacokinetics, advantages, disadvantages, and indications aimed to obtain successful eye therapy. Method of Literature Search: A systematic literature review was performed using PubMed databases into two steps. The first step was oriented to classification of intraocular polymers implants focusing on their advantages and

  18. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery

    Directory of Open Access Journals (Sweden)

    Munawar A. Mohammed

    2017-11-01

    Full Text Available The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded as safe for human dietary use and approved for wound dressing applications. Chitosan has been used as a carrier in polymeric nanoparticles for drug delivery through various routes of administration. Chitosan has chemical functional groups that can be modified to achieve specific goals, making it a polymer with a tremendous range of potential applications. Nanoparticles (NP prepared with chitosan and chitosan derivatives typically possess a positive surface charge and mucoadhesive properties such that can adhere to mucus membranes and release the drug payload in a sustained release manner. Chitosan-based NP have various applications in non-parenteral drug delivery for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections which will be exemplified in this review. Chitosan shows low toxicity both in vitro and some in vivo models. This review explores recent research on chitosan based NP for non-parenteral drug delivery, chitosan properties, modification, toxicity, pharmacokinetics and preclinical studies.

  19. Improved treatment of nicotine addiction and emerging pulmonary drug delivery.

    Science.gov (United States)

    Islam, Nazrul; Rahman, Shafiqur

    2012-06-01

    Nicotine addiction remains the leading cause of death and disease in developed and developing nations and a major cause of mortality around the world. Currently, nicotine replacement therapies (NRTs), bupropion, and varenicline are approved by the regulatory agencies as first-line treatments for nicotine addiction. Emerging evidence indicates that varenicline and bupropion have some therapeutic limitations for treating nicotine addiction with oral route of administration. Thus, continued investigation of innovative drug delivery for nicotine addiction remains a critical priority. This review will discuss some novel strategies and future directions for pulmonary drug delivery, an emerging route of administration for smoking cessation. It is anticipated that the advancement of knowledge on pulmonary drug delivery will provide better management for nicotine addiction and other addictive disorders.

  20. Oral transmucosal drug delivery--current status and future prospects.

    Science.gov (United States)

    Sattar, Mohammed; Sayed, Ossama M; Lane, Majella E

    2014-08-25

    Oral transmucosal drug delivery (OTDD) dosage forms have been available since the 1980s. In contrast to the number of actives currently delivered locally to the oral cavity, the number delivered as buccal or sublingual formulations remains relatively low. This is surprising in view of the advantages associated with OTDD, compared with conventional oral drug delivery. This review examines a number of aspects related to OTDD including the anatomy of the oral cavity, models currently used to study OTDD, as well as commercially available formulations and emerging technologies. The limitations of current methodologies to study OTDD are considered as well as recent publications and new approaches which have advanced our understanding of this route of drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A clinical perspective on mucoadhesive buccal drug delivery systems

    Science.gov (United States)

    Gilhotra, Ritu M; Ikram, Mohd; Srivastava, Sunny; Gilhotra, Neeraj

    2014-01-01

    Mucoadhesion can be defined as a state in which two components, of which one is of biological origin, are held together for extended periods of time by the help of interfacial forces. Among the various transmucosal routes, buccal mucosa has excellent accessibility and relatively immobile mucosa, hence suitable for administration of retentive dosage form. The objective of this paper is to review the works done so far in the field of mucoadhesive buccal drug delivery systems (MBDDS), with a clinical perspective. Starting with a brief introduction of the mucoadhesive drug delivery systems, oral mucosa, and the theories of mucoadhesion, this article then proceeds to cover the works done so far in the field of MBDDS, categorizing them on the basis of ailments they are meant to cure. Additionally, we focus on the various patents, recent advancements, and challenges as well as the future prospects for mucoadhesive buccal drug delivery systems. PMID:24683406

  2. Peptide-based soft materials as potential drug delivery vehicles.

    Science.gov (United States)

    Verma, Sandeep; Joshi, K B; Ghosh, Surajit

    2007-11-01

    Emerging concepts in the construction of nanostructures hold immense potential in the areas of drug delivery and targeting. Such nanoscopic assemblies/structures, similar to natural proteins and self-associating systems, may lead to the formation of programmable soft structures with expanded drug delivery options and the capability to circumvent first-pass metabolism. This article aims to illustrate key recent developments and innovative bioinspired design paradigms pertaining to peptide-containing self-assembled tubular and vesicular soft structures. Soft structures are composed of components that self-assemble to reveal diverse morphologies stabilized by weak, noncovalent interactions. Morphological properties of such structures and their ability to encapsulate drugs, biologicals and bioactive small molecules, with the promise of targeted delivery, are discussed.

  3. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    Science.gov (United States)

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2015-05-01

    Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (A549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment.

  4. Significant role of cationic polymers in drug delivery systems.

    Science.gov (United States)

    Farshbaf, Masoud; Davaran, Soodabeh; Zarebkohan, Amir; Annabi, Nasim; Akbarzadeh, Abolfazl; Salehi, Roya

    2017-11-06

    Cationic polymers are characterized as the macromolecules that possess positive charges, which can be either inherently in the polymer side chains and/or its backbone. Based on their origins, cationic polymers are divided in two category including natural and synthetic, in which the possessed positive charges are as result of primary, secondary or tertiary amine functional groups that could be protonated in particular situations. Cationic polymers have been employed commonly as drug delivery agents due to their superior encapsulation efficacy, enhanced bioavailability, low toxicity and improved release profile. In this paper, we focus on the most prominent examples of cationic polymers which have been revealed to be applicable in drug delivery systems and we also discuss their general synthesis and surface modification methods as well as their controlled release profile in drug delivery.

  5. Receptor-Mediated Endocytosis and Brain Delivery of Therapeutic Biologics

    Directory of Open Access Journals (Sweden)

    Guangqing Xiao

    2013-01-01

    Full Text Available Transport of macromolecules across the blood-brain-barrier (BBB requires both specific and nonspecific interactions between macromolecules and proteins/receptors expressed on the luminal and/or the abluminal surfaces of the brain capillary endothelial cells. Endocytosis and transcytosis play important roles in the distribution of macromolecules. Due to the tight junction of BBB, brain delivery of traditional therapeutic proteins with large molecular weight is generally not possible. There are multiple pathways through which macromolecules can be taken up into cells through both specific and nonspecific interactions with proteins/receptors on the cell surface. This review is focused on the current knowledge of receptor-mediated endocytosis/transcytosis and brain delivery using the Angiopep-2-conjugated system and the molecular Trojan horses. In addition, the role of neonatal Fc receptor (FcRn in regulating the efflux of Immunoglobulin G (IgG from brain to blood, and approaches to improve the pharmacokinetics of therapeutic biologics by generating Fc fusion proteins, and increasing the pH dependent binding affinity between Fc and FcRn, are discussed.

  6. Quantification of convection-enhanced delivery to the ischemic brain

    International Nuclear Information System (INIS)

    Haar, Peter J; Broaddus, William C; Chen, Zhi-jian; Gillies, George T; Fatouros, Panos P; Corwin, Frank D

    2010-01-01

    Convection-enhanced delivery (CED) could have clinical application in the delivery of neuroprotective agents following ischemic stroke. However, ischemic brain tissue changes such as cytotoxic edema, in which cellular swelling decreases the fractional volume of the extracellular space, would be expected to significantly alter the distribution of neuroprotective agents delivered by CED. We sought to predict and characterize these effects using the magnetic resonance contrast agent gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) as a model therapeutic agent. CED was observed using MRI in a normal rat brain and in a middle cerebral artery (MCA) occlusion rat model of brain ischemia. Gd-DTPA was infused to the caudate putamen in the normal rat (n = 6) and MCA occlusion model (n = 6). In each rat, baseline apparent diffusion coefficient images were acquired prior to infusion, and T1 maps were then acquired 13 times throughout the duration of the experiment. These T1 maps were used to compute Gd-DTPA concentrations throughout each brain. In the MCA occlusion group, CED delivered Gd-DTPA to a comparatively larger volume with lower average tissue concentrations. Following the infusion, the total content of Gd-DTPA decreased more slowly in the MCA occlusion group than in the normal group. This quantitative characterization confirms that edematous ischemic tissue changes alter the distribution of agents by CED. These findings may have important implications for CED in the treatment of brain injury, and will assist in future efforts to model the distribution of therapeutic agents

  7. Nasal Inserts for Drug Delivery: An Overview

    African Journals Online (AJOL)

    hepatic first pass metabolism, and make possible the release of active ingredient in a controlled manner. In this review, the benefits, limitations ... With regard to absorption, good penetration of lipophilic molecules and low molecular ..... be a useful tool for in vitro screening of nasal drug candidates [63]. Excised and cultured ...

  8. Chronotherapeutics and Chronotherapeutic Drug Delivery Systems ...

    African Journals Online (AJOL)

    Chronotherapeutics refers to a treatment method in which in vivo drug availability is timed to match rhythms of disease, in order to optimise therapeutic outcomes and minimise side effects. It is based on the observation that there is an interdependent relationship between peak-to-trough rhythmic activity in disease symptoms ...

  9. Brain delivery of NAP with PEG-PLGA nanoparticles modified with phage display peptides.

    Science.gov (United States)

    Li, Jingwei; Zhang, Chi; Li, Jing; Fan, Li; Jiang, Xinguo; Chen, Jun; Pang, Zhiqing; Zhang, Qizhi

    2013-07-01

    A phage-displayed peptide TGN was used as a targeting motif to help the delivery of NAP-loaded nanoparticles across the blood-brain barrier (BBB), which sets an obstacle for brain delivery of NAP in vivo. Intracerebroventricular injection of Aβ₁₋₄₀ into mice was used to construct in vivo model of Alzheimer's disease. The water maze task was performed to evaluate the effects of the NAP formulations on learning and memory deficits in mice. The neuroprotective effect was tested by detecting acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) activity and conducting histological assays. Intravenous administration of NAP-loaded TGN modified nanoparticles (TGN-NP/NAP) has shown better improvement in spatial learning than NAP solution and NAP-loaded nanoparticles in Morris water maze experiment. The crossing number of the mice with memory deficits recovered after treatment with TGN-NP/NAP in a dose dependent manner. Similar results were also observed in AChE and ChAT activity. No morphological damage and no detectable Aβ plaques were found in mice hippocampus and cortex treated with TGN-NP/NAP. TGN modified nanoparticles could be a promising drug delivery system for peptide and protein drug such as NAP to enter the brain and play the therapeutic role.

  10. Brain-targeted delivery of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles.

    Directory of Open Access Journals (Sweden)

    Xiangru Wen

    Full Text Available Magnetic poly (D,L-lactide-co-glycolide (PLGA/lipid nanoparticles (MPLs were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol (DSPE-PEG-NH2, and magnetic nanoparticles (NPs, and then conjugated to trans-activating transcriptor (TAT peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES, naringin (NAR, and glutathione (GSH were encapsulated in MPLs with drug loading capacity (>10% and drug encapsulation efficiency (>90%. The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain.

  11. Nanocomposites chitosan/montmorillonite for drug delivery system

    International Nuclear Information System (INIS)

    Braga, Carla R. Costa; Barbosa, Rossemberg C.; Lima, Rosemary S. Cunha; Fook, Marcus V. Lia; Silva, Suedina M. Lima

    2009-01-01

    In drugs delivery system the incorporation of an inorganic nanophase in polymer matrix, i.e. production of an inorganic-organic nanocomposite is an attractive alternative to obtain a constant release rate for a prolonged time. This study was performed to obtain films of nanocomposites Chitosan/montmorillonite intercalation by the technique of solution in the proportions of 1:1, 5:1 and 10:1. The nanocomposites were characterized by infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. The results indicated that the feasibility of obtaining films of nanocomposites exfoliate. Among the suggested applications for films developed in this study includes them use for drugs delivery system. (author)

  12. Selenium nanoparticles: potential in cancer gene and drug delivery.

    Science.gov (United States)

    Maiyo, Fiona; Singh, Moganavelli

    2017-05-01

    In recent decades, colloidal selenium nanoparticles have emerged as exceptional selenium species with reported chemopreventative and therapeutic properties. This has sparked widespread interest in their use as a carrier of therapeutic agents with results displaying synergistic effects of selenium with its therapeutic cargo and improved anticancer activity. Functionalization remains a critical step in selenium nanoparticles' development for application in gene or drug delivery. In this review, we highlight recent developments in the synthesis and functionalization strategies of selenium nanoparticles used in cancer drug and gene delivery systems. We also provide an update of recent preclinical studies utilizing selenium nanoparticles in cancer therapeutics.

  13. Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review

    Science.gov (United States)

    Hampel, Silke; Spizzirri, Umile Gianfranco; Parisi, Ortensia Ilaria; Picci, Nevio; Iemma, Francesca

    2014-01-01

    The use of biologics, polymers, silicon materials, carbon materials, and metals has been proposed for the preparation of innovative drug delivery devices. One of the most promising materials in this field are the carbon-nanotubes composites and hybrid materials coupling the advantages of polymers (biocompatibility and biodegradability) with those of carbon nanotubes (cellular uptake, stability, electromagnatic, and magnetic behavior). The applicability of polymer-carbon nanotubes composites in drug delivery, with particular attention to the controlled release by composites hydrogel, is being extensively investigated in the present review. PMID:24587993

  14. Nanotechnology inspired advanced engineering fundamentals for optimizing drug delivery.

    Science.gov (United States)

    Kassem, Ahmed Alaa

    2018-02-06

    Drug toxicity and inefficacy are commonly experienced problems with drug therapy failure. To face these problems, extensive research work took place aiming to design new dosage forms for drug delivery especially nanoparticulate systems. These systems are designed to increase the quantity of the therapeutic molecule delivered to the desired site concurrently with reduced side effects. In order to achieve this objective, nanocarriers must principally display suitable drug vehiculization abilities and a controlled biological destiny of drug molecules. Only the intelligent design of the nanomedicine will accomplish these fundamentals. The present review article is dedicated to the discussion of the important fundamentals to be considered in the fabrication of nanomedicines. These include the therapeutic agent, the nanocarrier and the functionalization moieties. Special consideration is devoted to the explanation and compilation of highly potential fabrication approaches assisting how to control the in vivo destiny of the nanomedicine. Finally, some nanotechnology-based drug delivery systems, for the development of nanomedicine, are also discussed. The nanotechnology-based drug delivery systems showed remarkable outcomes based on passive and active targeting as well as improvement of the drug pharmacodynamic and pharmacokinetic profiles. Multifunctional nanocarrier concept affords a revolutionary drug delivery approach for maximizing the efficacy, safety and monitoring the biological fate of the therapeutic molecule. Nanomedicines may enhance the efficacy of therapeutic molecules and reduce their toxic effects. Meanwhile, further research works are required to rightly optimize (and define) the effectiveness, nanotoxicity, in vivo destiny and feasibility of these nanomedicines which, from a preclinical standpoint, are actually promising. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Drug delivery to the inner ear

    Science.gov (United States)

    Wise, Andrew K.; Gillespie, Lisa N.

    2012-12-01

    Bionic devices electrically activate neural populations to partially restore lost function. Of fundamental importance is the functional integrity of the targeted neurons. However, in many conditions the ongoing pathology can lead to continued neural degeneration and death that may compromise the effectiveness of the device and limit future strategies to improve performance. The use of drugs that can prevent nerve cell degeneration and promote their regeneration may improve clinical outcomes. In this paper we focus on strategies of delivering neuroprotective drugs to the auditory system in a way that is safe and clinically relevant for use in combination with a cochlear implant. The aim of this approach is to prevent neural degeneration and promote nerve regrowth in order to improve outcomes for cochlear implant recipients using techniques that can be translated to the clinic.

  16. Drug delivery with topically applied nanoparticles: science fiction or reality.

    Science.gov (United States)

    Lademann, J; Richter, H; Meinke, M C; Lange-Asschenfeldt, B; Antoniou, C; Mak, W C; Renneberg, R; Sterry, W; Patzelt, A

    2013-01-01

    The efficacy of topically applied drugs is determined by their action mechanism and their potential capacity of passing the skin barrier. Nanoparticles are assumed to be efficient carrier systems for drug delivery through the skin barrier. For flexible nanoparticles like liposomes, this effect has been well demonstrated. The penetration properties of solid nanoparticles are currently under intensive investigation. The crucial advantage of nanoparticles over non-particulate substances is their capability to penetrate deeply into the hair follicles where they can be stored for several days. There is no evidence, yet, that solid particles ≥40 nm are capable of passing through the healthy skin barrier. Therefore and in spite of the long-standing research efforts in this field, commercially available solid nanoparticle-based products for drug delivery through the healthy skin are still missing. Nevertheless, the prospects for the clinical use of nanoparticles in drug delivery are tremendous. They can be designed as transport systems delivering drugs efficiently into the hair follicles in the vicinity of specific target structures. Once deposited at these structures, specific signals might trigger the release of the drugs and exert their effects on the target cells. In this article, examples of such triggered drug release are presented. © 2013 S. Karger AG, Basel.

  17. Ex vivo investigation of magnetically targeted drug delivery system

    International Nuclear Information System (INIS)

    Yoshida, Y.; Fukui, S.; Fujimoto, S.; Mishima, F.; Takeda, S.; Izumi, Y.; Ohtani, S.; Fujitani, Y.; Nishijima, S.

    2007-01-01

    In conventional systemic drug delivery the drug is administered by intravenous injection; it then travels to the heart from where it is pumped to all regions of the body. When the drug is aimed at a small target region, this method is extremely inefficient and leads to require much larger doses than those being necessary. In order to overcome this problem a number of targeted drug delivery methods are developed. One of these, magnetically targeted drug delivery system (MT-DDS) will be a promising way, which involves binding a drug to small biocompatible magnetic particles, injecting these into the blood stream and using a high gradient magnetic field to pull them out of suspension in the target region. In the present paper, we describe an ex vivo experimental work. It is also reported that navigation and accumulation test of the magnetic particles in the Y-shaped glass tube was performed in order to examine the threshold of the magnetic force for accumulation. It is found that accumulation of the magnetic particles was succeeded in the blood vessel when a permanent magnet was placed at the vicinity of the blood vessel. This result indicates the feasibility of the magnetically drug targeting in the blood vessel

  18. 3D printed drug delivery devices: perspectives and technical challenges.

    Science.gov (United States)

    Palo, Mirja; Holländer, Jenny; Suominen, Jaakko; Yliruusi, Jouko; Sandler, Niklas

    2017-09-01

    The technological advancements in the pharmaceutical field are constantly improving and provide various possibilities for meeting the needs of personalized drug therapy. The three-dimensional (3D) printing technology has endless potential in the fabrication of patient-specific drug delivery devices (DDD) and dosage forms as the technological development is progressing. Moreover, the rapidly evolving research on 3D printed DDD has enabled us to determine several challenges related to the manufacturing and marketing of personalized drug delivery systems. Areas covered: In this review, an overview is provided on the relevant accomplishments in the development of 3D printed drug delivery systems, as well as the technical challenges surrounding the 3D printing of personalized drug-loaded medical devices and dosage forms. Furthermore, observations are presented on the future perspectives of pharmaceutical 3D printing. Expert commentary: The 3D printing has enabled the fabrication of prototypes of DDD with varying complexity and shows that customization of drug products is possible. There is potential to improve patient-specific drug therapies of the future using printing technologies. The technological advancements, new scientific concepts, interdisciplinary work and defined regulatory guidelines will continue to support and strengthen the prospects of 3D printing as an option in the manufacture of medical products.

  19. Hydrogel nanoparticles and nanocomposites for nasal drug/vaccine delivery.

    Science.gov (United States)

    Salatin, Sara; Barar, Jaleh; Barzegar-Jalali, Mohammad; Adibkia, Khosro; Milani, Mitra Alami; Jelvehgari, Mitra

    2016-09-01

    Over the past few years, nasal drug delivery has attracted more and more attentions, and been recognized as the most promising alternative route for the systemic medication of drugs limited to intravenous administration. Many experiments in animal models have shown that nanoscale carriers have the ability to enhance the nasal delivery of peptide/protein drugs and vaccines compared to the conventional drug solution formulations. However, the rapid mucociliary clearance of the drug-loaded nanoparticles can cause a reduction in bioavailability percentage after intranasal administration. Thus, research efforts have considerably been directed towards the development of hydrogel nanosystems which have mucoadhesive properties in order to maximize the residence time, and hence increase the period of contact with the nasal mucosa and enhance the drug absorption. It is most certain that the high viscosity of hydrogel-based nanosystems can efficiently offer this mucoadhesive property. This update review discusses the possible benefits of using hydrogel polymer-based nanoparticles and hydrogel nanocomposites for drug/vaccine delivery through the intranasal administration.

