WorldWideScience

Sample records for brain diseases

  1. Brain Diseases

    Science.gov (United States)

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  2. The cost of brain diseases

    DEFF Research Database (Denmark)

    DiLuca, Monica; Olesen, Jes

    2014-01-01

    Brain diseases represent a considerable social and economic burden in Europe. With yearly costs of about 800 billion euros and an estimated 179 million people afflicted in 2010, brain diseases are an unquestionable emergency and a grand challenge for neuroscientists.......Brain diseases represent a considerable social and economic burden in Europe. With yearly costs of about 800 billion euros and an estimated 179 million people afflicted in 2010, brain diseases are an unquestionable emergency and a grand challenge for neuroscientists....

  3. Brain MRI in Parkinson's disease

    NARCIS (Netherlands)

    Meijer, F.J.A.; Goraj, B.M.

    2014-01-01

    In this review article, conventional brain MRI and advanced MRI techniques in Parkinson`s disease (PD) are discussed, with emphasis on clinical relevance. Conventional brain MRI sequences generally demonstrate limited abnormalities specific for PD and in clinical practice brain MRI is mainly used to

  4. Urinary Biomarkers of Brain Diseases

    Directory of Open Access Journals (Sweden)

    Manxia An

    2015-12-01

    Full Text Available Biomarkers are the measurable changes associated with a physiological or pathophysiological process. Unlike blood, urine is not subject to homeostatic mechanisms. Therefore, greater fluctuations could occur in urine than in blood, better reflecting the changes in human body. The roadmap of urine biomarker era was proposed. Although urine analysis has been attempted for clinical diagnosis, and urine has been monitored during the progression of many diseases, particularly urinary system diseases, whether urine can reflect brain disease status remains uncertain. As some biomarkers of brain diseases can be detected in the body fluids such as cerebrospinal fluid and blood, there is a possibility that urine also contain biomarkers of brain diseases. This review summarizes the clues of brain diseases reflected in the urine proteome and metabolome.

  5. Deep Brain Stimulation for Parkinson's Disease

    Science.gov (United States)

    ... You are here Home » Disorders » All Disorders Deep Brain Stimulation for Parkinson's Disease Information Page Deep Brain Stimulation for Parkinson's Disease Information Page Search Disorders ...

  6. Inflammatory diseases of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Haehnel, Stefan (ed.) [University of Heidelberg Medical Center (Germany). Div. of Neuroradiology

    2009-07-01

    This book provides a comprehensive overview of inflammatory brain diseases from a neuroradiological point of view. Such diseases may be either infectious (e.g., viral encephalitis and pyogenic brain abscess) or non-infectious (e.g., multiple sclerosis), and many of these entities are becoming increasingly important for differential diagnosis, particularly in immunocompromised persons. Neuroimaging contributes greatly to the differentiation of infectious and noninfectious brain diseases and to the distinction between brain inflammation and other, for instance neoplastic, diseases. In order to ensure a standardized approach throughout the book, each chapter is subdivided into three principal sections: epidemiology, clinical presentation and therapy; imaging; and differential diagnosis. A separate chapter addresses technical and methodological issues and imaging protocols. All of the authors are recognized experts in their fields, and numerous high-quality and informative illustrations are included. This book will be of great value not only to neuroradiologists but also to neurologists, neuropediatricians, and general radiologists. (orig.)

  7. Brain Diseases in Mesopotamian Societies

    Directory of Open Access Journals (Sweden)

    Piedad Yuste

    2010-04-01

    Full Text Available In ancient Mesopotamia were not practiced neither autopsies nor dissections, so the internal organs of human body were known only from occasional inspections on wounds and injuries. The
    brain was considered as a part of the head and was not related to mental activity. However, Babylonian and Assyrian physicians were able to identify the symptoms of many diseases that affect this organ. We will make here a brief overview of them.

  8. Brain Imaging in Alzheimer Disease

    Science.gov (United States)

    Johnson, Keith A.; Fox, Nick C.; Sperling, Reisa A.; Klunk, William E.

    2012-01-01

    Imaging has played a variety of roles in the study of Alzheimer disease (AD) over the past four decades. Initially, computed tomography (CT) and then magnetic resonance imaging (MRI) were used diagnostically to rule out other causes of dementia. More recently, a variety of imaging modalities including structural and functional MRI and positron emission tomography (PET) studies of cerebral metabolism with fluoro-deoxy-d-glucose (FDG) and amyloid tracers such as Pittsburgh Compound-B (PiB) have shown characteristic changes in the brains of patients with AD, and in prodromal and even presymptomatic states that can help rule-in the AD pathophysiological process. No one imaging modality can serve all purposes as each have unique strengths and weaknesses. These modalities and their particular utilities are discussed in this article. The challenge for the future will be to combine imaging biomarkers to most efficiently facilitate diagnosis, disease staging, and, most importantly, development of effective disease-modifying therapies. PMID:22474610

  9. Mental Illness And Brain Disease.

    Science.gov (United States)

    Bedrick, Jeffrey D

    2014-01-01

    It has become common to say psychiatric illnesses are brain diseases. This reflects a conception of the mental as being biologically based, though it is also thought that thinking of psychiatric illness this way will reduce the stigma attached to psychiatric illness. If psychiatric illnesses are brain diseases, however, it is not clear why psychiatry should not collapse into neurology, and some argue for this course. Others try to maintain a distinction by saying that neurology deals with abnormalities of neural structure while psychiatry deals with specific abnormalities of neural functioning. It is not clear that neurologists would accept this division, nor that they should. I argue that if we take seriously the notion that psychiatric illnesses are mental illnesses we can draw a more defensible boundary between psychiatry and neurology. As mental illnesses, psychiatric illnesses must have symptoms that affect our mental capacities and that the sufferer is capable of being aware of, even if they are not always self-consciously aware of them. Neurological illnesses, such as stroke or multiple sclerosis, may be diagnosed even if they are silent, just as the person may not be aware of having high blood pressure or may suffer a silent myocardial infarction. It does not make sense to speak of panic disorder if the person has never had a panic attack, however, or of bipolar disorder in the absence of mood swings. This does not mean psychiatric illnesses are not biologically based. Mental illnesses are illnesses of persons, whereas other illnesses are illnesses of biological individuals.

  10. Brain aging, Alzheimer's disease, and mitochondria

    OpenAIRE

    Swerdlow, Russell H.

    2011-01-01

    The relationship between brain aging and Alzheimer’s disease (AD) is contentious. One view holds AD results when brain aging surpasses a threshold. The other view postulates AD is not a consequence of brain aging. This review discusses this conundrum from the perspective of different investigative lines that have tried to address it, as well as from the perspective of the mitochondrion, an organelle that appears to play a role in both AD and brain aging. Specific issues addressed include the ...

  11. Brain Diseases - Multiple Languages: MedlinePlus

    Science.gov (United States)

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Brain Diseases URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Brain Diseases - Multiple Languages To use the sharing features on this page, ...

  12. An online database for brain disease research

    Directory of Open Access Journals (Sweden)

    Richman Sam

    2006-04-01

    Full Text Available Abstract Background The Stanley Medical Research Institute online genomics database (SMRIDB is a comprehensive web-based system for understanding the genetic effects of human brain disease (i.e. bipolar, schizophrenia, and depression. This database contains fully annotated clinical metadata and gene expression patterns generated within 12 controlled studies across 6 different microarray platforms. Description A thorough collection of gene expression summaries are provided, inclusive of patient demographics, disease subclasses, regulated biological pathways, and functional classifications. Conclusion The combination of database content, structure, and query speed offers researchers an efficient tool for data mining of brain disease complete with information such as: cross-platform comparisons, biomarkers elucidation for target discovery, and lifestyle/demographic associations to brain diseases.

  13. Human brain disease recreated in mice

    Energy Technology Data Exchange (ETDEWEB)

    Marx, J.

    1990-12-14

    In the early 1980s, neurologist Stanley Prusiner suggested that scrapie, an apparently infectious degenerative brain disease of sheep, could be transmitted by prions, infectious particles made just of protein - and containing no nucleic acids. But prion research has come a long way since then. In 1985, the cloning of the gene encoding the prion protein proved that it does in fact exist. And the gene turned out to be widely expressed in the brains of higher organisms, a result suggesting that the prion protein has a normal brain function that can somehow be subverted, leading to brain degeneration. Then studies done during the past 2 years suggested that specific mutations in the prion gene might cause two similar human brain diseases, Gerstmann-Straeussler-Scheinker syndrome (GSS) and Creutzfelt-Jakob disease. Now, Prusiner's group at the University of California, San Francisco, has used genetic engineering techniques to recreate GSS by transplanting the mutated prion gene into mice. Not only will the animal model help neurobiologists answer the many remaining questions about prions and how they work, but it may also shed some light on other neurodegenerative diseases as well.

  14. Structural brain lesions in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Can; Dolapcioglu; Hatice; Dolapcioglu

    2015-01-01

    Central nervous system(CNS) complications or manifes-tations of inflammatory bowel disease deserve particular attention because symptomatic conditions can require early diagnosis and treatment, whereas unexplained manifestations might be linked with pathogenic me-chanisms. This review focuses on both symptomatic and asymptomatic brain lesions detectable on imaging studies, as well as their frequency and potential mecha-nisms. A direct causal relationship between inflammatory bowel disease(IBD) and asymptomatic structural brain changes has not been demonstrated, but several possible explanations, including vasculitis, thromboembolism and malnutrition, have been proposed. IBD is associated with a tendency for thromboembolisms; therefore, cerebro-vascular thromboembolism represents the most frequent and grave CNS complication. Vasculitis, demyelinating conditions and CNS infections are among the other CNS manifestations of the disease. Biological agents also represent a risk factor, particularly for demyelination. Identification of the nature and potential mechanisms of brain lesions detectable on imaging studies would shed further light on the disease process and could improve patient care through early diagnosis and treatment.

  15. Osteoporotic fractures: a brain or bone disease?

    Science.gov (United States)

    Birge, Stanley J

    2008-06-01

    Osteoporosis is a skeletal disorder that predisposes individuals to increased risk of fracture. However, most osteoporotic fractures occur in women who do not meet criteria for osteoporosis. Hence, bone density, by itself, is a relatively poor predictor of fracture. Age and age-related factors are now recognized as increasingly important in determining fracture risk. Osteoporotic fractures are associated with increased disability and mortality, suggesting that osteoporosis may be a clinical manifestation of an underlying disease process affecting multiple systems. The systems affected, the musculo-skeletal system and the central nervous system, are shared in many respects with the frailty syndrome. Vitamin D deficiency is a major contributor to the frailty syndrome, osteoporosis, and osteoporotic fractures. Its effects are mediated by the development of cerebrovascular disease, postural instability, muscle weakness, and bone fragility. Thus, osteoporotic fractures result from both a bone and brain disease.

  16. Early complement components in Alzheimer's disease brains.

    Science.gov (United States)

    Veerhuis, R; Janssen, I; Hack, C E; Eikelenboom, P

    1996-01-01

    Activation products of the early complement components C1, C4 and C3 can be found colocalized with diffuse and fibrillar beta-amyloid (beta/A4) deposits in Alzheimer's disease (AD) brains. Immunohistochemically, C1-esterase inhibitor (C1-Inh) and the C1 subcomponents C1s and C1r can not, or only occasionally, be detected in plaques or in astrocytes. The present finding that C1q, C1s and C1-Inh mRNA are present in both AD and control brains suggests that the variable immunohistochemical staining results for C1r, C1s and C1-Inh are due to a rapid consumption, and that the inability to detect C1s, C1r or C1-Inh is probably due to the dissociation of C1s-C1-Inh and C1r-C1-Inh complexes from the activator-bound C1q into the fluid phase. Employing monoclonal antibodies specific for different forms of C1-Inh, no complexed C1-Inh could be found, whereas inactivated C1-Inh seems to be present in astrocytes surrounding beta/A4 plaques in AD brains. These findings, together with our finding (using reverse transcriptase-polymerase chain reaction) that C1-Inh is locally produced in the brain, suggest that in the brain complement activation at the C1 level is regulated by C1-Inh. Immunohistochemically, no evidence for the presence of the late complement components C5, C7 and C9, or of the membrane attack complex (MAC), was found in beta/A4 plaques. In contrast to the mRNA encoding the early components, that of the late complement components appears to be hardly detectable (C7) or absent (C9). Thus, without blood-brain-barrier impairment, the late complement components are probably present at too low a concentration to allow the formation of the MAC, which is generally believed to be responsible for at least some of the neurodegenerative effects observed in AD. Therefore, the present findings support the idea that in AD, complement does not function as an inflammatory mediator through MAC formation, but through the action of early component activation products.

  17. Prion diseases of the brain; Prionenerkrankung des Gehirns

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Kira; Urbach, Horst [Universitaetsklinik Freiburg (Germany). Klinik fuer Neuroradiologie

    2015-09-15

    The prion diseases of the brain, especially Creutzfeldt-Jakob disease, are rare fatal neurodegenerative disorders. A definitive CJD diagnosis is currently only possible by a brain biopsy or post mortem autopsy. The diagnosis of Creutzfeldt-Jakob disease is based on clinical signs, pathognomonic EEG, on typical MRI findings and the examination of the cerebrospinal fluid. Using the MRI the diagnosis Creutzfeldt-Jakob disease can be confirmed or excluded with high certainty. The MRI examination should contain diffusion-weighted and FLAIR imaging sequences. This review article provides an overview of the prion diseases of the brain with the corresponding imaging findings.

  18. Parkinson's disease biomarkers program brain imaging repository.

    Science.gov (United States)

    Ofori, Edward; Du, Guangwei; Babcock, Debra; Huang, Xuemei; Vaillancourt, David E

    2016-01-01

    The Parkinson's Disease Biomarkers Program (PDBP) is a multi-site study designed to identify Parkinson's disease (PD) biomarkers that can be used to improve the understanding of PD pathophysiology and to develop tools that provide novel measures to evaluate PD clinical trials. The PDBP consortium comprises numerous individual projects of which two are specifically geared to the development of brain imaging markers for diagnosis, progression, and prognosis of PD or related disorders. All study data from PD patients, atypical Parkinsonian patients, patients with essential tremor, and healthy controls collected from the sites are integrated in the PDBP database and will be publically available. All subjects are asked to submit blood samples, and undergo a battery of clinical evaluations that cover motor, cognitive, and other background information. In addition, a subset of subjects contributed cerebrospinal fluid samples. A restricted access, web-based Data Management Resource facilitates rapid sharing of data and biosamples across the entire PD research community. The PDBP consortium is a useful resource for research and collaboration aimed at the discovery of biomarkers and their use in understanding the pathophysiology of PD.

  19. Typical Cerebral Metabolic Patterns in Neurodegenerative Brain Diseases

    NARCIS (Netherlands)

    Teune, Laura K.; Bartels, Anna L.; de Jong, Bauke M.; Willemsen, Antoon T. M.; Eshuis, Silvia A.; de Vries, Jeroen J.; van Oostrom, Joost C. H.; Leenders, Klaus L.

    2010-01-01

    The differential diagnosis of neurodegenerative brain diseases on clinical grounds is difficult, especially at an early disease stage. Several studies have found specific regional differences of brain metabolism applying [F-18]-fluoro-deoxyglucose positron emission tomography (FDG-PET), suggesting t

  20. Reversible "brain atrophy" in patients with Cushing's disease

    OpenAIRE

    Gnjidić, Živko; Sajko, Tomislav; Kudelić, Nenad; Malenica, Maša; Vizner, Branka; Vrkljan, Milan; Hat, Josip; Rumboldt, Zoran

    2008-01-01

    During the past 25 years, we came across 60 patients with corticotroph pituitary adenomas and Cushing’s disease. Neuroradiological examination showed prominent volume loss of the brain parenchyma, unexpected for the patient’s age. This »brain atrophy« appeared to regress after surgical removal of pituitary adenoma and normalization of cortisol level. Observed difference between degree of »brain atrophy« in the Cushing’s disease group and in the control group was statistically sign...

  1. MRI of brain disease in veterinary patients part 1: Basic principles and congenital brain disorders.

    Science.gov (United States)

    Hecht, Silke; Adams, William H

    2010-01-01

    Magnetic resonance imaging (MRI) is increasingly being used in the diagnosis of central nervous system disorders in veterinary patients and is quickly becoming the imaging modality of choice in evaluation of brain and intracranial disease. This article provides an overview of the basic principles of MRI, a description of sequences and their applications in brain imaging, and an approach to interpretation of brain MRI. A detailed discussion of imaging findings in general intracranial disorders including hydrocephalus, vasogenic edema, brain herniation, and seizure-associated changes, and the MR diagnosis of congenital brain disorders is provided. MRI evaluation of acquired brain disorders is described in a second companion article.

  2. Blood-brain barrier transport of drugs for the treatment of brain diseases.

    Science.gov (United States)

    Gabathuler, Reinhard

    2009-06-01

    The central nervous system is a sanctuary protected by barriers that regulate brain homeostasis and control the transport of endogenous compounds into the brain. The blood-brain barrier, formed by endothelial cells of the brain capillaries, restricts access to brain cells allowing entry only to amino acids, glucose and hormones needed for normal brain cell function and metabolism. This very tight regulation of brain cell access is essential for the survival of neurons which do not have a significant capacity to regenerate, but also prevents therapeutic compounds, small and large, from reaching the brain. As a result, various strategies are being developed to enhance access of drugs to the brain parenchyma at therapeutically meaningful concentrations to effectively manage disease.

  3. Therapeutic Noninvasive Brain Stimulation in Alzheimer's Disease.

    Science.gov (United States)

    Gonsalvez, Irene; Baror, Roey; Fried, Peter; Santarnecchi, Emiliano; Pascual-Leone, Alvaro

    2017-01-01

    Alzheimer's disease (AD) is a looming public health crisis that currently lacks an effective treatment. Noninvasive Brain Stimulation (NBS), particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), offers a promising alternative approach to pharmacological interventions for an increasing number of neurological and psychiatric conditions. The aim of this review is summarize data from therapeutic trials of NBS in AD and other dementing illnesses. Despite the potential of NBS, there is limited theoretical framework and a lack of guidelines for its applications to AD. Several published clinical trials failed to report key parameters of the interventions thus limiting the utility of the study to assess efficacy and safety. Our review concludes with some suggestions for future studies aimed to advance research into NBS as a potential treatment for the symptoms and disabilities caused by AD and to enable comparison of results across trials. Ultimately, appropriately powered, and controlled, multi-site randomized clinical trials will be needed to evaluate the therapeutic potential of NBS in AD.

  4. Variation within the Huntington's disease gene influences normal brain structure.

    Directory of Open Access Journals (Sweden)

    Mark Mühlau

    Full Text Available Genetics of the variability of normal and diseased brain structure largely remains to be elucidated. Expansions of certain trinucleotide repeats cause neurodegenerative disorders of which Huntington's disease constitutes the most common example. Here, we test the hypothesis that variation within the IT15 gene on chromosome 4, whose expansion causes Huntington's disease, influences normal human brain structure. In 278 normal subjects, we determined CAG repeat length within the IT15 gene on chromosome 4 and analyzed high-resolution T1-weighted magnetic resonance images by the use of voxel-based morphometry. We found an increase of GM with increasing long CAG repeat and its interaction with age within the pallidum, which is involved in Huntington's disease. Our study demonstrates that a certain trinucleotide repeat influences normal brain structure in humans. This result may have important implications for the understanding of both the healthy and diseased brain.

  5. Increased brain-predicted aging in treated HIV disease

    Science.gov (United States)

    Underwood, Jonathan; Caan, Matthan W.A.; De Francesco, Davide; van Zoest, Rosan A.; Leech, Robert; Wit, Ferdinand W.N.M.; Portegies, Peter; Geurtsen, Gert J.; Schmand, Ben A.; Schim van der Loeff, Maarten F.; Franceschi, Claudio; Sabin, Caroline A.; Majoie, Charles B.L.M.; Winston, Alan; Reiss, Peter; Sharp, David J.

    2017-01-01

    Objective: To establish whether HIV disease is associated with abnormal levels of age-related brain atrophy, by estimating apparent brain age using neuroimaging and exploring whether these estimates related to HIV status, age, cognitive performance, and HIV-related clinical parameters. Methods: A large sample of virologically suppressed HIV-positive adults (n = 162, age 45–82 years) and highly comparable HIV-negative controls (n = 105) were recruited as part of the Comorbidity in Relation to AIDS (COBRA) collaboration. Using T1-weighted MRI scans, a machine-learning model of healthy brain aging was defined in an independent cohort (n = 2,001, aged 18–90 years). Neuroimaging data from HIV-positive and HIV-negative individuals were then used to estimate brain-predicted age; then brain-predicted age difference (brain-PAD = brain-predicted brain age − chronological age) scores were calculated. Neuropsychological and clinical assessments were also carried out. Results: HIV-positive individuals had greater brain-PAD score (mean ± SD 2.15 ± 7.79 years) compared to HIV-negative individuals (−0.87 ± 8.40 years; b = 3.48, p < 0.01). Increased brain-PAD score was associated with decreased performance in multiple cognitive domains (information processing speed, executive function, memory) and general cognitive performance across all participants. Brain-PAD score was not associated with age, duration of HIV infection, or other HIV-related measures. Conclusion: Increased apparent brain aging, predicted using neuroimaging, was observed in HIV-positive adults, despite effective viral suppression. Furthermore, the magnitude of increased apparent brain aging related to cognitive deficits. However, predicted brain age difference did not correlate with chronological age or duration of HIV infection, suggesting that HIV disease may accentuate rather than accelerate brain aging. PMID:28258081

  6. Evidence for a membrane defect in Alzheimer disease brain

    Science.gov (United States)

    Nitsch, R. M.; Blusztajn, J. K.; Pittas, A. G.; Slack, B. E.; Growdon, J. H.; Wurtman, R. J.

    1992-01-01

    To determine whether neurodegeneration in Alzheimer disease brain is associated with degradation of structural cell membrane molecules, we measured tissue levels of the major membrane phospholipids and their metabolites in three cortical areas from postmortem brains of Alzheimer disease patients and matched controls. Among phospholipids, there was a significant (P less than 0.05) decrease in phosphatidylcholine and phosphatidylethanolamine. There were significant (P less than 0.05) decreases in the initial phospholipid precursors choline and ethanolamine and increases in the phospholipid deacylation product glycerophosphocholine. The ratios of glycerophosphocholine to choline and glycerophosphoethanolamine to ethanolamine were significantly increased in all examined Alzheimer disease brain regions. The activity of the glycerophosphocholine-degrading enzyme glycerophosphocholine choline-phosphodiesterase was normal in Alzheimer disease brain. There was a near stoichiometric relationship between the decrease in phospholipids and the increase of phospholipid catabolites. These data are consistent with increased membrane phospholipid degradation in Alzheimer disease brain. Similar phospholipid abnormalities were not detected in brains of patients with Huntington disease, Parkinson disease, or Down syndrome. We conclude that the phospholipid abnormalities described here are not an epiphenomenon of neurodegeneration and that they may be specific for the pathomechanism of Alzheimer disease.

  7. Validation of Parkinsonian Disease-Related Metabolic Brain Patterns

    NARCIS (Netherlands)

    Teune, Laura K.; Renken, Remco J.; Mudali, Deborah; De Jong, Bauke M.; Dierckx, Rudi A.; Roerdink, Jos B.T.M.; Leenders, Klaus L.

    2013-01-01

    Background: The objective of this study was to validate disease-related metabolic brain patterns for Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Methods: The study included 20 patients with Parkinson’s disease, 21 with multiple system atrophy, and 17 with progre

  8. New progress in brain aging and its related neurological diseases

    Directory of Open Access Journals (Sweden)

    Ming-wei ZHU

    2014-03-01

    Full Text Available Brain aging-related neurological diseases including Alzheimer's disease (AD, Parkinson's disease (PD and cerebral amyloid angiopathy (CAA have become one of the major diseases endangering the health of old people in China. Although the mechanism of brain aging and pathogenesis of its related neurodegenerative diseases remain unclear, protein pathological studies such as tau, α-synuclein (α-Syn, TDP-43 and amyloid-β protein (Aβ based on brain tissue bank and case registration database are opening the door to solve the mystery in the brain aging process and unlock pathogenesis of aging-related neurodegenerative diseases. Research on functional neuroimaging including 11C-PIB PET and 18F-FDDNP PET in Alzheimer's disease and 18F-FDG PET in Parkinson's disease, and biomarkers such as total-tau, phosphorylated-tau, and the 42 amino acid fragment of β-amyloid in cerebrospinal fluid (CSF in the preclinical stages of Alzheimer's disease now become hot topics in the field of elderly dementia and movement disorders. Clinicopathological correlation research of Alzheimer's disease, Parkinson's disease and cerebral amyloid angiopathy is also one of focuses in the geriatric neurological diseases. doi: 10.3969/j.issn.1672-6731.2014.03.004

  9. Small vessel ischemic disease of the brain and brain metastases in lung cancer patients.

    Directory of Open Access Journals (Sweden)

    Peter J Mazzone

    Full Text Available BACKGROUND: Brain metastases occur commonly in patients with lung cancer. Small vessel ischemic disease is frequently found when imaging the brain to detect metastases. We aimed to determine if the presence of small vessel ischemic disease (SVID of the brain is protective against the development of brain metastases in lung cancer patients. METHODOLOGY/PRINCIPAL FINDINGS: A retrospective cohort of 523 patients with biopsy confirmed lung cancer who had received magnetic resonance imaging of the brain as part of their standard initial staging evaluation was reviewed. Information collected included demographics, comorbidities, details of the lung cancer, and the presence of SVID of the brain. A portion of the cohort had the degree of SVID graded. The primary outcome measure was the portion of study subjects with and without SVID of the brain who had evidence of brain metastases at the time of initial staging of their lung cancer.109 patients (20.8% had evidence of brain metastases at presentation and 345 (66.0% had evidence of SVID. 13.9% of those with SVID and 34.3% of those without SVID presented with brain metastases (p<0.0001. In a model including age, diabetes mellitus, hypertension, hyperlipidemia, and tobacco use, SVID of the brain was found to be the only protective factor against the development of brain metastases, with an OR of 0.31 (0.20, 0.48; p<0.001. The grade of SVID was higher in those without brain metastases. CONCLUSIONS/SIGNIFICANCE: These findings suggest that vascular changes in the brain are protective against the development of brain metastases in lung cancer patients.

  10. Bilateral adaptive deep brain stimulation is effective in Parkinson's disease

    NARCIS (Netherlands)

    Little, Simon; Beudel, Martijn; Zrinzo, Ludvic; Foltynie, Thomas; Limousin, Patricia; Hariz, Marwan; Neal, Spencer; Cheeran, Binith; Cagnan, Hayriye; Gratwicke, James; Aziz, Tipu Z.; Pogosyan, Alex; Brown, Peter

    2016-01-01

    Introduction & objectives Adaptive deep brain stimulation (aDBS) uses feedback from brain signals to guide stimulation. A recent acute trial of unilateral aDBS showed that aDBS can lead to substantial improvements in contralateral hemibody Unified Parkinson's Disease Rating Scale (UPDRS) motor score

  11. Brain damage in patients with manifest arterial disease

    NARCIS (Netherlands)

    Raamt, Anne Fleur van

    2006-01-01

    In this thesis we assessed whether the risk factors known to affect markers of brain damage in the general population, also effectuate brain damage in patients who already have symptomatic arterial disease. We found that elevated levels of homocysteine were related to slightly lower global cogniti

  12. Lipidomics of human brain aging and Alzheimer's disease pathology.

    Science.gov (United States)

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2015-01-01

    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context.

  13. Foundation for PSP/CBD and Related Brain Diseases

    Science.gov (United States)

    Donate I want to learn Overview Progressive Supranuclear Palsy (PSP) Prime of life brain diseases FAQ About Our Research Research Initiatives Investigator Resources Healthcare Professional Resources I need Support Overview Personal ...

  14. Expression of Alzheimer's disease risk genes in ischemic brain degeneration.

    Science.gov (United States)

    Ułamek-Kozioł, Marzena; Pluta, Ryszard; Januszewski, Sławomir; Kocki, Janusz; Bogucka-Kocka, Anna; Czuczwar, Stanisław J

    2016-12-01

    We review the Alzheimer-related expression of genes following brain ischemia as risk factors for late-onset of sporadic Alzheimer's disease and their role in Alzheimer's disease ischemia-reperfusion pathogenesis. More recent advances in understanding ischemic etiology of Alzheimer's disease have revealed dysregulation of Alzheimer-associated genes including amyloid protein precursor, β-secretase, presenilin 1 and 2, autophagy, mitophagy and apoptosis. We review the relationship between these genes dysregulated by brain ischemia and the cellular and neuropathological characteristics of Alzheimer's disease. Here we summarize the latest studies supporting the theory that Alzheimer-related genes play an important role in ischemic brain injury and that ischemia is a needful and leading supplier to the onset and progression of sporadic Alzheimer's disease. Although the exact molecular mechanisms of ischemic dependent neurodegenerative disease and neuronal susceptibility finally are unknown, a downregulated expression of neuronal defense genes like alfa-secretase in the ischemic brain makes the neurons less able to resist injury. The recent challenge is to find ways to raise the adaptive reserve of the brain to overcome such ischemic-associated deficits and support and/or promote neuronal survival. Understanding the mechanisms underlying the association of these genes with risk for Alzheimer's disease will provide the most meaningful targets for therapeutic development to date.

  15. Aluminium in brain tissue in familial Alzheimer's disease.

    Science.gov (United States)

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2017-03-01

    The genetic predispositions which describe a diagnosis of familial Alzheimer's disease can be considered as cornerstones of the amyloid cascade hypothesis. Essentially they place the expression and metabolism of the amyloid precursor protein as the main tenet of disease aetiology. However, we do not know the cause of Alzheimer's disease and environmental factors may yet be shown to contribute towards its onset and progression. One such environmental factor is human exposure to aluminium and aluminium has been shown to be present in brain tissue in sporadic Alzheimer's disease. We have made the first ever measurements of aluminium in brain tissue from 12 donors diagnosed with familial Alzheimer's disease. The concentrations of aluminium were extremely high, for example, there were values in excess of 10μg/g tissue dry wt. in 5 of the 12 individuals. Overall, the concentrations were higher than all previous measurements of brain aluminium except cases of known aluminium-induced encephalopathy. We have supported our quantitative analyses using a novel method of aluminium-selective fluorescence microscopy to visualise aluminium in all lobes of every brain investigated. The unique quantitative data and the stunning images of aluminium in familial Alzheimer's disease brain tissue raise the spectre of aluminium's role in this devastating disease.

  16. Brain Injury with Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-11-01

    Full Text Available The relationship between brain injury and vasculopathy in 146 sickle cell (SCD patients with hemoglobin SS, the most serious form of SCD, was evaluated by MRI and MRA at St Jude Children’s Research Hospital, Memphis, TN.

  17. Alois Alzheimer and vascular brain disease: Arteriosclerotic atrophy of the brain

    Directory of Open Access Journals (Sweden)

    Eliasz Engelhardt

    Full Text Available Alois Alzheimer is best known for his description of neurofibrillary changes in brain neurons of a demented patient, identifying a novel disease, soon named after him by Kraepelin. However, the range of his studies was broad, including vascular brain diseases, published between 1894 and 1902. Alzheimer described the clinical picture of Arteriosclerotic atrophy of the brain, differentiating it from other similar disorders. He stated that autopsy allowed pathological distinction between arteriosclerosis and syphilis, thereby achieving some of his objectives of segregating disorders and separating them from syphilis. His studies contributed greatly to establishing the key information on vascular brain diseases, predating the present state of knowledge on the issue, while providing early descriptions of what would be later regarded as the dimensional presentation of the now called "Vascular cognitive impairment", constituted by a spectrum that includes a stage of "Vascular cognitive impairment not dementia" and another of "Vascular dementia".

  18. A new treatment method for brain diseases. Stereotactic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Shirato, Hiroki (Hokkaido Univ., Sapporo (Japan). School of Medicine)

    1994-01-01

    This paper deals with stereotactic radiosurgery, a novel medical treatment technique for brain diseases. It is the most sophisticated modality that allows the functional preservation. Recently, CT scan and MRI scan have dramatically changed the diagnostic accuracy of tumor localization in the brain. A device named stereotactic head fixation system makes it possible to localize deep-seated brain diseases with an accuracy of 1-1.5 mm. Using multiple convergent narrow beams of high-energy X-ray, a stereotactic head frame, and a three dimensional computer graphics of CT images, patients with deep-seated nidus can be treated without any complications. Normal tissues would not receive large doses but the center of the nidus is irradiated heavily because of the convergence of X-ray beams. Thus stereotactic radiosurgery is more accurate, effective, and less toxic than conventional radiotherapy and is safer and more effective than surgery for many brain diseases. Small arteriovenous malformation in the brain, which is a fetal disease, and small acoustic neurinomas, in which surgery often causes facial nerve palsy and hearing loss, are presented as good candidates for radiosurgery. For metastatic brain tumors, stereotactic radiosurgery makes such patients free from neurological symptoms, such as difficulty in walking and speaking, in a few days. (N.K.).

  19. Coexistence of reactive plasticity and neurodegeneration in Alzheimer diseased brains

    OpenAIRE

    J. Guevara; Dilhuydy, H.; Espinosa, B.; Delacourte, A; Quirion, R; Mena, R.; Joanette, Y.; Zenteno, E; Robitaille, Y

    2004-01-01

    Alzheimer’s disease (AD) is a pathological process characterized by neuron degeneration and, as recently suggested, brain plasticity. In this work, we compared the reactive plasticity in AD brains associated to O-glycosydically linked glycans, recognized by lectins from Amaranthus leucocarpus (ALL) and Macrobrachium rosenbergii (MRL), and the tau neuritic degeneration. The neuritic degenerative process was evaluated by the quantification of aggregated neuritic ...

  20. Brain MRI changes in chronic liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Skehan, S. [Department of Diagnostic Imaging, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); Norris, S. [Liver Unit, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); Hegarty, J. [Liver Unit, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); Owens, A. [Department of Diagnostic Imaging, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); MacErlaine, D. [Department of Diagnostic Imaging, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland)

    1997-08-01

    Cirrhotic patients are known to have abnormally high signal principally in the globus pallidus on non-contrast T1-weighted MRI. The purpose of this study was to relate MR changes to clinical and pathological features of chronic liver disease. We confirmed abnormally high signal in the globus pallidus on T1-weighted images in 25 of 28 patients with chronic liver disease, showing that it also occurs in patients who have not yet progressed to cirrhosis. Changes were seen in patients both with and without clinical portosystemic shunting. This abnormality is not responsible for hepatic encephalopathy. Cholestatic disease was more likely to produce marked changes than non-cholestatic disease. No statistically significant correlation was demonstrated between the severity of liver disease and the degree of MR abnormality. However, marked improvement in MR appearances was seen after successful liver transplantation. (orig.). With 3 figs., 4 tabs.

  1. Drosophila melanogaster as a Model Organism of Brain Diseases

    Directory of Open Access Journals (Sweden)

    Werner Paulus

    2009-02-01

    Full Text Available Drosophila melanogaster has been utilized to model human brain diseases. In most of these invertebrate transgenic models, some aspects of human disease are reproduced. Although investigation of rodent models has been of significant impact, invertebrate models offer a wide variety of experimental tools that can potentially address some of the outstanding questions underlying neurological disease. This review considers what has been gleaned from invertebrate models of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, metabolic diseases such as Leigh disease, Niemann-Pick disease and ceroid lipofuscinoses, tumor syndromes such as neurofibromatosis and tuberous sclerosis, epilepsy as well as CNS injury. It is to be expected that genetic tools in Drosophila will reveal new pathways and interactions, which hopefully will result in molecular based therapy approaches.

  2. Alzheimer and vascular brain diseases: Focal and diffuse subforms

    Directory of Open Access Journals (Sweden)

    Eliasz Engelhardt

    Full Text Available Alois Alzheimer is best known for his description of the pre-senile neurodegenerative disease named after him. However, his previous interest in vascular brain diseases, underlying cognitive and behavioral changes, was very strong. Besides describing the Arteriosclerotic atrophy of the brain and the arteriosclerotic subtype of Senile dementia which he viewed as main forms of vascular brain diseases, he also identified and described a series of conditions he considered subforms. These may be divided, as suggested by the authors of the present paper, into 3 groups: gliosis and sclerosis, subcortical atrophies, and apoplectic. The subforms of the three groups present characteristic neuropathological features and clinical, cognitive and behavioral manifestations. These provide the basis, together with part of the main forms, for the contemporary condition known as Vascular Cognitive Impairment.

  3. Cognitive and Brain Reserve in Prodromal Huntington Disease

    Science.gov (United States)

    Bonner-Jackson, Aaron; Long, Jeffrey D.; Westervelt, Holly; Tremont, Geoffrey; Aylward, Elizabeth; Paulsen, Jane S.

    2013-01-01

    Background Huntington disease (HD) is associated with decline in cognition and progressive morphological changes in brain structures. Cognitive reserve may represent a mechanism by which disease-related decline may be delayed or slowed. The current study examined the relationship between cognitive reserve and longitudinal change in cognitive functioning and brain volumes among prodromal (gene expansion-positive) HD individuals. Methods Participants were genetically-confirmed individuals with prodromal HD enrolled in the PREDICT-HD study. Cognitive reserve was computed as the composite of performance on a lexical task estimating premorbid intellectual level, occupational status, and years of education. Linear mixed effects regression (LMER) was used to examine longitudinal changes on 4 cognitive measures and 3 brain volumes over approximately 6 years. Results Higher cognitive reserve was significantly associated with a slower rate of change on one cognitive measure (Trail Making Test, Part B) and slower rate of volume loss in two brain structures (caudate, putamen) for those estimated to be closest to motor disease onset. This relationship was not observed among those estimated to be further from motor disease onset. Conclusions Our findings demonstrate a relationship between cognitive reserve and both a measure of executive functioning and integrity of certain brain structures in prodromal HD individuals. PMID:23702309

  4. Neuroprotective Effect against Alzheimer's Disease of Porcine Brain Extract

    Directory of Open Access Journals (Sweden)

    Wipawee Thukham-Mee

    2012-01-01

    Full Text Available Problem statement: Despite the increasing importance of Alzheimer’s disease, no effective therapeutic strategy is available. Therefore, neuroprotective strategy is still required. Recent findings show that numerous substances possessing antioxidant can improve neurodegeneration and memory impairment. Based on the antioxidant effect and its reputation to serve as brain tonic in traditional folklore, we hypothesized that porcine brain extract could mitigate neurodegeneration and memory impairment. Therefore, this study was set up to determine the effect of porcine brain extract on memory impairment and neurodegeneration in animal models of Alzheimer’s disease. Approach: Male Wistar rats (180-220 g had been orally given porcine brain extract at doses of 0.5 and 2.5 mg kg-1 BW for a period of 4 weeks before and 1 week after the induction of cognitive deficit condition as those found in early phase of Alzheimer’s disease via the intraventricular injection of AF64A, a cholinotoxin. Rats were assessed the spatial memory using Morris water maze test. Then, they were determined neuron density in hippocampus using histological techniques. Moreover, the assessment of acetylcholinesterase (AChE activity and malondialdehyde (MDA level in hippocampus were also performed. Results: It was found that both doses of porcine brain extract could enhance memory, neuron and cholinergic neuron density in all subregions of hippocampus. In addition, the decreased AChE and MDA were also observed. Therefore, our results suggested that the possible underlying mechanism of the extract might occur partly via the decrease in oxidative stress marker, MDA and AChE. Conclusion: This study clearly demonstrates that porcine brain extract can protect against memory impairment and neurodegeneration in animal model of Alzheimer’s disease. Therefore, it should be serve as the potential food supplement or adjuvant therapy against Alzheimer’s disease and other age-related cognitive

  5. Regional brain stiffness changes across the Alzheimer's disease spectrum.

    Science.gov (United States)

    Murphy, Matthew C; Jones, David T; Jack, Clifford R; Glaser, Kevin J; Senjem, Matthew L; Manduca, Armando; Felmlee, Joel P; Carter, Rickey E; Ehman, Richard L; Huston, John

    2016-01-01

    Magnetic resonance elastography (MRE) is an MRI-based technique to noninvasively measure tissue stiffness. Currently well established for clinical use in the liver, MRE is increasingly being investigated to measure brain stiffness as a novel biomarker of a variety of neurological diseases. The purpose of this work was to apply a recently developed MRE pipeline to measure regional brain stiffness changes in human subjects across the Alzheimer's disease (AD) spectrum, and to gain insights into the biological processes underlying those stiffness changes by correlating stiffness with existing biomarkers of AD. The results indicate that stiffness changes occur mostly in the frontal, parietal and temporal lobes, in accordance with the known topography of AD pathology. Furthermore, stiffness in those areas correlates with existing imaging biomarkers of AD including hippocampal volumes and amyloid PET. Additional analysis revealed preliminary but significant evidence that the relationship between brain stiffness and AD severity is nonlinear and non-monotonic. Given that similar relationships have been observed in functional MRI experiments, we used task-free fMRI data to test the hypothesis that brain stiffness was sensitive to structural changes associated with altered functional connectivity. The analysis revealed that brain stiffness is significantly and positively correlated with default mode network connectivity. Therefore, brain stiffness as measured by MRE has potential to provide new and essential insights into the temporal dynamics of AD, as well as the relationship between functional and structural plasticity as it relates to AD pathophysiology.

  6. DUF1220 domains, cognitive disease, and human brain evolution.

    Science.gov (United States)

    Dumas, L; Sikela, J M

    2009-01-01

    We have established that human genome sequences encoding a novel protein domain, DUF1220, show a dramatically elevated copy number in the human lineage (>200 copies in humans vs. 1 in mouse/rat) and may be important to human evolutionary adaptation. Copy-number variations (CNVs) in the 1q21.1 region, where most DUF1220 sequences map, have now been implicated in numerous diseases associated with cognitive dysfunction, including autism, autism spectrum disorder, mental retardation, schizophrenia, microcephaly, and macrocephaly. We report here that these disease-related 1q21.1 CNVs either encompass or are directly flanked by DUF1220 sequences and exhibit a dosage-related correlation with human brain size. Microcephaly-producing 1q21.1 CNVs are deletions, whereas macrocephaly-producing 1q21.1 CNVs are duplications. Similarly, 1q21.1 deletions and smaller brain size are linked with schizophrenia, whereas 1q21.1 duplications and larger brain size are associated with autism. Interestingly, these two diseases are thought to be phenotypic opposites. These data suggest a model which proposes that (1) DUF1220 domain copy number may be involved in influencing human brain size and (2) the evolutionary advantage of rapidly increasing DUF1220 copy number in the human lineage has resulted in favoring retention of the high genomic instability of the 1q21.1 region, which, in turn, has precipitated a spectrum of recurrent human brain and developmental disorders.

  7. The metabolic syndrome: a brain disease?

    NARCIS (Netherlands)

    Buijs, R.M.; Kreier, F.

    2006-01-01

    The incidence of obesity with, as consequence, a rise in associated diseases such as diabetes, hypertension and dyslipidemia--the metabolic syndrome--is reaching epidemic proportions in industrialized countries. Here, we provide a hypothesis that the biological clock which normally prepares us each

  8. Huntington's disease : quantifying structural brain changes

    NARCIS (Netherlands)

    Bogaard, Simon Johannes Adrianus van den

    2012-01-01

    The aim of this thesis was to find potential MRI biomarkers for Huntington’s disease (HD). Therefore, after an overview of the current literature on MRI biomarkers, followed by examinations of volumetric MRI, magnetization transfer imaging (MTI), diffusion tensor imaging (DTI) and magnetic resonance

  9. [Functional imaging of deep brain stimulation in idiopathic Parkinson's disease].

    Science.gov (United States)

    Hilker, R

    2010-10-01

    Functional brain imaging allows the effects of deep brain stimulation (DBS) on the living human brain to be investigated. In patients with advanced Parkinson's disease (PD), positron emission tomography (PET) studies were undertaken at rest as well as under motor, cognitive or behavioral activation. DBS leads to a reduction of abnormal PD-related network activity in the motor system, which partly correlates with the improvement of motor symptoms. The local increase of energy consumption within the direct target area suggests a predominant excitatory influence of the stimulation current on neuronal tissue. Remote effects of DBS of the subthalamic nucleus (STN) on frontal association cortices indicate an interference of stimulation energy with associative and limbic basal ganglia loops. Taken together, functional brain imaging provides very valuable data for advancement of the DBS technique in PD therapy.

  10. Theory of feedback controlled brain stimulations for Parkinson's disease

    Science.gov (United States)

    Sanzeni, A.; Celani, A.; Tiana, G.; Vergassola, M.

    2016-01-01

    Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson's disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.

  11. Genetic control of human brain transcript expression in Alzheimer disease.

    Science.gov (United States)

    Webster, Jennifer A; Gibbs, J Raphael; Clarke, Jennifer; Ray, Monika; Zhang, Weixiong; Holmans, Peter; Rohrer, Kristen; Zhao, Alice; Marlowe, Lauren; Kaleem, Mona; McCorquodale, Donald S; Cuello, Cindy; Leung, Doris; Bryden, Leslie; Nath, Priti; Zismann, Victoria L; Joshipura, Keta; Huentelman, Matthew J; Hu-Lince, Diane; Coon, Keith D; Craig, David W; Pearson, John V; Heward, Christopher B; Reiman, Eric M; Stephan, Dietrich; Hardy, John; Myers, Amanda J

    2009-04-01

    We recently surveyed the relationship between the human brain transcriptome and genome in a series of neuropathologically normal postmortem samples. We have now analyzed additional samples with a confirmed pathologic diagnosis of late-onset Alzheimer disease (LOAD; final n = 188 controls, 176 cases). Nine percent of the cortical transcripts that we analyzed had expression profiles correlated with their genotypes in the combined cohort, and approximately 5% of transcripts had SNP-transcript relationships that could distinguish LOAD samples. Two of these transcripts have been previously implicated in LOAD candidate-gene SNP-expression screens. This study shows how the relationship between common inherited genetic variants and brain transcript expression can be used in the study of human brain disorders. We suggest that studying the transcriptome as a quantitative endo-phenotype has greater power for discovering risk SNPs influencing expression than the use of discrete diagnostic categories such as presence or absence of disease.

  12. Parkinson’s Disease Biomarkers Program Brain Imaging Repository

    OpenAIRE

    Ofori, Edward; Du, Guangwei; Babcock, Debra; Huang, Xuemei; Vaillancourt, David E.

    2015-01-01

    The Parkinson’s Disease Biomarkers Program (PDBP) is a multi-site study designed to identify Parkinson’s Disease (PD) biomarkers that can be used to improve the understanding of PD pathophysiology and to develop tools that provide novel measures to evaluate PD clinical trials. The PDBP consortium comprises numerous individual projects of which two are specifically geared to the development of brain imaging markers for diagnosis, progression, and prognosis of PD or related disorders. All study...

  13. Loss of functional GABAA receptors in the Alzheimer diseased brain

    Science.gov (United States)

    Limon, Agenor; Reyes-Ruiz, Jorge Mauricio; Miledi, Ricardo

    2012-01-01

    The cholinergic and glutamatergic neurotransmission systems are known to be severely disrupted in Alzheimer's disease (AD). GABAergic neurotransmission, in contrast, is generally thought to be well preserved. Evidence from animal models and human postmortem tissue suggest GABAergic remodeling in the AD brain. Nevertheless, there is no information on changes, if any, in the electrophysiological properties of human native GABA receptors as a consequence of AD. To gain such information, we have microtransplanted cell membranes, isolated from temporal cortices of control and AD brains, into Xenopus oocytes, and recorded the electrophysiological activity of the transplanted GABA receptors. We found an age-dependent reduction of GABA currents in the AD brain. This reduction was larger when the AD membranes were obtained from younger subjects. We also found that GABA currents from AD brains have a faster rate of desensitization than those from non-AD brains. Furthermore, GABA receptors from AD brains were slightly, but significantly, less sensitive to GABA than receptors from non-AD brains. The reduction of GABA currents in AD was associated with reductions of mRNA and protein of the principal GABA receptor subunits normally present in the temporal cortex. Pairwise analysis of the transcripts within control and AD groups and analyses of the proportion of GABA receptor subunits revealed down-regulation of α1 and γ2 subunits in AD. In contrast, the proportions of α2, β1, and γ1 transcripts were up-regulated in the AD brains. Our data support a functional remodeling of GABAergic neurotransmission in the human AD brain. PMID:22691495

  14. The metabolic syndrome: a brain disease?

    Science.gov (United States)

    Buijs, Ruud M; Kreier, Felix

    2006-09-01

    The incidence of obesity with, as consequence, a rise in associated diseases such as diabetes, hypertension and dyslipidemia--the metabolic syndrome--is reaching epidemic proportions in industrialized countries. Here, we provide a hypothesis that the biological clock which normally prepares us each morning for the coming activity period is altered due to a modern life style of low activity during the day and late-night food intake. Furthermore, we review the anatomical evidence supporting the proposal that an unbalanced autonomic nervous system output may lead to the simultaneous occurrence of diabetes type 2, dyslipidemia, hypertension and visceral obesity.

  15. Physical Activity, Brain Plasticity, and Alzheimer’s Disease

    Science.gov (United States)

    Erickson, Kirk I; Weinstein, Andrea M; Lopez, Oscar L

    2013-01-01

    In this review we summarize the epidemiological, cross-sectional, and interventional studies examining the association between physical activity and brain volume, function, and risk for Alzheimer’s disease. The epidemiological literature provides compelling evidence that greater amounts of physical activity are associated with a reduced risk of dementia in late life. In addition, randomized interventions using neuroimaging tools have reported that participation in physical activity increases the size of prefrontal and hippocampal brain areas, which may lead to a reduction in memory impairments. Consistent with these findings, longitudinal studies using neuroimaging tools also find that the volume of prefrontal and hippocampal brain areas are larger in individuals who engaged in more physical activity earlier in life. We conclude from this review that there is convincing evidence that physical activity has a consistent and robust association with brain regions implicated in age-related cognitive decline and Alzheimer’s disease. In addition to summarizing this literature we provide recommendations for future research on physical activity and brain health. PMID:23085449

  16. Clearance systems in the brain-implications for Alzheimer disease.

    Science.gov (United States)

    Tarasoff-Conway, Jenna M; Carare, Roxana O; Osorio, Ricardo S; Glodzik, Lidia; Butler, Tracy; Fieremans, Els; Axel, Leon; Rusinek, Henry; Nicholson, Charles; Zlokovic, Berislav V; Frangione, Blas; Blennow, Kaj; Ménard, Joël; Zetterberg, Henrik; Wisniewski, Thomas; de Leon, Mony J

    2015-08-01

    Accumulation of toxic protein aggregates-amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles-is the pathological hallmark of Alzheimer disease (AD). Aβ accumulation has been hypothesized to result from an imbalance between Aβ production and clearance; indeed, Aβ clearance seems to be impaired in both early and late forms of AD. To develop efficient strategies to slow down or halt AD, it is critical to understand how Aβ is cleared from the brain. Extracellular Aβ deposits can be removed from the brain by various clearance systems, most importantly, transport across the blood-brain barrier. Findings from the past few years suggest that astroglial-mediated interstitial fluid (ISF) bulk flow, known as the glymphatic system, might contribute to a larger portion of extracellular Aβ (eAβ) clearance than previously thought. The meningeal lymphatic vessels, discovered in 2015, might provide another clearance route. Because these clearance systems act together to drive eAβ from the brain, any alteration to their function could contribute to AD. An understanding of Aβ clearance might provide strategies to reduce excess Aβ deposits and delay, or even prevent, disease onset. In this Review, we describe the clearance systems of the brain as they relate to proteins implicated in AD pathology, with the main focus on Aβ.

  17. Brain imaging of mild cognitive impairment and Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Changhao Yin; Siou Li; Weina Zhao; Jiachun Feng

    2013-01-01

    The rapidly increasing prevalence of cognitive impairment and Alzheimer's disease has the potential to create a major worldwide healthcare crisis. Structural MRI studies in patients with Alzheimer's disease and mild cognitive impairment are currently attracting considerable interest. It is extremely important to study early structural and metabolic changes, such as those in the hippocampus, entorhinal cortex, and gray matter structures in the medial temporal lobe, to allow the early detection of mild cognitive impairment and Alzheimer's disease. The microstructural integrity of white matter can be studied with diffusion tensor imaging. Increased mean diffusivity and decreased fractional anisotropy are found in subjects with white matter damage. Functional imaging studies with positron emission tomography tracer compounds enable detection of amyloid plaques in the living brain in patients with Alzheimer's disease. In this review, we will focus on key findings from brain imaging studies in mild cognitive impairment and Alzheimer's disease, including structural brain changes studied with MRI and white matter changes seen with diffusion tensor imaging, and other specific imaging methodologies will also be discussed.

  18. Cyclodextrins, blood-brain barrier, and treatment of neurological diseases.

    Science.gov (United States)

    Vecsernyés, Miklós; Fenyvesi, Ferenc; Bácskay, Ildikó; Deli, Mária A; Szente, Lajos; Fenyvesi, Éva

    2014-11-01

    Biological barriers are the main defense systems of the homeostasis of the organism and protected organs. The blood-brain barrier (BBB), formed by the endothelial cells of brain capillaries, not only provides nutrients and protection to the central nervous system but also restricts the entry of drugs, emphasizing its importance in the treatment of neurological diseases. Cyclodextrins are increasingly used in human pharmacotherapy. Due to their favorable profile to form hydrophilic inclusion complexes with poorly soluble active pharmaceutical ingredients, they are present as excipients in many marketed drugs. Application of cyclodextrins is widespread in formulations for oral, parenteral, nasal, pulmonary, and skin delivery of drugs. Experimental and clinical data suggest that cyclodextrins can be used not only as excipients for centrally acting marketed drugs like antiepileptics, but also as active pharmaceutical ingredients to treat neurological diseases. Hydroxypropyl-β-cyclodextrin received orphan drug designation for the treatment of Niemann-Pick type C disease. In addition to this rare lysosomal storage disease with neurological symptoms, experimental research revealed the potential therapeutic use of cyclodextrins and cyclodextrin nanoparticles in neurodegenerative diseases, stroke, neuroinfections and brain tumors. In this context, the biological effects of cyclodextrins, their interaction with plasma membranes and extraction of different lipids are highly relevant at the level of the BBB.

  19. Diamox-enhanced brain SPECT in cerebrovascular diseases

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Young [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2007-04-15

    Acute event in cerebrovascular disease is the second most common cause of death in Korea following cancer, and it can also cause serious neurologic deficits. Understanding of perfusion status is important for clinical applications in management of patients with cerebrovascular diseases, and then the attacks of ischemic neurologic symptoms and the risk of acute events can be reduced. Therefore, the normal vascular anatomy of brain, various clinical applications of acetazolamide-enhanced brain perfusion SPECT, including meaning and role of assessment of vascular reserve in carotid stenosis before procedure, in pediatric Moyamoya disease before and after operation, in prediction of development of hyperperfusion syndrome before procedure, and in prediction of vasospasm and of prognosis in subarachnoid hemorrhage were reviewed in this paper.

  20. Endogenously Nitrated Proteins in Mouse Brain: Links To Neurodegenerative Disease

    Energy Technology Data Exchange (ETDEWEB)

    Sacksteder, Colette A.; Qian, Weijun; Knyushko, Tanya V.; Wang, Haixing H.; Chin, Mark H.; Lacan, Goran; Melega, William P.; Camp, David G.; Smith, Richard D.; Smith, Desmond J.; Squier, Thomas C.; Bigelow, Diana J.

    2006-07-04

    Increased nitrotyrosine modification of proteins has been documented in multiple pathologies in a variety of tissue types; emerging evidence suggests its additional role in redox regulation of normal metabolism. In order to identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic dataset identifying 7,792 proteins from whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in identification of 31 unique nitrotyrosine sites within 29 different proteins. Over half of the nitrated proteins identified have been reported to be involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces increased nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, characteristics consistent with peroxynitrite-induced tyrosine modification. More striking is the five-fold greater nitration of tyrosines having nearby basic sidechains, suggesting electrostatic attraction of basic groups with the negative charge of peroxynitrite. Together, these results suggest that elevated peroxynitrite generation plays a role in neurodegenerative changes in the brain and provides a predictive tool of functionally important sites of nitration.

  1. Brain Plasticity and Disease: A Matter of Inhibition

    Directory of Open Access Journals (Sweden)

    Laura Baroncelli

    2011-01-01

    Full Text Available One major goal in Neuroscience is the development of strategies promoting neural plasticity in the adult central nervous system, when functional recovery from brain disease and injury is limited. New evidence has underscored a pivotal role for cortical inhibitory circuitries in regulating plasticity both during development and in adulthood. This paper summarizes recent findings showing that the inhibition-excitation balance controls adult brain plasticity and is at the core of the pathogenesis of neurodevelopmental disorders like autism, Down syndrome, and Rett syndrome.

  2. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases.

    Science.gov (United States)

    Saraiva, Cláudia; Praça, Catarina; Ferreira, Raquel; Santos, Tiago; Ferreira, Lino; Bernardino, Liliana

    2016-08-10

    The blood-brain barrier (BBB) is a vital boundary between neural tissue and circulating blood. The BBB's unique and protective features control brain homeostasis as well as ion and molecule movement. Failure in maintaining any of these components results in the breakdown of this specialized multicellular structure and consequently promotes neuroinflammation and neurodegeneration. In several high incidence pathologies such as stroke, Alzheimer's (AD) and Parkinson's disease (PD) the BBB is impaired. However, even a damaged and more permeable BBB can pose serious challenges to drug delivery into the brain. The use of nanoparticle (NP) formulations able to encapsulate molecules with therapeutic value, while targeting specific transport processes in the brain vasculature, may enhance drug transport through the BBB in neurodegenerative/ischemic disorders and target relevant regions in the brain for regenerative processes. In this review, we will discuss BBB composition and characteristics and how these features are altered in pathology, namely in stroke, AD and PD. Additionally, factors influencing an efficient intravenous delivery of polymeric and inorganic NPs into the brain as well as NP-related delivery systems with the most promising functional outcomes will also be discussed.

  3. Psychopathology of Time in Brain Disease and Schizophrenia

    Directory of Open Access Journals (Sweden)

    John Cutting

    1990-01-01

    Full Text Available The literature on disturbance of time-sense in brain disease and schizophrenia is reviewed and the subjective experience of altered time-sense reported by 45 out of 350 personally interviewed schizophrenics is analyzed. A review of the literature on the effect of brain damage revealed that some phenomena (déjà vu, reduplication of time, altered tempo to events were linked with right hemisphere dysfunction, one phenomenon (incorrect sequencing of events was linked with left anterior brain damage, and others (disrupted “biological clock”, disturbed serise of rate of flow of current or past events could arise from subcortical as well as focal cortical damage. The sparse literature on disturbed time-sense in schizophrenia suggested that there was a shared psychopathology in this respect with right hemisphere dysfunction. The phenomena encountered in the 45 schizophrenics are described and classified.

  4. In vivo calcium imaging of the aging and diseased brain

    Energy Technology Data Exchange (ETDEWEB)

    Eichhoff, Gerhard; Busche, Marc A.; Garaschuk, Olga [Technical University of Munich, Institute of Neuroscience, Munich (Germany)

    2008-03-15

    Over the last decade, in vivo calcium imaging became a powerful tool for studying brain function. With the use of two-photon microscopy and modern labelling techniques, it allows functional studies of individual living cells, their processes and their interactions within neuronal networks. In vivo calcium imaging is even more important for studying the aged brain, which is hard to investigate in situ due to the fragility of neuronal tissue. In this article, we give a brief overview of the techniques applicable to image aged rodent brain at cellular resolution. We use multicolor imaging to visualize specific cell types (neurons, astrocytes, microglia) as well as the autofluorescence of the ''aging pigment'' lipofuscin. Further, we illustrate an approach for simultaneous imaging of cortical cells and senile plaques in mouse models of Alzheimer's disease. (orig.)

  5. Altered resting state brain networks in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Martin Göttlich

    Full Text Available Parkinson's disease (PD is a neurodegenerative disorder affecting dopaminergic neurons in the substantia nigra leading to dysfunctional cortico-striato-thalamic-cortical loops. In addition to the characteristic motor symptoms, PD patients often show cognitive impairments, affective changes and other non-motor symptoms, suggesting system-wide effects on brain function. Here, we used functional magnetic resonance imaging and graph-theory based analysis methods to investigate altered whole-brain intrinsic functional connectivity in PD patients (n = 37 compared to healthy controls (n = 20. Global network properties indicated less efficient processing in PD. Analysis of brain network modules pointed to increased connectivity within the sensorimotor network, but decreased interaction of the visual network with other brain modules. We found lower connectivity mainly between the cuneus and the ventral caudate, medial orbitofrontal cortex and the temporal lobe. To identify regions of altered connectivity, we mapped the degree of intrinsic functional connectivity both on ROI- and on voxel-level across the brain. Compared to healthy controls, PD patients showed lower connectedness in the medial and middle orbitofrontal cortex. The degree of connectivity was also decreased in the occipital lobe (cuneus and calcarine, but increased in the superior parietal cortex, posterior cingulate gyrus, supramarginal gyrus and supplementary motor area. Our results on global network and module properties indicated that PD manifests as a disconnection syndrome. This was most apparent in the visual network module. The higher connectedness within the sensorimotor module in PD patients may be related to compensation mechanism in order to overcome the functional deficit of the striato-cortical motor loops or to loss of mutual inhibition between brain networks. Abnormal connectivity in the visual network may be related to adaptation and compensation processes as a consequence

  6. Metabolic resting-state brain networks in health and disease.

    Science.gov (United States)

    Spetsieris, Phoebe G; Ko, Ji Hyun; Tang, Chris C; Nazem, Amir; Sako, Wataru; Peng, Shichun; Ma, Yilong; Dhawan, Vijay; Eidelberg, David

    2015-02-24

    The delineation of resting state networks (RSNs) in the human brain relies on the analysis of temporal fluctuations in functional MRI signal, representing a small fraction of total neuronal activity. Here, we used metabolic PET, which maps nonfluctuating signals related to total activity, to identify and validate reproducible RSN topographies in healthy and disease populations. In healthy subjects, the dominant (first component) metabolic RSN was topographically similar to the default mode network (DMN). In contrast, in Parkinson's disease (PD), this RSN was subordinated to an independent disease-related pattern. Network functionality was assessed by quantifying metabolic RSN expression in cerebral blood flow PET scans acquired at rest and during task performance. Consistent task-related deactivation of the "DMN-like" dominant metabolic RSN was observed in healthy subjects and early PD patients; in contrast, the subordinate RSNs were activated during task performance. Network deactivation was reduced in advanced PD; this abnormality was partially corrected by dopaminergic therapy. Time-course comparisons of DMN loss in longitudinal resting metabolic scans from PD and Alzheimer's disease subjects illustrated that significant reductions appeared later for PD, in parallel with the development of cognitive dysfunction. In contrast, in Alzheimer's disease significant reductions in network expression were already present at diagnosis, progressing over time. Metabolic imaging can directly provide useful information regarding the resting organization of the brain in health and disease.

  7. Circulating exosomes as new biomarkers for brain disease and injury

    Science.gov (United States)

    Graner, Michael W.; Epple, Laura M.; Dusto, Nathaniel L.; Lencioni, Alex M.; Nega, Meheret; Herring, Matthew; Winston, Ben; Madsen, Helen; Bemis, Lynne T.; Anchordoquy, Thomas J.

    2013-05-01

    Brain diseases such as cancers, neurodegenerative disorders, or trauma are frequently diagnosed with imaging modalities and sometimes with intracranial biopsies. Treatment response is similarly monitored, along with clinical indications. While these technologies provide important windows into the disease state, they fail to provide us a detailed molecular portrait of the disease and of the changes taking place during therapy. Exosomes are virus-sized nanovesicles derived from the endosomal system and are released extracellularly from essentially all cell types. Exosomes contain intracellular entities (proteins, nucleic acids, metabolites), membrane proteins and lipids, and even extracellular proteins bound to them. Exosomes may be considered as mini-surrogates of their cells of origin, with some content common to all cells/exosomes, but some of the content would be cell-specific. These vesicles are found in all biofluids in humans, and are thus accessible to "liquid biopsy" with harvest of vesicles from such fluids. Current challenges are to identify disease-related markers or panels of markers to distinguish the disease state. Here we will show examples of brain tumor markers found in/on exosomes from cell culture and patient sera, and we will suggest that aspects of the biology of disease may have a relevant place in the search for biomarkers.

  8. [The blood-brain barrier and neurodegenerative lysosomal storage diseases].

    Science.gov (United States)

    Urayama, Akihiko

    2013-02-01

    Enzyme replacement therapy has been a very effective treatment for several lysosomal storage diseases. However, correcting central nervous system (CNS) storage has been challenging due to the presence of the blood-brain barrier (BBB), which hampers the entry of circulating lysosomal enzymes into the brain. In our previous studies, we discovered that luminally expressed cation-independent mannose 6-phosphate (M6P) receptor is a universal transporter for lysosomal enzymes that contain M6P moieties on the enzyme molecule. This receptor-mediated transport of lysosomal enzymes showed developmental down-regulation that resulted in a failure of delivery of lysosomal enzymes across the BBB in the adult brain. Conceptually, if one can re-induce M6P receptor-mediated transport of lysosomal enzymes in adult BBB, this could provide a novel brain targeting approach for treating abnormal storage in the CNS, regardless of the age of subjects. We found that systemic adrenergic stimuli restored functional transport of β-glucuronidase across the adult BBB. The concept of manipulating BBB transport activity by endogenous characteristics has also been demonstrated by another group who showed effective treatment in a Pompe disease model animal in vivo. It is intriguing that lysosomal enzymes utilize multiple mechanisms for their transport across the BBB. This review explores pharmacological manipulations for the delivery of lysosomal enzymes into the CNS, and the mechanisms of their transport across the BBB, based on existing evidence from studies of β-glucuronidase, sulfamidase, acid α-glucosidase, and arylsulfatase A.

  9. Brain imaging of neurovascular dysfunction in Alzheimer's disease.

    Science.gov (United States)

    Montagne, Axel; Nation, Daniel A; Pa, Judy; Sweeney, Melanie D; Toga, Arthur W; Zlokovic, Berislav V

    2016-05-01

    Neurovascular dysfunction, including blood-brain barrier (BBB) breakdown and cerebral blood flow (CBF) dysregulation and reduction, are increasingly recognized to contribute to Alzheimer's disease (AD). The spatial and temporal relationships between different pathophysiological events during preclinical stages of AD, including cerebrovascular dysfunction and pathology, amyloid and tau pathology, and brain structural and functional changes remain, however, still unclear. Recent advances in neuroimaging techniques, i.e., magnetic resonance imaging (MRI) and positron emission tomography (PET), offer new possibilities to understand how the human brain works in health and disease. This includes methods to detect subtle regional changes in the cerebrovascular system integrity. Here, we focus on the neurovascular imaging techniques to evaluate regional BBB permeability (dynamic contrast-enhanced MRI), regional CBF changes (arterial spin labeling- and functional-MRI), vascular pathology (structural MRI), and cerebral metabolism (PET) in the living human brain, and examine how they can inform about neurovascular dysfunction and vascular pathophysiology in dementia and AD. Altogether, these neuroimaging approaches will continue to elucidate the spatio-temporal progression of vascular and neurodegenerative processes in dementia and AD and how they relate to each other.

  10. Inflammatory bowel diseases: a dysfunction of brain-gut interactions?

    Science.gov (United States)

    Bonaz, B

    2013-09-01

    The gut has the capacity to function as an autonomous organ. However, in normal conditions, the gut and the central nervous system talk to each other through the autonomic nervous system (ANS), represented by the sympathetic (i.e. the splanchnic nerves) and the parasympathetic nervous system (i.e. the vagus nerve and the sacral parasympathetic pelvic nerves). The brain is able to integrate inputs coming from the digestive tract inside a central autonomic network organized around the hypothalamus, limbic system and cerebral cortex and in return to modify the ANS and the hypothalamic pituitary adrenal axis (HPA axis). An abnormal functioning of these brain-gut interactions has been described in irritable bowel syndrome (IBS) classically considered as a biopsychosocial model where stress plays a promoting role. Inflammatory bowel diseases (IBD) result from an inappropriate inflammatory response to intestinal microbes in a genetically susceptible host. In this article we review the current knowledge on the possible involvement of a dysfunction of brain-gut interactions in the pathogeny of IBD as represented by a dysfunction of the ANS, an abnormal HPA axis and cholinergic anti-inflammatory pathway, a deleterious effect of stress and depression as well as an abnormal coupling of the prefrontal cortex-amygdala complex and an abnormal relation between the microbiota and the brain as pro-inflammatory factors. Therapeutic approaches with the aim to restore an equilibrium of these brain-gut interactions are of interest.

  11. Brain-gut-microbiota axis in Parkinson's disease.

    Science.gov (United States)

    Mulak, Agata; Bonaz, Bruno

    2015-10-07

    Parkinson's disease (PD) is characterized by alpha-synucleinopathy that affects all levels of the brain-gut axis including the central, autonomic, and enteric nervous systems. Recently, it has been recognized that the brain-gut axis interactions are significantly modulated by the gut microbiota via immunological, neuroendocrine, and direct neural mechanisms. Dysregulation of the brain-gut-microbiota axis in PD may be associated with gastrointestinal manifestations frequently preceding motor symptoms, as well as with the pathogenesis of PD itself, supporting the hypothesis that the pathological process is spread from the gut to the brain. Excessive stimulation of the innate immune system resulting from gut dysbiosis and/or small intestinal bacterial overgrowth and increased intestinal permeability may induce systemic inflammation, while activation of enteric neurons and enteric glial cells may contribute to the initiation of alpha-synuclein misfolding. Additionally, the adaptive immune system may be disturbed by bacterial proteins cross-reacting with human antigens. A better understanding of the brain-gut-microbiota axis interactions should bring a new insight in the pathophysiology of PD and permit an earlier diagnosis with a focus on peripheral biomarkers within the enteric nervous system. Novel therapeutic options aimed at modifying the gut microbiota composition and enhancing the intestinal epithelial barrier integrity in PD patients could influence the initial step of the following cascade of neurodegeneration in PD.

  12. Blood-brain barrier-supported neurogenesis in healthy and diseased brain.

    Science.gov (United States)

    Pozhilenkova, Elena A; Lopatina, Olga L; Komleva, Yulia K; Salmin, Vladimir V; Salmina, Alla B

    2017-02-14

    Adult neurogenesis is one of the most important mechanisms contributing to brain development, learning, and memory. Alterations in neurogenesis underlie a wide spectrum of brain diseases. Neurogenesis takes place in highly specialized neurogenic niches. The concept of neurogenic niches is becoming widely accepted due to growing evidence of the important role of the microenvironment established in the close vicinity to stem cells in order to provide adequate control of cell proliferation, differentiation, and apoptosis. Neurogenic niches represent the platform for tight integration of neurogenesis and angiogenesis supported by specific properties of cerebral microvessel endothelial cells contributing to establishment of partially compromised blood-brain barrier (BBB) for the adjustment of local conditions to the current metabolic needs of stem and progenitor cells. Here, we review up-to-date data on microvascular dynamics in activity-dependent neurogenesis, specific properties of BBB in neurogenic niches, endothelial-driven mechanisms of clonogenic activity, and future perspectives for reconstructing the neurogenic niches in vitro.

