WorldWideScience

Sample records for brain damage chronic

  1. Late damage to brain microvasculature after chronic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lyubimova, N. [Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Moscow (Russian Federation)

    1997-03-01

    The effects on mouse brain microvasculature were examined 12 months after exposure to chronic {gamma}- irradiation at 3 cGy/day for three months. Animals were injected i.p. with 100 mg/kg iproniazid, an inhibitor of mono-amine-oxidase. Six hours later and 15 min before animal sacrifice, 100 mg/kg L-DOPA was also injected. This procedure resulted in the accumulation of catecholamines (CA) in the endothelial cells, a process which otherwise would be prevented by mono-amine-oxidase activity. Animals were killed by decapitation under nembutal anesthesia at various times post irradiation. Dissected pieces of brain were immediately frozen in liquid nitrogen and lyophilized at -20 deg C under vacuum to avoid CA diffusion from the endothelial cell. The reaction between CA and paraformaldehyde gas at 70 % humidity and 80 deg C was used to generate fluorophores which act as endothelial cell markers. Histological specimens were embedded in paraffin was under vacuum and serial section cut. These were assessed under fluorescent microscopy. These studies indicate that in some ways repair of chronic radiation damage may be less complete than repair of damage caused by a single acute exposure. The dystrophic changes seen in the endothelium also suggest the possibility that chronic exposure may be more likely to lead to late functional impairment of brain microcirculation. (author)

  2. Differential oxidative stress and DNA damage in rat brain regions and blood following chronic arsenic exposure.

    Science.gov (United States)

    Mishra, D; Flora, S J S

    2008-05-01

    Chronic arsenic poisoning caused by contaminated drinking water is a wide spread and worldwide problem particularly in India and Bangladesh. One of the possible mechanisms suggested for arsenic toxicity is the generation of reactive oxygen species (ROS). The present study was planned 1) to evaluate if chronic exposure to arsenic leads to oxidative stress in blood and brain - parts of male Wistar rats and 2) to evaluate which brain region of the exposed animals was more sensitive to oxidative injury. Male Wistar rats were exposed to arsenic (50A ppm sodium arsenite in drinking water) for 10A months. The brain was dissected into five major parts, pons medulla, corpus striatum, cortex, hippocampus, and cerebellum. A number of biochemical variables indicative of oxidative stress were studied in blood and different brain regions. Single-strand DNA damage using comet assay was also assessed in lymphocytes. We observed a significant increase in blood and brain ROS levels accompanied by the depletion of GSH/GSSG ratio and glucose-6-phosphate dehydrogenase (G6PD) activity in different brain regions of arsenic-exposed rats. Chronic arsenic exposure also caused significant single-strand DNA damage in lymphocytes as depicted by comet with a tail in arsenic-exposed cells compared with the control cells. On the basis of results, we concluded that the cortex region of the brain was more sensitive to oxidative injury compared with the other regions studied. The present study, thus, leads us to suggest that arsenic induces differential oxidative stress in brain regions with cortex followed by hippocampus and causes single-strand DNA damage in lymphocytes.

  3. Chronic hypertension aggravates heat stress-induced brain damage: possible neuroprotection by cerebrolysin.

    Science.gov (United States)

    Muresanu, Dafin Fior; Zimmermann-Meinzingen, Sibilla; Sharma, Hari Shanker

    2010-01-01

    Whole body hyperthermia (WBH) aggravates brain edema formation and cell damage in chronic hypertensive rats compared with normotensive animals. In this investigation, we examined the influence of cerebrolysin on WBH-induced edema formation and brain pathology in hypertensive and normotensive rats. Rats subjected to 4 h WBH at 38 degrees C in a biological oxygen demand (BOD) incubator showed breakdown of the blood-brain barrier (BBB), reduced cerebral blood flow (CBF), edema formation and cell injuries in several parts of the brain. These effects were further aggravated in chronic hypertensive rats (two-kidney one clip model (2K1C), for 4 weeks) subjected to WBH. Pretreatment with cerebrolysin (5 mL/kg, 24 h and 30 min before heat stress) markedly attenuated the BBB dysfunction and brain pathology in normal animals. However, in hypertensive animals, a high dose of cerebrolysin (10 mL/kg, 24 h and 30 min before heat stress) was needed to attenuate WBH-induced BBB dysfunction and brain pathology. These observations indicate that heat stress could affect differently in normal and hypertensive conditions. Furthermore, our results suggest that patients suffering from various chronic cardiovascular diseases may respond differently to hyperthermia and to neuroprotective drugs, e.g., cerebrolysin not reported earlier.

  4. The effects of chronic smoking on the pathology of alcohol-related brain damage.

    Science.gov (United States)

    McCorkindale, A N; Sheedy, D; Kril, J J; Sutherland, G T

    2016-06-01

    Both pathological and neuroimaging studies demonstrate that chronic alcohol abuse causes brain atrophy with widespread white matter loss limited gray matter loss. Recent neuroimaging studies suggest that tobacco smoking also causes brain atrophy in both alcoholics and neurologically normal individuals; however, this has not been confirmed pathologically. In this study, the effects of smoking and the potential additive effects of concomitant alcohol and tobacco consumption were investigated in autopsied human brains. A total of 44 cases and controls were divided into four groups: 16 non-smoking controls, nine smoking controls, eight non-smoking alcoholics, and 11 smoking alcoholics. The volumes of 26 gray and white matter regions were measured using an established point-counting technique. The results showed trends for widespread white matter loss in alcoholics (p smoking alone had no effect on brain atrophy and the combination of smoking and alcohol showed no additional effect. Neuronal density was analyzed as a more sensitive assay of gray matter integrity. Similar to the volumetric analysis, there was a reduction in neurons (29%) in the prefrontal cortex of alcoholics, albeit this was only a trend when adjusted for potential confounders (p smoking or combinatorial effects on neuronal density in any of the three regions examined. These results do not support the hypothesis that smoking exacerbates alcohol-related brain damage. The trends here support previous studies that alcohol-related brain damage is characterized by focal neuronal loss and generalized white matter atrophy. These disparate effects suggest that two different pathogenic mechanisms may be operating in the alcoholic brain. Future studies using ultrastructural or molecular techniques will be required to determine if smoking has more subtle effects on the brain and how chronic alcohol consumption leads to widespread white matter loss.

  5. Damage to Myelin and Oligodendrocytes: A Role in Chronic Outcomes Following Traumatic Brain Injury?

    Directory of Open Access Journals (Sweden)

    William L. Maxwell

    2013-09-01

    Full Text Available There is increasing evidence in the experimental and clinical traumatic brain injury (TBI literature that loss of central myelinated nerve fibers continues over the chronic post-traumatic phase after injury. However, the biomechanism(s of continued loss of axons is obscure. Stretch-injury to optic nerve fibers in adult guinea-pigs was used to test the hypothesis that damage to the myelin sheath and oligodendrocytes of the optic nerve fibers may contribute to, or facilitate, the continuance of axonal loss. Myelin dislocations occur within internodal myelin of larger axons within 1–2 h of TBI. The myelin dislocations contain elevated levels of free calcium. The volume of myelin dislocations increase with greater survival and are associated with disruption of the axonal cytoskeleton leading to secondary axotomy. Waves of Ca2+ depolarization or spreading depression extend from the initial locus injury for perhaps hundreds of microns after TBI. As astrocytes and oligodendrocytes are connected via gap junctions, it is hypothesized that spreading depression results in depolarization of central glia, disrupt axonal ionic homeostasis, injure axonal mitochondria and allow the onset of axonal degeneration throughout an increasing volume of brain tissue; and contribute toward post-traumatic continued loss of white matter.

  6. Is There Chronic Brain Damage in Retired NFL Players? Neuroradiology, Neuropsychology, and Neurology Examinations of 45 Retired Players

    OpenAIRE

    Casson, Ira R.; Viano, David C.; Haacke, E. Mark; Kou, Zhifeng; LeStrange, Danielle G.

    2014-01-01

    Background: Neuropathology and surveys of retired National Football League (NFL) players suggest that chronic brain damage is a frequent result of a career in football. There is limited information on the neurological statuses of living retired players. This study aimed to fill the gap in knowledge by conducting in-depth neurological examinations of 30- to 60-year-old retired NFL players. Hypothesis: In-depth neurological examinations of 30- to 60-year-old retired players are unlikely to dete...

  7. Aging aggravates ischemic stroke-induced brain damage in mice with chronic peripheral infection.

    Science.gov (United States)

    Dhungana, Hiramani; Malm, Tarja; Denes, Adam; Valonen, Piia; Wojciechowski, Sara; Magga, Johanna; Savchenko, Ekaterina; Humphreys, Neil; Grencis, Richard; Rothwell, Nancy; Koistinaho, Jari

    2013-10-01

    Ischemic stroke is confounded by conditions such as atherosclerosis, diabetes, and infection, all of which alter peripheral inflammatory processes with concomitant impact on stroke outcome. The majority of the stroke patients are elderly, but the impact of interactions between aging and inflammation on stroke remains unknown. We thus investigated the influence of age on the outcome of stroke in animals predisposed to systemic chronic infection. Th1-polarized chronic systemic infection was induced in 18-22 month and 4-month-old C57BL/6j mice by administration of Trichuris muris (gut parasite). One month after infection, mice underwent permanent middle cerebral artery occlusion and infarct size, brain gliosis, and brain and plasma cytokine profiles were analyzed. Chronic infection increased the infarct size in aged but not in young mice at 24 h. Aged, ischemic mice showed altered plasma and brain cytokine responses, while the lesion size correlated with plasma prestroke levels of RANTES. Moreover, the old, infected mice exhibited significantly increased neutrophil recruitment and upregulation of both plasma interleukin-17α and tumor necrosis factor-α levels. Neither age nor infection status alone or in combination altered the ischemia-induced brain microgliosis. Our results show that chronic peripheral infection in aged animals renders the brain more vulnerable to ischemic insults, possibly by increasing the invasion of neutrophils and altering the inflammation status in the blood and brain. Understanding the interactions between age and infections is crucial for developing a better therapeutic regimen for ischemic stroke and when modeling it as a disease of the elderly.

  8. The effects of chronic smoking on the pathology of alcohol-related brain damage.

    Science.gov (United States)

    McCorkindale, A N; Sheedy, D; Kril, J J; Sutherland, G T

    2016-06-01

    Both pathological and neuroimaging studies demonstrate that chronic alcohol abuse causes brain atrophy with widespread white matter loss limited gray matter loss. Recent neuroimaging studies suggest that tobacco smoking also causes brain atrophy in both alcoholics and neurologically normal individuals; however, this has not been confirmed pathologically. In this study, the effects of smoking and the potential additive effects of concomitant alcohol and tobacco consumption were investigated in autopsied human brains. A total of 44 cases and controls were divided into four groups: 16 non-smoking controls, nine smoking controls, eight non-smoking alcoholics, and 11 smoking alcoholics. The volumes of 26 gray and white matter regions were measured using an established point-counting technique. The results showed trends for widespread white matter loss in alcoholics (p contrast, smoking alone had no effect on brain atrophy and the combination of smoking and alcohol showed no additional effect. Neuronal density was analyzed as a more sensitive assay of gray matter integrity. Similar to the volumetric analysis, there was a reduction in neurons (29%) in the prefrontal cortex of alcoholics, albeit this was only a trend when adjusted for potential confounders (p generalized white matter atrophy. These disparate effects suggest that two different pathogenic mechanisms may be operating in the alcoholic brain. Future studies using ultrastructural or molecular techniques will be required to determine if smoking has more subtle effects on the brain and how chronic alcohol consumption leads to widespread white matter loss. PMID:27286935

  9. Chronic cocaine administration causes extensive white matter damage in brain: diffusion tensor imaging and immunohistochemistry studies.

    Science.gov (United States)

    Narayana, Ponnada A; Herrera, Juan J; Bockhorst, Kurt H; Esparza-Coss, Emilio; Xia, Ying; Steinberg, Joel L; Moeller, F Gerard

    2014-03-30

    The effect of chronic cocaine exposure on multiple white matter structures in rodent brain was examined using diffusion tensor imaging (DTI), locomotor behavior, and end point histology. The animals received either cocaine at a dose of 100mg/kg (N=19), or saline (N=17) for 28 days through an implanted osmotic minipump. The animals underwent serial DTI scans, locomotor assessment, and end point histology for determining the expressions of myelin basic protein (MBP), neurofilament-heavy protein (NF-H), proteolipid protein (PLP), Nogo-A, aquaporin-4 (AQP-4), and growth associated protein-43 (GAP-43). Differences in the DTI measures were observed in the splenium (scc) and genu (gcc) of the corpus callosum (cc), fimbria (fi), and the internal capsule (ic). A significant increase in the activity in the fine motor movements and a significant decrease in the number of rearing events were observed in the cocaine-treated animals. Reduced MBP and Nogo-A and increased GAP-43 expressions were most consistently observed in these structures. A decrease in the NF-H expression was observed in fi and ic. The reduced expression of Nogo-A and the increased expression of GAP-43 may suggest destabilization of axonal connectivity and increased neurite growth with aberrant connections. Increased GAP-43 suggests drug-induced plasticity or a possible repair mechanism response. The findings indicated that multiple white matter tracts are affected following chronic cocaine exposure. PMID:24507117

  10. Contextualizing aquired brain damage

    DEFF Research Database (Denmark)

    Nielsen, Charlotte Marie Bisgaard

    Contextualizing aquired brain damage Traditional approaches study ’communicational problems’ often in a discourse of disabledness or deficitness. With an ontology of communcation as something unique and a presupposed uniqueness of each one of us, how could an integrational approach (Integrational...... for people with aquired brain injuries will be presented and comparatively discussed in a traditional versus an integrational perspective. Preliminary results and considerations on ”methods” and ”participation” from this study will be presented along with an overview of the project's empirical data....

  11. Endoplasmic reticulum stress plays critical role in brain damage after chronic intermittent hypoxia in growing rats.

    Science.gov (United States)

    Cai, Xiao-Hong; Li, Xiu-Cui; Jin, Sheng-Wei; Liang, Dong-Shi; Wen, Zheng-Wang; Cao, Hong-Chao; Mei, Hong-Fang; Wu, Ying; Lin, Zhong-Dong; Wang, Liang-Xing

    2014-07-01

    Obstructive sleep apnea hypopnea syndrome (OSAHS) in children is associated with multiple system morbidities. Cognitive dysfunction as a result of central nervous system complication has been reported in children with OSAHS. However, the underlying mechanisms are poorly understood. Endoplasmic reticulum stress (ERS)-related apoptosis plays an important role in various diseases of the central nervous system, but very little is known about the role of ERS in mediating pathophysiological reactions to cognitive dysfunction in OSAHS. Chronic intermittent hypoxia (CIH) exposures, modeling OSAHS, across 2 and 4weeks in growing rats made more reference memory errors, working memory errors and total memory errors in the 8-Arm radial maze task, increased significantly TUNEL positive cells, upregulated the unfolded protein response in the hippocampus and prefrontal cortex as evidenced by increased phosphorylation of PKR-like endoplasmic reticulum kinase, inositol-requiring enzyme l and some downstream products. A selective inhibitor of eukaryotic initiation factor-2a dephosphorylation, salubrinal, prevented C/EBP-homologous protein activation in the hippocampus and prefrontal cortex throughout hypoxia/reoxygenation exposure. Our findings suggest that ERS mediated cell apoptosis may be one of the underlying mechanisms of cognitive dysfunction in OSAHS children. Further, a specific ERS inhibitor Salubrinal should be tested for neuroprotection against CIH-induced injury. PMID:24810321

  12. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    Science.gov (United States)

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…

  13. Experience-dependent neural plasticity in the adult damaged brain

    OpenAIRE

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper extremity (hand and arm) impairments. A prolonged and widespread process of repair and reorganization of surviving neural circuits is instigated by in...

  14. Alcohol-related brain damage in humans.

    Directory of Open Access Journals (Sweden)

    Amaia M Erdozain

    Full Text Available Chronic excessive alcohol intoxications evoke cumulative damage to tissues and organs. We examined prefrontal cortex (Brodmann's area (BA 9 from 20 human alcoholics and 20 age, gender, and postmortem delay matched control subjects. H & E staining and light microscopy of prefrontal cortex tissue revealed a reduction in the levels of cytoskeleton surrounding the nuclei of cortical and subcortical neurons, and a disruption of subcortical neuron patterning in alcoholic subjects. BA 9 tissue homogenisation and one dimensional polyacrylamide gel electrophoresis (PAGE proteomics of cytosolic proteins identified dramatic reductions in the protein levels of spectrin β II, and α- and β-tubulins in alcoholics, and these were validated and quantitated by Western blotting. We detected a significant increase in α-tubulin acetylation in alcoholics, a non-significant increase in isoaspartate protein damage, but a significant increase in protein isoaspartyl methyltransferase protein levels, the enzyme that triggers isoaspartate damage repair in vivo. There was also a significant reduction in proteasome activity in alcoholics. One dimensional PAGE of membrane-enriched fractions detected a reduction in β-spectrin protein levels, and a significant increase in transmembranous α3 (catalytic subunit of the Na+,K+-ATPase in alcoholic subjects. However, control subjects retained stable oligomeric forms of α-subunit that were diminished in alcoholics. In alcoholics, significant loss of cytosolic α- and β-tubulins were also seen in caudate nucleus, hippocampus and cerebellum, but to different levels, indicative of brain regional susceptibility to alcohol-related damage. Collectively, these protein changes provide a molecular basis for some of the neuronal and behavioural abnormalities attributed to alcoholics.

  15. Brain damages in ketamine addicts as revealed by magnetic resonance imaging

    OpenAIRE

    Wang, Chunmei; Zheng, Dong; Xu, Jie; Lam, Waiping; Yew, D. T.

    2013-01-01

    Ketamine, a known antagonist of N-methyl-D-aspartic (NMDA) glutamate receptors, had been used as an anesthetic particularly for pediatric or for cardiac patients. Unfortunately, ketamine has become an abusive drug in many parts of the world while chronic and prolonged usage led to damages of many organs including the brain. However, no studies on possible damages in the brains induced by chronic ketamine abuse have been documented in the human via neuroimaging. This paper described for the fi...

  16. Brain Damage in School Age Children.

    Science.gov (United States)

    Haywood, H. Carl, Ed.

    The product of a professional workshop, 10 papers discuss brain damage. An introduction to clinical neuropsychology is presented by H. Carl Haywood. A section on neurological foundations includes papers on the organization of the central nervous system by Jack T. Tapp and Lance L. Simpson, on epilepsy by Angela T. Folsom, and on organic language…

  17. The immune system mediates blood-brain barrier damage; Possible implications for pathophysiology of neuropsychiatric illnesses

    NARCIS (Netherlands)

    VanderWerf, YD; DeJongste, MJL; terHorst, GJ

    1995-01-01

    The immune system mediates blood-brain barrier damage; possible implications for pathophysiology of neuropsychiatric illnesses. In this investigation the effects of immune activation on the brain are characterized In order to study this, we used a model for chronic immune activation, the myocardial

  18. Medical Perspectives on Brain Damage and Development. Revised.

    Science.gov (United States)

    McCrae, Marcia Q.

    The author describes damage and normal development of the brain, as well as assessment and intervention with brain-damaged children. After a brief introduction on the complex and delicate process of brain development and a review of incidence, aspects of etiology such as genetic and postnatal causes are discussed. Brain development is examined…

  19. Intensive language training enhances brain plasticity in chronic aphasia

    OpenAIRE

    Meinzer Marcus; Elbert Thomas; Wienbruch Christian; Djundja Daniela; Barthel Gabriela; Rockstroh Brigitte

    2004-01-01

    Abstract Background Focal clusters of slow wave activity in the delta frequency range (1–4 Hz), as measured by magnetencephalography (MEG), are usually located in the vicinity of structural damage in the brain. Such oscillations are usually considered pathological and indicative of areas incapable of normal functioning owing to deafferentation from relevant input sources. In the present study we investigated the change in Delta Dipole Density in 28 patients with chronic aphasia (>12 months po...

  20. Feedback and neuroplasticity rehabilitation for brain damage

    Institute of Scientific and Technical Information of China (English)

    Eli Carmeli

    2014-01-01

    Neuroplasticity,also known as brain plasticity,refers to the brain tissue's ability to be repaired to reorganized and to create new connections among the nerve cells.It implies that the location of a given function in the brain (for example,certain area in the motor cortex) can displace to another area of the cortex.This transfer ability can be accomplished by sensory motor feedback training.In the case of cerebral palsy (CP) and stroke,neuroplasticity relates to unaffected nerve cells and new synaptogenesis process taking over the functions of damaged nerve cells and their connections.The aim of this overview is to explain how does neuroplasticity work and how intensive sensory motor feedback training can reorganize nerve cells.Although neurorehabilitation offers a series of therapies from the psychological to occupational,speech,teaching or re-training patients on mobility skills,this overview focuses on physical rehabilitation using a comprehensive feedback system to accelerate brain recovery.

  1. Acquired agraphia caused by focal brain damage.

    Science.gov (United States)

    Anderson, S W; Saver, J; Tranel, D; Damasio, H

    1993-03-01

    Motor and linguistic aspects of writing were evaluated in 31 subjects with focal damage in 1 of 3 regions of the left hemisphere: (1) dorsolateral frontal lobe sparing primary motor cortex (group FL), (2) parietal lobe (group PL), or (3) temporal lobe (group TL). A standard procedure was used to evaluate writing for grapheme formation, spatial arrangement, spelling, word selection, grammar, and perseveration. It was predicted that agraphia would be observed in all 3 groups, and that the most severe impairments would be associated with frontal lobe damage, particularly in aspects of writing dependent on sequencing (grapheme formation, spelling, and grammar). It was found that agraphia was common in all groups, particularly in the acute epoch, and that all groups showed considerable recovery of writing by the chronic epoch. Few differences were found between groups. However, the FL group was impaired on spelling and grammar relative to the PL group in the acute epoch and impaired on grammar relative to the TL group in the chronic epoch. The findings are consistent with the notion that writing relies on a distributed neuroanatomical network, which acts in concert to link fragments of visuomotor activity with component linguistic elements.

  2. Animal imaging studies of potential brain damage

    Science.gov (United States)

    Gatley, S. J.; Vazquez, M. E.; Rice, O.

    To date, animal studies have not been able to predict the likelihood of problems in human neurological health due to HZE particle exposure during space missions outside the Earth's magnetosphere. In ongoing studies in mice, we have demonstrated that cocaine stimulated locomotor activity is reduced by a moderate dose (120 cGy) of 1 GeV 56Fe particles. We postulate that imaging experiments in animals may provide more sensitive and earlier indicators of damage due to HZE particles than behavioral tests. Since the small size of the mouse brain is not well suited to the spatial resolution offered by microPET, we are now repeating some of our studies in a rat model. We anticipate that this will enable us to identify imaging correlates of behavioral endpoints. A specific hypothesis of our studies is that changes in the metabolic rate for glucose in striatum of animals will be correlated with alterations in locomotor activity. We will also evaluate whether the neuroprotective drug L-deprenyl reduces the effect of radiation on locomotor activity. In addition, we will conduct microPET studies of brain monoamine oxidase A and monoamine oxidase B in rats before and at various times after irradiation with HZE particles. The hypothesis is that monoamine oxidase A, which is located in nerve terminals, will be unchanged or decreased after irradiation, while monoamine oxidase B, which is located in glial cells, will be increased after irradiation. Neurochemical effects that could be measured using PET could in principle be applied in astronauts, in terms of detecting and monitoring subtle neurological damage that might have occurred during long space missions. More speculative uses of PET are in screening candidates for prolonged space missions (for example, for adequate reserve in critical brain circuits) and in optimizing medications to treat impairments after missions.

  3. Zika Virus Can Damage Fetal Brain Late in Pregnancy: Study

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_161451.html Zika Virus Can Damage Fetal Brain Late in Pregnancy: Study ... WEDNESDAY, Oct. 12, 2016 (HealthDay News) -- The Zika virus may harm a baby's brain even if the ...

  4. Dysfunction of brain pericytes in chronic neuroinflammation.

    Science.gov (United States)

    Persidsky, Yuri; Hill, Jeremy; Zhang, Ming; Dykstra, Holly; Winfield, Malika; Reichenbach, Nancy L; Potula, Raghava; Mukherjee, Abir; Ramirez, Servio H; Rom, Slava

    2016-04-01

    Brain pericytes are uniquely positioned within the neurovascular unit to provide support to blood brain barrier (BBB) maintenance. Neurologic conditions, such as HIV-1-associated neurocognitive disorder, are associated with BBB compromise due to chronic inflammation. Little is known about pericyte dysfunction during HIV-1 infection. We found decreased expression of pericyte markers in human brains from HIV-1-infected patients (even those on antiretroviral therapy). Using primary human brain pericytes, we assessed expression of pericyte markers (α1-integrin, α-smooth muscle actin, platelet-derived growth factor-B receptor β, CX-43) and found their downregulation after treatment with tumor necrosis factor-α (TNFα) or interleukin-1 β (IL-1β). Pericyte exposure to virus or cytokines resulted in decreased secretion of factors promoting BBB formation (angiopoietin-1, transforming growth factor-β1) and mRNA for basement membrane components. TNFα and IL-1β enhanced expression of adhesion molecules in pericytes paralleling increased monocyte adhesion to pericytes. Monocyte migration across BBB models composed of human brain endothelial cells and pericytes demonstrated a diminished rate in baseline migration compared to constructs composed only of brain endothelial cells. However, exposure to the relevant chemokine, CCL2, enhanced the magnitude of monocyte migration when compared to BBB models composed of brain endothelial cells only. These data suggest an important role of pericytes in BBB regulation in neuroinflammation.

  5. Brain damage in patients with manifest arterial disease

    NARCIS (Netherlands)

    Raamt, Anne Fleur van

    2006-01-01

    In this thesis we assessed whether the risk factors known to affect markers of brain damage in the general population, also effectuate brain damage in patients who already have symptomatic arterial disease. We found that elevated levels of homocysteine were related to slightly lower global cogniti

  6. The characteristics of chronic central pain after traumatic brain injury.

    Science.gov (United States)

    Ofek, Hadas; Defrin, Ruth

    2007-10-01

    Central pain following traumatic brain injury (TBI) has not been studied in depth. Our purpose was to conduct a systematic study of patients with TBI suffering from chronic central pain, and to describe the characteristics of the central pain. Groups were TBI patients with (TBIP) and without central pain (TBINP) and healthy controls. TBI patients with other pain mechanisms were excluded from the study. Participants underwent quantitative somatosensory testing in the painful and pain-free body regions. Thresholds for warmth, cold, heat-pain, touch and graphesthesia were measured and pathologically evoked pain (allodynia, hyperpathia and wind-up pain) evaluated. Chronic pain was mapped and characterized. Chronic pain developed at a relatively late onset (6.6+/-9 months) was almost exclusively unilateral and reported as pricking, throbbing and burning. Although both TBIP and TBINP exhibited a significant reduction in thermal and tactile sensations compared to controls, thermal sensations in the painful regions of TBIP were significantly more impaired than pain-free regions in the same patients (p<0.01) and in TBINP (p<0.01). Painful regions also exhibited very high rates of allodynia, hyperpathia and exaggerated wind-up. The characteristics of the chronic pain resembled those of other central pain patients although TBIP displayed several unique features. The sensory profile indicated that damage to the pain and temperature systems is a necessary but not sufficient condition for the development of chronic central pain following TBI. Neuronal hyperexcitability may be a contributing factor to the chronic pain.

  7. TOOL USE DISORDERS AFTER LEFT BRAIN DAMAGE

    Directory of Open Access Journals (Sweden)

    Josselin eBaumard

    2014-05-01

    Full Text Available In this paper we review studies that investigated tool use disorders in left-brain damaged (LBD patients over the last thirty years. Four tasks are classically used in the field of apraxia: Pantomime of tool use, single tool use, real tool use and mechanical problem solving. Our aim was to address two issues, namely, (1 the role of mechanical knowledge in real tool use and (2 the cognitive mechanisms underlying pantomime of tool use, a task widely employed by clinicians and researchers. To do so, we extracted data from 36 papers and computed the difference between healthy subjects and LBD patients. On the whole, pantomime of tool use is the most difficult task and real tool use is the easiest one. Moreover, associations seem to appear between pantomime of tool use, real tool use and mechanical problem solving. These results suggest that the loss of mechanical knowledge is critical in LBD patients, even if all of those tasks (and particularly pantomime of tool use might put differential demands on semantic memory and working memory.

  8. Damage of hippocampal neurons in rats with chronic alcoholism

    Institute of Scientific and Technical Information of China (English)

    Ailin Du; Hongbo Jiang; Lei Xu; Na An; Hui Liu; Yinsheng Li; Ruiling Zhang

    2014-01-01

    Chronic alcoholism can damage the cytoskeleton and aggravate neurological deifcits. However, the effect of chronic alcoholism on hippocampal neurons remains unclear. In this study, a model of chronic alcoholism was established in rats that were fed with 6%alcohol for 42 days. Endog-enous hydrogen sulifde content and cystathionine-beta-synthase activity in the hippocampus of rats with chronic alcoholism were signiifcantly increased, while F-actin expression was decreased. Hippocampal neurons in rats with chronic alcoholism appeared to have a fuzzy nuclear mem-brane, mitochondrial edema, and ruptured mitochondrial crista. These findings suggest that chronic alcoholism can cause learning and memory decline in rats, which may be associated with the hydrogen sulfide/cystathionine-beta-synthase system, mitochondrial damage and reduced expression of F-actin.

  9. Brain damages in ketamine addicts as revealed by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Chunmei eWang

    2013-07-01

    Full Text Available Ketamine, a known antagonist of N-methyl-D-aspartic (NMDA glutamate receptors, had been used as an anesthetic particularly for pediatric or for cardiac patients. Unfortunately, ketamine has become an abusive drug in many parts of the world while chronic and prolonged usage led to damages of many organs including the brain. However, no studies on possible damages in the brains induced by chronic ketamine abuse have been documented in the human via neuroimaging. This paper described for the first time via employing magnetic resonance imaging (MRI the changes in ketamine addicts of 0.5 to 12 years and illustrated the possible brain regions susceptible to ketamine abuse. Twenty-one ketamine addicts were recruited and the results showed that the lesions in the brains of ketamine addicts were located in many regions which appeared 2-4 years after ketamine addiction. Cortical atrophy was usually evident in the frontal, parietal or occipital cortices of addicts. Such study confirmed that many brain regions in the human were susceptible to chronic ketamine injury and presented a diffuse effect of ketamine on the brain which might differ from other central nervous system (CNS drugs, such as cocaine, heroin and methamphetamine.

  10. Compromised Blood-Brain Barrier Competence in Remote Brain Areas in Ischemic Stroke Rats at Chronic Stage

    Science.gov (United States)

    Garbuzova-Davis, Svitlana; Haller, Edward; Williams, Stephanie N.; Haim, Eithan D.; Tajiri, Naoki; Hernandez-Ontiveros, Diana G.; Frisina-Deyo, Aric; Boffeli, Sean M.; Sanberg, Paul R.; Borlongan, Cesario V.

    2014-01-01

    Stroke is a life threatening disease leading to long-term disability in stroke survivors. Cerebral functional insufficiency in chronic stroke might be due to pathological changes in brain areas remote from initial ischemic lesion, i.e. diaschisis. Previously, we showed that the damaged blood-brain barrier (BBB) was implicated in subacute diaschisis. The present study investigated BBB competence in chronic diaschisis using a transient middle cerebral artery occlusion (tMCAO) rat model. Our results demonstrated significant BBB damage mostly in the ipsilateral striatum and motor cortex in rats at 30 days after tMCAO. The BBB alterations were also determined in the contralateral hemisphere via ultrastructural and immunohistochemical analyses. Major BBB pathological changes in contralateral remote striatum and motor cortex areas included: (1) vacuolated endothelial cells containing large autophagosomes, (2) degenerated pericytes displaying mitochondria with cristae disruption, (3) degenerated astrocytes and perivascular edema, (4) Evans Blue extravasation, and (5) appearance of parenchymal astrogliosis. Importantly, discrete analyses of striatal and motor cortex areas revealed significantly higher autophagosome accumulation in capillaries of ventral striatum and astrogliosis in dorsal striatum in both cerebral hemispheres. These widespread microvascular alterations in ipsilateral and contralateral brain hemispheres suggest persistent and/or continued BBB damage in chronic ischemia. The pathological changes in remote brain areas likely indicate chronic ischemic diaschisis, which should be considered in the development of treatment strategies for stroke. PMID:24610730

  11. Perinatal brain damage : The term infant

    NARCIS (Netherlands)

    Hagberg, Henrik; David Edwards, A.; Groenendaal, Floris

    2016-01-01

    Perinatal brain injury at term is common and often manifests with neonatal encephalopathy including seizures. The most common aetiologies are hypoxic–ischaemic encephalopathy, intracranial haemorrhage and neonatal stroke. Besides clinical and biochemical assessment the diagnostic evaluation rely mos

  12. Brain damage in utero after Chernobyl accident

    International Nuclear Information System (INIS)

    Full text: The report presents research study results of neuropsychiatric consequences of the children exposed in utero, who were born just after the Chernobyl accident (between April 26, 1986 and February 26, 1987). The children were under investigation for three stages: in 1990-1992; 1994-1996; 2002-2004. We use the data on health state, IQ level tests and individual dose reconstruction data. First correlation between prenatal acute exposure after atomic bombing and intellectual level decrease was demonstrated by Japanese scientists. It is known that while the Chernobyl whole body irradiation doses are much lower than the Japanese doses, thyroid doses after the Chernobyl accident are significantly higher. During the first stage the five-year-old prenatally exposed children were under examination. The results showed much more somatic diseases and neurofunctional mental disorders. It was also established in this cohort that starting with the 0.3 Sv threshold dose thyroid-stimulating hormone (TSH) level grown along with fetal thyroid dose increase. Thereupon the radiation-induced malfunction of the thyroid-pituitary system was suggested as an important biological mechanism in the genesis of mental disorders in prenatally irradiated children. The epidemiological WHO project 'Brain Damage in Utero' (IPHECA) was implemented in the second stage. The examination of prenatally exposed children from the contaminated territories (555 kBq/m2 and more) resulted in an increased frequency of moderate mental retardation, emotional and behavioral disorders. Increasing of borderline nervous and psychological disorders of parents from the main group was higher than from the control. However it was rather hard to treat these results because individual dosimetric data were not available. Only in the third stage reconstruction of individual doses of children born to mothers evacuated from the Chernobyl exclusion zone was carried out at taking internal and external exposure. It was

  13. Irreversible brain damage caused by methamphetamine

    Directory of Open Access Journals (Sweden)

    Sebastian Moeller

    2016-03-01

    Full Text Available Methamphetamine is an addictive scene substance usage of which is increasing rapidly. While methamphetamine often causes neuropsychiatric symptoms like anxiety, psychosis and hallucinations, reports of structural ongoing cerebral alterations are rare. We here report a case of this kind of damage caused through methamphetamine use.

  14. The impact of chronic stress on the rat brain lipidome

    OpenAIRE

    Oliveira, Tiago Gil; Chan, Robin B.; Bravo, Francisca Vaz; Miranda, André; Silva, Rita Ribeiro; Zhou, Bowen; Marques, Fernanda; Pinto, Vítor; Cerqueira, João José; Di Paolo, Gilbert; Sousa, Nuno

    2015-01-01

    Chronic stress is a major risk factor for several human disorders that affect modern societies. The brain is a key target of chronic stress. In fact, there is growing evidence indicating that exposure to stress affects learning and memory, decision making and emotional responses, and may even predispose for pathological processes, such as Alzheimer’s disease (AD) and depression. Lipids are a major constituent of the brain, and specifically signaling lipids have been shown to regulate brain fu...

  15. Chronic Traumatic Brain Injury in Amateur Boxers

    Directory of Open Access Journals (Sweden)

    M. Rahmati

    2008-04-01

    Full Text Available Introduction & objective: Despite of young and adolescence intent to the boxing sport, because of dominant aggression and direct blows contact to head, face and central nervous system, it is continuously criticize by different groups. The groups of sporting and physician conventions are distinguished boxing with physical and neuropsychological disorders and some groups believe that side effects of this sport are not more than other sports. For this base the aim of this study was to determine the chronic traumatic brain injury in a group amateur boxers.Materials & Methods: In a case-control study, three groups of sport men were considered, each group contained 20 randomly selected cases. The first group were amateur boxers with 4 years minimal activity(directly has been presented to the head blows, second group were amateur soccer players with 4 years minimal activity(has been presented to the not very severe head blows, third group were non athlete subjects .The groups were matched in weight, height, age and education .To understand brain disorder interview by medicine method has been used, then Wiskancin, Bonardele, Bender geshtalt, Kim karad visual memory, Benton and wechler memory (Alef type tests has been performed and EEG has got in the same hour and condition.Results: The homogeneity of between group variances was gained by the statistical method. Also between structural–visual abilities neuropsychological aspect in groups, significant difference has been gained (p= 0.000. In Kim karad visual memory test at the mild and long term visual memory deficit, significant differences between three groups was observed (P= 0.000, P=0.009 that least score has been belonged to the boxers. Also in boxers 6 abnormal EEGs is observed.Conclusion: It can be said that of four years amateur boxing can affect on boxers visual and memory perception and their spatial orientation. Additionally our study have showed that amateur boxing has a significant

  16. Measuring and Inducing Brain Plasticity in Chronic Aphasia

    Science.gov (United States)

    Fridriksson, Julius

    2011-01-01

    Brain plasticity associated with anomia recovery in aphasia is poorly understood. Here, I review four recent studies from my lab that focused on brain modulation associated with long-term anomia outcome, its behavioral treatment, and the use of transcranial brain stimulation to enhance anomia treatment success in individuals with chronic aphasia…

  17. Damage and repair of irradiated mammalian brain

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, K.; Lo, E.; Phillips, M.; Fabrikant, J.; Brennan, K.; Valk, P.; Poljak, A.; Delapaz, R.; Woodruff, K. (Lawrence Berkeley Lab., CA (USA); Stanford Univ., CA (USA). Medical Center; Brookside Hospital, San Pablo, CA (USA))

    1989-07-01

    We have demonstrated that focal charged particle irradiation of the rabbit brain can create well-defined lesions which are observable by nuclear magnetic resonance imaging (NMR) and positron emission tomography (PET) imaging techniques. These are similar, in terms of location and characteristic NMR and PET features, to those that occur in the brain of about 10% of clinical research human subjects, who have been treated for intracranial vascular malformations with stereotactic radiosurgery. These lesions have been described radiologically as vasogenic edema of the deep white matter,'' and the injury is of variable intensity and temporal duration, can recede or progress to serious neurologic sequelae, and persist for a considerable period of time, frequently 18 mon to 3 yr. 8 refs., 6 figs.

  18. Damage and repair of irradiated mammalian brain

    International Nuclear Information System (INIS)

    We have demonstrated that focal charged particle irradiation of the rabbit brain can create well-defined lesions which are observable by nuclear magnetic resonance imaging (NMR) and positron emission tomography (PET) imaging techniques. These are similar, in terms of location and characteristic NMR and PET features, to those that occur in the brain of about 10% of clinical research human subjects, who have been treated for intracranial vascular malformations with stereotactic radiosurgery. These lesions have been described radiologically as ''vasogenic edema of the deep white matter,'' and the injury is of variable intensity and temporal duration, can recede or progress to serious neurologic sequelae, and persist for a considerable period of time, frequently 18 mon to 3 yr. 8 refs., 6 figs

  19. Rehabilitation of damage to the visual brain

    OpenAIRE

    Ajina, S; Kennard, C

    2012-01-01

    Homonymous visual field loss is a common consequence of stroke and traumatic brain injury. It is associated with an adverse functional prognosis and has implications on day-to-day activities such as driving, reading, and safe navigation. Early recovery is expected in around half of cases, and may be associated with a return in V1 activity. In stable disease, recovery is unlikely beyond three and certainly six months. Rehabilitative approaches generally target three main areas, encompassing a ...

  20. Methadone-Induced Toxic Brain Damage

    OpenAIRE

    Jérôme Corré; Jérôme Pillot; Gilles Hilbert

    2013-01-01

    A 29-year-old man presented with comatose after methadone intoxication. Cerebral tomography only showed cortico-subcortical hypodense signal in the right cerebellar hemisphere. Brain MRI showed a rare imaging of FLAIR and DWI hyperintensities in the two cerebellar hemispheres as well as basal ganglia (globi pallidi), compatible with methadone overdose. To our knowledge this is the first reported case of both cerebellar and basal ganglia involvement in methadone overdose.

  1. Mechanism of Chronic Pain in Rodent Brain Imaging

    Science.gov (United States)

    Chang, Pei-Ching

    Chronic pain is a significant health problem that greatly impacts the quality of life of individuals and imparts high costs to society. Despite intense research effort in understanding of the mechanism of pain, chronic pain remains a clinical problem that has few effective therapies. The advent of human brain imaging research in recent years has changed the way that chronic pain is viewed. To further extend the use of human brain imaging techniques for better therapies, the adoption of imaging technique onto the animal pain models is essential, in which underlying brain mechanisms can be systematically studied using various combination of imaging and invasive techniques. The general goal of this thesis is to addresses how brain develops and maintains chronic pain in an animal model using fMRI. We demonstrate that nucleus accumbens, the central component of mesolimbic circuitry, is essential in development of chronic pain. To advance our imaging technique, we develop an innovative methodology to carry out fMRI in awake, conscious rat. Using this cutting-edge technique, we show that allodynia is assoicated with shift brain response toward neural circuits associated nucleus accumbens and prefrontal cortex that regulate affective and cognitive component of pain. Taken together, this thesis provides a deeper understanding of how brain mediates pain. It builds on the existing body of knowledge through maximizing the depth of insight into brain imaging of chronic pain.

  2. Neurocomputational models of the remote effects of focal brain damage.

    Science.gov (United States)

    Reggia, James A

    2004-11-01

    Sudden localized brain damage, such as occurs in stroke, produces neurological deficits directly attributable to the damaged site. In addition, other clinical deficits occur due to secondary "remote" effects that functionally impair the remaining intact brain regions (e.g., due to their sudden disconnection from the damaged area), a phenomenon known as diaschisis. The underlying mechanisms of these remote effects, particularly those involving interactions between the left and right cerebral hemispheres, have proven somewhat difficult to understand in the context of current theories of hemispheric specialization. This article describes some recent neurocomputational models done in the author's research group that try to explain diaschisis qualitatively. These studies show that both specialization and diaschisis can be accounted for with a single model of hemispheric interactions. Further, the results suggest that left-right subcortical influences may be much more important in influencing hemispheric specialization than is generally recognized. PMID:15564108

  3. Study Suggests Brain Is Hard-Wired for Chronic Pain

    Science.gov (United States)

    ... News Release Tuesday, September 17, 2013 NIH-funded study suggests brain is hard-wired for chronic pain ... Apkarian, Ph.D., a senior author of the study and professor of physiology at Northwestern University Feinberg ...

  4. [Neuroendocrine dysfunction and brain damage. A consensus statement].

    Science.gov (United States)

    Leal-Cerro, Alfonso; Rincón, María Dolores; Domingo, Manel Puig

    2009-01-01

    This consensus statement aims to enhance awareness of the incidence and risks of hypopituitarism in patients with traumatic brain injury (TBI) and/or brain hemorrhages among physicians treating patients with brain damage. The importance of this problem is related not only to the frequency of TBI but also to its prevalence in younger populations. The consequences of TBI are characterized by a series of symptoms that depend on the type of sequels related to neuroendocrine dysfunction. The signs and symptoms of hypopituitarism are often confused with those of other sequels of TBI. Consequently, patients with posttraumatic hypopituitarism may receive suboptimal rehabilitation unless the underlying hormone deficiency is identified and treated. This consensus is based on the recommendation supported by expert opinion that patients with a TBI and/or brain hemorrhage should undergo endocrine evaluation in order to assess pituitary function and, if deficiency is detected, should receive hormone replacement therapy.

  5. Hyperschematia after right brain damage: a meaningful entity?

    Directory of Open Access Journals (Sweden)

    Gilles eRode

    2014-01-01

    Full Text Available In recent years we reported three right-brain-damaged patients, who exhibited a left-sided disprortionate expansion of drawings, both by copying and from memory, contralateral to the side of the hemispheric lesion (Neurology, 67: 1801, 2006, Neurocase 14: 369, 2008. We proposed the term hyperschematia for such an expansion, with reference to an interpretation in terms of a lateral leftward distortion of the representation of extra-personal space, with a leftward anisometric expansion (relaxation of the spatial medium. The symptom-complex shown by right-brain-damaged patients with hyperschematia includes: 1 a disproportionate leftward expansion of drawings (with possible addition of details, by copy and from memory (also in clay modeling, in one patient; 2 an overestimation of left lateral extent, when a leftward movement is required, associated with a perceptual underestimation; 4 unawareness of the disorder; 5 no unilateral spatial neglect. In most right-brain-damaged patients, left hyperschematia involves extra-personal space. In one patient the deficit was confined to a body part (left half-face: personal hyperschematia. The neural underpinnings of the disorder include damage to the fronto-temporo-parietal cortices, and subcortical structures in the right cerebral hemisphere, in the vascular territory of the middle cerebral artery. Here, four novel additional patients are reported. Finally, hypeschematia is reconsidered, in its clinical components, the underlying pathological mechanisms, as well as its neural underpinnings.

  6. Measuring and inducing brain plasticity in chronic aphasia

    OpenAIRE

    Fridriksson, Julius

    2011-01-01

    Brain plasticity associated with anomia recovery in aphasia is poorly understood. Here, I review four recent studies from my lab that focused on brain modulation associated with long-term anomia outcome, its behavioral treatment, and the use of transcranial brain stimulation to enhance anomia treatment success in individuals with chronic aphasia caused by left hemisphere stroke. In a study that included 15 participants with aphasia who were compared to a group of 10 normal control subjects, w...

  7. Patterns of damage in the mature neonatal brain

    Energy Technology Data Exchange (ETDEWEB)

    Triulzi, Fabio; Parazzini, Cecilia; Righini, Andrea [Children' s Hospital ' ' Vittore Buzzi' ' , Departments of Radiology and Neuroradiology, Milan (Italy)

    2006-07-15

    Patterns of damage in the mature neonatal brain can be subdivided into focal, multifocal and diffuse. The main cause of diffuse brain damage in the term newborn is hypoxic-ischaemic encephalopathy (HIE). HIE is still the major recognized perinatal cause of neurological morbidity in full-term newborns. MRI offers today the highest sensitivity in detecting acute anoxic injury of the neonatal brain. Conventional acquisition techniques together with modern diffusion techniques can identify typical patterns of HIE injury, even in the early course of the disease. However, even though highly suggestive, these patterns cannot be considered as pathognomonic. Perinatal metabolic disease such as kernicterus and severe hypoglycaemia should be differentiated from classic HIE. Other conditions, such as infections, non-accidental injury and rarer metabolic diseases can be misinterpreted as HIE in their early course when diffuse brain swelling is still the predominant MRI feature. Diffusion techniques can help to differentiate different types of diffuse brain oedema. Typical examples of focal injuries are arterial or venous infarctions. In arterial infarction, diffusion techniques can define more precisely than conventional imaging the extent of focal infarction, even in the hyperacute phase. Moreover, diffusion techniques provide quantitative data of acute corticospinal tract injury, especially at the level of the cerebral peduncles. Venous infarction should be suspected in every case of unexplained cerebral haematoma in the full-term newborn. In the presence of spontaneous bleeding, venous structures should always be evaluated by MR angiography. (orig.)

  8. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice.

    Directory of Open Access Journals (Sweden)

    Ralph Timaru-Kast

    Full Text Available After traumatic brain injury (TBI elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months and old (21 months male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2% compared to young (0%. This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral

  9. Behavioural alteration in chronic pain: are brain glia involved?

    Science.gov (United States)

    Panigada, T; Gosselin, R-D

    2011-10-01

    Behavioural symptoms such as abnormal emotionality (including anxious and depressive episodes) and cognition (for instance weakened decision-making) are highly frequent in both chronic pain patients and their animal models. The theory developed in the present article posits that alterations in glial cells (astrocytes and microglia) in cortical and limbic brain regions might be the origin of such emotional and cognitive chronic pain-associated impairments. Indeed, in mood disorders (unipolar depression, anxiety disorders, autism or schizophrenia) glial changes in brain regions involved in mood control (prefrontal and cingulate cortices, amygdala and the hippocampus) have been recurrently described. Besides, glial cells have been undoubtedly identified as key actors in the sensory component of chronic pain, owing to the profound phenotypical changes they undergo throughout the sensory pathway. Hence, the possibility arises that brain astrocytes and microglia react in upper brain structures as well, mediating the related mood and cognitive dysfunctions in chronic pain. So far, only very few studies have provided results in this prospect, mainly indirectly in pain-independent researches. Nevertheless, the first scant available data seem to merge in a unified description of a brain glial reaction occurring after chronic peripheral lesion. The present article uses this scarce literature to formulate the provocative theory of a glia-driven mood and cognitive dysfunction in chronic pain, expounding upon its validity and putative therapeutical impact as well as its current limitations and expected future developments. PMID:21741179

  10. Cortical and subcortical anatomy of chronic spatial neglect following vascular damage

    Directory of Open Access Journals (Sweden)

    Schnider Armin

    2008-09-01

    Full Text Available Abstract Background The role of the inferior parietal lobule (IPL and superior temporal gyrus (STG or subcortical pathways as possible anatomical correlates of spatial neglect is currently intensely discussed. Some of the conflicting results might have arisen because patients were examined in the acute stage of disease. Methods We examined the anatomical basis of spatial neglect in a sample of patients examined in the post-acute stage following right-hemispheric vascular brain damage. Lesions of 28 patients with chronic spatial neglect were contrasted to lesions of 22 control patients without neglect using lesion subtraction techniques and voxel-wise comparisons. Results The comparisons identified the temporo-parietal junction (TPJ with underlying white matter, the supramarginal gyrus, the posterior STG, and the insula as brain regions damaged significantly more often in neglect compared to non-neglect patients. In a subgroup of neglect patients showing particularly large cancellation bias together with small errors on line bisection damage was prevalent deep in the frontal lobe while damage of patients with the reverse pattern was located in the white matter of the TPJ. Conclusion Considering our results and the findings of previous studies, spatial neglect appears to be associated with a network of regions involving the TPJ, inferior IPL, posterior STG, the insular cortex, and posterior-frontal projections. Frontal structures or projections may be of particular relevance for spatial exploration, while the IPL may be important for object-based attention as required for line bisection.

  11. L-tyrosine induces DNA damage in brain and blood of rats.

    Science.gov (United States)

    De Prá, Samira D T; Ferreira, Gabriela K; Carvalho-Silva, Milena; Vieira, Júlia S; Scaini, Giselli; Leffa, Daniela D; Fagundes, Gabriela E; Bristot, Bruno N; Borges, Gabriela D; Ferreira, Gustavo C; Schuck, Patrícia F; Andrade, Vanessa M; Streck, Emilio L

    2014-01-01

    Mutations in the tyrosine aminotransferase gene have been identified to cause tyrosinemia type II which is inherited in an autosomal recessive manner. Studies have demonstrated that an excessive production of ROS can lead to reactions with macromolecules, such as DNA, lipids, and proteins. Considering that the L-tyrosine may promote oxidative stress, the main objective of this study was to investigate the in vivo effects of L-tyrosine on DNA damage determined by the alkaline comet assay, in brain and blood of rats. In our acute protocol, Wistar rats (30 days old) were killed 1 h after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. For chronic administration, the animals received two subcutaneous injections of L-tyrosine (500 mg/kg, 12-h intervals) or saline administered for 24 days starting at postnatal day (PD) 7 (last injection at PD 31), 12 h after the last injection, the animals were killed by decapitation. We observed that acute administration of L-tyrosine increased DNA damage frequency and damage index in cerebral cortex and blood when compared to control group. Moreover, we observed that chronic administration of L-tyrosine increased DNA damage frequency and damage index in hippocampus, striatum, cerebral cortex and blood when compared to control group. In conclusion, the present work demonstrated that DNA damage can be encountered in brain from animal models of hypertyrosinemia, DNA alterations may represent a further means to explain neurological dysfunction in this inherited metabolic disorder and to reinforce the role of oxidative stress in the pathophysiology of tyrosinemia type II.

  12. Epileptic Encephalopathy in Children with Risk Factors for Brain Damage

    Directory of Open Access Journals (Sweden)

    Josefina Ricardo-Garcell

    2012-01-01

    Full Text Available In the study of 887 new born infants with prenatal and perinatal risk factors for brain damage, 11 children with West syndrome that progressed into Lennox-Gastaut syndrome and another 4 children with Lennox-Gastaut syndrome that had not been preceded by West syndrome were found. In this study we present the main findings of these 15 subjects. In all infants multifactor antecedents were detected. The most frequent risk factors were prematurity and severe asphyxia; however placenta disorders, sepsis, and hyperbilirubinemia were also frequent. In all infants MRI direct or secondary features of periventricular leukomalacia were observed. Followup of all infants showed moderate to severe neurodevelopmental delay as well as cerebral palsy. It is concluded that prenatal and perinatal risk factors for brain damage are very important antecedents that should be taken into account to follow up those infants from an early age in order to detect and treat as early as possible an epileptic encephalopathy.

  13. Epileptic Encephalopathy in Children with Risk Factors for Brain Damage

    Science.gov (United States)

    Ricardo-Garcell, Josefina; Harmony, Thalía; Porras-Kattz, Eneida; Colmenero-Batallán, Miguel J.; Barrera-Reséndiz, Jesús E.; Fernández-Bouzas, Antonio; Cruz-Rivero, Erika

    2012-01-01

    In the study of 887 new born infants with prenatal and perinatal risk factors for brain damage, 11 children with West syndrome that progressed into Lennox-Gastaut syndrome and another 4 children with Lennox-Gastaut syndrome that had not been preceded by West syndrome were found. In this study we present the main findings of these 15 subjects. In all infants multifactor antecedents were detected. The most frequent risk factors were prematurity and severe asphyxia; however placenta disorders, sepsis, and hyperbilirubinemia were also frequent. In all infants MRI direct or secondary features of periventricular leukomalacia were observed. Followup of all infants showed moderate to severe neurodevelopmental delay as well as cerebral palsy. It is concluded that prenatal and perinatal risk factors for brain damage are very important antecedents that should be taken into account to follow up those infants from an early age in order to detect and treat as early as possible an epileptic encephalopathy. PMID:22957240

  14. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    Science.gov (United States)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  15. Intensive language training enhances brain plasticity in chronic aphasia

    Directory of Open Access Journals (Sweden)

    Meinzer Marcus

    2004-08-01

    Full Text Available Abstract Background Focal clusters of slow wave activity in the delta frequency range (1–4 Hz, as measured by magnetencephalography (MEG, are usually located in the vicinity of structural damage in the brain. Such oscillations are usually considered pathological and indicative of areas incapable of normal functioning owing to deafferentation from relevant input sources. In the present study we investigated the change in Delta Dipole Density in 28 patients with chronic aphasia (>12 months post onset following cerebrovascular stroke of the left hemisphere before and after intensive speech and language therapy (3 hours/day over 2 weeks. Results Neuropsychologically assessed language functions improved significantly after training. Perilesional delta activity decreased after therapy in 16 of the 28 patients, while an increase was evident in 12 patients. The magnitude of change of delta activity in these areas correlated with the amount of change in language functions as measured by standardized language tests. Conclusions These results emphasize the significance of perilesional areas in the rehabilitation of aphasia even years after the stroke, and might reflect reorganisation of the language network that provides the basis for improved language functions after intensive training.

  16. Resveratrol Protects the Brain of Obese Mice from Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Shraddha D. Rege

    2013-01-01

    Full Text Available Resveratrol (3,5,4′-trihydroxy-trans-stilbene is a polyphenolic phytoalexin that exerts cardioprotective, neuroprotective, and antioxidant effects. Recently it has been shown that obesity is associated with an increase in cerebral oxidative stress levels, which may enhance neurodegeneration. The present study evaluates the neuroprotective action of resveratrol in brain of obese (ob/ob mice. Resveratrol was administered orally at the dose of 25 mg kg−1 body weight daily for three weeks to lean and obese mice. Resveratrol had no effect on body weight or blood glucose levels in obese mice. Lipid peroxides were significantly increased in brain of obese mice. The enzymatic antioxidants superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and nonenzymatic antioxidants tocopherol, ascorbic acid, and glutathione were decreased in obese mice brain. Administration of resveratrol decreased lipid peroxide levels and upregulated the antioxidant activities in obese mice brain. Our findings indicate a neuroprotective effect of resveratrol by preventing oxidative damage in brain tissue of obese mice.

  17. Neuroprotection by gonadal steroid hormones in acute brain damage requires cooperation with astroglia and microglia.

    Science.gov (United States)

    Johann, Sonja; Beyer, Cordian

    2013-09-01

    The neuroactive steroids 17β-estradiol and progesterone control a broad spectrum of neural functions. Besides their roles in the regulation of classical neuroendocrine loops, they strongly influence motor and cognitive systems, behavior, and modulate brain performance at almost every level. Such a statement is underpinned by the widespread and lifelong expression pattern of all types of classical and non-classical estrogen and progesterone receptors in the CNS. The life-sustaining power of neurosteroids for tattered or seriously damaged neurons aroused interest in the scientific community in the past years to study their ability for therapeutic use under neuropathological challenges. Documented by excellent studies either performed in vitro or in adequate animal models mimicking acute toxic or chronic neurodegenerative brain disorders, both hormones revealed a high potency to protect neurons from damage and saved neural systems from collapse. Unfortunately, neurons, astroglia, microglia, and oligodendrocytes are comparably target cells for both steroid hormones. This hampers the precise assignment and understanding of neuroprotective cellular mechanisms activated by both steroids. In this article, we strive for a better comprehension of the mutual reaction between these steroid hormones and the two major glial cell types involved in the maintenance of brain homeostasis, astroglia and microglia, during acute traumatic brain injuries such as stroke and hypoxia. In particular, we attempt to summarize steroid-activated cellular signaling pathways and molecular responses in these cells and their contribution to dampening neuroinflammation and neural destruction. This article is part of a Special Issue entitled 'CSR 2013'. PMID:23196064

  18. Imaging study of brain damage from methanol intoxication of wine

    International Nuclear Information System (INIS)

    Objective: To investigate the imaging of CT and MRI in brain damage caused by methanol intoxication from false wine, and to study the relations between imaging manifestation and different degrees of the methanol intoxication. Method: Thirty nine cases with methanol intoxication from false wine were retrospectively reported, The latent period of these patients was 0-4 days, and the average latent period of these patients was 0.5 days, All cases were performed by serology examination, brain CT scan, and four cases performed by MRI scan after average 2.5 days (range, 1-6 days) the onset of methanol intoxication. Results: Six cases showed hyperintense signals in bilateral putamen, two cases also showed hyperintense signals in biolateral subcortex white substance regions. Four cases showed hyperintense signals in unilateral internal capsule. One case showed hyperintense changess in subcortex white substance regions. Our study showed the positive correlation between CT features and the amount of methanol and stage of clinic manifestation(χ2=4.232, P2=0.001, P>0.05). Conclusions: MRI was better than CT in finding early brain damage caused by methanol intoxication from false wine. The characteristic finding changes of the patients was showed mainly in in bilateral putamen, Prognosis for the patients combined with subcortex white substance lesion wasn't hopeful. (authors)

  19. Brain microvascular endothelial cell transplantation ameliorates ischemic white matter damage.

    Science.gov (United States)

    Puentes, Sandra; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Yoshimoto, Yuhei; Mikuni, Masahiko; Imai, Hideaki; Ishizaki, Yasuki

    2012-08-21

    Ischemic insults affecting the internal capsule result in sensory-motor disabilities which adversely affect the patient's life. Cerebral endothelial cells have been reported to exert a protective effect against brain damage, so the transplantation of healthy endothelial cells might have a beneficial effect on the outcome of ischemic brain damage. In this study, endothelin-1 (ET-1) was injected into the rat internal capsule to induce lacunar infarction. Seven days after ET-1 injection, microvascular endothelial cells (MVECs) were transplanted into the internal capsule. Meningeal cells or 0.2% bovine serum albumin-Hank's balanced salt solution were injected as controls. Two weeks later, the footprint test and histochemical analysis were performed. We found that MVEC transplantation improved the behavioral outcome based on recovery of hind-limb rotation angle (P<0.01) and induced remyelination (P<0.01) compared with the control groups. Also the inflammatory response was repressed by MVEC transplantation, judging from fewer ED-1-positive activated microglial cells in the MVEC-transplanted group than in the other groups. Elucidation of the mechanisms by which MVECs ameliorate ischemic damage of the white matter may provide important information for the development of effective therapies for white matter ischemia. PMID:22771710

  20. Changes in the permeability of blood brain barrier and endothelial cell damage after cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Ke Liu; Jiansheng Li

    2006-01-01

    OBJECTIVE: To investigate the effect of endothelial cells on the permeability of blood brain barrier (BBB) after brain injury and its effect mechanism.DATA SOURCES: We searched for the articles of permeability of BBB and endothelial cell injury after brain ischemia, which were published between January 1982 and December 2005, with the key words of "cerebral ischemia damage,blood brain barrier ( BBB),permeability,effect of endothelial cell (EC) and its variation mechanism"in English.STUDY SELECTION: The materials were primarily selected. The articles related to the changes in the permeability of BBB and the effect of endothelial cells as well as the change mechanism after cerebral ischemia damage were chosen. Repetitive studies or review articles were excluded.DATA EXTRACTION: Totally 55 related articles were collected, and 35 were excluded due to repetitive or review articles, finally 20 articles were involved.DATA SYNTHESIS: The content or viewpoints of involved literatures were analyzed. Cerebral ischemia had damage for endothelial cells, such as the inflow of a lot of Ca2+, the production of nitrogen monoxide and oxygen free radical, and aggravated destruction of BBB. After acceptors of inflammatory mediators on cerebrovascular endothelial cell membrane, such as histamine, bradykinin , 5-hydroxytryptamine and so on are activated, endothelial cells shrink and the permeability of BBB increases. Its mechanism involves in the inflow of extracellular Ca2+and the release of intracellular Ca2+ in the cells. Glycocalyx molecule on the surface of endothelial cell, having structural polytropy, is the determinative factor of the permeability of BBB. VEGF, intensively increasing the vasopermeability and mainly effecting on postcapillary vein and veinlet, is the strongest known blood vessel permeation reagent. Its chronic overexpression in the brain can lead the destruction of BBB.CONCLUSION: The injury of endothelial cell participants in the pathological mechanism of BBB

  1. Chronic pain: The role of learning and brain plasticity

    OpenAIRE

    Mansour, A.R.; Farmer, M.A.; Baliki, M. N.; Apkarian, A. Vania

    2014-01-01

    Based on theoretical considerations and recent observations, we argue that continued suffering of chronic pain is critically dependent on the state of motivational and emotional mesolimbic-prefrontal circuitry of the brain. The plastic changes that occur within this circuitry in relation to nociceptive inputs dictate the transition to chronic pain, rendering the pain less somatic and more affective in nature. This theoretical construct is a strong departure from the traditional scientific vie...

  2. Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation

    International Nuclear Information System (INIS)

    This paper presents a flexible microelectromechanical systems (MEMS) neural probe that minimizes neuron damage and immune response, suitable for chronic recording applications. MEMS neural probes with various features such as high electrode densities have been actively investigated for neuron stimulation and recording to study brain functions. However, successful recording of neural signals in chronic application using rigid silicon probes still remains challenging because of cell death and macrophages accumulated around the electrodes over time from continuous brain movement. Thus, in this paper, we propose a new flexible MEMS neural probe that consists of two segments: a polyimide-based, flexible segment for connection and a rigid segment composed of thin silicon for insertion. While the flexible connection segment is designed to reduce the long-term chronic neuron damage, the thin insertion segment is designed to minimize the brain damage during the insertion process. The proposed flexible neural probe was successfully fabricated using the MEMS process on a silicon on insulator wafer. For a successful insertion, a biodegradable sucrose gel is coated on the flexible segment to temporarily increase the probe stiffness to prevent buckling. After the insertion, the sucrose gel dissolves inside the brain exposing the polyimide probe. By performing an insertion test, we confirm that the flexible probe has enough stiffness. In addition, by monitoring immune responses and brain histology, we successfully demonstrate that the proposed flexible neural probe incurs fivefold less neural damage than that incurred by a conventional silicon neural probe. Therefore, the presented flexible neural probe is a promising candidate for recording stable neural signals for long-time chronic applications. (paper)

  3. Chronic cerebrovascular dysfunction after traumatic brain injury.

    Science.gov (United States)

    Jullienne, Amandine; Obenaus, Andre; Ichkova, Aleksandra; Savona-Baron, Catherine; Pearce, William J; Badaut, Jerome

    2016-07-01

    Traumatic brain injuries (TBI) often involve vascular dysfunction that leads to long-term alterations in physiological and cognitive functions of the brain. Indeed, all the cells that form blood vessels and that are involved in maintaining their proper function can be altered by TBI. This Review focuses on the different types of cerebrovascular dysfunction that occur after TBI, including cerebral blood flow alterations, autoregulation impairments, subarachnoid hemorrhage, vasospasms, blood-brain barrier disruption, and edema formation. We also discuss the mechanisms that mediate these dysfunctions, focusing on the cellular components of cerebral blood vessels (endothelial cells, smooth muscle cells, astrocytes, pericytes, perivascular nerves) and their known and potential roles in the secondary injury cascade. © 2016 Wiley Periodicals, Inc. PMID:27117494

  4. Effects ofAstragalus Membranaceus on Ischemia Brain Damage

    Institute of Scientific and Technical Information of China (English)

    Yumin Luo; Zhen Qin

    2000-01-01

    We observed the protective effects of Astragalus Membranaceus on cerebral ischemia. Method: 1. We used intravascular thread rat models with 72hs reperfusion of lh tMCAO for our studies. Astragalus Membranaceus was administrated intraperitoneally in different interval. The rats were sacrificed 72 hours after l h tMCAO. 2. Cerebral infarction volume was determined by TTC staining and image analysis. 3. DTNB method and TBA method were applied to measure the activity of GSH-px and the concentration of MDA respectively. 4. The blood brain barrier damage was evaluated by the area of Evans Blue extravasation. Results:l.The whole brain volume of protective group is larger than its control, but the average infarction volume is significantly less than that of control, and the percentage of average infarction volume to the whole brain is obviously decreased. 2. We found mildly enhanced GSH-px activity and markedly decreased MDA concentration in the protective group compared with its control. But there are no significant changes of GSH-px activity and MDA concentration in the therapy group compared with its control. 3. The area of Evans Blue staining in the protective group is significantly less than that of its control. Conclusion:l.Astragalus Membranaceus can decrease the infarction volume. 2.Astragalus Membranaceus may reduce MDA concentration after cerebral ischemia. 3.Astragalus Membranaceus can protect blood brain barrier.

  5. Ancillary procedure for early diagnosis of brain damage in children

    International Nuclear Information System (INIS)

    CT scan of the head was performed on 14 patients with cerebral palsy, 16 with central coordination disorders, and 16 controls, and findings showing cerebral atrophy and enlargement of the cerebral ventricle were obtained in cases both of cerebral palsy and of central coordination disorders. To objectify these findings, 10 items were selected and evaluated according to 4 grades (0 - 3) and were compared. As a result, it was concluded that CT scan is an excellent ancillary procedure for early diagnosis of brain damages. (Tsunoda, M.)

  6. Brain viscoelasticity alteration in chronic-progressive multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Kaspar-Josche Streitberger

    Full Text Available INTRODUCTION: Viscoelastic properties indicate structural alterations in biological tissues at multiple scales with high sensitivity. Magnetic Resonance Elastography (MRE is a novel technique that directly visualizes and quantitatively measures biomechanical tissue properties in vivo. MRE recently revealed that early relapsing-remitting multiple sclerosis (MS is associated with a global decrease of the cerebral mechanical integrity. This study addresses MRE and MR volumetry in chronic-progressive disease courses of MS. METHODS: We determined viscoelastic parameters of the brain parenchyma in 23 MS patients with primary or secondary chronic progressive disease course in comparison to 38 age- and gender-matched healthy individuals by multifrequency MRE, and correlated the results with clinical data, T2 lesion load and brain volume. Two viscoelastic parameters, the shear elasticity μ and the powerlaw exponent α, were deduced according to the springpot model and compared to literature values of relapsing-remitting MS. RESULTS: In chronic-progressive MS patients, μ and α were reduced by 20.5% and 6.1%, respectively, compared to healthy controls. MR volumetry yielded a weaker correlation: Total brain volume loss in MS patients was in the range of 7.5% and 1.7% considering the brain parenchymal fraction. All findings were significant (P<0.001. CONCLUSIONS: Chronic-progressive MS disease courses show a pronounced reduction of the cerebral shear elasticity compared to early relapsing-remitting disease. The powerlaw exponent α decreased only in the chronic-progressive stage of MS, suggesting an alteration in the geometry of the cerebral mechanical network due to chronic neuroinflammation.

  7. Chronic pain: the role of learning and brain plasticity.

    Science.gov (United States)

    Mansour, A R; Farmer, M A; Baliki, M N; Apkarian, A Vania

    2014-01-01

    Based on theoretical considerations and recent observations, we argue that continued suffering of chronic pain is critically dependent on the state of motivational and emotional mesolimbic-prefrontal circuitry of the brain. The plastic changes that occur within this circuitry in relation to nociceptive inputs dictate the transition to chronic pain, rendering the pain less somatic and more affective in nature. This theoretical construct is a strong departure from the traditional scientific view of pain, which has focused on encoding and representation of nociceptive signals. We argue that the definition of chronic pain can be recast, within the associative learning and valuation concept, as an inability to extinguish the associated memory trace, implying that supraspinal/cortical manipulations may be a more fruitful venue for adequately modulating suffering and related behavior for chronic pain. We briefly review the evidence generated to date for the proposed model and emphasize that the details of underlying mechanisms remain to be expounded.

  8. Dexamethasone alleviates tumor-associated brain damage and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Zheng Fan

    Full Text Available Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA, a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc-; SLC7a11 and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage.

  9. Implications of astrocytes in mediating the protective effects of Selective Estrogen Receptor Modulators upon brain damage

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-04-01

    Full Text Available Selective Estrogen Receptor Modulators (SERMs are steroidal or non-steroidal compounds that are already used in clinical practice for the treatment of breast cancer, osteoporosis and menopausal symptoms. While SERMs actions in the breast, bone, and uterus have been well characterized, their actions in the brain are less well understood. Previous works have demonstrated the beneficial effects of SERMs in different chronic neurodegenerative diseases like Alzheimer, Parkinson’s disease and Multiple sclerosis, as well as acute degeneration as stroke and traumatic brain injury. Moreover, these compounds exhibit similar protective actions as those of estradiol in the Central Nervous System, overt any secondary effect. For these reasons, in the past few years, there has been a growing interest in the neuroprotective effects exerted directly or indirectly by SERMs in the SNC. In this context, astrocytes play an important role in the maintenance of brain metabolism, and antioxidant support to neurons, thus indicating that better protection of astrocytes are an important asset targeting neuronal protection. Moreover, various clinical and experimental studies have reported that astrocytes are essential for the neuroprotective effects of SERMs during neuronal injuries, as these cells express different estrogen receptors in cell membrane, demonstrating that part of SERMs effects upon injury may be mediated by astrocytes. The present work highlights the current evidence on the protective mechanisms of SERMs, such as tamoxifen and raloxifene, in the SNC, and their modulation of astrocytic properties as promising therapeutic targets during brain damage.

  10. MRI findings of brain damage due to neonatal hypoglycemia

    International Nuclear Information System (INIS)

    Objective: To report the MRI findings of brain damage observed in neonatal patients who suffered from isolated hypoglycemia and to explore the value of diffusion-weighted imaging(DWI) in early detection of neonatal hypoglycemic brain injury. Methods: Twelve neonates with isolated hypoglycemia (10 of the 12 were diagnosed to suffer from hypoglycemic encephalopathy) were enrolled in this study. They were first scanned at age from 3 days to 10 days with T1WI, T2WI and DWI(b is 0 s/mm2, 1000 s/mm2), and 4 of them were then scanned from 7 days to 10 days following the initial scan. All acquired MR images were retrospectively analysed. Results: First series of DWI images showed distinct hyperintense signal in 11 cases in several areas including bilateral occipital cortex (2 cases), right occipital cortex (1 case), left occipital cortex and subcortical white matter(1 case), bilateral occipital cortex and subcortical white matter (2 cases), bilateral parieto-occipital cortex (2 cases), bilateral parieto-occipital cortex and subcortical white matter(2 cases), the splenium of corpus callosum (4 cases), bilateral corona radiata( 2 cases), left caudate nucleus and globus pallidus (1 case), bilateral thalamus (1 case), bilaterally posterior limb of internal capsule (1 case). In the initial T1WI and T2WI images, there were subtle hypointensity in the damaged cortical areas (3 cases), hyperintensity in the bilaterally affected occipital cortex( 1 case) on T1 weighted images, and hyperintensity in the affected cortex and subcortical white matter with poor differentiation on T2 weighted images. The followed-up MRI of 4 cases showed regional encephalomalacia in the affected occipital lobes(4 cases), slightly hyperintensity on T2 weighted images in the damaged occipital cortex (2 cases), extensive demyelination (1 case), disappearance of hyperintensity of the splenium of corpus callosum (1 case), and persistent hyperintensity in the splenium of corpus callosum (1 case) on T2 weighted

  11. AMBIENT PARTICULATE MATTER STIMULATES OXIDATIVE STRESS IN BRAIN MICROGLIA AND DAMAGES NEURONS IN CULTURE.

    Science.gov (United States)

    Ambient particulate matter (PM) damages biological targets through oxidative stress (OS) pathways. Several reports indicate that the brain is one of those targets. Since microglia (brain macrophage) are critical to OS-mediated neurodegeneration, their response to concentrated amb...