  20. Stereocomplex-Reinforced PEGylated Polylactide Micelle for Optimized Drug Delivery

    Directory of Open Access Journals (Sweden)

    Chunsheng Feng

    2016-04-01

    Full Text Available The instability of PEGylated polylactide micelles is a challenge for drug delivery. Stereocomplex interaction between racemic polylactide chains with different configurations provides an effective strategy to enhance the stability of micelles as the nanocarriers of drugs. In this work, a stereocomplex micelle (SCM self-assembled from the amphiphilic triblock copolymers comprising poly(ethylene glycol (PEG, and dextrorotatory and levorotatory polylactides (PDLA and PLLA was applied for efficient drug delivery. The spherical SCM showed the smallest scale and the lowest critical micelle concentration (CMC than the micelles with single components attributed to the stereocomplex interaction between PDLA and PLLA. 10-Hydroxycamptothecin (HCPT as a model antitumor drug was loaded into micelles. Compared with the loading micelles from individual PDLA and PLLA, the HCPT-loaded SCM exhibited the highest drug loading efficiency (DLE and the slowest drug release in phosphate-buffered saline (PBS at pH 7.4, indicating its enhanced stability in circulation. More fascinatingly, the laden SCM was demonstrated to have the highest cellular uptake of HCPT and suppress malignant cells most effectively in comparison to the HCPT-loaded micelles from single copolymer. In summary, the stereocomplex-enhanced PLA–PEG–PLA micelle may be promising for optimized drug delivery in the clinic.

  1. Drug Delivery for Peripheral Nerve Regeneration

    Science.gov (United States)

    2015-11-01

    reservoir is designed, fabricated, tested. Devices loaded with nerve growth factor (NGF) are evaluated for sustained drug release and axon growth...life. Unfortunately, current treatments often result in inadequate or untimely repair, which can result in lifelong deficits in muscle function or...interest in learning and careers in science, technology, and the humanities. Nothing to Report What do you plan to do during the next reporting

  2. In Vivo Precipitation of Poorly Soluble Drugs from Lipid-Based Drug Delivery Systems

    DEFF Research Database (Denmark)

    Sassene, P J; Michaelsen, M H; Mosgaard, M D

    2016-01-01

    Precipitation of poorly water-soluble drugs from lipid-based drug delivery systems (LbDDS) has been studied extensively during in vitro lipolysis but has never been shown in vivo. The aim of this study was therefore to investigate if drug precipitation can occur from LbDDS during transit...

  3. Ultrasound-Mediated Local Drug and Gene Delivery Using Nanocarriers

    Science.gov (United States)

    Zhou, Qiu-Lan; Chen, Zhi-Yi; Yang, Feng

    2014-01-01

    With the development of nanotechnology, nanocarriers have been increasingly used for curative drug/gene delivery. Various nanocarriers are being introduced and assessed, such as polymer nanoparticles, liposomes, and micelles. As a novel theranostic system, nanocarriers hold great promise for ultrasound molecular imaging, targeted drug/gene delivery, and therapy. Nanocarriers, with the properties of smaller particle size, and long circulation time, would be advantageous in diagnostic and therapeutic applications. Nanocarriers can pass through blood capillary walls and cell membrane walls to deliver drugs. The mechanisms of interaction between ultrasound and nanocarriers are not clearly understood, which may be related to cavitation, mechanical effects, thermal effects, and so forth. These effects may induce transient membrane permeabilization (sonoporation) on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy. The system has been used in various tissues and organs (in vitro or in vivo), including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle. In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers. PMID:25202710

  4. Coating nanoparticles with cell membranes for targeted drug delivery.

    Science.gov (United States)

    Gao, Weiwei; Zhang, Liangfang

    2015-01-01

    Targeted delivery allows drug molecules to preferentially accumulate at the sites of action and thus holds great promise to improve therapeutic index. Among various drug-targeting approaches, nanoparticle-based delivery systems offer some unique strengths and have achieved exciting preclinical and clinical results. Herein, we aim to provide a review on the recent development of cell membrane-coated nanoparticle system, a new class of biomimetic nanoparticles that combine both the functionalities of cellular membranes and the engineering flexibility of synthetic nanomaterials for effective drug delivery and novel therapeutics. This review is particularly focused on novel designs of cell membrane-coated nanoparticles as well as their underlying principles that facilitate the purpose of drug targeting. Three specific areas are highlighted, including: (i) cell membrane coating to prolong nanoparticle circulation, (ii) cell membrane coating to achieve cell-specific targeting and (iii) cell membrane coating for immune system targeting. Overall, cell membrane-coated nanoparticles have emerged as a novel class of targeted nanotherapeutics with strong potentials to improve on drug delivery and therapeutic efficacy for treatment of various diseases.

  5. Ultrasound-Mediated Local Drug and Gene Delivery Using Nanocarriers

    Directory of Open Access Journals (Sweden)

    Qiu-Lan Zhou

    2014-01-01

    Full Text Available With the development of nanotechnology, nanocarriers have been increasingly used for curative drug/gene delivery. Various nanocarriers are being introduced and assessed, such as polymer nanoparticles, liposomes, and micelles. As a novel theranostic system, nanocarriers hold great promise for ultrasound molecular imaging, targeted drug/gene delivery, and therapy. Nanocarriers, with the properties of smaller particle size, and long circulation time, would be advantageous in diagnostic and therapeutic applications. Nanocarriers can pass through blood capillary walls and cell membrane walls to deliver drugs. The mechanisms of interaction between ultrasound and nanocarriers are not clearly understood, which may be related to cavitation, mechanical effects, thermal effects, and so forth. These effects may induce transient membrane permeabilization (sonoporation on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy. The system has been used in various tissues and organs (in vitro or in vivo, including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle. In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers.

  6. Printing technologies in fabrication of drug delivery systems.

    Science.gov (United States)

    Kolakovic, Ruzica; Viitala, Tapani; Ihalainen, Petri; Genina, Natalja; Peltonen, Jouko; Sandler, Niklas

    2013-12-01

    There has been increased activity in the field recently regarding the development and research on various printing techniques in fabrication of dosage forms and drug delivery systems. These technologies may offer benefits and flexibility in manufacturing, potentially paving the way for personalized dosing and tailor-made dosage forms. In this review, the most recent observations and advancements in fabrication of drug delivery systems by utilizing printing technologies are summarized. A general overview of 2D printing techniques is presented including a review of the most recent literature where printing techniques are used in fabrication of drug delivery systems. The future perspectives and possible impacts on formulation strategies, flexible dosing and personalized medication of using printing techniques for fabrication of drug delivery systems are discussed. It is evident that there is an urgent need to meet the challenges of rapidly growing trend of personalization of medicines through development of flexible drug-manufacturing approaches. In this context, various printing technologies, such as inkjet and flexography, can play an important role. Challenges on different levels exist and include: i) technological development of printers and production lines; ii) printable formulations and carrier substrates; iii) quality control and characterization; and iv) regulatory perspectives.

  7. Biocompatibility of Chitosan Carriers with Application in Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ana Grenha

    2012-09-01

    Full Text Available Chitosan is one of the most used polysaccharides in the design of drug delivery strategies for administration of either biomacromolecules or low molecular weight drugs. For these purposes, it is frequently used as matrix forming material in both nano and micron-sized particles. In addition to its interesting physicochemical and biopharmaceutical properties, which include high mucoadhesion and a great capacity to produce drug delivery systems, ensuring the biocompatibility of the drug delivery vehicles is a highly relevant issue. Nevertheless, this subject is not addressed as frequently as desired and even though the application of chitosan carriers has been widely explored, the demonstration of systems biocompatibility is still in its infancy. In this review, addressing the biocompatibility of chitosan carriers with application in drug delivery is discussed and the methods used in vitro and in vivo, exploring the effect of different variables, are described. We further provide a discussion on the pros and cons of used methodologies, as well as on the difficulties arising from the absence of standardization of procedures.

  8. Approaches in topical ocular drug delivery and developments in the use of contact lenses as drug-delivery devices

    OpenAIRE

    Mehta, P.; Haj-Ahmad, R.; Al-Kinani, Ali; Arshad, Muhammad Sohail; Chang, Ming-Wei; Alany, Raid G.; Ahmad, Z.

    2017-01-01

    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link. Drug-delivery approaches have diversified over the last two decades with the emergence of nanotechnologies, smart polymeric systems and multimodal functionalities. The intended target for specific treatment of disease is the key defining developing parameter. One such area which has undergone significant advancements relates to ocular delivery....

  9. Lasers as an approach for promoting drug delivery via skin.

    Science.gov (United States)

    Lin, Chih-Hung; Aljuffali, Ibrahim A; Fang, Jia-You

    2014-04-01

    Using lasers can be an effective drug permeation-enhancement approach for facilitating drug delivery into or across the skin. The controlled disruption and ablation of the stratum corneum (SC), the predominant barrier for drug delivery, is achieved by the use of lasers. The possible mechanisms of laser-assisted drug permeation are the direct ablation of the skin barrier, optical breakdown by a photomechanical wave and a photothermal effect. It has been demonstrated that ablative approaches for enhancing drug transport provide some advantages, including increased bioavailability, fast treatment time, quick recovery of SC integrity and the fact that skin surface contact is not needed. In recent years, the concept of using laser techniques to treat the skin has attracted increasing attention. This review describes recent developments in using nonablative and ablative lasers for drug absorption enhancement. This review systematically introduces the concepts and enhancement mechanisms of lasers, highlighting the potential of this technique for greatly increasing drug absorption via the skin. Lasers with different wavelengths and types are employed to increase drug permeation. These include the ruby laser, the erbium:yttrium-gallium-garnet laser, the neodymium-doped yttrium-aluminum-garnet laser and the CO2 laser. Fractional modality is a novel concept for promoting topical/transdermal drug delivery. The laser is useful in enhancing the permeation of a wide variety of permeants, such as small-molecule drugs, macromolecules and nanoparticles. This potential use of the laser affords a new treatment for topical/transdermal application with significant efficacy. Further studies using a large group of humans or patients are needed to confirm and clarify the findings in animal studies. Although the laser fluence or output energy used for enhancing drug absorption is much lower than for treatment of skin disorders and rejuvenation, the safety of using lasers is still an issue

  10. An Implantable MEMS Drug Delivery Device for Rapid Delivery in Ambulatory Emergency Care

    Science.gov (United States)

    2009-06-01

    An Implantable MEMS Drug Delivery Device for Rapid Delivery in Ambulatory Emergency Care Citation N. Elman , H. Ho Duc, and M. Cima, “An implantable...reducing this burden, to Washington Headquarters Services , Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204...N. M. Elman , H. L Ho Duc, M. J. Cima Massachusetts Institute of Technology, Department of Materials Science and Engineering 77 Massachusetts Ave

  11. HDL as a drug and nucleic acid delivery vehicle

    Directory of Open Access Journals (Sweden)

    Andras G Lacko

    2015-10-01

    Full Text Available This review is intended to evaluate the research findings and potential clinical applications of drug transport systems, developed based on the concepts of the structure/function and physiological role(s of high density lipoprotein=type nanoparticles. These macromolecules provide targeted transport of cholesteryl esters (a highly lipophilic payload in their natural/physiological environment. The property of accommodating highly water insoluble constituents in their core region enables HDL type nanoparticles to effectively transport hydrophobic drugs upon intravenous administration. Even though the application of reconstituted HDL in the treatment of a number of diseases is reviewed, the primary focus is on the application of HDL type drug delivery agents in cancer chemotherapy. The use of both native and synthetic HDL as drug delivery agents are compared to evaluate their respective potentials for commercial and clinical development. The current status and future perspectives for HDL type nanoparticles are discussed, including current obstacles and future applications in therapeutics.

  12. The use of microbubbles to target drug delivery

    Directory of Open Access Journals (Sweden)

    Porter Richard

    2004-11-01

    Full Text Available Abstract Ultrasound-mediated microbubbles destruction has been proposed as an innovative method for noninvasive delivering of drugs and genes to different tissues. Microbubbles are used to carry a drug or gene until a specific area of interest is reached, and then ultrasound is used to burst the microbubbles, causing site-specific delivery of the bioactive materials. Furthermore, the ability of albumin-coated microbubbles to adhere to vascular regions with glycocalix damage or endothelial dysfunction is another possible mechanism to deliver drugs even in the absence of ultrasound. This review focuses on the characteristics of microbubbles that give them therapeutic properties and some important aspects of ultrasound parameters that are known to influence microbubble-mediated drug delivery. In addition, current studies involving this novel therapeutical application of microbubbles will be discussed.

  13. Combination Drug Delivery Approaches in Metastatic Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jun H. Lee

    2012-01-01

    Full Text Available Disseminated metastatic breast cancer needs aggressive treatment due to its reduced response to anticancer treatment and hence low survival and quality of life. Although in theory a combination drug therapy has advantages over single-agent therapy, no appreciable survival enhancement is generally reported whereas increased toxicity is frequently seen in combination treatment especially in chemotherapy. Currently used combination treatments in metastatic breast cancer will be discussed with their challenges leading to the introduction of novel combination anticancer drug delivery systems that aim to overcome these challenges. Widely studied drug delivery systems such as liposomes, dendrimers, polymeric nanoparticles, and water-soluble polymers can concurrently carry multiple anticancer drugs in one platform. These carriers can provide improved target specificity achieved by passive and/or active targeting mechanisms.

  14. Osmolarity as a contributing factor in topical drug delivery

    Science.gov (United States)

    Funke, Claire; Szeri, Andrew J.

    2017-11-01

    Gels and dissolvable solids are drug delivery platforms being evaluated for application of active pharmaceutical ingredients, termed microbicides, which act topically against infection by sexually transmitted HIV. In previous work, we have investigated how dilution by naturally produced fluid from the vaginal mucosa affects drug transport into the vaginal wall. We expand on this work by no longer assuming a constant flux and instead developing a relation for fluid transport based on osmolarity - thus allowing fluid to pass both into and out of epithelial cells. This relation shows that varying the osmolarity of the applied solution can have a significant effect on the amount of drug delivered to its target while holding the applied amount constant. This effect is modulated by a dimensionless group that relates the rates of solute and solvent transport. Ultimately, our goal is to develop a tool to understand better how to manipulate solution osmolarity in order to improve drug delivery within safety parameters for mucosal tissue.

  15. Targeted drug delivery using temperature-sensitive liposomes

    International Nuclear Information System (INIS)

    Magin, R.L.; Niesman, M.R.

    1984-01-01

    Liposomes are receiving considerable attention as vehicles for selective drug delivery. One method of targeting liposomal contents involves the combination of local hyperthermia with temperature-sensitive liposomes. Such liposomes have been used to increase the uptake of methotrexate and cis-platinum into locally heated mouse tumors. However, additional information is needed on the mechanism of liposome drug release and the physiologic deposition of liposomes in vivo before clinical trails are begun. Current research is directed at studying the encapsulation and release of water soluble drugs from temperature-sensitive liposomes. The influence of liposome size, structure, and composition on the rapid release in plasma of cytosine arabinoside, cis-platinum, and the radiation sensitizer SR-2508 are described. These results demonstrate potential applications for temperature-sensitive liposomes in selective drug delivery

  16. Formulation and Evaluation of Rifampicin Liposomes for Buccal Drug Delivery.

    Science.gov (United States)

    Lankalapalli, Srinivas; Tenneti, V S Vinai Kumar

    2016-01-01

    Drug delivery through liposomes offers several advantages, but still challenging to the researchers for the use of liposomes as carriers in drug delivery due to their poor physical stability, unpredictable drug encapsulation and systemic availability of the loaded drug. The present investigation was planned with an objective to prepare Rifampicin loaded liposomes by using response surface methodology of statistical 32 factorial design and further to formulate them into pastilles for deliver through buccal route thereby to enhance systemic absorption. Rifampicin liposomes were prepared by using different ratios of soya lecithin and cholesterol by solvent Injection method. These liposomes were characterized by using optical microscopy, Scanning Electron Microscopy (SEM) and evaluated for particle size, entrapment efficiency (EE), in vitro and ex vivo drug release. Main effects and interaction terms of the formulation variables were evaluated quantitatively using a mathematical statistical model approach showing that both independent variables have significant (P value value: 0.0273), percentage entrapment efficiency (P value: 0.0096), percentage drug release through dialysis membrane (P value: 0.0047) and percentage drug release through porcine buccal membrane (P value: 0.0019). The statistical factorial design of liposomal formulations fulfilled all the requirements of the target set and exhibited suitable values for the selected test parameters. Pastilles were prepared for liposomes using glycerol gelatin base and were found to be soft, smooth with uniform drug content and drug release.

  17. Implications of melanin binding in ocular drug delivery.

    Science.gov (United States)

    Rimpelä, Anna-Kaisa; Reinisalo, Mika; Hellinen, Laura; Grazhdankin, Evgeni; Kidron, Heidi; Urtti, Arto; Del Amo, Eva M

    2017-12-13

    Pigmented ocular tissues contain melanin within the intracellular melanosomes. Drugs bind to melanin at varying extent that ranges from no binding to extensive binding. Binding may lead to drug accumulation to the pigmented tissues and prolonged drug retention in the melanin containing cells. Therefore, melanin binding is an important feature that affects ocular drug delivery and biodistribution, but this topic has not been reviewed since 1998. In this review, we present current knowledge on ocular melanin, melanosomes and binding of drugs to pigmented cells and tissues. In vitro, in vivo and in silico methods in the field were critically evaluated, because the literature in this field can be confusing if the reader does not properly understand the methodological aspects. Literature analysis includes a comprehensive table of literature data on melanin binding of drugs. Furthermore, we aimed to give some insights beyond the current literature by making a chemical structure based classification model for melanin binding of drugs and kinetic simulations that revealed significant interplay between melanin binding and drug permeability across the melanosomal and plasma membranes. Overall, more mechanistic and systematic research is needed before the impact of melanin binding on ocular drug delivery can be properly understood and predicted. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier

    International Nuclear Information System (INIS)

    Friden, P.M.; Walus, L.R.; Musso, G.F.; Taylor, M.A.; Malfroy, B.; Starzyk, R.M.

    1991-01-01

    Delivery of nonlipophilic drugs to the brain is hindered by the tightly apposed capillary endothelial cells that make up the blood-brain barrier. The authors have examined the ability of a monoclonal antibody (OX-26), which recognizes the rat transferrin receptor, to function as a carrier for the delivery of drugs across the blood-brain barrier. This antibody, which was previously shown to bind preferentially to capillary endothelial cells in the brain after intravenous administration, labels the entire cerebrovascular bed in a dose-dependent manner. The initially uniform labeling of brain capillaries becomes extremely punctate ∼ 4 hr after injection, suggesting a time-dependent sequestering of the antibody. Capillary-depletion experiments, in which the brain is separated into capillary and parenchymal fractions, show a time-dependent migration of radiolabeled antibody from the capillaries into the brain parenchyma, which is consistent with the transcytosis of compounds across the blood-brain barrier. Antibody-methotrexate conjugates were tested in vivo to assess the carrier ability of this antibody. Immunohistochemical staining for either component of an OX-26-methotrexate conjugate revealed patterns of cerebrovascular labeling identical to those observed with the unaltered antibody. Accumulation of radiolabeled methotrexate in the brain parenchyma is greatly enhanced when the drug is conjugated to OX-26

  19. Brain delivery of microencapsulated GDNF induces functional and structural recovery in parkinsonian monkeys.

    Science.gov (United States)

    Garbayo, Elisa; Ansorena, Eduardo; Lana, Hugo; Carmona-Abellan, María Del Mar; Marcilla, Irene; Lanciego, José Luis; Luquin, María Rosario; Blanco-Prieto, María José

    2016-12-01

    Glial cell line-derived neurotrophic factor (GDNF) remains the most potent neurotrophic factor for dopamine neurons. Despite its potential as treatment for Parkinson's disease (PD), its clinical application has been hampered by safety and efficacy concerns associated with GDNF's short in vivo half-life and with significant brain delivery obstacles. Drug formulation systems such as microparticles (MPs) may overcome these issues providing protein protection from degradation and sustained drug release over time. We therefore sought to evaluate the efficacy and safety of GDNF delivered via injectable biodegradable MPs in a clinically relevant model of PD and to investigate the mechanism contributing to their beneficial effects. MPs were injected unilaterally into the putamen of parkinsonian monkeys with severe nigrostriatal degeneration. Notably, a single administration of the microencapsulated neurotrophic factor achieved sustained GDNF levels in the brain, providing motor improvement and dopaminergic function restoration. This was reflected by a bilateral increase in the density of striatal dopaminergic neurons 9 months after treatment. Moreover, GDNF was retrogradely transported to the substantia nigra increasing bilaterally the number of dopaminergic and total neurons, regardless of the severe degeneration. GDNF-MP injection within the putamen elicited no adverse effects such as immunogenicity, cerebellar degeneration or weight loss. MPs are therefore a safe, efficient vehicle for sustained protein delivery to the brain, supporting the therapeutic benefit of GDNF when encapsulated within MPs for brain repair. Overall, these findings constitute important groundwork for GDNF-MP clinical development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. [Plastic micro-tips for drug delivery].

