WorldWideScience

Sample records for brain cortex hippocampus

  1. Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain.

    Directory of Open Access Journals (Sweden)

    Jacqueline C Lieblein-Boff

    Full Text Available Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510 were excluded. In addition, moderate correlations with xenobiotic relationships (2 or those driven by single outliers (3 were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region-specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development.

  2. Exploratory metabolomic analyses reveal compounds correlated with lutein concentration in frontal cortex, hippocampus, and occipital cortex of human infant brain

    Science.gov (United States)

    Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with...

  3. Reduced brain-derived neurotrophic factor expression in cortex and hippocampus involved in the learning and memory deficit in molarless SAMP8 mice

    Institute of Scientific and Technical Information of China (English)

    JIANG Qing-song; LIANG Zi-liang; WU Min-Jie; FENG Lin; LIU Li-li; ZHANG Jian-jun

    2011-01-01

    Background The molarless condition has been reported to compromise learning and memory functions. However, it remains unclear how the molarless condition directly affects the central nervous system, and the functional consequences on the brain cortex and hippocampus have not been described in detail. The aim of this study was to find the molecular mechanism related with learning and memory deficit after a bilateral molarless condition having been surgically induced in senescence-accelerated mice/prone8 (SAMP8) mice, which may ultimately provide an experimental basis for clinical prevention of senile dementia.Methods Mice were either sham-operated or subjected to complete molar removal. The animals' body weights were monitored every day. Learning ability and memory were measured in a water maze test at the end of the 1 st, 2nd, and 3rd months after surgery. As soon as significantly prolonged escape latency in the molarless group was detected, the locomotor activity was examined in an open field test. Subsequently, the animals were decapitated and the cortex and hippocampus were dissected for Western blotting to measure the expression levels of brain-derived neurotrophic factor (BDNF) and the tropomyosin related kinase B (TrkB), the high affinity receptor of BDNF.Results Slightly lower weights were consistently observed in the molarless group, but there was no significant difference in weights between the two groups (P>0.05). Compared with the sham group, the molarless group exhibited lengthened escape latency in the water maze test three months after surgery, whereas no difference in locomotor activity was observed. Meanwhile, in the cortex and hippocampus, BDNF levels were significantly decreased in the molarless group (P<0.05); but the expression of its receptor, TrkB, was not significantly affected.Conclusion These results suggested that the molarless condition impaired learning and memory abilities in SAMP8mice three months after teeth extraction, and this

  4. Early network activity propagates bidirectionally between hippocampus and cortex.

    Science.gov (United States)

    Barger, Zeke; Easton, Curtis R; Neuzil, Kevin E; Moody, William J

    2016-06-01

    Spontaneous activity in the developing brain helps refine neuronal connections before the arrival of sensory-driven neuronal activity. In mouse neocortex during the first postnatal week, waves of spontaneous activity originating from pacemaker regions in the septal nucleus and piriform cortex propagate through the neocortex. Using high-speed Ca(2+) imaging to resolve the spatiotemporal dynamics of wave propagation in parasagittal mouse brain slices, we show that the hippocampus can act as an additional source of neocortical waves. Some waves that originate in the hippocampus remain restricted to that structure, while others pause at the hippocampus-neocortex boundary and then propagate into the neocortex. Blocking GABAergic neurotransmission decreases the likelihood of wave propagation into neocortex, whereas blocking glutamatergic neurotransmission eliminates spontaneous and evoked hippocampal waves. A subset of hippocampal and cortical waves trigger Ca(2+) waves in astrocytic networks after a brief delay. Hippocampal waves accompanied by Ca(2+) elevation in astrocytes are more likely to propagate into the neocortex. Finally, we show that two structures in our preparation that initiate waves-the hippocampus and the piriform cortex-can be electrically stimulated to initiate propagating waves at lower thresholds than the neocortex, indicating that the intrinsic circuit properties of those regions are responsible for their pacemaker function. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 661-672, 2016. PMID:26385616

  5. Gene expression in cortex and hippocampus during acute pneumococcal meningitis

    Directory of Open Access Journals (Sweden)

    Wittwer Matthias

    2006-06-01

    Full Text Available Abstract Background Pneumococcal meningitis is associated with high mortality (~30% and morbidity. Up to 50% of survivors are affected by neurological sequelae due to a wide spectrum of brain injury mainly affecting the cortex and hippocampus. Despite this significant disease burden, the genetic program that regulates the host response leading to brain damage as a consequence of bacterial meningitis is largely unknown. We used an infant rat model of pneumococcal meningitis to assess gene expression profiles in cortex and hippocampus at 22 and 44 hours after infection and in controls at 22 h after mock-infection with saline. To analyze the biological significance of the data generated by Affymetrix DNA microarrays, a bioinformatics pipeline was used combining (i a literature-profiling algorithm to cluster genes based on the vocabulary of abstracts indexed in MEDLINE (NCBI and (ii the self-organizing map (SOM, a clustering technique based on covariance in gene expression kinetics. Results Among 598 genes differentially regulated (change factor ≥ 1.5; p ≤ 0.05, 77% were automatically assigned to one of 11 functional groups with 94% accuracy. SOM disclosed six patterns of expression kinetics. Genes associated with growth control/neuroplasticity, signal transduction, cell death/survival, cytoskeleton, and immunity were generally upregulated. In contrast, genes related to neurotransmission and lipid metabolism were transiently downregulated on the whole. The majority of the genes associated with ionic homeostasis, neurotransmission, signal transduction and lipid metabolism were differentially regulated specifically in the hippocampus. Of the cell death/survival genes found to be continuously upregulated only in hippocampus, the majority are pro-apoptotic, while those continuously upregulated only in cortex are anti-apoptotic. Conclusion Temporal and spatial analysis of gene expression in experimental pneumococcal meningitis identified potential

  6. Cerebral Oedema, Blood-Brain Barrier Breakdown and the Decrease in Na(+),K(+)-ATPase Activity in the Cerebral Cortex and Hippocampus are Prevented by Dexamethasone in an Animal Model of Maple Syrup Urine Disease.

    Science.gov (United States)

    Rosa, Luciana; Galant, Leticia S; Dall'Igna, Dhébora M; Kolling, Janaina; Siebert, Cassiana; Schuck, Patrícia F; Ferreira, Gustavo C; Wyse, Angela T S; Dal-Pizzol, Felipe; Scaini, Giselli; Streck, Emilio L

    2016-08-01

    Maple syrup urine disease (MSUD) is a rare metabolic disorder associated with acute and chronic brain dysfunction. This condition has been shown to lead to macroscopic cerebral alterations that are visible on imaging studies. Cerebral oedema is widely considered to be detrimental for MSUD patients; however, the mechanisms involved are still poorly understood. Therefore, we investigated whether acute administration of branched-chain amino acids (BCAA) causes cerebral oedema, modifies the Na(+),K(+)-ATPase activity, affects the permeability of the blood-brain barrier (BBB) and alters the levels of cytokines in the hippocampus and cerebral cortex of 10-day-old rats. Additionally, we investigated the influence of concomitant administration of dexamethasone on the alterations caused by BCAA. Our results showed that the animals submitted to the model of MSUD exhibited an increase in the brain water content, both in the cerebral cortex and in the hippocampus. By investigating the mechanism of cerebral oedema, we discovered an association between H-BCAA and the Na(+),K(+)-ATPase activity and the permeability of the BBB to small molecules. Moreover, the H-BCAA administration increases Il-1β, IL-6 and TNF-α levels in the hippocampus and cerebral cortex, whereas IL-10 levels were decreased in the hippocampus. Interestingly, we showed that the administration of dexamethasone successfully reduced cerebral oedema, preventing the inhibition of Na(+),K(+)-ATPase activity, BBB breakdown and the increase in the cytokines levels. In conclusion, these findings suggest that dexamethasone can improve the acute cerebral oedema and brain injury associated with high levels of BCAA, either through a direct effect on brain capillary Na(+),K(+)-ATPase or through a generalized effect on the permeability of the BBB to all compounds. PMID:26133302

  7. Novel experience induces persistent sleep-dependent plasticity in the cortex but not in the hippocampus

    Directory of Open Access Journals (Sweden)

    Sidarta Ribeiro

    2007-10-01

    Full Text Available Episodic and spatial memories engage the hippocampus during acquisition but migrate to the cerebral cortex over time. We have recently proposed that the interplay between slow-wave (SWS and rapid eye movement (REM sleep propagates recent synaptic changes from the hippocampus to the cortex. To test this theory, we jointly assessed extracellular neuronal activity, local field potentials (LFP, and expression levels of plasticity-related immediate-early genes (IEG arc and zif-268 in rats exposed to novel spatio-tactile experience. Post-experience firing rate increases were strongest in SWS and lasted much longer in the cortex (hours than in the hippocampus (minutes. During REM sleep, firing rates showed strong temporal dependence across brain areas: cortical activation during experience predicted hippocampal activity in the first post-experience hour, while hippocampal activation during experience predicted cortical activity in the third post-experience hour. Four hours after experience, IEG expression was specifically upregulated during REM sleep in the cortex, but not in the hippocampus. Arc gene expression in the cortex was proportional to LFP amplitude in the spindle-range (10-14 Hz but not to firing rates, as expected from signals more related to dendritic input than to somatic output. The results indicate that hippocampo-cortical activation during waking is followed by multiple waves of cortical plasticity as full sleep cycles recur. The absence of equivalent changes in the hippocampus may explain its mnemonic disengagement over time.

  8. Effects of sleep deprivation on extracellular serotonin in hippocampus and frontal cortex of the rat

    OpenAIRE

    2002-01-01

    Sleep deprivation improves the mood of depressed patients, but the exact mechanism behind this effect is unclear. An enhancement of serotonergic neurotransmission has been suggested. In this study, we used in vivo microdialysis to monitor extracellular serotonin in the hippocampus and the frontal cortex of rats during an 8 h sleep deprivation period. These brain regions were selected since both have been implicated in depression. The behavioral state of the animal was continuously monitored b...

  9. Glutamine synthetase activity and glutamate uptake in hippocampus and frontal cortex in portal hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    Gabriela Beatriz Acosta; María Alejandra Fernández; Diego Martín Roselló; María Luján Tomaro; Karina Balestrasse; Abraham Lemberg

    2009-01-01

    AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into shamoperated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas. RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, significantly and persistent increase in this excitatory neurotransmitter activity. CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modifies the normal function in some brain regions.

  10. Effects of insulin-induced hypoglycemia on somatostatin level and binding in rat cerebral cortex and hippocampus

    OpenAIRE

    Rodríguez Sánchez, María Nelly; Colás Escudero, Begoña; Prieto Villapún, Juan Carlos; Arilla Ferreiro, Eduardo

    1989-01-01

    The effects of severe insulin-induced hypoglycemia on somatostatin level and specific binding in the cerebral cortex and hippocampus were examined using 125I-Tyr11-somatostatin as a ligand. Severe insulin-induced hypoglycemia did not affect the level of somatostatin-like immunoreactivity in the brain areas studied. However, the number (but not the affinity) of specific somatostatin receptors was significantly decreased in membrane preparation from the hippocampus but not in the cerebral corte...

  11. Brain-Derived Neurotrophic Factor Transgenic Mice Exhibit Passive Avoidance Deficits, Increased Seizure Severity and In Vitro Hyperexcitability in the Hippocampus and Entorhinal Cortex

    OpenAIRE

    Croll, S. D.; Suri, C; Compton, D. L.; Simmons, M. V.; Yancopoulos, G D; Lindsay, R M; Wiegand, S. J.; RUDGE, J. S.; Scharfman, H. E.

    1999-01-01

    Transgenic mice overexpressing brain-derived neurotrophic factor from the β-actin promoter were tested for behavioral, gross anatomical and physiological abnormalities. Brain-derived neurotrophic factor messenger RNA overexpression was widespread throughout brain. Overexpression declined with age, such that levels of overexpression decreased sharply by nine months. Brain-derived neurotrophic factor transgenic mice had no gross deformities or behavioral abnormalities. However, they showed a si...

  12. Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent: mapping of neurotransmitter receptors and ion channels

    DEFF Research Database (Denmark)

    Olsen, Jesper V; Nielsen, Peter Aa; Andersen, Jens R;

    2007-01-01

    Analysis of the brain proteome and studying brain diseases through clinical biopsies and animal disease models require methods of quantitative proteomics that are sensitive and allow identification and quantification of low abundant membrane proteins from minute amount of tissue. Taking advantage...