  12. The Sensitization Model to Explain How Chronic Pain Exists Without Tissue Damage

    NARCIS (Netherlands)

    van Wilgen, C. Paul; Keizer, Doeke

    2012-01-01

    The interaction of nurses with chronic pain patients is often difficult. One of the reasons is that chronic pain is difficult to explain, because no obvious anatomic defect or tissue damage is present. There is now enough evidence available indicating that chronic pain syndromes such as low back pai

  13. Mapping neuroplastic potential in brain-damaged patients.

    Science.gov (United States)

    Herbet, Guillaume; Maheu, Maxime; Costi, Emanuele; Lafargue, Gilles; Duffau, Hugues

    2016-03-01

    It is increasingly acknowledged that the brain is highly plastic. However, the anatomic factors governing the potential for neuroplasticity have hardly been investigated. To bridge this knowledge gap, we generated a probabilistic atlas of functional plasticity derived from both anatomic magnetic resonance imaging results and intraoperative mapping data on 231 patients having undergone surgery for diffuse, low-grade glioma. The atlas includes detailed level of confidence information and is supplemented with a series of comprehensive, connectivity-based cluster analyses. Our results show that cortical plasticity is generally high in the cortex (except in primary unimodal areas and in a small set of neural hubs) and rather low in connective tracts (especially associative and projection tracts). The atlas sheds new light on the topological organization of critical neural systems and may also be useful in predicting the likelihood of recovery (as a function of lesion topology) in various neuropathological conditions-a crucial factor in improving the care of brain-damaged patients. PMID:26912646

  14. A prospective study to evaluate a new residential community reintegration programme for severe chronic brain injury: the Brain Integration Programme.

    NARCIS (Netherlands)

    Geurtsen, G.J.; Martina, J.D.; Heugten, C.M. van; Geurts, A.C.H.

    2008-01-01

    PURPOSE: To assess the effectiveness of a residential community reintegration programme for participants with chronic sequelae of severe acquired brain injury that hamper community functioning. DESIGN: Prospective cohort study. SUBJECTS: Twenty-four participants with acquired brain injury (traumatic

  15. Shared Immune and Repair Markers During Experimental Toxoplasma Chronic Brain Infection and Schizophrenia.

    Science.gov (United States)

    Tomasik, Jakub; Schultz, Tracey L; Kluge, Wolfgang; Yolken, Robert H; Bahn, Sabine; Carruthers, Vern B

    2016-03-01

    Chronic neurologic infection with Toxoplasma gondii is relatively common in humans and is one of the strongest known risk factors for schizophrenia. Nevertheless, the exact neuropathological mechanisms linking T gondii infection and schizophrenia remain unclear. Here we utilize a mouse model of chronic T gondii infection to identify protein biomarkers that are altered in serum and brain samples at 2 time points during chronic infection. Furthermore, we compare the identified biomarkers to those differing between "postmortem" brain samples from 35 schizophrenia patients and 33 healthy controls. Our findings suggest that T gondii infection causes substantial and widespread immune activation indicative of neural damage and reactive tissue repair in the animal model that partly overlaps with changes observed in the brains of schizophrenia patients. The overlapping changes include increases in C-reactive protein (CRP), interleukin-1 beta (IL-1β), interferon gamma (IFNγ), plasminogen activator inhibitor 1 (PAI-1), tissue inhibitor of metalloproteinases 1 (TIMP-1), and vascular cell adhesion molecule 1 (VCAM-1). Potential roles of these factors in the pathogenesis of schizophrenia and toxoplasmosis are discussed. Identifying a defined set of markers shared within the pathophysiological landscape of these diseases could be a key step towards understanding their specific contributions to pathogenesis. PMID:26392628

  16. Disrupted Brain Functional Network Architecture in Chronic Tinnitus Patients

    Science.gov (United States)

    Chen, Yu-Chen; Feng, Yuan; Xu, Jin-Jing; Mao, Cun-Nan; Xia, Wenqing; Ren, Jun; Yin, Xindao

    2016-01-01

    Purpose: Resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated the disruptions of multiple brain networks in tinnitus patients. Nonetheless, several studies found no differences in network processing between tinnitus patients and healthy controls (HCs). Its neural bases are poorly understood. To identify aberrant brain network architecture involved in chronic tinnitus, we compared the resting-state fMRI (rs-fMRI) patterns of tinnitus patients and HCs. Materials and Methods: Chronic tinnitus patients (n = 24) with normal hearing thresholds and age-, sex-, education- and hearing threshold-matched HCs (n = 22) participated in the current study and underwent the rs-fMRI scanning. We used degree centrality (DC) to investigate functional connectivity (FC) strength of the whole-brain network and Granger causality to analyze effective connectivity in order to explore directional aspects involved in tinnitus. Results: Compared to HCs, we found significantly increased network centrality in bilateral superior frontal gyrus (SFG). Unidirectionally, the left SFG revealed increased effective connectivity to the left middle orbitofrontal cortex (OFC), left posterior lobe of cerebellum (PLC), left postcentral gyrus, and right middle occipital gyrus (MOG) while the right SFG exhibited enhanced effective connectivity to the right supplementary motor area (SMA). In addition, the effective connectivity from the bilateral SFG to the OFC and SMA showed positive correlations with tinnitus distress. Conclusions: Rs-fMRI provides a new and novel method for identifying aberrant brain network architecture. Chronic tinnitus patients have disrupted FC strength and causal connectivity mostly in non-auditory regions, especially the prefrontal cortex (PFC). The current findings will provide a new perspective for understanding the neuropathophysiological mechanisms in chronic tinnitus. PMID:27458377

  17. Chronic inflammatory demyelinating polyneuropathy

    Science.gov (United States)

    Polyneuropathy - chronic inflammatory; CIDP; Chronic inflammatory polyneuropathy; Guillain-Barré - CIDP ... CIDP is one cause of damage to nerves outside the brain or spinal cord ( peripheral neuropathy ). Polyneuropathy ...

  18. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging.

    Science.gov (United States)

    Barrio, Jorge R; Small, Gary W; Wong, Koon-Pong; Huang, Sung-Cheng; Liu, Jie; Merrill, David A; Giza, Christopher C; Fitzsimmons, Robert P; Omalu, Bennet; Bailes, Julian; Kepe, Vladimir

    2015-04-21

    Chronic traumatic encephalopathy (CTE) is an acquired primary tauopathy with a variety of cognitive, behavioral, and motor symptoms linked to cumulative brain damage sustained from single, episodic, or repetitive traumatic brain injury (TBI). No definitive clinical diagnosis for this condition exists. In this work, we used [F-18]FDDNP PET to detect brain patterns of neuropathology distribution in retired professional American football players with suspected CTE (n = 14) and compared results with those of cognitively intact controls (n = 28) and patients with Alzheimer's dementia (AD) (n = 24), a disease that has been cognitively associated with CTE. [F-18]FDDNP PET imaging results in the retired players suggested the presence of neuropathological patterns consistent with models of concussion wherein brainstem white matter tracts undergo early axonal damage and cumulative axonal injuries along subcortical, limbic, and cortical brain circuitries supporting mood, emotions, and behavior. This deposition pattern is distinctively different from the progressive pattern of neuropathology [paired helical filament (PHF)-tau and amyloid-β] in AD, which typically begins in the medial temporal lobe progressing along the cortical default mode network, with no or minimal involvement of subcortical structures. This particular [F-18]FDDNP PET imaging pattern in cases of suspected CTE also is primarily consistent with PHF-tau distribution observed at autopsy in subjects with a history of mild TBI and autopsy-confirmed diagnosis of CTE.

  19. Sex Differences in the Effects of Unilateral Brain Damage on Intelligence

    Science.gov (United States)

    Inglis, James; Lawson, J. S.

    1981-05-01

    A sexual dimorphism in the functional asymmetry of the damaged human brain is reflected in a test-specific laterality effect in male but not in female patients. This sex difference explains some contradictions concerning the effects of unilateral brain damage on intelligence in studies in which the influence of sex was overlooked.

  20. Environmental enrichment promotes neural remodeling in newborn rats with hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Chuanjun Liu; Yankui Guo; Yalu Li; Zhenying Yang

    2011-01-01

    We evaluated the effect of hypoxic-ischemic brain damage and treatment with early environmental enrichment intervention on development of newborn rats, as evaluated by light and electron microscopy and morphometry. Early intervention with environmental enrichment intelligence training attenuated brain edema and neuronal injury, promoted neuronal repair, and increased neuronal plasticity in the frontal lobe cortex of the newborn rats with hypoxic-ischemic brain damage.

  1. A chronic generalized bi-directional brain-machine interface

    Science.gov (United States)

    Rouse, A. G.; Stanslaski, S. R.; Cong, P.; Jensen, R. M.; Afshar, P.; Ullestad, D.; Gupta, R.; Molnar, G. F.; Moran, D. W.; Denison, T. J.

    2011-06-01

    A bi-directional neural interface (NI) system was designed and prototyped by incorporating a novel neural recording and processing subsystem into a commercial neural stimulator architecture. The NI system prototype leverages the system infrastructure from an existing neurostimulator to ensure reliable operation in a chronic implantation environment. In addition to providing predicate therapy capabilities, the device adds key elements to facilitate chronic research, such as four channels of electrocortigram/local field potential amplification and spectral analysis, a three-axis accelerometer, algorithm processing, event-based data logging, and wireless telemetry for data uploads and algorithm/configuration updates. The custom-integrated micropower sensor and interface circuits facilitate extended operation in a power-limited device. The prototype underwent significant verification testing to ensure reliability, and meets the requirements for a class CF instrument per IEC-60601 protocols. The ability of the device system to process and aid in classifying brain states was preclinically validated using an in vivo non-human primate model for brain control of a computer cursor (i.e. brain-machine interface or BMI). The primate BMI model was chosen for its ability to quantitatively measure signal decoding performance from brain activity that is similar in both amplitude and spectral content to other biomarkers used to detect disease states (e.g. Parkinson's disease). A key goal of this research prototype is to help broaden the clinical scope and acceptance of NI techniques, particularly real-time brain state detection. These techniques have the potential to be generalized beyond motor prosthesis, and are being explored for unmet needs in other neurological conditions such as movement disorders, stroke and epilepsy.

  2. Chronic Methamphetamine Effects on Brain Structure and Function in Rats

    Science.gov (United States)

    Thanos, Panayotis K.; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J.; Masad, Ihssan; Muniz, Jose A.; Grant, Samuel C.; Gold, Mark S.; Cadet, Jean Lud; Volkow, Nora D.

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA

  3. Chronic Methamphetamine Effects on Brain Structure and Function in Rats.

    Directory of Open Access Journals (Sweden)

    Panayotis K Thanos

    Full Text Available Methamphetamine (MA addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET studies have shown decreased brain glucose metabolism (BGluM in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls, or low dose (LD MA (4 mg/kg, or high dose (HD MA (8 mg/kg. Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG, and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA

  4. Protection of Effective Component Group from Xiaoshuan Tongluo on Brain Injury after Chronic Hypoperfusion in Rats

    Institute of Scientific and Technical Information of China (English)

    TAN Chu-bing; WANG Hong-qing; TIAN Shuo; GAO Mei; XU Wei-ren; CHEN Ruo-yun; DU Guan-hua

    2011-01-01

    Objective To investigate the protective effects of purified effective component group in extract from Xiaoshuan Tongluo(CGXT)formula on chronic brain ischemia in rats.Methods CGXT 75,150,and 300 mg/kg or vehicle were ig administered daily for four weeks to rats with bilateral common carotid arteries ligation(BCCAL).From the day 24 to 28 after BCCAL,Morris water maze was performed to assess the learning and memory impairment of rats.Four weeks after BCCAL,brain gray and white matter damage were assessed.Results In Morris test,the mean escape latency of rats in the CGXT(150 and 300 mg/kg)groups was significantly shorter than that in the vehicle group.CGXT also attenuated the neuronal damage in hippocampus and cortex and reduced the pathological damage in the optic tract and corpus callosum.Conclusion CGXT could improve learning and memory impairment resulted from BCCAL in rats.These results provide the experimental basis for the clinical use of CGXT in stroke treatment and may help in investigation of multimodal therapy strategies in ischemic cerebrovascular diseases including stroke.

  5. Chronic impact of traumatic brain injury on outcome and quality of life: a narrative review.

    Science.gov (United States)

    Stocchetti, Nino; Zanier, Elisa R

    2016-01-01

    Traditionally seen as a sudden, brutal event with short-term impairment, traumatic brain injury (TBI) may cause persistent, sometimes life-long, consequences. While mortality after TBI has been reduced, a high proportion of severe TBI survivors require prolonged rehabilitation and may suffer long-term physical, cognitive, and psychological disorders. Additionally, chronic consequences have been identified not only after severe TBI but also in a proportion of cases previously classified as moderate or mild. This burden affects the daily life of survivors and their families; it also has relevant social and economic costs.Outcome evaluation is difficult for several reasons: co-existing extra-cranial injuries (spinal cord damage, for instance) may affect independence and quality of life outside the pure TBI effects; scales may not capture subtle, but important, changes; co-operation from patients may be impossible in the most severe cases. Several instruments have been developed for capturing specific aspects, from generic health status to specific cognitive functions. Even simple instruments, however, have demonstrated variable inter-rater agreement.The possible links between structural traumatic brain damage and functional impairment have been explored both experimentally and in the clinical setting with advanced neuro-imaging techniques. We briefly report on some fundamental findings, which may also offer potential targets for future therapies.Better understanding of damage mechanisms and new approaches to neuroprotection-restoration may offer better outcomes for the millions of survivors of TBI. PMID:27323708

  6. Diffusion Tensor Imaging Study of White Matter Damage in Chronic Meningitis

    OpenAIRE

    Lin, Wei-Che; Chen, Pei-Chin; Wang, Hung-Chen; Tsai, Nai-Wen; Chou, Kun-Hsien; Chen, Hsiu-Ling; Su, Yu-Jih; Lin, Ching-Po; Li, Shau-Hsuan; Chang, Wen-Neng; Lu, Cheng-Hsien

    2014-01-01

    Tuberculous meningitis (TBM) and cryptococcal meningitis (CM) are two of the most common types of chronic meningitis. This study aimed to assess whether chronic neuro-psychological sequelae are associated with micro-structure white matter (WM) damage in HIV-negative chronic meningitis. Nineteen HIV-negative TBM patients, 13 HIV-negative CM patients, and 32 sex- and age-matched healthy volunteers were evaluated and compared. The clinical relevance of WM integrity was studied using voxel-based ...

  7. Hyper-resting brain entropy within chronic smokers and its moderation by Sex

    OpenAIRE

    Zhengjun Li; Zhuo Fang; Nathan Hager; Hengyi Rao; Ze Wang

    2016-01-01

    Cigarette smoking is a chronic relapsing brain disorder, and remains a premier cause of morbidity and mortality. Functional neuroimaging has been used to assess differences in the mean strength of brain activity in smokers’ brains, however less is known about the temporal dynamics within smokers’ brains. Temporal dynamics is a key feature of a dynamic system such as the brain, and may carry information critical to understanding the brain mechanisms underlying cigarette smoking. We measured th...

  8. Studies on cerebral protection of digoxin against hypoxic-ischemic brain damage in neonatal rats.

    Science.gov (United States)

    Peng, Kaiwei; Tan, Danfeng; He, Miao; Guo, Dandan; Huang, Juan; Wang, Xia; Liu, Chentao; Zheng, Xiangrong

    2016-08-17

    Hypoxic-ischemic brain damage (HIBD) is a major cause of neonatal acute deaths and chronic nervous system damage. Our present study was designed to investigate the possible neuroprotective effect of digoxin-induced pharmacological preconditioning after hypoxia-ischemia and underlying mechanisms. Neonatal rats were assigned randomly to control, HIBD, or HIBD+digoxin groups. Pharmacological preconditioning was induced by administration of digoxin 72 h before inducing HIBD by carotid occlusion+hypoxia. Behavioral assays, and neuropathological and apoptotic assessments were performed to examine the effects; the expression of Na/K ATPase was also assessed. Rats in the HIBD group showed deficiencies on the T-maze, radial water maze, and postural reflex tests, whereas the HIBD+digoxin group showed significant improvements on all behavioral tests. The rats treated with digoxin showed recovery of pathological conditions, increased number of neural cells and proliferative cells, and decreased number of apoptotic cells. Meanwhile, an increased expression level of Na/K ATPase was observed after digoxin preconditioning treatment. The preconditioning treatment of digoxin contributed toward an improved functional recovery and exerted a marked neuroprotective effect including promotion of cell proliferation and reduction of apoptosis after HIBD, and the neuroprotective action was likely associated with increased expression of Na/K ATPase. PMID:27362436

  9. Brain Connectivity Predicts Placebo Response across Chronic Pain Clinical Trials

    Science.gov (United States)

    Tétreault, Pascal; Mansour, Ali; Vachon-Presseau, Etienne; Schnitzer, Thomas J.; Apkarian, A. Vania

    2016-01-01

    Placebo response in the clinical trial setting is poorly understood and alleged to be driven by statistical confounds, and its biological underpinnings are questioned. Here we identified and validated that clinical placebo response is predictable from resting-state functional magnetic-resonance-imaging (fMRI) brain connectivity. This also led to discovering a brain region predicting active drug response and demonstrating the adverse effect of active drug interfering with placebo analgesia. Chronic knee osteoarthritis (OA) pain patients (n = 56) underwent pretreatment brain scans in two clinical trials. Study 1 (n = 17) was a 2-wk single-blinded placebo pill trial. Study 2 (n = 39) was a 3-mo double-blinded randomized trial comparing placebo pill to duloxetine. Study 3, which was conducted in additional knee OA pain patients (n = 42), was observational. fMRI-derived brain connectivity maps in study 1 were contrasted between placebo responders and nonresponders and compared to healthy controls (n = 20). Study 2 validated the primary biomarker and identified a brain region predicting drug response. In both studies, approximately half of the participants exhibited analgesia with placebo treatment. In study 1, right midfrontal gyrus connectivity best identified placebo responders. In study 2, the same measure identified placebo responders (95% correct) and predicted the magnitude of placebo’s effectiveness. By subtracting away linearly modeled placebo analgesia from duloxetine response, we uncovered in 6/19 participants a tendency of duloxetine enhancing predicted placebo response, while in another 6/19, we uncovered a tendency for duloxetine to diminish it. Moreover, the approach led to discovering that right parahippocampus gyrus connectivity predicts drug analgesia after correcting for modeled placebo-related analgesia. Our evidence is consistent with clinical placebo response having biological underpinnings and shows that the method can also reveal that active

  10. Anomia training and brain stimulation in chronic aphasia.

    Science.gov (United States)

    Cotelli, Maria; Fertonani, Anna; Miozzo, Antonio; Rosini, Sandra; Manenti, Rosa; Padovani, Alessandro; Ansaldo, Ana Ines; Cappa, Stefano F; Miniussi, Carlo

    2011-10-01

    Recent studies have reported enhanced performance on language tasks induced by non-invasive brain stimulation, i.e., repetitive transcranial magnetic stimulation (rTMS), or transcranial direct current stimulation (tDCS), in patients with aphasia due to stroke or Alzheimer's disease (AD). The first part of this article reviews brain stimulation studies related to language recovery in aphasic patients. The second part reports results from a pilot study with three chronic stroke patients who had non-fluent aphasia, where real or placebo rTMS was immediately followed by 25 minutes of individualised speech therapy. Real rTMS consisted of high-frequency rTMS over the left dorsolateral prefrontal cortex (BA 8/9) for 25 minutes. Each patient underwent a total of four weeks of intervention. P1 underwent four weeks of real rTMS (5 days/week) where individualised speech therapy was provided for 25 minutes immediately following each rTMS session. P2 and P3 each underwent two weeks of placebo rTMS, followed immediately by individualised speech therapy; then two weeks of real rTMS, followed immediately by individualised speech therapy. Assessments took place at 2, 4, 12, 24 and 48 weeks post-entry/baseline testing. Relative to entry/baseline testing, a significant improvement in object naming was observed at all testing times, from two weeks post-intervention in real rTMS plus speech therapy, or placebo rTMS plus speech therapy. Our findings suggest beneficial effects of targeted behavioural training in combination with brain stimulation in chronic aphasic patients. However, further work is required in order to verify whether optimal combination parameters (rTMS alone or speech therapy alone) and length of rTMS treatment may be found.

  11. Zika Brain Damage May Occur in Babies with Normal-Sized Heads

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_159621.html Zika Brain Damage May Occur in Babies With Normal- ... 2016 (HealthDay News) -- In the ongoing crisis around Zika-linked birth defects, attention has been largely focused ...

  12. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    NARCIS (Netherlands)

    D.C. Engel (Doortje Caroline)

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse, and se

  13. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    Science.gov (United States)

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  14. 45. Damage effects of sulfur dioxide inhalation on DNA of brain cells from mice

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The damage effects of sulfur dioxide (SO2) inhalation on DNA of brain cells from mice were studied with the single cell microgel electrophoresis tecknique (Comet test). The results show that SO2 inhalation caused the damage effects to DNA of the mouse brain cells in a dose-dependent manner. The results indicate that even under SO2 inhalation at low concentrations as 7 mg SO2/m3, The brain cells with DNA damaged also reached to 98.8%, it implies the brain cells of mammalian animals are very sensitive to SO2 inhalation. The results also indicate that DNA damage of the brain cells from male mice is more serious than that from female mice, that remains to be further studied. These results led us to conclusion SO2 pollution even at low concentrations also has a potential risk to damage genetic material DNA of brain cells from mammalian animals. It might be explained by our conclusion that the recently published epidemiological studies of workers exposed to SO2 or it's derivatives (bi)sulfite) found increased mortality for brain cancer.

  15. Overexpression of extracellular superoxide dismutase protects against brain injury induced by chronic hypoxia.

    Directory of Open Access Journals (Sweden)

    Nahla Zaghloul

    Full Text Available Extracellular superoxide dismutase (EC-SOD is an isoform of SOD normally found both intra- and extra-cellularly and accounting for most SOD activity in blood vessels. Here we explored the role of EC-SOD in protecting against brain damage induced by chronic hypoxia. EC-SOD Transgenic mice, were exposed to hypoxia (FiO2.1% for 10 days (H-KI and compared to transgenic animals housed in room air (RA-KI, wild type animals exposed to hypoxia (H-WT or wild type mice housed in room air (RA-WT. Overall brain metabolism evaluated by positron emission tomography (PET showed that H-WT mice had significantly higher uptake of 18FDG in the brain particularly the hippocampus, hypothalamus, and cerebellum. H-KI mice had comparable uptake to the RA-KI and RA-WT groups. To investigate the functional state of the hippocampus, electrophysiological techniques in ex vivo hippocampal slices were performed and showed that H-KI had normal synaptic plasticity, whereas H-WT were severely affected. Markers of oxidative stress, GFAP, IBA1, MIF, and pAMPK showed similar values in the H-KI and RA-WT groups, but were significantly increased in the H-WT group. Caspase-3 assay and histopathological studies showed significant apoptosis/cell damage in the H-WT group, but no significant difference in the H-KI group compared to the RA groups. The data suggest that EC-SOD has potential prophylactic and therapeutic roles in diseases with compromised brain oxygenation.

  16. Neurotherapy for chronic headache following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    David V Nelson; Mary Lee Esty

    2015-01-01

    Background:Chronic headache following traumatic brain injury (TBI) sustained in military service, while common, is highly challenging to treat with existing pharmacologic and non-pharmacologic interventions, and it may be complicated by co-morbid posttraumatic stress. Recently, a novel form of brainwave-based intervention known as the Flexyx Neurotherapy System (FNS), which involves minute pulses of electromagnetic energy stimulation of brainwave activity, has been suggested as a means to address symptoms of TBI. This study reports on a clinical series of patients with chronic headache following service-connected TBI treated with FNS. Methods: Nine veterans of the wars in Afghanistan and Iraq with moderate to severe chronic headaches following service-connected TBI complicated by posttraumatic stress symptoms were treated in 20 individual FNS sessions at the Brain Wellness and Biofeedback Center of Washington (in Bethesda, Maryland, USA). They periodically completed measures including the Brief Pain Inventory-Headache (BPI-HA), previous week worst and average pain ratings, the Posttraumatic Stress Disorder Checklist-Military version (PCL-M), and an individual treatment session numerical rating scale (NRS) for the degree of cognitive dysfunction. Data analyses included beginning-to-end of treatmentt-test comparisons for the BPI-HA, PCL-M, and cognitive dysfunction NRS. Results: All beginning-to-end of treatmentt-test comparisons for the BPI-HA, PCL-M, and cognitive dysfunction NRS indicated statistically significant decreases. All but one participant experienced a reduction in headaches along with reductions in posttraumatic stress and perceived cognitive dysfunction, with a subset experiencing the virtual elimination of headaches. One participant obtained modest headache relief but no improvements in posttraumatic stress or cognitive dysfunction. Conclusions: FNS may be a potentially efficacious treatment for chronic posttraumatic headache sustained in military

  17. Unilateral Brain Damage Effects on Processing Homonymous and Polysemous Words

    Science.gov (United States)

    Klepousniotou, E.; Baum, S.R.

    2005-01-01

    Using an auditory semantic priming paradigm, the present study investigated the abilities of left-hemisphere-damaged (LHD) non-fluent aphasic, right-hemisphere-damaged (RHD) and normal control individuals to access, out of context, the multiple meanings of three types of ambiguous words, namely homonyms (e.g., ''punch''), metonymies (e.g.,…

  18. Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain

    Science.gov (United States)

    Ramesh, Govindarajan; Wu, Honglu

    Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.

  19. Matching Top–Bottom Parts of Facial Expressions by Brain-Damaged Patients

    OpenAIRE

    Hari S. Asthana; Manas K. Mandal; Tandon, Shiv C.; Sanjay Asthana

    1991-01-01

    Patients with focal brain-damage, right/left hemisphere-damage (RHD/LHD) and anterior/posterior region-damage (ARD/PRD), and normal controls (NC) were asked to match photographs of top–bottom facial parts expressing different emotions, positive (happy, surprise), negative–aroused (fear, anger), negative–nonaroused (sad, disgust). The LHD patients performed significantly worse than the RHD patients, and the ARD patients were significantly worse than the PRD patients, in the perceptual-matching...

  20. Brain tissue oxidative damage as a possible mechanism for the deleterious effect of a chronic high dose of estradiol on learning and memory in ovariectomized rats Dano oxidativo ao tecido cerebral como possível mecanismo de efeito deletério da alta dose crônica de estradiol no aprendizado e memória de ratas ooforectomizadas

    Directory of Open Access Journals (Sweden)

    Fatimeh Khodabandehloo

    2013-05-01

    Full Text Available In addition to antioxidative effects, estrogens also exert pro-oxidative actions. The effect of chronic administration of a high dose of estradiol valerate on Morris water maze tasks and brain tissues oxidative damage was investigated. The Sham-Est and OVX-Est groups were treated with estradiol valerate (4 mg/kg for 12 weeks. Escape latency and traveled path in the Sham-Est and OVX-Est groups were significantly higher than in the Sham and OVX groups (p≪0.01 and p≪0.001. In the probe trial, the animals of the Sham-Est and OVX-Est groups spent lower time in Q1 compared to Sham and OVX groups (p≪0.05 and p≪0.001. In Sham-Est and OVX-Est groups, the brain tissue total thiol concentration was significantly lower, and malondialdehyde (MDA concentrations were higher than in the Sham and OVX groups (p≪0.05 and p≪0.001. It is concluded that administration of high exogenous levels of estradiol impairs performance and enhances oxidative stress.Além dos efeitos antioxidantes, os estrógenos também têm ação pró-oxidativa. Foi investigado o efeito da administração crônica de alta dose de valereato de estradiol no desempenho do labirinto aquático de Morris e o dano oxidativo ao tecido cerebral. Os grupos Sham-Est e OVX-Est foram tratados com valereato de estradiol (4 mg/kg por 12 semanas. O tempo de latência para escapada e o caminho percorrido foram significativamente maiores nos grupos Sham-Est e OVX-Est em relação aos grupos Sham e OVX (p≪0,01 e p≪0,001. No estudo probe, os animais dos grupos Sham-Est e OVX-Est levaram menos tempo no Q1 em comparação aos grupos Sham e OVX (p≪0,05 e p≪0,001. Nos grupos Sham-Est e OVX-Est, a concentração total de tiol foi significativamente menor, enquanto a concentração de malondialdehydo (MDA for maior do que aquela dos grupos Sham e OVX (p≪0,05 e p≪0,001. Concluiu-se que a administração de altas doses de estradiol exógeno compromete o desempenho e aumenta o estresse oxidativo

  1. Clinical peculiarities of the brain damage in the liquidators of the Chernobyl accident

    International Nuclear Information System (INIS)

    Investigation into the features of the brain damage by the liquidators of the Chernobyl accident has become an urgent issue of today due to a number of circumstances. According to the classical concept dominating radiobiology until recently, the brain being composed of highly - differentiated nerve cells, present a radioresistant structure responsive to radiation injury induced by high and very high radiation doses (10000 rem and higher) only. The results of clinical examinations given to the Chernobyl accident recovery workers at Kiev Institute of Neurosurgery, Academy of Medical Sciences of Ukraine, show that even the so - called ''small - dose'' radiation, when consumed continuously, produces neurological sings of brain damage. 6 figs

  2. Alcohol Alert: Alcohol's Damaging Effects on the Brain

    Science.gov (United States)

    ... R.; et al. Gender differences in moderate drinking effects. Alcohol Research & Health 23:55–64, 1999. (5) Loft, S. ; ... A.; and Sullivan, E. Sex differences in the effects of alcohol on brain structure. American Journal of Psychiatry 158: ...

  3. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    OpenAIRE

    Engel, Doortje Caroline

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse, and several rare causes e.g. the use of nail guns or lawn mowers have all been described as causes of TBI. The pathology of TBI can be classified by mechanism (closed versus penetrating); clinical severi...

  4. A brain signature to differentiate acute and chronic pain in rats

    OpenAIRE

    Yifei eGuo; Yuzheng eWang; Yabin eSun; Jin-Yan eWang

    2016-01-01

    The transition from acute pain to chronic pain entails considerable changes of patients at multiple levels of the nervous system and in psychological states. An accurate differentiation between acute and chronic pain is essential in pain management as it may help optimize analgesic treatments according to the pain state of patients. Given that acute and chronic pain could modulate brain states in different ways and that brain states could greatly shape the neural processing of external inputs...

  5. Reduced cortical thickness of brain areas involved in pain processing in patients with chronic pancreatitis.

    NARCIS (Netherlands)

    Frokjaer, J.B.; Bouwense, S.A.W.; Olesen, S.S.; Lundager, F.H.; Eskildsen, S.F.; Goor, H. van; Wilder-Smith, O.H.G.; Drewes, A.M.

    2012-01-01

    BACKGROUND & AIMS: Patients with painful chronic pancreatitis (CP) might have abnormal brain function. We assessed cortical thickness in brain areas involved in visceral pain processing. METHODS: We analyzed brain morphologies of 19 patients with painful CP and compared them with 15 healthy individu

  6. Contralateral and ipsilateral disorders of visual attention in patients with unilateral brain damage.

    Science.gov (United States)

    Gainotti, G; Giustolisi, L; Nocentini, U

    1990-05-01

    To explain the prevalence of unilateral spatial neglect in patients with right brain damage, Heilman et al have suggested that the attentional neurons of the right parietal lobe might have bilateral receptive fields, whereas the homologous cells of the left hemisphere would have strictly contralateral receptive fields. One implication of this theory is that patients with right brain damage should show a prevalence of disorders of visual attention not only in the half space contralateral to the damaged hemisphere, but also in the ipsilateral one. To check this theory, 50 control subjects, 102 right and 125 left brain-damaged patients were given a drawing completion task in which patients were requested to complete the missing parts of a star, a cube and a house. Omissions of lines lying on the sides of the models contralateral and ipsilateral to the damaged hemisphere were taken separately into account. Results did not confirm the hypothesis, since right brain-damaged patients failed to complete the contralateral sides of the models much more frequently than patients with left brain injury, but no difference was found between the two hemispheric groups when ipsilateral disorders of visual attention were taken into account. Furthermore, no correlation was found between omissions of lines lying on the sides of the models contralateral and ipsilateral to the damaged hemisphere. This finding suggests that contralateral and ipsilateral disorders of visual attention are not due to the same mechanism in right brain-damaged patients. The alternative hypothesis viewing ipsilateral disorders as resulting from a widespread lowering of general attention (and only contralateral neglect reflecting a specific disorder of visual attention) was supported by results obtained on a verbal memory test, used to evaluate the general cognitive and attention level of the patients. Patients with clear-cut ipislateral inattention obtained very low scores on this test, whereas patients with

  7. "Neuropeptides in the brain defense against distant organ damage".

    Science.gov (United States)

    Hamasaki, Mike Yoshio; Barbeiro, Hermes Vieira; Barbeiro, Denise Frediani; Cunha, Débora Maria Gomes; Koike, Marcia Kiyomi; Machado, Marcel Cerqueira César; Pinheiro da Silva, Fabiano

    2016-01-15

    Delirium, or acute confusional state, is a common manifestation in diseases that originate outside the central nervous system, affecting 30-40% of elderly hospitalized patients and up to 80% of the critically ill, even though it remains unclear if severe systemic inflammation is able or not to induce cellular disturbances and immune activation in the brain. Neuropeptides are pleotropic molecules heterogeneously distributed throughout the brain and possess a wide spectrum of functions, including regulation of the inflammatory response, so we hypothesized that they would be the major alarm system in the brain before overt microglia activation. In order to investigate this hypothesis, we induced acute pancreatitis in 8-10week old rats and collected brain tissue, 12 and 24h following pancreatic injury, to measure neuropeptide and cytokine tissue levels. We found significantly higher levels of β-endorphin, orexin and oxytocin in the brain of rats submitted to pancreatic injury, when compared to healthy controls. Interestingly, these differences were not associated with increased local cytokine levels, putting in evidence that neuropeptide release occurred independently of microglia activation and may be a pivotal alarm system to initiate neurologic reactions to distant inflammatory non-infectious aggression.

  8. Expression of receptor for advanced glycation endproducts and nuclear factor κB in brain hippocampus of rat with chronic fluorosis

    Institute of Scientific and Technical Information of China (English)

    张凯琳

    2014-01-01

    Objective To investigate the expressions of receptor for advanced glycation endproducts(RAGE)and nuclear factorκB(NF-κB)in brain hippocampus of rat with chronic fluorosis,and to reveal the mechanism of brain damage resulted from chronic fluorosis.Methods Sixty clean grade SD rats were randomly divided to three groups(20 rats in each group,10 female and 10 male)fed with different contents of fluoride,control group with normal tap-water(<0.5 mg/L fluoride),

  9. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice.

    Science.gov (United States)

    Shin, Jin A; Jeong, Sae Im; Kim, Minsuk; Yoon, Joo Chun; Kim, Hee-Sun; Park, Eun-Mi

    2015-11-01

    Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population. PMID:26184082

  10. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice.

    Science.gov (United States)

    Shin, Jin A; Jeong, Sae Im; Kim, Minsuk; Yoon, Joo Chun; Kim, Hee-Sun; Park, Eun-Mi

    2015-11-01

    Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population.

  11. EFFECTS OF CHRONIC STRESS ON THE ACTIVITIES OF SOD, GSH-Px AND MDA LEVEL IN FEMALE RATS' BRAIN

    Institute of Scientific and Technical Information of China (English)

    王莹; 杨东伟; 谢雯; 庞炜; 蒋马莉; 韩太真

    2002-01-01

    Objective To observe the effects of chronic emotional stress on the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and malonialdehyde (MDA) level in female rats' brain. Methods The rats were randomly divided into 4 groups: normal control group (group N), emotional stress group (group E), emotional stress + pregnancy group (group E+P) and regularly drinking group (group R). Emotional stress in rats was induced by training rats with empty drinking bottles. Having been finished the stress procedure, the brain was taken out and homogenized. Then the activities of SOD, GSH-Px and MDA level were measured. Results Compared to group N, both the activities of SOD in brain tissues of group E and group E+P were significantly decreased (P<0.05 and P<0.01, respectively) while the MDA level increased (P<0.05). However, the extent of changes in group E+P was more obvious than that in E. GSH-Px activities in E+P and E were significantly changed. However, the GSH-Px activity in E+P was decreased (P<0.05) while the activity in E increased (P<0.05).Conclusion The chronic emotional stress can reduce the antioxidative system by decreasing the antioxidative enzyme activity and potentiating the lipid peroxidation in the brain. It is also suggested that the combination of emotional stress and pregnancy can augment the oxidative damage in rats' brain.

  12. Prostacyclin infusion may prevent secondary damage in pericontusional brain tissue

    DEFF Research Database (Denmark)

    Reinstrup, Peter; Nordström, Carl-Henrik

    2011-01-01

    Prostacyclin is a potent vasodilator, inhibitor of leukocyte adhesion, and platelet aggregation, and has been suggested as therapy for cerebral ischemia. A case of focal traumatic brain lesion that was monitored using intracerebral microdialysis, and bedside analysis and display is reported here........ When biochemical signs of cerebral ischemia progressed, i.v. infusion of prostacyclin was started....

  13. Zingiber officinale Mitigates Brain Damage and Improves Memory Impairment in Focal Cerebral Ischemic Rat

    Directory of Open Access Journals (Sweden)

    Jintanaporn Wattanathorn

    2011-01-01

    Full Text Available Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect of Zingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO. Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA, superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia.

  14. Chronic kidney disease aggravates arteriovenous fistula damage in rats.

    Science.gov (United States)

    Langer, Stephan; Kokozidou, Maria; Heiss, Christian; Kranz, Jennifer; Kessler, Tina; Paulus, Niklas; Krüger, Thilo; Jacobs, Michael J; Lente, Christina; Koeppel, Thomas A

    2010-12-01

    Neointimal hyperplasia (NIH) and impaired dilatation are important contributors to arteriovenous fistula (AVF) failure. It is unclear whether chronic kidney disease (CKD) itself causes adverse remodeling in arterialized veins. Here we determined if CKD specifically triggers adverse effects on vascular remodeling and assessed whether these changes affect the function of AVFs. For this purpose, we used rats on a normal diet or on an adenine-rich diet to induce CKD and created a fistula between the right femoral artery and vein. Fistula maturation was followed noninvasively by high-resolution ultrasound (US), and groups of rats were killed on 42 and 84 days after surgery for histological and immunohistochemical analyses of the AVFs and contralateral femoral vessels. In vivo US and ex vivo morphometric analyses confirmed a significant increase in NIH in the AVFs of both groups with CKD compared to those receiving a normal diet. Furthermore, we found using histological evaluation of the fistula veins in the rats with CKD that the media shrank and their calcification increased significantly. Afferent artery dilatation was significantly impaired in CKD and the downstream fistula vein had delayed dilation after surgery. These changes were accompanied by significantly increased peak systolic velocity at the site of the anastomosis, implying stenosis. Thus, CKD triggers adverse effects on vascular remodeling in AVFs, all of which contribute to anatomical and/or functional stenosis.

  15. Experimental investigations on chronic irradiation damage of the heart

    International Nuclear Information System (INIS)

    Irradiation of rat hearts induced the following clinical phenomena: increasingly severe dyspnea, associated flank respiration and deterioration of the general condition bordering on a prefinal syndrome. Dissection of the sick animals and thoracal x-rays taken regularly revealed extensive pesicardial and pleural effusions. The tissue of the pericardium was thickened and edematous. The most striking histological finding consisted in a focal degeneration and destruction of the myocardium without an increase in collagenous fibres. This damage to the heart muscle was quite severe and seen in all dose groups from 15 to 40 Gy. At the same time there was a reduction of the capillary density as a function of the radiation dose. Clinical symptoms were also observed in animals irradiated with 10 Gy only. All animals irradiated with at least 20 Gy, attained a state where death was imminent. Consequently, the LD-50 must be lower than 20 Gy. The latency period was over a year at 15 Gy but decreased considerably as the dose increased. (orig.)

  16. RXPERIMENTAL AND CLINICAL STUDY OF CREATINE KINASE BB ACTIVITY FOR TH E DIAGNOSIS ON BRAIN DAMAGE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To study the differential diagnosis o n cerebral concussion and mild cerebral contusion value of the brain type creati n e kinase isoenzyme(CK-BB),and evaluate the seriousness of brain damage and prog nosis of the patients with acute head injury.Methods Chromatographic separating and fluorometric quant ifying technique was used to detect the CK-BB activity in the cerebrospinal flu id(CSF) of 117 patients with acute head injury and 12 patients with increased in tracranial pressure and 20 normal people.Results The CSF-CK-BB activity of the patients with acu te head injury was remarkably higher than that of the normal people and the CSF -CK-BB activity increased with the seriousness of brain damage.There was a clo se relationship between CSF-CK-BB activity and prognosis,and higher activity o f CSF-CK-BB indicated poor prognosis.Conclusion CSF-CK -BB activity could be used as a new index to diagnose brain damage and evaluate the seriousness of brain damage and prognosis.

  17. Frontal White Matter Damage Impairs Response Inhibition in Children Following Traumatic Brain Injury

    OpenAIRE

    Lipszyc, Jonathan; Levin, Harvey; Hanten, Gerri; Hunter, Jill; Dennis, Maureen; Schachar, Russell

    2014-01-01

    Inhibition, the ability to suppress inappropriate cognitions or behaviors, can be measured using computer tasks and questionnaires. Inhibition depends on the frontal cortex, but the role of the underlying white matter (WM) is unclear. We assessed the specific impact of frontal WM damage on inhibition in 29 children with moderate-to-severe traumatic brain injury (15 with and 14 without frontal WM damage), 21 children with orthopedic injury, and 29 population controls. We used the Stop Signal T...

  18. Internal distribution of uranium and associated genotoxic damages in the chronically exposed bivalve Corbicula fluminea

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Olivier, E-mail: olivier.simon@irsn.fr [Laboratoire de Radioecologie et Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire, Cadarache, Bat, 186 BP3, 13115 Saint Paul-Lez-Durance Cedex (France); Floriani, Magali; Cavalie, Isabelle; Camilleri, Virginie; Adam, Christelle; Gilbin, Rodolphe; Garnier-Laplace, Jacqueline [Laboratoire de Radioecologie et Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire, Cadarache, Bat, 186 BP3, 13115 Saint Paul-Lez-Durance Cedex (France)

    2011-08-15

    Uranium (U) internal distribution and involved effects in the bivalve Corbicula fluminea have been studied after direct chronic exposure (90 d, 10 {mu}g.L-1). U distribution was assessed at the subcellular level (Metal Rich Granules -MRG-, pellets and cytosol fractions) in two main organs of the bivalve (gills and visceral mass). Micro-localisation was investigated by TEM-EDX analysis in the gills epithelium. DNA damage in gill and hemolymph samples was measured by the Comet assay. The 90-d exposure period led to a significant increase of U concentration in gills over time (x5) and a large U quantity in subcellular granules in gills. Finally, a significant increase (x2) in DNA damage was noted in exposed gills and haemocytes. This study shows that the accumulation levels and consequently the potential toxicity cannot be successfully predicted only on the basis of concentration in water or in tissues and subcellular fractions after chronic exposure. - Highlights: > Relevant information concerning the chronic impact of uranium on biota is scarce. > We study its biological speciation to explain bioavailability, accumulation, toxicity. > 80% of U accumulated was measured in the pellet fraction (organelles + granules/MRG). > Chronic exposure to U induced genetic damage in gill and haemolymph cells of the bivalve.

  19. May Chronic Childhood Constipation Cause Oxidative Stress and Potential Free Radical Damage to Children?

    Institute of Scientific and Technical Information of China (English)

    JI-YUE WANG; YE-LING WANG; SHENG-LI ZHOU; JUN-FU ZHOU

    2004-01-01

    To investigate whether chronic childhood constipation (CCC) may cause oxidative stress and potential free radical damage to children, and to explore the mechanisms by which CCC may cause oxidative stress and potential free radical damage to chronic constipation patients (CCPs). Methods Sixty CCPs and sixty healthy child volunteers (HCVs) whose ages, gender and others were matched for the CCPs were enrolled in a randomized controlled study, in which levels of vitamin C (VC) and vitamin E (VE) in plasma as well as activities of superoxide dismutase (SOD) and catalase (CAT) in erythrocytes were determined by spectrophotometric analytical methods. Results Compared with average values of the above biochemical parameters in the HCVs group, the average values of VC and VE in plasma as well as those of SOD and CAT in erythrocytes in the CCPs group were significantly decreased (P<0.0001). Linear regression and bivariate correlation analysis showed that with prolonged course of the CCPs, the levels of VC and VE in plasma as well as the activities of SOD and CAT in erythrocytes in the CCPs were decreased gradually (P<0.0001). Conclusion The findings in the present study suggest that chronic childhood constipation causes oxidative stress and potential free radical damage to children with chronic constipation.

  20. Calcium antagonists decrease capillary wall damage in aging hypertensive rat brain

    NARCIS (Netherlands)

    Farkas, E.; de Jong, G.I.; Apro, E.; Keuker, J.I.H.; Luiten, P.G.M.

    2001-01-01

    Chronic hypertension during aging is a serious threat to the cerebral vasculature. The larger brain arteries can react to hypertension with an abnormal wall thickening, a loss of elasticity and a narrowed lumen. However, little is known about the hypertension-induced alterations of cerebral capillar

  1. EEG Delta Band as a Marker of Brain Damage in Aphasic Patients after Recovery of Language

    Science.gov (United States)

    Spironelli, Chiara; Angrilli, Alessandro

    2009-01-01

    In this study spectral delta percentage was used to assess both brain dysfunction/inhibition and functional linguistic impairment during different phases of word processing. To this aim, EEG delta amplitude was measured in 17 chronic non-fluent aphasic patients while engaged in three linguistic tasks: Orthographic, Phonological and Semantic.…

  2. Radiation-related damage to the developing human brain

    International Nuclear Information System (INIS)

    The authors summarize the significant dose-related effects on brain development which have emerged largely within the last six years of study of prenatally exposed A-bomb survivors. The results are described primarily in terms of the DS86 estimates and differences between these and the older T65DR dose estimates are discussed. The severe mental retardation sample was based on 1598 individuals taken from the PE-86 sample, and the intelligence test scores considered from the same sample involved 1673 children. The authors also discuss some of the recent neurobiological developments that appear relevant to an understanding of the biological bases of dose-related events observed, and suggest future research that may contribute either to further delineation of exposure consequences or to the explanation of the cellular and molecular origins of observed effects. (UK)

  3. Pathophysiology of repetitive head injury in sports. Prevention against catastrophic brain damage

    International Nuclear Information System (INIS)

    The most common head injury in sports is concussion and experiencing multiple concussions in a short period of time sometimes can cause severe brain damage. In this paper, we investigate severe brain damage due to repeated head injury in sports and discuss the pathophysiology of repeated sports injury. The majority of these severe cases are usually male adolescents or young adults that suffer a second head injury before they have recovered from the first head injury. All cases that could be confirmed by brain CT scan after the second injury revealed brain swelling associated with a thin subdural hematoma. We suggested that the existence of subdural hematoma is one of the major causes of brain swelling after repeated head injury in sports. Since repeated concussions occurring within a short period may have a risk for severe brain damage, the diagnosis for initial cerebral concussion should be done appropriately. To prevent catastrophic brain damage, the player who suffered from concussion should not engage in any sports before recovery. The american Academy of Neurology and Colorado Medical Society set a guideline to return to play after cerebral concussion. An international conference on concussion in sports was held at Prague in 2004. The summary and agreement of this meeting was published and the Sports Concussion Assessment Tool (SCAT) was introduced to treat sports-related concussion. In addition, a number of computerized cognitive assessment tests and test batteries have been developed to allow athletes to return to play. It is important that coaches, as well as players and trainers, understand the medical issues involved in concussion. (author)

  4. Macroscopic networks in the human brain: mapping connectivity in healthy and damaged brains

    NARCIS (Netherlands)

    Nijhuis, E.H.J.

    2013-01-01

    The human brain contains a network of interconnected neurons. Recent advances in functional and structural in-vivo magnetic resonance neuroimaging (MRI) techniques have provided opportunities to model the networks of the human brain on a macroscopic scale. This dissertation investigates the possibil

  5. Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation after Brain Damage

    Science.gov (United States)

    Kleim, Jeffrey A.; Jones, Theresa A.

    2008-01-01

    Purpose: This paper reviews 10 principles of experience-dependent neural plasticity and considerations in applying them to the damaged brain. Method: Neuroscience research using a variety of models of learning, neurological disease, and trauma are reviewed from the perspective of basic neuroscientists but in a manner intended to be useful for the…

  6. Intranasal mesenchymal stem cell treatment for neonatal brain damage : long-term cognitive and sensorimotor improvement

    NARCIS (Netherlands)

    Donega, Vanessa; van Velthoven, Cindy T J; Nijboer, Cora H; van Bel, Frank; Kas, Martien J H; Kavelaars, Annemieke; Heijnen, Cobi J

    2013-01-01

    Mesenchymal stem cell (MSC) administration via the intranasal route could become an effective therapy to treat neonatal hypoxic-ischemic (HI) brain damage. We analyzed long-term effects of intranasal MSC treatment on lesion size, sensorimotor and cognitive behavior, and determined the therapeutic wi

  7. MLKL inhibition attenuates hypoxia-ischemia induced neuronal damage in developing brain.

    Science.gov (United States)

    Qu, Yi; Shi, Jing; Tang, Ying; Zhao, Fengyan; Li, Shiping; Meng, Junjie; Tang, Jun; Lin, Xuemei; Peng, Xiaodong; Mu, Dezhi

    2016-05-01

    Mixed lineage kinase domain-like protein (MLKL) is a critical molecule mediating cell necroptosis. However, its role in brain injury remains obscure. We first investigated the functions and mechanisms of MLKL in mediating neuronal damage in developing brain after hypoxia-ischemia. Neuronal necroptosis was induced by oxygen-glucose deprivation (OGD) plus caspase inhibitor zVAD treatment (OGD/zVAD). We found that two important necroptosis related proteins, receptor-interacting protein 1 and 3 (RIP1, RIP3) were upregulated. Furthermore, the interaction of RIP1-RIP3 with MLKL increased. Inhibition of MLKL through siRNA diminished RIP1-RIP3-MLKL interaction and attenuated neuronal death induced by OGD/zVAD. The translocation of oligomerized MLKL to the neuronal membrane leading to the injury of cellular membrane is the possible new mechanism of neuronal necroptosis. Animal experiment with neonatal rats further proved that MLKL inhibition attenuated brain damage induced by hypoxia-ischemia. These findings suggest that MLKL is a target to attenuate brain damage in developing brain.

  8. Explorative investigation of biomarkers of brain damage and coagulation system activation in clinical stroke differentiation

    DEFF Research Database (Denmark)

    Undén, Johan; Strandberg, Karin; Malm, Jan;

    2009-01-01

    INTRODUCTION: A simple and accurate method of differentiating ischemic stroke and intracerebral hemorrhage (ICH) is potentially useful to facilitate acute therapeutic management. Blood measurements of biomarkers of brain damage and activation of the coagulation system may potentially serve as nov......: This exploratory study indicated that blood levels of biomarkers GFAP and APC-PCI, prior to neuroimaging, may rule out ICH in a mixed stroke population.......INTRODUCTION: A simple and accurate method of differentiating ischemic stroke and intracerebral hemorrhage (ICH) is potentially useful to facilitate acute therapeutic management. Blood measurements of biomarkers of brain damage and activation of the coagulation system may potentially serve as novel...... diagnostic tools for stroke subtypes. METHODS: Ninety-seven stroke patients were prospectively investigated in a multicenter design with blood levels of brain biomarkers S100B, neuron specific enolase (NSE), glial fibrillary acidic protein (GFAP) as well as a coagulation biomarker, activated protein C...

  9. A protective effect of musical expertise on cognitive outcome following brain damage?

    Science.gov (United States)

    Omigie, Diana; Samson, Severine

    2014-12-01

    The current review examines the possibility that training-related changes that take place in the brains of musicians may have a beneficial effect on their cognitive outcome and recovery following neurological damage. First, we propose three different mechanisms by which training-related brain changes might result in relatively preserved function in musicians as compared to non-musicians with cerebral lesions. Next, we review the neuropsychological literature examining musical ability in professional musicians following brain damage, specifically of vascular, tumoral and epileptic aetiology. Finally, given that assessment of musician patients can greatly inform our understanding of the influence of premorbid experience on postmorbid recovery, we suggest some basic guidelines for the future evaluation of relevant patients. PMID:25380766

  10. Characteristics of Optic Nerve Damage Induced by Chronic Intraocular Hypertension in Rat

    Institute of Scientific and Technical Information of China (English)

    Jiantao Wang; Jian Ge; A.A. Sadun; T.T. Lam

    2004-01-01

    Purpose:To set up the Sharma's chronic intraocular hypertension model and investigate the intraocular pressure (lOP) as well as the optic nerve damage of this model in rat.Methods:The operations of the chronic intraocular hypertension model were performed as described by Sharma in 60 male Lewis albino rats. IOP was measured using the TonoPen XL immediately after surgery and then at 5 day, 2 week or 4 week intervals. Cresyl violet staining of whole-mounted retinas was used to label retinal ganglion cells (RGCs),then RGCs were counted. Paraphenylenediamine (PPD) staining was performed in the semi-thin cross sections of optic nerve of rat, in order to know whether the axons of optic nerve were degenerated or not. Results:There were 47 rats with higher IOP after the episcleral veins cauterized in 60rats. The ratio of elevated IOP was 78.3%. The IOPs were stable in 4 weeks. After cresyl violet staining, the RGCs loss was 11.0% and 11.3% was found in the central and peripheral retina respectively after 2 weeks of increased IOP. After 4 weeks of increased lOP, the loss of RGCs was 17% for the central retina and 24.6% for the peripheral retina. In the retinas without higher IOP, there was no loss of RGCs. PPD staining showed that optic nerve of rat with about 5.3% damage of axons located at the superior temporal region. Region of affected optic nerve 1 mm posterior to the globe by light microscope showed evidence of damaged axons with axonal swelling and myelin debris.Conclusion:Sharma's chronic intraocular hypertension model is a reproducible and effective glaucoma model, which mimics human glaucoma with chronically elevation IOP and induced RGCs loss and damage of optic nerve. Eye Science 2004;20:25-29.

  11. [Fluvoxamine, amitriptyline and transcranial electrostimulation of the brain in the treatment of chronic daily headache].

    Science.gov (United States)

    Tarasova, S V; Amelin, A V; Skoromets, A A

    2008-01-01

    Efficacy of antidepressants fluvoxamine, amitriptyline and transcranial electrostimulation of the brain in the treatment of chronic daily headache has been studied. Amitriptyline had the highest effect in dosage 50 mg daily but was not well tolerated by patients that resulted in that only 50% of them finished the study. Fluvoxamine had high efficacy and good tolerability in the treatment of chronic daily headache and medication overuse headache. Small dosages of amitriptyline and fluvoxamine potentiated the analgesic effect of transcranial electrostimulation of the brain. The combination of antidepressants with transcranial electrostimulation of the brain alleviated the negative effect of the withdrawal of overused analgesics and may be recommended for out-patient use.

  12. Hyper-resting brain entropy within chronic smokers and its moderation by Sex.

    Science.gov (United States)

    Li, Zhengjun; Fang, Zhuo; Hager, Nathan; Rao, Hengyi; Wang, Ze

    2016-01-01

    Cigarette smoking is a chronic relapsing brain disorder, and remains a premier cause of morbidity and mortality. Functional neuroimaging has been used to assess differences in the mean strength of brain activity in smokers' brains, however less is known about the temporal dynamics within smokers' brains. Temporal dynamics is a key feature of a dynamic system such as the brain, and may carry information critical to understanding the brain mechanisms underlying cigarette smoking. We measured the temporal dynamics of brain activity using brain entropy (BEN) mapping and compared BEN between chronic non-deprived smokers and non-smoking controls. Because of the known sex differences in neural and behavioral smoking characteristics, comparisons were also made between males and females. Associations between BEN and smoking related clinical measures were assessed in smokers. Our data showed globally higher BEN in chronic smokers compared to controls. The escalated BEN was associated with more years of smoking in the right limbic area and frontal region. Female nonsmokers showed higher BEN than male nonsmokers in prefrontal cortex, insula, and precuneus, but the BEN sex difference in smokers was less pronounced. These findings suggest that BEN mapping may provide a useful tool for probing brain mechanisms related to smoking. PMID:27377552

  13. Hyper-resting brain entropy within chronic smokers and its moderation by Sex

    Science.gov (United States)

    Li, Zhengjun; Fang, Zhuo; Hager, Nathan; Rao, Hengyi; Wang, Ze

    2016-01-01

    Cigarette smoking is a chronic relapsing brain disorder, and remains a premier cause of morbidity and mortality. Functional neuroimaging has been used to assess differences in the mean strength of brain activity in smokers’ brains, however less is known about the temporal dynamics within smokers’ brains. Temporal dynamics is a key feature of a dynamic system such as the brain, and may carry information critical to understanding the brain mechanisms underlying cigarette smoking. We measured the temporal dynamics of brain activity using brain entropy (BEN) mapping and compared BEN between chronic non-deprived smokers and non-smoking controls. Because of the known sex differences in neural and behavioral smoking characteristics, comparisons were also made between males and females. Associations between BEN and smoking related clinical measures were assessed in smokers. Our data showed globally higher BEN in chronic smokers compared to controls. The escalated BEN was associated with more years of smoking in the right limbic area and frontal region. Female nonsmokers showed higher BEN than male nonsmokers in prefrontal cortex, insula, and precuneus, but the BEN sex difference in smokers was less pronounced. These findings suggest that BEN mapping may provide a useful tool for probing brain mechanisms related to smoking. PMID:27377552

  14. Chronic Effect of Aspartame on Ionic Homeostasis and Monoamine Neurotransmitters in the Rat Brain.

    Science.gov (United States)

    Abhilash, M; Alex, Manju; Mathews, Varghese V; Nair, R Harikumaran

    2014-05-28

    Aspartame is one of the most widely used artificial sweeteners globally. Data concerning acute neurotoxicity of aspartame is controversial, and knowledge on its chronic effect is limited. In the current study, we investigated the chronic effects of aspartame on ionic homeostasis and regional monoamine neurotransmitter concentrations in the brain. Our results showed that aspartame at high dose caused a disturbance in ionic homeostasis and induced apoptosis in the brain. We also investigated the effects of aspartame on brain regional monoamine synthesis, and the results revealed that there was a significant decrease of dopamine in corpus striatum and cerebral cortex and of serotonin in corpus striatum. Moreover, aspartame treatment significantly alters the tyrosine hydroxylase activity and amino acids levels in the brain. Our data suggest that chronic use of aspartame may affect electrolyte homeostasis and monoamine neurotransmitter synthesis dose dependently, and this might have a possible effect on cognitive functions.

  15. Assessing the relationship between neurocognitive performance and brain volume in chronic moderate-severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Nikos eKonstantinou

    2016-03-01

    Full Text Available Objectives. Characterize the scale and pattern of long-term atrophy in grey matter (GM, white matter (WM and cerebrospinal (CSF in chronic moderate-severe traumatic brain injury (TBI and its relationship to neurocognitive outcomes.Participants. The TBI group consisted of 17 males with primary diagnosis of moderate-severe closed head injury. Participants had not received any systematic, post-acute rehabilitation and were recruited on average 8.36 years post-injury. The control group consisted of 15 males matched on age and education.Main measures. Neurocognitive battery included widely used tests of verbal memory, visual memory, executive functioning, and attention/organization. GM,WM, and CSF volumes were calculated from segmented T1-weighted anatomical MR images. Voxel-based morphometry was employed to identify brain regions with differences in GM and WM between TBI and control groups.Results. Chronic TBI results in significant neurocognitive impairments, and significant loss of GM and WM volume, and significant increase in CSF volume. Brain atrophy is not widespread, but it is rather distributed in a fronto-thalamic network. The extent of volume loss is predictive of performance on the neurocognitive tests.Conclusion. Significant brain atrophy and associated neurocognitive impairments during the chronic stages of TBI support the notion that TBI results in a chronic condition with lifelong implications.

  16. Tumor necrosis factor α antibody prevents brain damage of rats with acute necrotizing pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Yan-Ling Yang; Ji-Peng Li; Kai-Zong Li; Ke-Feng Dou

    2004-01-01

    AIM: To study the protective effects of tumor necrosis factor á (TNFα) antibody on pancreatic encephalopathy in rats.METHODS:One hundred and twenty SD rats were randomly divided into normal control group,acute necrotizing pancreatitis group and TNFα antibody treated group.Acute hemorrhage necrotizing pancreatitis model in rats was induced by retrograde injection of 50 g/L sodium taurocholate into the pancreatobiliary duct.Serum TNFα was detected and animals were killed 12 h after drug administration.Changes in content of brain water,MDA and SOD as well as leucocyte adhesion of brain microvessels were measured.RESULTS:In TNFα antibody treated group,serum TNFálevel was decreased.Content of brain water,MDA and SOD as well as leucocyte adhesion were decreased significantly in comparison with those of acute necrotizing pancreatitis group (P<0.05).CONCLUSION:TNFα antibody can alleviate the brain damage of rats with acute hemorrhage necrotizing pancreatitis.

  17. Neuroprotective actions of taurine on hypoxic-ischemic brain damage in neonatal rats.

    Science.gov (United States)

    Zhu, Xiao-Yun; Ma, Peng-Sheng; Wu, Wei; Zhou, Ru; Hao, Yin-Ju; Niu, Yang; Sun, Tao; Li, Yu-Xiang; Yu, Jian-Qiang

    2016-06-01

    Taurine is an abundant amino acid in the nervous system, which has been proved to possess antioxidation, osmoregulation and membrane stabilization. Previously it has been demonstrated that taurine exerts ischemic brain injury protective effect. This study was designed to investigate whether the protective effect of taurine has the possibility to be applied to treat neonatal hypoxic-ischemic brain damage. Seven-day-old Sprague-Dawley rats were treated with left carotid artery ligation followed by exposure to 8% oxygen to generate the experimental group. The cerebral damage area was measured after taurine post-treatment with 2,3,5-triphenyltetrazolium chloride (TTC) staining, Hematoxyline-Eosin (HE) staining and Nissl staining. The activities of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), myeloperoxtidase (MPO), ATP and Lactic Acid productions were assayed with ipsilateral hemisphere homogenates. Western-blot and immunofluorescence assay were processed to detect the expressions of AIF, Cyt C, Bax, Bcl-2 in brain. We found that taurine significantly reduced brain infarct volume and ameliorated morphological injury obviously reversed the changes of SOD, MDA, GSH-Px, T-AOC, ATP, MPO, and Lactic Acid levels. Compared with hypoxic-ischemic group, it showed marked reduction of AIF, Cyt C and Bax expressions and increase of Bcl-2 after post-treatment. We conclude that taurine possesses an efficacious neuroprotective effect after cerebral hypoxic-ischemic damage in neonatal rats. PMID:27345710

  18. Uptake of radiolabeled ions in normal and ischemia-damaged brain

    International Nuclear Information System (INIS)

    The regional concentrations of nine radiochemicals were measured in rat brain after induction of cerebral ischemia to identify tracers concentrated by brain undergoing selective neuronal necrosis. Transient (30 minute) forebrain ischemia was produced in the rat; 24 hours after cerebral recirculation the radiochemicals were injected intravenously and allowed to circulate for 5 hours. The brain concentrations of the radiochemicals in dissected regions were determined by scintillation counting. Forebrain ischemia of this nature will produce extensive injury to striatal neurons but will spare the great majority of neocortical neurons at 24 hours. The regional concentrations of these radiochemicals varied considerably in both control and ischemic animals. In postischemic animals, 4 radionuclides (63Ni, 99TcO4, 22Na, and [3H]tetracycline) were concentrated in the irreversibly damaged striatum in amounts ranging from 1.4 to 2.4 times greater than in normal tissue. The concentrations of 65Zn, 59Fe, 32PO4, and 147Pm in postischemic brain were similar to or less than those in normal brain. The concentration of [14C]EDTA was increased in injured and uninjured brain of postischemic rats. Autoradiographic analysis of the distribution patterns of some of these ions in normal animals showed that 99TcO4, 22Na, 65Zn, and 59Fe were distributed more uniformly throughout the brain than were 32PO4, 63Ni, and 147Pm. At 24 or 48 hours after ischemia, 63Ni, 99TcO4, and 22Na were preferentially concentrated in the damaged striatum and hippocampus, whereas 65Zn, 59Fe, 32PO4, and 147Pm did not accumulate in irreversibly injured tissue. Of the radiochemicals tested to date, Ni, TcO4, and tetracycline may be useful for diagnosing ischemic brain injury in humans, using positron emission tomography

  19. Cocaine induces DNA damage in distinct brain areas of female rats under different hormonal conditions.

    Science.gov (United States)

    de Souza, Marilise F; Gonçales, Tierre A; Steinmetz, Aline; Moura, Dinara J; Saffi, Jenifer; Gomez, Rosane; Barros, Helena M T

    2014-04-01

    We evaluated levels of neuronal DNA damage after acute or repeated cocaine treatment in different brain areas of female rats after ovariectomy or sham surgery. Rats in the control and acute groups were given saline i.p., whereas in the repeated group were given 15 mg/kg, i.p., cocaine for 8 days. After a 10 day washout period, the control group was given saline i.p., whereas rats in the acute and repeated groups were given a challenge dose of 15 mg/kg, i.p., cocaine. After behavioural assessment, rats were killed and the cerebellum, hippocampus, hypothalamus, prefrontal cortex and striatum were dissected for the Comet assay. Acute cocaine exposure induced DNA damage in all brain areas. This effect persisted after repeated administration, except in the hypothalamus, where repeated treatment did not cause increased DNA damage. Sexual hormones exhibited a neuroprotective effect, decreasing cocaine-induced DNA damage in cycling rats in all brain areas. PMID:24552452

  20. Effects of Graded Hypothermia on Hypoxic-ischemic Brain Damage in the Neonatal Rat

    Institute of Scientific and Technical Information of China (English)

    Xiao-yan Xia; Yi-xin Xia

    2011-01-01

    Objective To investigate the effect of graded hypothermia on neuropathologic alteratiors of neonatal rat brain after exposed to hypoxic-ischemic insult at 37℃, 33℃, 31℃, and 28℃, respectively, and to observe the effect of hypothermia on 72-kDa heat shock protein (HSP72) expression after hypoxic-ischemic insult. Methods Seven days old Wistar rats were subjected to unilateral common carotid artery ligation followed by exposure to hypoxia in 8% oxygen for 2 hours at 37℃, 33℃, 31℃, and 28℃, respectively. The brain temperature was monitored indirectly by inserting a mini-thermocouple probe into the temporal muscle during hypoxia. After hypoxia-ischemia their mortality was assessed. Neuronal damage was assessed with HE staining 72 hours after hypoxia. HSP72 expression at 0.5, 24, and 72 hours of recovery was immunohistochemically assessed using a monoclonal antibody to HSP72. Results Hypoxia-ischemia caused 10.5% (2/19) of mortality in rat of 37℃ group, but no death occurred in 33℃, 31℃ or 28℃ groups. HE staining showed neuropathologic damage was extensive in rats exposed to hypoxia-ischemia at 37℃ (more than 80.0%). The incidence of severe brain damage was significantly decreased in 33℃ (53.3%) and 31℃ groups (44.4%), and no histologic injury was seen in the 28℃ group of rats. Expression of HSP72 was manifest and persistent in the rat brain of 37℃ group, but minimum in the rat brain of 28℃ group. Conclusion Mild and moderate hypothermia might prevent cerebral visible neuropathologic damage associated with hypoxic-ischemic injury by decreasing stress response.

  1. Berberine protects against neuronal damage via suppression of glia-mediated inflammation in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Chien-Cheng Chen

    Full Text Available Traumatic brain injury (TBI triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg(-1 or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect.

  2. Bacterial cytolysin during meningitis disrupts the regulation of glutamate in the brain, leading to synaptic damage.

    Directory of Open Access Journals (Sweden)

    Carolin Wippel

    Full Text Available Streptococcus pneumoniae (pneumococcal meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage.

  3. Effect of chronic heroin and cocaine administration on global DNA methylation in brain and liver.

    Science.gov (United States)

    Fragou, Domniki; Zanos, Panos; Kouidou, Sofia; Njau, Samuel; Kitchen, Ian; Bailey, Alexis; Kovatsi, Leda

    2013-04-26

    Drug abuse is associated with epigenetic changes, such as histone modifications and DNA methylation. The purpose of the present study was to examine the effect of chronic cocaine and heroin administration on global DNA methylation in brain and liver. Male, 8 week old, C57BL/6J mice received heroin in a chronic 'intermittent' escalating dose paradigm, or cocaine in a chronic escalating dose 'binge' paradigm, which mimic the human pattern of opioid or cocaine abuse respectively. Following sacrifice, livers and brains were removed and DNA was extracted from them. The extracted DNA was hydrolyzed and 2'-deoxycytidine and 5-methyl-2'-deoxycytidine were determined by HPLC-UV. The % 5-methyl-2'-deoxycytidine content of DNA was significantly higher in the brain compared to the liver. There were no differences between the control animals and the cocaine or heroin treated animals in neither of the tissues examined, which is surprising since cocaine administration induced gross morphological changes in the liver. Moreover, there was no difference in the % 5-methyl-2'-deoxycytidine content of DNA between the cocaine and the heroin treated animals. The global DNA methylation status in the brain and liver of mice chronically treated with cocaine or heroin remains unaffected, but this finding cannot exclude the existence of anatomical region or gene-specific methylation differences. This is the first time that global DNA methylation in the liver and whole brain has been studied following chronic cocaine or heroin treatment. PMID:23454526

  4. Interfacing brain with computer to improve communication and rehabilitation after brain damage.

    Science.gov (United States)

    Riccio, A; Pichiorri, F; Schettini, F; Toppi, J; Risetti, M; Formisano, R; Molinari, M; Astolfi, L; Cincotti, F; Mattia, D

    2016-01-01

    Communication and control of the external environment can be provided via brain-computer interfaces (BCIs) to replace a lost function in persons with severe diseases and little or no chance of recovery of motor abilities (ie, amyotrophic lateral sclerosis, brainstem stroke). BCIs allow to intentionally modulate brain activity, to train specific brain functions, and to control prosthetic devices, and thus, this technology can also improve the outcome of rehabilitation programs in persons who have suffered from a central nervous system injury (ie, stroke leading to motor or cognitive impairment). Overall, the BCI researcher is challenged to interact with people with severe disabilities and professionals in the field of neurorehabilitation. This implies a deep understanding of the disabled condition on the one hand, and it requires extensive knowledge on the physiology and function of the human brain on the other. For these reasons, a multidisciplinary approach and the continuous involvement of BCI users in the design, development, and testing of new systems are desirable. In this chapter, we will focus on noninvasive EEG-based systems and their clinical applications, highlighting crucial issues to foster BCI translation outside laboratories to eventually become a technology usable in real-life realm. PMID:27590975

  5. Chronic P-glycoprotein inhibition increases the brain concentration of escitalopram: potential implications for treating depression.

    Science.gov (United States)

    O'Brien, Fionn E; Moloney, Gerard M; Scott, Karen A; O'Connor, Richard M; Clarke, Gerard; Dinan, Timothy G; Griffin, Brendan T; Cryan, John F

    2015-12-01

    Recent preclinical studies have revealed a functionally important role for the drug efflux pump P-glycoprotein (P-gp) at the blood-brain barrier in limiting brain levels and thus antidepressant-like activity of certain antidepressant drugs. Specifically, acute administration of P-gp inhibitors, such as verapamil and cyclosporin A (CsA), has been shown to augment brain concentrations and functional activity of the antidepressant escitalopram in rodents. However, depression is a chronic disorder and current treatments require prolonged administration to elicit their full therapeutic effect. Thus, it is important to investigate whether acute findings in relation to P-gp inhibition translate to chronic paradigms. To this end, the present study investigates whether chronic treatment with the P-gp inhibitor verapamil and the antidepressant escitalopram results in enhanced brain distribution and antidepressant-like effects of escitalopram. Verapamil (10 mg·kg(-1) i.p.) and escitalopram (0.1 mg·kg(-1) i.p.) were administered once daily for 22 days. On the final day of treatment, brain regions and plasma were collected for analysis of cortical and plasma escitalopram concentrations, and to determine the hippocampal expression of genes previously reported to be altered by chronic antidepressant treatment. Verapamil treatment resulted in a greater than twofold increase in brain levels of escitalopram, without altering plasma levels. Neither gene expression analysis nor behavioral testing revealed an augmentation of responses to escitalopram treatment due to verapamil administration. Taken together, these data demonstrate for the first time that P-gp inhibition can yield elevated brain concentrations of an antidepressant after chronic treatment. The functional relevance of these increased brain levels requires further elaboration. PMID:27022464

  6. Platelets recognize brain-specific glycolipid structures, respond to neurovascular damage and promote neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Ilya Sotnikov

    Full Text Available Platelets respond to vascular damage and contribute to inflammation, but their role in the neurodegenerative diseases is unknown. We found that the systemic administration of brain lipid rafts induced a massive platelet activation and degranulation resulting in a life-threatening anaphylactic-like response in mice. Platelets were engaged by the sialated glycosphingolipids (gangliosides integrated in the rigid structures of astroglial and neuronal lipid rafts. The brain-abundant gangliosides GT1b and GQ1b were specifically recognized by the platelets and this recognition involved multiple receptors with P-selectin (CD62P playing the central role. During the neuroinflammation, platelets accumulated in the central nervous system parenchyma, acquired an activated phenotype and secreted proinflammatory factors, thereby triggering immune response cascades. This study determines a new role of platelets which directly recognize a neuronal damage and communicate with the cells of the immune system in the pathogenesis of neurodegenerative diseases.