    Science.gov (United States)

    Muslija, A; Guber, A E; Heckele, M; Herrmann, D; Pfleging, W; Schaller, Th

    2002-01-01

    Removal or exact transfer of minimum substance volumes from reservoirs or microfluidic systems may be accomplished by means of miniaturized tips with integrated through-going capillaries. Applications in biomedical engineering, e.g. for the application of drugs, or in life sciences, e.g. equipping of microarrays, require the use of disposable plastic products for hygienic reasons and reasons of costs. For this purpose, a method to fabricate microtips out of plastic by doublesided molding has been developed at the Forschungszentrum Karlsruhe.

  1. Modeling of transdermal drug delivery with a microneedle array

    Science.gov (United States)

    Lv, Y.-G.; Liu, J.; Gao, Y.-H.; Xu, B.

    2006-11-01

    Transdermal drug delivery is generally limited by the extraordinary barrier properties of the stratum corneum, the outer 10-15 µm layer of skin. A conventional needle inserted across this barrier and into deeper tissues could effectively deliver drugs. However, it would lead to infection and cause pain, thereby reducing patient compliance. In order to administer a frequent injection of insulin and other therapeutic agents more efficiently, integrated arrays with very short microneedles were recently proposed as very good candidates for painless injection or extraction. A variety of microneedle designs have thus been made available by employing the fabrication tools of the microelectronics industry and using materials such as silicon, metals, polymers and glass with feature sizes ranging from sub-micron to nanometers. At the same time, experiments were also made to test the capability of the microneedles to inject drugs into tissues. However, due to the difficulty encountered in measurement, a detailed understanding of the spatial and transient drug delivery process still remains unclear up to now. To better grasp the mechanisms involved, quantitative theoretical models were developed in this paper to simultaneously characterize the flow and drug transport, and numerical solutions were performed to predict the kinetics of dispersed drugs injected into the skin from a microneedle array. Calculations indicated that increasing the initial injection velocity and accelerating the blood circulation in skin tissue with high porosity are helpful to enhance the transdermal drug delivery. This study provides the first quantitative simulation of fluid injection through a microneedle array and drug species transport inside the skin. The modeling strategy can also possibly be extended to deal with a wider range of clinical issues such as targeted nanoparticle delivery for therapeutics or molecular imaging.

  2. PREFORMULATION STUDIES OF SIMVASTATIN FOR TRANSDERMAL DRUG DELIVERY SYSTEM

    OpenAIRE

    Sameer Singh; Narendra Mandoria; Anis shaikh

    2012-01-01

    The aim of the present work to study the preformulation parameters for Transdermal drug delivery system. The objective of Preformulation study is to generic information useful to the formulater in developing stable and bioavailable dosage form. The use of Preformulation parameter maximizes the chances in formulation an acceptable, safe, efficacious and stable product and at the same time provide the basis for optimization of the drug product quality. Administration of conventional tablets ...

  3. A REVIEW ARTICLE ON MUCOADHESIVE BUCCAL DRUG DELIVERY SYSTEM

    OpenAIRE

    Jasvir Singh* and Pawan Deep

    2013-01-01

    ABSTRACT: As an alternative to injection pharmaceutical researcher and scientist are trying to explore transdermal and transmucosal route over the last few years. To overcome the deficiency associated with the other route of administration buccal region of oral cavity is an alternative target for the administration of choice of drug. The disadvantages relative with the oral drug delivery is the extensive presystemic metabolism, instability in acidic medium as a result inadequate absorption of...

  4. GELATIN CARRIERS FOR DRUG AND CELL DELIVERY IN TISSUE ENGINEERING

    OpenAIRE

    Santoro, Marco; Tatara, Alexander M.; Mikos, Antonios G.

    2014-01-01

    The ability of gelatin to form complexes with different drugs has been investigated for controlled release applications. Gelatin parameters, such as crosslinking density and isoelectric point, have been tuned in order to optimize gelatin degradation and drug delivery kinetics. In recent years, focus has shifted away from the use of gelatin in isolation towards the modification of gelatin with functional groups and the fabrication of material composites with embedded gelatin carriers. In this ...

  5. An efficient targeted drug delivery through apotransferrin loaded nanoparticles.

    Science.gov (United States)

    Krishna, Athuluri Divakar Sai; Mandraju, Raj Kumar; Kishore, Golla; Kondapi, Anand Kumar

    2009-10-02

    Cancerous state is a highly stimulated environment of metabolically active cells. The cells under these conditions over express selective receptors for assimilation of factors essential for growth and transformation. Such receptors would serve as potential targets for the specific ligand mediated transport of pharmaceutically active molecules. The present study demonstrates the specificity and efficacy of protein nanoparticle of apotransferrin for targeted delivery of doxorubicin. Apotransferrin nanoparticles were developed by sol-oil chemistry. A comparative analysis of efficiency of drug delivery in conjugated and non-conjugated forms of doxorubicin to apotransferrin nanoparticle is presented. The spherical shaped apotransferrin nanoparticles (nano) have diameters of 25-50 etam, which increase to 60-80 etam upon direct loading of drug (direct-nano), and showed further increase in dimension (75-95 etam) in conjugated nanoparticles (conj-nano). The competitive experiments with the transferrin receptor specific antibody showed the entry of both conj-nano and direct-nano into the cells through transferrin receptor mediated endocytosis. Results of various studies conducted clearly establish the superiority of the direct-nano over conj-nano viz. (a) localization studies showed complete release of drug very early, even as early as 30 min after treatment, with the drug localizing in the target organelle (nucleus) (b) pharmacokinetic studies showed enhanced drug concentrations, in circulation with sustainable half-life (c) the studies also demonstrated efficient drug delivery, and an enhanced inhibition of proliferation in cancer cells. Tissue distribution analysis showed intravenous administration of direct nano lead to higher drug localization in liver, and blood as compared to relatively lesser localization in heart, kidney and spleen. Experiments using rat cancer model confirmed the efficacy of the formulation in regression of hepatocellular carcinoma with negligible

  6. Polymer SU-8 Based Microprobes for Neural Recording and Drug Delivery

    Science.gov (United States)

    Altuna, Ane; Fernandez, Luis; Berganzo, Javier

    2015-06-01

    This manuscript makes a reflection about SU-8 based microprobes for neural activity recording and drug delivery. By taking advantage of improvements in microfabrication technologies and using polymer SU-8 as the only structural material, we developed several microprobe prototypes aimed to: a) minimize injury in neural tissue, b) obtain high-quality electrical signals and c) deliver drugs at a micrometer precision scale. Dedicated packaging tools have been developed in parallel to fulfill requirements concerning electric and fluidic connections, size and handling. After these advances have been experimentally proven in brain using in vivo preparation, the technological concepts developed during consecutive prototypes are discussed in depth now.

  7. POLYMER SU-8 BASED MICROPROBES FOR NEURAL RECORDING AND DRUG DELIVERY

    Directory of Open Access Journals (Sweden)

    Ane eAltuna

    2015-06-01

    Full Text Available This manuscript makes a reflection about SU-8 based microprobes for neural activity recording and drug delivery. By taking advantage of improvements in microfabrication technologies and using polymer SU-8 as the only structural material, we developed several microprobe prototypes aimed to: a minimize injury in neural tissue, b obtain high-quality electrical signals and c deliver drugs at a micrometer precision scale. Dedicated packaging tools have been developed in parallel to fulfill requirements concerning electric and fluidic connections, size and handling. After these advances have been experimentally proven in brain using in vivo preparation, the technological concepts developed during consecutive prototypes are discussed in depth now.

  8. Nanomedicine to improve drug delivery outcomes [Retracted

    Directory of Open Access Journals (Sweden)

    Meenakshi Joshi

    2012-01-01

    Full Text Available The early genesis of the concept of nanomedicine sprang from the visionary idea that tiny nanorobots and related machines could be designed, manufactured, and introduced into the human body to perform cellular repairs at the molecular level. Nanomedicine today has branched out in hundreds of different directions, each of them embodying the key insight that the ability to structure materials and devices at the molecular scale can bring enormous immediate benefits in the research and practice of medicine. The integration of nanotechnology with biology and medicine has given birth to a new field of science called "Nanomedicine". Research into the rational delivery and targeting of pharmaceutical, therapeutic, and diagnostic agents is at the forefront of projects in nanomedicine. These involve the identification of precise targets (cells and receptors related to specific clinical conditions and choice of the appropriate nanocarriers to achieve the required responses while minimizing the side effects. Mononuclear phagocytes, dendritic cells, endothelial cells, and cancers (tumor cells as well as tumor neovasculature are key targets. The ultimate goal of nanomedicine is to develop well-engineered nanotools for the prevention, diagnosis, and treatment of many diseases. Nanomedicine today has branched out in hundreds of different directions, each of them embodying the key insight that the ability to structure materials and devices at the molecular scale can bring enormous immediate benefits in the research and practice of medicine.

  9. Substituted amylose matrices for oral drug delivery

    Science.gov (United States)

    Moghadam, S. H.; Wang, H. W.; Saddar El-Leithy, E.; Chebli, C.; Cartilier, L.

    2007-03-01

    High amylose corn starch was used to obtain substituted amylose (SA) polymers by chemically modifying hydroxyl groups by an etherification process using 1,2-epoxypropanol. Tablets for drug-controlled release were prepared by direct compression and their release properties assessed by an in vitro dissolution test (USP XXIII no 2). The polymer swelling was characterized by measuring gravimetrically the water uptake ability of polymer tablets. SA hydrophilic matrix tablets present sequentially a burst effect, typical of hydrophilic matrices, and a near constant release, typical of reservoir systems. After the burst effect, surface pores disappear progressively by molecular association of amylose chains; this allows the creation of a polymer layer acting as a diffusion barrier and explains the peculiar behaviour of SA polymers. Several formulation parameters such as compression force, drug loading, tablet weight and insoluble diluent concentration were investigated. On the other hand, tablet thickness, scanning electron microscope analysis and mercury intrusion porosimetry showed that the high crushing strength values observed for SA tablets were due to an unusual melting process occurring during tabletting although the tablet external layer went only through densification, deformation and partial melting. In contrast, HPMC tablets did not show any traces of a melting process.

  10. Substituted amylose matrices for oral drug delivery

    International Nuclear Information System (INIS)

    Moghadam, S H; Wang, H W; El-Leithy, E Saddar; Chebli, C; Cartilier, L

    2007-01-01

    High amylose corn starch was used to obtain substituted amylose (SA) polymers by chemically modifying hydroxyl groups by an etherification process using 1,2-epoxypropanol. Tablets for drug-controlled release were prepared by direct compression and their release properties assessed by an in vitro dissolution test (USP XXIII no 2). The polymer swelling was characterized by measuring gravimetrically the water uptake ability of polymer tablets. SA hydrophilic matrix tablets present sequentially a burst effect, typical of hydrophilic matrices, and a near constant release, typical of reservoir systems. After the burst effect, surface pores disappear progressively by molecular association of amylose chains; this allows the creation of a polymer layer acting as a diffusion barrier and explains the peculiar behaviour of SA polymers. Several formulation parameters such as compression force, drug loading, tablet weight and insoluble diluent concentration were investigated. On the other hand, tablet thickness, scanning electron microscope analysis and mercury intrusion porosimetry showed that the high crushing strength values observed for SA tablets were due to an unusual melting process occurring during tabletting although the tablet external layer went only through densification, deformation and partial melting. In contrast, HPMC tablets did not show any traces of a melting process

  11. A Novel Delivery Method of Cyclovirobuxine D for Brain-Targeting: Chitosan Coated Nanoparticles Loading Cyclovirobuxine D by Intranasal Administration.

    Science.gov (United States)

    Wei, Hanmei; Lai, Sisi; Wei, Jiabao; Yang, Lei; Jiang, Ning; Wang, Qing; Yu, Yang

    2018-08-01

    The blood-brain barrier (BBB) restricts the delivery of most drugs to the brain. In our previous study, the feasibility of cyclovirobuxine D delivery to the brain by a non-invasive nasal route was evaluated. In this study, a suitable drug delivery system by way of intranasal administration was developed, which could improve brain targeting. First, a formulation of cyclovirobuxine D (CVB-D) based on chitosan nanoparticles (CS-CVB-D-NPs) was prepared by the modified ionotropic gelation method through single-factor screening experiment. The CS-CVB-D-NPs with a entrapment efficiency (EE) of (62.82±2.59)% were found to be of a narrow polydispersity index (PI) (0.19±0.01) and (235.37± 12.71) nm in size, with a zeta potential of (33.9 ± 1.7) mV. The NPs possessed a sustained release characterization with in vitro release of 88.03 ± 2.30% at 24 h. In vivo, the higher AUC0-t(brain) of CS-CVB-D-NPs by intranasal administration revealed the development of a novel brain-targeting delivery method of CVB-D.

  12. Noninvasive measurement of transdermal drug delivery by impedance spectroscopy

    Science.gov (United States)

    Arpaia, Pasquale; Cesaro, Umberto; Moccaldi, Nicola

    2017-01-01

    The effectiveness in transdermal delivery of skin permeation strategies (e.g., chemical enhancers, vesicular carrier systems, sonophoresis, iontophoresis, and electroporation) is poorly investigated outside of laboratory. In therapeutic application, the lack of recognized techniques for measuring the actually-released drug affects the scientific concept itself of dosage for topically- and transdermally-delivered drugs. Here we prove the suitability of impedance measurement for assessing the amount of drug penetrated into the skin after transdermal delivery. In particular, the measured amount of drug depends linearly on the impedance magnitude variation normalized to the pre-treated value. Three experimental campaigns, based on the electrical analysis of the biological tissue behavior due to the drug delivery, are reported: (i) laboratory emulation on eggplants, (ii) ex-vivo tests on pig ears, and finally (iii) in-vivo tests on human volunteers. Results point out that the amount of delivered drug can be assessed by reasonable metrological performance through a unique measurement of the impedance magnitude at one single frequency. In particular, in-vivo results point out sensitivity of 23 ml−1, repeatability of 0.3%, non-linearity of 3.3%, and accuracy of 5.7%. Finally, the measurement resolution of 0.20 ml is compatible with clinical administration standards. PMID:28338008

  13. Packaged Au-PPy valves for drug delivery systems

    Science.gov (United States)

    Tsai, Han-Kuan A.; Ma, Kuo-Sheng; Zoval, Jim; Kulinsky, Lawrence; Madou, Marc

    2006-03-01

    The most common methods for the drug delivery are swallowing pills or receiving injections. However, formulations that control the rate and period of medicine (i.e., time-release medications) are still problematic. The proposed implantable devices which include batteries, sensors, telemetry, valves, and drug storage reservoirs provide an alternative method for the responsive drug delivery system [1]. Using this device, drug concentration can be precisely controlled which enhances drug efficiency and decreases the side effects. In order to achieve responsive drug delivery, a reliable release valve has to be developed. Biocompatibility, low energy consumption, and minimized leakage are the main requirements for such release method. A bilayer structure composed of Au/PPy film is fabricated as a flap to control the release valve. Optimized potentiostatic control to synthesize polypyrrole (PPy) is presented. The release of miniaturize valve is tested and showed in this paper. A novel idea to simultaneously fabricate the device reservoirs as well as protective packaging is proposed in this paper. The solution of PDMS permeability problem is also mentioned in this article.

  14. Nanoengineered drug delivery systems for enhancing antibiotic therapy.

    Science.gov (United States)

    Kalhapure, Rahul S; Suleman, Nadia; Mocktar, Chunderika; Seedat, Nasreen; Govender, Thirumala

    2015-03-01

    Formulation scientists are recognizing nanoengineered drug delivery systems as an effective strategy to overcome limitations associated with antibiotic drug therapy. Antibiotics encapsulated into nanodelivery systems will contribute to improved management of patients with various infectious diseases and to overcoming the serious global burden of antibiotic resistance. An extensive review of several antibiotic-loaded nanocarriers that have been formulated to target drugs to infectious sites, achieve controlled drug release profiles, and address formulation challenges, such as low-drug entrapment efficiencies, poor solubility and stability is presented in this paper. The physicochemical properties and the in vitro/in vivo performances of various antibiotic-loaded delivery systems, such as polymeric nanoparticles, micelles, dendrimers, liposomes, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles, nanohybirds, nanofibers/scaffolds, nanosheets, nanoplexes, and nanotubes/horn/rods and nanoemulsions, are highlighted and evaluated. Future studies that will be essential to optimize formulation and commercialization of these antibiotic-loaded nanosystems are also identified. The review presented emphasizes the significant formulation progress achieved and potential that novel nanoengineered antibiotic drug delivery systems have for enhancing the treatment of patients with a range of infections. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Mucoadhesive microspheres: a promising tool in drug delivery.

    Science.gov (United States)

    Patil, Sanjay B; Sawant, Krutika K

    2008-10-01

    Mucoadhesive polymers have recently gained interest among pharmaceutical scientists as a means of improving drug delivery by promoting the residence time and contact time of the dosage form with the mucous membranes. Mucoadhesion is the process whereby synthetic and natural polymers adhere to mucosal surfaces in the body. If these materials are then incorporated into pharmaceutical formulations, drug absorption by mucosal cells may be enhanced or the drug will be released at the site for an extended period of time. Microspheres, in general, have the potential to be used for targeted and controlled release drug delivery; however, coupling of mucoadhesive properties to microspheres has additional advantages like, a much more intimate contact with the mucus layer, efficient absorption and enhanced bioavailability of the drugs due to a high surface to volume ratio. The present review describes the potential applications of mucoadhesive microspheres as a novel carrier system to improve drug delivery by various routes of administration like buccal, oral, nasal, ocular, vaginal and rectal, either for systemic or for local effects. The mucoadhesive polymers, methods of preparation of microspheres and their in vitro and in vivo evaluation are also described.

  16. Visualization and Quantitative Assessment of the Brain Distribution of Insulin through Nose-to-Brain Delivery Based on the Cell-Penetrating Peptide Noncovalent Strategy.

    Science.gov (United States)

    Kamei, Noriyasu; Shingaki, Tomotaka; Kanayama, Yousuke; Tanaka, Misa; Zochi, Riyo; Hasegawa, Koki; Watanabe, Yasuyoshi; Takeda-Morishita, Mariko

    2016-03-07

    Our recent work suggested that intranasal coadministration with the cell-penetrating peptide (CPP) penetratin increased the brain distribution of the peptide drug insulin. The present study aimed to distinctly certify the ability of penetratin to facilitate the nose-to-brain delivery of insulin by quantitatively evaluating the distribution characteristics in brain using radioactive (64)Cu-NODAGA-insulin. Autoradiography and analysis using a gamma counter of brain areas demonstrated that the accumulation of radioactivity was greatest in the olfactory bulb, the anterior part of the brain closest to the administration site, at 15 min after intranasal administration of (64)Cu-NODAGA-insulin with l- or d-penetratin. The brain accumulation of (64)Cu-NODAGA-insulin with penetratin was confirmed by ELISA using unlabeled insulin in which intact insulin was delivered to the brain after intranasal coadministration with l- or d-penetratin. By contrast, quantification of cerebrospinal fluid (CSF) samples showed increased insulin concentration in only the anterior portion of the CSF at 15 min after intranasal coadministration with l-penetratin. This study gives the first concrete proof that penetratin can accelerate the direct transport of insulin from the nasal cavity to the brain parenchyma. Further optimization of intranasal administration with CPP may increase the efficacy of delivery of biopharmaceuticals to the brain while reducing the risk of systemic drug exposure.

  17. Liposomal drug delivery system from laboratory to clinic

    Directory of Open Access Journals (Sweden)

    Kshirsagar N

    2005-01-01

    Full Text Available The main objective of drug delivery systems is to deliver a drug effectively, specifically to the site of action and to achieve greater efficacy and minimise the toxic effects compared to conventional drugs. Amongst various carrier systems, liposomes have generated a great interest because of their versatility. Liposomes are vesicular concentric bilayered structures, which are biocompatible, biodegradable and nonimmumnogenic. They can control the delivery of drugs by targeting the drug to the site of action or by site avoidance drug delivery or by prolonged circulation of drugs. Amphotericin B (Amp B remains the drug of choice in most systemic mycoses and also as a second line treatment for Kala azar. However, its toxic effects often limit its use. Although the liposome delivery system has been tried for several drugs, only a few have been used in patients due to the slow development of necessary large-scale pharmaceutical procedures. This paper reviews the development of the technique for liposomal Amphotericin B (L-Amp-LRC-1, FungisomeTM drug delivery system in our laboratory in collaboration with the department of Biochemistry, Delhi University in India and proving the safety and efficacy of this preparation in clinical practice. It also attempts to compare the efficacy and benefits of our product for Indian patients with those of similar products and it includes facts from the publications that flowed from our work. As compared to conventional Amp B, Fungisome is infused over a much shorter period requiring a smaller volume and no premedication. It was found to be safe in patients who had developed serious unacceptable toxicity with conventional Amp B. In renal transplant patients, Fungisome did not produce any nephrotoxicity. Fungisome is effective in fungal infections resistant to fluconazole, conventional Amp B and in virgin and resistant cases of visceral leishmaniasis. The cost of any drug is of great significance, especially in India

  18. Tween 80 containing lipid nanoemulsions for delivery of indinavir to brain

    Directory of Open Access Journals (Sweden)

    Kandadi Prabhakar

    2013-09-01

    Full Text Available Indinavir is a protease inhibitor used in the treatment of HIV infection. However, it has limited efficacy in eradicating the virus in the brain due to efflux by P-glycoprotein (P-gp expressed at the blood–brain barrier (BBB. The objective of this work was to develop an o/w lipid nanoemulsion (LNE of indinavir using Tween 80 as co-emulsifier to improve its brain specific delivery. LNEs were prepared with different compositions and were characterized for globule size, polydispersity index, zeta potential and in vitro drug release. Five formulations were then evaluated for drug content, entrapment efficiency and stability after which brain uptake studies were carried out using fluorescent labeled LNEs and pharmacokinetic (PK and tissue distribution studies were conducted after intravenous administration in mice. Brain uptake of indinavir was shown to be improved for a 1% Tween 80 containing formulation (F5 compared to a formulation containing 0.3% cholesterol (F2. In PK studies, the brain level of indinavir subsequent to administration of F5 was significantly (P<0.05 higher than produced by administration of a drug solution (2.44-fold or a control nanoemulsion (F1 (1.48-fold or formulation F2 (1.6-fold. The increased brain specific accumulation of indinavir from F5 is probably due to enhanced low density lipoprotein-mediated endocytosis and P-gp inhibition by Tween 80 at the BBB. These results suggest Tween 80 containing LNEs could provide a simple but effective means of delivering indinavir to brain.