  13. Striatal blood–brain barrier permeability in Parkinson's disease

    OpenAIRE

    Gray , Madison T.; Woulfe, John M.

    2015-01-01

    In vivo studies have shown that blood–brain barrier (BBB) dysfunction is involved in the course of Parkinson's disease (PD). However, these have lacked either anatomic definition or the ability to recognize minute changes in BBB integrity. Here, using histologic markers of serum protein, iron, and erythrocyte extravasation, we have shown significantly increased permeability of the BBB in the postcommissural putamen of PD patients. The dense innervation of the striatum by PD-affected regions a...

  14. Brain connectivity in neurodegenerative diseases--from phenotype to proteinopathy.

    Science.gov (United States)

    Pievani, Michela; Filippini, Nicola; van den Heuvel, Martijn P; Cappa, Stefano F; Frisoni, Giovanni B

    2014-11-01

    Functional and structural connectivity measures, as assessed by means of functional and diffusion MRI, are emerging as potential intermediate biomarkers for Alzheimer disease (AD) and other disorders. This Review aims to summarize current evidence that connectivity biomarkers are associated with upstream and downstream disease processes (molecular pathology and clinical symptoms, respectively) in the major neurodegenerative diseases. The vast majority of studies have addressed functional and structural connectivity correlates of clinical phenotypes, confirming the predictable correlation with topography and disease severity in AD and frontotemporal dementia. In neurodegenerative diseases with motor symptoms, structural--but, to date, not functional--connectivity has been consistently found to be associated with clinical phenotype and disease severity. In the latest studies, the focus has moved towards the investigation of connectivity correlates of molecular pathology. Studies in cognitively healthy individuals with brain amyloidosis or genetic risk factors for AD have shown functional connectivity abnormalities in preclinical disease stages that are reminiscent of abnormalities observed in symptomatic AD. This shift in approach is promising, and may aid identification of early disease markers, establish a paradigm for other neurodegenerative disorders, shed light on the molecular neurobiology of connectivity disruption and, ultimately, clarify the pathophysiology of neurodegenerative diseases.

  15. Amino Acid Catabolism in Alzheimer's Disease Brain: Friend or Foe?

    Science.gov (United States)

    2017-01-01

    There is a dire need to discover new targets for Alzheimer's disease (AD) drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease. PMID:28261376

  16. The rationale for deep brain stimulation in Alzheimer's disease.

    Science.gov (United States)

    Mirzadeh, Zaman; Bari, Ausaf; Lozano, Andres M

    2016-07-01

    Alzheimer's disease is a major worldwide health problem with no effective therapy. Deep brain stimulation (DBS) has emerged as a useful therapy for certain movement disorders and is increasingly being investigated for treatment of other neural circuit disorders. Here we review the rationale for investigating DBS as a therapy for Alzheimer's disease. Phase I clinical trials of DBS targeting memory circuits in Alzheimer's disease patients have shown promising results in clinical assessments of cognitive function, neurophysiological tests of cortical glucose metabolism, and neuroanatomical volumetric measurements showing reduced rates of atrophy. These findings have been supported by animal studies, where electrical stimulation of multiple nodes within the memory circuit have shown neuroplasticity through stimulation-enhanced hippocampal neurogenesis and improved performance in memory tasks. The precise mechanisms by which DBS may enhance memory and cognitive functions in Alzheimer's disease patients and the degree of its clinical efficacy continue to be examined in ongoing clinical trials.

  17. [Does acidosis in brain play a role in Alzheimer's disease?].

    Science.gov (United States)

    Pirchl, Michael; Humpel, Christian

    2009-01-01

    Alzheimer's disease is characterized by beta-amyloid plaques, tau pathology, cell death of cholinergic neurons, inflammatory processes and cerebrovascular damage. The reasons for the development of this chronic disease are not known yet. We hypothesize that chronic long lasting mild damage of the cerebrovascular brain capillaries cause hypoperfusion, acidosis and neurodegeneration, and induces a cell death cascade with beta-amyloid dysfunction and tau-pathology and inflammation. Vascular risk factors, such as hyperhomocysteinemia or hypercholesterolemia, may play a role in this process. The accumulation of chronic silent strokes may cause cognitive defects as seen in vascular dementia and Alzheimer's disease. This summary tries to link the different events, which occur in Alzheimer's disease, focusing on the cerebrovascular hypothesis.

  18. Role of brain-derived neurotrophic factor in Huntington's disease.

    Science.gov (United States)

    Zuccato, Chiara; Cattaneo, Elena

    2007-04-01

    Neurotrophic factors are essential contributors to the survival of peripheral and central nervous system (CNS) neurons, and demonstration of their reduced availability in diseased brains indicates that they play a role in various neurological disorders. This paper will concentrate on the role of brain-derived neurotrophic factor (BDNF) in the survival and activity of the neurons that die in Huntington's disease (HD) by reviewing the evidence indicating that it involves profound changes in BDNF levels and that attempts to restore these levels are therapeutically interesting. BDNF is a small dimeric protein that is widely expressed in adult mammalian brain and has been shown to promote the survival of all major neuronal types affected in Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, cortical BDNF production is required for the correct activity of the corticostriatal synapse and the survival of the GABA-ergic medium-sized spiny striatal neurons that die in HD. We will highlight the available data concerning changes in BDNF levels in HD cells, mice and human postmortem samples, describe the molecular evidence underlying this alteration, and review the data concerning the impact of the experimental manipulation of BDNF levels on HD progression. Such studies have revealed a major loss of BDNF protein in the striatum of HD patients which may contribute to the clinical manifestations of the disease. They have also opened up a molecular window into the underlying pathogenic mechanism and new therapeutic perspectives by raising the possibility that one of the mechanisms triggering the reduction in BDNF in HD may also affect the activity of many other neuronal proteins.

  19. Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease.

    Science.gov (United States)

    Sacksteder, Colette A; Qian, Wei-Jun; Knyushko, Tatyana V; Wang, Haixing; Chin, Mark H; Lacan, Goran; Melega, William P; Camp, David G; Smith, Richard D; Smith, Desmond J; Squier, Thomas C; Bigelow, Diana J

    2006-07-04

    Increased abundance of nitrotyrosine modifications of proteins have been documented in multiple pathologies in a variety of tissue types and play a role in the redox regulation of normal metabolism. To identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic data set identifying 7792 proteins from a whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in the identification of 31 unique nitrotyrosine sites within 29 different proteins. More than half of the nitrated proteins that have been identified are involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces an increased level of nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high-resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, a characteristic consistent with peroxynitrite-induced tyrosine modification. In addition, most sequences contain cysteines or methionines proximal to nitrotyrosines, contrary to suggestions that these amino acid side chains prevent tyrosine nitration. More striking is the presence of a positively charged moiety near the sites of nitration, which is not observed for non-nitrated tyrosines. Together, these observations suggest a predictive tool of functionally important sites of nitration and that cellular nitrating conditions play a role in neurodegenerative changes in the brain.

  20. Increased caveolin-1 expression in Alzheimer's disease brain.

    Science.gov (United States)

    Gaudreault, Sophie B; Dea, Doris; Poirier, Judes

    2004-07-01

    Increasing evidence suggests that cholesterol plays a central role in the pathophysiology of Alzheimer's disease (AD). Caveolin is a cholesterol-binding membrane protein involved in cellular cholesterol transport. We investigated the changes in the protein amount of hippocampal caveolin of autopsy-confirmed AD and aged-matched control subjects. Our results demonstrate that caveolin protein levels in the hippocampus and caveolin mRNA in the frontal cortex are up-regulated in AD by approximately two-fold, compared to control brains. These results suggest a relationship between caveolin-1 expression levels and a dysregulation of cholesterol homeostasis at the plasma membrane of brain cells. In support of this hypothesis, a significant increase in caveolin protein levels has also been observed in hippocampal tissue from ApoE-deficient (knockout) and aged wild-type mice; two situations associated with modifications of transbilayer distribution of cholesterol in brain synaptic plasma membranes. These results indicate that caveolin over-expression is linked to alterations of cholesterol distribution in the plasma membrane of brain cells and are consistent with the notion of a deterioration of cholesterol homeostasis in AD.

  1. Brain Imaging of Nicotinic Receptors in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Jin Wu

    2010-01-01

    Full Text Available Neuronal nicotinic acetylcholine receptors (nAChRs are a family of ligand-gated ion channels which are widely distributed in the human brain. Several lines of evidence suggest that two major subtypes (α4β2 and α7 of nAChRs play an important role in the pathophysiology of Alzheimer's disease (AD. Postmortem studies demonstrated alterations in the density of these subtypes of nAChRs in the brain of patients with AD. Currently, nAChRs are one of the most attractive therapeutic targets for AD. Therefore, several researchers have made an effort to develop novel radioligands that can be used to study quantitatively the distribution of these two subtypes in the human brain with positron emission tomography (PET and single-photon emission computed tomography (SPECT. In this paper, we discuss the current topics on in vivo imaging of two subtypes of nAChRs in the brain of patients with AD.

  2. Astrocytic modulation of blood brain barrier: perspectives on Parkinson's disease.

    Science.gov (United States)

    Cabezas, Ricardo; Avila, Marcos; Gonzalez, Janneth; El-Bachá, Ramon Santos; Báez, Eliana; García-Segura, Luis Miguel; Jurado Coronel, Juan Camilo; Capani, Francisco; Cardona-Gomez, Gloria Patricia; Barreto, George E

    2014-01-01

    The blood-brain barrier (BBB) is a tightly regulated interface in the Central Nervous System (CNS) that regulates the exchange of molecules in and out from the brain thus maintaining the CNS homeostasis. It is mainly composed of endothelial cells (ECs), pericytes and astrocytes that create a neurovascular unit (NVU) with the adjacent neurons. Astrocytes are essential for the formation and maintenance of the BBB by providing secreted factors that lead to the adequate association between the cells of the BBB and the formation of strong tight junctions. Under neurological disorders, such as chronic cerebral ischemia, brain trauma, Epilepsy, Alzheimer and Parkinson's Diseases, a disruption of the BBB takes place, involving a lost in the permeability of the barrier and phenotypical changes in both the ECs and astrocytes. In this aspect, it has been established that the process of reactive gliosis is a common feature of astrocytes during BBB disruption, which has a detrimental effect on the barrier function and a subsequent damage in neuronal survival. In this review we discuss the implications of astrocyte functions in the protection of the BBB, and in the development of Parkinson's disease (PD) and related disorders. Additionally, we highlight the current and future strategies in astrocyte protection aimed at the development of restorative therapies for the BBB in pathological conditions.

  3. Music and the brain. Lessons from brain diseases and some reflections on the "emotional" brain.

    Science.gov (United States)

    Wieser, Heinz Gregor

    2003-11-01

    Studies are reviewed from the perspective of a neurologist and epileptologist interested in "music and the brain." At the neurocognitive level, deficits in pitch discrimination of patients with brain lesions and those during the intracarotid amobarbital test are outlined, because they show that the temporal lobe and, in particular, the right acoustic cortex are crucial. Hallucinations of music during epileptic seizures as well as the analysis of musicogenic epilepsy point to the same gross localization and lateralization. At the esthetic level, music theoretical concepts on the consonance-dissonance dichotomy and related EEG examinations are reported, which illustrate the importance of mesiolimbic temporal lobe structures for the pleasure that we might experience when listening to music. The complex interaction of many neuronal circuits and assemblies of both hemispheres in musical perception and performance is illustrated by musical analysis of a recording by an organ player who experienced a right temporal lobe seizure. This analysis revealed that the seizure-induced errors of the left hand were compensated with the right hand in a musically meaningful way.

  4. Copper pathology in vulnerable brain regions in Parkinson's disease.

    Science.gov (United States)

    Davies, Katherine M; Bohic, Sylvain; Carmona, Asunción; Ortega, Richard; Cottam, Veronica; Hare, Dominic J; Finberg, John P M; Reyes, Stefanie; Halliday, Glenda M; Mercer, Julian F B; Double, Kay L

    2014-04-01

    Synchrotron-based x-ray fluorescence microscopy, immunofluorescence, and Western blotting were used to investigate changes in copper (Cu) and Cu-associated pathways in the vulnerable substantia nigra (SN) and locus coeruleus (LC) and in nondegenerating brain regions in cases of Parkinson's disease (PD) and appropriate healthy and disease controls. In PD and incidental Lewy body disease, levels of Cu and Cu transporter protein 1, were significantly reduced in surviving neurons in the SN and LC. Specific activity of the cuproprotein superoxide dismutase 1 was unchanged in the SN in PD but was enhanced in the parkinsonian anterior cingulate cortex, a region with α-synuclein pathology, normal Cu, and limited cell loss. These data suggest that regions affected by α-synuclein pathology may display enhanced vulnerability and cell loss if Cu-dependent protective mechanisms are compromised. Additional investigation of copper pathology in PD may identify novel targets for the development of protective therapies for this disorder.

  5. Resting-state functional brain networks in Parkinson's disease.

    Science.gov (United States)

    Baggio, Hugo C; Segura, Bàrbara; Junque, Carme

    2015-10-01

    The network approach is increasingly being applied to the investigation of normal brain function and its impairment. In the present review, we introduce the main methodological approaches employed for the analysis of resting-state neuroimaging data in Parkinson's disease studies. We then summarize the results of recent studies that used a functional network perspective to evaluate the changes underlying different manifestations of Parkinson's disease, with an emphasis on its cognitive symptoms. Despite the variability reported by many studies, these methods show promise as tools for shedding light on the pathophysiological substrates of different aspects of Parkinson's disease, as well as for differential diagnosis, treatment monitoring and establishment of imaging biomarkers for more severe clinical outcomes.

  6. Hyponatremia in acute brain disease: the cerebral salt wasting syndrome.

    Science.gov (United States)

    Betjes, Michiel G.H.

    2002-02-01

    Hyponatremia in acute brain disease is a common occurrence, especially after an aneurysmal subarachnoid hemorrhage. Originally, excessive natriuresis, called cerebral salt wasting, and later the syndrome of inappropriate antidiuretic hormone secretion (SIADH), were considered to be the causes of hyponatremia. In recent years, it has become clear that most of these patients are volume-depleted and have a negative sodium balance, consistent with the original description of cerebral salt wasting. Elevated plasma concentrations of atrial or brain natriuretic peptide have been identified as the putative natriuretic factor. Hyponatremia and volume depletion may aggravate neurological symptoms, and timely treatment with adequate replacement of water and NaCl is essential. The use of fludrocortisone to increase sodium reabsorption by the renal tubules may be an alternative approach.

  7. [Non-invasive brain stimulation for Parkinson's disease].

    Science.gov (United States)

    Gajo, Gianandrea; Pollak, Pierre; Lüscher, Christian; Benninger, David

    2015-04-29

    Parkinson's disease (PD) is a major socio-economic burden increasing with the aging population. In advanced PD, the emergence of symptoms refractory to conventional therapy poses a therapeutic challenge. The success of deep brain stimulation (DBS) and advances in the understanding of the pathophysiology of PD have raised interest in non-invasive brain stimulation (NIBS) as an alternative therapeutic tool. NIBS could offer an alternative approach for patients at risk who are excluded from surgery and/or to treat refractory symptoms. The treatment of the freezing of gait, a major cause of disability and falls in PD patients, could be enhanced by transcranial direct current stimulation (tDCS). A therapeutic study is currently performed at the Department of Neurology at the CHUV.

  8. MicroRNAs in neural cell development and brain diseases.

    Science.gov (United States)

    Feng, Wei; Feng, Yue

    2011-12-01

    MicroRNAs play important roles in post-transcriptional regulation of gene expression by inhibiting protein translation and/or promoting mRNA degradation. Importantly, biogenesis of microRNAs displays specific temporal and spatial profiles in distinct cell and tissue types and hence affects a broad spectrum of biological functions in normal cell growth and tumor development. Recent discoveries have revealed sophisticated mechanisms that control microRNA production and homeostasis in response to developmental and extracellular signals. Moreover, a link between dysregulation of microRNAs and human brain disorders has become increasingly evident. In this review, we focus on recent advances in understanding the regulation of microRNA biogenesis and function in neuronal and glial development in the mammalian brain, and dysregulation of the microRNA pathway in neurodevelopmental and neurodegenerative diseases.

  9. Current Topics in Deep Brain Stimulation for Parkinson Disease

    Science.gov (United States)

    UMEMURA, Atsushi; OYAMA, Genko; SHIMO, Yasushi; NAKAJIMA, Madoka; NAKAJIMA, Asuka; JO, Takayuki; SEKIMOTO, Satoko; ITO, Masanobu; MITSUHASHI, Takumi; HATTORI, Nobutaka; ARAI, Hajime

    2016-01-01

    There is a long history of surgical treatment for Parkinson disease (PD). After pioneering trials and errors, the current primary surgical treatment for PD is deep brain stimulation (DBS). DBS is a promising treatment option for patients with medically refractory PD. However, there are still many problems and controversies associated with DBS. In this review, we discuss current issues in DBS for PD, including patient selection, clinical outcomes, complications, target selection, long-term outcomes, management of axial symptoms, timing of surgery, surgical procedures, cost-effectiveness, and new technology. PMID:27349658

  10. Striatal blood-brain barrier permeability in Parkinson's disease.

    Science.gov (United States)

    Gray, Madison T; Woulfe, John M

    2015-05-01

    In vivo studies have shown that blood-brain barrier (BBB) dysfunction is involved in the course of Parkinson's disease (PD). However, these have lacked either anatomic definition or the ability to recognize minute changes in BBB integrity. Here, using histologic markers of serum protein, iron, and erythrocyte extravasation, we have shown significantly increased permeability of the BBB in the postcommissural putamen of PD patients. The dense innervation of the striatum by PD-affected regions allows for exploitation of this permeability for therapeutic goals. These results are also discussed in the context of the retrograde trans-synaptic hypothesis of PD spread.

  11. Coexistence of reactive plasticity and neurodegeneration in Alzheimer diseased brains.

    Science.gov (United States)

    Guevara, J; Dilhuydy, H; Espinosa, B; Delacourte, A; Quirion, R; Mena, R; Joanette, Y; Zenteno, E; Robitaille, Y

    2004-10-01

    Alzheimer's disease (AD) is a pathological process characterized by neuron degeneration and, as recently suggested, brain plasticity. In this work, we compared the reactive plasticity in AD brains associated to O-glycosydically linked glycans, recognized by lectins from Amaranthus leucocarpus (ALL) and Macrobrachium rosenbergii (MRL), and the tau neuritic degeneration. The neuritic degenerative process was evaluated by the quantification of aggregated neuritic structures. Lesions were determined using antibodies against hyperphosphorylated-tau (AD2), amyloid-beta, and synaptophysin. In these conditions, we classified and quantified three pathological structures associated to the neuritic degenerative process: 1) Amyloid-beta deposits (AbetaDs), 2) Classic neuritic plaques (NPs), and 3) Dystrophic neurites clusters (DNCs) lacking amyloid-beta deposits. Reactive plasticity structures were constituted by meganeuritic clusters (MCs) and peri-neuronal sprouting in neurons of the CA4 region of the hippocampus, immunoreactive to synaptophysin (exclusively in AD brains) and GAP-43. Besides, MCs were associated to sialylated O-glycosydically linked glycans as determined by positive labeling with ALL and MRL. Considering that these lectins are specific for the synaptic sprouting process in AD, our results suggest the co-occurrence of of several areas of reactive plasticity and neuron degeneration in AD.

  12. Tau protein in normal and Alzheimer's disease brain: an update.

    Science.gov (United States)

    Johnson, G V; Hartigan, J A

    1999-11-01

    Tau is a microtubule-associated protein that, in a hyperphosphorylated form, comprises the main component of the paired helical filaments and neurofibrillary tangles found in Alzheimer's Disease (AD) brain. It is therefore important to understand the normal functioning and processing of tau protein, and the abnormal posttranslational processing of tau in AD pathology. In 1996, Johnson and Jenkins reviewed the literature on the biochemistry, function, and phosphorylation of tau in normal and AD brain. Since that time, numerous publications have come out further elucidating the properties of tau. The present review updates the topics originally covered in the 1996 review, as well as presents a number of new topics. For example, mutations in the tau gene have been found in several non-AD, autosomal dominant neurodegenerative disorders that exhibit extensive neurofibrillary pathology. In addition, there is increasing evidence that tau may be involved in signal transduction, organelle transport, and cell growth, independent of its microtubule-binding functions. Taken together, the research reviewed here demonstrates that tau is a very complex protein with various functions that are intricately regulated. It is clear that more research is required to completely understand the functions and regulation of tau in normal and AD brain.

  13. Alzheimer's disease gene signature says: beware of brain viral infections

    Directory of Open Access Journals (Sweden)

    Ianni Manuela

    2010-12-01

    Full Text Available Abstract Background Recent findings from a genome wide association investigation in a large cohort of patients with Alzheimer's disease (AD and non demented controls (CTR showed that a limited set of genes was in a strong association (p > l0-5 with the disease. Presentation of the hypothesis In this report we suggest that the polymorphism association in 8 of these genes is consistent with a non conventional interpretation of AD etiology. Nectin-2 (NC-2, apolipoprotein E (APOE, glycoprotein carcinoembryonic antigen related cell adhesion molecule- 16 (CEACAM-16, B-cell lymphoma-3 (Bcl-3, translocase of outer mitochondrial membrane 40 homolog (T0MM-40, complement receptor-1 (CR-l, APOJ or clusterin and C-type lectin domain A family-16 member (CLEC-16A result in a genetic signature that might affect individual brain susceptibility to infection by herpes virus family during aging, leading to neuronal loss, inflammation and amyloid deposition. Implications of the hypothesis We hypothesized that such genetic trait may predispose to AD via complex and diverse mechanisms each contributing to an increase of individual susceptibility to brain viral infections

  14. Genetic biomarkers for brain hemisphere differentiation in Parkinson's Disease

    Science.gov (United States)

    Hourani, Mou'ath; Mendes, Alexandre; Berretta, Regina; Moscato, Pablo

    2007-11-01

    This work presents a study on the genetic profile of the left and right hemispheres of the brain of a mouse model of Parkinson's disease (PD). The goal is to characterize, in a genetic basis, PD as a disease that affects these two brain regions in different ways. Using the same whole-genome microarray expression data introduced by Brown et al. (2002) [1], we could find significant differences in the expression of some key genes, well-known to be involved in the mechanisms of dopamine production control and PD. The problem of selecting such genes was modeled as the MIN (α,β)—FEATURE SET problem [2]; a similar approach to that employed previously to find biomarkers for different types of cancer using gene expression microarray data [3]. The Feature Selection method produced a series of genetic signatures for PD, with distinct expression profiles in the Parkinson's model and control mice experiments. In addition, a close examination of the genes composing those signatures shows that many of them belong to genetic pathways or have ontology annotations considered to be involved in the onset and development of PD. Such elements could provide new clues on which mechanisms are implicated in hemisphere differentiation in PD.

  15. Abnormal regional brain function in Parkinson's disease: truth or fiction?

    Science.gov (United States)

    Ma, Yilong; Tang, Chengke; Moeller, James R; Eidelberg, David

    2009-04-01

    Normalization of regional measurements by the global mean is commonly employed to minimize inter-subject variability in functional imaging studies. This practice is based on the assumption that global values do not substantially differ between patient and control groups. In this issue of NeuroImage, Borghammer and colleagues challenge the validity of this assumption. They focus on Parkinson's disease (PD) and use computer simulations to show that lower global values can produce spurious increases in subcortical brain regions. The authors speculate that the increased signal observed in these areas in PD is artefactual and unrelated to localized changes in brain function. In this commentary, we summarize what is currently known of the relationship between regional and global metabolic activity in PD and experimental parkinsonism. We found that early stage PD patients exhibit global values that are virtually identical to those of age-matched healthy subjects. SPM analysis revealed increased normalized metabolic activity in a discrete set of biologically relevant subcortical brain regions. Because of their higher variability, the corresponding absolute regional measures did not differ across the two groups. Longitudinal imaging studies in this population showed that the subcortical elevations in normalized metabolism appeared earlier and progressed faster than did focal cortical or global metabolic reductions. The observed increases in subcortical activity, but not the global changes, correlated with independent clinical measures of disease progression. Multivariate analysis with SSM/PCA further confirmed that the abnormal spatial covariance structure of early PD is dominated by these subcortical increases as opposed to network-related reductions in cortical metabolic activity or global changes. Thus, increased subcortical activity in PD cannot be regarded as a simple artefact of global normalization. Moreover, stability of the normalized measurements, particularly at

  16. Monoaminergic and Histaminergic Strategies and Treatments in Brain Diseases

    Science.gov (United States)

    Di Giovanni, Giuseppe; Svob Strac, Dubravka; Sole, Montse; Unzeta, Mercedes; Tipton, Keith F.; Mück-Šeler, Dorotea; Bolea, Irene; Della Corte, Laura; Nikolac Perkovic, Matea; Pivac, Nela; Smolders, Ilse J.; Stasiak, Anna; Fogel, Wieslawa A.; De Deurwaerdère, Philippe

    2016-01-01

    The monoaminergic systems are the target of several drugs for the treatment of mood, motor and cognitive disorders as well as neurological conditions. In most cases, advances have occurred through serendipity, except for Parkinson's disease where the pathophysiology led almost immediately to the introduction of dopamine restoring agents. Extensive neuropharmacological studies first showed that the primary target of antipsychotics, antidepressants, and anxiolytic drugs were specific components of the monoaminergic systems. Later, some dramatic side effects associated with older medicines were shown to disappear with new chemical compounds targeting the origin of the therapeutic benefit more specifically. The increased knowledge regarding the function and interaction of the monoaminergic systems in the brain resulting from in vivo neurochemical and neurophysiological studies indicated new monoaminergic targets that could achieve the efficacy of the older medicines with fewer side-effects. Yet, this accumulated knowledge regarding monoamines did not produce valuable strategies for diseases where no monoaminergic drug has been shown to be effective. Here, we emphasize the new therapeutic and monoaminergic-based strategies for the treatment of psychiatric diseases. We will consider three main groups of diseases, based on the evidence of monoamines involvement (schizophrenia, depression, obesity), the identification of monoamines in the diseases processes (Parkinson's disease, addiction) and the prospect of the involvement of monoaminergic mechanisms (epilepsy, Alzheimer's disease, stroke). In most cases, the clinically available monoaminergic drugs induce widespread modifications of amine tone or excitability through neurobiological networks and exemplify the overlap between therapeutic approaches to psychiatric and neurological conditions. More recent developments that have resulted in improved drug specificity and responses will be discussed in this review. PMID

  17. Monoaminergic and histaminergic strategies and treatments in brain diseases

    Directory of Open Access Journals (Sweden)

    Giuseppe Di Giovanni

    2016-11-01

    Full Text Available The monoaminergic systems are the target of several drugs for the treatment of mood, motor and cognitive disorders as well as neurological conditions. In most cases, advances have occurred through serendipity, except for Parkinson’s disease where the pathophysiology led almost immediately to the introduction of dopamine restoring agents. Extensive neuropharmacological studies first showed that the primary target of antipsychotics, antidepressants, and anxiolytic drugs were specific components of the monoaminergic systems. Later, some dramatic side effects associated with older medicines were shown to disappear with new chemical compounds targeting the origin of the therapeutic benefit more specifically. The increased knowledge regarding the function and interaction of the monoaminergic systems in the brain resulting from in vivo neurochemical and neurophysiological studies indicated new monoaminergic targets that could achieve the efficacy of the older medicines with fewer side-effects. Yet, this accumulated knowledge regarding monoamines did not produce valuable treatments for diseases where no monoaminergic drug has been shown to be effective. Here, we emphasize the new therapeutic and monoaminergic-based strategies for the treatment of psychiatric diseases. We will consider three main groups of diseases, based on the evidence of monoamines involvement (schizophrenia, depression, obesity, the identification of monoamines in the diseases processes (Parkinson’s disease, addiction and the prospect of the involvement of monoaminergic mechanisms (epilepsy, Alzheimer’s disease, stroke. In most cases, the clinically available monoaminergic drugs induce widespread modifications of amine tone or excitability through neurobiological networks and exemplify the overlap between therapeutic approaches to psychiatric and neurological conditions. More recent developments that have resulted in improved drug specificity and responses will be discussed in

  18. Importance of the brain Angiotensin system in Parkinson's disease.

    Science.gov (United States)

    Wright, John W; Harding, Joseph W

    2012-01-01

    Parkinson's disease (PD) has become a major health problem affecting 1.5% of the world's population over 65 years of age. As life expectancy has increased so has the occurrence of PD. The primary direct consequence of this disease is the loss of dopaminergic (DA) neurons in the substantia nigra and striatum. As the intensity of motor dysfunction increases, the symptomatic triad of bradykinesia, tremors-at-rest, and rigidity occur. Progressive neurodegeneration may also impact non-DA neurotransmitter systems including cholinergic, noradrenergic, and serotonergic, often leading to the development of depression, sleep disturbances, dementia, and autonomic nervous system failure. L-DOPA is the most efficacious oral delivery treatment for controlling motor symptoms; however, this approach is ineffective regarding nonmotor symptoms. New treatment strategies are needed designed to provide neuroprotection and encourage neurogenesis and synaptogenesis to slow or reverse this disease process. The hepatocyte growth factor (HGF)/c-Met receptor system is a member of the growth factor family and has been shown to protect against degeneration of DA neurons in animal models. Recently, small angiotensin-based blood-brain barrier penetrant mimetics have been developed that activate this HGF/c-Met system. These compounds may offer a new and novel approach to the treatment of Parkinson's disease.

  19. Familial Alzheimer's disease: genetic analysis related to disease heterogeneity, Down syndrome and human brain evolution.

    Science.gov (United States)

    Schapiro, M B; Rapoport, S I

    1989-01-01

    Etiologically heterogeneous subgroups of patients with Alzheimer's disease (AD) exist and need to be distinguished so as to better identify genetic causes of familial cases. Furthermore, the presence of AD neuropathology in Down syndrome (trisomy 21) subjects older than 35 years suggests that AD in some cases is caused by dysregulation of expression of genes on chromosome 21. Cerebral metabolic abnormalities in life, and the distribution of AD neuropathology in the post-mortem brain, indicate that AD involves the association neocortices and subcortical regions with which they evolved during evolution of the human brain. Accordingly, understanding the molecular basis of this evolution should elucidate the genetic basis of AD, whereas knowing the genetics of AD should be informative about the genomic changes which promoted brain evolution.

  20. Parkinson's disease rigidity: relation to brain connectivity and motor performance

    Directory of Open Access Journals (Sweden)

    Nazanin eBaradaran

    2013-06-01

    Full Text Available Objective: 1 To determine the brain connectivity pattern associated with clinical rigidity scores in Parkinson's disease (PD and 2 to determine the relation between clinically-assessed rigidity and quantitative metrics of motor performance.Background: Rigidity, the resistance to passive movement, is exacerbated in PD by asking the subject to move the contralateral limb, implying that rigidity involves a distributed brain network. Rigidity mainly affects subjects when they attempt to move; yet the relation between clinical rigidity scores and quantitative aspects of motor performance are unknown.Methods: Ten clinically diagnosed PD patients (off medication and ten controls were recruited to perform an fMRI squeeze-bulb tracking task that included both visually guided and internally guided features. The direct functional connectivity between anatomically defined regions of interest was assessed with Dynamic Bayesian Networks (DBNs. Tracking performance was assessed by fitting Linear Dynamical System (LDS models to the motor performance, and was compared to the clinical rigidity scores. A cross-validated Least Absolute Shrinkage and Selection Operator (LASSO regression method was used to determine the brain connectivity network that best predicted clinical rigidity scores.Results: The damping ratio of the LDS models significantly correlated with clinical rigidity scores (p < 10-4. An fMRI connectivity network in subcortical and primary and premotor cortical regions accurately predicted clinical rigidity scores (p < 10-5. Conclusions: A widely distributed cortical/subcortical network is associated with rigidity observed in PD patients, which reinforces the importance of altered functional connectivity in the pathophysiology of PD. PD subjects with higher rigidity scores tend to have less overshoot in their tracking performance, and damping ratio may represent a robust, quantitative marker of the motoric effects of increasing rigidity.

  1. [Brain hemorrhage in a patient with Kawasaki disease].

    Science.gov (United States)

    Yamazaki-Nakashimada, Marco Antonio; Rivas-Larrauri, Francisco; Alcántara-Salinas, Adriana; Hernández-Bautista, Victor; Rodríguez-Lozano, Ana Luisa

    2013-01-01

    Kawasaki disease is an acute, self-limiting vasculitis of unknown origin, characterized by fever, palms and soles edema, cervical lymphadenopathy, strawberry tongue, and non-exudative conjunctivitis. It is a multisystemic vasculitis that affects predominantly infants and young children. The most feared complication is the development of coronary aneurysms that occurs up to 25% of untreated patients; however there are reports of extra coronary involvement. Herein we present the case of a 2 year-old girl who had a severe symptomatology and persistent fever despite intravenous gammaglobulin. Two years later she presented right hemiparesia and headache, with data from CAT and MRI suggestive of brain mass and deviation of the midline, secondary to left frontoparietal haemorrhage that was treated with a craniotomy. She was discharged on prednisone, ASA and rehabilitation.

  2. Clinical, genetic, and brain sonographic features related to Parkinson's disease in Gaucher disease.

    Science.gov (United States)

    Böttcher, Tobias; Rolfs, Arndt; Meyer, Bianca; Grossmann, Annette; Berg, Daniela; Kropp, Peter; Benecke, Reiner; Walter, Uwe

    2013-10-01

    Homozygous or compound heterozygous mutations in the glucocerebrosidase gene cause Gaucher disease. Moreover, heterozygous glucocerebrosidase gene mutations represent the most common genetic risk factor for Parkinson's disease (PD) known so far. Substantia nigra (SN) hyperechogenicity, a sonographic feature thought to reflect iron accumulation, has been described in both PD and Gaucher disease patients. Here we studied how clinical, genetic, and brain sonographic findings relate to the occurrence of PD in Gaucher disease. Sixteen Gaucher disease patients, 12 PD patients, and 32 control subjects were enrolled. The glucocerebrosidase genotypes were identified by DNA sequencing. All subjects underwent transcranial ultrasound, and eight Gaucher disease patients additionally MRI for comparison with SN ultrasound findings. SN hyperechogenicity and reduced echogenicity of brainstem raphe were more frequent in Gaucher disease patients (62, 37 %) than in controls (12, 12 %; p Gaucher disease patients was unrelated to type or severity of glucocerebrosidase gene mutation, but correlated with iron-sensitive MRI-T2 hypointensity of SN pars compacta, and with age at start of enzyme replacement therapy. While none of the five Gaucher disease patients with signs of PD (definite PD, n = 4; early PD, n = 1) had severe glucocerebrosidase gene mutations known to cause neuronopathic Gaucher disease, all carried a N370S allele, previously reported to predict non-neuronopathic Gaucher disease. Hyposmia, higher non-motor symptoms score (constipation, depression, executive dysfunction), and SN hyperechogenicity were characteristic features of Gaucher disease-related PD. We conclude that the combined clinical, genetic, and transcranial sonographic assessment may improve the PD risk evaluation in Gaucher disease.

  3. [Theoretic basis on the same therapeutic program for different degenerative brain diseases in terms of the Governor Vessel: Alzheimer's disease and Parkinson's disease].

    Science.gov (United States)

    Wu, Junyan; Wang, Jie; Zhang, Junlong

    2015-05-01

    Through the consultation of TCM ancient classical theory, the relationship of kidney essence, marrow and brain is analyzed. It is discovered that the degenerative brain diseases, represented by Alzheimer's disease (AD) and Parkinson's disease (PD) share the same etiological basis as "kidney essence deficiency and brain marrow emptiness" and have the mutual pathological outcomes as yang qi declining. The Governor Vessel gathers yang qi of the whole body and maintains the normal functional activity of zangfu organs in the human body through the storage, regulation and invigoration of yang qi. It is viewed that the theory of the Governor Vessel is applied to treat the different degenerative brain diseases, which provides the theoretic support and practice guide for the thought of TCM as the same therapeutic program for the different diseases. As a result, the degenerative brain diseases can be retarded and the approach is provided to the effective prevention and treatment of degenerative diseases in central nerve system:

  4. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases

    Science.gov (United States)

    Liu, He; Song, Ni

    2016-01-01

    Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and brain tumors. PMID:27375363

  5. MRI/MRA evaluation of sickle cell disease of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Robert A. [Childrens Hospital, Department of Radiology, Philadelphia, PA (United States)

    2005-03-01

    Sickle cell disease is a major cause of pediatric stroke. Understanding the disease that affects the brain as infarctions, both clinically apparent and silent, requires an understanding of how the blood vessels are affected, the way in which both the brain and the blood vessels are imaged by MRI and MRA and the mechanism of injury. (orig.)

  6. Systems pharmacology and blood-brain barrier functionality in Parkinson's disease

    NARCIS (Netherlands)

    Ravenstijn, Paulien Gerarda Maria

    2009-01-01

    Parkinson’s disease is a progressive neurodegenerative disease, which is composed of many components, each caused by interplay of a number of genetic and nongenetic causes. As the blood-brain barrier (BBB) is a key player in the relationship between plasma and brain pharmacokinetics, the influences

  7. Infectious diseases of the brain: imaging and differential diagnosis; Infektioese Hirnerkrankungen: Bildgebung und differenzialdiagnostische Aspekte

    Energy Technology Data Exchange (ETDEWEB)

    Haehnel, S.; Seitz, A. [Abt. Neuroradiologie, Neurologische Klinik, Universitaetsklinikum Heidelberg (Germany); Storch-Hagenlocher, B. [Abt. Neurologie, Neurologische Klinik, Universitaetsklinikum Heidelberg (Germany)

    2006-09-15

    Infectious diseases of the central nervous system have to be considered in differential diagnosis particularly in immunocompromised persons. Neuro-imaging, specifically advanced techniques such as diffusion weighted MRI and perfusion MRI contribute much to the differentiation of brain infections and for differentiating brain infections from other, for instance, neoplastic diseases. In this review we present the imaging criteria of the most important brains infections in adults and in pediatric patients and discuss differential diagnostic aspects in detail. (orig.)

  8. Regional and cellular gene expression changes in human Huntington's disease brain

    OpenAIRE

    2006-01-01

    Huntington's disease (HD) pathology is well understood at a histological level but a comprehensive molecular analysis of the effect of the disease in the human brain has not previously been available. To elucidate the molecular phenotype of HD on a genome-wide scale, we compared mRNA profiles from 44 human HD brains with those from 36 unaffected controls using microarray analysis. Four brain regions were analyzed: caudate nucleus, cerebellum, prefrontal association cortex [Brodmann's area 9 (...

  9. More Years Playing Football, Greater Risk of Brain Disease

    Science.gov (United States)

    ... and Human Services. More Health News on: Concussion Sports Injuries Traumatic Brain Injury Recent Health News Related MedlinePlus Health Topics Concussion Sports Injuries Traumatic Brain Injury About MedlinePlus Site Map FAQs Customer Support ...

  10. Brain Na+, K+-ATPase Activity In Aging and Disease

    Science.gov (United States)

    de Lores Arnaiz, Georgina Rodríguez; Ordieres, María Graciela López

    2014-01-01

    , enzyme changes in diverse neurological diseases as well as during aging, have been summarized. Issues refer mainly to Na+, K+-ATPase studies in ischemia, brain injury, depression and mood disorders, mania, stress, Alzheimer´s disease, learning and memory, and neuronal hyperexcitability and epilepsy. PMID:25018677

  11. Review: Role of developmental inflammation and blood-brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases.

    Science.gov (United States)

    Stolp, H B; Dziegielewska, K M

    2009-04-01

    The causes of most neurological disorders are not fully understood. Inflammation and blood-brain barrier dysfunction appear to play major roles in the pathology of these diseases. Inflammatory insults that occur during brain development may have widespread effects later in life for a spectrum of neurological disorders. In this review, a new hypothesis suggesting a mechanistic link between inflammation and blood-brain barrier function (integrity), which is universally important in both neurodevelopmental and neurodegenerative diseases, is proposed. The role of inflammation and the blood-brain barrier will be discussed in cerebral palsy, schizophrenia, Parkinson's disease, Alzheimer's disease and multiple sclerosis, conditions where both inflammation and blood-brain barrier dysfunction occur either during initiation and/or progression of the disease. We suggest that breakdown of normal blood-brain barrier function resulting in a short-lasting influx of blood-born molecules, in particular plasma proteins, may cause local damage, such as reduction of brain white matter observed in some newborn babies, but may also be the mechanism behind some neurodegenerative diseases related to underlying brain damage and long-term changes in barrier properties.

  12. Blood-brain barrier P-glycoprotein function in neurodegenerative disease.

    Science.gov (United States)

    Bartels, A L

    2011-01-01

    Protection of the brain is strengthened by active transport and ABC transporters. P-glycoprotein (P-gp) at the blood-brain barrier (BBB) functions as an active efflux pump by extruding a substrate from the brain, which is important for maintaining loco-regional homeostasis in the brain and protection against toxic compounds. Importantly, dysfunctional BBB P-gp transport is postulated as an important factor contributing to accumulation of aggregated protein in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, P-gp is a major factor in mediating resistance to brain entry of numerous exogenous compounds, including toxins that can be involved in PD pathogenesis. This review highlights the role of altered P-gp function in the pathogenesis and progression of neurodegenerative disease. Also the implications of alterations in P-gp function for the treatment of these diseases are discussed.

  13. Clinical outcome of deep brain stimulation for Parkinson's disease.

    Science.gov (United States)

    Deuschl, Günther; Paschen, Steffen; Witt, Karsten

    2013-01-01

    Deep brain stimulation is one of the most effective treatments of Parkinson's disease (PD). This report summarizes the state of the art as at January 2013. Stimulation of the subthalamic nucleus is the most commonly used approach. It improves the core motor symptoms better than medication in patients with advanced disease. It also improves the majority of nonmotor symptoms, such as mood, impulse control disorders, sleep, and some autonomic dysfunctions. Quality of life (QoL) is improved significantly more than with medication. Long-term data show that the treatment is effective for up to 10 years, but the late appearance of l-dopa-resistant symptoms is seemingly not influenced. Internal globus pallidus (GPi) stimulation is less well studied but seems to have similar short-term efficacy. Importantly l-dopa use cannot be reduced with GPi DBS, which is a major disadvantage for patients suffering from medication side-effects, although gait may be influenced more positively. Although short-term QoL improvement seems to be similar to that for subthalamic nucleus (STN) DBS - gait and speech may be better improved - long-term data are rare for GPi DBS. Thalamic stimulation in the ventral intermediate nucleus (VIM) is applied only in tremor-dominant elderly patients. The treatment improves the dopa-sensitive symptoms and effectively reduces fluctuations leading to an overall QoL improvement. Although most of the controlled studies have been on advanced PD, the recently published EARLYSTIM study suggests that even patients with a very short duration of their fluctuations and dyskinesia are doing significantly better with neurostimulation in terms of QoL and all major motor outcome parameters.

  14. Personality Changes after Deep Brain Stimulation in Parkinson's Disease

    Science.gov (United States)

    Pham, Uyen; Solbakk, Anne-Kristin; Skogseid, Inger-Marie; Pripp, Are Hugo; Konglund, Ane Eidahl; Andersson, Stein; Haraldsen, Ira Ronit; Aarsland, Dag; Dietrichs, Espen; Malt, Ulrik Fredrik

    2015-01-01

    Objectives. Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a recognized therapy that improves motor symptoms in advanced Parkinson's disease (PD). However, little is known about its impact on personality. To address this topic, we have assessed personality traits before and after STN-DBS in PD patients. Methods. Forty patients with advanced PD were assessed with the Temperament and Character Inventory (TCI): the Urgency, Premeditation, Perseverance, Sensation Seeking impulsive behaviour scale (UPPS), and the Neuroticism and Lie subscales of the Eysenck Personality Questionnaire (EPQ-N, EPQ-L) before surgery and after three months of STN-DBS. Collateral information obtained from the UPPS was also reported. Results. Despite improvement in motor function and reduction in dopaminergic dosage patients reported lower score on the TCI Persistence and Self-Transcendence scales, after three months of STN-DBS, compared to baseline (P = 0.006; P = 0.024). Relatives reported significantly increased scores on the UPPS Lack of Premeditation scale at follow-up (P = 0.027). Conclusion. STN-DBS in PD patients is associated with personality changes in the direction of increased impulsivity. PMID:25705545

  15. Functional brain imaging of gastrointestinal sensation in health and disease

    Institute of Scientific and Technical Information of China (English)

    Lukas Van Oudenhove; Steven J Coen; Qasim Aziz

    2007-01-01

    It has since long been known, from everyday experience as well as from animal and human studies, that psychological processes-both affective and cognitiveexert an influence on gastrointestinal sensorimotor function. More specifically, a link between psychological factors and visceral hypersensitivity has been suggested,mainly based on research in functional gastrointestinal disorder patients. However, until recently, the exact nature of this putative relationship remained unclear,mainly due to a lack of non-invasive methods to study the (neurobiological) mechanisms underlying this relationship in non-sleeping humans. As functional brain imaging, introduced in visceral sensory neuroscience some 10 years ago, does provide a method for in vivo study of brain-gut interactions, insight into the neurobiological mechanisms underlying visceral sensation in general and the influence of psychological factors more particularly,has rapidly grown. In this article, an overview of brain imaging evidence on gastrointestinal sensation will be given, with special emphasis on the brain mechanisms underlying the interaction between affective & cognitive processes and visceral sensation. First, the reciprocal neural pathways between the brain and the gut (braingut axis) will be briefly outlined, including brain imaging evidence in healthy volunteers. Second, functional brain imaging studies assessing the influence of psychological factors on brain processing of visceral sensation in healthy humans will be discussed in more detail.Finally, brain imaging work investigating differences in brain responses to visceral distension between healthy volunteers and functional gastrointestinal disorder patients will be highlighted.

  16. Vascular and Alzheimer's disease markers independently predict brain atrophy rate in Alzheimer's Disease Neuroimaging Initiative controls.

    Science.gov (United States)

    Barnes, Josephine; Carmichael, Owen T; Leung, Kelvin K; Schwarz, Christopher; Ridgway, Gerard R; Bartlett, Jonathan W; Malone, Ian B; Schott, Jonathan M; Rossor, Martin N; Biessels, Geert Jan; DeCarli, Charlie; Fox, Nick C

    2013-08-01

    This study assessed relationships among white matter hyperintensities (WMH), cerebrospinal fluid (CSF), Alzheimer's disease (AD) pathology markers, and brain volume loss. Subjects included 197 controls, 331 individuals with mild cognitive impairment (MCI), and 146 individuals with AD with serial volumetric 1.5-T MRI. CSF Aβ1-42 (n = 351) and tau (n = 346) were measured. Brain volume change was quantified using the boundary shift integral (BSI). We assessed the association between baseline WMH volume and annualized BSI, adjusting for intracranial volume. We also performed multiple regression analyses in the CSF subset, assessing the relationships of WMH and Aβ1-42 and/or tau with BSI. WMH burden was positively associated with BSI in controls (p = 0.02) but not MCI or AD. In multivariable models, WMH (p = 0.003) and Aβ1-42 (p = 0.001) were independently associated with BSI in controls; in MCI Aβ1-42 (p brain atrophy in the context of AD pathology in pre-dementia stages.

  17. Blood-brain interfaces and bilirubin-induced neurological diseases.

    Science.gov (United States)

    Ghersi-Egea, J F; Gazzin, S; Strazielle, N

    2009-01-01

    The endothelium of the brain microvessels and the choroid plexus epithelium form highly specialized cellular barriers referred to as blood-brain interfaces through which molecular exchanges take place between the blood and the neuropil or the cerebrospinal fluid, respectively. Within the brain, the ependyma and the pia-glia limitans modulate exchanges between the neuropil and the cerebrospinal fluid. All these interfaces are key elements of neuroprotection and fulfill trophic functions; both properties are critical to harmonious brain development and maturation. By analogy to hepatic bilirubin detoxification pathways, we review the transport and metabolic mechanisms which in all these interfaces may participate in the regulation of bilirubin cerebral bioavailability in physiologic conditions, both in adult and in developing brain. We specifically address the role of ABC and OATP transporters, glutathione-S-transferases, and the potential involvement of glucuronoconjugation and oxidative metabolic pathways. Regulatory mechanisms are explored which are involved in the induction of these pathways and represent potential pharmacological targets to prevent bilirubin accumulation into the brain. We then review the possible alteration of the neuroprotective and trophic barrier functions in the course of bilirubin-induced neurological dysfunctions resulting from hyperbilirubinemia. Finally, we highlight the role of the blood-brain and blood-CSF barriers in regulating the brain biodisposition of candidate drugs for the treatment or prevention of bilirubin-induced brain injury.

  18. An abnormal resting-state functional brain network indicates progression towards Alzheimer’s disease*****

    Institute of Scientific and Technical Information of China (English)

    Jie Xiang; Hao Guo; Rui Cao; Hong Liang; Junjie Chen

    2013-01-01

    Brain structure and cognitive function change in the temporal lobe, hippocampus, and prefrontal cortex of patients with mild cognitive impairment and Alzheimer’s disease, and brain network-connection strength, network efficiency, and nodal attributes are abnormal. However, existing research has only analyzed the differences between these patients and normal controls. In this study, we constructed brain networks using resting-state functional MRI data that was extracted from four populations mal controls, patients with early mild cognitive impairment, patients with late mild cognitive impairment, and patients with Alzheimer’s disease) using the Alzheimer’s Disease Neuroimaging Initiative data set. The aim was to analyze the characteristics of resting-state functional neural networks, and to observe mild cognitive impairment at different stages before the transformation to Alzheimer’s disease. Results showed that as cognitive deficits increased across the four groups, the shortest path in the rest-ing-state functional network gradual y increased, while clustering coefficients gradual y decreased. This evidence indicates that dementia is associated with a decline of brain network efficiency. In tion, the changes in functional networks revealed the progressive deterioration of network function across brain regions from healthy elderly adults to those with mild cognitive impairment and Alzhei-mer’s disease. The alterations of node attributes in brain regions may reflect the cognitive functions in brain regions, and we speculate that early impairments in memory, hearing, and language function can eventual y lead to diffuse brain injury and other cognitive impairments.

  19. Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease.

    Science.gov (United States)

    von Rhein, Michael; Buchmann, Andreas; Hagmann, Cornelia; Huber, Reto; Klaver, Peter; Knirsch, Walter; Latal, Beatrice

    2014-01-01

    Patients with complex congenital heart disease are at risk for neurodevelopmental impairments. Evidence suggests that brain maturation can be delayed and pre- and postoperative brain injury may occur, and there is limited information on the long-term effect of congenital heart disease on brain development and function in adolescent patients. At a mean age of 13.8 years, 39 adolescent survivors of childhood cardiopulmonary bypass surgery with no structural brain lesions evident through conventional cerebral magnetic resonance imaging and 32 healthy control subjects underwent extensive neurodevelopmental assessment and cerebral magnetic resonance imaging. Cerebral scans were analysed quantitatively using surface-based and voxel-based morphometry. Compared with control subjects, patients had lower total brain (P = 0.003), white matter (P = 0.004) and cortical grey matter (P = 0.005) volumes, whereas cerebrospinal fluid volumes were not different. Regional brain volume reduction ranged from 5.3% (cortical grey matter) to 11% (corpus callosum). Adolescents with cyanotic heart disease showed more brain volume loss than those with acyanotic heart disease, particularly in the white matter, thalami, hippocampi and corpus callosum (all P-values Brain volume reduction correlated significantly with cognitive, motor and executive functions (grey matter: P < 0.05, white matter: P < 0.01). Our findings suggest that there are long-lasting cerebral changes in adolescent survivors of cardiopulmonary bypass surgery for congenital heart disease and that these changes are associated with functional outcome.

  20. Exercise Regulation of Cognitive Function and Neuroplasticity in the Healthy and Diseased Brain.

    Science.gov (United States)

    Hamilton, Gilian F; Rhodes, Justin S

    2015-01-01

    Regular exercise broadly enhances physical and mental health throughout the lifespan. Animal models have provided us with the tools to gain a better understanding of the underlying biochemical, physiological, and morphological mechanisms through which exercise exerts its beneficial cognitive effects. One brain region in particular, the hippocampus, is especially responsive to exercise. It is critically involved in learning and memory and is one of two regions in the mammalian brain that continues to generate new neurons throughout life. Exercise prevents the decline of the hippocampus from aging and ameliorates many neurodegenerative diseases, in part by increasing adult hippocampal neurogenesis but also by activating a multitude of molecular mechanisms that promote brain health. In this chapter, we first describe some rodent models used to study effects of exercise on the brain. Then we review the rodent work focusing on the mechanisms behind which exercise improves cognition and brain health in both the normal and the diseased brain, with emphasis on the hippocampus.

  1. Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer's disease.

    Science.gov (United States)

    Warner, Timothy A; Kang, Jing-Qiong; Kennard, John A; Harrison, Fiona E

    2015-02-01

    Seizures are a known co-occurring symptom of Alzheimer's disease, and they can accelerate cognitive and neuropathological dysfunction. Sub-optimal vitamin C (ascorbic acid) deficiency, that is low levels that do not lead the sufferer to present with clinical signs of scurvy (e.g. lethargy, hemorrhage, hyperkeratosis), are easily obtainable with insufficient dietary intake, and may contribute to the oxidative stress environment of both Alzheimer's disease and epilepsy. The purpose of this study was to test whether mice that have diminished brain ascorbic acid in addition to carrying human Alzheimer's disease mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) genes, had altered electrical activity in the brain (electroencephalography; EEG), and were more susceptible to pharmacologically induced seizures. Brain ascorbic acid was decreased in APP/PSEN1 mice by crossing them with sodium vitamin C transporter 2 (SVCT2) heterozygous knockout mice. These mice have an approximately 30% decrease in brain ascorbic acid due to lower levels of SVCT2 that supplies the brain with ASC. SVCT2+/-APP/PSEN1 mice had decreased ascorbic acid and increased oxidative stress in brain, increased mortality, faster seizure onset latency following treatment with kainic acid (10 mg/kg i.p.), and more ictal events following pentylenetetrazol (50 mg/kg i.p.) treatment. Furthermore, we report the entirely novel phenomenon that ascorbic acid deficiency alone increased the severity of kainic acid- and pentylenetetrazol-induced seizures. These data suggest that avoiding ascorbic acid deficiency may be particularly important in populations at increased risk for epilepsy and seizures, such as Alzheimer's disease.

  2. A derangement of the brain wound healing process may cause some cases of Alzheimer's disease.

    Science.gov (United States)

    Lehrer, Steven; Rheinstein, Peter H

    2016-08-01

    A derangement of brain wound healing may cause some cases of Alzheimer's disease. Wound healing, a highly complex process, has four stages: hemostasis, inflammation, repair, and remodeling. Hemostasis and the initial phases of inflammation in brain tissue are typical of all vascularized tissue, such as skin. However, distinct differences arise in brain tissue during the later stages of inflammation, repair, and remodeling, and closely parallel the changes of Alzheimer's disease. Our hypothesis -- Alzheimer's disease is brain wound healing gone awry at least in some cases -- could be tested by measuring progression with biomarkers for the four stages of wound healing in humans or appropriate animal models. Autopsy studies might be done. Chronic traumatic encephalopathy might also result from the brain wound healing process.

  3. Transcranial brain sonography in Parkinson's disease with restless legs syndrome.

    Science.gov (United States)

    Kwon, Do-Young; Seo, Woo-Keun; Yoon, Ho-Kyoung; Park, Moon-Ho; Koh, Seong-Beom; Park, Kun-Woo

    2010-07-30

    Substantia nigra (SN) hyperechogenicity assessed by transcranial brain sonography (TCS) is a characteristic finding in idiopathic Parkinson's disease (PD). In contrast, SN hypoechogenicity on TCS has been recently demonstrated in restless legs syndrome (RLS). RLS is one of the most common sleep problems in PD, but the pathophysiologic relationship between these two disorders has not been thoroughly elucidated. We compared the SN echogenicities of PD patients with and without RLS to investigate whether comorbid RLS in PD affects SN echogenicity and to explain the echogenic differences between idiopathic RLS (iRLS) and secondary PD-related RLS (pRLS). Sixty-three PD patients (median age 64.6 +/- 10.6 years), 40 iRLS patients (53.1 +/- 11.7 years), and 40 healthy controls (69.1 +/- 2.3 years) were enrolled in our study. All subjects answered a sleep questionnaire and underwent TCS. PD patients were subdivided into two groups, PD with RLS (PD+RLS, n = 26) and PD without RLS (PD-RLS, n = 37), and the sonographic findings of each group were compared. Although significant hyperechogenicity was detected in both the SN and SN/midbrain ratios in both PD subgroups compared with the controls and the iRLS group (P hypoechogenicity. In conclusion, comorbid RLS in PD did not have an impact on the sonographic SN findings. These results suggest that the pathogenesis of pRLS and iRLS involve different mechanisms. Further study will be required to clarify the association between RLS and PD.

  4. Physiological Correlates of Intellectual Function in Children with Sickle Cell Disease: Hypoxaemia, Hyperaemia and Brain Infarction

    Science.gov (United States)

    Hogan, Alexandra M.; Pit-ten Cate, Ineke M.; Vargha-Khadem, Faraneh; Prengler, Mara; Kirkham, Fenella J.

    2006-01-01

    Lowered intelligence relative to controls is evident by mid-childhood in children with sickle cell disease. There is consensus that brain infarct contributes to this deficit, but the subtle lowering of IQ in children with normal MRI scans might be accounted for by chronic systemic complications leading to insufficient oxygen delivery to the brain.…

  5. Neuroinflammation in the Aging Down Syndrome Brain; Lessons from Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Donna M. Wilcock

    2012-01-01

    Full Text Available Down syndrome (DS is the most genetic cause of mental retardation and is caused by the triplication of chromosome 21. In addition to the disabilities caused early in life, DS is also noted as causing Alzheimer's-disease-like pathological changes in the brain, leading to 50–70% of DS patients showing dementia by 60–70 years of age. Inflammation is a complex process that has a key role to play in the pathogenesis of Alzheimer's disease. There is relatively little understood about inflammation in the DS brain and how the genetics of DS may alter this inflammatory response and change the course of disease in the DS brain. The goal of this review is to highlight our current understanding of inflammation in Alzheimer's disease and predict how inflammation may affect the pathology of the DS brain based on this information and the known genetic changes that occur due to triplication of chromosome 21.

  6. Neuroinflammation in the aging down syndrome brain; lessons from Alzheimer's disease.

    Science.gov (United States)

    Wilcock, Donna M

    2012-01-01

    Down syndrome (DS) is the most genetic cause of mental retardation and is caused by the triplication of chromosome 21. In addition to the disabilities caused early in life, DS is also noted as causing Alzheimer's-disease-like pathological changes in the brain, leading to 50-70% of DS patients showing dementia by 60-70 years of age. Inflammation is a complex process that has a key role to play in the pathogenesis of Alzheimer's disease. There is relatively little understood about inflammation in the DS brain and how the genetics of DS may alter this inflammatory response and change the course of disease in the DS brain. The goal of this review is to highlight our current understanding of inflammation in Alzheimer's disease and predict how inflammation may affect the pathology of the DS brain based on this information and the known genetic changes that occur due to triplication of chromosome 21.

  7. Characterizing the role of brain derived neurotrophic factor genetic variation in Alzheimer's disease neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Robyn A Honea

    Full Text Available There is accumulating evidence that neurotrophins, like brain-derived neurotrophic factor (BDNF, may impact aging and Alzheimer's Disease. However, traditional genetic association studies have not found a clear relationship between BDNF and AD. Our goal was to test whether BDNF single nucleotide polymorphisms (SNPs impact Alzheimer's Disease-related brain imaging and cognitive markers of disease. We completed an imaging genetics study on 645 Alzheimer's Disease Neuroimaging Initiative participants (ND=175, MCI=316, AD=154 who had cognitive, brain imaging, and genetics data at baseline and a subset of those with brain imaging data at two years. Samples were genotyped using the Illumina Human610-Quad BeadChip. 13 SNPs in BDNF were identified in the dataset following quality control measures (rs6265(Val66Met, rs12273363, rs11030094, rs925946, rs1050187, rs2203877, rs11030104, rs11030108, rs10835211, rs7934165, rs908867, rs1491850, rs1157459. We analyzed a subgroup of 8 SNPs that were in low linkage disequilibrium with each other. Automated brain morphometric measures were available through ADNI investigators, and we analyzed baseline cognitive scores, hippocampal and whole brain volumes, and rates of hippocampal and whole brain atrophy and rates of change in the ADAS-Cog over one and two years. Three out of eight BDNF SNPs analyzed were significantly associated with measures of cognitive decline (rs1157659, rs11030094, rs11030108. No SNPs were significantly associated with baseline brain volume measures, however six SNPs were significantly associated with hippocampal and/or whole brain atrophy over two years (rs908867, rs11030094, rs6265, rs10501087, rs1157659, rs1491850. We also found an interaction between the BDNF Val66Met SNP and age with whole brain volume. Our imaging-genetics analysis in a large dataset suggests that while BDNF genetic variation is not specifically associated with a diagnosis of AD, it appears to play a role in AD

  8. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease.

    Science.gov (United States)

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M; Tan, Huiling; Brown, Peter

    2017-02-13

    Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson's disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could

  9. Corpus callosum thickness on mid-sagittal MRI as a marker of brain volume: a pilot study in children with HIV-related brain disease and controls

    Energy Technology Data Exchange (ETDEWEB)

    Andronikou, Savvas [University of the Witwatersrand, Department of Radiology, Faculty of Health Sciences, Cape Town (South Africa); Ackermann, Christelle [University of Stellenbosch, Department of Radiology, Stellenbosch (South Africa); Laughton, Barbara; Cotton, Mark [Stellenbosch University and Tygerberg Children' s Hospital, Children' s Infectious Diseases Research Unit, Stellenbosch (South Africa); Tomazos, Nicollette [University of Cape Town, Faculty of Commerce, Department of Management Studies, Cape Town (South Africa); Spottiswoode, Bruce [University of Cape Town, MRC/UCT Medical Imaging Research Unit, Department of Human Biology, Cape Town (South Africa); Mauff, Katya [University of Cape Town, Department of Statistical Sciences, Cape Town (South Africa); Pettifor, John M. [University of the Witwatersrand, MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, Witwatersrand (South Africa)

    2015-07-15

    Corpus callosum thickness measurement on mid-sagittal MRI may be a surrogate marker of brain volume. This is important for evaluation of diseases causing brain volume gain or loss, such as HIV-related brain disease and HIV encephalopathy. To determine if thickness of the corpus callosum on mid-sagittal MRI is a surrogate marker of brain volume in children with HIV-related brain disease and in controls without HIV. A retrospective MRI analysis in children (<5 years old) with HIV-related brain disease and controls used a custom-developed semi-automated tool, which divided the midline corpus callosum and measured its thickness in multiple locations. Brain volume was determined using volumetric analysis. Overall corpus callosum thickness and thickness of segments of the corpus callosum were correlated with overall and segmented (grey and white matter) brain volume. Forty-four children (33 HIV-infected patients and 11 controls) were included. Significant correlations included overall corpus callosum (mean) and total brain volume (P = 0.05); prefrontal corpus callosum maximum with white matter volume (P = 0.02); premotor corpus callosum mean with total brain volume (P = 0.04) and white matter volume (P = 0.02), premotor corpus callosum maximum with white matter volume (P = 0.02) and sensory corpus callosum mean with total brain volume (P = 0.02). Corpus callosum thickness correlates with brain volume both in HIV-infected patients and controls. (orig.)

  10. The balance between cognitive reserve and brain imaging biomarkers of cerebrovascular and Alzheimer's diseases.

    Science.gov (United States)

    Murray, Alison D; Staff, Roger T; McNeil, Christopher J; Salarirad, Sima; Ahearn, Trevor S; Mustafa, Nazahah; Whalley, Lawrence J

    2011-12-01

    The cognitive reserve hypothesis explains the disparity between clinical and pathological phenotypes and why, in two individuals with the same extent of neuropathology, one may be demented while the other remains cognitively intact. We examined the balance between brain magnetic resonance imaging measures of the two most common pathologies associated with brain ageing, cerebrovascular disease and Alzheimer's disease, and parameters of cerebral reserve in well-characterized participants born in 1936, for whom childhood intelligence is known. Brain magnetic resonance imaging was carried out at 1.5T using fluid attenuation inversion recovery and T(1)-weighted volumetric sequences in 249 participants. Cerebrovascular disease was quantified by measuring brain white matter hyperintensities on fluid attenuation inversion recovery images using Scheltens' scale and Alzheimer's disease was measured from volumetric data using FreeSurfer to extract whole brain volume and hippocampal volumes in turn. The effect of these measures of brain burden on life-long cognitive ageing from the age of 11 to 68 years was compared with the effect of educational attainment and occupational grade using structural equation modelling. Complete brain burden and reserve data were available in 224 participants. We found that educational attainment, but not occupation, has a measurable and positive effect, with a standardized regression weight of +0.23, on late life cognitive ability in people without cognitive impairment aged 68 years, allowing for the influence of childhood intelligence and the two most common subclinical brain pathological burdens in the ageing brain. In addition, we demonstrate that the magnitude of the contribution of education is greater than the negative impact of either neuropathological burden alone, with standardized regression weights of -0.14 for white matter hyperintensities and -0.20 for hippocampal atrophy. This study illustrates how education counteracts the

  11. Up-Regulated Production and Activation of the Complement System in Alzheimer’s Disease Brain

    OpenAIRE

    Yasojima, Koji; Schwab, Claudia; McGeer, Edith G.; McGeer, Patrick L.

    1999-01-01

    We used reverse transcriptase-polymerase chain reaction and Western blotting techniques to measure the levels of complement mRNAs and their protein products in Alzheimer’s disease (AD) brain compared with non-AD brain. mRNAs for C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9 were detected in the 11 regions of brain that were investigated. The mRNA levels were markedly up-regulated in affected areas of AD brain. In the entorhinal cortex, hippocampus, and midtemporal gyrus, which had dense a...

  12. Neuroimaging and genetic risk for Alzheimer's disease and addiction-related degenerative brain disorders.

    Science.gov (United States)

    Roussotte, Florence F; Daianu, Madelaine; Jahanshad, Neda; Leonardo, Cassandra D; Thompson, Paul M

    2014-06-01

    Neuroimaging offers a powerful means to assess the trajectory of brain degeneration in a variety of disorders, including Alzheimer's disease (AD). Here we describe how multi-modal imaging can be used to study the changing brain during the different stages of AD. We integrate findings from a range of studies using magnetic resonance imaging (MRI), positron emission tomography (PET), functional MRI (fMRI) and diffusion weighted imaging (DWI). Neuroimaging reveals how risk genes for degenerative disorders affect the brain, including several recently discovered genetic variants that may disrupt brain connectivity. We review some recent neuroimaging studies of genetic polymorphisms associated with increased risk for late-onset Alzheimer's disease (LOAD). Some genetic variants that increase risk for drug addiction may overlap with those associated with degenerative brain disorders. These common associations offer new insight into mechanisms underlying neurodegeneration and addictive behaviors, and may offer new leads for treating them before severe and irreversible neurological symptoms appear.

  13. Brain imaging changes associated with risk factors for cardiovascular and cerebrovascular disease in asymptomatic patients.

    Science.gov (United States)

    Friedman, Joseph I; Tang, Cheuk Y; de Haas, Hans J; Changchien, Lisa; Goliasch, Georg; Dabas, Puneet; Wang, Victoria; Fayad, Zahi A; Fuster, Valentin; Narula, Jagat

    2014-10-01

    Reviews of imaging studies assessing the brain effects of vascular risk factors typically include a substantial number of studies with subjects with a history of symptomatic cardiovascular or cerebrovascular disease and/or events, limiting our ability to disentangle the primary brain effects of vascular risk factors from those of resulting brain and cardiac damage. The objective of this study was to perform a systematic review of brain changes from imaging studies in patients with vascular risk factors but without clinically manifest cardiovascular or cerebrovascular disease or events. The 77 studies included in this review demonstrate that in persons without symptomatic cardiovascular, cerebrovascular, or peripheral vascular disease, the vascular risk factors of hypertension, diabetes mellitus, obesity, hyperlipidemia, and smoking are all independently associated with brain imaging changes before the clinical manifestation of cardiovascular or cerebrovascular disease. We conclude that the identification of brain changes associated with vascular risk factors, before the manifestation of clinically significant cerebrovascular damage, presents a window of opportunity wherein adequate treatment of these modifiable vascular risk factors may prevent the development of irreversible deleterious brain changes and potentially alter patients' clinical course.

  14. Should Alzheimer's disease be equated with human brain ageing? A maladaptive interaction between brain evolution and senescence.

    Science.gov (United States)

    Neill, David

    2012-01-01

    In this review Alzheimer's disease is seen as a maladaptive interaction between human brain evolution and senescence. It is predicted to occur in everyone although does not necessarily lead to dementia. The pathological process is initiated in relation to a senescence mediated functional down-regulation in the posteromedial cortex (Initiation Phase). This leads to a loss of glutamatergic excitatory input to layer II entorhinal cortex neurons. A human specific maladaptive neuroplastic response is initiated in these neurons leading to neuronal dysfunction, NFT formation and death. This leads to further loss of glutamatergic excitatory input and propagation of the maladaptive response along excitatory pathways linking evolutionary progressed vulnerable neurons (Propagation Phase). Eventually neurons are affected in many brain areas resulting in dementia. Possible therapeutic approaches include enhancing glutamatergic transmission. The theory may have implications with regards to how Alzheimer's disease is classified.

  15. Prediction of neurodegenerative diseases from functional brain imaging data

    NARCIS (Netherlands)

    Mudali, Deborah

    2016-01-01

    Neurodegenerative diseases are a challenge, especially in the developed society where life expectancy is high. Since these diseases progress slowly, they are not easy to diagnose at an early stage. Moreover, they portray similar disease features, which makes them hard to differentiate. In this thesi

  16. Disrupted brain network topology in Parkinson's disease: a longitudinal magnetoencephalography study.

    Science.gov (United States)

    Olde Dubbelink, Kim T E; Hillebrand, Arjan; Stoffers, Diederick; Deijen, Jan Berend; Twisk, Jos W R; Stam, Cornelis J; Berendse, Henk W

    2014-01-01

    Although alterations in resting-state functional connectivity between brain regions have previously been reported in Parkinson's disease, the spatial organization of these changes remains largely unknown. Here, we longitudinally studied brain network topology in Parkinson's disease in relation to clinical measures of disease progression, using magnetoencephalography and concepts from graph theory. We characterized whole-brain functional networks by means of a standard graph analysis approach, measuring clustering coefficient and shortest path length, as well as the construction of a minimum spanning tree, a novel approach that allows a unique and unbiased characterization of brain networks. We observed that brain networks in early stage untreated patients displayed lower local clustering with preserved path length in the delta frequency band in comparison to controls. Longitudinal analysis over a 4-year period in a larger group of patients showed a progressive decrease in local clustering in multiple frequency bands together with a decrease in path length in the alpha2 frequency band. In addition, minimum spanning tree analysis revealed a decentralized and less integrated network configuration in early stage, untreated Parkinson's disease that also progressed over time. Moreover, the longitudinal changes in network topology identified with both techniques were associated with deteriorating motor function and cognitive performance. Our results indicate that impaired local efficiency and network decentralization are very early features of Parkinson's disease that continue to progress over time, together with reductions in global efficiency. As these network changes appear to reflect clinically relevant phenomena, they hold promise as markers of disease progression.