  13. The hippocampus as a stable memory allocator for cortex.

    Science.gov (United States)

    Valiant, Leslie G

    2012-11-01

    It is suggested here that mammalian hippocampus serves as an allocator of neurons in cortex for memorizing new items. A construction of a shallow feedforward network with biologically plausible parameters is given that possesses the characteristics needed for such an allocator. In particular, the construction is stabilizing in that for inputs within a range of activity levels spanning more than an order of magnitude, the output will have activity levels differing as little as 1%. It is also noise tolerant in that pairs of input patterns that differ little will generate output patterns that differ little. Further, pairs of inputs that differ by much will be mapped to outputs that also differ sufficiently that they can be treated by cortex as distinct. PMID:22920849

  14. Expression of cFos and brain-derived neurotrophic factor in cortex and hippocampus of ethanol-withdrawn male and female rats

    OpenAIRE

    Alele, Paul E.; Devaud, Leslie L.

    2013-01-01

    Objective: To map areas of brain activation (cFos) alongside changes in levels of brain-derived neurotrophic factor (BDNF) to provide insights into neuronal mechanisms contributing to previously observed sex differences in behavioral measures of ethanol withdrawal (EW). Materials and Methods: Immunohistochemical analysis of cFos and BDNF levels using protein-specific antibodies and visualization with nickel-enhanced DAB staining in 3 cortical and 4 hippocampal regions was used to assess EW-in...

  15. The influence of chronic nicotine treatment on proteins expressed in the mouse hippocampus and cortex.

    Science.gov (United States)

    Matsuura, Kenji; Otani, Mieko; Takano, Masaoki; Kadoyama, Keiichi; Matsuyama, Shogo

    2016-06-01

    Chronic treatment with nicotine, the primary psychoactive substance in tobacco smoke, affects central nervous system functions, such as synaptic plasticity. Here, to clarify the effects of chronic nicotine treatment on the higher brain functions, proteomic analysis of the hippocampus and cortex of mice treated for 6 months with nicotine was performed using two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry. There was significant change in the expression of 16 proteins and one phosphoprotein in the hippocampus (increased tubulin β-5, atp5b, MDH1, cytochrome b-c1 complex subunit 1, Hsc70, dynamin, profilin-2, 4-aminobutyrate aminotransferase, mitochondrial isoform 1 precursor, calpain small subunit 1, and vacuolar adenosine triphosphatase subunit B and decreased γ-actin, α-tubulin isotype M-α-2, putative β-actin, tubulin β-2A, NDUFA10, and G6PD) and 24 proteins and two phosphoproteins in the cortex (increased spectrin α chain, non-erythrocytic 1 isoform 1, tubulin β-5, γ-actin, creatine kinase B-type, LDH-B, secernin-1, UCH-L1, 14-3-3 γ, type II peroxiredoxin 1, PEBP-1, and unnamed protein product and decreased tubulin α-1C, α-internexin, γ-enolase, PDHE1-B, DPYL2, vacuolar adenosine triphosphatase subunit A, vacuolar adenosine triphosphatase subunit B, TCTP, NADH dehydrogenase Fe-S protein 1, protein disulfide-isomerase A3, hnRNP H2, γ-actin, atp5b, and unnamed protein product). Additionally, Western blotting validated the changes in dynamin, Hsc70, MDH1, NDUFA10, α-internexin, tubulin β-5 chain, and secernin-1. Thus, these findings indicate that chronic nicotine treatment changes the expression of proteins and phosphoproteins in the hippocampus and cortex. We propose that effect of smoking on higher brain functions could be mediated by alterations in expression levels of these proteins. PMID:26988295

  16. Independent delta/theta rhythms in the human hippocampus and entorhinal cortex

    Directory of Open Access Journals (Sweden)

    Florian Mormann

    2008-05-01

    Full Text Available Theta oscillations in the medial temporal lobe (MTL of mammals are involved in various functions such as spatial navigation, sensorimotor integration, and cognitive processing. While the theta rhythm was originally assumed to originate in the medial septum, more recent studies suggest autonomous theta generation in the MTL. Although coherence between entorhinal and hippocampal theta activity has been found to influence memory formation, it remains unclear whether these two structures can generate theta independently. In this study we analyzed intracranial electroencephalographic (EEG recordings from 22 patients with unilateral hippocampal sclerosis undergoing presurgical evaluation prior to resection of the epileptic focus. Using a wavelet-based, frequency-band-specific measure of phase synchronization, we quantified synchrony between 10 different recording sites along the longitudinal axis of the hippocampal formation in the non-epileptic brain hemisphere. We compared EEG synchrony between adjacent recording sites (i within the entorhinal cortex, (ii within the hippocampus, and (iii between the hippocampus and entorhinal cortex. We observed a significant interregional gap in synchrony for the delta and theta band, indicating the existence of independent delta/theta rhythms in different subregions of the human MTL. The interaction of these rhythms could represent the temporal basis for the information processing required for mnemonic encoding and retrieval.

  17. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus.

    Science.gov (United States)

    Bhattacharya, S K; Bhattacharya, A; Kumar, A; Ghosal, S

    2000-05-01

    The effect of a standardized extract of Bacopa monniera Linn. was assessed on rat brain frontal cortical, striatal and hippocampal superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities, following administration for 7, 14 or 21 days. The effects induced by this extract (bacoside A content 82% +/- 0.5%), administered in doses of 5 and 10 mg/kg, orally, were compared with the effects induced by (-) deprenyl (2 mg/kg, p. o.) administered for the same time periods. Bacopa monniera (BM) induced a dose-related increase in SOD, CAT and GPX activities, in all the brain regions investigated, after 14 and 21 days of drug administration. On the contrary, deprenyl induced an increase in SOD, CAT and GPX activities in the frontal cortex and striatum, but not in the hippocampus, after treatment for 14 or 21 days. The results suggest that BM, like deprenyl, exhibits a significant antioxidant effect after subchronic administration which, unlike the latter, extends to the hippocampus as well. The results suggest that the increase in oxidative free radical scavenging activity by BM may explain, at least in part, the cognition- facilitating action of BM, recorded in Ayurvedic texts, and demonstrated experimentally and clinically.

  18. The peculiarities of the ultrastructure of frontal cortex and hippocampus of rats in conditions of experimental allergic encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Nefodov A.A.

    2016-03-01

    Full Text Available Background. Multiple sclerosis refers to the demyelinating diseases of the nervous system, in which the main pathological changes develop in the white matter and are characterized by disintegration of myelin sheaths of conductive systems in different parts of the brain and spinal cord. Objective. To assess the degree of ultrastructural changes of frontal cortex and hippocampus of rats in conditions of experimental allergic encephalomyelitis. Methods. The research was conducted on 14 white rats divided randomly in 2 groups: group 1 – intact animals; group 2 – rats with experimental allergic encephalomyelitis. Experimental allergic encephalomyelitis was induced in 8 animals of the experimental group single subcutaneous inoculation encephalitogenic mixture in full adjuvant of Freynd at the rate of 100 mg homogenate of homologous spinal cord, 0.2 ml puff (the content of killed mycobacteria 5 mg/ml and 0.2 ml of physiological solution on the animal. Transmission electron microscopy was performed on the 14th day of encephalitogenic mixture administration. Results. In the frontal cortex and hippocampus experimental allergic encephalomyelitis induces apoptosis of the neurocytes with disruption of the structure of mitochondria (increase in size, the fragmentation of the outer membrane, destruction of cristae, disseminated perineuronal edema of the brain substance, violation of the structure of most axo-somatic synapses, the demyelination of nerve conductors with signs of fragmentation of neurofibril. Conclusion. The single subcutaneous inoculation of encephalitogenic mixture in full adjuvant of Freynd leads to the development of multifocal demyelination and axonal degeneration in the hippocampus and frontal cortex of experimental animals. Citation: Nefodov AA, Mamchur VI, Tverdokhleb IV. [The peculiarities of the ultrastructure of frontal cortex and hippocampus of rats in conditions of experimental allergic encephalomyelitis]. Morphologia. 2016

  19. The hippocampus: hub of brain network communication for memory.

    NARCIS (Netherlands)

    F.P. Battaglia; K. Benchenane; A. Sirota; C.M.A. Pennartz; S.I. Wiener

    2011-01-01

    A complex brain network, centered on the hippocampus, supports episodic memories throughout their lifetimes. Classically, upon memory encoding during active behavior, hippocampal activity is dominated by theta oscillations (6-10Hz). During inactivity, hippocampal neurons burst synchronously, constit

  20. Astrocytic response in hippocampus and cerebral cortex in an experimental epilepsy model.

    Science.gov (United States)

    Girardi, Elena; Ramos, Alberto Javier; Vanore, Gabriela; Brusco, Alicia

    2004-02-01

    Astrocytes are very sensitive to alterations in the brain environment and respond showing a phenomenon known as astroglial reaction. S100beta is an astroglial derived neurotrophic factor, seems to be involved in neuroplasticity. The aim of this work was to study the astrocytic response in rat hippocampus and cerebral cortex after repetitive seizures induced by 3-mercaptopropionic acid (MP) administration. Immunocytochemical studies were performed to analyze GFAP and S100beta expression. Both studied areas showed hypertrophied astrocytes with enlarged processes and increased soma size. Astrocyte hyperplasia was observed only in the cerebral cortex. A significant decrease in the astrocytic S100beta immunostaining occurs after MP treatment. These results indicate that MP administration induces an astroglial reaction with reduced intracellular S100beta level. The observed reduction in astroglial S100beta could be related to the release of this factor to the extracellular space, where it may produce neurotrophic or deleterious effects accordingly to the concentration achieved. The mechanism of this remains to be elucidated.

  1. Context conditioning and extinction in humans: differential contribution of the hippocampus, amygdala and prefrontal cortex

    OpenAIRE

    Lang, Simone; Kroll, Alexander; Lipinski, Slawomira J; Wessa, Michèle; Ridder, Stephanie; Christmann, Christoph; Schad, Lothar R.; Flor, Herta

    2009-01-01

    Functional magnetic resonance imaging was used to investigate the role of the hippocampus, amygdala and medial prefrontal cortex (mPFC) in a contextual conditioning and extinction paradigm provoking anxiety. Twenty-one healthy persons participated in a differential context conditioning procedure with two different background colours as contexts. During acquisition increased activity to the conditioned stimulus (CS+) relative to the CS− was found in the left hippocampus and anterior cingulate ...

  2. Projection neurons in the cortex and hippocampus: differential effects of chronic khat and ethanol exposure in adult male rats

    Science.gov (United States)

    Alele, Paul E; Matovu, Daniel; Imanirampa, Lawrence; Ajayi, Abayomi M; Kasule, Gyaviira T

    2016-01-01

    Background Recent evidence suggests that many individuals who chew khat recreationally also drink ethanol to offset the stimulating effect of khat. The objective of this study was to describe the separate and interactive effects of chronic ethanol and khat exposure on key projection neurons in the cortex and hippocampus of young adult male rats. Methods Young adult male Sprague Dawley rats were divided into six treatment groups: 2 g/kg khat, 4 g/kg khat, 4 g/kg ethanol, combined khat and ethanol (4 g/kg each), a normal saline control, and an untreated group. Treatments were administered orally for 28 continuous days; brains were then harvested, sectioned, and routine hematoxylin–eosin staining was done. Following photomicrography, ImageJ® software captured data regarding neuron number and size. Results No differences occurred in counts of both granular and pyramidal projection neurons in the motor cortex and all four subfields of the hippocampal formation. Khat dose-dependently increased pyramidal neuron size in the motor cortex and the CA3 region, but had different effects on granular neuron size in the dentate gyrus and the motor cortex. Mean pyramidal neuron size for the ethanol-only treatment was larger than that for the 2 g/kg khat group, and the saline control group, in CA3 and in the motor cortex. Concomitant khat and ethanol increased granular neuron size in the motor cortex, compared to the 2 g/kg khat group, the 4 g/kg khat group, and the 4 g/kg ethanol group. In the CA3 region, the 4 g/kg ethanol group showed a larger mean pyramidal neuron size than the combined khat and ethanol group. Conclusion These results suggest that concomitant khat and ethanol exposure changes granular and pyramidal projection neuron sizes differentially in the motor cortex and hippocampus, compared to the effects of chronic exposure to these two drugs separately.