  19. Cancer nanomedicine: from drug delivery to imaging.

    Science.gov (United States)

    Chow, Edward Kai-Hua; Ho, Dean

    2013-12-18

    Nanotechnology-based chemotherapeutics and imaging agents represent a new era of "cancer nanomedicine" working to deliver versatile payloads with favorable pharmacokinetics and capitalize on molecular and cellular targeting for enhanced specificity, efficacy, and safety. Despite the versatility of many nanomedicine-based platforms, translating new drug or imaging agents to the clinic is costly and often hampered by regulatory hurdles. Therefore, translating cancer nanomedicine may largely be application-defined, where materials are adapted only toward specific indications where their properties confer unique advantages. This strategy may also realize therapies that can optimize clinical impact through combinatorial nanomedicine. In this review, we discuss how particular materials lend themselves to specific applications, the progress to date in clinical translation of nanomedicine, and promising approaches that may catalyze clinical acceptance of nano.

  20. Optical Molecular Imaging of Ultrasound-mediated Drug Delivery

    NARCIS (Netherlands)

    Derieppe, M.P.P.

    2015-01-01

    The goal of this PhD project was to develop optical molecular imaging methods to study drug delivery facilitated by ultrasound waves (US) and hyperthermia. Fibered confocal fluorescence microscopy (FCFM), together with dedicated image analysis, was used in vitro on a cell monolayer, and in vivo at

  1. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications.

    Science.gov (United States)

    Cunha, Ludmylla; Grenha, Ana

    2016-02-25

    In the last decades, the discovery of metabolites from marine resources showing biological activity has increased significantly. Among marine resources, seaweed is a valuable source of structurally diverse bioactive compounds. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae and fucoidan in brown algae. Sulfated polysaccharides have been increasingly studied over the years in the pharmaceutical field, given their potential usefulness in applications such as the design of drug delivery systems. The purpose of this review is to discuss potential applications of these polymers in drug delivery systems, with a focus on carrageenan, ulvan and fucoidan. General information regarding structure, extraction process and physicochemical properties is presented, along with a brief reference to reported biological activities. For each material, specific applications under the scope of drug delivery are described, addressing in privileged manner particulate carriers, as well as hydrogels and beads. A final section approaches the application of sulfated polysaccharides in targeted drug delivery, focusing with particular interest the capacity for macrophage targeting.

  2. Erythrocytes for Drug Delivery and their Applications: A Review ...

    African Journals Online (AJOL)

    Recent advances have witnessed the emergence of an increasing number of novel carriers for the delivery of drugs. In this manuscript, we review and discuss the blood cellular carriers because of their great biocompatibility and thus a reduction in side effects. Our emphasis was on the erythrocyte because recent studies ...

  3. Nanotechnology and Drug Delivery Part 1: Background and ...

    African Journals Online (AJOL)

    Nanotechnology in general and as it relates to drug delivery in humans has been reviewed in a two-part article, the first part of which is this paper. In this paper, nanotechnology in nature, history of nanotechnology and methods of synthesis are discussed, while also outlining its applications, benefits and risks.

  4. Gold Nanoparticles: Synthesis and Applications in Drug Delivery ...

    African Journals Online (AJOL)

    This review is focused essentially on the synthesis and applications of gold nanoparticles in the field of medicine and targeted drug delivery. Nanotechnology has become one of the most interesting and advanced areas of research in this field. Among nanoparticles, gold nanoparticles demonstrate special advantages in ...

  5. PAIN RELIEF MEDIATED BY IMPLANTABLE DRUG-DELIVERY DEVICES

    NARCIS (Netherlands)

    HOEKSTRA, A

    Various totally implantable drug delivery systems from single access ports to micropumps are now available for administration of repeated boluses, and continuous or programmable infusions. In this respect, emphasis is given to a relatively cheap, totally implantable system for self-administering

  6. Printing technologies in fabrication of drug delivery systems

    DEFF Research Database (Denmark)

    Kolakovic, Ruzica; Viitala, Tapani; Ihalainen, Petri

    2013-01-01

    INTRODUCTION: There has been increased activity in the field recently regarding the development and research on various printing techniques in fabrication of dosage forms and drug delivery systems. These technologies may offer benefits and flexibility in manufacturing, potentially paving the way...... for personalized dosing and tailor-made dosage forms.\

  7. Atom sharp needles, the missing link in microneedle drug delivery

    NARCIS (Netherlands)

    Wissink, J.; Berenschot, Johan W.; Tas, Niels Roelof

    2008-01-01

    The skin barrier function is a major challenge for delivery of drugs via the skin. Located in the outermost layer of the skin, the stratum corneum (SC) consists of dead cells embedded in lipid regions, only 10-20 microm thick, tough but flexible and elastic. Hyperdermic needles penetrate the skin

  8. Polymeric Nanomedicine for Cancer MR Imaging and Drug Delivery

    OpenAIRE

    Khemtong, Chalermchai; Kessinger, Chase W.; Gao, Jinming

    2009-01-01

    Multifunctional nanomedicine is emerging as a highly integrated platform that allows for molecular diagnosis, targeted drug delivery, and simultaneous monitoring and treatment of cancer. Advances in polymer and materials science are critical for the successful development of these multi-component nanocomposites in one particulate system with such a small size confinement (

  9. Application of aptamers in diagnostics, drug-delivery and imaging

    Indian Academy of Sciences (India)

    Inthis review we will discuss about the latest developments in using aptamers in diagnostics, drug delivery and imaging.We begin with diagnostics, discussing the application of aptamers for the detection of infective agents itself, antigens/toxins (bacteria), biomarkers (cancer), or a combination. The ease of conjugation and ...

  10. Drug Design, Development, and Delivery: An Interdisciplinary Course on Pharmaceuticals

    Science.gov (United States)

    Prausnitz, Mark R.; Bommarius, Andreas S.

    2011-01-01

    We developed a new interdisciplinary course on pharmaceuticals to address needs of undergraduate and graduate students in chemical engineering and other departments. This course introduces drug design, development, and delivery in an integrated fashion that provides scientific depth in context with broader impacts in business, policy, and ethics.…

  11. Layered double hydroxide nanoparticles in gene and drug delivery.

    Science.gov (United States)

    Ladewig, Katharina; Xu, Zhi Ping; Lu, Gao Qing Max

    2009-09-01

    Layered double hydroxides (LDHs) have been known for many decades as catalyst and ceramic precursors, traps for anionic pollutants, catalysts and additives for polymers, but their successful synthesis on the nanometer scale a few years ago opened up a whole new field for their application in nanomedicine. The delivery of drugs and other therapeutic/bioactive molecules (e.g., peptides, proteins, nucleic acids) to mammalian cells is an area of research that is of tremendous importance to medicine and provides manifold applications for any new developments in the area of nanotechnology. Among the many different nanoparticles that have been shown to facilitate gene and/or drug delivery, LDH nanoparticles have attracted particular attention owing to their many desirable properties. This review aims to report recent progress in gene and drug delivery using LDH nanoparticles. It summarizes the advantages and disadvantages of using LDH nanoparticles as carriers for nucleic acids and drugs against the general background of bottlenecks that are encountered by cellular delivery systems. It describes further the models that have been proposed for the internalization of LDH nanoparticles into cells so far and discusses the intracellular fate of the particles and their cargo. The authors offer some remarks on how this field of research will progress in the near future and which challenges need to be overcome before LDH nanoparticles can be used in a clinical setting.

  12. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications

    Science.gov (United States)

    Cunha, Ludmylla; Grenha, Ana

    2016-01-01

    In the last decades, the discovery of metabolites from marine resources showing biological activity has increased significantly. Among marine resources, seaweed is a valuable source of structurally diverse bioactive compounds. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae and fucoidan in brown algae. Sulfated polysaccharides have been increasingly studied over the years in the pharmaceutical field, given their potential usefulness in applications such as the design of drug delivery systems. The purpose of this review is to discuss potential applications of these polymers in drug delivery systems, with a focus on carrageenan, ulvan and fucoidan. General information regarding structure, extraction process and physicochemical properties is presented, along with a brief reference to reported biological activities. For each material, specific applications under the scope of drug delivery are described, addressing in privileged manner particulate carriers, as well as hydrogels and beads. A final section approaches the application of sulfated polysaccharides in targeted drug delivery, focusing with particular interest the capacity for macrophage targeting. PMID:26927134

  13. Multifunctional porous silicon for therapeutic drug delivery and imaging.

    Science.gov (United States)

    Santos, Hélder A; Bimbo, Luis M; Lehto, Vesa-Pekka; Airaksinen, Anu J; Salonen, Jarno; Hirvonen, Jouni

    2011-09-01

    Major challenges in drug formulation are the poor solid state stability of drug molecules, poor dissolution/solubility and/or poor pharmacokinetic properties (bioavailability), which may lead to unreliable in vitro-in vivo (IVIV) correlation. To improve current therapeutical strategies, novel means to deliver poorly water soluble active pharmaceutical ingredients, as well as to target them to specific sites or cells in the body are needed. Biomedical applications of porous silicon (PSi) have been actively investigated during the last 10 years, especially in the areas of drug delivery and imaging, due to the biocompatibility and biodegradability of PSi materials, which makes them a potential candidate for controlled drug release. In addition, the unique pore sizes and easily functionalized surface properties of PSi materials allow high drug payloads and controlled kinetics from the drug release formulations. Modification of the PSi surface properties also facilitates biofunctionalization of the surface and the possibility to attach targeting moieties (e.g., antibodies and peptides), thus enabling effective targeting of the payload. In this review, we briefly address the production methodologies of PSi, and we will mainly present and discuss several examples about the biocompatibility of PSi, the most recent in vitro and in vivo applications of PSi as a carrier in drug/protein/peptide delivery and tissue engineering, as well as PSi as a platform for drug targeting and imaging.

  14. Heat effects on drug delivery across human skin

    Science.gov (United States)

    Hao, Jinsong; Ghosh, Priyanka; Li, S. Kevin; Newman, Bryan; Kasting, Gerald B.; Raney, Sam G.

    2016-01-01

    Introduction Exposure to heat can impact the clinical efficacy and/or safety of transdermal and topical drug products. Understanding these heat effects and designing meaningful in vitro and in vivo methods to study them are of significant value to the development and evaluation of drug products dosed to the skin. Areas covered This review provides an overview of the underlying mechanisms and the observed effects of heat on the skin and on transdermal/topical drug delivery, thermoregulation and heat tolerability. The designs of several in vitro and in vivo heat effect studies and their results are reviewed. Expert opinion There is substantial evidence that elevated temperature can increase transdermal/topical drug delivery. However, in vitro and in vivo methods reported in the literature to study heat effects of transdermal/topical drug products have utilized inconsistent study conditions, and in vitro models require better characterization. Appropriate study designs and controls remain to be identified, and further research is warranted to evaluate in vitro-in vivo correlations and the ability of in vitro models to predict in vivo effects. The physicochemical and pharmacological properties of the drug(s) and the drug product, as well as dermal clearance and heat gradients may require careful consideration. PMID:26808472

  15. Materials and methods for delivery of biological drugs

    Science.gov (United States)

    Zelikin, Alexander N.; Ehrhardt, Carsten; Healy, Anne Marie

    2016-11-01

    Biological drugs generated via recombinant techniques are uniquely positioned due to their high potency and high selectivity of action. The major drawback of this class of therapeutics, however, is their poor stability upon oral administration and during subsequent circulation. As a result, biological drugs have very low bioavailability and short therapeutic half-lives. Fortunately, tools of chemistry and biotechnology have been developed into an elaborate arsenal, which can be applied to improve the pharmacokinetics of biological drugs. Depot-type release systems are available to achieve sustained release of drugs over time. Conjugation to synthetic or biological polymers affords long circulating formulations. Administration of biological drugs through non-parenteral routes shows excellent performance and the first products have reached the market. This Review presents the main accomplishments in this field and illustrates the materials and methods behind existing and upcoming successful formulations and delivery strategies for biological drugs.

  16. Thermosensitive liposomal drug delivery systems: state of the art review

    Directory of Open Access Journals (Sweden)

    Kneidl B

    2014-09-01

    Full Text Available Barbara Kneidl,1,2 Michael Peller,3 Gerhard Winter,2 Lars H Lindner,1 Martin Hossann11Department of Internal Medicine III, University Hospital Munich, 2Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, 3Institute for Clinical Radiology, University Hospital Munich, Ludwig-Maximilians University, Munich, GermanyAbstract: Thermosensitive liposomes are a promising tool for external targeting of drugs to solid tumors when used in combination with local hyperthermia or high intensity focused ultrasound. In vivo results have demonstrated strong evidence that external targeting is superior over passive targeting achieved by highly stable long-circulating drug formulations like PEGylated liposomal doxorubicin. Up to March 2014, the Web of Science listed 371 original papers in this field, with 45 in 2013 alone. Several formulations have been developed since 1978, with lysolipid-containing, low temperature-sensitive liposomes currently under clinical investigation. This review summarizes the historical development and effects of particular phospholipids and surfactants on the biophysical properties and in vivo efficacy of thermosensitive liposome formulations. Further, treatment strategies for solid tumors are discussed. Here we focus on temperature-triggered intravascular and interstitial drug release. Drug delivery guided by magnetic resonance imaging further adds the possibility of performing online monitoring of a heating focus to calculate locally released drug concentrations and to externally control drug release by steering the heating volume and power. The combination of external targeting with thermosensitive liposomes and magnetic resonance-guided drug delivery will be the unique characteristic of this nanotechnology approach in medicine.Keywords: thermosensitive liposomes, phosphatidyloligoglycerol, hyperthermia, high intensity focused ultrasound, drug delivery, drug targeting

  17. Nanotopographical Cues for Modulating Fibrosis and Drug Delivery

    Science.gov (United States)

    Walsh, Laura Aiko Michelle

    Nanotopography in the cellular microenvironment provides biological cues and therefore has potential to be a useful tool for directing cellular behavior. Fibrotic encapsulation of implanted devices and materials can wall off and eventually cause functional failure of the implant. Drug delivery requires penetrating the epithelium, which encapsulates the body and provides a barrier to separate the body from its external environment. Both of these challenges could be elegantly surmounted using nanotopography, which would harness innate cellular responses to topographic cues to elicit desired cellular behavior. To this end, we fabricated high and low aspect ratio nanotopographically patterned thin films. Using scanning electron microscopy, real time polymerase chain reaction, immunofluorescence microscopy, in vitro drug delivery assays, transmission electron microscopy, inhibitor studies, and rabbit and rat in vivo drug delivery studies, we investigated cellular response to our nanotopographic thin films. We determined that high aspect ratio topography altered fibroblast morphology and decreased proliferation, possibly due to decreased protein adsorption. The fibroblasts also down regulated expression of mRNA of key factors associated with fibrosis, such as collagens 1 and 3. Low aspect ratio nanotopography increased drug delivery in vitro across an intestinal epithelial model monolayer by increasing paracellular permeability and remodeling the tight junction. This increase in drug delivery required integrin engagement and MLCK activity, and is consistent with the increased focal adhesion formation. Tight junction remodeling was also observed in a multilayered keratinocyte model, showing this mechanism can be generalized to multiple epithelium types. By facilitating direct contact of nanotopography with the viable epidermis using microneedles to pierce the stratum corneum, we are able to transdermally deliver a 150 kiloDalton, IgG-based therapeutic in vivo..

  18. Red Blood Cell Membrane-Cloaked Nanoparticles For Drug Delivery

    Science.gov (United States)

    Carpenter, Cody Westcott

    Herein we describe the development of the Red Blood Cell coated nanoparticle, RBC-NP. Purified natural erythrocyte membrane is used to coat drug-loaded poly(lacticco-glycolic acid) (PLGA). Synthetic PLGA co-polymer is biocompatible and biodegradable and has already received US FDA approval for drug-delivery and diagnostics. This work looks specifically at the retention of immunosuppressive proteins on RBC-NPs, right-sidedness of natural RBC membranes interfacing with synthetic polymer nanoparticles, sustained and retarded drug release of RBC-NPs as well as further surface modification of RBC-NPs for increased targeting of model cancer cell lines.

  19. Electrospinning of polymeric nanofibers for drug delivery applications.

    Science.gov (United States)

    Hu, Xiuli; Liu, Shi; Zhou, Guangyuan; Huang, Yubin; Xie, Zhigang; Jing, Xiabin

    2014-07-10

    Electrospinning has been recognized as a simple and versatile method for fabrication of polymer nanofibers. Various polymers that include synthetic, natural, and hybrid materials have been successfully electrospun into ultrafine fibers. The inherently high surface to volume ratio of electrospun fibers can enhance cell attachment, drug loading, and mass transfer properties. Drugs ranging from antibiotics and anticancer agents to proteins, DNA, RNA, living cells, and various growth factors have been incorporated into electrospun fibers. This article presents an overview of electrospinning techniques and their application in drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Bioinspired silica as drug delivery systems and their biocompatibility

    DEFF Research Database (Denmark)

    Steven, Christopher R.; Busby, Grahame A.; Mather, Craig

    2014-01-01

    Silica nanoparticles have been shown to have great potential as drug delivery systems (DDS), however, their fabrication often involves harsh chemicals and energy intensive laborious methods. This work details the employment of a bioinspired "green" method for the controlled synthesis of silica, use...... to identify the key synthetic parameters and quantify their effects on silica formation, drug loading and drug release. The observation that these new DDS are considerably less cytotoxic than their current counterparts, and exhibit additional benefits such as green synthesis and ease of functionalization...

  1. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system

    International Nuclear Information System (INIS)

    Gao Lei; Zhang Dianrui; Chen Minghui

    2008-01-01

    Formulation of poorly soluble drugs is a general intractable problem in pharmaceutical field, especially those compounds poorly soluble in both aqueous and organic media. It is difficult to resolve this problem using conventional formulation approaches, so many drugs are abandoned early in discovery. Nanocrystals, a new carrier-free colloidal drug delivery system with a particle size ranging from 100 to 1000 nm, is thought as a viable drug delivery strategy to develop the poorly soluble drugs, because of their simplicity in preparation and general applicability. In this article, the product techniques of the nanocrystals were reviewed and compared, the special features of drug nanocrystals were discussed. The researches on the application of the drug nanocrystals to various administration routes were described in detail. In addition, as introduced later, the nanocrystals could be easily scaled up, which was the prerequisite to the development of a delivery system as a market product

  2. Microneedle Patches as Drug and Vaccine Delivery Platform.

    Science.gov (United States)

    Li, Junwei; Zeng, Mingtao; Shan, Hu; Tong, Chunyi

    2017-01-01

    Transcutaneous delivery is the ideal method for delivering therapeutic reagents or vaccines into skin. With their promise of self-administration, cost-effective and high efficiency, microneedle patches have been studied intensively as therapeutic and vaccination delivery platform that replaces injection by syringe. This review aims to summarize the recent advancements of microneedle patches in application for drugs and vaccine delivery. We reviewed the most of recently published papers on microneedle patches, summarized their evolution, classification, state-of the-art capabilities and discussed promising application in drugs and vaccine delivery. With the rapid development of nanotechnology, microneedle patches have been improved by switching from undissolving to dissolving microneedles, and their safety has also improved dramatically. As a drug delivery tool, microneedle patches can deliver bioactive molecular of different physical size. Additionally, microneedle patches can be coated or encapsulate with DNA vaccine, subunit antigen, inactivated or live virus vaccine. Combining clinical results with the results of patient interview, microneedle patches are found to be feasible and are predicated to soon be acceptable for the medical service. In this review, we summarized the evolution, current and future application of microneedle patches as delivery vehicle for drugs and vaccines. Compared with traditional delivery tools, microneedle patches have many advantages, such as providing pain-free, non-invasive, convenient route for reagent administration and delivery, with no cold chain required for storage and transportation as well as decreasing sharp medical waste, needle-caused injury and transmission of blood-borne infectious disease in rural area. However, even though there are dramatic progress in preclinical investigation of microneedle patches, further testing will be required for clinical application. Further research should be implemented in multiple fields

  3. Nanoparticle-Mediated Pulmonary Drug Delivery: A Review

    Directory of Open Access Journals (Sweden)

    Mukta Paranjpe

    2014-04-01

    Full Text Available Colloidal drug delivery systems have been extensively investigated as drug carriers for the application of different drugs via different routes of administration. Systems, such as solid lipid nanoparticles, polymeric nanoparticles and liposomes, have been investigated for a long time for the treatment of various lung diseases. The pulmonary route, owing to a noninvasive method of drug administration, for both local and systemic delivery of an active pharmaceutical ingredient (API forms an ideal environment for APIs acting on pulmonary diseases and disorders. Additionally, this route offers many advantages, such as a high surface area with rapid absorption due to high vascularization and circumvention of the first pass effect. Aerosolization or inhalation of colloidal systems is currently being extensively studied and has huge potential for targeted drug delivery in the treatment of various diseases. Furthermore, the surfactant-associated proteins present at the interface enhance the effect of these formulations by decreasing the surface tension and allowing the maximum effect. The most challenging part of developing a colloidal system for nebulization is to maintain the critical physicochemical parameters for successful inhalation. The following review focuses on the current status of different colloidal systems available for the treatment of various lung disorders along with their characterization. Additionally, different in vitro, ex vivo and in vivo cell models developed for the testing of these systems with studies involving cell culture analysis are also discussed.