  17. MicroRNAs and their therapeutic potential for human diseases: aberrant microRNA expression in Alzheimer's disease brains.

    Science.gov (United States)

    Satoh, Jun-ichi

    2010-01-01

    MicroRNAs (miRNAs) are a group of small noncoding RNAs that regulate translational repression of multiple target mRNAs. The miRNAs in a whole cell regulate greater than 30% of all protein-coding genes. The vast majority of presently identified miRNAs are expressed in the brain in a spatially and temporally controlled manner. They play a key role in neuronal development, differentiation, and synaptic plasticity. However, at present, the pathological implications of deregulated miRNA expression in neurodegenerative diseases remain largely unknown. This review will briefly summarize recent studies that focus attention on aberrant miRNA expression in Alzheimer's disease brains.

  18. A common brain network links development, aging, and vulnerability to disease.

    Science.gov (United States)

    Douaud, Gwenaëlle; Groves, Adrian R; Tamnes, Christian K; Westlye, Lars Tjelta; Duff, Eugene P; Engvig, Andreas; Walhovd, Kristine B; James, Anthony; Gass, Achim; Monsch, Andreas U; Matthews, Paul M; Fjell, Anders M; Smith, Stephen M; Johansen-Berg, Heidi

    2014-12-09

    Several theories link processes of development and aging in humans. In neuroscience, one model posits for instance that healthy age-related brain degeneration mirrors development, with the areas of the brain thought to develop later also degenerating earlier. However, intrinsic evidence for such a link between healthy aging and development in brain structure remains elusive. Here, we show that a data-driven analysis of brain structural variation across 484 healthy participants (8-85 y) reveals a largely--but not only--transmodal network whose lifespan pattern of age-related change intrinsically supports this model of mirroring development and aging. We further demonstrate that this network of brain regions, which develops relatively late during adolescence and shows accelerated degeneration in old age compared with the rest of the brain, characterizes areas of heightened vulnerability to unhealthy developmental and aging processes, as exemplified by schizophrenia and Alzheimer's disease, respectively. Specifically, this network, while derived solely from healthy subjects, spatially recapitulates the pattern of brain abnormalities observed in both schizophrenia and Alzheimer's disease. This network is further associated in our large-scale healthy population with intellectual ability and episodic memory, whose impairment contributes to key symptoms of schizophrenia and Alzheimer's disease. Taken together, our results suggest that the common spatial pattern of abnormalities observed in these two disorders, which emerge at opposite ends of the life spectrum, might be influenced by the timing of their separate and distinct pathological processes in disrupting healthy cerebral development and aging, respectively.

  19. The Alzheimer's Disease-Related Glucose Metabolic Brain Pattern

    NARCIS (Netherlands)

    Teune, Laura K.; Strijkert, Fijanne; Renken, Remco J.; Izaks, Gerbrand J.; de Vries, Jeroen J.; Segbers, Marcel; Roerdink, Jos B. T. M.; Dierckx, Rudi A. J. O.; Leenders, Klaus L.

    2014-01-01

    Purpose: [F-18] fluorodeoxyglucose (FDG) PET imaging of the brain can be used to assist in the differential diagnosis of dementia. Group differences in glucose uptake between patients with dementia and controls are well-known. However, a multivariate analysis technique called scaled subprofile model

  20. Brain region's relative proximity as marker for Alzheimer's disease based on structural MRI

    DEFF Research Database (Denmark)

    Erleben, Lene Lillemark; Sørensen, Lauge Emil Borch Laurs; Pai, Akshay Sadananda Uppinakudru;

    2014-01-01

    BACKGROUND:Alzheimer's disease (AD) is a progressive, incurable neurodegenerative disease and the most common type of dementia. It cannot be prevented, cured or drastically slowed, even though AD research has increased in the past 5-10 years. Instead of focusing on the brain volume or on the single...

  1. Properties of glutamate receptors of Alzheimer's disease brain transplanted to frog oocytes

    Science.gov (United States)

    Bernareggi, Annalisa; Dueñas, Zulma; Reyes-Ruiz, Jorge Mauricio; Ruzzier, Fabio; Miledi, Ricardo

    2007-01-01

    It is known that Alzheimer's disease (AD) is a synaptic disease that involves various neurotransmitter systems, particularly those where synaptic transmission is mediated by acetylcholine or glutamate (Glu). Nevertheless, very little is known about the properties of neurotransmitter receptors of the AD human brain. We have shown previously that cell membranes, carrying neurotransmitter receptors from the human postmortem brain, can be transplanted to frog oocytes, and their receptors will still be functional. Taking advantage of this fact, we have now studied the properties of Glu receptors (GluRs) from the cerebral cortices of AD and non-AD brains and found that oocytes injected with AD membranes acquired GluRs that have essentially the same functional properties as those of oocytes injected with membranes from non-AD brains. However, the amplitudes of the currents elicited by Glu were always smaller in the oocytes injected with membranes from AD brains. Western blot analyses of the same membrane preparations used for the electrophysiological studies showed that AD membranes contained significantly fewer GluR2/3 subunit proteins. Furthermore, the corresponding mRNAs were also diminished in the AD brain. Therefore, the smaller amplitude of membrane currents elicited by Glu in oocytes injected with membranes from an AD brain is a consequence of a reduced number of GluRs in cell membranes transplanted from the AD brain. Thus, using the comparatively simple method of microtransplantation of receptors, it is now possible to determine the properties of neurotransmitter receptors of normal and diseased human brains. That knowledge may help to decipher the etiology of the diseases and also to develop new treatments. PMID:17301224

  2. Boosting Brain Connectome Classification Accuracy in Alzheimer’s disease using Higher-Order Singular Value Decomposition

    Directory of Open Access Journals (Sweden)

    Liang eZhan

    2015-07-01

    Full Text Available Alzheimer's disease (AD is a progressive brain disease. Accurate detection of AD and its prodromal stage, mild cognitive impairment (MCI, are crucial. There is also a growing interest in identifying brain imaging biomarkers that help to automatically differentiate stages of Alzheimer’s disease. Here, we focused on anatomical brain networks computed from diffusion MRI and proposed a new feature extraction and classification framework based on higher order singular value decomposition and sparse logistic regression. In tests on publicly available data from the Alzheimer’s Disease Neuroimaging Initiative, our proposed framework showed promise in detecting brain network differences that help in classifying different stages of Alzheimer’s disease.

  3. Relation of cerebral small-vessel disease and brain atrophy to mild Parkinsonism in the elderly.

    Science.gov (United States)

    Reitz, Christiane; Trenkwalder, Claudia; Kretzschmar, Konrad; Roesler, Andreas; V Eckardstein, Arnold; Berger, Klaus

    2006-11-01

    The association between cerebral small-vessel disease, brain atrophy, and the risk and severity of mild parkinsonian signs (MPS) remains unclear. The objective of this study is to examine the effect of lacunar brain infarcts, cerebral white matter lesions (WMLs), and cortical atrophy on the risk and severity of MPS. This study is a cross-sectional community-based cohort study comprising 268 subjects, 65 to 83 years of age, residing in the Augsburg region of southern Germany, and without contraindications for magnetic resonance imaging (MRI) of the brain. Main outcome measures. Subcortical and periventricular WMLs, lacunar brain infarcts, and cortical atrophy determined using a standardized MRI protocol developed for the Rotterdam Scan Study and an established rating scale. MPS, assessed in a standardized neurological examination and based on the Unified Parkinson's Disease Rating Scale motor scale. Lacunar brain infarcts and large subcortical white matter lesions were associated with an elevated risk of resting tremor. More severe cortical atrophy was related to an increased risk of rigidity and bradykinesia. In a linear regression analysis relating each individual MRI measurement with the severity of MPS, the number of lacunar brain infarcts and the degree of brain atrophy were correlated with the severity of resting tremor, whereas the size of subcortical and periventricular WMLs was correlated with the severity of rigidity. A higher degree of brain atrophy was associated with increased severity of either cardinal sign. In our study, presence and volume of lacunar brain infarcts, cerebral WMLs, and cortical atrophy were associated with the risk as well as severity of MPS. Determining the presence of these brain changes using brain imaging might contribute to identify persons at risk for MPS.

  4. PIXE analysis of low concentration aluminum in brain tissues of an Alzheimer's disease patient

    Science.gov (United States)

    Ishihara, R.; Hanaichi, T.; Takeuchi, T.; Ektessabi, A. M.

    1999-06-01

    An excess accumulation and presence of metal ions may significantly alter a brain cell's normal functions. There have been increasing efforts in recent years to measure and quantify the density and distribution of excessive accumulations of constituent elements (such as Fe, Zn, Cu, and Ca) in the brain, as well as the presence and distribution of contaminating elements (such as Al). This is particularly important in cases of neuropathological disorders such as Alzheimer's disease, Parkinson's disease and ALS. The aim of this paper was to measure the Al present in the temporal cortex of the brain of an Alzheimer's disease patient. The specimens were taken from an unfixed autopsy brain which has been preserved for a period of 4 years in the deep freezer at -80 °C. Proton Induced X-ray Emission Spectroscopy was used for the measurement of Al concentration in this brain tissue. A tandem accelerator with 2 MeV of energy was also used. In order to increase the sensitivity of the signals in the low energy region of the spectra, the absorbers were removed. The results show that the peak height depends on the measurement site. However, in certain cases an extremely high concentration of Al was observed in the PIXE spectra, with an intensity higher than those in the other major elements of the brain's matrix element. Samples from tissues affected by the same disease were analyzed using the EDX analyzer. The results are quantitatively in very good agreement with those of the PIXE analysis.

  5. Effect of subthalamic deep brain stimulation on pain in Parkinson's disease.

    Science.gov (United States)

    Dellapina, Estelle; Ory-Magne, Fabienne; Regragui, Wafa; Thalamas, Claire; Lazorthes, Yves; Rascol, Olivier; Payoux, Pierre; Brefel-Courbon, Christine

    2012-11-01

    Painful sensations are common in Parkinson's disease. In many patients, such sensations correspond to neuropathic pain and could be related to central alterations of pain processing. Subthalamic nuclei deep brain stimulation improves motor function in Parkinson's disease. Several structures of the basal ganglia are involved in nociceptive function, and deep brain stimulation could thus also modify pain perception in Parkinson's disease. To test this hypothesis, we compared subjective heat pain thresholds, in deep brain stimulation OFF and ON conditions in 2 groups of Parkinson's disease patients with or without neuropathic pain. We also compared pain-induced cerebral activations during experimental nociceptive stimulations using H(2)(15)O positron emission tomography in both deep brain stimulation OFF and ON conditions. Correlation analyses were performed between clinical and neuroimaging results. Deep brain stimulation significantly increased subjective heat pain threshold (from 40.3 ± 4.2 to 41.6 ± 4.3, P=.03) and reduced pain-induced cerebral activity in the somatosensory cortex (BA 40) in patients with pain, whereas it had no effect in pain-free patients. There was a significant negative correlation in the deep brain stimulation OFF condition between pain threshold and pain-induced activity in the insula of patients who were pain free but not in those who had pain. There was a significant positive correlation between deep brain stimulation-induced changes in pain threshold and in pain-induced cerebral activations in the primary somatosensory cortex and insula of painful patients only. These results suggest that subthalamic nuclei deep brain stimulation raised pain thresholds in Parkinson's disease patients with pain and restored better functioning of the lateral discriminative pain system.

  6. Positron Emission Tomography and Magnetic Resonance Imaging of the Brain in Fabry Disease

    DEFF Research Database (Denmark)

    Korsholm, Kirsten; Feldt-Rasmussen, Ulla; Granqvist, Henrik;

    2015-01-01

    risk of cerebrovascular disease at a young age in addition to heart and kidney failure. OBJECTIVE: The objective of this study was to assess brain function and structure in the Danish cohort of patients with Fabry disease in a prospective way using 18-fluoro-deoxyglucose (F-18 FDG) positron emission....... CONCLUSION: Our data indicated that, in patients with Fabry disease, MRI is the preferable clinical modality--if applicable--when monitoring cerebral status, as no additional major brain-pathology was detected with FDG-PET.......BACKGROUND: Fabry disease is a rare metabolic glycosphingolipid storage disease caused by deficiency of the lysosomal enzyme α-galactosidase A--leading to cellular accumulation of globotriasylceramide in different organs, vessels, tissues, and nerves. The disease is associated with an increased...

  7. Microprobe PIXE analysis and EDX analysis on the brain of patients with Alzheimer`s disease

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, S. [Tokyo Univ. (Japan). Faculty of Medicine; Horino, Y.; Mokuno, Y.; Fujii, K.; Kakimi, S.; Mizutani, T.; Matsushima, H.; Ishikawa, A.

    1996-12-31

    To investigate the cause of Alzheimer`s disease (senile dementia of Alzheimer`s disease type), we examined aluminium (Al) in the brain (hippocampus) of patients with Alzheimer`s disease using heavy ion (5 MeV Si{sup 3+}) microprobe particle-induced X-ray emission (PIXE) analysis. Heavy ion microprobes (3 MeV Si{sup 2+}) have several times higher sensitivity for Al detection than 2 MeV proton microprobes. We also examined Al in the brain of these patients by energy dispersive X-ray spectroscopy (EDX). (1) Al was detected in the cell nuclei isolated from the brain of patients with Alzheimer`s disease using 5 MeV Si{sup 3+} microprobe PIXE analysis, and EDX analysis. (2) EDX analysis demonstrated high levels of Al in the nucleolus of nerve cells in frozen sections prepared from the brain of these patients. Our results support the theory that Alzheimer`s disease is caused by accumulation of Al in the nuclei of brain cells. (author)

  8. Periodontal disease associates with higher brain amyloid load in normal elderly.

    Science.gov (United States)

    Kamer, Angela R; Pirraglia, Elizabeth; Tsui, Wai; Rusinek, Henry; Vallabhajosula, Shankar; Mosconi, Lisa; Yi, Li; McHugh, Pauline; Craig, Ronald G; Svetcov, Spencer; Linker, Ross; Shi, Chen; Glodzik, Lidia; Williams, Schantel; Corby, Patricia; Saxena, Deepak; de Leon, Mony J

    2015-02-01

    The accumulation of amyloid-β (Aβ) plaques is a central feature of Alzheimer's disease (AD). First reported in animal models, it remains uncertain if peripheral inflammatory and/or infectious conditions in humans can promote Aβ brain accumulation. Periodontal disease, a common chronic infection, has been previously reported to be associated with AD. Thirty-eight cognitively normal, healthy, and community-residing elderly (mean age, 61 and 68% female) were examined in an Alzheimer's Disease Research Center and a University-Based Dental School. Linear regression models (adjusted for age, apolipoprotein E, and smoking) were used to test the hypothesis that periodontal disease assessed by clinical attachment loss was associated with brain Aβ load using (11)C-Pittsburgh compound B (PIB) positron emission tomography imaging. After adjusting for confounders, clinical attachment loss (≥3 mm), representing a history of periodontal inflammatory/infectious burden, was associated with increased PIB uptake in Aβ vulnerable brain regions (p = 0.002). We show for the first time in humans an association between periodontal disease and brain Aβ load. These data are consistent with the previous animal studies showing that peripheral inflammation/infections are sufficient to produce brain Aβ accumulations.

  9. BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Christian Gaser

    Full Text Available Alzheimer's disease (AD, the most common form of dementia, shares many aspects of abnormal brain aging. We present a novel magnetic resonance imaging (MRI-based biomarker that predicts the individual progression of mild cognitive impairment (MCI to AD on the basis of pathological brain aging patterns. By employing kernel regression methods, the expression of normal brain-aging patterns forms the basis to estimate the brain age of a given new subject. If the estimated age is higher than the chronological age, a positive brain age gap estimation (BrainAGE score indicates accelerated atrophy and is considered a risk factor for conversion to AD. Here, the BrainAGE framework was applied to predict the individual brain ages of 195 subjects with MCI at baseline, of which a total of 133 developed AD during 36 months of follow-up (corresponding to a pre-test probability of 68%. The ability of the BrainAGE framework to correctly identify MCI-converters was compared with the performance of commonly used cognitive scales, hippocampus volume, and state-of-the-art biomarkers derived from cerebrospinal fluid (CSF. With accuracy rates of up to 81%, BrainAGE outperformed all cognitive scales and CSF biomarkers in predicting conversion of MCI to AD within 3 years of follow-up. Each additional year in the BrainAGE score was associated with a 10% greater risk of developing AD (hazard rate: 1.10 [CI: 1.07-1.13]. Furthermore, the post-test probability was increased to 90% when using baseline BrainAGE scores to predict conversion to AD. The presented framework allows an accurate prediction even with multicenter data. Its fast and fully automated nature facilitates the integration into the clinical workflow. It can be exploited as a tool for screening as well as for monitoring treatment options.

  10. Aluminium in brain tissue in familial Alzheimer’s disease

    OpenAIRE

    2016-01-01

    Abstract The genetic predispositions which describe a diagnosis of familial Alzheimer’s disease can be considered as cornerstones of the amyloid cascade hypothesis. Essentially they place the expression and metabolism of the amyloid precursor protein as the main tenet of disease aetiology. However, we do not know the cause of Alzheimer’s disease and environmental factors may yet be shown to contribute towards its onset and progression. One such environmental factor is human exposure to alumin...

  11. Disruption of the blood-brain barrier in Parkinson's disease: curse or route to a cure?

    Science.gov (United States)

    Lee, Heyne; Pienaar, Ilse S

    2014-01-01

    The vertebrate blood-brain barrier (BBB) is critical for ensuring the maintenance of brain homeostasis, whilst protecting the brain against toxic insults. Various pathological events disrupt BBB integrity, holding several important clinical implications. In instances where the normal mechanisms controlling passage of substances into the brain are compromised, these could sensitize or even worsen endogenous pathological conditions. Recognition has grown recently that patients diagnosed with Parkinson's disease (PD) present with concurrent medical problems, including cerebrovascular lesions. However, cerebrovascular disturbances may also result from PD-related disease processes; the pathological mechanisms which could entail interaction between environment-derived and genetic factors. The current review addresses the accumulation of studies aimed at better understanding the series of processes affecting the neurovascular unit in human Parkinsonism, due in part to the BBB presenting as a formidable opponent in the effective delivery of therapeutics that have shown promise as therapeutic strategies for treating aspects of PD when tested in vitro.

  12. [Shh signal and its functional roles in normal and diseased brain].

    Science.gov (United States)

    Ruat, Martial; Angot, Elodie; Traiffort, Elisabeth

    2011-11-01

    The identification of a Sonic Hedgehog (Shh) signaling pathway in the adult vertebrate central nervous system has paved the way to the characterization of the functional roles of Shh signals in normal and diseased brain. This morphogen is proposed to play a key role in the establishment and maintenance of adult neurogenic niches and to modulate the proliferation of neuronal or glial precursors. Consistent with its role during embryogenesis, alteration of Shh signaling is associated with tumorigenesis while its recruitment in damaged neural tissue might be part of the regenerating process. We will discuss the most recent data of the Hedgehog pathway in the adult brain and its relevance as a novel therapeutic approach for brain diseases including brain tumors.

  13. Brain-Gut-Microbe Communication in Health and Disease

    Directory of Open Access Journals (Sweden)

    Sue eGrenham

    2011-12-01

    Full Text Available Bidirectional signalling between the gastrointestinal tract and the brain is regulated at neural, hormonal and immunological levels. This construct is known as the brain-gut axis and is vital for maintaining homeostasis. Bacterial colonisation of the intestine plays a major role in the post-natal development and maturation of the immune and endocrine systems. These processes are key factors underpinning central nervous system (CNS signalling. Recent research advances have seen a tremendous improvement in our understanding of the scale, diversity and importance of the gut microbiome. This has been reflected in the form of a revised nomenclature to the more inclusive brain-gut-enteric microbiota axis and a sustained research effort to establish how communication along this axis contributes to both normal and pathological conditions. In this review, we will briefly discuss the critical components of this axis and the methodological challenges that have been presented in attempts to define what constitutes a normal microbiota and chart its temporal development. Emphasis is placed on the new research narrative that confirms the critical influence of the microbiota on mood and behaviour. Mechanistic insights are provided with examples of both neural and humoral routes through which these effects can be mediated. The evidence supporting a role for the enteric flora in brain-gut axis disorders is explored with the spotlight on the clinical relevance for irritable bowel syndrome (IBS, a stress-related functional gastrointestinal disorder. We also critically evaluate the therapeutic opportunities arising from this research and consider in particular whether targeting the microbiome might represent a valid strategy for the management of CNS disorders and ponder the pitfalls inherent in such an approach. Despite the considerable challenges that lie ahead, this is an exciting area of research and one that is destined to remain the centre of focus for some

  14. Brain-gut-microbe communication in health and disease.

    Science.gov (United States)

    Grenham, Sue; Clarke, Gerard; Cryan, John F; Dinan, Timothy G

    2011-01-01

    Bidirectional signalling between the gastrointestinal tract and the brain is regulated at neural, hormonal, and immunological levels. This construct is known as the brain-gut axis and is vital for maintaining homeostasis. Bacterial colonization of the intestine plays a major role in the post-natal development and maturation of the immune and endocrine systems. These processes are key factors underpinning central nervous system (CNS) signaling. Recent research advances have seen a tremendous improvement in our understanding of the scale, diversity, and importance of the gut microbiome. This has been reflected in the form of a revised nomenclature to the more inclusive brain-gut-enteric microbiota axis and a sustained research effort to establish how communication along this axis contributes to both normal and pathological conditions. In this review, we will briefly discuss the critical components of this axis and the methodological challenges that have been presented in attempts to define what constitutes a normal microbiota and chart its temporal development. Emphasis is placed on the new research narrative that confirms the critical influence of the microbiota on mood and behavior. Mechanistic insights are provided with examples of both neural and humoral routes through which these effects can be mediated. The evidence supporting a role for the enteric flora in brain-gut axis disorders is explored with the spotlight on the clinical relevance for irritable bowel syndrome, a stress-related functional gastrointestinal disorder. We also critically evaluate the therapeutic opportunities arising from this research and consider in particular whether targeting the microbiome might represent a valid strategy for the management of CNS disorders and ponder the pitfalls inherent in such an approach. Despite the considerable challenges that lie ahead, this is an exciting area of research and one that is destined to remain the center of focus for some time to come.

  15. Copper pathology in vulnerable brain regions in Parkinson's disease. : Copper pathology in PD

    OpenAIRE

    Davies, Katherine,; Bohic, Sylvain; Carmona, Asunción; Ortega, Richard; Cottam, Veronica; Hare, Dominic; Finberg, John,; Reyes, Stefanie; Halliday, Glenda; Mercer, Julian; Double, Kay,

    2014-01-01

    International audience; Synchrotron-based x-ray fluorescence microscopy, immunofluorescence, and Western blotting were used to investigate changes in copper (Cu) and Cu-associated pathways in the vulnerable substantia nigra (SN) and locus coeruleus (LC) and in nondegenerating brain regions in cases of Parkinson's disease (PD) and appropriate healthy and disease controls. In PD and incidental Lewy body disease, levels of Cu and Cu transporter protein 1, were significantly reduced in surviving ...

  16. Synchrotron FTIR microspectroscopy of Alzheimer's diseased brain tissue at the SRC beamline

    Science.gov (United States)

    Bromberg, Pam S.; Gough, Kathleen M.; Ogg, Mandy; Del Bigio, M. R.; Julian, Robert

    1999-10-01

    Alzheimer's Disease is a neurodegenerative disorder marked by progressive cognitive decline. AD presents with many of the same clinical symptoms as senile dementia, but the diagnosis of AD must be confirmed by post-mortem examination of the morphological and histopathological features of the brain. The two classical lesions found in the cortical and hippocampal regions of the brain are the (beta) -amyloid- bearing neuritic plaques and the intraneuronal neurofibrillary tangles.

  17. Toward a brain-computer interface for Alzheimer's disease patients by combining classical conditioning and brain state classification.

    Science.gov (United States)

    Liberati, Giulia; Dalboni da Rocha, Josué Luiz; van der Heiden, Linda; Raffone, Antonino; Birbaumer, Niels; Olivetti Belardinelli, Marta; Sitaram, Ranganatha

    2012-01-01

    Brain-computer interfaces (BCIs) provide alternative methods for communicating and acting on the world, since messages or commands are conveyed from the brain to an external device without using the normal output pathways of peripheral nerves and muscles. Alzheimer's disease (AD) patients in the most advanced stages, who have lost the ability to communicate verbally, could benefit from a BCI that may allow them to convey basic thoughts (e.g., "yes" and "no") and emotions. There is currently no report of such research, mostly because the cognitive deficits in AD patients pose serious limitations to the use of traditional BCIs, which are normally based on instrumental learning and require users to self-regulate their brain activation. Recent studies suggest that not only self-regulated brain signals, but also involuntary signals, for instance related to emotional states, may provide useful information about the user, opening up the path for so-called "affective BCIs". These interfaces do not necessarily require users to actively perform a cognitive task, and may therefore be used with patients who are cognitively challenged. In the present hypothesis paper, we propose a paradigm shift from instrumental learning to classical conditioning, with the aim of discriminating "yes" and "no" thoughts after associating them to positive and negative emotional stimuli respectively. This would represent a first step in the development of a BCI that could be used by AD patients, lending a new direction not only for communication, but also for rehabilitation and diagnosis.

  18. Insights into brain development and disease from neurogenetic analyses in Drosophila melanogaster

    Indian Academy of Sciences (India)

    Heinrich Reichert

    2014-09-01

    Groundbreaking work by Obaid Siddiqi has contributed to the powerful genetic toolkit that is now available for studying the nervous system of Drosophila. Studies carried out in this powerful neurogenetic model system during the last decade now provide insight into the molecular mechanisms that operate in neural stem cells during normal brain development and during abnormal brain tumorigenesis. These studies also provide strong support for the notion that conserved molecular genetic programs act in brain development and disease in insects and mammals including humans.

  19. Plasma and Brain Fatty Acid Profiles in Mild Cognitive Impairment and Alzheimer’s Disease

    OpenAIRE

    Cunnane, Stephen C; Schneider, Julie A.; Tangney, Christine; Tremblay-Mercier, Jennifer; Fortier, Mélanie; Bennett, David A; Morris, Martha Clare

    2012-01-01

    Alzheimer’s disease (AD) is generally associated with lower omega-3 fatty acid intake from fish but despite numerous studies, it is still unclear whether there are differences in omega-3 fatty acids in plasma or brain. In matched plasma and brain samples provided by the Memory and Aging Project, fatty acid profiles were quantified in several plasma lipid classes and in three brain cortical regions. Fatty acid data were expressed as % composition and as concentrations (mg/dL for plasma or mg/g...

  20. Exosomes in the Diseased Brain: First Insights from In vivo Studies

    Science.gov (United States)

    Levy, Efrat

    2017-01-01

    Extracellular vesicles (EVs) are nanoscale size vesicles secreted by cells and are important mediators of intercellular communication and genetic exchange. Exosomes, EVs generated in endosomal multivesicular bodies, have been the focus of numerous publications as they have emerged as clinically valuable markers of disease states. Exosomes have been mostly studied from conditioned culture media and body fluids, with the difficulty of isolating exosomes from tissues having delayed their study in vivo. The implementation of a method designed to isolate exosomes from tissues, however, has yielded the first insights into characteristics of exosomes in the brain. It has been observed that brain exosomes from murine models of neurodegenerative diseases and human postmortem brains tend to mirror the protein content of the cells of origin, and interestingly, they are enriched with toxic proteins. Whether this enrichment with neurotoxic proteins is beneficial by relieving neurons of accumulated toxic material or detrimental to the brain by propagating pathogenicity throughout the brain remains to be answered. Here is summarized the first group of studies describing exosomes isolated from brain, results that demonstrate that exosomes in vivo reflect complex multicellular pathogenic processes in neurodegenerative disorders and the brain's response to injury and damage.

  1. Lymphatic Clearance of the Brain: Perivascular, Paravascular and Significance for Neurodegenerative Diseases.

    Science.gov (United States)

    Bakker, Erik N T P; Bacskai, Brian J; Arbel-Ornath, Michal; Aldea, Roxana; Bedussi, Beatrice; Morris, Alan W J; Weller, Roy O; Carare, Roxana O

    2016-03-01

    The lymphatic clearance pathways of the brain are different compared to the other organs of the body and have been the subject of heated debates. Drainage of brain extracellular fluids, particularly interstitial fluid (ISF) and cerebrospinal fluid (CSF), is not only important for volume regulation, but also for removal of waste products such as amyloid beta (Aβ). CSF plays a special role in clinical medicine, as it is available for analysis of biomarkers for Alzheimer's disease. Despite the lack of a complete anatomical and physiological picture of the communications between the subarachnoid space (SAS) and the brain parenchyma, it is often assumed that Aβ is cleared from the cerebral ISF into the CSF. Recent work suggests that clearance of the brain mainly occurs during sleep, with a specific role for peri- and para-vascular spaces as drainage pathways from the brain parenchyma. However, the direction of flow, the anatomical structures involved and the driving forces remain elusive, with partially conflicting data in literature. The presence of Aβ in the glia limitans in Alzheimer's disease suggests a direct communication of ISF with CSF. Nonetheless, there is also the well-described pathology of cerebral amyloid angiopathy associated with the failure of perivascular drainage of Aβ. Herein, we review the role of the vasculature and the impact of vascular pathology on the peri- and para-vascular clearance pathways of the brain. The different views on the possible routes for ISF drainage of the brain are discussed in the context of pathological significance.

  2. High-Frequency Deep Brain Stimulation of the Putamen Improves Bradykinesia in Parkinson’s Disease

    Science.gov (United States)

    Montgomery, Erwin B.; Huang, He; Walker, Harrison C.; Guthrie, Barton L.; Watts, Ray L.

    2014-01-01

    Deep brain stimulation is effective for a wide range of neurological disorders; however, its mechanisms of action remain unclear. With respect to Parkinson’s disease, the existence of multiple effective targets suggests that putamen stimulation also may be effective and raises questions as to the mechanisms of action. Are there as many mechanisms of action as there are effective targets or some single or small set of mechanisms common to all effective targets? During the course of routine surgery of the globus pallidus interna in patients with Parkinson’s disease, the deep brain stimulation lead was placed in the putamen en route to the globus pallidus interna. Recordings of hand opening and closing during high-frequency and no stimulation were made. Speed of the movements, based on the amplitude and frequency of the repetitive hand movements as well as the decay in amplitude, were studied. Hand speed in 6 subjects was statistically significantly faster during active deep brain stimulation than the no-stimulation condition. There were no statistically significant differences in decay in the amplitude of hand movements. High-frequency deep brain stimulation of the putamen improves bradykinesia in a hand-opening and -closing task in patients with Parkinson’s disease. Consequently, high-frequency deep brain stimulation of virtually every structure in the basal ganglia-thalamic-cortical system improves bradykinesia. These observations, together with microelectrode recordings reported in the literature, argue that deep brain stimulation effects may be system specific and not structure specific. PMID:21714010

  3. Differential effects of ischemic vascular disease and Alzheimer's disease on brain atrophy and cognition.

    Science.gov (United States)

    Zheng, Ling; Vinters, Harry V; Mack, Wendy J; Weiner, Michael W; Chui, Helena C

    2016-01-01

    We previously reported that pathologic measures of arteriosclerosis (AS), cerebral infarction, and Alzheimer’s disease (AD) are independently correlated with cortical gray matter (CGM) atrophy measured by in vivo magnetic resonance imaging (MRI). Here, we use path analyses to model the associations between these three pathology measures and cognitive impairment, as mediated by CGM atrophy, after controlling for age and education. In this sample of 116 elderly persons followed longitudinally to autopsy (ischemic vascular disease (IVD) program project), differential patterns were observed between AS and atrophy/cognition versus AD and atrophy/cognition. The total effect of AD pathology on global cognition (β = -0.61, s.e. = 0.06) was four times stronger than that of AS (β = -0.15, s.e. = 0.08). The effect of AS on cognition appears to occur through cerebral infarction and CGM atrophy (β = -0.13, s.e. = 0.04). In contrast, the effects of AD pathology on global cognition (β = -0.50, s.e. = 0.07) occur through a direct pathway that is five times stronger than the indirect pathway acting through CGM atrophy (β = -0.09, s.e. = 0.03). The strength of this direct AD pathway was not significantly mitigated by adding hippocampal volume to the model. AD pathology affects cognition not only through brain atrophy, but also via an unmeasured pathway that could be related to synaptic dysfunction before the development of cortical atrophy.

  4. Brain molecular aging, promotion of neurological disease and modulation by sirtuin 5 longevity gene polymorphism.

    Science.gov (United States)

    Glorioso, Christin; Oh, Sunghee; Douillard, Gaelle Guilloux; Sibille, Etienne

    2011-02-01

    Mechanisms determining characteristic age-of-onset for neurological diseases are largely unknown. Normal brain aging associates with robust and progressive transcriptome changes ("molecular aging"), but the intersection with disease pathways is mostly uncharacterized. Here, using cross-cohort microarray analysis of four human brain areas, we show that neurological disease pathways largely overlap with molecular aging and that subjects carrying a newly-characterized low-expressing polymorphism in a putative longevity gene (Sirtuin5; SIRT5(prom2)) have older brain molecular ages. Specifically, molecular aging was remarkably conserved across cohorts and brain areas, and included numerous developmental and transcription-regulator genes. Neurological disease-associated genes were highly overrepresented within age-related genes and changed almost unanimously in pro-disease directions, together suggesting an underlying genetic "program" of aging that progressively promotes disease. To begin testing this putative pathway, we developed and used an age-biosignature to assess five candidate longevity gene polymorphisms' association with molecular aging rates. Most robustly, aging was accelerated in cingulate, but not amygdala, of subjects carrying a SIRT5 promoter polymorphism (+9 years, p=0.004), in concordance with cingulate-specific decreased SIRT5 expression. This effect was driven by a set of core transcripts (+24 years, p=0.0004), many of which were mitochondrial, including Parkinson's disease genes, PINK-1 and DJ-1/PARK7, hence suggesting that SIRT5(prom2) may represent a risk factor for mitochondrial dysfunction-related diseases, including Parkinson's, through accelerated molecular aging of disease-related genes. Based on these results we speculate that a "common mechanism" may underlie age-of-onset across several neurological diseases. Confirming this pathway and its regulation by common genetic variants would provide new strategies for predicting, delaying, and

  5. Is art therapy a reliable tool for rehabilitating people suffering from brain/mental diseases?

    Science.gov (United States)

    Mirabella, Giovanni

    2015-04-01

    Whether art therapy can be an effective rehabilitative treatment for people with brain or mental diseases (e.g., dementia, Alzheimer's disease, Parkinson's disease, autism, schizophrenia) is a long-standing and highly debated issue. On the one hand, several observational studies and anecdotal evidence enthusiastically support the effectiveness of arts-based therapy. On the other hand, few rigorous clinical investigations have been performed, and there is too little empirical evidence to allow a full assessment of the risks and benefits of this intervention. Nevertheless, there is a progressively increasing demand for the development of appropriate complementary therapies to improve the personal and social lives of patients with neurodegenerative diseases. This is because conventional medical treatments are aimed at alleviating symptoms but cannot arrest or reverse the degenerative process. Thus, as disease progresses and adverse effects emerge, patients' quality of life dramatically decreases; when this occurs patients seek different forms of intervention. Art therapy is a potentially appealing treatment because of its more holistic approach to healthcare. However, as with any medicine, its effects must be tested by using standard, rigorous scientific approaches. This report describes the current state of research into art therapy and outlines many key factors that future research should consider, all of which are directly or indirectly related to the neural mechanism underlying behavioral changes: brain plasticity. Artistic performance could promote some form of brain plasticity that, to some extent, might compensate for the brain damage caused by the disease.

  6. Acidity and Acid-Sensing Ion Channels in the Normal and Alzheimer's Disease Brain.

    Science.gov (United States)

    Gonzales, Eric B; Sumien, Nathalie

    2017-02-15

    Alzheimer's disease prevalence has reached epidemic proportion with very few treatment options, which are associated with a multitude of side effects. A potential avenue of research for new therapies are protons, and their associated receptor: acid-sensing ion channels (ASIC). Protons are often overlooked neurotransmitters, and proton-gated currents have been identified in the brain. Furthermore, ASICs have been determined to be crucial for proper brain function. While there is more work to be done, this review is intended to highlight protons as neurotransmitters and their role along with the role of ASICs within physiological functioning of the brain. We will also cover the pathophysiological associations between ASICs and modulators of ASICs. Finally, this review will sum up how the studies of protons, ASICs and their modulators may generate new therapeutic molecules for Alzheimer's disease and other neurodegenerative diseases.

  7. New insight in expression, transport, and secretion of brain-derived neurotrophic factor: Implications in brainrelated diseases

    Institute of Scientific and Technical Information of China (English)

    Naoki; Adachi; Tadahiro; Numakawa; Misty; Richards; Shingo; Nakajima; Hiroshi; Kunugi

    2014-01-01

    Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has beenreported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia.

  8. [Research resource network and Parkinson disease brain bank donor registration program in Japan].

    Science.gov (United States)

    Arima, Kunimasa

    2010-10-01

    In spite of the increasing need for brain tissue in biomedical research, overall brain banking activities in Japan has been lagging behind. On the initiative of the National Center of Neurology and Psychiatry, 2 projects have been carried out; the Research Resource Network (RRN) and the Parkinson's Disease Brain Bank (PDBB) donor registration program. RRN is a nation-wide network that links 15 brain repositories, and 1,463 autopsy brains have been registered in this network as of December 2009. The brain donor registration program for PDBB was established in 2006. A donor without cognitive impairment can enroll in this PDBB donor registration program. When the donor dies, the next-of-kin will contact the PDBB coordinators for subsequent autopsy services and brain retention. On obtaining the next-of-kin's consent at the time of donor's death, autopsy will be performed at PDBB collaborating hospitals of National Center of Neurology and Psychiatry, Juntendo University Hospital, and Tokyo Metropolitan Geriatric Hospital. In order to arouse public interest, lecture meetings for citizens have been held on a regular basis. Fifty individuals have registered in the PDBB donor registration program including 27 patients with PD, 4 patient with Parkinson syndrome, 1 patient with progressive supranuclear palsy, and 18 individuals without PD or related disorders as of December 2009. Autopsies have been performed for 2 of these donors. To promote brain banking activities,it is necessary to establish legal and ethical guidelines for the use of autopsied materials in biomedical research.

  9. Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics.

    Science.gov (United States)

    Cho, Seongeun; Wood, Andrew; Bowlby, Mark R

    2007-03-01

    Recent improvements in brain slice technology have made this biological preparation increasingly useful for examining pathophysiology of brain diseases in a tissue context. Brain slices maintain many aspects of in vivo biology, including functional local synaptic circuitry with preserved brain architecture, while allowing good experimental access and precise control of the extracellular environment, making them ideal platforms for dissection of molecular pathways underlying neuronal dysfunction. Importantly, these ex vivo systems permit direct treatment with pharmacological agents modulating these responses and thus provide surrogate therapeutic screening systems without recourse to whole animal studies. Virus or particle mediated transgenic expression can also be accomplished relatively easily to study the function of novel genes in a normal or injured brain tissue context.In this review we will discuss acute brain injury models in organotypic hippocampal and co-culture systems and the effects of pharmacological modulation on neurodegeneration. The review will also cover the evidence of developmental plasticity in these ex vivo models, demonstrating emergence of injury-stimulated neuronal progenitor cells, and neurite sprouting and axonal regeneration following pathway lesioning. Neuro-and axo-genesis are emerging as significant factors contributing to brain repair following many acute and chronic neurodegenerative disorders. Therefore brain slice models may provide a critical contextual experimental system to explore regenerative mechanisms in vitro.

  10. MRI of the brain and craniocervical junction in Morquio`s disease

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, D.G. [Department of Radiology, Hope Hospital, Stott Lane, Salford, Manchester M6 8HD (United Kingdom); Chadderton, R.D. [Department of Neurosurgery, Hope Hospital, Salford, Manchester M6 8HD (United Kingdom); Cowie, R.A. [Department of Neurosurgery, Hope Hospital, Salford, Manchester M6 8HD (United Kingdom); Wraith, J.E. [Willink Biochemical Genetics Unit, Royal Manchester Children`s Hospital, Manchester M27 4HA (United Kingdom); Jenkins, J.P.R. [Department of Clinical Radiology, Manchester Royal Infirmary, Oxford Road, Manchester (United Kingdom)

    1997-05-01

    We reviewed MRI of the brain and cervical spine in 11 patients with Morquio`s disease. No abnormality was seen in the brain. The odontoid peg was abnormal in all patients, with varying degrees of cord compression due to an anterior soft tissue mass and indentation by the posterior arch of the atlas. The degree of cord compression was more marked than suggested by the symptoms and signs. We recommend MRI of the cervical spine in children with Morquio`s disease before the development of neurological symptoms, to optimise the timing and type of surgical intervention. (orig.). With 5 figs., 2 tabs.

  11. Large-Scale Functional Brain Network Abnormalities in Alzheimer’s Disease: Insights from Functional Neuroimaging

    Directory of Open Access Journals (Sweden)

    Bradford C. Dickerson

    2009-01-01

    Full Text Available Functional MRI (fMRI studies of mild cognitive impairment (MCI and Alzheimer’s disease (AD have begun to reveal abnormalities in large-scale memory and cognitive brain networks. Since the medial temporal lobe (MTL memory system is a site of very early pathology in AD, a number of studies have focused on this region of the brain. Yet it is clear that other regions of the large-scale episodic memory network are affected early in the disease as well, and fMRI has begun to illuminate functional abnormalities in frontal, temporal, and parietal cortices as well in MCI and AD. Besides predictable hypoactivation of brain regions as they accrue pathology and undergo atrophy, there are also areas of hyperactivation in brain memory and cognitive circuits, possibly representing attempted compensatory activity. Recent fMRI data in MCI and AD are beginning to reveal relationships between abnormalities of functional activity in the MTL memory system and in functionally connected brain regions, such as the precuneus. Additional work with “resting state” fMRI data is illuminating functional-anatomic brain circuits and their disruption by disease. As this work continues to mature, it will likely contribute to our understanding of fundamental memory processes in the human brain and how these are perturbed in memory disorders. We hope these insights will translate into the incorporation of measures of task-related brain function into diagnostic assessment or therapeutic monitoring, which will hopefully one day be useful for demonstrating beneficial effects of treatments being tested in clinical trials.

  12. Automatic detection of the hippocampal region associated with Alzheimer's disease from microscopic images of mice brain

    Science.gov (United States)

    Albaidhani, Tahseen; Hawkes, Cheryl; Jassim, Sabah; Al-Assam, Hisham

    2016-05-01

    The hippocampus is the region of the brain that is primarily associated with memory and spatial navigation. It is one of the first brain regions to be damaged when a person suffers from Alzheimer's disease. Recent research in this field has focussed on the assessment of damage to different blood vessels within the hippocampal region from a high throughput brain microscopic images. The ultimate aim of our research is the creation of an automatic system to count and classify different blood vessels such as capillaries, veins, and arteries in the hippocampus region. This work should provide biologists with efficient and accurate tools in their investigation of the causes of Alzheimer's disease. Locating the boundary of the Region of Interest in the hippocampus from microscopic images of mice brain is the first essential stage towards developing such a system. This task benefits from the variation in colour channels and texture between the two sides of the hippocampus and the boundary region. Accordingly, the developed initial step of our research to locating the hippocampus edge uses a colour-based segmentation of the brain image followed by Hough transforms on the colour channel that isolate the hippocampus region. The output is then used to split the brain image into two sides of the detected section of the boundary: the inside region and the outside region. Experimental results on a sufficiently number of microscopic images demonstrate the effectiveness of the developed solution.

  13. Brain changes in Alzheimer's disease patients with implanted encapsulated cells releasing nerve growth factor.

    Science.gov (United States)

    Ferreira, Daniel; Westman, Eric; Eyjolfsdottir, Helga; Almqvist, Per; Lind, Göran; Linderoth, Bengt; Seiger, Ake; Blennow, Kaj; Karami, Azadeh; Darreh-Shori, Taher; Wiberg, Maria; Simmons, Andrew; Wahlund, Lars-Olof; Wahlberg, Lars; Eriksdotter, Maria

    2015-01-01

    New therapies with disease-modifying effects are urgently needed for treating Alzheimer's disease (AD). Nerve growth factor (NGF) protein has demonstrated regenerative and neuroprotective effects on basal forebrain cholinergic neurons in animal studies. In addition, AD patients treated with NGF have previously shown improved cognition, EEG activity, nicotinic binding, and glucose metabolism. However, no study to date has analyzed brain atrophy in patients treated with NGF producing cells. In this study we present MRI results of the first clinical trial in patients with AD using encapsulated NGF biodelivery to the basal forebrain. Six AD patients received the treatment during twelve months. Patients were grouped as responders and non-responders according to their twelve-months change in MMSE. Normative values were created from 131 AD patients from ADNI, selecting 36 age- and MMSE-matched patients for interpreting the longitudinal changes in MMSE and brain atrophy. Results at baseline indicated that responders showed better clinical status and less pathological levels of cerebrospinal fluid (CSF) Aβ1-42. However, they showed more brain atrophy, and neuronal degeneration as evidenced by higher CSF levels of T-tau and neurofilaments. At follow-up, responders showed less brain shrinkage and better progression in the clinical variables and CSF biomarkers. Noteworthy, two responders showed less brain shrinkage than the normative ADNI group. These results together with previous evidence supports the idea that encapsulated biodelivery of NGF might have the potential to become a new treatment strategy for AD with both symptomatic and disease-modifying effects.

  14. Neuron-specific enolase in cerebrospinal fluid and plasma of patients with acute ischemic brain disease

    Directory of Open Access Journals (Sweden)

    Selaković Vesna M.

    2003-01-01

    Full Text Available The objective of this research was to determine the dynamics of change of neuron-specific enolase concentration in patients with acute ischemic brain disease in cerebrospinal fluid and plasma. The study included 103 patients, their mean age 58-66 years. The control group consisted of 16 patients, of matching age and sex, with radicular lesions of discal origin, subjected to diagnostic radiculography. Concentration of neuron-specific enolase was measured by a flouroimmunometric method. The results showed that the concentration of neuron-specific enolase in cerebrospinal fluid and plasma of patients with brain ischemic disease within first seven days significantly increased compared to the control. The highest increase of concentration was established in brain infarction, somewhat lower in reversible ischemic attack, and the lowest in transient ischemic attack. Maximal concentration was established on the 3rd-4th day upon the brain infarction. Neuron-specific enolase concentration in cerebrospinal fluid and plasma may be an indicator of pathophysiological processes in the acute phase of brain ischemia and is significant in early diagnostics and therapy of the disease.

  15. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    DEFF Research Database (Denmark)

    Nilsson, Tatjana; Bogdanovic, Nenad; Volkman, Inga

    2006-01-01

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD...

  16. Brain Dynamics: Methodological Issues and Applications in Psychiatric and Neurologic Diseases

    Science.gov (United States)

    Pezard, Laurent

    The human brain is a complex dynamical system generating the EEG signal. Numerical methods developed to study complex physical dynamics have been used to characterize EEG since the mid-eighties. This endeavor raised several issues related to the specificity of EEG. Firstly, theoretical and methodological studies should address the major differences between the dynamics of the human brain and physical systems. Secondly, this approach of EEG signal should prove to be relevant for dealing with physiological or clinical problems. A set of studies performed in our group is presented here within the context of these two problematic aspects. After the discussion of methodological drawbacks, we review numerical simulations related to the high dimension and spatial extension of brain dynamics. Experimental studies in neurologic and psychiatric disease are then presented. We conclude that if it is now clear that brain dynamics changes in relation with clinical situations, methodological problems remain largely unsolved.

  17. Nanotechnology-mediated nose to brain drug delivery for Parkinson's disease: a mini review.

    Science.gov (United States)

    Kulkarni, Abhijeet D; Vanjari, Yogesh H; Sancheti, Karan H; Belgamwar, Veena S; Surana, Sanjay J; Pardeshi, Chandrakantsing V

    2015-01-01

    Nose to brain delivery of neurotherapeutics have been tried by several researchers to explore the virtues of this route viz. circumvention of BBB, avoidance of hepatic metabolism, practicality, safety, ease of administration and non-invasiveness. Nanoparticle (NP) therapeutics is an emerging modality for the treatment of Parkinson's disease (PD) as it offers targeted delivery and enhances the therapeutic efficacy and/or bioavailability of neurotherapeutics. This review presents a concise incursion into the nanomedicines suitable for PD therapy delivered via naso-brain transport. Clinical signs of PD, its pathophysiology, specific genetic determinants, diagnosis and therapy involved have been hashed out. Properties of brain-targeting NPs, transport efficacy and various nanocarriers developed so far also been furnished. In our opinion, nanotechnology-enabled naso-brain drug delivery is an excellent means of delivering neurotherapeutics and is a promising avenue for researchers to develop new formulations for the effective management of PD.

  18. Patterns of regional brain hypometabolism associated with knowledge of semantic features and categories in alzheimer's disease

    DEFF Research Database (Denmark)

    Zahn, R.; Garrard, P.; Talazko, J.;

    2006-01-01

    The study of semantic memory in patients with Alzheimer's disease (AD) has raised important questions about the representation of conceptual knowledge in the human brain. It is still unknown whether semantic memory impairments are caused by localized damage to specialized regions or by diffuse...... damage to distributed representations within nonspecialized brain areas. To our knowledge, there have been no direct correlations of neuroimaging of in vivo brain function in AD with performance on tasks differentially addressing visual and functional knowledge of living and nonliving concepts. We used...... and nonliving concepts, as well as visual feature knowledge of living objects, and against distributed accounts of semantic memory that view visual and functional features of living and nonliving objects as distributed across a common set of brain areas....

  19. Raft disorganization leads to reduced plasmin activity in Alzheimer's disease brains.

    Science.gov (United States)

    Ledesma, Maria Dolores; Abad-Rodriguez, José; Galvan, Cristian; Biondi, Elisa; Navarro, Pilar; Delacourte, Andre; Dingwall, Colin; Dotti, Carlos G

    2003-12-01

    The serine protease plasmin can efficiently degrade amyloid peptide in vitro, and is found at low levels in the hippocampus of patients with Alzheimer's disease (AD). The cause of such paucity remains unknown. We show here that the levels of total brain plasminogen and plasminogen-binding molecules are normal in these brain samples, yet plasminogen membrane binding is greatly reduced. Biochemical analysis reveals that the membranes of these brains have a mild, still significant, cholesterol reduction compared to age-matched controls, and anomalous raft microdomains. This was reflected by the loss of raft-enriched proteins, including plasminogen-binding and -activating molecules. Using hippocampal neurons in culture, we demonstrate that removal of a similar amount of membrane cholesterol is sufficient to induce raft disorganization, leading to reduced plasminogen membrane binding and low plasmin activity. These results suggest that brain raft alterations may contribute to AD by rendering the plasminogen system inefficient.

  20. Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease

    Science.gov (United States)

    Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert

    2016-01-01

    The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer's disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional-vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.

  1. Midbrain morphology reflects extent of brain damage in Krabbe disease

    Energy Technology Data Exchange (ETDEWEB)

    Zuccoli, Giulio; Narayanan, Srikala; Panigrahy, Ashok [Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Section of Neuroradiology, Pittsburgh, PA (United States); Poe, Michele D.; Escolar, Maria L. [University of Pittsburgh, Program for the Study of Neurodevelopment in Rare Disorders, Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2015-07-15

    To study the relationships between midbrain morphology, Loes score, gross motor function, and cognitive function in infantile Krabbe disease. Magnetic resonance imaging (MRI) scans were evaluated by two neuroradiologists blinded to clinical status and neurodevelopmental function of children with early or late infantile Krabbe disease. A simplified qualitative 3-point scoring system based on midbrain morphology on midsagittal MRI was used. A score of 0 represented normal convex morphology of the midbrain, a score of 1 represented flattening of the midbrain, and a score of 3 represented concave morphology of the midbrain (hummingbird sign). Spearman correlations were estimated between this simplified MRI scoring system and the Loes score, gross motor score, and cognitive score. Forty-two MRIs of 27 subjects were reviewed. Analysis of the 42 scans showed normal midbrain morphology in 3 (7.1 %) scans, midbrain flattening in 11 (26.2 %) scans, and concave midbrain morphology (hummingbird sign) in 28 (66.7 %) scans. Midbrain morphology scores were positively correlated with the Loes score (r = 0.81, p < 0.001) and negatively correlated with both gross motor and cognitive scores (r = -.84, p < 0.001; r = -0.87, p < 0.001, respectively). The inter-rater reliability for the midbrain morphology scale was κ =.95 (95 % CI: 0.86-1.0), and the inter-rater reliability for the Loes scale was κ =.58 (95 % CI: 0.42-0.73). Midbrain morphology scores of midsagittal MRI images correlates with cognition and gross motor function in children with Krabbe disease. This MRI scoring system represents a simple but reliable method to assess disease progression in patients with infantile Krabbe disease. (orig.)

  2. Whole-brain atrophy differences between progressive supranuclear palsy and idiopathic Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Carlos Guevara

    2016-09-01

    Full Text Available Background: The absence of markers for ante-mortem diagnosis of progressive supranuclear palsy (PSP results in this disorder’s being commonly mistaken for other conditions, such as idiopathic Parkinson's disease (IPD. Such mistakes occur particularly in the initial stages, when ‘plus syndrome’ has not yet clinically emerged.Objective. To investigate global brain volume and tissue loss in patients with PSP relative to patients with IPD and healthy controls and correlations between clinical parameters and magnetic resonance imaging (MRI-derived brain volume estimates.Methods: T1-weighted images were obtained from three groups of Chilean Latin American adults: 21 patients with IPD, 18 patients with PSP and 14 healthy controls. We used Structural Imaging Evaluation with Normalization of Atrophy (SIENAX to assess white matter, gray matter and whole-brain volumes (normalized to cranial volume. Imaging data were used to analyze putative correlations with the clinical status of PSP and IPD patients using the Unified Parkinson’s Disease Rating Scale Part III, Hoehn and Yahr, the Clinical Global Impression for Disease Severity Scale and the Frontal Assessment Battery.Results: PSP patients had significantly lower whole brain volume than both IPD patients and controls. Whole brain volume reduction in PSP patients was primarily attributable to gray matter volume reduction. We found a significant correlation between brain volume reduction and clinical status in the PSP group.Conclusions: At the group level, whole brain and gray matter volumes differentiated patients with PSP from patients with IPD. There was also significant clinical-imaging correlations with motor disturbances in PSP.

  3. Whole-Brain Atrophy Differences between Progressive Supranuclear Palsy and Idiopathic Parkinson’s Disease

    Science.gov (United States)

    Guevara, Carlos; Bulatova, Katherina; Barker, Gareth J.; Gonzalez, Guido; Crossley, Nicolas A.; Kempton, Matthew J.

    2016-01-01

    Background: The absence of markers for ante-mortem diagnosis of progressive supranuclear palsy (PSP), results in this disorder being commonly mistaken for other conditions, such as idiopathic Parkinson’s disease (IPD). Such mistakes occur particularly in the initial stages, when “plus syndrome” has not yet clinically emerged. Objective: To investigate the global brain volume and tissue loss in patients with PSP relative to patients with IPD and healthy controls and correlations between clinical parameters and magnetic resonance imaging (MRI)-derived brain volume estimates. Methods: T1-weighted images were obtained from three groups of Chilean Latin American adults: 21 patients with IPD, 18 patients with PSP and 14 healthy controls. We used Structural Imaging Evaluation with Normalization of Atrophy (SIENAX) to assess white matter, gray matter and whole-brain volumes (normalized to cranial volume). Imaging data were used to analyze putative correlations with the clinical status of PSP and IPD patients using the Unified Parkinson’s Disease Rating Scale Part III (UPDRS III), Hoehn and Yahr (H&Y), the Clinical Global Impression for Disease Severity Scale (CGI-S) and the Frontal Assessment Battery (FAB). Results: PSP patients had significantly lower whole brain volume than both IPD patients and controls. Whole brain volume reduction in PSP patients was primarily attributable to gray matter volume reduction. We found a significant correlation between brain volume reduction and clinical status in the PSP group. Conclusions: At the group level, the whole brain and gray matter volumes differentiated patients with PSP from patients with IPD. There was also significant clinical-imaging correlations with motor disturbances in PSP. PMID:27679572

  4. Evidence for enhanced aluminum concentration in brain tissue from Alzheimer's disease patients using PIXE

    Science.gov (United States)

    Debray, M. E.; Kreiner, A. J.; Buhler, M.; Cardona, M. A.; Hojman, D.; Kesque, J. M.; Levinton, G.; Menéndez, J. J.; Naab, F.; Ozafrán, M. J.; Somacal, H.; Vázquez, M. E.; Grahmann, H.; Davidson, M.; Davidson, J.; Levin, M. E.; Mangone, C. A.; Caccuri, R. L.; Tokuda, A.; Eurnekian, A. A.; González, D.; López, C.; Roses, O. E.

    1997-02-01

    The Particle Induced X-Ray Emission (PIXE) analytical technique with 16O ion beams (18 MeV) was applied to the study of elemental composition at different brain regions of patients with a confirmed post-mortem diagnosis of Alzheimer's disease and in samples from control subjects. The results obtained in the actual study show a clear correlation between occurrence of Alzheimer's disease and the presence and increased concentration of aluminum (Al).

  5. Quantitative analysis of gait and balance response to deep brain stimulation in Parkinson's disease

    OpenAIRE

    Mera, Thomas O.; Filipkowski, Danielle E.; Riley, David E.; Whitney, Christina M.; Walter, Benjamin L.; Gunzler, Steven A; Giuffrida, Joseph P

    2012-01-01

    Gait and balance disturbances in Parkinson’s disease (PD) can be debilitating and may lead to increased fall risk. Deep brain stimulation (DBS) is a treatment option once therapeutic benefits from medication are limited due to motor fluctuations and dyskinesia. Optimizing DBS parameters for gait and balance can be significantly more challenging than for other PD motor symptoms. Furthermore, inter-rater reliability of the standard clinical PD assessment scale, Unified Parkinson’s Disease Ratin...

  6. Diagnostic Usefulness of 3 Tesla MRI of the Brain for Cushing Disease in a Child

    OpenAIRE

    Ono, Erina; Ozawa, Ayako; Matoba, Kaori; Motoki, Takanori; Tajima, Asako; Miyata, Ichiro; Ito, Junko; Inoshita, Naoko; Yamada, Syozo; Ida, Hiroyuki

    2011-01-01

    It is sometimes difficult to confirm the location of a microadenoma in Cushing disease. Recently, we experienced an 11-yr-old female case of Cushing disease with hyperprolactinemia. She was referred to our hospital because of decrease of height velocity with body weight gain. On admission, she had typical symptoms of Cushing syndrome. Although no pituitary microadenomas were detected on 1.5 Tesla MRI of the brain, endocrinological examinations including IPS and CS sampling were consistent wit...

  7. Parkinson’s Brain Disease Prediction Using Big Data Analytics

    Directory of Open Access Journals (Sweden)

    N. Shamli

    2016-06-01

    Full Text Available In healthcare industries, the demand for maintaining large amount of patients’ data is steadily growing due to rising population which has resulted in the increase of details about clinical and laboratory tests, imaging, prescription and medication. These data can be called “Big Data”, because of their size, complexity and diversity. Big data analytics aims at improving patient care and identifying preventive measures proactively. To save lives and recommend life style changes for a peaceful and healthier life at low costs. The proposed predictive analytics framework is a combination of Decision Tree, Support Vector Machine and Artificial Neural Network which is used to gain insights from patients. Parkinson’s disease voice dataset from UCI Machine learning repository is used as input. The experimental results show that early detection of disease will facilitate clinical monitoring of elderly people and increase the chances of their life span and improved lifestyle to lead peaceful life.

  8. Microstructural brain abnormalities in Huntington's disease : A two-year follow-up

    NARCIS (Netherlands)

    Odish, Omar F F; Leemans, A; Reijntjes, Robert H A M; van den Bogaard, Simon J A; Dumas, Eve M.; Wolterbeek, Ron; Tax, Chantal M W; Kuijf, Hugo J.; Vincken, Koen L.; van der Grond, Jeroen; Roos, Raymund A C

    2015-01-01

    Objectives: To investigate both cross-sectional and time-related changes of striatal and whole-brain microstructural properties in different stages of Huntington's disease (HD) using diffusion tensor imaging. Experimental design: From the TRACK-HD study, premanifest gene carriers (preHD), early mani

  9. Tremor Reduction by Deep Brain Stimulation Is Associated With Gamma Power Suppression in Parkinson's Disease

    NARCIS (Netherlands)

    Beudel, Martijn; Little, Simon; Pogosyan, Alek; Ashkan, Keyoumars; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Bogdanovic, Marko; Cheeran, Binith; Green, Alexander L.; Aziz, Tipu; Thevathasan, Wesley; Brown, Peter

    2015-01-01

    Objectives: Rest tremor is a cardinal symptom of Parkinson's disease (PD), and is readily suppressed by deep brain stimulation (DBS) of the subthalamic nucleus (STN). The therapeutic effect of the latter on bradykinesia and rigidity has been associated with the suppression of exaggerated beta (13-30

  10. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease

    NARCIS (Netherlands)

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-01-01

    Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an

  11. Rest and action tremor in Parkinson's disease: effects of Deep Brain Stimulation

    NARCIS (Netherlands)

    Heida, T.; Wentink, E.C.

    2010-01-01

    One of the cardinal symptoms of Parkinson’s disease is rest tremor. While rest tremor generally disappears during sleep and voluntary movement, action tremor may be triggered by voluntary movement, and may even be more disabling than rest tremor. Deep brain stimulation (DBS) in the subthalamic nucle

  12. Systematic review of the risk of Parkinson's disease after mild traumatic brain injury

    DEFF Research Database (Denmark)

    Marras, Connie; Hincapié, Cesar A; Kristman, Vicki L;

    2014-01-01

    OBJECTIVE: To synthesize the best available evidence on the risk of Parkinson's disease (PD) after mild traumatic brain injury (MTBI). DATA SOURCES: MEDLINE and other databases were searched (1990-2012) with terms including "craniocerebral trauma" and "parkinsonian disorders." Reference lists of ...

  13. Effect of Transcranial Brain Stimulation for the Treatment of Alzheimer Disease: A Review

    OpenAIRE

    Raffaele Nardone; Jürgen Bergmann; Monica Christova; Francesca Caleri; Frediano Tezzon; Gunther Ladurner; Eugen Trinka; Stefan Golaszewski

    2011-01-01

    Available pharmacological treatments for Alzheimer disease (AD) have limited effectiveness, are expensive, and sometimes induce side effects. Therefore, alternative or complementary adjuvant therapeutic strategies have gained increasing attention. The development of novel noninvasive methods of brain stimulation has increased the interest in neuromodulatory techniques as potential therapeutic tool for cognitive rehabilitation in AD. In particular, repetitive transcranial magnetic stimulat...

  14. Microprobe PIXE analysis of aluminium in the brains of patients with Alzheimer's disease

    Science.gov (United States)

    Yumoto, S.; Horino, Y.; Mokuno, Y.; Kakimi, S.; Fujii, K.

    1996-04-01

    To investigate the cause of Alzheimer's disease (senile dementia), we examined aluminium (Al) in the rat liver, and in the brains (hippocampus) of Alzheimer's disease patients using heavy ion (5 MeV Si 3+) microprobe and proton (2 MeV) microprobe PIXE analysis. Heavy ion microprobes (3 MeV Si 2+) have several time's higher sensitivity for Al detection than 2 MeV proton microprobes. (1) In the rat liver, Al was detected in the cell nuclei, where phosphorus (P) was most densely distributed. (2) We also demonstrated Al in the cell nuclei isolated from Alzheimer's disease brains using heavy ion (5 MeV Si 3+) microprobes. Al spectra were detected using 2 MeV proton microprobes in the isolated brain cell nuclei. Al could not be observed in areas where P was present in relatively small amounts, or was absent. Our results indicate that Alzheimer's disease is caused by irreversible accumulation of Al in the nuclei of brain cells.

  15. Subthalamic Nucleus Deep Brain Stimulation Changes Velopharyngeal Control in Parkinson's Disease

    Science.gov (United States)

    Hammer, Michael J.; Barlow, Steven M.; Lyons, Kelly E.; Pahwa, Rajesh

    2011-01-01

    Purpose: Adequate velopharyngeal control is essential for speech, but may be impaired in Parkinson's disease (PD). Bilateral subthalamic nucleus deep brain stimulation (STN DBS) improves limb function in PD, but the effects on velopharyngeal control remain unknown. We tested whether STN DBS would change aerodynamic measures of velopharyngeal…

  16. Propranolol in the treatment of assaultive patients with organic brain disease.

    Science.gov (United States)

    Greendyke, R M; Schuster, D B; Wooton, J A

    1984-10-01

    Propranolol in doses up to 520 mg/day was administered to eight patients with organic brain disease characterized by violent and assaultive behavior refractory to conventional treatment. Improvement was demonstrated in the seven patients able to tolerate adequate drug dosages. Hypotension, bradycardia, and interactions with other medications constituted complications.

  17. Blood-brain barrier P-glycoprotein function is not impaired in early Parkinson's disease

    NARCIS (Netherlands)

    Bartels, A. L.; van Berckel, B. N. M.; Lubberink, M.; Luurtsema, G.; Lammertsma, A. A.; Leenders, K. L.

    2008-01-01

    The cause of Parkinson's disease (PD) is unknown. Genetic susceptibility and exposure to environmental toxins contribute to specific neuronal loss in PD. Decreased blood-brain barrier (BBB) P-glycoprotein (P-gp) efflux function has been proposed as a possible causative link between toxin exposure an

  18. Mechanisms linking brain insulin resistance to Alzheimer's disease

    OpenAIRE

    Maria Niures P.S. Matioli; Ricardo Nitrini

    2015-01-01

    Several studies have indicated that Diabetes Mellitus (DM) can increase the risk of developing Alzheimer's disease (AD). This review briefly describes current concepts in mechanisms linking DM and insulin resistance/deficiency to AD. Insulin/insulin-like growth factor (IGF) resistance can contribute to neurodegeneration by several mechanisms which involve: energy and metabolism deficits, impairment of Glucose transporter-4 function, oxidative and endoplasmic reticulum stress, mitochondrial dy...

  19. Brain stem and cerebellum volumetric analysis of Machado Joseph disease patients

    Directory of Open Access Journals (Sweden)

    S T Camargos

    2011-01-01

    Full Text Available Machado-Joseph disease, or spinocerebellar ataxia type 3(MJD/SCA3, is the most frequent late onset spinocerebellar ataxia and results from a CAG repeat expansion in the ataxin-3 gene. Previous studies have found correlation between atrophy of cerebellum and brainstem with age and CAG repeats, although no such correlation has been found with disease duration and clinical manifestations. In this study we test the hypothesis that atrophy of cerebellum and brainstem in MJD/SCA3 is related to clinical severity, disease duration and CAG repeat length as well as to other variables such as age and ICARS (International Cooperative Ataxia Rating Scale. Whole brain high resolution MRI and volumetric measurement with cranial volume normalization were obtained from 15 MJD/SCA3 patients and 15 normal, age and sex-matchedcontrols. We applied ICARS and compared the score with volumes and CAG number, disease duration and age. We found significant correlation of both brain stem and cerebellar atrophy with CAG repeat length, age, disease duration and degree of disability. The Spearman rank correlation was stronger with volumetric reduction of the cerebellum than with brain stem. Our data allow us to conclude that volumetric analysis might reveal progressive degeneration after disease onset, which in turn is linked to both age and number of CAG repeat expansions in SCA 3.

  20. Role of Lipids in Brain Injury and Diseases.

    Science.gov (United States)

    Adibhatla, Rao Muralikrishna; Hatcher, J F

    2007-08-01

    Lipid metabolism is of particular interest due to its high concentration in CNS. The importance of lipids in cell signaling and tissue physiology is demonstrated by many CNS disorders and injuries that involve deregulated metabolism. The long suffering lipid field is gaining reputation and respect as evidenced through the Center of Biomedical Research Excellence in Lipidomics and Pathobiology (COBRE), Lipid MAPS (Metabolites And Pathways Strategy) Consortium sponsored by NIH, European initiatives for decoding the lipids through genomic approaches, and Genomics of Lipid-associated Disorder (GOLD) project initiated by Austrian government. This review attempts to provide an overview of the lipid imbalances associated with neurological disorders (Alzheimer's, Parkinson's; Niemann-Pick; Multiple sclerosis, Huntington, amyotrophic lateral sclerosis, schizophrenia, bipolar disorders and epilepsy) and CNS injury (Stroke, traumatic brain injury; and spinal cord injury) and a few provocative thoughts. Lipidomic analyses along with RNA silencing will provide new insights into the role of lipid intermediates in cell signaling and hopefully open new avenues for prevention or treatment options.

  1. Blood-brain barrier P-glycoprotein function in Alzheimer's disease.

    Science.gov (United States)

    van Assema, Daniëlle M E; Lubberink, Mark; Bauer, Martin; van der Flier, Wiesje M; Schuit, Robert C; Windhorst, Albert D; Comans, Emile F I; Hoetjes, Nikie J; Tolboom, Nelleke; Langer, Oliver; Müller, Markus; Scheltens, Philip; Lammertsma, Adriaan A; van Berckel, Bart N M

    2012-01-01

    A major pathological hallmark of Alzheimer's disease is accumulation of amyloid-β in senile plaques in the brain. Evidence is accumulating that decreased clearance of amyloid-β from the brain may lead to these elevated amyloid-β levels. One of the clearance pathways of amyloid-β is transport across the blood-brain barrier via efflux transporters. P-glycoprotein, an efflux pump highly expressed at the endothelial cells of the blood-brain barrier, has been shown to transport amyloid-β. P-glycoprotein function can be assessed in vivo using (R)-[(11)C]verapamil and positron emission tomography. The aim of this study was to assess blood-brain barrier P-glycoprotein function in patients with Alzheimer's disease compared with age-matched healthy controls using (R)-[(11)C]verapamil and positron emission tomography. In 13 patients with Alzheimer's disease (age 65 ± 7 years, Mini-Mental State Examination 23 ± 3), global (R)-[(11)C]verapamil binding potential values were increased significantly (P = 0.001) compared with 14 healthy controls (aged 62 ± 4 years, Mini-Mental State Examination 30 ± 1). Global (R)-[(11)C]verapamil binding potential values were 2.18 ± 0.25 for patients with Alzheimer's disease and 1.77 ± 0.41 for healthy controls. In patients with Alzheimer's disease, higher (R)-[(11)C]verapamil binding potential values were found for frontal, parietal, temporal and occipital cortices, and posterior and anterior cingulate. No significant differences between groups were found for medial temporal lobe and cerebellum. These data show altered kinetics of (R)-[(11)C]verapamil in Alzheimer's disease, similar to alterations seen in studies where P-glycoprotein is blocked by a pharmacological agent. As such, these data indicate that P-glycoprotein function is decreased in patients with Alzheimer's disease. This is the first direct evidence that the P-glycoprotein transporter at the blood-brain barrier is compromised in sporadic

  2. The Effect of Disease-Modifying Drugs on Brain Atrophy in Relapsing-Remitting Multiple Sclerosis: A Meta-Analysis

    OpenAIRE

    Pierre Branger; Jean-Jacques Parienti; Maria Pia Sormani; Gilles Defer

    2016-01-01

    Background The quantification of brain atrophy in relapsing-remitting multiple sclerosis (RRMS) may serve as a marker of disease progression and treatment response. We compared the association between first-line (FL) or second-line (SL) disease-modifying drugs (DMDs) and brain volume changes over time in RRMS. Materials and Methods We reviewed clinical trials in RRMS between January 1, 1995 and June 1, 2014 that assessed the effect of DMDs and reported data on brain atrophy in Medline, Embase...