  3. Temporal and spatial distribution of metabotropic glutamate receptor 5 during development in the rat cortex and hippocampus

    Institute of Scientific and Technical Information of China (English)

    Xinli Xiao; Ming Hu; Pengbo Yang; Lin Zhang; Xinlin Chen; Yong Liu

    2011-01-01

    Metabotropic glutamate receptor 5 (mGluR5) is expressed by neurons in zones of active neurogenesis and is involved in the development of neural stem cells in vivo and in vitro. We examined the expression of mGluR5 in the cortex and hippocampus of rats during various prenatal and postnatal periods using immunohistochemistry. During prenatal development, mGluR5 was primarily localized to neuronal somas in the forebrain. During early postnatal periods, the receptor was mainly present on somas in the cortex. mGluR5 immunostaining was visible in apical dendrites and in the neuropil of neurons and persisted throughout postnatal development. During this period, pyramidal neurons were strongly labeled for the receptor. In the hippocampal CA1 region, mGluR5 immunoreactivity was more intense in the stratum oriens, stratum radiatum, and lacunosum moleculare at P0, P5 and P10 relative to P60. mGluR5 expression increased significantly in the molecular layer and decreased significantly in the granule cell layer of the dentate gyrus at P5, P10 and P60 in comparison with P0. Furthermore, some mGluR5-positive cells were also bromodeoxyuridine- or NeuroD-positive in the dentate gyrus at P14. These results demonstrate that mGluR5 has a differential expression pattern in the cortex and hippocampus during early growth, suggesting a role for this receptor in the control of domain specific brain developmental events.

  4. Spatial memory deficits in patients with lesions to the right hippocampus and to the right parahippocampal cortex.

    Science.gov (United States)

    Bohbot, V D; Kalina, M; Stepankova, K; Spackova, N; Petrides, M; Nadel, L

    1998-11-01

    Spatial memory tasks, performance of which is known to be sensitive to hippocampal lesions in the rat, or to medial temporal lesions in the human, were administered in order to investigate the effects of selective damage to medial temporal lobe structures of the human brain. The patients had undergone thermo-coagulation with a single electrode along the amygdalo-hippocampal axis in an attempt to alleviate their epilepsy. With this surgical technique, lesions to single medial temporal lobe structures can be carried out. The locations of the lesions were assessed by means of digital high-resolution magnetic resonance imaging and software allowing a 3-D reconstruction of the brain. A break in the collateral sulcus, dividing it into the anterior collateral sulcus and the posterior collateral sulcus is reported. This division may correspond to the end of the entorhinal/perirhinal cortex and the start of the parahippocampal cortex. The results confirmed the role of the right hippocampus in visuo-spatial memory tasks (object location, Rey-Osterrieth Figure with and without delay) and the left for verbal memory tasks (Rey Auditory Verbal Learning Task with delay). However, patients with lesions either to the right or to the left hippocampus were unimpaired on several memory tasks, including a spatial one, with a 30 min delay, designed to be analogous to the Morris water maze. Patients with lesions to the right parahippocampal cortex were impaired on this task with a 30 min delay, suggesting that the parahippocampal cortex itself may play an important role in spatial memory. PMID:9842767

  5. Intrinsic connectivity between the hippocampus and posteromedial cortex predicts memory performance in cognitively intact older individuals

    OpenAIRE

    Wang, Liang; LaViolette, Peter; O’Keefe, Kelly; Putcha, Deepti; Bakkour, Akram; Dijk, Koene R.A.Van; Pihlajamäki, Maija; Dickerson, Bradford C.; Sperling, Reisa A.

    2010-01-01

    Coherent fluctuations of spontaneous brain activity are present in distinct functional-anatomic brain systems during undirected wakefulness. However, the behavioral significance of this spontaneous activity has only begun to be investigated. Our previous studies have demonstrated that successful memory formation requires coordinated neural activity in a distributed memory network including the hippocampus and posteromedial cortices, specifically the precuneus and posterior cingulate (PPC), th...

  6. DEVELOPMENTAL HYPOTHYROIDISM REDUCES PARVALBUMIN EXPRESSION IN GABAERGIC NEURONS OF CORTEX AND HIPPOCAMPUS: IMMUNOHISTOCHEMICAL FINDINGS AND FUNCTIONAL CORRELATES.

    Science.gov (United States)

    GABAergic interneurons comprise the bulk of local inhibitory neuronal circuitry in cortex and hippocampus and a subpopulation of these interneurons contain the calcium binding protein, parvalbumin (PV). A previous report indicated that severe hypothyroidism reduced PV immunoreact...

  7. Chronic glucocorticoids exposure enhances neurodegeneration in the frontal cortex and hippocampus via NLRP-1 inflammasome activation in male mice.

    Science.gov (United States)

    Hu, Wen; Zhang, Yaodong; Wu, Wenning; Yin, Yanyan; Huang, Dake; Wang, Yuchan; Li, Weiping; Li, Weizu

    2016-02-01

    Neuroinflammation plays an important role in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD) and depression. Chronic glucocorticoids (GCs) exposure has deleterious effects on the structure and function of neurons and is associated with development and progression of AD. However, little is known about the proinflammatory effects of chronic GCs exposure on neurodegeneration in brain. Therefore, the aim of this study was to evaluate the effects of chronic dexamethasone (DEX) treatment (5mg/kg, s.c. for 7, 14, 21 and 28 days) on behavior, neurodegeneration and neuroinflammatory parameters of nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 1 (NLRP-1) inflammasome in male mice. The results showed that DEX treatment for 21 and 28 days significantly reduced the spontaneous motor activity and exploratory behavior of the mice. In addition, these mice showed significant neurodegeneration and a decrease of microtubule-associated protein 2 (MAP2) in the frontal cortex and hippocampus CA3. DEX treatment for 7, 14, 21 and 28 days significantly decreased the mRNA and protein expression of glucocorticoid receptor (GR). Moreover, DEX treatment for 21 and 28 days significantly increased the proteins expression of NLRP-1, Caspase-1, Caspase-5, apoptosis associated speck-like protein (ASC), nuclear factor-κB (NF-κB), p-NF-κB, interleukin-1β (IL-1β), IL-18 and IL-6 in the frontal cortex and hippocampus brain tissue. DEX treatment for 28 days also significantly increased the mRNA expression levels of NLRP-1, Caspase-1, ASC and IL-1β. These results suggest that chronic GCs exposure may increase brain inflammation via NLRP-1 inflammasome activation and induce neurodegeneration.

  8. Differential acetylcholine release in the prefrontal cortex and hippocampus during pavlovian trace and delay conditioning.

    Science.gov (United States)

    Flesher, M Melissa; Butt, Allen E; Kinney-Hurd, Brandee L

    2011-09-01

    Pavlovian trace conditioning critically depends on the medial prefrontal cortex (mPFC) and hippocampus (HPC), whereas delay conditioning does not depend on these brain structures. Given that the cholinergic basal forebrain system modulates activity in both the mPFC and HPC, it was reasoned that the level of acetylcholine (ACh) release in these regions would show distinct profiles during testing in trace and delay conditioning paradigms. To test this assumption, microdialysis probes were implanted unilaterally into the mPFC and HPC of rats that were pre-trained in appetitive trace and delay conditioning paradigms using different conditional stimuli in the two tasks. On the day of microdialysis testing, dialysate samples were collected during a quiet baseline interval before trials were initiated, and again during performance in separate blocks of trace and delay conditioning trials in each animal. ACh levels were quantified using high-performance liquid chromatography and electrochemical detection techniques. Consistent with our hypothesis, results showed that ACh release in the mPFC was greater during trace conditioning than during delay conditioning. The level of ACh released during trace conditioning in the HPC was also greater than the levels observed during delay conditioning. While ACh efflux in both the mPFC and HPC selectively increased during trace conditioning, ACh levels in the mPFC during trace conditioning testing showed the greatest increases observed. These results demonstrate a dissociation in cholinergic activation of the mPFC and HPC during performance in trace but not delay appetitive conditioning, where this cholinergic activity may contribute to attentional mechanisms, adaptive response timing, or memory consolidation necessary for successful trace conditioning.

  9. Dissociable roles for histone acetyltransferases p300 and PCAF in hippocampus and perirhinal cortex-mediated object memory.

    Science.gov (United States)

    Mitchnick, K A; Creighton, S D; Cloke, J M; Wolter, M; Zaika, O; Christen, B; Van Tiggelen, M; Kalisch, B E; Winters, B D

    2016-07-01

    The importance of histone acetylation for certain types of memory is now well established. However, the specific contributions of the various histone acetyltransferases to distinct memory functions remain to be determined; therefore, we employed selective histone acetyltransferase protein inhibitors and short-interference RNAs to evaluate the roles of CREB-binding protein (CBP), E1A-binding protein (p300) and p300/CBP-associated factor (PCAF) in hippocampus and perirhinal cortex (PRh)-mediated object memory. Rats were tested for short- (STM) and long-term memory (LTM) in the object-in-place task, which relies on the hippocampus and PRh for spatial memory and object identity processing, respectively. Selective inhibition of these histone acetyltransferases by small-interfering RNA and pharmacological inhibitors targeting the HAT domain produced dissociable effects. In the hippocampus, CBP or p300 inhibition impaired long-term but not short-term object memory, while inhibition of PCAF impaired memory at both delays. In PRh, HAT inhibition did not impair STM, and only CBP and PCAF inhibition disrupted LTM; p300 inhibition had no effects. Messenger RNA analyses revealed findings consistent with the pattern of behavioral effects, as all three enzymes were upregulated in the hippocampus (dentate gyrus) following learning, whereas only CBP and PCAF were upregulated in PRh. These results demonstrate, for the first time, the necessity of histone acetyltransferase activity for PRh-mediated object memory and indicate that the specific mnemonic roles of distinctive histone acetyltransferases can be dissociated according to specific brain regions and memory timeframe. PMID:27251651

  10. Apolipoprotein-E forms dimers in human frontal cortex and hippocampus

    Directory of Open Access Journals (Sweden)

    Halliday Glenda M

    2010-02-01

    Full Text Available Abstract Background Apolipoprotein-E (apoE plays important roles in neurobiology and the apoE4 isoform increases risk for Alzheimer's disease (AD. ApoE3 and apoE2 are known to form disulphide-linked dimers in plasma and cerebrospinal fluid whereas apoE4 cannot form these dimers as it lacks a cysteine residue. Previous in vitro research indicates dimerisation of apoE3 has a significant impact on its functions related to cholesterol homeostasis and amyloid-beta peptide degradation. The possible occurrence of apoE dimers in cortical tissues has not been examined and was therefore assessed. Human frontal cortex and hippocampus from control and AD post-mortem samples were homogenised and analysed for apoE by western blotting under both reducing and non-reducing conditions. Results In apoE3 homozygous samples, ~12% of apoE was present as a homodimer and ~2% was detected as a 43 kDa heterodimer. The level of dimerisation was not significantly different when control and AD samples were compared. As expected, these dimerised forms of apoE were not detected in apoE4 homozygous samples but were detected in apoE3/4 heterozygotes at a level approximately 60% lower than seen in the apoE3 homozygous samples. Similar apoE3 dimers were also detected in lysates of SK-N-SH neuroblastoma cells and in freshly prepared rabbit brain homogenates. The addition of the thiol trapping agent, iodoacetamide, to block reactive thiols during both human and rabbit brain sample homogenisation and processing did not reduce the amount of apoE homodimer recovered. These data indicate that the apoE dimers we detected in the human brain are not likely to be post-mortem artefacts. Conclusion The identification of disulphide-linked apoE dimers in human cortical and hippocampal tissues represents a distinct structural difference between the apoE3 and apoE4 isoforms that may have functional consequences.