  7. Chronic Pain: Where the Body Meets the Brain.

    Science.gov (United States)

    Crofford, Leslie J

    2015-01-01

    Chronic musculoskeletal pain is one of the most intractable clinical problems faced by clinicians and can be devastating for patients. Central pain amplification is perceived pain that cannot be fully explained on the basis of somatic or neuropathic processes and is due to physiologic alterations in pain transmission or descending pain modulatory pathways. In any individual, central pain amplification may complicate nociceptive or neuropathic pain. Furthermore, patients with somatic symptom disorders may have alterations in their psychological or behavioral responses to pain that contribute significantly to the clinical presentation. Genetic, physiologic, and psychological factors associated with central pain amplification are beginning to be understood. One important contributor to chronic pain is perceived stress and stress response systems. We and others have shown a complex relationship between the physiologic stress response and chronic pain symptoms. Unfortunately, treatments for chronic pain are woefully inadequate and often worsen clinical outcomes. Developing new treatment strategies for patients with chronic pain is of utmost urgency. This essay provides a framework for thinking about chronic pain and developing new treatment approaches. PMID:26330672

  8. Recurrent Moderate Hypoglycemia Ameliorates Brain Damage and Cognitive Dysfunction Induced by Severe Hypoglycemia

    OpenAIRE

    Puente, Erwin C.; Silverstein, Julie; Bree, Adam J.; Musikantow, Daniel R.; Wozniak, David F.; Maloney, Susan; Daphna-Iken, Dorit; Fisher, Simon J.

    2010-01-01

    OBJECTIVE Although intensive glycemic control achieved with insulin therapy increases the incidence of both moderate and severe hypoglycemia, clinical reports of cognitive impairment due to severe hypoglycemia have been highly variable. It was hypothesized that recurrent moderate hypoglycemia preconditions the brain and protects against damage caused by severe hypoglycemia. RESEARCH DESIGN AND METHODS Nine-week-old male Sprague-Dawley rats were subjected to either 3 consecutive days of recurr...

  9. Carcinoma cells misuse the host tissue damage response to invade the brain

    OpenAIRE

    Chuang, Han-Ning; van Rossum, Denise; Sieger, Dirk; Siam, Laila; Klemm, Florian; Bleckmann, Annalen; Bayerlová, Michaela; Farhat, Katja; Scheffel, Jörg; Schulz, Matthias; Dehghani, Faramarz; Stadelmann, Christine; Hanisch, Uwe-Karsten; Binder, Claudia; Pukrop, Tobias

    2013-01-01

    The metastatic colonization of the brain by carcinoma cells is still barely understood, in particular when considering interactions with the host tissue. The colonization comes with a substantial destruction of the surrounding host tissue. This leads to activation of damage responses by resident innate immune cells to protect, repair, and organize the wound healing, but may distract from tumoricidal actions. We recently demonstrated that microglia, innate immune cells of the CNS, assist carci...

  10. Frontal lobe syndrome reassessed: comparison of patients with lateral or medial frontal brain damage

    OpenAIRE

    Paradiso, S; Chemerinski, E; Yazici, K.; Tartaro, A.; Robinson, R

    1999-01-01

    Examination of mood and behaviour changes after frontal damage may contribute to understanding the functional role of distinct prefrontal areas in depression and anxiety. Depression and anxiety disorders, symptoms, and behaviour were compared in eight patients with single lateral and eight patients with single medial frontal lesions matched for age, sex, race, education, socioeconomic status, side, and aetiology of lesion 2 weeks and 3 months after brain injury. DSM IV major de...

  11. Changes of neuronal calcium channel following brain damage induced by injection of pertussis bacilli in rats

    Institute of Scientific and Technical Information of China (English)

    陈立华; 于嘉; 刘丽旭; 曹美鸿

    2002-01-01

    To explore changes of neuronal calcium channel following brain damage induced by injection of pertussis bacilli in rats, and to investigate the relationship between cytosolic free calcium concentration ( [ Ca2 + ] i ) in the synaptosome and Ca2 + -ATPase activities of mitochondria. Methods: The level of [ Ca2+ ]i in the synaptosome and Ca2+ -ATPase activities of mitochondria in the acute brain damage induced by injection of pertussis bacilli (PB)in rat was determined and nimodipine was administrated to show its effects on [ Ca2+ ]i in the synaptosome and on alteration of Ca2+ -ATPase activity in the mitochondria.Seventy-three rats were randomly divided into four groups,ie, normal control group (Group A ), sham-operation control group (Group B), PB group (Group C) and nimodipine treatment group (Group D). Results: The level of [ Ca2+ ]i was significantly increased in the PB-injected cerebral hemisphere in the Group C as compared with that in the Group A and the Group B at 30 minutes after injection of PB. The level of [ Ca2+ ]i was kept higher in the 4 hours and 24 hours subgroups after the injection in the Group C ( P < 0.05).In contrast, the Ca2+ -ATPase activities were decreased remarkably among all of the subgroups in the Group C.Nimodipine, which was administered after injection of PB,could significantly decrease the [ Ca2+ ]i and increase the activity of Ca2 + -ATPase ( P < 0.05 ). Conclusions: The neuronal calcium channel is opened after injection of PB. There is a negative correlation between activities of Ca2 +-ATPase and [ Ca2 + ]i.Nimodipine can reduce brain damage through stimulating the activities of Ca2+ -ATPase in the mitochondria, and decrease the level of [ Ca2+ ]i in the synaptosome.Treatment with nimodipine dramatically reduces the effects of brain damage induced by injection of PB.

  12. Emotional and non-emotional facial behaviour in patients with unilateral brain damage.

    OpenAIRE

    Borod, J C; Koff, E.; Lorch, M P; Nicholas, M.; Welkowitz, J

    1988-01-01

    Aspects of emotional facial expression (responsivity, appropriateness, intensity) were examined in brain-damaged adults with right or left hemisphere cerebrovascular lesions and in normal controls. Subjects were videotaped during experimental procedures designed to elicit emotional facial expression and non-emotional facial movement (paralysis, mobility, praxis). On tasks of emotional facial expression, patients with right hemisphere pathology were less responsive and less appropriate than pa...

  13. Family needs in the chronic phase after severe brain injury in Denmark

    DEFF Research Database (Denmark)

    Doser, Karoline; Norup, Anne

    2014-01-01

    Abstract Objective: This preliminary study aimed at investigating (1) changes in the status of family members between time of injury and follow-up in the chronic phase and (2) the most important needs within the family in the chronic phase and whether the needs were perceived as met. Participants......: The sample comprised 42 relatives (76% female, mean age = 53 years) of patients with severe brain injury, who had received intensive sub-acute rehabilitation. The relatives were contacted in the chronic phase after brain injury. Outcome measure: A set of questions about demographics and time spent caregiving...... for the patient was completed. The relatives completed the revised version of the Family Needs Questionnaire, a questionnaire consisting of 37 items related to different needs following brain injury. Results: Significant changes in status were found in employment (z = -3.464, p = 0.001) and co-habitation (z = -3...

  14. Stable long-term chronic brain mapping at the single-neuron level.

    Science.gov (United States)

    Fu, Tian-Ming; Hong, Guosong; Zhou, Tao; Schuhmann, Thomas G; Viveros, Robert D; Lieber, Charles M

    2016-10-01

    Stable in vivo mapping and modulation of the same neurons and brain circuits over extended periods is critical to both neuroscience and medicine. Current electrical implants offer single-neuron spatiotemporal resolution but are limited by such factors as relative shear motion and chronic immune responses during long-term recording. To overcome these limitations, we developed a chronic in vivo recording and stimulation platform based on flexible mesh electronics, and we demonstrated stable multiplexed local field potentials and single-unit recordings in mouse brains for at least 8 months without probe repositioning. Properties of acquired signals suggest robust tracking of the same neurons over this period. This recording and stimulation platform allowed us to evoke stable single-neuron responses to chronic electrical stimulation and to carry out longitudinal studies of brain aging in freely behaving mice. Such advantages could open up future studies in mapping and modulating changes associated with learning, aging and neurodegenerative diseases.

  15. H2O2-mediated DNA damage and repair in the brain cells in the aging rats detected by comet assay

    Institute of Scientific and Technical Information of China (English)

    Suming ZhangM.D., Ph.D; Zongchao Han, M.D.; Siyu Fang, M.D.; Ruan Yang, M.D; Wei Wang, M.D., Ph. D

    2000-01-01

    Objective: To identify the relation between DNA damage susceptibility/ DNA repair capability and aging process after insults, an observation of H2O2_induced DNA damage and the kinetics of DNA repair in senescent murine brain cells with the alkaline single cell gel electrophoresis (SCGE/Comet assay) was made. Methods: The dissociated brain cells harvested in the area of the cerebral cortex, hippocampus, basal gang]ion from 3-month (n=10), 8-month (n=8) and 26-month (n=5) old rats were respectively treated with H2O2 in gradient doses for 10 min, or without H2O2 as controls. The cells embedded in agarose were lysed, helix-untied, electrophoresed, stained with a fluorescence DNA binding stain, viewed under a fluorescence microscope. Individual image was optically recorded. The frequency of the tailed cells and the grade of tails wereused to analyze single strand breaks of DNA and injury intensity. Results: By the cell and DNA image like comets, a linear increase was noticed in vulnerability of DNA both to H2O2 doses and to the age. Regarding the damaged region of the brain, the cortex cells were more vulnerable to the insult than the hippocampus/basal ganglionic cells. Whatever aging or not the cells were, the maximum of ratio of DNA repair was only within 1 hour during the incubation for 0.5-4 hours after the insults. Furthermore, the more aging, the less ratio of DNA repair of sick cells. Conclusion: The DNA damagesusceptibility and the DNA repair capability of individual cells, whatever its age is, can be detected by this brain cell injury model. Comet assay is a sensitive way to find out DNA damage and repair of the cells. It should be more difficult for the cells to cope with an acute and excessive than with a persistent, chronic and mild DNA damage which is more related to an accumulating injury, the aging.

  16. Simulated Microgravity and Low-Dose/Low-Dose-Rate Radiation Induces Oxidative Damage in the Mouse Brain.

    Science.gov (United States)

    Mao, Xiao Wen; Nishiyama, Nina C; Pecaut, Michael J; Campbell-Beachler, Mary; Gifford, Peter; Haynes, Kristine E; Becronis, Caroline; Gridley, Daila S

    2016-06-01

    Microgravity and radiation are stressors unique to the spaceflight environment that can have an impact on the central nervous system (CNS). These stressors could potentially lead to significant health risks to astronauts, both acutely during the course of a mission or chronically, leading to long-term, post-mission decrements in quality of life. The CNS is sensitive to oxidative injury due to high concentrations of oxidizable, unsaturated lipids and low levels of antioxidant defenses. The purpose of this study was to evaluate oxidative damage in the brain cortex and hippocampus in a ground-based model for spaceflight, which includes prolonged unloading and low-dose radiation. Whole-body low-dose/low-dose-rate (LDR) gamma radiation using (57)Co plates (0.04 Gy at 0.01 cGy/h) was delivered to 6 months old, mature, female C57BL/6 mice (n = 4-6/group) to simulate the radiation component. Anti-orthostatic tail suspension was used to model the unloading, fluid shift and physiological stress aspects of the microgravity component. Mice were hindlimb suspended and/or irradiated for 21 days. Brains were isolated 7 days or 9 months after irradiation and hindlimb unloading (HLU) for characterization of oxidative stress markers and microvessel changes. The level of 4-hydroxynonenal (4-HNE) protein, an oxidative specific marker for lipid peroxidation, was significantly elevated in the cortex and hippocampus after LDR + HLU compared to controls (P environment-induced oxidative stress. PMID:27243749

  17. Does alcohol damage the adolescent brain? Neuroanatomical and neuropsychological consequences of adolescent drinking

    Directory of Open Access Journals (Sweden)

    Fleming RL

    2015-12-01

    Full Text Available Rebekah L Fleming1,2 1Durham VA Medical Center, 2Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA Abstract: Alcohol drinking is a significant risk factor for morbidity and mortality in adolescents worldwide. Adolescents frequently binge drink, and this pattern of use is associated with poor school performance, injuries, violence, drug use, and a variety of poor psychosocial outcomes in adulthood. These associations have raised concerns that alcohol drinking may damage the adolescent brain and lead to impaired cognition and behavior. Similar to the neurotoxicity seen in adult alcoholics, magnetic resonance imaging studies of brain anatomy in adolescent drinkers have shown that alcohol disrupts the development of temporal and frontal cortices and myelinated fiber tracts throughout the brain. Although adult brains show some recovery with abstinence, at present, no studies have examined brain recovery in adolescents. Studies of neuropsychological function have found deficits in attention and visuospatial ability that show dose-dependent correlations with alcohol exposure and withdrawal symptoms, but visuospatial performance recovers with short-term abstinence. Differences in executive function and decision-making have also been found, but the available evidence suggests that these are not primarily the result of alcohol exposure; instead, they reflect premorbid factors that increase risk-taking and substance use. Nevertheless, alcohol drinking by adolescents remains an important concern because of the potential for brain injury in addition to the many negative consequences associated with acute intoxication. Keywords: adolescence, binge drinking, alcohol, magnetic resonance imaging, neuropsychological function

  18. Melatonin Improves Outcomes of Heatstroke in Mice by Reducing Brain Inflammation and Oxidative Damage and Multiple Organ Dysfunction

    Directory of Open Access Journals (Sweden)

    Yu-Feng Tian

    2013-01-01

    Full Text Available We report here that when untreated mice underwent heat stress, they displayed thermoregulatory deficit (e.g., animals display hypothermia during room temperature exposure, brain (or hypothalamic inflammation, ischemia, oxidative damage, hypothalamic-pituitary-adrenal axis impairment (e.g., decreased plasma levels of both adrenocorticotrophic hormone and corticosterone during heat stress, multiple organ dysfunction or failure, and lethality. Melatonin therapy significantly reduced the thermoregulatory deficit, brain inflammation, ischemia, oxidative damage, hypothalamic-pituitary-adrenal axis impairment, multiple organ dysfunction, and lethality caused by heat stroke. Our data indicate that melatonin may improve outcomes of heat stroke by reducing brain inflammation, oxidative damage, and multiple organ dysfunction.

  19. Influence of a brief episode of anesthesia during the induction of experimental brain trauma on secondary brain damage and inflammation.

    Directory of Open Access Journals (Sweden)

    Clara Luh

    Full Text Available It is unclear whether a single, brief, 15-minute episode of background anesthesia already modulates delayed secondary processes after experimental brain injury. Therefore, this study was designed to characterize three anesthesia protocols for their effect on molecular and histological study endpoints. Mice were randomly separated into groups that received sevoflurane (sevo, isoflurane (iso or an intraperitoneal anesthetic combination (midazolam, fentanyl and medetomidine; comb prior to traumatic brain injury (controlled cortical impact, CCI; 8 m/s, 1 mm impact depth, 3 mm diameter. Twenty-four hours after insult, histological brain damage, neurological function (via neurological severity score, cerebral inflammation (via real-time RT-PCR for IL6, COX-2, iNOS and microglia (via immunohistochemical staining for Iba1 were determined. Fifteen minutes after CCI, the brain contusion volume did not differ between the anesthetic regimens (sevo = 17.9±5.5 mm(3; iso = 20.5±3.7 mm(3; comb = 19.5±4.6 mm(3. Within 24 hours after injury, lesion size increased in all groups (sevo = 45.3±9.0 mm(3; iso = 31.5±4.0 mm(3; comb = 44.2±6.2 mm(3. Sevo and comb anesthesia resulted in a significantly larger contusion compared to iso, which was in line with the significantly better neurological function with iso (sevo = 4.6±1.3 pts.; iso = 3.9±0.8 pts.; comb = 5.1±1.6 pts.. The expression of inflammatory marker genes was not significantly different at 15 minutes and 24 hours after CCI. In contrast, significantly more Iba1-positive cells were present in the pericontusional region after sevo compared to comb anesthesia (sevo = 181±48/mm(3; iso = 150±36/mm(3; comb = 113±40/mm(3. A brief episode of anesthesia, which is sufficient for surgical preparations of mice for procedures such as delivering traumatic brain injury, already has a significant impact on the extent of secondary brain damage.

  20. Role of gap junction and connexin-43 in hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Jieying Lin; Niyang Lin

    2006-01-01

    OBJECTEVE:Gap junctin (GJ)is the structural basis for direct intercellular communication of nerve cells . Connexin(Cx) is the protein subunit for constructling GJ channel. Among them, Cx43is closely related with nervous system. Both Cx43 and nervous system play an important role in the pathophysiological development of hypoxic-ischemic injury. We are in attempt to investigate GJ,Cx43 and their correlations with hypoxic-ischemic brain damage by research.DATA SOURCES:Using the terms "brain gap junction"in English and "gap junction"in Chinese, we searched the Medline database and Chinese BioMedical Literature Database as well as China Hospital Knowledge Database to identify the articles published from 1996 to 2006 about GJ and brain hypoxic-ischemic injury.STUDY SELECTION:The articles were selected firstly and abstracts of 250 articles were read thuugh.Articles in which the experimental design met randomized controlled principle were included,and study articles and case reports with repetitve contents were excluded.DATA EXTRACTION:Among 53 included correlative articles, 23 were excluded for repetitive contents and the other 30 were analyzed.DATA SYNTHESIS:GJ,widely esistling in nervous system,plays a key role in maintainling normal differentiation and development as well as physiological function brain tissue.GJ channel is a hydrophilic,low-selectivity and lowohmic channel, which can provide direct channel for intercellular substance transmission and information communication. It plays an important role in the differentiation and development of nerve cells and regulation of physiological function,The funtions of GJ channel are regulated by many factors,which invilved intracellular Ph value, Ca2+concentration, ATP concentration, phosphorylation of Cx, transchannel pressure,some neurohormonal factors,regulatory factors of protein and so on. Cx43 is the main component of GJ channel in the brain tissues. Its expression in the brain tissue of mammal is the strongest

  1. Association between Peripheral Oxidative Stress and White Matter Damage in Acute Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Wei-Ming Lin

    2014-01-01

    Full Text Available The oxidative stress is believed to be one of the mechanisms involved in the neuronal damage after acute traumatic brain injury (TBI. However, the disease severity correlation between oxidative stress biomarker level and deep brain microstructural changes in acute TBI remains unknown. In present study, twenty-four patients with acute TBI and 24 healthy volunteers underwent DTI. The peripheral blood oxidative biomarkers, like serum thiol and thiobarbituric acid-reactive substances (TBARS concentrations, were also obtained. The DTI metrics of the deep brain regions, as well as the fractional anisotropy (FA and apparent diffusion coefficient, were measured and correlated with disease severity, serum thiol, and TBARS levels. We found that patients with TBI displayed lower FAs in deep brain regions with abundant WMs and further correlated with increased serum TBARS level. Our study has shown a level of anatomic detail to the relationship between white matter (WM damage and increased systemic oxidative stress in TBI which suggests common inflammatory processes that covary in both the peripheral and central reactions after TBI.

  2. Changes of brain microstructure in patients with painful chronic pancreatitis assessed by diffusion tensor imaging

    DEFF Research Database (Denmark)

    Frøkjær, Jens Brøndum; Olesen, Søren Schou; Gram, Mikkel;

    Objective In patients with painful chronic pancreatitis (CP) there is increasing evidence of abnormal pain processing in the central nervous system. Using magnetic resonance (MR) diffusion tensor imaging, brain microstructure in areas involved in processing of visceral pain was characterised...... to patients' clinical pain scores. Conclusion The findings suggest that microstructural changes of the brain accompany pain in CP. The changes are likely to be a consequence of ongoing pain and structural reorganisation of the neuromatrix as also seen in other diseases characterised by chronic pain....

  3. Altered brain microstructure assessed by diffusion tensor imaging in patients with chronic pancreatitis

    DEFF Research Database (Denmark)

    Frøkjær, Jens Brøndum; Olesen, Søren Schou; Gram, Mikkel;

    2011-01-01

    Objective In patients with painful chronic pancreatitis (CP) there is increasing evidence of abnormal pain processing in the central nervous system. Using magnetic resonance (MR) diffusion tensor imaging, brain microstructure in areas involved in processing of visceral pain was characterised and...... correlated to patients' clinical pain scores. Conclusion The findings suggest that microstructural changes of the brain accompany pain in CP. The changes are likely to be a consequence of ongoing pain and structural reorganisation of the neuromatrix as also seen in other diseases characterised by chronic...

  4. Altered brain microstructure assessed by diffusion tensor imaging in patients with chronic pancreatitis

    DEFF Research Database (Denmark)

    Frøkjær, Jens Brøndum; Olesen, Søren Schou; Gram, Mikkel;

    Objective In patients with painful chronic pancreatitis (CP) there is increasing evidence of abnormal pain processing in the central nervous system. Using magnetic resonance (MR) diffusion tensor imaging, brain microstructure in areas involved in processing of visceral pain was characterised and...... correlated to patients' clinical pain scores. Conclusion The findings suggest that microstructural changes of the brain accompany pain in CP. The changes are likely to be a consequence of ongoing pain and structural reorganisation of the neuromatrix as also seen in other diseases characterised by chronic...

  5. Changes of brain microstructure in patients with painful chronic pancreatitis assessed by diffusion tensor imaging

    DEFF Research Database (Denmark)

    Frøkjær, Jens Brøndum; Olesen, Søren Schou; Gram, Mikkel;

    Objective In patients with painful chronic pancreatitis (CP) there is increasing evidence of abnormal pain processing in the central nervous system. Using magnetic resonance (MR) diffusion tensor imaging, brain microstructure in areas involved in processing of visceral pain was characterised and...... correlated to patients' clinical pain scores. Conclusion The findings suggest that microstructural changes of the brain accompany pain in CP. The changes are likely to be a consequence of ongoing pain and structural reorganisation of the neuromatrix as also seen in other diseases characterised by chronic...

  6. Altered human brain anatomy in chronic smokers: a review of magnetic resonance imaging studies.

    Science.gov (United States)

    Wang, Chao; Xu, Xiaojun; Qian, Wei; Shen, Zhujing; Zhang, Minming

    2015-04-01

    Cigarette smoking is becoming more prevalent in developing countries, such as China, and is the largest single cause of preventable death worldwide. New emerging reports are highlighting how chronic cigarette smoking plays a role in neural dysfunctions, such as cognitive decline. Basic animal experimental studies have shown that rats undergo persistent pathological brain changes after being given chronic levels of nicotine. What is perhaps less appreciated is the fact that chronic cigarette smoking induces subtle anatomical changes in the human brain. Consequently, this chapter aims to summarize and integrate the existing magnetic resonance imaging studies on both gray- and white-matter marcostructural and microstructural changes. The reviewed studies demonstrate that chronic cigarette smoking results in discrete and localized alterations in brain region tissue (both the gray and white matter of different brain regions), which may, in part, be responsible for different neural dysfunctions. In addition, we further discuss the possible pathological and neurobiological mechanisms of these nicotinic effects on the brain tissue. We will also address the limitations of the current studies on this issue and identify opportunities for future research. PMID:25577510

  7. Multiple faces of pain: effects of chronic pain on the brain regulation of facial expression.

    Science.gov (United States)

    Vachon-Presseau, Etienne; Roy, Mathieu; Woo, Choong-Wan; Kunz, Miriam; Martel, Marc-Olivier; Sullivan, Michael J; Jackson, Philip L; Wager, Tor D; Rainville, Pierre

    2016-08-01

    Pain behaviors are shaped by social demands and learning processes, and chronic pain has been previously suggested to affect their meaning. In this study, we combined functional magnetic resonance imaging with in-scanner video recording during thermal pain stimulations and use multilevel mediation analyses to study the brain mediators of pain facial expressions and the perception of pain intensity (self-reports) in healthy individuals and patients with chronic back pain (CBP). Behavioral data showed that the relation between pain expression and pain report was disrupted in CBP. In both patients with CBP and healthy controls, brain activity varying on a trial-by-trial basis with pain facial expressions was mainly located in the primary motor cortex and completely dissociated from the pattern of brain activity varying with pain intensity ratings. Stronger activity was observed in CBP specifically during pain facial expressions in several nonmotor brain regions such as the medial prefrontal cortex, the precuneus, and the medial temporal lobe. In sharp contrast, no moderating effect of chronic pain was observed on brain activity associated with pain intensity ratings. Our results demonstrate that pain facial expressions and pain intensity ratings reflect different aspects of pain processing and support psychosocial models of pain suggesting that distinctive mechanisms are involved in the regulation of pain behaviors in chronic pain. PMID:27411160

  8. Fatal cerebritis and brain abscesses following a nontraumatic subdural hematoma in a chronic hemodialyzed patient.

    Science.gov (United States)

    Mesquita, Maria; Damry, Nasroolla; Gazagnes, Marie D

    2008-10-01

    Staphylococcus aureus is the leading cause of bacteremia in hemodialysis-dependent patients that can lead to metastatic abscesses with poor outcome. We report a case of a 65-year-old chronic hemodialyzed male patient who developed cerebritis and brain abscesses complicating a spontaneous subdural hematoma, following Staphylococcus aureus bacteremia related to infected arteriovenous fistula. In spite of adequate antibiotherapy and several surgical brain drainages, our patient did not survive. Prevention of S. aureus is highly important in hemodialysis patients. PMID:19090864

  9. A reliable method for intracranial electrode implantation and chronic electrical stimulation in the mouse brain

    OpenAIRE

    Jeffrey, Melanie; Lang, Min; Gane, Jonathan; Wu, Chiping; Burnham, W McIntyre; Zhang, Liang

    2013-01-01

    Background Electrical stimulation of brain structures has been widely used in rodent models for kindling or modeling deep brain stimulation used clinically. This requires surgical implantation of intracranial electrodes and subsequent chronic stimulation in individual animals for several weeks. Anchoring screws and dental acrylic have long been used to secure implanted intracranial electrodes in rats. However, such an approach is limited when carried out in mouse models as the thin mouse skul...

  10. Attenuation of Oxidative Damage by Boerhaavia diffusa L. Against Different Neurotoxic Agents in Rat Brain Homogenate.

    Science.gov (United States)

    Ayyappan, Prathapan; Palayyan, Salin Raj; Kozhiparambil Gopalan, Raghu

    2016-01-01

    Due to a high rate of oxidative metabolic activity in the brain, intense production of reactive oxygen metabolite occurs, and the subsequent generation of free radicals is implicated in the pathogenesis of traumatic brain injury, epilepsy, and ischemia as well as chronic neurodegenerative diseases. In the present study, protective effects of polyphenol rich ethanolic extract of Boerhaavia diffusa (BDE), a neuroprotective edible medicinal plant against oxidative stress induced by different neurotoxic agents, were evaluated. BDE was tested against quinolinic acid (QA), 3-nitropropionic acid (NPA), sodium nitroprusside (SNP), and Fe (II)/EDTA complex induced oxidative stress in rat brain homogenates. QA, NPA, SNP, and Fe (II)/EDTA treatment caused an increased level of thiobarbituric acid reactive substances (TBARS) in brain homogenates along with a decline in the activities of antioxidant enzymes. BDE treatment significantly decreased the production of TBARS (p brain. Since many of the neurological disorders are associated with free radical injury, these data may imply that B. diffusa, functioning as an antioxidant agent, may be beneficial for reducing various neurodegenerative complications.

  11. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    Directory of Open Access Journals (Sweden)

    Denis N Silachev

    Full Text Available BACKGROUND: Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. METHODOLOGY/PRINCIPAL FINDINGS: We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated

  12. Relationship between skull asymmetry and CT findings. Supine head position preference and brain damage

    Energy Technology Data Exchange (ETDEWEB)

    Yamori, Yuriko; Yuge, Mariko; Kanda, Toyoko; Ashida, Hiromi; Fukase, Hiroshi

    1987-07-01

    In order to clarify the relationship between brain damage and skull asymmetry or supine head position preference, we classified CT findings of 330 cases with cerebral palsy or risk of motor disturbance into 6 groups according to skull shape. Those were severe (I, n = 37) and mild (II, n = 114) grades in the right occipital flatness, severe (III, n = 34) and mild (IV, n = 58) grades in the left occipital flatness, long skull with temporal flatness (V, n = 33) and symmetric round skull (control, n = 54). It was considered that the asymmetry of cortical atrophy in appearance was formed physicaly by skull asymmetry but that the asymmetric dilatation in appearance of lateral ventricle was related to the asymmetry of brain damage. The severity and the asymmetry of brain damage were tend to increase the grade of skull asymmetry. The incidence of cases with the right occipital flatness was 1.6 times more frequently than the left sided. The incidence of cases whose left (lateral) ventricle was larger than the right was 4.1 times more than the cases whose right ventricle was larger than the left. The cases with occipital flatness in the contralateral side of the larger lateral ventricle were found more than the cases with occipital flatness in the ipsilateral side of the larger ventricle, that is to say, the direction of supine head position preference during early infant was suspected to be the more severely disturbed side of body. These results suggest that the supine head position preference to the right in newborn babies and infants with scoliosis or cerebral palsy might be the result of transient or permanent asymmetric (left > right) brain dysfunction.

  13. Line and word bisection in right-brain-damaged patients with left spatial neglect.

    Science.gov (United States)

    Veronelli, Laura; Vallar, Giuseppe; Marinelli, Chiara V; Primativo, Silvia; Arduino, Lisa S

    2014-01-01

    Right-brain-damaged patients with left unilateral spatial neglect typically set the mid-point of horizontal lines to the right of the objective center. By contrast, healthy participants exhibit a reversed bias (pseudoneglect). The same effect has been described also when bisecting orthographic strings. In particular, for this latter kind of stimulus, some recent studies have shown that visuo-perceptual characteristics, like stimulus length, may contribute to both the magnitude and the direction bias of the bisection performance (Arduino et al. in Neuropsychologia 48:2140-2146, 2010). Furthermore, word stress was shown to modulate reading performances in both healthy participants, and patients with left spatial neglect and neglect dyslexia (Cubelli and Beschin in Brain Lang 95:319-326, 2005; Rusconi et al. in Neuropsychology 18:135-140, 2004). In Experiment I, 22 right-brain-damaged patients (11 with left visuo-spatial neglect) and 11 matched neurologically unimpaired control participants were asked to set the subjective mid-point of word letter strings, and of lines of comparable length. Most patients exhibited an overall disproportionate rightward bias, sensitive to stimulus length, and similar for words and lines. Importantly, in individual patients, biases differed according to stimulus type (words vs. lines), indicating that at least partly different mechanisms may be involved. In Experiment II, the putative effects on the bisection bias of ortho-phonological information (i.e., word stress endings), arising from the non-neglected right hand side of the stimulus were investigated. The orthographic cue induced a rightward shift of the perceived mid-point in both patients and controls, with short words stressed on the antepenultimate final sequence inducing a smaller rightward deviation with respect to short words stressed on the penultimate final sequence. In conclusion, partly different mechanisms, including both visuo-spatial and lexical factors, may support

  14. Organophosphates induce distal axonal damage, but not brain oedema, by inactivating neuropathy target esterase

    International Nuclear Information System (INIS)

    Single doses of organophosphorus compounds (OP) which covalently inhibit neuropathy target esterase (NTE) can induce lower-limb paralysis and distal damage in long nerve axons. Clinical signs of neuropathy are evident 3 weeks post-OP dose in humans, cats and chickens. By contrast, clinical neuropathy in mice following acute dosing with OPs or any other toxic compound has never been reported. Moreover, dosing mice with ethyloctylphosphonofluoridate (EOPF) - an extremely potent NTE inhibitor - causes a different (subacute) neurotoxicity with brain oedema. These observations have raised the possibility that mice are intrinsically resistant to neuropathies induced by acute toxic insult, but may incur brain oedema, rather than distal axonal damage, when NTE is inactivated. Here we provide the first report that hind-limb dysfunction and extensive axonal damage can occur in mice 3 weeks after acute dosing with a toxic compound, bromophenylacetylurea. Three weeks after acutely dosing mice with neuropathic OPs no clinical signs were observed, but distal lesions were present in the longest spinal sensory axons. Similar lesions were evident in undosed nestin-cre:NTEfl/fl mice in which NTE had been genetically-deleted from neural tissue. The extent of OP-induced axonal damage in mice was related to the duration of NTE inactivation and, as reported in chickens, was promoted by post-dosing with phenylmethanesulfonylfluoride. However, phenyldipentylphosphinate, another promoting compound in chickens, itself induced in mice lesions different from the neuropathic OP type. Finally, EOPF induced subacute neurotoxicity with brain oedema in both wild-type and nestin-cre:NTEfl/fl mice indicating that the molecular target for this effect is not neural NTE.

  15. QRS slopes for assessment of myocardial damage in chronic chagasic patients

    Science.gov (United States)

    Pueyo, E.; Laciar, E.; Anzuola, E.; Laguna, P.; Jané, R.

    2007-11-01

    In this study the slopes of the QRS complex are evaluated for determination of the degree of myocardial damage in chronic chagasic patients. Previous studies have demonstrated the ability of the slope indices to reflect alterations in the conduction velocity of the cardiac impulse. Results obtained in the present study show that chronic chagasic patients have significantly flatter QRS slopes as compared to healthy subjects. Not only that but the extent of slope lessening turns out to be proportional to the degree of myocardial damage caused by the disease. Additionally, when incorporating the slope indices into a classification analysis together with other indices indicative of the presence of ventricular late potentials obtained from high resolution electrocardiography, results show that the percentages of correct classification increase up to 62.5%, which means eight points above the percentages obtained prior to incorporation of the slope indices. It can be concluded that QRS slopes have great potential for assessing the degree of severity associated with Chagas' disease.

  16. QRS slopes for assessment of myocardial damage in chronic chagasic patients

    Energy Technology Data Exchange (ETDEWEB)

    Pueyo, E [Instituto de Investigacion en Ingenieria de Aragon (13A), and CIBER-BBN, Universidad de Zaragoza (Spain); Laciar, E [Gabinete de TecnologIa Medica, Universidad Nacional de San Juan (Argentina); Anzuola, E [Instituto de Investigacion en Ingenieria de Aragon (13A), and CIBER-BBN, Universidad de Zaragoza (Spain); Laguna, P [Instituto de Investigacion en Ingenieria de Aragon (13A), and CIBER-BBN, Universidad de Zaragoza (Spain); Jane, R [Department ESAII, CREB, Universitat Politecnica de Catalunya, Barcelona (Spain)

    2007-11-15

    In this study the slopes of the QRS complex are evaluated for determination of the degree of myocardial damage in chronic chagasic patients. Previous studies have demonstrated the ability of the slope indices to reflect alterations in the conduction velocity of the cardiac impulse. Results obtained in the present study show that chronic chagasic patients have significantly flatter QRS slopes as compared to healthy subjects. Not only that but the extent of slope lessening turns out to be proportional to the degree of myocardial damage caused by the disease. Additionally, when incorporating the slope indices into a classification analysis together with other indices indicative of the presence of ventricular late potentials obtained from high resolution electrocardiography, results show that the percentages of correct classification increase up to 62.5%, which means eight points above the percentages obtained prior to incorporation of the slope indices. It can be concluded that QRS slopes have great potential for assessing the degree of severity associated with Chagas' disease.

  17. Chronic Kidney Disease Induced Intestinal Mucosal Barrier Damage Associated with Intestinal Oxidative Stress Injury

    Science.gov (United States)

    Yu, Chao; Wang, Qiang; Zhou, Chunyu; Kang, Xin; Zhao, Shuang; Liu, Shuai; Fu, Huijun; Yu, Zhen; Peng, Ai

    2016-01-01

    Background. To investigate whether intestinal mucosal barrier was damaged or not in chronic kidney disease progression and the status of oxidative stress. Methods. Rats were randomized into two groups: a control group and a uremia group. The uremia rat model was induced by 5/6 kidney resection. In postoperative weeks (POW) 4, 6, 8, and 10, eight rats were randomly selected from each group to prepare samples for assessing systemic inflammation, intestinal mucosal barrier changes, and the status of intestinal oxidative stress. Results. The uremia group presented an increase trend over time in the serum tumor necrosis factor-alpha, interleukin-6 (IL-6) and IL-10, serum D-lactate and diamine oxidase, and intestinal permeability, and these biomarkers were significantly higher than those in control group in POW 8 and/or 10. Chiu's scores in uremia group were also increased over time, especially in POW 8 and 10. Furthermore, the intestinal malondialdehyde, superoxide dismutase, and glutathione peroxidase levels were significantly higher in uremia group when compared with those in control group in POW 8 and/or 10. Conclusions. The advanced chronic kidney disease could induce intestinal mucosal barrier damage and further lead to systemic inflammation. The underlying mechanism may be associated with the intestinal oxidative stress injury. PMID:27493661

  18. Voluntary Ingestion of Natural Cocoa Extenuated Hepatic Damage in Rats with Experimentally Induced Chronic Alcoholic Toxicity

    Directory of Open Access Journals (Sweden)

    Godwin Sokpor

    2012-05-01

    Full Text Available Background: Chronic ethanol ingestion causes hepatic damage imputable to an increasedoxidative stress engendered by alcoholic toxicity. Polyphenols in cocoa have antioxidant properties, and natural cocoa powder (NCP contains the highest levels of total antioxidant capacity when compared to all other kinds of edible cocoa products. This study tested the hypothesis that dietary supplementation with NCP mitigates hepatic injury resulting from chronic ethanol consumption. Three groups of eight randomized Sprague-Dawley rats were fed standardrat food and treated daily for 12 weeks as follows: (i the Ethanol-water group was given unrestricted access to 40% (v/v ethanol for 12 hours (at night followed by water for the remaining 12 hours (daytime, (ii the Ethanol-cocoa group had similarly unrestricted access to 40% ethanol for 12 hours followed by 2% (w/v NCP for 12 hours, and (iii the control group was not given alcohol and had unrestricted access to only water which was synchronously replenished every 12 hours as it was for the ethanol treated animals.Results: Qualitative structural liver damage evidenced by hepatocyte cytoplasmic fatty accumulation, nuclear alterations, and disruption of general liver micro-architecture, was severe in the ethanol-water group when compared with the ethanol-cocoa group of rats. Design-based stereologic assessment yielded a significantly greater volume (Tukey’s HSD, p = 0.0005 ofundamaged hepatocytes (9.61 ml, SD 2.18 ml in the ethanol-cocoa group as opposed to theethanol-water group of rats (2.34 ml, SD 1.21 ml. Control rats had 10.34 ml (SD 1.47 ml of undamaged hepatocytes, and that was not significantly greater (Tukey’s HSD, p=0.659 than the value for the ethanol-cocoa group of rats. Relative to controls, therefore, histomorphometryFunctional Foods in Health and Disease 2012, 2(5:166- 187 showed 93% hepatocyte preservation from alcoholic injury in rats that voluntarily imbibed NCP suspension compared with 23% in

  19. Chronic vitamin C deficiency does not accelerate oxidative stress in ageing brains of guinea pigs

    DEFF Research Database (Denmark)

    Tveden-Nyborg, Pernille; Andersen, Stine Hasselholt; Miyashita, Namiyo;

    2012-01-01

    , a lack of vitamin C could be associated with an increase in redox imbalance in the ageing brain. The present study compared oxidative stress of ageing to that of a long-term non-scorbutic vitamin C deficiency in guinea pigs. Adults (3-9 months old) were compared to old (36-42 months old) animals during...... a six-month dietary intervention by assessing vitamin C transport and redox homeostasis in the brain. In contrast to our hypothesis, chronic vitamin C deficiency did not affect the measured markers of oxidative stress in the brains of adult and aged animals. However, aged animals generally showed...

  20. Uptake of radiolabeled ions in normal and ischemia-damaged brain

    Energy Technology Data Exchange (ETDEWEB)

    Dienel, G.A.; Pulsinelli, W.A.

    1986-05-01

    The regional concentrations of nine radiochemicals were measured in rat brain after induction of cerebral ischemia to identify tracers concentrated by brain undergoing selective neuronal necrosis. Transient (30 minute) forebrain ischemia was produced in the rat; 24 hours after cerebral recirculation the radiochemicals were injected intravenously and allowed to circulate for 5 hours. The brain concentrations of the radiochemicals in dissected regions were determined by scintillation counting. Forebrain ischemia of this nature will produce extensive injury to striatal neurons but will spare the great majority of neocortical neurons at 24 hours. The regional concentrations of these radiochemicals varied considerably in both control and ischemic animals. In postischemic animals, 4 radionuclides (/sup 63/Ni, /sup 99/TcO/sub 4/, /sup 22/Na, and (/sup 3/H)tetracycline) were concentrated in the irreversibly damaged striatum in amounts ranging from 1.4 to 2.4 times greater than in normal tissue. The concentrations of /sup 65/Zn, /sup 59/Fe, /sup 32/PO/sub 4/, and /sup 147/Pm in postischemic brain were similar to or less than those in normal brain. The concentration of (14C)EDTA was increased in injured and uninjured brain of postischemic rats. Autoradiographic analysis of the distribution patterns of some of these ions in normal animals showed that /sup 99/TcO/sub 4/, /sup 22/Na, /sup 65/Zn, and /sup 59/Fe were distributed more uniformly throughout the brain than were /sup 32/PO/sub 4/, /sup 63/Ni, and /sup 147/Pm. At 24 or 48 hours after ischemia, /sup 63/Ni, /sup 99/TcO/sub 4/, and /sup 22/Na were preferentially concentrated in the damaged striatum and hippocampus, whereas /sup 65/Zn, /sup 59/Fe, /sup 32/PO/sub 4/, and /sup 147/Pm did not accumulate in irreversibly injured tissue. Of the radiochemicals tested to date, Ni, TcO/sub 4/, and tetracycline may be useful for diagnosing ischemic brain injury in humans, using positron emission tomography.

  1. Brain-peripheral cell crosstalk in white matter damage and repair.

    Science.gov (United States)

    Hayakawa, Kazuhide; Lo, Eng H

    2016-05-01

    White matter damage is an important part of cerebrovascular disease and may be a significant contributing factor in vascular mechanisms of cognitive dysfunction and dementia. It is well accepted that white matter homeostasis involves multifactorial interactions between all cells in the axon-glia-vascular unit. But more recently, it has been proposed that beyond cell-cell signaling within the brain per se, dynamic crosstalk between brain and systemic responses such as circulating immune cells and stem/progenitor cells may also be important. In this review, we explore the hypothesis that peripheral cells contribute to damage and repair after white matter damage. Depending on timing, phenotype and context, monocyte/macrophage can possess both detrimental and beneficial effects on oligodendrogenesis and white matter remodeling. Endothelial progenitor cells (EPCs) can be activated after CNS injury and the response may also influence white matter repair process. These emerging findings support the hypothesis that peripheral-derived cells can be both detrimental or beneficial in white matter pathology in cerebrovascular disease. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. PMID:26277436

  2. Abnormal Reactions of Free Radicals and Oxidative Damages in the Bodies of Patients With Chronic Glomerulonephritis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To study the abnormal reactions of a series of free radicals and the oxidative damages induced by free radical abnormal reactions in the bodies of patients with chronic glomerulonephritis. Methods Eighty chronic glomerulonephritis patients (CGNP) and eighty healthy adult volunteers (HAV) were enrolled in a random control study, in which concentrations of nitric oxide (NO) in plasma, lipoperoxides (LPO) in plasma and in erythrocytes, and vitamin C (VC),vitamin E (VE) and beta-carotene (β-CAR) in plasma as well as activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in erythrocytes were determined with spectrophotometric assays. Results Compared with the average values of the above biochemical parameters in the HAV group, the average values of NO in plasma, and LPO in plasma and erythrocytes in the CGNP group were significantly increased (P = 0.0001), while those of VC, VE and β-CAR in plasma as well as those of SOD, CAT and GPX in erythrocytes in the CGNP group were significantly decreased (P = 0.0001). Pearson product-moment correlation analysis showed that with increase of the concentration of blood creatinine as well as prolongation of the course of disease in the CGNP, the concentrations of NO in plasma, and LPO in plasma and erythrocytes in the CGNP increased gradually, while the concentrations of VC, VE and β-CAR in plasma as well as the activities of SOD, CAT and GPX in erythrocytes in the CGNP decreased gradually (P = 0.002454 - 0.000001).The relative risk ratio (RR) of the above biochemical parameters reflecting oxidative damages in the bodies of CGNP ranged from 6.061 to 72.429. The reliability coefficient (alpha) that the above biochemical parameters were used to reflect the oxidative damages of the CGNP was 0.8137,standardized item alpha = 0.9728, Hotelling's T-Squared = 1135680.191, F = 53274.6478, P =0.000001. Conclusions The findings irt this study show that in the bodies of CGNP a series of free

  3. The Relation of Mild Traumatic Brain Injury to Chronic Lapses of Attention

    Science.gov (United States)

    Pontifex, Matthew B.; Broglio, Steven P.; Drollette, Eric S.; Scudder, Mark R.; Johnson, Chris R.; O'Connor, Phillip M.; Hillman, Charles H.

    2012-01-01

    We assessed the extent to which failures in sustained attention were associated with chronic mild traumatic brain injury (mTBI) deficits in cognitive control among college-age young adults with and without a history of sport-related concussion. Participants completed the ImPACT computer-based assessment and a modified flanker task. Results…

  4. Pain in chronic pancreatitis: a salutogenic mechanism or a maladaptive brain response?

    Science.gov (United States)

    Fregni, Felipe; Pascual-Leone, Alvaro; Freedman, Steven D

    2007-01-01

    Pain in chronic pancreatitis is frequently refractory to medical and even surgical treatment. This refractoriness leads us to believe that a pancreas-independent, brain-mediated mechanism must be responsible. If so, several scenarios are worth considering. First, chronic pain could be the consequence of undesirable neuroplastic changes, by which pathology becomes established and causes disability. Alternatively, pain may be linked to the salutogenic (from salutogenesis, the Latin word for health and well-being) central nervous system response (we defined 'salutogenic response' as the specific modulation of the immune system induced by brain activity changes) to promote healing of the injured viscera. If so, chronic pain could index the ongoing nervous system attempt to promote healing. In this review, we discuss (1) the mechanisms of pain in chronic pancreatitis; (2) potential brain-related salutogenic mechanisms, and (3) the potential relationship of these two factors to the disease status. Furthermore, we consider these aspects in light of a new approach to treat visceral pain: transcranial magnetic stimulation, a noninvasive method of brain stimulation. PMID:17898531

  5. Alternaria infectoria brain abscess in a child with chronic granulomatous disease

    NARCIS (Netherlands)

    Hipolito, E.; Faria, E.; Alves, A.; de Hoog, G.S.; Anjos, J.; Goncalves, T.; Morais, P.V.; Estevao, H.

    2009-01-01

    In the present report, we describe the first case of a phaeohyphomycotic brain abscess in a 5-year-old boy with chronic granulomatous disease (CGD) admitted to hospital with seizures. A computed tomography (CT) scan revealed a cerebral abscess and the microbiology study showed a dark, melanin-pigmen

  6. The Relationship between Localized Brain Damage and Agraphia%脑不同部位损害与失写症

    Institute of Scientific and Technical Information of China (English)

    谢秋幼; 孙红宇; 刘晓加

    2001-01-01

    Writing behavior is affected by many factors and depends on the functional integrity of the nervous system. Its neuropsychological mechanism remains unknown. The agraphic features involving different parts of brain damage are dissimilar. The neuroanatomic location of agraphia and its possible brain mechanism are reviewed.

  7. Progressive brain damage, synaptic reorganization and NMDA activation in a model of epileptogenic cortical dysplasia.

    Directory of Open Access Journals (Sweden)

    Francesca Colciaghi

    Full Text Available Whether severe epilepsy could be a progressive disorder remains as yet unresolved. We previously demonstrated in a rat model of acquired focal cortical dysplasia, the methylazoxymethanol/pilocarpine - MAM/pilocarpine - rats, that the occurrence of status epilepticus (SE and subsequent seizures fostered a pathologic process capable of modifying the morphology of cortical pyramidal neurons and NMDA receptor expression/localization. We have here extended our analysis by evaluating neocortical and hippocampal changes in MAM/pilocarpine rats at different epilepsy stages, from few days after onset up to six months of chronic epilepsy. Our findings indicate that the process triggered by SE and subsequent seizures in the malformed brain i is steadily progressive, deeply altering neocortical and hippocampal morphology, with atrophy of neocortex and CA regions and progressive increase of granule cell layer dispersion; ii changes dramatically the fine morphology of neurons in neocortex and hippocampus, by increasing cell size and decreasing both dendrite arborization and spine density; iii induces reorganization of glutamatergic and GABAergic networks in both neocortex and hippocampus, favoring excitatory vs inhibitory input; iv activates NMDA regulatory subunits. Taken together, our data indicate that, at least in experimental models of brain malformations, severe seizure activity, i.e., SE plus recurrent seizures, may lead to a widespread, steadily progressive architectural, neuronal and synaptic reorganization in the brain. They also suggest the mechanistic relevance of glutamate/NMDA hyper-activation in the seizure-related brain pathologic plasticity.

  8. Rehabilitation of executive functioning in patients with frontal lobe brain damage with Goal Management Training

    Directory of Open Access Journals (Sweden)

    Brian eLevine

    2011-02-01

    Full Text Available Executive functioning deficits due to brain disease affecting frontal lobe functions cause significant real-life disability, yet solid evidence in support of executive functioning interventions is lacking. Goal Management Training (GMT, an executive functioning intervention that draws upon theories concerning goal processing and sustained attention, has received empirical support in studies of patients with traumatic brain injury, normal aging, and case studies. GMT promotes a mindful approach to complex real-life tasks that pose problems for patients with executive functioning deficits, with a main goal of periodically stopping ongoing behavior to monitor and adjust goals. In this controlled trial, an expanded version of GMT was compared to an alternative intervention, Brain Health Workshop (BHW that was matched to GMT on non-specific characteristics that can affect intervention outcome. Participants included 19 individuals in the chronic phase of recovery from brain disease (predominantly stroke affecting frontal lobe function. Outcome data indicated specific effects of GMT on the Sustained Attention to Response Task (SART as well as the Tower Test, a visuospatial problem solving measure that reflected far transfer of training effects. There were no significant effects on self-report questionnaires, likely owing to the complexity of these measures in this heterogeneous patient sample. Overall, these data support the efficacy of GMT in the rehabilitation of executive functioning deficits.

  9. Salvia officinalis l. (sage) Ameliorates Radiation-Induced Oxidative Brain Damage In Rats

    International Nuclear Information System (INIS)

    The present study was designed to investigate the oxidative stress and the role of antioxidant system in the management of gamma irradiation induced whole brain damage in rats . Also, to elucidate the potential role of Salvia officinalis (sage) in alleviating such negative effects. Rats were subjected to gamma radiation (6 Gy). Sage extract was daily given to rats during 14 days before starting irradiation and continued after radiation exposure for another 14 days. The results revealed that the levels of thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC) and nitric oxide (NO) content were significantly increased, while the activities of superoxide dismutase (SOD) and catalase (CAT) as well as the reduced glutathione (GSH) content were significantly decreased in the brain homogenate of irradiated rats. Additionally, brain acetylcholinesterase (AChE) as well as alkaline phosphatase (ALP), acid phosphatase (ACP) and lactate dehydrogenase (LDH) activities were significantly increased. On the other hand, the results showed that, administration of sage extract to rats was able to ameliorate the mentioned parameters and the values returned close to the normal ones. It could be concluded that sage extract, by its antioxidant constituents, could modulate radiation induced oxidative stress and enzyme activities in the brain.

  10. Brain damage associated with apraxia of speech: evidence from case studies.

    Science.gov (United States)

    Moser, Dana; Basilakos, Alexandra; Fillmore, Paul; Fridriksson, Julius

    2016-08-01

    The site of crucial damage that causes acquired apraxia of speech (AOS) has been debated in the literature. This study presents five in-depth cases that offer insight into the role of brain areas involved in AOS. Four of the examined participants had a primary impairment of AOS either with (n = 2) or without concomitant mild aphasia (n = 2). The fifth participant presented with a lesion relatively isolated to the left anterior insula (AIns-L), damage that is rarely reported in the literature, but without AOS. Taken together, these cases challenge the role of the AIns-L and implicate the left motor regions in AOS. PMID:27264534

  11. Emotional Processing following Cortical and Subcortical Brain Damage: Contribution of the Fronto-Striatal Circuitry

    Directory of Open Access Journals (Sweden)

    Caterina Breitenstein

    1998-01-01

    Full Text Available The present study examined the differential contribution of cortical and subcortical brain structures in emotional processing by comparing patients with focal cortical lesions (n = 32 to those with primarily subcortical dysregulation of the basal ganglia (Parkinson’s disease n = 14. A standardized measure of emotional perception (Tübingen Affect Battery was used. Only patients in the more advanced stages of Parkinson’s disease and patients with focal damage to the (right frontal lobe differed significantly from controls in both facial expression and affective prosody recognition. The findings imply involvement of the fronto-striatal circuitry in emotional processing.

  12. Candesartan and glycyrrhizin ameliorate ischemic brain damage through downregulation of the TLR signaling cascade.

    Science.gov (United States)

    Barakat, Waleed; Safwet, Nancy; El-Maraghy, Nabila N; Zakaria, Mohamed N M

    2014-02-01

    Stroke is the second leading cause of death in industrialized countries and the most frequent cause of permanent disability in adults worldwide. The final outcome of stroke is determined not only by the volume of the ischemic core, but also by the extent of secondary brain damage inflicted to penumbral tissues by brain swelling, impaired microcirculation, and inflammation. The only drug approved for the treatment ischemic stroke is recombinant tissue plasminogen activator (rt-PA). The current study was designed to investigate the protective effects of candesartan (0.15 mg/kg, orally) and glycyrrhizin (30 mg/kg, orally) experimentally-induced ischemic brain damage in C57BL/6 mice (middle cerebral artery occlusion, MCAO) in comparison to the effects of a standard neuroprotective drug (cerebrolysin, 7.5 mg/kg, IP). All drugs were administered 30 min before and 24h after MCAO. Both candesartan and glycyrrhizin ameliorated the deleterious effects of MCAO as indicated by the improvement in the performance of the animals in behaviour tests, reduction in brain infarction, neuronal degeneration, and leukocyte infiltration. In addition, MCAO induced a significant upregulation in the different elements of the TLR pathway including TLR-2 and TLR-4, Myd88, TRIF and IRF-3 and the downstream effectors TNF-α, IL-1β, IL-6 and NF-kB. All these changes were significantly ameliorated by treatment with candesartan and glycyrrhizin. The results of the current study represent a new indication for both candesartan and glycyrrhizin in the management of ischemic stroke with effects comparable to those of the standard neuroprotective drug cerebrolysin.

  13. Candesartan and glycyrrhizin ameliorate ischemic brain damage through downregulation of the TLR signaling cascade.

    Science.gov (United States)

    Barakat, Waleed; Safwet, Nancy; El-Maraghy, Nabila N; Zakaria, Mohamed N M

    2014-02-01

    Stroke is the second leading cause of death in industrialized countries and the most frequent cause of permanent disability in adults worldwide. The final outcome of stroke is determined not only by the volume of the ischemic core, but also by the extent of secondary brain damage inflicted to penumbral tissues by brain swelling, impaired microcirculation, and inflammation. The only drug approved for the treatment ischemic stroke is recombinant tissue plasminogen activator (rt-PA). The current study was designed to investigate the protective effects of candesartan (0.15 mg/kg, orally) and glycyrrhizin (30 mg/kg, orally) experimentally-induced ischemic brain damage in C57BL/6 mice (middle cerebral artery occlusion, MCAO) in comparison to the effects of a standard neuroprotective drug (cerebrolysin, 7.5 mg/kg, IP). All drugs were administered 30 min before and 24h after MCAO. Both candesartan and glycyrrhizin ameliorated the deleterious effects of MCAO as indicated by the improvement in the performance of the animals in behaviour tests, reduction in brain infarction, neuronal degeneration, and leukocyte infiltration. In addition, MCAO induced a significant upregulation in the different elements of the TLR pathway including TLR-2 and TLR-4, Myd88, TRIF and IRF-3 and the downstream effectors TNF-α, IL-1β, IL-6 and NF-kB. All these changes were significantly ameliorated by treatment with candesartan and glycyrrhizin. The results of the current study represent a new indication for both candesartan and glycyrrhizin in the management of ischemic stroke with effects comparable to those of the standard neuroprotective drug cerebrolysin. PMID:24378346

  14. Are Himalayan Sherpas better protected against brain damage associated with extreme altitude climbs?

    Science.gov (United States)

    Garrido, E; Segura, R; Capdevila, A; Pujol, J; Javierre, C; Ventura, J L

    1996-01-01

    1. The potential risk of brain damage when low-landers attempt to climb the highest summits is a well-known fact. However, very little is known about what occurs to Himalayan natives, perfectly adapted to high altitude, when performing the same type of activity. 2. Taking into account their long-life climbing experience at extreme altitudes, we examined seven of the most recognized Sherpas with the aim of performing a comprehensive neurological evaluation based on medical history, physical examination and magnetic resonance brain imaging. We compared them with one group of 21 lowland elite climbers who had ascended to altitudes of over 8000 m, and another control group of 21 healthy individuals who had never been exposed to high altitude. 3. While all of the lowland climbers presented psychoneurological symptoms during or after the expeditions, and 13 of them (61%) showed magnetic resonance abnormalities (signs of mild cortical atrophy and/or periventricular high-intensity signal areas in the white matter), only one Sherpa (14%) showed similar changes in the scans, presenting neurological symptoms at extreme altitude. The neurological examination was normal in all three groups, and no neuroimaging abnormalities were detected in the control group. 4. The significant differences, in both clinical and neuroimaging terms, suggest that Sherpa highlanders have better brain protection when exposed to extreme altitude. Although the key to protection against cerebral hypoxia cannot be established, it is possible that an increase in the usually short period of acclimatization could minimize brain damage in those low-landers who attempt the highest summits without supplementary oxygen. PMID:8697710

  15. Ischemic preconditioning reduces peripheral oxidative damage associated with brain ischemia in rats

    Directory of Open Access Journals (Sweden)

    S.S. Frassetto

    1999-10-01

    Full Text Available Brain ischemia followed by reperfusion causes neuronal death related to oxidative damage. Furthermore, it has been reported that subjects suffering from ischemic cerebrovascular disorders exhibit changes in circulating platelet aggregation, a characteristic that might be important for their clinical outcome. In the present investigation we studied tert-butyl hydroperoxide-initiated plasma chemiluminescence and thiol content as measures of peripheral oxidative damage in naive and preconditioned rats submitted to forebrain ischemia produced by the 4-vessel occlusion method. Rats were submitted to 2 or 10 min of global transient forebrain ischemia followed by 60 min or 1, 2, 5, 10 or 30 days of reperfusion. Preconditioned rats were submitted to a 10-min ischemic episode 1 day after a 2-min ischemic event (2 + 10 min, followed by 60 min or 1 or 2 days of reperfusion. It has been demonstrated that such preconditioning protects against neuronal death in rats and gerbils submitted to a lethal (10 min ischemic episode. The results show that both 2 and 10 min of ischemia cause an increase of plasma chemiluminescence when compared to control and sham rats. In the 2-min ischemic group, the effect was not present after reperfusion. In the 10-min ischemic group, the increase was present up to 1 day after recirculation and values returned to control levels after 2 days. However, rats preconditioned to ischemia (2 + 10 min and reperfusion showed no differences in plasma chemiluminescence when compared to controls. We also analyzed plasma thiol content since it has been described that sulfhydryl (SH groups significantly contribute to the antioxidant capacity of plasma. There was a significant decrease of plasma thiol content after 2, 10 and 2 + 10 min of ischemia followed by reperfusion when compared to controls. We conclude that ischemia may cause, along with brain oxidative damage and cell death, a peripheral oxidative damage that is reduced by the

  16. Effect of acute and chronic cholinesterase inhibition on biogenic amines in rat brain.

    Science.gov (United States)

    Soininen, H; Unni, L; Shillcutt, S

    1990-12-01

    The effects of five cholinesterase inhibitors on forebrain monoamine and their metabolite levels, and on forebrain and plasma cholinesterase (ChE) activity in rat were studied in acute and chronic conditions. Acute tetrahydroaminoacridine (THA) dosing caused lower brain (68%) and higher plasma (90%) ChE inhibition than the other drugs studied and increased levels of brain dihydroxyphenylacetic acid (DOPAC) (236%), homovanillic acid (HVA) (197%) and 5-hydroxyindoleacetic acid (5-HIAA) (130%). Acute physostigmine (PHY) administration caused a 215% increase in brain DOPAC content. Despite high brain ChE inhibition induced by metrifonate (MTF), dichlorvos (DDVP) or naled no changes in brain noradrenaline (NA), dopamine (DA) or serotonin (5-HT) occurred due to treatment with the study drugs in the acute study. In the chronic 10-day study THA or PHY caused no substantial ChE inhibition in brain when measured 18 hours after the last dose, whereas MTF induced 74% ChE inhibition. Long-term treatment with THA or MTF caused no changes in monoamine levels, but PHY treatment resulted in slightly increased 5-HT values. These results suggest that MTF, DDVP and naled seem to act solely by cholinergic mechanisms. However, the central neuropharmacological mechanism of action of THA and PHY may involve changes in cholinergic as well as dopaminergic and serotoninergic systems. PMID:1711162

  17. Prevalence, and Intellectual Outcome of Unilateral Focal Cortical Brain Damage as a Function of Age, Sex and Aetiology

    Directory of Open Access Journals (Sweden)

    C. M. J. Braun

    2002-01-01

    Full Text Available Neurologists and neuropsychologists are aware that aging men are more at risk than women for brain damage, principally because of the well known male-predominant risk for cardiovascular disease and related cerebrovascular accidents. However, a disproportion in prevalence of brain damage between the sexes in childhood may be less suspected. Furthermore, sex-specific risk for other aetiologies of brain damage may be little known, whether in the pediatric or adult populations. Proposals of a sex difference in cognitive recovery from brain damage have also been controversial. Six hundred and thirty five “consecutive” cases with cortical focal lesions including cases of all ages and both sexes were reviewed. Aetiology of the lesion was determined for each case as was postlesion IQ. Risk was highly male prevalent in all age groups, with a predominance of cardiovascular aetiology explaining much of the adult male prevalence. However, several other aetiological categories were significantly male prevalent in juveniles (mitotic, traumatic, dysplasic and adults (mitotic, traumatic. There was no sex difference in outcome (i.e., postlesion IQ of these cortical brain lesions for the cohort as a whole, after statistical removal of the influence of lesion extent, aetiology and presence of epilepsy. Mechanisms potentially responsible for sex differences in prevalence, aetiology of brain damage, and recovery, are reviewed and discussed.

  18. NGAL (Lcn2) monomer is associated with tubulointerstitial damage in chronic kidney disease.

    Science.gov (United States)

    Nickolas, Thomas L; Forster, Catherine S; Sise, Meghan E; Barasch, Nicholas; Solá-Del Valle, David; Viltard, Melanie; Buchen, Charles; Kupferman, Shlomo; Carnevali, Maria Luisa; Bennett, Michael; Mattei, Silvia; Bovino, Achiropita; Argentiero, Lucia; Magnano, Andrea; Devarajan, Prasad; Mori, Kiyoshi; Erdjument-Bromage, Hediye; Tempst, Paul; Allegri, Landino; Barasch, Jonathan

    2012-09-01

    The type and the extent of tissue damage inform the prognosis of chronic kidney disease (CKD), but kidney biopsy is not a routine test. Urinary tests that correlate with specific histological findings might serve as surrogates for the kidney biopsy. We used immunoblots and ARCHITECT-NGAL assays to define the immunoreactivity of urinary neutrophil gelatinase-associated lipocalin (NGAL) in CKD, and we used mass spectroscopy to identify associated proteins. We analyzed kidney biopsies to determine whether specific pathological characteristics associated with the monomeric NGAL species. Advanced CKD urine contained the NGAL monomer as well as novel complexes of NGAL. When these species were separated, we found a significant correlation between the NGAL monomer and glomerular filtration rate (r=-0.53, Phistology that typifies progressive, severe CKD.

  19. Breaking the Blood-Brain Barrier With Mannitol to Aid Stem Cell Therapeutics in the Chronic Stroke Brain.

    Science.gov (United States)

    Tajiri, Naoki; Lee, Jea Young; Acosta, Sandra; Sanberg, Paul R; Borlongan, Cesar V

    2016-01-01

    Blood-brain barrier (BBB) permeabilizers, such as mannitol, can facilitate peripherally delivered stem cells to exert therapeutic benefits on the stroke brain. Although this BBB permeation-aided stem cell therapy has been demonstrated in the acute stage of stroke, such BBB permeation in the chronic stage of the disease remains to be examined. Adult Sprague-Dawley rats initially received sham surgery or experimental stroke via the 1-h middle cerebral artery occlusion (MCAo) model. At 1 month after the MCAo surgery, stroke animals were randomly assigned to receive human umbilical cord stem cells only (2 million viable cells), mannitol only (1.1 mol/L mannitol at 4°C), combined human umbilical cord stem cells (200,000 viable cells) and mannitol (1.1 mol/L mannitol at 4°C), and vehicle (phosphate-buffered saline) only. Stroke animals that received human umbilical cord blood cells alone or combined human umbilical cord stem cells and mannitol exhibited significantly improved motor performance and significantly better brain cell survival in the peri-infarct area compared to stroke animals that received vehicle or mannitol alone, with mannitol treatment reducing the stem cell dose necessary to afford functional outcomes. Enhanced neurogenesis in the subventricular zone accompanied the combined treatment of human umbilical cord stem cells and mannitol. We showed that BBB permeation facilitates the therapeutic effects of a low dose of peripherally transplanted stem cells to effectively cause functional improvement and increase neurogenesis in chronic stroke.

  20. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy.

    Science.gov (United States)

    Puvenna, Vikram; Engeler, Madeline; Banjara, Manoj; Brennan, Chanda; Schreiber, Peter; Dadas, Aaron; Bahrami, Ashkon; Solanki, Jesal; Bandyopadhyay, Anasua; Morris, Jacqueline K; Bernick, Charles; Ghosh, Chaitali; Rapp, Edward; Bazarian, Jeffrey J; Janigro, Damir

    2016-01-01

    Repetitive traumatic brain injury (rTBI) is one of the major risk factors for the abnormal deposition of phosphorylated tau (PT) in the brain and chronic traumatic encephalopathy (CTE). CTE and temporal lobe epilepsy (TLE) affect the limbic system, but no comparative studies on PT distribution in TLE and CTE are available. It is also unclear whether PT pathology results from repeated head hits (rTBI). These gaps prevent a thorough understanding of the pathogenesis and clinical significance of PT, limiting our ability to develop preventative and therapeutic interventions. We quantified PT in TLE and CTE to unveil whether a history of rTBI is a prerequisite for PT accumulation in the brain. Six postmortem CTE (mean 73.3 years) and age matched control samples were compared to 19 surgically resected TLE brain specimens (4 months-58 years; mean 27.6 years). No history of TBI was present in TLE or control; all CTE patients had a history of rTBI. TLE and CTE brain displayed increased levels of PT as revealed by immunohistochemistry. No age-dependent changes were noted, as PT was present as early as 4 months after birth. In TLE and CTE, cortical neurons, perivascular regions around penetrating pial vessels and meninges were immunopositive for PT; white matter tracts also displayed robust expression of extracellular PT organized in bundles parallel to venules. Microscopically, there were extensive tau-immunoreactive neuronal, astrocytic and degenerating neurites throughout the brain. In CTE perivascular tangles were most prominent. Overall, significant differences in staining intensities were found between CTE and control (Pbrain contained low molecular weight tau. Tau deposition may not be specific to rTBI since TLE recapitulated most of the pathological features of CTE.

  1. The Emotional Brain as a Predictor and Amplifier of Chronic Pain.

    Science.gov (United States)

    Vachon-Presseau, E; Centeno, M V; Ren, W; Berger, S E; Tétreault, P; Ghantous, M; Baria, A; Farmer, M; Baliki, M N; Schnitzer, T J; Apkarian, A V

    2016-06-01

    Human neuroimaging studies and complementary animal experiments now identify the gross elements of the brain involved in the chronification of pain. We briefly review these advances in relation to somatic and orofacial persistent pain conditions. First, we emphasize the importance of reverse translational research for understanding chronic pain-that is, the power of deriving hypotheses directly from human brain imaging of clinical conditions that can be invasively and mechanistically studied in animal models. We then review recent findings demonstrating the importance of the emotional brain (i.e., the corticolimbic system) in the modulation of acute pain and in the prediction and amplification of chronic pain, contrasting this evidence with recent findings regarding the role of central sensitization in pain chronification, especially for orofacial pain. We next elaborate on the corticolimbic circuitry and underlying mechanisms that determine the transition to chronic pain. Given this knowledge, we advance a new mechanistic definition of chronic pain and discuss the clinical implications of this new definition as well as novel therapeutic potentials suggested by these advances. PMID:26965423

  2. Effect of chronic exposure to aspartame on oxidative stress in the brain of albino rats

    Indian Academy of Sciences (India)

    Ashok Iyyaswamy; Sheeladevi Rathinasamy

    2012-09-01

    This study was aimed at investigating the chronic effect of the artificial sweetener aspartame on oxidative stress in brain regions of Wistar strain albino rats. Many controversial reports are available on the use of aspartame as it releases methanol as one of its metabolite during metabolism. The present study proposed to investigate whether chronic aspartame (75 mg/kg) administration could release methanol and induce oxidative stress in the rat brain. To mimic the human methanol metabolism, methotrexate (MTX)-treated rats were included to study the aspartame effects. Wistar strain male albino rats were administered with aspartame orally and studied along with controls and MTX-treated controls. The blood methanol level was estimated, the animal was sacrificed and the free radical changes were observed in brain discrete regions by assessing the scavenging enzymes, reduced glutathione, lipid peroxidation (LPO) and protein thiol levels. It was observed that there was a significant increase in LPO levels, superoxide dismutase (SOD) activity, GPx levels and CAT activity with a significant decrease in GSH and protein thiol. Moreover, the increases in some of these enzymes were region specific. Chronic exposure of aspartame resulted in detectable methanol in blood. Methanol per se and its metabolites may be responsible for the generation of oxidative stress in brain regions.

  3. Effect of chronic exposure to aspartame on oxidative stress in the brain of albino rats.

    Science.gov (United States)

    Iyyaswamy, Ashok; Rathinasamy, Sheeladevi

    2012-09-01

    This study was aimed at investigating the chronic effect of the artificial sweetener aspartame on oxidative stress in brain regions of Wistar strain albino rats. Many controversial reports are available on the use of aspartame as it releases methanol as one of its metabolite during metabolism. The present study proposed to investigate whether chronic aspartame (75 mg/kg) administration could release methanol and induce oxidative stress in the rat brain. To mimic the human methanol metabolism, methotrexate (MTX)-treated rats were included to study the aspartame effects. Wistar strain male albino rats were administered with aspartame orally and studied along with controls and MTX-treated controls. The blood methanol level was estimated, the animal was sacrificed and the free radical changes were observed in brain discrete regions by assessing the scavenging enzymes, reduced glutathione, lipid peroxidation (LPO) and protein thiol levels. It was observed that there was a significant increase in LPO levels, superoxide dismutase (SOD) activity, GPx levels and CAT activity with a significant decrease in GSH and protein thiol. Moreover, the increases in some of these enzymes were region specific. Chronic exposure of aspartame resulted in detectable methanol in blood. Methanol per se and its metabolites may be responsible for the generation of oxidative stress in brain regions.

  4. Repeated verum but not placebo acupuncture normalizes connectivity in brain regions dysregulated in chronic pain

    Directory of Open Access Journals (Sweden)

    Natalia Egorova

    2015-01-01

    Full Text Available Acupuncture, an ancient East Asian therapy, is aimed at rectifying the imbalance within the body caused by disease. Studies evaluating the efficacy of acupuncture with neuroimaging tend to concentrate on brain regions within the pain matrix, associated with acute pain. We, however, focused on the effect of repeated acupuncture treatment specifically on brain regions known to support functions dysregulated in chronic pain disorders. Transition to chronic pain is associated with increased attention to pain, emotional rumination, nociceptive memory and avoidance learning, resulting in brain connectivity changes, specifically affecting the periaqueductal gray (PAG, medial frontal cortex (MFC and bilateral hippocampus (Hpc. We demonstrate that the PAG–MFC and PAG–Hpc connectivity in patients with chronic pain due to knee osteoarthritis indeed correlates with clinical severity scores and further show that verum acupuncture-induced improvement in pain scores (compared to sham is related to the modulation of PAG–MFC and PAG–Hpc connectivity in the predicted direction. This study shows that repeated verum acupuncture might act by restoring the balance in the connectivity of the key pain brain regions, altering pain-related attention and memory.

  5. Antimicrobial peptides and complement in neonatal hypoxia-ischemia induced brain damage

    Directory of Open Access Journals (Sweden)

    Eridan eRocha-Ferreira

    2015-02-01

    subsequent brain damage.