  3. The levels of soluble versus insoluble brain Abeta distinguish Alzheimer's disease from normal and pathologic aging.

    Science.gov (United States)

    Wang, J; Dickson, D W; Trojanowski, J Q; Lee, V M

    1999-08-01

    The abundance and solubility of Abeta peptides are critical determinants of amyloidosis in Alzheimer's disease (AD). Hence, we compared levels of total soluble, insoluble, and total Abeta1-40 and Abeta1-42 in AD brains with those in age-matched normal and pathologic aging brains using a sandwich enzyme-linked immunosorbent assay (ELISA). Since the measurement of Abeta1-40 and Abeta1-42 depends critically on the specificity of the monoclonal antibodies used in the sandwich ELISA, we first demonstrated that each assay is specific for Abeta1-40 or Abeta1-42 and the levels of these peptides are not affected by the amyloid precursor protein in the brain extracts. Thus, this sandwich ELISA enabled us to show that the average levels of total cortical soluble and insoluble Abeta1-40 and Abeta1-42 were highest in AD, lowest in normal aging, and intermediate in pathologic aging. Remarkably, the average levels of insoluble Abeta1-40 were increased 20-fold while the average levels of insoluble Abeta1-42 were increased only 2-fold in the AD brains compared to pathologic aging brains. Further, the soluble pools of Abeta1-40 and Abeta1-42 were the largest fractions of total Abeta in the normal brain (i.e., 50 and 23%, respectively), but they were the smallest in the AD brain (i.e., 2.7 and 0.7%, respectively) and intermediate (i.e., 8 and 0.8%, respectively) in pathologic aging brains. Thus, our data suggest that pathologic aging is a transition state between normal aging and AD. More importantly, our findings imply that a progressive shift of brain Abeta1-40 and Abeta1-42 from soluble to insoluble pools and a profound increase in the levels of insoluble Abeta1-40 plays mechanistic roles in the onset and/or progression of AD.

  4. Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer's disease brain.

    Science.gov (United States)

    Kurbatskaya, Ksenia; Phillips, Emma C; Croft, Cara L; Dentoni, Giacomo; Hughes, Martina M; Wade, Matthew A; Al-Sarraj, Safa; Troakes, Claire; O'Neill, Michael J; Perez-Nievas, Beatriz G; Hanger, Diane P; Noble, Wendy

    2016-03-31

    Alterations in calcium homeostasis are widely reported to contribute to synaptic degeneration and neuronal loss in Alzheimer's disease. Elevated cytosolic calcium concentrations lead to activation of the calcium-sensitive cysteine protease, calpain, which has a number of substrates known to be abnormally regulated in disease. Analysis of human brain has shown that calpain activity is elevated in AD compared to controls, and that calpain-mediated proteolysis regulates the activity of important disease-associated proteins including the tau kinases cyclin-dependent kinase 5 and glycogen kinase synthase-3. Here, we sought to investigate the likely temporal association between these changes during the development of sporadic AD using Braak staged post-mortem brain. Quantification of protein amounts in these tissues showed increased activity of calpain-1 from Braak stage III onwards in comparison to controls, extending previous findings that calpain-1 is upregulated at end-stage disease, and suggesting that activation of calcium-sensitive signalling pathways are sustained from early stages of disease development. Increases in calpain-1 activity were associated with elevated activity of the endogenous calpain inhibitor, calpastatin, itself a known calpain substrate. Activation of the tau kinases, glycogen-kinase synthase-3 and cyclin-dependent kinase 5 were also found to occur in Braak stage II-III brain, and these preceded global elevations in tau phosphorylation and the loss of post-synaptic markers. In addition, we identified transient increases in total amyloid precursor protein and pre-synaptic markers in Braak stage II-III brain, that were lost by end stage Alzheimer's disease, that may be indicative of endogenous compensatory responses to the initial stages of neurodegeneration. These findings provide insight into the molecular events that underpin the progression of Alzheimer's disease, and further highlight the rationale for investigating novel treatment

  5. Network science and the human brain: Using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease.

    Science.gov (United States)

    Mears, David; Pollard, Harvey B

    2016-06-01

    Over the past 15 years, the emerging field of network science has revealed the key features of brain networks, which include small-world topology, the presence of highly connected hubs, and hierarchical modularity. The value of network studies of the brain is underscored by the range of network alterations that have been identified in neurological and psychiatric disorders, including epilepsy, depression, Alzheimer's disease, schizophrenia, and many others. Here we briefly summarize the concepts of graph theory that are used to quantify network properties and describe common experimental approaches for analysis of brain networks of structural and functional connectivity. These range from tract tracing to functional magnetic resonance imaging, diffusion tensor imaging, electroencephalography, and magnetoencephalography. We then summarize the major findings from the application of graph theory to nervous systems ranging from Caenorhabditis elegans to more complex primate brains, including man. Focusing, then, on studies involving the amygdala, a brain region that has attracted intense interest as a center for emotional processing, fear, and motivation, we discuss the features of the amygdala in brain networks for fear conditioning and emotional perception. Finally, to highlight the utility of graph theory for studying dysfunction of the amygdala in mental illness, we review data with regard to changes in the hub properties of the amygdala in brain networks of patients with depression. We suggest that network studies of the human brain may serve to focus attention on regions and connections that act as principal drivers and controllers of brain function in health and disease.

  6. Noninvasive brain stimulation for Parkinson's disease and dystonia.

    Science.gov (United States)

    Wu, Allan D; Fregni, Felipe; Simon, David K; Deblieck, Choi; Pascual-Leone, Alvaro

    2008-04-01

    Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are promising noninvasive cortical stimulation methods for adjunctive treatment of movement disorders. They avoid surgical risks and provide theoretical advantages of specific neural circuit neuromodulation. Neuromodulatory effects depend on extrinsic stimulation factors (cortical target, frequency, intensity, duration, number of sessions), intrinsic patient factors (disease process, individual variability and symptoms, state of medication treatment), and outcome measures. Most studies to date have shown beneficial effects of rTMS or tDCS on clinical symptoms in Parkinson's disease (PD) and support the notion of spatial specificity to the effects on motor and nonmotor symptoms. Stimulation parameters have varied widely, however, and some studies are poorly controlled. Studies of rTMS or tDCS in dystonia have provided abundant data on physiology, but few on clinical effects. Multiple mechanisms likely contribute to the clinical effects of rTMS and tDCS in movement disorders, including normalization of cortical excitability, rebalancing of distributed neural network activity, and induction of dopamine release. It remains unclear how to individually adjust rTMS or tDCS factors for the most beneficial effects on symptoms of PD or dystonia. Nonetheless, the noninvasive nature, minimal side effects, positive effects in preliminary clinical studies, and increasing evidence for rational mechanisms make rTMS and tDCS attractive for ongoing investigation.

  7. Transcranial magnetic stimulation of degenerating brain: a comparison of normal aging, Alzheimer's, Parkinson's and Huntington's disease.

    Science.gov (United States)

    Ljubisavljevic, M R; Ismail, F Y; Filipovic, S

    2013-07-01

    Although the brain's ability to change constantly in response to external and internal inputs is now well recognized the mechanisms behind it in normal aging and neurodegeneration are less well understood. To gain a better understanding, transcranial magnetic stimulation (TMS) has been used extensively to characterize non-invasively the cortical neurophysiology of the aging and degenerating brain. Furthermore, there has been a surge of studies examining whether repetitive TMS (rTMS) can be used to improve functional deficits in various conditions including normal aging, Alzheimer's and Parkinson's disease. The results of these studies in normal aging and neurodegeneration have emerged reasonably coherent in delineating the main pathology in spite of considerable technical limitations, omnipresent methodological variability, and extraordinary patient heterogeneity. Nevertheless, comparing and integrating what is known about TMS measurements of cortical excitability and plasticity in disorders that predominantly affect cortical brain structures with disorders that predominantly affect subcortical brain structures may provide better understanding of normal and abnormal brain aging fostering new. The present review provides a TMS perspective of changes in cortical neurophysiology and neurochemistry in normal aging and neurodegeneration by integrating what is revealed in individual TMS measurements of cortical excitability and plasticity in physiological aging, Alzheimer's, Parkinson's, and Huntington's, disease. The paper also reflects on current developments in utilizing TMS as a physiologic biomarker to discriminate physiologic aging from neurodegeneration and its potential as a method of therapeutic intervention.

  8. Brain region-specificity of palmitic acid-induced abnormalities associated with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Melrose Joseph

    2008-06-01

    Full Text Available Abstract Background Alzheimer's disease (AD is a progressive, neurodegenerative disease mostly affecting the basal forebrain, cortex and hippocampus whereas the cerebellum is relatively spared. The reason behind this region-specific brain damage in AD is not well understood. Here, we report our data suggesting "differential free fatty acid metabolism in the different brain areas" as a potentially important factor in causing the region-specific damage observed in AD brain. Findings The astroglia from two different rat brain regions, cortex (region affected in AD and cerebellum (unaffected region, were treated with 0.2 mM of palmitic acid. The conditioned media were then transferred to the cortical neurons to study the possible effects on the two main, AD-associated protein abnormalities, viz. BACE1 upregulation and hyperphosphorylation of tau. The conditioned media from palmitic-acid treated cortical astroglia, but not the cerebellar astroglia, significantly elevated levels of phosphorylated tau and BACE1 in cortical neurons as compared to controls (47 ± 7% and 45 ± 4%, respectively. Conclusion The present data provide an experimental explanation for the region-specific damage observed in AD brain; higher fatty acid-metabolizing capacity of cortical astroglia as compared to cerebellar astroglia, may play a causal role in increasing vulnerability of cortex in AD, while sparing cerebellum.

  9. Image-matching as a medical diagnostic support tool (DST) for brain diseases in children.

    Science.gov (United States)

    Huang, H K; Nielsen, J F; Nelson, Marvin D; Liu, Lifeng

    2005-01-01

    Imaging-matching is an important research area in imaging informatics. We have developed and evaluated a novel diagnostic support tool (DST) based on medical image matching using MR brain images. The approach consists of two steps, database generation and image matching. The database contains pre-diagnosed MR brain images. As the images are added to the database, they are registered to the 3D Talairach coordinate system. In addition, regions of interests (ROI) are generated, and image-processing techniques are used to extract relevant image parameters related to the brain and diseases from the ROIs and from the entire MR image. The second step is to retrieve relevant information from the database by performing image matching. In this step, the physician first submits a query image. The DST computes the similarity between the query image and each of the images in the database, and then presents the most similar images to the user. Since the database contains pre-diagnosed images, the retrieved cases tend to contain relevant diagnostic information. To evaluate the usefulness of the DST in a clinical setting, pediatric brain diseases were used. The database contains 2500 pediatric patients between ages 0 and 18 with brain Magnetic Resonance (MR) images of known brain lesions. A testbed was established at the Children's Hospital Los Angeles (CHLA) for acquiring MR images from the PACS server of patients with known lesions. These images were matched against those in the DST pediatric brain MR database. An expert pediatric neuroradiologist evaluated the matched results. We found that in most cases, the image-matching method was able to quickly retrieve images with relevant diagnostic content. The evaluation method and results are given.

  10. Oxidative modification of lipoic acid by HNE in Alzheimer disease brain

    Directory of Open Access Journals (Sweden)

    Sarita S. Hardas

    2013-01-01

    Full Text Available Alzheimer disease (AD is an age-related neurodegenerative disease characterized by the presence of three pathological hallmarks: synapse loss, extracellular senile plaques (SP and intracellular neurofibrillary tangles (NFTs. The major component of SP is amyloid β-peptide (Aβ, which has been shown to induce oxidative stress. The AD brain shows increased levels of lipid peroxidation products, including 4-hydroxy-2-nonenal (HNE. HNE can react covalently with Cys, His, or Lys residues on proteins, altering structure and function of the latter. In the present study we measured the levels of the HNE-modified lipoic acid in brain of subjects with AD and age-matched controls. Lipoic acid is a key co-factor for a number of proteins including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, key complexes for cellular energetics. We observed a significant decrease in the levels of HNE-lipoic acid in the AD brain compared to that of age-matched controls. To investigate this phenomenon further, the levels and activity of lipoamide dehydrogenase (LADH were measured in AD and control brains. Additionally, LADH activities were measured after in-vitro HNE-treatment to mice brains. Both LADH levels and activities were found to be significantly reduced in AD brain compared to age-matched control. HNE-treatment also reduced the LADH activity in mice brain. These data are consistent with a two-hit hypothesis of AD: oxidative stress leads to lipid peroxidation that, in turn, causes oxidative dysfunction of key energy-related complexes in mitochondria, triggering neurodegeneration. This study is consonant with the notion that lipoic acid supplementation could be a potential treatment for the observed loss of cellular energetics in AD and potentiate the antioxidant defense system to prevent or delay the oxidative stress in and progression of this devastating dementing disorder.

  11. Disrupted small-world brain networks in moderate Alzheimer's disease: a resting-state FMRI study.

    Directory of Open Access Journals (Sweden)

    Xiaohu Zhao

    Full Text Available The small-world organization has been hypothesized to reflect a balance between local processing and global integration in the human brain. Previous multimodal imaging studies have consistently demonstrated that the topological architecture of the brain network is disrupted in Alzheimer's disease (AD. However, these studies have reported inconsistent results regarding the topological properties of brain alterations in AD. One potential explanation for these inconsistent results lies with the diverse homogeneity and distinct progressive stages of the AD involved in these studies, which are thought to be critical factors that might affect the results. We investigated the topological properties of brain functional networks derived from resting functional magnetic resonance imaging (fMRI of carefully selected moderate AD patients and normal controls (NCs. Our results showed that the topological properties were found to be disrupted in AD patients, which showing increased local efficiency but decreased global efficiency. We found that the altered brain regions are mainly located in the default mode network, the temporal lobe and certain subcortical regions that are closely associated with the neuropathological changes in AD. Of note, our exploratory study revealed that the ApoE genotype modulates brain network properties, especially in AD patients.

  12. Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer's disease.

    Science.gov (United States)

    Cunnane, Stephen C; Schneider, Julie A; Tangney, Christine; Tremblay-Mercier, Jennifer; Fortier, Mélanie; Bennett, David A; Morris, Martha Clare

    2012-01-01

    Alzheimer's disease (AD) is generally associated with lower omega-3 fatty acid intake from fish but despite numerous studies, it is still unclear whether there are differences in omega-3 fatty acids in plasma or brain. In matched plasma and brain samples provided by the Memory and Aging Project, fatty acid profiles were quantified in several plasma lipid classes and in three brain cortical regions. Fatty acid data were expressed as % composition and as concentrations (mg/dL for plasma or mg/g for brain). Differences in plasma fatty acid profiles between AD, mild cognitive impairment (MCI), and those with no cognitive impairment (NCI) were most apparent in the plasma free fatty acids (lower oleic acid isomers and omega-6 fatty acids in AD) and phospholipids (lower omega-3 fatty acids in AD). In brain, % DHA was lower only in phosphatidylserine of mid-frontal cortex and superior temporal cortex in AD compared to NCI (-14% and -12%, respectively; both p < 0.05). The only significant correlation between plasma and brain fatty acids was between % DHA in plasma total lipids and % DHA in phosphatidylethanolamine of the angular gyrus, but only in the NCI group (+0.77, p < 0.05). We conclude that AD is associated with altered plasma status of both DHA and other fatty acids unrelated to DHA, and that the lipid class-dependent nature of these differences reflects a combination of differences in intake and metabolism.

  13. Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease

    Science.gov (United States)

    Karaca, Ender; Harel, Tamar; Pehlivan, Davut; Jhangiani, Shalini N.; Gambin, Tomasz; Akdemir, Zeynep Coban; Gonzaga-Jauregui, Claudia; Erdin, Serkan; Bayram, Yavuz; Campbell, Ian M.; Hunter, Jill V.; Atik, Mehmed M.; Van Esch, Hilde; Yuan, Bo; Wiszniewski, Wojciech; Isikay, Sedat; Yesil, Gozde; Yuregir, Ozge O.; Bozdogan, Sevcan Tug; Aslan, Huseyin; Aydin, Hatip; Tos, Tulay; Aksoy, Ayse; De Vivo, Darryl C.; Jain, Preti; Geckinli, B. Bilge; Sezer, Ozlem; Gul, Davut; Durmaz, Burak; Cogulu, Ozgur; Ozkinay, Ferda; Topcu, Vehap; Candan, Sukru; Cebi, Alper Han; Ikbal, Mevlit; Gulec, Elif Yilmaz; Gezdirici, Alper; Koparir, Erkan; Ekici, Fatma; Coskun, Salih; Cicek, Salih; Karaer, Kadri; Koparir, Asuman; Duz, Mehmet Bugrahan; Kirat, Emre; Fenercioglu, Elif; Ulucan, Hakan; Seven, Mehmet; Guran, Tulay; Elcioglu, Nursel; Yildirim, Mahmut Selman; Aktas, Dilek; Alikaşifoğlu, Mehmet; Ture, Mehmet; Yakut, Tahsin; Overton, John D.; Yuksel, Adnan; Ozen, Mustafa; Muzny, Donna M.; Adams, David R.; Boerwinkle, Eric; Chung, Wendy K.; Gibbs, Richard A.; Lupski, James R

    2015-01-01

    Development of the human nervous system involves complex interactions between fundamental cellular processes and requires a multitude of genes, many of which remain to be associated with human disease. We applied whole exome sequencing to 128 mostly consanguineous families with neurogenetic disorders that often included brain malformations. Rare variant analyses for both single nucleotide variant (SNV) and copy number variant (CNV) alleles allowed for identification of 45 novel variants in 43 known disease genes, 41 candidate genes, and CNVs in 10 families, with an overall potential molecular cause identified in >85% of families studied. Among the candidate genes identified, we found PRUNE, VARS, and DHX37 in multiple families, and homozygous loss of function variants in AGBL2, SLC18A2, SMARCA1, UBQLN1, and CPLX1. Neuroimaging and in silico analysis of functional and expression proximity between candidate and known disease genes allowed for further understanding of genetic networks underlying specific types of brain malformations. PMID:26539891

  14. Characteristics of brain stem auditory evoked potentials in children with hearing impairment due to infectious diseases.

    Science.gov (United States)

    Ječmenica, Jovana Radovan; Opančina, Aleksandra Aleksandar Bajec

    2015-05-01

    Among objective audiologic tests, the most important were tests of brain stem auditory evoked potentials. The objective of the study was to test the configuration, degree of hearing loss, and response characteristics of auditory brain stem evoked potentials in children with hearing loss occurred due to infectious disease. A case control study design was used. The study group consisted of 54 patients referred for a hearing test because of infectious diseases caused by other agents or that occurred as congenital infection. Infectious agents have led to the emergence of various forms of sensorineural hearing loss. We have found deviations from the normal values of absolute and interwave latencies in some children in our group. We found that in the group of children who had the diseases such as purulent meningitis, or were born with rubella virus and cytomegalovirus infection, a retrocochlear damage was present in children with and without cochlear damage.

  15. Nanoparticle technology for treatment of Parkinson's disease: the role of surface phenomena in reaching the brain.

    Science.gov (United States)

    Leyva-Gómez, Gerardo; Cortés, Hernán; Magaña, Jonathan J; Leyva-García, Norberto; Quintanar-Guerrero, David; Florán, Benjamín

    2015-07-01

    The absence of a definitive treatment for Parkinson's disease has driven the emerging investigation in the search for novel therapeutic alternatives. At present, the formulation of different drugs on nanoparticles has represented several advantages over conventional treatments. This type of multifunctional carrier, owing to its size and composition, has different interactions in biological systems that can lead to a decrease in ability to cross the blood-brain barrier. Therefore, this review focuses on the latest advances in obtaining nanoparticles for Parkinson's disease and provides an overview of technical aspects in the design of brain drug delivery of nanoparticles and an analysis of surface phenomena, a key aspect in the development of functional nanoparticles for Parkinson's disease.

  16. Oxidative stress-mediated brain dehydroepiandrosterone (DHEA formation in Alzheimer’s disease diagnosis

    Directory of Open Access Journals (Sweden)

    Geogres eRammouz

    2011-11-01

    Full Text Available Neurosteroids are steroids made by brain cells independently of peripheral steroidogenic sources. The biosynthesis of most neurosteroids is mediated by proteins and enzymes similar to those identified in the steroidogenic pathway of adrenal and gonadal cells. Dehydroepiandrosterone (DHEA is a major neurosteroid identified in the brain. Over the years we have reported that, unlike other neurosteroids, DHEA biosynthesis in rat, bovine, and human brain is mediated by an oxidative stress-mediated mechanism, independent of the cytochrome P450 17a-hydroxylase/17,20-lyase (CYP17A1 enzyme activity found in the periphery. This alternative pathway is induced by pro-oxidant agents, such as Fe2+ and b-amyloid peptide. Neurosteroids are involved in many aspects of brain function, and as such, are involved in various neuropathologies, including Alzheimer’s disease (AD. AD is a progressive, yet irreversible neurodegenerative disease for which there are limited means for ante-mortem diagnosis. Using brain tissue specimens from control and AD patients, we provided evidence that DHEA is formed in the AD brain by the oxidative stress-mediated metabolism of an unidentified precursor, thus depleting levels of the precursor in the blood stream. We tested for the presence of this DHEA precursor in human serum using a Fe2+-based reaction and determined the amounts of DHEA formed. Fe2+ treatment of the serum resulted in a dramatic increase in DHEA levels in control patients, whereas only a moderate or no increase was observed in AD patients. The DHEA variation after oxidation correlated with the patients’ cognitive and mental status. In this review, we present the cumulative evidence for oxidative stress as a natural regulator of DHEA formation and the use of this concept to develop a blood-based diagnostic tool for neurodegenerative diseases linked to oxidative stress, such as AD.

  17. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease.

    Science.gov (United States)

    Klosinski, Lauren P; Yao, Jia; Yin, Fei; Fonteh, Alfred N; Harrington, Michael G; Christensen, Trace A; Trushina, Eugenia; Brinton, Roberta Diaz

    2015-12-01

    White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical.

  18. Improving memory in Parkinson's disease: a healthy brain ageing cognitive training program.

    Science.gov (United States)

    Naismith, Sharon L; Mowszowski, Loren; Diamond, Keri; Lewis, Simon J G

    2013-07-01

    This study aimed to evaluate the efficacy of a multifactorial 'healthy brain ageing cognitive training program' for Parkinson's disease. Using a single-blinded waitlist control design, 50 participants with Parkinson's disease were recruited from the Brain & Mind Research Institute, Sydney, Australia. The intervention encompassed both psychoeducation and cognitive training; each component lasted 1-hour. The 2-hour sessions were delivered in a group format, twice-weekly over a 7-week period. Multifactorial psychoeducation was delivered by a range of health professionals. In addition to delivering cognitive strategies, it targeted depression, anxiety, sleep, vascular risk factors, diet, and exercise. Cognitive training was computer-based and was conducted by clinical neuropsychologists. The primary outcome was memory. Secondary outcomes included other aspects of cognition and knowledge pertaining to the psychoeducation material. Results demonstrated that cognitive training was associated with significant improvements in learning and memory corresponding to medium to large effect sizes. Treatment was also associated with medium effect size improvements in knowledge. Although the study was limited by the lack of randomized allocation to treatment and control groups, these findings suggest that a healthy brain ageing cognitive training program may be a viable tool to improve memory and/or slow cognitive decline in people with Parkinson's disease. It also appeared successful for increasing awareness of adaptive and/or compensatory cognitive strategies, as well as modifiable risk factors to optimize brain functioning.

  19. Brain Microstructural Abnormalities Are Related to Physiological Alterations in End-Stage Renal Disease.

    Directory of Open Access Journals (Sweden)

    Zhigang Bai

    Full Text Available To study whole-brain microstructural alterations in patients with end-stage renal disease (ESRD and examine the relationship between brain microstructure and physiological indictors in the disease.Diffusion tensor imaging data were collected from 35 patients with ESRD (28 men, 18-61 years and 40 age- and gender-matched healthy controls (HCs, 32 men, 22-58 years. A voxel-wise analysis was then used to identify microstructural alterations over the whole brain in the ESRD patients compared with the HCs. Multiple biochemical measures of renal metabolin, vascular risk factors, general cognitive ability and dialysis duration were correlated with microstructural integrity for the patients.Compared to the HCs, the ESRD patients exhibited disrupted microstructural integrity in not only white matter (WM but also gray matter (GM regions, as characterized by decreased fractional anisotropy (FA and increased mean diffusivity (MD, axial diffusivity (AD and radial diffusivity (RD. Further correlation analyses revealed that the in MD, AD and RD values showed significantly positive correlations with the blood urea nitrogen in the left superior temporal gyrus and significantly negative correlations with the calcium levels in the left superior frontal gyrus (orbital part in the patients.Our findings suggest that ESRD is associated with widespread diffusion abnormalities in both WM and GM regions in the brain, and microstructural integrity of several GM regions are related to biochemical alterations in the disease.

  20. Bilingualism as a contributor to cognitive reserve: evidence from brain atrophy in Alzheimer's disease.

    Science.gov (United States)

    Schweizer, Tom A; Ware, Jenna; Fischer, Corinne E; Craik, Fergus I M; Bialystok, Ellen

    2012-09-01

    Much of the research on delaying the onset of symptoms of Alzheimer's disease (AD) has focused on pharmacotherapy, but environmental factors have also been acknowledged to play a significant role. Bilingualism may be one factor contributing to 'cognitive reserve' (CR) and therefore to a delay in symptom onset. If bilingualism is protective, then the brains of bilinguals should show greater atrophy in relevant areas, since their enhanced CR enables them to function at a higher level than would be predicted from their level of disease. We analyzed a number of linear measurements of brain atrophy from the computed tomography (CT) scans of monolingual and bilingual patients diagnosed with probable AD who were matched on level of cognitive performance and years of education. Bilingual patients with AD exhibited substantially greater amounts of brain atrophy than monolingual patients in areas traditionally used to distinguish AD patients from healthy controls, specifically, the radial width of the temporal horn and the temporal horn ratio. Other measures of brain atrophy were comparable for the two groups. Bilingualism appears to contribute to increased CR, thereby delaying the onset of AD and requiring the presence of greater amounts of neuropathology before the disease is manifest.

  1. The Potential of the Human Connectome as a Biomarker of Brain Disease

    Directory of Open Access Journals (Sweden)

    Marcus eKaiser

    2013-08-01

    Full Text Available The human connectome at the level of fiber tracts between brain regions has been shown to differ in patients with brain disorders compared to healthy control groups. Nonetheless, there is a potentially large number of different network organizations for individual patients that could lead to cognitive deficits prohibiting correct diagnosis. Therefore changes that can distinguish groups might not be sufficient to diagnose the disease that an individual patient suffers from and to indicate the best treatment option for that patient. We describe the challenges introduced by the large variability of connectomes within healthy subjects and patients and outline three common strategies to use connectomes as biomarkers of brain diseases. Finally, we propose a fourth option in using models of simulated brain activity (the dynamic connectome based on structural connectivity rather than the structure (connectome itself as a biomarker of disease. Dynamic connectomes, in addition to currently used structural, functional, or effective connectivity, could be an important future biomarker for clinical applications.

  2. Effect of Acupuncture on the Auditory Evoked Brain Stem Potential in Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    王玲玲; 何崇; 刘跃光; 朱莉莉

    2002-01-01

    @@ Under the auditory evoked brain stem potential (ABP) examination, the latent period of V wave and the intermittent periods of III-V peak and I-V peak were significantly shortened in Parkinson's disease patients of the treatment group (N=29) after acupuncture treatment. The difference of cumulative scores in Webster's scale was also decreased in correlation analysis. The increase of dopamine in the brain and the excitability of the dopamine neurons may contribute to the therapeutic effects, in TCM terms, of subduing the pathogenic wind and tranquilizing the mind.

  3. Effect of acupuncture on the auditory evoked brain stem potential in Parkinson's disease.

    Science.gov (United States)

    Wang, Lingling; He, Chong; Liu, Yueguang; Zhu, Lili

    2002-03-01

    Under the auditory evoked brain stem potential (ABP) examination, the latent period of V wave and the intermittent periods of III-V peak and I-V peak were significantly shortened in Parkinson's disease patients of the treatment group (N = 29) after acupuncture treatment. The difference of cumulative scores in Webster's scale was also decreased in correlation analysis. The increase of dopamine in the brain and the excitability of the dopamine neurons may contribute to the therapeutic effects, in TCM terms, of subduing the pathogenic wind and tranquilizing the mind.

  4. Parsing brain activity associated with acupuncture treatment in Parkinson's diseases.

    Science.gov (United States)

    Chae, Younbyoung; Lee, Hyejung; Kim, Hackjin; Kim, Chang-Hwan; Chang, Dae-Il; Kim, Kyung-Mi; Park, Hi-Joon

    2009-09-15

    Acupuncture, a common treatment modality within complementary and alternative medicine, has been widely used for Parkinson's disease (PD). Using functional magnetic resonance imaging (fMRI), we explored the neural mechanisms underlying the effect of specific and genuine acupuncture treatment on the motor function in patients with PD. Three fMRI scans were performed in random order in a block design, one for verum acupuncture (VA) treatment, another one for a covert placebo (CP), and the third one for an overt placebo (OP) at the motor function implicated acupoint GB34 on the left foot of 10 patients with PD. We calculated the contrast that subtracts the blood-oxygen-level dependent (BOLD) response for the acupuncture effect (VA vs. CP) and the placebo effect (CP vs. OP). We found a significant improvement in the motor function of the affected hand after acupuncture treatment. The putamen and the primary motor cortex were activated when patients with PD received the acupuncture treatment (VA vs. CP) and these activations correlated with individual enhanced motor function. Expectation towards acupuncture modality (CP vs. OP) elicited activation over the anterior cingulate gyrus, the superior frontal gyrus, and the superior temporal gyrus. These findings suggest that acupuncture treatment might facilitate improvement in the motor functioning of patients with PD via the basal ganglia-thalamocortical circuit.

  5. DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain.

    Science.gov (United States)

    Barrachina, Marta; Ferrer, Isidre

    2009-08-01

    DNA methylation occurs predominantly at cytosines that precede guanines in dinucleotide CpG sites; it is one of the most important mechanisms for epigenetic DNA regulation during normal development and for aberrant DNA in cancer. To determine the feasibility of DNA methylation studies in the postmortem human brain, we evaluated brain samples with variable postmortem artificially increased delays up to 48 hours. DNA methylation was analyzed in selected regions of MAPT, APP, and PSEN1 in the frontal cortex and hippocampus of controls (n=26) and those with Alzheimer disease at Stages I to II (n=17); Alzheimer disease at Stages III to IV (n=15); Alzheimer disease at Stages V to VI (n=12); argyrophilic grain disease (n=10); frontotemporal lobar degeneration linked to tau mutations (n=6); frontotemporal lobar degeneration with ubiquitin-immunoreactive inclusions (n=4); frontotemporal lobar degeneration with motor neuron disease (n=3); Pick disease (n=3); Parkinson disease (n=8); dementia with Lewy bodies, pure form (n=5); and dementia with Lewy bodies, common form (n=15). UCHL1 (ubiquitin carboxyl-terminal hydrolase 1 gene) was analyzed in the frontal cortex of controls and those with Parkinson disease and related synucleinopathies. DNA methylation sites were very reproducible in every case. No differences in the percentage of CpG methylation were found between control and disease samples or among the different pathological entities in any region analyzed. Because small changes in methylation of DNA promoters in vulnerable cells might have not been detected in total homogenates, however, these results should be interpreted with caution, particularly as they relate to chronic degenerative diseases in which small modifications may be sufficient to modulate disease progression.

  6. Elevated brain aluminium and early onset Alzheimer’s disease in an individual occupationally exposed to aluminium: a case report

    OpenAIRE

    2014-01-01

    Introduction Aluminium is a known neurotoxin and occupational exposure to aluminium has been implicated in neurological disease including Alzheimer’s disease. Here we present the first comprehensive and unequivocal data demonstrating significantly elevated brain aluminium content in an individual occupationally exposed to aluminium. Case presentation A 66-year-old Caucasian man who died with Alzheimer’s disease showed significantly elevated brain aluminium content, 2.98 (2.73) μg/g dry weight...

  7. Development of Nonviral Vectors Targeting the Brain as a Therapeutic Approach For Parkinson's Disease and Other Brain Disorders.

    Science.gov (United States)

    Javed, Hayate; Menon, Sindhu A; Al-Mansoori, Karima M; Al-Wandi, Abdelmojib; Majbour, Nour K; Ardah, Mustafa T; Varghese, Shiji; Vaikath, Nishant N; Haque, M Emdadul; Azzouz, Mimoun; El-Agnaf, Omar Ma

    2016-04-01

    Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by tremor, rigidity, bradykinesia, and postural instability, for which there is no effective treatment available till date. Here, we report the development of nonviral vectors specific for neuronal cells that can deliver short interfering RNA (siRNA) against the α-synuclein gene (SNCA), and prevent PD-like symptoms both in vitro and in vivo. These vectors not only help siRNA duplexes cross the blood-brain barrier in mice, but also stabilize these siRNAs leading to a sustainable 60-90% knockdown of α-synuclein protein. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine rapidly develop PD-like symptoms which were significantly alleviated when SNCA was knocked down using our vectors. Together, our data not only confirm the central role of α-synuclein in the onset of PD, but also provide a proof of principle that these nonviral vectors can be used as novel tools to design effective strategies to combat central nervous system diseases.

  8. Extracting salient brain patterns for imaging-based classification of neurodegenerative diseases.

    Science.gov (United States)

    Rueda, Andrea; González, Fabio A; Romero, Eduardo

    2014-06-01

    Neurodegenerative diseases comprise a wide variety of mental symptoms whose evolution is not directly related to the visual analysis made by radiologists, who can hardly quantify systematic differences. Moreover, automatic brain morphometric analyses, that do perform this quantification, contribute very little to the comprehension of the disease, i.e., many of these methods classify but they do not produce useful anatomo-functional correlations. This paper presents a new fully automatic image analysis method that reveals discriminative brain patterns associated to the presence of neurodegenerative diseases, mining systematic differences and therefore grading objectively any neurological disorder. This is accomplished by a fusion strategy that mixes together bottom-up and top-down information flows. Bottom-up information comes from a multiscale analysis of different image features, while the top-down stage includes learning and fusion strategies formulated as a max-margin multiple-kernel optimization problem. The capacity of finding discriminative anatomic patterns was evaluated using the Alzheimer's disease (AD) as the use case. The classification performance was assessed under different configurations of the proposed approach in two public brain magnetic resonance datasets (OASIS-MIRIAD) with patients diagnosed with AD, showing an improvement varying from 6.2% to 13% in the equal error rate measure, with respect to what has been reported by the feature-based morphometry strategy. In terms of the anatomical analysis, discriminant regions found by the proposed approach highly correlates to what has been reported in clinical studies of AD.

  9. The neurological effects of ghrelin in brain diseases: Beyond metabolic functions.

    Science.gov (United States)

    Jiao, Qian; Du, Xixun; Li, Yong; Gong, Bing; Shi, Limin; Tang, Tingting; Jiang, Hong

    2017-02-01

    Ghrelin, a peptide released by the stomach that plays a major role in regulating energy metabolism, has recently been shown to have effects on neurobiological behaviors. Ghrelin enhances neuronal survival by reducing apoptosis, alleviating inflammation and oxidative stress, and accordingly improving mitochondrial function. Ghrelin also stimulates the proliferation, differentiation and migration of neural stem/progenitor cells (NS/PCs). Additionally, the ghrelin is benefit for the recovery of memory, mood and cognitive dysfunction after stroke or traumatic brain injury. Because of its neuroprotective and neurogenic roles, ghrelin may be used as a therapeutic agent in the brain to combat neurodegenerative disease. In this review, we highlight the pre-clinical evidence and the proposed mechanisms underlying the role of ghrelin in physiological and pathological brain function.

  10. The treatment of Parkinson’s disease with deep brain stimulation:current issues

    Institute of Scientific and Technical Information of China (English)

    Alexia-Sabine Moldovan; Stefan Jun Groiss; Saskia Elben; Martin Südmeyer; Alfons Schnitzler; Lars Wojtecki

    2015-01-01

    Deep brain stimulation has become a well-established symptomatic treatment for Parkinson’s disease during the last 25 years. Besides improving motor symptoms and long-term motor com-plications, positive effects on patients’ mobility, activities of daily living, emotional well-being and health-related quality of life have been recognized. Apart from that, numerous clinical trials analyzed effects on non-motor symptoms and side effects of deep brain stimulation. Several technical issues and stimulation paradigms have been and are still being developed to optimize the therapeutic effects, minimize the side effects and facilitate handling. This review summarizes current therapeutic issues,i.e., patient and target selection, surgical procedure and programming paradigms. In addition it focuses on neuropsychological effects and side effects of deep brain stimulation.

  11. Brain imaging for oxidative stress and mitochondrial dysfunction in neurodegenerative diseases.

    Science.gov (United States)

    Okazawa, H; Ikawa, M; Tsujikawa, T; Kiyono, Y; Yoneda, M

    2014-12-01

    Oxidative stress, one of the most probable molecular mechanisms for neuronal impairment, is reported to occur in the affected brain regions of various neurodegenerative diseases. Recently, many studies showed evidence of a link between oxidative stress or mitochondrial damage and neuronal degeneration. Basic in vitro experiments and postmortem studies demonstrated that biomarkers for oxidative damage can be observed in the pathogenic regions of the brain and the affected neurons. Model animal studies also showed oxidative damage associated with neuronal degeneration. The molecular imaging method with positron emission tomography (PET) is expected to delineate oxidatively stressed microenvironments to elucidate pathophysiological changes of the in vivo brain; however, only a few studies have successfully demonstrated enhanced stress in patients. Radioisotope copper labeled diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) may be the most promising candidate for this oxidative stress imaging. The tracer is usually known as a hypoxic tissue imaging PET probe, but the accumulation mechanism is based on the electron rich environment induced by mitochondrial impairment and/or microsomal over-reduction, and thus it is considered to represent the oxidative stress state correlated with the degree of disease severity. In this review, Cu-ATSM PET is introduced in detail from the basics to practical methods in clinical studies, as well as recent clinical studies on cerebrovascular diseases and neurodegenerative diseases. Several other PET probes are also introduced from the point of view of neuronal oxidative stress imaging. These molecular imaging methods should be promising tools to reveal oxidative injuries in various brain diseases.

  12. Brain Aggregates: An Effective In Vitro Cell Culture System Modeling Neurodegenerative Diseases.

    Science.gov (United States)

    Ahn, Misol; Kalume, Franck; Pitstick, Rose; Oehler, Abby; Carlson, George; DeArmond, Stephen J

    2016-03-01

    Drug discovery for neurodegenerative diseases is particularly challenging because of the discrepancies in drug effects between in vitro and in vivo studies. These discrepancies occur in part because current cell culture systems used for drug screening have many limitations. First, few cell culture systems accurately model human aging or neurodegenerative diseases. Second, drug efficacy may differ between dividing and stationary cells, the latter resembling nondividing neurons in the CNS. Brain aggregates (BrnAggs) derived from embryonic day 15 gestation mouse embryos may represent neuropathogenic processes in prion disease and reflect in vivo drug efficacy. Here, we report a new method for the production of BrnAggs suitable for drug screening and suggest that BrnAggs can model additional neurological diseases such as tauopathies. We also report a functional assay with BrnAggs by measuring electrophysiological activities. Our data suggest that BrnAggs could serve as an effective in vitro cell culture system for drug discovery for neurodegenerative diseases.

  13. Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset.

    Science.gov (United States)

    Swami, Meera; Hendricks, Audrey E; Gillis, Tammy; Massood, Tiffany; Mysore, Jayalakshmi; Myers, Richard H; Wheeler, Vanessa C

    2009-08-15

    The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying factors. Delineating these modifiers is a critical step towards developing validated therapeutic targets in HD patients. The HD CAG repeat is somatically unstable, undergoing progressive length increases over time, particularly in brain regions that are the targets of neurodegeneration. Here, we have explored the hypothesis that somatic instability of the HD CAG repeat is itself a modifier of disease. Using small-pool PCR, we quantified somatic instability in the cortex region of the brain from a cohort of HD individuals exhibiting phenotypic extremes of young and old disease onset as predicted by the length of their constitutive HD CAG repeat lengths. After accounting for constitutive repeat length, somatic instability was found to be a significant predictor of onset age, with larger repeat length gains associated with earlier disease onset. These data are consistent with the hypothesis that somatic HD CAG repeat length expansions in target tissues contribute to the HD pathogenic process, and support pursuing factors that modify somatic instability as viable therapeutic targets.

  14. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease.

    Science.gov (United States)

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-05-01

    Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the

  15. Framingham coronary heart disease risk score can be predicted from structural brain images in elderly subjects.

    Directory of Open Access Journals (Sweden)

    Jane Maryam Rondina

    2014-12-01

    Full Text Available Recent literature has presented evidence that cardiovascular risk factors (CVRF play an important role on cognitive performance in elderly individuals, both those who are asymptomatic and those who suffer from symptoms of neurodegenerative disorders. Findings from studies applying neuroimaging methods have increasingly reinforced such notion. Studies addressing the impact of CVRF on brain anatomy changes have gained increasing importance, as recent papers have reported gray matter loss predominantly in regions traditionally affected in Alzheimer’s disease (AD and vascular dementia in the presence of a high degree of cardiovascular risk. In the present paper, we explore the association between CVRF and brain changes using pattern recognition techniques applied to structural MRI and the Framingham score (a composite measure of cardiovascular risk largely used in epidemiological studies in a sample of healthy elderly individuals. We aim to answer the following questions: Is it possible to decode (i.e., to learn information regarding cardiovascular risk from structural brain images enabling individual predictions? Among clinical measures comprising the Framingham score, are there particular risk factors that stand as more predictable from patterns of brain changes? Our main findings are threefold: i we verified that structural changes in spatially distributed patterns in the brain enable statistically significant prediction of Framingham scores. This result is still significant when controlling for the presence of the APOE 4 allele (an important genetic risk factor for both AD and cardiovascular disease. ii When considering each risk factor singly, we found different levels of correlation between real and predicted factors; however, single factors were not significantly predictable from brain images when considering APOE4 allele presence as covariate. iii We found important gender differences, and the possible causes of that finding are discussed.

  16. Graph analysis of structural brain networks in Alzheimer's disease: beyond small world properties.

    Science.gov (United States)

    John, Majnu; Ikuta, Toshikazu; Ferbinteanu, Janina

    2017-03-01

    Changes in brain connectivity in patients with early Alzheimer's disease (AD) have been investigated using graph analysis. However, these studies were based on small data sets, explored a limited range of network parameters, and did not focus on more restricted sub-networks, where neurodegenerative processes may introduce more prominent alterations. In this study, we constructed structural brain networks out of 87 regions using data from 135 healthy elders and 100 early AD patients selected from the Open Access Series of Imaging Studies (OASIS) database. We evaluated the graph properties of these networks by investigating metrics of network efficiency, small world properties, segregation, product measures of complexity, and entropy. Because degenerative processes take place at different rates in different brain areas, analysis restricted to sub-networks may reveal changes otherwise undetected. Therefore, we first analyzed the graph properties of a network encompassing all brain areas considered together, and then repeated the analysis after dividing the brain areas into two sub-networks constructed by applying a clustering algorithm. At the level of large scale network, the analysis did not reveal differences between AD patients and controls. In contrast, the same analysis performed on the two sub-networks revealed that small worldness diminished with AD only in the sub-network containing the areas of medial temporal lobe known to be heaviest and earliest affected. The second sub-network, which did not present significant AD-induced modifications of 'classical' small world parameters, nonetheless showed a trend towards an increase in small world propensity, a novel metric that unbiasedly quantifies small world structure. Beyond small world properties, complexity and entropy measures indicated that the intricacy of connection patterns and structural diversity decreased in both sub-networks. These results show that neurodegenerative processes impact volumetric

  17. Traumatic Brain Injury Leads to Development of Parkinson's Disease Related Pathology in Mice

    Science.gov (United States)

    Impellizzeri, Daniela; Campolo, Michela; Bruschetta, Giuseppe; Crupi, Rosalia; Cordaro, Marika; Paterniti, Irene; Cuzzocrea, Salvatore; Esposito, Emanuela

    2016-01-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem that affects all societies. This condition results from the application of external physical strength to the brain that leads to transitory or permanent structural and functional impairments. Moreover, TBI is a risk factor for neurodegeneration and can e.g., increase the risk for Parkinson's disease (PD), a late-onset neurodegenerative disorder with loss of dopaminergic neurons in substantia nigra. In this study, we wanted to explore the possible development of PD-related pathology within the context of an experimental model of TBI. Traumatic brain injury was induced in mice by controlled cortical impact. At different time points behavioral tests (open field, elevated plus maze tests, and Barnes maze) were performed: The animals were sacrificed 30 days after the impact and the brains were processed for Western blot and immunohistochemical analyses. Following TBI there was a significant decrease in expression of tyrosine hydroxylase and dopamine transporter in the substantia nigra as well as significant behavioral alterations. In addition, a strong increase in neuroinflammation was evident, as shown by increased levels of cyclooxygenase-2 and inducible nitric oxide synthase as well as IκB-α degradation and nuclear-κB translocation. Moreover, neurotrophic factors such as brain-derived neurotrophic factor, neurotrophin-3, nerve growth factor, and glial cell line-derived neurotrophic factor were decreased 30 days post-TBI. Interestingly, we observed a significant accumulation of α-synuclein in microglia compared to astrocytes. This study suggests that PD-related molecular events can be triggered upon TBI. The biological mechanisms linking brain trauma and neurodegenerative diseases need to be further investigated. PMID:27790086

  18. Brain stem and cerebellar atrophy in chronic progressive neuro-Behçet's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kanoto, Masafumi, E-mail: mkanoto@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Hosoya, Takaaki, E-mail: thosoya@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Toyoguchi, Yuuki, E-mail: c-elegans_0201g@mail.goo.ne.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Oda, Atsuko, E-mail: a.oda@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan)

    2013-01-15

    Purpose: Chronic progressive neuro-Behçet's disease (CPNBD) resembles multiple sclerosis (MS) on patient background and image findings, and therefore is difficult to diagnose. The purpose is to identify the characteristic magnetic resonance imaging (MRI) findings of CPNBD and to clarify the differences between the MRI findings of CPNBD and those of MS. Materials and methods: The subjects consist of a CPNBD group (n = 4; 1 male and 3 females; mean age, 51 y.o.), a MS group (n = 19; 3 males and 16 females; mean age, 45 y.o.) and a normal control group (n = 23; 10 males and 13 females; mean age, 45 y.o.). Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were retrospectively evaluated in each subjects. In middle sagittal brain MR images, the prepontine distance was measured as an indirect index of brain stem and cerebellar atrophy and the pontine and mesencephalic distance was measured as a direct index of brain stem atrophy. These indexes were statistically analyzed. Results: Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were seen in all CPNBD cases. Prepontine distance was significantly different between the CPNBD group and the MS group (p < 0.05), and between the CPNBD group and the normal control group (p < 0.001). Pontine and mesencephalic distance were significantly different between the CPNBD group and the MS group (p < 0.001, p < 0.01 respectively), and between the CPNBD group and the normal control group (p < 0.001). Conclusions: Chronic progressive neuro-Behçet's disease should be considered in patients with brain stem and cerebellar atrophy in addition to leukoencephalopathy similar to that seen in multiple sclerosis.

  19. Differential Changes in Postsynaptic Density Proteins in Postmortem Huntington’s Disease and Parkinson’s Disease Human Brains

    Directory of Open Access Journals (Sweden)

    C. Fourie

    2014-01-01

    Full Text Available NMDA and AMPA-type glutamate receptors and their bound membrane-associated guanylate kinases (MAGUKs are critical for synapse development and plasticity. We hypothesised that these proteins may play a role in the changes in synapse function that occur in Huntington’s disease (HD and Parkinson’s disease (PD. We performed immunohistochemical analysis of human postmortem brain tissue to examine changes in the expression of SAP97, PSD-95, GluA2 and GluN1 in human control, and HD- and PD-affected hippocampus and striatum. Significant increases in SAP97 and PSD-95 were observed in the HD and PD hippocampus, and PSD95 was downregulated in HD striatum. We observed a significant increase in GluN1 in the HD hippocampus and a decrease in GluA2 in HD and PD striatum. Parallel immunohistochemistry experiments in the YAC128 mouse model of HD showed no change in the expression levels of these synaptic proteins. Our human data show that major but different changes occur in glutamatergic proteins in HD versus PD human brains. Moreover, the changes in human HD brains differ from those occurring in the YAC128 HD mouse model, suggesting that unique changes occur at a subcellular level in the HD human hippocampus.

  20. A novel method for evaluating brain function and microstructural changes in Parkinson′s disease

    Directory of Open Access Journals (Sweden)

    Ming-fang Jiang

    2015-01-01

    Full Text Available In this study, microstructural brain damage in Parkinson′s disease patients was examined using diffusion tensor imaging and tract-based spatial statistics. The analyses revealed the presence of neuronal damage in the substantia nigra and putamen in the Parkinson′s disease patients. Moreover, disease symptoms worsened with increasing damage to the substantia nigra, confirming that the substantia nigra and basal ganglia are the main structures affected in Parkinson′s disease. We also found that microstructural damage to the putamen, caudate nucleus and frontal lobe positively correlated with depression. Based on the tract-based spatial statistics, various white matter tracts appeared to have microstructural damage, and this correlated with cognitive disorder and depression. Taken together, our results suggest that diffusion tensor imaging and tract-based spatial statistics can be used to effectively study brain function and microstructural changes in patients with Parkinson′s disease. Our novel findings should contribute to our understanding of the histopathological basis of cognitive dysfunction and depression in Parkinson′s disease.

  1. Longitudinal patterns of leukoaraiosis and brain atrophy in symptomatic small vessel disease.

    Science.gov (United States)

    Lambert, Christian; Benjamin, Philip; Zeestraten, Eva; Lawrence, Andrew J; Barrick, Thomas R; Markus, Hugh S

    2016-04-01

    Cerebral small vessel disease is a common condition associated with lacunar stroke, cognitive impairment and significant functional morbidity. White matter hyperintensities and brain atrophy, seen on magnetic resonance imaging, are correlated with increasing disease severity. However, how the two are related remains an open question. To better define the relationship between white matter hyperintensity growth and brain atrophy, we applied a semi-automated magnetic resonance imaging segmentation analysis pipeline to a 3-year longitudinal cohort of 99 subjects with symptomatic small vessel disease, who were followed-up for ≥1 years. Using a novel two-stage warping pipeline with tissue repair step, voxel-by-voxel rate of change maps were calculated for each tissue class (grey matter, white matter, white matter hyperintensities and lacunes) for each individual. These maps capture both the distribution of disease and spatial information showing local rates of growth and atrophy. These were analysed to answer three primary questions: first, is there a relationship between whole brain atrophy and magnetic resonance imaging markers of small vessel disease (white matter hyperintensities or lacune volume)? Second, is there regional variation within the cerebral white matter in the rate of white matter hyperintensity progression? Finally, are there regionally specific relationships between the rates of white matter hyperintensity progression and cortical grey matter atrophy? We demonstrate that the rates of white matter hyperintensity expansion and grey matter atrophy are strongly correlated (Pearson's R = -0.69, P atrophy occurs annually (P atrophy rates, in the medial-frontal, orbito-frontal, parietal and occipital regions. Conversely, increased rates of global grey matter atrophy are significantly associated with faster white matter hyperintensity growth in the frontal and parietal regions. Together, these results link the progression of white matter hyperintensities

  2. Recent Developments in Understanding Brain Aging: Implications for Alzheimer's Disease and Vascular Cognitive Impairment.

    Science.gov (United States)

    Deak, Ferenc; Freeman, Willard M; Ungvari, Zoltan; Csiszar, Anna; Sonntag, William E

    2016-01-01

    As the population of the Western world is aging, there is increasing awareness of age-related impairments in cognitive function and a rising interest in finding novel approaches to preserve cerebral health. A special collection of articles in The Journals of Gerontology: Biological Sciences and Medical Sciences brings together information of different aspects of brain aging, from latest developments in the field of neurodegenerative disorders to cerebral microvascular mechanisms of cognitive decline. It is emphasized that although the cellular changes that occur within aging neurons have been widely studied, more research is required as new signaling pathways are discovered that can potentially protect cells. New avenues for research targeting cellular senescence, epigenetics, and endocrine mechanisms of brain aging are also discussed. Based on the current literature it is clear that understanding brain aging and reducing risk for neurological disease with age requires searching for mechanisms and treatment options beyond the age-related changes in neuronal function. Thus, comprehensive approaches need to be developed that address the multiple, interrelated mechanisms of brain aging. Attention is brought to the importance of maintenance of cerebromicrovascular health, restoring neuroendocrine balance, and the pressing need for funding more innovative research into the interactions of neuronal, neuroendocrine, inflammatory and microvascular mechanisms of cognitive impairment, and Alzheimer's disease.

  3. Cytokines, neurotrophins, and oxidative stress in brain disease from mucopolysaccharidosis IIIB.

    Science.gov (United States)

    Villani, Guglielmo R D; Gargiulo, Nadia; Faraonio, Raffaella; Castaldo, Sigismondo; Gonzalez Y Reyero, Enrico; Di Natale, Paola

    2007-02-15

    Mucopolysaccharidosis IIIB (MPS IIIB; Sanfilippo syndrome type B) is characterized by profound neurological deterioration. Because a murine model of MPS IIIB disease is available, we focused on analysis of gene expression in the brain and cerebellum of 7-month-old MPS IIIB mice by pathway-specific filter microarrays designed to probe apoptotic-related, neurotrophic signalling molecules and inflammatory cytokines and receptors. Moreover, we extended the analysis with real-time PCR performed at 1, 3, 7 months after birth. Bdnf was down-regulated in the brain but up-regulated in the cerebellum at 7 months of age, both at RNA and at protein levels. Cbln1 presented a threefold increase in the oldest brains while remaining unaltered in the cerebellum. Ccl3, Casp11, gp91(phox), p67(phox), and p47(phox) showed an increased expression in both brain and cerebellum at each examined time point. Ccl3, in particular, exhibited in both organs and at all times tested approximately a tenfold increase in its expression. Insofar as p47(phox), p67(phox), and gp91(phox) are all components of the phagocyte NADPH oxidase, our results suggest the possible involvement of the reactive oxygen species in the genesis of neurodegeneration in MPS IIIB disease.

  4. ROS and Brain Diseases: The Good, the Bad, and the Ugly

    Directory of Open Access Journals (Sweden)

    Aurel Popa-Wagner

    2013-01-01

    Full Text Available The brain is a major metabolizer of oxygen and yet has relatively feeble protective antioxidant mechanisms. This paper reviews the Janus-faced properties of reactive oxygen species. It will describe the positive aspects of moderately induced ROS but it will also outline recent research findings concerning the impact of oxidative and nitrooxidative stress on neuronal structure and function in neuropsychiatric diseases, including major depression. A common denominator of all neuropsychiatric diseases including schizophrenia and ADHD is an increased inflammatory response of the brain caused either by an exposure to proinflammatory agents during development or an accumulation of degenerated neurons, oxidized proteins, glycated products, or lipid peroxidation in the adult brain. Therefore, modulation of the prooxidant-antioxidant balance provides a therapeutic option which can be used to improve neuroprotection in response to oxidative stress. We also discuss the neuroprotective role of the nuclear factor erythroid 2-related factor (Nrf2 in the aged brain in response to oxidative stressors and nanoparticle-mediated delivery of ROS-scavenging drugs. The antioxidant therapy is a novel therapeutic strategy. However, the available drugs have pleiotropic actions and are not fully characterized in the clinic. Additional clinical trials are needed to assess the risks and benefits of antioxidant therapies for neuropsychiatric disorders.

  5. The Relationship between Parkinson Disease and Brain Tumor: A Meta-Analysis

    Science.gov (United States)

    Ye, Rong; Shen, Ting; Jiang, Yasi; Xu, Lingjia; Si, Xiaoli; Zhang, Baorong

    2016-01-01

    Objective Epidemiological studies have investigated the association between Parkinson disease (PD) occurrence and the risk of brain tumors, while the results remain controversial. We performed a meta-analysis to clarify the exact relationship between PD and brain tumors. Methods A systematic literature search was conducted using PubMed, Embase, ScienceDirect and CBM (China Biology Medicine Disc) before February 2016. Eligible studies were those that reported risk estimates of brain tumors among patients with PD or vice versa. A random-effects model was used to calculate the pooled odds ratio (OR) of the outcomes. Subgroup analyses and sensitivity analysis were conducted to explore the potential sources of heterogeneity. Results In total, eight studies involving 329,276 participants met our inclusion criteria. The pooled OR was 1.51 (95%CI 1.21–1.89), indicating that PD carried a higher risk of brain tumor. Analyses by temporal relationship found that the occurrence of brain tumor was significantly higher after the diagnosis of PD (OR 1.55, 95% CI 1.18–2.05), but not statistically significant before PD diagnosis (OR 1.21, 95%CI 0.93–1.58). Subgroup analysis showed that gender differences, ethnicity differences and the characteristic of the tumor (benign or malignant) did not make much change in the association between brain tumor and PD. Conclusions Our meta-analysis collecting epidemiological studies suggested a positive association of PD with brain tumors, while the influence of anti-parkinson drugs and ascertainment bias could not be excluded. Further studies with larger sample size and more strict inclusion criteria should be conducted in the future. PMID:27764145

  6. Whole-brain functional networks in cognitively normal, mild cognitive impairment, and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Eun Hyun Seo

    Full Text Available The conceptual significance of understanding functional brain alterations and cognitive deficits associated with Alzheimer's disease (AD process has been widely established. However, the whole-brain functional networks of AD and its prodromal stage, mild cognitive impairment (MCI, are not well clarified yet. In this study, we compared the characteristics of the whole-brain functional networks among cognitively normal (CN, MCI, and AD individuals by applying graph theoretical analyses to [(18F] fluorodeoxyglucose positron emission tomography (FDG-PET data. Ninety-four CN elderly, 183 with MCI, and 216 with AD underwent clinical evaluation and FDG-PET scan. The overall small-world property as seen in the CN whole-brain network was preserved in MCI and AD. In contrast, individual parameters of the network were altered with the following patterns of changes: local clustering of networks was lower in both MCI and AD compared to CN, while path length was not different among the three groups. Then, MCI had a lower level of local clustering than AD. Subgroup analyses for AD also revealed that very mild AD had lower local clustering and shorter path length compared to mild AD. Regarding the local properties of the whole-brain networks, MCI and AD had significantly decreased normalized betweenness centrality in several hubs regionally associated with the default mode network compared to CN. Our results suggest that the functional integration in whole-brain network progressively declines due to the AD process. On the other hand, functional relatedness between neighboring brain regions may not gradually decrease, but be the most severely altered in MCI stage and gradually re-increase in clinical AD stages.

  7. Impact of small vessel disease in the brain on gait and balance.

    Science.gov (United States)

    Pinter, Daniela; Ritchie, Stuart J; Doubal, Fergus; Gattringer, Thomas; Morris, Zoe; Bastin, Mark E; Del C Valdés Hernández, Maria; Royle, Natalie A; Corley, Janie; Muñoz Maniega, Susana; Pattie, Alison; Dickie, David A; Staals, Julie; Gow, Alan J; Starr, John M; Deary, Ian J; Enzinger, Christian; Fazekas, Franz; Wardlaw, Joanna

    2017-01-30

    Gait and balance impairment is highly prevalent in older people. We aimed to assess whether and how single markers of small vessel disease (SVD) or a combination thereof explain gait and balance function in the elderly. We analysed 678 community-dwelling healthy subjects from the Lothian Birth Cohort 1936 at the age of 71-74 years who had undergone comprehensive risk factor assessment, gait and balance assessment as well as brain MRI. We investigated the impact of individual SVD markers (white matter hyperintensity - WMH, microbleeds, lacunes, enlarged perivascular spaces, brain atrophy) as seen on structural brain MRI and of a global SVD score on the patients' performance. A regression model revealed that age, sex, and hypertension significantly explained gait speed. Among SVD markers white matter hyperintensity (WMH) score or volume were additional significant and independent predictors of gait speed in the regression model. A similar association was seen with the global SVD score. Our study confirms a negative impact of SVD-related morphologic brain changes on gait speed in addition to age, sex and hypertension independent from brain atrophy. The presence of WMH seems to be the major driving force for SVD on gait impairment in healthy elderly subjects.

  8. Nanoparticles and blood-brain barrier: the key to central nervous system diseases.

    Science.gov (United States)

    Domínguez, Alazne; Suárez-Merino, Blanca; Goñi-de-Cerio, Felipe

    2014-01-01

    Major central nervous system disorders represent a significant and worldwide public health problem. In fact, the therapeutic success of many pharmaceuticals developed to treat central nervous system diseases is still moderate, since the blood-brain barrier (BBB) limits the access of systemically administered compounds to the brain. Therefore, they require the application of a large total dose of a drug, and cause numerous toxic effects. The development of nanotechnological systems are useful tools to deliver therapeutics and/or diagnostic probes to the brain due to nanocarriers having the potential to improve the therapeutic effect of drugs and to reduce their side effects. This review provides a brief overview of the variety of carriers employed for central nervous system drug and diagnostic probes delivery. Further, this paper focuses on the novel nanocarriers developed to enhance brain delivery across the blood-brain barrier. Special attention is paid to liposomes, micelles, polymeric and lipid-based nanoparticles, dendrimers and carbon nanotubes. The recent developments in nanocarrier implementation through size/charge optimization and surface modifications (PEGylation, targeting delivery, and coating with surfactants) have been discussed. And a detailed description of the nanoscaled pharmaceutical delivery devices employed for the treatment of central nervous system disorders have also been defined. The aim of the review is to evaluate the nanotechnology-based drug delivery strategies to treat different central nervous system disorders.

  9. Up-regulated production and activation of the complement system in Alzheimer's disease brain.

    Science.gov (United States)

    Yasojima, K; Schwab, C; McGeer, E G; McGeer, P L

    1999-03-01

    We used reverse transcriptase-polymerase chain reaction and Western blotting techniques to measure the levels of complement mRNAs and their protein products in Alzheimer's disease (AD) brain compared with non-AD brain. mRNAs for C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9 were detected in the 11 regions of brain that were investigated. The mRNA levels were markedly up-regulated in affected areas of AD brain. In the entorhinal cortex, hippocampus, and midtemporal gyrus, which had dense accumulations of plaques and tangles, C1q mRNA was increased 11- to 80-fold over control levels, and C9 mRNA 10- to 27-fold. These levels were substantially higher than in the livers of the same cases. Western blot analysis of AD hippocampus established the presence of all of the native complement proteins as well as their activation products C4d, C3d, and the membrane attack complex. These data indicate that high levels of complement are being produced in affected areas of AD brain, that full activation of the classical complement pathway is continuously taking place, and that this activation may be contributing significantly to AD pathology.

  10. Impact of small vessel disease in the brain on gait and balance

    Science.gov (United States)

    Pinter, Daniela; Ritchie, Stuart J.; Doubal, Fergus; Gattringer, Thomas; Morris, Zoe; Bastin, Mark E.; del C. Valdés Hernández, Maria; Royle, Natalie A.; Corley, Janie; Muñoz Maniega, Susana; Pattie, Alison; Dickie, David A.; Staals, Julie; Gow, Alan J.; Starr, John M.; Deary, Ian J.; Enzinger, Christian; Fazekas, Franz; Wardlaw, Joanna

    2017-01-01

    Gait and balance impairment is highly prevalent in older people. We aimed to assess whether and how single markers of small vessel disease (SVD) or a combination thereof explain gait and balance function in the elderly. We analysed 678 community-dwelling healthy subjects from the Lothian Birth Cohort 1936 at the age of 71–74 years who had undergone comprehensive risk factor assessment, gait and balance assessment as well as brain MRI. We investigated the impact of individual SVD markers (white matter hyperintensity – WMH, microbleeds, lacunes, enlarged perivascular spaces, brain atrophy) as seen on structural brain MRI and of a global SVD score on the patients’ performance. A regression model revealed that age, sex, and hypertension significantly explained gait speed. Among SVD markers white matter hyperintensity (WMH) score or volume were additional significant and independent predictors of gait speed in the regression model. A similar association was seen with the global SVD score. Our study confirms a negative impact of SVD-related morphologic brain changes on gait speed in addition to age, sex and hypertension independent from brain atrophy. The presence of WMH seems to be the major driving force for SVD on gait impairment in healthy elderly subjects. PMID:28134332

  11. Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Cao, Chuanhai; Cirrito, John R; Lin, Xiaoyang; Wang, Li; Wang, Lilly; Verges, Deborah K; Dickson, Alexander; Mamcarz, Malgorzata; Zhang, Chi; Mori, Takashi; Arendash, Gary W; Holtzman, David M; Potter, Huntington

    2009-01-01

    Recent epidemiologic studies suggest that caffeine may be protective against Alzheimer's disease (AD). Supportive of this premise, our previous studies have shown that moderate caffeine administration protects/restores cognitive function and suppresses brain amyloid-beta (Abeta) production in AD transgenic mice. In the present study, we report that acute caffeine administration to both young adult and aged AD transgenic mice rapidly reduces Abeta levels in both brain interstitial fluid and plasma without affecting Abeta elimination. Long-term oral caffeine treatment to aged AD mice provided not only sustained reductions in plasma Abeta, but also decreases in both soluble and deposited Abeta in hippocampus and cortex. Irrespective of caffeine treatment, plasma Abeta levels did not correlate with brain Abeta levels or with cognitive performance in individual aged AD mice. Although higher plasma caffeine levels were strongly associated with lower plasma Abeta1-40 levels in aged AD mice, plasma caffeine levels were also not linked to cognitive performance. Plasma caffeine and theophylline levels were tightly correlated, both being associated with reduced inflammatory cytokine levels in hippocampus. Our conclusion is two-fold: first, that both plasma and brain Abeta levels are reduced by acute or chronic caffeine administration in several AD transgenic lines and ages, indicating a therapeutic value of caffeine against AD; and second, that plasma Abeta levels are not an accurate index of brain Abeta levels/deposition or cognitive performance in aged AD mice.

  12. Docosahexaenoic acid homeostasis, brain aging and Alzheimer's disease: Can we reconcile the evidence?

    Science.gov (United States)

    Cunnane, Stephen C; Chouinard-Watkins, Raphael; Castellano, Christian A; Barberger-Gateau, Pascale

    2013-01-01

    A crossroads has been reached on research into docosahexaenoic acid (DHA) and Alzheimer's disease (AD). On the one hand, several prospective observational studies now clearly indicate a protective effect of higher fish and DHA intake against risk of AD. On the other hand, once AD is clinically evident, supplementation trials demonstrate essentially no benefit of DHA in AD. Despite apparently low DHA intake in AD, brain DHA levels are frequently the same as in controls, suggesting that low DHA intake results in low plasma DHA but does not necessarily reduce brain DHA in humans. Animal models involving dietary omega-3 fatty acid deficiency to deplete brain DHA may therefore not be appropriate in AD research. Studies in the healthy elderly suggest that DHA homeostasis changes during aging. Tracer methodology now permits estimation of DHA half-life in the human brain and whole body. Apolipoprotein E alleles have an important impact not only on AD but also on DHA homeostasis in humans. We therefore encourage further development of innovative approaches to the study of DHA metabolism and its role in human brain function. A better understanding of DHA metabolism in humans will hopefully help explain how higher habitual DHA intake protects against the risk of deteriorating cognition during aging and may eventually give rise to a breakthrough in the treatment of AD.

  13. Preliminary study of Alzheimer's Disease diagnosis based on brain electrical signals using wireless EEG

    Science.gov (United States)

    Handayani, N.; Akbar, Y.; Khotimah, S. N.; Haryanto, F.; Arif, I.; Taruno, W. P.

    2016-03-01

    This research aims to study brain's electrical signals recorded using EEG as a basis for the diagnosis of patients with Alzheimer's Disease (AD). The subjects consisted of patients with AD, and normal subjects are used as the control. Brain signals are recorded for 3 minutes in a relaxed condition and with eyes closed. The data is processed using power spectral analysis, brain mapping and chaos test to observe the level of complexity of EEG's data. The results show a shift in the power spectral in the low frequency band (delta and theta) in AD patients. The increase of delta and theta occurs in lobus frontal area and lobus parietal respectively. However, there is a decrease of alpha activity in AD patients where in the case of normal subjects with relaxed condition, brain alpha wave dominates the posterior area. This is confirmed by the results of brain mapping. While the results of chaos analysis show that the average value of MMLE is lower in AD patients than in normal subjects. The level of chaos associated with neural complexity in AD patients with lower neural complexity is due to neuronal damage caused by the beta amyloid plaques and tau protein in neurons.

  14. Brain-derived neurotrophic factor and substantia nigra dopaminergic neurons in Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Haixia Ding; Meijiang Feng; Xinsheng Ding

    2008-01-01

    BACKGROUND:Parkinson's disease (PD) is a chronic, progressive neurodegenerative central nervous system disease which occurs in the substantia nigra-corpus striatum system. The main pathological feature of PD is selective dopaminergic neuronal loss with distinctive Lewy bodies in populations of surviving dopaminergic neurons. In the clinical and neuropathological diagnosis of PD, brain-derived neurotrophic factor mRNA expression in the substantia nigra pars compacta is reduced by 70%, and surviving dopaminergic neurons in the PD substantia nigra pars compacta express less brain-derived neurotrophic factor (BDNF) mRNA (20%) than their normal counterparts. In recent years, knowledge surrounding the relationship between neurotrophic factors and PD has increased, and detailed pathogenesis of the role of neurotrophic factors in PD becomes more important.

  15. Advanced shotgun lipidomics for characterization of altered lipid patterns in neurodegenerative diseases and brain injury

    Science.gov (United States)

    Wang, Miao; Han, Xianlin

    2016-01-01

    Summary Multi-dimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) is a powerful technology platform among current lipidomics practices due to its high efficiency, sensitivity, and reproducibility, as well as its broad coverage. This platform has been broadly used to determine the altered lipid profiles induced by diseases, injury, genetic manipulations, drug treatments, and aging, among others. Herein, we summarized the principles underlying this platform and presented a protocol for analysis of many of the lipid classes and subclasses covered by MDMS-SL directly from lipid extracts of brain samples. We believe that this protocol could aid the researchers in the field to determine the altered lipid patterns in neurodegenerative diseases and brain injury. PMID:26235081

  16. Ventricular dilatation and brain atrophy in patients with Parkinson's disease with incipient dementia.

    Science.gov (United States)

    Camicioli, Richard; Sabino, Jennifer; Gee, Myrlene; Bouchard, Thomas; Fisher, Nancy; Hanstock, Chris; Emery, Derek; Martin, W R Wayne

    2011-07-01

    Age-related ventricular enlargement is accelerated in Alzheimer's disease, but its relationship to cognitive decline in Parkinson's disease is less clear, even though dementia is common in Parkinson's disease. Our goals were to determine if greater enlargement of the ventricles and gray or white matter atrophy occurred in Parkinson's disease patients developing cognitive decline. Older nondemented patients with Parkinson's disease (33) and age- and sex-matched controls (39) were recruited and prospectively assessed for the development of significant cognitive decline over 36 months. Magnetic resonance imaging was obtained every 18 months, and ventricular volume and total brain gray and white matter volumes were measured using reliable segmentation of T1-weighted volumetric scans. Subjects with incidental intracranial abnormalities, an atypical course, and stroke as well as dropouts were excluded from a cohort of 52 patients and 50 controls. Among 33 patients and 39 controls, 10 patients and 3 controls developed significant cognitive impairment or dementia. Ventricular change and Parkinson's disease status were significantly associated with dementia. Ventricular change was significantly correlated with change in Mini-Mental Status Examination in the Parkinson's disease with dementia group (r = 0.87, P = .001). Gray matter atrophy was greater in Parkinson's disease with dementia, with similar change over time in both Parkinson's disease and Parkinson's disease with dementia. White matter volumes were not significantly different between Parkinson's disease and Parkinson's disease with dementia; however, the decrease over time might be greater in Parkinson's disease with dementia. Ventricular dilatation occurs early in the course of significant cognitive decline in patients with Parkinson's disease, possibly reflecting both cortical gray and white matter loss.