  4. Soft-Template-Synthesized Mesoporous Carbon for Oral Drug Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Dipendu [ORNL; Warren, Kaitlyn E [ORNL; Naskar, Amit K [ORNL

    2014-01-01

    Template-synthesized mesoporous carbons were successfully used in in vitro investigations of controlled delivery of three model drugs, captopril, furosemide, and ranitidine hydrochloride. Captopril and furosemide exhibited desorption kinetics over 30 40 h, and ranitidine HCl had a complete release time of 5 10 h. As evident from the slow release kinetics, we contend that our mesoporous carbon is an improved drug-delivery medium compared to state-of-the-art porous silica-based substrates. The mesoporous carbons, synthesized from phloroglucinol and lignin, a synthetic and a sustainable precursor, respectively, exhibit BET surface area of 200 400 m2 g-1 and pore volume of 0.2 0.6 cm3 g-1. The phloroglucinol-based carbon has narrower pore widths and higher pore volume than the lignin-derived counterpart and maintains a longer release time. Numerical modeling of the release kinetics data reveals that the diffusivities of all the drugs from lignin-based carbon media are of equivalent magnitude (10-22 to 10-24 m2 s-1). However, a tailored reduction of pore width in the sorbent reduces the diffusivity of smaller drug molecules (captopril) by an order of magnitude. Thus, engineered pore morphology in our synthesized carbon sorbent, along with its potential to tailor the chemistry of its interaction with sorbet, can be exploited for optimal delivery system of a preferred drug within its therapeutic level and below the level of toxicity.

  5. Imaging drug delivery to skin with stimulated Raman scattering microscopy.

    Science.gov (United States)

    Saar, Brian G; Contreras-Rojas, L Rodrigo; Xie, X Sunney; Guy, Richard H

    2011-06-06

    Efficient drug delivery to the skin is essential for the treatment of major dermatologic diseases, such as eczema, psoriasis and acne. However, many compounds penetrate the skin barrier poorly and require optimized formulations to ensure their bioavailability. Here, stimulated Raman scattering (SRS) microscopy, a recently developed, label-free chemical imaging tool, is used to acquire high resolution images of multiple chemical components of a topical formulation as it penetrates into mammalian skin. This technique uniquely provides label-free, nondestructive, three-dimensional images with high spatiotemporal resolution. It reveals novel features of (trans)dermal drug delivery in the tissue environment: different rates of drug penetration via hair follicles as compared to the intercellular pathway across the stratum corneum are directly observed, and the precipitation of drug crystals on the skin surface is visualized after the percutaneous penetration of the cosolvent excipient in the formulation. The high speed three-dimensional imaging capability of SRS thus reveals features that cannot be seen with other techniques, providing both kinetic information and mechanistic insight into the (trans)dermal drug delivery process.

  6. NMR characterisation and transdermal drug delivery potential of microemulsion systems

    DEFF Research Database (Denmark)

    Kreilgaard, Mads; Pedersen, E J; Jaroszewski, J W

    2000-01-01

    The purpose of this study was to investigate the influence of structure and composition of microemulsions (Labrasol/Plurol Isostearique/isostearylic isostearate/water) on their transdermal delivery potential of a lipophilic (lidocaine) and a hydrophilic model drug (prilocaine hydrochloride......), and to compare the drug delivery potential of microemulsions to conventional vehicles. Self-diffusion coefficients determined by pulsed-gradient spin-echo NMR spectroscopy and T(1) relaxation times were used to characterise the microemulsions. Transdermal flux of lidocaine and prilocaine hydrochloride through...... lipophilic and hydrophilic compounds. The microemulsions increased transdermal flux of lidocaine up to four times compared to a conventional oil-in-water emulsion, and that of prilocaine hydrochloride almost 10 times compared to a hydrogel. A correlation between self-diffusion of the drugs in the vehicles...

  7. Magnetic nanoparticle drug delivery systems for targeting tumor

    Science.gov (United States)

    Mody, Vicky V.; Cox, Arthur; Shah, Samit; Singh, Ajay; Bevins, Wesley; Parihar, Harish

    2014-04-01

    Tumor hypoxia, or low oxygen concentration, is a result of disordered vasculature that lead to distinctive hypoxic microenvironments not found in normal tissues. Many traditional anti-cancer agents are not able to penetrate into these hypoxic zones, whereas, conventional cancer therapies that work by blocking cell division are not effective to treat tumors within hypoxic zones. Under these circumstances the use of magnetic nanoparticles as a drug delivering agent system under the influence of external magnetic field has received much attention, based on their simplicity, ease of preparation, and ability to tailor their properties for specific biological applications. Hence in this review article we have reviewed current magnetic drug delivery systems, along with their application and clinical status in the field of magnetic drug delivery.

  8. Applications of nanodiamonds in drug delivery and catalysis

    KAUST Repository

    Moosa, Basem

    2014-01-01

    The interest of researchers in utilizing nanomaterials as carriers for a wide spectrum of molecules has exploded in the last two decades. Nanodiamonds are one class of carbon-based nanomaterials that have emerged as promising drug delivery vehicles and imaging probes. Their ease of functionalization also led to the generation of stimuli-responsive nanodiamonds that deliver drugs on demand in a controlled manner. The ample surface area of NDs allowed for a higher loading of not only small molecules but also macromolecules like genes and proteins. Recently, the unique surface of NDs has attracted more attention as catalyst support in a huge range of organic modification and C-C bond formation reactions. Herein, recent advances in the utilization of nanodiamonds as a drug delivery vehicle and catalytical support are highlighted and summarized to illustrate the potential and versatility of this cheap and commercially available nanomaterial. Copyright © 2014 American Scientific Publishers All rights reserved.

  9. Biological studies of matrix metalloproteinase sensitive drug delivery systems

    DEFF Research Database (Denmark)

    Johansen, Pia Thermann

    for delivery of drugs to specific tissues or cells utilizing biological knowledge of cancer tissue is getting increased attention. In this thesis a novel matrix metalloproteinase-2 (MMP-2) sensitive poly-ethylene glycol (PEG) coated liposomal drug delivery system for treatment of cancer was developed....... The system exploits the increased MMP-2 activity present in tumor tissue as a site-specific trigger of liposomal activation and controlled drug release after accumulation due to the enhanced permeability and retention effect. Enzymatic activity of MMP-2 results in shedding of a novel PEG coating, consisting...... of a negatively charged lipopeptide-PEG conjugates containing a MMP-2 cleavable peptide, which leads to cationic liposomes with enhanced ability to interact with negatively charged cell membranes. Activation of the liposomal formulation developed here resulted in enhanced association of liposomes with cancer...

  10. Microsponges: A novel strategy for drug delivery system

    Directory of Open Access Journals (Sweden)

    Santanu Kaity

    2010-01-01

    Full Text Available Microsponges are polymeric delivery systems composed of porous microspheres. They are tiny sponge-like spherical particles with a large porous surface. Moreover, they may enhance stability, reduce side effects and modify drug release favorably. Microsponge technology has many favorable characteristics, which make it a versatile drug delivery vehicle. Microsponge Systems are based on microscopic, polymer-based microspheres that can suspend or entrap a wide variety of substances, and can then be incorporated into a formulated product such as a gel, cream, liquid or powder. The outer surface is typically porous, allowing a sustained flow of substances out of the sphere. Microsponges are porous, polymeric microspheres that are used mostly for topical use and have recently been used for oral administration. Microsponges are designed to deliver a pharmaceutical active ingredient efficiently at the minimum dose and also to enhance stability, reduce side effects, and modify drug release.

  11. Functionalized mesoporous silica materials for controlled drug delivery.

    Science.gov (United States)

    Yang, Piaoping; Gai, Shili; Lin, Jun

    2012-05-07

    In the past decade, non-invasive and biocompatible mesoporous silica materials as efficient drug delivery systems have attracted special attention. Great progress in structure control and functionalization (magnetism and luminescence) design has been achieved for biotechnological and biomedical applications. This review highlights the most recent research progress on silica-based controlled drug delivery systems, including: (i) pure mesoporous silica sustained-release systems, (ii) magnetism and/or luminescence functionalized mesoporous silica systems which integrate targeting and tracking abilities of drug molecules, and (iii) stimuli-responsive controlled release systems which are able to respond to environmental changes, such as pH, redox potential, temperature, photoirradiation, and biomolecules. Although encouraging and potential developments have been achieved, design and mass production of novel multifunctional carriers, some practical biological application, such as biodistribution, the acute and chronic toxicities, long-term stability, circulation properties and targeting efficacy in vivo are still challenging. This journal is © The Royal Society of Chemistry 2012

  12. Drug delivery glucantime in PVP/chitosan membranes

    International Nuclear Information System (INIS)

    Oliveira, Maria J.A.; Lugao, Ademar B.; Parra, Duclerc F.; Amato, Valdir S.

    2015-01-01

    The current study of polymer science considers the area of biomedical application very important to establish developments in new polymeric materials. Examples of that are hydrogels for controlled release of drugs. In this work, hydrogels of poly (N-2-vinil-pyrrolidone) (PVP) containing chitosan and clay nanoparticles were obtained and characterized to investigate chitosan influence on Glucantime drug delivery. The matrixes were crosslinked by gamma irradiation process with doses of 25 kGy. Hydrogels morphologies were observed by X Ray diffraction (DRX). Atomic Force Microscopy (AFM) and swelling kinetic at 22 °C to study the capacity of water retention and, finally, drug delivery tests were performed 'in vitro'. The system showed higher gel fraction for the matrix with 1.0% of clay and 0.5% of chitosan. In this case, besides the interactions of clay ions with PVP, there are interactions of chitosan amine group with PVP amide group. (author)

  13. Cell-penetrating peptides for drug delivery across membrane barriers

    DEFF Research Database (Denmark)

    Foged, Camilla; Nielsen, Hanne Moerck

    2008-01-01

    During the last decade, cell-penetrating peptides have been investigated for their ability to overcome the plasma membrane barrier of mammalian cells for the intracellular or transcellular delivery of cargoes as diverse as low molecular weight drugs, imaging agents, oligonucleotides, peptides......-penetrating peptides as transmembrane drug delivery agents, according to the recent literature, and discusses critical issues and future challenges in relation to fully understanding the fundamental principles of the cell-penetrating peptide-mediated membrane translocation of cargoes and the exploitation......, proteins and colloidal carriers such as liposomes and polymeric nanoparticles. Their ability to cross biological membranes in a non-disruptive way without apparent toxicity is highly desired for increasing drug bioavailability. This review provides an overview of the application of cell...

  14. Mesoporous-Silica-Functionalized Nanoparticles for Drug Delivery.

    Science.gov (United States)

    Giret, Simon; Wong Chi Man, Michel; Carcel, Carole

    2015-09-28

    The ever-growing interest for finding efficient and reliable methods for treatment of diseases has set a precedent for the design and synthesis of new functional hybrid materials, namely porous nanoparticles, for controlled drug delivery. Mesoporous silica nanoparticles (MSNPs) represent one of the most promising nanocarriers for drug delivery as they possess interesting chemical and physical properties, thermal and mechanical stabilities, and are biocompatibile. In particular, their easily functionalizable surface allows a large number of property modifications further improving their efficiency in this field. This Concept article deals with the advances on the novel methods of functionalizing MSNPs, inside or outside the pores, as well as within the walls, to produce efficient and smart drug carriers for therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Transdermal Delivery of Drugs with Microneedles—Potential and Challenges

    Directory of Open Access Journals (Sweden)

    Kevin Ita

    2015-06-01

    Full Text Available Transdermal drug delivery offers a number of advantages including improved patient compliance, sustained release, avoidance of gastric irritation, as well as elimination of pre-systemic first-pass effect. However, only few medications can be delivered through the transdermal route in therapeutic amounts. Microneedles can be used to enhance transdermal drug delivery. In this review, different types of microneedles are described and their methods of fabrication highlighted. Microneedles can be fabricated in different forms: hollow, solid, and dissolving. There are also hydrogel-forming microneedles. A special attention is paid to hydrogel-forming microneedles. These are innovative microneedles which do not contain drugs but imbibe interstitial fluid to form continuous conduits between dermal microcirculation and an attached patch-type reservoir. Several microneedles approved by regulatory authorities for clinical use are also examined. The last part of this review discusses concerns and challenges regarding microneedle use.

  16. GELATIN CARRIERS FOR DRUG AND CELL DELIVERY IN TISSUE ENGINEERING

    Science.gov (United States)

    Santoro, Marco; Tatara, Alexander M.; Mikos, Antonios G.

    2014-01-01

    The ability of gelatin to form complexes with different drugs has been investigated for controlled release applications. Gelatin parameters, such as crosslinking density and isoelectric point, have been tuned in order to optimize gelatin degradation and drug delivery kinetics. In recent years, focus has shifted away from the use of gelatin in isolation towards the modification of gelatin with functional groups and the fabrication of material composites with embedded gelatin carriers. In this review, we highlight some of the latest work being performed in these areas and comment on trends in the field. Specifically, we discuss gelatin modifications for immune system evasion, drug stabilization, and targeted delivery, as well as gelatin composite systems based on ceramics, naturally-occurring polymers, and synthetic polymers. PMID:24746627

  17. Breakable mesoporous silica nanoparticles for targeted drug delivery.

    Science.gov (United States)

    Maggini, Laura; Cabrera, Ingrid; Ruiz-Carretero, Amparo; Prasetyanto, Eko A; Robinet, Eric; De Cola, Luisa

    2016-04-07

    "Pop goes the particle". Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery.

  18. Smart drug delivery injector microsystem based on pyrotechnical actuation

    Science.gov (United States)

    Puig-Vidal, Manel; Lopez, Jaime; Miribel, Pere; Samitier-Marti, Josep; Rossi, Carole; Berthold, Axel

    2003-04-01

    A smart drug delivery injector microsystem is presented based on small pyrotechnics to impulse drugs to be injected to a human being. The proposal refers to a feasibility demonstration of the technology for pharmaceutical chips. These chips would be around some cm2 in section and will be able to inject a drug into de subject skin responding to an electrical signal. The product derived from this activity will be useful for astronaut's health, being able to administrate emergency doses of products (for instance cardio-tonic or hypoallegic drugs) enough to survive an emergency situation (as it can be a heart attack during EVA). The system can also be used for easy administration of drugs needed for physiological research. The usefulness of the device in terrestrial applications has no doubt, allowing remote administration of drugs to patients whose biomedical parameters are remotely monitored. The concept proposed here is new in combining the idea of pharmaceutical chip with the ultrasonic droplet technology and the use of pyrotechnics to provide energy to the drug to be injected. The proposed Drug Injector Microsystem is based on 2 main blocks:- Micropyrotechnic system: defines the ignition part based on pyrotechnic.- Microfluidic system: defines the drug injection part. This part is also divided in different critical parts: Expansion chamber, membrane or piston, drug reservoir and a needle. Different sensors are placed on the expansion chamber of microfluidic system and on the micropyrotechnic system. A complete electronic module is implemented with a PC interface to define flexible and user friendly experiences showing the smart drug delivery injector microsystem principle.

  19. Photodynamic Priming Mitigates Chemotherapeutic Selection Pressures and Improves Drug Delivery.

    Science.gov (United States)

    Huang, Huang-Chiao; Rizvi, Imran; Liu, Joyce; Anbil, Sriram; Kalra, Ashish; Lee, Helen; Baglo, Yan; Paz, Nancy; Hayden, Douglas; Pereira, Steve; Pogue, Brian W; Fitzgerald, Jonathan; Hasan, Tayyaba

    2018-01-15

    Physiologic barriers to drug delivery and selection for drug resistance limit survival outcomes in cancer patients. In this study, we present preclinical evidence that a subtumoricidal photodynamic priming (PDP) strategy can relieve drug delivery barriers in the tumor microenvironment to safely widen the therapeutic window of a nanoformulated cytotoxic drug. In orthotopic xenograft models of pancreatic cancer, combining PDP with nanoliposomal irinotecan (nal-IRI) prevented tumor relapse, reduced metastasis, and increased both progression-free survival and 1-year disease-free survival. PDP enabled these durable improvements by targeting multiple tumor compartments to (i) increase intratumoral drug accumulation by >10-fold, (ii) increase the duration of drug exposure above a critical therapeutic threshold, and (iii) attenuate surges in CD44 and CXCR4 expression, which mediate chemoresistance often observed after multicycle chemotherapy. Overall, our results offer preclinical proof of concept for the effectiveness of PDP to minimize risks of tumor relapse, progression, and drug resistance and to extend patient survival. Significance: A biophysical priming approach overcomes key treatment barriers, significantly reduces metastases, and prolongs survival in orthotopic models of human pancreatic cancer. Cancer Res; 78(2); 558-71. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. Polymer based drug delivery systems for mycobacterial infections.

    Science.gov (United States)

    Pandey, Rajesh; Khuller, G K

    2004-07-01

    In the last decade, polymer based technologies have found wide biomedical applications. Polymers, whether synthetic (e.g. polylactide-co-glycolide or PLG) or natural (e.g. alginate, chitosan etc.), have the property of encapsulating a diverse range of molecules of biological interest and bear distinct therapeutic advantages such as controlled release of drugs, protection against the premature degradation of drugs and reduction in drug toxicity. These are important considerations in the long-duration treatment of chronic infectious diseases such as tuberculosis in which patient non-compliance is the major obstacle to successful chemotherapy. Antitubercular drugs, singly or in combination, have been encapsulated in polymers to provide controlled drug release and the system also offers the flexibility of selecting various routes of administration such as oral, subcutaneous and aerosol. The present review highlights the approaches towards the preparation of polymeric antitubercular drug delivery systems, emphasizing how the route of administration may influence drug bioavailability as well as the chemotherapeutic efficacy. In addition, the pros and cons of the various delivery systems are also discussed.

  1. Breakable mesoporous silica nanoparticles for targeted drug delivery

    Science.gov (United States)

    Maggini, Laura; Cabrera, Ingrid; Ruiz-Carretero, Amparo; Prasetyanto, Eko A.; Robinet, Eric; de Cola, Luisa

    2016-03-01

    ``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery.``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery. Electronic supplementary information (ESI) available: Full experimental procedures, additional SEM and TEM images of particles, complete UV-Vis and PL-monitored characterization of the breakdown of

  2. Albumin–Polymer–Drug Conjugates: Long Circulating, High Payload Drug Delivery Vehicles

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford; Zuwala, Kaja; Pilgram, Oliver

    2016-01-01

    a marginal increase in the circulation lifetime of the drugs. We combine the benefits of the two platforms and at the same time overcome their respective limitations. Specifically, we develop the synthesis of albumin–polymer–drug conjugates to obtain long circulating, high payload drug delivery vehicles......Albumin is an exquisite tool of nature used in biomedicine to achieve long blood residence time for drugs, but the payload it can carry is typically limited to one molecule per protein. In contrast, synthetic macromolecular prodrugs contain multiple copies of drugs per polymer chain but offer only...... the drug in terms of efficacy of treatment...