  11. Transitive inference: distinct contributions of rostrolateral prefrontal cortex and the hippocampus.

    Science.gov (United States)

    Wendelken, Carter; Bunge, Silvia A

    2010-05-01

    The capacity to reason about complex information is a central characteristic of human cognition. An important component of many reasoning tasks is the need to integrate multiple mental relations. Several researchers have argued that rostrolateral prefrontal cortex (RLPFC) plays a key role in relational integration. If this hypothesis is correct, then RLPFC should play a key role in transitive inference, which requires the integration of multiple relations to reach a conclusion. Thus far, however, neuroscientific research on transitive inference has focused primarily on the hippocampus. In this fMRI study, we sought to compare the roles of RLPFC and the hippocampus on a novel transitive inference paradigm. Four relations between colored balls were presented on the screen together with a target relation. Participants were asked to decide whether the target relation was correct, given the other indicated relations between balls. RLPFC, but not the hippocampus, exhibited stronger activation on trials that required relational integration as compared with trials that involved relational encoding without integration. In contrast, the hippocampus exhibited a pattern consistent with a role in relational encoding, with stronger activation on trials requiring encoding of relational predicate-argument structure as compared with trials requiring encoding of item-item associations. Functional connectivity analyses give rise to the hypothesis that RLPFC draws on hippocampal representations of mental relations during the process of relational integration. PMID:19320546

  12. Metabolomic analysis reveals metabolic disturbance in the cortex and hippocampus of subchronic MK-801 treated rats.

    Directory of Open Access Journals (Sweden)

    Liya Sun

    Full Text Available BACKGROUND: Although a number of proteins and genes relevant to schizophrenia have been identified in recent years, few are known about the exact metabolic pathway involved in this disease. Our previous proteomic study has revealed the energy metabolism abnormality in subchronic MK-801 treated rat, a well-established animal model for schizophrenia. This prompted us to further investigate metabolite levels in the same rat model to better delineate the metabolism dysfunctions and provide insights into the pathology of schizophrenia. METHODS: Metabolomics, a high-throughput investigatory strategy developed in recent years, can offer comprehensive metabolite-level insights that complement protein and genetic findings. In this study, we employed a nondestructive metabolomic approach (1H-MAS-NMR to investigate the metabolic traits in cortex and hippocampus of MK-801 treated rats. Multivariate statistics and ingenuity pathways analyses (IPA were applied in data processing. The result was further integrated with our previous proteomic findings by IPA analysis to obtain a systematic view on our observations. RESULTS: Clear distinctions between the MK-801 treated group and the control group in both cortex and hippocampus were found by OPLS-DA models (with R(2X = 0.441, Q(2Y = 0.413 and R(2X = 0.698, Q(2Y = 0.677, respectively. The change of a series of metabolites accounted for the separation, such as glutamate, glutamine, citrate and succinate. Most of these metabolites fell in a pathway characterized by down-regulated glutamate synthesis and disturbed Krebs cycle. IPA analysis further confirmed the involvement of energy metabolism abnormality induced by MK-801 treatment. CONCLUSIONS: Our metabolomics findings reveal systematic changes in pathways of glutamate metabolism and Krebs cycle in the MK-801 treated rats' cortex and hippocampus, which confirmed and improved our previous proteomic observation and served as a valuable reference to

  13. Inorganic Arsenic Induces NRF2-Regulated Antioxidant Defenses in Both Cerebral Cortex and Hippocampus in Vivo.

    Science.gov (United States)

    Zhang, Yang; Duan, Xiaoxu; Li, Jinlong; Zhao, Shuo; Li, Wei; Zhao, Lu; Li, Wei; Nie, Huifang; Sun, Guifang; Li, Bing

    2016-08-01

    Inorganic arsenic is reported to induce the reactive oxygen species-mediated oxidative stress, which is supposed to be one of the main mechanisms of arsenic-related neurological diseases. Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of antioxidant defense systems, up-regulates the expression of target genes to fight against oxidative damages caused by harmful substances, including metals. In the present study, mice were used as a model to investigate the oxidative stress levels and the expressions of NRF2-regulated antioxidant substances in both cerebral cortex and hippocampus with 5, 10 and 20 mg/kg NaAsO2 exposure intra-gastrically. Our results showed that acute NaAsO2 treatment resulted in decreased total anti-oxidative capacity (T-AOC) and increased maleic dialdehyde production in the nervous system. We also detected rapidly elevation of NRF2 protein levels by enhancement of Nrf2 transcription, especially at 20 mg/kg NaAsO2 exposure group. In the meantime, mRNA and protein levels of Nrf2 encoding antioxidant enzymes heme oxygenase-1 (HO-1), NAD(P)H: quinine oxidoreductase 1 (NQO1) and glutathione S-transferase (GST) were consistently elevated time- and dose-dependently both in the cerebral cortex and hippocampus. Taken together, the presence study demonstrated the activation of NRF2 pathway, an early antioxidant defensive response, in both cerebral cortex and hippocampus upon inorganic arsenic (iAs) exposure in vivo. A better knowledge on the roles of NRF2 pathway in maintaining cellular redox homeostasis would be helpful for the strategies on improvement of neurotoxicity related to this metalloid. PMID:27165637

  14. The roles of the medial prefrontal cortex and hippocampus in a spatial paired-association task.

    Science.gov (United States)

    Lee, Inah; Solivan, Frances

    2008-05-01

    Although the roles of both the hippocampus and the medial prefrontal cortex (mPFC) have been suggested in a spatial paired-associate memory task, both areas were investigated separately in prior studies. The current study investigated the relative contributions of the hippocampus and mPFC to spatial paired-associate learning within a single behavioral paradigm. In a novel behavioral task, a pair of different objects appeared repeatedly across trials, but in different arms in a radial maze, and different rules were associated with those arms for reward. Specifically, in an "object-in-place" arm, the rat was required to choose a particular object associated with the arm. In a "location-in-place" arm, the animal was required to choose a certain within-arm location (ignoring the object occupying the location). Compared to normal animals, rats with ibotenic acid-based lesions in the hippocampus showed an irrecoverable impairment in performance in both object-in-place and location-in-place arms. When the mPFC was inactivated by muscimol (GABA(A) receptor agonist) in the normal animals with intact hippocampi, they showed the same severe impairment as seen in the hippocampal lesioned rats only in object-in-place arms. The results confirm that the hippocampus is necessary for a biconditional paired-associate task when space is a critical component. The mPFC, however, is more selectively involved in the object-place paired-associate task than in the location-place paired-associate task. The current task powerfully demonstrates an experimental situation in which both the hippocampus and mPFC are required and may serve as a useful paradigm for investigating the neural mechanisms of object-place association.

  15. Traumatic brain injury impairs synaptic plasticity in hippocampus in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bao-liang; CHEN Xin; TAN Tao; YANG Zhuo; CARLOS Dayao; JIANG Rong-cai; ZHANG Jian-ning

    2011-01-01

    Background Traumatic brain injury (TBl) often causes cognitive deficits and remote symptomatic epilepsy.Hippocampal regional excitability is associated with the cognitive function. However, little is known about injury-induced neuronal loss and subsequent alterations of hippocampal regional excitability. The present study was designed to determine whether TBl may impair the cellular circuit in the hippocampus.Methods Forty male Wistar rats were randomized into control (n=20) and TBl groups (n=20). Long-term potentiation,extracellular input/output curves, and hippocampal parvalbumin-immunoreactive and cholecystokinin-immunoreactive interneurons were compared between the two groups.Results TBI resulted in a significantly increased excitability in the dentate gyrus (DG), but a significantly decreased excitability in the cornu ammonis 1 (CA1) area. Using design-based stereological injury procedures, we induced interneuronal loss in the DG and CA3 subregions in the hippocampus, but not in the CA1 area.Conclusions TBl leads to the impairment of hippocampus synaptic plasticity due to the changing of interneuronal interaction. The injury-induced disruption of synaptic efficacy within the hippocampal circuit may underlie the observed cognitive deficits and symptomatic epilepsy.

  16. Expression of constitutively active erythropoietin receptor in pyramidal neurons of cortex and hippocampus boosts higher cognitive functions in mice

    Directory of Open Access Journals (Sweden)

    Hassouna Imam

    2011-04-01

    Full Text Available Abstract Background Erythropoietin (EPO and its receptor (EPOR are expressed in the developing brain and their transcription is upregulated in adult neurons and glia upon injury or neurodegeneration. We have shown neuroprotective effects and improved cognition in patients with neuropsychiatric diseases treated with EPO. However, the critical EPO targets in brain are unknown, and separation of direct and indirect effects has remained difficult, given the role of EPO in hematopoiesis and brain oxygen supply. Results Here we demonstrate that mice with transgenic expression of a constitutively active EPOR isoform (cEPOR in pyramidal neurons of cortex and hippocampus exhibit enhancement of spatial learning, cognitive flexibility, social memory, and attentional capacities, accompanied by increased impulsivity. Superior cognitive performance is associated with augmented long-term potentiation of cEPOR expressing neurons in hippocampal slices. Conclusions Active EPOR stimulates neuronal plasticity independent of any hematopoietic effects and in addition to its neuroprotective actions. This property of EPOR signaling should be exploited for defining novel strategies to therapeutically enhance cognitive performance in disease conditions.

  17. Postnatal BDNF Expression Profiles in Prefrontal Cortex and Hippocampus of a Rat Schizophrenia Model Induced by MK-801 Administration

    Directory of Open Access Journals (Sweden)

    Chunmei Guo

    2010-01-01

    Full Text Available Neonatal blockade of N-methyl-D-aspartic acid (NMDA receptors represents one of experimental animal models for schizophrenia. This study is to investigate the long-term brain-derived neurotrophic factor (BDNF expression profiles in different regions and correlation with “schizophrenia-like” behaviors in the adolescence and adult of this rat model. The NMDA receptor antagonist MK801 was administered to female Sprague-Dawley rats on postnatal days (PND 5 through 14. Open-field test was performed on PND 42, and PND 77 to examine the validity of the current model. BDNF protein levels in hippocampus and prefrontal cortex (PFC were analyzed on PND 15, PND 42, and PND 77. Results showed that neonatal challenge with MK-801 persistently elevated locomotor activity as well as BDNF expression; the alterations in BDNF expression varied at different developing stages and among brain regions. However, these findings provide neurochemical evidence that the blockade of NMDA receptors during brain development results in long-lasting alterations in BDNF expression and might contribute to neurobehavioral pathology of the present animal model for schizophrenia. Further study in the mechanisms and roles of the BDNF may lead to better understanding of the pathophysiology of schizophrenia.

  18. Hippocampus sparing in whole-brain radiotherapy. A review

    Energy Technology Data Exchange (ETDEWEB)

    Oskan, F. [University of Munich, Department of Radiation Oncology and CCC Neuro-Oncology, Munich (Germany); Saarland University Medical Center, Department of Radiation Oncology, Homburg/Saar (Germany); Ganswindt, U.; Schwarz, S.B.; Manapov, F.; Belka, C.; Niyazi, M. [University of Munich, Department of Radiation Oncology and CCC Neuro-Oncology, Munich (Germany)

    2014-04-15

    Radiation treatment techniques for whole-brain radiation therapy (WBRT) have not changed significantly since development of the procedure. However, the recent development of novel techniques such as intensity-modulated radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT) and helical tomotherapy, as well as an increasing body of evidence concerning neural stem cells (NSCs) have altered the conventional WBRT treatment paradigm. In this regard, hippocampus-sparing WBRT is a novel technique that aims to spare critical hippocampus regions without compromising tumour control. Published data on this new technique are limited to planning and feasibility studies; data on patient outcome are still lacking. However, several prospective trials to analyse the feasibility of this technique and to document clinical outcome in terms of reduced neurotoxicity are ongoing. (orig.) [German] Die Technik der Ganzhirnbestrahlung (''whole-brain radiation therapy'', WBRT) hat sich seit der Entwicklung nicht wesentlich veraendert. Allerdings stellten die Neuentwicklung von Techniken wie die intensitaetsmodulierte Strahlentherapie (IMRT), die volumenmodulierte Arc-Therapie (VMAT) oder die helikale Tomotherapie sowie immer groesseres Wissen ueber das neurale Stammzellkompartiment (NSCs) das herkoemmliche Ganzhirn-Paradigma in Frage. Die hippocampusschonende Ganzhirnbestrahlung ist eine neuartige Technik, welche die kritische Region des Hippocampus schont, ohne die Tumorkontrolle zu gefaehrden. Ueber diese Technik gibt es bisher nur eine begrenzte Datenlage im Sinne von Planungs- und Machbarkeitsstudien. Klinische Daten bzgl. der Behandlungsergebnisse fehlen nach wie vor, aber einige prospektive Studien sind im Gange, um nicht nur die Machbarkeit zu belegen, sondern auch das klinische Outcome im Sinne einer verringerten Neurotoxizitaet nachzuweisen. (orig.)

  19. Analysis of coherent activity between retrosplenial cortex, hippocampus, thalamus, and anterior cingulate cortex during retrieval of recent and remote context fear memory.