  17. Recent advances in basic neurosciences and brain disease: from synapses to behavior

    Directory of Open Access Journals (Sweden)

    Salter Michael W

    2006-12-01

    Full Text Available Abstract Understanding basic neuronal mechanisms hold the hope for future treatment of brain disease. The 1st international conference on synapse, memory, drug addiction and pain was held in beautiful downtown Toronto, Canada on August 21–23, 2006. Unlike other traditional conferences, this new meeting focused on three major aims: (1 to promote new and cutting edge research in neuroscience; (2 to encourage international information exchange and scientific collaborations; and (3 to provide a platform for active scientists to discuss new findings. Up to 64 investigators presented their recent discoveries, from basic synaptic mechanisms to genes related to human brain disease. This meeting was in part sponsored by Molecular Pain, together with University of Toronto (Faculty of Medicine, Department of Physiology as well as Center for the Study of Pain. Our goal for this meeting is to promote future active scientific collaborations and improve human health through fundamental basic neuroscience researches. The second international meeting on Neurons and Brain Disease will be held in Toronto (August 29–31, 2007.

  18. Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise

    Directory of Open Access Journals (Sweden)

    Takashi eTarumi

    2014-01-01

    Full Text Available Alzheimer disease (AD and cerebrovascular disease often coexist with advanced age. Mounting evidence indicates that the presence of vascular disease and its risk factors increase the risk of AD, suggesting a potential overlap of the underlying pathophysiological mechanisms. In particular, atherosclerosis, endothelial dysfunction, and stiffening of central elastic arteries have been shown to associate with AD. Currently, there are no effective treatments for the cure and prevention of AD. Vascular risk factors are modifiable via either pharmacological or lifestyle intervention. In this regard, habitual aerobic exercise is increasingly recognized for its benefits on brain structure and cognitive function. Considering the well-established benefits of regular aerobic exercise on vascular health, exercise-related improvements in brain structure and cognitive function may be mediated by vascular adaptations. In this review, we will present the current evidence for the physiological mechanisms by which vascular health alters the structural and functional integrity of the aging brain and how improvements in vascular health, via regular aerobic exercise, potentially benefits cognitive function.

  19. Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise.

    Science.gov (United States)

    Tarumi, Takashi; Zhang, Rong

    2014-01-01

    Alzheimer disease (AD) and cerebrovascular disease often coexist with advanced age. Mounting evidence indicates that the presence of vascular disease and its risk factors increase the risk of AD, suggesting a potential overlap of the underlying pathophysiological mechanisms. In particular, atherosclerosis, endothelial dysfunction, and stiffening of central elastic arteries have been shown to associate with AD. Currently, there are no effective treatments for the cure and prevention of AD. Vascular risk factors are modifiable via either pharmacological or lifestyle intervention. In this regard, habitual aerobic exercise is increasingly recognized for its benefits on brain structure and cognitive function. Considering the well-established benefits of regular aerobic exercise on vascular health, exercise-related improvements in brain structure and cognitive function may be mediated by vascular adaptations. In this review, we will present the current evidence for the physiological mechanisms by which vascular health alters the structural and functional integrity of the aging brain and how improvements in vascular health, via regular aerobic exercise, potentially benefits cognitive function.

  20. Compartment analysis of {sup 123}I-iomazenil brain SPECT in patients with moyamoya disease

    Energy Technology Data Exchange (ETDEWEB)

    Kaneta, Tomohiro; Yamazaki, Tetsuro; Takahashi, Shoki; Yamada, Shogo [Tohoku Univ., Sendai (Japan). School of Medicine; Maruoka, Shin; Abe, Yoetsu

    1999-12-01

    We investigated 11 patients with moyamoya disease about {sup 123}I-Iomazenil kinetics in the brain using three-compartment, two-parameter model. The transition rate constant (K1) from the blood to the brain and the binding potential (BP) of the benzodiazepine to the receptors were calculated for every ROI (right and left side of cerebellum, frontal lobe, parietal lobe, occipital lobe and temporal lobe; 10 ROIs a case). The K1 value correlated with BP value significantly, but not so closely (r=0.639). And there is no significant difference in BP valued among low-K1 group (mean (of K1)-S.D.{<=}K1{<=}mean) and high-K1 group (meandisease patients. And we showed a case with IMP/IMZ discrepancy. The nerve cell in the hypoperfused area which has almost normal BP value is ischemic but viable. IMZ-SPECT presents an important information about the viability of the hypoperfused area in moyamoya disease patients' brain. (author)

  1. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation

    Directory of Open Access Journals (Sweden)

    Luissint Anny-Claude

    2012-11-01

    Full Text Available Abstract The Blood–brain barrier (BBB, present at the level of the endothelium of cerebral blood vessels, selectively restricts the blood-to-brain paracellular diffusion of compounds; it is mandatory for cerebral homeostasis and proper neuronal function. The barrier properties of these specialized endothelial cells notably depend on tight junctions (TJs between adjacent cells: TJs are dynamic structures consisting of a number of transmembrane and membrane-associated cytoplasmic proteins, which are assembled in a multimolecular complex and acting as a platform for intracellular signaling. Although the structural composition of these complexes has been well described in the recent years, our knowledge about their functional regulation still remains fragmentary. Importantly, pericytes, embedded in the vascular basement membrane, and perivascular microglial cells, astrocytes and neurons contribute to the regulation of endothelial TJs and BBB function, altogether constituting the so-called neurovascular unit. The present review summarizes our current understanding of the structure and functional regulation of endothelial TJs at the BBB. Accumulating evidence points to a correlation between BBB dysfunction, alteration of TJ complexes and progression of a variety of CNS diseases, such as stroke, multiple sclerosis and brain tumors, as well as neurodegenerative diseases like Parkinson’s and Alzheimer’s diseases. Understanding how TJ integrity is controlled may thus help improve drug delivery across the BBB and the design of therapeutic strategies for neurological disorders.

  2. Systematic analysis of transcription-level effects of neurodegenerative diseases on human brain metabolism by a newly reconstructed brain-specific metabolic network

    Directory of Open Access Journals (Sweden)

    Mustafa Sertbaş

    2014-01-01

    Full Text Available Network-oriented analysis is essential to identify those parts of a cell affected by a given perturbation. The effect of neurodegenerative perturbations in the form of diseases of brain metabolism was investigated by using a newly reconstructed brain-specific metabolic network. The developed stoichiometric model correctly represents healthy brain metabolism, and includes 630 metabolic reactions in and between astrocytes and neurons, which are controlled by 570 genes. The integration of transcriptome data of six neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, schizophrenia with the model was performed to identify reporter features specific and common for these diseases, which revealed metabolites and pathways around which the most significant changes occur. The identified metabolites are potential biomarkers for the pathology of the related diseases. Our model indicated perturbations in oxidative stress, energy metabolism including TCA cycle and lipid metabolism as well as several amino acid related pathways, in agreement with the role of these pathways in the studied diseases. The computational prediction of transcription factors that commonly regulate the reporter metabolites was achieved through binding-site analysis. Literature support for the identified transcription factors such as USF1, SP1 and those from FOX families are known from the literature to have regulatory roles in the identified reporter metabolic pathways as well as in the neurodegenerative diseases. In essence, the reconstructed brain model enables the elucidation of effects of a perturbation on brain metabolism and the illumination of possible machineries in which a specific metabolite or pathway acts as a regulatory spot for cellular reorganization.

  3. INHERITED NEURODEVELOPMENTAL BRAIN DISEASES: APPLICATIONS OF HOMOZYGOSITY MAPPING TO IDENTIFY NEW GENETIC CAUSES OF DISEASE

    Directory of Open Access Journals (Sweden)

    Joseph G. Gleeson

    2008-06-01

    Full Text Available ObjectiveThe last two decades have seen major advancements in our understanding of some of the most common neurodevelopmental disorders in the field of child neurology. However, in the majority of individual patients, it is still not possible to arrive at a molecular diagnosis, due in part to lack of knowledge ofmolecular causes of these tremendously complex conditions. Common genetic disorders of brain development include septo-optic dysplasia, schizencephaly, holoprosencephaly, lissencephaly and hindbrain malformations. For each of these disorders, a critical step in brain development is disrupted. Specific genetic diagnosis is now possible in some patients with most of these conditions. For the remaining patients, it is possible to apply gene-mapping strategies using newly developed high-density genomic arrays to clone novel genes. This is especially important in countries like Iran where large family size and marriage between relatives makes these strategies tremendously powerful.

  4. Increased acetyl and total histone levels in post-mortem Alzheimer's disease brain.

    Science.gov (United States)

    Narayan, Pritika J; Lill, Claire; Faull, Richard; Curtis, Maurice A; Dragunow, Mike

    2015-02-01

    Histone acetylation is an epigenetic modification that plays a critical role in chromatin remodelling and transcriptional regulation. There is increasing evidence that epigenetic modifications may become compromised in aging and increase susceptibility to the development of neurodegenerative disorders such as Alzheimer's disease. Immunohistochemical labelling of free-floating sections from the inferior temporal gyrus (Alzheimer's disease, n=14; control, n=17) and paraffin-embedded tissue microarrays containing tissue from the middle temporal gyrus (Alzheimer's disease, n=29; control, n=28) demonstrated that acetyl histone H3 and acetyl histone H4 levels, as well as total histone H3 and total histone H4 protein levels, were significantly increased in post-mortem Alzheimer's disease brain tissue compared to age- and sex-matched neurologically normal control brain tissue. Changes in acetyl histone levels were proportional to changes in total histone levels. The increase in acetyl histone H3 and H4 was observed in Neuronal N immunopositive pyramidal neurons in Alzheimer's disease brain. Using immunolabelling, histone markers correlated significantly with the level of glial fibrillary acidic protein and HLA-DP, -DQ and -DR immunopositive cells and with the pathological hallmarks of Alzheimer's disease (hyperphosphorylated tau load and β-amyloid plaques). Given that histone acetylation changes were correlated with changes in total histone protein, it was important to evaluate if protein degradation pathways may be compromised in Alzheimer's disease. Consequently, significant positive correlations were also found between ubiquitin load and histone modifications. The relationship between histone acetylation and ubiquitin levels was further investigated in an in vitro model of SK-N-SH cells treated with the proteasome inhibitor Mg132 and the histone deacetylase inhibitor valproic acid. In this model, compromised protein degradation caused by Mg132 lead to elevated histone

  5. Neuroinflammation in the Aging Down Syndrome Brain; Lessons from Alzheimer's Disease

    OpenAIRE

    Wilcock, Donna M.

    2012-01-01

    Down syndrome (DS) is the most genetic cause of mental retardation and is caused by the triplication of chromosome 21. In addition to the disabilities caused early in life, DS is also noted as causing Alzheimer's-disease-like pathological changes in the brain, leading to 50–70% of DS patients showing dementia by 60–70 years of age. Inflammation is a complex process that has a key role to play in the pathogenesis of Alzheimer's disease. There is relatively little understood about inflammation ...

  6. Regulation of P-glycoprotein expression in brain capillaries in Huntington's disease and its impact on brain availability of antipsychotic agents risperidone and paliperidone.

    Science.gov (United States)

    Kao, Yu-Han; Chern, Yijuang; Yang, Hui-Ting; Chen, Hui-Mei; Lin, Chun-Jung

    2016-08-01

    Huntington's disease (HD) is a neurodegenerative disease marked by an expanded polyglutamine (polyQ) tract on the huntingtin (HTT) protein that may cause transcriptional dysfunction. This study aimed to investigate the regulation and function of P-glycoprotein, an important efflux transporter, in brain capillaries in HD. The results showed that, compared with the littermate controls, R6/2 HD transgenic mice with the human mutant HTT gene had higher levels of P-glycoprotein mRNA and protein and enhanced NF-κB activity in their brain capillaries. Higher P-glycoprotein expression was also observed in the brain capillaries of human HD patients. Consistent with this enhanced P-glycoprotein expression, brain extracellular levels and brain-to-plasma ratios of the antipsychotic agents risperidone and paliperidone were significantly lower in R6/2 mice than in their littermate controls. Exogenous expression of human mutant HTT protein with expanded polyQ (mHTT-109Q) in HEK293T cells enhanced the levels of P-glycoprotein transcripts and NF-κB activity compared with cells expressing normal HTT-25Q. Treatment with the IKK inhibitor, BMS-345541, decreased P-glycoprotein mRNA level in cells transfected with mHTT-109Q or normal HTT-25Q In conclusion, mutant HTT altered the expression of P-glycoprotein through the NF-κB pathway in brain capillaries in HD and markedly affected the availability of P-glycoprotein substrates in the brain.

  7. Diagnostic usefulness of 3 tesla MRI of the brain for cushing disease in a child.

    Science.gov (United States)

    Ono, Erina; Ozawa, Ayako; Matoba, Kaori; Motoki, Takanori; Tajima, Asako; Miyata, Ichiro; Ito, Junko; Inoshita, Naoko; Yamada, Syozo; Ida, Hiroyuki

    2011-10-01

    It is sometimes difficult to confirm the location of a microadenoma in Cushing disease. Recently, we experienced an 11-yr-old female case of Cushing disease with hyperprolactinemia. She was referred to our hospital because of decrease of height velocity with body weight gain. On admission, she had typical symptoms of Cushing syndrome. Although no pituitary microadenomas were detected on 1.5 Tesla MRI of the brain, endocrinological examinations including IPS and CS sampling were consistent with Cushing disease with hyperprolactinemia. Oral administration of methyrapone instead of neurosurgery was started after discharge, but subsequent 3 Tesla MRI of the brain clearly demonstrated a 3-mm less-enhanced lesion in the left side of the pituitary gland. Finally, transsphenoidal surgery was performed, and a 3.5-mm left-sided microadenoma was resected. Compared with 1.5 Tesla MRI, 3 Tesla MRI offers the advantage of a higher signal to noise ratio (SNR), which provides higher resolution and proper image quality. Therefore, 3 Tesla MRI is a very useful tool to localize microadenomas in Cushing disease in children as well as in adults. It will be the first choice of radiological examinations in suspected cases of Cushing disease.

  8. Mitochondrial ferritin in the regulation of brain iron homeostasis and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Guofen eGao

    2014-02-01

    Full Text Available Mitochondrial ferritin (FtMt is a novel iron-storage protein in mitochondria. Evidences have shown that FtMt is structurally and functionally similar to the cytosolic H-chain ferritin. It protects mitochondria from iron-induced oxidative damage presumably through sequestration of potentially harmful excess free iron. It also participates in the regulation of iron distribution between cytosol and mitochondrial contents. Unlike the ubiquitously expressed H-ferritin, FtMt is mainly expressed in testis and brain, which suggests its tissue-related roles. FtMt is involved in pathogenesis of neurodegenerative diseases, as its increased expression has been observed in Alzheimer’s disease, restless legs syndrome and Friedreich’s ataxia. Studies from our laboratory showed that in Alzheimer’s disease, FtMt overexpression attenuated the β-amyloid induced neurotoxicity, which on the other hand increased significantly when FtMt expression was knocked down. It is also found that, by maintaining mitochondrial iron homeostasis, FtMt could prevent 6-hydroxydopamine induced dopaminergic cell damage in Parkinson’s disease. These recent findings on FtMt regarding its functions in regulation of brain iron homeostasis and its protective role in pathogenesis of neurodegenerative diseases are summarized and reviewed.

  9. The Blood-Brain Barrier and Microvascular Water Exchange in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Valerie C. Anderson

    2011-01-01

    Full Text Available Alzheimer's disease (AD is the most common form of dementia in the elderly. Although traditionally considered a disease of neurofibrillary tangles and amyloid plaques, structural and functional changes in the microvessels may contribute directly to the pathogenesis of the disease. Since vascular dysfunction often precedes cognitive impairment, understanding the role of the blood-brain barrier (BBB in AD may be key to rational treatment of the disease. We propose that water regulation, a critical function of the BBB, is disturbed in AD and results in abnormal permeability and rates of water exchange across the vessel walls. In this paper, we describe some of the pathological events that may disturb microvascular water exchange in AD and examine the potential of a relatively new imaging technique, dynamic contrast-enhanced MRI, to quantify water exchange on a cellular level and thus serve as a probe of BBB integrity in AD.

  10. Peptic ulcer disease and other complications in patients receiving dexamethasone palliation for brain metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Penzner, R.D.; Lipsett, J.A.

    1982-11-01

    A retrospective analysis was done of 106 patients who received radiation therapy for brain metastasis. Dexamethasone therapy was instituted in 97 patients. Peptic ulcer disease developed in 5 of 89 patients (5.6 percent) who received a dosage of at least 12 mg a day, but did not occur in patients who received a lower dose or in those who did not receive steroids. The interval between institution of dexamethasone therapy and the development of peptic ulcer disease ranged from three to nine weeks. Two patients had perforated ulcers, one of whom required surgical resection. Peptic ulcer disease contributed to the general deterioration and death of three of the five patients. Overall, in 14 of the 89 patients (15.7 percent) a complication of steroid therapy developed in the form of peptic ulcer disease, steroid myopathy or diabetes mellitus (or a combination of these).

  11. Characteristics of Brain Perfusion in Patients of Parkinson's Disease

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young Jin; Park, Min Jung; Kim, Jae Woo; Kang, Young Kang [Dong-A University College of Medicine, Busan (Korea, Republic of)

    2008-02-15

    It was well known that cerebral blood perfusion is normal or diffusely decreased in the majority of patients with Parkinson's disease (PD). Actually we interpreted brain perfusion SPECT images of PD patients in the clinical situation, we observed various cerebral perfusion patterns in patients with PD. So we performed brain perfusion SPECT to know the brain perfusion patterns of PD patients and the difference of perfusion patterns according to the sex and the age. Also we classified PD patients into small groups based on the brain perfusion pattern. Two hundred nineteen patients (M: 70, F: 149, mean age: 62.9{+-}6.9 y/o) who were diagnosed as PD without dementia clinically and 55 patients (M: 15, F: 40, mean age: 61.4{+-}9.2 y/o) as normal controls who had no past illness history were performed {sup 99m}Tc-HMPAO brain perfusion SPECT and neuropsychological test. At first, we compared all patients with PD and normal controls. Brain perfusion in left inferior frontal gyrus, left insula, left transverse temporal gyrus, left inferior parietal lobule, left superior parietal lobule, right precuneus, right caudate tail were lower in patients with PD than normal controls. Secondly, we compared male and female patients with PD and normal controls, respectively. Brain perfusion SPECT showed more decreased cerebral perfusion in left hemisphere than right side in both male and female patients compared to normal controls. And there was larger hypoperfusion area in female patients compared with male. Thirdly, we classified patients with PD and normal controls into 4 groups according to the age and compared brain perfusion respectively. In patient below fifties, brain perfusion in both occipitoparietal and left temporal lobe were lower in PD group. As the patients with PD grew older, hypoperfusion area were shown in both frontal, temporal and limbic lobes. Fourthly, We were able to divide patients into small groups based on cerebral perfusion pattern. There was normal

  12. Patient-derived stem cells: pathways to drug discovery for brain diseases

    Directory of Open Access Journals (Sweden)

    Alan eMackay-Sim

    2013-03-01

    Full Text Available The concept of drug discovery through stem cell biology is based on technological developments whose genesis is now coincident. The first is automated cell microscopy with concurrent advances in image acquisition and analysis, known as high content screening (HCS. The second is patient-derived stem cells for modelling the cell biology of brain diseases. HCS has developed from the requirements of the pharmaceutical industry for high throughput assays to screen thousands of chemical compounds in the search for new drugs. HCS combines new fluorescent probes with automated microscopy and computational power to quantify the effects of compounds on cell functions. Stem cell biology has advanced greatly since the discovery of genetic reprogramming of somatic cells into induced pluripotent stem cells (iPSCs. There is now a rush of papers describing their generation from patients with various diseases of the nervous system. Although the majority of these have been genetic diseases, iPSCs have been generated from patients with complex diseases (schizophrenia and sporadic Parkinson’s disease. Some genetic diseases are also modelled in embryonic stem cells generated from blastocysts rejected during in vitro fertilisation. Neural stem cells have been isolated from post-mortem brain of Alzheimer’s patients and neural stem cells generated from biopsies of the olfactory organ of patients is another approach. These olfactory neurosphere-derived cells demonstrate robust disease-specific phenotypes in patients with schizophrenia and Parkinson’s disease. High content screening is already in use to find small molecules for the generation and differentiation of embryonic stem cells and induced pluripotent stem cells. The challenges for using stem cells for drug discovery are to develop robust stem cell culture methods that meet the rigorous requirements for repeatable, consistent quantities of defined cell types at the industrial scale necessary for high

  13. Mild traumatic brain injury is associated with reduced cortical thickness in those at risk for Alzheimer's disease.

    Science.gov (United States)

    Hayes, Jasmeet P; Logue, Mark W; Sadeh, Naomi; Spielberg, Jeffrey M; Verfaellie, Mieke; Hayes, Scott M; Reagan, Andrew; Salat, David H; Wolf, Erika J; McGlinchey, Regina E; Milberg, William P; Stone, Annjanette; Schichman, Steven A; Miller, Mark W

    2017-01-11

    Moderate-to-severe traumatic brain injury is one of the strongest environmental risk factors for the development of neurodegenerative diseases such as late-onset Alzheimer's disease, although it is unclear whether mild traumatic brain injury, or concussion, also confers risk. This study examined mild traumatic brain injury and genetic risk as predictors of reduced cortical thickness in brain regions previously associated with early Alzheimer's disease, and their relationship with episodic memory. Participants were 160 Iraq and Afghanistan War veterans between the ages of 19 and 58, many of whom carried mild traumatic brain injury and post-traumatic stress disorder diagnoses. Whole-genome polygenic risk scores for the development of Alzheimer's disease were calculated using summary statistics from the largest Alzheimer's disease genome-wide association study to date. Results showed that mild traumatic brain injury moderated the relationship between genetic risk for Alzheimer's disease and cortical thickness, such that individuals with mild traumatic brain injury and high genetic risk showed reduced cortical thickness in Alzheimer's disease-vulnerable regions. Among males with mild traumatic brain injury, high genetic risk for Alzheimer's disease was associated with cortical thinning as a function of time since injury. A moderated mediation analysis showed that mild traumatic brain injury and high genetic risk indirectly influenced episodic memory performance through cortical thickness, suggesting that cortical thinning in Alzheimer's disease-vulnerable brain regions is a mechanism for reduced memory performance. Finally, analyses that examined the apolipoprotein E4 allele, post-traumatic stress disorder, and genetic risk for schizophrenia and depression confirmed the specificity of the Alzheimer's disease polygenic risk finding. These results provide evidence that mild traumatic brain injury is associated with greater neurodegeneration and reduced memory performance

  14. Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson's disease, PSP and MSA

    NARCIS (Netherlands)

    Bartels, A. L.; Willemsen, A. T. M.; Kortekaas, R.; de Jong, B. M.; de Vries, R.; de Klerk, O.; van Oostrom, J. C. H.; Portman, A.; Leenders, K. L.

    2008-01-01

    Decreased blood-brain barrier (BBB) efflux function of the P-glycoprotein (P-gp) transport system could facilitate the accumulation of toxic compounds in the brain, increasing the risk of neurodegenerative pathology such as Parkinson's disease (PD). This study investigated in vivo BBB P-gp function

  15. Predicting Alzheimer's disease by classifying 3D-Brain MRI images using SVM and other well-defined classifiers

    Science.gov (United States)

    Matoug, S.; Abdel-Dayem, A.; Passi, K.; Gross, W.; Alqarni, M.

    2012-02-01

    Alzheimer's disease (AD) is the most common form of dementia affecting seniors age 65 and over. When AD is suspected, the diagnosis is usually confirmed with behavioural assessments and cognitive tests, often followed by a brain scan. Advanced medical imaging and pattern recognition techniques are good tools to create a learning database in the first step and to predict the class label of incoming data in order to assess the development of the disease, i.e., the conversion from prodromal stages (mild cognitive impairment) to Alzheimer's disease, which is the most critical brain disease for the senior population. Advanced medical imaging such as the volumetric MRI can detect changes in the size of brain regions due to the loss of the brain tissues. Measuring regions that atrophy during the progress of Alzheimer's disease can help neurologists in detecting and staging the disease. In the present investigation, we present a pseudo-automatic scheme that reads volumetric MRI, extracts the middle slices of the brain region, performs segmentation in order to detect the region of brain's ventricle, generates a feature vector that characterizes this region, creates an SQL database that contains the generated data, and finally classifies the images based on the extracted features. For our results, we have used the MRI data sets from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.

  16. Biological characteristics of brain natriuretic peptide and its association with central nervous system diseases

    Institute of Scientific and Technical Information of China (English)

    Yubao Huang; Changxiang Yan; Chunjiang Yu

    2007-01-01

    OBJECTIVE: To explain the mechanisms of tuhe synthesis, secretion and regulation of brain natriuretic peptide (BNP), and analyze its role in central nervous system diseases.DATA SOURCES: An online search of Pubmed was undertaken to identify articles related to BNP published in English from January 1990 to February 2007 by using the Key words of "brain natriuretic peptide (BNP), central nervous system, subarachnoid hemorrhage (SAH), brain edema, epilepsy". Other articles were searched in China Hospital Knowledge Database (CHKD) by concrete name of journals and title of articles.STUDY SELECTION: The collected articles were primarily screened, those about BNP and its association with central nervous system diseases were selected, whereas the obviously irrelative ones excluded, and the full-texts of the other literatures were searched manually.DATA EXTRACTION: Totally 96 articles were collected, 40 of them were enrolled, and the other 56 were excluded due to repetitive studies or reviews.DATA SYNTHESIS: At present, there are penetrating studies on BNP in the preclinical medicine and clinical medicine of cerebrovascular and cardiovascular diseases, and the investigative outcomes have been gradually applied in clinical practice, and satisfactory results have been obtained. However, the application of BNP in diagnosing and treating central nervous system diseases is still at the experimental phase without -outstanding outcomes, thus the preclinical and clinical studies should be enhanced.CONCLUSION: As a kind of central medium or modulator, BNP plays a certain role in the occurrence,development and termination of central nervous system diseases, the BNP level in serum has certain changing law in AH,brainedema,epilepsy,etc., but the specific mechanisms are unclear.

  17. Wilson's disease: two treatment modalities. Correlations to pretreatment and posttreatment brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Leiros da Costa, Maria do Desterro [Federal University of Paraiba, Movement Disorders Unit, Paraiba (Brazil); Spitz, Mariana; Bacheschi, Luiz Alberto; Barbosa, Egberto Reis [University of Sao Paulo, Movement Disorders Unit, Sao Paulo (Brazil); Leite, Claudia Costa; Lucato, Leandro Tavares [University of Sao Paulo, Department of Radiology, Sao Paulo (Brazil)

    2009-10-15

    Brain magnetic resonance imaging (MRI) studies on Wilson's disease (WD) show lack of correlations between neurological and neuroimaging features. Long-term follow-up reports with sequential brain MRI in patients with neurological WD comparing different modalities of treatment are scarce. Eighteen patients with neurological WD underwent pretreatment and posttreatment brain MRI scans to evaluate the range of abnormalities and the evolution along these different periods. All patients underwent at least two MRI scans at different intervals, up to 11 years after the beginning of treatment. MRI findings were correlated with clinical picture, clinical severity, duration of neurological symptoms, and treatment with two different drugs. Patients were divided into two groups according to treatment: d-penicillamine (D-P), zinc (Zn), and Zn after the onset of severe intolerance to D-P. MRI scans before treatment showed, in all patients, hypersignal intensity lesions on T2- and proton-density-weighted images bilaterally and symmetrically at basal nuclei, thalamus, brain stem, cerebellum, brain cortex, and brain white matter. The most common neurological symptoms were: dysarthria, parkinsonism, dystonia, tremor, psychiatric disturbances, dysphagia, risus sardonicus, ataxia, chorea, and athetosis. From the neurological point of view, there was no difference on the evolution between the group treated exclusively with D-P and the one treated with Zn. Analysis of MRI scans with longer intervals after the beginning of treatment depicted a trend for neuroimaging worsening, without neurological correspondence, among patients treated with Zn. Neuroimaging pattern of evolution was more favorable for the group that received exclusively D-P. (orig.)

  18. Leptomeningeal disease following stereotactic radiosurgery for brain metastases from breast cancer.

    Science.gov (United States)

    Trifiletti, Daniel M; Romano, Kara D; Xu, Zhiyuan; Reardon, Kelli A; Sheehan, Jason

    2015-09-01

    Leptomeningeal disease (LMD) is a highly aggressive and usually rapidly fatal condition. The purpose of this study is to identify clinical factors that can serve to predict for LMD at the time of stereotactic radiosurgery (SRS) for brain metastases from breast carcinoma. We conducted a retrospective review of patients with brain metastases from breast cancer treated with SRS from 1995 to 2014 at our institution. Clinical, radiographic, and dosimetric data were collected. LMD was diagnosed by cerebrospinal fluid (CSF) cytology or MRI demonstrating CSF seeding. Comparative statistical analyses were conducted using Cox proportional hazards regression, binary logistic regression, and/or log-rank test. 126 patients met inclusion criteria. Eighteen patients (14 %) developed LMD following SRS. From the time of SRS, the actuarial rate of LMD at 12 months from diagnosis of brain metastasis was 9 % (11 patients). Active disease in the chest at the time of SRS was associated with development of LMD (p = 0.038). Factors including receptor status, tumor size, number of intra-axial tumors, cystic tumor morphology, prior WBRT, active bone metastases, and active liver metastases were not significantly associated with the development of LMD. In patients with brain metastasis from breast cancer that undergo SRS, there is a relatively low rate of LMD. We found that while tumor hormonal status, bone metastases, and hepatic metastases were not associated with the development of LMD, active lung metastases at SRS was associated with LMD. Further research may help to delineate a causative relationship between metastatic lung disease and LMD.

  19. Selective vulnerability of Rich Club brain regions is an organizational principle of structural connectivity loss in Huntington's disease.

    Science.gov (United States)

    McColgan, Peter; Seunarine, Kiran K; Razi, Adeel; Cole, James H; Gregory, Sarah; Durr, Alexandra; Roos, Raymund A C; Stout, Julie C; Landwehrmeyer, Bernhard; Scahill, Rachael I; Clark, Chris A; Rees, Geraint; Tabrizi, Sarah J

    2015-11-01

    Huntington's disease can be predicted many years before symptom onset, and thus makes an ideal model for studying the earliest mechanisms of neurodegeneration. Diffuse patterns of structural connectivity loss occur in the basal ganglia and cortex early in the disease. However, the organizational principles that underlie these changes are unclear. By understanding such principles we can gain insight into the link between the cellular pathology caused by mutant huntingtin and its downstream effect at the macroscopic level. The 'rich club' is a pattern of organization established in healthy human brains, where specific hub 'rich club' brain regions are more highly connected to each other than other brain regions. We hypothesized that selective loss of rich club connectivity might represent an organizing principle underlying the distributed pattern of structural connectivity loss seen in Huntington's disease. To test this hypothesis we performed diffusion tractography and graph theoretical analysis in a pseudo-longitudinal study of 50 premanifest and 38 manifest Huntington's disease participants compared with 47 healthy controls. Consistent with our hypothesis we found that structural connectivity loss selectively affected rich club brain regions in premanifest and manifest Huntington's disease participants compared with controls. We found progressive network changes across controls, premanifest Huntington's disease and manifest Huntington's disease characterized by increased network segregation in the premanifest stage and loss of network integration in manifest disease. These regional and whole brain network differences were highly correlated with cognitive and motor deficits suggesting they have pathophysiological relevance. We also observed greater reductions in the connectivity of brain regions that have higher network traffic and lower clustering of neighbouring regions. This provides a potential mechanism that results in a characteristic pattern of structural

  20. Downregulation of myelination, energy, and translational genes in Menkes disease brain.

    Science.gov (United States)

    Liu, Po-Ching; Chen, Yi-Wen; Centeno, Jose A; Quezado, Martha; Lem, Kristen; Kaler, Stephen G

    2005-08-01

    Menkes disease (MD) is an X-linked recessive neurodegenerative disorder caused by mutations in a copper-transporting p-type ATPase (ATP7A) that normally delivers copper to the central nervous system. The precise reasons for neurodegeneration in MD are poorly understood. We hypothesized that gene expression changes in a MD patient with a lethal ATP7A mutation would indicate pathophysiological cascades relevant to the effects of copper deficiency in the developing brain. To test this hypothesis, oligonucleotide probes for 12,000 genes arrayed on Affymetrix Human Genome U95 GeneChips were used for expression profiling of fluorescently labeled primary cRNAs from post-mortem cerebral cortex and cerebellum of a MD patient who died at 6 months of age and a normal control brain matched for age, gender, and race. Histopathologic analysis of the proband's brain showed preservation of neuronal integrity and no hypoxic effects. However, cerebrospinal fluid and brain copper levels were subnormal, and expression profiling identified over 350 known dysregulated genes. For a subset of genes (approximately 12%) analyzed by quantitative RT-PCR, the correct cross-validation rate was 88%. Thirty known genes were altered in both cortex and cerebellum. Downregulation of genes involved in myelination, energy metabolism, and translation was the major finding. The cerebellum was more sensitive to copper deficiency.

  1. Relationship between CAG repeat length and brain volume in premanifest and early Huntington's disease.

    Science.gov (United States)

    Henley, Susie M D; Wild, Edward J; Hobbs, Nicola Z; Scahill, Rachael I; Ridgway, Gerard R; Macmanus, David G; Barker, Roger A; Fox, Nick C; Tabrizi, Sarah J

    2009-02-01

    Huntington's disease (HD) is caused by an expanded CAG repeat on the gene encoding for the protein huntingtin. There are conflicting findings about the extent to which repeat length predicts signs of the disease or severity of disease progression in adults. This study examined the relationship between CAG repeat length and brain volume in a large cohort of pre- and post-motor onset HD gene carriers, using voxel-based morphometry (VBM), an approach which allowed us to investigate the whole brain without defining a priori regions of interest. We also used VBM to examine group differences between 20 controls, 21 premanifest, and 40 early HD subjects. In the 61 mutation-positive subjects higher CAG repeat length was significantly associated with reduced volume of the body of the caudate nucleus bilaterally, left putamen, right insula, right parahippocampal gyrus, right anterior cingulate, and right occipital lobe, after correcting for age. The group contrasts showed significant reduction in grey matter volume in the early HD group relative to controls in widespread cortical as well as subcortical areas but there was no evidence of difference between controls and premanifest subjects. Overall we have demonstrated that increased CAG repeat length is associated with atrophy in extra-striatal as well as striatal regions, which has implications for the monitoring of disease-modifying therapies in the condition.

  2. Statistical quantifiers of memory for an analysis of human brain and neuro-system diseases

    Science.gov (United States)

    Demin, S. A.; Yulmetyev, R. M.; Panischev, O. Yu.; Hänggi, Peter

    2008-03-01

    On the basis of a memory function formalism for correlation functions of time series we investigate statistical memory effects by the use of appropriate spectral and relaxation parameters of measured stochastic data for neuro-system diseases. In particular, we study the dynamics of the walk of a patient who suffers from Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and compare against the data of healthy people (CO - control group). We employ an analytical method which is able to characterize the stochastic properties of stride-to-stride variations of gait cycle timing. Our results allow us to estimate quantitatively a few human locomotion function abnormalities occurring in the human brain and in the central nervous system (CNS). Particularly, the patient's gait dynamics are characterized by an increased memory behavior together with sizable fluctuations as compared with the locomotion dynamics of healthy patients. Moreover, we complement our findings with peculiar features as detected in phase-space portraits and spectral characteristics for the different data sets (PD, HD, ALS and healthy people). The evaluation of statistical quantifiers of the memory function is shown to provide a useful toolkit which can be put to work to identify various abnormalities of locomotion dynamics. Moreover, it allows one to diagnose qualitatively and quantitatively serious brain and central nervous system diseases.

  3. Increased brain tissue sodium concentration in Huntington's Disease - a sodium imaging study at 4 T.

    Science.gov (United States)

    Reetz, Kathrin; Romanzetti, Sandro; Dogan, Imis; Saß, Christian; Werner, Cornelius J; Schiefer, Johannes; Schulz, Jörg B; Shah, N Jon

    2012-10-15

    The neuropathological hallmark of the autosomal dominantly inherited, neurodegenerative disorder Huntington's disease is progressive striatal loss starting several years prior to symptom manifestation. Magnetic resonance (MR) imaging has been widely used to detect altered structure in premanifest and early Huntington's disease. Given that neurodegeneration is likely preceded by substantial neuronal dysfunction, we used in vivo sodium MR imaging, which has been shown to be sensitive to cell death and viability, to investigate cellular and metabolic integrity of Huntington's disease brain tissue. We studied a total of thirteen healthy controls and thirteen Huntington's disease gene carriers (11 manifest and 2 premanifest). The manifest Huntington's disease group was subdivided into stages 1 and 2 according to their Total Functional Capacity scores. Clinical total motor and cognitive scores, as well as calibrated sodium and T1-weighted MR images were obtained with a 4 T Siemens MR scanner. Sodium images were acquired by means of a constant time imaging technique with an ultra-short "echo time". T1-weighted MR images were further analysed with voxel-based morphometry. The absolute total sodium concentration and grey matter values were measured in several Huntington's disease-specific and also non-specific areas. Statistical analysis of variance and Pearson correlation were applied. In Huntington's disease subjects, we found an increase of total sodium concentration of the entire brain compared to controls. Increased total sodium concentration values were found in structurally affected, but also in some non-affected, regions. The highest total sodium concentration values were found in the bilateral caudate, which was associated with caudate grey matter atrophy and CAG repeat length. In all Huntington's disease subjects we further found a profound increase of total sodium concentration in the putamen, pallidum, thalamus, hippocampus, insula, precuneus and occipital

  4. Brain structure and function related to depression in Alzheimer's disease: contributions from neuroimaging research.

    Science.gov (United States)

    Brommelhoff, Jessica A; Sultzer, David L

    2015-01-01

    The development of minimally invasive in vivo methods for imaging the brain has allowed for unprecedented advancement in our understanding of brain-behavior relationships. Structural, functional, and multimodal neuroimaging techniques have become more sophisticated in detecting structural and physiological abnormalities that may underlie various affective disorders and neurological illnesses such as depression in Alzheimer's disease (AD). In general, neuroimaging studies of depression in AD investigate whether depression is associated with damage to structures in specific neural networks involving frontal and subcortical structures or with functional disruption of cortical neural systems. This review provides an overview of how various imaging modalities have contributed to our understanding of the neurobiology of depression in AD. At present, the literature does not conclusively support any specific pathogenesis for depression, and it is not clear whether patients with AD and depression have histopathological and neurochemical characteristics that contribute to mood symptoms that are different from cognitively intact individuals with depression. Neuroimaging studies suggest that atrophy of temporal or frontal structures, white matter lesions in frontal lobe or subcortical systems, reduced activity in dorsolateral frontal cortex, or small vessel cerebrovascular disease may be associated with depression in AD. Conceptual, clinical, and methodological challenges in studying this relationship are discussed. Further work is needed to understand the specific brain structures, relevant white matter tracts, and interactions among them that are most important. This review concludes with potential directions for future research.

  5. Astrocytic modulation of Blood Brain Barrier: Perspectives on Parkinson´s Disease

    Directory of Open Access Journals (Sweden)

    Ricardo eCabezas

    2014-08-01

    Full Text Available TThe blood–brain barrier (BBB is a tightly regulated interface in the Central Nervous System that regulates the exchange of molecules in and out from the brain thus maintaining the CNS homeostasis. It is mainly composed of endothelial cells, pericytes and astrocytes that create a neurovascular unit with the adjacent neurons. Astrocytes are essential for the formation and maintenance of the BBB by providing secreted factors that lead to the adequate association between the cells of the BBB and the formation of strong tight junctions. Under neurological disorders, such as chronic cerebral ischemia, brain trauma, Epilepsy, Alzheimer and Parkinson´s Diseases, a disruption of the BBB takes place, involving a lost in the permeability of the barrier and phenotypical changes in both the endothelial cells and astrocytes. In this aspect, it has been established that the process of reactive gliosis is a common feature of astrocytes during BBB disruption, which has a detrimental effect on the barrier function and a subsequent damage in neuronal survival. In this review we discuss the implications of astrocyte functions in the protection of the BBB, and in the development of Parkinson´s disease and related disorders. Additionally, we highlight the current and future strategies in astrocyte protection aimed at the development of restorative therapies for the BBB in pathological conditions.

  6. The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease.

    Science.gov (United States)

    Minnerop, Martina; Weber, Bernd; Schoene-Bake, Jan-Christoph; Roeske, Sandra; Mirbach, Sandra; Anspach, Christian; Schneider-Gold, Christiane; Betz, Regina C; Helmstaedter, Christoph; Tittgemeyer, Marc; Klockgether, Thomas; Kornblum, Cornelia

    2011-12-01

    Myotonic dystrophy types 1 and 2 are progressive multisystemic disorders with potential brain involvement. We compared 22 myotonic dystrophy type 1 and 22 myotonic dystrophy type 2 clinically and neuropsychologically well-characterized patients and a corresponding healthy control group using structural brain magnetic resonance imaging at 3 T (T(1)/T(2)/diffusion-weighted). Voxel-based morphometry and diffusion tensor imaging with tract-based spatial statistics were applied for voxel-wise analysis of cerebral grey and white matter affection (P(corrected) brain changes with clinical and neuropsychological data. White matter lesions rated visually were more prevalent and severe in myotonic dystrophy type 1 compared with controls, with frontal white matter most prominently affected in both disorders, and temporal lesions restricted to myotonic dystrophy type 1. Voxel-based morphometry analyses demonstrated extensive white matter involvement in all cerebral lobes, brainstem and corpus callosum in myotonic dystrophy types 1 and 2, while grey matter decrease (cortical areas, thalamus, putamen) was restricted to myotonic dystrophy type 1. Accordingly, we found more prominent white matter affection in myotonic dystrophy type 1 than myotonic dystrophy type 2 by diffusion tensor imaging. Association fibres throughout the whole brain, limbic system fibre tracts, the callosal body and projection fibres (e.g. internal/external capsules) were affected in myotonic dystrophy types 1 and 2. Central motor pathways were exclusively impaired in myotonic dystrophy type 1. We found mild executive and attentional deficits in our patients when neuropsychological tests were corrected for manual motor dysfunctioning. Regression analyses revealed associations of white matter affection with several clinical parameters in both disease entities, but not with neuropsychological performance. We showed that depressed mood and fatigue were more prominent in patients with myotonic dystrophy type 1

  7. Regional brain stem atrophy in idiopathic Parkinson's disease detected by anatomical MRI.

    Science.gov (United States)

    Jubault, Thomas; Brambati, Simona M; Degroot, Clotilde; Kullmann, Benoît; Strafella, Antonio P; Lafontaine, Anne-Louise; Chouinard, Sylvain; Monchi, Oury

    2009-12-10

    Idiopathic Parkinson's disease (PD) is a neurodegenerative disorder characterized by the dysfunction of dopaminergic dependent cortico-basal ganglia loops and diagnosed on the basis of motor symptoms (tremors and/or rigidity and bradykinesia). Post-mortem studies tend to show that the destruction of dopaminergic neurons in the substantia nigra constitutes an intermediate step in a broader neurodegenerative process rather than a unique feature of Parkinson's disease, as a consistent pattern of progression would exist, originating from the medulla oblongata/pontine tegmentum. To date, neuroimaging techniques have been unable to characterize the pre-symptomatic stages of PD. However, if such a regular neurodegenerative pattern were to exist, consistent damages would be found in the brain stem, even at early stages of the disease. We recruited 23 PD patients at Hoenn and Yahr stages I to II of the disease and 18 healthy controls (HC) matched for age. T1-weighted anatomical scans were acquired (MPRAGE, 1 mm3 resolution) and analyzed using an optimized VBM protocol to detect white and grey matter volume reduction without spatial a priori. When the HC group was compared to the PD group, a single cluster exhibited statistical difference (p<0.05 corrected for false detection rate, 4287 mm3) in the brain stem, between the pons and the medulla oblongata. The present study provides in-vivo evidence that brain stem damage may be the first identifiable stage of PD neuropathology, and that the identification of this consistent damage along with other factors could help with earlier diagnosis in the future. This damage could also explain some non-motor symptoms in PD that often precede diagnosis, such as autonomic dysfunction and sleep disorders.

  8. Regional brain stem atrophy in idiopathic Parkinson's disease detected by anatomical MRI.

    Directory of Open Access Journals (Sweden)

    Thomas Jubault

    Full Text Available Idiopathic Parkinson's disease (PD is a neurodegenerative disorder characterized by the dysfunction of dopaminergic dependent cortico-basal ganglia loops and diagnosed on the basis of motor symptoms (tremors and/or rigidity and bradykinesia. Post-mortem studies tend to show that the destruction of dopaminergic neurons in the substantia nigra constitutes an intermediate step in a broader neurodegenerative process rather than a unique feature of Parkinson's disease, as a consistent pattern of progression would exist, originating from the medulla oblongata/pontine tegmentum. To date, neuroimaging techniques have been unable to characterize the pre-symptomatic stages of PD. However, if such a regular neurodegenerative pattern were to exist, consistent damages would be found in the brain stem, even at early stages of the disease. We recruited 23 PD patients at Hoenn and Yahr stages I to II of the disease and 18 healthy controls (HC matched for age. T1-weighted anatomical scans were acquired (MPRAGE, 1 mm3 resolution and analyzed using an optimized VBM protocol to detect white and grey matter volume reduction without spatial a priori. When the HC group was compared to the PD group, a single cluster exhibited statistical difference (p<0.05 corrected for false detection rate, 4287 mm3 in the brain stem, between the pons and the medulla oblongata. The present study provides in-vivo evidence that brain stem damage may be the first identifiable stage of PD neuropathology, and that the identification of this consistent damage along with other factors could help with earlier diagnosis in the future. This damage could also explain some non-motor symptoms in PD that often precede diagnosis, such as autonomic dysfunction and sleep disorders.

  9. Changes in brain oxysterols at different stages of Alzheimer's disease: Their involvement in neuroinflammation

    Directory of Open Access Journals (Sweden)

    Gabriella Testa

    2016-12-01

    Full Text Available Alzheimer's disease (AD is a gradually debilitating disease that leads to dementia. The molecular mechanisms underlying AD are still not clear, and at present no reliable biomarkers are available for the early diagnosis. In the last several years, together with oxidative stress and neuroinflammation, altered cholesterol metabolism in the brain has become increasingly implicated in AD progression. A significant body of evidence indicates that oxidized cholesterol, in the form of oxysterols, is one of the main triggers of AD. The oxysterols potentially most closely involved in the pathogenesis of AD are 24-hydroxycholesterol and 27-hydroxycholesterol, respectively deriving from cholesterol oxidation by the enzymes CYP46A1 and CYP27A1. However, the possible involvement of oxysterols resulting from cholesterol autooxidation, including 7-ketocholesterol and 7β-hydroxycholesterol, is now emerging. In a systematic analysis of oxysterols in post-mortem human AD brains, classified by the Braak staging system of neurofibrillary pathology, alongside the two oxysterols of enzymatic origin, a variety of oxysterols deriving from cholesterol autoxidation were identified; these included 7-ketocholesterol, 7α-hydroxycholesterol, 4β-hydroxycholesterol, 5α,6α-epoxycholesterol, and 5β,6β-epoxycholesterol. Their levels were quantified and compared across the disease stages. Some inflammatory mediators, and the proteolytic enzyme matrix metalloprotease-9, were also found to be enhanced in the brains, depending on disease progression. This highlights the pathogenic association between the trends of inflammatory molecules and oxysterol levels during the evolution of AD. Conversely, sirtuin 1, an enzyme that regulates several pathways involved in the anti-inflammatory response, was reduced markedly with the progression of AD, supporting the hypothesis that the loss of sirtuin 1 might play a key role in AD. Taken together, these results strongly support the

  10. The role of vitamin D in the brain and related neurological diseases

    Directory of Open Access Journals (Sweden)

    Mustafa Yılmaz

    2013-09-01

    Full Text Available Vitamin D is a steroid hormone that is produced photochemicallyin epidermis. It is known that vitamin D involvedin the regulation of bone mineralization and calcium-phosphorus balance. However, in recent studies havesuggested that vitamin D may have a significant impactin the development of the cell proliferation, differentiation,neurotransmission, neuroplasticity, neurotropic andneuroprotective effects in central nervous system (CNS.For the reason of the effects, it can be considered as aneurosteroid was reported. It was discussed that the levelof vitamin D may be associated to neurodegenerativediseases such as Parkinson’s disease, Alzheimer’s disease,multiple sclerosis (MS, amyotrophic lateral sclerosis(ALS. The role of vitamin D and the mechanisms ofthese diseases will be discussed in the review. J Clin ExpInvest 2013; 4 (3: 411-415Key words: Vitamin D, neurosteroid, brain, neurologicdiseases

  11. The reconstructive management of hardware-related scalp erosion in deep brain stimulation for Parkinson disease.

    Science.gov (United States)

    Gómez, Raúl; Hontanilla, Bernardo

    2014-09-01

    The presence of foreign material in deep brain stimulation is a risk factor for infection, and hardware-related pressure under the scalp may cause skin erosion. The aim of this article is to present our experience in the coverage of scalp in relation to underlying hardware. We analyzed 21 patients with Parkinson disease who had undergone deep brain stimulation surgery and developed scalp erosion with hardware exposition during follow-up. Nine patients were programmed for a scalp rotation flap, whereas free tisue transfer was performed in the rest of the patients. Minimum follow-up was 2 years. A hardware-related ulcer appeared in 5 of 9 rotation flap patients. No ulceration or major complications were observed in free flap patients. Free flaps are probably the best option for stable coverage in hardware-related scalp erosion with a high rate of success.

  12. The immunology of traumatic brain injury: a prime target for Alzheimer’s disease prevention

    Directory of Open Access Journals (Sweden)

    Giunta Brian

    2012-08-01

    Full Text Available Abstract A global health problem, traumatic brain injury (TBI is especially prevalent in the current era of ongoing world military conflicts. Its pathological hallmark is one or more primary injury foci, followed by a spread to initially normal brain areas via cascades of inflammatory cytokines and chemokines resulting in an amplification of the original tissue injury by microglia and other central nervous system immune cells. In some cases this may predispose individuals to later development of Alzheimer’s disease (AD. The inflammatory-based progression of TBI has been shown to be active in humans for up to 17 years post TBI. Unfortunately, all neuroprotective drug trials have failed, and specific treatments remain less than efficacious. These poor results might be explained by too much of a scientific focus on neurons without addressing the functions of microglia in the brain, which are at the center of proinflammatory cytokine generation. To address this issue, we provide a survey of the TBI-related brain immunological mechanisms that may promote progression to AD. We discuss these immune and microglia-based inflammatory mechanisms involved in the progression of post-trauma brain damage to AD. Flavonoid-based strategies to oppose the antigen-presenting cell-like inflammatory phenotype of microglia will also be reviewed. The goal is to provide a rationale for investigations of inflammatory response following TBI which may represent a pathological link to AD. In the end, a better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI to later AD.

  13. A neuroprotective brain-penetrating endopeptidase fusion protein ameliorates Alzheimer disease pathology and restores neurogenesis.

    Science.gov (United States)

    Spencer, Brian; Verma, Inder; Desplats, Paula; Morvinski, Dinorah; Rockenstein, Ed; Adame, Anthony; Masliah, Eliezer

    2014-06-20

    Alzheimer disease (AD) is characterized by widespread neurodegeneration throughout the association cortex and limbic system, deposition of amyloid-β peptide (Aβ) in the neuropil and around the blood vessels, and formation of neurofibrillary tangles. The endopeptidase neprilysin has been successfully used to reduce the accumulation of Aβ following intracranial viral vector delivery or ex vivo manipulated intracranial delivery. These therapies have relied on direct injections into the brain, whereas a clinically desirable therapy would involve i.v. infusion of a recombinant enzyme. We previously characterized a recombinant neprilysin that contained a 38-amino acid brain-targeting domain. Recombinant cell lines have been generated expressing this brain-targeted enzyme (ASN12). In this report, we characterize the ASN12 recombinant protein for pharmacology in a mouse as well as efficacy in two APPtg mouse models of AD. The recombinant ASN12 transited to the brain with a t½ of 24 h and accumulated to 1.7% of injected dose at 24 h following i.v. delivery. We examined pharmacodynamics in the tg2576 APPtg mouse with the prion promoter APP695 SWE mutation and in the Line41 mThy1 APP751 mutation mouse. Treatment of either APPtg mouse resulted in reduced Aβ, increased neuronal synapses, and improved learning and memory. In addition, the Line41 APPtg mice showed increased levels of C-terminal neuropeptide Y fragments and increased neurogenesis. These results suggest that the recombinant brain-targeted neprilysin, ASN12, may be an effective treatment for AD and warrant further investigation in clinical trials.

  14. Therapeutics with SPION-labeled stem cells for the main diseases related to brain aging: a systematic review

    Science.gov (United States)

    Alvarim, Larissa T; Nucci, Leopoldo P; Mamani, Javier B; Marti, Luciana C; Aguiar, Marina F; Silva, Helio R; Silva, Gisele S; Nucci-da-Silva, Mariana P; DelBel, Elaine A; Gamarra, Lionel F

    2014-01-01

    The increase in clinical trials assessing the efficacy of cell therapy for structural and functional regeneration of the nervous system in diseases related to the aging brain is well known. However, the results are inconclusive as to the best cell type to be used or the best methodology for the homing of these stem cells. This systematic review analyzed published data on SPION (superparamagnetic iron oxide nanoparticle)-labeled stem cells as a therapy for brain diseases, such as ischemic stroke, Parkinson’s disease, amyotrophic lateral sclerosis, and dementia. This review highlights the therapeutic role of stem cells in reversing the aging process and the pathophysiology of brain aging, as well as emphasizing nanotechnology as an important tool to monitor stem cell migration in affected regions of the brain. PMID:25143726

  15. Therapeutics with SPION-labeled stem cells for the main diseases related to brain aging: a systematic review.

    Science.gov (United States)

    Alvarim, Larissa T; Nucci, Leopoldo P; Mamani, Javier B; Marti, Luciana C; Aguiar, Marina F; Silva, Helio R; Silva, Gisele S; Nucci-da-Silva, Mariana P; DelBel, Elaine A; Gamarra, Lionel F

    2014-01-01

    The increase in clinical trials assessing the efficacy of cell therapy for structural and functional regeneration of the nervous system in diseases related to the aging brain is well known. However, the results are inconclusive as to the best cell type to be used or the best methodology for the homing of these stem cells. This systematic review analyzed published data on SPION (superparamagnetic iron oxide nanoparticle)-labeled stem cells as a therapy for brain diseases, such as ischemic stroke, Parkinson's disease, amyotrophic lateral sclerosis, and dementia. This review highlights the therapeutic role of stem cells in reversing the aging process and the pathophysiology of brain aging, as well as emphasizing nanotechnology as an important tool to monitor stem cell migration in affected regions of the brain.

  16. Construction and Analysis of Weighted Brain Networks from SICE for the Study of Alzheimer's Disease

    Science.gov (United States)

    Munilla, Jorge; Ortiz, Andrés; Górriz, Juan M.; Ramírez, Javier; Weiner, Michael W.

    2017-01-01

    Alzheimer's Disease (AD) is the most common neurodegenerative disease in elderly people, and current drugs, unfortunately, do not represent yet a cure but only slow down its progression. This is explained, at least in part, because the understanding of the neurodegenerative process is still incomplete, being sometimes mistaken, particularly at the first steps of the illness, with the natural aging process. A better identification of how the functional activity deteriorates is thus crucial to develop new and more effective treatments. Sparse inverse covariance estimates (SICE) have been recently employed for deriving functional connectivity patterns from Positron Emission Tomography (PET) of brains affected by Alzheimer's Disease. SICE, unlike the traditional covariance methods, allows to analyze the interdependencies between brain regions factoring out the influence of others. To analyze the effects of the illness, connectivity patterns of brains affected by AD are compared with those obtained for control groups. These comparisons are, however, carried out for binary (undirected and unweighted) adjacency matrices with the same number of arcs. Additionally, the effect of the number of subjects employed or the validity of the regularization parameter used to compute the SICE have been not hitherto analyzed. In this paper, we delve into the construction of connectivity patterns from PET using SICE. In particular, we describe the effect that the number of subjects employed has on the results and identify, based on the reconstruction error of linear regression systems, a range of valid values for the regularization parameter. The amount of arcs is also proved as a discriminant value, and we show that it is possible to pass from unweighted (binary) to weighted adjacency matrices, where the weight of a connection corresponding to the existence of a relationship between two brain areas can be correlated to the persistence of this relationship when computed for different

  17. Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases.

    Science.gov (United States)

    Wu, Ping; Zuo, Xialin; Deng, Houliang; Liu, Xiaoxia; Liu, Li; Ji, Aimin

    2013-08-01

    Long noncoding RNAs (lncRNAs) have been attracting immense research interest, while only a handful of lncRNAs have been characterized thoroughly. Their involvement in the fundamental cellular processes including regulate gene expression at epigenetics, transcription, and post-transcription highlighted a central role in cell homeostasis. However, lncRNAs studies are still at a relatively early stage, their definition, conservation, functions, and action mechanisms remain fairly complicated. Here, we give a systematic and comprehensive summary of the existing knowledge of lncRNAs in order to provide a better understanding of this new studying field. lncRNAs play important roles in brain development, neuron function and maintenance, and neurodegenerative diseases are becoming increasingly evident. In this review, we also highlighted recent studies related lncRNAs in central nervous system (CNS) development and neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), and elucidated some specific lncRNAs which may be important for understanding the pathophysiology of neurodegenerative diseases, also have the potential as therapeutic targets.

  18. A Systematic Investigation into Aging Related Genes in Brain and Their Relationship with Alzheimer's Disease.

    Science.gov (United States)

    Meng, Guofeng; Zhong, Xiaoyan; Mei, Hongkang

    2016-01-01

    Aging, as a complex biological process, is accompanied by the accumulation of functional loses at different levels, which makes age to be the biggest risk factor to many neurological diseases. Even following decades of investigation, the process of aging is still far from being fully understood, especially at a systematic level. In this study, we identified aging related genes in brain by collecting the ones with sustained and consistent gene expression or DNA methylation changes in the aging process. Functional analysis with Gene Ontology to these genes suggested transcriptional regulators to be the most affected genes in the aging process. Transcription regulation analysis found some transcription factors, especially Specificity Protein 1 (SP1), to play important roles in regulating aging related gene expression. Module-based functional analysis indicated these genes to be associated with many well-known aging related pathways, supporting the validity of our approach to select aging related genes. Finally, we investigated the roles of aging related genes on Alzheimer's Disease (AD). We found that aging and AD related genes both involved some common pathways, which provided a possible explanation why aging made the brain more vulnerable to Alzheimer's Disease.

  19. Increased brain iron coincides with early plaque formation in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Leskovjan, Andreana C; Kretlow, Ariane; Lanzirotti, Antonio; Barrea, Raul; Vogt, Stefan; Miller, Lisa M

    2011-03-01

    Elevated brain iron content, which has been observed in late-stage human Alzheimer's disease, is a potential target for early diagnosis. However, the time course for iron accumulation is currently unclear. Using the PSAPP mouse model of amyloid plaque formation, we conducted a time course study of metal ion content and distribution [iron (Fe), copper (Cu), and zinc (Zn)] in the cortex and hippocampus using X-ray fluorescence microscopy (XFM). We found that iron in the cortex was 34% higher than age-matched controls at an early stage, corresponding to the commencement of plaque formation. The elevated iron was not associated with the amyloid plaques. Interestingly, none of the metal ions were elevated in the amyloid plaques until the latest time point (56 weeks), where only the Zn content was significantly elevated by 38%. Since neuropathological changes in human Alzheimer's disease are presumed to occur years before the first cognitive symptoms appear, quantification of brain iron content could be a powerful marker for early diagnosis of Alzheimer's disease.

  20. Cellular model studies of brain-mediated phototherapy on Alzheimer's disease

    Science.gov (United States)

    Zhu, Ling; Liu, Timon Cheng-Yi; Hu, Bina; Li, Xiao-Yun; Wang, Yong-Qing

    2008-12-01

    Alzheimer's disease (AD) is now the most common neurodegenerative disease. Despite approval of several drugs for AD, the disease continues to rob millions of their memories and their lives. We have studied the cellular models of brain-mediated phototherapy on AD, and the studies will be reviewed in this paper. Genetic studies have shown that dysfunction of amyloid β-protein (Aβ) or tau is sufficient to cause AD. Aβ or Aβ induced redox stress induced neuron apoptosis might be as a cellular model of AD. We found red light at 640+/-15 nm from light emitting diode array (RLED640) might inhibit Aβ 25-35 induced PC12 cell apoptosis, which is mediated by cyclic adenosine monophosphate, and it might inhibit hydrogen peroxide (H2O2) induced differentiated PC12 cell (dPC12) apoptosis, which is mediated by tyrosine hydroxylase. There is rhythm dysfunction in AD. We found low intensity 810 nm laser irradiation might rehabilitate TNF-alpha induced inhibition of clock gen expression of NIH 3T3 fibroblasts. Our studies provide a foundation for photobiomodulation on brain to rehabilitate AD.

  1. Large-scale brain network abnormalities in Huntington's disease revealed by structural covariance.

    Science.gov (United States)

    Minkova, Lora; Eickhoff, Simon B; Abdulkadir, Ahmed; Kaller, Christoph P; Peter, Jessica; Scheller, Elisa; Lahr, Jacob; Roos, Raymund A; Durr, Alexandra; Leavitt, Blair R; Tabrizi, Sarah J; Klöppel, Stefan

    2016-01-01

    Huntington's disease (HD) is a progressive neurodegenerative disorder that can be diagnosed with certainty decades before symptom onset. Studies using structural MRI have identified grey matter (GM) loss predominantly in the striatum, but also involving various cortical areas. So far, voxel-based morphometric studies have examined each brain region in isolation and are thus unable to assess the changes in the interrelation of brain regions. Here, we examined the structural covariance in GM volumes in pre-specified motor, working memory, cognitive flexibility, and social-affective networks in 99 patients with manifest HD (mHD), 106 presymptomatic gene mutation carriers (pre-HD), and 108 healthy controls (HC). After correction for global differences in brain volume, we found that increased GM volume in one region was associated with increased GM volume in another. When statistically comparing the groups, no differences between HC and pre-HD were observed, but increased positive correlations were evident for mHD, relative to pre-HD and HC. These findings could be explained by a HD-related neuronal loss heterogeneously affecting the examined network at the pre-HD stage, which starts to dominate structural covariance globally at the manifest stage. Follow-up analyses identified structural connections between frontoparietal motor regions to be linearly modified by disease burden score (DBS). Moderator effects of disease load burden became significant at a DBS level typically associated with the onset of unequivocal HD motor signs. Together with existing findings from functional connectivity analyses, our data indicates a critical role of these frontoparietal regions for the onset of HD motor signs.

  2. Patient Perspectives on Deep Brain Stimulation Clinical Research in Early Stage Parkinson's Disease.

    Science.gov (United States)

    Heusinkveld, Lauren; Hacker, Mallory; Turchan, Maxim; Bollig, Madelyn; Tamargo, Christina; Fisher, William; McLaughlin, Lauren; Martig, Adria; Charles, David

    2017-01-01

    The FDA has approved a multicenter, double-blind, Phase III, pivotal trial testing deep brain stimulation (DBS) in 280 people with very early stage Parkinson's disease (PD; IDE#G050016). In partnership with The Michael J. Fox Foundation for Parkinson's Research, we conducted a survey to investigate motivating factors, barriers, and gender differences among potentially eligible patients for participation in a trial testing DBS in early PD compared to standard medical treatment. The majority of survey respondents (72%) indicated they would consider learning more about participating. Early PD patients are therefore likely to consider enrolling in trials of invasive therapies that may slow symptom progression and help future patients.

  3. Weight and body mass index in Parkinson's disease patients after deep brain stimulation surgery.

    Science.gov (United States)

    Tuite, Paul J; Maxwell, Robert E; Ikramuddin, Sayeed; Kotz, Catherine M; Kotzd, Catherine M; Billington, Charles J; Billingtond, Charles J; Laseski, Maggie A; Thielen, Scott D

    2005-06-01

    A retrospective chart review characterizing changes in 17 male and 10 female Parkinson's disease (PD) patients undergoing deep brain stimulation (DBS) surgery indicated that 6 mo before surgery, patients lost a mean of 5.1 lbs, whereas in the 6 mo after surgery, subjects gained a mean of 10.1 lbs; 22% gained more than 14 lbs. In 10 patients followed an additional 6 mo, weight gain continued. This weight gain may be associated with decreased energy expenditure due to subsidence of chronic tremor. The magnitude of gain underscores the need for proactive management of body weight in PD patients undergoing DBS.

  4. Functional brain networks in Alzheimer's disease: EEG analysis based on limited penetrable visibility graph and phase space method

    Science.gov (United States)

    Wang, Jiang; Yang, Chen; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing

    2016-10-01

    In this paper, EEG series are applied to construct functional connections with the correlation between different regions in order to investigate the nonlinear characteristic and the cognitive function of the brain with Alzheimer's disease (AD). First, limited penetrable visibility graph (LPVG) and phase space method map single EEG series into networks, and investigate the underlying chaotic system dynamics of AD brain. Topological properties of the networks are extracted, such as average path length and clustering coefficient. It is found that the network topology of AD in several local brain regions are different from that of the control group with no statistically significant difference existing all over the brain. Furthermore, in order to detect the abnormality of AD brain as a whole, functional connections among different brain regions are reconstructed based on similarity of clustering coefficient sequence (CCSS) of EEG series in the four frequency bands (delta, theta, alpha, and beta), which exhibit obvious small-world properties. Graph analysis demonstrates that for both methodologies, the functional connections between regions of AD brain decrease, particularly in the alpha frequency band. AD causes the graph index complexity of the functional network decreased, the small-world properties weakened, and the vulnerability increased. The obtained results show that the brain functional network constructed by LPVG and phase space method might be more effective to distinguish AD from the normal control than the analysis of single series, which is helpful for revealing the underlying pathological mechanism of the disease.

  5. Effects of alternating current stimulation on the healthy and diseased brain

    Directory of Open Access Journals (Sweden)

    Aini Ismafairus eAbd Hamid

    2015-10-01

    Full Text Available Cognitive and neurological dysfunctions can severely impact a patient’s daily activities. In addition to medical treatment, non-invasive transcranial alternating current stimulation (tACS has been proposed as a therapeutic technique to improve the functional state of the brain. Although during the last years tACS was applied in numerous studies to improve motor, somatosensory, visual and higher order cognitive functions, our knowledge is still limited regarding the mechanisms as to which type of ACS can affect cortical functions and altered neuronal oscillations seem to be the key mechanism. Because alternating current send pulses to the brain at predetermined frequencies, the online- and after-effects of ACS strongly depend on the stimulation parameters so that ‘optimal’ ACS paradigms could be achieved. This is of interest not only for neuroscience research but also for clinical practice. In this study, we summarize recent findings on ACS-effects under both normal conditions and in brain diseases.

  6. Relating Education, Brain Structure, and Cognition: The Role of Cardiovascular Disease Risk Factors

    Directory of Open Access Journals (Sweden)

    Moyra E. Mortby

    2014-01-01

    Full Text Available The protective effect of education on cognitive and brain health is well established. While the direct effects of individual cardiovascular disease (CVD risk factors (i.e., hypertension, smoking, diabetes, and obesity on cerebral structure have been investigated, little is understood about the possible interaction between the protective effect of education and the deleterious effects of CVD risk factors in predicting brain ageing and cognition. Using data from the PATH Through Life study (N=266, we investigated the protective effect of education on cerebral structure and function and tested a possible mediating role of CVD risk factors. Higher education was associated with larger regional grey/white matter volumes in the prefrontal cortex in men only. The association between education and cognition was mediated by brain volumes but only for grey matter and only in relation to information processing speed. CVD risk factors did not mediate the association between regional volumes and cognition. This study provides additional evidence in support for a protective effect of education on cerebral structures and cognition. However, it does not provide support for a mediating role of CVD risk factors in these associations.

  7. Effect of cerebral amyloid angiopathy on brain iron, copper, and zinc in Alzheimer's disease.

    Science.gov (United States)

    Schrag, Matthew; Crofton, Andrew; Zabel, Matthew; Jiffry, Arshad; Kirsch, David; Dickson, April; Mao, Xiao Wen; Vinters, Harry V; Domaille, Dylan W; Chang, Christopher J; Kirsch, Wolff

    2011-01-01

    Cerebral amyloid angiopathy (CAA) is a vascular lesion associated with Alzheimer's disease (AD) present in up to 95% of AD patients and produces MRI-detectable microbleeds in many of these patients. It is possible that CAA-related microbleeding is a source of pathological iron in the AD brain. Because the homeostasis of copper, iron, and zinc are so intimately linked, we determined whether CAA contributes to changes in the brain levels of these metals. We obtained brain tissue from AD patients with severe CAA to compare to AD patients without evidence of vascular amyloid-β. Patients with severe CAA had significantly higher non-heme iron levels. Histologically, iron was deposited in the walls of large CAA-affected vessels. Zinc levels were significantly elevated in grey matter in both the CAA and non-CAA AD tissue, but no vascular staining was noted in CAA cases. Copper levels were decreased in both CAA and non-CAA AD tissues and copper was found to be prominently deposited on the vasculature in CAA. Together, these findings demonstrate that CAA is a significant variable affecting transition metals in AD.

  8. Bimanual force coordination in Parkinson's disease patients with bilateral subthalamic deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Stacey L Gorniak

    Full Text Available OBJECTIVE: Studies of bimanual actions similar to activities of daily living (ADLs are currently lacking in evaluating fine motor control in Parkinson's disease patients implanted with bilateral subthalamic deep brain stimulators. We investigated basic time and force characteristics of a bimanual task that resembles performance of ADLs in a group of bilateral subthalamic deep brain stimulation (DBS patients. METHODS: Patients were evaluated in three different DBS parameter conditions off stimulation, on clinically derived stimulation parameters, and on settings derived from a patient-specific computational model. Model-based parameters were computed as a means to minimize spread of current to non-motor regions of the subthalamic nucleus via Cicerone Deep Brain Stimulation software. Patients were evaluated off parkinsonian medications in each stimulation condition. RESULTS: The data indicate that DBS parameter state does not affect most aspects of fine motor control in ADL-like tasks; however, features such as increased grip force and grip symmetry varied with the stimulation state. In the absence of DBS parameters, patients exhibited significant grip force asymmetry. Overall UPDRS-III and UPDRS-III scores associated with hand function were lower while patients were experiencing clinically-derived or model-based parameters, as compared to the off-stimulation condition. CONCLUSION: While bilateral subthalamic DBS has been shown to alleviate gross motor dysfunction, our results indicate that DBS may not provide the same magnitude of benefit to fine motor coordination.