  3. DNA nanomaterials for preclinical imaging and drug delivery.

    Science.gov (United States)

    Jiang, Dawei; England, Christopher G; Cai, Weibo

    2016-10-10

    Besides being the carrier of genetic information, DNA is also an excellent biological organizer to establish well-designed nanostructures in the fields of material engineering, nanotechnology, and biomedicine. DNA-based materials represent a diverse nanoscale system primarily due to their predictable base pairing and highly regulated conformations, which greatly facilitate the construction of DNA nanostructures with distinct shapes and sizes. Integrating the emerging advancements in bioconjugation techniques, DNA nanostructures can be readily functionalized with high precision for many purposes ranging from biosensors to imaging to drug delivery. Recent progress in the field of DNA nanotechnology has exhibited collective efforts to employ DNA nanostructures as smart imaging agents or delivery platforms within living organisms. Despite significant improvements in the development of DNA nanostructures, there is limited knowledge regarding the in vivo biological fate of these intriguing nanomaterials. In this review, we summarize the current strategies for designing and purifying highly-versatile DNA nanostructures for biological applications, including molecular imaging and drug delivery. Since DNA nanostructures may elicit an immune response in vivo, we also present a short discussion of their potential toxicities in biomedical applications. Lastly, we discuss future perspectives and potential challenges that may limit the effective preclinical and clinical employment of DNA nanostructures. Due to their unique properties, we predict that DNA nanomaterials will make excellent agents for effective diagnostic imaging and drug delivery, improving patient outcome in cancer and other related diseases in the near future. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Physics considerations in targeted anticancer drug delivery by magnetoelectric nanoparticles

    Science.gov (United States)

    Stimphil, Emmanuel; Nagesetti, Abhignyan; Guduru, Rakesh; Stewart, Tiffanie; Rodzinski, Alexandra; Liang, Ping; Khizroev, Sakhrat

    2017-06-01

    In regard to cancer therapy, magnetoelectric nanoparticles (MENs) have proven to be in a class of its own when compared to any other nanoparticle type. Like conventional magnetic nanoparticles, they can be used for externally controlled drug delivery via application of a magnetic field gradient and image-guided delivery. However, unlike conventional nanoparticles, due to the presence of a non-zero magnetoelectric effect, MENs provide a unique mix of important properties to address key challenges in modern cancer therapy: (i) a targeting mechanism driven by a physical force rather than antibody matching, (ii) a high-specificity delivery to enhance the cellular uptake of therapeutic drugs across the cancer cell membranes only, while sparing normal cells, (iii) an externally controlled mechanism to release drugs on demand, and (iv) a capability for image guided precision medicine. These properties separate MEN-based targeted delivery from traditional biotechnology approaches and lay a foundation for the complementary approach of technobiology. The biotechnology approach stems from the underlying biology and exploits bioinformatics to find the right therapy. In contrast, the technobiology approach is geared towards using the physics of molecular-level interactions between cells and nanoparticles to treat cancer at the most fundamental level and thus can be extended to all the cancers. This paper gives an overview of the current state of the art and presents an ab initio model to describe the underlying mechanisms of cancer treatment with MENs from the perspective of basic physics.

  5. Carrier-Based Drug Delivery System for Treatment of Acne

    Science.gov (United States)

    Vyas, Amber; Kumar Sonker, Avinesh

    2014-01-01

    Approximately 95% of the population suffers at some point in their lifetime from acne vulgaris. Acne is a multifactorial disease of the pilosebaceous unit. This inflammatory skin disorder is most common in adolescents but also affects neonates, prepubescent children, and adults. Topical conventional systems are associated with various side effects. Novel drug delivery systems have been used to reduce the side effect of drugs commonly used in the topical treatment of acne. Topical treatment of acne with active pharmaceutical ingredients (API) makes direct contact with the target site before entering the systemic circulation which reduces the systemic side effect of the parenteral or oral administration of drug. The objective of the present review is to discuss the conventional delivery systems available for acne, their drawbacks, and limitations. The advantages, disadvantages, and outcome of using various carrier-based delivery systems like liposomes, niosomes, solid lipid nanoparticles, and so forth, are explained. This paper emphasizes approaches to overcome the drawbacks and limitations associated with the conventional system and the advances and application that are poised to further enhance the efficacy of topical acne formulations, offering the possibility of simplified dosing regimen that may improve treatment outcomes using novel delivery system. PMID:24688376

  6. Fabrication of Sealed Nanostraw Microdevices for Oral Drug Delivery.

    Science.gov (United States)

    Fox, Cade B; Cao, Yuhong; Nemeth, Cameron L; Chirra, Hariharasudhan D; Chevalier, Rachel W; Xu, Alexander M; Melosh, Nicholas A; Desai, Tejal A

    2016-06-28

    The oral route is preferred for systemic drug administration and provides direct access to diseased tissue of the gastrointestinal (GI) tract. However, many drugs have poor absorption upon oral administration due to damaging enzymatic and pH conditions, mucus and cellular permeation barriers, and limited time for drug dissolution. To overcome these limitations and enhance oral drug absorption, micron-scale devices with planar, asymmetric geometries, termed microdevices, have been designed to adhere to the lining of the GI tract and release drug at high concentrations directly toward GI epithelium. Here we seal microdevices with nanostraw membranes-porous nanostructured biomolecule delivery substrates-to enhance the properties of these devices. We demonstrate that the nanostraws facilitate facile drug loading and tunable drug release, limit the influx of external molecules into the sealed drug reservoir, and increase the adhesion of devices to epithelial tissue. These findings highlight the potential of nanostraw microdevices to enhance the oral absorption of a wide range of therapeutics by binding to the lining of the GI tract, providing prolonged and proximal drug release, and reducing the exposure of their payload to drug-degrading biomolecules.

  7. Exploration of a Doxorubicin-Polymer Conjugate in Lipid-Polymer Hybrid Nanoparticle Drug Delivery

    Science.gov (United States)

    Lough, Emily

    Nanoparticle (NP) drug delivery is a major focus in the research community because of its potential to use existing drugs in safer and more effective ways. Chemotherapy encapsulation in NPs shields the drug from the rest of the body while it is within the NP, with less systemic exposure leading to fewer off-target effects of the drug. However, passive loading of drugs into NPs is a suboptimal method, often leading to burst release upon administration. This work explores the impact of incorporating the drug-polymer conjugate doxorubicin-poly (lactic-co-glycolic) acid (Dox-PLGA) into a lipid-polymer hybrid nanoparticle (LPN). The primary difference in using a drug-polymer conjugate for NP drug delivery is the drug's release kinetics. Dox-PLGA LPNs showed a more sustained and prolonged release profile over 28 days compared to LPNs with passively loaded, unconjugated doxorubicin. This sustained release translates to cytotoxicity; when systemic circulation was simulated using dialysis, Dox-PLGA LPNs retained their cytotoxicity at a higher level than the passively loaded LPNs. The in vivo implication of preserving cytotoxic potency through a slower release profile is that the majority of Dox delivered via Dox-PLGA LPNs will be kept within the LPN until it reaches the tumor. This will result in fewer systemic side effects and more effective treatments given the higher drug concentration at the tumor site. An intriguing clinical application of this drug delivery approach lies in using Dox-PLGA LPNs to cross the blood-brain barrier (BBB). The incorporation of Dox-PLGA is hypothesized to have a protective effect on the BBB as its slow release profile will prevent drug from harming the BBB. Using induced pluripotent stem cells differentiated to human brain microvascular endothelial cells that comprise the BBB, the Dox-PLGA LPNs were shown to be less destructive to the BBB than their passively loaded counterparts. Dox-PLGA LPNs showed superior cytotoxicity against plated tumor

  8. Preparation of nanoscale pulmonary drug delivery formulations by spray drying

    DEFF Research Database (Denmark)

    Bohr, Adam; Ruge, Christian A; Beck-Broichsitter, Moritz

    2014-01-01

    Advances in preparation technologies for nanomedicines have provided novel formulations for pulmonary drug delivery. Application of drugs via the lungs can be considered as one of the most attractive implementations of nanoparticles for therapeutic use due to the unique anatomy and physiology...... of the lungs. The colloidal nature of nanoparticles provides important advantages to the formulation of drugs, which are normally difficult to administer due to poor stability or uptake, partly because nanoparticles protect the drug from the physiological milieu, facilitate transport across biological barriers...... and can offer controlled drug release. There are numerous methods for producing therapeutic nanoparticles, each with their own advantages and suitable application. Liquid atomization techniques such as spray drying can produce nanoparticle formulations in a dry powder form suitable for pulmonary...

  9. Molecular dynamics study on DNA nanotubes as drug delivery vehicle for anticancer drugs.

    Science.gov (United States)

    Liang, Lijun; Shen, Jia-Wei; Wang, Qi

    2017-05-01

    In recent years, self-assembled DNA nanotubes have emerged as a type of nano-biomaterials with great potential for biomedical applications. To develop universal nanocarriers for smart and targeted drug delivery from DNA nanotubes, the understanding of interaction mechanism between DNA nanotubes and drugs is essential. In this study, the interactions between anti-cancer drugs and DNA nanotubes were investigated via molecular dynamics simulation. Our simulation results demonstrated that the DNA nanotubes could serve as a good drug delivery material by absorption of anti-cancer drugs with π-π interactions. At high concentration of anti-cancer drugs, most of the drugs could be absorbed by DNA nanotubes. Therefore, it could greatly decrease the aggregation of anti-cancer drugs in aqueous solution. In addition, the stability of DNA nanotubes could be improved with the absorption of anti-cancer drugs. These findings greatly enhance the understanding of the interaction mechanism of DNA nanotubes and anti-cancer drugs. Our study suggests that DNA nanotubes are promising delivery vehicles by strong absorption of anti-cancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Implementation of a chronic unilateral intraparenchymal drug delivery system in a swine model.

    Science.gov (United States)

    Kim, Inyong; Paek, Seungleal; Nelson, Brian D; Knight, Emily J; Marsh, Michael P; Bieber, Allan J; Bennet, Kevin E; Lee, Kendall H

    2014-04-30

    Systemic delivery of pharmacologic agents has led to many significant advances in the treatment of neurologic and psychiatric conditions. However, this approach has several limitations, including difficulty penetrating the blood-brain barrier and enzymatic degradation prior to reaching its intended target. Here, we describe the testing of a system allowing intraparenchymal (IPa) infusion of therapeutic agents directly to the appropriate anatomical targets, in a swine model. Five male pigs underwent 3.0T magnetic resonance (MR) guided placement of an IPa catheter into the dorso-medial putamen, using a combined system of the Leksell stereotactic arc, a Mayo-developed MRI-compatible pig head frame, and a custom-designed Fred Haer Company (FHC) delivery system. Our results show hemi-lateral coverage of the pig putamen is achievable from a single infusion point and that the volume of the bolus detected in each animal is uniform (1544±420mm(3)). The IPa infusion system is designed to isolate the intracranial catheter from bodily-induced forces while delivering drugs and molecules into the brain tissue by convection-enhanced delivery, with minimal-to-no catheter track backflow. This study presents an innovative IPa drug delivery system, which includes a sophisticated catheter and implantable pump designed to deliver drugs and various molecules in a precise and controlled manner with limited backflow. It also demonstrates the efficacy of the delivery system, which has the potential to radically impact the treatment of a wide range of neurologic conditions. Lastly, the swine model used here has certain advantages for translation into clinical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Laser-acoustic transcutaneous drug delivery: A new trend in administration of drugs

    Science.gov (United States)

    Zharov, Vladimir P.; Latyshev, Alexei S.

    1999-03-01

    This work deals with the principles of transcutaneous drug delivery technique which uses optoacoustic (OA) effect. Laser OA impregnation, enhanced laser OA impregnation, simple laser and laser OA injections are presented. Drug impregnation mathematical model and preliminary experiments on laser injection are described.

  12. Multi-access drug delivery network and stability

    Science.gov (United States)

    Mitatha, S; Moongfangklang, N; Jalil, MA; Suwanpayak, N; Ali, J; Yupapin, PP

    2011-01-01

    A novel design of a multi-drug delivery network and diagnosis using a molecular network is proposed. By using a pair of tweezers to generate the intense optical vortices within the PANDA ring resonator, the required molecules (drug volumes) can be trapped and moved dynamically within the molecular bus networks, in which the required drug delivery targets can be achieved within the network. The advantage of the proposed system is that the diagnostic method can be used within a tiny system (thin film device or circuit), which is available as an embedded device for diagnostic use in patients. In practice, the large molecular networks such as ring, star, and bus networks can be integrated to form a large drug delivery system. The channel spacing of the trapped volumes (molecules) within the bus molecular networks can be provided by using the appropriate free spectrum range, which is analyzed and discussed in the terms of crosstalk effects. In this work, crosstalk effects of about 0.1% are noted, which can be neglected and does not affect the network stability. PMID:21980238

  13. Gamma- scintigraphy in the evaluation of drug delivery systems

    International Nuclear Information System (INIS)

    Shahhosseini, S.; Beiki, D.; Eftekhari, M.

    2003-01-01

    Gamma-scintigraphy is applied extensively in the development and evaluation of pharmaceutical delivery systems, particularly for monitoring formulations in the gastrointestinal and respiratory tracts. The radiolabelling is generally achieved by the incorporation of an appropriate radionuclide such as technetium-99m or indium-111 into the formulation or by addition of a non- radioactive isotope such as samarium-152 followed by neutron activation of the final product. Drug delivery systems can be tested in vitro using various techniques like dissolution rate. Since in vitro testing methods are not predictive of in vivo results, such systems should be evaluated in vivo using animal models, especially oral dosage forms. Altered gastrointestinal transit due to individual variation, physiologic factors, or the presence of food may influence bioavailability. Distribution or drug release may be premature or delayed in vivo. Similarly, altered deposition or clearance from other routes of administration such as nasal, ocular, or inhalation may explain drug absorption anomalies. Therefore, there is a growing tendency for new drug delivery systems to be tested, whenever possible, in human subjects in a so called phase 1 clinical evaluation. Gamma- scintigraphy combined with knowledge of physiological and dosage from design can help to identify some of these variables. the resulting insight can be used to accelerate the formulation development process and to ensure success in early clinical trials

  14. Drug delivery's quest for polymers: Where are the frontiers?

    Science.gov (United States)

    Merkle, Hans P

    2015-11-01

    Since the legendary 1964 article of Folkman and Long entitled "The use of silicone rubber as a carrier for prolonged drug therapy" the role of polymers in controlled drug delivery has come a long way. Today it is evident that polymers play a crucial if not the prime role in this field. The latest boost owes to the interest in drug delivery for the purpose of tissue engineering in regenerative medicine. The focus of this commentary is on a selection of general and personal observations that are characteristic for the current state of polymer therapeutics and carriers. It briefly highlights selected examples for the long march of synthetic polymer-drug conjugates from bench to bedside, comments on the ambivalence of selected polymers as inert excipients versus biological response modifiers, and on the yet unsolved dilemma of cationic polymers for the delivery of nucleic acid therapeutics. Further subjects are the complex design of multifunctional polymeric carriers including recent concepts towards functional supramolecular polymers, as well as observations on stimuli-sensitive polymers and the currently ongoing trend towards natural and naturally-derived biopolymers. The final topic is the discovery and early development of a novel type of biodegradable polyesters for parenteral use. Altogether, it is not the basic and applied research in polymer therapeutics and carriers, but the translational process that is the key hurdle to proceed towards an authoritative approval of new polymer therapeutics and carriers. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. An implantable thermoresponsive drug delivery system based on Peltier device.

    Science.gov (United States)

    Yang, Rongbing; Gorelov, Alexander V; Aldabbagh, Fawaz; Carroll, William M; Rochev, Yury

    2013-04-15

    Locally dropping the temperature in vivo is the main obstacle to the clinical use of a thermoresponsive drug delivery system. In this paper, a Peltier electronic element is incorporated with a thermoresponsive thin film based drug delivery system to form a new drug delivery device which can regulate the release of rhodamine B in a water environment at 37 °C. Various current signals are used to control the temperature of the cold side of the Peltier device and the volume of water on top of the Peltier device affects the change in temperature. The pulsatile on-demand release profile of the model drug is obtained by turning the current signal on and off. The work has shown that the 2600 mAh power source is enough to power this device for 1.3 h. Furthermore, the excessive heat will not cause thermal damage in the body as it will be dissipated by the thermoregulation of the human body. Therefore, this simple novel device can be implanted and should work well in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Microneedles array with biodegradable tips for transdermal drug delivery

    Science.gov (United States)

    Iliescu, Ciprian; Chen, Bangtao; Wei, Jiashen; Tay, Francis E. H.

    2008-12-01

    The paper presented an enhancement solution for transdermal drug delivery using microneedles array with biodegradable tips. The microneedles array was fabricated by using deep reactive ion etching (DRIE) and the biodegradable tips were made to be porous by electrochemical etching process. The porous silicon microneedle tips can greatly enhance the transdermal drug delivery in a minimum invasion, painless, and convenient manner, at the same time; they are breakable and biodegradable. Basically, the main problem of the silicon microneedles consists of broken microneedles tips during the insertion. The solution proposed is to fabricate the microneedle tip from a biodegradable material - porous silicon. The silicon microneedles are fabricated using DRIE notching effect of reflected charges on mask. The process overcomes the difficulty in the undercut control of the tips during the classical isotropic silicon etching process. When the silicon tips were formed, the porous tips were then generated using a classical electrochemical anodization process in MeCN/HF/H2O solution. The paper presents the experimental results of in vitro release of calcein and BSA with animal skins using a microneedle array with biodegradable tips. Compared to the transdermal drug delivery without any enhancer, the microneedle array had presented significant enhancement of drug release.

  17. Thin films as an emerging platform for drug delivery

    Directory of Open Access Journals (Sweden)

    Sandeep Karki

    2016-10-01

    Full Text Available Pharmaceutical scientists throughout the world are trying to explore thin films as a novel drug delivery tool. Thin films have been identified as an alternative approach to conventional dosage forms. The thin films are considered to be convenient to swallow, self-administrable, and fast dissolving dosage form, all of which make it as a versatile platform for drug delivery. This delivery system has been used for both systemic and local action via several routes such as oral, buccal, sublingual, ocular, and transdermal routes. The design of efficient thin films requires a comprehensive knowledge of the pharmacological and pharmaceutical properties of drugs and polymers along with an appropriate selection of manufacturing processes. Therefore, the aim of this review is to provide an overview of the critical factors affecting the formulation of thin films, including the physico-chemical properties of polymers and drugs, anatomical and physiological constraints, as well as the characterization methods and quality specifications to circumvent the difficulties associated with formulation design. It also highlights the recent trends and perspectives to develop thin film products by various companies.

  18. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery.

    Science.gov (United States)

    Alvarez-Lorenzo, Carmen; Blanco-Fernandez, Barbara; Puga, Ana M; Concheiro, Angel

    2013-08-01

    Polysaccharides are gaining increasing attention as components of stimuli-responsive drug delivery systems, particularly since they can be obtained in a well characterized and reproducible way from the natural sources. Ionic polysaccharides can be readily crosslinked to render hydrogel networks sensitive to a variety of internal and external variables, and thus suitable for switching drug release on-off through diverse mechanisms. Hybrids, composites and grafted polymers can reinforce the responsiveness and widen the range of stimuli to which polysaccharide-based systems can respond. This review analyzes the state of the art of crosslinked ionic polysaccharides as components of delivery systems that can regulate drug release as a function of changes in pH, ion nature and concentration, electric and magnetic field intensity, light wavelength, temperature, redox potential, and certain molecules (enzymes, illness markers, and so on). Examples of specific applications are provided. The information compiled demonstrates that crosslinked networks of ionic polysaccharides are suitable building blocks for developing advanced externally activated and feed-back modulated drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Nanoemulsifying drug delivery system to improve the bioavailability of piroxicam.

    Science.gov (United States)

    Motawea, Amira; Borg, Thanaa; Tarshoby, Manal; Abd El-Gawad, Abd El-Gawad H

    2017-05-01

    The aim of this study is to develop and characterize self-nanoemulsifying drug delivery system (SNEDDS) of piroxicam in liquid and solid forms to improve its dissolution, absorption and therapeutic efficacy. The generation of liquid SNEDDS (L-SNEDDS) was composed of soybean or coconut oil/Tween 80/Transcutol HP (12/80/8%w/w) and it was selected as the optimized formulation based on the solubility study and pseudo-ternary phase diagram. Optimized L-SNEDDS and liquid supersaturatable SNEDDS (L-sSNEDDS) preparations were then adsorbed onto adsorbents and formulated as directly compressed tablets. The improved drug dissolution rate in the solid supersaturatable preparation (S-sSNEDDS) may be due to the formation of a nanoemulsion and the presence of drug in an amorphous state with hydrogen bond interaction between the drug and SNEDDS components. In vivo pharmacokinetic studies on eight healthy human volunteers showed a significant improvement in the oral bioavailability of piroxicam from S-sSNEDDS (F12) compared with both the pure drug (PP) and its commercial product (Feldene ® ) (commercial dosage form (CD)). The relative bioavailability of S-sSNEDDS (F12) relative to PP or CD was about 151.01 and 98.96%, respectively. The obtained results ratify that S-sSNEDDS is a promising drug delivery system to enhance the oral bioavailability of piroxicam.