    Science.gov (United States)

    Corcoran, Kevin A; Frick, Brendan J; Radulovic, Jelena; Kay, Leslie M

    2016-01-01

    Memory for contextual fear conditioning relies upon the retrosplenial cortex (RSC) regardless of how long ago conditioning occurred, whereas areas connected to the RSC, such as the dorsal hippocampus (DH) and anterior cingulate cortex (ACC) appear to play time-limited roles. To better understand whether these brain regions functionally interact during memory processing and how the passage of time affects these interactions, we simultaneously recorded local field potentials (LFPs) from these three regions as well as anterior dorsal thalamus (ADT), which provides one of the strongest inputs to RSC, and measured coherence of oscillatory activity within the theta (4-12Hz) and gamma (30-80Hz) frequency bands. We identified changes of theta coherence related to encoding, retrieval, and extinction of context fear, whereas changes in gamma coherence were restricted to fear extinction. Specifically, exposure to a novel context and retrieval of recently acquired fear conditioning memory were associated with increased theta coherence between RSC and all three other structures. In contrast, RSC-DH and RSC-ADT theta coherence were decreased in mice that successfully retrieved, relative to mice that failed to retrieve, remote memory. Greater RSC-ADT theta and gamma coherence were observed during recent, compared to remote, extinction of freezing responses. Thus, the degree of coherence between RSC and connected brain areas may predict and contribute to context memory retrieval and retrieval-related phenomena such as fear extinction. Importantly, although theta coherence in this circuit increases during memory encoding and retrieval of recent memory, failure to decrease RSC-DH theta coherence might be linked to retrieval deficit in the long term, and possibly contribute to aberrant memory processing characteristic of neuropsychiatric disorders.

  20. 妊娠早期暴露低浓度毒死蜱对子代鼠海马脑区及体觉皮层的影响%Effects of low concentration of chlorpyrifos prenatal exposure on generation mouse brain hippocam-pus and somatosensory cortex

    Institute of Scientific and Technical Information of China (English)

    陈晓萍; 金建龙; 李传武; 王飞石

    2009-01-01

    目的 探讨小鼠妊娠早期暴露低浓度有机磷农药毒死蜱对子代鼠脑结构发育的影响.方法 在母鼠妊娠7.5~11.5 d时,以每天皮下注射5 mg/kg毒死蜱,连续5 d,将子代鼠在出生第35天处死,取脑作定位切片,HE及尼氏染色,显微镜下测量海马CA1、CA3区、DG区厚度,计数大脑皮层S1区神经元和胶质细胞数量及比例.结果 出生35 d的子代鼠海马CA 1区平均厚度下降22.37%,CA3区平均厚度下降25.66%,而DG区平均厚度增加24.14%,与对照组比较,差异均有统计学意义(P<0.01).S1区神经元,胶质细胞比值由81.77%下降至74.61%.结论 小鼠妊娠早期低浓度有机磷农药毒死蜱持续暴露可导致子代鼠脑结构细微损伤.%Objective To observe the effects of low concentration of organophosphate pesticide chlor-pyrifos(CPF) prenatal exposure on generation mouse brain development. Methods 5 mg/kg CPF was admin-istered daily on gestation days (GD) 7.5~11.5. On postnatal clay (PD) 35, quantitative morphologic examines were measured in CA1, CA3, dentate gyrus regions of the hippocampus and somatosensory cortex. Results After CPF prenatal exposure, selective morphology impairments were observed, showing 22.37%, 25.66 % thinning of the CA1 and CA3 layers, 24.14% enlargement of the dentate guys and 81.77% to 74.61% decreas-ing of the ratio of neuron/glial of the somatosensory cortex. Conclusion There maybe slight morphological changes after prenatal low concentration pesticide exposure even without obviously systemic toxicity.

  1. Differences between seizure-prone and non-seizure-prone mice with regard to glutamate and GABA receptor binding in the hippocampus and other regions of the brain

    DEFF Research Database (Denmark)

    Frandsen, A; Belhage, B; Schousboe, A

    1987-01-01

    Quisqualate-preferring glutamate receptors were determined in membranes from frontal cortex, occipital cortex, hippocampus and cerebellum, from seizure-prone DBA/2J BOM and seizure-resistant C57/BL mice. The animals were studied 21, 27 and 40 days postnatally, i.e., before, during and after the age...... at which DBA mice are most susceptible to seizures. Radio-binding assays were performed using [3H]AMPA in the presence of 100 nM glutamate. Except for the occipital cortex, where no significant differences between the two strains were observed, all areas of the brain of DBA mice exhibited...... significantly (P less than 0.001, t test) higher AMPA binding than the corresponding areas of C57/BL mice at 27 days of age. At pre- and post-susceptible ages, the two strains showed no significant differences in the hippocampus and occipital cortex. A significant difference was observed, however, in the...

  2. A high calorie diet causes memory loss, metabolic syndrome and oxidative stress into hippocampus and temporal cortex of rats.

    Science.gov (United States)

    Treviño, Samuel; Aguilar-Alonso, Patrícia; Flores Hernandez, Jose Angel; Brambila, Eduardo; Guevara, Jorge; Flores, Gonzalo; Lopez-Lopez, Gustavo; Muñoz-Arenas, Guadalupe; Morales-Medina, Julio Cesar; Toxqui, Veronica; Venegas, Berenice; Diaz, Alfonso

    2015-09-01

    A high calorie intake can induce the appearance of the metabolic syndrome (MS), which is a serious public health problem because it affects glucose levels and triglycerides in the blood. Recently, it has been suggested that MS can cause complications in the brain, since chronic hyperglycemia and insulin resistance are risk factors for triggering neuronal death by inducing a state of oxidative stress and inflammatory response that affect cognitive processes. This process, however, is not clear. In this study, we evaluated the effect of the consumption of a high-calorie diet (HCD) on both neurodegeneration and spatial memory impairment in rats. Our results demonstrated that HCD (90 day consumption) induces an alteration of the main energy metabolism markers, indicating the development of MS in rats. Moreover, an impairment of spatial memory was observed. Subsequently, the brains of these animals showed activation of an inflammatory response (increase in reactive astrocytes and interleukin1-β as well as tumor necrosis factor-α) and oxidative stress (reactive oxygen species and lipid peroxidation), causing a reduction in the number of neurons in the temporal cortex and hippocampus. Altogether, these results suggest that a HCD promotes the development of MS and contributes to the development of a neurodegenerative process and cognitive failure. In this regard, it is important to understand the relationship between MS and neuronal damage in order to prevent the onset of neurodegenerative disorders.

  3. Chronic unpredictable stress exacerbates lipopolysaccharide-induced activation of nuclear factor-kappaB in the frontal cortex and hippocampus via glucocorticoid secretion.

    Science.gov (United States)

    Munhoz, Carolina Demarchi; Lepsch, Lucilia B; Kawamoto, Elisa Mitiko; Malta, Marília Brinati; Lima, Larissa de Sá; Avellar, Maria Christina Werneck; Sapolsky, Robert M; Scavone, Cristoforo

    2006-04-01

    Although the anti-inflammatory actions of glucocorticoids (GCs) are well established in the periphery, these stress hormones can increase inflammation under some circumstances in the brain. The transcription factor nuclear factor-kappaB (NF-kappaB), which is inhibited by GCs, regulates numerous genes central to inflammation. In this study, the effects of stress, GCs, and NMDA receptors on lipopolysaccharide (LPS)-induced activation of NF-kappaB in the brain were investigated. One day after chronic unpredictable stress (CUS), nonstressed and CUS rats were treated with saline or LPS and killed 2 h later. CUS potentiated the increase in LPS-induced activation of NF-kappaB in frontal cortex and hippocampus but not in the hypothalamus. This stress effect was blocked by pretreatment of rats with RU-486, an antagonist of the GC receptor. MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate], an NMDA receptor antagonist, also reduced the effect of LPS in all three brain regions. However, the combined antagonism of both GC and NMDA receptors produced no further reduction in NF-kappaB activation when compared with the effect of each treatment alone. Our results indicate that stress, via GC secretion, can increase LPS-induced NF-kappaB activation in the frontal cortex and hippocampus, agreeing with a growing literature demonstrating proinflammatory effects of GCs.

  4. Differential neuregulin 1 cleavage in the prefrontal cortex and hippocampus in schizophrenia and bipolar disorder: preliminary findings.

    Directory of Open Access Journals (Sweden)

    Ketan Marballi

    Full Text Available BACKGROUND: Neuregulin 1 (NRG1 is a key candidate susceptibility gene for both schizophrenia (SCZ and bipolar disorder (BPD. The function of the NRG1 transmembrane proteins is regulated by cleavage. Alteration of membrane bound-NRG1 cleavage has been previously shown to be associated with behavioral impairments in mouse models lacking expression of NRG1-cleavage enzymes such as BACE1 and gamma secretase. We sought to determine whether alterations in NRG1 cleavage and associated enzymes occur in patients with SCZ and BPD. METHODOLOGY/PRINCIPAL FINDINGS: Using human postmortem brain, we evaluated protein expression of NRG1 cleavage products and enzymes that cleave at the external (BACE1, ADAM17, ADAM19 and internal (PS1-gamma secretase sides of the cell membrane. We used three different cohorts (Controls, SCZ and BPD and two distinct brain regions: BA9-prefrontal cortex (Controls (n = 6, SCZ (n = 6 and BPD (n = 6 and hippocampus (Controls (n = 5, SCZ (n = 6 and BPD (n = 6. In BA9, the ratio of the NRG1 N-terminal fragment relative to full length was significantly upregulated in the SCZ cohort (Bonferroni test, p = 0.011. ADAM17 was negatively correlated with full length NRG1 levels in the SCZ cohort (r = -0.926, p = 0.008. In the hippocampus we found significantly lower levels of a soluble 50 kDa NRG1 fragment in the two affected groups compared the control cohort (Bonferroni test, p = 0.0018. We also examined the relationship of specific symptomatology criteria with measures of NRG1 cleavage using the Bipolar Inventory of Signs and Symptoms Scale (BISS and the Montgomery Åsberg Depression Rating Scale (MADRS. Our results showed a positive correlation between ADAM19 and psychosis (r = 0.595 p = 0.019; PS1 and mania (r = 0.535, p = 0.040; PS1 and depression (r = 0.567, p = 0.027 in BA9, and BACE1 with anxiety (r = 0.608, p = 0.03 in the hippocampus. CONCLUSION/SIGNIFICANCE: Our preliminary findings suggest region-specific alterations in NRG1

  5. Representations of specific acoustic patterns in the auditory cortex and hippocampus.

    Science.gov (United States)

    Kumar, Sukhbinder; Bonnici, Heidi M; Teki, Sundeep; Agus, Trevor R; Pressnitzer, Daniel; Maguire, Eleanor A; Griffiths, Timothy D

    2014-09-22

    Previous behavioural studies have shown that repeated presentation of a randomly chosen acoustic pattern leads to the unsupervised learning of some of its specific acoustic features. The objective of our study was to determine the neural substrate for the representation of freshly learnt acoustic patterns. Subjects first performed a behavioural task that resulted in the incidental learning of three different noise-like acoustic patterns. During subsequent high-resolution functional magnetic resonance imaging scanning, subjects were then exposed again to these three learnt patterns and to others that had not been learned. Multi-voxel pattern analysis was used to test if the learnt acoustic patterns could be 'decoded' from the patterns of activity in the auditory cortex and medial temporal lobe. We found that activity in planum temporale and the hippocampus reliably distinguished between the learnt acoustic patterns. Our results demonstrate that these structures are involved in the neural representation of specific acoustic patterns after they have been learnt. PMID:25100695

  6. Tramadol Pretreatment Enhances Ketamine-Induced Antidepressant Effects and Increases Mammalian Target of Rapamycin in Rat Hippocampus and Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Chun Yang

    2012-01-01

    Full Text Available Several lines of evidence have demonstrated that acute administration of ketamine elicits fast-acting antidepressant effects. Moreover, tramadol also has potential antidepressant effects. The aim of this study was to investigate the effects of pretreatment with tramadol on ketamine-induced antidepressant activity and was to determine the expression of mammalian target of rapamycin (mTOR in rat hippocampus and prefrontal cortex. Rats were intraperitoneally administrated with ketamine at the dose of 10 mg/kg or saline 1 h before the second episode of the forced swimming test (FST. Tramadol or saline was intraperitoneally pretreated 30 min before the former administration of ketamine or saline. The locomotor activity and the immobility time of FST were both measured. After that, rats were sacrificed to determine the expression of mTOR in hippocampus and prefrontal cortex. Tramadol at the dose of 5 mg/kg administrated alone did not elicit the antidepressant effects. More importantly, pretreatment with tramadol enhanced the ketamine-induced antidepressant effects and upregulated the expression of mTOR in rat hippocampus and prefrontal cortex. Pretreatment with tramadol enhances the ketamine-induced antidepressant effects, which is associated with the increased expression of mTOR in rat hippocampus and prefrontal cortex.