  6. Adipose Tissue-Derived Stem Cells Reduce Acute and Chronic Kidney Damage in Mice.

    Directory of Open Access Journals (Sweden)

    Marina Burgos-Silva

    Full Text Available Acute and chronic kidney injuries (AKI and CKI constitute syndromes responsible for a large part of renal failures, and are today still associated with high mortality rates. Given the lack of more effective therapies, there has been intense focus on the use stem cells for organ protective and regenerative effects. Mesenchymal stem cells (MSCs have shown great potential in the treatment of various diseases of immune character, although there is still debate on its mechanism of action. Thus, for a greater understanding of the role of MSCs, we evaluated the effect of adipose tissue-derived stem cells (AdSCs in an experimental model of nephrotoxicity induced by folic acid (FA in FVB mice. AdSC-treated animals displayed kidney functional improvement 24h after therapy, represented by reduced serum urea after FA. These data correlated with cell cycle regulation and immune response modulation via reduced chemokine expression and reduced neutrophil infiltrate. Long-term analyses, 4 weeks after FA, indicated that AdSC treatment reduced kidney fibrosis and chronic inflammation. These were demonstrated by reduced interstitial collagen deposition and tissue chemokine and cytokine expression. Thus, we concluded that AdSC treatment played a protective role in the framework of nephrotoxic injury via modulation of inflammation and cell cycle regulation, resulting in reduced kidney damage and functional improvement, inhibiting organ fibrosis and providing long-term immune regulation.

  7. Oxidative damage in the progression of chronic liver disease to hepatocellular carcinoma: an intricate pathway.

    Science.gov (United States)

    Cardin, Romilda; Piciocchi, Marika; Bortolami, Marina; Kotsafti, Andromachi; Barzon, Luisa; Lavezzo, Enrico; Sinigaglia, Alessandro; Rodriguez-Castro, Kryssia Isabel; Rugge, Massimo; Farinati, Fabio

    2014-03-28

    The histo-pathologic and molecular mechanisms leading to initiation and progression of hepatocellular carcinoma (HCC) are still ill-defined; however, there is increasing evidence that the gradual accumulation of mutations, genetic and epigenetic changes which occur in preneoplastic hepatocytes results in the development of dysplastic foci, nodules, and finally, overt HCC. As well as many other neoplasias, liver cancer is considered an "inflammatory cancer", arising from a context of inflammation, and characterized by inflammation-related mechanisms that favor tumor cell survival, proliferation, and invasion. Molecular mechanisms that link inflammation and neoplasia have been widely investigated, and it has been well established that inflammatory cells recruited at these sites with ongoing inflammatory activity release chemokines that enhance the production of reactive oxygen species. The latter, in turn, probably have a major pathogenic role in the continuum starting from hepatitis followed by chronic inflammation, and ultimately leading to cancer. The relationship amongst chronic liver injury, free radical production, and development of HCC is explored in the present review, particularly in the light of the complex network that involves oxidative DNA damage, cytokine synthesis, telomere dysfunction, and microRNA regulation. PMID:24696595

  8. [The clinical study of the first febrile convulsion in children with brain-damage].

    Science.gov (United States)

    Asoh, M

    1997-05-01

    Forty-nine patients with cerebral palsy, mental retardation, or other congenital neurological disorders who had experienced febrile convulsions and had no previous nonfebrile seizures were presented. They were followed for 1.6 years to 15 years (mean: 6.8 years) after the initial febrile convulsion. The incidence of subsequent epilepsy (two or more afebrile seizures) was 39%, and 80% of them developed epilepsy within 2 years after the first febrile convulsion. The paroxysmal discharges on EEG recorded prior to or after the first febrile convulsion did not predict the occurrence of later epilepsy. Also under 3 years of age, EEG findings led to the same result. There was no definite evidence that administration of anticonvulsive drugs prevented later epilepsy. Pre-existing neurological abnormality was identified as a risk factor for epilepsy, and was an indication of persistent medication. There is no clear prophylactic procedure against long-lasting attacks. Accordingly, medical therapy can be started when epilepsy has developed. Patients with very severe brain damage who could not move except lying comprised only 6% of all cases, and 69% of the epilepsy patients were well controlled. They showed a good prognosis as compared with children with brain-damage in general with epilepsy. PMID:9146028

  9. Piano training in youths with hand motor impairments after damage to the developing brain.

    Science.gov (United States)

    Lampe, Renée; Thienel, Anna; Mitternacht, Jürgen; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana

    2015-01-01

    Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients' quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35-40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano. PMID:26345312

  10. Dimensions of personality disturbance after focal brain damage: investigation with the Iowa Scales of Personality Change.

    Science.gov (United States)

    Barrash, Joseph; Asp, Erik; Markon, Kristian; Manzel, Kenneth; Anderson, Steven W; Tranel, Daniel

    2011-10-01

    This study employed a multistep, rational-empirical approach to identify dimensions of personality disturbance in brain-damaged individuals: (a) Five dimensions were hypothesized based on empirical literature and conceptual grounds; (b) principal components analysis was performed on the Iowa Scales of Personality Change (ISPC) to determine the pattern of covariance among 30 personality characteristics; (c) when discrepancies existed between principal components analysis results and conceptually based dimensions, empirical findings and clinical considerations were weighed to determine assignment of ISPC scales to dimensions; (d) the fit of data to the refined dimensions was assessed by examination of intercorrelations; (e) differential predictions concerning the relationship of dimensions to ventromedial prefrontal cortex (vmPFC) damage were tested. This process resulted in the specification of five dimensions: Disturbed Social Behavior, Executive/Decision-Making Deficits, Diminished Motivation/Hypo-Emotionality, Irascibility, and Distress. In accord with predictions, the 28 participants with vmPFC lesions, compared to 96 participants with focal lesions elsewhere in the brain, had significantly more Disturbed Social Behavior and Executive/Decision-Making Deficits and tended to have more Diminished Motivation/Hypo-Emotionality. Irascibility was not significantly higher among the vmPFC group, and the groups had very similar levels of Distress. The findings indicate that conceptually distinctive dimensions with differential relationships to vmPFC can be derived from the Iowa Scales of Personality Change. PMID:21500116

  11. Piano training in youths with hand motor impairments after damage to the developing brain.

    Science.gov (United States)

    Lampe, Renée; Thienel, Anna; Mitternacht, Jürgen; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana

    2015-01-01

    Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients' quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35-40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano.

  12. Vulnerability of premyelinating oligodendrocytes to white-matter damage in neonatal brain injury

    Institute of Scientific and Technical Information of China (English)

    Xiao-Bo Liu; Yan Shen; Jennifer M.Plane; Wenbin Deng

    2013-01-01

    Premature birth is a significant economic and public health burden,and its incidence is rising.Periventricular leukomalacia (PVL) is the predominant form of brain injury in premature infants and the leading cause of cerebral palsy.PVL is characterized by selective white-matter damage with prominent oligodendroglial injury.The maturation-dependent vulnerability of developing and premyelinating oligodendrocytes to excitotoxic,oxidative,and inflammatory forms of injury is a major factor in the pathogenesis of PVL.Recent studies using mouse models of PVL reveal that synapses between axons and developing oligodendrocytes are quickly and profoundly damaged in immature white matter.Axon-glia synapses are highly vulnerable to white-matter injury in the developing brain,and the loss of synapses between axons and premyelinating oligodendrocytes occurs before any cellular loss in the immature white matter.Microglial activation and astrogliosis play important roles in triggering white-matter injury.Impairment of white-matter development and function in the neonatal period contributes critically to functional and behavioral deficits.Preservation of the integrity of the white matter is likely key in the treatment of PVL and subsequent neurological consequences and disabilities.

  13. Assessment of hand after brain damage with the aim of functional surgery.

    Science.gov (United States)

    Romain, M; Benaim, C; Allieu, Y; Pelissier, J; Chammas, M

    1999-01-01

    The semiology of the hand after brain damage is really rich. Its clinical evaluation remains quite difficult and must be integrated in the neuro-orthopedic and cognitive context. Deficiency, neuropsychological, analytic and functional status, must be assessed before any surgical decision aiming the improvement of prehension. Neuropsychological evaluation precise the hemispheric specialization: right hemisphere lesions conduct to unilateral spatial neglect while left hemispherical lesions determine language troubles and gesture impairment (apraxia). The analytical evaluation describes motor and sensitive function and assesses spasticity and pain. Concerning the functional assessment, the Enjalbert's score seems to be the most adapted to the upper limb. The assessment of hand deficiency and its origin is necessary to orientate the surgical decision and includes the Zancolli classification for the fingers and wrist and the House classification for the thumb. These classification used for cerebral palsy seems to be insufficient for all the different situations occurring after brain damage. A new classification is proposed based on 3 parameters: fingers extension, thumb abduction and supination. Surgical decision should be examined only after an adapted rehabilitation program.

  14. Effect of propentofylline on hypoxic-ischaemic brain damage in newborn rat

    Institute of Scientific and Technical Information of China (English)

    XIA Xiao-yan 夏晓艳; SAMESHIMA Hiroshi 鲛岛浩; OTA Arturo 大田Arturo; XIA Yi-xin 夏义欣; IKENOUE Tsuyomu 池ノ上克; TOSHIMORI Kiyotaka 年森清隆; HUANG Xing-hua 黄醒华

    2004-01-01

    Background Studies showed that propentofylline enhances the action of adenosine and protects hippocampal neuronal demage against transient global cerebral ischaemia. Our study was to investigate the effect of propentofylline on hypoxic-ischaemic brain damage in neonatal rat.Methods Seven-day-old Wistar rats were subjected to unilateral common carotid artery ligation and hypoxia in oxygen 8 kPa for two hours at 37℃. Propentofylline (10 mg/kg) was administered intraperitoneally one hour after hypoxia-ischaemia (treated group). Control group rats were received an equivalent volume of saline. The effects of propentofylline were assessed by observing the body mass gain, behavioural alteration and neurohistological changes. The rats were sacrificed at 72 hours after hypoxia-ischaemia, and the brain sections were examined after haematoxylin and eosin staining.Results The propentofylline-treated rats had better body mass gain and better behavioural response than the paired saline-controls did. In the control group, the rats either lost body mass or had little mass gain after the insult, their average body mass gain was 97.3% at 24 h, 100.3% at 48 h, and 114.1% at 72 h of recovery. In propentofylline-treated group, there was a significant improvement of body mass gain at 24 h (100.2%, P<0.05) and 48 h (110.3%, P<0.01) of recovery; the percentage of rats that performed well on behavioural test was significantly higher from 48 h to 72 h of recovery (P<0.05); the incidence of severe brain damage to the cerebral cortex and dentate gyrus was significantly reduced in propentofylline-treated rats (cortex, 93%-70.8%, P<0.01; dentate gyrus 95%-66.7%, P<0.01) as compared with control rats. Conclusions Administration of propentofylline 1 hour after hypoxia-ischaemia significantly attenuates brain damage in both the cerebral cortex and dentate gyrus, and also improves the body mass gain as well as behavioural disturbance in 7-day-old rats.

  15. Pathological and MRI study on experimental heroin-induced brain damage in rats

    International Nuclear Information System (INIS)

    Objective: To study the pathological characteristics of the heroin-induced brain damage in rats, and to assess the diagnostic value of MRI. Methods: A total of 40 adult Wistar rats were studied, 32 rats were used for injecting heroin as heroin group and 8 were used for injecting saline as control group. The heroin dependent rat model was established by administering heroin (ip) in the ascending dosage schedule (0.5 mg/kg), three times a day (at 8:00, 12:00, and 18:00). The control group was established by the same way by injection with saline. The withdrawal scores were evaluated with imp roved criterion in order to estimate the degree of addiction after administering naloxone. Based on the rat model of heroin dependence, the rat model of heroin-induced brain damage was established by the same way with increasing heroin dosage everyday. Two groups were examined by using MRI, light microscope, and electron microscope, respectively in different heroin accumulated dosage (918, 1580, 2686, 3064, 4336, and 4336 mg/kg withdrawal after 2 weeks). Results: There was statistically significant difference (t=9.737, P<0.01) of the withdrawal scores between the heroin dependent group and the saline group (23.0 ± 4.4 and 1.4 ± 0.5, respectively). It suggested that the heroin dependent rat model be established successfully. In different accumulated dosage ( from 1580 mg/kg to 4336 mg/kg), there were degeneration and death of nerve cells in cerebrum and cerebellum of heroin intoxicated rats, and it suggested that the rat model of heroin-induced brain damage was established successfully. The light microscope and electron microscope features of heroin-induced brain damage in rats included: (1) The nerve cells of cerebral cortex degenerated and died. According to the heroin accumulated dosage, there were statistically significant difference of the nerve cell deaths between 4336 mg/kg group and 1580 mg/kg group or control group (P=0.024 and P=0.032, respectively); (2) The main

  16. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury

    Science.gov (United States)

    Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun

    2013-05-01

    Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.

  17. Moringa Oleifera Lam Mitigates Oxidative Damage and Brain Infarct Volume in Focal Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Woranan Kirisattayakul

    2012-01-01

    Full Text Available Problem statement: At present, the therapeutic outcome of cerebral ischemia is still not in the satisfaction level. Therefore, the preventive strategy is considered. Based on the protective effect against oxidative damage of Moringa oleifera Lam. Leaves extract, we hypothesized that this plant extract might protect against cerebral ischemia, one of the challenge problems nowadays. In order to test this hypothesis, we aimed to determine the protective effect of M.oleifera leaves extract in animal model of focal cerebral ischemia induced by permanent occlusion of right middle cerebral artery. Approach: Male Wistar rats, weighing 300-350 g, were orally given the extract once daily at doses of 100, 200 and 400 mg kg-1 BW at a period of 2 weeks, then, they were permanently occluded the right Middle Cerebral Artery (MCAO. The animals were assessed the cerebral infarction volume and oxidative damage markers including MDA level and the activities of SOD, CAT and GSHPx enzymes at 24 h after occlusion. Results: Rats subjected to M.oleifera extract at all doses used in this study significantly decreased brain infarct volume both at cortical and subcortical structures in accompany with the elevation of SOD activity in both hippocampus and striatum while only the rats exposed to the extract at doses of 100 and 400 mg kg-1 BW showed the increased GSHPx activity in hippocampus. No the changes were observed. Therefore, our results demonstrates the potential benefit of M.oleifera leaves to decrease oxidative stress damage and brain infarct volume. Conclusion: This study is the first study to demonstrate the neuroprotective effect against focal cerebral ischemia of M.oleifera leaves. It suggests that M.oleifera may be served as natural resource for developing neuroprotectant against focal cerebral ischemia. However, the precise underlying mechanism and possible active ingredient are still required further study.

  18. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Quan-Guang Zhang

    Full Text Available BACKGROUND: Oxidative stress is known to play an important role in the pathology of traumatic brain injury. Mitochondria are thought to be the major source of the damaging reactive oxygen species (ROS following TBI. However, recent work has revealed that the membrane, via the enzyme NADPH oxidase can also generate the superoxide radical (O(2(-, and thereby potentially contribute to the oxidative stress following TBI. The current study thus addressed the potential role of NADPH oxidase in TBI. METHODOLOGY/PRINCIPAL FINDINGS: The results revealed that NADPH oxidase activity in the cerebral cortex and hippocampal CA1 region increases rapidly following controlled cortical impact in male mice, with an early peak at 1 h, followed by a secondary peak from 24-96 h after TBI. In situ localization using oxidized hydroethidine and the neuronal marker, NeuN, revealed that the O(2(- induction occurred in neurons at 1 h after TBI. Pre- or post-treatment with the NADPH oxidase inhibitor, apocynin markedly inhibited microglial activation and oxidative stress damage. Apocynin also attenuated TBI-induction of the Alzheimer's disease proteins β-amyloid and amyloid precursor protein. Finally, both pre- and post-treatment of apocynin was also shown to induce significant neuroprotection against TBI. In addition, a NOX2-specific inhibitor, gp91ds-tat was also shown to exert neuroprotection against TBI. CONCLUSIONS/SIGNIFICANCE: As a whole, the study demonstrates that NADPH oxidase activity and superoxide production exhibit a biphasic elevation in the hippocampus and cortex following TBI, which contributes significantly to the pathology of TBI via mediation of oxidative stress damage, microglial activation, and AD protein induction in the brain following TBI.

  19. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    Science.gov (United States)

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (pmicrowave exposed groups (pmicrowave exposed animal (pmicrowave exposed groups as compared to their corresponding values in sham exposed group (pmicrowave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure.

  20. Intrauterine infection and neonatal brain damage%宫内感染与新生儿脑损伤

    Institute of Scientific and Technical Information of China (English)

    石晶; 母得志

    2015-01-01

    宫内感染是导致新生儿脑损伤及神经系统功能障碍的重要危险因素。病毒、细菌和原虫可感染子宫腔并导致胎儿和新生儿脑损伤。炎症反应是宫内感染致新生儿脑损伤的重要致病因素,不同孕期宫内感染导致不同类型脑损害。临床医师应重视孕期宫内感染的预防,有必要进一步加强临床和基础研究,探索宫内感染致新生儿脑损伤的有效干预措施。%Intrauterine infection is an important risk factor for neonatal brain damage and neurological dysfunction. Viruses, bacteria, and protozoa can cause intrauterine infection which results in neonatal brain damage. The inlfammatory response is an important pathogenic factor for neonatal brain damage caused by intrauterine infection. Intrauterine infection in different periods of pregnancy might cause different types of brain damage in neonates. Clinicians should pay attention to the prevention of intrauterine infection during pregnancy. It is necessary to further strengthen the clinical and basic research to explore effective interventions for neonatal brain damage caused by intrauterine infection.

  1. Coefficient of variation of R-R intervals in severe brain damage.

    Science.gov (United States)

    Nezu, A; Kimura, S; Kobayashi, T; Osaka, H; Uehara, S

    1996-01-01

    The coefficient of variation of R-R intervals (CVRR) was studied in 18 children having severe brain damage with a mean +/- standard deviation (s.d.) age of 8.4 +/- 5.9 years, who were divided into ten patients complicated with respiratory insufficiency (RI group) and eight patients with severe athetotic cerebral palsy (SA group). CVRR was obtained in the resting supine position, and was compared with that in 22 neurologically normal controls. CVRR in the RI group (mean +/- S.D., 2.19 +/- 1.28%) was significantly lower than that in controls (5.56 +/- 1.53%), while CVRR in the SA group (11.30 +/- 3.91%) was significantly higher than that in controls (both P < 0.01, ANOVA). In particular, the four patients with brain death showed extremely low CVRR of 1.00-1.29%. Since CVRR was 4.09% in the patient aged 4 years with birth injury of the upper cervical spinal cord causing absence of spontaneous respiration, the extremely low CVRR in patients with brain death may be directly related to brainstem dysfunction. The cause of the high CVRR in the SA group was not determined. Thus, CVRR may be useful for quantitative evaluation of severe neurological disorder.

  2. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Jiang, Ning; Stevenson, Andrew James Thomas;

    2016-01-01

    Brain-computer interfaces (BCIs) have the potential to improve functionality in chronic stoke patients when applied over a large number of sessions. Here, we evaluate the effect and the underlying mechanisms of three BCI training sessions in a double-blind-sham-controlled design. The applied BCI......-associative group. Fugl-Meyer motor scores (0.8±0.46 point difference p=0.01), foot (but not finger) tapping frequency, and 10-m walking speed improved significantly for the BCIassociative group, indicating clinically relevant improvements. For the BCI as applied here, the precise coupling between the brain command...

  3. Microcavitation as a Neuronal Damage Mechanism in Blast Traumatic Brain Injury

    Science.gov (United States)

    Franck, Christian; Estrada, Jonathan

    2015-11-01

    Blast traumatic brain injury (bTBI) is a leading cause of injury in the armed forces. Diffuse axonal injury, the hallmark feature of blunt TBI, has been investigated in direct mechanical loading conditions. However, recent evidence suggests inertial cavitation as a possible bTBI mechanism, particularly in the case of exposure to blasts. Cavitation damage to free surfaces has been well-studied, but bubble interactions within confined 3D environments, in particular their stress and strain signatures are not well understood. The structural damage due to cavitation in living tissues - particularly at the cellular level - are incompletely understood, in part due to the rapid bubble formation and deformation strain rates of up to ~ 105-106 s-1. This project aims to characterize material damage in 2D and 3D cell culture environments by utilizing a novel high-speed red-blue diffraction assisted image correlation method at speeds of up to 106 frames per second. We gratefully acknowledge funding from the Office of Naval Research (POC: Dr. Tim Bentley).

  4. Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain.

    Science.gov (United States)

    Daniel, Sheril; Limson, Janice L; Dairam, Amichand; Watkins, Gareth M; Daya, Santy

    2004-02-01

    Curcumin, the major constituent of turmeric is a known, naturally occurring antioxidant. The present study examined the ability of this compound to protect against lead-induced damage to hippocampal cells of male Wistar rats, as well as lipid peroxidation induced by lead and cadmium in rat brain homogenate. The thiobarbituric assay (TBA) was used to measure the extent of lipid peroxidation induced by lead and cadmium in rat brain homogenate. The results show that curcumin significantly protects against lipid peroxidation induced by both these toxic metals. Coronal brain sections of rats injected intraperitoneally with lead acetate (20 mg/kg) in the presence and absence of curcumin (30 mg/kg) were compared microscopically to determine the extent of lead-induced damage to the cells in the hippocampal CA1 and CA3 regions, and to establish the capacity of curcumin to prevent such damage. Lead-induced damage to the neurons was significantly curtailed in the rats injected with curcumin. Possible chelation of lead and cadmium by curcumin as its mechanism of neuroprotection against such heavy metal insult to the brain was investigated using electrochemical, ultraviolet spectrophotometric and infrared spectroscopic analyses. The results of the study show that there is an interaction between curcumin and both cadmium and lead, with the possible formation of a complex between the metal and this ligand. These results imply that curcumin could be used therapeutically to chelate these toxic metals, thus potentially reducing their neurotoxicity and tissue damage.

  5. DNA DAMAGE IN BUCCAL EPITHELIAL CELLS FROM INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA, CHINA

    Science.gov (United States)

    The purpose of this pilot study was to assess DNA damage in buccal cells from individuals chronically exposed to arsenic via drinking water in Ba Men, Inner Mongolia. Buccal cells were collected from 19 Ba Men residents exposed to arsenic at 527.5 ? 23.7 g/L (mean ? SEM) and ...

  6. Diagnostic usefulness of the oedema-infarct ratio to differentiate acute from chronic myocardial damage using magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Kiyoyasu; Suzuki, Susumu; Kinoshita, Kousuke; Yokouchi, Kazuhiko; Iwata, Hirokazu; Sawada, Ken [Gifu Social Insurance Hospital, Department of Cardiology, Gifu (Japan); Isobe, Satoshi; Ohshima, Satoru; Murohara, Toyoaki [Nagoya University Graduate School of Medicine, Department of Cardiology, Nagoya (Japan); Hirai, Makoto [Nagoya University School of Health Sciences, Department of Nursing, Nagoya (Japan)

    2012-04-15

    To differentiate acute from chronic damage to the myocardium in patients with myocardial infarction (MI) using DE and T2w MR. Short-axis T2w and DE MR images were acquired twice after the onset of MI in 36 patients who successfully underwent emergency coronary revascularisation. The areas of infarct and oedema were measured. The oedema-infarct ratio (O/I) of the left ventricular area was calculated by dividing the oedema by the infarct area. The oedema size on T2w MR was significantly larger than the infarct size on DE MR in the acute phase. Both the oedema size on T2w MR and the infarct size on DE MR in the acute phase were significantly larger than those in the chronic phase. The O/I was significantly greater in the acute phase compared with that in the chronic phase (P < 0.05). An analysis of relative cumulative frequency distributions revealed an O/I of 1.4 as a cut-off value for differentiating acute from chronic myocardial damage with the sensitivity, specificity, and accuracy of 85.1%, 82.7% and 83.9%, respectively. The oedema-infarct ratio may be a useful index in differentiating acute from chronic myocardial damage in patients with MI. (orig.)

  7. Facial Affect Recognition Training Through Telepractice: Two Case Studies of Individuals with Chronic Traumatic Brain Injury

    OpenAIRE

    John Williamson; Emi Isaki

    2015-01-01

    The use of a modified Facial Affect Recognition (FAR) training to identify emotions was investigated with two case studies of adults with moderate to severe chronic (> five years) traumatic brain injury (TBI).  The modified FAR training was administered via telepractice to target social communication skills.  Therapy consisted of identifying emotions through static facial expressions, personally reflecting on those emotions, and identifying sarcasm and emotions within social stories and ro...

  8. Sleep is associated with task-negative brain activity in fibromyalgia participants with comorbid chronic insomnia

    OpenAIRE

    Vatthauer KE; Craggs JG; Robinson ME; Staud R; Berry RB; Perlstein WM; McCrae CS

    2015-01-01

    Karlyn E Vatthauer,1 Jason G Craggs,1 Michael E Robinson,1 Roland Staud,2 Richard B Berry,2 William M Perlstein,1 Christina S McCrae11Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA; 2Department of Medicine, University of Florida, Gainesville, FL, USAAbstract: Patients with chronic pain exhibit altered default mode network (DMN) activity. This preliminary project questioned whether comorbid disease states are associated with further brain alterations....

  9. Sex differences in synaptic plasticity in stress-responsive brain regions following chronic variable stress

    OpenAIRE

    Carvalho-Netto, Eduardo F.; Myers, Brent; Jones, Kenneth; Solomon, Matia B.; Herman, James P.

    2011-01-01

    Increased stress responsiveness is implicated in the etiology of mood and anxiety disorders, including depression and post-traumatic stress disorder. Additionally, stress-related affective disorders have a higher incidence in women than men. Chronic stress in rodents produces numerous neuromorphological changes in a variety of limbic brain regions. Here, we examined the sex-dependent differences in presynaptic innervation of the paraventricular nucleus of the hypothalamus (PVN), prefrontal co...

  10. Proinflammatory cytokine expression contributes to brain injury provoked by chronic monocyte activation.

    OpenAIRE

    Sirén, A. L.; McCarron, R.; Wang, L.; Garcia-Pinto, P.; Ruetzler, C.; Martin, D.; Hallenbeck, J. M.

    2001-01-01

    BACKGROUND: We have proposed that an increased interaction between monocyte/macrophages and blood vessel endothelium predisposes subjects to strokes. The effect of chronic monocyte activation on the development of cerebral infarcts was thus studied in rats after provocation of a modified local Swartzman reaction, in brain vasculature. MATERIALS AND METHODS: Two weeks after an IV bolus of bacillus Calmette-Guérin (BCG), we studied spontaneous superoxide production, integrin expression, endothe...

  11. The Consequences of adolescent chronic unpredictable stress exposure on brain and behavior

    OpenAIRE

    Hollis, Fiona; Isgor, Ceylan; Kabbaj, Mohamed

    2013-01-01

    There is increasing evidence for adolescence as a time period vulnerable to environmental perturbations such as stress. What is unclear is the persistent nature of the effects of stress and how specific these effects are to the type of stressor. In this review, we describe the effects of chronic, unpredictable stress (CUS) exposure during adolescence on adult behavior and brain morphology and function in animal models. We provide evidence for adolescence as a critical window for the effects o...

  12. Evaluation of Krebs cycle enzymes in the brain of rats after chronic administration of antidepressants.

    Science.gov (United States)

    Scaini, Giselli; Santos, Patricia M; Benedet, Joana; Rochi, Natália; Gomes, Lara M; Borges, Lislaine S; Rezin, Gislaine T; Pezente, Daiana P; Quevedo, João; Streck, Emilio L

    2010-05-31

    Several works report brain impairment of metabolism as a mechanism underlying depression. Citrate synthase and succinate dehydrogenase are enzymes localized within cells in the mitochondrial matrix and are important steps of Krebs cycle. In addition, citrate synthase has been used as a quantitative enzyme marker for the presence of intact mitochondria. Thus, we investigated citrate synthase and succinate dehydrogenase activities from rat brain after chronic administration of paroxetine, nortriptiline and venlafaxine. Adult male Wistar rats received daily injections of paroxetine (10mg/kg), nortriptiline (15mg/kg), venlafaxine (10mg/kg) or saline in 1.0mL/kg volume for 15 days. Twelve hours after the last administration, the rats were killed by decapitation, the hippocampus, striatum and prefrontal cortex were immediately removed, and activities of citrate synthase and succinate dehydrogenase were measured. We verified that chronic administration of paroxetine increased citrate synthase activity in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected. Chronic administration of nortriptiline and venlafaxine did not affect the enzyme activity in these brain areas. Succinate dehydrogenase activity was increased by chronic administration of paroxetine and nortriptiline in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected either. Chronic administration of venlafaxine increased succinate dehydrogenase activity in prefrontal cortex, but did not affect the enzyme activity in cerebellum, hippocampus, striatum and cerebral cortex. Considering that metabolism impairment is probably involved in the pathophysiology of depressive disorders, an increase in these enzymes by antidepressants may be an important mechanism of action of these drugs.

  13. 1H MRS study of brain metabolic disorder in patients with chronic liver cirrhosis

    International Nuclear Information System (INIS)

    Objective: To study the metabolic alterations in the brain of patients with chronic liver cirrhosis with 1H magnetic resonance spectroscopy (1H MRS) for better understanding the pathophysiology of chronic hepatic encephalopathy (CHE), which will help us in the diagnosis and treatment of this disease. Methods: STEAM 1H MRS and MRI were performed in 30 patients with chronic liver cirrhosis is and 15 healthy volunteers. The height of resonance peaks of different metabolites was measured and the ratios of the other metabolites to Cr were calculated. The authors also studied the correlation between metabolites and the association between globus pallidum signal intensity and the spectroscopic alterations. Results: In patients with severe cirrhosis (in decompensatory period) or CHE, the mean values of mI/Cr and Cho/Cr ratio were significantly lower than those in healthy volunteers or patients with minor cirrhosis (in compensatory period) (P0.05). There was negative correlation between mI/Cr and Glx-α/Cr(r -0.51, n = 44, P1-weighted images, the globus pallidum signal intensity was significantly higher in patients with severe cirrhosis or CHE. mI/Cr, Cho/Cr and Glx-α/Cr correlated significantly with MRI signal changes respectively. Conclusions: Proton MRS can demonstrate brain metabolic changes in patients with chronic liver cirrhosis in vivo noninvasively, thereby helping interpret the pathophysiology of CHE

  14. Comparison of Regional Brain Perfusion Levels in Chronically Smoking and Non-Smoking Adults

    Directory of Open Access Journals (Sweden)

    Timothy C. Durazzo

    2015-07-01

    Full Text Available Chronic cigarette smoking is associated with numerous abnormalities in brain neurobiology, but few studies specifically investigated the chronic effects of smoking (compared to the acute effects of smoking, nicotine administration, or nicotine withdrawal on cerebral perfusion (i.e., blood flow. Predominately middle-aged male (47 ± 11 years of age smokers (n = 34 and non-smokers (n = 27 were compared on regional cortical perfusion measured by continuous arterial spin labeling magnetic resonance studies at 4 Tesla. Smokers showed significantly lower perfusion than non-smokers in the bilateral medial and lateral orbitofrontal cortices, bilateral inferior parietal lobules, bilateral superior temporal gyri, left posterior cingulate, right isthmus of cingulate, and right supramarginal gyrus. Greater lifetime duration of smoking (adjusted for age was related to lower perfusion in multiple brain regions. The results indicated smokers showed significant perfusion deficits in anterior cortical regions implicated in the development, progression, and maintenance of all addictive disorders. Smokers concurrently demonstrated reduced blood flow in posterior brain regions that show morphological and metabolic aberrations as well as elevated beta amyloid deposition demonstrated by those with early stage Alzheimer disease. The findings provide additional novel evidence of the adverse effects of cigarette smoking on the human brain.

  15. Chronic ethanol exposure produces time- and brain region-dependent changes in gene coexpression networks.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Osterndorff-Kahanek

    Full Text Available Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY, nucleus accumbens (NAC, prefrontal cortex (PFC, and liver after four weekly cycles of chronic intermittent ethanol (CIE vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000 at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600. Within each region, there was little gene overlap across time (~20%. All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global 'rewiring' of coexpression systems involving glial and immune signaling as well as neuronal genes.

  16. Regional alterations of brain biogenic amines in young rats following chronic lead exposure

    Energy Technology Data Exchange (ETDEWEB)

    Dubas, T.C.; Stevenson, A.; Singhal, R.L.; Hrdina, P.D.

    1978-02-01

    An examination was made of neurochemical changes that occur in discrete brain regions of rats that have been chronically exposed to low levels of lead from birth, in order to provide further information on the involvement of brain biogenic amines in lead-induced neurotoxicity. Results indicate a relationship between exposure to lead and alterations in the brain levels of various putative neurotransmitters. However, changes in the functional activity of the neurotransmitter may not be adequately reflected in the change of its steady-state levels or may occur even in the absence of any changes in the actual concentrations. Lead may influence central neurotransmitter function by affecting one or several of the processes involved in the synthesis, release and/or disposition of biogenic amines.

  17. Ligularia fischeri extract attenuates liver damage induced by chronic alcohol intake.

    Science.gov (United States)

    Kim, Dongyeop; Kim, Gyeong-Woo; Lee, Seon-Ho; Han, Gi Dong

    2016-08-01

    Context Ligularia fischeri (Ledebour) Turcz. (Compositae) has been used as a leafy vegetable and in traditional medicine to treat hepatic disorder in East Asia. Objective The present study explores the antioxidant activity of LF aqueous extract on EtOH-induced oxidative stress accompanied by hepatotoxicity both in vitro and in vivo. Materials and methods In vitro study using the mouse liver NCTC-1469 cell line was conducted to estimate the cytotoxicity as well as the inhibitory effect of LF extract against alcohol-treated cell damage. In vivo study used an alcohol-fed Wister rat model orally administered EtOH (3.95 g/kg of body weight/d) with or without LF extract (100 or 200 mg/kg body weight) for 6 weeks. Serum and liver tissue were collected to evaluate hepatic injury and antioxidant-related enzyme activity. Results The EC50 value for the DPPH radical scavenging capacity of LF extract was 451.5 μg/mL, whereas the IC50 value of LF extract in terms of EtOH-induced reactive oxygen species (ROS) generation was 98.3 μg/mL without cell cytotoxicity. LF extract (200 mg/kg body weight) significantly reduced the triglyceride content of serum (33%) as well as hepatic lipid peroxidation (36%), whereas SOD activity was elevated three-fold. LF extract suppressed expression of CYP2E1 and TNF-α, and attenuated alcohol-induced abnormal morphological changes. Discussion and conclusion LF extract attenuated liver damage induced by alcoholic oxidative stress through inhibition of ROS generation, down-regulation of CYP2E1, and activation of hepatic antioxidative enzymes. Homeostasis of the antioxidative defence system in the liver by LF extract mitigated hepatic disorder following chronic alcohol intake. PMID:26799831

  18. Biological Signatures of Brain Damage Associated with High Serum Ferritin Levels in Patients with Acute Ischemic Stroke and Thrombolytic Treatment

    Directory of Open Access Journals (Sweden)

    Mónica Millán

    2008-01-01

    Full Text Available Background and purpose: Increased body iron stores have been related to greater oxidative stress and brain injury in clinical and experimental cerebral ischemia and reperfusion. We aimed to investigate the biological signatures of excitotoxicity, inflammation and blood brain barrier disruption potentially associated with high serum ferritin levels-related damage in acute stroke patients treated with i.v. t-PA.

  19. Biomarkers of Brain Damage and Postoperative Cognitive Disorders in Orthopedic Patients: An Update

    Directory of Open Access Journals (Sweden)

    Dariusz Tomaszewski

    2015-01-01

    Full Text Available The incidence of postoperative cognitive dysfunction (POCD in orthopedic patients varies from 16% to 45%, although it can be as high as 72%. As a consequence, the hospitalization time of patients who developed POCD was longer, the outcome and quality of life were worsened, and prolonged medical and social assistance were necessary. In this review the short description of such biomarkers of brain damage as the S100B protein, NSE, GFAP, Tau protein, metalloproteinases, ubiquitin C terminal hydrolase, microtubule-associated protein, myelin basic protein, α-II spectrin breakdown products, and microRNA was made. The role of thromboembolic material in the development of cognitive decline was also discussed. Special attention was paid to optimization of surgical and anesthetic procedures in the prevention of postoperative cognitive decline.

  20. Arctigenin Treatment Protects Against Brain Damage Through an Anti-inflammatory and Anti-apoptotic Mechanism After Needle Insertion

    OpenAIRE

    Jie Song; Na Li; Xia Yang; Zhong Gao; Liang Kong; Yingjia Yao; Yanan Jiao; Yuhui Yan; Shaoheng Li; Zhenyu Tao; Guan Lian; Jingxian Yang; Tingguo Kang

    2016-01-01

    Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary ...

  1. Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion

    OpenAIRE

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-feng; Kong, Liang; Yao, Ying-Jia; Jiao, Ya-Nan; Yan, Yu-Hui; Li, Shao-Heng; Tao, Zhen-Yu; Lian, Guan; Yang, Jing-xian; Kang, Ting-Guo

    2016-01-01

    Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary ...

  2. Brain stem and cerebellar atrophy in chronic progressive neuro-Behçet's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kanoto, Masafumi, E-mail: mkanoto@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Hosoya, Takaaki, E-mail: thosoya@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Toyoguchi, Yuuki, E-mail: c-elegans_0201g@mail.goo.ne.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Oda, Atsuko, E-mail: a.oda@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan)

    2013-01-15

    Purpose: Chronic progressive neuro-Behçet's disease (CPNBD) resembles multiple sclerosis (MS) on patient background and image findings, and therefore is difficult to diagnose. The purpose is to identify the characteristic magnetic resonance imaging (MRI) findings of CPNBD and to clarify the differences between the MRI findings of CPNBD and those of MS. Materials and methods: The subjects consist of a CPNBD group (n = 4; 1 male and 3 females; mean age, 51 y.o.), a MS group (n = 19; 3 males and 16 females; mean age, 45 y.o.) and a normal control group (n = 23; 10 males and 13 females; mean age, 45 y.o.). Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were retrospectively evaluated in each subjects. In middle sagittal brain MR images, the prepontine distance was measured as an indirect index of brain stem and cerebellar atrophy and the pontine and mesencephalic distance was measured as a direct index of brain stem atrophy. These indexes were statistically analyzed. Results: Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were seen in all CPNBD cases. Prepontine distance was significantly different between the CPNBD group and the MS group (p < 0.05), and between the CPNBD group and the normal control group (p < 0.001). Pontine and mesencephalic distance were significantly different between the CPNBD group and the MS group (p < 0.001, p < 0.01 respectively), and between the CPNBD group and the normal control group (p < 0.001). Conclusions: Chronic progressive neuro-Behçet's disease should be considered in patients with brain stem and cerebellar atrophy in addition to leukoencephalopathy similar to that seen in multiple sclerosis.

  3. Caught in the thickness of brain fog: exploring the cognitive symptoms of Chronic Fatigue Syndrome

    Directory of Open Access Journals (Sweden)

    Anthony James Ocon

    2013-04-01

    Full Text Available Chronic Fatigue Syndrome (CFS is defined as greater than 6 months of persistent fatigue that is experienced physically and cognitively. The cognitive symptoms are generally thought to be a mild cognitive impairment, but individuals with CFS subjectively describe them as brain fog. The impairment is not fully understood and often is described as slow thinking, difficulty focusing, confusion, lack of concentration, forgetfulness, or a haziness in thought processes. Causes of brain fog and mild cognitive impairment have been investigated. Possible physiological correlates may be due to the effects of chronic orthostatic intolerance in the form of the Postural Tachycardia Syndrome and decreases in cerebral blood flow. In addition, fMRI studies suggest that individuals with CFS may require increased cortical and subcortical brain activation to complete difficult mental tasks. Furthermore, neurocognitive testing in CFS has demonstrated deficits in speed and efficiency of information processing, attention, concentration, and working memory. The cognitive impairments are then perceived as an exaggerated mental fatigue. As a whole, this is experienced by those with CFS as brain fog and may be viewed as the interaction of physiological, cognitive, and perceptual factors. Thus, the cognitive symptoms of CFS may be due to altered cerebral blood flow activation and regulation that are exacerbated by a stressor, such as orthostasis or a difficult mental task, resulting in the decreased ability to readily process information, which is then perceived as fatiguing and experienced as brain fog. Future research looks to further explore these interactions, how they produce cognitive impairments, and explain the perception of brain fog from a mechanistic standpoint.

  4. Piano training in youths with hand motor impairments after damage to the developing brain

    Directory of Open Access Journals (Sweden)

    Lampe R

    2015-08-01

    Full Text Available Renée Lampe,1,* Anna Thienel,2 Jürgen Mitternacht,1 Tobias Blumenstein,1 Varvara Turova,1 Ana Alves-Pinto1,* 1Research Unit for Paediatric Neuroorthopaedics and Cerebral Palsy, Orthopaedics Department, Klinikum Rechts der Isar, Technische Universität München, 2Department Sonderpädagogik, Ludwig Maximilians-Universität München, Munich, Germany *These authors contributed equally to this work Abstract: Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients’ quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35–40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano. Keywords: manual skill, cerebral palsy, neurodevelopmental disorder, music, rehabilitation

  5. Fibroblast growth factor-2 induced by enriched environment enhances angiogenesis and motor function in chronic hypoxic-ischemic brain injury.

    Directory of Open Access Journals (Sweden)

    Jung Hwa Seo

    Full Text Available This study aimed to investigate the effects of enriched environment (EE on promoting angiogenesis and neurobehavioral function in an animal model of chronic hypoxic-ischemic (HI brain injury. HI brain damage was induced in seven day-old CD-1® mice by unilateral carotid artery ligation and exposure to hypoxia (8% O2 for 90 min. At six weeks of age, the mice were randomly assigned to either EE or standard cages (SC for two months. Rotarod, forelimb-use asymmetry, and grip strength tests were performed to evaluate neurobehavioral function. In order to identify angiogenic growth factors regulated by EE, an array-based multiplex ELISA assay was used to measure the expression in frontal cortex, striatum, and cerebellum. Among the growth factors, the expression of fibroblast growth factor-2 (FGF-2 was confirmed using western blotting. Platelet endothelial cell adhesion molecule-1 (PECAM-1 and α-smooth muscle actin (α-SMA were also evaluated using immunohistochemistry. As a result, mice exposed to EE showed significant improvements in rotarod and ladder walking performances compared to SC controls. The level of FGF-2 was significantly higher in the frontal cortex of EE mice at 8 weeks after treatment in multiplex ELISA and western blot. On the other hand, FGF-2 in the striatum significantly increased at 2 weeks after exposure to EE earlier than in the frontal cortex. Expression of activin A was similarly upregulated as FGF-2 expression pattern. Particularly, all animals treated with FGF-2 neutralizing antibody abolished the beneficial effect of EE on motor performance relative to mice not given anti-FGF-2. Immunohistochemistry showed that densities of α-SMA(+ and PECAM-1(+ cells in frontal cortex, striatum, and hippocampus were significantly increased following EE, suggesting the histological findings exhibit a similar pattern to the upregulation of FGF-2 in the brain. In conclusion, EE enhances endogenous angiogenesis and neurobehavioral functions

  6. The DNA damage response molecule MCPH1 in brain development and beyond

    Institute of Scientific and Technical Information of China (English)

    Xiaoqian Liu; Zhong-Wei Zhou; Zhao-Qi Wang

    2016-01-01

    Microcephalin (MCPH1) is identified as being responsible for the neurodevelopmental disorder primary microcephaly type 1,which is characterized by a smaller-than-normal brain size and mental retardation.MCPH1 has originally been identified as an important regulator of telomere integrity and of cell cycle control.Genetic and cellular studies show that MCPH1 controls neurogenesis by coordinating the cell cycle and the centrosome cycle and thereby regulating the division mode of neuroprogenitors to prevent the exhaustion of the progenitor pool and thereby microcephaly.In addition to its role in neurogenesis,MCPH1 plays a role in gonad development.MCPH1 also functions as a tumor suppressor in several human cancers as well as in mouse models.Here,we review the role of MCPH1 in DNA damage response,cell cycle control,chromosome condensation and chromatin remodeling.We also summarize the studies on the biological functions of MCPH1 in brain size determination and in pathologies,including infertility and cancer.

  7. Osteoprotegerin in Chronic Kidney Disease: Associations with Vascular Damage and Cardiovascular Events.

    Science.gov (United States)

    Yilmaz, Mahmut Ilker; Siriopol, Dimitrie; Saglam, Mutlu; Unal, Hilmi Umut; Karaman, Murat; Gezer, Mustafa; Kilinc, Ali; Eyileten, Tayfun; Guler, Ahmet Kerem; Aydin, İbrahim; Vural, Abdulgaffar; Oguz, Yusuf; Covic, Adrian; Ortiz, Alberto; Kanbay, Mehmet

    2016-08-01

    Vascular injury and dysfunction contribute to cardiovascular disease, the leading cause of death in patients with chronic kidney disease (CKD). Osteoprotegerin (OPG) is a soluble member of the tumor necrosis factor receptor superfamily that has been linked to atherogenesis and endothelial dysfunction. Elevated circulating OPG levels predict future cardiovascular events (CVE). Our aim was to evaluate the determinants of circulating OPG levels, to investigate the relationship between OPG and markers of vascular damage and to test whether OPG improves risk stratification for future CVE beyond traditional and renal-specific risk factors in a CKD population. 291 patients with CKD stage 1-5 not on dialysis were included in the study. In the multivariate analysis, OPG was a significant predictor for flow-mediated dilatation, but not for carotid intima media thickness levels. During follow-up (median 36 months, IQR = 32-42 months), 87 patients had CVE. In the Cox survival analysis, OPG levels were independently associated with CVE even after adjustment for traditional and renal-specific cardiovascular risk factors. The addition of OPG to a model based on commonly used cardiovascular factors significantly improved the reclassification abilities of the model for predicting CVE. We show for the first time that OPG improves risk stratification for CVE in a non-dialysis CKD population, above and beyond a model with established traditional and renal-specific cardiovascular risk factors, including estimated glomerular filtration rate and fibroblast growth factor 23. PMID:27016924

  8. Protective role of hydrogen sulfide against noise-induced cochlear damage: a chronic intracochlear infusion model.

    Directory of Open Access Journals (Sweden)

    Xu Li

    Full Text Available BACKGROUND: A reduction in cochlear blood flow plays an essential role in noise-induced hearing loss (NIHL. The timely regulation of cochlear perfusion determines the progression and prognosis of NIHL. Hydrogen sulfide (H(2S has attracted increasing interest as a vasodilator in cardiovascular systems. This study identified the role of H(2S in cochlear blood flow regulation and noise protection. METHODOLOGY/PRINCIPAL FINDINGS: The gene and protein expression of the H(2S synthetase cystathionine-γ-lyase (CSE in the rat cochlea was examined using immunofluorescence and real-time PCR. Cochlear CSE mRNA levels varied according to the duration of noise exposure. A chronic intracochlear infusion model was built and artificial perilymph (AP, NaHS or DL-propargylglycine (PPG were locally administered. Local sodium hydrosulfide (NaHS significantly increased cochlear perfusion post-noise exposure. Cochlear morphological damage and hearing loss were alleviated in the NaHS group as measured by conventional auditory brainstem response (ABR, cochlear scanning electron microscope (SEM and outer hair cell (OHC count. The highest percentage of OHC loss occurred in the PPG group. CONCLUSIONS/SIGNIFICANCE: Our results suggest that H(2S plays an important role in the regulation of cochlear blood flow and the protection against noise. Further studies may identify a new preventive and therapeutic perspective on NIHL and other blood supply-related inner ear diseases.

  9. FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair.

    Science.gov (United States)

    Zhou, Weibin; Otto, Edgar A; Cluckey, Andrew; Airik, Rannar; Hurd, Toby W; Chaki, Moumita; Diaz, Katrina; Lach, Francis P; Bennett, Geoffrey R; Gee, Heon Yung; Ghosh, Amiya K; Natarajan, Sivakumar; Thongthip, Supawat; Veturi, Uma; Allen, Susan J; Janssen, Sabine; Ramaswami, Gokul; Dixon, Joanne; Burkhalter, Felix; Spoendlin, Martin; Moch, Holger; Mihatsch, Michael J; Verine, Jerome; Reade, Richard; Soliman, Hany; Godin, Michel; Kiss, Denes; Monga, Guido; Mazzucco, Gianna; Amann, Kerstin; Artunc, Ferruh; Newland, Ronald C; Wiech, Thorsten; Zschiedrich, Stefan; Huber, Tobias B; Friedl, Andreas; Slaats, Gisela G; Joles, Jaap A; Goldschmeding, Roel; Washburn, Joseph; Giles, Rachel H; Levy, Shawn; Smogorzewska, Agata; Hildebrandt, Friedhelm

    2012-08-01

    Chronic kidney disease (CKD) represents a major health burden. Its central feature of renal fibrosis is not well understood. By exome sequencing, we identified mutations in FAN1 as a cause of karyomegalic interstitial nephritis (KIN), a disorder that serves as a model for renal fibrosis. Renal histology in KIN is indistinguishable from that of nephronophthisis, except for the presence of karyomegaly. The FAN1 protein has nuclease activity and acts in DNA interstrand cross-link (ICL) repair within the Fanconi anemia DNA damage response (DDR) pathway. We show that cells from individuals with FAN1 mutations have sensitivity to the ICL-inducing agent mitomycin C but do not exhibit chromosome breakage or cell cycle arrest after diepoxybutane treatment, unlike cells from individuals with Fanconi anemia. We complemented ICL sensitivity with wild-type FAN1 but not with cDNA having mutations found in individuals with KIN. Depletion of fan1 in zebrafish caused increased DDR, apoptosis and kidney cysts. Our findings implicate susceptibility to environmental genotoxins and inadequate DNA repair as novel mechanisms contributing to renal fibrosis and CKD.

  10. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment

    Institute of Scientific and Technical Information of China (English)

    Xianchao Li; Wensheng Hou; Xiaoying Wu; Wei Jiang; Haiyan Chen; Nong Xiao; Ping Zhou

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hy-poxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efifciencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migra-tion and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2, an increasing number of green lfuorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 106 bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2 for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental ifndings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypox-ic-ischemic brain damage.

  11. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment.

    Science.gov (United States)

    Li, Xianchao; Hou, Wensheng; Wu, Xiaoying; Jiang, Wei; Chen, Haiyan; Xiao, Nong; Zhou, Ping

    2014-02-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hypoxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migration and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm(2), an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 10(6) bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm(2) for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypoxic-ischemic brain damage.

  12. Late radiation damage in bone, bone marrow and brain vasculature, with particular emphasis upon fractionation models

    International Nuclear Information System (INIS)

    X-ray induced changes in rat and human bone and bone marrow vasculature and in rat brain vasculature were measured as a function of time after irradiation and absorbed dose. The absorbed dose in the organ varied from 5 to 25 Gy for single dose irradiations and from 19 to 58 Gy for fractionated irradiations.The number of fractions varied from 3 to 10 for the rats and from 12 to 25 for the human. Blood flow changes were measured using an ''1''2''5I antipyrine or ''8''6RbCl extraction technique. The red blood cell (RBC) volume was examined by ''5''1Cr labelled red cells. Different fractionation models have been compared. Radiation induced reduction of bone and bone marrow blood flow were both time and dose dependent. Reduced blood flow 3 months after irradiation would seem to be an important factor in the subsequent atrophy of bones. With a single dose of 10 Gy the bone marrow blood flow returned to the control level by 7 months after irradiation. In the irradiated bone the RBC volume was about same as that in the control side but in bone marrow the reduction was from 32 to 59%. The dose levels predicted by the nominal standard dose (NSD) formula produced about the same damage to the rat femur seven months after irradiation when the extraction of ''8''6Rb chloride and the dry weight were concerned as the end points. However, the results suggest that the NSB formula underestimates the late radiation damage in bone marrow when a small number of large fractions are used. In the irradiated brains of the rats the blood flow was on average 20.4% higher compared to that in the control group. There was no significant difference in brain blood flow between different fractionation schemes. The value of 0.42 for the exponent of N corresponds to the average value for central nervous system tolerance in the literature. The model used may be sufficiently accurate for clinical work provided the treatment schemes used do not depart too radically from standard practice

  13. Effect of progesterone intervention on the dynamic changes of AQP-4 in hypoxic-ischaemic brain damage.

    Science.gov (United States)

    Li, Xiaojuan; Bai, Ruiying; Zhang, Junhe; Wang, Xiaoyin

    2015-01-01

    To observe the effect of progesterone (PROG) on blood-brain barrier (BBB) permeability, brain tissue water content and dynamic changes of aquaporin-4 (AQP-4) in neonatal rats with hypoxic-ischaemic brain damage (HIBD). 72 neonatal Wistar rats, aged 7 days old, were randomly divided into control, hypoxic-ischaemic (6, 24 and 72 h, and 7 d subgroups) and drug groups (6, 24 and 72 h, and 7 d subgroups). The HIBD animal model was established. BBB was detected via an Evans blue tracer. Brain water content was determined by the dry/wet method. The AQP-4 expression in the cerebral cortex was observed through immunohistochemistry and Western blot. BBB permeability in the cerebral cortex of the neonatal rats, brain water content and AQP-4 expression in the hypoxia-ischaemia group were significantly higher than those of the control group after hypoxia for 6 h (P permeability in the cerebral cortex of the neonatal rats, brain water content and AQP-4 expression in the drug group were significantly lower than those of the hypoxia-ischaemia group after hypoxia for 6, 24 and 72 h (P permeability and BBB expression were positively correlated with the AQP-4 expression. In conclusion, PROG protects the brain of HIBD neonatal rats by alleviating the damage of BBB and cerebral oedema. The protective effect of PROG may be related to the down-regulation of AQP-4 expression in the cerebral cortex of neonatal rats. PMID:26770503

  14. Sub-chronic iron overload triggers oxidative stress development in rat brain: implications for cell protection.

    Science.gov (United States)

    Piloni, Natacha E; Perazzo, Juan C; Fernandez, Virginia; Videla, Luis A; Puntarulo, Susana

    2016-02-01

    This work was aimed to test the hypothesis that sub-chronic administration of iron-dextran (Fe-dextran) (six doses of 50 mg Fe-dextran/kg) to rats triggers a transient oxidative stress in brain and mechanisms of cellular antioxidant defence. After 2 h of administration of the 6th dose, a significant increase of total Fe, the labile Fe pool (LIP), the lipid radical (LR(•))/α-tocopherol (α-T) content ratio were observed, as compared to values in control brain homogenates. The ascorbyl radical (A(•))/ascorbate (AH(-)) content ratio and the oxidation rate of 2',7'-dichlorodihidrofluorescein (DCFH-DA) were significantly higher in Fe-dextran treated rats, as compared to values in brain from control rats after 4 h treatment. An increase in both catalase (CAT) and superoxide dismutase (SOD) activity was observed at 8 and 1-2 h, respectively. No significant changes were detected in the nuclear factor-κB (NF-κB) levels in nuclear extracts from rat brains after 1-8 h of Fe-dextran administration. After 2 h of Fe administration Fe concentration in cortex, striatum and hippocampus was significantly increased as compared to the same areas from control animals. Both, CAT and SOD activities were significantly increased in cortex after Fe administration over control values, without changes in striatum and hippocampus. Taken as a whole, sub-chronic Fe administration enhances the steady state concentration of Fe in the brain LIP that favors the settlement of an initial oxidative stress condition, both at hydrophilic and lipophilic compartments, resulting in cellular protection evidenced by antioxidant enzyme upregulation. PMID:26677163

  15. Relationship between Morphofunctional Changes in Open Traumatic Brain Injury and the Severity of Brain Damage in Rats.

    Science.gov (United States)

    Shakova, F M; Barskov, I V; Gulyaev, M V; Prokhorenko, S V; Romanova, G A; Grechko, A V

    2016-07-01

    A correlation between the severity of morphofunctional disturbances and the volume of brain tissue injury determined by MRT was demonstrated on the model of open traumatic brain injury in rats. A relationship between the studied parameters (limb placing and beam walking tests and histological changes) and impact force (the height of load fell onto exposed brain surface) was revealed.

  16. Effects of Chronic Renal Failure on Brain Cytochrome P450 in Rats.

    Science.gov (United States)

    Naud, Judith; Harding, Jessica; Lamarche, Caroline; Beauchemin, Stephanie; Leblond, Francois A; Pichette, Vincent

    2016-08-01

    Chronic renal failure (CRF) impedes renal excretion of drugs and their metabolism by reducing the expression of liver cytochrome P450 (P450). Uremic serum contains factors, such as parathyroid hormone (PTH), that decrease liver P450s. The P450s are also involved in the metabolism of xenobiotics in the brain. This study investigates: 1) the effects of CRF on rat brain P450, 2) the role of PTH in the downregulation of brain P450s in CRF rats, and 3) the effects of PTH on P450s in astrocytes. Protein and mRNA expression of P450s were assessed in the brain of CRF and control (CTL) rats, as well as from CTL or CRF rats that underwent parathyroidectomy (PTX) 1 week before nephrectomy. CYP3A activity was measured using 3-[(3, 4-difluorobenzyl) oxy]-5, 5-dimethyl-4-[4-methylsulfonyl) phenyl] furan-2(5H)-1 metabolism in brain microsomal preparation. CYP3A protein expression was assessed in primary cultured astrocytes incubated with serum obtained from CRF or CTL rats or with PTH. Significant downregulations (≥40%) of CYP1A, CYP2C11, and CYP3A proteins were observed in microsomes from CRF rat brains. CYP3A activity reduction was also observed. CYP3A expression and activity were unaffected in PTX-pretreated CRF rats. Serum of PTX-treated CRF rats had no impact on CYP3A levels in astrocytes compared with that of untreated CRF rats. Finally, PTH addition to normal calf serum induced a reduction in CYP3A protein similar to CRF serum, suggesting that CRF-induced hyperparathyroidism is associated with a significant decrease in P450 drug-metabolizing enzymes in the brain, which may have implications in drug response. PMID:27271372

  17. Comparison of the Bender Gestalt Test for Both Black and White Brain-Damaged Patients Using Two Scoring Systems

    Science.gov (United States)

    Butler, Oliver T.; And Others

    1976-01-01

    This study tested for cultural bias in the Bender Visual Motor Gestalt Test. Subjects were 72 black and white patients diagnosed as either brain damaged or psychiatric. Bender protocols were scored by Pascal-Suttell and Hain systems. No race effect appeared except for the Pascal-Suttell system for which blacks scored significantly better. (Author)

  18. Chronic brief restraint decreases in vivo binding of benzodiazepine receptor ligand to mouse brain.

    Science.gov (United States)

    Mosaddeghi, M; Burke, T F; Moerschbaecher, J M

    1993-01-01

    This study examines the effects of chronic brief restraint on in vivo benzodiazepine (BZD) receptor binding in mouse brain. Three groups of mice were used. Mice in group 1 were neither restrained nor injected (ACUTE control). Mice in group 2 were restrained for 5-6 s by grabbing the back skin and holding the subject upside-down at a 45 degrees angle as if to be injected (CHRONIC SHAM control) for 7 d. Mice in group 3 (CHRONIC SALINE) received daily single intraperitoneal (ip) injections of saline (5 mL/kg) for 7 d. On d 8 BZD receptors were labeled in vivo by administration of 3 microCi [3H]flumazenil (ip). The levels of ligand bound in vivo to cerebral cortex (CX), cerebellum (CB), brain stem (BS), striatum (ST), hippocampus (HP), and hypothalamus (HY) were determined. Results indicated that the level of binding was significantly (p stress produces a decrease in BZD receptor binding sites. PMID:8385464

  19. Numerical Characterization of Intraoperative and Chronic Electrodes in Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Alessandra ePaffi

    2015-02-01

    Full Text Available Intraoperative electrode is used in the Deep Brain stimulation (DBS technique to pinpoint the brain target and to choose the best parameters for the stimulating signal. However, when the intraoperative electrode is replaced with the chronic one, the observed effects do not always coincide with predictions.To investigate the causes of such discrepancies, in this work, a 3D model of the basal ganglia has been considered and realistic models of both intraoperative and chronic electrodes have been developed and numerically solved.Results of simulations on the electric potential and the activating function along neuronal fibers show that the different geometries and sizes of the two electrodes do not change shapes and polarities of these functions, but only the amplitudes. A similar effect is caused by the presence of different tissue layers (edema or glial tissue in the peri-electrode space. On the contrary, a not accurate positioning of the chronic electrode with respect to the intraoperative one (electric centers not coincident may induce a complete different electric stimulation on some groups of fibers.

  20. Relationship between AQP4 expression and structural damage to the blood-brain barrier at early stages of traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    LU Hong; LEI Xiao-yan; HU Hui; HE Zhan-ping

    2013-01-01

    Background Although some studies have reported that aquaporin-4 (AQP4) plays an important role in the brain edema after traumatic brain injury (TBI),little is known about the AQP4 expression in the early stage of TBI,or about the correlation between the structural damage to the blood-brain barrier (BBB) and angioedema.The aim of this project was to investigate the relationship between AQP4 expression and damage to the BBB at early stages of TBI.Methods One hundred and twenty healthy adult Wistar rats were randomly divided into two greups:sham operation group (SO) and TBI group.The TBI group was divided into five sub-groups according to the different time intervals:1,3,6,12,and 24 hours.The brains of the animals were taken out at different time points after TBI to measure brain water content.The cerebral edema and BBB changes in structure were examined with an optical microscopy (OM) and transmission electron microscopy (TEM),and the IgG content and AQP4 protein expression in traumatic brain tissue were determined by means of immunohistochemistry and Western blotting.The data were analyzed with SPSS 13.0statistical software.Results In the SO greup,tissue was negative for IgG,and there were no abnormalities in brain water content or AQP4 expression.In the TBI group,brain water content significantly increased at 6 hours and peaked at 24 hours following injury.IgG expression significantly increased from 1 to 6 hours following injury,and remained at a high level at 24 hours.Pathological observation revealed BBB damage at 1 hour following injury.Angioedema appeared at 1 hour,was gradually aggravated,and became obvious at 6 hours.Intracellular edema occurred at 3 hours,with the presence of large glial cell bodies and mitochondrial swelling.These phenomena were aggravated with time and became obvious at 12 hours.In addition,microglial proliferation was visible at 24 hours.AQP4 protein expression were reduced at 1 hour,lowest at 6 hours,and began to increase at 12 hours

  1. Can chronic remote cortical hypoperfusion induced by thalamic infarction cause damage of tracts passing through those hypoperfused regions?

    Directory of Open Access Journals (Sweden)

    Eloi eMagnin

    2013-10-01

    Full Text Available We report the case of a woman presenting with changes on cerebral imaging a year and a half after a bi-thalamic (predominantly left-sided infarction including lateral and medial thalamic nuclei. Lateral geniculate body and pulvinar were not damaged. Hypoperfusion was observed in left cortical and basal structures. White matter FLAIR hyperintense lesions occurred in the left hemisphere and the occipital region one year and half after stroke. Medial and lateral thalamic nuclei are not highly connected to the occipital cortex. Therefore, in addition to Wallerian degeneration after thalamic stroke, we hypothesize that the chronic left temporal hypoperfusion induced by diaschisis can lead to a lateralized chronic hypoxic damage of the occipital fiber tract (optic radiation that passes through the temporal lobe.

  2. Development of brain damage as measured by brain impedance recordings, and changes in heart rate, and blood pressure induced by different stunning and killing methods.

    Science.gov (United States)

    Savenije, B; Lambooij, E; Gerritzen, M A; Korf, J

    2002-04-01

    Poultry are electrically stunned before slaughter to induce unconsciousness and to immobilize the chickens for easier killing. From a welfare point of view, electrical stunning should induce immediate and lasting unconsciousness in the chicken. As an alternative to electroencephalography, which measures brain electrical activity, this study used brain impedance recordings, which measure brain metabolic activity, to determine the onset and development of brain damage. Fifty-six chickens were surgically equipped with brain electrodes and a canula in the wing artery and were subjected to one of seven stunning and killing methods: whole body electrical stunning; head-only electrical stunning at 50, 100 or 150 V; or an i.v. injection with MgCl2. After 30 s, the chickens were exsanguinated. Brain impedance and blood pressure were measured. Extracellular volume was determined from the brain impedance data and heart rate from the blood pressure data. An immediate and progressive reduction in extracellular volume in all chickens was found only with whole body stunning at 150 V. This treatment also caused cardiac fibrillation or arrest in all chickens. With all other electrical stunning treatments, extracellular volume was immediately reduced in some but not all birds, and cardiac fibrillation or arrest was not often found. Ischemic conditions, caused by cessation of the circulation, stimulated this epileptic effect. A stunner setting of 150 V is therefore recommended to ensure immediate and lasting unconsciousness, which is a requirement for humane slaughter. PMID:11989758

  3. Elastolytic activity and alveolar epithelial type-1 cell damage after chronic LPS inhalation: Effects of dexamethasone and rolipram

    International Nuclear Information System (INIS)

    This study investigated whether a correlation between leukocyte-derived elastolytic activity, alveolar epithelial type-1 cell damage, and leukocyte infiltration of the airways existed in guinea-pigs chronically exposed to inhaled lipopolysaccharide (LPS). The airway pathology of this model, notably the neutrophilia, resembles chronic obstructive pulmonary disease (COPD). The effect of the corticosteroid, dexamethasone, or the phosphodiesterase-4 (PDE4)-inhibitor, rolipram, on these features was studied. Conscious guinea-pigs were exposed for 1 h to single or repeated (nine) doses of LPS (30 μg ml-1). Dexamethasone (20 mg kg-1, ip) or rolipram (1 mg kg-1, ip) was administered 24 and 0.5 h before the first exposure and daily thereafter. Bronchoalveolar lavage fluid (BALF) was removed and elastolytic activity determined as the elastase-like release of Congo Red from impregnated elastin. The presence of the specific epithelial cell type-1 protein (40-42 kDa) RT140 in BALF was identified by Western blotting using a rat monoclonal antibody and semi-quantified by dot-blot analysis. The antibody was found to identify guinea-pig RT140. BALF inflammatory cells, particularly neutrophils and macrophages, and elastolytic activity were increased in chronic LPS-exposed guinea-pigs, the latter by 90%. Chronic LPS exposure also increased (10.5-fold) RT140 levels, indicating significant alveolar epithelial type-1 cell damage. Dexamethasone or rolipram treatment reduced the influx of inflammatory cells, the elastolytic activity (by 40% and 38%, respectively), and RT140 levels (by 50% and 57%, respectively). In conclusion, chronic LPS-exposed guinea-pigs, like COPD, exhibit elastolytic lung damage. This was prevented by a PDE4 inhibitor and supports their development for suppressing this leukocyte-mediated pathology

  4. Sleep is associated with task-negative brain activity in fibromyalgia participants with comorbid chronic insomnia

    Directory of Open Access Journals (Sweden)

    Vatthauer KE

    2015-11-01

    Full Text Available Karlyn E Vatthauer,1 Jason G Craggs,1 Michael E Robinson,1 Roland Staud,2 Richard B Berry,2 William M Perlstein,1 Christina S McCrae11Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA; 2Department of Medicine, University of Florida, Gainesville, FL, USAAbstract: Patients with chronic pain exhibit altered default mode network (DMN activity. This preliminary project questioned whether comorbid disease states are associated with further brain alterations. Thirteen women with fibromyalgia (FM only and 26 women with fibromyalgia with comorbid chronic insomnia (FMI underwent a single night of ambulatory polysomnography and completed a sleep diary each morning for 14 days prior to performing a neuroimaging protocol. Novel imaging analyses were utilized to identify regions associated with significantly disordered sleep that were more active in task-negative periods than task-oriented periods in participants with FMI, when compared to participants with FM. It was hypothesized that core DMN areas (ie, cingulate cortex, inferior parietal lobule, medial prefrontal cortex, medial temporal cortex, precuneus would exhibit increased activity during task-negative periods. Analyses revealed that significantly disordered sleep significantly contributed to group differences in the right cingulate gyrus, left lentiform nucleus, left anterior cingulate, left superior gyrus, medial frontal gyrus, right caudate, and the left inferior parietal lobules. Results suggest that FMI may alter some brain areas of the DMN, above and beyond FM. However, future work will need to investigate these results further by controlling for chronic insomnia only before conclusions can be made regarding the effect of FMI comorbidity on the DMN.Keywords: insomnia, fibromyalgia, neuroimaging, task-negative, brain activity, comorbidity

  5. Transcriptomic responses in mouse brain exposed to chronic excess of the neurotransmitter glutamate

    Directory of Open Access Journals (Sweden)

    Pal Ranu

    2010-06-01

    Full Text Available Abstract Background Increases during aging in extracellular levels of glutamate (Glu, the major excitatory neurotransmitter in the brain, may be linked to chronic neurodegenerative diseases. Little is known about the molecular responses of neurons to chronic, moderate increases in Glu levels. Genome-wide gene expression in brain hippocampus was examined in a unique transgenic (Tg mouse model that exhibits moderate Glu hyperactivity throughout the lifespan, the neuronal Glutamate dehydrogenase (Glud1 mouse, and littermate 9 month-old wild type mice. Results Integrated bioinformatic analyses on transcriptomic data were used to identify bio-functions, pathways and gene networks underlying neuronal responses to increased Glu synaptic release. Bio-functions and pathways up-regulated in Tg mice were those associated with oxidative stress, cell injury, inflammation, nervous system development, neuronal growth, and synaptic transmission. Increased gene expression in these functions and pathways indicated apparent compensatory responses offering protection against stress, promoting growth of neuronal processes (neurites and re-establishment of synapses. The transcription of a key gene in the neurite growth network, the kinase Ptk2b, was significantly up-regulated in Tg mice as was the activated (phosphorylated form of the protein. In addition to genes related to neurite growth and synaptic development, those associated with neuronal vesicle trafficking in the Huntington's disease signalling pathway, were also up-regulated. Conclusions This is the first study attempting to define neuronal gene expression patterns in response to chronic, endogenous Glu hyperactivity at brain synapses. The patterns observed were characterized by a combination of responses to stress and stimulation of nerve growth, intracellular transport and recovery.

  6. Facial Affect Recognition Training Through Telepractice: Two Case Studies of Individuals with Chronic Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    John Williamson

    2015-07-01

    Full Text Available The use of a modified Facial Affect Recognition (FAR training to identify emotions was investigated with two case studies of adults with moderate to severe chronic (> five years traumatic brain injury (TBI.  The modified FAR training was administered via telepractice to target social communication skills.  Therapy consisted of identifying emotions through static facial expressions, personally reflecting on those emotions, and identifying sarcasm and emotions within social stories and role-play.  Pre- and post-therapy measures included static facial photos to identify emotion and the Prutting and Kirchner Pragmatic Protocol for social communication.  Both participants with chronic TBI showed gains on identifying facial emotions on the static photos.               

  7. Elevated endogenous erythropoietin concentrations are associated with increased risk of brain damage in extremely preterm neonates.

    Directory of Open Access Journals (Sweden)

    Steven J Korzeniewski

    Full Text Available We sought to determine, in very preterm infants, whether elevated perinatal erythropoietin (EPO concentrations are associated with increased risks of indicators of brain damage, and whether this risk differs by the co-occurrence or absence of intermittent or sustained systemic inflammation (ISSI.Protein concentrations were measured in blood collected from 786 infants born before the 28th week of gestation. EPO was measured on postnatal day 14, and 25 inflammation-related proteins were measured weekly during the first 2 postnatal weeks. We defined ISSI as a concentration in the top quartile of each of 25 inflammation-related proteins on two separate days a week apart. Hypererythropoietinemia (hyperEPO was defined as the highest quartile for gestational age on postnatal day 14. Using logistic regression and multinomial logistic regression models, we compared risks of brain damage among neonates with hyperEPO only, ISSI only, and hyperEPO+ISSI, to those who had neither hyperEPO nor ISSI, adjusting for gestational age.Newborns with hyperEPO, regardless of ISSI, were more than twice as likely as those without to have very low (< 55 Mental (OR 2.3; 95% CI 1.5-3.5 and/or Psychomotor (OR 2.4; 95% CI 1.6-3.7 Development Indices (MDI, PDI, and microcephaly at age two years (OR 2.4; 95%CI 1.5-3.8. Newborns with both hyperEPO and ISSI had significantly increased risks of ventriculomegaly, hemiparetic cerebral palsy, microcephaly, and MDI and PDI < 55 (ORs ranged from 2.2-6.3, but not hypoechoic lesions or other forms of cerebral palsy, relative to newborns with neither hyperEPO nor ISSI.hyperEPO, regardless of ISSI, is associated with elevated risks of very low MDI and PDI, and microcephaly, but not with any form of cerebral palsy. Children with both hyperEPO and ISSI are at higher risk than others of very low MDI and PDI, ventriculomegaly, hemiparetic cerebral palsy, and microcephaly.

  8. Altered amygdala connectivity in individuals with chronic traumatic brain injury and comorbid depressive symptoms

    Directory of Open Access Journals (Sweden)

    Kihwan eHan

    2015-11-01

    Full Text Available Depression is one of the most common psychiatric conditions in individuals with chronic Traumatic Brain Injury (TBI. Though depression has detrimental effects in TBI and network dysfunction is a 'hallmark' of TBI and depression, there have not been any prior investigations of connectivity-based neuroimaging biomarkers for comorbid depression in TBI. We utilized resting-state functional magnetic resonance imaging to identify altered amygdala connectivity in individuals with chronic TBI (eight years post-injury on average exhibiting comorbid depressive symptoms (N=31, relative to chronic TBI individuals having minimal depressive symptoms (N=23. Connectivity analysis of these participant sub-groups revealed that the TBI-plus-depressive symptoms group showed relative increases in amygdala connectivity primarily in the regions that are part of the salience, somatomotor, dorsal attention and visual networks (pvoxel<0.01, pcluster<0.025. Relative increases in amygdala connectivity in the TBI-plus-depressive symptoms group were also observed within areas of the limbic-cortical mood-regulating circuit (the left dorsomedial and right dorsolateral prefrontal cortices and thalamus and the brainstem. Further analysis revealed that spatially-dissociable patterns of correlation between amygdala connectivity and symptom severity according to subtypes (Cognitive and Affective of depressive symptoms (pvoxel<0.01, pcluster<0.025. Taken together, these results suggest that amygdala connectivity may be a potentially effective neuroimaging biomarker for comorbid depressive symptoms in chronic TBI.