  9. Brain Perfusion MRI Findings in Patients with Behcet’s Disease

    Directory of Open Access Journals (Sweden)

    Alpay Alkan

    2012-01-01

    Full Text Available Objective. To search brain perfusion MRI (pMRI changes in Behcet’s disease (BD with or without neurological involvement. Materials and Method. The pMRI were performed in 34 patients with BD and 16 healthy controls. Based on neurologic examination and post-contrast MRI, 12 patients were classified as Neuro-Behcet (group 1, NBD and 22 patients as BD without neurological involvement (group 2. Mean transit time (MTT, time to peak (TTP, relative cerebral blood volume (rCBV, and relative cerebral blood flow (rCBF were obtained and compared to those of healthy control group (group 3. Results. There was a significant difference in the MTT and rCBF within the pons and parietal cortex in groups 1 and 2. rCBV increased in cerebral pedicle in group 1 compared with groups 2 and 3. In the temporal lobe white matter, prolonged MTT and decreased rCBF were found in groups 1 and 2. In the corpus striatum, internal capsule, and periventricular white matter, rCBF increased in group 1 compared with group 3 and decreased in groups 1 and 2. Conclusion. Brain pMRI is a very sensitive method to detect brain involvement in patients with BD and aids the clinical diagnosis of NBD, especially in patients with negative MRI findings.

  10. STUDY OF PLASMA-DERIVED MIRNAS MIMIC DIFFERENCES IN HUNTINGTON’S DISEASE BRAIN

    Science.gov (United States)

    Hoss, Andrew G.; Lagomarsino, Valentina N.; Frank, Samuel; Hadzi, Tiffany C.; Myers, Richard H.; Latourelle, Jeanne C.

    2015-01-01

    Background Biomarkers for Huntington’s disease (HD) progression could accelerate therapeutic developments and improve patient care. Brain microRNAs (miRNA) relating to clinical features of HD may represent a potential HD biomarker in blood. Objective Examine candidate miRNAs in plasma to determine if changes observed in HD brains are detectable in peripheral samples. Methods Four miRNA from 26 manifest HD, 4 asymptomatic HD gene carriers and 8 controls were quantified in plasma using RT-qPCR. Linear regression was used to assess miRNA levels across control, asymptomatic gene carriers and manifest patients. Results miR-10b-5p (p= 0.0068) and miR-486-5p (p= 0.044) were elevated in HD plasma. miR-10b-5p was decreased in asymptomatic gene carriers as compared to HD patients (p= 0.049), but no difference between asymptomatic gene carriers and controls was observed (p= 0.24). Conclusions These findings suggest miRNA changes observed in HD brain may be detectable in plasma and have potential clinical utility. PMID:26573701

  11. Age-associated changes of brain copper, iron, and zinc in Alzheimer's disease and dementia with Lewy bodies.

    Science.gov (United States)

    Graham, Stewart F; Nasaruddin, Muhammad Bin; Carey, Manus; Holscher, Christian; McGuinness, Bernadette; Kehoe, Patrick G; Love, Seth; Passmore, Peter; Elliott, Christopher T; Meharg, Andrew A; Green, Brian D

    2014-01-01

    Disease-, age-, and gender-associated changes in brain copper, iron, and zinc were assessed in postmortem neocortical tissue (Brodmann area 7) from patients with moderate Alzheimer's disease (AD) (n = 14), severe AD (n = 28), dementia with Lewy bodies (n = 15), and normal age-matched control subjects (n = 26). Copper was lower (20%; p iron higher (10-16%; p iron, suggesting gradual age-associated decline of these metals in healthy non-cognitively impaired individuals. Zinc was unaffected in any disease pathologies and no age-associated changes were apparent. Age-associated changes in brain elements warrant further investigation.

  12. Multistimulation group therapy in Alzheimer's disease promotes changes in brain functioning.

    Science.gov (United States)

    Baglio, Francesca; Griffanti, Ludovica; Saibene, Francesca Lea; Ricci, Cristian; Alberoni, Margherita; Critelli, Raffaella; Villanelli, Fabiana; Fioravanti, Raffaella; Mantovani, Federica; D'amico, Alessandra; Cabinio, Monia; Preti, Maria Giulia; Nemni, Raffaello; Farina, Elisabetta

    2015-01-01

    Background. The growing social emergency represented by Alzheimer's disease (AD) and the lack of medical treatments able to modify the disease course have kindled the interest in nonpharmacological therapies. Objective. We introduced a novel nonpharmacological approach for people with AD (PWA) named Multidimensional Stimulation group Therapy (MST) to improve PWA condition in different disease domains: cognition, behavior, and motor functioning. Methods. Enrolling 60 PWA in a mild to moderate stage of the disease, we evaluated the efficacy of MST with a randomized-controlled study. Neuropsychological and neurobehavioral measures and functional magnetic resonance imaging (fMRI) data were considered as outcome measures. Results. The following significant intervention-related changes were observed: reduction in Neuropsychiatric Inventory scale score, improvement in language and memory subscales of Alzheimer's Disease Assessment Scale-Cognitive subscale, and increased fMRI activations in temporal brain areas, right insular cortex, and thalamus. Conclusions. Cognitive-behavioral and fMRI results support the notion that MST has significant effects in improving PWA cognitive-behavioral status by restoring neural functioning.

  13. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    Directory of Open Access Journals (Sweden)

    Julie Nemecek

    Full Text Available Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA to amplify abnormal prion protein (PrP(TSE from highly diluted variant Creutzfeldt-Jakob disease (vCJD-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrP(TSE in tissues and blood. Macaque vCJD PrP(TSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA. Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV, a close relative of the bank vole, seeded with macaque vCJD PrP(TSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N. We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrP(TSE. Meadow vole brain (170N/N PrP genotype was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrP(TSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrP(TSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrP(TSE was more permissive than human PrP(TSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrP(TSE from brains of humans and macaques with vCJD. PrP(TSE signals were reproducibly detected by Western blot in dilutions through 10⁻¹² of vCJD-infected 10% brain homogenates. This is the first report showing PrP(TSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect Pr

  14. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    Science.gov (United States)

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in v

  15. Brain transplants. A new approach to the therapy of neurodegenerative disease.

    Science.gov (United States)

    Tulipan, N

    1988-05-01

    There is now a wealth of experimental evidence to suggest that transplantation to the brain may ameliorate a variety of neurologic and endocrine disorders. Many unanswered questions remain. Chief among these questions are the duration of any salutary effects and the potential long-term risks to the host CNS. Answers to these questions will only come with carefully controlled long-term clinical studies. Given the high incidence and devastating nature of many of these diseases, such studies will have enormous scientific and social impact. Regardless of the outcome, there is the potential for a greater understanding of the pathologic mechanisms underlying neurodegenerative diseases and, thus, the possibility that definitive therapies will be found as a result.

  16. Clinical NMR imaging of the brain in children: normal and neurologic disease

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.A, (Hammersmith Hospital, London, England); Pennock, J.M.; Bydder, G.M.; Steiner, R.E.; Thomas, D.J.; Hayward, R.; Bryant, D.R.T.; Payne, J.A.; Levene, M.I.; Whitelaw, A.; Dubowitz, L.M.S.; Dubowitz, V.

    1983-11-01

    The results of initial clinical nuclear magnetic resonance imaging of the brain in eight normal and 52 children with a wide variety of neurologic diseases were reviewed. The high level of gray-white matter contrast available with inversion-recovery sequences provided a basis for visualizing normal myelination as well as delays or deficits in this process. The appearances seen in cases of parenchymal hemorrhage, cerebral infarction, and proencephalic cysts are described. Ventricular enlargement was readily identified and marginal edema was demonstrated with spin-echo sequences. Abnormalities were seen in cerebral palsy, congenital malformations, Hallervorden-Spatz disease, aminoaciduria, and meningitis. Space-occupying lesions were identified by virtue of their increased relaxation times and mass effects. Nuclear magnetic resonance imaging has considerable potential in pediatric neuroradiologic practice, in some conditions supplying information not available by computed tomography or sonography.

  17. Serum brain-derived neurotrophic factor levels in different neurological diseases.

    Science.gov (United States)

    Ventriglia, Mariacarla; Zanardini, Roberta; Bonomini, Cristina; Zanetti, Orazio; Volpe, Daniele; Pasqualetti, Patrizio; Gennarelli, Massimo; Bocchio-Chiavetto, Luisella

    2013-01-01

    Consistent evidence indicates the involvement of the brain-derived neurotrophic factor (BDNF) in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). In the present study, we compared serum BDNF in 624 subjects: 266 patients affected by AD, 28 by frontotemporal dementia (FTD), 40 by Lewy body dementia (LBD), 91 by vascular dementia (VAD), 30 by PD, and 169 controls. Our results evidenced lower BDNF serum levels in AD, FTD, LBD, and VAD patients (P benzodiazepines (P = 0.020). In conclusion, our results support the role of BDNF alterations in neurodegenerative mechanisms common to different forms of neurological disorders and underline the importance of including drug treatment in the analyses to avoid confounding effects.

  18. Differences in brain activation between tremor- and nontremor-dominant Parkinson disease.

    Science.gov (United States)

    Prodoehl, Janey; Planetta, Peggy J; Kurani, Ajay S; Comella, Cynthia L; Corcos, Daniel M; Vaillancourt, David E

    2013-01-01

    OBJECTIVE To compare differences in functional brain activity between tremor- and nontremor-dominant subtypes of Parkinson disease (PD) using functional magnetic resonance imaging. DESIGN In our study, patients with tremor-dominant PD and those with nontremor-dominant PD performed a grip task, and the results obtained were compared using voxelwise analysis. Areas of the brain that were significantly different were then examined using a region-of-interest analysis to compare these patients with healthy controls. Voxel-based morphometry was used to determine macroscopic differences in gray and white matter volume between patient groups. SETTING University-affiliated research institution. PARTICIPANTS A total of 20 drug-naive patients with PD (10 with tremor-dominant PD and 10 with nontremor-dominant PD) and a total of 20 healthy controls. MAIN OUTCOME MEASURES Blood oxygenation level-dependent activation and percent signal change. RESULTS Robust findings across both voxelwise and region-of-interest analyses showed that, compared with patients with tremor-dominant PD, patients with nontremor-dominant PD had reduced activation in the ipsilateral dorsolateral prefrontal cortex, the globus pallidus interna, and the globus pallidus externa. Region-of-interest analyses confirmed that patients with nontremor-dominant PD had reduced activity in the ipsilateral dorsolateral prefrontal cortex, the globus pallidus interna, and the globus pallidus externa compared with patients with tremor-dominant PD and healthy controls. Patients with tremor-dominant PD had increased activity in the contralateral dorsolateral prefrontal cortex compared with patients with nontremor-dominant PD and healthy controls. These results could not be explained by differences in gray or white matter volume. CONCLUSIONS Reduced brain activity occurs in the prefrontal cortex and globus pallidus of patients with nontremor-dominant PD compared with both patients with tremor-dominant PD and healthy controls

  19. Parvalbumin-immunoreactive neurons in the hippocampal formation of Alzheimer's diseased brain.

    Science.gov (United States)

    Brady, D R; Mufson, E J

    1997-10-01

    The number and topographic distribution of immunocytochemically stained parvalbumin interneurons was determined in the hippocampal formation of control and Alzheimer's diseased brain. In control hippocampus, parvalbumin interneurons were aspiny and pleomorphic, with extensive dendritic arbors. In dentate gyrus, parvalbumin cells, as well as a dense plexus of fibers and puncta, were associated with the granule cell layer. A few cells also occupied the molecular layer. In strata oriens and pyramidale of CA1-CA3 subfields, parvalbumin neurons gave rise to dendrites that extended into adjacent strata. Densely stained puncta and beaded fibers occupied stratum pyramidale, with less dense staining in adjacent strata oriens and radiatum. Virtually no parvalbumin profiles were observed in stratum lacunosum-moleculare or the alveus. Numerous polymorphic parvalbumin neurons and a dense plexus of fibers and puncta characterized the deep layer of the subiculum and the lamina principalis externa of the presubiculum. In Alzheimer's diseased hippocampus, there was an approximate 60% decrease in the number of parvalbumin interneurons in the dentate gyrus/CA4 subfield (Pparvalbumin neurons did not statistically decline in subfields CA3, subiculum or presubiculum in Alzheimer's diseased brains relative to controls. Concurrent staining with Thioflavin-S histochemistry did not reveal degenerative changes within parvalbumin-stained profiles. These findings reveal that parvalbumin interneurons within specific hippocampal subfields are selectively vulnerable in Alzheimer's disease. This vulnerability may be related to their differential connectivity, e.g., those regions connectionally related to the cerebral cortex (dentate gyrus and CA1) are more vulnerable than those regions connectionally related to subcortical loci (subiculum and presubiculum).

  20. Disrupted nodal and hub organization account for brain network abnormalities in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Yuko Koshimori

    2016-11-01

    Full Text Available The recent application of graph theory to brain networks promises to shed light on complex diseases such as Parkinson’s disease. This study aimed to investigate functional changes in sensorimotor and cognitive networks in parkinsonian patients, with a focus on inter- and intra-connectivity organization in the disease-associated nodal and hub regions using the graph theoretical analyses. Resting-state functional MRI data of a total of 65 participants, including 23 healthy controls and 42 patients, were investigated in 120 nodes for local efficiency, betweenness centrality, and degree. Hub regions were identified in the healthy control and patient groups. We found nodal and hub changes in patients compared with healthy controls, including the right pre-supplementary motor area, left anterior insula, bilateral mid-insula, bilateral dorsolateral prefrontal cortex, and right caudate nucleus. In general, nodal regions within the sensorimotor network (i.e. right pre-supplementary motor area and right mid-insula displayed weakened connectivity, with the former node associated with more severe bradykinesia, and impaired integration with default mode network regions. The left mid-insula also lost its hub properties in patients. Within the executive networks, the left anterior insular cortex lost its hub properties in patients, while a new hub region was identified in the right caudate nucleus, paralleled by an increased level of inter- and intra-connectivity in the bilateral dorsolateral prefrontal cortex possibly representing compensatory mechanisms. These findings highlight the diffuse changes in nodal organization and regional hub disruption accounting for the distributed abnormalities across brain networks and the clinical manifestations of Parkinson’s disease.

  1. Sleep facilitates clearance of metabolites from the brain: glymphatic function in aging and neurodegenerative diseases.

    Science.gov (United States)

    Mendelsohn, Andrew R; Larrick, James W

    2013-12-01

    Decline of cognition and increasing risk of neurodegenerative diseases are major problems associated with aging in humans. Of particular importance is how the brain removes potentially toxic biomolecules that accumulate with normal neuronal function. Recently, a biomolecule clearance system using convective flow between the cerebrospinal fluid (CSF) and interstitial fluid (ISF) to remove toxic metabolites in the brain was described. Xie and colleagues now report that in mice the clearance activity of this so-called "glymphatic system" is strongly stimulated by sleep and is associated with an increase in interstitial volume, possibly by shrinkage of astroglial cells. Moreover, anesthesia and attenuation of adrenergic signaling can activate the glymphatic system to clear potentially toxic proteins known to contribute to the pathology of Alzheimer disease (AD) such as beta-amyloid (Abeta). Clearance during sleep is as much as two-fold faster than during waking hours. These results support a new hypothesis to answer the age-old question of why sleep is necessary. Glymphatic dysfunction may pay a hitherto unsuspected role in the pathogenesis of neurodegenerative diseases as well as maintenance of cognition. Furthermore, clinical studies suggest that quality and duration of sleep may be predictive of the onset of AD, and that quality sleep may significantly reduce the risk of AD for apolipoprotein E (ApoE) ɛ4 carriers, who have significantly greater chances of developing AD. Further characterization of the glymphatic system in humans may lead to new therapies and methods of prevention of neurodegenerative diseases. A public health initiative to ensure adequate sleep among middle-aged and older people may prove useful in preventing AD, especially in apolipoprotein E (ApoE) ɛ4 carriers.

  2. Non-invasive brain stimulation for the treatment of brain diseases in childhood and adolescence: state of the art, current limits and future challenges

    Directory of Open Access Journals (Sweden)

    Carmelo Mario Vicario

    2013-11-01

    Full Text Available In the last decades interest in application of non-invasive brain stimulation for enhancing neural functions is growing continuously. However, the use of such techniques in pediatric populations remains rather limited and mainly confined to the treatment of severe neurological and psychiatric diseases. In this article we provide a complete review of non-invasive brain stimulation studies conducted in pediatric populations. We also provide a brief discussion about the current limitations and future directions in a field of research still very young and full of issues to be explored.

  3. Brain aging and Parkinson's disease: New therapeutic approaches using drug delivery systems.

    Science.gov (United States)

    Rodríguez-Nogales, C; Garbayo, E; Carmona-Abellán, M M; Luquin, M R; Blanco-Prieto, M J

    2016-02-01

    The etiology and pathogenesis of Parkinson's disease (PD) is unknown, aging being the strongest risk factor for brain degeneration. Understanding PD pathogenesis and how aging increases the risk of disease would aid the development of therapies able to slow or prevent the progression of this neurodegenerative disorder. In this review we provide an overview of the most promising therapeutic targets and strategies to delay the loss of dopaminergic neurons observed both in PD and aging. Among them, handling alpha-synuclein toxicity, enhancing proteasome and lysosome clearance, ameliorating mitochondrial disruptions and modifying the glial environment are so far the most promising candidates. These new and conventional drugs may present problems related to their labile nature and to the difficulties in reaching the brain. Thus, we highlight the latest types of drug delivery system (DDS)-based strategies for PD treatment, including DDS for local and systemic drug delivery. Finally, the ongoing challenges for the discovery of new targets and the opportunities for DDS-based therapies to improve and efficacious PD therapy will be discussed.

  4. Mitochondria: A crossroads for lipid metabolism defect in neurodegeneration with brain iron accumulation diseases.

    Science.gov (United States)

    Aoun, Manar; Tiranti, Valeria

    2015-06-01

    Neurodegeneration with brain iron accumulation (NBIA) comprises a group of brain iron deposition syndromes that lead to mixed extrapyramidal features and progressive dementia. Exact pathologic mechanism of iron deposition in NBIA remains unknown. However, it is becoming increasingly evident that many neurodegenerative diseases are hallmarked by metabolic dysfunction that often involves altered lipid profile. Among the identified disease genes, four encode for proteins localized in mitochondria, which are directly or indirectly implicated in lipid metabolism: PANK2, CoASY, PLA2G6 and C19orf12. Mutations in PANK2 and CoASY, both implicated in CoA biosynthesis that acts as a fatty acyl carrier, lead, respectively, to PKAN and CoPAN forms of NBIA. Mutations in PLA2G6, which plays a key role in the biosynthesis and remodeling of membrane phospholipids including cardiolipin, lead to PLAN. Mutations in C19orf12 lead to MPAN, a syndrome similar to that caused by mutations in PANK2 and PLA2G6. Although the function of C19orf12 is largely unknown, experimental data suggest its implication in mitochondrial homeostasis and lipid metabolism. Altogether, the identified mutated proteins localized in mitochondria and associated with different NBIA forms support the concept that dysfunctions in mitochondria and lipid metabolism play a crucial role in the pathogenesis of NBIA. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.

  5. Comparative analysis of RNA-Seq data from brain and blood samples of Parkinson's disease.

    Science.gov (United States)

    Chatterjee, Paulami; Roy, Debjani

    2017-03-11

    Parkinson's disease (PD) is the second most common neurodegenerative disorders throughout the world. In order to search for PD biomarkers, we performed a system-level study of RNA-Seq data from PD brain and blood samples. Differentially expressed miRs of RNA-Seq data were subjected to generate the Co-expression networks. Three highly co-expressed clusters were identified based on their correlation coefficient values and fold change ratio. SM2miR drugs of the miRs contained in the three highly co-expressed clusters were identified, and drugs common among these clusters were selected. Co-expressed miRs not previously known to be associated with PD were identified from both the samples. Functional enrichment analyses of these miR targets were done, and the pathways common and unique to both the samples were identified. Thus, our study presents a comparative analysis of miRs, their associated pathways, and drugs from brain and blood samples of PD that may help in system level understanding of this disease. miRs identified from our study may serve as biomarkers for PD.

  6. Nonselenium glutathione peroxidase in human brain : elevated levels in Parkinson's disease and dementia with lewy bodies.

    Science.gov (United States)

    Power, John H T; Shannon, John M; Blumbergs, Peter C; Gai, Wei-Ping

    2002-09-01

    Nonselenium glutathione peroxidase (NSGP) is a new member of the antioxidant family. Using antibodies to recombinant NSGP we have examined the distribution of this enzyme in normal, Parkinson's disease (PD), and dementia with Lewy body disease (DLB) brains. We have also co-localized this enzyme with alpha-synuclein as a marker for Lewy bodies. In normal brains there was a very low level of NSGP staining in astrocytes. In PD and DLB there were increases in the number and staining intensity of NSGP-positive astrocytes in both gray and white matter. Cell counting of NSGP cells in PD and DLB frontal and cingulated cortices indicated there was 10 to 15 times more positive cells in gray matter and three times more positive cells in white matter than in control cortices. Some neurons were positive for both alpha-synuclein and NSGP in PD and DLB, and double staining indicated that NSGP neurons contained either diffuse cytoplasmic alpha-synuclein deposits or Lewy bodies. In concentric Lewy bodies, alpha-synuclein staining was peripheral whereas NSGP staining was confined to the central core. Immunoprecipitation indicated there was direct interaction between alpha-synuclein and NSGP. These results suggest oxidative stress conditions exist in PD and DLB and that certain cells have responded by up-regulating this novel antioxidant enzyme.

  7. Can Electrical Vestibular Noise Be Used for the Treatment of Brain Diseases?

    Science.gov (United States)

    Yamamoto, Yoshiharu; Soma, Rika; Struzik, Zbigniew R.; Kwak, Shin

    2005-11-01

    The therapy currently available for the treatment of degenerative neurological diseases is far from satisfactory, and a novel therapeutic strategy, especially for pharmacologically unresponsive patients, would be welcomed. The vestibular nerves are known to influence neuronal circuits in the medullary cardiovascular areas and, through the cerebellar vermis, the basal ganglia and the limbic system. By means of noisy galvanic vestibular stimulation (GVS), it may now be possible to ameliorate blunted responsiveness of degenerated neuronal circuits in the brains of multiple system atrophy (MSA) and/or Parkinson's disease (PD) patients, through a mechanism known as stochastic resonance. We evaluate the effect of 24-hour noisy GVS on long-term heart rate dynamics in seven MSA patients, and on daytime locomotor activity dynamics in twelve patients with either PD or levodopa unresponsive parkinsonism. Short-range heart rate variability and long-range anti-correlation of trunk activity are significantly increased by the noisy GVS compared with sham stimulation, suggestive of improved autonomic and motor responsiveness. The noisy GVS is effective in boosting the neuro-degenerative brains of MSA and/or PD patients, including those unresponsive to standard levodopa therapy.

  8. A spectral graph regression model for learning brain connectivity of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Chenhui Hu

    Full Text Available Understanding network features of brain pathology is essential to reveal underpinnings of neurodegenerative diseases. In this paper, we introduce a novel graph regression model (GRM for learning structural brain connectivity of Alzheimer's disease (AD measured by amyloid-β deposits. The proposed GRM regards 11C-labeled Pittsburgh Compound-B (PiB positron emission tomography (PET imaging data as smooth signals defined on an unknown graph. This graph is then estimated through an optimization framework, which fits the graph to the data with an adjustable level of uniformity of the connection weights. Under the assumed data model, results based on simulated data illustrate that our approach can accurately reconstruct the underlying network, often with better reconstruction than those obtained by both sample correlation and ℓ1-regularized partial correlation estimation. Evaluations performed upon PiB-PET imaging data of 30 AD and 40 elderly normal control (NC subjects demonstrate that the connectivity patterns revealed by the GRM are easy to interpret and consistent with known pathology. Moreover, the hubs of the reconstructed networks match the cortical hubs given by functional MRI. The discriminative network features including both global connectivity measurements and degree statistics of specific nodes discovered from the AD and NC amyloid-beta networks provide new potential biomarkers for preclinical and clinical AD.

  9. A Spectral Graph Regression Model for Learning Brain Connectivity of Alzheimer’s Disease

    Science.gov (United States)

    Hu, Chenhui; Cheng, Lin; Sepulcre, Jorge; Johnson, Keith A.; Fakhri, Georges E.; Lu, Yue M.; Li, Quanzheng

    2015-01-01

    Understanding network features of brain pathology is essential to reveal underpinnings of neurodegenerative diseases. In this paper, we introduce a novel graph regression model (GRM) for learning structural brain connectivity of Alzheimer's disease (AD) measured by amyloid-β deposits. The proposed GRM regards 11C-labeled Pittsburgh Compound-B (PiB) positron emission tomography (PET) imaging data as smooth signals defined on an unknown graph. This graph is then estimated through an optimization framework, which fits the graph to the data with an adjustable level of uniformity of the connection weights. Under the assumed data model, results based on simulated data illustrate that our approach can accurately reconstruct the underlying network, often with better reconstruction than those obtained by both sample correlation and ℓ1-regularized partial correlation estimation. Evaluations performed upon PiB-PET imaging data of 30 AD and 40 elderly normal control (NC) subjects demonstrate that the connectivity patterns revealed by the GRM are easy to interpret and consistent with known pathology. Moreover, the hubs of the reconstructed networks match the cortical hubs given by functional MRI. The discriminative network features including both global connectivity measurements and degree statistics of specific nodes discovered from the AD and NC amyloid-beta networks provide new potential biomarkers for preclinical and clinical AD. PMID:26024224

  10. Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Hunter

    Full Text Available Key pathological hallmarks of Alzheimer's disease (AD, including amyloid plaques, cerebral amyloid angiopathy (CAA and neurofibrillary tangles do not completely account for cognitive impairment, therefore other factors such as cardiovascular and cerebrovascular pathologies, may contribute to AD. In order to elucidate the microvascular changes that contribute to aging and disease, direct neuropathological staining and immunohistochemistry, were used to quantify the structural integrity of the microvasculature and its innervation in three oldest-old cohorts: 1 nonagenarians with AD and a high amyloid plaque load; 2 nonagenarians with no dementia and a high amyloid plaque load; 3 nonagenarians without dementia or amyloid plaques. In addition, a non-demented (ND group (average age 71 years with no amyloid plaques was included for comparison. While gray matter thickness and overall brain mass were reduced in AD compared to ND control groups, overall capillary density was not different. However, degenerated string capillaries were elevated in AD, potentially suggesting greater microvascular "dysfunction" compared to ND groups. Intriguingly, apolipoprotein ε4 carriers had significantly higher string vessel counts relative to non-ε4 carriers. Taken together, these data suggest a concomitant loss of functional capillaries and brain volume in AD subjects. We also demonstrated a trend of decreasing vesicular acetylcholine transporter staining, a marker of cortical cholinergic afferents that contribute to arteriolar vasoregulation, in AD compared to ND control groups, suggesting impaired control of vasodilation in AD subjects. In addition, tyrosine hydroxylase, a marker of noradrenergic vascular innervation, was reduced which may also contribute to a loss of control of vasoconstriction. The data highlight the importance of the brain microcirculation in the pathogenesis and evolution of AD.

  11. Speech disorders in Parkinson's disease: early diagnostics and effects of medication and brain stimulation.

    Science.gov (United States)

    Brabenec, L; Mekyska, J; Galaz, Z; Rektorova, Irena

    2017-03-01

    Hypokinetic dysarthria (HD) occurs in 90% of Parkinson's disease (PD) patients. It manifests specifically in the areas of articulation, phonation, prosody, speech fluency, and faciokinesis. We aimed to systematically review papers on HD in PD with a special focus on (1) early PD diagnosis and monitoring of the disease progression using acoustic voice and speech analysis, and (2) functional imaging studies exploring neural correlates of HD in PD, and (3) clinical studies using acoustic analysis to evaluate effects of dopaminergic medication and brain stimulation. A systematic literature search of articles written in English before March 2016 was conducted in the Web of Science, PubMed, SpringerLink, and IEEE Xplore databases using and combining specific relevant keywords. Articles were categorized into three groups: (1) articles focused on neural correlates of HD in PD using functional imaging (n = 13); (2) articles dealing with the acoustic analysis of HD in PD (n = 52); and (3) articles concerning specifically dopaminergic and brain stimulation-related effects as assessed by acoustic analysis (n = 31); the groups were then reviewed. We identified 14 combinations of speech tasks and acoustic features that can be recommended for use in describing the main features of HD in PD. While only a few acoustic parameters correlate with limb motor symptoms and can be partially relieved by dopaminergic medication, HD in PD seems to be mainly related to non-dopaminergic deficits and associated particularly with non-motor symptoms. Future studies should combine non-invasive brain stimulation with voice behavior approaches to achieve the best treatment effects by enhancing auditory-motor integration.

  12. Brain gray matter volume changes associated with motor symptoms in patients with Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Dezhi Kang; Fuyong Chen; Fangyu Wang; Guorong Wu; Ying Liu; Gang Wu; Lianghong Yu

    2016-01-01

    Background:Parkinson's disease (PD) is a common neurodegenerative disease.Most studies have found that the histopathological lesion is not only localized at the extrapyramidal area (basal ganglia) but also at the cortex in PD patients.Voxel-based morphometry (VBM) based on the voxel as a unit is described for quantitative detection of density and volume of brain tissue.In this study,VBM was used to investigate the brain gray matter changes associated with motor symptoms in PD patients.Methods:Twelve outpatients with PD and 12 healthy controls were recruited in our hospital from September 2013 to March 2014.VBM was performed on the whole brain of all subjects.Image processing and statistical analysis were performed using SPM8.A two-sample t test and multiple regression analysis were performed.Results were displayed with a threshold of P < 0.01,corrected by false discovery rate (FDR) correction and cluster size >30 voxels.Results:Comparing control healthy subjects with the patients,the data showed that PD patients had reduced gray matter volume in the postcentral gyrus,the right supramarginal center,superior temporal gyrus,precentral gyrus,Brodmann area 41,transverse temporal gyrus,Brodmann area 3,and inferior parietal Iobule.The data also found that between gray matter volume and UPDRSIII in PD patients,there were negative correlations in the right middle frontal gyrus,BA06,right precentral gyrus,right superior frontal gyrus,and medial frontal gyrus,and between gray matter volume and Hoehn-Yahr (HY) in PD patients,there were negative correlations in the right middle frontal gyrus,right superior frontal gyrus,BA6,and right precentral gyrus.Conclusions:These data supported that extensive changes associated with motor symptoms in the gray matter volume was mainly located in the related area of movement,which had obvious relevance with the progression of PD.

  13. Calculating the Number of People with Alzheimer's Disease in any Country Using Saturated Mutation Models of Brain Cell Loss that also Predict Widespread Natural Immunity to the Disease

    Directory of Open Access Journals (Sweden)

    Ivan Kramer

    2010-01-01

    Full Text Available The series of mutations that cause brain cells to spontaneously and randomly die leading to Alzheimer's disease (AD is modelled. The prevalence of AD as a function of age in males and females is calculated from two very different mutation models of brain cell death. Once the prevalence functions are determined, the number of people with AD in any country or city can be estimated.

  14. Brain Changes in Responders versus Non-Responders in Chronic Migraine: Markers of Disease Reversal

    Directory of Open Access Journals (Sweden)

    Catherine S Hubbard

    2016-10-01

    Full Text Available The aim of this study was to identify structural and functional brain changes that accompanied the transition from chronic (CM; ≥ 15 headache days/month to episodic (EM; < 15 headache days/month migraine following prophylactic treatment with onabotulinumtoxinA. Specifically, we examined whether CM patients responsive to prophylaxis (responders; n = 11, as evidenced by a reversal in disease status (defined by at least a 50% reduction in migraine frequency and < 15 headache days/month, compared to CM patients whose migraine frequency remained unchanged (non-responders; n = 12, showed differences in cortical thickness using surface-based morphometry. We also investigated whether areas showing group differences in cortical thickness displayed altered resting-state functional connectivity (RS-FC using seed-to-voxel analyses. Migraine characteristics measured across groups included disease duration, pain intensity and headache frequency. Patient reports’ of headache frequency over the four weeks prior to (pre-treatment and following (post-treatment prophylaxis were compared (post minus pre and this measure served as the clinical endpoint that determined group assignment. All patients were scanned within two weeks of the post-treatment visit. Results revealed that responders showed significant cortical thickening in the right primary somatosensory cortex (SI and anterior insula, and left superior temporal gyrus and pars opercularis compared to non-responders. In addition, disease duration was negatively correlated with cortical thickness in fronto-parietal and temporo-occipital regions in responders but not non-responders, with the exception of the primary motor cortex (MI that showed the opposite pattern; disease duration was positively associated with MI cortical thickness in responders versus non-responders. Our seed-based RS-FC analyses revealed anti-correlations between the SI seed and lateral occipital (LOC and dorsomedial prefrontal cortices

  15. Commentary on “Alzheimer’s disease drug development and the problem of the blood-brain barrier”

    OpenAIRE

    Simpkins, James W.

    2009-01-01

    The perspective by Dr. William Pardridge entitled “Alzheimer’s Disease Drug Discovery and the Problem of the Blood-Brain Barrier” makes a strong case for the imbalance in resource distribution to the drug-discovery and brain drug delivery processes, where the latter received less than 1% of the investment of the former. My own calculations are consistent with this striking imbalance. Dr. Pardridge predicts that current trials of passive immunity against β-amyloid peptide wil...

  16. Neuropsychological profile of Parkinson's disease patients selected for deep brain stimulation surgery

    Directory of Open Access Journals (Sweden)

    Flavia Amaral Machado

    Full Text Available ABSTRACT Background: Parkinson's disease (PD shows symptoms involving motor and non-motor complications, including cognitive and behavioral changes, such changes might to contraindicate deep brain stimulation surgery (DBS. Objective: The aim of study was to investigate the neuropsychological profile of patients with PD in a waiting list for DBS. Methods: The neuropsychological evaluation was held in 30 patients of the ISCMPA Movement Disorders Clinic, with surgical indication based on the criteria of the responsible neurologists, in the period of 12 months. Instruments used: MMSE, FAB, MoCA, BDI, Semantic Verbal Fluency, PDQ-39, PDSS; and the UPDRS and Hoehn-Yahr scale. Results: The patients were mostly male (66.7% with a mean age of 59.37 (SD 10.60 and disease duration 9.33 (SD 4.08. There was cognitive impairment in 56.7% of patients by FAB and 76.7% by MoCA. Conclusion: Even in the earliest stages of the disease, there is the incidence of non-motor symptoms, especially in those subjects who had an early onset of the disease.

  17. Increased oxidation, glycoxidation, and lipoxidation of brain proteins in prion disease.

    Science.gov (United States)

    Pamplona, Reinald; Naudí, Alba; Gavín, Rosalina; Pastrana, Miguel A; Sajnani, Gustavo; Ilieva, Ekaterina V; Del Río, José Antonio; Portero-Otín, Manuel; Ferrer, Isidre; Requena, Jesús R

    2008-10-15

    The basic molecular underpinnings of the pathological changes that unfold in prion disease remain elusive. A key role of increased oxidative stress has been hypothesized. Given the transient nature of most intermediate molecules implicated, increased oxidative stress is better assessed by quantitating the damage it causes to macromolecules. We used mass spectrometry-based methods to measure specific products of protein oxidation, glycoxidation, and lipoxidation in brains from patients suffering from Creutzfeldt-Jakob disease and Syrian hamsters affected by scrapie. In both cases, increased amounts of glutamic and aminoadipic semialdehydes, products of metal-catalyzed oxidation, malondialdehydelysine (a product of lipoxidation), N-epsilon-carboxyethyllysine (a product of glycoxidation), and N-epsilon-carboxymethyllysine (generated by lipoxidation and glycoxidation) were measured. PrP(Sc), the infectious isoform of the prion protein that accumulates in prion disease, was itself shown to be a target of increased oxidative modification. These changes were accompanied by alterations in fatty acid composition and increased phosphorylation of ERK(1/2) and p38, protein kinases known to respond to increased flows of ROS. These data support an important role of oxidative damage in the pathology of prion disease.

  18. Metabolomics of human brain aging and age-related neurodegenerative diseases.

    Science.gov (United States)

    Jové, Mariona; Portero-Otín, Manuel; Naudí, Alba; Ferrer, Isidre; Pamplona, Reinald

    2014-07-01

    Neurons in the mature human central nervous system (CNS) perform a wide range of motor, sensory, regulatory, behavioral, and cognitive functions. Such diverse functional output requires a great diversity of CNS neuronal and non-neuronal populations. Metabolomics encompasses the study of the complete set of metabolites/low-molecular-weight intermediates (metabolome), which are context-dependent and vary according to the physiology, developmental state, or pathologic state of the cell, tissue, organ, or organism. Therefore, the use of metabolomics can help to unravel the diversity-and to disclose the specificity-of metabolic traits and their alterations in the brain and in fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of aging and neurodegenerative diseases. Here, we review the current applications of metabolomics in studies of CNS aging and certain age-related neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis. Neurometabolomics will increase knowledge of the physiologic and pathologic functions of neural cells and will place the concept of selective neuronal vulnerability in a metabolic context.

  19. Preserving cortico-striatal function: Deep brain stimulation in Huntington's disease

    Directory of Open Access Journals (Sweden)

    Sean J Nagel

    2015-03-01

    Full Text Available Huntington’s disease (HD is an incurable neurodegenerative disease characterized by the triad of chorea, cognitive dysfunction and psychiatric disturbances. Since the discovery of the HD gene, the pathogenesis has been outlined, but to date a cure has not been found. Disease modifying therapies are needed desperately to improve function, alleviate suffering, and provide hope for symptomatic patients. Deep brain stimulation (DBS, a proven therapy for managing the symptoms of some neurodegenerative movement disorders, including Parkinson’s disease, has been reported as a palliative treatment in select cases of HD with debilitating chorea with variable success. New insights into the mechanism of action of DBS suggest it may have the potential to circumvent other manifestations of HD including cognitive deterioration. Furthermore, because DBS is already widely used, reversible, and has a risk profile that is relatively low, new studies can be initiated. In this article we contend that new clinical trials be considered to test the effects of DBS for HD

  20. Blood-brain barrier pathology in Alzheimer's and Parkinson's disease: implications for drug therapy.

    Science.gov (United States)

    Desai, Brinda S; Monahan, Angela J; Carvey, Paul M; Hendey, Bill

    2007-01-01

    The blood-brain barrier (BBB) is a tightly regulated barrier in the central nervous system. Though the BBB is thought to be intact during neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD), recent evidence argues otherwise. Dysfunction of the BBB may be involved in disease progression, eliciting of peripheral immune response, and, most importantly, altered drug efficacy. In this review, we will give a brief overview of the BBB, its components, and their functions. We will critically evaluate the current literature in AD and PD BBB pathology resulting from insult, neuroinflammation, and neurodegeneration. Specifically, we will discuss alterations in tight junction, transport and endothelial cell surface proteins, and vascular density changes, all of which result in altered permeability. Finally, we will discuss the implications of BBB dysfunction in current and future therapeutics. Developing a better appreciation of BBB dysfunction in AD and PD may not only provide novel strategies in treatment, but will prove an interesting milestone in understanding neurodegenerative disease etiology and progression.

  1. Importance of the Brain Angiotensin System in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    John W. Wright

    2012-01-01

    Full Text Available Parkinson’s disease (PD has become a major health problem affecting 1.5% of the world’s population over 65 years of age. As life expectancy has increased so has the occurrence of PD. The primary direct consequence of this disease is the loss of dopaminergic (DA neurons in the substantia nigra and striatum. As the intensity of motor dysfunction increases, the symptomatic triad of bradykinesia, tremors-at-rest, and rigidity occur. Progressive neurodegeneration may also impact non-DA neurotransmitter systems including cholinergic, noradrenergic, and serotonergic, often leading to the development of depression, sleep disturbances, dementia, and autonomic nervous system failure. L-DOPA is the most efficacious oral delivery treatment for controlling motor symptoms; however, this approach is ineffective regarding nonmotor symptoms. New treatment strategies are needed designed to provide neuroprotection and encourage neurogenesis and synaptogenesis to slow or reverse this disease process. The hepatocyte growth factor (HGF/c-Met receptor system is a member of the growth factor family and has been shown to protect against degeneration of DA neurons in animal models. Recently, small angiotensin-based blood-brain barrier penetrant mimetics have been developed that activate this HGF/c-Met system. These compounds may offer a new and novel approach to the treatment of Parkinson’s disease.

  2. Ultrasound Delivery of an Anti-Aβ Therapeutic Agent to the Brain in a Mouse Model of Alzheimer's Disease

    Science.gov (United States)

    Jordão, Jessica F.; Ayala-Grosso, Carlos A.; Chopra, Rajiv; McLaurin, JoAnne; Aubert, Isabelle; Hynynen, Kullervo

    2009-04-01

    Plaques composed of amyloid-beta (Aβ) peptides represent a pathological hallmark in the brain of patients with Alzheimer's disease. Aβ oligomers are considered cytotoxic and several therapeutic approaches focus on reducing Aβ load in the brain of Alzheimer's patients. The efficacy of most anti-Aβ agents is significantly limited because they do not cross the blood-brain-barrier. Innovative technologies capable of enhancing the permeability of the blood-brain barrier, thereby allowing entry of therapeutic agents into the brain, show great promise in circumventing this problem. The application of low-intensity focused ultrasound in the presence of an ultrasound contrast agent causes localized and transient permeability of the blood-brain barrier. We demonstrate the value of this technology for the delivery of anti-Aβ antibodies to the brain of TgCRND8 mice, a mouse model of Alzheimer's disease exhibiting Aβ plaques. BAM-10, an anti-Aβ antibody, was injected into the tail vein simultaneously with exposure to MRI-guided, low-intensity focused ultrasound (FUS) to one hemisphere of TgCNRD8 mice. Four hours after treatment, antibodies were detected at significant amounts only in the brain of mice receiving FUS in addition to BAM-10. This data provides a proof-of-concept that FUS allows anti-Aβ therapeutics to efficiently enter the brain and target Aβ plaques. Four days following a single treatment with BAM-10 and MRI-guided FUS, a significant decrease in the number of Aβ plaques on the side of the treated hemisphere was observed in TgCRND8 mice. In conclusion low-intensity, focused ultrasound is effective in delivering Aβ antibodies to the brain. This technology has the potential to enhance current anti-Aβ treatments by allowing increased exposure of amyloid plaques to treatment agents.

  3. Huntington’s disease blood and brain show a common gene expression pattern and share an immune signature with Alzheimer’s disease

    Science.gov (United States)

    Hensman Moss, Davina J.; Flower, Michael D.; Lo, Kitty K.; Miller, James R. C.; van Ommen, Gert-Jan B.; ’t Hoen, Peter A. C.; Stone, Timothy C.; Guinee, Amelia; Langbehn, Douglas R.; Jones, Lesley; Plagnol, Vincent; van Roon-Mom, Willeke M. C.; Holmans, Peter; Tabrizi, Sarah J.

    2017-01-01

    There is widespread transcriptional dysregulation in Huntington’s disease (HD) brain, but analysis is inevitably limited by advanced disease and postmortem changes. However, mutant HTT is ubiquitously expressed and acts systemically, meaning blood, which is readily available and contains cells that are dysfunctional in HD, could act as a surrogate for brain tissue. We conducted an RNA-Seq transcriptomic analysis using whole blood from two HD cohorts, and performed gene set enrichment analysis using public databases and weighted correlation network analysis modules from HD and control brain datasets. We identified dysregulated gene sets in blood that replicated in the independent cohorts, correlated with disease severity, corresponded to the most significantly dysregulated modules in the HD caudate, the most prominently affected brain region, and significantly overlapped with the transcriptional signature of HD myeloid cells. High-throughput sequencing technologies and use of gene sets likely surmounted the limitations of previously inconsistent HD blood expression studies. Our results suggest transcription is disrupted in peripheral cells in HD through mechanisms that parallel those in brain. Immune upregulation in HD overlapped with Alzheimer’s disease, suggesting a common pathogenic mechanism involving macrophage phagocytosis and microglial synaptic pruning, and raises the potential for shared therapeutic approaches. PMID:28322270

  4. Evaluation of blood-brain barrier transport and CNS drug metabolism in diseased and control brain after intravenous L-DOPA in a unilateral rat model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Ravenstijn Paulien GM

    2012-02-01

    Full Text Available Abstract Background Changes in blood-brain barrier (BBB functionality have been implicated in Parkinson's disease. This study aimed to investigate BBB transport of L-DOPA transport in conjunction with its intra-brain conversion, in both control and diseased cerebral hemispheres in the unilateral rat rotenone model of Parkinson's disease. Methods In Lewis rats, at 14 days after unilateral infusion of rotenone into the medial forebrain bundle, L-DOPA was administered intravenously (10, 25 or 50 mg/kg. Serial blood samples and brain striatal microdialysates were analysed for L-DOPA, and the dopamine metabolites DOPAC and HVA. Ex-vivo brain tissue was analyzed for changes in tyrosine hydroxylase staining as a biomarker for Parkinson's disease severity. Data were analysed by population pharmacokinetic analysis (NONMEM to compare BBB transport of L-DOPA in conjunction with the conversion of L-DOPA into DOPAC and HVA, in control and diseased cerebral hemisphere. Results Plasma pharmacokinetics of L-DOPA could be described by a 3-compartmental model. In rotenone responders (71%, no difference in L-DOPA BBB transport was found between diseased and control cerebral hemisphere. However, in the diseased compared with the control side, basal microdialysate levels of DOPAC and HVA were substantially lower, whereas following L-DOPA administration their elimination rates were higher. Conclusions Parkinson's disease-like pathology, indicated by a huge reduction of tyrosine hydroxylase as well as by substantially reduced levels and higher elimination rates of DOPAC and HVA, does not result in changes in BBB transport of L-DOPA. Taking the results of this study and that of previous ones, it can be concluded that changes in BBB functionality are not a specific characteristic of Parkinson's disease, and cannot account for the decreased benefit of L-DOPA at later stages of Parkinson's disease.

  5. The hunt for brain Aβ oligomers by peripherally circulating multi-functional nanoparticles: Potential therapeutic approach for Alzheimer disease.

    Science.gov (United States)

    Mancini, Simona; Minniti, Stefania; Gregori, Maria; Sancini, Giulio; Cagnotto, Alfredo; Couraud, Pierre-Olivier; Ordóñez-Gutiérrez, Lara; Wandosell, Francisco; Salmona, Mario; Re, Francesca

    2016-01-01

    We previously showed the ability of liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide (mApoE-PA-LIP) to reduce brain Aβ in transgenic Alzheimer mice. Herein we investigated the efficacy of mApoE-PA-LIP to withdraw Aβ peptide in different aggregation forms from the brain, using a transwell cellular model of the blood-brain barrier and APP/PS1 mice. The spontaneous efflux of Aβ oligomers (Aβo), but not of Aβ fibrils, from the 'brain' side of the transwell was strongly enhanced (5-fold) in presence of mApoE-PA-LIP in the 'blood' compartment. This effect is due to a withdrawal of Aβo exerted by peripheral mApoE-PA-LIP by sink effect, because, when present in the brain side, they did not act as Aβo carrier and limit the oligomer efflux. In vivo peripheral administration of mApoE-PA-LIP significantly increased the plasma Aβ level, suggesting that Aβ-binding particles exploiting the sink effect can be used as a therapeutic strategy for Alzheimer disease. From the Clinical Editor: Alzheimer disease (AD) at present is an incurable disease, which is thought to be caused by an accumulation of amyloid-β (Aβ) peptides in the brain. Many strategies in combating this disease have been focused on either the prevention or dissolving these peptides. In this article, the authors showed the ability of liposomes bi-functionalized with phosphatidic acid and with an ApoE- derived peptide to withdraw amyloid peptides from the brain. The data would help the future design of more novel treatment for Alzheimer disease.

  6. A role for the brain RAS in Alzheimer's and Parkinson's diseases

    Directory of Open Access Journals (Sweden)

    John William Wright

    2013-10-01

    Full Text Available The brain renin-angiotensin system (RAS has available the necessary functional components to produce the active ligands angiotensins II, III, IV, angiotensin (1-7, and angiotensin (3-7. These ligands interact with several receptor proteins including AT1, AT2, AT4 and Mas distributed within the central and peripheral nervous systems as well as local RASs in several organs. This review first describes the enzymatic pathways in place to synthesize these ligands and the binding characteristics of these angiotensin receptor subtypes. We next discuss current hypotheses to explain the disorders of Alzheimer’s disease (AD and Parkinson’s disease (PD, as well as research efforts focused on the use of angiotensin converting enzyme (ACE inhibitors and angiotensin receptor blockers (ARBs, in their treatment. ACE inhibitors and ARBs are showing promise in the treatment of several neurodegenerative pathologies; however, there is a need for the development of analogues capable of penetrating the blood-brain barrier and acting as agonists or antagonists at these receptor sites. Angiotensins II (AngII and IV (Ang(IV have been shown to play opposing roles regarding memory acquisition and consolidation in animal models. We discuss the development of efficacious AngIV analogues in the treatment of animal models of AD and PD. These AngIV analogues act via the AT4 receptor subtype which may coincide with the hepatocyte growth factor (HGF/c-Met receptor system. Finally, future research directions are described concerning new approaches to the treatment of these two neurological diseases.

  7. Alteration of brain insulin and leptin signaling promotes energy homeostasis impairment and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Taouis Mohammed

    2011-09-01

    Full Text Available The central nervous system (CNS controls vital functions, by efficiently coordinating peripheral and central cascades of signals and networks in a coordinated manner. Historically, the brain was considered to be an insulin-insensitive tissue. But, new findings demonstrating that insulin is present in different regions of themammalian brain, in particular the hypothalamus and the hippocampus. Insulin acts through specific receptors and dialogues with numerous peptides, neurotransmitters and adipokines such as leptin. The cross-talk between leptin and insulin signaling pathways at the hypothalamic level is clearly involved in the control of energy homeostasis. Both hormones are anorexigenic through their action on hypothalamic arcuate nucleus by inducing the expression of anorexigenic neuropetides such as POMC (pro-opiomelanocortin, the precursor of aMSH and reducing the expression of orexigenic neuropeptide such as NPY (Neuropeptide Y. Central defect of insulin and leptin signaling predispose to obesity (leptin-resistant state and type-2 diabetes (insulin resistant state. Obesity and type-2 diabetes are associated to deep alterations in energy homeostasis control but also to other alterations of CNS functions as the predisposition to neurodegenerative diseases such as Alzheimer’s disease (AD. AD is a neurodegenerative disorder characterized by distinct hallmarks within the brain. Postmortem observation of AD brains showed the presence of parenchymal plaques due to the accumulation of the amyloid beta (AB peptide and neurofibrillary tangles. These accumulations result from the hyperphosphorylation of tau (a mictrotubule-interacting protein. Both insulin and leptin have been described to modulate tau phosphorylation and therefore in leptin and insulin resistant states may contribute to AD. The concentrations of leptin and insulin cerebrospinal fluid are decreased type2 diabetes and obese patients. In addition, the concentration of insulin in the

  8. The relevance of aging-related changes in brain function to rehabilitation in aging-related disease

    Directory of Open Access Journals (Sweden)

    Bruce eCrosson

    2015-05-01

    Full Text Available The effects of aging on rehabilitation of aging-related diseases are rarely a design consideration in rehabilitation research. In this brief review we present strong coincidental evidence from these two fields suggesting that deficits in aging-related disease or injury are compounded by the interaction between aging-related brain changes and disease-related brain changes. Specifically, we hypothesize that some aphasia, motor, and neglect treatments using repetitive transcranial magnetic stimulation (rTMS or transcranial direct current stimulation (tDCS in stroke patients may address the aging side of this interaction. The importance of testing this hypothesis and addressing the larger aging by aging-related disease interaction is discussed. Underlying mechanisms in aging that most likely are relevant to rehabilitation of aging-related diseases also are covered.

  9. The relevance of aging-related changes in brain function to rehabilitation in aging-related disease.

    Science.gov (United States)

    Crosson, Bruce; McGregor, Keith M; Nocera, Joe R; Drucker, Jonathan H; Tran, Stella M; Butler, Andrew J

    2015-01-01

    The effects of aging on rehabilitation of aging-related diseases are rarely a design consideration in rehabilitation research. In this brief review we present strong coincidental evidence from these two fields suggesting that deficits in aging-related disease or injury are compounded by the interaction between aging-related brain changes and disease-related brain changes. Specifically, we hypothesize that some aphasia, motor, and neglect treatments using repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) in stroke patients may address the aging side of this interaction. The importance of testing this hypothesis and addressing the larger aging by aging-related disease interaction is discussed. Underlying mechanisms in aging that most likely are relevant to rehabilitation of aging-related diseases also are covered.

  10. Brain natriuretic peptide and copeptin levels are associated with cardiovascular disease in patients with chronic kidney disease

    Institute of Scientific and Technical Information of China (English)

    LI Xin; YANG Xin-chun; SUN Qian-mei; CHEN Xiang-dong; LI Yan-chun

    2013-01-01

    Background Cardiovascular disease (CVD) is the leading cause of death in patients with end-stage renal disease (ESRD).We explored the relationship between CVD,plasma brain natriuretic peptide (BNP) and copeptin in non-dialysis patients with chronic kidney disease (CKD).Methods BNP and copeptin were measured using ELISA in 86 non-dialysis patients with different degrees of CKD and in 20 control patients.The effects of BNP,copeptin levels and other biochemical indices on carotid ultrasound echocardiography and CVD history were determined using correlation analysis.Results BNP and copeptin levels were significantly higher in the CKD group than in the control group.Both indices increased progressively,in parallel with the decline in glomerular filtration rate (GFR).BNP levels were (184.25±65.18)ng/L in early phase CKD,(975.245±354.09) ng/L in middle phase CKD,and (1463.51±614.92) ng/ml in end phase CKD compared with levels of (101.56±42.76) ng/L in the control group (all P <0.01).Copeptin levels in the middle phase ((20.36±9.47) pmol/L) and end phase groups ((54.26±18.23) pmol/L were significantly higher than in the control group ((9.21±2.64) pmol/L; both P <0.01).There was no difference in copeptin levels between early phase CKD ((10.09±5.23)pmol/L) and control patients.Stepwise multiple regression analysis identified GFR,intima-media thickness (IMT),left ventricular hypertrophy (LVH),and previous history of CVD as independent risk factors for elevated BNP and copeptin levels.Conclusion BNP and copeptin appear to provide sensitive biological markers for the evaluation of atherosclerosis in non-dialysis patients with CKD.

  11. Increased circulating pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP) in patients with cirrhosis: relation to cardiovascular dysfunction and severity of disease

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik; Gøtze, J P; Fuglsang, Stefan;

    2003-01-01

    subjects (1.8 v 2.3; NS). Circulating proBNP and BNP were related to severity of liver disease (Child score, serum albumin, coagulation factors 2, 7, and 10, and hepatic venous pressure gradient) and to markers of cardiac dysfunction (QT interval, heart rate, plasma volume) but not to indicators......BACKGROUND AND AIMS: Cardiac dysfunction may be present in patients with cirrhosis. This study was undertaken to relate plasma concentrations of cardiac peptides reflecting early ventricular dysfunction (pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP)) to markers...... of severity of liver disease, cardiac dysfunction, and hyperdynamic circulation in patients with cirrhosis. PATIENTS AND METHODS: Circulating levels of proBNP and BNP were determined in 51 cirrhotic patients during a haemodynamic investigation. RESULTS: Plasma proBNP and BNP were significantly increased...

  12. Brain Basics

    Medline Plus

    Full Text Available ... depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of ... but sometimes give rise to disabilities or diseases. neural circuit —A network of neurons and their interconnections. ...

  13. Brain perfusion correlates of cognitive and nigrostriatal functions in de novo Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Nobili, Flavio; Arnaldi, Dario; Campus, Claudio; Ferrara, Michela; Brugnolo, Andrea; Dessi, Barbara; Girtler, Nicola; Rodriguez, Guido [University of Genoa, Clinical Neurophysiology, Department of Neurosciences, Ophthalmology and Genetics, Genoa (Italy); De Carli, Fabrizio [National Research Council, Institute of Molecular Bioimaging and Physiology, Genoa (Italy); Morbelli, Silvia; Sambuceti, Gianmario [University of Genoa, Nuclear Medicine, Department of Internal Medicine, Genoa (Italy); Abruzzese, Giovanni [University Hospital San. Martino, Clinical Neurology, Department of Neurosciences, Ophthalmology and Genetics, Genoa (Italy)

    2011-12-15

    Subtle cognitive impairment is recognized in the first stages of Parkinson's disease (PD), including executive, memory and visuospatial dysfunction, but its pathophysiological basis is still debated. Twenty-six consecutive, drug-naive, de novo PD patients underwent an extended neuropsychological battery, dopamine transporter (DAT) and brain perfusion single photon emission computed tomography (SPECT). We previously reported that nigrocaudate impairment correlates with executive functions, and nigroputaminal impairment with visuospatial abilities. Here perfusion SPECT was first compared between the PD group and age-matched controls (CTR). Then, perfusion SPECT was correlated with both DAT SPECT and four neuropsychological factors by means of voxel-based analysis (SPM8) with a height threshold of p < 0.005 at peak level and p < 0.05 false discovery rate-corrected at cluster level. Both perfusion and DAT SPECT images were flipped in order to have the more affected hemisphere (MAH), defined clinically, on the same side. Significant hypoperfusion was found in an occipital area of the MAH in PD patients as compared to CTR. Executive functions directly correlated with brain perfusion in bilateral posterior cingulate cortex and precuneus in the less affected hemisphere (LAH), while verbal memory directly correlated with perfusion in the precuneus, inferior parietal lobule and superior temporal gyrus in the LAH. Furthermore, positive correlation was highlighted between nigrocaudate and nigroputaminal impairment and brain perfusion in the precuneus, posterior cingulate and parahippocampal gyri of the LAH. These data support the evidence showing an early involvement of the cholinergic system in the early cognitive dysfunction and point to a more relevant role of parietal lobes and posterior cingulate in executive functions in PD. (orig.)

  14. Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging.

    Science.gov (United States)

    Ahlskog, J Eric; Geda, Yonas E; Graff-Radford, Neill R; Petersen, Ronald C

    2011-09-01

    A rapidly growing literature strongly suggests that exercise, specifically aerobic exercise, may attenuate cognitive impairment and reduce dementia risk. We used PubMed (keywords exercise and cognition) and manuscript bibliographies to examine the published evidence of a cognitive neuroprotective effect of exercise. Meta-analyses of prospective studies documented a significantly reduced risk of dementia associated with midlife exercise; similarly, midlife exercise significantly reduced later risks of mild cognitive impairment in several studies. Among patients with dementia or mild cognitive impairment, randomized controlled trials (RCTs) documented better cognitive scores after 6 to 12 months of exercise compared with sedentary controls. Meta-analyses of RCTs of aerobic exercise in healthy adults were also associated with significantly improved cognitive scores. One year of aerobic exercise in a large RCT of seniors was associated with significantly larger hippocampal volumes and better spatial memory; other RCTs in seniors documented attenuation of age-related gray matter volume loss with aerobic exercise. Cross-sectional studies similarly reported significantly larger hippocampal or gray matter volumes among physically fit seniors compared with unfit seniors. Brain cognitive networks studied with functional magnetic resonance imaging display improved connectivity after 6 to 12 months of exercise. Animal studies indicate that exercise facilitates neuroplasticity via a variety of biomechanisms, with improved learning outcomes. Induction of brain neurotrophic factors by exercise has been confirmed in multiple animal studies, with indirect evidence for this process in humans. Besides a brain neuroprotective effect, physical exercise may also attenuate cognitive decline via mitigation of cerebrovascular risk, including the contribution of small vessel disease to dementia. Exercise should not be overlooked as an important therapeutic strategy.

  15. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Tansey Malú G

    2008-10-01

    Full Text Available Abstract The role of tumor necrosis factor (TNF as an immune mediator has long been appreciated but its function in the brain is still unclear. TNF receptor 1 (TNFR1 is expressed in most cell types, and can be activated by binding of either soluble TNF (solTNF or transmembrane TNF (tmTNF, with a preference for solTNF; whereas TNFR2 is expressed primarily by microglia and endothelial cells and is preferentially activated by tmTNF. Elevation of solTNF is a hallmark of acute and chronic neuroinflammation as well as a number of neurodegenerative conditions including ischemic stroke, Alzheimer's (AD, Parkinson's (PD, amyotrophic lateral sclerosis (ALS, and multiple sclerosis (MS. The presence of this potent inflammatory factor at sites of injury implicates it as a mediator of neuronal damage and disease pathogenesis, making TNF an attractive target for therapeutic development to treat acute and chronic neurodegenerative conditions. However, new and old observations from animal models and clinical trials reviewed here suggest solTNF and tmTNF exert different functions under normal and pathological conditions in the CNS. A potential role for TNF in synaptic scaling and hippocampal neurogenesis demonstrated by recent studies suggest additional in-depth mechanistic studies are warranted to delineate the distinct functions of the two TNF ligands in different parts of the brain prior to large-scale development of anti-TNF therapies in the CNS. If inactivation of TNF-dependent inflammation in the brain is warranted by additional pre-clinical studies, selective targeting of TNFR1-mediated signaling while sparing TNFR2 activation may lessen adverse effects of anti-TNF therapies in the CNS.

  16. Aberrant brain-stem morphometry associated with sleep disturbance in drug-naïve subjects with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lee JH

    2016-08-01

    Full Text Available Ji Han Lee,1 Won Sang Jung,2 Woo Hee Choi,3 Hyun Kook Lim4 1Washington University in St Louis, St Louis, MO, USA; 2Department of Radiology, 3Department of Nuclear Medicine, 4Department of Psychiatry, Saint Vincent Hospital, College of Medicine, The Catholic University of Korea, Suwon, South Korea Objective: Among patients with Alzheimer’s disease (AD, sleep disturbances are common and serious noncognitive symptoms. Previous studies of AD patients have identified deformations in the brain stem, which may play an important role in the regulation of sleep. The aim of this study was to further investigate the relationship between sleep disturbances and alterations in brain stem morphology in AD.Materials and methods: In 44 patients with AD and 40 healthy elderly controls, sleep disturbances were measured using the Neuropsychiatry Inventory sleep subscale. We employed magnetic resonance imaging-based automated segmentation tools to examine the relationship between sleep disturbances and changes in brain stem morphology.Results: Analyses of the data from AD subjects revealed significant correlations between the Neuropsychiatry Inventory sleep-subscale scores and structural alterations in the left posterior lateral region of the brain stem, as well as normalized brain stem volumes. In addition, significant group differences in posterior brain stem morphology were observed between the AD group and the control group.Conclusion: This study is the first to analyze an association between sleep disturbances and brain stem morphology in AD. In line with previous findings, this study lends support to the possibility that brain stem structural abnormalities might be important neurobiological mechanisms underlying sleep disturbances associated with AD. Further longitudinal research is needed to confirm these findings. Keywords: Alzheimer’s disease, sleep, brain stem, MRI, shape analysis

  17. Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ghribi Othman

    2008-04-01

    Full Text Available Abstract High levels of serum cholesterol and disruptions of the blood brain barrier (BBB have all been implicated as underlying mechanisms in the pathogenesis of Alzheimer's disease. Results from studies conducted in animals and humans suggest that caffeine might be protective against Alzheimer's disease but by poorly understood mechanisms. Using rabbits fed a cholesterol-enriched diet, we tested our hypothesis that chronic ingestion of caffeine protects against high cholesterol diet-induced disruptions of the BBB. New Zealand rabbits were fed a 2% cholesterol-enriched diet, and 3 mg caffeine was administered daily in drinking water for 12 weeks. Total cholesterol and caffeine concentrations from blood were measured. Olfactory bulbs (and for some studies hippocampus and cerebral cortex as well were evaluated for BBB leakage, BBB tight junction protein expression levels, activation of astrocytes, and microglia density using histological, immunostaining and immunoblotting techniques. We found that caffeine blocked high cholesterol diet-induced increases in extravasation of IgG and fibrinogen, increases in leakage of Evan's blue dye, decreases in levels of the tight junction proteins occludin and ZO-1, increases in astrocytes activation and microglia density where IgG extravasation was present. Chronic ingestion of caffeine protects against high cholesterol diet-induced increases in disruptions of the BBB, and caffeine and drugs similar to caffeine might be useful in the treatment of Alzheimer's disease.

  18. Classification of brain disease in magnetic resonance images using two-stage local feature fusion

    Science.gov (United States)

    Li, Tao; Li, Wu; Yang, Yehui

    2017-01-01

    Background Many classification methods have been proposed based on magnetic resonance images. Most methods rely on measures such as volume, the cerebral cortical thickness and grey matter density. These measures are susceptible to the performance of registration and limited in representation of anatomical structure. This paper proposes a two-stage local feature fusion method, in which deformable registration is not desired and anatomical information is represented from moderate scale. Methods Keypoints are firstly extracted from scale-space to represent anatomical structure. Then, two kinds of local features are calculated around the keypoints, one for correspondence and the other for representation. Scores are assigned for keypoints to quantify their effect in classification. The sum of scores for all effective keypoints is used to determine which group the test subject belongs to. Results We apply this method to magnetic resonance images of Alzheimer's disease and Parkinson's disease. The advantage of local feature in correspondence and representation contributes to the final classification. With the help of local feature (Scale Invariant Feature Transform, SIFT) in correspondence, the performance becomes better. Local feature (Histogram of Oriented Gradient, HOG) extracted from 16×16 cell block obtains better results compared with 4×4 and 8×8 cell block. Discussion This paper presents a method which combines the effect of SIFT descriptor in correspondence and the representation ability of HOG descriptor in anatomical structure. This method has the potential in distinguishing patients with brain disease from controls. PMID:28207873

  19. How stem cells speak with host immune cells in inflammatory brain diseases.

    Science.gov (United States)

    Pluchino, Stefano; Cossetti, Chiara

    2013-09-01

    Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases.

  20. Blood-Brain Barrier P-Glycoprotein Function in Neurodegenerative Disease

    NARCIS (Netherlands)

    Bartels, A. L.

    2011-01-01

    Protection of the brain is strengthened by active transport and ABC transporters. P-glycoprotein (P-gp) at the blood-brain barrier (BBB) functions as an active efflux pump by extruding a substrate from the brain, which is important for maintaining loco-regional homeostasis in the brain and protectio

  1. Specific transfection of inflamed brain by macrophages: a new therapeutic strategy for neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    Matthew J Haney

    Full Text Available The ability to precisely upregulate genes in inflamed brain holds great therapeutic promise. Here we report a novel class of vectors, genetically modified macrophages that carry reporter and therapeutic genes to neural cells. Systemic administration of macrophages transfected ex vivo with a plasmid DNA (pDNA encoding a potent antioxidant enzyme, catalase, produced month-long expression levels of catalase in the brain resulting in three-fold reductions in inflammation and complete neuroprotection in mouse models of Parkinson's disease (PD. This resulted in significant improvements in motor functions in PD mice. Mechanistic studies revealed that transfected macrophages secreted extracellular vesicles, exosomes, packed with catalase genetic material, pDNA and mRNA, active catalase, and NF-κb, a transcription factor involved in the encoded gene expression. Exosomes efficiently transfer their contents to contiguous neurons resulting in de novo protein synthesis in target cells. Thus, genetically modified macrophages serve as a highly efficient system for reproduction, packaging, and targeted gene and drug delivery to treat inflammatory and neurodegenerative disorders.

  2. Deep brain stimulation: a paradigm shifting approach to treat Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Patrick eHickey

    2016-04-01

    Full Text Available Parkinson disease (PD is a chronic and progressive movement disorder classically characterized by slowed voluntary movements, resting tremor, muscle rigidity, and impaired gait and balance. Medical treatment is highly successful early on, though the majority of people experience significant complications in later stages. In advanced PD, when medications no longer adequately control motor symptoms, deep brain stimulation (DBS offers a powerful therapeutic alternative. DBS involves the surgical implantation of one or more electrodes into specific areas of the brain, which modulate or disrupt abnormal patterns of neural signaling within the targeted region. Outcomes are often dramatic following DBS, with improvements in motor function and reductions motor complications having been repeatedly demonstrated. Given such robust responses, emerging indications for DBS are being investigated. In parallel with expansions of therapeutic scope, advancements within the areas of neurosurgical technique and the precision of stimulation delivery have recently broadened as well. This review focuses on the revolutionary addition of DBS to the therapeutic armamentarium for PD, and summarizes the technological advancements in the areas of neuroimaging and biomedical engineering intended to improve targeting, programming and overall management.

  3. Characterizing brain mineral deposition in patients with Wilson disease using susceptibility-weighted imaging

    Directory of Open Access Journals (Sweden)

    Xiang-Xue Zhou

    2014-01-01

    Full Text Available Aims: The aim of this study was to evaluate the feasibility of characterizing the brain-mineral deposition in patients with Wilson disease (WD using susceptibility-weighted imaging (SWI. Materials and Methods: The study enrolled 30 WD patients and 20 age-matched healthy controls. Neurological symptoms were scored using the modified Young Scale. The hepatic function indices, serum and urinary copper content, and serum iron content were determined. All study objects received the magnetic resonance imaging (MRI and SWI test of the brain. The values of corrected phase (CP were calculated on SWI. The relationship between CP values and the clinical status were evaluated. Results: The serum iron content of WD patients was higher than the normal. The CP values of substantia nigra, caudate nucleus, and globus pallidus of WD were lower than the normal values, while the CP value of substantia nigra was the lowest. No correlations were determined between the CP values and the iron and copper parameters. There was negative correlation between the scores of dysarthria and the CP values of the globus pallidus. There was negative correlation between the scores of tremor and the CP values of caudate nucleus. Some regions, which had high signals on T2-weighted image, had low signals on SWI. Conclusions: There might be abnormal iron metabolism in patients with WD. The decreased CP values might reflect a deposition of both copper and iron. SWI may be more sensitive than the ordinary MRI. The mineral deposition may contribute to the neural symptoms.

  4. Susceptibility-Weighted Imaging Manifestations in the Brain of Wilson's Disease Patients.

    Directory of Open Access Journals (Sweden)

    Jinjing Yang

    Full Text Available It is well known that patients with Wilson's disease (WD suffer copper metabolism disorder. However, recent studies point to an additional iron metabolism disorder in WD patients. The purpose of our study was to examine susceptibility-weighted imaging (SWI manifestations of WD in the brains of WD patients.A total of 33 patients with WD and 18 normal controls underwent conventional MRI (Magnetic resonance imaging and SWI. The phase values were measured on SWI-filtered phase images of the bilateral head of the caudate nuclei, globus pallidus, putamen, thalamus, substantia nigra, and red nucleus. Student's t-tests were used to compare the phase values between WD groups and normal controls.The mean phase values for the bilateral head of the caudate nuclei, globus pallidus, putamen, thalamus, substantia nigra, and red nucleus were significantly lower than those in the control group (P < 0.001, and bilateral putamen was most strongly affected.There is paramagnetic mineralization deposition in brain gray nuclei of WD patients and SWI is an effective method to evaluate these structures.