  7. Social attachment in juvenile monkeys with neonatal lesion of the hippocampus, amygdala and orbital frontal cortex.

    Science.gov (United States)

    Goursaud, Anne-Pierre S; Bachevalier, Jocelyne

    2007-01-10

    Non-human primates, like humans, develop and maintain social relationships and attachments throughout their life. The first and most crucial relationship in a primate life is that with its mother. Yet, in absence of their biological mother, infant primates form attachment to surrogate mothers. Although, this early attachment is critical for the development of normal species-typical social and emotional skills, the neural substrates underlying the formation of social relationships in primates are still unclear. The present study assessed, in infant rhesus monkeys (Macaca mulatta) reared by human caregivers and social interactions with peers, the effects of bilateral neonatal (1-2 weeks of age) ibotenic acid lesions of the amygdala and hippocampus (N=6 in each group), aspiration lesions of the orbital frontal cortex (N=6) or sham lesions (N=5) on the development of a social attachment with the principal human caregiver. A specific preference for the later was assessed at 11 months of age, in a two-choice discrimination task, opposing the principal human caregiver to another familiar human, in a familiar environment. None of the lesions impaired the expression of preferential responses toward the principal human caregiver. Nevertheless, lesions of the orbital frontal cortex led to a weaker preference, suggesting that this structure may play a role in the quality and/or strength of the infant/mother relationships. The present non-human primate findings are discussed in terms of their relevance for autism. PMID:17084912

  8. Glucocorticoids exacerbate lipopolysaccharide-induced signaling in the frontal cortex and hippocampus in a dose-dependent manner.

    Science.gov (United States)

    Munhoz, Carolina Demarchi; Sorrells, Shawn F; Caso, Javier R; Scavone, Cristoforo; Sapolsky, Robert M

    2010-10-13

    Although the anti-inflammatory actions of glucocorticoids (GCs) are well established, evidence has accumulated showing that proinflammatory GC effects can occur in the brain, in a poorly understood manner. Using electrophoretic mobility shift assay, real-time PCR, and immunoblotting, we investigated the ability of varying concentrations of corticosterone (CORT, the GC of rats) to modulate lipopolysaccharide (LPS)-induced activation of NF-κB (nuclear factor κB), expression of anti- and proinflammatory factors and of the MAP (mitogen-activated protein) kinase family [ERK (extracellular signal-regulated kinase), p38, and JNK/SAPK (c-Jun N-terminal protein kinase/stress-activated protein kinase)], and AKT. In the frontal cortex, elevated CORT levels were proinflammatory, exacerbating LPS effects on NF-κB, MAP kinases, and proinflammatory gene expression. Milder proinflammatory GCs effects occurred in the hippocampus. In the absence of LPS, elevated CORT levels increased basal activation of ERK1/2, p38, SAPK/JNK, and AKT in both regions. These findings suggest that GCs do not uniformly suppress neuroinflammation and can even enhance it at multiple levels in the pathway linking LPS exposure to inflammation.

  9. Hypobaric Hypoxia Imbalances Mitochondrial Dynamics in Rat Brain Hippocampus

    Directory of Open Access Journals (Sweden)

    Khushbu Jain

    2015-01-01

    Full Text Available Brain is predominantly susceptible to oxidative stress and mitochondrial dysfunction during hypobaric hypoxia, and therefore undergoes neurodegeneration due to energy crisis. Evidences illustrate a high degree of association for mitochondrial fusion/fission imbalance and mitochondrial dysfunction. Mitochondrial fusion/fission is a recently reported dynamic mechanism which frequently occurs among cellular mitochondrial network. Hence, the study investigated the temporal alteration and involvement of abnormal mitochondrial dynamics (fusion/fission along with disturbed mitochondrial functionality during chronic exposure to hypobaric hypoxia (HH. The Sprague-Dawley rats were exposed to simulated high altitude equivalent to 25000 ft for 3, 7, 14, 21, and 28 days. Mitochondrial morphology, distribution within neurons, enzyme activity of respiratory complexes, Δψm, ADP: ATP, and expression of fission/fusion key proteins were determined. Results demonstrated HH induced alteration in mitochondrial morphology by damaged, small mitochondria observed in neurons with disturbance of mitochondrial functionality and reduced mitochondrial density in neuronal processes manifested by excessive mitochondrial fragmentation (fission and decreased mitochondrial fusion as compared to unexposed rat brain hippocampus. The study suggested that imbalance in mitochondrial dynamics is one of the noteworthy mechanisms occurring in hippocampal neurons during HH insult.

  10. Dopamine D3 receptor deletion increases tissue plasminogen activator (tPA) activity in prefrontal cortex and hippocampus.

    Science.gov (United States)

    Castorina, A; D'Amico, A G; Scuderi, S; Leggio, G M; Drago, F; D'Agata, V

    2013-10-10

    Considerable evidence indicates that dopamine (DA) influences tissue plasminogen activator (tPA)-mediated proteolytic processing of the precursor of brain-derived neurotrophic factor (proBDNF) into mature BDNF (mBDNF). However, specific roles in this process for the dopamine D3 receptor (D3R) and the underlying molecular mechanisms are yet to be fully characterized. In the present study, we hypothesized that D3R deletion could influence tPA activity in the prefrontal cortex and hippocampus. Using D3R knockout (D3(-/-)) mice, we show that receptor inactivation is associated with increased tPA expression/activity both in the prefrontal cortex and, to a greater extent, in the hippocampus. Augmented tPA expression in D3(-/-) mice correlated with increased BDNF mRNA levels, plasmin/plasminogen protein ratio and the conversion of proBDNF into mBDNF, as well as enhanced tPA and mBDNF immunoreactivity, as determined by quantitative real time polymerase chain reaction (qRT-PCR), immunoblot and immunohistochemistry. In addition, when compared to wild-type controls, D3(-/-) mice exhibited increased basal activation of the canonical cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)-driven Akt/cAMP-response element-binding protein (CREB) signaling cascade, as determined by the increased Akt phosphorylation both at Thr304 and Ser473 residues, of DA and cAMP-regulated protein of 32kDa (DARPP-32) at Thr34 and a phosphorylation state-dependent inhibition of glycogen synthetase kinase-3β (GSK-3β) at Ser9, a substrate of Akt whose constitutive function impairs normal CREB transcriptional activity through phosphorylation at its Ser129 residue. Accordingly, CREB phosphorylation at Ser133 was significantly increased in D3(-/-) mice, whereas the GSK-3β-dependent phosphorylation at Ser129 was diminished. Altogether, our finding reveals that mice lacking D3Rs show enhanced tPA proteolytic activity on BDNF which may involve, at least in part, a potentiated Akt/CREB signaling

  11. Expressions of Neuregulin 1β and ErbB4 in Prefrontal Cortex and Hippocampus of a Rat Schizophrenia Model Induced by Chronic MK-801 Administration

    Directory of Open Access Journals (Sweden)

    Yu Feng

    2010-01-01

    Full Text Available Recent human genetic studies and postmortem brain examinations of schizophrenia patients strongly indicate that dysregulation of NRG1 and ErbB4 may be important pathogenic factors of schizophrenia. However, this hypothesis has not been validated and fully investigated in animal models of schizophrenia. In this study we quantitatively examined NRG1 and ErbB4 protein expressions by immunohistochemistry and Western blot in the brain of a rat schizophrenia model induced by chronic administration of MK-801 (a noncompetitive NMDA receptor antagonist. Our data showed that NRG1β and ErbB4 expressions were significantly increased in the rat prefrontal cortex and hippocampus but in different subregions. These findings suggest that altered expressions of NRG1 and ErbB4 might be attributed to the schizophrenia. Further study in the role and mechanism of NRG1 and ErbB4 may lead to better understanding of the pathophysiology for this disorder.

  12. GLT-1 promoter activity in astrocytes and neurons of mouse hippocampus and somatic sensory cortex

    Directory of Open Access Journals (Sweden)

    Luisa De Vivo

    2010-01-01

    Full Text Available GLT-1 eGFP BAC reporter transgenic adult mice were used to detect GLT-1 gene expression in individual cells of CA1, CA3 and SI, and eGFP fluorescence was measured to analyze quantitatively GLT-1 promoter activity in different cells of neocortex and hippocampus. Virtually all GFAP+ astrocytes were eGFP+; we also found that about 80% of neurons in CA3 pyramidal layer, 10-70% of neurons in I-VI layers of SI and rare neurons in all strata of CA1 and in strata oriens and radiatum of CA3 were eGFP+. Analysis of eGFP intensity showed that astrocytes had a higher GLT-1 promoter activity in SI than in CA1 and CA3, and that neurons had the highest levels of GLT-1 promoter activity in CA3 stratum pyramidale and in layer VI of SI. Finally, we observed that the intensity of GLT-1 promoter activity in neurons is 1-20% of that measured in astrocytes. These results showed that in the hippocampus and neocortex GLT-1 promoter activity is observed in astrocytes and neurons, detailed the distribution of GLT-1 expressing neurons, and indicated that GLT-1 promoter activity in both astrocytes and neurons varies in different brain regions.

  13. Role of the thalamic nucleus reuniens in mediating interactions between the hippocampus and medial prefrontal cortex during spatial working memory

    Directory of Open Access Journals (Sweden)

    Amy L Griffin

    2015-03-01

    Full Text Available Despite decades of research, the neural mechanisms of spatial working memory remain poorly understood. Although the dorsal hippocampus is known to be critical for memory-guided behavior, experimental evidence suggests that spatial working memory depends not only on the hippocampus itself, but also on the circuit comprised of the hippocampus and the medial prefrontal cortex (mPFC. Disruption of hippocampal-mPFC interactions may result in failed transfer of spatial and contextual information processed by the hippocampus to the circuitry in mPFC responsible for decision making and goal-directed behavior. Oscillatory synchrony between the hippocampus and mPFC has been shown to increase in tasks with high spatial working memory demand. However, the mechanisms and circuitry supporting hippocampal-mPFC interactions during these tasks is unknown. The midline thalamic nucleus reuniens (RE is reciprocally connected to both the hippocampus and the mPFC and has been shown to be critical for a variety of working memory tasks. Therefore, it is likely that hippocampal-mPFC oscillatory synchrony is modulated by RE activity. This article will review the anatomical connections between the hippocampus, mPFC and RE along with the behavioral studies that have investigated the effects of RE disruption on working memory task performance. The article will conclude with suggestions for future directions aimed at identifying the specific role of the RE in regulating functional interactions between the hippocampus and the PFC and investigating the degree to which these interactions contribute to spatial working memory.

  14. Three-dimensional microtomographic imaging of human brain cortex

    CERN Document Server

    Mizutania, Ryuta; Uesugi, Kentaro; Ohyama, Masami; Takekoshi, Susumu; Osamura, R Yoshiyuki; Suzuki, Yoshio

    2016-01-01

    This paper describes an x-ray microtomographic technique for imaging the three-dimensional structure of the human cerebral cortex. Neurons in the brain constitute a neural circuit as a three-dimensional network. The brain tissue is composed of light elements that give little contrast in a hard x-ray transmission image. The contrast was enhanced by staining neural cells with metal compounds. The obtained structure revealed the microarchitecture of the gray and white matter regions of the frontal cortex, which is responsible for the higher brain functions.