  9. Abnormal brain processing of cutaneous pain in patients with chronic migraine.

    Science.gov (United States)

    de Tommaso, Marina; Valeriani, Massimiliano; Guido, Marco; Libro, Giuseppe; Specchio, Luigi Maria; Tonali, Pietro; Puca, Francomichele

    2003-01-01

    Syndromes with chronic daily headache include chronic migraine (CM). The reason for the transformation of migraine into chronic daily headache is still unknown. In this study, we aimed to evaluate heat pain thresholds and event-related potentials following CO(2)-laser thermal stimulation (LEPS) in hand and facial regions in patients with CM, to show changes in nociceptive brain responses related to dysfunction of pain elaboration at the cortical level. The results were compared with findings from normal control subjects and from subjects who suffer from migraine without aura. The effects of stimulus intensity, subjective pain perception and attention were monitored and compared with features of the LEPS. Twenty-five CM patients, 15 subjects suffering from migraine without aura and 15 normal control subjects were enrolled in the study. LEPS amplitude variation was reduced in CM patients with respect to the perceived stimulus intensity, in comparison with migraine without aura patients and control subjects. In both headache groups, the distraction from the painful laser stimulus induced by an arithmetic task failed to suppress the LEPS amplitude, in comparison with control subjects. These results suggest an abnormal cortical processing of nociceptive input in CM patients, which could lead to the chronic state of pain. In both headache groups, an inability to reduce pain elaboration during an alternative cognitive task emerged as an abnormal behaviour probably predisposing to migraine.

  10. Implicit and Explicit Routes to Recognize the Own Body: Evidence from Brain Damaged Patients.

    Science.gov (United States)

    Candini, Michela; Farinelli, Marina; Ferri, Francesca; Avanzi, Stefano; Cevolani, Daniela; Gallese, Vittorio; Northoff, Georg; Frassinetti, Francesca

    2016-01-01

    Much research suggested that recognizing our own body-parts and attributing a body-part to our physical self-likely involve distinct processes. Accordingly, facilitation for self-body-parts was found when an implicit, but not an explicit, self-recognition was required. Here, we assess whether implicit and explicit bodily self-recognition is mediated by different cerebral networks and can be selectively impaired after brain lesion. To this aim, right- (RBD) and left- (LBD) brain damaged patients and age-matched controls were presented with rotated pictures of either self- or other-people hands. In the Implicit task participants were submitted to hand laterality judgments. In the Explicit task they had to judge whether the hand belonged, or not, to them. In the Implicit task, controls and LBD patients, but not RBD patients, showed an advantage for self-body stimuli. In the Explicit task a disadvantage emerged for self-compared to others' body stimuli in controls as well as in patients. Moreover, when we directly compared the performance of patients and controls, we found RBD, but not LBD, patients to be impaired in both the implicit and explicit recognition of self-body-part stimuli. Conversely, no differences were found for others' body-part stimuli. Crucially, 40% RBD patients showed a selective deficit for implicit processing of self-body-part stimuli, whereas 27% of them showed a selective deficit in the explicit recognition of their own body. Additionally, we provide anatomical evidence revealing the neural basis of this dissociation. Based on both behavioral and anatomical data, we suggest that different areas of the right hemisphere underpin implicit and explicit self-body knowledge. PMID:27630550

  11. Implicit and Explicit Routes to Recognize the Own Body: Evidence from Brain Damaged Patients

    Science.gov (United States)

    Candini, Michela; Farinelli, Marina; Ferri, Francesca; Avanzi, Stefano; Cevolani, Daniela; Gallese, Vittorio; Northoff, Georg; Frassinetti, Francesca

    2016-01-01

    Much research suggested that recognizing our own body-parts and attributing a body-part to our physical self-likely involve distinct processes. Accordingly, facilitation for self-body-parts was found when an implicit, but not an explicit, self-recognition was required. Here, we assess whether implicit and explicit bodily self-recognition is mediated by different cerebral networks and can be selectively impaired after brain lesion. To this aim, right- (RBD) and left- (LBD) brain damaged patients and age-matched controls were presented with rotated pictures of either self- or other-people hands. In the Implicit task participants were submitted to hand laterality judgments. In the Explicit task they had to judge whether the hand belonged, or not, to them. In the Implicit task, controls and LBD patients, but not RBD patients, showed an advantage for self-body stimuli. In the Explicit task a disadvantage emerged for self-compared to others' body stimuli in controls as well as in patients. Moreover, when we directly compared the performance of patients and controls, we found RBD, but not LBD, patients to be impaired in both the implicit and explicit recognition of self-body-part stimuli. Conversely, no differences were found for others' body-part stimuli. Crucially, 40% RBD patients showed a selective deficit for implicit processing of self-body-part stimuli, whereas 27% of them showed a selective deficit in the explicit recognition of their own body. Additionally, we provide anatomical evidence revealing the neural basis of this dissociation. Based on both behavioral and anatomical data, we suggest that different areas of the right hemisphere underpin implicit and explicit self-body knowledge.

  12. Resveratrol supplementation protects against chronic nicotine-induced oxidative damage and organ dysfunction in the rat urogenital system

    Directory of Open Access Journals (Sweden)

    Hale Toklu

    2010-01-01

    Full Text Available The protective effect of resveratrol against nicotine induced oxidative damage on urogenital tissues was evaluated by biochemical, histological and functional studies. Wistar Albino rats were injected with either nicotine hydrogen bitartarate (0.6 mg/kg/day, ip or saline. Resveratrol (10 mg/kg, po was administered along with saline or nicotine injections for 28 days. After decapitation, the urinary bladder, corpus cavernosum and kidney tissues were excised. Corpus cavernosum and bladder tissues were used for in vitro contractility studies, or stored at -80 ºC along with kidney tissue for the measurement of malondialdehyde (MDA, glutathione (GSH, and luminol-lucigenin chemiluminescence (CL levels. Tissue samples were also examined histologically. Chronic nicotine administration caused a significant decrease in GSH levels and increases in MDA levels, and luminol-lucigenin CL in kidney, urinary bladder and corpus cavernosum tissues, suggesting oxidative organ damage, which was also verified histologically. In serum samples increased blood urea nitrogen (BUN, creatinine, proinflammatory cytokines (TNF-α and IL-1β, lactate dehydrogenase (LDH activity, oxidative DNA damage (8-OHdG and decreased antioxidant capacity (AOC due to nicotine administration were reversed with resveratrol. Furthermore, chronic nicotine administration impaired the contractile activity of the bladder and corpus cavernosum strips while resveratrol supplementation to nicotine-treated animals reversed these effects in both tissues. Resveratrol treatment to the nicotine group restored the endogenous GSH levels and decreased oxidative damage parameters in all studied tissues. These data suggest that resveratrol supplementation effectively counteracts the deleterious effect of chronic nicotine administration on bladder, corpus cavernosum and kidney functions and attenuates oxidative damage possibly by its antioxidant effects.

  13. The perception of peripersonal space in right and left brain damage hemiplegic patients.

    Science.gov (United States)

    Bartolo, Angela; Carlier, Mauraine; Hassaini, Sabrina; Martin, Yves; Coello, Yann

    2014-01-01

    Peripersonal space, as opposed to extrapersonal space, is the space that contains reachable objects and in which multisensory and sensorimotor integration is enhanced. Thus, the perception of peripersonal space requires combining information on the spatial properties of the environment with information on the current capacity to act. In support of this, recent studies have provided converging evidences that perceiving objects in peripersonal space activates a neural network overlapping with that subtending voluntary motor action and motor imagery. Other studies have also underlined the dominant role of the right hemisphere (RH) in motor planning and of the left hemisphere (LH) in on-line motor guiding, respectively. In the present study, we investigated the effect of a right or left hemiplegia in the perception of peripersonal space. 16 hemiplegic patients with brain damage to the left (LH) or right (RH) hemisphere and eight matched healthy controls performed a color discrimination, a motor imagery and a reachability judgment task. Analyses of response times and accuracy revealed no variation among the three groups in the color discrimination task, suggesting the absence of any specific perceptual or decisional deficits in the patient groups. In contrast, the patient groups revealed longer response times in the motor imagery task when performed in reference to the hemiplegic arm (RH and LH) or to the healthy arm (RH). Moreover, RH group showed longer response times in the reachability judgment task, but only for stimuli located at the boundary of peripersonal space, which was furthermore significantly reduced in size. Considered together, these results confirm the crucial role of the motor system in motor imagery task and the perception of peripersonal space. They also revealed that RH damage has a more detrimental effect on reachability estimates, suggesting that motor planning processes contribute specifically to the perception of peripersonal space.

  14. The perception of peripersonal space in right and left brain damage hemiplegic patients

    Directory of Open Access Journals (Sweden)

    Angela eBartolo

    2014-01-01

    Full Text Available Peripersonal space, as opposed to extrapersonal space, is the space that contains reachable objects and in which multisensory and sensorimotor integration is enhanced. Thus, the perception of peripersonal space requires combining information on the spatial properties of the environment with information on the current capacity to act. In support of this, recent studies have provided converging evidences that perceiving objects in peripersonal space activates a neural network overlapping with that subtending voluntary motor action and motor imagery. Other studies have also underlined the dominant role of the right hemisphere in motor planning and of the left hemisphere in on-line motor guiding, respectively. In the present study, we investigated the effect of a right or left hemiplegia in the perception of peripersonal space. 16 hemiplegic patients with brain damage to the left (LH or right (RH hemisphere and 8 matched healthy controls (HC performed a colour discrimination, a motor imagery and a reachability judgment task. Analyses of response times and accuracy revealed no variation among the three groups in the colour discrimination task, suggesting the absence of any specific perceptual or decisional deficits in the patient groups. In contrast, the patient groups revealed longer response times in the motor imagery task when performed in reference to the hemiplegic arm (RH and LH or to the healthy arm (RH. Moreover, RH group showed longer response times in the reachability judgement task, but only for stimuli located at the boundary of peripersonal space, which was furthermore significantly reduced in size. Considered together, these results confirm the crucial role of the motor system in motor imagery task and the perception of peripersonal space. They also revealed that right hemisphere damage has a more detrimental effect on reachability estimates, suggesting that motor planning processes contribute specifically to the perception of

  15. Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury.

    Science.gov (United States)

    Goeller, Jacques; Wardlaw, Andrew; Treichler, Derrick; O'Bruba, Joseph; Weiss, Greg

    2012-07-01

    Cavitation was investigated as a possible damage mechanism for war-related traumatic brain injury (TBI) due to an improvised explosive device (IED) blast. When a frontal blast wave encounters the head, a shock wave is transmitted through the skull, cerebrospinal fluid (CSF), and tissue, causing negative pressure at the contrecoup that may result in cavitation. Numerical simulations and shock tube experiments were conducted to determine the possibility of cranial cavitation from realistic IED non-impact blast loading. Simplified surrogate models of the head consisted of a transparent polycarbonate ellipsoid. The first series of tests in the 18-inch-diameter shock tube were conducted on an ellipsoid filled with degassed water to simulate CSF and tissue. In the second series, Sylgard gel, surrounded by a layer of degassed water, was used to represent the tissue and CSF, respectively. Simulated blast overpressure in the shock tube tests ranged from a nominal 10-25 pounds per square inch gauge (psig; 69-170 kPa). Pressure in the simulated CSF was determined by Kulite thin line pressure sensors at the coup, center, and contrecoup positions. Using video taken at 10,000 frames/sec, we verified the presence of cavitation bubbles at the contrecoup in both ellipsoid models. In all tests, cavitation at the contrecoup was observed to coincide temporally with periods of negative pressure. Collapse of the cavitation bubbles caused by the surrounding pressure and elastic rebound of the skull resulted in significant pressure spikes in the simulated CSF. Numerical simulations using the DYSMAS hydrocode to predict onset of cavitation and pressure spikes during cavity collapse were in good agreement with the tests. The numerical simulations and experiments indicate that skull deformation is a significant factor causing cavitation. These results suggest that cavitation may be a damage mechanism contributing to TBI that requires future study.

  16. Influence of the extracellular matrix on endogenous and transplanted stem cells after brain damage

    Directory of Open Access Journals (Sweden)

    Lars eRoll

    2014-08-01

    Full Text Available The limited regeneration capacity of the adult central nervous system requires strategies to improve recovery of patients. In this context, the interaction of endogenous as well as transplanted stem cells with their environment is crucial. An understanding of the molecular mechanisms could help to improve regeneration by targeted manipulation.In the course of reactive gliosis, astrocytes upregulate Glial fibrillary acidic protein (GFAP and start, in many cases, to proliferate. Beside GFAP, subpopulations of these astroglial cells coexpress neural progenitor markers like Nestin. Although cells express these markers, the proportion of cells that eventually give rise to neurons is limited in many cases in vivo compared to the situation in vitro. In the first section, we present the characteristics of endogenous progenitor-like cells and discuss the differences in their neurogenic potential in vitro and in vivo.As the environment plays an important role for survival, proliferation, migration, and other processes, the second section of the review describes changes in the extracellular matrix (ECM, a complex network that contains numerous signaling molecules. It appears that signals in the damaged central nervous system lead to an activation and de-differentiation of astrocytes, but do not effectively promote neuronal differentiation of these cells. Factors that influence stem cells during development are upregulated in the damaged brain as part of an environment resembling a stem cell niche. We give a general description of the ECM composition, with focus on stem cell-associated factors like the glycoprotein Tenascin-C.Stem cell transplantation is considered as potential treatment strategy. Interaction of transplanted stem cells with the host environment is critical for the outcome of stem cell-based therapies. Possible mechanisms involving the ECM by which transplanted stem cells might improve recovery are discussed in the last section.

  17. Systematic review of the risk of dementia and chronic cognitive impairment after mild traumatic brain injury

    DEFF Research Database (Denmark)

    Godbolt, Alison K; Cancelliere, Carol; Hincapié, Cesar A;

    2014-01-01

    OBJECTIVE: To synthesize the best available evidence regarding the risk of dementia and chronic cognitive impairment (CCI) after mild traumatic brain injury (MTBI). DATA SOURCES: MEDLINE and other databases were searched (2001-2012) using a previously published search strategy and predefined crit....... CONCLUSIONS: There is a lack of evidence of an increased risk of dementia after MTBI. In children, objective evidence of CCI exists only for complicated MTBI. More definitive studies are needed to inform clinical decisions, assessment of prognosis, and public health policy....

  18. Evaluation of the serum catalase and myeloperoxidase activities in chronic arsenic-exposed individuals and concomitant cytogenetic damage

    International Nuclear Information System (INIS)

    Chronic arsenic exposure through contaminated drinking water is a major environmental health issue. Chronic arsenic exposure is known to exert its toxic effects by a variety of mechanisms, of which generation of reactive oxygen species (ROS) is one of the most important. A high level of ROS, in turn, leads to DNA damage that might ultimately culminate in cancer. In order to keep the level of ROS in balance, an array of enzymes is present, of which catalase (CAT) and myeloperoxidase (MPO) are important members. Hence, in this study, we determined the activities of these two enzymes in the sera and chromosomal aberrations (CA) in peripheral blood lymphocytes in individuals exposed and unexposed to arsenic in drinking water. Arsenic in drinking water and in urine was used as a measure of exposure. Our results show that individuals chronically exposed to arsenic have significantly higher CAT and MPO activities and higher incidence of CA. We found moderate positive correlations between CAT and MPO activities, induction of CA and arsenic in urine and water. These results indicate that chronic arsenic exposure causes higher CAT and MPO activities in serum that correlates with induction of genetic damage. We conclude that the serum levels of these enzymes might be used as biomarkers of early arsenic exposure induced disease much before the classical dermatological symptoms of arsenicosis begin to appear.

  19. The role of Tc-99m HMPAO brain perfusion SPECT in the psychiatric disability evaluation of patients with chronic traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    So, Young [Nuclear Medicne, Seoul National Univ., Seoul (Korea, Republic of); Lee, Kang Wook; Lee, Sun Woo; Ghi, Lek Sung; Song, Chang June [College of Medicine, Chungnam National Univ., Taejon (Korea, Republic of)

    2002-08-01

    We studied whether brain perfusion SPECT is useful in the psychiatric disability evaluation of patients with chronic traumatic brain injury (TBI). Sixty-nine patients (M:F=58:11, age 39 {+-} 14 years) who underwent Tc-99m HMPAO brain SPECT, brain MRI and neuropsychological (NP) tests during hospitalization in psychiatric wards for the psychiatric disability evaluation were included; the severity of injury was mild in 31, moderate in 17 and severe in 21. SPECT, MRI, NP tests were performed 6 {approx} 61 months (mean 23 months) post-injury. Diagnostic accuracy of SPECT and MRI to show hypoperfusion or abnormal signal intensity in patients with cognitive impairment represented by NP test results were compared. Forty-two patients were considered to have cognitive impairment on NP tests and 27 not. Brain SPECT showed 71% sensitivity and 85% specificity, while brain MRI showed 62% sensitivity and 93% specificity (p>0.05, McNemar test). SPECT found more cortical lesions and MRI was superior in detecting white matter lesions. sensitivity and specificity of 31 mild TBI patients were 45%, 90% for SPECT and 27%, 100% for MRI (p>0.05, McNemar test). Among 41 patients with normal brain MRI, SEPCT showed 63% sensitivity (50% for mild TBI) and 88% specificity (85% for malingerers). Brain SPECT has a supplementary role to neuropsychological tests in the psychiatric disability evaluation of chronic TBI patients by detecting more cortical lesions than MRI.

  20. The role of Tc-99m HMPAO brain perfusion SPECT in the psychiatric disability evaluation of patients with chronic traumatic brain injury

    International Nuclear Information System (INIS)

    We studied whether brain perfusion SPECT is useful in the psychiatric disability evaluation of patients with chronic traumatic brain injury (TBI). Sixty-nine patients (M:F=58:11, age 39 ± 14 years) who underwent Tc-99m HMPAO brain SPECT, brain MRI and neuropsychological (NP) tests during hospitalization in psychiatric wards for the psychiatric disability evaluation were included; the severity of injury was mild in 31, moderate in 17 and severe in 21. SPECT, MRI, NP tests were performed 6 ∼ 61 months (mean 23 months) post-injury. Diagnostic accuracy of SPECT and MRI to show hypoperfusion or abnormal signal intensity in patients with cognitive impairment represented by NP test results were compared. Forty-two patients were considered to have cognitive impairment on NP tests and 27 not. Brain SPECT showed 71% sensitivity and 85% specificity, while brain MRI showed 62% sensitivity and 93% specificity (p>0.05, McNemar test). SPECT found more cortical lesions and MRI was superior in detecting white matter lesions. sensitivity and specificity of 31 mild TBI patients were 45%, 90% for SPECT and 27%, 100% for MRI (p>0.05, McNemar test). Among 41 patients with normal brain MRI, SEPCT showed 63% sensitivity (50% for mild TBI) and 88% specificity (85% for malingerers). Brain SPECT has a supplementary role to neuropsychological tests in the psychiatric disability evaluation of chronic TBI patients by detecting more cortical lesions than MRI

  1. Melatonin reduces membrane rigidity and oxidative damage in the brain of SAMP8 mice.

    Science.gov (United States)

    García, J J; Piñol-Ripoll, G; Martínez-Ballarín, E; Fuentes-Broto, L; Miana-Mena, F J; Venegas, C; Caballero, B; Escames, G; Coto-Montes, A; Acuña-Castroviejo, D

    2011-11-01

    We evaluated the autophagy-lysosomal pathway and membrane fluidity in brain cells and mitochondrial membranes obtained from senescence-accelerated (SAMP(8)) and senescence-resistant (SAMR(1)) mice at 5 and 10 months of age. Moreover, we studied whether chronic treatment from age 1 to 10 months with melatonin stabilizes membrane fluidity. Fluidity was measured by polarization changes of 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene-p-toluene sulfonate. Results showed that in untreated animals at 5 months of age, synaptosomal and mitochondrial fluidity was decreased in SAMP(8) compared to SAMR(1), as was the cathepsin D/B ratio, indicating dysfunction of the autophagy-lysosomal pathway. Moreover, we detected synaptosomal rigidity and programmed cell death capability in both groups at 10 months of age. Mitochondrial fluidity, however, did not show a significant age-dependent change but was lower in SAMP(8) than in SAMR(1) at the 5- and 10-month time points. Melatonin administration prevented rigidity in the mitochondrial membrane and seemed to decrease age-related autophagy-lysosomal alterations. These data suggest that melatonin may act to slow down the aging process because of its ability to enhance membrane fluidity and maintain structural pathways. PMID:20096480

  2. Neuroendocrine Disturbances after Brain Damage: An Important and Often Undiagnosed Disorder.

    Science.gov (United States)

    Tanriverdi, Fatih; Kelestimur, Fahrettin

    2015-04-28

    Traumatic brain injury (TBI) is a common and significant public health problem all over the world. Until recently, TBI has been recognized as an uncommon cause of hypopituitarism. The studies conducted during the last 15 years revealed that TBI is a serious cause of hypopituitarism. Although the underlying pathophysiology has not yet been fully clarified, new data indicate that genetic predisposition, autoimmunity and neuroinflammatory changes may play a role in the development of hypopituitarism. Combative sports, including boxing and kickboxing, both of which are characterized by chronic repetitive head trauma, have been shown as new causes of neuroendocrine abnormalities, mainly hypopituitarism, for the first time during the last 10 years. Most patients with TBI-induced pituitary dysfunction remain undiagnosed and untreated because of the non-specific and subtle clinical manifestations of hypopituitarism. Replacement of the deficient hormones, of which GH is the commonest hormone lost, may not only reverse the clinical manifestations and neurocognitive dysfunction, but may also help posttraumatic disabled patients resistant to classical treatment who have undiagnosed hypopituitarism and GH deficiency in particular. Therefore, early diagnosis, which depends on the awareness of TBI as a cause of neuroendocrine abnormalities among the medical community, is crucially important.

  3. Neuroendocrine Disturbances after Brain Damage: An Important and Often Undiagnosed Disorder

    Directory of Open Access Journals (Sweden)

    Fatih Tanriverdi

    2015-04-01

    Full Text Available Traumatic brain injury (TBI is a common and significant public health problem all over the world. Until recently, TBI has been recognized as an uncommon cause of hypopituitarism. The studies conducted during the last 15 years revealed that TBI is a serious cause of hypopituitarism. Although the underlying pathophysiology has not yet been fully clarified, new data indicate that genetic predisposition, autoimmunity and neuroinflammatory changes may play a role in the development of hypopituitarism. Combative sports, including boxing and kickboxing, both of which are characterized by chronic repetitive head trauma, have been shown as new causes of neuroendocrine abnormalities, mainly hypopituitarism, for the first time during the last 10 years. Most patients with TBI-induced pituitary dysfunction remain undiagnosed and untreated because of the non-specific and subtle clinical manifestations of hypopituitarism. Replacement of the deficient hormones, of which GH is the commonest hormone lost, may not only reverse the clinical manifestations and neurocognitive dysfunction, but may also help posttraumatic disabled patients resistant to classical treatment who have undiagnosed hypopituitarism and GH deficiency in particular. Therefore, early diagnosis, which depends on the awareness of TBI as a cause of neuroendocrine abnormalities among the medical community, is crucially important.

  4. Cerebral circulation and metabolism in the patients with higher brain dysfunction caused by chronic minor traumatic brain injury. A study by the positron emission tomography in twenty subjects with normal MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Kabasawa, Hidehiro; Ogawa, Tetsuo; Iida, Akihiko; Matsubara, Michitaka [Nagoya City Rehabilitation and Sports Center (Japan)

    2002-06-01

    normal group in the bilateral frontal, temporal, and occipital lobe. After 9.3 months, FIQ scores of 13 subjects were significantly increased. CMRO{sub 2} was significantly increased in the bilateral frontal and temporal lobe, as well as in the right occipital lobe, along with the improvement of FIQ score. It was concluded that higher brain dysfunction caused by chronic MTBI was related to malfunction of neuronal networks based on the generalized decrease of brain oxygen metabolism in all brain regions. Damage to neuronal networks in the bilateral frontal and temporal lobe appeared to play the most important role in higher brain dysfunction. (author)

  5. Narrating stroke: the life-writing and fiction of brain damage.

    Science.gov (United States)

    Zimmermann, Martina

    2012-12-01

    Cerebro-vascular events are, after neurodegenerative disorders, the most frequent cause of brain damage that leads to the patient's impaired cognitive and/or bodily functioning. While the medico-scientific discourse related to stroke suggests that patients experience a change in identity and self-concept, the present analysis focuses on the patients' personal presentation of their experience to, first, highlight their way of thinking and feeling and, second, contribute to the clinician's actual understanding of the meaning of stroke within the life of each individual. As stroke 'victims' necessarily speak from the position of having undergone very abrupt degeneration followed by being confronted with a gradual relocation within their 'recovery', the present study addresses how narrative texts describe the condition, that is, the insult itself and its impairing consequences for body and mind, and how patients portray themselves within their illness. Furthermore, given that all illness narrative must remain non-representative, especially when exploring conditions that impair cognitive abilities, autobiographically inspired fiction, equally, contributes to neuroscientific perspectives on embodiment: it gives further insight into how the condition is perceived and alerts us to those aspects of the experience that are understood as particularly momentous.

  6. Radiation damage to the normal monkey brain. Experimental study induced by interstitial irradiation

    International Nuclear Information System (INIS)

    Radiation damage to normal brain tissue induced by interstitial irradiation with iridium-192 seeds was sequentially evaluated by computed tomography (CT), magnetic resonance imaging (MRI), and histological examination. This study was carried out in 14 mature Japanese monkeys. The experimental area received more than 200-260 Gy of irradiation developed coagulative necrosis. Infiltration of macrophages to the periphery of the necrotic area was seen. In addition, neovascularization, hyalinization of vascular walls, and gliosis were found in the periphery of the area invaded by the macrophages. All sites at which the vascular walls were found to have acute stage fibrinoid necrosis eventually developed coagulative necrosis. The focus of necrosis was detected by MRI starting 1 week after the end of radiation treatment, and the size of the necrotic area did not change for 6 months. The peripheral areas showed clear ring enhancement with contrast material. Edema surrounding the lesions was the most significant 1 week after radiation and was reduced to a minimum level 1 month later. However, the edema then expanded once again and was sustained for as long as 6 months. CT did not provide as clear of a presentation as MRI, but it did reveal similar findings for the most part, and depicted calcification in the necrotic area. This experimental model is considered useful for conducting basic research on brachytherapy, as well as for achieving a better understanding of delayed radiation necrosis. (author)

  7. Alteration in rectification of potassium channels in perinatal hypoxia ischemia brain damage.

    Science.gov (United States)

    Chen, Penghui; Wang, Liyan; Deng, Qiyue; Ruan, Huaizhen; Cai, Wenqin

    2015-01-15

    Oligodendrocyte progenitor cells (OPCs) are susceptible to perinatal hypoxia ischemia brain damage (HIBD), which results in infant cerebral palsy due to the effects on myelination. The origin of OPC vulnerability in HIBD, however, remains controversial. In this study, we defined the HIBD punctate lesions by MRI diffuse excessive high signal intensity (DEHSI) in postnatal 7-day-old rats. The electrophysiological functional properties of OPCs in HIBD were recorded by patch-clamp in acute cerebral cortex slices. The slices were intracellularly injected with Lucifer yellow and immunohistochemically labeled with NG2 antibody to identify local OPCs. Passive membrane properties and K(+) channel functions in OPCs were analyzed to estimate the onset of vulnerability in HIBD. The resting membrane potential, membrane resistance, and membrane capacitance of OPCs were increased in both the gray and white matter of the cerebral cortex. OPCs in both the gray and white matter exhibited voltage-dependent K(+) currents, which consisted of the initiated rectified potassium currents (IA) and the sustained rectified currents (IK). The significant alternation in membrane resistance was influenced by the diversity of potassium channel kinetics. These findings suggest that the rectification of IA and IK channels may play a significant role in OPC vulnerability in HIBD.

  8. Radiation damage to the normal monkey brain: experimental study induced by interstitial irradiation.

    Directory of Open Access Journals (Sweden)

    Mishima N

    2003-06-01

    Full Text Available Radiation damage to normal brain tissue induced by interstitial irradiation with iridium-192 seeds was sequentially evaluated by computed tomography (CT, magnetic resonance imaging (MRI, and histological examination. This study was carried out in 14 mature Japanese monkeys. The experimental area received more than 200-260 Gy of irradiation developed coagulative necrosis. Infiltration of macrophages to the periphery of the necrotic area was seen. In addition, neovascularization, hyalinization of vascular walls, and gliosis were found in the periphery of the area invaded by the macrophages. All sites at which the vascular walls were found to have acute stage fibrinoid necrosis eventually developed coagulative necrosis. The focus of necrosis was detected by MRI starting 1 week after the end of radiation treatment, and the size of the necrotic area did not change for 6 months. The peripheral areas showed clear ring enhancement with contrast material. Edema surrounding the lesions was the most significant 1 week after radiation and was reduced to a minimum level 1 month later. However, the edema then expanded once again and was sustained for as long as 6 months. CT did not provide as clear of a presentation as MRI, but it did reveal similar findings for the most part, and depicted calcification in the necrotic area. This experimental model is considered useful for conducting basic research on brachytherapy, as well as for achieving a better understanding of delayed radiation necrosis.

  9. Impaired cerebral autoregulation is associated with brain atrophy and worse functional status in chronic ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Mikio C Aoi

    Full Text Available Dynamic cerebral autoregulation (dCA is impaired following stroke. However, the relationship between dCA, brain atrophy, and functional outcomes following stroke remains unclear. In this study, we aimed to determine whether impairment of dCA is associated with atrophy in specific regions or globally, thereby affecting daily functions in stroke patients.We performed a retrospective analysis of 33 subjects with chronic infarctions in the middle cerebral artery territory, and 109 age-matched non-stroke subjects. dCA was assessed via the phase relationship between arterial blood pressure and cerebral blood flow velocity. Brain tissue volumes were quantified from MRI. Functional status was assessed by gait speed, instrumental activities of daily living (IADL, modified Rankin Scale, and NIH Stroke Score.Compared to the non-stroke group, stroke subjects showed degraded dCA bilaterally, and showed gray matter atrophy in the frontal, parietal and temporal lobes ipsilateral to infarct. In stroke subjects, better dCA was associated with less temporal lobe gray matter atrophy on the infracted side ([Formula: see text] = 0.029, faster gait speed ([Formula: see text] = 0.018 and lower IADL score ([Formula: see text]0.002. Our results indicate that better dynamic cerebral perfusion regulation is associated with less atrophy and better long-term functional status in older adults with chronic ischemic infarctions.

  10. Neurodegeneration after mild and repetitive traumatic brain injury: Chronic traumatic encepalopathy

    Directory of Open Access Journals (Sweden)

    Stanescu Ioana

    2015-09-01

    Full Text Available Repetitive brain trauma is associated with a progressive neurological deterioration, now termed as chronic traumatic encephalopathy (CTE. Although research on the long-term effects of TBI is advancing quickly, the incidence and prevalence of post-traumatic neurodegeneration and CTE are unknown. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently under research. CTE can be diagnosed only by post mortem neuropathological examination of the brain. Great efforts are being made to better understand the clinical signs and symptoms of CTE, obtained in most cases retrospectively from families of affected persons.Patients with CTE are described as having behavioral, mood, cognitive and motor impairments, occurring after a long latency from the traumatic events. Recent pathogenetic studies have provided new insights to CTE mechanisms, offering important clues in understanding neurodegenerative process and relations between physical factors and pathologic protein deposition. Further research is needed to better identify the genetic and environmental risk factors for CTE, as well as rehabilitation and treatment strategies.

  11. Rat liver mitochondrial damage under acute or chronic carbon tetrachloride-induced intoxication: Protection by melatonin and cranberry flavonoids

    International Nuclear Information System (INIS)

    In current societies, the risk of toxic liver damage has markedly increased. The aim of the present work was to carry out further research into the mechanism(s) of liver mitochondrial damage induced by acute (0.8 g/kg body weight, single injection) or chronic (1.6 g/ kg body weight, 30 days, biweekly injections) carbon tetrachloride – induced intoxication and to evaluate the hepatoprotective potential of the antioxidant, melatonin, as well as succinate and cranberry flavonoids in rats. Acute intoxication resulted in considerable impairment of mitochondrial respiratory parameters in the liver. The activity of mitochondrial succinate dehydrogenase (complex II) decreased (by 25%, p 4 displayed obvious irreversible impairments. Long-term melatonin administration (10 mg/kg, 30 days, daily) to chronically intoxicated rats diminished the toxic effects of CCl4, reducing elevated plasma activities of alanine aminotransferase and aspartate aminotransferase and bilirubin concentration, prevented accumulation of membrane lipid peroxidation products in rat liver and resulted in apparent preservation of the mitochondrial ultrastructure. The treatment of the animals by the complex of melatonin (10 mg/kg) plus succinate (50 mg/kg) plus cranberry flavonoids (7 mg/kg) was even more effective in prevention of toxic liver injury and liver mitochondria damage. Highlights: ► After 30-day chronic CCl4 intoxication mitochondria displayed considerable changes. ► The functional parameters of mitochondria were similar to the control values. ► Melatonin + succinate + flavonoids prevented mitochondrial ultrastructure damage. ► The above complex enhanced regenerative processes in the liver.

  12. Exercise Ameliorates Endocrine Pancreas Damage Induced by Chronic Cola Drinking in Rats

    Science.gov (United States)

    Otero-Losada, Matilde; González, Julián; Müller, Angélica; Ottaviano, Graciela; Cao, Gabriel; Azzato, Francisco; Ambrosio, Giuseppe; Milei, José

    2016-01-01

    Purpose This study evaluates whether the daily practice of an exercise routine might protect from endocrine pancreas damage in cola drinking rats. Methods Forty-eight Wistar rats were randomly assigned to 4 groups depending on a) beverage consumption ad libitum, water (W) or cola beverage (C), and b) physical activity, sedentary (S) or treadmill running (R). Accordingly, 4 groups were studied: WS (water sedentary), WR (water runner), CS (cola sedentary) and CR (cola runner). Body weight, nutritional data, plasma levels of glucose, creatinine, total cholesterol and cholesterol fractions, and triglycerides (enzymocolorimetry), and systolic blood pressure (plethysmography) were measured. After 6 months, euthanasia was performed (overdose sodium thiopental). Pancreatic tissue was immediately excised and conventionally processed for morphometrical and immunohistochemical determinations. Results The effects of running and chronic cola drinking on pancreas morphology showed interaction (p<0.001) rather than simple summation. Cola drinking (CS vs WS) reduced median pancreatic islet area (-30%, 1.8 104 μm2 vs 2.58 104 μm2, p<0.0001) and median β-cell mass (-43%, 3.81 mg vs 6.73 mg, p<0.0001), and increased median α/β ratio (+49%, 0.64 vs 0.43, p< 0.001). In water drinking rats (WR vs WS), running reduced median α-cell mass (-48%, 1.48 mg vs 2.82 mg, p<0.001) and α/β ratio (-56%, 0.19 vs 0.43, p<0.0001). Differently, in cola drinking rats (CR vs CS), running partially restored median islet area (+15%, 2.06 104 μm2 vs 1.79 104 μm2, p<0.05), increased median β-cell mass (+47%, 5.59 mg vs 3.81 mg, p <0.0001) and reduced median α/β ratio (-6%, 0.60 vs 0.64, p<0.05). Conclusion This study is likely the first reporting experimental evidence of the beneficial effect of exercise on pancreatic morphology in cola-drinking rats. Presently, the increase of nearly 50% in β cells mass by running in cola drinking rats is by far the most relevant finding. Moderate running

  13. Exercise Ameliorates Endocrine Pancreas Damage Induced by Chronic Cola Drinking in Rats.

    Directory of Open Access Journals (Sweden)

    Matilde Otero-Losada

    Full Text Available This study evaluates whether the daily practice of an exercise routine might protect from endocrine pancreas damage in cola drinking rats.Forty-eight Wistar rats were randomly assigned to 4 groups depending on a beverage consumption ad libitum, water (W or cola beverage (C, and b physical activity, sedentary (S or treadmill running (R. Accordingly, 4 groups were studied: WS (water sedentary, WR (water runner, CS (cola sedentary and CR (cola runner. Body weight, nutritional data, plasma levels of glucose, creatinine, total cholesterol and cholesterol fractions, and triglycerides (enzymocolorimetry, and systolic blood pressure (plethysmography were measured. After 6 months, euthanasia was performed (overdose sodium thiopental. Pancreatic tissue was immediately excised and conventionally processed for morphometrical and immunohistochemical determinations.The effects of running and chronic cola drinking on pancreas morphology showed interaction (p<0.001 rather than simple summation. Cola drinking (CS vs WS reduced median pancreatic islet area (-30%, 1.8 104 μm2 vs 2.58 104 μm2, p<0.0001 and median β-cell mass (-43%, 3.81 mg vs 6.73 mg, p<0.0001, and increased median α/β ratio (+49%, 0.64 vs 0.43, p< 0.001. In water drinking rats (WR vs WS, running reduced median α-cell mass (-48%, 1.48 mg vs 2.82 mg, p<0.001 and α/β ratio (-56%, 0.19 vs 0.43, p<0.0001. Differently, in cola drinking rats (CR vs CS, running partially restored median islet area (+15%, 2.06 104 μm2 vs 1.79 104 μm2, p<0.05, increased median β-cell mass (+47%, 5.59 mg vs 3.81 mg, p <0.0001 and reduced median α/β ratio (-6%, 0.60 vs 0.64, p<0.05.This study is likely the first reporting experimental evidence of the beneficial effect of exercise on pancreatic morphology in cola-drinking rats. Presently, the increase of nearly 50% in β cells mass by running in cola drinking rats is by far the most relevant finding. Moderate running, advisably indicated in cola consumers and

  14. Functional Brain Correlates of Upper Limb Spasticity and Its Mitigation following Rehabilitation in Chronic Stroke Survivors

    Directory of Open Access Journals (Sweden)

    Svetlana Pundik

    2014-01-01

    Full Text Available Background. Arm spasticity is a challenge in the care of chronic stroke survivors with motor deficits. In order to advance spasticity treatments, a better understanding of the mechanism of spasticity-related neuroplasticity is needed. Objective. To investigate brain function correlates of spasticity in chronic stroke and to identify specific regional functional brain changes related to rehabilitation-induced mitigation of spasticity. Methods. 23 stroke survivors (>6 months were treated with an arm motor learning and spasticity therapy (5 d/wk for 12 weeks. Outcome measures included Modified Ashworth scale, sensory tests, and functional magnetic resonance imaging (fMRI for wrist and hand movement. Results. First, at baseline, greater spasticity correlated with poorer motor function (P=0.001 and greater sensory deficits (P=0.003. Second, rehabilitation produced improvement in upper limb spasticity and motor function (P<0.0001. Third, at baseline, greater spasticity correlated with higher fMRI activation in the ipsilesional thalamus (rho=0.49, P=0.03. Fourth, following rehabilitation, greater mitigation of spasticity correlated with enhanced fMRI activation in the contralesional primary motor (r=-0.755, P=0.003, premotor (r=−0.565, P=0.04, primary sensory (r=−0.614, P=0.03, and associative sensory (r=−0.597, P=0.03 regions while controlling for changes in motor function. Conclusions. Contralesional motor regions may contribute to restoring control of muscle tone in chronic stroke.

  15. DNA-damage response associated with occupational exposure, age and chronic inflammation in workers in the automotive industry.

    Science.gov (United States)

    Savina, Natalya V; Smal, Marharyta P; Kuzhir, Tatyana D; Ershova-Pavlova, Alla A; Goncharova, Roza I

    2012-10-01

    The evaluation of genome integrity in populations occupationally exposed to combine industrial factors is of medical importance. In the present study, the DNA-damage response was estimated by means of the alkaline comet assay in a sizeable cohort of volunteers recruited among workers in the automotive industry. For this purpose, freshly collected lymphocytes were treated with hydrogen peroxide (100μM, 1min, 4°C) in vitro, and the levels of basal and H(2)O(2)-induced DNA damage, and the kinetics and efficiency of DNA repair were measured during a 180-min interval after exposure. The parameters studied in the total cohort of workers were in a range of values prescribed for healthy adult residents of Belarus. Based on the 95th percentiles, individuals possessing enhanced cellular sensitivity to DNA damage were present in different groups, but the frequency was significantly higher among elderly persons and among individuals with chronic inflammatory diseases. The results indicate that the inter-individual variations in DNA-damage response should be taken into account to estimate adequately the environmental genotoxic effects and to identify individuals with an enhanced DNA-damage response due to the influence of some external factors or intrinsic properties of the organism. Underling mechanisms need to be further explored. PMID:22772077

  16. Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord

    Science.gov (United States)

    Ersen, Ali; Elkabes, Stella; Freedman, David S.; Sahin, Mesut

    2015-02-01

    Objective. Microelectrodes implanted in the central nervous system (CNS) often fail in long term implants due to the immunological tissue response caused by tethering forces of the connecting wires. In addition to the tethering effect, there is a mechanical stress that occurs at the device-tissue interface simply because the microelectrode is a rigid body floating in soft tissue and it cannot reshape itself to comply with changes in the surrounding tissue. In the current study we evaluated the scar tissue formation to tetherless devices with two significantly different geometries in the rat brain and spinal cord in order to investigate the effects of device geometry. Approach. One of the implant geometries resembled the wireless, floating microstimulators that we are currently developing in our laboratory and the other was a (shank only) Michigan probe for comparison. Both electrodes were implanted into either the cervical spinal cord or the motor cortices, one on each side. Main results. The most pronounced astroglial and microglial reactions occurred within 20 μm from the device and decreased sharply at larger distances. Both cell types displayed the morphology of non-activated cells past the 100 μm perimeter. Even though the aspect ratios of the implants were different, the astroglial and microglial responses to both microelectrode types were very mild in the brain, stronger and yet limited in the spinal cord. Significance. These observations confirm previous reports and further suggest that tethering may be responsible for most of the tissue response in chronic implants and that the electrode size has a smaller contribution with floating electrodes. The electrode size may be playing primarily an amplifying role to the tethering forces in the brain whereas the size itself may induce chronic response in the spinal cord where the movement of surrounding tissues is more significant.

  17. Rat liver mitochondrial damage under acute or chronic carbon tetrachloride-induced intoxication: Protection by melatonin and cranberry flavonoids

    Energy Technology Data Exchange (ETDEWEB)

    Cheshchevik, V.T. [Institute for Pharmacology and Biochemistry, National Academy of Sciences of Belarus, Len. Kom. Blvd. - 50, 230017 Grodno (Belarus); Department of Biochemistry, Yanka Kupala Grodno State University, Len. Kom. Blvd. - 50, 230017 Grodno (Belarus); Lapshina, E.A.; Dremza, I.K.; Zabrodskaya, S.V. [Institute for Pharmacology and Biochemistry, National Academy of Sciences of Belarus, Len. Kom. Blvd. - 50, 230017 Grodno (Belarus); Reiter, R.J. [Department of Cellular and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229–3900 (United States); Prokopchik, N.I. [Grodno State Medical University, Gorkogo - 80, 230015 Grodno (Belarus); Zavodnik, I.B., E-mail: zavodnik_il@mail.ru [Institute for Pharmacology and Biochemistry, National Academy of Sciences of Belarus, Len. Kom. Blvd. - 50, 230017 Grodno (Belarus); Department of Biochemistry, Yanka Kupala Grodno State University, Len. Kom. Blvd. - 50, 230017 Grodno (Belarus)

    2012-06-15

    In current societies, the risk of toxic liver damage has markedly increased. The aim of the present work was to carry out further research into the mechanism(s) of liver mitochondrial damage induced by acute (0.8 g/kg body weight, single injection) or chronic (1.6 g/ kg body weight, 30 days, biweekly injections) carbon tetrachloride – induced intoxication and to evaluate the hepatoprotective potential of the antioxidant, melatonin, as well as succinate and cranberry flavonoids in rats. Acute intoxication resulted in considerable impairment of mitochondrial respiratory parameters in the liver. The activity of mitochondrial succinate dehydrogenase (complex II) decreased (by 25%, p < 0.05). Short-term melatonin treatment (10 mg/kg, three times) of rats did not reduce the degree of toxic mitochondrial dysfunction but decreased the enhanced NO production. After 30-day chronic intoxication, no significant change in the respiratory activity of liver mitochondria was observed, despite marked changes in the redox-balance of mitochondria. The activities of the mitochondrial enzymes, succinate dehydrogenase and glutathione peroxidase, as well as that of cytoplasmic catalase in liver cells were inhibited significantly. Mitochondria isolated from the livers of the rats chronically treated with CCl{sub 4} displayed obvious irreversible impairments. Long-term melatonin administration (10 mg/kg, 30 days, daily) to chronically intoxicated rats diminished the toxic effects of CCl{sub 4}, reducing elevated plasma activities of alanine aminotransferase and aspartate aminotransferase and bilirubin concentration, prevented accumulation of membrane lipid peroxidation products in rat liver and resulted in apparent preservation of the mitochondrial ultrastructure. The treatment of the animals by the complex of melatonin (10 mg/kg) plus succinate (50 mg/kg) plus cranberry flavonoids (7 mg/kg) was even more effective in prevention of toxic liver injury and liver mitochondria damage

  18. Blood-Brain Barrier Dysfunction as a Hallmark Pathology in Chronic Traumatic Encephalopathy.

    Science.gov (United States)

    Doherty, Colin P; O'Keefe, Eoin; Wallace, Eugene; Loftus, Teresa; Keaney, James; Kealy, John; Humphries, Marian M; Molloy, Michael G; Meaney, James F; Farrell, Michael; Campbell, Matthew

    2016-07-01

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative condition associated with repetitive mild traumatic brain injury. In recent years, attention has focused on emerging evidence linking the development of CTE to concussive injuries in athletes and military personnel; however, the underlying molecular pathobiology of CTE remains unclear. Here, we provide evidence that the blood-brain barrier (BBB) is disrupted in regions of dense perivascular p-Tau accumulation in a case of CTE. Immunoreactivity patterns of the BBB-associated tight junction components claudin-5 and zonula occludens-1 were markedly discontinuous or absent in regions of perivascular p-Tau deposition; there was also immunohistochemical evidence of a BBB in these foci. Because the patient was diagnosed premortem clinically as having progressive supranuclear palsy (PSP), we also compromised that the CTE alterations appear to be distinct from those in the brain of a patient with PSP. This report represents the first description of BBB dysfunction in a pathologically proven CTE case and suggests a vascular component in the postconcussion cascade of events that may ultimately lead to development of a progressive degenerative disorder. BBB dysfunction may represent a correlate of neural dysfunction in live subjects suspected of being at risk for development of CTE. PMID:27245243

  19. Ovariectomy-induced chronic abdominal hypernociception in rats: Relation with brain oxidative stress

    Directory of Open Access Journals (Sweden)

    Bárbara B. Garrido-Suárez

    2015-12-01

    Full Text Available Context: Ovarian hormone deficiency observed in menopausal women increases the production of reactive oxygen species, which could be implicated in central sensitization subjacent in chronic functional pain syndromes. Aims: To examine the hyperalgesic state induced by ovariectomy in adult rats and its relation to some oxidative stress outcomes. Methods: The female Wistar rats were divided into normal, sham ovariectomized (OVX and OVX groups, which were tested for mechanical and thermal hypernociception during 6 weeks and a single acetic acid-induced test 6 weeks after surgery. Redox biomarkers determinations of superoxide dismutase (SOD enzyme activity, glutathione (GSH and nitrates/nitrites as an indicator of nitric oxide (NO concentrations were determined in the brain and cerebellum of 6 animals of each group. Results: Exclusivity OVX rats developed a robust state of mechanical hypernociception and allodynia in the abdomen, hindlimbs and proximal tail. Besides, thermal pain thresholds (hot plate decreased. That was established 3-4 weeks after OVX and lasted for the 6 weeks of the experiment. Increases in visceral sensitivity were also observed in OVX rats. SOD enzyme activity decreased in OVX rats, which showed major deficit for this enzymatic defense under visceral inflammatory injury. However GSH concentrations were increased in brain of OVX animals that allow the balance during acute inflammation. NO concentrations were raised only in OVX rats exposure to chemical inflammatory injury. Conclusions: OVX in rats provide a useful model, which mimics the functional pain in females that could be related with brain oxidative stress.

  20. Association of retinal and macular damage with brain atrophy in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Jan Dörr

    Full Text Available Neuroaxonal degeneration in the central nervous system contributes substantially to the long term disability in multiple sclerosis (MS patients. However, in vivo determination and monitoring of neurodegeneration remain difficult. As the widely used MRI-based approaches, including the brain parenchymal fraction (BPF have some limitations, complementary in vivo measures for neurodegeneration are necessary. Optical coherence tomography (OCT is a potent tool for the detection of MS-related retinal neurodegeneration. However, crucial aspects including the association between OCT- and MRI-based atrophy measures or the impact of MS-related parameters on OCT parameters are still unclear. In this large prospective cross-sectional study on 104 relapsing remitting multiple sclerosis (RRMS patients we evaluated the associations of retinal nerve fiber layer thickness (RNFLT and total macular volume (TMV with BPF and addressed the impact of disease-determining parameters on RNFLT, TMV or BPF. BPF, normalized for subject head size, was estimated with SIENAX. Relations were analyzed primarily by Generalized Estimating Equation (GEE models considering within-patient inter-eye relations. We found that both RNFLT (p = 0.019, GEE and TMV (p = 0.004, GEE associate with BPF. RNFLT was furthermore linked to the disease duration (p<0.001, GEE but neither to disease severity nor patients' age. Contrarily, BPF was rather associated with severity (p<0.001, GEE than disease duration and was confounded by age (p<0.001, GEE. TMV was not associated with any of these parameters. Thus, we conclude that in RRMS patients with relatively short disease duration and rather mild disability RNFLT and TMV reflect brain atrophy and are thus promising parameters to evaluate neurodegeneration in MS. Furthermore, our data suggest that RNFLT and BPF reflect different aspects of MS. Whereas BPF best reflects disease severity, RNFLT might be the better parameter for monitoring axonal

  1. An Experimental Study on Drugs for Improving Blood Circulation and Removing Blood Stasis in Treating Mild Chronic Hepatic Damage

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Large and small doses of drugs for improving blood circulation and removing blood stasis were used in model rats to treat mild chronic hepatic damage induced by carbon tetrachloride (CCl4). The results show that large dose of Dang Gui (当归 Radix Angelicae Sinensis) and Dan Shen (丹参 Radix Salviae Miltiorrhizae) (drugs for regulating blood flow) and small dose of Yu Jin (郁金 Radix Curcumae) and Niu Xi (牛膝 Radix Achyranthis Bidentatae) (drugs for activating blood flow) can significantly elevate the activity of SOD (P<0.05) and/or lower the T/K ratio, markedly reduce the MDA content (P<0.05 or P<0.01) and significantly decrease the activities of ALT and AST (P<0.05 or P<0.01), demonstrating that these drugs are effective in combating oxygen free radicals (OFR) in chronic liver damage. On the contrary, large dose of Tu Bie Chong (土鳖虫 Eupolyphaga seu Steleophaga) and E Zhu (莪术 Rhizoma Curcumae) (drugs for removing blood stasis) tend to increase the ALT and AST (P<0.05) activities. The results suggest that the synergism of elevation of the SOD activity and reduction of T/K ratio contributes to the action of drugs for improving blood circulation and removing blood stasis in combating the liver damage induced by CCl4.

  2. Evaluation of brain CT scan in children with chronic and recurrent headache in kashan in the year 1996

    OpenAIRE

    A. Talebian; M.Kohnavard Aslee; A.R.TabasiH

    2001-01-01

    SummaryBackground and purpose: Since headache is one of the common problems in children and adolescents and only a minority of them have a life threatening intracranial lesions and performing brain CT scan in many of such cases is costly, therefore it was decided to evaluate the findings of brain CT scan of children with chronic and recurrent headache.Materials and Methods: This study was performed on 300 children of 5-15 years of age with a complaint of chronic recurrenthead-ache in kashan i...

  3. Improved Cognitive Function After Transcranial, Light-Emitting Diode Treatments in Chronic, Traumatic Brain Injury: Two Case Reports

    OpenAIRE

    Naeser, Margaret A.; Saltmarche, Anita; Krengel, Maxine H.; Hamblin, Michael R.; Knight, Jeffrey A.

    2011-01-01

    Objective: Two chronic, traumatic brain injury (TBI) cases, where cognition improved following treatment with red and near-infrared light-emitting diodes (LEDs), applied transcranially to forehead and scalp areas, are presented. Background: Significant benefits have been reported following application of transcranial, low-level laser therapy (LLLT) to humans with acute stroke and mice with acute TBI. These are the first case reports documenting improved cognitive function in chronic, TBI pati...

  4. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair.

    Directory of Open Access Journals (Sweden)

    Davide Lecca

    Full Text Available Deciphering the mechanisms regulating the generation of new neurons and new oligodendrocytes, the myelinating cells of the central nervous system, is of paramount importance to address new strategies to replace endogenous damaged cells in the adult brain and foster repair in neurodegenerative diseases. Upon brain injury, the extracellular concentrations of nucleotides and cysteinyl-leukotrienes (cysLTs, two families of endogenous signaling molecules, are markedly increased at the site of damage, suggesting that they may act as "danger signals" to alert responses to tissue damage and start repair. Here we show that, in brain telencephalon, GPR17, a recently deorphanized receptor for both uracil nucleotides and cysLTs (e.g., UDP-glucose and LTD(4, is normally present on neurons and on a subset of parenchymal quiescent oligodendrocyte precursor cells. We also show that induction of brain injury using an established focal ischemia model in the rodent induces profound spatiotemporal-dependent changes of GPR17. In the lesioned area, we observed an early and transient up-regulation of GPR17 in neurons expressing the cellular stress marker heat shock protein 70. Magnetic Resonance Imaging in living mice showed that the in vivo pharmacological or biotechnological knock down of GPR17 markedly prevents brain infarct evolution, suggesting GPR17 as a mediator of neuronal death at this early ischemic stage. At later times after ischemia, GPR17 immuno-labeling appeared on microglia/macrophages infiltrating the lesioned area to indicate that GPR17 may also acts as a player in the remodeling of brain circuitries by microglia. At this later stage, parenchymal GPR17+ oligodendrocyte progenitors started proliferating in the peri-injured area, suggesting initiation of remyelination. To confirm a specific role for GPR17 in oligodendrocyte differentiation, the in vitro exposure of cortical pre-oligodendrocytes to the GPR17 endogenous ligands UDP-glucose and LTD(4

  5. Minimal Brain Damage/Dysfunction (MBD) en de ontwikkeling van de wetenschappelijke kinderstudie in Nederland, ca. 1950–1990

    OpenAIRE

    Nelleke Bakker

    2014-01-01

    This paper discusses the reception in the Netherlands of Minimal Brain Damage/Dysfunction (MBD) and related labels for normally gifted children with learning disabilities and behavioural problems by child scientists of all sorts from the 1950s up to the late 1980s, when MBD was replaced with Attention Deficit Hyperactivity Disorder (ADHD). Unlike what has been suggested, as compared to ADHD, MBD turns out to have been all but a rare diagnosis for children who were not handicapped more serious...

  6. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment

    OpenAIRE

    Li, Xianchao; Hou, Wensheng; Wu, Xiaoying; Jiang, Wei; Chen, Haiyan; Xiao, Nong; Zhou, Ping

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hypoxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600–1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the tr...

  7. Multimodal deficits in right brain damaged patients with and without neglect and their modulation by sensory stimulation techniques

    OpenAIRE

    Rosenthal, Alisha

    2015-01-01

    Spatial neglect is a neurological disorder most often caused by vascular, right hemispheric brain damage. It is mainly characterized by a failure to attend, orient to or react to stimuli presented in the contralesional hemispace. By definition, neglect is seen as a higher order spatial disorder not merely caused by a sensory (e.g. hemianopia) or motor (e.g. hemiplegia) deficit. This definition includes the aspect of multimodality, which plays a central role in the assessment and therapy of th...

  8. Evidence for a therapeutic effect of Braintone on ischemic brain damage***

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Qin; Yu Luo; Weiwei Gu; Lei Yang; Xikun Shen; Zhenlun Gu; Huiling Zhang; Xiumei Gao

    2013-01-01

    This study used a novel combination of in vivo and in vitro experiments to show that Braintone had neuroprotective effects and clarified the molecular mechanisms underlying its efficacy. The Chinese herbal extract Braintone is composed of Radix Rhodiolase Essence, Radix Notoginseng Essence, Folium Ginkgo Essence and Rhizoma Chuanxiong. In vivo experiments showed that cerebral in-farction volume was reduced, hemispheric water content decreased, and neurological deficits were al eviated in a rat model of permanent middle cerebral artery occlusion after administration of 87.5, 175 or 350 mg/kg Braintone for 7 consecutive days. Western blot analysis showed that Braintone enhanced the expression of hypoxia-inducible factor 1α, heme oxygenase-1 and vascular endothe-lial growth factor in the ischemic cortex of these rats. The 350 mg/kg dose of Braintone produced the most dramatic effects. For the in vitro experiments, prior to oxygen-glucose deprivation, rats were intragastrical y injected with 440, 880 or 1 760 mg/kg Braintone to prepare a Braintone-co-ntaining serum, which was used to pre-treat human umbilical vein endothelial cel s for 24 hours. Human umbilical vein endothelial cel injury was al eviated with this pre-treatment. Western blot and real-time PCR analysis showed that the Braintone-containing serum increased the levels of hypox-ia-inducible factor 1α mRNA and protein, heme oxygenase-1 protein and vascular endothelial growth factor mRNA in oxygen-glucose deprived human umbilical vein endothelial cel s. The 1 760 mg/kg dose produced the greatest increases in expression. Col ectively, these experimental findings suggest that Braintone has neuroprotective effects on ischemia-induced brain damage via the up-regulation of hypoxia-inducible factor 1α, heme oxygenase-1 and vascular endothelial growth factor expression in vascular endothelial cel s.

  9. BRAIN DAMAGE AND OXIDATIVE STRESS IN THE PERINATAL PERIOD: MELATONIN AS A NEUROPROTECTIVE NEW DRUG

    Directory of Open Access Journals (Sweden)

    S. Perrone

    2012-08-01

    Full Text Available Prenatal factors represent the main determinants of hypoxicischemic encephalopathy (HIE rather than intra- or post-partum conditions in perinatal period. Oxidative stress (OS plays a key role in perinatal brain damage. The development of therapeutic strategies to improve the outcomes of babies with HIE is still mandatory. Aim: to evaluate the effectiveness of melatonin as a neuroprotective drug. To investigate the influence of Melatonin on the OS biomarkers production in an animal model of cerebral hypoxia-ischemia. Methods: 30 rat pups were subjected to ligation of the right common carotid artery and exposed for 2.5 hours at an hypoxic condition. A group of 15 rats was administered melatonin at a dose of 15 mg/kg 5 minutes after the procedure (Mel GROUP. At the same time 15 rats received placebo (HI GROUP. A group of 5 healthy rats was used as sham operated (S GROUP. Isoprostanes (IsoPs, neuroprostanes (NPs and neurofurans (NFs, all markers of OS were measured at 1, 24 and 48 h from ischemic injury in homogenized cerebral cortex of the two sides, right (hypoxia and ischemia and left (hypoxia. Results: In the HI group were observed: a significant increase of IsoPs on the left side of cortex after 1 h from HI injury (p<0.001; a significant increase of NPs on both sides after 24 h (p<0.05 and a significant increase of NFs on the left (p<0.05 after 24 h. After 48 h in the Mel group was observed a significant increase of IsoPs on the left (p<0.05 and of NPs on both sides of cerebral cortex (p<0.05. Conclusions: Melatonin reduces OS biomarkers in cerebral cortex of HI rats after 24 h from its administration. The drug is no longer effective after 48 h. These results lay the groundwork for future clinical studies in infants.

  10. Pilot study: Computer-based virtual anatomical interactivity for rehabilitation of individuals with chronic acquired brain injury

    OpenAIRE

    C. Douglas Simmons, PhD, OTR/L, FAOTA; Sajay Arthanat, PhD, OTR/L, ATP; Vincent J. Macri, BA, MA

    2014-01-01

    Deficiencies in upper-limb motor function and executive functioning can compromise an affected individual’s ability to complete everyday activities. Impaired motor and executive functioning therefore pose a risk to increasing numbers of veterans who have been diagnosed with acquired brain injury. This article reports on changes in upper-limb motor function and executive functioning of 12 adult participants with chronic acquired brain injury using a novel, computer-based, motor and cognitive r...

  11. Right-sided representational neglect after left brain damage in a case without visuospatial working memory deficits.

    Science.gov (United States)

    van Dijck, Jean-Philippe; Gevers, Wim; Lafosse, Christophe; Fias, Wim

    2013-10-01

    Brain damaged patients suffering from representational neglect (RN) fail to report, orient to, or verbally describe contra-lesional elements of imagined environments or objects. So far this disorder has only been reported after right brain damage, leading to the idea that only the right hemisphere is involved in this deficit. A widely accepted account attributes RN to a lateralized impairment in the visuospatial component of working memory. So far, however, this hypothesis has not been tested in detail. In the present paper, we describe, for the first time, the case of a left brain damaged patient suffering from right-sided RN while imagining both known and new environments and objects. An in-depth evaluation of her visuospatial working memory abilities, with special focus on the presence of a lateralized deficit, did not reveal any abnormality. In sharp contrast, her ability to memorize visual information was severely compromised. The implications of these results are discussed in the light of recent insights in the neglect syndrome.

  12. Vojta and Bobath combined treatment for high risk infants with brain damage at early period

    Institute of Scientific and Technical Information of China (English)

    Chunyan Wu; Xiaohui Peng; Xuesong Li; Qingling Niu; Hong Guo; Huitao Huang

    2007-01-01

    BACKGROUND: In the process of early screening and interventions to high risk infants with brain damage,the occasion and choosing methods of interventions and the combined application of different interventions are still at the exploratory phase.OBJECTIVE: To observe the efficacy of early intervention using Vojta and Bobath combined treatment in high risk infants with brain damage, and investigate the effect of early rehabilitation on the prognosis.DESIGN: A randomized controlled comparative observation.SETTING: Daqing Oil Field General Hospital of Heilongjiang Province.PARTICIPANTS: Eighty-four high risk infants younger than 1 year were selected from the Department of Pediatrics, Daqing Oil Field General Hospital of Heilongjiang Province from October 2005 to October 2006,including 52 boys (62%) and 32 girls (38%). The treatment started at the age of 0 - 3 months in 11 cases (13%), 4 - 6 months in 28 cases (33%), 7 - 9 months in 35 cases (42%), and 10 - 12 months in 10 cases (12%). Infants with at least two of the followings were enrolled, including 7 Vojta abnormal postural reflexes,slow or disorder of motor development, increase of muscular tension, postural abnormality, primary reflection residual and CT/MRI abnormalities. Informed consents were obtained from their guardians. The 84 infants were randomly divided into treatment group (n =42) and control group (n =42).METHODS: All the children were intravenously injected with cerebroprotein hydrolysate injection or cattle encephalon glycoside and ignotin injection, 10 times as a course for 2 - 5 courses; Besides, the infants in the treatment group also received early rehabilitative training of Vojta and Bobath combined treatment, once a day, 40 minutes per time, 5 times a week followed by a 2-day rest, 1 month as a course, and totally 2 - 5 courses. The Vojta method was to facilitate the automatic regulation by reflexlocomotion. Bobath method was to inhibit abnormal posture but facilitate the normal one, thus it is

  13. Chronic oral administration of pine bark extract (flavangenol) attenuates brain and liver mRNA expressions of HSPs in heat-exposed chicks.

    Science.gov (United States)

    Yang, Hui; Chowdhury, Vishwajit S; Bahry, Mohammad A; Tran, Phuong V; Do, Phong H; Han, Guofeng; Zhang, Rong; Tagashira, Hideki; Tsubata, Masahito; Furuse, Mitsuhiro

    2016-08-01

    Exposure to a high ambient temperature (HT) can cause heat stress, which has a huge negative impact on physiological functions. Cellular heat-shock response is activated upon exposure to HT for cellular maintenance and adaptation. In addition, antioxidants are used to support physiological functions under HT in a variety of organisms. Flavangenol, an extract of pine bark, is one of the most potent antioxidants with its complex mixture of polyphenols. In the current study, chronic (a single daily oral administration for 14 days) or acute (a single oral administration) oral administration of flavangenol was performed on chicks. Then the chicks were exposed to an acute HT (40±1°C for 3h) to examine the effect of flavangenol on the mRNA expression of heat-shock protein (HSP) in the brain and liver. Rectal temperature, plasma aspartate aminotransferase (AAT), a marker of liver damage, and plasma corticosterone as well as metabolites were also determined. HSP-70 and -90 mRNA expression, rectal temperature, plasma AAT and corticosterone were increased by HT. Interestingly, the chronic, but not the acute, administration of flavangenol caused a declining in the diencephalic mRNA expression of HSP-70 and -90 and plasma AAT in HT-exposed chicks. Moreover, the hepatic mRNA expression of HSP-90 was also significantly decreased by chronic oral administration of flavangenol in HT chicks. These results indicate that chronic, but not acute, oral administration of flavangenol attenuates HSP mRNA expression in the central and peripheral tissues due to its possible role in improving cellular protective functions during heat stress. The flavangenol-dependent decline in plasma AAT further suggests that liver damage induced by heat stress was minimized by flavangenol.

  14. Chronic stress and moderate physical exercise prompt widespread common activation and limited differential activation in specific brain regions.

    Science.gov (United States)

    Kim, Tae-Kyung; Han, Pyung-Lim

    2016-10-01

    Chronic stress in rodents produces depressive behaviors, whereas moderate physical exercise counteracts stress-induced depressive behaviors. Chronic stress and physical exercise appear to produce such opposing effects by changing the neural activity of specific brain regions. However, the detailed mechanisms through which the two different types of stimuli regulate brain function in opposite directions are not clearly understood. In the present study, we attempted to explore the neuroanatomical substrates mediating stress-induced behavioral changes and anti-depressant effects of exercise by examining stimulus-dependent c-Fos induction in the brains of mice that were exposed to repeated stress or exercise in a scheduled manner. Systematic and integrated analyses of c-Fos expression profiles indicated that various brain areas, including the prelimbic cortex, lateral septal area, and paraventricular nuclei of hypothalamus were commonly and strongly activated by both stress and exercise, while the lateral habenula and hippocampus were identified as being preferentially activated by stress and exercise, respectively. Exercise-dependent c-Fos expression in all regions examined in the brain occurred in both glutamatergic and GABAergic neurons. These results suggest that chronic stress and moderate exercise produce counteractive effects on mood behaviors, along with prompting widespread common activation and limited differential activation in specific brain regions. PMID:27539656

  15. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Cakmak G.; Miller L.; Zorlu, F.; Severcan, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{sub 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.

  16. Negative regulation of miRNA-9 on oligodendrocyte lineage gene 1 during hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Lijun Yang; Hong Cui; Ting Cao

    2014-01-01

    Oligodendrocyte lineage gene 1 plays a key role in hypoxic-ischemic brain damage and myelin repair. miRNA-9 is involved in the occurrence of many related neurological disorders. Bioin-formatics analysis demonstrated that miRNA-9 complementarily, but incompletely, bound oligodendrocyte lineage gene 1, but whether miRNA-9 regulates oligodendrocyte lineage gene 1 remains poorly understood. Whole brain slices of 3-day-old Sprague-Dawley rats were cultured and divided into four groups:control group;oxygen-glucose deprivation group (treatment with 8% O2+ 92%N2 and sugar-free medium for 60 minutes);transfection control group (after oxygen and glucose deprivation for 60 minutes, transfected with control plasmid) and miRNA-9 transfection group (after oxygen and glucose deprivation for 60 minutes, transfected with miRNA-9 plasmid). From the third day of transfection, and with increasing culture days, oligodendrocyte lineage gene 1 expression increased in each group, peaked at 14 days, and then decreased at 21 days. Real-time quantitative PCR results, however, demonstrated that oligoden-drocyte lineage gene 1 expression was lower in the miRNA-9 transfection group than that in the transfection control group at 1, 3, 7, 14, 21 and 28 days after transfection. Results suggested that miRNA-9 possibly negatively regulated oligodendrocyte lineage gene 1 in brain tissues during hypoxic-ischemic brain damage.

  17. Oxidative damage and histopathological changes in lung of rat chronically exposed to nicotine alone or associated to ethanol.

    Science.gov (United States)

    Dhouib, H; Jallouli, M; Draief, M; Bouraoui, S; El-Fazâa, S

    2015-12-01

    Smoking is the most important preventable risk factor of chronic obstructive pulmonary disease and lung cancer. This study was designed to investigate oxidative damage and histopathological changes in lung tissue of rats chronically exposed to nicotine alone or supplemented with ethanol. Twenty-four male Wistar rats divided into three groups were used for the study. The nicotine group received nicotine (2.5mg/kg/day); the nicotine-ethanol group was given simultaneously same dose of nicotine plus ethanol (0.2g/kg/day), while the control group was administered only normal saline (1 ml/kg/day). The treatment was administered by subcutaneous injection once daily for a period of 18 weeks. Chronic nicotine administration alone or combined to ethanol caused a significant increase in malondialdehyde (MDA) level, superoxide dismutase (SOD) activity and catalase (CAT) activity in lung tissue compared to control rats suggesting an oxidative damage. However, these increases were mostly prominent in nicotine group. The histopathological examination of lung tissue of rats in both treated groups revealed many alterations in the pulmonary structures such as emphysema change (disappearance of the alveolar septa, increased irregularity and size of air sacs) and marked lymphocytic infiltration in perivascular and interstitial areas. However, the changes characterized in the nicotine group (pulmonary congestion, hemorrhage into alveoli and interstitial areas, edema) were more drastic than those observed in the nicotine-ethanol group, and they can be attributed to a significant degree of capillary endothelial permeability and microvascular leak. Conversely, the ethanol supplementation caused an appearance of fatty change and fibrosis in pulmonary tissue essentially due to a metabolism of ethanol. Finally, the lung damage illustrated in nicotine group was more severe than that observed in the nicotine-ethanol group. We conclude that the combined administration of nicotine and ethanol

  18. Oxidative damage and histopathological changes in lung of rat chronically exposed to nicotine alone or associated to ethanol.

    Science.gov (United States)

    Dhouib, H; Jallouli, M; Draief, M; Bouraoui, S; El-Fazâa, S

    2015-12-01

    Smoking is the most important preventable risk factor of chronic obstructive pulmonary disease and lung cancer. This study was designed to investigate oxidative damage and histopathological changes in lung tissue of rats chronically exposed to nicotine alone or supplemented with ethanol. Twenty-four male Wistar rats divided into three groups were used for the study. The nicotine group received nicotine (2.5mg/kg/day); the nicotine-ethanol group was given simultaneously same dose of nicotine plus ethanol (0.2g/kg/day), while the control group was administered only normal saline (1 ml/kg/day). The treatment was administered by subcutaneous injection once daily for a period of 18 weeks. Chronic nicotine administration alone or combined to ethanol caused a significant increase in malondialdehyde (MDA) level, superoxide dismutase (SOD) activity and catalase (CAT) activity in lung tissue compared to control rats suggesting an oxidative damage. However, these increases were mostly prominent in nicotine group. The histopathological examination of lung tissue of rats in both treated groups revealed many alterations in the pulmonary structures such as emphysema change (disappearance of the alveolar septa, increased irregularity and size of air sacs) and marked lymphocytic infiltration in perivascular and interstitial areas. However, the changes characterized in the nicotine group (pulmonary congestion, hemorrhage into alveoli and interstitial areas, edema) were more drastic than those observed in the nicotine-ethanol group, and they can be attributed to a significant degree of capillary endothelial permeability and microvascular leak. Conversely, the ethanol supplementation caused an appearance of fatty change and fibrosis in pulmonary tissue essentially due to a metabolism of ethanol. Finally, the lung damage illustrated in nicotine group was more severe than that observed in the nicotine-ethanol group. We conclude that the combined administration of nicotine and ethanol

  19. Study on CT changes in autistic children; Anatomical correlation of the damaged brain and delay of psychomotor development

    Energy Technology Data Exchange (ETDEWEB)

    Yaguchi, Katsumi (Juntendo Univ., Tokyo (Japan). School of Medicine)

    1993-05-01

    Since 1979 we have performed CT examinations on 132 autistic children. Neurological diagnosis of the lesion was established by Dr. Segawa's group. On the CT of many autistic children, we found a small low density change located in the anterior wall of the temporal horn, or localized dilatation of the inferior horn near the damaged brain. We reviewed 96 of these patients who all had the obvious low density changes, or localized irregular dilatations in the anterior wall of the temporal horn. By measuring the distance of damage from the midline, we divided the 96 cases into two groups. Group 1 consisted of those with damage located laterally more than 30 mm line from the midline. Group 2 consisted of those with damage medially to the 30 mm line from the midline. Those cases with a large lesion both laterally and medially of the 30 mm line were categorized into group 1. In the adult brain the lateral border of the amygdaloid nucleus was never located laterally more than 30 mm from the midline. Laterally over the 30 mm line there were two marked fiber systems running near the anterior wall of the temporal horn: the fiber of the anterior commissure and the uncinate fascicle. Group 1 consisted of 62 patients and group 2 of 34 patients. The majority of the two group patients were pure autism children. This suggested that the main lesion in autism was in the amygdala. (author).