  20. Multifunctional Bacteria-Driven Microswimmers for Targeted Active Drug Delivery.

    Science.gov (United States)

    Park, Byung-Wook; Zhuang, Jiang; Yasa, Oncay; Sitti, Metin

    2017-09-26

    High-performance, multifunctional bacteria-driven microswimmers are introduced using an optimized design and fabrication method for targeted drug delivery applications. These microswimmers are made of mostly single Escherichia coli bacterium attached to the surface of drug-loaded polyelectrolyte multilayer (PEM) microparticles with embedded magnetic nanoparticles. The PEM drug carriers are 1 μm in diameter and are intentionally fabricated with a more viscoelastic material than the particles previously studied in the literature. The resulting stochastic microswimmers are able to swim at mean speeds of up to 22.5 μm/s. They can be guided and targeted to specific cells, because they exhibit biased and directional motion under a chemoattractant gradient and a magnetic field, respectively. Moreover, we demonstrate the microswimmers delivering doxorubicin anticancer drug molecules, encapsulated in the polyelectrolyte multilayers, to 4T1 breast cancer cells under magnetic guidance in vitro. The results reveal the feasibility of using these active multifunctional bacteria-driven microswimmers to perform targeted drug delivery with significantly enhanced drug transfer, when compared with the passive PEM microparticles.

  1. The rostral migratory stream plays a key role in intranasal delivery of drugs into the CNS.

    Directory of Open Access Journals (Sweden)

    Robert A Scranton

    2011-04-01

    Full Text Available The blood brain barrier (BBB is impermeable to most drugs, impeding the establishment of novel neuroprotective therapies and strategies for many neurological diseases. Intranasal administration offers an alternative path for efficient drug delivery into the CNS. So far, the anatomical structures discussed to be involved in the transport of intranasally administered drugs into the CNS include the trigeminal nerve, olfactory nerve and the rostral migratory stream (RMS, but the relative contributions are debated.In the present study we demonstrate that surgical transection, and the resulting structural disruption of the RMS, in mice effectively obstructs the uptake of intranasally administered radioligands into the CNS. Furthermore, using a fluorescent cell tracer, we demonstrate that intranasal administration in mice allows agents to be distributed throughout the entire brain, including olfactory bulb, hippocampus, cortex and cerebellum.This study provides evidence of the vital role the RMS has in the CNS delivery of intranasally administered agents. The identification of the RMS as the major access path for intranasally administered drugs into the CNS may contribute to the development of treatments that are tailored for efficient transport within this structure. Research into the RMS needs to continue to elucidate its limitations, capabilities, mechanisms of transport and potential hazards before we are able to advance this technique into human research.

  2. Probenecid treatment enhances retinal and brain delivery of N-4-benzoylaminophenylsulfonylglycine: an anionic aldose reductase inhibitor.

    Science.gov (United States)

    Sunkara, Gangadhar; Ayalasomayajula, Surya P; DeRuiter, Jack; Kompella, Uday B

    2010-02-15

    Anion efflux transporters are expected to minimize target tissue delivery of N-[4-(benzoylaminophenyl)sulfonyl]glycine (BAPSG), a novel carboxylic acid aldose reductase inhibitor, which exists as a monocarboxylate anion at physiological conditions. Therefore, the objective of this study was to determine whether BAPSG delivery to various eye tissues including the retina and the brain can be enhanced by probenecid, a competitive inhibitor of anion transporters. To determine the influence of probenecid on eye and brain distribution of BAPSG, probenecid was administered intraperitoneally (120 mg/kg body weight; i.p.) 20 min prior to BAPSG (50 mg/kg; i.p.) administration. Drug disposition in various eye tissues including the retina and the brain was determined at 15 min, 1, 2 and 4h after BAPSG dose in male Sprauge-Dawley rats. To determine whether probenecid alters plasma clearance of BAPSG, influence of probenecid (120 mg/kg; i.p.) on the plasma pharmacokinetics of intravenously administered BAPSG (15 mg/kg) was studied as well. Finally, the effect of probenecid co-administration on the ocular tissue distribution of BAPSG was assessed in rabbits following topical (eye drop) administration. Following pretreatment with probenecid in the rat study, retinal delivery at 1h was increased by about 11-fold (2580 ng/g vs. 244 ng/g; pprobenecid pretreatment, significant BAPSG levels were detectable in the brain (45 + or - 20 ng/g) at 1h, unlike controls where the drug was not detectable. Plasma concentrations, plasma elimination half-life, and total body clearance of intravenously administered BAPSG were not altered by i.p. probenecid pretreatment. In the topical dosing study, a significant decline in BAPSG delivery was observed in the iris-ciliary body but no significant changes were observed in other tissues of the anterior segment of the eye including tears. Thus, inhibition of anion transporters is a useful approach to elevate retinal and brain delivery of BAPSG. Copyright

  3. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S.; Debapriya, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India); Nagaraja, V. [Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India)

    2011-03-12

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO{sub 3} particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  4. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    International Nuclear Information System (INIS)

    Anandhakumar, S.; Debapriya, M.; Nagaraja, V.; Raichur, Ashok M.

    2011-01-01

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO 3 particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  5. Microcontainers - an oral drug delivery system for poorly soluble drugs

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Petersen, Ritika Singh; Marizza, Paolo

    with polyvinylpyrrolidone (PVP) by inkjet printing followed by supercritical CO2 impregnation of ketoprofen into the PVP matrix. As an alternative filling method, the powder of amorphous sodium salt of furosemide, (ASSF) was filled into the SU-8 microcontainers. The PLLA microcontainers were filled with drug formulation...... by embossing the microcontainers into a polycaprolactone (PCL) and furosemide (4:1 w/w) layer. For the ASSF-filled microcontainers, an enteric-resistant lid of Eudragit L100 was spray coated onto the cavity of the microcontainers. From coated ASSF-filled microcontainers, a fast release in simulated intestinal...... medium at pH 6.5 was observed. In situ intestinal perfusions were performed in rats of the Eudragit-coated ASSF-filled microcontainers and compared to a furosemide solution. At the end of the study, the small intestine was harvested from the rat and imaged under a light microscope. The absorption rate...

  6. Delivery of large molecules via poly(butyl cyanoacrylate) nanoparticles into the injured rat brain

    International Nuclear Information System (INIS)

    Lin Yong; Pan Yaohua; Huang Xianjian; Jiang Jiyao; Shi Yinfeng; Jia Nengqin

    2012-01-01

    Poly(n-butyl-2-cyanoacrylate) (PBCA) nanoparticles have been successfully applied to deliver small-molecule drugs to the central nervous system (CNS). However, it is unclear whether PBCA nanoparticles can be used as the delivery system for large molecules to potentially treat traumatic brain injury (TBI). In this study, we tested the capacity of PBCA nanoparticles in passing through the blood–brain barrier (BBB) and transporting large molecules into normal and injured brains in the rat. We first synthesized PBCA nanoparticles by dispersion polymerization and then loaded the particles with either horseradish peroxidase (HRP, 44 kDa) or enhanced green fluorescent protein (EGFP, 29 kDa), which were further coated with polysorbate 80. Next, the polysorbate 80-coated HRP or EGFP-loaded PBCA nanoparticles were intravenously injected into the normal and brain-injured rats. We found that, at 45 min after injection, PBCA nanoparticle-delivered HRP or EGFP was hardly detected in the normal brains of the rats, but a small amount of EGFP carried by PBCA nanoparticles was noted in the normal brains 48 h after administration, which was further confirmed by immunolocalization with anti-EGFP antibodies. In contrast, at 4 h after TBI with a circulation time of 45 min, although the penetration of HRP or EGFP alone was hampered by the BBB, the PBCA nanoparticle-delivered HRP or EGFP was widely distributed near injured sites. Together, our findings provide histological evidence that PBCA nanoparticles can be used as an efficient delivery system for large molecules to overcome the barrier in the brain with TBI. (paper)

  7. Advanced materials and processing for drug delivery: the past and the future.

    Science.gov (United States)

    Zhang, Ying; Chan, Hon Fai; Leong, Kam W

    2013-01-01

    Design and synthesis of efficient drug delivery systems are of vital importance for medicine and healthcare. Materials innovation and nanotechnology have synergistically fueled the advancement of drug delivery. Innovation in material chemistry allows the generation of biodegradable, biocompatible, environment-responsive, and targeted delivery systems. Nanotechnology enables control over size, shape and multi-functionality of particulate drug delivery systems. In this review, we focus on the materials innovation and processing of drug delivery systems and how these advances have shaped the past and may influence the future of drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. A remotely operated drug delivery system with dose control

    KAUST Repository

    Yi, Ying

    2017-05-08

    “On demand” implantable drug delivery systems can provide optimized treatments, due to their ability to provide targeted, flexible and precise dose release. However, two important issues that need to be carefully considered in a mature device include an effective actuation stimulus and a controllable dose release mechanism. This work focuses on remotely powering an implantable drug delivery system and providing a high degree of control over the released dose. This is accomplished by integration of a resonance-based wireless power transfer system, a constant voltage control circuit and an electrolytic pump. Upon the activation of the wireless power transfer system, the electrolytic actuator is remotely powered by a constant voltage regardless of movements of the device within an effective range of translation and rotation. This in turn contributes to a predictable dose release rate and greater flexibility in the positioning of external powering source. We have conducted proof-of-concept drug delivery studies using the liquid drug in reservoir approach and the solid drug in reservoir approach, respectively. Our experimental results demonstrate that the range of flow rate is mainly determined by the voltage controlled with a Zener diode and the resistance of the implantable device. The latter can be adjusted by connecting different resistors, providing control over the flow rate to meet different clinical needs. The flow rate can be maintained at a constant level within the effective movement range. When using a solid drug substitute with a low solubility, solvent blue 38, the dose release can be kept at 2.36μg/cycle within the effective movement range by using an input voltage of 10Vpp and a load of 1.5 kΩ, which indicates the feasibility and controllability of our system without any complicated closed-loop sensor.

  9. Intelligent system design for bionanorobots in drug delivery.

    Science.gov (United States)

    Fletcher, Mark; Biglarbegian, Mohammad; Neethirajan, Suresh

    A nanorobot is defined as any smart structure which is capable of actuation, sensing, manipulation, intelligence, and swarm behavior at the nanoscale. In this study, we designed an intelligent system using fuzzy logic for diagnosis and treatment of tumors inside the human body using bionanorobots. We utilize fuzzy logic and a combination of thermal, magnetic, optical, and chemical nanosensors to interpret the uncertainty associated with the sensory information. Two different fuzzy logic structures, for diagnosis (Mamdani structure) and for cure (Takagi-Sugeno structure), were developed to efficiently identify the tumors and treat them through delivery of effective dosages of a drug. Validation of the designed system with simulated conditions proved that the drug delivery of bionanorobots was robust to reasonable noise that may occur in the bionanorobot sensors during navigation, diagnosis, and curing of the cancer cells. Bionanorobots represent a great hope for successful cancer therapy in the near future.

  10. Magnetic Nanoparticles for Multi-Imaging and Drug Delivery

    Science.gov (United States)

    Lee, Jae-Hyun; Kim, Ji-wook; Cheon, Jinwoo

    2013-01-01

    Various bio-medical applications of magnetic nanoparticles have been explored during the past few decades. As tools that hold great potential for advancing biological sciences, magnetic nanoparticles have been used as platform materials for enhanced magnetic resonance imaging (MRI) agents, biological separation and magnetic drug delivery systems, and magnetic hyperthermia treatment. Furthermore, approaches that integrate various imaging and bioactive moieties have been used in the design of multi-modality systems, which possess synergistically enhanced properties such as better imaging resolution and sensitivity, molecular recognition capabilities, stimulus responsive drug delivery with on-demand control, and spatio-temporally controlled cell signal activation. Below, recent studies that focus on the design and synthesis of multi-mode magnetic nanoparticles will be briefly reviewed and their potential applications in the imaging and therapy areas will be also discussed. PMID:23579479

  11. Designing of 'intelligent' liposomes for efficient delivery of drugs.

    Science.gov (United States)

    Voinea, Manuela; Simionescu, Maya

    2002-01-01

    The liposome- vesicles made by a double phospholipid layers which may encapsulate aqueous solutions- have been introduced as drug delivery vehicles due to their structural flexibility in size, composition and bilayer fluidity as well as their ability to incorporate a large variety of both hydrophilic and hydrophobic compounds. With time the liposome formulations have been perfected so as to serve certain purposes and this lead to the design of "intelligent" liposomes which can stand specifically induced modifications of the bilayers or can be surfaced with different ligands that guide them to the specific target sites. We present here a brief overview of the current strategies in the design of liposomes as drug delivery carriers and the medical applications of liposomes in humans.

  12. Drug delivery into microneedle-porated nails from nanoparticle reservoirs.

    Science.gov (United States)

    Chiu, Wing Sin; Belsey, Natalie A; Garrett, Natalie L; Moger, Julian; Price, Gareth J; Delgado-Charro, M Begoña; Guy, Richard H

    2015-12-28

    This study demonstrates the potential of polymeric nanoparticles as drug reservoirs for sustained topical drug delivery into microneedle-treated human nail. Laser scanning confocal microscopy was used to image the delivery of a fluorescent model compound from nanoparticles into the nail. A label-free imaging technique, stimulated Raman scattering microscopy, was applied, in conjunction with two-photon fluorescence imaging, to probe the disposition of nanoparticles and an associated lipophilic 'active' in a microneedle-porated nail. The results provide clear evidence that the nanoparticles function as immobile reservoirs, sequestered on the nail surface and in the microneedle-generated pores, from which the active payload can be released and diffuse laterally into the nail over an extended period of time. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Electrospun nanofibrous materials for tissue engineering and drug delivery

    International Nuclear Information System (INIS)

    Cui Wenguo; Zhou Yue; Chang Jiang

    2010-01-01

    The electrospinning technique, which was invented about 100 years ago, has attracted more attention in recent years due to its possible biomedical applications. Electrospun fibers with high surface area to volume ratio and structures mimicking extracellular matrix (ECM) have shown great potential in tissue engineering and drug delivery. In order to develop electrospun fibers for these applications, different biocompatible materials have been used to fabricate fibers with different structures and morphologies, such as single fibers with different composition and structures (blending and core-shell composite fibers) and fiber assemblies (fiber bundles, membranes and scaffolds). This review summarizes the electrospinning techniques which control the composition and structures of the nanofibrous materials. It also outlines possible applications of these fibrous materials in skin, blood vessels, nervous system and bone tissue engineering, as well as in drug delivery. (topical review)

  14. Stimuli-Responsive Cationic Hydrogels in Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    G. Roshan Deen

    2018-02-01

    Full Text Available Stimuli-responsive, smart, intelligent, or environmentally sensitive polymers respond to changes in external stimuli such as pH, temperature, ionic strength, surfactants, pressure, light, biomolecules, and magnetic field. These materials are developed in various network architectures such as block copolymers, crosslinked hydrogels, nanogels, inter-penetrating networks, and dendrimers. Stimuli-responsive cationic polymers and hydrogels are an interesting class of “smart” materials that respond reversibly to changes in external pH. These materials have the ability to swell extensively in solutions of acidic pH and de-swell or shrink in solutions of alkaline pH. This reversible swelling-shrinking property brought about by changes in external pH conditions makes these materials useful in a wide range of applications such as drug delivery systems and chemical sensors. This article focuses mainly on the properties of these interesting materials and their applications in drug delivery systems.

  15. 3D Printing technologies for drug delivery: a review.

    Science.gov (United States)

    Prasad, Leena Kumari; Smyth, Hugh

    2016-01-01

    With the FDA approval of the first 3D printed tablet, Spritam®, there is now precedence set for the utilization of 3D printing for the preparation of drug delivery systems. The capabilities for dispensing low volumes with accuracy, precise spatial control and layer-by-layer assembly allow for the preparation of complex compositions and geometries. The high degree of flexibility and control with 3D printing enables the preparation of dosage forms with multiple active pharmaceutical ingredients with complex and tailored release profiles. A unique opportunity for this technology for the preparation of personalized doses to address individual patient needs. This review will highlight the 3D printing technologies being utilized for the fabrication of drug delivery systems, as well as the formulation and processing parameters for consideration. This article will also summarize the range of dosage forms that have been prepared using these technologies, specifically over the last 10 years.

  16. Natural and synthetic biomaterials for controlled drug delivery.

    Science.gov (United States)

    Kim, Jang Kyoung; Kim, Hyung Jin; Chung, Jee-Young; Lee, Jong-Hwan; Young, Seok-Beom; Kim, Yong-Hee

    2014-01-01

    A wide variety of delivery systems have been developed and many products based on the drug delivery technology are commercially available. The development of controlled-release technologies accelerated new dosage form design by altering pharmacokinetic and pharmacodynamics profiles of given drugs, resulting in improved efficacy and safety. Various natural or synthetic polymers have been applied to make matrix, reservoir or implant forms due to the characteristics of polymers, especially ease of control for modifications of biocompatibility, biodegradation, porosity, charge, mechanical strength and hydrophobicity/hydrophilicity. Hydrogel is a hydrophilic, polymeric network capable of imbibing large amount of water and biological fluids. This review article introduces various applications of natural and synthetic polymer-based hydrogels from pharmaceutical, biomedical and bioengineering points of view.

  17. Design of Drug Delivery Systems Containing Artemisinin and Its Derivatives

    Directory of Open Access Journals (Sweden)

    Blessing Atim Aderibigbe

    2017-02-01

    Full Text Available Artemisinin and its derivatives have been reported to be experimentally effective for the treatment of highly aggressive cancers without developing drug resistance, they are useful for the treatment of malaria, other protozoal infections and they exhibit antiviral activity. However, they are limited pharmacologically by their poor bioavailability, short half-life in vivo, poor water solubility and long term usage results in toxicity. They are also expensive for the treatment of malaria when compared to other antimalarials. In order to enhance their therapeutic efficacy, they are incorporated onto different drug delivery systems, thus yielding improved biological outcomes. This review article is focused on the currently synthesized derivatives of artemisinin and different delivery systems used for the incorporation of artemisinin and its derivatives.

  18. Comparison of skin optical clearing by different drug delivery method

    International Nuclear Information System (INIS)

    Mao, Z; Ge, X; Li, E

    2011-01-01

    Previous studies have shown that optical clearing techniques have great potential for optical diagnosis and therapy. In order to further discuss the effect by different drug delivery method, diffusion chambers were used to simulate in vivo physiological environment; and the optical clearing agents were acted on the surface of porcine skin, the saline was contacted with the dermal side (epidermal application). Then they were compared with the traditional method-samples immersed in the optical clearing agents (mainly dermal immersion). The transmission intensity of skin was monitored by an integrating sphere system. The changes in thickness were measured before and after experiments. The results showed that the optical clearing effect and the changes in thickness are not coincident under the two different methods. It indicates that the optical clearing effect and mechanism may relate to the drug delivery method.

  19. Thermosensitive Self-Assembling Block Copolymers as Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Giovanni Filippo Palmieri

    2011-04-01

    Full Text Available Self-assembling block copolymers (poloxamers, PEG/PLA and PEG/PLGA diblock and triblock copolymers, PEG/polycaprolactone, polyether modified poly(Acrylic Acid with large solubility difference between hydrophilic and hydrophobic moieties have the property of forming temperature dependent micellar aggregates and, after a further temperature increase, of gellifying due to micelle aggregation or packing. This property enables drugs to be mixed in the sol state at room temperature then the solution can be injected into a target tissue, forming a gel depot in-situ at body temperature with the goal of providing drug release control. The presence of micellar structures that give rise to thermoreversible gels, characterized by low toxicity and mucomimetic properties, makes this delivery system capable of solubilizing water-insoluble or poorly soluble drugs and of protecting labile molecules such as proteins and peptide drugs.

  20. Fundamental study for development magnetic drug delivery system

    International Nuclear Information System (INIS)

    Hirota, Y.; Akiyama, Y.; Izumi, Y.; Nishijima, S.

    2009-01-01

    Side-effects and lowering effects by diffusion of drugs such as anticancer agents is one of the serious issues in medication. To solve this problem, it is necessary to control the drugs quantitatively, spatially and temporally within the human body. Magnetic drug delivery system (MDDS) is one of the technologies to make it possible, in which the ferromagnetic drug injected into the blood vessel is conducted to diseased part by external magnetic force. As a fundamental experiment, the accumulation experiment using ferromagnetic particles were performed with simulated capillary vessels composed of glass beads channels in this work. Additionally, accumulation calculation of ferromagnetic particles was conducted to check the validity of accumulation experiment. From these result, the 2D distribution of particle accumulation in the experiment corresponded with that of particle accumulation in the calculation. It was suggested that the proper position of magnet should be changed according to the depth of diseased part.

  1. Enhancing intestinal drug solubilisation using lipid-based delivery systems.

    Science.gov (United States)

    Porter, Christopher J H; Pouton, Colin W; Cuine, Jean F; Charman, William N

    2008-03-17

    Lipid-based delivery systems are finding increasing application in the oral delivery of poorly water-soluble, lipophilic drugs. Whilst lipidic dose forms may improve oral bioavailability via several mechanisms, enhancement of gastrointestinal solubilisation remains argueably the most important method of absorption enhancement. This review firstly describes the mechanistic rationale which underpins the use of lipid-based delivery systems to enhance drug solubilisation and briefly reviews the available literature describing increases in oral bioavailability after the administration of lipid solution, suspension and self-emulsifying formulations. The use of in vitro methods including dispersion tests and more complex models of in vitro lipolysis as indicators of potential in vivo performance are subsequently described, with particular focus on recent data which suggests that the digestion of surfactants present in lipid-based formulations may impact on formulation performance. Finally, a series of seven guiding principles for formulation design of lipid-based delivery systems are suggested based on an analysis of recent data generated in our laboratories and elsewhere.