  5. Body mass index is associated with biological CSF markers of core brain pathology of Alzheimer's disease.

    Science.gov (United States)

    Ewers, Michael; Schmitz, Susanne; Hansson, Oskar; Walsh, Cathal; Fitzpatrick, Annette; Bennett, David; Minthon, Lennart; Trojanowski, John Q; Shaw, Leslie M; Faluyi, Yetunde O; Vellas, Bruno; Dubois, Bruno; Blennow, Kaj; Buerger, Katharina; Teipel, Stefan J; Weiner, Michael; Hampel, Harald

    2012-08-01

    Weight changes are common in aging and Alzheimer's disease (AD) and postmortem findings suggest a relation between lower body mass index (BMI) and increased AD brain pathology. In the current multicenter study, we tested whether lower BMI is associated with higher core AD brain pathology as assessed by cerebrospinal fluid (CSF)-based biological markers of AD in 751 living subjects: 308 patients with AD, 296 subjects with amnestic mild cognitive impairment (MCI), and 147 elderly healthy controls (HC). Based upon a priori cutoff values on CSF concentration of total tau and beta-amyloid (Aβ(1-42)), subjects were binarized into a group with abnormal CSF biomarker signature (CSF+) and those without (CSF-). Results showed that BMI was significantly lower in the CSF+ when compared with the CSF- group (F = 27.7, df = 746, p < 0.001). There was no interaction between CSF signature and diagnosis or apolipoprotein E (ApoE) genotype. In conclusion, lower BMI is indicative of AD pathology as assessed with CSF-based biomarkers in demented and nondemented elderly subjects.

  6. Elevated stearoyl-CoA desaturase in brains of patients with Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Giuseppe Astarita

    Full Text Available The molecular bases of Alzheimer's disease (AD remain unclear. We used a lipidomic approach to identify lipid abnormalities in the brains of subjects with AD (N = 37 compared to age-matched controls (N = 17. The analyses revealed statistically detectable elevations in levels of non-esterified monounsaturated fatty acids (MUFAs and mead acid (20:3n-9 in mid-frontal cortex, temporal cortex and hippocampus of AD patients. Further studies showed that brain mRNAs encoding for isoforms of the rate-limiting enzyme in MUFAs biosynthesis, stearoyl-CoA desaturase (SCD-1, SCD-5a and SCD-5b, were elevated in subjects with AD. The monounsaturated/saturated fatty acid ratio ('desaturation index'--displayed a strong negative correlation with measures of cognition: the Mini Mental State Examination test (r = -0.80; P = 0.0001 and the Boston Naming test (r = -0.57; P = 0.0071. Our results reveal a previously unrecognized role for the lipogenic enzyme SCD in AD.

  7. Trail Making Test Part A and Brain Perfusion Imaging in Mild Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Aki Shindo

    2013-06-01

    Full Text Available Background/Aims: The Trail Making Test (TMT has long been used to investigate deficits in cognitive processing speed and executive function in humans. However, there are few studies that elucidate the neural substrates of the TMT. The aim of the present study was to identify the regional perfusion patterns of the brain associated with performance on the TMT part A (TMT-A in patients with Alzheimer's disease (AD. Methods: Eighteen AD patients with poor performance on the TMT-A and 36 age- and sex-matched AD patients with good performance were selected. All subjects underwent brain single photon emission computed tomography. Results: No significant differences between the good and poor performance groups were found with respect to years of education and revised Addenbrooke's Cognitive Examination scores. However, higher z-scores for hypoperfusion in the bilateral superior parietal lobule were observed in the group that scored poorly on the TMT-A compared with the good performance group. Conclusion: Our results suggest that functional activity of the bilateral superior parietal lobules is closely related to performance time on the TMT-A. Thus, the performance time on the TMT-A might be a promising index of dysfunction of the superior parietal area among mild AD patients.

  8. Blood-brain barrier P-glycoprotein function is not impaired in early Parkinson's disease.

    Science.gov (United States)

    Bartels, A L; van Berckel, B N M; Lubberink, M; Luurtsema, G; Lammertsma, A A; Leenders, K L

    2008-08-01

    The cause of Parkinson's disease (PD) is unknown. Genetic susceptibility and exposure to environmental toxins contribute to specific neuronal loss in PD. Decreased blood-brain barrier (BBB) P-glycoprotein (P-gp) efflux function has been proposed as a possible causative link between toxin exposure and PD neurodegeneration. In the present study BBB P-gp function was investigated in vivo in 10 early stage PD patients and 8 healthy control subjects using (R)-[(11)C]-verapamil and PET. Cerebral volume of distribution (V(d)) of verapamil was used as measure of P-gp function. Both region of interest (ROI) analysis and voxel analysis using statistical parametric mapping (SPM) were performed to assess regional brain P-gp function. In addition, MDR1 genetic polymorphism was assessed. In the present study, a larger variation in V(d) of (R)-[(11)C]-verapamil was seen in the PD group as compared to the control group. However, decreased BBB P-gp function in early stage PD patients could not be confirmed.

  9. Glycosylation of microtubule-associated protein tau in Alzheimer's disease brain.

    Science.gov (United States)

    Takahashi, M; Tsujioka, Y; Yamada, T; Tsuboi, Y; Okada, H; Yamamoto, T; Liposits, Z

    1999-06-01

    In the neurofibrillary pathology of Alzheimer's disease (AD), neurofibrillary tangles (NFTs) contain paired helical filaments (PHFs) as their major fibrous component. Abnormally hyperphosphorylated, microtubule-associated protein tau is the major protein subunit of PHFs. A recent in vitro study showed that PHF tangles from AD brains are highly glycosylated, whereas no glycan is detected in normal tau. Deglycosylation of PHF tangles converts them into bundles of straight filaments and restores their accessibility to microtubules. We showed that PHF tangles from AD brain tissue were associated with specific glycan molecules by double immunostaining with peroxidase and alkaline phosphatase labeling. Intracellular tangles and dystrophic neurites in a neuritic plaque with abnormally hyperphosphorylated tau, detected with the monoclonal antibodies AT-8 and anti-tau-2, were also positive with lectin Galanthus nivalis agglutinin (GNA) which recognizes both the N- and O-glycosidically linked saccharides. Colocalization was not seen in the extracellular tangles and amyloid deposition, suggesting that the glycosylation of tau might be associated with the early phase of insoluble NFT formation. Thus, although abnormal phosphorylation might promote aggregation of tau and inhibition of the assembly of microtubules, glycosylation mediated by a GNA-positive glycan appears to be responsible for the formation of the PHF structures in vivo.

  10. Focusing brain therapeutic interventions in space and time for Parkinson's disease.

    Science.gov (United States)

    Little, S; Brown, P

    2014-09-22

    The last decade has seen major progress at all levels of neuroscience, from genes and molecules up to integrated systems-level models of brain function. In particular, there have been advances in the understanding of cell-type-specific contributions to function, together with a clearer account of how these contributions are coordinated from moment to moment to organise behavior. A major current endeavor is to leverage this knowledge to develop new therapeutic approaches. In Parkinson's disease, there are a number of promising emerging treatments. Here, we will highlight three ambitious novel therapeutic approaches for this condition, each robustly driven by primary neuroscience. Pharmacogenetics genetically re-engineers neurons to produce neurotrophins that are neuroprotective to vulnerable dopaminergic cells or to directly replace dopamine through enzyme transduction. Deep brain stimulation (DBS) is undergoing a transformation, with adaptive DBS controlled by neural signals resulting in better motor outcomes and significant reductions in overall stimulation that could reduce side effects. Finally, optogenetics presents the opportunity to achieve cell-type-specific control with a high temporal specification on a large enough scale to effectively repair network-level dysfunction.

  11. Region-specific tauopathy and synucleinopathy in brain of the alpha-synuclein overexpressing mouse model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Masliah Eliezer

    2011-08-01

    Full Text Available Abstract Background α-synuclein [α-Syn]-mediated activation of GSK-3β leading to increases in hyperphosphorylated Tau has been shown by us to occur in striata of Parkinson's diseased [PD] patients and in animal models of PD. In Alzheimer's disease, tauopathy exists in several brain regions; however, the pattern of distribution of tauopathy in other brain regions of PD or in animal models of PD is not known. The current studies were undertaken to analyze the distribution of tauopathy in different brain regions in a widely used mouse model of PD, the α-Syn overexpressing mouse. Results High levels of α-Syn levels were seen in the brain stem, with a much smaller increase in the frontal cortex; neither cerebellum nor hippocampus showed any overexpression of α-Syn. Elevated levels of p-Tau, hyperphosphorylated at Ser202, Ser262 and Ser396/404, were seen in brain stem, with lower levels seen in hippocampus. In both frontal cortex and cerebellum, increases were seen only in p-Ser396/404 Tau, but not in p-Ser202 and p-Ser262. p-GSK-3β levels were not elevated in any of the brain regions, although total GSK-3β was elevated in brain stem. p-p38MAPK levels were unchanged in all brain regions examined, while p-ERK levels were elevated in brain stem, hippocampus and cerebellum, but not the frontal cortex. p-JNK levels were increased in brain stem and cerebellum but not in the frontal cortex or hippocampus. Elevated levels of free tubulin, indicating microtubule destabilization, were seen only in the brain stem. Conclusion Our combined data suggest that in this animal model of PD, tauopathy, along with microtubule destabilization, exists primarily in the brain stem and striatum, which are also the two major brain regions known to express high levels of α-Syn and undergo the highest levels of degeneration in human PD. Thus, tauopathy in PD may have a very restricted pattern of distribution.

  12. Reversible lesions in the brain parenchyma in Wilson's disease confirmed by magnetic resonance imaging: earlier administration of chelating therapy can reduce the damage to the brain.

    Science.gov (United States)

    Kozić, Duško B; Petrović, Igor; Svetel, Marina; Pekmezović, Tatjana; Ragaji, Aleksandar; Kostić, Vladimir S

    2014-11-01

    The aim of this study was to evaluate the resolution of brain lesions in patients with Wilson's disease during the long-term chelating therapy using magnetic resonance imaging and a possible significance of the time latency between the initial symptoms of the disease and the introduction of this therapy. Initial magnetic resonance examination was performed in 37 patients with proven neurological form of Wilson's disease with cerebellar, parkinsonian and dystonic presentation. Magnetic resonance reexamination was done 5.7 ± 1.3 years later in 14 patients. Patients were divided into: group A, where chelating therapy was initiated < 24 months from the first symptoms and group B, where the therapy started ≥ 24 months after the initial symptoms. Symmetry of the lesions was seen in 100% of patients. There was a significant difference between groups A and B regarding complete resolution of brain stem and putaminal lesions (P = 0.005 and P = 0.024, respectively). If the correct diagnosis and adequate treatment are not established less than 24 months after onset of the symptoms, irreversible lesions in the brain parenchyma could be expected. Signal abnormalities on magnetic resonance imaging might therefore, at least in the early stages, represent reversible myelinolisis or cytotoxic edema associated with copper toxicity.

  13. Incidence and sequelae of symptomatic venous thromboembolic disease among patients with traumatic brain injury.

    Science.gov (United States)

    Lai, J M; Yablon, S A; Ivanhoe, C B

    1997-05-01

    Venous thromboembolism (VTE) is a potentially life-threatening complication among patients with traumatic brain injury (TBI). However, few reports describe the incidence of this important disease. We reviewed the incidence of symptomatic VTE among 124 consecutive admissions with TBI to a free-standing rehabilitation hospital over an 18-month period. Four patients manifested evidence of VTE within 2 months of injury: two with leg swelling, one with an oedematous arm, and one with respiratory distress. None of the patients with suspected VTE received prophylactic anticoagulant therapy. Diagnosis of VTE was confirmed with venograph in two of the four patients. Although VTE is frequently asymptomatic, the incidence of symptomatic VTE (1.6%) among this series of rehabilitation inpatients with TBI still appears surprisingly low. These results have implications regarding the utility of non-invasive diagnostic screening of asymptomatic VTE and routine anticoagulant prophylaxis of high-risk patients with TBI.

  14. Brain diseases and tumorigenesis: The good and bad cops of pentraxin3.

    Science.gov (United States)

    Fornai, Francesco; Carrizzo, Albino; Ferrucci, Michela; Damato, Antonio; Biagioni, Francesca; Gaglione, Anderson; Puca, Annibale Alessandro; Vecchione, Carmine

    2015-12-01

    The prototype of long pentraxins, Pentraxin 3 (PTX3), is an evolutionarily conserved multifunctional, pattern-recognition protein constituted by a cyclic multimeric structure. PTX3 interacts with a variety of ligands, such as growth factors, extracellular matrix components, molecules of the complement cascade, pathogens recognition proteins, angiogenetic and adhesion molecules. PTX3 could be considered as a molecular link between innate and adaptive immunity as well as between focal and circulating responses during inflammation. In fact, it modulates the functions of resident dendritic cells and circulating lymphocytes. Recent evidence demonstrates that manipulation of PTX3 may produce even opposite effects depending on which target organ is considered and the physiopathological context. In the present review we discuss the good and bad cops of PTX3 concerning multifacted effects on inflammation, innate immunity, brain diseases and tumorigenesis. Finally, a perspective on PTX3 and autophagy is provided as a convergent pathway.

  15. Consequences of brain-derived neurotrophic factor withdrawal in CNS neurons and implications in disease.

    Science.gov (United States)

    Mariga, Abigail; Mitre, Mariela; Chao, Moses V

    2017-01-01

    Growth factor withdrawal has been studied across different species and has been shown to have dramatic consequences on cell survival. In the nervous system, withdrawal of nerve growth factor (NGF) from sympathetic and sensory neurons results in substantial neuronal cell death, signifying a requirement for NGF for the survival of neurons in the peripheral nervous system (PNS). In contrast to the PNS, withdrawal of central nervous system (CNS) enriched brain-derived neurotrophic factor (BDNF) has little effect on cell survival but is indispensible for synaptic plasticity. Given that most early events in neuropsychiatric disorders are marked by a loss of synapses, lack of BDNF may thus be an important part of a cascade of events that leads to neuronal degeneration. Here we review reports on the effects of BDNF withdrawal on CNS neurons and discuss the relevance of the loss in disease.

  16. Translational concepts of mGluR5 in synaptic diseases of the brain

    Directory of Open Access Journals (Sweden)

    Thomas M Piers

    2012-11-01

    Full Text Available The G-protein coupled receptor family of glutamate receptors, termed metabotropic glutamate receptors (mGluRs, are implicated in numerous cellular mechanisms ranging from neural development to the processing of cognitive, sensory, and motor information. Over the last decade, multiple mGluR-related signal cascades have been identified at excitatory synapses, indicating their potential roles in various forms of synaptic function and dysfunction. This review highlights recent studies investigating mGluR5, a subtype of group I mGluRs, and its association with a number of developmental, psychiatric and senile synaptic disorders with respect to associated synaptic proteins, with an emphasis on translational pre-clinical studies targeting mGluR5 in a range of synaptic diseases of the brain.

  17. Clinical value of dipyridamole brain perfusion imaging in the diagnosis of ischemic cerebrovascular disease

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Using dipyridamole stress test to evaluate cerebral blood flow reserve in cerebrovascular disease (CVD). Dipyridamole stress tests were performed first, the baseline SPECT images were obtained under similar conditions 2-5 days later. By visual and semiquantitative analysis, the responses of cerebral blood flow to dipyridamole were divided into the following four patterns: A: The dipyridamole SPECT showed an expanded area of hypoperfusion, Asymmetry Index(AI) and Uptake Rate(UR) were all decreased; B: Rest images was normal but new hypoperfused areas appeared on stress test with decreased Al and UR; C: Hypoperfused areas were decreased in size or disappeared after stress test with increased Al and UR; D: No changes showed in cerebral perfusion imaging patterns, and in Al and UR between stress and rest studies. Dipyridarnole brain perfusion imaging may be helpful to the diagnosis of CVD, to the decision the therapeutic plan, and to predicting the therapeutic effect.

  18. The effects of subthalamic deep brain stimulation on metaphor comprehension and language abilities in Parkinson's disease.

    Science.gov (United States)

    Tremblay, Christina; Macoir, Joël; Langlois, Mélanie; Cantin, Léo; Prud'homme, Michel; Monetta, Laura

    2015-02-01

    The effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) on different language abilities are still controversial and its impact on high-level language abilities such as metaphor comprehension has been overlooked. The aim of this study was to determine the effects of STN electrical stimulation on metaphor comprehension and language abilities such as lexical and semantic capacities. Eight PD individuals with bilateral STN-DBS were first evaluated OFF-DBS and, at least seven weeks later, ON-DBS. Performance on metaphor comprehension, lexical decision, word association and verbal fluency tasks were compared ON and OFF-DBS in addition to motor symptoms evaluation. STN stimulation had a significant beneficial effect on motor symptoms in PD. However, this stimulation did not have any effect on metaphor comprehension or any other cognitive ability evaluated in this study. These outcomes suggest that STN stimulation may have dissociable effects on motor and language functions.

  19. Parkinson's disease patients with bilateral subthalamic deep brain stimulation gain weight.

    Science.gov (United States)

    Macia, Frédéric; Perlemoine, Caroline; Coman, Irène; Guehl, Dominique; Burbaud, Pierre; Cuny, Emmanuel; Gin, Henri; Rigalleau, Vincent; Tison, François

    2004-02-01

    Weight, body mass index (BMI) and energy expenditure/energy intake (EE/EI) was studied in 19 Parkinson's disease (PD) patients after subthalamic deep brain stimulation (STN-DBS) versus 14 nonoperated ones. Operated patients had a significant weight gain (WG, + 9.7 +/- 7 kg) and BMI increase (+ 4.7 kg/m2). The fat mass was higher after STN-DBS. Resting EE (REE; offdrug/ON stimulation) was significantly decreased in STN-DBS patients, while their daily energy expenditure (DEI) was not significantly different. A significant correlation was found among WG, BMI increase, and pre-operative levodopa-equivalent daily dose, their reduction after STN-DBS, and the differential REE related to stimulation and the REE in the offdrug/OFF stimulation condition. In conclusion, STN-DBS in PD induces a significant WG associated with a reduction in REE without DEI adjustment.

  20. Brain plasticity in Parkinson's disease with freezing of gait induced by action observation training.

    Science.gov (United States)

    Agosta, Federica; Gatti, Roberto; Sarasso, Elisabetta; Volonté, Maria Antonietta; Canu, Elisa; Meani, Alessandro; Sarro, Lidia; Copetti, Massimiliano; Cattrysse, Erik; Kerckhofs, Eric; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo

    2017-01-01

    Gait disorders represent a therapeutic challenge in Parkinson's disease (PD). This study investigated the efficacy of 4-week action observation training (AOT) on disease severity, freezing of gait and motor abilities in PD, and evaluated treatment-related brain functional changes. 25 PD patients with freezing of gait were randomized into two groups: AOT (action observation combined with practicing the observed actions) and "Landscape" (same physical training combined with landscape-videos observation). At baseline and 4-week, patients underwent clinical evaluation and fMRI. Clinical assessment was repeated at 8-week. At 4-week, both groups showed reduced freezing of gait severity, improved walking speed and quality of life. Moreover, AOT was associated with reduced motor disability and improved balance. AOT group showed a sustained positive effect on motor disability, walking speed, balance and quality of life at 8-week, with a trend toward a persisting reduced freezing of gait severity. At 4-week vs. baseline, AOT group showed increased recruitment of fronto-parietal areas during fMRI tasks, while the Landscape group showed a reduced fMRI activity of the left postcentral and inferior parietal gyri and right rolandic operculum and supramarginal gyrus. In AOT group, functional brain changes were associated with clinical improvements at 4-week and predicted clinical evolution at 8-week. AOT has a more lasting effect in improving motor function, gait and quality of life in PD patients relative to physical therapy alone. AOT-related performance gains are associated with an increased recruitment of motor regions and fronto-parietal mirror neuron and attentional control areas.

  1. Deep brain stimulation and cognitive decline in Parkinson's disease: The predictive value of electroencephalography.

    Science.gov (United States)

    Markser, A; Maier, Franziska; Lewis, C J; Dembek, T A; Pedrosa, D; Eggers, C; Timmermann, L; Kalbe, E; Fink, G R; Burghaus, Lothar

    2015-10-01

    Some Parkinson's disease (PD) patients treated with subthalamic nucleus deep brain stimulation (STN-DBS) develop new-onset cognitive decline. We examined whether clinical EEG recordings can be used to predict cognitive deterioration in PD patients undergoing STN-DBS. In this retrospective study, we used the Grand Total EEG (GTE)-score (short and total) to evaluate pre- and postoperative EEGs. In PD patients undergoing STN-DBS (N = 30), cognitive functioning was measured using Mini-Mental State Test and DemTect before and after surgery. Severity of motor impairment was assessed using the Unified Parkinson's Disease Rating Scale-III. Patients were classified into patients with or without cognitive decline after STN-DBS surgery. Epidemiological data, pre- and postoperative EEG recordings as well as neuropsychological and neurological data, electrode positions and the third ventricle width were compared. A logistic regression model was used to identify predictors of cognitive decline. Motor deficits significantly improved from pre- to post-surgery, while the mean GTE-scores increased significantly. Six patients developed cognitive deterioration 4-12 months postoperatively. These patients had significantly higher preoperative GTE-scores than patients without cognitive deterioration, although preoperative cognitive functioning was comparable. Electrode positions, brain atrophy and neurological data did not differ between groups. Logistic regression analysis identified the GTE-score as a significant predictor of postoperative cognitive deterioration. Data suggest that the preoperative GTE-score can be used to identify PD patients that are at high risk for developing cognitive deterioration after STN-DBS surgery even though their preoperative cognitive state was normal.

  2. Deep ensemble learning of sparse regression models for brain disease diagnosis.

    Science.gov (United States)

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2017-04-01

    Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer's disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call 'Deep Ensemble Sparse Regression Network.' To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature.

  3. PRELIMINARY STUDY OF OMENTUM TRANSPOSITION TO BRAIN FOR TREATMENT OF ALZHEIMER'S DISEASE

    Institute of Scientific and Technical Information of China (English)

    ZHONG Jun; WU Wei-lie; Harry Goldsmith

    2007-01-01

    Objective To learn the effect of omemtum transposition to the brain of patients with Alzheimer's disease. Methods Ten consecutive patients, aged 58 - 81 years old, underwent graft of their elongated pedicled omentum onto their left frontal-temperal-parietal cerebral cortex. Those patients, who had more than five years of dementia with low mini mental-state examination (MMSE) scores of 2 -15, were diagnosed by a neurologist. All subjects underwent single photon evoked computer tomography (SPECT) pre- and post-operatively.SPECT results were analyzed semi-quantitatively by calculation of the left/right radioactivity counts symmetry index (Si). The patients were followed up to one year. The outcome was evaluated by the neurologist with a modified scale of activities of daily living (mADL) as well as the MMSE. Results Three months following the surgery,the Si of SPECT increased from ( 98. 7 ± 1.9) % to ( 103. 9 ± 2.3 ) % ( P = 0. 0307). The neurological and neuropsychological testing scores increased insignificantly during the follow-up period. By the one year, the MMSE score rose from 8. 7 ± 1.4 to 10. 7 ± 1.8 ( P > 0. 05 ), while the mADL from 13.3 ± 1.8 to 16. 9 ± 2. 0 ( P > 0. 05 ). One of the patients suffered a heart attack, two had epileptic episodes postoperatively. Conclusion We believe that omental transposition to the brain augments cerebral blood flow, which might be helpful to decelerate the processing of Alzheimer's disease. However, it is still a potentially risky procedure for the elderly.

  4. Evaluation of neuro-Behcet disease with {sup 99m}Tc-HMPAO brain SPECT. Comparison with MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Yoshirou; Oshima, Motoo; Sasaki, Yasushi [Teikyo Univ., Tokyo (Japan). Faculty of Medicine] [and others

    1997-07-01

    The purpose of this study was to evaluate the brain perfusion of neuro-Behcet disease using {sup 99m}Tc-HMPAO. In total, nine patients (7 men and 2 women) were evaluated. Seven were in the chronic phase, one was acute and the other was subacute. The results of perfusion study were compared with the MRI findings. The findings of chronic-phase neuro-Behcet disease were as follows: {sup 99m}Tc-HMPAO showed hypoperfusion of the cerebellum in 3, brain stem in 5, and cerebral cortex in 4 patients. Moreover, asymmetry of the basal ganglia and thalamus was seen in 4 cases with {sup 99m}Tc-HMPAO. MRI showed atrophy of the cerebellum in 4, brain stem in 5 and cerebral cortex in 2 patients. One acute patient showed a perfusion defect with {sup 99m}Tc-HMPAO that was consistent with the vasculitis shown with MRI. In the remaining subacute patient, perfusion defect was demonstrated with {sup 99m}Tc-HMPAO, consistent with the infarction shown with MRI. It is concluded that brain perfusion scintigraphy is useful to evaluate the brain blood flow of neuro-Behcet disease. (author)

  5. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer's disease mice.

    Science.gov (United States)

    Liu, Yang; An, Sai; Li, Jianfeng; Kuang, Yuyang; He, Xi; Guo, Yubo; Ma, Haojun; Zhang, Yu; Ji, Bin; Jiang, Chen

    2016-02-01

    Multifunctional nanocarriers are increasingly promising for disease treatment aimed to regulate multiple pathological dysfunctions and overcome barriers in drug delivery. Here we develop a multifunctional nanocarrier for Alzheimer's disease (AD) treatment by achieving therapeutic gene and peptide co-delivery to brain based on PEGylated dendrigraft poly-l-lysines (DGLs) via systemic administration. The dendritic amine-rich structure of DGLs provides plenty reaction sites and positive charge for drug loading. Successful co-delivery of drugs overcoming the blood-brain barrier by brain-targeted ligand modification was demonstrated both in vitro and in vivo. The pharmacodynamics study of the system following multiple-dosing treatment was verified in transgenic AD mice. Down-regulation of the key enzyme in amyloid-β formation was achieved by delivering non-coding RNA plasmid. Simultaneous delivery of the therapeutic peptide into brain leads to reduction of neurofibrillary tangles. Meanwhile, memory loss rescue in AD mice was also observed. Taken together, the multifunctional nanocarrier provides an excellent drug co-delivery platform for brain diseases.

  6. Reversing cognitive-motor impairments in Parkinson's disease patients using a computational modelling approach to deep brain stimulation programming.

    Science.gov (United States)

    Frankemolle, Anneke M M; Wu, Jennifer; Noecker, Angela M; Voelcker-Rehage, Claudia; Ho, Jason C; Vitek, Jerrold L; McIntyre, Cameron C; Alberts, Jay L

    2010-03-01

    Deep brain stimulation in the subthalamic nucleus is an effective and safe surgical procedure that has been shown to reduce the motor dysfunction of patients with advanced Parkinson's disease. Bilateral subthalamic nucleus deep brain stimulation, however, has been associated with declines in cognitive and cognitive-motor functioning. It has been hypothesized that spread of current to nonmotor areas of the subthalamic nucleus may be responsible for declines in cognitive and cognitive-motor functioning. The aim of this study was to assess the cognitive-motor performance in advanced Parkinson's disease patients with subthalamic nucleus deep brain stimulation parameters determined clinically (Clinical) to settings derived from a patient-specific computational model (Model). Data were collected from 10 patients with advanced Parkinson's disease bilaterally implanted with subthalamic nucleus deep brain stimulation systems. These patients were assessed off medication and under three deep brain stimulation conditions: Off, Clinical or Model based stimulation. Clinical stimulation parameters had been determined based on clinical evaluations and were stable for at least 6 months prior to study participation. Model-based parameters were selected to minimize the spread of current to nonmotor portions of the subthalamic nucleus using Cicerone Deep Brain Stimulation software. For each stimulation condition, participants performed a working memory (n-back task) and motor task (force tracking) under single- and dual-task settings. During the dual-task, participants performed the n-back and force-tracking tasks simultaneously. Clinical and Model parameters were equally effective in improving the Unified Parkinson's disease Rating Scale III scores relative to Off deep brain stimulation scores. Single-task working memory declines, in the 2-back condition, were significantly less under Model compared with Clinical deep brain stimulation settings. Under dual-task conditions, force

  7. Synthesis and characterization of brain penetrant prodrug of neuroprotective D-264: Potential therapeutic application in the treatment of Parkinson's disease.

    Science.gov (United States)

    Dholkawala, Fahd; Voshavar, Chandrashekhar; Dutta, Aloke K

    2016-06-01

    Parkinson's disease (PD) is one of the major debilitating neurodegenerative disorders affecting millions of people worldwide. Progressive loss of dopamine neurons resulting in development of motor dysfunction and other related non-motor symptoms is the hallmark of PD. Previously, we have reported on the neuroprotective property of a potent D3 preferring agonist D-264. In our goal to increase the bioavailability of D-264 in the brain, we have synthesized a modified cysteine based prodrug of D-264 and evaluated its potential in crossing the blood-brain barrier. Herein, we report the synthesis of a novel modified cysteine conjugated prodrug of potent neuroprotective D3 preferring agonist D-264 and systematic evaluation of the hydrolysis pattern of the prodrug to yield D-264 at different time intervals in rat plasma and brain homogenates using HPLC analysis. Furthermore, we have also performed in vivo experiments with the prodrug to evaluate its enhanced brain penetration ability.

  8. Usefulness of preoperative coronary angiography and brain computed tomography in cases of coronary artery disease and cerebrovascular disease undergoing revascularization for arteriosclerosis obliterans

    Energy Technology Data Exchange (ETDEWEB)

    Sakurada, Tall; Shibata, Yoshiki [Southern Tohoku Fukushima Hospital (Japan)

    2003-05-01

    Coronary angiography and brain computed tomography were preoperatively performed to evaluate the clinical condition of coronary artery disease and cerebrovascular disease in 101 patients (mean age, 68.4 years) with revascularization for arteriosclerosis obliterans. Eighty patients had hypertension, 12 had diabetes, and 26 had hyperlipidemia. Seventy-one patients (70.3%) had coronary stenosis. Significant stenoses in major coronary artery branches were confirmed in 35 patients, including 13 patients with old myocardial infarction. Coronary artery bypass grafting and percutaneous coronary angioplasty were performed in 2 and 7 patients with critical stenosis, respectively. Of 57 patients, who underwent brain computed tomography, abnormalities were found in 52 patients (91.2%), including cortical infarction in 9, lacunar infarction in 35, and leukoaraiosis in 27 patients. During the follow-up period 13 patients died (including 3 cases of myocardial infarction and 3 cases of stroke). Actuarial survival rate at 5 years was 80.4%. The influence of ischemic heart disease and cerebrovascular disease on early and late mortality after surgical reconstruction for peripheral occlusive vascular disease is significant. Using visual diagnostic techniques, such as coronary angiography and brain computed tomography, long term survivor should be closely observed for multiple arteriosclerotic vascular diseases. (author)

  9. Influence of drug transporters and stereoselectivity on the brain penetration of pioglitazone as a potential medicine against Alzheimer's disease.

    Science.gov (United States)

    Chang, Kai Lun; Pee, Hai Ning; Yang, Shili; Ho, Paul C

    2015-03-11

    Pioglitazone is currently undergoing clinical trials for treatment of Alzheimer's disease (AD). However, poor brain penetration remains an obstacle to development of the drug for such intended clinical uses. In this study, we demonstrate that the inhibition of P-glycoprotein (P-gp) significantly increases brain penetration of pioglitazone, whereas inhibition of breast cancer resistance protein (BCRP) has little effect. We also investigate the stereoselectivity of pioglitazone uptake in the brain. When mice were dosed with racemic pioglitazone, the concentration of (+)-pioglitazone was 46.6% higher than that of (-)-pioglitazone in brain tissue and 67.7% lower than that of (-)-pioglitazone in plasma. Dosing mice with pure (+)-pioglitazone led to a 76% increase in brain exposure levels compared to those from an equivalent dose of racemic pioglitazone. Pure (+)-pioglitazone was also shown to have comparable amyloid-lowering capabilities to the racemic pioglitazone in an in vitro AD model. These results suggest that P-gp may act as a stereoselective barrier to prevent pioglitazone entry into the brain. Dosing with (+)-pioglitazone instead of the racemic mixture may result in higher levels of brain exposure to pioglitazone, thus potentially improving the development of pioglitazone treatment of AD.

  10. Deep brain stimulation for Parkinson disease in Australia: current scientific and clinical status.

    Science.gov (United States)

    Poortvliet, P C; Silburn, P A; Coyne, T J; Chenery, H J

    2015-02-01

    There is currently no cure for Parkinson disease (PD). Disease management is directed primarily at motor symptom relief, but the impact of non-motor symptoms associated with PD should not be underestimated. Medical and surgical treatment options aim to increase functional independence and quality of life. Deep brain stimulation (DBS) has proven to be a safe, effective and cost-efficient surgical treatment option. In 2009, the Australian referral guidelines, developed to provide a synopsis of DBS therapy for PD, were introduced, and since then novel findings have been reported regarding the timing of intervention, target selection and symptom management. Our aim is to provide an update of DBS for PD in Australia. Intervention at earlier stages of the disease can potentially improve quality of life over a longer period with greater possibilities for meaningful social and professional contributions. For less responsive motor symptoms (e.g. freezing of gait, postural instability), the pedunculopontine nucleus has emerged as a promising new surgical target. Traditional PD treatment is focused on improvement of motor symptoms, but the disorder is also characterised by non-motor symptoms, often undiagnosed or undisclosed, that have the potential to impact quality of life to a greater extent than motor symptoms. It is essential to identify and routinely monitor for non-motor symptoms as they can emerge at all stages of the disease or can result from treatment. Many of these current advances require long-term monitoring of treatment outcomes to improve future clinical practice, refine patient selection and ensure best patient outcomes.

  11. Quantification of Tc-99m-ethyl cysteinate dimer brain single photon emission computed tomography images using statistical probabilistic brain atlas in depressive end-stage renal disease patients Correlation with disease severity and symptom factors

    Institute of Scientific and Technical Information of China (English)

    Heeyoung Kim; In Joo Kim; Seong-Jang Kim; Sang Heon Song; Kyoungjune Pak; Keunyoung Kim

    2012-01-01

    This study adapted a statistical probabilistic anatomical map of the brain for single photon emission computed tomography images of depressive end-stage renal disease patients. This research aimed to investigate the relationship between symptom clusters, disease severity, and cerebral blood flow. Twenty-seven patients (16 males, 11 females) with stages 4 and 5 end-stage renal disease were enrolled, along with 25 healthy controls. All patients underwent depressive mood assessment and brain single photon emission computed tomography. The statistical probabilistic anatomical map images were used to calculate the brain single photon emission computed tomography counts. Asymmetric index was acquired and Pearson correlation analysis was performed to analyze the correlation between symptom factors, severity, and regional cerebral blood flow. The depression factors of the Hamilton Depression Rating Scale showed a negative correlation with cerebral blood flow in the left amygdale. The insomnia factor showed negative correlations with cerebral blood flow in the left amygdala, right superior frontal gyrus, right middle frontal gyrus, and left middle frontal gyrus. The anxiety factor showed a positive correlation with cerebral glucose metabolism in the cerebellar vermis and a negative correlation with cerebral glucose metabolism in the left globus pallidus, right inferior frontal gyrus, both temporal poles, and left parahippocampus. The overall depression severity (total scores of Hamilton Depression Rating Scale) was negatively correlated with the statistical probabilistic anatomical map results in the left amygdala and right inferior frontal gyrus. In conclusion, our results demonstrated that the disease severity and extent of cerebral blood flow quantified by a probabilistic brain atlas was related to various brain areas in terms of the overall severity and symptom factors in end-stage renal disease patients.

  12. Collagen XVIII: a novel heparan sulfate proteoglycan associated with vascular amyloid depositions and senile plaques in Alzheimer's disease brains.

    NARCIS (Netherlands)

    Horssen, J. van; Wilhelmus, M.M.M.; Heljasvaara, R.; Pihlajaniemi, T.; Wesseling, P.; Waal, R.M.W. de; Verbeek, M.M.

    2002-01-01

    Heparan sulfate proteoglycans (HSPGs) may play a role in the formation and persistence of senile plaques and neurofibrillary tangles in Alzheimer's disease brains. Recently, it has been demonstrated that the human extracellular matrix-associated molecule collagen XVIII is the first collagen carrying

  13. Cognitive and psychiatric outcome 3 years after globus pallidus pars interna or subthalamic nucleus deep brain stimulation for Parkinson's disease

    NARCIS (Netherlands)

    Boel, Judith A; Odekerken, Vincent J J; Schmand, Ben A; Geurtsen, Gert J; Cath, Danielle C; Figee, Martijn; van den Munckhof, Pepijn; de Haan, Rob J.; Schuurman, P Richard; de Bie, Rob M A; van Dijk, J. Marc C.

    2016-01-01

    BACKGROUND: Effects on non-motor symptoms, mainly cognitive and psychiatric side effects, could influence the decision for either globus pallidus pars interna (GPi) or subthalamic nucleus (STN) deep brain stimulation (DBS) for patients with Parkinson's disease (PD). OBJECTIVE: 1) To compare cognitiv

  14. Deep brain stimulation of the subthalamic nucleus improves reward-based decision-learning in Parkinson’s disease

    NARCIS (Netherlands)

    Wouwe, N.C. van; Ridderinkhof, K.R.; Wildenberg, W.P.M. van den; Band, G.P.H.; Abisogun, A.; Elias, W.J.; Frysinger, R.; Wylie, S.A.

    2011-01-01

    Recently, the subthalamic nucleus (STN) has been shown to be critically involved in decision-making, action selection, and motor control. Here we investigate the effect of deep brain stimulation (DBS) of the STN on reward-based decision-learning in patients diagnosed with Parkinson’s disease (PD). W

  15. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease

    Science.gov (United States)

    2014-10-01

    Ho, Wei Zhao, Roberto Sanchez, Merina Varghese, Daniel Freire , Giulio Maria Pasinetti, Activation of ectopically expressed olfactory receptors in the...disease: a review. Prog. Brain Res. 161, 303-16. Zhao W, Ho L, Varghese M, Yemul S, Dams-O’Connor K, Gordon W, Knable L, Freire D, Haroutunian V

  16. Deep brain stimulation of the subthalamic nucleus and globus pallidus internus for advanced Parkinson’s disease

    NARCIS (Netherlands)

    Odekerken, V.J.J.

    2016-01-01

    Deep Brain Stimulation (DBS) for Parkinson’s disease is a treatment option in patients with medication-induced motor response fluctuations, when medication schedule adjustments are no longer able to sustain optimal functioning in daily life. DBS mainly improves motor symptoms that initially responde

  17. New insights into schizophrenia disease genes interactome in the human brain: emerging targets and therapeutic implications in the postgenomics era.

    Science.gov (United States)

    Podder, Avijit; Latha, Narayanan

    2014-12-01

    Schizophrenia, a complex neurological disorder, is comprised of interactions between multiple genetic and environmental factors wherein each of the factors individually exhibits a small effect. In this regard a network-based strategy is best suited to capture the combined effect of multiple genes with their definite pattern of interactions. Given that schizophrenia affects multiple regions of the brain, we postulated that instead of any single specific tissue, a mutual set of interactions occurs between different regions of brain in a well-defined pattern responsible for the disease phenotype. To validate, we constructed and compared tissue specific co-expression networks of schizophrenia candidate genes in twenty diverse brain tissues. As predicted, we observed a common interaction network of certain genes in all the studied brain tissues. We examined fundamental network topologies of the common network to sequester essential common candidates for schizophrenia. We also performed a gene set analysis to identify the essential biological pathways enriched by the common candidates in the network. Finally, the candidate drug targets were prioritized and scored against known available schizophrenic drugs by molecular docking studies. We distinctively identified protein kinases as the top candidates in the network that can serve as probable drug targets for the disease. Conclusively, we propose that a comprehensive study of the connectivity amongst the disease genes themselves may turn out to be more informative to understand schizophrenia disease etiology and the underlying complexity.

  18. Pitch Variability in Patients with Parkinson's Disease: Effects of Deep Brain Stimulation of Caudal Zona Incerta and Subthalamic Nucleus

    Science.gov (United States)

    Karlsson, Fredrik; Olofsson, Katarina; Blomstedt, Patric; Linder, Jan; van Doorn, Jan

    2013-01-01

    Purpose: The purpose of the present study was to examine the effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN) and the caudal zona incerta (cZi) pitch characteristics of connected speech in patients with Parkinson's disease (PD). Method: The authors evaluated 16 patients preoperatively and 12 months after DBS surgery. Eight…

  19. Cerebrovascular disease in newborn infants: report of three cases with clinical follow-up and brain SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Moura-Ribeiro, Maria Valeriana L. de; Ciasca, Sylvia Maria; Vale-Cavalcanti, Mariza; Etchebehere, Elba C.S.C.; Camargo, Edwaldo E. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Ciencias Medicas

    1999-07-01

    The clinical and neurological findings of three neonates with the diagnosis of cerebrovascular disease are reported. The neuropsychological evaluation disclosed impairment of fine motor function, coordination, language, perception and behavioral disturbances. Brain SPECT imaging revealed perfusional deficits in the three cases. (author)

  20. TNF-Overexpression in Borna Disease Virus-Infected Mouse Brains Triggers Inflammatory Reaction and Epileptic Seizures

    NARCIS (Netherlands)

    Kramer, Katharina; Schaudien, Dirk; Eisel, Ulrich L. M.; Herzog, Sibylle; Richt, Juergen A.; Baumgaertner, Wolfgang; Herden, Christiane

    2012-01-01

    Proinflammatory state of the brain increases the risk for seizure development. Neonatal Borna disease virus (BDV)-infection of mice with neuronal overexpression of tumor necrosis factor-alpha (TNF) was used to investigate the complex relationship between enhanced cytokine levels, neurotropic virus i

  1. [Intestinal microbiota and the brain: multilevel interactions in health and disease].

    Science.gov (United States)

    Tomova, A; Pivovarciová, A; Babinská, K; Mravec, B

    2015-01-01

    Commensal bacteria of the digestive tract are separated from the brain by multiple barriers. Despite that bacteria residing in the intestine and the neurons of the brain interact by neural and humoral pathways. Mental processes, such as the stress response, may affect the composition and function of intestinal bacteria via the brain-gut axis. On the other hand, intestinal bacteria can influence the processes in the brain through the gut-brain axis. Disruption of these interactions may be involved in various alterations both in the function of the gastrointestinal tract and the brain function.

  2. Dystonic storm due to Batten's disease treated with pallidotomy and deep brain stimulation.

    Science.gov (United States)

    Elkay, Muruvet; Silver, Kenneth; Penn, Richard D; Dalvi, Arif

    2009-05-15

    To report a novel treatment approach, pallidotomy and deep brain stimulation (DBS), in two sisters with dystonic storm due to Batten's disease. This study is based on long-term follow-up of two sisters, presenting with dystonic storm and their response to pallidotomy and DBS. These sisters, who had visual loss, seizures, and progressive psychomotor decline, experienced progressive disabling abnormal movements culminating in dystonic storm at the age of 15 and 17 years, respectively. In addition to intubation and sedation, multiple medications, including botulinum toxin injections and intrathecal baclofen infusion were tried in both patients without any benefit. The old sister underwent bilateral pallidotomy. Within 10 days postoperatively, there was marked improvement in dystonic storm. She was free of abnormal movements for 9 months. Then she started having opisthotonus lasting 20 seconds to an hour several times/day, but over 6 years abnormal movements are markedly improved, and not returned to pre-pallidotomy level. The young sister underwent both bilateral pallidotomy and DBS, 3 weeks apart. She was free of abnormal movements for 7 months and able to maintain reduction in the abnormal movements by adjusting DBS settings. Pallidotomy and DBS should be considered in dystonic storm due to Batten's disease.

  3. Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease.

    Science.gov (United States)

    Mehler, Mark F; Mattick, John S

    2007-07-01

    The progressive maturation and functional plasticity of the nervous system in health and disease involve a dynamic interplay between the transcriptome and the environment. There is a growing awareness that the previously unexplored molecular and functional interface mediating these complex gene-environmental interactions, particularly in brain, may encompass a sophisticated RNA regulatory network involving the twin processes of RNA editing and multifaceted actions of numerous subclasses of non-protein-coding RNAs. The mature nervous system encompasses a wide range of cell types and interconnections. Long-term changes in the strength of synaptic connections are thought to underlie memory retrieval, formation, stabilization, and effector functions. The evolving nervous system involves numerous developmental transitions, such as neurulation, neural tube patterning, neural stem cell expansion and maintenance, lineage elaboration, differentiation, axonal path finding, and synaptogenesis. Although the molecular bases for these processes are largely unknown, RNA-based epigenetic mechanisms appear to be essential for orchestrating these precise and versatile biological phenomena and in defining the etiology of a spectrum of neurological diseases. The concerted modulation of RNA editing and the selective expression of non-protein-coding RNAs during seminal as well as continuous state transitions may comprise the plastic molecular code needed to couple the intrinsic malleability of neural network connections to evolving environmental influences to establish diverse forms of short- and long-term memory, context-specific behavioral responses, and sophisticated cognitive capacities.

  4. Reduced expression of brain-derived neurotrophic factor protein in Parkinson's disease substantia nigra.

    Science.gov (United States)

    Parain, K; Murer, M G; Yan, Q; Faucheux, B; Agid, Y; Hirsch, E; Raisman-Vozari, R

    1999-02-25

    Several in vitro and in vivo studies have shown that brain-derived neurotrophic factor (BDNF) promotes survival of damaged mesencephalic dopaminergic neurons. Using a specific antibody directed against human recombinant BDNF, we studied the expression of the protein at the cellular level in the post-mortem mesencephalon of control subjects and patients with Parkinson's disease (PD). In control subjects, BDNF was expressed in all mesencephalic regions containing dopaminergic neurons, and in the substantia nigra pars compacta (SNpc) 65% of the melanized neurons expressed BDNF. In the PD SNpc, the total number of pigmented neurons containing BDNF was reduced to 9.6% of the corresponding control value. In contrast, the number of pigmented neurons non-immunoreactive for BDNF was reduced to 23.9% of the corresponding control value. This result appears to indicate that SNpc melanized neurons not expressing BDNF have a 2.5-fold greater probability of surviving than BDNF-positive melanized neurons. Furthermore, we found that in parkinsonian mesencephalon almost all dopaminergic neurons containing Lewy bodies were immunoreactive for BDNF. These findings demonstrate a reduced expression of BDNF in PD and suggest that BDNF protein expression does not protect melanized SNpc neurons from the degenerative process in this disease.

  5. Longitudinal Changes in Functional Brain Connectivity Predicts Conversion to Alzheimer's Disease.

    Science.gov (United States)

    Serra, Laura; Cercignani, Mara; Mastropasqua, Chiara; Torso, Mario; Spanò, Barbara; Makovac, Elena; Viola, Vanda; Giulietti, Giovanni; Marra, Camillo; Caltagirone, Carlo; Bozzali, Marco

    2016-01-01

    This longitudinal study investigates the modifications in structure and function occurring to typical Alzheimer's disease (AD) brains over a 2-year follow-up, from pre-dementia stages of disease, with the aim of identifying biomarkers of prognostic value. Thirty-one patients with amnestic mild cognitive impairment were recruited and followed-up with clinical, neuropsychological, and MRI assessments. Patients were retrospectively classified as AD Converters or Non-Converters, and the data compared between groups. Cross-sectional MRI data at baseline, assessing volume and functional connectivity abnormalities, confirmed previous findings, showing a more severe pattern of regional grey matter atrophy and default-mode network disconnection in Converters than in Non-Converters. Longitudinally, Converters showed more grey matter atrophy in the frontotemporal areas, accompanied by increased connectivity in the precuneus. Discriminant analysis revealed that functional connectivity of the precuneus within the default mode network at baseline is the parameter able to correctly classify patients in Converters and Non-Converters with high sensitivity, specificity, and accuracy.

  6. Altered Spontaneous Brain Activity in Cortical and Subcortical Regions in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Jie Xiang

    2016-01-01

    Full Text Available Purpose. The present study aimed to explore the changes of amplitude of low-frequency fluctuations (ALFF at rest in patients with Parkinson’s disease (PD. Methods. Twenty-four PD patients and 22 healthy age-matched controls participated in the study. ALFF was measured on the whole brain of all participants. A two-sample t-test was then performed to detect the group differences with age, gender, education level, head motion, and gray matter volume as covariates. Results. It was showed that PD patients had significantly decreased ALFF in the left thalamus/caudate and right insula/inferior prefrontal gyrus, whereas they had increased ALFF in the right medial prefrontal cortex (BA 8/6 and dorsolateral prefrontal cortex (BA 9/10. Conclusions. Our results indicated that significant alterations of ALFF in the subcortical regions and prefrontal cortex have been detected in PD patients, independent of age, gender, education, head motion, and structural atrophy. The current findings further provide insights into the biological mechanism of the disease.

  7. Serum Brain-Derived Neurotrophic Factor Levels in Different Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Mariacarla Ventriglia

    2013-01-01

    Full Text Available Consistent evidence indicates the involvement of the brain-derived neurotrophic factor (BDNF in neurodegenerative disorders such as Alzheimer's disease (AD and Parkinson’s disease (PD. In the present study, we compared serum BDNF in 624 subjects: 266 patients affected by AD, 28 by frontotemporal dementia (FTD, 40 by Lewy body dementia (LBD, 91 by vascular dementia (VAD, 30 by PD, and 169 controls. Our results evidenced lower BDNF serum levels in AD, FTD, LBD, and VAD patients (P<0.001 and a higher BDNF concentration in patients affected by PD (P=0.045. Analyses of effects of pharmacological treatments suggested significantly higher BDNF serum levels in patients taking mood stabilizers/antiepileptics (P=0.009 and L-DOPA (P<0.001 and significant reductions in patients taking benzodiazepines (P=0.020. In conclusion, our results support the role of BDNF alterations in neurodegenerative mechanisms common to different forms of neurological disorders and underline the importance of including drug treatment in the analyses to avoid confounding effects.

  8. Body weight gain rate in patients with Parkinson's disease and deep brain stimulation.

    Science.gov (United States)

    Barichella, Michela; Marczewska, Agnieszka M; Mariani, Claudio; Landi, Andrea; Vairo, Antonella; Pezzoli, Gianni

    2003-11-01

    We evaluated body weight changes in patients with Parkinson's disease (PD) after electrode implantation for deep brain stimulation (DBS) in the subthalamic nucleus (STN) in relation to clinical improvement. Thirty PD patients who received STN DBS were included (22 men, 8 women; mean age, 60.0 +/- 7.1 years; mean PD duration, 13.5 +/- 3.7 years; mean body mass index [BMI], 21.6 +/- 3.0 kg/m2). Body weight, physical activity, and Unified Parkinson's Disease Rating Scale (UPDRS) scores were noted before and 3 and 12 months after the procedure. Significant weight gain occurred in 29 patients; the mean increase was 14.8 +/- 9.8% of initial body weight in 1 year. Of the patients, 46.5% reported weight gain in the first 3 months, 21.4% gradual weight gain in the first 6 months, and 32.1% a slow increase for 1 year. Mean BMI increased up to 24.7 +/- 3.7 kg/m2. After 1 year, mean UPDRS motor score improved significantly in off and in on; and therapy complications improved by 91.0 +/- 17.0%. BMI changes at 3 and 12 months were significantly correlated to dyskinesia score changes, and levodopa dosage was not. In PD, STN DBS produces not only symptom control, but also weight gain. DBS candidates should be given nutritional counseling before the intervention to prevent rapid and/or excessive weight gain.

  9. Effects of coffee/caffeine on brain health and disease: What should I tell my patients?

    Science.gov (United States)

    Nehlig, Astrid

    2016-04-01

    Over the last decade, Food Regulation Authorities have concluded that coffee/caffeine consumption is not harmful if consumed at levels of 200 mg in one sitting (around 2½ cups of coffee) or 400 mg daily (around 5 cups of coffee). In addition, caffeine has many positive actions on the brain. It can increase alertness and well-being, help concentration, improve mood and limit depression. Caffeine may disturb sleep, but only in sensitive individuals. It may raise anxiety in a small subset of particularly sensitive people. Caffeine does not seem to lead to dependence, although a minority of people experience withdrawal symptoms. Caffeine can potentiate the effect of regular analgesic drugs in headache and migraine. Lifelong coffee/caffeine consumption has been associated with prevention of cognitive decline, and reduced risk of developing stroke, Parkinson's disease and Alzheimer's disease. Its consumption does not seem to influence seizure occurrence. Thus, daily coffee and caffeine intake can be part of a healthy balanced diet; its consumption does not need to be stopped in elderly people.

  10. Converging genetic and functional brain imaging evidence links neuronal excitability to working memory, psychiatric disease, and brain activity.

    Science.gov (United States)

    Heck, Angela; Fastenrath, Matthias; Ackermann, Sandra; Auschra, Bianca; Bickel, Horst; Coynel, David; Gschwind, Leo; Jessen, Frank; Kaduszkiewicz, Hanna; Maier, Wolfgang; Milnik, Annette; Pentzek, Michael; Riedel-Heller, Steffi G; Ripke, Stephan; Spalek, Klara; Sullivan, Patrick; Vogler, Christian; Wagner, Michael; Weyerer, Siegfried; Wolfsgruber, Steffen; de Quervain, Dominique J-F; Papassotiropoulos, Andreas

    2014-03-05

    Working memory, the capacity of actively maintaining task-relevant information during a cognitive task, is a heritable trait. Working memory deficits are characteristic for many psychiatric disorders. We performed genome-wide gene set enrichment analyses in multiple independent data sets of young and aged cognitively healthy subjects (n = 2,824) and in a large schizophrenia case-control sample (n = 32,143). The voltage-gated cation channel activity gene set, consisting of genes related to neuronal excitability, was robustly linked to performance in working memory-related tasks across ages and to schizophrenia. Functional brain imaging in 707 healthy participants linked this gene set also to working memory-related activity in the parietal cortex and the cerebellum. Gene set analyses may help to dissect the molecular underpinnings of cognitive dimensions, brain activity, and psychopathology.

  11. Therapeutics with SPION-labeled stem cells for the main diseases related to brain aging: a systematic review

    Directory of Open Access Journals (Sweden)

    Alvarim LT

    2014-08-01

    Full Text Available Larissa T Alvarim,1,3,* Leopoldo P Nucci,2,* Javier B Mamani,1 Luciana C Marti,1 Marina F Aguiar,1,2 Helio R Silva,1,3 Gisele S Silva,1 Mariana P Nucci-da-Silva,4 Elaine A DelBel,5,6 Lionel F Gamarra1–31Hospital Israelita Albert Einstein, São Paulo, Brazil; 2Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil; 3Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil; 4Departamento de Radiologia, Hospital das Clínicas, Universidade de São Paulo, Brazil; 5Universidade de São Paulo-Faculdade de Odontologia de Ribeirão Preto, São Paulo, Brazil; 6NAPNA- Núcleo de Apoio a Pesquisa em Neurociências Aplicadas, São Paulo, Brazil*These authors contributed equally to this workAbstract: The increase in clinical trials assessing the efficacy of cell therapy for structural and functional regeneration of the nervous system in diseases related to the aging brain is well known. However, the results are inconclusive as to the best cell type to be used or the best methodology for the homing of these stem cells. This systematic review analyzed published data on SPION (superparamagnetic iron oxide nanoparticle-labeled stem cells as a therapy for brain diseases, such as ischemic stroke, Parkinson’s disease, amyotrophic lateral sclerosis, and dementia. This review highlights the therapeutic role of stem cells in reversing the aging process and the pathophysiology of brain aging, as well as emphasizing nanotechnology as an important tool to monitor stem cell migration in affected regions of the brain.Keywords: iron oxide, dementia, stem cell, stroke, Parkinson’s disease, sclerosis disease, brain aging

  12. Assessment of the degree of asymmetry of pathological features in neurodegenerative diseases. What is the significance for brain banks?

    Science.gov (United States)

    King, Andrew; Bodi, Istvan; Nolan, Matthew; Troakes, Claire; Al-Sarraj, Safa

    2015-10-01

    Brain banks allow researchers access to tissue from well-characterised neurodegenerative disease cases. Fixed tissue employed for diagnosis is often not appropriate for research and frozen tissue is therefore made available. Many brain banks use a protocol where half the brain is fixed and half frozen. Recently a study has shown that there can be asymmetry in protein deposition between the hemispheres especially with tau and TDP-43. We aimed to test this hypothesis by prospectively taking bilateral cortical blocks from 30 brains on arrival, and immunostaining to assess the degree of asymmetry. In 6 out 14 cases of AD (Alzheimer's Disease) (Modified Braak Stage V-VI), there was some asymmetrical staining for tau. In 2 cases, there was moderate discrepancy for tau staining between left and right calcarine cortices. However, careful analysis in both these cases revealed discrepancies in tau staining in adjacent regions even on the same side. The α-synuclein staining showed asymmetry in one case only, the Aβ showed only mild asymmetry in 3 cases of AD. The TDP-43 pathology appeared symmetrical in the 2 cases of frontotemporal lobar degeneration with motor neurone disease, but there was asymmetry noted when seen in conjunction with AD. In conclusion, there is the potential for asymmetrical pathology in neurodegenerative diseases and caution should be maintained when freezing half and fixing half of the brain in neurodegenerative diseases. Nevertheless, marked variability in staining can also be identified in adjacent cortical areas so there is no guarantee that an alternative strategy would be superior.

  13. Simulating the Evolution of Functional Brain Networks in Alzheimer’s Disease: Exploring Disease Dynamics from the Perspective of Global Activity

    Science.gov (United States)

    Li, Wei; Wang, Miao; Zhu, Wenzhen; Qin, Yuanyuan; Huang, Yue; Chen, Xi

    2016-01-01

    Functional brain connectivity is altered during the pathological processes of Alzheimer’s disease (AD), but the specific evolutional rules are insufficiently understood. Resting-state functional magnetic resonance imaging indicates that the functional brain networks of individuals with AD tend to be disrupted in hub-like nodes, shifting from a small world architecture to a random profile. Here, we proposed a novel evolution model based on computational experiments to simulate the transition of functional brain networks from normal to AD. Specifically, we simulated the rearrangement of edges in a pathological process by a high probability of disconnecting edges between hub-like nodes, and by generating edges between random pair of nodes. Subsequently, four topological properties and a nodal distribution were used to evaluate our model. Compared with random evolution as a null model, our model captured well the topological alteration of functional brain networks during the pathological process. Moreover, we implemented two kinds of network attack to imitate the damage incurred by the brain in AD. Topological changes were better explained by ‘hub attacks’ than by ‘random attacks’, indicating the fragility of hubs in individuals with AD. This model clarifies the disruption of functional brain networks in AD, providing a new perspective on topological alterations. PMID:27677360

  14. Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain.

    Science.gov (United States)

    Shelbourne, Peggy F; Keller-McGandy, Christine; Bi, Wenya Linda; Yoon, Song-Ro; Dubeau, Louis; Veitch, Nicola J; Vonsattel, Jean Paul; Wexler, Nancy S; Arnheim, Norman; Augood, Sarah J

    2007-05-15

    Huntington disease is caused by the expansion of a CAG repeat encoding an extended glutamine tract in a protein called huntingtin. Here, we provide evidence supporting the hypothesis that somatic increases of mutation length play a role in the progressive nature and cell-selective aspects of HD pathogenesis. Results from micro-dissected tissue and individual laser-dissected cells obtained from human HD cases and knock-in HD mice indicate that the CAG repeat is unstable in all cell types tested although neurons tend to have longer mutation length gains than glia. Mutation length gains occur early in the disease process and continue to accumulate as the disease progresses. In keeping with observed patterns of cell loss, neuronal mutation length gains tend to be more prominent in the striatum than in the cortex of low-grade human HD cases, less so in more advanced cases. Interestingly, neuronal sub-populations of HD mice appear to have different propensities for mutation length gains; in particular, smaller mutation length gains occur in nitric oxide synthase-positive striatal interneurons (a relatively spared cell type in HD) compared with the pan-striatal neuronal population. More generally, the data demonstrate that neuronal changes in HD repeat length can be at least as great, if not greater, than those observed in the germline. The fact that significant CAG repeat length gains occur in non-replicating cells also argues that processes such as inappropriate mismatch repair rather than DNA replication are involved in generating mutation instability in HD brain tissue.

  15. Evidence that a synthetic amyloid-ß oligomer-binding peptide (ABP) targets amyloid-ß deposits in transgenic mouse brain and human Alzheimer's disease brain.

    Science.gov (United States)

    Chakravarthy, Balu; Ito, Shingo; Atkinson, Trevor; Gaudet, Chantal; Ménard, Michel; Brown, Leslie; Whitfield, James

    2014-03-14

    The synthetic ~5 kDa ABP (amyloid-ß binding peptide) consists of a region of the 228 kDa human pericentrioloar material-1 (PCM-1) protein that selectively and avidly binds in vitro Aβ1-42 oligomers, believed to be key co-drivers of Alzheimer's disease (AD), but not monomers (Chakravarthy et al., (2013) [3]). ABP also prevents Aß1-42 from triggering the apoptotic death of cultured human SHSY5Y neuroblasts, likely by sequestering Aß oligomers, suggesting that it might be a potential AD therapeutic. Here we support this possibility by showing that ABP also recognizes and binds Aβ1-42 aggregates in sections of cortices and hippocampi from brains of AD transgenic mice and human AD patients. More importantly, ABP targets Aβ1-42 aggregates when microinjected into the hippocampi of the brains of live AD transgenic mice.

  16. Structural Brain Alterations in Motor Subtypes of Parkinson's Disease: Evidence from Probabilistic Tractography and Shape Analysis.

    Directory of Open Access Journals (Sweden)

    Griet Vervoort

    Full Text Available The postural instability and gait disorder (PIGD and tremor dominant (TD subtypes of Parkinson's disease (PD show different patterns of alterations in functional connectivity (FC between specific brain regions. This study aimed to investigate the relation between symptomatic heterogeneity in PD and structural alterations underlying these FC changes.68 PD patients classified as PIGD (n = 41 or TD (n = 19 and 19 age-matched controls underwent Magnetic Resonance Imaging (MRI. Diffusion-weighted images were used to assess fractional anisotropy (FA and mean diffusivity (MD at the whole-brain level using tract-based spatial statistics (TBSS. In addition, structural connectivity was assessed between regions that previously showed altered FC using probabilistic tractography. Anatomical images were used to determine shape and volume of the putamen, caudate and pallidum.TBSS revealed widespread FA reductions in PIGD compared to controls involving the superior longitudinal fasciculi and corpus callosum. No such differences were found in TD. Both PD subgroups had increased MD compared to controls in tracts connecting the left caudate with the bilateral ventral putamen. TD patients additionally showed increased MD compared to PIGD and controls in tracts connecting the right inferior parietal lobule with the right premotor and primary motor cortex, which previously showed altered FC. We also found grey matter atrophy in the rostrodorsal head of the caudate in PIGD compared to controls.Microstructural changes in white matter tracts, particularly in those connecting striatal sub-areas, partly underlie FC alterations in PD subtypes. Caudate shape alterations further implicate the striatum in PIGD pathophysiology.

  17. Rey's Auditory Verbal Learning Test scores can be predicted from whole brain MRI in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Elaheh Moradi

    2017-01-01

    Full Text Available Rey's Auditory Verbal Learning Test (RAVLT is a powerful neuropsychological tool for testing episodic memory, which is widely used for the cognitive assessment in dementia and pre-dementia conditions. Several studies have shown that an impairment in RAVLT scores reflect well the underlying pathology caused by Alzheimer's disease (AD, thus making RAVLT an effective early marker to detect AD in persons with memory complaints. We investigated the association between RAVLT scores (RAVLT Immediate and RAVLT Percent Forgetting and the structural brain atrophy caused by AD. The aim was to comprehensively study to what extent the RAVLT scores are predictable based on structural magnetic resonance imaging (MRI data using machine learning approaches as well as to find the most important brain regions for the estimation of RAVLT scores. For this, we built a predictive model to estimate RAVLT scores from gray matter density via elastic net penalized linear regression model. The proposed approach provided highly significant cross-validated correlation between the estimated and observed RAVLT Immediate (R = 0.50 and RAVLT Percent Forgetting (R = 0.43 in a dataset consisting of 806 AD, mild cognitive impairment (MCI or healthy subjects. In addition, the selected machine learning method provided more accurate estimates of RAVLT scores than the relevance vector regression used earlier for the estimation of RAVLT based on MRI data. The top predictors were medial temporal lobe structures and amygdala for the estimation of RAVLT Immediate and angular gyrus, hippocampus and amygdala for the estimation of RAVLT Percent Forgetting. Further, the conversion of MCI subjects to AD in 3-years could be predicted based on either observed or estimated RAVLT scores with an accuracy comparable to MRI-based biomarkers.

  18. Altered Neuroinflammation and Behavior after Traumatic Brain Injury in a Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Kokiko-Cochran, Olga; Ransohoff, Lena; Veenstra, Mike; Lee, Sungho; Saber, Maha; Sikora, Matt; Teknipp, Ryan; Xu, Guixiang; Bemiller, Shane; Wilson, Gina; Crish, Samuel; Bhaskar, Kiran; Lee, Yu-Shang; Ransohoff, Richard M; Lamb, Bruce T

    2016-04-01

    Traumatic brain injury (TBI) has acute and chronic sequelae, including an increased risk for the development of Alzheimer's disease (AD). TBI-associated neuroinflammation is characterized by activation of brain-resident microglia and infiltration of monocytes; however, recent studies have implicated beta-amyloid as a major manipulator of the inflammatory response. To examine neuroinflammation after TBI and development of AD-like features, these studies examined the effects of TBI in the presence and absence of beta-amyloid. The R1.40 mouse model of cerebral amyloidosis was used, with a focus on time points well before robust AD pathologies. Unexpectedly, in R1.40 mice, the acute neuroinflammatory response to TBI was strikingly muted, with reduced numbers of CNS myeloid cells acquiring a macrophage phenotype and decreased expression of inflammatory cytokines. At chronic time points, macrophage activation substantially declined in non-Tg TBI mice; however, it was relatively unchanged in R1.40 TBI mice. The persistent inflammatory response coincided with significant tissue loss between 3 and 120 days post-injury in R1.40 TBI mice, which was not observed in non-Tg TBI mice. Surprisingly, inflammatory cytokine expression was enhanced in R1.40 mice compared with non-Tg mice, regardless of injury group. Although R1.40 TBI mice demonstrated task-specific deficits in cognition, overall functional recovery was similar to non-Tg TBI mice. These findings suggest that accumulating beta-amyloid leads to an altered post-injury macrophage response at acute and chronic time points. Together, these studies emphasize the role of post-injury neuroinflammation in regulating long-term sequelae after TBI and also support recent studies implicating beta-amyloid as an immunomodulator.

  19. Frequency-specific Alterations of Large-scale Functional Brain Networks in Patients with Alzheimer's Disease

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yuan Qin; Ya-Peng Li; Shun Zhang; Ying Xiong; Lin-Ying Guo; Shi-Qi Yang; Yi-Hao Yao

    2015-01-01

    Background:Previous studies have indicated that the cognitive deficits in patients with Alzheimer's disease (AD) may be due to topological deteriorations of the brain network.However,whether the selection of a specific frequency band could impact the topological properties is still not clear.Our hypothesis is that the topological properties of AD patients are also frequency-specific.Methods:Resting state functional magnetic resonance imaging data from l0 right-handed moderate AD patients (mean age:64.3 years; mean mini mental state examination [MMSE]:18.0) and 10 age and gender-matched healthy controls (mean age:63.6 years; mean MMSE:28.2) were enrolled in this study.The global efficiency,the clustering coefficient (CC),the characteristic path length (CpL),and "small-world" property were calculated in a wide range of thresholds and averaged within each group,at three different frequency bands (0.01-0.06 Hz,0.06-0.11 Hz,and 0.11-0.25 Hz).Results:At lower-frequency bands (0.01-0.06 Hz,0.06-0.11 Hz),the global efficiency,the CC and the "small-world" properties of AD patients decreased compared to controls.While at higher-frequency bands (0.11-0.25 Hz),the CpL was much longer,and the "small-world" property was disrupted in AD,particularly at a higher threshold.The topological properties changed with different frequency bands,suggesting the existence of disrupted global and local functional organization associated with AD.Conclusions:This study demonstrates that the topological alterations of large-scale functional brain networks inAD patients are frequency dependent,thus providing fundamental support for optimal frequency selection in future related research.

  20. Cholinesterase inhibition modulates visual and attentional brain responses in Alzheimer's disease and health.

    Science.gov (United States)

    Bentley, Paul; Driver, Jon; Dolan, Ray J

    2008-02-01

    Visuo-attentional deficits occur early in Alzheimer's disease (AD) and are considered more responsive to pro-cholinergic therapy than characteristic memory disturbances. We hypothesised that neural responses in AD during visuo-attentional processing would be impaired relative to controls, yet partially susceptible to improvement with the cholinesterase inhibitor physostigmine. We studied 16 mild AD patients and 17 age-matched healthy controls, using fMRI-scanning to enable within-subject placebo-controlled comparisons of effects of physostigmine on stimulus- and attention- related brain activations, plus between-group comparisons for these. Subjects viewed face or building stimuli while performing a shallow judgement (colour of image) or a deep judgement (young/old age of depicted face or building). Behaviourally, AD subjects performed slower than controls in both tasks, while physostigmine benefited the patients for the more demanding age-judgement task. Stimulus-selective (face minus building, and vice versa) BOLD signals in precuneus and posterior parahippocampal cortex were attenuated in patients relative to controls, but increased following physostigmine. By contrast, face-selective responses in fusiform cortex were not impaired in AD and showed decreases following physostigmine for both groups. Task-dependent responses in right parietal and prefrontal cortices were diminished in AD but improved following physostigmine. A similar pattern of group and treatment effects was observed in two extrastriate cortical regions that showed physostigmine-induced enhancement of stimulus-selectivity for the deep versus shallow task. Finally, for the healthy group, physostigmine decreased stimulus and task-dependent effects, partly due to an exaggeration of selectivity during the shallow relative to deep task. The differences in brain activations between groups and treatments were not attributable merely to performance (reaction time) differences. Our results demonstrate

  1. Altered Resting-State Brain Activity and Connectivity in Depressed Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Xiao Hu

    Full Text Available Depressive symptoms are common in Parkinson's disease (PD, but the neurophysiological mechanisms of depression in PD are poorly understood. The current study attempted to examine disrupted spontaneous local brain activities and functional connectivities that underlie the depression in PD. We recruited a total of 20 depressed PD patients (DPD, 40 non-depressed PD patients (NDPD and 43 matched healthy controls (HC. All the subjects underwent neuropsychological tests and resting-state fMRI scanning. The between-group differences in the amplitude of low frequency fluctuations (ALFF of BOLD signals were examined using post-hoc tests after the analysis of covariance. Compared with the NDPD and HC, the DPD group showed significantly increased ALFF in the left median cingulated cortex (MCC. The functional connectivity (FC between left MCC and all the other voxels in the brain were then calculated. Compared with the HC and NDPD group, the DPD patients showed stronger FC between the left MCC and some of the major nodes of the default mode network (DMN, including the post cingulated cortex/precuneus, medial prefrontal cortex, inferior frontal gyrus, and cerebellum. Correlation analysis revealed that both the ALFF values in the left MCC and the FC between the left MCC and the nodes of DMN were significantly correlated with the Hamilton Depression Rating Scale score. Moreover, higher local activities in the left MCC were associated with increased functional connections between the MCC and the nodes of DMN in PD. These abnormal activities and connectivities of the limbic-cortical circuit may indicate impaired high-order cortical control or uncontrol of negative mood in DPD, which suggested a possible neural mechanism of the depression in PD.