  20. Magnetic resonance imaging of post-ischemic blood-brain barrier damage with PEGylated iron oxide nanoparticles

    Science.gov (United States)

    Liu, Dong-Fang; Qian, Cheng; An, Yan-Li; Chang, Di; Ju, Sheng-Hong; Teng, Gao-Jun

    2014-11-01

    Blood-brain barrier (BBB) damage during ischemia may induce devastating consequences like cerebral edema and hemorrhagic transformation. This study presents a novel strategy for dynamically imaging of BBB damage with PEGylated supermagnetic iron oxide nanoparticles (SPIONs) as contrast agents. The employment of SPIONs as contrast agents made it possible to dynamically image the BBB permeability alterations and ischemic lesions simultaneously with T2-weighted MRI, and the monitoring could last up to 24 h with a single administration of PEGylated SPIONs in vivo. The ability of the PEGylated SPIONs to highlight BBB damage by MRI was demonstrated by the colocalization of PEGylated SPIONs with Gd-DTPA after intravenous injection of SPION-PEG/Gd-DTPA into a mouse. The immunohistochemical staining also confirmed the leakage of SPION-PEG from cerebral vessels into parenchyma. This study provides a novel and convenient route for imaging BBB alteration in the experimental ischemic stroke model.

  1. Chronic Repetitive Mild Traumatic Brain Injury Results in Reduced Cerebral Blood Flow, Axonal Injury, Gliosis, and Increased T-Tau and Tau Oligomers.

    Science.gov (United States)

    Ojo, Joseph O; Mouzon, Benoit; Algamal, Moustafa; Leary, Paige; Lynch, Cillian; Abdullah, Laila; Evans, James; Mullan, Michael; Bachmeier, Corbin; Stewart, William; Crawford, Fiona

    2016-07-01

    Exposure to repetitive mild traumatic brain injury (mTBI) is a risk factor for chronic traumatic encephalopathy, which is characterized by patchy deposition of hyperphosphorylated tau aggregates in neurons and astrocytes at the depths of cortical sulci. We developed an mTBI paradigm to explore effects of repetitive concussive-type injury over several months in mice with a human tau genetic background (hTau). Two injuries were induced in the hTau mice weekly over a period of 3 or 4 months and the effects were compared with those in noninjured sham animals. Behavioral and in vivo measures and detailed neuropathological assessments were conducted 6 months after the first injury. Our data confirm impairment in cerebral blood flow and white matter damage. This was accompanied by a 2-fold increase in total tau levels and mild increases in tau oligomers/conformers and pTau (Thr231) species in brain gray matter. There was no evidence of neurofibrillary/astroglial tangles, neuropil threads, or perivascular foci of tau immunoreactivity. There were neurobehavioral deficits (ie, disinhibition and impaired cognitive performance) in the mTBI animals. These data support the relevance of this new mTBI injury model for studying the consequences of chronic repetitive mTBI in humans, and the role of tau in TBI. PMID:27251042

  2. Chronic Exposure to Water-Pipe Smoke Induces Alveolar Enlargement, DNA Damage and Impairment of Lung Function

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2016-03-01

    Full Text Available Background/Aim: Epidemiological evidence indicates that water-pipe smoking (WPS adversely affects the respiratory system. However, the mechanisms underlying its effects are not well understood. Recent experimental studies reported the occurrence of lung inflammation and oxidative stress following acute and subacute exposure to WPS. Here, we wanted to verify the extent of inflammation and oxidative stress in mice chronically-exposed to WPS and to evaluate, for the first time, its effect on alveolar injury and DNA damage and their association with impairment of lung function. Methods: Mice were nose-only exposed to mainstream WPS (30 min/day; 5 days/week for 6 consecutive months. Control mice were exposed using the same protocol to atmospheric air only. At the end of the exposure period, several respiratory parameters were assessed. Results: In bronchoalveolar lavage fluid, WPS increased neutrophil and lymphocyte numbers, lactate dehydrogenase, myeloperoxidase and matrix metallopeptidase 9 activities, as well as several proinflammatory cytokines. In lung tissue, lipid peroxidation, reactive oxygen species, superoxide dismutase activity and reduced glutathione were all increased by WPS exposure. Along with oxidative stress, WPS exposure significantly increased lung DNA damage index. Histologically the lungs of WPS-exposed mice had foci of mixed inflammatory cells infiltration in the interalveolar interstitium which consisted of neutrophils, lymphocytes and macrophages. Interestingly, we found dilated alveolar spaces and alveolar ducts with damaged interalveolar septae, and impairment of lung function following WPS exposure. Conclusion: We show the persistence of lung inflammation and oxidative stress in mice chronically-exposed to WPS and demonstrate, for the first time, the occurrence of DNA damage and enlargement of alveolar spaces and ducts associated with impairment of lung function. Our findings provide novel mechanistic elucidation for the

  3. Gonadectomy affects brain derived neurotrophic factor in rats after chronic constriction nerve injury

    Institute of Scientific and Technical Information of China (English)

    Xin ZHAO; Xin WANG; Shu-yun ZHENG; Jian-guo XU

    2004-01-01

    AIM: To assess the effect of gonadectomy on brain derived neurotrophic factor (BDNF) expression in neuropathic pain. METHODS: Using chronic constriction injury (CCI) model, we detected BDNF mRNA in dorsal root ganglion and protein content in spinal cord by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay respectively. The time point we chose was post CCI operation d 0, 3, 7, 14, and 21.RESULTS: After CCI surgery, BDNF mRNA in ipsilateral DRGs was upregulated and reached its maximum on post operation d 7. BDNF protein level in ipsilateral spinal cord was also increased and reached its maximum on post operation d 14. The magnitude of this increase in gonadectomy (GDX) rats was significantly smaller than the GDX-sham rats at each time point. CONCLUSION: Gonadectomy reduced the BDNF increment after CCI surgery.Estrogen may affect nociceptive processing by its effect on BDNF.

  4. Diffuse traumatic brain injury affects chronic corticosterone function in the rat

    Directory of Open Access Journals (Sweden)

    Rachel K Rowe

    2016-07-01

    Full Text Available As many as 20–55% of patients with a history of traumatic brain injury (TBI experience chronic endocrine dysfunction, leading to impaired quality of life, impaired rehabilitation efforts and lowered life expectancy. Endocrine dysfunction after TBI is thought to result from acceleration–deceleration forces to the brain within the skull, creating enduring hypothalamic and pituitary neuropathology, and subsequent hypothalamic–pituitary endocrine (HPE dysfunction. These experiments were designed to test the hypothesis that a single diffuse TBI results in chronic dysfunction of corticosterone (CORT, a glucocorticoid released in response to stress and testosterone. We used a rodent model of diffuse TBI induced by midline fluid percussion injury (mFPI. At 2months postinjury compared with uninjured control animals, circulating levels of CORT were evaluated at rest, under restraint stress and in response to dexamethasone, a synthetic glucocorticoid commonly used to test HPE axis regulation. Testosterone was evaluated at rest. Further, we assessed changes in injury-induced neuron morphology (Golgi stain, neuropathology (silver stain and activated astrocytes (GFAP in the paraventricular nucleus (PVN of the hypothalamus. Resting plasma CORT levels were decreased at 2months postinjury and there was a blunted CORT increase in response to restraint induced stress. No changes in testosterone were measured. These changes in CORT were observed concomitantly with altered complexity of neuron processes in the PVN over time, devoid of neuropathology or astrocytosis. Results provide evidence that a single moderate diffuse TBI leads to changes in CORT function, which can contribute to the persistence of symptoms related to endocrine dysfunction. Future experiments aim to evaluate additional HP-related hormones and endocrine circuit pathology following diffuse TBI.

  5. Diffuse traumatic brain injury affects chronic corticosterone function in the rat.

    Science.gov (United States)

    Rowe, Rachel K; Rumney, Benjamin M; May, Hazel G; Permana, Paska; Adelson, P David; Harman, S Mitchell; Lifshitz, Jonathan; Thomas, Theresa C

    2016-07-01

    As many as 20-55% of patients with a history of traumatic brain injury (TBI) experience chronic endocrine dysfunction, leading to impaired quality of life, impaired rehabilitation efforts and lowered life expectancy. Endocrine dysfunction after TBI is thought to result from acceleration-deceleration forces to the brain within the skull, creating enduring hypothalamic and pituitary neuropathology, and subsequent hypothalamic-pituitary endocrine (HPE) dysfunction. These experiments were designed to test the hypothesis that a single diffuse TBI results in chronic dysfunction of corticosterone (CORT), a glucocorticoid released in response to stress and testosterone. We used a rodent model of diffuse TBI induced by midline fluid percussion injury (mFPI). At 2months postinjury compared with uninjured control animals, circulating levels of CORT were evaluated at rest, under restraint stress and in response to dexamethasone, a synthetic glucocorticoid commonly used to test HPE axis regulation. Testosterone was evaluated at rest. Further, we assessed changes in injury-induced neuron morphology (Golgi stain), neuropathology (silver stain) and activated astrocytes (GFAP) in the paraventricular nucleus (PVN) of the hypothalamus. Resting plasma CORT levels were decreased at 2months postinjury and there was a blunted CORT increase in response to restraint induced stress. No changes in testosterone were measured. These changes in CORT were observed concomitantly with altered complexity of neuron processes in the PVN over time, devoid of neuropathology or astrocytosis. Results provide evidence that a single moderate diffuse TBI leads to changes in CORT function, which can contribute to the persistence of symptoms related to endocrine dysfunction. Future experiments aim to evaluate additional HP-related hormones and endocrine circuit pathology following diffuse TBI. PMID:27317610

  6. A Review of the Bender Gestalt Test as a Screening Instrument for Brain Damage with School-Aged Children of Normal Intelligence Since 1970.

    Science.gov (United States)

    Eno, Larry; Deichmann, John

    1980-01-01

    All methods reviewed significantly discriminate between groups of brain damaged and unimpaired children. No method, however, provides successful predictive rates high enough to warrant the use of the Bender as the sole diagnostic instrument in individual cases. (Author)

  7. Pomegranate Alleviates Oxidative Damage and Neurotransmitter Alterations in Rats Brain Exposed to Aluminum Chloride and/or Gamma Radiation

    International Nuclear Information System (INIS)

    Aluminum and gamma radiation, both are potent neurotoxins and have been implicated in many human neuro degenerative diseases. The present study was designed to investigate the role of pomegranate in alleviating oxidative damage and alteration of neurotransmitters in the brain of rats exposed to aluminum chloride (AlCl3), and/or gamma radiation (IR). The results revealed that rats whole body exposed to γ- rays, (1 Gy/week up to 4 Gy), and/or administered aluminum chloride (35 mg/kg body weight), via gavages for 4 weeks, resulted in brain tissue damage, featuring by significant increase of the level of thiobarbituric acid reactive substances (TBARS), and advanced oxidation protein products (AOPP), associated with significant decrease of superoxide dismutase (SOD) and catalase (CAT) activities, as well as glutathione (GSH) content indicating occurrence of oxidative stress. A significant decrease of serotonin (5-HT) level associated with a significant increase of 5-hydroxyindole acetic acid (5-HIAA), in addition to a significant decrease in dopamine (DA), norepinephrine (NE) and epinephrine (EPI) contents recorded at the 1st, 7th and 14th day post-irradiation, indicating alterations in the metabolism of brain monoamines. On the other hand, the results exhibited that, supplementation of rats with pomegranate, via gavages, at a dose of 3 ml /kg body weight/ day, for 4 weeks along with AlCl3 with or without radiation has significantly ameliorated the changes occurred in the mentioned parameters and the values returned close to the normal ones. It could be concluded that pomegranate, by its antioxidant constituents might antagonize brain oxidative damage and minimize the severity of aluminum (Al), and/or radiation-induced neurotransmitters disorders

  8. Does any aspect of mind survive brain damage that typically leads to a persistent vegetative state? Ethical considerations

    Directory of Open Access Journals (Sweden)

    Fuchs Thomas

    2007-12-01

    Full Text Available Abstract Recent neuroscientific evidence brings into question the conclusion that all aspects of consciousness are gone in patients who have descended into a persistent vegetative state (PVS. Here we summarize the evidence from human brain imaging as well as neurological damage in animals and humans suggesting that some form of consciousness can survive brain damage that commonly causes PVS. We also raise the issue that neuroscientific evidence indicates that raw emotional feelings (primary-process affects can exist without any cognitive awareness of those feelings. Likewise, the basic brain mechanisms for thirst and hunger exist in brain regions typically not damaged by PVS. If affective feelings can exist without cognitive awareness of those feelings, then it is possible that the instinctual emotional actions and pain "reflexes" often exhibited by PVS patients may indicate some level of mentality remaining in PVS patients. Indeed, it is possible such raw affective feelings are intensified when PVS patients are removed from life-supports. They may still experience a variety of primary-process affective states that could constitute forms of suffering. If so, withdrawal of life-support may violate the principle of nonmaleficence and be tantamount to inflicting inadvertent "cruel and unusual punishment" on patients whose potential distress, during the process of dying, needs to be considered in ethical decision-making about how such individuals should be treated, especially when their lives are ended by termination of life-supports. Medical wisdom may dictate the use of more rapid pharmacological forms of euthanasia that minimize distress than the de facto euthanasia of life-support termination that may lead to excruciating feelings of pure thirst and other negative affective feelings in the absence of any reflective awareness.

  9. Functional Magnetic Resonance Imaging of Chronic Dysarthric Speech after Childhood Brain Injury: Reliance on a Left-Hemisphere Compensatory Network

    Science.gov (United States)

    Morgan, Angela T.; Masterton, Richard; Pigdon, Lauren; Connelly, Alan; Liegeois, Frederique J.

    2013-01-01

    Severe and persistent speech disorder, dysarthria, may be present for life after brain injury in childhood, yet the neural correlates of this chronic disorder remain elusive. Although abundant literature is available on language reorganization after lesions in childhood, little is known about the capacity of motor speech networks to reorganize…

  10. CT findings of the brain damages resulting from the high voltage electric injuries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Eun; Kim, Young Keun; Shim, Hyang Yi; Lee, Shin Hyung; Lee, Chang Joon [National Medical Center, Seoul (Korea, Republic of)

    1994-02-15

    The purpose of this study is to evaluate the CT features and pathogenesis of the electric brain injuries. We reviewed the CT scans of 3 patients injured by high-voltage electricity. We evaluated the findings early and delayed periods in each patients. The early CT findings were diffuse brain edema, scalp swelling, and focal hemorrhagic contusion. The findings of delayed period were cerebral infarction, pneumocephalus, brain abscess, and pneumatocele. CT was useful to correlate the pathogenesis and variable features of electric brain injuries.

  11. Effects of Chronic Consumption of Sugar-Enriched Diets on Brain Metabolism and Insulin Sensitivity in Adult Yucatan Minipigs

    Science.gov (United States)

    Ochoa, Melissa; Malbert, Charles-Henri; Meurice, Paul; Val-Laillet, David

    2016-01-01

    Excessive sugar intake might increase the risk to develop eating disorders via an altered reward circuitry, but it remains unknown whether different sugar sources induce different neural effects and whether these effects are dependent from body weight. Therefore, we compared the effects of three high-fat and isocaloric diets varying only in their carbohydrate sources on brain activity of reward-related regions, and assessed whether brain activity is dependent on insulin sensitivity. Twenty-four minipigs underwent 18FDG PET brain imaging following 7-month intake of high-fat diets of which 20% in dry matter weight (36.3% of metabolisable energy) was provided by starch, glucose or fructose (n = 8 per diet). Animals were then subjected to a euglycemic hyperinsulinemic clamp to determine peripheral insulin sensitivity. After a 7-month diet treatment, all groups had substantial increases in body weight (from 36.02±0.85 to 63.33±0.81 kg; Pstarch, chronic exposure to fructose and glucose induced bilateral brain activations, i.e. increased basal cerebral glucose metabolism, in several reward-related brain regions including the anterior and dorsolateral prefrontal cortex, the orbitofrontal cortex, the anterior cingulate cortex, the caudate and putamen. The lack of differences in insulin sensitivity index and body weight suggests that the observed differences in basal brain glucose metabolism are not related to differences in peripheral insulin sensitivity and weight gain. The differences in basal brain metabolism in reward-related brain areas suggest the onset of cerebral functional alterations induced by chronic consumption of dietary sugars. Further studies should explore the underlying mechanisms, such as the availability of intestinal and brain sugar transporter, or the appearance of addictive-like behavioral correlates of these brain functional characteristics. PMID:27583555

  12. Changes of Plasma Levels of Brain Natriuretic Peptide in Patients with Chronic Heart Failure

    Institute of Scientific and Technical Information of China (English)

    Pei Xiaoyang; Pan Ying; Hu Xuesong; Li Song; Xu Yawei; Yu Xuejing

    2006-01-01

    Objectives To investigate the changes of plasma brain natriuretic peptide (BNP) levels in patients with chronic heart failure (CHF).Methods Plasma BNP concentrations in patients with CHF (n=56) and in normal controls (n=60) were measured with specific radioimmunoassay. Left ventricular ejection fraction in patients with chronic heart failure was measured with 99mTc gated cardiac blood pool scintigraphy. Results The results showed that Plasma BNP concentrations in patients with CHF were significantly higher than normal controls (223±79 ng/L vs 40±15 ng/L, P < 0.01). Plasma BNP concentrations had a significant negative correlation with left ventricular ejection fractions(r=-0.68, P <0.01 ). Conclusions These results indicates that Plasma BNP levels are increased in patients with CHF, and they markedly increased according to the severity of heart failure classified by NYHA classification. The plasma BNP levels may be a biochemical parameter for evaluating the left ventricular function.

  13. [Arm Motor Function Recovery during Rehabilitation with the Use of Hand Exoskeleton Controlled by Brain-Computer Interface: a Patient with Severe Brain Damage].

    Science.gov (United States)

    Biryukova, E V; Pavlova, O G; Kurganskaya, M E; Bobrov, P D; Turbina, L G; Frolov, A A; Davydov, V I; Sil'tchenko, A V; Mokienko, O A

    2016-01-01

    We studied the dynamics of motor function recovery in a patient with severe brain damage in the course of neurorehabilitation using hand exoskeleton controlled by brain-computer interface. For estimating the motor function of paretic arm, we used the biomechanical analysis of movements registered during the course of rehabilitation. After 15 weekly sessions of hand exoskeleton control, the following results were obtained: a) the velocity profile of goal-directed movements of paretic hand became bell-shaped, b) the patient began to extend and abduct the hand which was flexed and adducted in the beginning of rehabilitation, and c) the patient began to supinate the forearm which was pronated in the beginning of rehabilitation. The first result is an evidence of the general improvement of the quality of motor control, while the second and third results prove that the spasticity of paretic arm has decreased. PMID:27188144

  14. Systemic inflammatory challenges compromise survival after experimental stroke via augmenting brain inflammation, blood- brain barrier damage and brain oedema independently of infarct size

    OpenAIRE

    Dénes Ádám; Ferenczi Szilamér; Kovács Krisztina J.

    2011-01-01

    Abstract Background Systemic inflammation impairs outcome in stroke patients and experimental animals via mechanisms which are poorly understood. Circulating inflammatory mediators can activate cerebrovascular endothelium or glial cells in the brain and impact on ischaemic brain injury. One of the most serious early clinical complications of cerebral ischaemia is brain oedema, which compromises survival in the first 24-48 h. It is not understood whether systemic inflammatory challenges impair...

  15. Cognitive rehabilitation of the hemineglect disorder in chronic patients with unilateral right brain damage.

    Science.gov (United States)

    Pizzamiglio, L; Antonucci, G; Judica, A; Montenero, P; Razzano, C; Zoccolotti, P

    1992-11-01

    Thirteen patients with a stabilized hemineglect symptomatology due to right-hemisphere lesions were subjected to a rehabilitation training specifically aimed at reducing the scanning deficit. The training consisted of four procedures (visual-spatial scanning, reading and copying training, copying of line drawings on a dot matrix, and figure description) which lasted 40 sessions. By the end of therapy, the patients as a group showed significant improvements on several standard tests of hemineglect. The results on a Semi-structured Scale for the Functional Evaluation of Hemineglect pointed to the extension of exploratory improvements to situations similar to those of daily life. In contrast, patients improved very slightly on a variety of standard visual-spatial tests, indicating the specificity of training in reducing the scanning defect. Seven patients were examined at a follow-up several months after the end of therapy and appeared stable on both standard and functional tests of neglect.

  16. Brain SPECT of chronic fatigue syndrome (CFS): a blinded visual analysis

    International Nuclear Information System (INIS)

    Full text: Chronic fatigue syndrome (CFS) is a debilitating and complex disorder characterised by profound fatigue and neuropsychiatric dysfunction. Previous studies with cerebral perfusion SPECT (rCBF) scans have yielded conflicting results. Most were performed with inhomogeneous patient populations and the findings were not based on a blinded visual analysis. To address this, HMPAO SPECT on a triple head gamma camera was performed on a group of 59 subjects. This group included 32 subjects (16-61 years, 24F and 8M) with moderate CFS based on the Fukuda criteria not on medication and not depressed and 27 normal volunteers (20-56 years, 16F and 11 M). Two blinded reviewers (RC and GC) separately assessed the SPECT studies. 28 brain structures were scored as either definitely abnormal(1), possibly abnormal(2) or normal(3-5). Abnormal results were only found in the temporal lobes and brainstem. The results (Sensitivity/Specificity) based on scores 1 or 2, show that that abnormal score yielded acceptable specificity but low sensitivity. Scores 1 or 2 improved sensitivity but reduced the specificity. This shows that visual analysis of brain SPECT is not a reliable discriminant test for CFS, although quantitative analysis with statistical parametric mapping (SPM) has demonstrated significant abnormalities. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  17. Brain-computer interfaces in the completely locked-in state and chronic stroke.

    Science.gov (United States)

    Chaudhary, U; Birbaumer, N; Ramos-Murguialday, A

    2016-01-01

    Brain-computer interfaces (BCIs) use brain activity to control external devices, facilitating paralyzed patients to interact with the environment. In this chapter, we discuss the historical perspective of development of BCIs and the current advances of noninvasive BCIs for communication in patients with amyotrophic lateral sclerosis and for restoration of motor impairment after severe stroke. Distinct techniques have been explored to control a BCI in patient population especially electroencephalography (EEG) and more recently near-infrared spectroscopy (NIRS) because of their noninvasive nature and low cost. Previous studies demonstrated successful communication of patients with locked-in state (LIS) using EEG- and invasive electrocorticography-BCI and intracortical recordings when patients still showed residual eye control, but not with patients with complete LIS (ie, complete paralysis). Recently, a NIRS-BCI and classical conditioning procedure was introduced, allowing communication in patients in the complete locked-in state (CLIS). In severe chronic stroke without residual hand function first results indicate a possible superior motor rehabilitation to available treatment using BCI training. Here we present an overview of the available studies and recent results, which open new doors for communication, in the completely paralyzed and rehabilitation in severely affected stroke patients. We also reflect on and describe possible neuronal and learning mechanisms responsible for BCI control and perspective for future BMI research for communication in CLIS and stroke motor recovery. PMID:27590968

  18. Effects of chronic cocaine on monoamine levels in discrete brain structures of lactating rat dams

    Science.gov (United States)

    Lubin, D.A.; Cannon, J.B.; Black, M.C.; Brown, L.E.; Johns, J.M.

    2011-01-01

    Chronic gestational cocaine administration has been correlated with high levels of postpartum maternal aggression towards intruders and altered levels of oxytocin in the amygdala. Cocaine may alter both oxytocin and maternal aggression either directly or indirectly through changes in monoamine levels in relevant brain regions. In this study, pregnant female rats were randomly assigned to one of four groups; three cocaine dose groups (7.5, 15 or 30 mg/kg), or a saline-treated group (0.9% normal saline) and given subcutaneous injections twice daily (total volume 2 ml/kg) throughout gestation. Behavioral responses to an inanimate object placed in the homecage were assessed on Postpartum Day (PPD) 6. Immediately following testing, animals were sacrificed and four brain regions implicated in maternal/aggressive behavior (medial preoptic area [MPOA], ventral tegmental area [VTA], hippocampus, and amygdala) were removed for monoamine level analyses using high-performance liquid chromatography. Dams given 30 mg/kg cocaine throughout gestation had significantly higher levels of dopamine (DA) and nonsignificantly elevated serotonin (5-HT) levels relative to saline-treated controls. These dams also exhibited higher frequencies of defensive behavior toward an inanimate object compared to saline-treated controls. Potential mechanisms mediating cocaine-induced increases in responding are proposed. PMID:12479966

  19. Neuropsychological function-brain structure relationships and stage of illness: an investigation into chronic and first-episode schizophrenia.

    Science.gov (United States)

    Premkumar, Preethi; Kumari, Veena; Corr, Philip J J; Fannon, Dominic; Sharma, Tonmoy

    2008-04-15

    Neuropsychological function-brain structure relationships may differ as a function of illness stage because of progressive brain matter loss through the course of schizophrenia. In this study, we tested whether neuropsychological function-brain structure relationships differed as a function of illness stage. In addition, we tested whether these relationships differed between older and young healthy controls. Function-structure relationships were examined in 35 first-episode patients (31 with schizophrenia, 4 with schizoaffective disorder), 54 chronic schizophrenia patients, 21 older healthy controls and 20 young healthy controls. MRI volumes of frontal and temporal lobe structures, as well as the whole brain, were estimated using a region-of-interest approach. Hierarchical multiple regression analyses were performed between the MRI and neuropsychological measures. Stronger relationships of immediate memory-total prefrontal cortex (PFC) volume in chronic than first-episode patients, and in older than young controls were observed. The abstract reasoning (WCST perseverative errors)-total temporal lobe volume relationship was stronger in older than young controls. These function-structure relationships appeared unexplained by whole brain volume or age in chronic patients. A similar dissociation between young and older subjects of both healthy and patient groups suggests that a 'bigger-is-better' relationship style is present in older individuals regardless of a diagnosis of schizophrenia. PMID:18226505

  20. Cognitive Gains from Gist Reasoning Training in Adolescents with Chronic-Stage Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Lori G. Cook

    2014-06-01

    Full Text Available Adolescents with traumatic brain injury (TBI typically demonstrate good recovery of previously acquired skills. However, higher-order and later emergent cognitive functions are often impaired and linked to poor outcomes in academic and social/behavioral domains. Few control trials exist that test cognitive treatment effectiveness at chronic recovery stages. The current pilot study compared the effects of two forms of cognitive training, gist reasoning (top-down versus rote memory learning (bottom-up, on ability to abstract meanings, recall facts, and utilize core executive functions (i.e., working memory, inhibition in 20 adolescents (ages 12-20 who were six months or longer post-TBI. Participants completed eight 45-minute sessions over one month. After training, the gist reasoning group (n = 10 exhibited significant improvement in ability to abstract meanings and increased fact recall. This group also showed significant generalizations to untrained executive functions of working memory and inhibition. The memory training group (n = 10 failed to show significant gains in ability to abstract meaning or on other untrained specialized executive functions, although improved fact recall approached significance. These preliminary results suggest that relatively short-term training (6 hours utilizing a top-down reasoning approach is more effective than a bottom-up rote learning approach in achieving gains in higher-order cognitive abilities in adolescents at chronic stages of TBI. These findings need to be replicated in a larger study; nonetheless, the preliminary data suggest that traditional cognitive intervention schedules need to extend to later-stage training opportunities. Chronic-stage, higher-order cognitive trainings may serve to elevate levels of cognitive performance in adolescents with TBI.

  1. A combined robotic and cognitive training for locomotor rehabilitation: Evidences of cerebral functional reorganization in two chronic traumatic brain injured patients

    Directory of Open Access Journals (Sweden)

    Katiuscia eSacco

    2011-11-01

    Full Text Available It has been demonstrated that automated locomotor training can improve walking capabilities in spinal cord-injured subjects but its effectiveness on brain damaged patients has not been well established. A possible explanation of the discordant results on the efficacy of robotic training in patients with cerebral lesions could be that these patients, besides stimulation of physiological motor patterns through passive leg movements, also need to train the cognitive aspects of motor control. Indeed, another way to stimulate cerebral motor areas in paretic patients is to use the cognitive function of motor imagery. A promising possibility is thus to combine sensorimotor training with the use of motor imagery. The aim of this paper is to assess changes in brain activations after a combined sensorimotor and cognitive training for gait rehabilitation. The protocol consisted of the integrated use of a robotic gait orthosis prototype with locomotor imagery tasks. Assessment was conducted on two patients with chronic traumatic brain injury and major gait impairments, using functional magnetic resonance imaging. Physiatric functional scales were used to assess clinical outcomes. Results showed greater activation post-training in the sensorimotor and supplementary motor cortices, as well as enhanced functional connectivity within the motor network. Improvements in balance and, to a lesser extent, in gait outcomes were also found.

  2. Effect of montelukast on the expression of interleukin-18, telomerase reverse transcriptase, and Bcl-2 in the brain tissue of neonatal rats with hypoxic-ischemic brain damage.

    Science.gov (United States)

    Liu, J L; Zhao, X H; Zhang, D L; Zhang, J B; Liu, Z H

    2015-01-01

    The aim of this study was to investigate the effect of montelukast on the expression of interleukin (IL)-18, telomerase reverse transcriptase (TERT), and Bcl-2 in the brain tissue of neonatal rats with hypox-ic-ischemic brain damage (HIBD). To establish the model of HIBD, 8% oxygen was applied to rats after the unilateral carotid artery was ligated. Twenty rats were randomly assigned to the control group, while another 40 were used to establish the HIBD model and were randomly divided equally into model group and treatment group. A 0.1 mg/kg dose of montelukast or an equal volume of saline was intraperitoneally injected to the rats in the treatment group and the model group, respectively. Brain tissue from 4 rats in each group was sampled at 0, 6, 12, 24, and 72 h after brain damage, and immunohistochemistry was used to measure IL-18, TERT and Bcl-2 expressions. IL-18, TERT, and Bcl-2 levels increased after 12 h in both the model group and treatment group, peaked after 48 h, and then decreased. Although not statistically significant, IL-18, TERT, and Bcl-2 expressions after 24, 48, and 96 h were all lower in the treatment group than those in the model group. In conclusion, montelukast has a protective effect on the cerebral tissue of neonatal rats with HIBD, and may mediate an increase of TERT and Bcl-2 levels but not of IL-18. Further study is required to elucidate the mechanism of the protective effect of montelukast on HIBD. PMID:26345821

  3. Acute and chronic glucocorticoid treatments regulate astrocyte-enriched mRNAs in multiple brain regions in vivo

    Directory of Open Access Journals (Sweden)

    Bradley S. Carter

    2013-08-01

    Full Text Available Previous studies have primarily interpreted gene expression regulation by glucocorticoids in the brain in terms of impact on neurons; however, less is known about the corresponding impact of glucocorticoids on glia and specifically astrocytes in vivo. Recent microarray experiments have identified glucocorticoid-sensitive mRNAs in primary astrocyte cell culture, including a number of mRNAs that have reported astrocyte-enriched expression patterns relative to other brain cell types. Here, we have tested whether elevations of glucocorticoids regulate a subset of these mRNAs in vivo following acute and chronic corticosterone exposure in adult mice. Acute corticosterone exposure was achieved by a single injection of 10 mg/kg corticosterone, and tissue samples were harvested two hours post-injection. Chronic corticosterone exposure was achieved by administering 10 mg/mL corticosterone via drinking water for two weeks. Gene expression was then assessed in two brain regions associated with glucocorticoid action (prefrontal cortex and hippocampus by qPCR and by in situ hybridization. The majority of measured mRNAs regulated by glucocorticoids in astrocytes in vitro were similarly regulated by acute and/or chronic glucocorticoid exposure in vivo. In addition, the expression levels for mRNAs regulated in at least one corticosterone exposure condition (acute/chronic demonstrated moderate positive correlation between the two conditions by brain region. In situ hybridization analyses suggest that select mRNAs are regulated by chronic corticosterone exposure specifically in astroctyes based on (1 similar general expression patterns between corticosterone-treated and vehicle-treated animals and (2 similar expression patterns to the pan-astrocyte marker Aldh1l1. Our findings demonstrate that glucocorticoids regulate astrocyte-enriched mRNAs in vivo and suggest that glucocorticoids regulate gene expression in the brain in a cell type-dependent fashion.

  4. Neuroprotective effect of developmental docosahexaenoic acid supplement against excitotoxic brain damage in infant rats

    NARCIS (Netherlands)

    Hogyes, E; Nyakas, C; Kiliaan, A; Farkas, T; Penke, B; Luiten, PGM; Högyes, E.

    2003-01-01

    Long-chain polyunsaturated fatty acid (LC-PUFA) composition of neural membranes is a key factor for brain development, in chemical communication of neurons and probably also their survival in response to injury. Viability of cholinergic neurons was tested during brain development following dietary s

  5. Neuroprotective effect of developmental docosahexaenoic acid supplement against excitotoxic brain damage in infant rats.

    NARCIS (Netherlands)

    Hogyes, E.; Nyakas, C.; Kiliaan, A.J.; Farkas, T.; Penke, B.; Luiten, P.G.M.

    2003-01-01

    Long-chain polyunsaturated fatty acid (LC-PUFA) composition of neural membranes is a key factor for brain development, in chemical communication of neurons and probably also their survival in response to injury. Viability of cholinergic neurons was tested during brain development following dietary s

  6. Beneficial Effects of Teucrium polium and Metformin on Diabetes-Induced Memory Impairments and Brain Tissue Oxidative Damage in Rats

    Directory of Open Access Journals (Sweden)

    S. Mojtaba Mousavi

    2015-01-01

    Full Text Available Objective. The effects of hydroalcoholic extract of Teucrium polium and metformin on diabetes-induced memory impairment and brain tissues oxidative damage were investigated. Methods. The rats were divided into: (1 Control, (2 Diabetic, (3 Diabetic-Extract 100 (Dia-Ext 100, (4 Diabetic-Extract 200 (Dia-Ext 200, (5 Diabetic-Extract 400 (Dia-Ext 400, and (6 Diabetic-Metformin (Dia-Met. Groups 3–6 were treated by 100, 200, and 400 mg/kg of the extract or metformin, respectively, for 6 weeks (orally. Results. In passive avoidance test, the latency to enter the dark compartment in Diabetic group was lower than that of Control group (P<0.01. In Dia-Ext 100, Dia-Ext 200, and Dia-Ext 400 and Metformin groups, the latencies were higher than those of Diabetic group (P<0.01. Lipid peroxides levels (reported as malondialdehyde, MDA, concentration in the brain of Diabetic group were higher than Control (P<0.001. Treatment by all doses of the extract and metformin decreased the MDA concentration (P<0.01. Conclusions. The results of present study showed that metformin and the hydroalcoholic extract of Teucrium polium prevent diabetes-induced memory deficits in rats. Protection against brain tissues oxidative damage might have a role in the beneficial effects of the extract and metformin.

  7. Early environmental enrichment affects neurobehavioral development and prevents brain damage in rats submitted to neonatal hypoxia-ischemia.

    Science.gov (United States)

    Schuch, Clarissa Pedrini; Diaz, Ramiro; Deckmann, Iohanna; Rojas, Joseane Jiménez; Deniz, Bruna Ferrary; Pereira, Lenir Orlandi

    2016-03-23

    Our previous results demonstrated improved cognition in adolescent rats housed in environmental enrichment (EE) that underwent neonatal hypoxia-ischemia (HI). The aim of this study was to investigate the effects of early EE on neurobehavioral development and brain damage in rats submitted to neonatal HI. Wistar rats were submitted to the HI procedure on the 7th postnatal day (PND) and housed in an enriched environment (8th-20th PND). The maturation of physical characteristics and the neurological reflexes were evaluated and the volume of striatum, corpus callosum and neocortex was measured. Data analysis demonstrated a clear effect of EE on neurobehavioral development; also, daily performance was improved in enriched rats on righting, negative geotaxis and cliff aversion reflex. HI caused a transient motor deficit on gait latency. Brain atrophy was found in HI animals and this damage was partially prevented by the EE. In conclusion, early EE stimulated neurobehavioral development in neonate rats and also protects the neocortex and the corpus callosum from atrophy following HI. These findings reinforce the potential of EE as a strategy for rehabilitation following neonatal HI and provide scientific support to the use of this therapeutic strategy in the treatment of neonatal brain injuries in humans.

  8. False memories to emotional stimuli are not equally affected in right- and left-brain-damaged stroke patients.

    Science.gov (United States)

    Buratto, Luciano Grüdtner; Zimmermann, Nicolle; Ferré, Perrine; Joanette, Yves; Fonseca, Rochele Paz; Stein, Lilian Milnitsky

    2014-10-01

    Previous research has attributed to the right hemisphere (RH) a key role in eliciting false memories to visual emotional stimuli. These results have been explained in terms of two right-hemisphere properties: (i) that emotional stimuli are preferentially processed in the RH and (ii) that visual stimuli are represented more coarsely in the RH. According to this account, false emotional memories are preferentially produced in the RH because emotional stimuli are both more strongly and more diffusely activated during encoding, leaving a memory trace that can be erroneously reactivated by similar but unstudied emotional items at test. If this right-hemisphere hypothesis is correct, then RH damage should result in a reduction in false memories to emotional stimuli relative to left-hemisphere lesions. To investigate this possibility, groups of right-brain-damaged (RBD, N=15), left-brain-damaged (LBD, N=15) and healthy (HC, N=30) participants took part in a recognition memory experiment with emotional (negative and positive) and non-emotional pictures. False memories were operationalized as incorrect responses to unstudied pictures that were similar to studied ones. Both RBD and LBD participants showed similar reductions in false memories for negative pictures relative to controls. For positive pictures, however, false memories were reduced only in RBD patients. The results provide only partial support for the right-hemisphere hypothesis and suggest that inter-hemispheric cooperation models may be necessary to fully account for false emotional memories. PMID:25129810

  9. Processing Homonymy and Polysemy: Effects of Sentential Context and Time-Course Following Unilateral Brain Damage

    Science.gov (United States)

    Klepousniotou, Ekaterini; Baum, Shari R.

    2005-01-01

    The present study investigated the abilities of left-hemisphere-damaged (LHD) non-fluent aphasic, right-hemisphere-damaged (RHD), and normal control individuals to access, in sentential biasing contexts, the multiple meanings of three types of ambiguous words, namely homonyms (e.g., ''punch''), metonymies (e.g., ''rabbit''), and metaphors (e.g.,…

  10. Chronic intermittent hypoxia-induced deficits in synaptic plasticity and neurocognitive functions: a role for brain-derived neurotrophic factor

    Institute of Scientific and Technical Information of China (English)

    Hui XIE; Wing-ho YUNG

    2012-01-01

    Obstructive sleep apnea (OSA) is well known for its metabolic as well as neurobehavioral consequences.Chronic intermittent hypoxia (IH) is a major component of OSA.In recent years,substantial advances have been made in elucidating the cellular and molecular mechanisms underlying the effect of chronic IH on neurocognitive functions,many of which are based on studies in animal models.A number of hypotheses have been put forward to explain chronic IH-induced neurological dysfunctions.Among these,the roles of oxidative stress and apoptosis-related neural injury are widely accepted.Here,focusing on results derived from animal studies,we highlight a possible role of reduced expression of brain-derived neurotrophic factor (BDNF) in causing impairment in long-term synaptic plasticity and neurocognitive functions during chronic IH.The possible relationship between BDNF and previous findings on this subject will be elucidated.

  11. Metallic gold reduces TNFalpha expression, oxidative DNA damage and pro-apoptotic signals after experimental brain injury

    DEFF Research Database (Denmark)

    Pedersen, Mie Ostergaard; Larsen, Agnete; Pedersen, Dan Sonne;

    2009-01-01

    -45 microm in size or the vehicle (placebo) were implanted in the cortical tissue followed by a cortical freeze-lesioning. At 1-2 weeks post-injury, brains were analyzed by using immunohistochemistry and markers of inflammation, oxidative stress and apoptosis. This study shows that gold treatment...... significantly reduces the cerebral levels of tumor necrosis factor alpha (TNFalpha), oxidative DNA damage (as judged by 8-oxoguanine levels), and pro-apoptotic markers (cleaved caspase-3, cytochrome c leakage), when compared to those of controls. The data presented here points toward gold particles as a tool...

  12. MRI at 3 Tesla detects no evidence for ischemic brain damage in intensively treated patients with homozygous familial hypercholesterolemia

    International Nuclear Information System (INIS)

    Homozygous familial hypercholesterolemia (FH) is considered a model disease for excessive plasma cholesterol levels. Patients with untreated homozygous FH have a markedly increased risk for premature atherosclerosis. The frequency and extent of ischemic brain damage detectable by high-field magnetic resonance imaging (MRI) after long-term intensive treatment are unknown. In a case control study, five patients with homozygous FH (one male and four females; mean age: 23.6 ± 9.2, range: 12-36 years; mean pre-treatment serum total cholesterol level: 26.9 ± 3.24 mmol/L; all patients with documented atherosclerotic plaques in the carotid arteries) and five age- and sex-matched healthy controls were studied. All patients had been on maximal lipid-lowering medication since early childhood, and four of them were also on treatment with low-density lipoprotein (LDL) apheresis at bi-weekly intervals. Brain MRI was performed at 3 Tesla field strength with fluid-attenuated T2-weighted inversion recovery and T1-weighted spin-echo MR pulse sequences and subsequently evaluated by two independent readers. The maximal lipid-lowering treatment reduced the total serum cholesterol by more than 50% in the patients, but their serum concentrations were still 3.6-fold higher than those found in the controls (11.9 ± 4.2 vs. 4.5 ± 0.5 mmol/L; p < 0.0047). No brain abnormality was observed in any of the patients with homozygous FH. Homozygous FH patients on intensive cholesterol-lowering therapy have no evidence of ischemic brain damage at 3 Tesla MRI despite the remaining high cholesterol levels. (orig.)

  13. MRI at 3 Tesla detects no evidence for ischemic brain damage in intensively treated patients with homozygous familial hypercholesterolemia

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Stephan A.; O' Regan, Declan P.; Fitzpatrick, Julie; Hajnal, Joseph V. [Hammersmith Hospital Campus, Imaging Sciences Department, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, London (United Kingdom); Neuwirth, Clare; Potter, Elizabeth; Tosi, Isabella; Naoumova, Rossi P. [MRC Clinical Sciences Centre, Clinical Research Facility, London (United Kingdom); Hammersmith Hospital, Lipid Clinic, London (United Kingdom)

    2007-11-15

    Homozygous familial hypercholesterolemia (FH) is considered a model disease for excessive plasma cholesterol levels. Patients with untreated homozygous FH have a markedly increased risk for premature atherosclerosis. The frequency and extent of ischemic brain damage detectable by high-field magnetic resonance imaging (MRI) after long-term intensive treatment are unknown. In a case control study, five patients with homozygous FH (one male and four females; mean age: 23.6 {+-} 9.2, range: 12-36 years; mean pre-treatment serum total cholesterol level: 26.9 {+-} 3.24 mmol/L; all patients with documented atherosclerotic plaques in the carotid arteries) and five age- and sex-matched healthy controls were studied. All patients had been on maximal lipid-lowering medication since early childhood, and four of them were also on treatment with low-density lipoprotein (LDL) apheresis at bi-weekly intervals. Brain MRI was performed at 3 Tesla field strength with fluid-attenuated T2-weighted inversion recovery and T1-weighted spin-echo MR pulse sequences and subsequently evaluated by two independent readers. The maximal lipid-lowering treatment reduced the total serum cholesterol by more than 50% in the patients, but their serum concentrations were still 3.6-fold higher than those found in the controls (11.9 {+-} 4.2 vs. 4.5 {+-} 0.5 mmol/L; p < 0.0047). No brain abnormality was observed in any of the patients with homozygous FH. Homozygous FH patients on intensive cholesterol-lowering therapy have no evidence of ischemic brain damage at 3 Tesla MRI despite the remaining high cholesterol levels. (orig.)

  14. Berberine Protects against Neuronal Damage via Suppression of Glia-Mediated Inflammation in Traumatic Brain Injury

    OpenAIRE

    Chien-Cheng Chen; Tai-Ho Hung; Chao Yu Lee; Liang-Fei Wang; Chun-Hu Wu; Chia-Hua Ke; Szu-Fu Chen

    2014-01-01

    Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg(-1)) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain ba...

  15. Rehabilitation of Executive Functioning in Patients with Frontal Lobe Brain Damage with Goal Management Training

    OpenAIRE

    Brian eLevine; Schweizer, Tom A.; Charlene eO'Connor; Gary eTurner; Susan eGillingham; Stuss, Donald T.; Tom eManly; Robertson, Ian H.

    2011-01-01

    PUBLISHED Executive functioning deficits due to brain disease affecting frontal lobe functions cause significant real-life disability, yet solid evidence in support of executive functioning interventions is lacking. Goal Management Training (GMT), an executive functioning intervention that draws upon theories concerning goal processing and sustained attention, has received empirical support in studies of patients with traumatic brain injury, normal aging, and case studies. GMT promotes a m...

  16. Summary of high field diffusion MRI and microscopy data demonstrate microstructural aberration in chronic mild stress rat brain.

    Science.gov (United States)

    Khan, Ahmad Raza; Chuhutin, Andrey; Wiborg, Ove; Kroenke, Christopher D; Nyengaard, Jens R; Hansen, Brian; Jespersen, Sune Nørhøj

    2016-09-01

    This data article describes a large, high resolution diffusion MRI data set from fixed rat brain acquired at high field strength. The rat brain samples consist of 21 adult rat brain hemispheres from animals exposed to chronic mild stress (anhedonic and resilient) and controls. Histology from amygdala of the same brain hemispheres is also included with three different stains: DiI and Hoechst stained microscopic images (confocal microscopy) and ALDH1L1 antibody based immunohistochemistry. These stains may be used to evaluate neurite density (DiI), nuclear density (Hoechst) and astrocytic density (ALDH1L1). This combination of high field diffusion data and high resolution images from microscopy enables comparison of microstructural parameters derived from diffusion MRI to histological microstructure. The data provided here is used in the article (Jespersen, 2016) [1]. PMID:27508246

  17. Pentosan polysulfate protects brain endothelial cells against bacterial lipopolysaccharide-induced damages.

    Science.gov (United States)

    Veszelka, Szilvia; Pásztói, Mária; Farkas, Attila E; Krizbai, István; Ngo, Thi Khue Dung; Niwa, Masami; Abrahám, Csongor S; Deli, Mária A

    2007-01-01

    Peripheral inflammation can aggravate local brain inflammation and neuronal death. The blood-brain barrier (BBB) is a key player in the event. On a relevant in vitro model of primary rat brain endothelial cells co-cultured with primary rat astroglia cells lipopolysaccharide (LPS)-induced changes in several BBB functions have been investigated. LPS-treatment resulted in a dose- and time-dependent decrease in the integrity of endothelial monolayers: transendothelial electrical resistance dropped, while flux of permeability markers fluorescein and albumin significantly increased. Immunostaining for junctional proteins ZO-1, claudin-5 and beta-catenin was significantly weaker in LPS-treated endothelial cells than in control monolayers. LPS also reduced the intensity and changed the pattern of ZO-1 immunostaining in freshly isolated rat brain microvessels. The activity of P-glycoprotein, an important efflux pump at the BBB, was also inhibited by LPS. At the same time production of reactive oxygen species and nitric oxide was increased in brain endothelial cells treated with LPS. Pentosan polysulfate, a polyanionic polysaccharide could reduce the deleterious effects of LPS on BBB permeability, and P-glycoprotein activity. LPS-stimulated increase in the production of reactive oxygen species and nitric oxide was also decreased by pentosan treatment. The protective effect of pentosan for brain endothelium can be of therapeutical significance in bacterial infections affecting the BBB.

  18. Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workers

    Directory of Open Access Journals (Sweden)

    Ren Xiao-Bin

    2011-04-01

    Full Text Available Abstract Background Occupational exposure to chromium compounds may result in adverse health effects. This study aims to investigate whether low-level hexavalent chromium (Cr(VI exposure can cause DNA damage in electroplating workers. Methods 157 electroplating workers and 93 control subjects with no history of occupational exposure to chromium were recruited in Hangzhou, China. Chromium levels in erythrocytes were determined by graphite furnace atomic absorption spectrophotometer. DNA damage in peripheral lymphocytes was evaluated with the alkaline comet assay by three parameters: Olive tail moment, tail length and percent of DNA in the comet tail (tail DNA%. Urinary 8-OHdG levels were measured by ELISA. Results Chromium concentration in erythrocytes was about two times higher in electroplating workers (median: 4.41 μg/L than that in control subjects (1.54 μg/L, P P P P Conclusion The findings in this study indicated that there was detectable chromium exposure in electroplating workers. Low-level occupational chromium exposure induced DNA damage.

  19. Tracking Single Units in Chronic, Large Scale, Neural Recordings for Brain Machine Interface Applications

    Directory of Open Access Journals (Sweden)

    Ahmed eEleryan

    2014-07-01

    Full Text Available In the study of population coding in neurobiological systems, tracking unit identity may be critical to assess possible changes in the coding properties of neuronal constituents over prolonged periods of time. Ensuring unit stability is even more critical for reliable neural decoding of motor variables in intra-cortically controlled brain-machine interfaces (BMIs. Variability in intrinsic spike patterns, tuning characteristics, and single-unit identity over chronic use is a major challenge to maintaining this stability, requiring frequent daily calibration of neural decoders in BMI sessions by an experienced human operator. Here, we report on a unit-stability tracking algorithm that efficiently and autonomously identifies putative single-units that are stable across many sessions using a relatively short duration recording interval at the start of each session. The algorithm first builds a database of features extracted from units' average spike waveforms and firing patterns across many days of recording. It then uses these features to decide whether spike occurrences on the same channel on one day belong to the same unit recorded on another day or not. We assessed the overall performance of the algorithm for different choices of features and classifiers trained using human expert judgment, and quantified it as a function of accuracy and execution time. Overall, we found a trade-off between accuracy and execution time with increasing data volumes from chronically implanted rhesus macaques, with an average of 12 seconds processing time per channel at ~90% classification accuracy. Furthermore, 77% of the resulting putative single-units matched those tracked by human experts. These results demonstrate that over the span of a few months of recordings, automated unit tracking can be performed with high accuracy and used to streamline the calibration phase during BMI sessions.

  20. Chronic methamphetamine treatment reduces the expression of synaptic plasticity genes and changes their DNA methylation status in the mouse brain.

    Science.gov (United States)

    Cheng, Min-Chih; Hsu, Shih-Hsin; Chen, Chia-Hsiang

    2015-12-10

    Methamphetamine (METH) is a highly addictive psychostimulant that may cause long-lasting synaptic dysfunction and abnormal gene expression. We aimed to explore the differential expression of synaptic plasticity genes in chronic METH-treated mouse brain. We used the RT(2) Profiler PCR Array and the real-time quantitative PCR to characterize differentially expressed synaptic plasticity genes in the frontal cortex and the hippocampus of chronic METH-treated mice compared with normal saline-treated mice. We further used pyrosequencing to assess DNA methylation changes in the CpG region of the five immediate early genes (IEGs) in chronic METH-treated mouse brain. We detected six downregulated genes in the frontal cortex and the hippocampus of chronic METH-treated mice, including five IEGs (Arc, Egr2, Fos, Klf10, and Nr4a1) and one neuronal receptor gene (Grm1), compared with normal saline-treated group, but only four genes (Arc, Egr2, Fos, and Nr4a1) were confirmed to be different. Furthermore, we found several CpG sites of the Arc and the Fos that had significant changes in DNA methylation status in the frontal cortex of chronic METH-treated mice, while the klf10 and the Nr4a1 that had significant changes in the hippocampus. Our results show that chronic administration of METH may lead to significant downregulation of the IEGs expression in both the frontal cortex and the hippocampus, which may partly account for the molecular mechanism of the action of METH. Furthermore, the changes in DNA methylation status of the IEGs in the brain indicate that an epigenetic mechanism-dependent transcriptional regulation may contribute to METH addiction, which warrants additional study. PMID:26496011

  1. Transcranial LED therapy for cognitive dysfunction in chronic, mild traumatic brain injury: two case reports

    Science.gov (United States)

    Naeser, Margaret A.; Saltmarche, Anita; Krengel, Maxine H.; Hamblin, Michael R.; Knight, Jeffrey A.

    2010-02-01

    Two chronic, traumatic brain injury (TBI) cases are presented, where cognitive function improved following treatment with transcranial light emitting diodes (LEDs). At age 59, P1 had closed-head injury from a motor vehicle accident (MVA) without loss of consciousness and normal MRI, but unable to return to work as development specialist in internet marketing, due to cognitive dysfunction. At 7 years post-MVA, she began transcranial LED treatments with cluster heads (2.1" diameter with 61 diodes each - 9x633nm, 52x870nm; 12-15mW per diode; total power, 500mW; 22.2 mW/cm2) on bilateral frontal, temporal, parietal, occipital and midline sagittal areas (13.3 J/cm2 at scalp, estimated 0.4 J/cm2 to brain cortex per area). Prior to transcranial LED, focused time on computer was 20 minutes. After 2 months of weekly, transcranial LED treatments, increased to 3 hours on computer. Performs nightly home treatments (now, 5 years, age 72); if stops treating >2 weeks, regresses. P2 (age 52F) had history of closed-head injuries related to sports/military training and recent fall. MRI shows fronto-parietal cortical atrophy. Pre-LED, was not able to work for 6 months and scored below average on attention, memory and executive function. Performed nightly transcranial LED treatments at home (9 months) with similar LED device, on frontal and parietal areas. After 4 months of LED treatments, returned to work as executive consultant, international technology consulting firm. Neuropsychological testing (post- 9 months of transcranial LED) showed significant improvement in memory and executive functioning (range, +1 to +2 SD improvement). Case 2 reported reduction in PTSD symptoms.

  2. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  3. Glucocorticoids regulation of FosB/ΔFosB expression induced by chronic opiate exposure in the brain stress system.

    Directory of Open Access Journals (Sweden)

    Daniel García-Pérez

    Full Text Available Chronic use of drugs of abuse profoundly alters stress-responsive system. Repeated exposure to morphine leads to accumulation of the transcription factor ΔFosB, particularly in brain areas associated with reward and stress. The persistent effects of ΔFosB on target genes may play an important role in the plasticity induced by drugs of abuse. Recent evidence suggests that stress-related hormones (e.g., glucocorticoids, GC may induce adaptations in the brain stress system that is likely to involve alteration in gene expression and transcription factors. This study examined the role of GC in regulation of FosB/ΔFosB in both hypothalamic and extrahypothalamic brain stress systems during morphine dependence. For that, expression of FosB/ΔFosB was measured in control (sham-operated and adrenalectomized (ADX rats that were made opiate dependent after ten days of morphine treatment. In sham-operated rats, FosB/ΔFosB was induced after chronic morphine administration in all the brain stress areas investigated: nucleus accumbens(shell (NAc, bed nucleus of the stria terminalis (BNST, central amygdala (CeA, hypothalamic paraventricular nucleus (PVN and nucleus of the solitary tract noradrenergic cell group (NTS-A(2. Adrenalectomy attenuated the increased production of FosB/ΔFosB observed after chronic morphine exposure in NAc, CeA, and NTS. Furthermore, ADX decreased expression of FosB/ΔFosB within CRH-positive neurons of the BNST, PVN and CeA. Similar results were obtained in NTS-A(2 TH-positive neurons and NAc pro-dynorphin-positive neurons. These data suggest that neuroadaptation (estimated as accumulation of FosB/ΔFosB to opiates in brain areas associated with stress is modulated by GC, supporting the evidence of a link between brain stress hormones and addiction.

  4. L-carnitine enhances axonal plasticity and improves white-matter lesions after chronic hypoperfusion in rat brain.

    Science.gov (United States)

    Ueno, Yuji; Koike, Masato; Shimada, Yoshiaki; Shimura, Hideki; Hira, Kenichiro; Tanaka, Ryota; Uchiyama, Yasuo; Hattori, Nobutaka; Urabe, Takao

    2015-03-01

    Chronic cerebral hypoperfusion causes white-matter lesions (WMLs) with oxidative stress and cognitive impairment. However, the biologic mechanisms that regulate axonal plasticity under chronic cerebral hypoperfusion have not been fully investigated. Here, we investigated whether L-carnitine, an antioxidant agent, enhances axonal plasticity and oligodendrocyte expression, and explored the signaling pathways that mediate axonal plasticity in a rat chronic hypoperfusion model. Adult male Wistar rats subjected to ligation of the bilateral common carotid arteries (LBCCA) were treated with or without L-carnitine. L-carnitine-treated rats exhibited significantly reduced escape latency in the Morris water maze task at 28 days after chronic hypoperfusion. Western blot analysis indicated that L-carnitine increased levels of phosphorylated high-molecular weight neurofilament (pNFH), concurrent with a reduction in phosphorylated phosphatase tensin homolog deleted on chromosome 10 (PTEN), and increased phosphorylated Akt and mammalian target of rapamycin (mTOR) at 28 days after chronic hypoperfusion. L-carnitine reduced lipid peroxidation and oxidative DNA damage, and enhanced oligodendrocyte marker expression and myelin sheath thickness after chronic hypoperfusion. L-carnitine regulates the PTEN/Akt/mTOR signaling pathway, and enhances axonal plasticity while concurrently ameliorating oxidative stress and increasing oligodendrocyte myelination of axons, thereby improving WMLs and cognitive impairment in a rat chronic hypoperfusion model. PMID:25465043

  5. Cardiac cell damage: a primary myocardial disease in streptozotocin-induced chronic diabetes.

    OpenAIRE

    Seager, M. J.; Singal, P. K.; Orchard, R.; Pierce, G. N.; Dhalla, N S

    1984-01-01

    Ultrastructural changes in heart muscle due to chronic diabetes subsequent to a single injection of streptozotocin (65 mg/kg body wt, i.v.) were studied in rats. Presence of diabetes was indicated by hyperglycaemia (plasma glucose, control, 120 +/- 7; diabetic, 448 +/- 21 mg/dl) as well as hypo-insulinaemia (plasma insulin, control, 25.6 +/- 5.2; diabetic, 11.2 +/- 0.5 microU/ml). After 8 weeks of diabetes, the hearts were processed for electron microscopic examination. Cardiac muscle cells i...

  6. Enhanced Brain Responses to Pain-Related Words in Chronic Back Pain Patients and Their Modulation by Current Pain

    Science.gov (United States)

    Ritter, Alexander; Franz, Marcel; Puta, Christian; Dietrich, Caroline; Miltner, Wolfgang H. R.; Weiss, Thomas

    2016-01-01

    Previous functional magnetic resonance imaging (fMRI) studies in healthy controls (HC) and pain-free migraine patients found activations to pain-related words in brain regions known to be activated while subjects experience pain. The aim of the present study was to identify neural activations induced by pain-related words in a sample of chronic back pain (CBP) patients experiencing current chronic pain compared to HC. In particular, we were interested in how current pain influences brain activations induced by pain-related adjectives. Subjects viewed pain-related, negative, positive, and neutral words; subjects were asked to generate mental images related to these words during fMRI scanning. Brain activation was compared between CBP patients and HC in response to the different word categories and examined in relation to current pain in CBP patients. Pain-related words vs. neutral words activated a network of brain regions including cingulate cortex and insula in subjects and patients. There was stronger activation in medial and dorsolateral prefrontal cortex (DLPFC) and anterior midcingulate cortex in CPB patients than in HC. The magnitude of activation for pain-related vs. negative words showed a negative linear relationship to CBP patients’ current pain. Our findings confirm earlier observations showing that pain-related words activate brain networks similar to noxious stimulation. Importantly, CBP patients show even stronger activation of these structures while merely processing pain-related words. Current pain directly influences on this activation. PMID:27517967

  7. Chronic cadmium treatment promotes oxidative stress and endothelial damage in isolated rat aorta.

    Directory of Open Access Journals (Sweden)

    Camila C P Almenara

    Full Text Available Cadmium is a highly toxic metal that is present in phosphate fertilizers, and the incidence of cadmium poisoning in the general population has increased, mainly due to cigarette smoking. Once absorbed, cadmium accumulates in the tissues, causing harmful effects including high blood pressure, endothelial damage and oxidative stress. Oxidative stress is known to efficiently produce oxidized low-density lipoprotein and consequently atherosclerosis, mainly in the aorta. However, the mechanisms through which endothelial damage is induced by cadmium have not been elucidated. Thus, the aim of this study was to investigate the effects of this metal in the isolated aorta and the possible role of oxidative stress. Rats received 100 mg.L(-1 cadmium chloride (CdCl2 in the drinking water or distilled water alone for four weeks. The pressor effect of cadmium was followed throughout the exposure period by tail plethysmography. At the end of the fourth week, the blood cadmium content was established, and the vascular reactivity of the isolated aorta to phenylephrine, acetylcholine and sodium nitroprusside was analyzed in the context of endothelium denudation and incubation with L-NAME, apocynin, losartan, enalapril, superoxide dismutase (SOD or catalase. We observed an increased response to phenylephrine in cadmium-treated rats. This increase was abolished by catalase and SOD incubation. Apocynin treatment reduced the phenylephrine response in both treatment groups, but its effect was greater in cadmium-treated rats, and NOX2 expression was greater in the cadmium group. These results suggested that cadmium in blood concentrations similar to those found in occupationally exposed populations is able to stimulate NOX2 expression, contributing to oxidative stress and reducing NO bioavailability, despite enhanced eNOS expression. These findings suggest that cadmium exposure promotes endothelial damage that might contribute to inflammation, vascular injury and the

  8. Influence of cytokine and cytokine receptor gene polymorphisms on the degree of liver damage in patients with chronic hepatitis C.

    Science.gov (United States)

    Moreira, Sara Tatiana; Silva, Giovanni Faria; de Moraes, Camila Fernanda Verdichio; Grotto, Rejane Maria Tomasini; de Moura Campos Pardini, Maria Inês; Bicalho, Maria da Graça; Moliterno, Ricardo Alberto

    2016-09-01

    Hepatic fibrosis may be the result of repetitive injury to hepatocytes caused by HCV infection and the immune response to it. Cytokines regulate the inflammatory response to injury and modulate hepatic fibrogenesis. Single nucleotide polymorphisms (SNPs) located in cytokine genes may influence the cytokine expression and secretion that may contribute to hepatic fibrogenesis in HCV infection. The aim of this study was to determine the genotype of 22 SNPs found in the genes of 13 cytokines/cytokine receptors to assess the influence of polymorphic variants on the stage of liver damage in Brazilian patients chronically infected with HCV genotype 1 only. 141 unrelated patients were grouped according to their stage of fibrosis: absence of fibrosis or patients in the initial stages of fibrosis (F0-F2, n = 84), patients with advanced stages of fibrosis or cirrhosis (F3-F4, n = 57), without cirrhosis (F0-F3, n = 103), and with cirrhosis (F4, n = 38). The comparison of frequencies in each sub-sample was performed by 2 × 2 contingency tables using the chi-square or Fisher's exact test. Stepwise logistic regression was also used to assess independent associations between cirrhosis or fibrosis with polymorphic variants. The TNFA-308G:A genotype conferred increased risk of fibrosis and cirrhosis. The TNFA-238G:G genotype was associated with protection from cirrhosis. The IL10-819C:T genotype conferred protection from fibrosis and the IL1B-511C:T genotype conferred increased risk of cirrhosis. Some of these genotypes showed results on the borderline of statistical significance in the bivariate analysis. We conclude that gene variants of cytokines/receptors may influence liver damage in patients chronically infected by HCV genotype 1. PMID:27200267

  9. USING OF MSC WITH DIFFERENT ONTOGENETIC MATURITY FOR CORRECTION OF CHRONIC FIBROSING LIVER DAMAGE

    Directory of Open Access Journals (Sweden)

    M. Y. Shagidulin

    2013-01-01

    Full Text Available Aim. To compare the effectiveness of MSC with different degree of ontogenetic maturity (MSC bone marrow – MSC BM and MSC umbilical cord – MSC UC on regenerative processes in injured liver. Methods. In 4 groups of experiments on Wistar rats (n = 80 with a model of fibrotic toxic liver damage (FLD it was studied the effect of MSCs with different degree of ontogenetic maturity on recovery processes at the regeneration of damaged liver: 1 gr. – Control, 2 gr. and 3 gr. introduction of MSC BM, included in Sphero®GEL-long in doses of 2.5 ×106 and 5.0 x 106 cells, respectively, and 4 gr. – introduction of MSC UC in the form of cell-spheroids (8–10 × 105 cells. The cells were injected into the damaged liver in 7 days after the end of FDL-modeling. The effect of cell therapy was studied during 180 days. The effectiveness of corrective therapy was evaluated by the results of functional and morphological investigations of livers (histological control of parenchymal and nonparenchy- mal liver tissue. Results. MSC BM in both doses and MSC UC contributed to a more rapid normalization of liver enzyme indices compared with the control (1 gr., but the differences in the rate of recovery of disturbed enzymatic liver functions between groups 2, 3 and 4 – were absent. In 90 days after the cell application it was determined a more pronounced recovery activity of cells in groups 3 and 4; in 180 days the more pronounced activation of recovery processes was observed in group 3; but in group 4 the sclerotic processes were more pro- nounced in this period. Conclusion. For the induction of recovery processes in damage liver it is advisable not to use the MSC UC, but to use MSC BM in the Sphero®GEL, because MSC BM exert not only local but also systemic immune-regulatory effect, increasing the pool of T-reg. cells, which are additional carriers of regenera- tion information in organism. 

  10. Dizocilpine (MK-801) arrests status epilepticus and prevents brain damage induced by Soman. (Reannouncement with new availability information)

    Energy Technology Data Exchange (ETDEWEB)

    Sparenborg, S.; Brennecke, L.H.; Jaax, N.K.; Braitman, D.J.

    1992-12-31

    The involvement of the NMDA receptor in the neurotoxicity induced by soman, an organophosphorus compound which irreversibly inhibits cholinesterase, was studied in guinea pigs. The drug MK-801 (0.5, 1 or 5 mg/kg, i.p.) was given as a pretreatment before a convulsant dose of soman or as a post treatment (30, 100 or 300 micron g/kg, i.m.) 5 min after the development of soman-induced status epilepticus. Pyridostigmine, atropine and pralidoxime chloride were also given to each subject to counteract the lethality of soman. All subjects that were challenged with soman and given the vehicle for MK-801 (saline) exhibited severe convulsions and electrographic seizure activity. Neuronal necrosis was found in the hippocampus, amygdala, thalamus and the pyriform and cerebral cortices of those subjects surviving for 48 hr. Pretreatment with 0.5 or 1 mg/kg doses of MK-801 did not prevent nor delay the onset of seizure activity but did diminish its intensity and led to its early arrest. At the largest dose (5 mg/kg), MK-801 completely prevented the development of seizure activity and brain damage. Post treatment with MK-801 prevented, arrested or reduced seizure activity, convulsions and neuronal necrosis in a dose-dependent manner. The NMDA receptor may play a more critical role in the spread and maintenance, rather than the initiation of cholinergically-induced seizure activity....Seizure-related brain damage, Organophosphorus compound, Nerve agent, Cholinesterase inhibition, Excitotoxicity, Guinea pig.

  11. Diagnostic and prognostic value of asphyxia, Sarnat's clinical classification, and CT-scan in perinatal brain damage

    International Nuclear Information System (INIS)

    A retrospective review was made of 145 babies, excluding those with congenital heart disease or chromosome aberration, admitted for CT scanning. The study was done to determine the diagnostic and prognostic value of CT findings, as well as the presence of asphyxia and the clinical stage based on the Sarnat's classification, in perinatal brain damage. The patients had a minimum follow up of 2 years for the evaluation of neurologic manifestations, such as cerebral palsy, epilepsy and mental retardation. Among babies weighing 2,000 g or more at birth, neonatal asphyxia was significantly correlated with neurologic prognosis. In addition, both clinical stages and CT findings were significantly correlated with neurologic prognosis, irrespective of birth weight. The correlation between clinical stages and CT findings was significant, irrespective of body weight, however, a significant correlation between clinical stages and neonatal asphyxia was restricted to those weighing 2,000 g or more. These findings suggest that the presence of asphyxia, clinical stages and CT findings are complementary in the diagnosis and prognosis evaluation of perinatal brain damage. (N.K.)

  12. Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair

    DEFF Research Database (Denmark)

    Noraberg, Jens; Poulsen, Frantz Rom; Blaabjerg, Morten;

    2005-01-01

    Slices of developing brain tissue can be grown for several weeks as so-called organotypic slice cultures. Here we summarize and review studies using hippocampal slice cultures to investigate mechanisms and treatment strategies for the neurodegenerative disorders like stroke (cerebral ischemia......), Alzheimer's disease (AD) and epilepsia. Studies of non-excitotoxic neurotoxic compounds and the experimental use of slice cultures in studies of HIV neurotoxicity, traumatic brain injury (TBI) and neurogenesis are included. For cerebral ischemia, experimental models with oxygen-glucose deprivation (OGD...... in vitro models using dispersed cell cultures, experimental in vivo models, and in some instances, clinical trials. New techniques including slice culturing of hippocampal tissue from transgenic mice as well as more mature brain tissue, and slice cultures coupled to microelectrode arrays (MEAs), on...

  13. A Cross-Sectional Investigation of Chronic Exposure to Microcystin in Relationship to Childhood Liver Damage in the Three Gorges Reservoir Region, China

    OpenAIRE

    Li, Yan; Chen, Ji-an; Zhao, Qing; Pu, Chaowen; QIU, ZHIQUN; Zhang, Renping; Shu, Weiqun

    2011-01-01

    Background: Microcystin-producing Microcystis bloom is a severe water problem in the world. Some reports indicate that chronic exposure to microcystin may result in liver damage in adults, but information on effects in children is limited. Objective: We investigated the relationship between microcystin exposure and liver damage in children. Methods: We measured microcystin concentrations in drinking water and aquatic food (carp and duck) from two lakes and four wells. Participants were 1,322 ...

  14. Alterations of taurine in the brain of chronic kainic acid epilepsy model.

    Science.gov (United States)

    Baran, H

    2006-10-01

    The aim of the study was to investigate the changes of taurine in the kainic acid (KA, 10 mg/kg, s.c.) chronic model of epilepsy, six months after KA application. The KA-rats used were divided into a group of animals showing weak behavioural response to KA (WDS, rare focal convulsion; rating scale 3 up to 3 h after KA injection). The brain regions investigated were caudate nucleus, substantia nigra, septum, hippocampus, amygdala/piriform cortex, and frontal, parietal, temporal and occipital cortices. KA-rats with rating rats with rating >3 developed spontaneous recurrent seizures and six months after injection increased taurine levels were found in the caudate nucleus (162.5% of control) and hippocampus (126.6% of control), while reduced taurine levels were seen in the septum (78.2% of control). In summary, increased taurine levels in the hippocampus may involve processes for membrane stabilisation, thus favouring recovery after neuronal hyperactivity. The increased taurine levels in the caudate nucleus could be involved in the modulation of spontaneous recurrent seizure activity.

  15. Volumes of chronic traumatic frontal brain lesions measured by MR imaging and CBF tomography

    Energy Technology Data Exchange (ETDEWEB)

    Maeder, P.; Wirsen, A.; Bajc, M.; Schalen, W.; Sjoeholm, H.; Skeidsvoll, H.; Cronqvist, S.; Ingvar, D.H. (University Hospital, Lund (Sweden). Dept. of Neuroradiology University Hospital, Lund (Sweden). Dept. of Clinical Neurophysiology University Hospital, Lund (Sweden). Dept. of Neurosurgery)

    1991-07-01

    The volumes (ml) of chronic traumatic frontal brain lesions were compared measured 'morphologically' with MR imaging (T1 and T2 weighted images) and 'functionally' with a tomographic rCBF technique (SPECT with {sup 133}Xe i.v.). The T1 volumes varied between 11 and 220 ml. The correlation between T1 and T2 volumes was 0.95, the T2 volumes being 33% larger than T1 volumes (p<0.001). The functional SPECT volumes were considerably larger (range 16-324 ml) than the MR volumes. The mean volume difference was 81% between T1 and SPECT images (p<0.001), and 35% between T2 and SPECT images (p<0.001). Correlations between the MR and SPECT volumes were also higher for T2 than T1 volumes. The volume difference is most likely explained by a functional decrease in regions around the lesion in which no morphologic change visible on MR images had taken place. MR and SPECT volume measurements were positively related to persistent lack of energy and personality changes, but only moderately related to duration of impaired consciousness and neuropsychologie outcome. (orig.).

  16. [Status of the ventricular system and dynamics of the cerebrospinal fluid changes in chronic brain diseases].

    Science.gov (United States)

    Burtsev, E M; Starodubtsev, A V

    1988-01-01

    Using noninvasive (echoventriculometry (Echo-VM), REG and invasive (planimetric PEG, graphic recording of the CSF pressure) methods of examination, the authors determined the size of cerebral ventricles and the status of the cerebral hemo- and CSF dynamics in 606 patients with various chronic diseases of the brain (consequences of craniocerebral injury, epilepsy, discirculatory encephalopathy, etc.). According to PEG and Echo-VM findings, two groups of patients were distinguished. In moderate dilatation of cerebral ventricles the most significant finding was an increase in the pulse pressure of the CSF, whereas its mean pressure was normal or slightly elevated. In patients with pronounced hydrocephaly the pulse and mean pressure of the CSF tended to decrease. The progress of hydrocephaly was parallelled by increasing disorders of the cerebral hemodynamics expressed in hindered venous outflow from the cranial cavity and elevated peripheral vascular resistance. Four CSF-related syndromes have been identified (normotension, total CSF hypertension, intraventricular tension, total CSF hypotension) differing in their diagnostic and prognostic significance and in the pathogenesis of disorders of the hemo- and CSF dynamics.