  2. Current knowledge on biodegradable microspheres in drug delivery.

    Science.gov (United States)

    Prajapati, Vipul D; Jani, Girish K; Kapadia, Jinita R

    2015-08-01

    Biodegradable microspheres have gained popularity for delivering a wide variety of molecules via various routes. These types of products have been prepared using various natural and synthetic biodegradable polymers through suitable techniques for desired delivery of various challenging molecules. Selection of biodegradable polymers and technique play a key role in desired drug delivery. This review describes an overview of the fundamental knowledge and status of biodegradable microspheres in effective delivery of various molecules via desired routes with consideration of outlines of various compendial and non-compendial biodegradable polymers, formulation techniques and release mechanism of microspheres, patents and commercial biodegradable microspheres. There are various advantages of using biodegradable polymers including promise of development with different types of molecules. Biocompatibility, low dosage and reduced side effects are some reasons why usage biodegradable microspheres have gained in popularity. Selection of biodegradable polymers and formulation techniques to create microspheres is the biggest challenge in research. In the near future, biodegradable microspheres will become the eco-friendly product for drug delivery of various genes, hormones, proteins and peptides at specific site of body for desired periods of time.

  3. Localized drugs delivery hydroxyapatite microspheres for osteoporosis therapy

    Science.gov (United States)

    Lee, J. H.; Ko, I. H.; Jeon, S.-H.; Chae, J. H.; Lee, E. J.; Chang, J. H.

    2011-10-01

    This study describes the preparation of hydroxyapatite microspheres for local drugs delivery. The formation of the hydroxyapatite microspheres was initiated by enzymatic decomposition of urea and accomplished by emulsification process (water-in-oil). The microspheres obtained were sintered at 500°C. Scanning electron microscope (SEM) indicated that the microspheres have various porous with random size, which maximizes the surface area. Cytotoxicity was not observed after sintering. Osteoporosis drugs, alendronate and BMP-2, were loaded into HAp microspheres and the releases of both molecules showed sustained releasing profiles.

  4. The concept of focused magnet for targeted drug delivery

    International Nuclear Information System (INIS)

    Kopcansky, P.; Timko, M.; Hnatic, M.; Vala, M.; Arzumanyan, G.M.; Ajryan, E.A.; Jancurova, L.; Jadlovsky, J.; Chovanak, J.

    2009-01-01

    A special focused magnet, designed for the use in the magnetic targeted drug delivery system, was constructed. The theoretical calculation of the adhesion condition for a magnetic fluid drop in magnetic field with obtained design showed that the constructed focused magnet generates a sufficient magnetic force for the capture of a magnetic drop on the vessel wall and can be used 2.5-3 cm deeper in an organism compared with the prism permanent magnet which could enable the non-invasivity of the magnetic drug targeting procedure. The maximal values for the magnetic field and gradient of the magnetic field are 0.38 T and 101 T/m

  5. An efficient targeted drug delivery through apotransferrin loaded nanoparticles.

    Directory of Open Access Journals (Sweden)

    Athuluri Divakar Sai Krishna

    Full Text Available BACKGROUND: Cancerous state is a highly stimulated environment of metabolically active cells. The cells under these conditions over express selective receptors for assimilation of factors essential for growth and transformation. Such receptors would serve as potential targets for the specific ligand mediated transport of pharmaceutically active molecules. The present study demonstrates the specificity and efficacy of protein nanoparticle of apotransferrin for targeted delivery of doxorubicin. METHODOLOGY/PRINCIPAL FINDINGS: Apotransferrin nanoparticles were developed by sol-oil chemistry. A comparative analysis of efficiency of drug delivery in conjugated and non-conjugated forms of doxorubicin to apotransferrin nanoparticle is presented. The spherical shaped apotransferrin nanoparticles (nano have diameters of 25-50 etam, which increase to 60-80 etam upon direct loading of drug (direct-nano, and showed further increase in dimension (75-95 etam in conjugated nanoparticles (conj-nano. The competitive experiments with the transferrin receptor specific antibody showed the entry of both conj-nano and direct-nano into the cells through transferrin receptor mediated endocytosis. Results of various studies conducted clearly establish the superiority of the direct-nano over conj-nano viz. (a localization studies showed complete release of drug very early, even as early as 30 min after treatment, with the drug localizing in the target organelle (nucleus (b pharmacokinetic studies showed enhanced drug concentrations, in circulation with sustainable half-life (c the studies also demonstrated efficient drug delivery, and an enhanced inhibition of proliferation in cancer cells. Tissue distribution analysis showed intravenous administration of direct nano lead to higher drug localization in liver, and blood as compared to relatively lesser localization in heart, kidney and spleen. Experiments using rat cancer model confirmed the efficacy of the formulation in

  6. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview.

    Science.gov (United States)

    Mignani, Serge; El Kazzouli, Saïd; Bousmina, Mosto; Majoral, Jean-Pierre

    2013-10-01

    Drugs are introduced into the body by numerous routes such as enteral (oral, sublingual and rectum administration), parenteral (intravascular, intramuscular, subcutaneous and inhalation administration), or topical (skin and mucosal membranes). Each route has specific purposes, advantages and disadvantages. Today, the oral route remains the preferred one for different reasons such as ease and compliance by patients. Several nanoformulated drugs have been already approved by the FDA, such as Abelcet®, Doxil®, Abraxane® or Vivagel®(Starpharma) which is an anionic G4-poly(L-lysine)-type dendrimer showing potent topical vaginal microbicide activity. Numerous biochemical studies, as well as biological and pharmacological applications of both dendrimer based products (dendrimers as therapeutic compounds per se, like Vivagel®) and dendrimers as drug carriers (covalent conjugation or noncovalent encapsulation of drugs) were described. It is widely known that due to their outstanding physical and chemical properties, dendrimers afforded improvement of corresponding carried-drugs as dendrimer-drug complexes or conjugates (versus plain drug) such as biodistribution and pharmacokinetic behaviors. The purpose of this manuscript is to review the recent progresses of dendrimers as nanoscale drug delivery systems for the delivery of drugs using enteral, parenteral and topical routes. In particular, we focus our attention on the emerging and promising routes such as oral, transdermal, ocular and transmucosal routes using dendrimers as delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Functionalized mesoporous silicon for targeted-drug-delivery.

    Science.gov (United States)

    Tabasi, Ozra; Falamaki, Cavus; Khalaj, Zahra

    2012-10-01

    The present work concerns a preliminary step in the production of anticancer drug loaded porous silicon (PSi) for targeted-drug-delivery applications. A successful procedure for the covalent attachment of folic acid, polyethylene glycol (PEG) and doxorubicin to hydrophilic mesoporous silicon layers is presented. A systematic approach has been followed to obtain the optimal composition of the N,N'-dicyclohexylcarbodiimide (DCC)/N-hydroxysuccimide (NHS) in dimethylsulfoxide (DMSO) solution for the surface activation process of the undecylenic acid (UD) grafted molecules to take place with minimal undesired byproduct formation. The effect of reactant concentration and kind of solvent (aqueous or DMSO) on the attachment of folic acid to the activated PSi layer has been investigated. The covalent attachment of the doxorubicin molecules to the PSi layer functionalized with folic acid and PEG is discussed. The drug release kinetics as a function of pH has been studied. The functionalized PSi particles show a high cytotoxicity compared to the equivalent amount of free drug. Cell toxicity tests show clearly that the incorporation of folate molecules increases substantially the toxicity of the loaded PSi particles. Accordingly this new functionalized PSi may be considered a proper candidate for targeted drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. A review on target drug delivery: magnetic microspheres

    Directory of Open Access Journals (Sweden)

    Amit Chandna

    2013-01-01

    Magnetic microsphere is newer approach in pharmaceutical field. Magnetic microspheres as an alternative to traditional radiation methods which use highly penetrating radiation that is absorbed throughout the body. Its use is limited by toxicity and side effects. The aim of the specific targeting is to enhance the efficiency of drug delivery & at the same time to reduce the toxicity & side effects. This kind of delivery system is very much important which localises the drug to the disease site. In this larger amount of freely circulating drug can be replaced by smaller amount of magnetically targeted drug. Magnetic carriers receive magnetic responses to a magnetic field from incorporated materials that are used for magnetic microspheres are chitosan, dextran etc. magnetic microspheres can be prepared from a variety of carrier material. One of the most utilized is serum albumin from human or other appropriate species. Drug release from albumin microspheres can be sustained or controlled by various stabilization procedures generally involving heat or chemical cross-linking of the protein carrier matrix.

  9. Chitosan Based Self-Assembled Nanoparticles in Drug Delivery

    Directory of Open Access Journals (Sweden)

    Javier Pérez Quiñones

    2018-02-01

    Full Text Available Chitosan is a cationic polysaccharide that is usually obtained by alkaline deacetylation of chitin poly(N-acetylglucosamine. It is biocompatible, biodegradable, mucoadhesive, and non-toxic. These excellent biological properties make chitosan a good candidate for a platform in developing drug delivery systems having improved biodistribution, increased specificity and sensitivity, and reduced pharmacological toxicity. In particular, chitosan nanoparticles are found to be appropriate for non-invasive routes of drug administration: oral, nasal, pulmonary and ocular routes. These applications are facilitated by the absorption-enhancing effect of chitosan. Many procedures for obtaining chitosan nanoparticles have been proposed. Particularly, the introduction of hydrophobic moieties into chitosan molecules by grafting to generate a hydrophobic-hydrophilic balance promoting self-assembly is a current and appealing approach. The grafting agent can be a hydrophobic moiety forming micelles that can entrap lipophilic drugs or it can be the drug itself. Another suitable way to generate self-assembled chitosan nanoparticles is through the formation of polyelectrolyte complexes with polyanions. This paper reviews the main approaches for preparing chitosan nanoparticles by self-assembly through both procedures, and illustrates the state of the art of their application in drug delivery.

  10. Biocompatible polymeric implants for controlled drug delivery produced by MAPLE

    Science.gov (United States)

    Paun, Irina Alexandra; Moldovan, Antoniu; Luculescu, Catalin Romeo; Dinescu, Maria

    2011-10-01

    Implants consisting of drug cores coated with polymeric films were developed for delivering drugs in a controlled manner. The polymeric films were produced using matrix assisted pulsed laser evaporation (MAPLE) and consist of poly(lactide-co-glycolide) (PLGA), used individually as well as blended with polyethylene glycol (PEG). Indomethacin (INC) was used as model drug. The implants were tested in vitro (i.e. in conditions similar with those encountered inside the body), for predicting their behavior after implantation at the site of action. To this end, they were immersed in physiological media (i.e. phosphate buffered saline PBS pH 7.4 and blood). At various intervals of PBS immersion (and respectively in blood), the polymeric films coating the drug cores were studied in terms of morphology, chemistry, wettability and blood compatibility. PEG:PLGA film exhibited superior properties as compared to PLGA film, the corresponding implant being thus more suitable for internal use in the human body. In addition, the implant containing PEG:PLGA film provided an efficient and sustained release of the drug. The kinetics of the drug release was consistent with a diffusion mediated mechanism (as revealed by fitting the data with Higuchi's model); the drug was gradually released through the pores formed during PBS immersion. In contrast, the implant containing PLGA film showed poor drug delivery rates and mechanical failure. In this case, fitting the data with Hixson-Crowell model indicated a release mechanism dominated by polymer erosion.

  11. Poly(ϵ-caprolactone) microcapsules and nanocapsules in drug delivery.

    Science.gov (United States)

    Pohlmann, Adriana Raffin; Fonseca, Francisco Noe; Paese, Karina; Detoni, Cassia Britto; Coradini, Karine; Beck, Ruy Cr; Guterres, Silvia S

    2013-05-01

    Poly(ϵ-caprolactone) (PCL), a biodegradable and biocompatible polymer, is useful to encapsulate a wide range of drugs making it an interesting material for the preparation of carriers with potential applications in therapeutics. The design and development of those carriers to modulate drug release, to improve the drug stability or apparent solubility in aqueous media, as well as to target tissues and organs are discussed. Microencapsulation is a well-established process in pharmaceutical industry to protect drugs from chemical degradation and to control drug release. In this context, PCL is a useful polymer to prepare microcapsules. Nanoencapsulation, a more recent approach, offers new possibilities in drug delivery. PCL can be used as polymer to prepare different types of nanocapsules presenting diverse flexibility according to the chemical nature of the core. Those nanocapsules are capable of controlling drug release and improving photochemical stability. In addition, they can modulate cutaneous drug penetration/permeation and act as physical sunscreen due to their capability of light scattering. Considering the pharmaceutical point of view, PCL nanocapsules are versatile formulations, once they can be used in the liquid form, as well as incorporated into semi-solid or solid dosage forms.

  12. Bacterial ghosts (BGs)--advanced antigen and drug delivery system.

    Science.gov (United States)

    Kudela, Pavol; Koller, Verena Juliana; Lubitz, Werner

    2010-08-16

    Bacterial ghosts (BGs) are empty bacterial envelopes of Gram-negative bacteria produced by controlled expression of cloned gene E, forming a lysis tunnel structure within the envelope of the living bacteria. BGs are devoid of cytoplasmic content and possess all bacterial bio-adhesive surface properties in their original state while not posing any infectious threat. BGs are ideally suited as an advanced drug delivery system (ADDS) for toxic substances in tumor therapy. The inner space of BGs can be loaded with either single components or combinations of peptides, drugs or DNA which provides an opportunity to design new types of (polyvalent) drug delivery vehicles. Uptake of BGs loaded with Doxorubicin (Dox) by CaCo2 cells led to effective Dox release from endo-lysosomal compartments and accumulation in the nucleus. Viability and proliferative capacity of the cells were significantly decreased (2-3 orders of magnitude) after internalization of Dox loaded BGs as compared to cells incubated with free Dox. The same effect was observed with leukemia cells. Melanoma cells also revealed a high capability to internalize BGs. These results indicate that BGs are able to target a range of types of cancer. BGs have also been investigated as DNA delivery vectors. Studies show DNA loaded BGs are efficiently phagocytosed and internalized by both professional APCs and tumor cells with up to 82% of cells expressing the plasmid-encoded reporter gene. Our studies with BGs as an ADDS system contribute (i) to optimize drug delivery for the treatment of cancer; (ii) define specific conditions for selection and preparation of BG formulations; (iii) and provide a background for the clinical application of BGs in cancer therapy.

  13. ROS-responsive drug delivery systems for biomedical applications

    OpenAIRE

    Wenhui Tao; Zhonggui He

    2018-01-01

    In the field of biomedicine, stimuli-responsive drug delivery systems (DDSs) have become increasingly popular due to their site-specific release ability in response to a certain physiological stimulus, which may result in both enhanced treatment outcome and reduced side effects. Reactive oxygen species (ROS) are the unavoidable consequence of cell oxidative metabolism. ROS play a crucial part in regulating biological and physiological processes, whereas excessive intracellular ROS usually lea...

  14. Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries

    Science.gov (United States)

    2017-08-01

    Address correspondence to gacharya@bcm.edu, stevenp@bcm.edu. Received for review November 19, 2014 and accepted January 13, 2015. Published online ...3 July 2015 Available online 13 July 2015 Keywords: Nanowafer Drug delivery Dry eye Cornea Dexamethasone InflammationDry eye disease is a major public...146 (2008) 350–356. [8] The epidemiology of dry eye disease. Report of the epidemiology subcommittee of the international dry eye work shop , Ocul

  15. INTERPOLYELECTROLYTE COMPLEXES AS PROSPECTIVE CARRIERS FOR CONTROLLED DRUG DELIVERY

    OpenAIRE

    Kaur Jasmeet; Harikumar S.L.; Kaur Amanpreet

    2012-01-01

    In the current scenario, polymers as carriers have revolutionized the drug delivery system. A more successful approach, to exploit the different properties of polymers in a solitary system is the complexation of polymers to form polyelectrolyte complexes. These complexes circumvent the use of chemical crosslinking agents, thereby reducing the risk of toxicity. The complex formed is generally applied in different dosage forms for the formulation of stable aggregated macromolecules. There are t...

  16. [Effects of penetration enhancers on curcumin transdermal drug delivery].

    Science.gov (United States)

    Gao, Zhen-Shen; Wang, Lan; Zhang, Mei

    2012-01-01

    To study the effects of penetration enhancers and their combinations on the curcumine transdermal drug delivery (CUR-TDDS). The penetration rate of curcumin through rat skin in vitro was measured using Valia-Chien diffusion cells, and orthogonal design method was set up for experimental design. The optimum penetration enhancers were: 3% hydroxypropyl beta cyclodextrins (HP-beta-CD), 9% borneol and 3% peppermint oil. The HP-beta-CD has the most potent enhancing effect.

  17. Magnetic core-shell nanoparticles for drug delivery by nebulization

    LENUS (Irish Health Repository)

    Verma, Navin Kumar

    2013-01-23

    AbstractBackgroundAerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated.ResultsAverage particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 mug\\/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting.ConclusionWe have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has

  18. Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery

    Directory of Open Access Journals (Sweden)

    Gamze Varan

    2017-07-01

    Full Text Available Background: Paclitaxel is a potent anticancer drug that is effective against a wide spectrum of cancers. To overcome its bioavailability problems arising from very poor aqueous solubility and tendency to recrystallize upon dilution, paclitaxel is commercially formulated with co-solvents such as Cremophor EL® that are known to cause serious side effects during chemotherapy. Amphiphilic cyclodextrins are favored oligosaccharides as drug delivery systems for anticancer drugs, having the ability to spontaneously form nanoparticles without surfactant or co-solvents. In the past few years, polycationic, amphiphilic cyclodextrins were introduced as effective agents for gene delivery in the form of nanoplexes. In this study, the potential of polycationic, amphiphilic cyclodextrin nanoparticles were evaluated in comparison to non-ionic amphiphilic cyclodextrins and core–shell type cyclodextrin nanoparticles for paclitaxel delivery to breast tumors. Pre-formulation studies were used as a basis for selecting the suitable organic solvent and surfactant concentration for the novel polycationic cyclodextrin nanoparticles. The nanoparticles were then extensively characterized with particle size distribution, polydispersity index, zeta potential, drug loading capacity, in vitro release profiles and cytotoxicity studies.Results: Paclitaxel-loaded cyclodextrin nanoparticles were obtained in the diameter range of 80−125 nm (depending on the nature of the cyclodextrin derivative where the smallest diameter nanoparticles were obtained with polycationic (PC βCDC6. A strong positive charge also helped to increase the loading capacity of the nanoparticles with paclitaxel up to 60%. Interestingly, cyclodextrin nanoparticles were able to stabilize paclitaxel in aqueous solution for 30 days. All blank cyclodextrin nanoparticles were demonstrated to be non-cytotoxic against L929 mouse fibroblast cell line. In addition, paclitaxel-loaded nanoparticles have a

  19. Magnetic core-shell nanoparticles for drug delivery by nebulization

    Directory of Open Access Journals (Sweden)

    Verma Navin Kumar

    2013-01-01

    Full Text Available Abstract Background Aerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs with a polymer poly(lactic-co-glycolic acid (PLGA. The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated. Results Average particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 μg/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting. Conclusion We have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol

  20. Drug-delivery and multifunction possibilities of hypocrellin photosensitizers

    Directory of Open Access Journals (Sweden)

    Hong Deng

    2015-01-01

    Full Text Available Photodynamic therapy (PDT has been a routine treatment of tumors and some microvascular diseases, but clinically available photosensitizers are still scarce. Among all kinds of photosensitizers, hypocrellins possess the most characteristics of ideal photosensitizers, such as, high photo-activity but low dark toxicity, fast clearance from tissues. This review is focused on two main topics, drug-delivery problem of hypocrellins and how the environment-sensitive fluorescence of hypocrellins was used for recognition of various biomolecules. Drug-delivery of hypocrellins was mainly achieved in two strategies — preparing the drug-delivery vehicles and finding quantitatively amphiphilic derivatives. Hypocrellin fluorescence originated from the intramolecular proton transfer is very distinct from other kinds of photosensitizers. Recently, it was proved that quantitative hypocrellin fluorescence could not only recognize various biomolecules, including proteins, polysaccharides and lipids, but also distinguish the specific binding from nonspecific binding with some kind of biomolecules. Meantime, hypocrellin fluorescence was pH-sensitive. It is known that tumor cells or tissues have the features of a large amount of lipid, neonatal collagen, over-expression of polysaccharides, and lower pH values compared to normal tissues. According to the relative but not absolute specificity, further studies on quantitative recognition of various biomolecules at a cellular level, may find a new clue to treat tumors by joint usage of photodynamic diagnosis (PDD and PDT.