  15. Changes in tau phosphorylation levels in the hippocampus and frontal cortex following chronic stress

    International Nuclear Information System (INIS)

    Studies have indicated that early-life or early-onset depression is associated with a 2- to 4-fold increased risk of developing Alzheimers disease (AD). In AD, aggregation of an abnormally phosphorylated form of the tau protein may be a key pathological event. Tau is known to play a major role in promoting microtubule assembly and stabilization, and in maintaining the normal morphology of neurons. Several studies have reported that stress may induce tau phosphorylation. The main aim of the present study was to investigate possible alterations in the tau protein in the hippocampus and frontal cortex of 32 male Sprague-Dawley rats exposed to chronic unpredictable mild stress (CUMS) and then re-exposed to CUMS to mimic depression and the recurrence of depression, respectively, in humans. We evaluated the effects of CUMS, fluoxetine, and CUMS re-exposure on tau and phospho-tau. Our results showed that a single exposure to CUMS caused a significant reduction in sucrose preference, indicating a state of anhedonia. The change in behavior was accompanied by specific alterations in phospho-tau protein levels, but fluoxetine treatment reversed the CUMS-induced impairments. Moreover, changes in sucrose preference and phospho-tau were more pronounced in rats re-exposed to CUMS than in those subjected to a single exposure. Our results suggest that changes in tau phosphorylation may contribute to the link between depression and AD

  16. Changes in tau phosphorylation levels in the hippocampus and frontal cortex following chronic stress

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Guo, X. [Wuhan University, Renmin Hospital, Department of Psychiatry, Wuhan, China, Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan (China); Wang, G.H. [Wuhan University, Renmin Hospital, Department of Psychiatry, Wuhan, China, Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan (China); Wuhan University, Institute of Neuropsychiatry, Wuhan, China, Institute of Neuropsychiatry, Wuhan University, Wuhan (China); Wang, H.L.; Liu, Z.C.; Liu, H.; Zhu, Z.X.; Li, Y. [Wuhan University, Renmin Hospital, Department of Psychiatry, Wuhan, China, Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan (China)

    2014-03-03

    Studies have indicated that early-life or early-onset depression is associated with a 2- to 4-fold increased risk of developing Alzheimers disease (AD). In AD, aggregation of an abnormally phosphorylated form of the tau protein may be a key pathological event. Tau is known to play a major role in promoting microtubule assembly and stabilization, and in maintaining the normal morphology of neurons. Several studies have reported that stress may induce tau phosphorylation. The main aim of the present study was to investigate possible alterations in the tau protein in the hippocampus and frontal cortex of 32 male Sprague-Dawley rats exposed to chronic unpredictable mild stress (CUMS) and then re-exposed to CUMS to mimic depression and the recurrence of depression, respectively, in humans. We evaluated the effects of CUMS, fluoxetine, and CUMS re-exposure on tau and phospho-tau. Our results showed that a single exposure to CUMS caused a significant reduction in sucrose preference, indicating a state of anhedonia. The change in behavior was accompanied by specific alterations in phospho-tau protein levels, but fluoxetine treatment reversed the CUMS-induced impairments. Moreover, changes in sucrose preference and phospho-tau were more pronounced in rats re-exposed to CUMS than in those subjected to a single exposure. Our results suggest that changes in tau phosphorylation may contribute to the link between depression and AD.

  17. Changes in tau phosphorylation levels in the hippocampus and frontal cortex following chronic stress

    Directory of Open Access Journals (Sweden)

    C. Yang

    2014-03-01

    Full Text Available Studies have indicated that early-life or early-onset depression is associated with a 2- to 4-fold increased risk of developing Alzheimers disease (AD. In AD, aggregation of an abnormally phosphorylated form of the tau protein may be a key pathological event. Tau is known to play a major role in promoting microtubule assembly and stabilization, and in maintaining the normal morphology of neurons. Several studies have reported that stress may induce tau phosphorylation. The main aim of the present study was to investigate possible alterations in the tau protein in the hippocampus and frontal cortex of 32 male Sprague-Dawley rats exposed to chronic unpredictable mild stress (CUMS and then re-exposed to CUMS to mimic depression and the recurrence of depression, respectively, in humans. We evaluated the effects of CUMS, fluoxetine, and CUMS re-exposure on tau and phospho-tau. Our results showed that a single exposure to CUMS caused a significant reduction in sucrose preference, indicating a state of anhedonia. The change in behavior was accompanied by specific alterations in phospho-tau protein levels, but fluoxetine treatment reversed the CUMS-induced impairments. Moreover, changes in sucrose preference and phospho-tau were more pronounced in rats re-exposed to CUMS than in those subjected to a single exposure. Our results suggest that changes in tau phosphorylation may contribute to the link between depression and AD.

  18. Is the brain cortex a fractal?

    Science.gov (United States)

    Kiselev, Valerij G; Hahn, Klaus R; Auer, Dorothee P

    2003-11-01

    The notion of fractal has been largely used to describe geometrical properties of complex objects in biology and medicine. In the present study the question is addressed whether the human cerebral cortex is self-similar in a statistical sense, which is commonly referred to as being a fractal. A new calculational method is presented, which is volumetric and based on the fast Fourier transform (FFT) of segmented three-dimensional high-resolution magnetic resonance images. The analysis covers a wide range of spatial scales from the size of the whole cortex to the ultimate pixel size. Results obtained in six subjects confirm the fractal nature of the human cerebral cortex down to a spatial scale of 3 mm. The obtained fractal dimension is D = 2.80 +/- 0.05, which is in reasonable agreement with previously reported results. Deployment of FFT enables a simple interpretation of the results and yields a high performance, which is necessary to analyze the entire cortex. Thus the FFT-based analysis of segmented MR images offers a comprehensive approach to study neurodevelopmental and neurodegenerative changes in the fractal geometry of the cerebral cortex. PMID:14642486

  19. Effects of sericin on heme oxygenase-1 expression in the hippocampus and cerebral cortex of type 2 diabetes mellitus rats

    Institute of Scientific and Technical Information of China (English)

    Zhihona Chen; Yaqiang He; Wenliang Fu; Jingfeng Xue

    2011-01-01

    Previous studies have demonstrated that sericin effectively reduces blood glucose, and protects islet cells, as well as the gonads and kidneys. However, whether sericin improves diabetes mellitus-induced structural and functional problems in the central nervous system remains poorly understood. Rat models of type 2 diabetes mellitus were established by intraperitoneal injection of streptozotocin. The present study observed histological changes in the hippocampus and cerebral cortex, as well as heme oxygenase-1 expression, and explored sericin effects on the central nervous system in diabetic rats. Pathological damage to neural cells in the rat hippocampus and cerebral cortex was relieved following intragastric administration of sericin at a dose of 2.4 g/kg for 35 consecutive days. Heme oxygenase-1 protein and mRNA expressions were decreased in the hippocampus and cerebral cortex of diabetes mellitus rats after sericin treatment. The results suggest that sericin plays a protective effect on the nervous system by decreasing the high expression of heme oxygenase-1 following diabetes mellitus.

  20. Choline acetyltransferase expression in rat prefrontal cortex and hippocampus after acute and chronic exposure to amisulpride, haloperidol, and risperidone.

    Science.gov (United States)

    Huang, Guang-Biao; Zhao, Tong; Li, Chun-Rong; Sui, Zhi-Yan; Kang, Nam-In; Han, Eui-Hyeog; Chung, Young-Chul

    2012-10-24

    Recently, there has been an increasing concern that atypical antipsychotics as well as typical ones may cause detrimental effects on cognitive function. Supporting evidence comes from many preclinical studies demonstrating that long-term administration of haloperidol, risperidone, and ziprasidone reduced choline acetyltransferase (ChAT) expression in rat hippocampus (HIP). However, to the best of our knowledge, no studies have examined the effects of amisulpride on ChAT expression in rats. Therefore, the aim of this study was to investigate the effects of acute and chronic administration of amisulpride, haloperidol, and risperidone on ChAT expression in the rat prefrontal cortex (PFC) and HIP. Animals received daily intraperitoneal (i.p.) injections of amisulpride (5 or 100mg/kg), haloperidol (1 or 2mg/kg), risperidone (1 or 2mg/kg) or vehicle for 7 or 45 days. One day after the last injection, rats were sacrificed. ChAT immunoreactivity was assessed with immunofluorescence staining. Target areas of brain were PFC and HIP (CA1, CA3 and DG). The short-term administration of haloperidol and risperidone produced significant decrease of ChAT immunoreactivity in the PFC and HIP compared to vehicle whereas amisulpride had no effects on ChAT immunoreactivity in the PFC and HIP. In long-term study, haloperidol and risperidone decreased ChAT-positive cells and/or fiber pixel density in the PFC and HIP whereas amisulpride decreased ChAT-positive cells in the PFC and had no effects on fiber pixel density of ChAT in the HIP. The results suggest that both short-term and long-term administration of haloperidol and risperidone, and long-term administration of amisulpride may produce detrimental effects on cognitive function by reducing ChAT expression in the PFC and/or HIP.

  1. Valproic acid effects in the hippocampus and prefrontal cortex in an animal model of post-traumatic stress disorder.

    Science.gov (United States)

    Wilson, C Brad; McLaughlin, Leslie D; Ebenezer, Philip J; Nair, Anand R; Francis, Joseph

    2014-07-15

    Reactive oxygen species (ROS) and pro-inflammatory cytokines (PIC) are upregulated in post-traumatic stress disorder (PTSD). Histone deacetylase inhibitors (HDACi) modify genetic transcription and can diminish ROS and PIC escalation. They can also modulate levels of neurotransmitters such as catecholamines and serotonin (5-HT). Thus, this study sought to analyze the effects of the HDACi valproic acid (VA) on oxidative stress, inflammation, and neurotransmitter modulation via a predator exposure/psychosocial stress animal model of PTSD. PTSD-like effects were induced in male Sprague-Dawley rats (n=6/group×4 groups). The rats were secured in Plexiglas cylinders and placed in a cage with a cat for 1h on days 1, 11, and 40 of a 40-day stress regimen. PTSD rats were also subjected to psychosocial stress via daily cage cohort changes. At the conclusion of the stress regimen, the treatment group (PTSD+VA) and control group (Control+VA) rats were given VA in their drinking water for 30 days. The rats were then euthanized and their brains were dissected to remove the hippocampus and prefrontal cortex (PFC). Whole blood was collected to assess systemic oxidative stress. ROS and PIC mRNA and protein elevation in the PTSD group were normalized with VA. Anxiety decreased in this group via improved performance on the elevated plus-maze (EPM). No changes were attributed to VA in the control group, and no improvements were noted in the vehicle groups. Results indicate VA can attenuate oxidative stress and inflammation, enhance fear extinction, and correct neurotransmitter aberrancies in a rat model of PTSD.

  2. Valproic acid effects in the hippocampus and prefrontal cortex in an animal model of post-traumatic stress disorder.

    Science.gov (United States)

    Wilson, C Brad; McLaughlin, Leslie D; Ebenezer, Philip J; Nair, Anand R; Francis, Joseph

    2014-07-15

    Reactive oxygen species (ROS) and pro-inflammatory cytokines (PIC) are upregulated in post-traumatic stress disorder (PTSD). Histone deacetylase inhibitors (HDACi) modify genetic transcription and can diminish ROS and PIC escalation. They can also modulate levels of neurotransmitters such as catecholamines and serotonin (5-HT). Thus, this study sought to analyze the effects of the HDACi valproic acid (VA) on oxidative stress, inflammation, and neurotransmitter modulation via a predator exposure/psychosocial stress animal model of PTSD. PTSD-like effects were induced in male Sprague-Dawley rats (n=6/group×4 groups). The rats were secured in Plexiglas cylinders and placed in a cage with a cat for 1h on days 1, 11, and 40 of a 40-day stress regimen. PTSD rats were also subjected to psychosocial stress via daily cage cohort changes. At the conclusion of the stress regimen, the treatment group (PTSD+VA) and control group (Control+VA) rats were given VA in their drinking water for 30 days. The rats were then euthanized and their brains were dissected to remove the hippocampus and prefrontal cortex (PFC). Whole blood was collected to assess systemic oxidative stress. ROS and PIC mRNA and protein elevation in the PTSD group were normalized with VA. Anxiety decreased in this group via improved performance on the elevated plus-maze (EPM). No changes were attributed to VA in the control group, and no improvements were noted in the vehicle groups. Results indicate VA can attenuate oxidative stress and inflammation, enhance fear extinction, and correct neurotransmitter aberrancies in a rat model of PTSD. PMID:24675160

  3. Comparison of the Effects of Adenosine A1 Receptors Activity in CA1 Region of the Hippocampus on Entorhinal Cortex and Amygdala Kindled Seizures in Rats

    Directory of Open Access Journals (Sweden)

    A. Heidarianpour

    2008-10-01

    Full Text Available Introduction & Objective: In the CNS, adenosine is known to suppress repetitive neuronal Firing, suggesting a role as an endogenous modifier of seizures. Indeed, intracerebral adenosine concentrations rise acutely during seizure activity and are thought to be responsible for terminating seizures and establishing a period of post-ictal refractoriness. However, it is unclear whether this suppression results from a general depression of brain excitability or through action on particular sites critical for the control of after discharge generation and/or seizure development and propagation. In this regard, comparison of the effects of adenosine A1 receptors of CA1 (region of the ‎hippocampus on entorhinal cortex and amygdala kindled seizures was ‎investigated in this study. Materials & Methods: In this experimental study, Animals were kindled by daily electrical stimulation of amygdale (group A or entorhinal cortex (group B. In the fully kindled animals, N6-‎cyclohexyladenosine (CHA;1 and 10 M; a selective adenosine A1 receptor ‎agonist and 1,3-dimethyl-8-cyclohexylxanthine(CPT;1 ‎µ‎M; a selective ‎adenosine A1 receptors antagonist were microinfused bilaterally into the CA1 ‎region of hippocampus (1l/2min and animals were stimulated at 5 and 15 minutes after drug ‎injection. All animals were received artificial cerebrospinal fluid, 24 h before ‎each drug injection and this result were used as control. Results: The seizure parameters were measured at 5 and 15min post injection. Obtained data showed that CHA at concentrations of 10 ‎µ‎M reduced ‎entorhinal cortex and amygdala after discharge and stage5 seizure durations and ‎increased stage4 latency. CHA at concentration 1‎µ‎M significantly alters ‎seizure parameters of group A but not effect on group B. Intrahippocampal (CA1 region pretreatment of CPT (1 ‎µ‎M before CHA abolished the effects of CHA on seizure parameters.Conclusion: It ‎may be

  4. Intracerebroventricular injection of mu- and delta-opiate receptor antagonists block 60 Hz magnetic field-induced decreases in cholinergic activity in the frontal cortex and hippocampus of the rat.