  17. An investigation of body part as object (BPO) responses in normal and brain-damaged adults.

    Science.gov (United States)

    Duffy, R J; Duffy, J R

    1989-07-01

    A test of simple pantomime was administered to three groups of adults and comparisons were made across groups of the incidence of subjects who exhibited body part as object (BPO) responses and of the mean frequency of occurrence of BPO in each group. The three groups were left-hemisphere-damaged aphasics (N = 28), right-hemisphere-damaged (N = 24), and normal controls (N = 28). The results indicated no significant differences among groups on the BPO measures. Also, to test the strength of association between the frequency of occurrence of BPO and measures of limb apraxia and severity of aphasia for the left-hemisphere-damaged aphasic group, correlation coefficients were obtained. The correlations were low and nonsignificant. The results of this investigation do not support the common clinical assumption that the occurrence of BPO during the performance of simple pantomimes is pathognomic for left-hemisphere pathology or associated with limb apraxia.

  18. Protective Effect of Topically Applied Polypeptide from Chlamys farreri Against Ultraviolet Radiation-Induced Chronic Skin Damage in Guinea Pig

    Institute of Scientific and Technical Information of China (English)

    迟明亮; 曹鹏利; 于国英; 朱莉; 王跃军; 王春波

    2003-01-01

    Polypeptide from Chlamys farreri (PCF) , a topical polypeptide isolated from Chlamys farreri, was used in this experiment aimed to investigate the photoprotective effect of PCF against chronic skin damage induced by ultraviolet A (UVA) and ultraviolet B (UVB) radiation. The chronic ultraviolet-irradiated guinea pig model was established, and visible changes in the skin including wrinkling, sagging and erythema were observed. Malondialdehyde (MDA) and antioxidant enzymes including superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) in the dorsal skin were determined using biochemical methods. The results showed:(1)PCF (5 % and 20%) could greatly protect the dorsal skin of guinea pig against wrinkling, sagging and erythema induced by UV radiation in a concentration-dependent manner.(2)PCF could reduce MDA formation in the dorsal skin caused by UV irradiation, while increasing the activities of SOD and GSH-px.(3)The differences among the PCF groups and UV model group were significant (P<0.05, P<0.01). These results indicated that topical application of PCF provided broad solar UV spectrum photoprotection; and that the antioxidant property of PCF might play a role in photoprotection.

  19. Molecular changes associated with chronic liver damage and neoplastic lesions in a murine model of hereditary tyrosinemia type 1.

    Science.gov (United States)

    Angileri, Francesca; Roy, Vincent; Morrow, Geneviève; Scoazec, Jean Yves; Gadot, Nicolas; Orejuela, Diana; Tanguay, Robert M

    2015-12-01

    Hereditary tyrosinemia type 1 (HT1) is the most severe inherited metabolic disease of the tyrosine catabolic pathway, with a progressive hepatic and renal injury and a fatal outcome if untreated. Toxic metabolites accumulating in HT1 have been shown to elicit endoplasmic reticulum (ER) stress response, and to induce chromosomal instability, cell cycle arrest and apoptosis perturbation. Although many studies have concentrated on elucidating these events, the molecular pathways responsible for development of hepatocellular carcinoma (HCC) still remain unclear. In this study the fah knockout murine model (fah(-/-)) was used to investigate the cellular signaling implicated in the pathogenesis of HT1. Fah(-/-) mice were subjected to drug therapy discontinuation (Nitisinone withdrawal), and livers were analyzed at different stages of the disease. Monitoring of mice revealed an increasing degeneration of the overall physiological conditions following drug withdrawal. Histological analysis unveiled diffuse hepatocellular damage, steatosis, oval-like cells proliferation and development of liver cell adenomas. Immunoblotting results revealed a progressive and chronic activation of stress pathways related to cell survival and proliferation, including several stress regulators such as Nrf2, eIF2α, CHOP, HO-1, and some members of the MAPK signaling cascade. Impairment of stress defensive mechanisms was also shown by microarray analysis in fah(-/-) mice following prolonged therapy interruption. These results suggest that a sustained activation of stress pathways in the chronic HT1 progression might play a central role in exacerbating liver degeneration. PMID:26360553

  20. GCR Transport in the Brain: Assessment of Self-Shielding, Columnar Damage, and Nuclear Reactions on Cell Inactivation Rates

    Science.gov (United States)

    Shavers, M. R.; Atwell, W.; Cucinotta, F. A.; Badhwar, G. D. (Technical Monitor)

    1999-01-01

    Radiation shield design is driven by the need to limit radiation risks while optimizing risk reduction with launch mass/expense penalties. Both limitation and optimization objectives require the development of accurate and complete means for evaluating the effectiveness of various shield materials and body-self shielding. For galactic cosmic rays (GCR), biophysical response models indicate that track structure effects lead to substantially different assessments of shielding effectiveness relative to assessments based on LET-dependent quality factors. Methods for assessing risk to the central nervous system (CNS) from heavy ions are poorly understood at this time. High-energy and charge (HZE) ion can produce tissue events resulting in damage to clusters of cells in a columnar fashion, especially for stopping heavy ions. Grahn (1973) and Todd (1986) have discussed a microlesion concept or model of stochastic tissue events in analyzing damage from HZE's. Some tissues, including the CNS, maybe sensitive to microlesion's or stochastic tissue events in a manner not illuminated by either conventional dosimetry or fluence-based risk factors. HZE ions may also produce important lateral damage to adjacent cells. Fluences of high-energy proton and alpha particles in the GCR are many times higher than HZE ions. Behind spacecraft and body self-shielding the ratio of protons, alpha particles, and neutrons to HZE ions increases several-fold from free-space values. Models of GCR damage behind shielding have placed large concern on the role of target fragments produced from tissue atoms. The self-shielding of the brain reduces the number of heavy ions reaching the interior regions by a large amount and the remaining light particle environment (protons, neutrons, deuterons. and alpha particles) may be the greatest concern. Tracks of high-energy proton produce nuclear reactions in tissue, which can deposit doses of more than 1 Gv within 5 - 10 cell layers. Information on rates of

  1. Chronic exposure to perfluorooctane sulfonate induces behavior defects and neurotoxicity through oxidative damages, in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Na Chen

    Full Text Available Perfluorooctane sulfonate (PFOS is an emerging persistent pollutant which shows multiple adverse health effects. However, the neurotoxicity of PFOS and its mechanisms have not been fully elucidated. Using a combination of in vivo and in vitro methods, the present study provides a detailed description of PFOS-induced neurotoxicity. Results showed that the median lethal concentration of PFOS was 2.03 mM in Caenorhabditis elegans for 48 h exposure. 20 µM PFOS caused decrease of locomotor behaviors including forward movement, body bend and head thrash. Additionally, PFOS exposure reduced chemotaxis index of C. elegans, which indicates the decline of chemotaxis learning ability. Using green fluorescent protein (GFP labelled transgenic strains, we found that PFOS caused down-regulated expression of a chemoreceptor gene, gcy-5, in ASE chemosensory neurons, but did not affect cholinergic neurons and dopaminergic neurons. In SH-SY5Y cells, 48 h exposure to 25 µM and 50 µM PFOS induced cell damage, apoptosis and the reactive oxygen species (ROS generation. PFOS caused significant increases of lipid peroxidation and superoxide dismutase activity, but an actual decrease of glutathione peroxidase activity. Furthermore, antioxidant N-acetylcysteine rescued cells from PFOS-induced apoptosis via blocking ROS. Our results demonstrate that chronic exposure to PFOS can cause obvious neurotoxicity and behavior defects. Oxidative damage and anti-oxidative deficit are crucial mechanisms in neurotoxicity of PFOS.

  2. Increased oxidative damage associated with unfavorable cytogenetic subgroups in chronic lymphocytic leukemia.

    Science.gov (United States)

    Collado, Rosa; Ivars, David; Oliver, Isabel; Tormos, Carmen; Egea, Mercedes; Miguel, Amparo; Sáez, Guillermo T; Carbonell, Félix

    2014-01-01

    Oxidative stress contributes to genomic instability in chronic lymphocytic leukemia (CLL), but its relationship with the acquisition of specific chromosomal abnormalities is unknown. We recruited 55 untreated CLL patients and assessed 8-oxo-2'-deoxyguanosine (8-oxo-dG), glutathione, and malondialdehyde (MDA) levels, and we compared them among the cytogenetic subgroups established using fluorescence in situ hybridization (FISH). Significant increases in 8-oxo-dG and/or MDA were observed in patients with unfavorable cytogenetic aberrations (17p and 11q deletions) compared to the 13q deletion group. TP53 deletion patients exhibited a diminished DNA repair efficiency. Finally, cases with normal FISH also showed enhanced 8-oxo-dG, which could result in adverse outcomes.

  3. Clinical pragmatism and the care of brain damaged patients: toward a palliative neuroethics for disorders of consciousness.

    Science.gov (United States)

    Fins, Joseph J

    2005-01-01

    Unraveling the mysteries of consciousness, lost and regained, and perhaps even intervening so as to prompt recovery are advances for which neither the clinical nor the lay community are prepared. These advances will shake existing expectations about severe brain damage and will find an unprepared clinical context, perhaps even one inhospitable to what should clearly be viewed as important advances. This could be the outcome of this line of inquiry, if this exceptionally imaginative research can continue at all. This work faces a restrictive research environment that has the potential to imperil it. Added to the complexity of the scientific challenges that must be overcome is the societal context in which these investigations must occur. Research on human consciousness goes to the heart of our humanity and asks us to grapple with fundamental questions about the self. Added to this is the regulatory complexity of research on subjects who may be unable to provide their own consent because of impaired decision-making capacity, itself a function of altered or impaired consciousness. These factors can lead to a restrictive view of research that can favor risk aversion over discovery. In this paper, I attempt to explain systematically some of these challenges. I suggest that some of the resistance might be tempered if we view the needs of patients with severe brain injury through the prism of palliative care and adopt that field's ethos and methods when caring for and conducting research on individuals with severe brain damage and disorders of consciousness. To make this argument I draw upon the American pragmatic tradition and utilize clinical pragmatism, a method of moral problem-solving that my colleagues and I have developed to address ethical challenges in clinical care and research. PMID:16186050

  4. Puerarin protects against damage to spatial learning and memory ability in mice with chronic alcohol poisoning

    Directory of Open Access Journals (Sweden)

    S.Q. Cui

    2015-06-01

    Full Text Available We evaluated the effect of puerarin on spatial learning and memory ability of mice with chronic alcohol poisoning. A total of 30 male C57BL/6 mice were randomly divided into model, puerarin, and control groups (n=10 each. The model group received 60% (v/v ethanol by intragastric administration followed by intraperitoneal injection of normal saline 30 min later. The puerarin group received intragastric 60% ethanol followed by intraperitoneal puerarin 30 min later, and the control group received intragastric saline followed by intraperitoneal saline. Six weeks after treatment, the Morris water maze and Tru Scan behavioral tests and immunofluorescence staining of cerebral cortex and hippocampal neurons (by Neu-N and microglia (by Ib1 were conducted. Glutamic acid (Glu and gamma amino butyric acid (GABA in the cortex and hippocampus were assayed by high-performance liquid chromatography (HPLC, and tumor necrosis factor (TNF-α and interleukin (IL-1β were determined by ELISA. Compared with mice in the control group, escape latency and distance were prolonged, and spontaneous movement distance was shortened (P<0.05 by puerarin. The number of microglia was increased in both the cortex and hippocampal dentate gyrus (P<0.01, and neurons were reduced only in the hippocampal dentate gyrus (P<0.01 in puerarin-treated mice. In the model group, Glu and GABA levels decreased (P<0.05, and Glu/GABA, TNF-α, and IL-1β increased (P<0.01 with puerarin treatment, returning to near normal levels. In conclusion, puerarin protected against the effects of chronic alcohol poisoning on spatial learning and memory ability primarily because of anti-inflammatory activity and regulation of the balance of Glu and GABA.

  5. Role of Toll-like receptor 4 and Janus kinase and signal transducer and activator of transcription signal transduction pathway in sepsis-induced brain damage

    Institute of Scientific and Technical Information of China (English)

    Haiyan Yin; Jianrui Wei; Rui Zhang; Xiaoling Ye; Youfeng Zhu

    2011-01-01

    The Janus kinase and signal transducer and activator of transcription (JAK/STAT) signal transduction pathway is involved in sepsis-induced functional damage to the heart, liver, kidney, and other organs.However, the cellular and molecular mechanisms underlying sepsis-induced brain damage remain elusive.In the present study, we found severe loss of neurons in the hippocampal CA1 region in rats with sepsis-induced brain damage following intraperitoneal injection of endotoxin, The expression of toll-like receptor 4, tumor necrosis factor α, and interleukin-6 was significantly increased in brain tissues following lipopolysaccharide exposure.AG490 (JAK2 antagonist) and rapamycin (STAT3 antagonist) significantly reduced neuronal loss and suppressed the increased expression of toll-like receptor 4, tumor necrosis factor α, and interleukin-6 in the hippocampal CA1 region in sepsis-induced brain damaged rats.Overall, these data suggest that blockade of the JAK/STAT signal transduction pathway is neuroprotective in sepsis-induced brain damage via the inhibition of toll-like receptor 4, tumor necrosis factor α, and interleukin-6 expression.

  6. Chronic Unpredictable Stress Decreases Expression of Brain-Derived Neurotrophic Factor (BDNF) in Mouse Ovaries: Relationship to Oocytes Developmental Potential

    OpenAIRE

    Li-Min Wu; Mei-Hong Hu; Xian-Hong Tong; Hui Han; Ni Shen; Ren-Tao Jin; Wei Wang; Gui-Xiang Zhou; Guo-Ping He; Yu-Sheng Liu

    2012-01-01

    BACKGROUND: Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chroni...

  7. Effects of chronic aluminum exposure on learning and memory and brain-derived nerve growth factor in rats

    Institute of Scientific and Technical Information of China (English)

    潘宝龙

    2013-01-01

    Objective To investigate the effects of chronic aluminum exposure on the learning and memory abilities and brain-derived nerve growth factor (BDNF) in SpragueDawley (SD) rats.Methods Thirty-two male SD rats were randomly and equally divided into 4 groups:control group and high-,middle-,and low-dose exposure groups.The rats in high-,middle-,and low-dose expo-

  8. Withdrawal from Chronic Cocaine Administration Induces Deficits in Brain Reward Function in C57BL/6J Mice

    OpenAIRE

    Stoker, Astrid K.; Markou, Athina

    2011-01-01

    Anhedonia is a major symptom of cocaine withdrawal, whereas euphoria characterizes the effects of acute administration of this drug in humans. These mood states can be measured quantitatively in animals with brain reward thresholds obtained from the intracranial self-stimulation (ICSS) procedure. Studies have previously reported the reward-enhancing effects of acute cocaine administration using the ICSS procedure in mice, but the effects of chronic cocaine administration and withdrawal on bra...

  9. [Effect of salvianolic acid B on neural cells damage and neurogenesis after brain ischemia-reperfusion in rats].

    Science.gov (United States)

    Zhong, Jing; Tang, Min-ke; Zhang, Yan; Xu, Qiu-ping; Zhang, Jun-tian

    2007-07-01

    This study is to observe the effect of salvianolic acid B (Sal B) on neural cells damage and neurogenesis in sub-granular zone (SGZ) and sub-ventricular zone (SVZ) after brain ischemia-reperfusion (I/R) in rats. A modified middle cerebral artery occlusion (MCAO) model of focal cerebral ischemia-reperfusion was used. The rats were divided into four groups: sham control group, ischemia-reperfusion group, Sal B 1 and 10 mg x kg(-1) groups. Sal B was consecutively administrated once a day by ip injection after MCAO. The neurogenesis in SGZ and SVZ was investigated by BrdU method 7 days after MCAO. The Nissl staining for neurons in the hippocampal CA1 and cerebral cortex was performed 14 days after MCAO. A beam-walking test was used to monitor the motor function recovery. We found that brain ischemia resulted in an increase of BrdU positive cells both in ipsilateral SGZ and SVZ at 7th day after MCAO. Sal B (10 mg x kg(-1)) significantly increased further the number of BrdU positive cells both in SGZ and SVZ (P loss and improved motor function recovery after brain ischemia in rats.

  10. Comparative study between original and traditional method in establishing a chronic sinus node damage model in rabbit.

    Science.gov (United States)

    Liu, Ru-xiu; Wang, Yan-li; Li, Hui-bo; Wang, Ni-na; Bao, Mei-jing; Xu, Li-ya

    2012-12-01

    Sick Sinus Syndrome is a common and refractory arrhythmia, needing further study in which setting up a credible sinus node damage model is important. To explore the feasibility and superiority of an original formaldehyde pinpoint pressing permeation (FPPP) method for building a chronic sinus node damage (CSND) model, 5 rabbits were chosen from 35 as a sham-operation group, and the remaining were randomly divided into two groups: the formaldehyde wet compressing (FWC) group, in which models were established by applying a cotton bud dipped in 20% formaldehyde onto the sinus node (SN) area, and the FPPP group, in which models were established by injecting formaldehyde into the SN area through a self-made pinpointing and injecting electrode. We found that in both groups, the HR at 2 h, 24 h, 1 wk, and 2 wk after modeling decreased compared with premodeling; sinoatrial conduction time, sinus node recovery time, and corrected sinus node recovery time were prolonged compared with premodeling. The indexes mentioned shortened by 2 wk after modeling compared with 2 h in the FWC group, whereas they were stable after modeling in the FPPP group. The modeling achievement ratio in the FPPP group was higher and the death rate was lower. Under light microscope, paraffin sections of the SN tissue and cells showed severe injury in both groups. The results indicate that the CSND models in rabbits can be successfully established by the FPPP method, with higher achievement ratio, lower death rate, better stabilization effect, and less damaging comparing with the traditional method.

  11. Progressive white matter microstructure damage in male chronic heroin dependent individuals: a DTI and TBSS study.

    Directory of Open Access Journals (Sweden)

    Yingwei Qiu

    Full Text Available BACKGROUND: To investigate the WM microstructure deficits in heroin dependent individuals (HDIs with different length of heroin dependence, and to investigate whether these WM deficits can be related to the duration of heroin use and to decision-making deficits in HDIs. METHODOLOGY/PRINCIPAL FINDINGS: Thirty-six HDIs [including eighteen sHDIs (duration of heroin dependent is less than 10 years and eighteen lHDIs (duration of dependent is between 10:20 years] and sixteen healthy controls participated in this study. Whole brain voxel-wise analysis of fractional anisotropy (FA, mean diffusivity (MD, axial diffusivity (Da and radial diffusivity (Dr were performed by tract-based spatial statistics (TBSS to localize abnormal WM regions among groups. TBSS demonstrated that sHDIs had significantly lower FA than controls in right orbito-frontal WM, bilateral temporal WM and right parietal WM. The lHDIs had significantly lower FA throughout the brain compared with the controls and sHDIs. The lHDIs had significantly lower Da than controls in bilateral inferior frontaloccipital fasciculus, bilateral splenium of corpus callosum, left inferior longitudinal fasciculus, and had significantly higher Dr than controls in bilateral uncinatus fasciculus, bilateral inferior frontaloccipital fasciculus and bilateral cortical spinal fasciculus. Volume-of-interest (VOI analyses detect the changes of diffusivity indices in the regions with FA abnormalities revealed by control vs sHDIs. In most VOIs, FA reductions were caused by the increase in Dr as well as the decrease in Da. Correlation analysis was used to assess the relationship between FA and behavioral measures in HDIs and controls available. Significantly positively correlations were found between the FA values in the right orbital-frontal WM, right parietal WM and IGT performance. CONCLUSIONS: The extent and severity of WM integrity deficits in HDIs was associated with the length of heroin dependent. Furthermore

  12. Hyperbaric oxygen treatment promotes neural stem cell proliferation in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Zhichun Feng; Jing Liu; Rong Ju

    2013-01-01

    Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2′-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2′- deoxyuridine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.

  13. Cerebral white matter injury and damage to myelin sheath following whole-brain ischemia.

    Science.gov (United States)

    Chen, Yingzhu; Yi, Qiong; Liu, Gang; Shen, Xue; Xuan, Lihui; Tian, Ye

    2013-02-01

    Myelin sheath, either in white matter or in other regions of brain, is vulnerable to ischemia. The specific events involved in the progression of ischemia in white matter have not yet been elucidated. The aim of this study was to determine histopathological alterations in cerebral white matter and levels of myelin basic protein (MBP) in ischemia-injured brain tissue during the acute and subacute phases of central nervous injury following whole-brain ischemia. The whole cerebral ischemia model (four-vessel occlusion (4-VO)) was established in adult Sprague-Dawley rats and MBP gene expression and protein levels in the brain tissue were measured using reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) at 2 days, 4 days, 7 days, 14 days, and 28 days following ischemia. Demyelination was determined by Luxol fast blue myelin staining, routine histopathological staining, and electron microscopy in injured brain tissue. Results showed that edema, vascular dilation, focal necrosis, demyelination, adjacent reactive gliosis and inflammation occurred 7 days after ischemia in HE staining and recovered to control levels at 28 days. The absence of Luxol fast blue staining and vacuolation was clearly visible at 7 days, 14 days, and 28 days. Semiquantitative analysis showed that the transparency of myelin had decreased significantly by 7 days, 14 days, and 28 days. Demyelination and ultrastructual changes were detected 7 days after ischemia. The relative levels of MBP mRNA decreased 2 days after ischemia and this trend continued throughout the remaining four points in time. The MBP levels measured using ELISA also decreased significantly at 2 days and 4 days, but they recovered by 7 days and returned to control levels by 14 days. These results suggest that the impact of ischemia on cerebral white matter is time-sensitive and that different effects may follow different courses over time.

  14. Memory and brain-derived neurotrophic factor after subchronic or chronic amphetamine treatment in an animal model of mania.

    Science.gov (United States)

    Fries, Gabriel R; Valvassori, Samira S; Bock, Hugo; Stertz, Laura; Magalhães, Pedro Vieira da Silva; Mariot, Edimilson; Varela, Roger B; Kauer-Sant'Anna, Marcia; Quevedo, João; Kapczinski, Flávio; Saraiva-Pereira, Maria Luiza

    2015-09-01

    Progression of bipolar disorder (BD) has been associated with cognitive impairment and changes in neuroplasticity, including a decrease in serum brain-derived neurotrophic factor (BDNF). However, no study could examine BDNF levels directly in different brain regions after repeated mood episodes to date. The proposed animal model was designed to mimic several manic episodes and evaluate whether the performance in memory tasks and BDNF levels in hippocampus, prefrontal cortex, and amygdala would change after repeated amphetamine (AMPH) exposure. Adult male Wistar rats were divided into subchronic (AMPH for 7 days) and chronic groups (35 days), mimicking manic episodes at early and late stages of BD, respectively. After open field habituation or inhibitory avoidance test, rats were killed, brain regions were isolated, and BDNF mRNA and protein levels were measured by quantitative real-time PCR and ELISA, respectively. AMPH impaired habituation memory in both subchronic and chronic groups, and the impairment was worse in the chronic group. This was accompanied by increased Bdnf mRNA levels in the prefrontal cortex and amygdala region, as well as reduced BDNF protein in the hippocampus. In the inhibitory avoidance, AMPH significantly decreased the change from training to test when compared to saline. No difference was observed between subchronic and chronic groups, although chronically AMPH-treated rats presented increased Bdnf mRNA levels and decreased protein levels in hippocampus when compared to the subchronic group. Our results suggest that the cognitive impairment related to BD neuroprogression may be associated with BDNF alterations in hippocampus, prefrontal cortex, and amygdala. PMID:26026487

  15. Suppression and Narrative Time Shifts in Adults with Right-Hemisphere Brain Damage

    Science.gov (United States)

    Scharp, Victoria L.; Tompkins, Connie A.

    2013-01-01

    Purpose: This study examined the functioning of a central comprehension mechanism, suppression, in adults with right-hemisphere damage (RHD) while they processed narratives that cued a shift in time frame. In normal language comprehension, mental activation of concepts from a prior time frame is suppressed. The (re)activation of information…

  16. Chronic unpredictable stress decreases expression of brain-derived neurotrophic factor (BDNF in mouse ovaries: relationship to oocytes developmental potential.

    Directory of Open Access Journals (Sweden)

    Li-Min Wu

    Full Text Available BACKGROUND: Brain-derived neurotropic factor (BDNF was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. METHODS: Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. RESULTS: Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn't affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. CONCLUSION: BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress.

  17. Effects of Chronic Consumption of Sugar-Enriched Diets on Brain Metabolism and Insulin Sensitivity in Adult Yucatan Minipigs.

    Science.gov (United States)

    Ochoa, Melissa; Malbert, Charles-Henri; Meurice, Paul; Val-Laillet, David

    2016-01-01

    Excessive sugar intake might increase the risk to develop eating disorders via an altered reward circuitry, but it remains unknown whether different sugar sources induce different neural effects and whether these effects are dependent from body weight. Therefore, we compared the effects of three high-fat and isocaloric diets varying only in their carbohydrate sources on brain activity of reward-related regions, and assessed whether brain activity is dependent on insulin sensitivity. Twenty-four minipigs underwent 18FDG PET brain imaging following 7-month intake of high-fat diets of which 20% in dry matter weight (36.3% of metabolisable energy) was provided by starch, glucose or fructose (n = 8 per diet). Animals were then subjected to a euglycemic hyperinsulinemic clamp to determine peripheral insulin sensitivity. After a 7-month diet treatment, all groups had substantial increases in body weight (from 36.02±0.85 to 63.33±0.81 kg; Pbrain activations, i.e. increased basal cerebral glucose metabolism, in several reward-related brain regions including the anterior and dorsolateral prefrontal cortex, the orbitofrontal cortex, the anterior cingulate cortex, the caudate and putamen. The lack of differences in insulin sensitivity index and body weight suggests that the observed differences in basal brain glucose metabolism are not related to differences in peripheral insulin sensitivity and weight gain. The differences in basal brain metabolism in reward-related brain areas suggest the onset of cerebral functional alterations induced by chronic consumption of dietary sugars. Further studies should explore the underlying mechanisms, such as the availability of intestinal and brain sugar transporter, or the appearance of addictive-like behavioral correlates of these brain functional characteristics. PMID:27583555

  18. Functional reorganization of the large-scale brain networks that support high-level cognition following brain damage in aphasia

    Directory of Open Access Journals (Sweden)

    Idan Asher Blank

    2015-05-01

    Full Text Available Over the last decade, a number of large-scale networks in the human cortex that support high-level cognition have been identified. Here, we focus on two of these networks: the fronto-temporal language network (e.g., Fedorenko et al., 2010, and the fronto-parietal “multiple demand (MD” network (e.g., Duncan, 2010. These two networks are clearly distinct from one another: first, their respective regions show distinct functional profiles, with language regions showing selective responses to language stimuli (Fedorenko et al., 2011; Monti et al., 2012 and MD regions showing domain-general responses to cognitive effort across a wide range of tasks (Duncan & Owen, 2001; Fedorenko et al., 2013. Second, during “rest” and cognitive processing, each network shows strong activity synchronization among its constituent regions, whereas regions across the two networks are not synchronized (Blank et al., 2014; Lee et al., 2012; Mantini et al., 2013. In the current study, we examined how these functional characteristics of the two networks were affected following aphasia-inducing strokes. In particular, we asked whether damage to the language network would alter the involvement of the MD network in linguistic processing, and whether such damage would alter the patterns of synchronization across the two networks. Four male individuals with aphasia (age: M=53, having suffered a single left MCA CVA, were scanned in fMRI on two paradigms that enable basic functional characterization of language and MD regions: (i a language localizer task, where they passively read sentences and sequences of pseudowords (Fedorenko et al., 2010; and (ii a spatial working memory task, where they had to remember fewer (easy or more (hard locations in a grid (Fedorenko et al., 2013. Language and MD regions were defined in each individual using the sentences > pseudowords contrast and the hard > easy contrast, respectively. Subjects were also scanned while listening to

  19. Regulation of brain-derived neurotrophic factor (BDNF) in the chronic unpredictable stress rat model and the effects of chronic antidepressant treatment

    DEFF Research Database (Denmark)

    Larsen, Marianne H; Mikkelsen, Jens D; Hay-Schmidt, Anders;

    2010-01-01

    swim test in stressed rats. Present evidence suggests a role for brain-derived neurotrophic factor (BDNF) in depression. BDNF mRNA levels in the ventral and dorsal hippocampus were assessed by in situ hybridization. Exposure to CUS was not correlated with a decrease but rather with an increase in BDNF...... mRNA expression in both the dentate gyrus of the dorsal hippocampus and the CA3 region of the ventral hippocampus indicating that there is no simple link between depression-like behaviors per se and brain BDNF levels in rats. However, a significant increase in BDNF mRNA levels in the dentate gyrus...... of the dorsal hippocampus correlated with chronic antidepressant treatment emphasizing a role for BDNF in the mechanisms underlying antidepressant activity....

  20. Alcohol,inflammation,and gut-liver-brain interactions in tissue damage and disease development

    Institute of Scientific and Technical Information of China (English)

    H; Joe; Wang; Samir; Zakhari; M; Katherine; Jung

    2010-01-01

    Chronic inflammation is often associated with alcoholrelated medical conditions. The key inducer of such inflammation, and also the best understood, is gut microflora-derived lipopolysaccharide (LPS). Alcohol can significantly increase the translocation of LPS from the gut. In healthy individuals, the adverse effects of LPS are kept in check by the actions and interactions of multiple organs. The liver plays a central role in detoxifying LPS and producing a balanced cytokine milieu. The central nervous syst...

  1. Decreased mitochondrial deoxyribonucleic acid and increased oxidative damage in chronic hepatitis C

    Institute of Scientific and Technical Information of China (English)

    Hsu-Heng Yen; Kai-Lun Shih; Ta-Tsung Lin; Wei-Wen Su; Maw-Soan Soon; Chin-San Liu

    2012-01-01

    AIM:To determine whether alteration of the mitochondria DNA (mtDNA) copy number and its oxidative damage index (mtDNA△CT) can be detected by analysis of peripheral blood cells in hepatitis C virus (HCV)-infected patients.METHODS:This study enrolled two groups of patients aged 40-60 years:a control group and an HCV-infected group in Department of Gastroenterology and Hepatology in Changhua Christian Hospital.Patients with co-infection with hepatitis B virus or human immunodeficiency virus,autoimmune disease,malignant neoplasia,pregnancy,thyroid disease,or alcohol consumption > 40 g/d were excluded.HCV-infected patients who met the following criteria were included:(1)positive HCV antibodies for > 6 mo; (2) alanine aminotransferase (ALT) levels more than twice the upper limit of normal on at least two occasions during the past 6 mo; and (3) histological fibrosis stage higher than F1.The mtDNA copy number and oxidative damage index of HCV mtDNA (mtDNA△CT) were measured in peripheral blood leukocytes.The association between mtDNA copy number and mtDNA△Cr was further analyzed using clinical data.RESULTS:Forty-seven normal controls (male/female:26/21,mean age 50.51 ± 6.15 years) and 132 HCV-infected patients (male/female:76/61,mean age 51.65± 5.50 years) were included in the study.The genotypes of HCV-infected patients include type 1a (n =3),type 1b (n =83),type 2a (n =32),and type 2b (n =14).Liver fibrosis stages were distributed as follows:F1/F2/F3/F4 =1/61/45/25 and activity scores were A0/A1/A2/A3 =7/45/55/25.There were no age or genderdifferences between the two groups.HCV-infected patients had higher hepatitis activity (aspartate transaminase levels 108.77 ± 60.73 vs 23.19 ± 5.47,P < 0.01;ALT levels 168.69 ± 93.12 vs 23.15 ± 9.45,P < 0.01)and lower platelet count (170.40 ± 58.00 vs 251.24 ±63.42,P < 0.01) than controls.The mtDNA copy number was lower in HCV-infected patients than in controls (173.49 vs 247.93,P < 0.05).The mtDNA△CT was

  2. Puerarin protects against damage to spatial learning and memory ability in mice with chronic alcohol poisoning.

    Science.gov (United States)

    Cui, S Q; Wang, Q; Zheng, Y; Xiao, B; Sun, H W; Gu, X L; Zhang, Y C; Fu, C H; Dong, P X; Wang, X M

    2015-06-01

    We evaluated the effect of puerarin on spatial learning and memory ability of mice with chronic alcohol poisoning. A total of 30 male C57BL/6 mice were randomly divided into model, puerarin, and control groups (n=10 each). The model group received 60% (v/v) ethanol by intragastric administration followed by intraperitoneal injection of normal saline 30 min later. The puerarin group received intragastric 60% ethanol followed by intraperitoneal puerarin 30 min later, and the control group received intragastric saline followed by intraperitoneal saline. Six weeks after treatment, the Morris water maze and Tru Scan behavioral tests and immunofluorescence staining of cerebral cortex and hippocampal neurons (by Neu-N) and microglia (by Ib1) were conducted. Glutamic acid (Glu) and gamma amino butyric acid (GABA) in the cortex and hippocampus were assayed by high-performance liquid chromatography (HPLC), and tumor necrosis factor (TNF)-α and interleukin (IL)-1β were determined by ELISA. Compared with mice in the control group, escape latency and distance were prolonged, and spontaneous movement distance was shortened (Pmice. In the model group, Glu and GABA levels decreased (Pmemory ability primarily because of anti-inflammatory activity and regulation of the balance of Glu and GABA.

  3. Neuropharmacology – Special Issue on Cerebral Ischemia Mechanisms of Ischemic Brain Damage – Review Article

    OpenAIRE

    Doyle, Kristian P.; Simon, Roger P.; Stenzel-Poore, Mary P

    2008-01-01

    Each year in the United States approximately 700,000 individuals are afflicted with a stroke and currently there are almost 2 million survivors of stroke living in the US with prolonged disability. In China 1.5 million people die from stroke each year and in developed nations stroke is the third leading cause of death, only surpassed by heart disease and cancer. Brain injury following stroke results from the complex interplay of multiple pathways including excitotoxicity, acidotoxicity, ionic...

  4. Role of Endoplasmic Reticulum Stress in Brain Damage After Cardiopulmonary Resuscitation in Rats.

    Science.gov (United States)

    Zhang, Jincheng; Xie, Xuemeng; Pan, Hao; Wu, Ziqian; Lu, Wen; Yang, Guangtian

    2015-07-01

    Postcardiac arrest syndrome yields poor neurological outcomes, but the mechanisms underlying this condition remain poorly understood. This study investigated whether endoplasmic reticulum (ER) stress-mediated apoptosis is induced in injured brain after resuscitation. Sprague-Dawley rats were subjected to 6 min of cardiac arrest (CA) and then resuscitated successfully. In the first experiment, animals were sacrificed 1, 3, 6, 12, or 24 h (n = 3 per group) after successful cardiopulmonary resuscitation. Brain tissues were analyzed by real-time polymerase chain reaction and Western blotting. In the second experiment, either dimethyl sulfoxide or salubrinal (Sal; 1 mg/kg), an ER stress inhibitor, was injected 30 min before the induction of CA (n = 10 per group). Neurological deficits were evaluated 24 h after CA. Brain specimens were analyzed using electron microscopy, terminal deoxynucleotidyl transferase dUTP nick end labeling assays and immunohistochemistry. We found that the messenger RNA and protein levels of glucose-regulated protein 78, X-box binding protein 1, C/EBP homologous protein, and caspase 12 were significantly elevated after resuscitation. We also observed that rats treated with Sal exhibited an improved neurological deficit score (32.3 ± 15.5 in the Sal group vs. 49.8 ± 20.9 in controls, P < 0.05). In addition, morphological improvements in the hippocampal ER were observed in the Sal group compared with the dimethyl sulfoxide group 24 h after reperfusion. Furthermore, in situ immunostaining revealed that markers of ER stress were significantly inhibited by Sal pretreatment. Our findings suggested that ER stress and the associated apoptotic pathways were activated in the hippocampus after resuscitation. Administration of Sal 30 min before cardiopulmonary resuscitation ameliorated neurological dysfunction 24 h after CA, possibly through the inhibition of ER stress after postresuscitation brain injury. PMID:25705860

  5. Filling in the gaps: Anticipatory control of eye movements in chronic mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mithun Diwakar

    2015-01-01

    Full Text Available A barrier in the diagnosis of mild traumatic brain injury (mTBI stems from the lack of measures that are adequately sensitive in detecting mild head injuries. MRI and CT are typically negative in mTBI patients with persistent symptoms of post-concussive syndrome (PCS, and characteristic difficulties in sustaining attention often go undetected on neuropsychological testing, which can be insensitive to momentary lapses in concentration. Conversely, visual tracking strongly depends on sustained attention over time and is impaired in chronic mTBI patients, especially when tracking an occluded target. This finding suggests deficient internal anticipatory control in mTBI, the neural underpinnings of which are poorly understood. The present study investigated the neuronal bases for deficient anticipatory control during visual tracking in 25 chronic mTBI patients with persistent PCS symptoms and 25 healthy control subjects. The task was performed while undergoing magnetoencephalography (MEG, which allowed us to examine whether neural dysfunction associated with anticipatory control deficits was due to altered alpha, beta, and/or gamma activity. Neuropsychological examinations characterized cognition in both groups. During MEG recordings, subjects tracked a predictably moving target that was either continuously visible or randomly occluded (gap condition. MEG source-imaging analyses tested for group differences in alpha, beta, and gamma frequency bands. The results showed executive functioning, information processing speed, and verbal memory deficits in the mTBI group. Visual tracking was impaired in the mTBI group only in the gap condition. Patients showed greater error than controls before and during target occlusion, and were slower to resynchronize with the target when it reappeared. Impaired tracking concurred with abnormal beta activity, which was suppressed in the parietal cortex, especially the right hemisphere, and enhanced in left caudate and

  6. Filling in the gaps: Anticipatory control of eye movements in chronic mild traumatic brain injury.

    Science.gov (United States)

    Diwakar, Mithun; Harrington, Deborah L; Maruta, Jun; Ghajar, Jamshid; El-Gabalawy, Fady; Muzzatti, Laura; Corbetta, Maurizio; Huang, Ming-Xiong; Lee, Roland R

    2015-01-01

    A barrier in the diagnosis of mild traumatic brain injury (mTBI) stems from the lack of measures that are adequately sensitive in detecting mild head injuries. MRI and CT are typically negative in mTBI patients with persistent symptoms of post-concussive syndrome (PCS), and characteristic difficulties in sustaining attention often go undetected on neuropsychological testing, which can be insensitive to momentary lapses in concentration. Conversely, visual tracking strongly depends on sustained attention over time and is impaired in chronic mTBI patients, especially when tracking an occluded target. This finding suggests deficient internal anticipatory control in mTBI, the neural underpinnings of which are poorly understood. The present study investigated the neuronal bases for deficient anticipatory control during visual tracking in 25 chronic mTBI patients with persistent PCS symptoms and 25 healthy control subjects. The task was performed while undergoing magnetoencephalography (MEG), which allowed us to examine whether neural dysfunction associated with anticipatory control deficits was due to altered alpha, beta, and/or gamma activity. Neuropsychological examinations characterized cognition in both groups. During MEG recordings, subjects tracked a predictably moving target that was either continuously visible or randomly occluded (gap condition). MEG source-imaging analyses tested for group differences in alpha, beta, and gamma frequency bands. The results showed executive functioning, information processing speed, and verbal memory deficits in the mTBI group. Visual tracking was impaired in the mTBI group only in the gap condition. Patients showed greater error than controls before and during target occlusion, and were slower to resynchronize with the target when it reappeared. Impaired tracking concurred with abnormal beta activity, which was suppressed in the parietal cortex, especially the right hemisphere, and enhanced in left caudate and frontal

  7. Stress and Withdrawal from Chronic Ethanol Induce Selective Changes in Neuroimmune mRNAs in Differing Brain Sites.

    Science.gov (United States)

    Knapp, Darin J; Harper, Kathryn M; Whitman, Buddy A; Zimomra, Zachary; Breese, George R

    2016-01-01

    Stress is a strong risk factor in alcoholic relapse and may exert effects that mimic aspects of chronic alcohol exposure on neurobiological systems. With the neuroimmune system becoming a prominent focus in the study of the neurobiological consequences of stress, as well as chronic alcohol exposure proving to be a valuable focus in this regard, the present study sought to compare the effects of stress and chronic ethanol exposure on induction of components of the neuroimmune system. Rats were exposed to either 1 h exposure to a mild stressor (restraint) or exposure to withdrawal from 15 days of chronic alcohol exposure (i.e., withdrawal from chronic ethanol, WCE) and assessed for neuroimmune mRNAs in brain. Restraint stress alone elevated chemokine (C-C motif) ligand 2 (CCL2), interleukin-1-beta (IL-1β), tumor necrosis factor alpha (TNFα) and toll-like receptor 4 (TLR4) mRNAs in the cerebral cortex within 4 h with a return to a control level by 24 h. These increases were not accompanied by an increase in corresponding proteins. Withdrawal from WCE also elevated cytokines, but did so to varying degrees across different cytokines and brain regions. In the cortex, stress and WCE induced CCL2, TNFα, IL-1β, and TLR4 mRNAs. In the hypothalamus, only WCE induced cytokines (CCL2 and IL-1β) while in the hippocampus, WCE strongly induced CCL2 while stress and WCE induced IL-1β. In the amygdala, only WCE induced CCL2. Finally-based on the previously demonstrated role of corticotropin-releasing factor 1 (CRF1) receptor inhibition in blocking WCE-induced cytokine mRNAs-the CRF1 receptor antagonist CP154,526 was administered to a subgroup of stressed rats and found to be inactive against induction of CCL2, TNFα, or IL-1β mRNAs. These differential results suggest that stress and WCE manifest broad neuroimmune effects in brain depending on the cytokine and brain region, and that CRF inhibition may not be a relevant mechanism in non-alcohol exposed animals. Overall, these

  8. The accumulation of brain water-free sodium is associated with ischemic damage independent of the blood pressure in female rats.

    Science.gov (United States)

    Sumiyoshi, Manabu; Kitazato, Keiko T; Yagi, Kenji; Miyamoto, Takeshi; Kurashiki, Yoshitaka; Matsushita, Nobuhisa; Kinouchi, Tomoya; Kuwayama, Kazuyuki; Satomi, Junichiro; Nagahiro, Shinji

    2015-08-01

    Estrogen deficiency worsens ischemic stroke outcomes. In ovariectomized (OVX(+)) rats fed a high-salt diet (HSD), an increase in the body Na(+)/water ratio, which characterizes water-free Na(+) accumulation, was associated with detrimental vascular effects independent of the blood pressure (BP). We hypothesized that an increase in brain water-free Na(+) accumulation is associated with ischemic brain damage in OVX(+)/HSD rats. To test our hypothesis we divided female Wistar rats into 4 groups, OVX(+) and OVX(-) rats fed HSD or a normal diet (ND), and subjected them to transient cerebral ischemia. The brain Na(+)/water ratio was increased even in OVX(+)/ND rats and augmented in OVX(+)/HSD rats. The increase in the brain Na(+)/water ratio was positively correlated with expansion of the cortical infarct volume without affecting the BP. Interestingly, OVX(+) was associated with the decreased expression of ATP1α3, a subtype of the Na(+) efflux pump. HSD increased the expression of brain Na(+) influx-related molecules and the mineralocorticoid receptor (MR). The pretreatment of OVX(+)/HSD rats with the MR antagonist eplerenone reduced brain water-free Na(+) accumulation, up-regulated ATP1α3, down-regulated MR, and reduced the cortical infarct volume. Our findings show that the increase in the brain Na(+)/water ratio elicited by estrogen deficiency or HSD is associated with ischemic brain damage BP-independently, suggesting the importance of regulating the accumulation of brain water-free Na(+). The up-regulation of ATP1α3 and the down-regulation of MR may provide a promising therapeutic strategy to attenuate ischemic brain damage in postmenopausal women.

  9. Disruption of caudate working memory activation in chronic blast-related traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mary R. Newsome

    2015-01-01

    Full Text Available Mild to moderate traumatic brain injury (TBI due to blast exposure is frequently diagnosed in veterans returning from the wars in Iraq and Afghanistan. However, it is unclear whether neural damage resulting from blast TBI differs from that found in TBI due to blunt-force trauma (e.g., falls and motor vehicle crashes. Little is also known about the effects of blast TBI on neural networks, particularly over the long term. Because impairment in working memory has been linked to blunt-force TBI, the present functional magnetic resonance imaging (fMRI study sought to investigate whether brain activation in response to a working memory task would discriminate blunt-force from blast TBI. Twenty-five veterans (mean age = 29.8 years, standard deviation = 6.01 years, 1 female who incurred TBI due to blast an average of 4.2 years prior to enrollment and 25 civilians (mean age = 27.4 years, standard deviation = 6.68 years, 4 females with TBI due to blunt-force trauma performed the Sternberg Item Recognition Task while undergoing fMRI. The task involved encoding 1, 3, or 5 items in working memory. A group of 25 veterans (mean age = 29.9 years, standard deviation = 5.53 years, 0 females and a group of 25 civilians (mean age = 27.3 years, standard deviation = 5.81 years, 0 females without history of TBI underwent identical imaging procedures and served as controls. Results indicated that the civilian TBI group and both control groups demonstrated a monotonic relationship between working memory set size and activation in the right caudate during encoding, whereas the blast TBI group did not (p < 0.05, corrected for multiple comparisons using False Discovery Rate. Blast TBI was also associated with worse performance on the Sternberg Item Recognition Task relative to the other groups, although no other group differences were found on neuropsychological measures of episodic memory, inhibition, and general processing speed. These results

  10. Brain Malformations

    Science.gov (United States)

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  11. Brain SPECT of chronic fatigue syndrome (CFS): SPM analysis of two age groups

    International Nuclear Information System (INIS)

    Full text: Chronic fatigue syndrome (CFS) is a complex disorder characterised by profound fatigue and neuropsychiatric dysfunction. Previous studies with cerebral perfusion SPECT (rCBF) scans were performed with inhomogeneous patient populations and were not analysed with Statistical Parametric Mapping (SPM). We have used SPM to study subjects with moderate CFS based on the Fukuda criteria, who were not on medication and not depressed, compared to age matched control subjects. An apparent bimodal age distribution has been observed in CFS. Subjects were therefore divided into two age groups: 16-35 or under 35 (17 CFS, 11 control) and 36-61 or over 35 (15 CFS, 15 control). HMPAO brain SPECT was acquired on a 3-head camera. After lower window scatter subtraction, reconstruction with attenuation correction (mu=0.15/cm) and editing of facial activity, scans were spatially normalised (affine + 2x3x2 nonlinear) to SPM's anatomical space. SPM statistical analysis yielded the location, amplitude and corrected p-value of significant focal rCBF deficits. They were: for under 35, left lateral temporal lobe (13%, 0.004), the left insular region (15%, 0.006) and the right lentiform nucleus (15%, 0.01); and for over 35 the left lentiform nucleus (18%, 0.01). Counts at the most significant voxel in the under 35 age group permitted separation of the CFS and control groups with sensitivity 94% and specificity 100%. We are acquiring more controls to better define the age and sex dependence of rCBF in CFS. Analysis of associated clinical variables will be used to investigate the observed differences between the two age groups. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  12. Alterations in brain neurotrophic and glial factors following early age chronic methylphenidate and cocaine administration.

    Science.gov (United States)

    Simchon-Tenenbaum, Yaarit; Weizman, Abraham; Rehavi, Moshe

    2015-04-01

    Attention deficit hyperactivity disorder (ADHD) overdiagnosis and a pharmacological attempt to increase cognitive performance, are the major causes for the frequent (ab)use of psychostimulants in non-ADHD individuals. Methylphenidate is a non-addictive psychostimulant, although its mode of action resembles that of cocaine, a well-known addictive and abused drug. Neuronal- and glial-derived growth factors play a major role in the development, maintenance and survival of neurons in the central nervous system. We hypothesized that methylphenidate and cocaine treatment affect the expression of such growth factors. Beginning on postnatal day (PND) 14, male Sprague Dawley rats were treated chronically with either cocaine or methylphenidate. The rats were examined behaviorally and biochemically at several time points (PND 35, 56, 70 and 90). On PND 56, rats treated with cocaine or methylphenidate from PND 14 through PND 35 exhibited increased hippocampal glial-cell derived neurotrophic factor (GDNF) mRNA levels, after 21 withdrawal days, compared to the saline-treated rats. We found a significant association between cocaine and methylphenidate treatments and age progression in the prefrontal protein expression of brain derived neurotrophic factor (BDNF). Neither treatments affected the behavioral parameters, although acute cocaine administration was associated with increased locomotor activity. It is possible that the increased hippocampal GDNF mRNA levels, may be relevant to the reduced rate of drug seeking behavior in ADHD adolescence that were maintained from childhood on methylphenidate. BDNF protein level increase with age, as well as following stimulant treatments at early age may be relevant to the neurobiology and pharmacotherapy of ADHD. PMID:25576963

  13. Is vein damage the only cause of clinical signs of lower limb chronic venous insufficiency?

    Directory of Open Access Journals (Sweden)

    Amélia Cristina Seidel

    2014-09-01

    Full Text Available Background:Venous insufficiency is a very prevalent disease. Some decades ago a group of patients was identified that had symptoms of venous insufficiency, but no visible anatomic abnormalities. Studies showed that this subset had reduced venous tone, and their condition became known as hypotonic phlebopathy.Objective:To investigate prevalence, age group and variations in body mass index (BMI among patients with hypotonic phlebopathy.Methodology:A total of 1,960 limbs were examined in 1,017 patients who had been referred for complaints compatible with venous insufficiency. Patients with BMI ≥ 30 were defined as obese. The patients were examined using color Doppler ultrasonography to detect presence or absence of reflux in veins of the lower limbs and were then distributed into two groups as follows: patients with CEAP ≤ 1 and no reflux, diagnosed with hypotonic phlebopathy; or patients with CEAP ≥ 2 and reflux.Results:The study sample comprised 89.7% women and 10.3% men with a mean age of 44.9 years. Hypotonic phlebopathy was more common among the women (p = 0.0001. Obese women were more likely than women who were not obese to have venous symptom etiology involving trunk lesions (p = 0.0017. Among the men, obesity was unrelated to etiology of symptoms (p = 0.5991. Symptomology was more likely to be related to trunk vein damage among older age groups than among younger age groups (p-valor <0.0001.Conclusions:Hypotonic phlebopathy was very prevalent, particularly among young women who were not obese.

  14. Induction of brain CYP2E1 by chronic ethanol treatment and related oxidative stress in hippocampus, cerebellum, and brainstem

    International Nuclear Information System (INIS)

    Ethanol is one of the most commonly abused substances, and oxidative stress is an important causative factor in ethanol-induced neurotoxicity. Cytochrome P450 2E1 (CYP2E1) is involved in ethanol metabolism in the brain. This study investigates the role of brain CYP2E1 in the susceptibility of certain brain regions to ethanol neurotoxicity. Male Wistar rats were intragastrically treated with ethanol (3.0 g/kg, 30 days). CYP2E1 protein, mRNA expression, and catalytic activity in various brain regions were respectively assessed by immunoblotting, quantitative quantum dot immunohistochemistry, real-time RT-PCR, and LC–MS. The generation of reactive oxygen species (ROS) was analyzed using a laser confocal scanning microscope. The hippocampus, cerebellum, and brainstem were selectively damaged after ethanol treatment, indicated by both lactate dehydrogenase (LDH) activity and histopathological analysis. Ethanol markedly increased the levels of CYP2E1 protein, mRNA expression, and activity in the hippocampus and cerebellum. CYP2E1 protein and activity were significantly increased by ethanol in the brainstem, with no change in mRNA expression. ROS levels induced by ethanol paralleled the enhanced CYP2E1 proteins in the hippocampus, granular layer and white matter of cerebellum as well as brainstem. Brain CYP2E1 activity was positively correlated with the damage to the hippocampus, cerebellum, and brainstem. These results suggest that the selective sensitivity of brain regions to ethanol neurodegeneration may be attributed to the regional and cellular-specific induction of CYP2E1 by ethanol. The inhibition of CYP2E1 levels may attenuate ethanol-induced oxidative stress via ROS generation.

  15. Effects of chronic delta-9-tetrahydrocannabinol (THC) administration on neurotransmitter concentrations and receptor binding in the rat brain.

    Science.gov (United States)

    Ali, S F; Newport, G D; Scallet, A C; Gee, K W; Paule, M G; Brown, R M; Slikker, W

    1989-01-01

    THC is the major psychoactive constituent of marijuana and is also known as an hallucinogenic compound. Numerous reports have shown that large doses of THC produce significant alterations in various neurotransmitter systems. The present study was designed to determine whether chronic exposure to THC produces significant alterations in selected neurotransmitter systems (dopamine, serotonin, acetylcholine, GABAergic, benzodiazepine, and opiate) in the rat brain. In Experiment 1, male Sprague-Dawley rats were gavaged with vehicle, 10 or 20 mg THC/kg body weight daily, 5 days/week for 90 days. Animals were killed either 24 hours or two months after the last dose. Brains were dissected into different regions for neurochemical analyses. Two months after the cessation of chronic administration, there was a significant decrease in GABA receptor binding in the hippocampus of animals in the high dose group. However, no other significant changes were found in neurotransmitter receptor binding characteristics in the hippocampus or in neurotransmitter concentrations in the caudate nucleus, hypothalamus or septum after chronic THC administration. In an attempt to replicate the GABA receptor binding changes and also to determine the [35S]TBPS binding in hippocampus, we designed Experiment 2. In this experiment, we dosed the animals by gavage with 0, 5, 10 or 20 mg THC/kg daily, 5 days/week or with 20 mg THC/kg Monday through Thursday and 60 mg/kg on Friday for 90 days. Results from this experiment failed to replicate the dose-dependent effect of THC on GABA receptor binding in hippocampus. Modulation of [35S]TBPS binding by GABA or 3 alpha-OH-DHP or inhibition by cold TBPS in frontal cortex did not show any significant dose-related effects. Results from these experiments suggest that chronic exposure to THC does not produce significant alterations in catecholamine or indoleamine neurotransmitter systems or in opiate or GABA receptor systems in the rat brain.

  16. Effect of chronic aluminum exposure on the levels of conjugated dienes and enzymatic antioxidants in hippocampus and whole brain of rat

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.; Shukla, G.S. [Industrial Toxicology Research Centre, Lucknow (India)

    1995-11-01

    The reported association between elevated tissue levels of aluminum (Al) and certain human neurological disorders have evoked increasing attention on the neurotoxic effects of aluminum. High levels of Al have been reported in hippocampal neurons comprising neurofibrillary tangles in senile dementia of Alzheimer`s type, amyotropic lateral sclerosis and Parkinsonian dementia of Guam. Aluminum is considered to be the causal factor for a high incidence of dialysis encephalopathy. It has been shown that the incidence of Alzheimer`s disease was higher in places with a high Al content in drinking water compared to low level areas. Varied uses of Al in pharmaceutical preparations, foods, water purification and many house-hold items have increased the risk of its exposure to general population. The exposure may be as high as 500 mg/kg/day in children with uremia who are treated with Al containing phosphate binding gels. Aluminum ingestion in humans and experimental animals have been reported to produce behavioural dysfunctions. The mechanism of al neurotoxicity is not understood at present. Attempts made in this direction have reported its interaction with blood-brain barrier function, decreased membrane fluidity, glutathione depletion and increased brain lipid peroxidation. These studies indicate the possibility that oxidative stress may be one of the possible mechanisms of Al-induced neurotoxicity. Since Al has been reported to be in high concentrations in hippocampal neurons in certain neurological diseases and there is wealth of evidence implicating hippocampal impairment and memory dysfunction, we attempted to investigate the effect of chronic Al intoxication on the status of enzymatic antioxidants and the extent of peroxidative damage in hippocampus and whole brain of rat. 16 refs., 4 figs., 1 tab.

  17. Head injuries in the 18th century: the management of the damaged brain.

    Science.gov (United States)

    Ganz, Jeremy C

    2013-07-01

    The 18th century was the time when trauma neurosurgery began to develop into the modern discipline. Before this, the management had, for the most part, changed little from the days of Hippocrates, Celsus, and Galen. Attention was directed to skull injuries, and the brain was treated as the seat of the rational soul but without other function. Symptoms after trauma were attributed to injuries to the bone and meninges. Following the lead of the Royal Academy of Surgery in Paris, it was accepted from the 1730s that the brain was the seat of symptoms after cranial trauma. During the 18th century, at least 12 surgeons published articles on cranial injury, 6 describing significant clinical series on this topic. They were Henri-François Le Dran (1685-1770) of Paris, Percival Pott (1714-1788) of London, James Hill (1703-1776) from Dumfries, Sylvester O'Halloran (1728-1807) of Limerick (Ireland), William Dease (1750-1798) of Dublin, and John Abernethy (1764-1831) of London. This article analyzes these series. Each individual made a different contribution. It is suggested that the relatively lesser-known James Hill in Scotland demonstrated the greatest understanding of the management of brain trauma and achieved the best results. A product of the Scottish Enlightenment, he adapted his management to his own experience and was not tied to the accepted authorities of his day, but he improved the management of each case following his experience with previous patients. He deserves to be remembered.

  18. Metformin Prevents Cisplatin-Induced Cognitive Impairment and Brain Damage in Mice.

    Directory of Open Access Journals (Sweden)

    Wenjun Zhou

    Full Text Available Chemotherapy-induced cognitive impairment, also known as 'chemobrain', is now widely recognized as a frequent adverse side effect of cancer treatment that often persists into survivorship. There are no drugs available to prevent or treat chemotherapy-induced cognitive deficits. The aim of this study was to establish a mouse model of cisplatin-induced cognitive deficits and to determine the potential preventive effects of the anti-diabetic drug metformin.Treatment of C57/BL6J mice with cisplatin (cumulative dose 34.5 mg/kg impaired performance in the novel object and place recognition task as well as in the social discrimination task indicating cognitive deficits. Co-administration of metformin prevented these cisplatin-induced cognitive impairments. At the structural level, we demonstrate that cisplatin reduces coherency of white matter fibers in the cingulate cortex. Moreover, the number of dendritic spines and neuronal arborizations as quantified on Golgi-stained brains was reduced after cisplatin treatment. Co-administration of metformin prevented all of these structural abnormalities in cisplatin-treated mice. In contrast to what has been reported in other models of chemobrain, we do not have evidence for persistent microglial or astrocyte activation in the brains of cisplatin-treated mice. Finally, we show that co-administration of metformin also protects against cisplatin-induced peripheral neuropathy.In summary, we show here for the first time that treatment of mice with cisplatin induces cognitive deficits that are associated with structural abnormalities in the brain. Moreover, we present the first evidence that the widely used and safe anti-diabetic drug metformin protects against these deleterious effects of cancer treatment. In view of the ongoing clinical trials to examine the potential efficacy of metformin as add-on therapy in patients treated for cancer, these findings should allow rapid clinical translation.

  19. Evaluating the effectiveness of reasoning training in military and civilian chronic traumatic brain injury patients: study protocol

    Directory of Open Access Journals (Sweden)

    Krawczyk Daniel C

    2013-01-01

    Full Text Available Abstract Background Individuals who sustain traumatic brain injuries (TBIs often continue to experience significant impairment of cognitive functions mediated by the prefrontal cortex well into chronic stages of recovery. Traditional brain training programs that focus on improving specific skills fall short of addressing integrative functions that draw upon multiple higher-order processes critical for social and vocational integration. In the current study, we compare the effects of two short-term, intensive, group-based cognitive rehabilitation programs for individuals with chronic TBI. One program emphasizes learning about brain functions and influences on cognition, while the other program adopts a top-down approach to improve abstract reasoning abilities that are largely reliant on the prefrontal cortex. These treatment programs are evaluated in civilian and military veteran TBI populations. Methods/design One hundred individuals are being enrolled in this double-blinded clinical trial (all measures and data analyses will be conducted by blinded raters and analysts. Each individual is randomly assigned to one of two treatment conditions, with each condition run in groups of five to seven individuals. The primary anticipated outcomes are improvement in abstract reasoning and everyday life functioning, measured through behavioral tasks and questionnaires, and attention modulation, as measured by functional neuroimaging. Secondary expected outcomes include improvements in the cognitive processes of working memory, attention, and inhibitory control. Discussion Results of this trial will determine whether cognitive rehabilitation aimed at teaching TBI-relevant information about the brain and cognition versus training in TBI-affected thinking abilities (e.g., memory, attention, and executive functioning can improve outcomes in chronic military and civilian TBI patient populations. It should shed light on the nature of improvements and the

  20. Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Maren Geissler

    Full Text Available Intraperitoneal transplantation of human umbilical cord blood (hUCB cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury.

  1. Human Umbilical Cord Blood Cells Restore Brain Damage Induced Changes in Rat Somatosensory Cortex

    Science.gov (United States)

    Geißler, Maren; Dinse, Hubert R.; Neuhoff, Sandra; Kreikemeier, Klaus; Meier, Carola

    2011-01-01

    Intraperitoneal transplantation of human umbilical cord blood (hUCB) cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury. PMID:21673795

  2. Correlation between Patent Foramen Ovale, Cerebral "Lesions" and Neuropsychometric Testing in Experienced Sports Divers: Does Diving Damage the Brain?

    Science.gov (United States)

    Balestra, Costantino; Germonpré, Peter

    2016-01-01

    SCUBA diving exposes divers to decompression sickness (DCS). There has been considerable debate whether divers with a Patent Foramen Ovale of the heart have a higher risk of DCS because of the possible right-to-left shunt of venous decompression bubbles into the arterial circulation. Symptomatic neurological DCS has been shown to cause permanent damage to brain and spinal cord tissue; it has been suggested that divers with PFO may be at higher risk of developing subclinical brain lesions because of repeated asymptomatic embolization of decompression-induced nitrogen bubbles. These studies however suffer from several methodological flaws, including self-selection bias. We recruited 200 volunteer divers from a recreational diving population who had never suffered from DCS; we then randomly selected 50 of those for further investigation. The selected divers underwent brain Magnetic Resonance Imaging to detect asymptomatic brain lesions, contrast trans-oesophageal echocardiography for PFO, and extensive neuro-psychometric testing. Neuro-psychometry results were compared with a control group of normal subjects and a separate control group for subjects exposed to neurotoxic solvents. Forty two divers underwent all the tests and are included in this report. Grade 2 Patent Foramen Ovale was found in 16 (38%) of the divers; brain Unidentified Bright Objects (UBO's) were found in 5 (11.9%). There was no association between PFO and the presence of UBO's (P = 0.693) or their size (p = 0.5) in divers. Neuropsychometric testing in divers was significantly worse from controls in two tests, Digit Span Backwards (DSB; p Coordination (EYE) tests. There was no correlation between PFO, number of UBO's and any of the neuro-psychometric tests. We conclude that for uneventful recreational diving, PFO does not appear to influence the presence of UBO's. Diving by itself seems to cause some decrease of short-term memory and higher cognitive function, including visual-motor skills; this

  3. Triethyllead-induced peroxidative damage in various regions of the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S.F. (Univ. of Arkansas for Medical Sciences, Little Rock (USA)); Bondy, S.C. (Univ. of California, Irvine (USA))

    1989-01-01

    Adult male Fisher 344 rats (8-10 wk old) were dosed ip with 1.75 mg/kg body weight of triethyllead chloride (TEL) for 5 consecutive days. Rats were sacrificed 1, 7, or 21 d after the last injection. The rate of lipid peroxidation was significantly elevated in frontal cortex at all three time points assayed (1, 7, or 21 d). However, hippocampal and cerebellar membranes showed no changes in peroxidative capacity at these time points. In order to determine whether cortical membrane damage was reflected in alteration of a restricted protein population, a series of high-affinity receptor binding sites was determined in cortical membranes derived from treated rats 7 d after the last injection of triethyllead. The rate of lipid peroxidation was significantly increased in the frontal cortex of triethyllead treated rats; however, no changes in the binding of ({sup 3}H)spiroperidol, ({sup 3}H)quinuclidinyl benzilate, and ({sup 3}H)benzodiazepine were seen in animals exposed to triethyllead. The cortical wet weight, protein content, and cell number were also unchanged by TEL treatment, reflecting an absence of gross damage.

  4. S100B Protein, a Damage-Associated Molecular Pattern Protein in the Brain and Heart, and Beyond

    Directory of Open Access Journals (Sweden)

    Guglielmo Sorci

    2010-01-01

    Full Text Available S100B belongs to a multigenic family of Ca2+-binding proteins of the EF-hand type and is expressed in high abundance in the brain. S100B interacts with target proteins within cells thereby altering their functions once secreted/released with the multiligand receptor RAGE. As an intracellular regulator, S100B affects protein phosphorylation, energy metabolism, the dynamics of cytoskeleton constituents (and hence, of cell shape and migration, Ca2+ homeostasis, and cell proliferation and differentiation. As an extracellular signal, at low, physiological concentrations, S100B protects neurons against apoptosis, stimulates neurite outgrowth and astrocyte proliferation, and negatively regulates astrocytic and microglial responses to neurotoxic agents, while at high doses S100B causes neuronal death and exhibits properties of a damage-associated molecular pattern protein. S100B also exerts effects outside the brain; as an intracellular regulator, S100B inhibits the postinfarction hypertrophic response in cardiomyocytes, while as an extracellular signal, (high S100B causes cardiomyocyte death, activates endothelial cells, and stimulates vascular smooth muscle cell proliferation.

  5. The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats

    Directory of Open Access Journals (Sweden)

    Akbar Anaeigoudari

    2016-03-01

    Full Text Available Objective: In the present work, the effects of different fractions of Coriandrum sativum (C. sativum, on pentylenetetrazole (PTZ-induced seizures and brain tissues oxidative damage were investigated in rats. Materials and Methods: The rats were divided into the following groups: (1 vehicle, (2 PTZ (90 mg/kg, (3 water fraction (WF of C. sativum (25 and 100 mg/kg, (4 n-butanol fraction (NBF of C. sativum (25 and 100 mg/kg, and (5 ethyl acetate fraction (EAF of C. sativum (25 and 100 mg/kg. Results: The first generalized tonic-clonic seizures (GTCS latency in groups treated with 100 mg /kg of WF or EAF was significantly higher than that of PTZ group (p< 0.01. In contrast to WF, the EAF and NBF were not effective in increasing the first minimal clonic seizure (MCS latency. Malondialdehyde (MDA levels in both cortical and hippocampal tissues of PTZ group were significantly higher than those of control animals (p< 0.001. Pretreatment with WF, NBF, or EAF resulted in a significant reduction in the MDA levels of hippocampi (pConclusion: The present study showed that different fractions of C. sativum possess antioxidant activity in the brain and WF and EAF of this plant have anticonvulsant effects.

  6. Brain and Addiction

    Science.gov (United States)

    ... Teens / Drug Facts / Brain and Addiction Brain and Addiction Print Your Brain Your brain is who you ... is taken over and over. What Is Drug Addiction? Addiction is a chronic brain disease that causes ...

  7. Relationship between opioid therapy, tissue-damaging procedures, and brain metabolites as measured by proton MRS in asphyxiated term neonates.

    Science.gov (United States)

    Angeles, Danilyn M; Ashwal, Stephen; Wycliffe, Nathaniel D; Ebner, Charlotte; Fayard, Elba; Sowers, Lawrence; Holshouser, Barbara A

    2007-05-01

    To examine the effects of opioid and tissue-damaging procedures (TDPs) [i.e. procedures performed in the neonatal intensive care unit (NICU) known to result in pain, stress, and tissue damage] on brain metabolites, we reviewed the medical records of 28 asphyxiated term neonates (eight opioid-treated, 20 non-opioid treated) who had undergone magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (MRS) within the first month of life as well as eight newborns with no clinical findings of asphyxial injury. We found that lower creatine (Cr), myoinositol (Ins), and N-acetylaspartate (NAA)/choline (Cho) (p OGM) NAA/Cr was decreased (p = 0.03) and lactate (Lac) was present in a significantly higher amount (40%; p = 0.03) in non-opioid-treated neonates compared with opioid-treated neonates. Compared with controls, untreated neonates showed larger changes in more metabolites in basal ganglia (BG), thalami (TH), and OGM with greater significance than treated neonates. Our data suggest that TDPs affect spectral metabolites and that opioids do not cause harm in asphyxiated term neonates exposed to repetitive TDPs in the first 2-4 DOL and may provide a degree of neuroprotection.

  8. Research progress in apoptosis and hypoxic - ischemic brain damage%缺氧缺血性脑损伤与凋亡的进展

    Institute of Scientific and Technical Information of China (English)

    陈敏榕; 陈燕惠

    2004-01-01

    Apoptosis is one of the most important causes, which results in the central neuronal system complication in hypoxic- ischemic brain damage (HIBD). Apoptosis occurs in the developing brain more than in the developed brain. Apoptosis can last several weeks and may be inverted its pathology by appropriate therapy. Caspase inhibitor, neurotrophic factors, anti-apoptosis gene Bcl-2, mild hypothermia, and early intervention play important roles in promoting neuronal cell survival and preventing from apoptosis through different mechanisms. It may be a new way for rehabilitation of HIBD.

  9. Chronic functional bowel syndrome enhances gut-brain axis dysfunction, neuroinflammation, cognitive impairment, and vulnerability to dementia.

    Science.gov (United States)

    Daulatzai, Mak Adam

    2014-04-01

    The irritable bowel syndrome (IBS) is a common chronic functional gastrointestinal disorder world wide that lasts for decades. The human gut harbors a diverse population of microbial organisms which is symbiotic and important for well being. However, studies on conventional, germ-free, and obese animals have shown that alteration in normal commensal gut microbiota and an increase in pathogenic microbiota-termed "dysbiosis", impact gut function, homeostasis, and health. Diarrhea, constipation, visceral hypersensitivity, and abdominal pain arise in IBS from the gut-induced dysfunctional metabolic, immune, and neuro-immune communication. Dysbiosis in IBS is associated with gut inflammation. Gut-related inflammation is pivotal in promoting endotoxemia, systemic inflammation, and neuroinflammation. A significant proportion of IBS patients chronically consume alcohol, non-steroidal anti-inflammatories, and fatty diet; they may also suffer from co-morbid respiratory, neuromuscular, psychological, sleep, and neurological disorders. The above pathophysiological substrate is underpinned by dysbiosis, and dysfunctional bidirectional "Gut-Brain Axis" pathways. Pathogenic gut microbiota-related systemic inflammation (due to increased lipopolysaccharide and pro-inflammatory cytokines, and barrier dysfunction), may trigger neuroinflammation enhancing dysfunctional brain regions including hippocampus and cerebellum. These as well as dysfunctional vago-vagal gut-brain axis may promote cognitive impairment. Indeed, inflammation is characteristic of a broad spectrum of neurodegenerative diseases that manifest demntia. It is argued that an awareness of pathophysiological impact of IBS and implementation of appropriate therapeutic measures may prevent cognitive impairment and minimize vulnerability to dementia. PMID:24590859

  10. Reversible brain damage following acute organic solvents' poisoning determined by magnetic resonance

    Directory of Open Access Journals (Sweden)

    Dujmović Irena

    2005-01-01

    Full Text Available Introduction. Acute exposure to the effects of volatile solvents is characterized by the abrupt onset of symptoms and signs of poisoning, and relatively fast recovery in the majority of cases. Case report. We report a 24-year-old patient with an acute, accidental poisoning with a mixture of volatile organic solvents (most probably toluene, styrene and xylene, which led to the development of upward gaze paresis, diplopia, hemiparesis, ataxic gate, and the late onset truncal ataxia episodes. After 6 weeks, he recovered completely, while his extensive brain MRI lesions in the caudate nuclei, laterobasal putaminal regions, bilateral anterior insular cortex, central midbrain tegmental area withdrew completely after 4 months. Conclusion. Acute toxic encephalopathy should be a part of the differential diagnosis in any patient with acute neurobehavioral and neurological deficit.

  11. Effects of chronic exposure to benzalkonium chloride in Oncorhynchus mykiss: cholinergic neurotoxicity, oxidative stress, peroxidative damage and genotoxicity.

    Science.gov (United States)

    Antunes, S C; Nunes, B; Rodrigues, S; Nunes, R; Fernandes, J; Correia, A T

    2016-07-01

    Benzalkonium chloride (BAC) is one of the most used conservatives in pharmaceutical preparations. However, its use is limited to a small set of external use formulations, due to its high toxicity. Benzalkonium chloride effects are related to the potential exertion of deleterious effects, mediated via oxidative stress and through interaction with membrane enzymes, leading to cellular damage. To address the ecotoxicity of this specific compound rainbow trouts were chronically exposed to BAC at environmental relevant concentrations (ranging from 0.100 to 1.050mg/L), and the biological response of cholinergic neurotoxicity, modulation of the antioxidant defense, phase II metabolism, lipid peroxidation and genotoxicity was studied. The obtained results showed a dual pattern of antioxidant response, with significant alterations in catalase activity (starting at 0.180mg/L), and lipid peroxidation, for intermediate (0.180 and 0.324mg/L) concentrations. No significant alterations occurred for glutathione-S-transferases activity. An unexpected increased of the acetylcholinesterase activity was also recorded for the individuals exposed to higher concentrations of BAC (starting at 0.180mg/L). Furthermore, exposure to BAC resulted in the establishment of genotoxic alterations, observable (for the specific case of the comet assay results) for all tested BAC concentrations. However, and considering that the oxidative response was not devisable, other mechanisms may be involved in the genotoxic effects reported here. PMID:27280532

  12. Hepatoprotective effect of manual acupuncture at acupoint GB34 against CCl4-induced chronic liver damage in rats

    Institute of Scientific and Technical Information of China (English)

    Yun-Kyoung Yim; Hyun Lee; Kwon-Eui Hong; Young-Il Kim; Byung-Ryul Lee; Tae-Han Kim; Ji-Young Yi

    2006-01-01

    AIM: To investigate the hepatoprotective effect of manual acupuncture at Yanglingquan (GB34) on CCl4-induced chronic liver damage in rats.METHODS: Rats were injected intraperitoneally with CCl4 (1 mL/kg) and treated with manual acupuncture using reinforcing manipulation techniques at left GB34(Yanglingquan) 3 times a week for 10 wk. A nonacupoint in left gluteal area was selected as a sham point. To estimate the hepatoprotective effect of manual acupuncture at GB34, measurement of liver index,biochemical assays including serum ALT, AST, ALP and total cholesterol, histological analysis and blood cell counts were conducted.RESULTS: Manual acupuncture at GB34 reduced the liver index, serum ALT, AST, ALP and total cholesterol levels as compared with the control group and the sham acupuncture group. It also increased and normalized the populations of WBC and lymphocytes.CONCLUSION: Manual acupuncture with reinforcing manipulation techniques at left GB34 reduces liver toxicity, protects liver function and liver tissue, and normalizes immune activity in CCl4-intoxicated rats.