  2. Brain structural and functional signatures of impulsive-compulsive behaviours in Parkinson's disease.

    Science.gov (United States)

    Imperiale, F; Agosta, F; Canu, E; Markovic, V; Inuggi, A; Jecmenica-Lukic, M; Tomic, A; Copetti, M; Basaia, S; Kostic, V S; Filippi, M

    2017-03-07

    This study assessed brain structural and functional alterations in patients with Parkinson's disease and impulsive-compulsive behaviours (PD-ICB) compared with controls and PD no-ICB cases. Eighty-five PD patients (35 PD-ICB) and 50 controls were recruited. All subjects underwent three-dimensional T1-weighted, diffusion tensor (DT), and resting state functional magnetic resonance imaging (RS fMRI). We assessed cortical thickness with surface-based morphometry, subcortical volumes using FIRST, DT MRI metrics using region of interest and tractography approaches, and RS fMRI using a model free approach. Compared with controls, both PD groups showed a pattern of brain structural alterations in the basal ganglia (more evident in PD no-ICB patients), sensorimotor and associative systems. Compared with PD no-ICB, PD-ICB cases showed left precentral and superior frontal cortical thinning, and motor and extramotor white matter tract damage. Compared with controls, all patients had an increased functional connectivity within the visual network. Additionally, PD no-ICB showed increased functional connectivity of bilateral precentral and postcentral gyri within the sensorimotor network compared with controls and PD-ICB. Severity and duration of PD-ICB modulated the functional connectivity between sensorimotor, visual and cognitive networks. Relative to PD no-ICB, PD-ICB patients were characterised by a more severe involvement of frontal, meso-limbic and motor circuits. These data suggest ICB in PD as the result of a disconnection between sensorimotor, associative and cognitive networks with increasing motor impairment, psychiatric symptoms, and ICB duration. These findings may have important implications in understanding the neural substrates underlying ICB in PD.Molecular Psychiatry advance online publication, 7 March 2017; doi:10.1038/mp.2017.18.

  3. T Lymphocytes and Inflammatory Mediators in the Interplay between Brain and Blood in Alzheimer's Disease: Potential Pools of New Biomarkers

    Science.gov (United States)

    Mietelska-Porowska, Anna

    2017-01-01

    Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the main cause of dementia. The disease is among the leading medical concerns of the modern world, because only symptomatic therapies are available, and no reliable, easily accessible biomarkers exist for AD detection and monitoring. Therefore extensive research is conducted to elucidate the mechanisms of AD pathogenesis, which seems to be heterogeneous and multifactorial. Recently much attention has been given to the neuroinflammation and activation of glial cells in the AD brain. Reports also highlighted the proinflammatory role of T lymphocytes infiltrating the AD brain. However, in AD molecular and cellular alterations involving T cells and immune mediators occur not only in the brain, but also in the blood and the cerebrospinal fluid (CSF). Here we review alterations concerning T lymphocytes and related immune mediators in the AD brain, CSF, and blood and the mechanisms by which peripheral T cells cross the blood brain barrier and the blood-CSF barrier. This knowledge is relevant for better AD therapies and for identification of novel biomarkers for improved AD diagnostics in the blood and the CSF. The data will be reviewed with the special emphasis on possibilities for development of AD biomarkers.

  4. Anatomic brain disease in hemodialysis patients: a cross-sectional study

    Science.gov (United States)

    Although dialysis patients are at high risk of stroke and have a high burden of cognitive impairment, there are few reports of anatomic brain findings in the hemodialysis population. Using magnetic resonance imaging of the brain, we compared the prevalence of brain abnormalities in hemodialysis pati...

  5. Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington's disease.

    Science.gov (United States)

    Patassini, Stefano; Begley, Paul; Reid, Suzanne J; Xu, Jingshu; Church, Stephanie J; Curtis, Maurice; Dragunow, Mike; Waldvogel, Henry J; Unwin, Richard D; Snell, Russell G; Faull, Richard L M; Cooper, Garth J S

    Huntington's disease (HD) is a neurodegenerative disorder wherein the aetiological defect is a mutation in the Huntington's gene (HTT), which alters the structure of the huntingtin protein through the lengthening of a polyglutamine tract and initiates a cascade that ultimately leads to dementia and premature death. However, neurodegeneration typically manifests in HD only in middle age, and processes linking the causative mutation to brain disease are poorly understood. Here, our objective was to elucidate further the processes that cause neurodegeneration in HD, by measuring levels of metabolites in brain regions known to undergo varying degrees of damage. We applied gas-chromatography/mass spectrometry-based metabolomics in a case-control study of eleven brain regions in short post-mortem-delay human tissue from nine well-characterized HD patients and nine controls. Unexpectedly, a single major abnormality was evident in all eleven brain regions studied across the forebrain, midbrain and hindbrain, namely marked elevation of urea, a metabolite formed in the urea cycle by arginase-mediated cleavage of arginine. Urea cycle activity localizes primarily in the liver, where it functions to incorporate protein-derived amine-nitrogen into urea for recycling or urinary excretion. It also occurs in other cell-types, but systemic over-production of urea is not known in HD. These findings are consistent with impaired local urea regulation in brain, by up-regulation of synthesis and/or defective clearance. We hypothesize that defective brain urea metabolism could play a substantive role in the pathogenesis of neurodegeneration, perhaps via defects in osmoregulation or nitrogen metabolism. Brain urea metabolism is therefore a target for generating novel monitoring/imaging strategies and/or therapeutic interventions aimed at ameliorating the impact of HD in patients.

  6. Newcastle disease virus (NDV) induces protein oxidation and nitration in brain and liver of chicken: Ameliorative effect of vitamin E.

    Science.gov (United States)

    Venkata Subbaiah, Kadiam C; Valluru, Lokanatha; Rajendra, Wudayagiri; Ramamurthy, Chiteti; Thirunavukkarusu, Chinnasamy; Subramanyam, Rajagopal

    2015-07-01

    The present study was aimed at investigating the therapeutic efficacy of vitamin E on oxidative injury in brain and liver of Newcastle disease virus (NDV) challenged chickens. We have analyzed the xanthine oxidase (XOD) activity; uric acid (UA) levels and superoxide radical generation by using electron spin resonance spectroscopy. Further, protein oxidation, nitration and apoptosis were evaluated in the brain and liver of the control, NDV-infected and NDV+Vit. E treated groups. A significant elevation was observed in XOD activity and UA levels in brain (p<0.001) and liver (p<0.05) of NDV infected birds when compared to controls. Further, significant increase in the production of superoxides, enhanced intracellular protein carbonyls and nitrates were observed in the brain and liver of NDV-infected birds over healthy subjects. Apoptosis studies also suggested that a larger number of TUNEL positive cells were observed in brain and a moderately in liver of NDV-infected chickens. However, all these perturbations were significantly ameliorated in NDV+Vit. E treated chickens as compared to NDV-infected birds. Taken together, our results suggested that NDV-induced neuronal and hepatic damage at least in part mediates oxidative stress and on the other hand, supplementation of vitamin E mitigates NDV-induced oxidative damage thereby protects brain and liver of chickens. These findings could provide new insights into the understanding of NDV pathogenesis and therapeutic effects of dietary antioxidants.

  7. Disrupted global metastability and static and dynamic brain connectivity across individuals in the Alzheimer’s disease continuum

    Science.gov (United States)

    Córdova-Palomera, Aldo; Kaufmann, Tobias; Persson, Karin; Alnæs, Dag; Doan, Nhat Trung; Moberget, Torgeir; Lund, Martina Jonette; Barca, Maria Lage; Engvig, Andreas; Brækhus, Anne; Engedal, Knut; Andreassen, Ole A.; Selbæk, Geir; Westlye, Lars T.

    2017-01-01

    As findings on the neuropathological and behavioral components of Alzheimer’s disease (AD) continue to accrue, converging evidence suggests that macroscale brain functional disruptions may mediate their association. Recent developments on theoretical neuroscience indicate that instantaneous patterns of brain connectivity and metastability may be a key mechanism in neural communication underlying cognitive performance. However, the potential significance of these patterns across the AD spectrum remains virtually unexplored. We assessed the clinical sensitivity of static and dynamic functional brain disruptions across the AD spectrum using resting-state fMRI in a sample consisting of AD patients (n = 80) and subjects with either mild (n = 44) or subjective (n = 26) cognitive impairment (MCI, SCI). Spatial maps constituting the nodes in the functional brain network and their associated time-series were estimated using spatial group independent component analysis and dual regression, and whole-brain oscillatory activity was analyzed both globally (metastability) and locally (static and dynamic connectivity). Instantaneous phase metrics showed functional coupling alterations in AD compared to MCI and SCI, both static (putamen, dorsal and default-mode) and dynamic (temporal, frontal-superior and default-mode), along with decreased global metastability. The results suggest that brains of AD patients display altered oscillatory patterns, in agreement with theoretical premises on cognitive dynamics.

  8. Brain-lung-thyroid disease: clinical features of a kindred with a novel thyroid transcription factor 1 mutation.

    Science.gov (United States)

    Ferrara, Joseph M; Adam, Octavian R; Kirwin, Susan M; Houghton, David J; Shepherd, Casey; Vinette, Kathy M B; Litvan, Irene

    2012-01-01

    Brain-lung-thyroid disease is a rare familial disorder caused by mutations in thyroid transcription factor 1, a gene that regulates neuronal migration. We report the clinical features of ten patients from a single family with a novel gene mutation, including observations regarding treatment. Neurologic features of the kindred included developmental delay, learning difficulties, psychosis, chorea, and dystonia. Three patients had a history of seizure, which has not been previously reported in genetically confirmed cases. Low-dose dopamine-receptor blocking drugs were poorly tolerated in 2 patients who received this therapy, levodopa improved chorea in 3 of 4 children, and diazepam was markedly effective in a single adult patient. Chorea related to brain-lung-thyroid disease appears to respond paradoxically to antidopaminergic drugs. The unusual therapeutic response seen in our patients and others may help elucidate how disease-related migratory deficits affect neural pathways associated with motor control.

  9. β-methylamino-L-alanine (BMAA) is not found in the brains of patients with confirmed Alzheimer’s disease

    Science.gov (United States)

    Meneely, Julie P.; Chevallier, Olivier P.; Graham, Stewart; Greer, Brett; Green, Brian D.; Elliott, Christopher T.

    2016-11-01

    Controversy surrounds the proposed hypothesis that exposure to β-methylamino-L-alanine (BMAA) could play a role in various neurodegenerative conditions including Alzheimer’s disease (AD). Here we present the results of the most comprehensive scientific study on BMAA detection ever undertaken on brain samples from patients pathologically confirmed to have suffered from AD, and those from healthy volunteers. Following the full validation of a highly accurate and sensitive mass spectrometric method, no trace of BMAA was detected in the diseased brain or in the control specimens. This contradicts the findings of other reports and calls into question the significance of this compound in neurodegenerative disease. We have attempted to explain the potential causes of misidentification of BMAA in these studies.

  10. Altered expression of CRMPs in the brain of bovine spongiform encephalopathy-infected mice during disease progression.

    Science.gov (United States)

    Auvergnon, Nathalie; Reibel, Sophie; Touret, Monique; Honnorat, Jérôme; Baron, Thierry; Giraudon, Pascale; Bencsik, Anna

    2009-03-19

    While recent studies suggest that synaptic alterations are first events in the mechanisms of prion-mediated neurodegeneration, little is known on the identity of the neuronal plasticity-related genes potentially concerned. Here the expression of 4 Collapsin Response Mediator Proteins (CRMPs), a family of signal transduction proteins involved in brain development and altered in Alzheimer's disease, was studied in the brain of C57Bl/6 mice infected with the BSE strain of prion agent, using RT-PCR and Western-blot methods. At the terminal stage of the disease, gene expression of each CRMP had decreased, while at the mid-stage of the disease only CRMP4 (mRNA and protein) expression had increased, concomitant to the start of PrP(Sc) accumulation in the brainstem. Altogether our findings picked out originally CRMPs, and especially CRMP4, as potential contributors to prion pathogenesis.

  11. the Diagnostic Value of Brain Magnetic Resonance imaging in Detecting CNS Diseases Among Advanced AiDS Patients

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Objective To investigate the diagnostic value of brain magnetic resonance imaging in detecting central nervous system diseases among AIDS patients of different levels of T cells. Methods Total of 164 AIDS patients who did not receive antiviral treatment were divided into 2 groups according to their baseline CD4+T cell counts. Group A had CD4+T cell below or equal to 50 cells/μl (n=81) and group B had CD4+T cells over 50 cells/μl (n=83). All patients underwent brain MRI scan. Imaging analysis and the prevalence of the central nervous system disorders were compared between two groups. Results Among them 48 cases were found of abnormal brain MRI, group A was higher than group B (35.8%vs. 22.9%) although without statistical significance (P = 0.065). Altogether 48 cases were diagnosed as AIDS related central nervous system disorders based on clinical symptoms, signs and laboratory findings. The prevalence of CNS disorders was higher in group A than in group B (41.9%vs. 16.8%) with statistical significance (P<0.01). Conclusions The patients with CD4+T cell count less than or equal to 50 cells/μl had high prevalence of CNS diseases. Brain MRI plays an important role in the diagnosis and differentiation of CNS diseases in advanced AIDS patients. This study suggests patients with low CD4+T cell count (≤ 50/μl) should routinely undergo MRI examination.

  12. Brain-derived neurotrophic factor gene variants and Alzheimer disease: an association study in an Alzheimer disease Italian population.

    Science.gov (United States)

    Boiocchi, Chiara; Maggioli, Elisa; Zorzetto, Michele; Sinforiani, Elena; Cereda, Cristina; Ricevuti, Giovanni; Cuccia, Mariaclara

    2013-02-01

    Brain-derived neurotrophic factor (BDNF) promotes neuronal survival during development and protects neurons from insults of various kinds. Changes in production of BDNF have been reported in differing neurodegenerative pathologies and, in particular, in Alzheimer disease (AD). We studied 200 AD patients and 408 healthy controls for BDNF Val66Met(G196A) polymorphism, 200AD and 384 healthy controls for BDNF 270 C/T polymorphism, and 200AD and 393 healthy controls for BDNF 11757 G/C polymorphism by restriction fragment length polymorphism (RFLP) and real-time PCR. Our results indicated that the 11757 G/C BDNF polymorphism was significantly associated with AD. A statistically significant increase of GG genotype frequency in AD versus healthy subjects (p=0.0331) was observed, whereas the CG genotype demonstrates a statistically significant decrease of frequency in AD patients versus controls (p=0.0194). We focused our attention on haplotype reconstruction: A statistically significant decrease of the TAC haplotype frequency in AD patients versus healthy controls group (p=0.005) and a statistically significant increase of the CAC haplotype frequency in patients versus control (p=0.019) was demonstrated. We then studied the haplotype frequencies dividing patients according to gender. A statistically significant increase of the CAC haplotype in the male AD group compared with male healthy controls (p=0.041) was found, whereas a statistically significant decrease of TAC haplotype frequency in AD females versus healthy females (p=0.005) and a statistically significant increase of CAC haplotype frequency in female patients versus healthy females (p=0.019) was noticed. We propose that these haplotypes could be a further effective marker for AD.

  13. Effect of deep brain stimulation on substantia nigra neurons in a rat model of Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    WU Sheng-tian; MA Yu; ZHANG Kai; ZHANG Jian-guo

    2012-01-01

    Background Parkinson's disease(PD)is a common neurodegenerative disease,which occurs mainly in the elderly.Recent studies have demonstrated that apoptosis plays an important role in the occurrence and development of PD.Subthalamic nucleus deep brain stimulation(STN-DBS)has been recognized as an effective treatment for PD.Recent clinical observations have shown that STN-DBS was able to delay early PD progression,and experiments in animal models have also demonstrated a protective effect of STN-DBS on neurons.However,the correlation between the neuron-protective effect of STN-DBS and the progression of substantia nigra pars compacta(SNc)neuronal apoptosis is still unknown.The aim of this study was to investigate the protective effect and potential mechanism of STN-DBS on SNc neurons in PD rats.Methods After the establishment of a PD rat model by unilateral/2-point injection of 6-hydroxydopamine in the medial forebrain bundle of the brain,DBS by implanting electrodes in the STN was administered.Behavioral changes were observed,and morphological changes of SNc neurons were analyzed by Nissl staining and DNA in situ end-labeling.Through extracellular recording of single neuron discharges and microelectrophoresis,the causes of and changes in SNc excitability during STN-DBS were analyzed,and the protective effect and potential mechanism of action of STN-DBS on SNc neurons in PD rats was investigated.Results SNc neuron apoptosis was significantly decreased(P<0.05)in the stimulation group,compared with the sham stimulation PD group.Spontaneous discharges of SNc neurons were observed in normal rats and PD model rats,and the mean frequency of spontaneous discharges of SNc neurons in normal rats((40.65±11.08)Hz)was higher than that of residual SNc neurons in PD rats((36.71±9.23)Hz).Electrical stimulation of the STN in rats was associated with elevated excitation in unilateral SNc neurons.However,administering the gamma-aminobutyric acid receptor blocker

  14. Brain protective effect of dexmedetomidine on perioperative patients in temporal muscle sticking for moyamoya disease

    Directory of Open Access Journals (Sweden)

    Jun CHEN

    2014-06-01

    Full Text Available Objective To study the application of dexmedetomidine in patients undergoing temporal muscle sticking for moyamoya disease (MMD, and to discuss the possible mechanism of brain protection. Methods Sixty patients undergoing temporal muscle sticking operation were randomly divided into 2 groups: dexmedetomidine group (Group D, N = 30 and control group (Group S, N = 30, respectively receiving dexmedetomidine intravenous infusion (0.60 μ g/kg and the same dose of normal saline before anesthesia induction. In Group D, dexemdetomidine was administered continuously (intravenous pumping with the dose of 0.40 μg/(kg·h perioperatively, while the same dose of normal saline was administered in Group S. Heart rate (HR and mean arterial pressure (MAP were recorded at T0 (before administration, T1 (before tracheal intubation, T2 (1 min after intubation, T3 (at the moment of skin incision, T4 (before extubation and T5 (1 min after extubation respectively. Total amount of propofol, remifentanil and patients' recovery conditions after anesthesia were also recorded. Glutamine and malondialdehyde (MDA were measured and compared before and after operation. Results In group D, HR and MAP decreased significantly at T2-4 compared with T0 (P < 0.05, for all. Total amount of propofol, remifentanil in Group D was lower than that in Group S (P < 0.05, for all and the patients' recovery conditions in Group D after anesthesia was better than Group S (P = 0.000, for all, without occurence of shivering, cough and dysphoria (P < 0.05, for all. Glutamine and MDA increased after anesthesia compared with that before anesthesia in both 2 groups (P < 0.05, for all, however, it was higher in Group S than that in Group D (P < 0.05, for all. Conclusions Dexmedetomidine can provide stable hemodynamic condition during the anesthesia with patients undergoing temporal muscle sticking for moyamoya disease, and has a positive effect on improving both the outcome of the operation and

  15. Falls related to accidental deactivation of deep brain stimulators in patients with Parkinson's disease living in long term care facilities.

    Science.gov (United States)

    Tousi, Babak; Wilson, Kathy

    2013-01-01

    This case series highlights three patients with Parkinson's disease residing at nursing home facilities whose deep brain stimulators were accidentally deactivated for varying lengths of time, which was associated with an increase in falls. In all three cases, neither the patients nor the caregivers were aware of the random deactivations/reactivations. We propose a specific care plan for these patients that includes further education of caregivers regarding deep brain stimulators and regular checks of the review device, especially when there is concern about a patient's mobility or balance that is out of character.

  16. Intraoperative functional MRI as a new approach to monitor deep brain stimulation in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Hesselmann, Volker; Sorger, Bettina; Girnus, Ralf; Lasek, Kathrin; Schulte, Oliver; Krug, Barbara; Lackner, Klaus [Department of Radiology, University of Cologne, Joseph-Stelzmann-Strasse 9, 50924, Cologne (Germany); Maarouf, Mohammad; Sturm, Volker [Department of Stereotaxy and Functional Neurosurgery, University of Cologne, Joseph-Stelzmann-Strasse 9, 50924, Cologne (Germany); Wedekind, Christoph [Department of Neurosurgery, University of Cologne, Joseph-Stelzmann-Strasse 9, 50924, Cologne (Germany); Bunke, Juergen [Philips Medical Systems, Hamburg (Germany)

    2004-04-01

    This article deals with technical aspects of intraoperative functional magnetic resonance imaging (fMRI) for monitoring the effect of deep brain stimulation (DBS) in a patient with Parkinson's disease. Under motor activation, therapeutic high-frequency stimulation of the subthalamic nucleus was accompanied by an activation decrease in the contralateral primary sensorimotor cortex and the ipsilateral cerebellum. Furthermore, an activation increase in the contralateral basal ganglia and insula region were detected. These findings demonstrate that fMRI constitutes a promising clinical application for investigating brain activity changes induced by DBS. (orig.)

  17. Roles of brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) signalling in Alzheimer's disease.

    Science.gov (United States)

    Zhang, Fang; Kang, Zhilong; Li, Wen; Xiao, Zhicheng; Zhou, Xinfu

    2012-07-01

    Alzheimer's disease (AD) is one of the most common causes of dementia in the elderly. It is characterized by extracellular deposition of the neurotoxic peptide, amyloid-beta (Aβ) peptide fibrils, and is accompanied by extensive loss of neurons in the brains of affected individuals. However, the pathogenesis of AD is not fully understood. The aim of this review is to discuss the possible role of brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) signalling in the development of AD, focusing on BDNF/TrkB signalling in the production of Aβ, tau hyperphosphorylation and cognition decline, and exploring new possibilities for AD intervention.

  18. Physical activity, body mass index, and brain atrophy in Alzheimer's disease.

    Science.gov (United States)

    Boyle, Christina P; Raji, Cyrus A; Erickson, Kirk I; Lopez, Oscar L; Becker, James T; Gach, H Michael; Longstreth, W T; Teverovskiy, Leonid; Kuller, Lewis H; Carmichael, Owen T; Thompson, Paul M

    2015-01-01

    The purpose of this study was to use a novel imaging biomarker to assess associations between physical activity (PA), body mass index (BMI), and brain structure in normal aging, mild cognitive impairment, and Alzheimer's dementia. We studied 963 participants (mean age: 74.1 ± 4.4 years) from the multisite Cardiovascular Health Study including healthy controls (n = 724), Alzheimer's dementia patients (n = 104), and people with mild cognitive impairment (n = 135). Volumetric brain images were processed using tensor-based morphometry to analyze regional brain volumes. We regressed the local brain tissue volume on reported PA and computed BMI, and performed conjunction analyses using both variables. Covariates included age, sex, and study site. PA was independently associated with greater whole brain and regional brain volumes and reduced ventricular dilation. People with higher BMI had lower whole brain and regional brain volumes. A PA-BMI conjunction analysis showed brain preservation with PA and volume loss with increased BMI in overlapping brain regions. In one of the largest voxel-based cross-sectional studies to date, PA and lower BMI may be beneficial to the brain across the spectrum of aging and neurodegeneration.

  19. 3D characterization of brain atrophy in Alzheimer's disease and mild cognitive impairment using tensor-based morphometry.

    Science.gov (United States)

    Hua, Xue; Leow, Alex D; Lee, Suh; Klunder, Andrea D; Toga, Arthur W; Lepore, Natasha; Chou, Yi-Yu; Brun, Caroline; Chiang, Ming-Chang; Barysheva, Marina; Jack, Clifford R; Bernstein, Matt A; Britson, Paula J; Ward, Chadwick P; Whitwell, Jennifer L; Borowski, Bret; Fleisher, Adam S; Fox, Nick C; Boyes, Richard G; Barnes, Josephine; Harvey, Danielle; Kornak, John; Schuff, Norbert; Boreta, Lauren; Alexander, Gene E; Weiner, Michael W; Thompson, Paul M

    2008-05-15

    Tensor-based morphometry (TBM) creates three-dimensional maps of disease-related differences in brain structure, based on nonlinearly registering brain MRI scans to a common image template. Using two different TBM designs (averaging individual differences versus aligning group average templates), we compared the anatomical distribution of brain atrophy in 40 patients with Alzheimer's disease (AD), 40 healthy elderly controls, and 40 individuals with amnestic mild cognitive impairment (aMCI), a condition conferring increased risk for AD. We created an unbiased geometrical average image template for each of the three groups, which were matched for sex and age (mean age: 76.1 years+/-7.7 SD). We warped each individual brain image (N=120) to the control group average template to create Jacobian maps, which show the local expansion or compression factor at each point in the image, reflecting individual volumetric differences. Statistical maps of group differences revealed widespread medial temporal and limbic atrophy in AD, with a lesser, more restricted distribution in MCI. Atrophy and CSF space expansion both correlated strongly with Mini-Mental State Exam (MMSE) scores and Clinical Dementia Rating (CDR). Using cumulative p-value plots, we investigated how detection sensitivity was influenced by the sample size, the choice of search region (whole brain, temporal lobe, hippocampus), the initial linear registration method (9- versus 12-parameter), and the type of TBM design. In the future, TBM may help to (1) identify factors that resist or accelerate the disease process, and (2) measure disease burden in treatment trials.

  20. Hippocampal Sclerosis of Aging, a Common Alzheimer's Disease 'Mimic': Risk Genotypes are Associated with Brain Atrophy Outside the Temporal Lobe.

    Science.gov (United States)

    Nho, Kwangsik; Saykin, Andrew J; Nelson, Peter T

    2016-01-01

    Hippocampal sclerosis of aging (HS-Aging) is a common brain disease in older adults with a clinical course that is similar to Alzheimer's disease. Four single-nucleotide polymorphisms (SNPs) have previously shown association with HS-Aging. The present study investigated structural brain changes associated with these SNPs using surface-based analysis. Participants from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n = 1,239), with both MRI scans and genotype data, were used to assess the association between brain atrophy and previously identified HS-Aging risk SNPs in the following genes: GRN, TMEM106B, ABCC9, and KCNMB2 (minor allele frequency for each is >30%). A fifth SNP (near the ABCC9 gene) was evaluated in post-hoc analysis. The GRN risk SNP (rs5848_T) was associated with a pattern of atrophy in the dorsomedial frontal lobes bilaterally, remarkable since GRN is a risk factor for frontotemporal dementia. The ABCC9 risk SNP (rs704180_A) was associated with multifocal atrophy whereas a SNP (rs7488080_A) nearby (∼50 kb upstream) ABCC9 was associated with atrophy in the right entorhinal cortex. Neither TMEM106B (rs1990622_T), KCNMB2 (rs9637454_A), nor any of the non-risk alleles were associated with brain atrophy. When all four previously identified HS-Aging risk SNPs were summed into a polygenic risk score, there was a pattern of associated multifocal brain atrophy in a predominately frontal pattern. We conclude that common SNPs previously linked to HS-Aging pathology were associated with a distinct pattern of anterior cortical atrophy. Genetic variation associated with HS-Aging pathology may represent a non-Alzheimer's disease contribution to atrophy outside of the hippocampus in older adults.

  1. Importance of Extracranial Disease Status and Tumor Subtype for Patients Undergoing Radiosurgery for Breast Cancer Brain Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, Michael A.; Kelly, Paul J. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Boston, MA (United States); Harvard Medical School, Boston, MA (United States); Chen, Yu-Hui [Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (United States); Pinnell, Nancy E. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Boston, MA (United States); Claus, Elizabeth B. [Harvard Medical School, Boston, MA (United States); Department of Neurosurgery, Brigham and Women' s Hospital, Boston, MA (United States); Yale University School of Medicine, New Haven, CT (United States); Lee, Eudocia Q. [Harvard Medical School, Boston, MA (United States); Center for Neuro-Oncology, Dana-Farber/Brigham and Women' s Center, Boston, MA (United States); Weiss, Stephanie E. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Boston, MA (United States); Harvard Medical School, Boston, MA (United States); Arvold, Nils D. [Harvard Radiation Oncology Program, Boston, MA (United States); Lin, Nancy U. [Harvard Medical School, Boston, MA (United States); Department of Medical Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Boston, MA (United States); Alexander, Brian M., E-mail: bmalexander@lroc.harvard.edu [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Boston, MA (United States); Harvard Medical School, Boston, MA (United States)

    2012-07-15

    Purpose: In this retrospective study, we report on outcomes and prognostic factors for patients treated with stereotactic radiosurgery (SRS) for breast cancer brain metastases. Methods and Materials: We identified 132 consecutive patients with breast cancer who were treated with SRS for brain metastases from January 2000 through June 2010. We retrospectively reviewed records of the 51 patients with adequate follow-up data who received SRS as part of the initial management of their brain metastases. Overall survival (OS) and time to central nervous system (CNS) progression from the date of SRS were calculated using the Kaplan-Meier method. Prognostic factors were evaluated using the Cox proportional hazards model. Results: Triple negative subtype was associated with CNS progression on univariate analysis (hazard ratio [HR] = 5.0, p = 0.008). On multivariate analysis, triple negative subtype (HR = 8.6, p = 0.001), Luminal B subtype (HR = 4.3, p = 0.03), and omission of whole-brain radiation therapy (HR = 3.7, p = 0.02) were associated with CNS progression. With respect to OS, Karnofsky Performance Status (KPS) {<=} 80% (HR = 2.0, p = 0.04) and progressive extracranial disease (HR = 3.1, p = 0.002) were significant on univariate analysis; KPS {<=} 80% (HR = 4.1, p = 0.0004), progressive extracranial disease (HR = 6.4, p < 0.0001), and triple negative subtype (HR = 2.9, p = 0.04) were significant on multivariate analysis. Although median survival times were consistent with those predicted by the breast cancer-specific Graded Prognostic Assessment (Breast-GPA) score, the addition of extracranial disease status further separated patient outcomes. Conclusions: Tumor subtype is associated with risk of CNS progression after SRS for breast cancer brain metastases. In addition to tumor subtype and KPS, which are incorporated into the Breast-GPA, progressive extracranial disease may be an important prognostic factor for OS.

  2. Daicong solution effects on brain ultrastructure in a rat model of Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Qian Yue; Yuling Ding; Hongyan Wang; Shumei Zhao; Shengming Zhang; Hongjuan Wu; Yiguang Wang; Fengjie Li; Yuanyuan Yang; Juanjuan Liu

    2008-01-01

    BACKGROUND: Infusion of kainic acid into the basal nuclei induces neuronal excitotoxicity, degeneration, and necrosis, resulting in disturbed learning and memory functions.OBJECTIVE: To explore the effects of different doses of traditional Chinese medicine Daicong solution on brain ultrastructure in a rat model of Alzheimer's disease.DESIGN, TIME AND SETTING: The randomized, controlled, cellular morphology experiment was performed at the Shandong Provincial Key Laboratory of Molecular Immunology of Weifang Medical University, China from October 2006 to March 2007.MATERIALS: Fifty healthy, Sprague Dawley rats, aged 22-months, were used to establish rat models of Alzheimer's disease. The Morris water maze was prepared at the Pharmacometrics Key Laboratory of Weifang Medical University in Shandong Province of China. Traditional Chinese medicine Daicong solution (crude drug 1 g/mL), composed of radix ginseng, rehmannia dried rhizome, anemarrhenae and radix astragali, was produced by the Department of Pharmacy of Hospital Affiliated to Weifang Medical University. Kainic acid was provided by Professor Xiuyan Li from Weifang Medical University.METHODS: A total of 40 model rats were equally and randomly divided into four groups: dementia model, low-dose Daicong solution (5 g/kg/d), moderate-dose Daicong solution (10 g/kg/d), and high-dose Daicong solution (20 g/kg/d). An additional 10 healthy rats served as the normal control group. Rats in the dementia model and normal control groups received saline (10 mL/kg/d).MAIN OUTCOME MEASURES: Neural cell ultrastructure was observed utilizing electron microscopy after 1 month of respective treatments.RESULTS: Compared with the normal control group, electron density and the number of ribosomes were significantly reduced in neuronal cytoplasm, and many lipofuscin grains and vacuole-like changes were observed in mitochondria in the dementia model group. In addition, nuclear chromatin presented with different sizes of plaque

  3. Quantitative analysis of gait and balance response to deep brain stimulation in Parkinson's disease.

    Science.gov (United States)

    Mera, Thomas O; Filipkowski, Danielle E; Riley, David E; Whitney, Christina M; Walter, Benjamin L; Gunzler, Steven A; Giuffrida, Joseph P

    2013-05-01

    Gait and balance disturbances in Parkinson's disease (PD) can be debilitating and may lead to increased fall risk. Deep brain stimulation (DBS) is a treatment option once therapeutic benefits from medication are limited due to motor fluctuations and dyskinesia. Optimizing DBS parameters for gait and balance can be significantly more challenging than for other PD motor symptoms. Furthermore, inter-rater reliability of the standard clinical PD assessment scale, Unified Parkinson's Disease Rating Scale (UPDRS), may introduce bias and washout important features of gait and balance that may respond differently to PD therapies. Study objectives were to evaluate clinician UPDRS gait and balance scoring inter-rater reliability, UPDRS sensitivity to different aspects of gait and balance, and how kinematic features extracted from motion sensor data respond to stimulation. Forty-two subjects diagnosed with PD were recruited with varying degrees of gait and balance impairment. All subjects had been prescribed dopaminergic medication, and 20 subjects had previously undergone DBS surgery. Subjects performed seven items of the gait and balance subset of the UPDRS while wearing motion sensors on the sternum and each heel and thigh. Inter-rater reliability varied by UPDRS item. Correlation coefficients between at least one kinematic feature and corresponding UPDRS scores were greater than 0.75 for six of the seven items. Kinematic features improved (pUPDRS items. Despite achieving high correlations with the UPDRS, evaluating individual kinematic features may help address inter-rater reliability issues and rater bias associated with focusing on different aspects of a motor task.

  4. Luteolin Reduces Alzheimer’s Disease Pathologies Induced by Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Darrell Sawmiller

    2014-01-01

    Full Text Available Traumatic brain injury (TBI occurs in response to an acute insult to the head and is recognized as a major risk factor for Alzheimer’s disease (AD. Indeed, recent studies have suggested a pathological overlap between TBI and AD, with both conditions exhibiting amyloid-beta (Aβ deposits, tauopathy, and neuroinflammation. Additional studies involving animal models of AD indicate that some AD-related genotypic determinants may be critical factors enhancing temporal and phenotypic symptoms of TBI. Thus in the present study, we examined sub-acute effects of moderate TBI delivered by a gas-driven shock tube device in Aβ depositing Tg2576 mice. Three days later, significant increases in b-amyloid deposition, glycogen synthase-3 (GSK-3 activation, phospho-tau, and pro-inflammatory cytokines were observed. Importantly, peripheral treatment with the naturally occurring flavonoid, luteolin, significantly abolished these accelerated pathologies. This study lays the groundwork for a safe and natural compound that could prevent or treat TBI with minimal or no deleterious side effects in combat personnel and others at risk or who have experienced TBI.

  5. Luteolin Reduces Alzheimer’s Disease Pathologies Induced by Traumatic Brain Injury

    Science.gov (United States)

    Sawmiller, Darrell; Li, Song; Shahaduzzaman, Md; Smith, Adam J.; Obregon, Demian; Giunta, Brian; Borlongan, Cesar V.; Sanberg, Paul R.; Tan, Jun

    2014-01-01

    Traumatic brain injury (TBI) occurs in response to an acute insult to the head and is recognized as a major risk factor for Alzheimer’s disease (AD). Indeed, recent studies have suggested a pathological overlap between TBI and AD, with both conditions exhibiting amyloid-beta (Aβ) deposits, tauopathy, and neuroinflammation. Additional studies involving animal models of AD indicate that some AD-related genotypic determinants may be critical factors enhancing temporal and phenotypic symptoms of TBI. Thus in the present study, we examined sub-acute effects of moderate TBI delivered by a gas-driven shock tube device in Aβ depositing Tg2576 mice. Three days later, significant increases in b-amyloid deposition, glycogen synthase-3 (GSK-3) activation, phospho-tau, and pro-inflammatory cytokines were observed. Importantly, peripheral treatment with the naturally occurring flavonoid, luteolin, significantly abolished these accelerated pathologies. This study lays the groundwork for a safe and natural compound that could prevent or treat TBI with minimal or no deleterious side effects in combat personnel and others at risk or who have experienced TBI. PMID:24413756

  6. Nonmotor Symptoms and Subthalamic Deep Brain Stimulation in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Han-Joon Kim

    2015-05-01

    Full Text Available Subthalamic deep brain stimulation (STN DBS is an established treatment for the motor symptoms in patients with advanced Parkinson’s disease (PD. In addition to improvements in motor symptoms, many studies have reported changes in various nonmotor symptoms (NMSs after STN DBS in patients with PD. Psychiatric symptoms, including depression, apathy, anxiety, and impulsivity, can worsen or improve depending on the electrical stimulation parameters, the locations of the stimulating contacts within the STN, and changes in medications after surgery. Global cognitive function is not affected by STN DBS, and there is no increase in the incidence of dementia after STN DBS compared to that after medical treatment, although clinically insignificant declines in verbal fluency have been consistently reported. Pain, especially PD-related pain, improves with STN DBS. Evidence regarding the effects of STN DBS on autonomic symptoms and sleep-related problems is limited and remains conflicting. Many symptoms of nonmotor fluctuations, which are occasionally more troublesome than motor fluctuations, improve with STN DBS. Although it is clear that NMSs are not target symptoms for STN DBS, NMSs have a strong influence on the quality of life of patients with PD, and clinicians should thus be aware of these NMSs when deciding whether to perform surgery and should pay attention to changes in these symptoms after STN DBS to ensure the optimal care for patients.

  7. Prion diseases and adult neurogenesis: how do prions counteract the brain's endogenous repair machinery?

    Science.gov (United States)

    Relaño-Ginés, Aroa; Lehmann, Sylvain; Crozet, Carole

    2014-01-01

    Scientific advances in stem cell biology and adult neurogenesis have raised the hope that neurodegenerative disorders could benefit from stem cell-based therapy. Adult neurogenesis might be part of the physiological regenerative process, however it might become impaired by the disease's mechanism and therefore contribute to neurodegeneration. In prion disorders this endogenous repair system has rarely been studied. Whether adult neurogenesis plays a role or not in brain repair or in the propagation of prion pathology remains unclear. We have recently investigated the status of adult neural stem cells isolated from prion-infected mice. We were able to show that neural stem cells accumulate and replicate prions thus resulting in an alteration of their neuronal destiny. We also reproduced these results in adult neural stem cells, which were infected in vitro. The fact that endogenous adult neurogenesis could be altered by the accumulation of misfolded prion protein represents another great challenge. Inhibiting prion propagation in these cells would thus help the endogenous neurogenesis to compensate for the injured neuronal system. Moreover, understanding the endogenous modulation of the neurogenesis system would help develop effective neural stem cell-based therapies.

  8. Staging of Neurofibrillary Pathology in Alzheimer's Disease: A Study of the BrainNet Europe Consortium

    Science.gov (United States)

    Alafuzoff, Irina; Arzberger, Thomas; Al-Sarraj, Safa; Bodi, Istvan; Bogdanovic, Nenad; Braak, Heiko; Bugiani, Orso; Del-Tredici, Kelly; Ferrer, Isidro; Gelpi, Ellen; Giaccone, Giorgio; Graeber, Manuel B; Ince, Paul; Kamphorst, Wouter; King, Andrew; Korkolopoulou, Penelope; Kovács, Gábor G; Larionov, Sergey; Meyronet, David; Monoranu, Camelia; Parchi, Piero; Patsouris, Efstratios; Roggendorf, Wolfgang; Seilhean, Danielle; Tagliavini, Fabrizio; Stadelmann, Christine; Streichenberger, Nathalie; Thal, Dietmar R; Wharton, Stephen B; Kretzschmar, Hans

    2008-01-01

    It has been recognized that molecular classifications will form the basis for neuropathological diagnostic work in the future. Consequently, in order to reach a diagnosis of Alzheimer's disease (AD), the presence of hyperphosphorylated tau (HP-tau) and β-amyloid protein in brain tissue must be unequivocal. In addition, the stepwise progression of pathology needs to be assessed. This paper deals exclusively with the regional assessment of AD-related HP-tau pathology. The objective was to provide straightforward instructions to aid in the assessment of AD-related immunohistochemically (IHC) detected HP-tau pathology and to test the concordance of assessments made by 25 independent evaluators. The assessment of progression in 7-µm-thick sections was based on assessment of IHC labeled HP-tau immunoreactive neuropil threads (NTs). Our results indicate that good agreement can be reached when the lesions are substantial, i.e., the lesions have reached isocortical structures (stage V–VI absolute agreement 91%), whereas when only mild subtle lesions were present the agreement was poorer (I–II absolute agreement 50%). Thus, in a research setting when the extent of lesions is mild, it is strongly recommended that the assessment of lesions should be carried out by at least two independent observers. PMID:18371174

  9. PACSIN 1 interacts with huntingtin and is absent from synaptic varicosities in presymptomatic Huntington's disease brains.

    Science.gov (United States)

    Modregger, Jan; DiProspero, Nicholas A; Charles, Vinod; Tagle, Danilo A; Plomann, Markus

    2002-10-01

    Huntington's disease (HD) is caused by a pathological expansion of a CAG repeat in the first exon of the gene coding for huntingtin, resulting in an abnormally long polyglutamine stretch. Despite its widespread expression, mutant huntingtin leads to selective neuronal loss in the striatum and cortex. Here we report that the neurospecific phosphoprotein PACSIN 1, which has been implicated as playing a central role in synaptic vesicle recycling, interacts with huntingtin via its C-terminal SH3 domain. Moreover, two other isoforms, PACSIN 2 and 3, which show a wider tissue distribution including the brain, do not interact with huntingtin despite a highly conserved SH3 domain. Furthermore, this interaction is repeat-length-dependent and is enhanced with mutant huntingtin, possibly causing the sequestration of PACSIN 1. Normally, PACSIN 1 is located along neurites and within synaptic boutons, but in HD patient neurons, there is a progressive loss of PACSIN 1 immunostaining in synaptic varicosities, beginning in presymptomatic and early-stage HD. Further, PACSIN 1 immunostaining of HD patient tissue reveals a more cytoplasmic distribution of the protein, with particular concentration in the perinuclear region coincident with mutant huntingtin. Thus, the specific interaction of huntingtin with the neuronal PACSIN isoform, PACSIN 1, and its altered intracellular distribution in pathological tissue, together with the observed differences in the binding behavior, suggest a role for PACSIN 1 during early stages of the selective neuropathology of HD.

  10. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer's disease.

    Science.gov (United States)

    Berchtold, Nicole C; Coleman, Paul D; Cribbs, David H; Rogers, Joseph; Gillen, Daniel L; Cotman, Carl W

    2013-06-01

    Synapses are essential for transmitting, processing, and storing information, all of which decline in aging and Alzheimer's disease (AD). Because synapse loss only partially accounts for the cognitive declines seen in aging and AD, we hypothesized that existing synapses might undergo molecular changes that reduce their functional capacity. Microarrays were used to evaluate expression profiles of 340 synaptic genes in aging (20-99 years) and AD across 4 brain regions from 81 cases. The analysis revealed an unexpectedly large number of significant expression changes in synapse-related genes in aging, with many undergoing progressive downregulation across aging and AD. Functional classification of the genes showing altered expression revealed that multiple aspects of synaptic function are affected, notably synaptic vesicle trafficking and release, neurotransmitter receptors and receptor trafficking, postsynaptic density scaffolding, cell adhesion regulating synaptic stability, and neuromodulatory systems. The widespread declines in synaptic gene expression in normal aging suggests that function of existing synapses might be impaired, and that a common set of synaptic genes are vulnerable to change in aging and AD.

  11. [Status of the ventricular system and dynamics of the cerebrospinal fluid changes in chronic brain diseases].

    Science.gov (United States)

    Burtsev, E M; Starodubtsev, A V

    1988-01-01

    Using noninvasive (echoventriculometry (Echo-VM), REG and invasive (planimetric PEG, graphic recording of the CSF pressure) methods of examination, the authors determined the size of cerebral ventricles and the status of the cerebral hemo- and CSF dynamics in 606 patients with various chronic diseases of the brain (consequences of craniocerebral injury, epilepsy, discirculatory encephalopathy, etc.). According to PEG and Echo-VM findings, two groups of patients were distinguished. In moderate dilatation of cerebral ventricles the most significant finding was an increase in the pulse pressure of the CSF, whereas its mean pressure was normal or slightly elevated. In patients with pronounced hydrocephaly the pulse and mean pressure of the CSF tended to decrease. The progress of hydrocephaly was parallelled by increasing disorders of the cerebral hemodynamics expressed in hindered venous outflow from the cranial cavity and elevated peripheral vascular resistance. Four CSF-related syndromes have been identified (normotension, total CSF hypertension, intraventricular tension, total CSF hypotension) differing in their diagnostic and prognostic significance and in the pathogenesis of disorders of the hemo- and CSF dynamics.

  12. The role of free radicals in the aging brain and Parkinson's Disease: convergence and parallelism.

    Science.gov (United States)

    Kumar, Hemant; Lim, Hyung-Woo; More, Sandeep Vasant; Kim, Byung-Wook; Koppula, Sushruta; Kim, In Su; Choi, Dong-Kug

    2012-01-01

    Free radical production and their targeted action on biomolecules have roles in aging and age-related disorders such as Parkinson's disease (PD). There is an age-associated increase in oxidative damage to the brain, and aging is considered a risk factor for PD. Dopaminergic neurons show linear fallout of 5-10% per decade with aging; however, the rate and intensity of neuronal loss in patients with PD is more marked than that of aging. Here, we enumerate the common link between aging and PD at the cellular level with special reference to oxidative damage caused by free radicals. Oxidative damage includes mitochondrial dysfunction, dopamine auto-oxidation, α-synuclein aggregation, glial cell activation, alterations in calcium signaling, and excess free iron. Moreover, neurons encounter more oxidative stress as a counteracting mechanism with advancing age does not function properly. Alterations in transcriptional activity of various pathways, including nuclear factor erythroid 2-related factor 2, glycogen synthase kinase 3β, mitogen activated protein kinase, nuclear factor kappa B, and reduced activity of superoxide dismutase, catalase and glutathione with aging might be correlated with the increased incidence of PD.

  13. Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer's disease mice.

    Science.gov (United States)

    Arendash, Gary W; Mori, Takashi; Cao, Chuanhai; Mamcarz, Malgorzata; Runfeldt, Melissa; Dickson, Alexander; Rezai-Zadeh, Kavon; Tane, Jun; Citron, Bruce A; Lin, Xiaoyang; Echeverria, Valentina; Potter, Huntington

    2009-01-01

    We have recently shown that Alzheimer's disease (AD) transgenic mice given a moderate level of caffeine intake (the human equivalent of 5 cups of coffee per day) are protected from development of otherwise certain cognitive impairment and have decreased hippocampal amyloid-beta (Abeta) levels due to suppression of both beta-secretase (BACE1) and presenilin 1 (PS1)/gamma-secretase expression. To determine if caffeine intake can have beneficial effects in "aged" APPsw mice already demonstrating cognitive impairment, we administered caffeine in the drinking water of 18-19 month old APPsw mice that were impaired in working memory. At 4-5 weeks into caffeine treatment, those impaired transgenic mice given caffeine (Tg/Caff) exhibited vastly superior working memory compared to the continuing impairment of control transgenic mice. In addition, Tg/Caff mice had substantially reduced Abeta deposition in hippocampus (decrease 40%) and entorhinal cortex (decrease 46%), as well as correlated decreases in brain soluble Abeta levels. Mechanistically, evidence is provided that caffeine suppression of BACE1 involves the cRaf-1/NFkappaB pathway. We also determined that caffeine concentrations within human physiological range effectively reduce active and total glycogen synthase kinase 3 levels in SweAPP N2a cells. Even with pre-existing and substantial Abeta burden, aged APPsw mice exhibited memory restoration and reversal of AD pathology, suggesting a treatment potential of caffeine in cases of established AD.

  14. Effect of transcranial brain stimulation for the treatment of Alzheimer disease: a review.

    Science.gov (United States)

    Nardone, Raffaele; Bergmann, Jürgen; Christova, Monica; Caleri, Francesca; Tezzon, Frediano; Ladurner, Gunther; Trinka, Eugen; Golaszewski, Stefan

    2012-01-01

    Available pharmacological treatments for Alzheimer disease (AD) have limited effectiveness, are expensive, and sometimes induce side effects. Therefore, alternative or complementary adjuvant therapeutic strategies have gained increasing attention. The development of novel noninvasive methods of brain stimulation has increased the interest in neuromodulatory techniques as potential therapeutic tool for cognitive rehabilitation in AD. In particular, repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are noninvasive approaches that induce prolonged functional changes in the cerebral cortex. Several studies have begun to therapeutically use rTMS or tDCS to improve cognitive performances in patients with AD. However, most of them induced short-duration beneficial effects and were not adequately powered to establish evidence for therapeutic efficacy. Therefore, TMS and tDCS approaches, seeking to enhance cognitive function, have to be considered still very preliminary. In future studies, multiple rTMS or tDCS sessions might also interact, and metaplasticity effects could affect the outcome.

  15. Lacosamide reduces HDAC levels in the brain and improves memory: Potential for treatment of Alzheimer's disease.

    Science.gov (United States)

    Bang, Shraddha R; Ambavade, Shirishkumar D; Jagdale, Priti G; Adkar, Prafulla P; Waghmare, Arun B; Ambavade, Prashant D

    2015-07-01

    Lacosamide, a histone deacetylase (HDAC) inhibitor, has been approved for the treatment of epilepsy. Some HDAC inhibitors have been proven effective for the treatment of memory disorders. The present investigation was designed to evaluate the effect of lacosamide on memory and brain HDAC levels. The effect on memory was evaluated in animals with scopolamine-induced amnesia using the elevated plus maze, object recognition test, and radial arm maze. The levels of acetylcholinesterase and HDAC in the cerebral cortex were evaluated. Lacosamide at doses of 10 and 30mg/kg significantly reduced the transfer latency in the elevated plus maze. Lacosamide at a dose of 30mg/kg significantly increased the time spent with a familiar object in the object recognition test at the 24h interval and decreased the time spent in the baited arm. Moreover, at this dose, the number of errors in the radial arm maze at 3 and 24h intervals was minimized and a reduction in the level of HDAC1, but not acetylcholinesterase, was observed in the cerebral cortex. These effects of lacosamide are equivalent to those of piracetam at a dose of 300mg/kg. These results suggest that lacosamide at a 30mg/kg dose improves disrupted memory, possibly by inhibiting HDAC, and could be used to treat amnesic symptoms of Alzheimer's disease.

  16. Personality Changes after Deep Brain Stimulation in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Uyen Pham

    2015-01-01

    Full Text Available Objectives. Deep brain stimulation of the subthalamic nucleus (STN-DBS is a recognized therapy that improves motor symptoms in advanced Parkinson’s disease (PD. However, little is known about its impact on personality. To address this topic, we have assessed personality traits before and after STN-DBS in PD patients. Methods. Forty patients with advanced PD were assessed with the Temperament and Character Inventory (TCI: the Urgency, Premeditation, Perseverance, Sensation Seeking impulsive behaviour scale (UPPS, and the Neuroticism and Lie subscales of the Eysenck Personality Questionnaire (EPQ-N, EPQ-L before surgery and after three months of STN-DBS. Collateral information obtained from the UPPS was also reported. Results. Despite improvement in motor function and reduction in dopaminergic dosage patients reported lower score on the TCI Persistence and Self-Transcendence scales, after three months of STN-DBS, compared to baseline (P=0.006; P=0.024. Relatives reported significantly increased scores on the UPPS Lack of Premeditation scale at follow-up (P=0.027. Conclusion. STN-DBS in PD patients is associated with personality changes in the direction of increased impulsivity.

  17. Brain-Derived Neurotrophic Factor in Alzheimer's Disease: Risk, Mechanisms, and Therapy.

    Science.gov (United States)

    Song, Jing-Hui; Yu, Jin-Tai; Tan, Lan

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) has a neurotrophic support on neuron of central nervous system (CNS) and is a key molecule in the maintenance of synaptic plasticity and memory storage in hippocampus. However, changes of BDNF level and expression have been reported in the CNS as well as blood of Alzheimer's disease (AD) patients in the last decade, which indicates a potential role of BDNF in the pathogenesis of AD. Therefore, this review aims to summarize the latest progress in the field of BDNF and its biological roles in AD pathogenesis. We will discuss the interaction between BDNF and amyloid beta (Aβ) peptide, the effect of BDNF on synaptic repair in AD, and the association between BDNF polymorphism and AD risk. The most important is, enlightening the detailed biological ability and complicated mechanisms of action of BDNF in the context of AD would provide a future BDNF-related remedy for AD, such as increment in the production or release of endogenous BDNF by some drugs or BDNF mimics.

  18. Swallowing and deep brain stimulation in Parkinson's disease: a systematic review.

    Science.gov (United States)

    Troche, Michelle S; Brandimore, Alexandra E; Foote, Kelly D; Okun, Michael S

    2013-09-01

    The purpose of this review is to assess the current state of the literature on the topic of deep brain stimulation (DBS) and its effects on swallowing function in Parkinson's disease (PD). Pubmed, Cochrane review, and web of science searches were completed on all articles addressing DBS that contained a swallowing outcome measure. Outcome measures included the penetration/aspiration scale, pharyngeal transit time, oropharyngeal residue, drooling, aspiration pneumonia, death, hyolaryngeal excursion, epiglottic inversion, UPDRS scores, and presence of coughing/throat clearing during meals. The search identified 13 studies specifically addressing the effects of DBS on swallowing. Critical assessment of the 13 identified peer-reviewed publications revealed nine studies employing an experimental design, (e.g. "on" vs. "off", pre- vs. post-DBS) and four case reports. None of the nine experimental studies were found to identify clinically significant improvement or decline in swallowing function with DBS. Despite these findings, several common threads were identified across experimental studies and will be examined in this review. Additionally, available data demonstrate that, although subthalamic nucleus (STN) stimulation has been considered to cause more impairment to swallowing function than globus pallidus internus (GPi) stimulation, there are no experimental studies directly comparing swallowing function in STN vs. GPi. Moreover, there has been no comparison of unilateral vs. bilateral DBS surgery and the coincident effects on swallowing function. This review includes a critical analysis of all experimental studies and discusses methodological issues that should be addressed in future studies.

  19. Effects of deep brain stimulation on vocal fold immobility in Parkinson's disease

    Science.gov (United States)

    Arocho-Quinones, Elsa V.; Hammer, Michael J.; Bock, Jonathan M.; Pahapill, Peter A.

    2017-01-01

    Background: Vocal fold (VF) immobility is a rare, potentially fatal complication of advanced Parkinson's disease (PD). Previous reports suggest that subthalamic nucleus deep brain stimulation (STN-DBS) may influence laryngeal function, yet the role of STN-DBS on VF immobility remains unexplored. Case Description: We report a case of a patient with advanced PD and bilateral VF immobility ultimately requiring a tracheostomy. To assess the effects of STN-DBS on vocal cord function and to correlate these effects with peripheral motor symptoms at different stimulation settings, the patient was evaluated before and after initiation of bilateral STN-DBS. Measures included direct observation of VF mobility via transnasal laryngoscopy, levodopa equivalent dose of anti-PD medication, and motor scores. High frequency (150 Hz) STN-DBS resulted in improved motor scores, reduced medication requirement, and modestly improved right VF abduction although insufficient for safe decannulation. Low frequency (60 Hz) stimulation resulted in lower motor scores, but without worsening VF abduction. Conclusions: STN-DBS may play an important role in the neuromodulation of PD-induced laryngeal dysfunction, including VF mobility. Characterization of these axial symptoms is important when programming and evaluating responsiveness to DBS. PMID:28303202

  20. Sodium selenate regulates the brain ionome in a transgenic mouse model of Alzheimer’s disease

    Science.gov (United States)

    Zheng, Lin; Zhu, Hua-Zhang; Wang, Bing-Tao; Zhao, Qiong-Hui; Du, Xiu-Bo; Zheng, Yi; Jiang, Liang; Ni, Jia-Zuan; Zhang, Yan; Liu, Qiong

    2016-01-01

    Many studies have shown that imbalance of mineral metabolism may play an important role in Alzheimer’s disease (AD) progression. It was recently reported that selenium could reverse memory deficits in AD mouse model. We carried out multi-time-point ionome analysis to investigate the interactions among 15 elements in the brain by using a triple-transgenic mouse model of AD with/without high-dose sodium selenate supplementation. Except selenium, the majority of significantly changed elements showed a reduced level after 6-month selenate supplementation, especially iron whose levels were completely reversed to normal state at almost all examined time points. We then built the elemental correlation network for each time point. Significant and specific elemental correlations and correlation changes were identified, implying a highly complex and dynamic crosstalk between selenium and other elements during long-term supplementation with selenate. Finally, we measured the activities of two important anti-oxidative selenoenzymes, glutathione peroxidase and thioredoxin reductase, and found that they were remarkably increased in the cerebrum of selenate-treated mice, suggesting that selenoenzyme-mediated protection against oxidative stress might also be involved in the therapeutic effect of selenate in AD. Overall, this study should contribute to our understanding of the mechanism related to the potential use of selenate in AD treatment. PMID:28008954

  1. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain.

    Science.gov (United States)

    Heckman, Karin L; DeCoteau, William; Estevez, Ana; Reed, Kenneth J; Costanzo, Wendi; Sanford, David; Leiter, James C; Clauss, Jennifer; Knapp, Kylie; Gomez, Carlos; Mullen, Patrick; Rathbun, Elle; Prime, Kelly; Marini, Jessica; Patchefsky, Jamie; Patchefsky, Arthur S; Hailstone, Richard K; Erlichman, Joseph S

    2013-12-23

    Cerium oxide nanoparticles are potent antioxidants, based on their ability to either donate or receive electrons as they alternate between the +3 and +4 valence states. The dual oxidation state of ceria has made it an ideal catalyst in industrial applications, and more recently, nanoceria's efficacy in neutralizing biologically generated free radicals has been explored in biological applications. Here, we report the in vivo characteristics of custom-synthesized cerium oxide nanoparticles (CeNPs) in an animal model of immunological and free-radical mediated oxidative injury leading to neurodegenerative disease. The CeNPs are 2.9 nm in diameter, monodispersed and have a -23.5 mV zeta potential when stabilized with citrate/EDTA. This stabilizer coating resists being 'washed' off in physiological salt solutions, and the CeNPs remain monodispersed for long durations in high ionic strength saline. The plasma half-life of the CeNPs is ∼4.0 h, far longer than previously described, stabilized ceria nanoparticles. When administered intravenously to mice, the CeNPs were well tolerated and taken up by the liver and spleen much less than previous nanoceria formulations. The CeNPs were also able to penetrate the brain, reduce reactive oxygen species levels, and alleviate clinical symptoms and motor deficits in mice with a murine model of multiple sclerosis. Thus, CeNPs may be useful in mitigating tissue damage arising from free radical accumulation in biological systems.

  2. Pedunculopontine Nucleus Region Deep Brain Stimulation in Parkinson Disease: Surgical Anatomy and Terminology

    Science.gov (United States)

    Hamani, Clement; Aziz, Tipu; Bloem, Bastiaan R.; Brown, Peter; Chabardes, Stephan; Coyne, Terry; Foote, Kelly; Garcia-Rill, Edgar; Hirsch, Etienne C.; Lozano, Andres M.; Mazzone, Paolo A.M.; Okun, Michael S.; Hutchison, William; Silburn, Peter; Zrinzo, Ludvic; Alam, Mesbah; Goetz, Laurent; Pereira, Erlick; Rughani, Anand; Thevathasan, Wesley; Moro, Elena; Krauss, Joachim K.

    2017-01-01

    Several lines of evidence over the last few years have been important in ascertaining that the pedunculopontine nucleus (PPN) region could be considered as a potential target for deep brain stimulation (DBS) to treat freezing and other problems as part of a spectrum of gait disorders in Parkinson disease and other akinetic movement disorders. Since the introduction of PPN DBS, a variety of clinical studies have been published. Most indicate improvements in freezing and falls in patients who are severely affected by these problems. The results across patients, however, have been variable, perhaps reflecting patient selection, heterogeneity in target selection and differences in surgical methodology and stimulation settings. Here we outline both the accumulated knowledge and the domains of uncertainty in surgical anatomy and terminology. Specific topics were assigned to groups of experts, and this work was accumulated and reviewed by the executive committee of the working group. Areas of disagreement were discussed and modified accordingly until a consensus could be reached. We demonstrate that both the anatomy and the functional role of the PPN region need further study. The borders of the PPN and of adjacent nuclei differ when different brainstem atlases and atlas slices are compared. It is difficult to delineate precisely the PPN pars dissipata from the nucleus cuneiformis, as these structures partially overlap. This lack of clarity contributes to the difficulty in targeting and determining the exact localization of the electrodes implanted in patients with akinetic gait disorders. Future clinical studies need to consider these issues. PMID:27723662

  3. Brain ERP components predict which individuals progress to Alzheimer's disease and which do not.

    Science.gov (United States)

    Chapman, Robert M; McCrary, John W; Gardner, Margaret N; Sandoval, Tiffany C; Guillily, Maria D; Reilly, Lindsey A; DeGrush, Elizabeth

    2011-10-01

    Predicting which individuals will progress to Alzheimer's disease (AD) is important in both clinical and research settings. We used brain Event-Related Potentials (ERPs) obtained in a perceptual/cognitive paradigm with various processing demands to predict which individual Mild Cognitive Impairment (MCI) subjects will develop AD versus which will not. ERP components, including P3, memory "storage" component, and other earlier and later components, were identified and measured by Principal Components Analysis. When measured for particular task conditions, a weighted set of eight ERP component_conditions performed well in discriminant analysis at predicting later AD progression with good accuracy, sensitivity, and specificity. The predictions for most individuals (79%) had high posterior probabilities and were accurate (88%). This method, supported by a cross-validation where the prediction accuracy was 70-78%, features the posterior probability for each individual as a method of determining the likelihood of progression to AD. Empirically obtained prediction accuracies rose to 94% when the computed posterior probabilities for individuals were 0.90 or higher (which was found for 40% of our MCI sample).

  4. Deep Brain Stimulation Can Preserve Working Status in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Gabriella Deli

    2015-01-01

    Full Text Available Objectives. Our investigation aimed at evaluating if bilateral subthalamic deep brain stimulation (DBS could preserve working capability in Parkinson’s disease (PD. Materials. We reviewed the data of 40 young (<60 year-old PD patients who underwent DBS implantation and had at least 2 years of follow-up. Patients were categorized based on their working capability at time of surgery: “active job” group (n=20 and “no job” group (n=20. Baseline characteristics were comparable. Quality of life (EQ-5D and presence of active job were evaluated preoperatively and 2 years postoperatively. Results. Although similar (approximately 50% improvement was achieved in the severity of motor and major nonmotor symptoms in both groups, the postoperative quality of life was significantly better in the “active job” group (0.687 versus 0.587, medians, p<0.05. Majority (80% of “active job” group members were able to preserve their job 2 years after the operation. However, only a minimal portion (5% of the “no job” group members was able to return to the world of active employees (p<0.01. Conclusions. Although our study has several limitations, our results suggest that in patients with active job the appropriately “early” usage of DBS might help preserve working capability and gain higher improvement in quality of life.

  5. Distinct patterns of brain activity in progressive supranuclear palsy and Parkinson's disease.

    Science.gov (United States)

    Burciu, Roxana G; Ofori, Edward; Shukla, Priyank; Planetta, Peggy J; Snyder, Amy F; Li, Hong; Hass, Chris J; Okun, Michael S; McFarland, Nikolaus R; Vaillancourt, David E

    2015-08-01

    The basal ganglia-thalamo-cortical and cerebello-thalamo-cortical circuits are important for motor control. Whether their functioning is affected in a similar or different way by progressive supranuclear palsy (PSP) and Parkinson's disease (PD) is not clear. A functional magnetic resonance imaging (fMRI) force production paradigm and voxel-based morphometry were used to assess differences in brain activity and macrostructural volumes between PSP, PD, and healthy age-matched controls. We found that PSP and PD share reduced functional activity of the basal ganglia and cortical motor areas, but this is more pronounced in PSP than in PD. In PSP the frontal regions are underactive, whereas the posterior parietal and occipital regions are overactive as compared with controls and PD. Furthermore, lobules I through IV, V, and VI of the cerebellum are hypoactive in PSP and PD, whereas Crus I and lobule IX are hyperactive in PSP only. Reductions in gray and white matter volume are specific to PSP. Finally, the functional status of the caudate as well as the volume of the superior frontal gyrus predict clinical gait and posture measures in PSP. PSP and PD share hypoactivity of the basal ganglia, motor cortex, and anterior cerebellum. These patients also display a unique pattern, such that anterior regions of the cortex are hypoactive and posterior regions of the cortex and cerebellum are hyperactive. Together, these findings suggest that specific structures within the basal ganglia, cortex, and cerebellum are affected differently in PSP relative to PD.

  6. Voice features of Parkinson's disease patients with subthalamic nucleus deep brain stimulation.

    Science.gov (United States)

    Tanaka, Yasuhiro; Tsuboi, Takashi; Watanabe, Hirohisa; Kajita, Yasukazu; Fujimoto, Yasushi; Ohdake, Reiko; Yoneyama, Noritaka; Masuda, Michihito; Hara, Kazuhiro; Senda, Joe; Ito, Mizuki; Atsuta, Naoki; Horiguchi, Satoshi; Yamamoto, Masahiko; Wakabayashi, Toshihiko; Sobue, Gen

    2015-05-01

    Voice and speech disorders are one of the most important issues after subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease patients; however, their characteristics remain unclear. We performed a comprehensive voice evaluation including the multi-dimensional voice program for acoustic analysis, the GRBAS scale for perceptual analysis, and the evaluation of the voice handicap index (VHI) for psychosocial analysis. In total, 68 patients who had undergone STN-DBS (37 assessed in the on- and off-stimulation conditions) and 40 who had been treated with medical therapy alone were evaluated. Further, we performed laryngoscopic examinations in 13 STN-DBS and 19 medical-therapy-alone patients. The STN-DBS group, especially females, showed widespread impairment of voice parameters and significantly poorer VHI scores than the medical-therapy-alone group. The degree of voiceless (DUV) and strained voice were the most impaired factors in the STN-DBS group; and DUV significantly improved after stopping stimulation. Furthermore strained voice, breathiness, and asthenia improved after stopping stimulation. Laryngoscopic examination showed that abnormal laryngeal muscle contraction and incomplete glottal closure were more prominent in the STN-DBS group than in the medical-therapy-alone group. We demonstrated that (1) more widespread voice impairment in females, (2) poorer voice-related QOL, (3) worse DUV and strained voice, and (4) abnormal laryngeal muscle contraction were the characteristic voice and laryngeal findings in the STN-DBS group compared with those in the medical-therapy-alone group.

  7. Data set of interactomes and metabolic pathways of proteins differentially expressed in brains with Alzheimer׳s disease

    Directory of Open Access Journals (Sweden)

    Benito Minjarez

    2016-06-01

    Full Text Available Alzheimer׳s disease is one of the main causes of dementia in the elderly and its frequency is on the rise worldwide. It is considered the result of complex interactions between genetic and environmental factors, being many of them unknown. Therefore, there is a dire necessity for the identification of novel molecular players for the understanding of this disease. In this data article we determined the protein expression profiles of whole protein extracts from cortex regions of brains from patients with Alzheimer׳s disease in comparison to a normal brain. We identified 721 iTRAQ-labeled polypeptides with more than 95% in confidence. We analyzed all proteins that changed in their expression level and located them in the KEGG metabolic pathways, as well as in the mitochondrial complexes of the electron transport chain and ATP synthase. In addition, we analyzed the over- and sub-expressed polypeptides through IPA software, specifically Core I and Biomarkers I modules. Data in this article is related to the research article “Identification of proteins that are differentially expressed in brains with Alzheimer’s disease using iTRAQ labeling and tandem mass spectrometry” (Minjarez et al., 2016 [1].

  8. The role of deep brain stimulation in Parkinson’s disease: an overview and update on new developments

    Directory of Open Access Journals (Sweden)

    Fang JY

    2017-03-01

    Full Text Available John Y Fang, Christopher Tolleson Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA Abstract: Parkinson’s disease (PD is a progressive neurodegenerative disorder characterized by the loss of neuronal dopamine production in the brain. Oral therapies primarily augment the dopaminergic pathway. As the disease progresses, more continuous delivery of therapy is commonly needed. Deep brain stimulation (DBS has become an effective therapy option for several different neurologic and psychiatric conditions, including PD. It currently has US Food and Drug Administration approval for PD and essential tremor, as well as a humanitarian device exception for dystonia and obsessive-compulsive disorder. For PD treatment, it is currently approved specifically for those patients suffering from complications of pharmacotherapy, including motor fluctuations or dyskinesias, and a disease process of at least 4 years of duration. Studies have demonstrated superiority of DBS and medical management compared to medical management alone in selected PD patients. Optimal patient selection criteria, choice of target, and programming methods for PD and the other indications for DBS are important topics that continue to be explored and remain works in progress. In addition, new hardware options, such as different types of leads, and different software options have recently become available, increasing the potential for greater efficacy and/or reduced side effects. This review gives an overview of therapeutic management in PD, specifically highlighting DBS and some of the recent changes with surgical therapy. Keywords: Parkinson’s disease, deep brain stimulation, functional neurosurgery 

  9. Label-free imaging and quantitative chemical analysis of Alzheimer's disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy

    Science.gov (United States)

    Lee, Jang Hyuk; Kim, Dae Hwan; Song, Woo Keun; Oh, Myoung-Kyu; Ko, Do-Kyeong

    2015-05-01

    We developed multimodal multiphoton microspectroscopy using a small-diameter probe with gradient-index lenses and applied it to unstained Alzheimer's disease (AD) brain samples. Our system maintained the image quality and spatial resolution of images obtained using an objective lens of similar numerical aperture. Multicolor images of AD brain samples were obtained simultaneously by integrating two-photon excited fluorescence and second-harmonic generation on a coherent anti-Stokes Raman scattering (CARS) microendoscope platform. Measurements of two hippocampal regions, the cornus ammonis-1 and dentate gyrus, revealed more lipids, amyloid fibers, and collagen in the AD samples than in the normal samples. Normal and AD brains were clearly distinguished by a large spectral difference and quantitative analysis of the CH mode using CARS microendoscope spectroscopy. We expect this system to be an important diagnosis tool in AD research.

  10. Biondi ring tangles in the choroid plexus of Alzheimer's disease and normal aging brains: a quantitative study.

    Science.gov (United States)

    Wen, G Y; Wisniewski, H M; Kascsak, R J

    1999-06-19

    The choroid plexus (CP) performs the vital function of producing up to 90% (450-1000 ml/day) of cerebrospinal fluid (CSF) to nourish and to protect the brain in the CSF suspension. The CP also acts as a selective barrier between blood and CSF to regulate ions and other e