  13. A link between vascular damage and cognitive deficits after whole-brain radiation therapy for cancer: A clue to other types of dementia?

    Science.gov (United States)

    Yamada, Maki K

    2016-01-01

    Whole brain radiation therapy for the treatment of tumors can sometimes cause cognitive impairment. Memory deficits were noted in up to 50% of treated patients over a short period of several months. In addition, an increased rate of dementia in young patients has been noted over the longer term, i.e. years. A deficit in neurogenesis after irradiation has been postulated to be the main cause of cognitive decline in patients, but recent data on irradiation therapy for limited parts of the brain appear to indicate other possibilities. Irradiation can directly damage various types of cells other than neuronal stem cells. However, this paper will focus on injury to brain vasculature leading to cognitive decline since vessels represent a better therapeutic target for drug development than other cells in the brain because of the blood-brain barrier. PMID:27087553

  14. Differences in supratentorial white matter diffusion after radiotherapy - New biomarker of normal brain tissue damage?

    Energy Technology Data Exchange (ETDEWEB)

    Ravn, Soeren; Jens Broendum Froekaer, Jens [Dept. of Radiology, Aalborg Univ. Hospital, Aalborg (Denmark)], e-mail: sorl@rn.dk; Holmberg, Mats [Dept. of Oncology, Aalborg Univ. Hospital, Aalborg (Denmark); Soerensen, Preben [Dept. of Neurosurgery, Aalborg Univ. Hospital, Aalborg (Denmark); Carl, Jesper [Dept. of Neurosurgery, Aalborg Univ. Hospital, Aalborg (Denmark)

    2013-10-15

    Introduction: Therapy-induced injury to normal brain tissue is a concern in the treatment of all types of brain tumours. The purpose of this study was to investigate if magnetic resonance diffusion tensor imaging (DTI) could serve as a potential biomarker for the assessment of radiation-induced long-term white matter injury. Material and methods: DTI- and T1-weighted images of the brain were obtained in 19 former radiotherapy patients [nine men and 10 women diagnosed with astrocytoma (4), pituitary adenoma (6), meningioma (8) and craniopharyngioma (1), average age 57.8 (range 35-71) years]. Average time from radiotherapy to DTI scan was 4.6 (range 2.0-7.1) years. NordicICE software (NIC) was used to calculate apparent diffusion coefficient maps (ADC-maps). The co-registration between T1 images and ADC-maps were done using the auto function in NIC. The co-registration between the T1 images and the patient dose plans were done using the auto function in the treatment planning system Eclipse from Varian. Regions of interest were drawn on the T1-weighted images in NIC based on iso curves from Eclipse. Data was analysed by t-test. Estimates are given with 95 % CI. Results: A mean ADC difference of 4.6(0.3;8.9) X 10{sup -5} mm{sup 2}/s, p = 0.03 was found between paired white matter structures with a mean dose difference of 31.4 Gy. Comparing the ADC-values of the areas with highest dose from the paired data (dose > 33 Gy) with normal white matter (dose < 5 Gy) resulted in a mean dose difference of 44.1 Gy and a mean ADC difference of 7.87(3.15;12.60) X 10{sup -5} mm{sup 2}/s, p = 0.003. Following results were obtained when looking at differences between white matter mean ADC in average dose levels from 5 to 55 Gy in steps of 10 Gy with normal white matter mean ADC: 5 Gy; 1.91(-1.76;5.58) X 10{sup -5} mm{sup 2}/s, p = 0.29; 15 Gy; 5.81(1.53;10.11) X 10{sup -5} mm{sup 2}/s, p = 0.01; 25 Gy; 5.80(2.43;9.18) X 10{sup -5} mm{sup 2}/s, p = 0.002; 35 Gy; 5.93(2.89;8.97) X 10

  15. A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage

    DEFF Research Database (Denmark)

    Bach, Anders*; Clausen, Bettina H; Møller, Magda;

    2012-01-01

    Inhibition of the ternary protein complex of the synaptic scaffolding protein postsynaptic density protein-95 (PSD-95), neuronal nitric oxide synthase (nNOS), and the N-methyl-d-aspartate (NMDA) receptor is a potential strategy for treating ischemic brain damage, but high-affinity inhibitors...

  16. Unlearning chronic pain: A randomized controlled trial to investigate changes in intrinsic brain connectivity following Cognitive Behavioral Therapy

    Directory of Open Access Journals (Sweden)

    Marina Shpaner

    2014-01-01

    Full Text Available Chronic pain is a complex physiological and psychological phenomenon. Implicit learning mechanisms contribute to the development of chronic pain and to persistent changes in the central nervous system. We hypothesized that these central abnormalities can be remedied with Cognitive Behavioral Therapy (CBT. Specifically, since regions of the anterior Default Mode Network (DMN are centrally involved in emotional regulation via connections with limbic regions, such as the amygdala, remediation of maladaptive behavioral and cognitive patterns as a result of CBT for chronic pain would manifest itself as a change in the intrinsic functional connectivity (iFC between these prefrontal and limbic regions. Resting-state functional neuroimaging was performed in patients with chronic pain before and after 11-week CBT (n = 19, as well as a matched (ages 19–59, both sexes active control group of patients who received educational materials (n = 19. Participants were randomized prior to the intervention. To investigate the differential impact of treatment on intrinsic functional connectivity (iFC, we compared pre–post differences in iFC between groups. In addition, we performed exploratory whole brain analyses of changes in fractional amplitude of low frequency fluctuations (fALFF. The course of CBT led to significant improvements in clinical measures of pain and self-efficacy for coping with chronic pain. Significant group differences in pre–post changes in both iFC and fALFF were correlated with clinical outcomes. Compared to control patients, iFC between the anterior DMN and the amygdala/periaqueductal gray decreased following CBT, whereas iFC between the basal ganglia network and the right secondary somatosensory cortex increased following CBT. CBT patients also had increased post-therapy fALFF in the bilateral posterior cingulate and the cerebellum. By delineating neuroplasticity associated with CBT-related improvements, these results add to

  17. White matter abnormalities are associated with chronic postconcussion symptoms in blast-related mild traumatic brain injury.

    Science.gov (United States)

    Miller, Danielle R; Hayes, Jasmeet P; Lafleche, Ginette; Salat, David H; Verfaellie, Mieke

    2016-01-01

    Blast-related mild traumatic brain injury (mTBI) is a common injury among Iraq and Afghanistan military veterans due to the frequent use of improvised explosive devices. A significant minority of individuals with mTBI report chronic postconcussion symptoms (PCS), which include physical, emotional, and cognitive complaints. However, chronic PCS are nonspecific and are also associated with mental health disorders such as posttraumatic stress disorder (PTSD). Identifying the mechanisms that contribute to chronic PCS is particularly challenging in blast-related mTBI, where the incidence of comorbid PTSD is high. In this study, we examined whether blast-related mTBI is associated with diffuse white matter changes, and whether these neural changes are associated with chronic PCS. Ninety Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) veterans were assigned to one of three groups including a blast-exposed no--TBI group, a blast-related mTBI without loss of consciousness (LOC) group (mTBI--LOC), and a blast-related mTBI with LOC group (mTBI + LOC). PCS were measured with the Rivermead Postconcussion Questionnaire. Results showed that participants in the mTBI + LOC group had more spatially heterogeneous white matter abnormalities than those in the no--TBI group. These white matter abnormalities were significantly associated with physical PCS severity even after accounting for PTSD symptoms, but not with cognitive or emotional PCS severity. A mediation analysis revealed that mTBI + LOC significantly influenced physical PCS severity through its effect on white matter integrity. These results suggest that white matter abnormalities are associated with chronic PCS independent of PTSD symptom severity and that these abnormalities are an important mechanism explaining the relationship between mTBI and chronic physical PCS.

  18. Total Flavone of Hawthorn Leaf inhibits neuronal apoptosis in brain tissue of rat models of chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Tan Rong-fang; Xia Ai-hua; Wu Xiao-guang; Cao Na-na; Li Meng-meng; Zhang Tian-ge; Wang Yi-ru; Yue Zhi-ling

    2014-01-01

    BACKGROUND: Cerebrovascular disease often causes dysfunction of the brain nerve, and nerve cel apoptosis is the important factor of cerebral nerve dysfunction. The excessive expression of c-fos can block the transduction of intracelular signal so that producing some apoptosis-promoting factors, which involve in nerve cel apoptosis process after ischemia injury of brain. Bcl-2 is an inhibited factor. It might to be the key to treat ischemic cerebrovascular disease by inhibiting or reducing the apoptosis of nerve cels after ischemia injury. OBJECTIVE: To investigate the therapeutic effect and mechanism of the Total Flavone of Hawthorn Leaf on chronic cerebral ischemia rats. METHODS: A total of 72 healthy male Sprague-Dawley rats were randomly divided into sham surgery group, model group, Total Flavone of Hawthorn Leaf group and ginkgo leaf group. Permanent bilateral carotid artery ligation was used to prepare chronic cerebral ischemia model in the model group, Total Flavone of Hawthorn Leaf group and ginkgo leaf group. Total Flavone of Hawthorn Leaf group and ginkgo leaf group respectively received 140 mg/kg Total Flavone of Hawthorn Leaf and 12.3 mg/kg ginkgo leaf intragastricaly for 36 days from 36 days after model induction. Model group and sham surgery group received 3.5 mL/kg physiological saline intragastricaly. RESULTS AND CONCLUSION: Compared with the model group, the expression of c-fos protein significantly deceased in the Total Flavone of Hawthorn Leaf group (P 0.05). These data indicated that the protective effect of Total Flavone of Hawthorn Leaf on chronic cerebral ischemia was associated with its inhibition of neuronal apoptosis. Its mechanism of anti-apoptosis might be associated with up-regulating expression of Bcl-2, down-regulating expression of c-fos and decreasing Ca2+ content in brain.

  19. Selective brain responses to acute and chronic low-dose X-ray irradiation in males and females

    International Nuclear Information System (INIS)

    Radiation exposure is known to have profound effects on the brain, leading to precursor cell dysfunction and debilitating cognitive declines [Nat. Med. 8 (2002) 955]. Although a plethora of data exist on the effects of high radiation doses, the effects of low-dose irradiation, such as ones received during repetitive diagnostic and therapeutic exposures, are still under-investigated [Am. J. Otolaryngol. 23 (2002) 215; Proc. Natl. Acad. Sci. USA 97 (2000) 889; Curr. Opin. Neurol. 16 (2003) 129]. Furthermore, most studies of the biological effects of ionizing radiation have been performed using a single acute dose, while clinically and environmentally relevant exposures occur predominantly under chronic/repetitive conditions. Here, we have used a mouse model to compare the effects of chronic/repetitive and acute low-dose radiation (LDR) exposure (0.5 Gy) to ionizing radiation on the brain in vivo. We examined the LDR effects on p42/44 MAPK (ERK1/ERK2), CaMKII, and AKT signaling-the interconnected pathways that have been previously shown to be crucial for neuronal survival upon irradiation. We report perturbations in ERK1/2, AKT, and CREB upon acute and chronic/repetitive low-dose exposure in the hippocampus and frontal cortex of mice. These studies were paralleled by the analysis of radiation effects on neurogenesis and cellular proliferation. Repetitive exposure had a much more pronounced effect on cellular signaling and neurogenesis than acute exposure. These results suggest that studies of single acute exposures might be limited in terms of their predictive value. We also present the first evidence of sex differences in radiation-induced signaling in the hippocampus and frontal cortex. We show the role of estrogens in brain radiation responses and discuss the implications of the observed changes

  20. Withdrawal from Chronic Cocaine Administration Induces Deficits in Brain Reward Function in C57BL/6J Mice

    Science.gov (United States)

    Stoker, Astrid K.; Markou, Athina

    2011-01-01

    Anhedonia is a major symptom of cocaine withdrawal, whereas euphoria characterizes the effects of acute administration of this drug in humans. These mood states can be measured quantitatively in animals with brain reward thresholds obtained from the intracranial self-stimulation (ICSS) procedure. Studies have previously reported the reward-enhancing effects of acute cocaine administration using the ICSS procedure in mice, but the effects of chronic cocaine administration and withdrawal on brain reward thresholds have not been widely investigated in this species. Cocaine withdrawal was induced in C57BL/6J mice by removal of intraperitoneal osmotic minipumps that delivered cocaine (90 or 180 mg/kg/day, salt) for 72 h. Mice were tested in the ICSS procedure 3–100 h post-pump removal. Anxiety-like behavior was assessed in the light-dark box 24 h post-pump removal. After an 18-day washout period, tolerance and sensitization to the reward-enhancing effects of cocaine were assessed by injecting bolus cocaine intraperitoneally (0, 2.5, 5, and 10 mg/kg). The results indicated that 72 h administration of 90 and 180 mg/kg/day cocaine significantly lowered brain reward thresholds. Withdrawal from 90 and 180 mg/kg/day of cocaine administration elevated ICSS thresholds to similar extents. No anxiety-like behavior was observed in the light-dark box during withdrawal from chronic cocaine administration, although the number of transitions between compartments and locomotion in the dark compartment markedly decreased. Chronic cocaine administration did not induce tolerance or sensitization to the reward-enhancing effects of acute cocaine. In conclusion, alterations in mood states induced by cocaine administration and withdrawal in mice can be measured using the ICSS procedure. PMID:21557971

  1. Indicators of inflammation and cellular damage in chronic asymptomatic or oligosymptomatic alcoholics: correlation with alteration of bilirubin and hepatic and pancreatic enzymes

    Directory of Open Access Journals (Sweden)

    Borini Paulo

    1999-01-01

    Full Text Available Biochemical and hematimetric indicators of inflammation and cell damage were correlated with bilirubin and hepatic and pancreatic enzymes in 30 chronic male alcoholics admitted into psychiatric hospital for detoxification and treatment of alcoholism. Aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase, alkaline phosphatase, and total bilirubin were altered, respectively, in 90%, 63%, 87%, 23% and 23% of the cases. None of the indicators of inflammation (lactic dehydrogenase, altered in 16% of the cases; alpha-1 globulin, 24%; alpha-2 globulin, 88%; leucocyte counts, 28% was correlated with alterations of bilirubin or liver enzymes. Lactic dehydrogenase was poorly sensitive for detection of hepatocytic or muscular damage. Alterations of alpha-globulins seemed to have been due more to alcohol metabolism-induced increase of lipoproteins than to inflammation. Among indicators of cell damage, serum iron, increased in 40% of the cases, seemed to be related to liver damage while creatine phosphokinase, increased in 84% of the cases, related to muscle damage. Hyperamylasemia was found in 20% of the cases and significantly correlated with levels of bilirubin, alkaline phosphatase and gamma-glutamyltransferase. It was indicated that injuries of liver, pancreas, salivary glands, and muscle occurred in asymptomatic or oligosymptomatic chronic alcoholics.

  2. Dental management in dysphagia syndrome patients with previously acquired brain damages

    Directory of Open Access Journals (Sweden)

    Ennio Bramanti

    2012-01-01

    Full Text Available Dysphagia is defined as difficulty in swallowing food (semi-solid or solid, liquid, or both. Difficulty in swallowing affects approximately 7% of population, with risk incidence increasing with age. There are many disorder conditions predisposing to dysphagia such as mechanical strokes or esophageal diseases even if neurological diseases represent the principal one. Cerebrovascular pathology is today the leading cause of death in developing countries, and it occurs most frequently in individuals who are at least 60 years old. Swallowing disorders related to a stroke event are common occurrences. The incidence ranging is estimated from 18% to 81% in the acute phase and with a prevalence of 12% among such patients. Cerebral, cerebellar, or brain stem strokes can influence swallowing physiology while cerebral lesions can interrupt voluntary control of mastication and bolus transport during the oral phase. Among the most frequent complications of dysphagia are increased mortality and pulmonary risks such as aspiration pneumonia, dehydration, malnutrition, and long-term hospitalization. This review article discusses the epidemiology of dysphagia, the normal swallowing process, pathophysiology, signs and symptoms, diagnostics, and dental management of patients affected.

  3. A clinically relevant model of perinatal global ischemic brain damage in rats.

    Science.gov (United States)

    Yang, Ting; Zhuang, Lei; Terrando, Niccolò; Wu, Xinmin; Jonhson, Mark R; Maze, Mervyn; Ma, Daqing

    2011-04-01

    We have designed a clinically relevant model of perinatal asphyxia providing intrapartum hypoxia in rats. On gestation day 22 SD rats were anesthetized and the uterine horns were exteriorized and placed in a water bath at 37°C for up to 20min. After this, pups were delivered from the uterus and manually stimulated to initiate breathing in an incubator at 37°C for 1 h in air. Brains were harvested and stained with cresyl violet, caspase-3, and TUNEL to detect morphological and apoptotic changes on postnatal days (PND) 1, 3, and 7. Separate cohorts were maintained until PND 50 and tested for learning and memory using Morris water maze (WM). Survival rate was decreased with longer hypoxic time, and 100% mortality was noted when hypoxia time was beyond 18min. Apoptosis was increased with the duration of hypoxia with neuronal loss and cell shrinkage in the CA1 of hippocampus. The time taken for the juveniles to locate the hidden platform during WM was increased in animals subjected to hypoxia. These data demonstrate that perinatal ischemic injury leads to neuronal death in the hippocampus and long-lasting cognitive dysfunction. This model mimics hypoxic ischemic encephalopathy in humans and may be appropriate for investigating therapeutic interventions. PMID:21281606

  4. Association of retinal and macular damage with brain atrophy in multiple sclerosis.

    Science.gov (United States)

    Dörr, Jan; Wernecke, Klaus D; Bock, Markus; Gaede, Gunnar; Wuerfel, Jens T; Pfueller, Caspar F; Bellmann-Strobl, Judith; Freing, Alina; Brandt, Alexander U; Friedemann, Paul

    2011-01-01

    Neuroaxonal degeneration in the central nervous system contributes substantially to the long term disability in multiple sclerosis (MS) patients. However, in vivo determination and monitoring of neurodegeneration remain difficult. As the widely used MRI-based approaches, including the brain parenchymal fraction (BPF) have some limitations, complementary in vivo measures for neurodegeneration are necessary. Optical coherence tomography (OCT) is a potent tool for the detection of MS-related retinal neurodegeneration. However, crucial aspects including the association between OCT- and MRI-based atrophy measures or the impact of MS-related parameters on OCT parameters are still unclear. In this large prospective cross-sectional study on 104 relapsing remitting multiple sclerosis (RRMS) patients we evaluated the associations of retinal nerve fiber layer thickness (RNFLT) and total macular volume (TMV) with BPF and addressed the impact of disease-determining parameters on RNFLT, TMV or BPF. BPF, normalized for subject head size, was estimated with SIENAX. Relations were analyzed primarily by Generalized Estimating Equation (GEE) models considering within-patient inter-eye relations. We found that both RNFLT (p = 0.019, GEE) and TMV (p = 0.004, GEE) associate with BPF. RNFLT was furthermore linked to the disease duration (pdamage longitudinally. Longitudinal studies are necessary for validation of data and to further clarify the relevance of TMV. PMID:21494659

  5. Planning for selective amygdalohippocampectomy involving less neuronal ifber damage based on brain connectivity using tractography

    Institute of Scientific and Technical Information of China (English)

    Seung-Hak Lee; Mansu Kim; Hyunjin Park

    2015-01-01

    Temporal lobe resection is an important treatment option for epilepsy that involves removal of potentially essential brain regions. Selective amygdalohippocampectomy is a widely performed temporal lobe surgery. We suggest starting the incision for selective amygdalohippocampec-tomy at the inferior temporal gyrus based on diffusion magnetic resonance imaging (MRI) tractography. Diffusion MRI data from 20 normal participants were obtained from Parkinson’s Progression Markers Initiative (PPMI) database (www.ppmi-info.org). A tractography algorithm was applied to extract neuronal fiber information for the temporal lobe, hippocampus, and amygdala. Fiber information was analyzed in terms of the number of fibers and betweenness centrality. Distances between starting incisions and surgical target regions were also considered to explore the length of the surgical path. Middle temporal and superior temporal gyrus regions have higher connectivity values than the inferior temporal gyrus and thus are not good candi-dates for starting the incision. The distances between inferior temporal gyrus and surgical target regions were shorter than those between middle temporal gyrus and target regions. Thus, the in-ferior temporal gyrus is a good candidate for starting the incision. Starting the incision from the inferior temporal gyrus would spare the important (in terms of betweenness centrality values) middle region and shorten the distance to the target regions of the hippocampus and amygdala.

  6. Prognostic Importance of Exercise Brain Natriuretic Peptide in Asymptomatic Chronic Organic Severe Mitral Regurgitation: An Observational Study

    Science.gov (United States)

    Sinha, Santosh Kumar; Garg, Shalini; Thakur, Ramesh; Krishna, Vinay; Singh, Karandeep; Sachan, Mohit; Goel, Amit; Razi, Mahamdula; Pandey, Umeshwar; Varma, Chandra Mohan

    2016-01-01

    Background The optimal timing of surgery in patients with chronic organic severe mitral regurgitation (MR) continues to be debated, especially for those who are asymptomatic. The aim of the study was to determine independent and additive prognostic value of exercise brain natriuretic peptide (eBNP) in patients with severe asymptomatic MR and normal left ventricular ejection fraction (LVEF). Methods Two hundred twenty-three consecutive patients with severe MR defined by effective regurgitant orifice (ERO) area ≥ 40 mm2 and/or residual volume ≥ 60 mL, LVEF > 60%, and normal LV end-systolic diameter free survival and might be considered for early MVR.

  7. The assessment of pragmatics in Iranian patients with right brain damage.

    Directory of Open Access Journals (Sweden)

    Davood Sobhani-Rad

    2014-06-01

    Full Text Available Pragmatics is appropriate use of language across a variety of social contexts that provides accurate interpretation of intentions. The occurrence of the right hemisphere lesions can interfere with pragmatic abilities, and particularly with the processing of nonliteral speech acts.Since the objective of this study was to assess different aspects of pragmatic competence in the right hemisphere damage (RHD patients, 20 Iranian patients with right hemisphere lesions were examined by adult pragmatic profile (APP and a novel checklist was introduced for Persian language speaking individuals. Meanwhile, 40 healthy adult individuals, who were age and gender matched with RHD patients, were considered as the control group. After obtaining video records, all subjects were evaluated for 35 pragmatic skills, including 24 verbal, 5 paralinguistic, and 6 nonverbal aspects, by a two-point scale system.Studying RHD patients and their healthy counterparts revealed that the performance by participants with right hemisphere lesions exhibited a high degree of inappropriate pragmatic abilities compared with controls in all domains. Furthermore, RHD patients showed a trend of increasing difficulty in understanding and producing different pragmatic phenomena, including standard communication acts.Present results indicated that the right hemisphere lesions significantly affected pragmatic abilities in verbal, paralinguistic and nonverbal aspects. Such a pattern of performance, which is in line with deficits previously reported for RHD, proved the unquestioned role of the right hemisphere in processing nonliteral language.

  8. Physical Activity Protects the Human Brain against Metabolic Stress Induced by a Postprandial and Chronic Inflammation

    NARCIS (Netherlands)

    Pruimboom, Leo; Raison, Charles L.; Muskiet, Frits A. J.

    2015-01-01

    In recent years, it has become clear that chronic systemic low-grade inflammation is at the root of many, if not all, typically Western diseases associated with the metabolic syndrome. While much focus has been given to sedentary lifestyle as a cause of chronic inflammation, it is less often appreci

  9. Cancer and non-cancer brain and eye effects of chronic low-dose ionizing radiation exposure

    Directory of Open Access Journals (Sweden)

    Picano Eugenio

    2012-04-01

    Full Text Available Abstract Background According to a fundamental law of radiobiology (“Law of Bergonié and Tribondeau”, 1906, the brain is a paradigm of a highly differentiated organ with low mitotic activity, and is thus radio-resistant. This assumption has been challenged by recent evidence discussed in the present review. Results Ionizing radiation is an established environmental cause of brain cancer. Although direct evidence is lacking in contemporary fluoroscopy due to obvious sample size limitation, limited follow-up time and lack of focused research, anecdotal reports of clusters have appeared in the literature, raising the suspicion that brain cancer may be a professional disease of interventional cardiologists. In addition, although terminally differentiated neurons have reduced or mild proliferative capacity, and are therefore not regarded as critical radiation targets, adult neurogenesis occurs in the dentate gyrus of the hippocampus and the olfactory bulb, and is important for mood, learning/memory and normal olfactory function, whose impairment is a recognized early biomarker of neurodegenerative diseases. The head doses involved in radiotherapy are high, usually above 2 Sv, whereas the low-dose range of professional exposure typically involves lifetime cumulative whole-body exposure in the low-dose range of Conclusions At this point, a systematic assessment of brain (cancer and non-cancer effects of chronic low-dose radiation exposure in interventional cardiologists and staff is needed.

  10. Monitoring stroke progression: in vivo imaging of cortical perfusion, blood-brain barrier permeability and cellular damage in the rat photothrombosis model.

    Science.gov (United States)

    Schoknecht, Karl; Prager, Ofer; Vazana, Udi; Kamintsky, Lyn; Harhausen, Denise; Zille, Marietta; Figge, Lena; Chassidim, Yoash; Schellenberger, Eyk; Kovács, Richard; Heinemann, Uwe; Friedman, Alon

    2014-11-01

    Focal cerebral ischemia is among the main causes of death and disability worldwide. The ischemic core often progresses, invading the peri-ischemic brain; however, assessing the propensity of the peri-ischemic brain to undergo secondary damage, understanding the underlying mechanisms, and adjusting treatment accordingly remain clinically unmet challenges. A significant hallmark of the peri-ischemic brain is dysfunction of the blood-brain barrier (BBB), yet the role of disturbed vascular permeability in stroke progression is unclear. Here we describe a longitudinal in vivo fluorescence imaging approach for the evaluation of cortical perfusion, BBB dysfunction, free radical formation and cellular injury using the photothrombosis vascular occlusion model in male Sprague Dawley rats. Blood-brain barrier dysfunction propagated within the peri-ischemic brain in the first hours after photothrombosis and was associated with free radical formation and cellular injury. Inhibiting free radical signaling significantly reduced progressive cellular damage after photothrombosis, with no significant effect on blood flow and BBB permeability. Our approach allows a dynamic follow-up of cellular events and their response to therapeutics in the acutely injured cerebral cortex.

  11. Processing of visual gravitational motion in the peri-sylvian cortex: Evidence from brain-damaged patients.

    Science.gov (United States)

    Maffei, Vincenzo; Mazzarella, Elisabetta; Piras, Fabrizio; Spalletta, Gianfranco; Caltagirone, Carlo; Lacquaniti, Francesco; Daprati, Elena

    2016-05-01

    Rich behavioral evidence indicates that the brain estimates the visual direction and acceleration of gravity quite accurately, and the underlying mechanisms have begun to be unraveled. While the neuroanatomical substrates of gravity direction processing have been studied extensively in brain-damaged patients, to our knowledge no such study exists for the processing of visual gravitational motion. Here we asked 31 stroke patients to intercept a virtual ball moving along the vertical under either natural gravity or artificial reversed gravity. Twenty-seven of them also aligned a luminous bar to the vertical direction (subjective visual vertical, SVV). Using voxel-based lesion-symptom mapping as well as lesion subtraction analysis, we found that lesions mainly centered on the posterior insula are associated with greater deviations of SVV, consistent with several previous studies. Instead, lesions mainly centered on the parietal operculum decrease the ability to discriminate natural from unnatural gravitational acceleration with a timed motor response in the interception task. Both the posterior insula and the parietal operculum belong to the vestibular cortex, and presumably receive multisensory information about the gravity vector. We speculate that an internal model estimating the effects of gravity on visual objects is constructed by transforming the vestibular estimates of mechanical gravity, which are computed in the brainstem and cerebellum, into internalized estimates of virtual gravity, which are stored in the cortical vestibular network. The present lesion data suggest a specific role for the parietal operculum in detecting the mismatch between predictive signals from the internal model and the online visual signals. PMID:27007069

  12. Pre-ischemic treadmill training alleviates brain damage via GLT-1-mediated signal pathway after ischemic stroke in rats.

    Science.gov (United States)

    Wang, X; Zhang, M; Yang, S-D; Li, W-B; Ren, S-Q; Zhang, J; Zhang, F

    2014-08-22

    Physical exercise could play a neuroprotective role in both human and animals. However, the involved signal pathways underlying the neuroprotective effect are still not well established. This study was to investigate the possible signal pathways involved in the neuroprotection of pre-ischemic treadmill training after ischemic stroke. Seventy-two SD rats were randomly assigned into three groups (n=24/group): sham surgery group, middle cerebral artery occlusion (MCAO) group and MCAO with exercise group. Following three weeks of treadmill training exercise, ischemic stroke was induced by occluding the middle cerebral artery (MCA) in rat for 2 h, followed by reperfusion. Twenty-four hours after MCAO/reperfusion, 12 rats in each group were evaluated for neurological deficit scores and then sacrificed to measure the infarct volume (n=6) and cerebral edema (n=6). Six rats in each group were sacrificed to measure the expression level of glutamate transporter-1 (GLT-1), protein kinase C-α (PKC-α), Akt, and phosphatidylinositol 3 kinase (PI3K) (n=6). Two hundred and eighty minutes (4.67 h) after occlusion, six rats in each group were decapitated to detect the mRNA expression level of metabotropic glutamate receptor 5 (mGluR5) and N-methyl-D-aspartate receptor subunit type 2B (NR2B) (n=6).The results demonstrated that pre-ischemic treadmill training exercise reduced brain infarct volume, cerebral edema and neurological deficits, also decreased the over expression of PKC-α and increased the expression level of GLT-1, Akt and PI3K after ischemic stroke (pexercise (pexercise preconditioning ameliorated brain damage after ischemic stroke, which might be involved in two signal pathways: PKC-α-GLT-1-Glutamate and PI3K/Akt-GLT-1-Glutamate. PMID:24907601

  13. Willed-movement training reduces brain damage and enhances synaptic plasticity related proteins synthesis after focal ischemia.

    Science.gov (United States)

    Nie, Jingjing; Yang, Xiaosu; Tang, Qingping; Shen, Qin; Li, Simin

    2016-01-01

    It has been wildly accepted that willed movement(WM) training promotes neurological rehabilitation in patients with stroke. However, it was not clear whether the effect of WM is better than other forms of exercise. The purpose of this study is to assess different effects of WM and other forms of exercise on rats with focal ischemia. The subjects are all had right middle cerebral artery occlusion (MCAO) surgery and randomly allocated to three groups of training and one control group with no training. Infarct volume by 2,3,5-triphenyltetrazolium chloride (TTC) dye, expression of PICK1 and synaptophysin in cerebral cortex and striatum of injured side by western blotting and immunofluorescence performed are analyzed. Exercise has done respectively on rats in each group for 15 days and 30 days. Compared with the control group, the brain damage is reduced in other groups after 15 days exercise. The protein expressions levels of synaptophysin and PICK1 are upregulated after exercise. Concentration of PICK1 protein in WM is greater than other exercise groups, and the expression of synaptophysin in WM and SM groups are higher than EM groups. The number of PICK1 positive cells, synaptophysin and PICK1 co-positive cells are increased by exercise. Synaptophysin is widely distributed in cortex surrounding the injury area in WM and EM. It is indicated in our result that willed-movement training is the most effective intervention in enhancing the PICK1-mediated synaptic plasticity in the area adjacent to the damage region of ischemic rats. PMID:26556240

  14. Neurobehavioral impairments, generation of oxidative stress and release of pro-apoptotic factors after chronic exposure to sulphur mustard in mouse brain

    International Nuclear Information System (INIS)

    Recent global events have focused attention on the potential threat of international and domestic chemical terrorism, as well as the possibility of chemical warfare proliferation. Sulphur mustard (SM) is one of the potent chemical warfare agents (CWA), which initiates a cascade of events that converge on the redox mechanisms common to brain injury. The present study was designed to examine the effects of chronic SM exposure on neurobehavioral impairments, mitochondrial oxidative stress in male Swiss Albino mice and its role in inducing apoptotic neuronal cell death. The animals were divided into four groups (control, low, medium and high dose) of 5 animals each. Exposure to SM was given percutaneously daily for 12 weeks. The results demonstrated impairment in neurobehavioral indices viz. rota rod, passive avoidance and water maze tests in a dose dependent manner. There was a significant increase in lipid peroxidation and protein carbonyl content whereas, decrease in the activity of manganese superoxide dismutase (MnSOD), glutathione reductase and glutathione peroxidase suggesting impaired antioxidant defense system. Immunoblotting of cytochrome c, Bcl-2, Bax and activation of caspase-3 suggest induction of apoptosis in a dose dependent manner. Finally, increased p53 expression suggests that it may target the mitochondrial pathway for inducing apoptosis in response to DNA damage signals. In conclusion, chronic SM exposure may have the potential to generate oxidative stress which may trigger the release of cytochrome c as well as caspase-3 activation in neurons leading to cell death by apoptosis in a dose dependent manner which may in the end be responsible for the disruption of cognitive functions in mice.

  15. The impact of acquired brain damage in terms of epidemiology, economics and loss in quality of life

    Directory of Open Access Journals (Sweden)

    Larrañaga Isabel

    2011-04-01

    Full Text Available Abstract Background Patients with acquired brain damage (ABD have suffered a brain lesion that interrupts vital development in the physical, psychological and social spheres. Stroke and traumatic brain injury (TBI are the two main causes. The objectives of this study were to estimate the incidence and prevalence of ABD in the population of the Basque Country and Navarre in 2008, to calculate the associated cost of the care required and finally to assess the loss in health-related quality of life. Methods On the one hand, a cross-sectional survey was carried out, in order to estimate the incidence of ABD and its consequences in terms of costs and loss in quality of life from the evolution of a sample of patients diagnosed with stroke and TBI. On the other hand, a discrete event simulation model was built that enabled the prevalence of ABD to be estimated. Finally, a calculation was made of the formal and informal costs of ABD in the population of the Basque Country and Navarre (2,750,000 people. Results The cross-sectional study showed that the incidences of ABD caused by stroke and TBI were 61.8 and 12.5 cases per 100,000 per year respectively, while the overall prevalence was 657 cases per 100,000 people. The SF-36 physical and mental component scores were 28.9 and 44.5 respectively. The total economic burden was calculated to be 382.14 million euro per year, distributed between 215.27 and 166.87 of formal and informal burden respectively. The average cost per individual was 21,040 € per year. Conclusions The main conclusion of this study is that ABD has a high impact in both epidemiological and economic terms as well as loss in quality of life. The overall prevalence obtained is equivalent to 0.7% of the total population. The substantial economic burden is distributed nearly evenly between formal and informal costs. Specifically, it was found that the physical dimensions of quality of life are the most severely affected. The prevalence

  16. Effects of an acute and a sub-chronic 900 MHz GSM exposure on brain activity and behaviors of rats

    Energy Technology Data Exchange (ETDEWEB)

    Elsa Brillaud; Aleksandra Piotrowski; Anthony Lecomte; Franck Robidel; Rene de Seze [Toxicology Unit, INERIS, Verneuil en Halatte (France)

    2006-07-01

    Radio frequencies are suspected to produce health effects. Concerning the mobile phone technology, according to position during use (close to the head), possible effects of radio frequencies on the central nervous system have to be evaluated. Previous works showed contradictory results, possibly due to experimental design diversity. In the framework of R.A.M.P. 2001 project, we evaluated possible effect of a 900 MHz GSM exposure on the central nervous system of rat at a structural, a functional and a behavioral level after acute or sub-chronic exposures. Rats were exposed using a loop antenna system to different S.A.R. levels and durations, according to results of the French C.O.M.O.B.I.O. 2001 project. A functional effect was found (modification of the cerebral activity and increase of the glia surface) after an acute exposure, even at a low level of brain averaged S.A.R. (1.5 W/kg). No cumulative effect was observed after a sub-chronic exposure (same amplitude of the effect). No structural or behavioral consequence was noted. We do not conclude on the neurotoxicity of the 900 MHz GSM exposure on the rat brain. Our results do not indicate any health risk. (authors)

  17. Differences in brain structure in patients with distinct sites of chronic pain A voxel-based morphometric analysis

    Institute of Scientific and Technical Information of China (English)

    Cuiping Mao; Longxiao Wei; Qiuli Zhang; Xia Liao; Xiaoli Yang; Ming Zhang

    2013-01-01

    A reduction in gray matter volume is common in patients with chronic back pain, and different types of pain are associated with gray matter abnormalities in distinct brain regions. To examine ences in brain morphology in patients with low back pain or neck and upper back pain, we gated changes in gray matter volume in chronic back pain patients having different sites of pain using voxel-based morphometry. A reduction in cortical gray matter volume was found primarily in the left postcentral gyrus and in the left precuneus and bilateral cuneal cortex of patients with low back pain. In these patients, there was an increase in subcortical gray matter volume in the bilateral putamen and accumbens, right pal idum, right caudate nucleus, and left amygdala. In upper back pain patients, reduced cortical gray matter volume was found in the left precentral and left tral cortices. Our findings suggest that regional gray matter volume abnormalities in low back pain patients are more extensive than in upper back pain patients. Subcortical gray matter volume in-creases are found only in patients with low back pain.

  18. Region-specific up-regulation of oxytocin receptor binding in the brain of mice following chronic nicotine administration.

    Science.gov (United States)

    Zanos, Panos; Georgiou, Polymnia; Metaxas, Athanasios; Kitchen, Ian; Winsky-Sommerer, Raphaelle; Bailey, Alexis

    2015-07-23

    Nicotine addiction is considered to be the main preventable cause of death worldwide. While growing evidence indicates that the neurohypophysial peptide oxytocin can modulate the addictive properties of several abused drugs, the regulation of the oxytocinergic system following nicotine administration has so far received little attention. Here, we examined the effects of long-term nicotine or saline administration on the central oxytocinergic system using [(125)I]OVTA autoradiographic binding in mouse brain. Male, 7-week old C57BL6J mice were treated with either nicotine (7.8 mg/kg daily; rate of 0.5 μl per hour) or saline for a period of 14-days via osmotic minipumps. Chronic nicotine administration induced a marked region-specific upregulation of the oxytocin receptor binding in the amygdala, a brain region involved in stress and emotional regulation. These results provide direct evidence for nicotine-induced neuroadaptations in the oxytocinergic system, which may be involved in the modulation of nicotine-seeking as well as emotional consequence of chronic drug use. PMID:26037668

  19. Knockdown of microRNA-195 contributes to protein phosphatase-2A inactivation in rats with chronic brain hypoperfusion.

    Science.gov (United States)

    Liu, Cheng-Di; Wang, Qin; Zong, De-Kang; Pei, Shuang-Chao; Yan, Yan; Yan, Mei-Ling; Sun, Lin-Lin; Hao, Yang-Yang; Mao, Meng; Xing, Wen-Jing; Ren, Huan; Ai, Jing

    2016-09-01

    Reduction of protein phosphatase-2A (PP2A) activity is a common clinical feature of Alzheimer's disease and vascular dementia. In this study, we observed that chronic brain hypoperfusion induced by bilateral common carotid artery occlusion of rats led to PP2A inactivation based on the increase in tyrosine-307 phosphorylation and leucine-309 demethylation of PP2AC and the depression in PP2ABα. Knockdown of miR-195 using overexpression of its antisense molecule oligonucleotide (pre-AMO-miR-195) delivered by a lentivirus (lenti-pre-AMO-miR-195) increased tyrosine-307 phosphorylation and decreased both PP2ABα expression and leucine-309 methylation; these effects were prevented by the overexpression of miR-195 using lenti-pre-miR-195 and controlled by an increase in methylesterase (PME-1) and a decrease in leucine carboxyl methyltransferase-1. In vitro studies demonstrated that miR-195 regulated PME-1 expression by binding to the Ppme1 gene 3'-untranslated region (3'UTR) domain. Masking the miR-195 binding sites in the amyloid precursor protein (APP) and β-site APP cleaving enzyme 1 genes prevented miR-195-induced leucine carboxyl methyltransferase-1 elevation. We concluded that the miR-195 downregulation in chronic brain hypoperfusion involved PP2A inactivity, which was mediated by the post-transcriptional regulation PME-1, APP, and β-site APP cleaving enzyme 1 expression. PMID:27459928

  20. Interaction of Metabolic Stress with Chronic Mild Stress in Altering Brain Cytokines and Sucrose Preference

    OpenAIRE

    Remus, Jennifer L.; Stewart, Luke T.; Camp, Robert M.; Novak, Colleen M.; Johnson, John D.

    2015-01-01

    There is growing evidence that metabolic stressors increase an organism’s risk of depression. Chronic mild stress is a popular animal model of depression and several serendipitous findings have suggested that food deprivation prior to sucrose testing in this model is necessary to observe anhedonic behaviors. Here, we directly tested this hypothesis by exposing animals to chronic mild stress and used an overnight two bottle sucrose test (food ad libitum) on day 5 and 10, then food and water de...

  1. Effects of alcohol intake on brain structure and function in non-alcohol-dependent drinkers

    OpenAIRE

    Bruin, Eveline Astrid de

    2005-01-01

    About 85% of the adult population in the Netherlands regularly drinks alcohol. Chronic excessive alcohol intake in alcohol-dependent individuals is known to have damaging effects on brain structure and function. Relatives of alcohol-dependent individuals display differences in brain function that are similar to those found in alcoholics, even if they have never been drinking alcohol. This suggests that brain damage in alcohol-dependent individuals is at least partly related to genetic factors...

  2. Theory of mind mediates the prospective relationship between abnormal social brain network morphology and chronic behavior problems after pediatric traumatic brain injury.

    Science.gov (United States)

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Crossley, Louise; Beauchamp, Miriam H; Yeates, Keith Owen; Anderson, Vicki A

    2016-04-01

    Childhood and adolescence coincide with rapid maturation and synaptic reorganization of distributed neural networks that underlie complex cognitive-affective behaviors. These regions, referred to collectively as the 'social brain network' (SBN) are commonly vulnerable to disruption from pediatric traumatic brain injury (TBI); however, the mechanisms that link morphological changes in the SBN to behavior problems in this population remain unclear. In 98 children and adolescents with mild to severe TBI, we acquired 3D T1-weighted MRIs at 2-8 weeks post-injury. For comparison, 33 typically developing controls of similar age, sex and education were scanned. All participants were assessed on measures of Theory of Mind (ToM) at 6 months post-injury and parents provided ratings of behavior problems at 24-months post-injury. Severe TBI was associated with volumetric reductions in the overall SBN package, as well as regional gray matter structural change in multiple component regions of the SBN. When compared with TD controls and children with milder injuries, the severe TBI group had significantly poorer ToM, which was associated with more frequent behavior problems and abnormal SBN morphology. Mediation analysis indicated that impaired theory of mind mediated the prospective relationship between abnormal SBN morphology and more frequent chronic behavior problems. Our findings suggest that sub-acute alterations in SBN morphology indirectly contribute to long-term behavior problems via their influence on ToM. Volumetric change in the SBN and its putative hub regions may represent useful imaging biomarkers for prediction of post-acute social cognitive impairment, which may in turn elevate risk for chronic behavior problems. PMID:26796967

  3. Theory of mind mediates the prospective relationship between abnormal social brain network morphology and chronic behavior problems after pediatric traumatic brain injury.

    Science.gov (United States)

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Crossley, Louise; Beauchamp, Miriam H; Yeates, Keith Owen; Anderson, Vicki A

    2016-04-01

    Childhood and adolescence coincide with rapid maturation and synaptic reorganization of distributed neural networks that underlie complex cognitive-affective behaviors. These regions, referred to collectively as the 'social brain network' (SBN) are commonly vulnerable to disruption from pediatric traumatic brain injury (TBI); however, the mechanisms that link morphological changes in the SBN to behavior problems in this population remain unclear. In 98 children and adolescents with mild to severe TBI, we acquired 3D T1-weighted MRIs at 2-8 weeks post-injury. For comparison, 33 typically developing controls of similar age, sex and education were scanned. All participants were assessed on measures of Theory of Mind (ToM) at 6 months post-injury and parents provided ratings of behavior problems at 24-months post-injury. Severe TBI was associated with volumetric reductions in the overall SBN package, as well as regional gray matter structural change in multiple component regions of the SBN. When compared with TD controls and children with milder injuries, the severe TBI group had significantly poorer ToM, which was associated with more frequent behavior problems and abnormal SBN morphology. Mediation analysis indicated that impaired theory of mind mediated the prospective relationship between abnormal SBN morphology and more frequent chronic behavior problems. Our findings suggest that sub-acute alterations in SBN morphology indirectly contribute to long-term behavior problems via their influence on ToM. Volumetric change in the SBN and its putative hub regions may represent useful imaging biomarkers for prediction of post-acute social cognitive impairment, which may in turn elevate risk for chronic behavior problems.

  4. Dapsone improves functional deficit and diminishes brain damage evaluated by 3-Tesla magnetic resonance image after transient cerebral ischemia and reperfusion in rats.

    Science.gov (United States)

    Diaz-Ruiz, Araceli; Roldan-Valadez, Ernesto; Ortiz-Plata, Alma; Mondragón-Lozano, Rodrigo; Heras-Romero, Yessica; Mendez-Armenta, Marisela; Osorio-Rico, Laura; Nava-Ruiz, Concepción; Ríos, Camilo

    2016-09-01

    Stroke is a frequent cause of death and the first of disability in the world population. We have shown that dapsone acts as an antioxidant, antiinflammatory and antiapoptotic agent after brain Ischemia reperfusion (I/R) in rats; however, its therapeutic efficacy, measured by imaging has not been characterized. In this context, the aim of this study was to evaluate the neuroprotective effect of dapsone by magnetic resonance imaging (MRI) and to correlate imaging markers with motor function and oxidative stress after transient cerebral ischemia and reperfusion (I/R). We used male rats throughout the experiment. Functional deficit after I/R was assessed by using Longa scale. The area of brain tissue damage was measured by histology. The nuclear factor erythroid 2-related factor 2 (Nrf-2) and the amount of reactive oxygen species (ROS) were measured as biomarkers of oxidative stress. Finally, difussion tensor MRI was employed to measure the fractional anisotropy (FA), as a MRI marker of the pathophysiologic brain status. Results showed a better functional recovery and less damaged tissue in animals treated with dapsone vs control group. The values of FA were higher in animals receiving treatment, indicating a better preservation of brain structure. At early stages of the damage, dapsone was able to reduce both oxidative markers (Nrf-2 and ROS). Our findings provide new evidence for the efficacy of dapsone when administered during the acute phase after I/R and that quantitative sequences of MRI are useful for characterizing its potential therapeutic benefits after stroke. PMID:27321157

  5. Protective Effect of Calendula officinalis L. Flowers Against Monosodium Glutamate Induced Oxidative Stress and Excitotoxic Brain Damage in Rats.

    Science.gov (United States)

    Shivasharan, B D; Nagakannan, P; Thippeswamy, B S; Veerapur, V P

    2013-07-01

    Monosodium glutamate (MSG) is a popular flavour enhancer used in food industries; however, excess MSG is neurotoxic. Oxidative stress is well documented in MSG induced neurotoxicity. The compounds having antioxidant and anti-inflammatory properties reportedly possess beneficial effects against various neurotoxic insults. Calendula officinalis Linn. flower extract (COE) is known for its potent antioxidant and anti-inflammatory activities. Hence, this present study has been designed to evaluate the neuroprotective effect of COE on MSG-induced neurotoxicity in rats. Adult Wistar rats were administered systemically for 7 days with MSG and after one h of MSG injection, rats were treated with COE (100 and 200 mg/kg) orally. At the end the treatment period, animals were assessed for locomotor activity and were sacrificed; brains were isolated for estimation of LPO, GSH, CAT, TT, GST, Nitrite and histopathological studies. MSG caused a significant alteration in animal behavior, oxidative defense (raised levels of LPO, nitrite concentration, depletion of antioxidant levels) and hippocampal neuronal histology. Treatment with COE significantly attenuated behavioral alterations, oxidative stress, and hippocampal damage in MSG-treated animals. Hence, this study demonstrates that COE protects against MSG-induced neurotoxicity in rats. The antioxidant and anti-inflammatory properties of COE may be responsible for its observed neuroprotective action. PMID:24426226

  6. Protein kinase C inhibition attenuates vascular ETB receptor upregulation and decreases brain damage after cerebral ischemia in rat

    Directory of Open Access Journals (Sweden)

    Vikman Petter

    2007-01-01

    Full Text Available Abstract Background Protein kinase C (PKC is known to be involved in the pathophysiology of experimental cerebral ischemia. We have previously shown that after transient middle cerebral artery occlusion, there is an upregulation of endothelin receptors in the ipsilateral middle cerebral artery. The present study aimed to examine the effect of the PKC inhibitor Ro-32-0432 on endothelin receptor upregulation, infarct volume and neurology outcome after middle cerebral artery occlusion in rat. Results At 24 hours after transient middle cerebral artery occlusion (MCAO, the contractile endothelin B receptor mediated response and the endothelin B receptor protein expression were upregulated in the ipsilateral but not the contralateral middle cerebral artery. In Ro-32-0432 treated rats, the upregulated endothelin receptor response was attenuated. Furthermore, Ro-32-0432 treatment decreased the ischemic brain damage significantly and improved neurological scores. Immunohistochemistry showed fainter staining of endothelin B receptor protein in the smooth muscle cells of the ipsilateral middle cerebral artery of Ro-32-0432 treated rats compared to control. Conclusion The results suggest that treatment with Ro-32-0432 in ischemic stroke decreases the ischemic infarction area, neurological symptoms and associated endothelin B receptor upregulation. This provides a new perspective on possible mechanisms of actions of PKC inhibition in cerebral ischemia.

  7. New light on white matter damage of the premature brain: a neonatologist’s point of view

    Directory of Open Access Journals (Sweden)

    Maria Antonietta Marcialis

    2014-06-01

    Full Text Available Periventricular leucomalacia (PVL is traditionally considered a multifactorial lesion related to three main mechanisms: ischemia, inflammation and excitotoxicity. For years it was believed that hypoperfusion, associated with the peculiar vascular anatomy of the premature brain (border zones, was the conditio sine qua non in the pathogenesis of PVL. More recently this theory has been questioned. Many studies have stressed the importance of the association between inflammation/infection and white matter injury and have supported the multi hit hypothesis according to which several (genetic, hormonal, immune and nutritional factors may team up in a multi-hit fashion. The emerging concept is that the fetal white cell activation together with the interaction between the innate and adaptive immune system play a main role in white matter damage. Currently there are increasing evidence that PVL is a disease of connectivity. In this article we review the news in the basics of pathogenesis, the incidence, the definition and the diagnosis of PVL. Furthermore, recent follow-up studies and neuroprotective therapies are mentioned. Proceedings of the International Course on Perinatal Pathology (part of the 10th International Workshop on Neonatology · October 22nd-25th, 2014 · Cagliari (Italy · October 25th, 2014 · The role of the clinical pathological dialogue in problem solving Guest Editors: Gavino Faa, Vassilios Fanos, Peter Van Eyken

  8. Chronic treatment with fibrates elevates superoxide dismutase in adult mouse brain microvessels

    OpenAIRE

    Wang, Guangming; Liu, Xiaowei; Guo, Qingmin; Namura, Shobu

    2010-01-01

    Fibrates are activators of peroxisome proliferator-activated receptor (PPAR) α. Pretreatment with fibrates has been shown to protect brain against ischemia in mice. We hypothesized that fibrates elevate superoxide dismutase (SOD) levels in the brain microvessels (BMV). BMV were isolated from male C57BL/6 and PPARα null mice that had been treated with fenofibrate or gemfibrozil for 7 days. To examine the effect of discontinuation of fenofibrate, another animal group treated with fenofibrate wa...

  9. Effects of chronic delta-9-tetrahydrocannabinol (THC) administration on neurotransmitter concentrations and receptor binding in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S.F.; Newport, G.D.; Scallet, A.C.; Gee, K.W.; Paule, M.G.; Brown, R.M.; Slikker, W. Jr. (National Center for Toxicological Research, Jefferson, Arkansas (USA))

    THC is the major psychoactive constituent of marijuana and is also known as an hallucinogenic compound. Numerous reports have shown that large doses of THC produce significant alterations in various neurotransmitter systems. The present study was designed to determine whether chronic exposure to THC produces significant alterations in selected neurotransmitter systems (dopamine, serotonin, acetylcholine, GABAergic, benzodiazepine, and opiate) in the rat brain. In Experiment 1, male Sprague-Dawley rats were gavaged with vehicle, 10 or 20 mg THC/kg body weight daily, 5 days/week for 90 days. Animals were killed either 24 hours or two months after the last dose. Brains were dissected into different regions for neurochemical analyses. Two months after the cessation of chronic administration, there was a significant decrease in GABA receptor binding in the hippocampus of animals in the high dose group. However, no other significant changes were found in neurotransmitter receptor binding characteristics in the hippocampus or in neurotransmitter concentrations in the caudate nucleus, hypothalamus or septum after chronic THC administration. In an attempt to replicate the GABA receptor binding changes and also to determine the (35S)TBPS binding in hippocampus, we designed Experiment 2. In this experiment, we dosed the animals by gavage with 0, 5, 10 or 20 mg THC/kg daily, 5 days/week or with 20 mg THC/kg Monday through Thursday and 60 mg/kg on Friday for 90 days. Results from this experiment failed to replicate the dose-dependent effect of THC on GABA receptor binding in hippocampus. Modulation of (35S)TBPS binding by GABA or 3 alpha-OH-DHP or inhibition by cold TBPS in frontal cortex did not show any significant dose-related effects.

  10. Effects of chronic delta-9-tetrahydrocannabinol (THC) administration on neurotransmitter concentrations and receptor binding in the rat brain

    International Nuclear Information System (INIS)

    THC is the major psychoactive constituent of marijuana and is also known as an hallucinogenic compound. Numerous reports have shown that large doses of THC produce significant alterations in various neurotransmitter systems. The present study was designed to determine whether chronic exposure to THC produces significant alterations in selected neurotransmitter systems (dopamine, serotonin, acetylcholine, GABAergic, benzodiazepine, and opiate) in the rat brain. In Experiment 1, male Sprague-Dawley rats were gavaged with vehicle, 10 or 20 mg THC/kg body weight daily, 5 days/week for 90 days. Animals were killed either 24 hours or two months after the last dose. Brains were dissected into different regions for neurochemical analyses. Two months after the cessation of chronic administration, there was a significant decrease in GABA receptor binding in the hippocampus of animals in the high dose group. However, no other significant changes were found in neurotransmitter receptor binding characteristics in the hippocampus or in neurotransmitter concentrations in the caudate nucleus, hypothalamus or septum after chronic THC administration. In an attempt to replicate the GABA receptor binding changes and also to determine the [35S]TBPS binding in hippocampus, we designed Experiment 2. In this experiment, we dosed the animals by gavage with 0, 5, 10 or 20 mg THC/kg daily, 5 days/week or with 20 mg THC/kg Monday through Thursday and 60 mg/kg on Friday for 90 days. Results from this experiment failed to replicate the dose-dependent effect of THC on GABA receptor binding in hippocampus. Modulation of [35S]TBPS binding by GABA or 3 alpha-OH-DHP or inhibition by cold TBPS in frontal cortex did not show any significant dose-related effects

  11. Amphetamine and pseudoephedrine cross-tolerance measured by c-Fos protein expression in brains of chronically treated rats

    Directory of Open Access Journals (Sweden)

    Casalotti Stefano O

    2008-10-01

    Full Text Available Abstract Background Pseudoephedrine is a drug commonly prescribed as a nasal decongestant and bronchodilator and is also freely available in cold remedies and medications. The structural and pharmacological similarity of pseudoephedrine to amphetamine has led to evaluation of its psychomotor stimulant properties within the central nervous system. Previous investigations have shown that the acute responses to pseudoephedrine were similar to those of amphetamine and other psychostimulants. Results This study examined the effect of chronic administration of pseudoephedrine in rat nucleus accumbens and striatum and identified three further similarities to amphetamine. (i Chronic exposure to pseudoephedrine reduced the c-Fos response to acute pseudoephedrine treatment suggesting that pseudoephedrine induced tolerance in the animals. (ii In animals chronically treated with amphetamine or pseudoephedrine the acute c-Fos response to pseudoephedrine and amphetamine was reduced respectively as compared to naïve animals indicating cross-tolerance for the two drugs. (iiiThe known involvement of the dopamine system in the response to amphetamine and pseudoephedrine was further confirmed in this study by demonstrating that pseudoephedrine similarly to amphetamine, but with lower potency, inhibited [3H]dopamine uptake in synaptosomal preparations. Conclusion This work has demonstrated further similarities of the effect of pseudoephedrine to those of amphetamine in brain areas known to be associated with drug addiction. The most significant result presented here is the cross tolerance effect of amphetamine and psudoephedrine. This suggests that both drugs induce similar mechanisms of action in the brain. Further studies are required to establish whether despite its considerable lower potency, pseudoephedrine could pose health and addiction risks in humans similar to that of known psychostimulants.

  12. Alterations of cerebral blood flow and cerebrovascular reserve in patients with chronic traumatic brain injury accompanying deteriorated intelligence

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate alterations of regional cerbral blood flow (CBF) and cerebrovascular reserve (CVR), and correlation between these alternations and cognitive dysfunctin in patients with chronic traumatic brain injury (TBI) and normal brain MRI findings. Thirty TBI patients and 19 healthy volunteers underwent rest/acetazolaminde brain SPECT using Tc-99m HMPAO. Korean-Wechsler Adult Intelligence scale test was also performed in the patient group. Statistical analysis was performed with statistical parametric mapping software (SPM '97). CBF was diminished in the left hemisphere including Wernicke's area in all patients with lower verbal scale scores. In addition, a reduction in CBF in the right frontal, temporal and parietal cortices was related with depressed scores in information, digital span, arithmetic and similarities. In patients with lower performance scale scores, CBF was mainly diminished in the right hemisphere including superior temporal and supramarginal gyri, premotor, primary somatomotor and a part of prefrontal cortices, left frontal lobe and supramarginal gyrus. CVR was diminished in sixty-four Brodmann's areas compared to control. A reduction in CVR was demonstrated bilaterally in the frontal and temporal lobes in patients with lower scores in both verbal and performance tests, and in addition, both inferior parietal and occipital lobes in information subset. Alterations of CBF and CVR were demonstrated in the symptomatic TBI patients with normal MRI finding. These alterations were correlated with the change of intelligence, of which the complex functions are subserved by multiple interconnected cortical structures.=20

  13. Validation of housekeeping genes in the brains of rats submitted to chronic intermittent hypoxia, a sleep apnea model.

    Science.gov (United States)

    Julian, Guilherme Silva; de Oliveira, Renato Watanabe; Perry, Juliana Cini; Tufik, Sergio; Chagas, Jair Ribeiro

    2014-01-01

    Obstructive sleep apnea (OSA) is a syndrome characterized by intermittent nocturnal hypoxia, sleep fragmentation, hypercapnia and respiratory effort, and it has been associated with several complications, such as diabetes, hypertension and obesity. Quantitative real-time PCR has been performed in previous OSA-related studies; however, these studies were not validated using proper reference genes. We have examined the effects of chronic intermittent hypoxia (CIH), which is an experimental model mainly of cardiovascular consequences of OSA, on reference genes, including beta-actin, beta-2-microglobulin, glyceraldehyde-3-phosphate dehydrogenase, hypoxanthine guanine phosphoribosyl transferase and eukaryotic 18S rRNA, in different areas of the brain. All stability analyses were performed using the geNorm, Normfinder and BestKeeper software programs. With exception of the 18S rRNA, all of the evaluated genes were shown to be stable following CIH exposure. However, gene stability rankings were dependent on the area of the brain that was analyzed and varied according to the software that was used. This study demonstrated that CIH affects various brain structures differently. With the exception of the 18S rRNA, all of the tested genes are suitable for use as housekeeping genes in expression analyses.

  14. Validation of housekeeping genes in the brains of rats submitted to chronic intermittent hypoxia, a sleep apnea model.

    Directory of Open Access Journals (Sweden)

    Guilherme Silva Julian

    Full Text Available Obstructive sleep apnea (OSA is a syndrome characterized by intermittent nocturnal hypoxia, sleep fragmentation, hypercapnia and respiratory effort, and it has been associated with several complications, such as diabetes, hypertension and obesity. Quantitative real-time PCR has been performed in previous OSA-related studies; however, these studies were not validated using proper reference genes. We have examined the effects of chronic intermittent hypoxia (CIH, which is an experimental model mainly of cardiovascular consequences of OSA, on reference genes, including beta-actin, beta-2-microglobulin, glyceraldehyde-3-phosphate dehydrogenase, hypoxanthine guanine phosphoribosyl transferase and eukaryotic 18S rRNA, in different areas of the brain. All stability analyses were performed using the geNorm, Normfinder and BestKeeper software programs. With exception of the 18S rRNA, all of the evaluated genes were shown to be stable following CIH exposure. However, gene stability rankings were dependent on the area of the brain that was analyzed and varied according to the software that was used. This study demonstrated that CIH affects various brain structures differently. With the exception of the 18S rRNA, all of the tested genes are suitable for use as housekeeping genes in expression analyses.

  15. Validation of Housekeeping Genes in the Brains of Rats Submitted to Chronic Intermittent Hypoxia, a Sleep Apnea Model

    Science.gov (United States)

    Julian, Guilherme Silva; de Oliveira, Renato Watanabe; Perry, Juliana Cini; Tufik, Sergio; Chagas, Jair Ribeiro

    2014-01-01

    Obstructive sleep apnea (OSA) is a syndrome characterized by intermittent nocturnal hypoxia, sleep fragmentation, hypercapnia and respiratory effort, and it has been associated with several complications, such as diabetes, hypertension and obesity. Quantitative real-time PCR has been performed in previous OSA-related studies; however, these studies were not validated using proper reference genes. We have examined the effects of chronic intermittent hypoxia (CIH), which is an experimental model mainly of cardiovascular consequences of OSA, on reference genes, including beta-actin, beta-2-microglobulin, glyceraldehyde-3-phosphate dehydrogenase, hypoxanthine guanine phosphoribosyl transferase and eukaryotic 18S rRNA, in different areas of the brain. All stability analyses were performed using the geNorm, Normfinder and BestKeeper software programs. With exception of the 18S rRNA, all of the evaluated genes were shown to be stable following CIH exposure. However, gene stability rankings were dependent on the area of the brain that was analyzed and varied according to the software that was used. This study demonstrated that CIH affects various brain structures differently. With the exception of the 18S rRNA, all of the tested genes are suitable for use as housekeeping genes in expression analyses. PMID:25289636

  16. [The cognitive disorders and raised free-radical activity of a brain of posterity of rats-females with experimental chronic alcoholic pathology of a liver].

    Science.gov (United States)

    Vakhnin, V A; Brukhin, G V

    2014-01-01

    It is established, that chronic alcoholic defeat of hepatobiliarity sistems leads to infringement of cognitive functions at posterity. At the given group of animals revealed distress of memory and ability to orientation in space in the conditions of Morris water maze is, the research behavior is oppressed. Besides, the animals, born from mothers with chronic alcoholic defeat of hepatobiliarity systems have raised free-radical activity, which plays an important role in maintenance of adaptive possibilities of a brain.

  17. MRI of fetal acquired brain lesions

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Department of Radiodiagnostics, Medical University of Vienna (Austria)]. E-mail: daniela.prayer@meduniwien.ac.at; Brugger, Peter C. [Center of Anatomy and Cell Biology, Medical University of Vienna (Austria); Kasprian, Gregor [Department of Radiodiagnostics, Medical University of Vienna (Austria); Witzani, Linde [Department of Radiodiagnostics, Medical University of Vienna (Austria); Helmer, Hanns [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Dietrich, Wolfgang [Department of Neurosurgery, Medical University of Vienna (Austria); Eppel, Wolfgang [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Langer, Martin [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria)

    2006-02-15

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images.

  18. MRI of fetal acquired brain lesions

    International Nuclear Information System (INIS)

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images

  19. Chronic intermittent fasting improves cognitive functions and brain structures in mice.

    Directory of Open Access Journals (Sweden)

    Liaoliao Li

    Full Text Available Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day fasting or high fat diet (45% caloric supplied by fat for 11 months. Mice on intermittent fasting had better learning and memory assessed by the Barnes maze and fear conditioning, thicker CA1 pyramidal cell layer, higher expression of drebrin, a dendritic protein, and lower oxidative stress than mice that had free access to regular diet (control mice. Mice fed with high fat diet was obese and with hyperlipidemia. They also had poorer exercise tolerance. However, these obese mice did not present significant learning and memory impairment or changes in brain structures or oxidative stress compared with control mice. These results suggest that intermittent fasting improves brain functions and structures and that high fat diet feeding started early in life does not cause significant changes in brain functions and structures in obese middle-aged animals.

  20. Functional and metabolic changes in the brain in neuropathic pain syndrome against the background of chronic epidural electrostimulation of the spinal cord.

    Science.gov (United States)

    Sufianov, A A; Shapkin, A G; Sufianova, G Z; Elishev, V G; Barashin, D A; Berdichevskii, V B; Churkin, S V

    2014-08-01

    Changes in functional and metabolic activities of the brain were evaluated by EEG and positron-emission/computer tomography with 18F-fluorodeoxyglucose in patients with neuropathic pain syndrome previous to and 3 months after implantation of a system for chronic epidural spinal cord stimulation. In most cases, the use of a nerve stimulator was followed by alleviation of neuropathic pain and partial normalization of functional and metabolic activities of brain structures responsible for pain perception, emotiogenic, behavioral, and autonomic responses.

  1. Unlocking pain: deep brain stimulation might be the key to easing depression and chronic pain.

    Science.gov (United States)

    Gosset, Nathalie; Dietz, Nicholas

    2015-01-01

    Depression and chronic pain know no geographical boundaries. About 350 million people around the world experience long-lasting sadness and an unshakeable sense of hopelessness, and one person out of ten tries to live each day to its fullest despite continuous physical pain. These two difficult conditions frequently coexist, becoming more common with age. Looking ahead, we can expect the incidence of depression and chronic illness to grow, since more people over age 65 will populate the world by 2020 than children younger than five. PMID:25782107

  2. Chemical and radiological effects of chronic ingestion of uranium in the rat brain: biochemical impairment of dopaminergic, serotonergic and cholinergic neuro-transmissions

    International Nuclear Information System (INIS)

    Uranium is an environmental ubiquitous metal-trace element. It has both chemical and radiological toxicity. After chronic ingestion, uranium can distribute in any part of the body and accumulate in the brain. The aims of this study was 1) to determine and estimate the effects of uranium on dopaminergic, serotoninergic and cholinergic systems and 2) to measure the uranium amount in the brain, after chronic exposure by ingestion of depleted (D.U.) or enriched (E.U.) uranium during 1.5 to 18 months at 40 mg.L-1 (40 ppm) in different rat brain areas. At any time of exposure, the results show that both the neurotransmission alterations and the uranium brain accumulation were moderate, area specific, time-evolutive and depended on uranium specific activity. After D.U. exposure, monoamine perturbations are chronic and progressive. On the contrary, monoamine alterations occurred only after long term of E.U. exposure. These mono-aminergic modifications are not always dependent on uranium accumulation in brain areas. Moreover, although the cholinergic system was not affected at both 1.5 and 9 months of D.U. exposure, the alteration of ChE activity after E.U. exposure are both dependent on uranium accumulation in brain areas and on uranium specific activity. After E.U. exposure, cholinergic modification and uranium accumulation in hippocampus could partially explain the short-term memory disturbances which have been previously reported. (author)

  3. The pharmacology of neurotrophic treatment with Cerebrolysin: brain protection and repair to counteract pathologies of acute and chronic neurological disorders.

    Science.gov (United States)

    Masliah, E; Díez-Tejedor, E

    2012-04-01

    Neurotrophic factors are considered as part of the therapeutic strategy for neurological disorders like dementia, stroke and traumatic brain injury. Cerebrolysin is a neuropeptide preparation which mimics the action of endogenous neurotrophic factors on brain protection and repair. In dementia models, Cerebrolysin decreases β-amyloid deposition and microtubule-associated protein tau phosphorylation by regulating glycogen synthase kinase-3β and cyclin-dependent kinase 5 activity, increases synaptic density and restores neuronal cytoarchitecture. These effects protect integrity of the neuronal circuits and thus result in improved cognitive and behavioral performance. Furthermore, Cerebrolysin enhances neurogenesis in the dentate gyrus, the basis for neuronal replacement therapy in neurodegenerative diseases. Experimental studies in stroke animal models have shown that Cerebrolysin stabilizes the structural integrity of cells by inhibition of calpain and reduces the number of apoptotic cells after ischemic lesion. Cerebrolysin induces restorative processes, decreases infarct volume and edema formation and promotes functional recovery. Stroke-induced neurogenesis in the subventricular zone was also promoted by Cerebrolysin, thus supporting the brain's self-repair after stroke. Both, traumatic brain and spinal cord injury conditions stimulate the expression of natural neurotrophic factors to promote repair and regeneration processes -axonal regeneration, neuronal plasticity and neurogenesis- that is considered to be crucial for the future recovery. Neuroprotective effects of Cerebrolysin on experimentally induced traumatic spinal cord injury have shown that Cerebrolysin prevents apoptosis of lesioned motoneurons and promotes functional recovery. This section summarizes the most relevant data on the pharmacology of Cerebrolysin obtained from in vitro assays (biochemical and cell cultures) and in vivo animal models of acute and chronic neurological disorders. PMID

  4. The pharmacology of neurotrophic treatment with Cerebrolysin: brain protection and repair to counteract pathologies of acute and chronic neurological disorders.

    Science.gov (United States)

    Masliah, E; Díez-Tejedor, E

    2012-04-01

    Neurotrophic factors are considered as part of the therapeutic strategy for neurological disorders like dementia, stroke and traumatic brain injury. Cerebrolysin is a neuropeptide preparation which mimics the action of endogenous neurotrophic factors on brain protection and repair. In dementia models, Cerebrolysin decreases β-amyloid deposition and microtubule-associated protein tau phosphorylation by regulating glycogen synthase kinase-3β and cyclin-dependent kinase 5 activity, increases synaptic density and restores neuronal cytoarchitecture. These effects protect integrity of the neuronal circuits and thus result in improved cognitive and behavioral performance. Furthermore, Cerebrolysin enhances neurogenesis in the dentate gyrus, the basis for neuronal replacement therapy in neurodegenerative diseases. Experimental studies in stroke animal models have shown that Cerebrolysin stabilizes the structural integrity of cells by inhibition of calpain and reduces the number of apoptotic cells after ischemic lesion. Cerebrolysin induces restorative processes, decreases infarct volume and edema formation and promotes functional recovery. Stroke-induced neurogenesis in the subventricular zone was also promoted by Cerebrolysin, thus supporting the brain's self-repair after stroke. Both, traumatic brain and spinal cord injury conditions stimulate the expression of natural neurotrophic factors to promote repair and regeneration processes -axonal regeneration, neuronal plasticity and neurogenesis- that is considered to be crucial for the future recovery. Neuroprotective effects of Cerebrolysin on experimentally induced traumatic spinal cord injury have shown that Cerebrolysin prevents apoptosis of lesioned motoneurons and promotes functional recovery. This section summarizes the most relevant data on the pharmacology of Cerebrolysin obtained from in vitro assays (biochemical and cell cultures) and in vivo animal models of acute and chronic neurological disorders.

  5. Model of chronic local irradiation in the brain. Rep. 1. A point of radiation affection

    Energy Technology Data Exchange (ETDEWEB)

    Sataev, M.M. (Uzbekskij Nauchno-Issledovatel' skij Inst. Onkologii i Radiologii, Tashkent (USSR))

    Radionecrosis of tissues was detected after implantation of /sup 90/S-/sup 90/Y sources (0.5-0.2 Gy/h) to the rabbit brain. A repair inflammatory reaction developed around the point of affection which resulted, at a dose of 0.5 Gy/h, in the formation of the connective tissue capsules or gliomesencymal cicatrices, or in the diffuse, hyperplasia of cell elements of neuroglia, membranes and vessels of the brain at doses of 1.4 to 2.0 Gy/h. This is the reason for the appearance of focal epitheliocellular granulomas.

  6. Early (N170/M170 face-sensitivity despite right lateral occipital brain damage in acquired prosopagnosia

    Directory of Open Access Journals (Sweden)

    Esther eAlonso Prieto

    2011-12-01

    Full Text Available Compared to objects, pictures of faces elicit a larger early electromagnetic response at occipito-temporal sites on the human scalp, with an onset of 130 ms and a peak at about 170 ms. This N170 face effect is larger in the right than the left hemisphere and has been associated with the early categorization of the stimulus as a face. Here we tested whether this effect can be observed in the absence of some of the visual areas showing a preferential response to faces as typically identified in neuroimaging. Event related potentia