    Science.gov (United States)

    Lai, H; Carino, M

    1998-01-01

    In previous research, we have found that acute exposure to a 60 Hz magnetic field decreased cholinergic activity in the frontal cortex and hippocampus of the rat as measured by sodium-dependent high-affinity choline uptake activity. We concluded that the effect was mediated by endogenous opioids inside the brain because it could be blocked by pretreatment of rats before magnetic field exposure with the opiate antagonist naltrexone, but not by the peripheral antagonist naloxone methiodide. In the present study, the involvement of opiate receptor subtypes was investigated. Rats were pretreated by intracerebroventricular injection of the mu-opiate receptor antagonist, beta-funaltrexamine, or the delta-opiate receptor antagonist, naltrindole, before exposure to a 60 Hz magnetic field (2 mT, 1 hour). It was found that the effects of magnetic field on high-affinity choline uptake in the frontal cortex and hippocampus were blocked by the drug treatments. These data indicate that both mu- and delta-opiate receptors in the brain are involved in the magnetic field-induced decreases in cholinergic activity in the frontal cortex and hippocampus of the rat.

  5. Predator exposure/psychosocial stress animal model of post-traumatic stress disorder modulates neurotransmitters in the rat hippocampus and prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    C Brad Wilson

    Full Text Available Post-Traumatic Stress Disorder (PTSD can develop in response to a traumatic event involving a threat to life. To date, no diagnostic biomarkers have been identified for PTSD. Recent research points toward physiological abnormalities in the hypothalamic-pituitary-adrenal (HPA axis, sympathoadrenal medullary and immune system that may be implicated in the disorder. The modulation of neurotransmitters is another possible mechanism, but their role in the progression of PTSD is poorly understood. Low serotonin (5-HT may be a factor, but it may not be the only neurotransmitter affected as modulation affects levels of other neurotransmitters. In this study, we hypothesized the predator exposure/psychosocial stress rodent model of PTSD may alter levels of 5-HT and other neurotransmitters in the rat hippocampus and prefrontal cortex (PFC. Male Sprague-Dawley rats were used in this experiment. We induced PTSD via a predator exposure/psychosocial stress model, whereby rats were placed in a cage with a cat for 1 hour on days 1 and 11 of the 31-day experiment. Rats also received psychosocial stress via daily cage cohort changes. On day 32, the rats were sacrificed and the brains dissected to remove the hippocampus and PFC. Norepinephrine (NE, 5-Hydroxyindoleacetic acid (5-HIAA, homovanillic acid (HVA, dopamine (DA, and 3,4-Dihydroxyphenylacetic acid (DOPAC, and 5-HT levels in the hippocampus and PFC were measured with high-performance liquid chromatography (HPLC. In the hippocampus, 5-HT and HVA were lower, while NE and DOPAC were higher, in the PTSD group vs. controls. In the PFC, only 5-HT was lower, while NE, DA, and DOPAC were higher, in the PTSD group vs. controls. The rate limiting enzymes tyrosine hydroxylase and tryptophan hydroxylase were also examined and confirmed our findings. These results demonstrate that the predator exposure/psychosocial stress model of PTSD produces neurotransmitter changes similar to those seen in human patients and may

  6. Mescaline-induced changes of brain-cortex ribosomes. Effect of mescaline on the stability of brain-cortex ribosomes.

    Science.gov (United States)

    Datta, R K; Ghosh, J J

    1970-05-01

    1. During the action of mescaline sulphate on goat brain-cortex slices the ribosomal particles become susceptible to breakdown, releasing protein, RNA, acidsoluble nucleotides and ninhydrin-positive materials, resulting in loss of ribosomal enzyme activities. 2. Ribosomes of the mescaline-treated cortex slices undergo rapid degradation in the presence of trypsin and ribonuclease. 3. Mescaline does not alter the chemical and nucleotide compositions or the u.v.-absorption characteristics of ribosomal particles, however.

  7. Learned helplessness is independent of levels of brain-derived neurotrophic factor in the hippocampus

    OpenAIRE

    Greenwood, Benjamin N.; Strong, Paul V; Foley, Teresa E.; Thompson, Robert; Fleshner, Monika

    2006-01-01

    Reduced levels of brain-derived neurotrophic factor (BDNF) in the hippocampus have been implicated in human affective disorders and behavioral stress responses. The current studies examined the role of BDNF in the behavioral consequences of inescapable stress, or learned helplessness. Inescapable stress decreased BDNF mRNA and protein in the hippocampus of sedentary rats. Rats allowed voluntary access to running wheels for either 3 or 6 weeks prior to exposure to stress were protected against...

  8. Glucocorticoids modulate BDNF mRNA expression in the rat hippocampus after traumatic brain injury.

    Science.gov (United States)

    Grundy, P L; Patel, N; Harbuz, M S; Lightman, S L; Sharples, P M

    2000-10-20

    Brain-derived neurotrophic factor (BDNF) expression in rat hippocampus is increased after experimental traumatic brain injury (TBI) and may be neuroprotective. Glucocorticoids are important regulators of brain neurotrophin levels and are often prescribed following TBI. The effect of adrenalectomy (ADX) on the expression of BDNF mRNA in the hippocampus after TBI has not been investigated to date. We used fluid percussion injury (FPI) and in situ hybridization to evaluate the expression of BDNF mRNA in the hippocampus 4 h after TBI in adrenal-intact or adrenalectomized rats (with or without corticosterone replacement). FPI and ADX independently increased expression of BDNF mRNA. In animals undergoing FPI, prior ADX caused further elevation of BDNF mRNA and this upregulation was prevented by corticosterone replacement in ADX rats. These findings suggest that glucocorticoids are involved in the modulation of the BDNF mRNA response to TBI.

  9. Elevation of Brain Magnesium Potentiates Neural Stem Cell Proliferation in the Hippocampus of Young and Aged Mice.

    Science.gov (United States)

    Jia, Shanshan; Liu, Yunpeng; Shi, Yang; Ma, Yihe; Hu, Yixin; Wang, Meiyan; Li, Xue

    2016-09-01

    In the adult brain, neural stem cells (NSCs) can self-renew and generate all neural lineage types, and they persist in the sub-granular zone (SGZ) of the hippocampus and the sub-ventricular zone (SVZ) of the cortex. Here, we show that dietary-supplemented - magnesium-L-threonate (MgT), a novel magnesium compound designed to elevate brain magnesium regulates the NSC pool in the adult hippocampus. We found that administration of both short- and long-term regimens of MgT, increased the number of hippocampal NSCs. We demonstrated that in young mice, dietary supplementation with MgT significantly enhanced NSC proliferation in the SGZ. Importantly, in aged mice that underwent long-term (12-month) supplementation with MgT, MgT did not deplete the hippocampal NSC reservoir but rather curtailed the age-associated decline in NSC proliferation. We further established an association between extracellular magnesium concentrations and NSC self-renewal in vitro by demonstrating that elevated Mg(2+) concentrations can maintain or increase the number of cultured hippocampal NSCs. Our study also suggests that key signaling pathways for cell growth and proliferation may be candidate targets for Mg(2+) 's effects on NSC self-renewal. J. Cell. Physiol. 231: 1903-1912, 2016. © 2016 Wiley Periodicals, Inc. PMID:26754806

  10. Changes in the default mode network in the prefrontal lobe, posterior cingulated cortex and hippocampus of heroin users

    Institute of Scientific and Technical Information of China (English)

    Wenfu Hu; Xiangming Fu; Ruobing Qian; Xiangpin Wei; Xuebing Ji; Chaoshi Niu

    2012-01-01

    The default mode network is associated with senior cognitive functions in humans. In this study, we performed independent component analysis of blood oxygenation signals from 14 heroin users and 13 matched normal controls in the resting state through functional MRI scans. Results showed that the default mode network was significantly activated in the prefrontal lobe, posterior cingulated cortex and hippocampus of heroin users, and an enhanced activation signal was observed in the right inferior parietal lobule (P < 0.05, corrected for false discovery rate). Experimental findings indicate that the default mode network is altered in heroin users.

  11. Dosimetric analysis of the alopecia preventing effect of hippocampus sparing whole brain radiation therapy

    International Nuclear Information System (INIS)

    Whole brain radiation therapy (WBRT) is widely used for the treatment of brain metastases. Cognitive decline and alopecia are recognized adverse effects of WBRT. Recently hippocampus sparing whole brain radiation therapy (HS-WBRT) has been shown to reduce the incidence of memory loss. In this study, we found that multi-field intensity modulated radiation therapy (IMRT), with strict constraints to the brain parenchyma and to the hippocampus, reduces follicular scalp dose and prevents alopecia. Suitable patients befitting the inclusion criteria of the RTOG 0933 trial received Hippocampus sparing whole brain radiation. On follow up, they were noticed to have full scalp hair preservation. 5 mm thickness of follicle bearing scalp in the radiation field was outlined in the planning CT scans. Conventional opposed lateral WBRT radiation fields were applied to these patient-specific image sets and planned with the same nominal dose of 30 Gy in 10 fractions. The mean and maximum dose to follicle bearing skin and Dose Volume Histogram (DVH) data were analyzed for conventional and HS-WBRT. Paired t-test was used to compare the means. All six patients had fully preserved scalp hair and remained clinically cognitively intact 1–3 months after HS-WBRT. Compared to conventional WBRT, in addition to the intended sparing of the Hippocampus, HS-WBRT delivered significantly lower mean dose (22.42 cGy vs. 16.33 cGy, p < 0.0001), V24 (9 cc vs. 44 cc, p < 0.0000) and V30 (9 cc vs. 0.096 cc, p = 0.0106) to follicle hair bearing scalp and prevented alopecia. There were no recurrences in the Hippocampus area. HS-WBRT, with an 11-field set up as described, while attempting to conserve hippocampus radiation and maintain radiation dose to brain inadvertently spares follicle-bearing scalp and prevents alopecia

  12. 不同认知水平的广泛性脑萎缩患者磁共振波谱分析%The analysis of the neural metabolites in patients with global brain atrophy and different cognitive function in hippocampus and frontal cortex

    Institute of Scientific and Technical Information of China (English)

    熊丽; 章军建; 孙冬; 吴光耀

    2009-01-01

    Objective Global brain atrophy was reported as an important structural change in Alzheimer's disease (AD), while it has been detected in the older person with normal cognitive function. Therefore, this study was aimed at investigating the difference of the neural metabolites in the left hippocampus (HIP) and left frontal cortex (FC) among patients who showed global brain atrophy but with different cognitive function. Methods The 33 patients with global brain atrophy confirmed by MRI scan, underwent a comprehensively clinical and neuropsychological assessment including mini-mental state examination (MMSE), activities of daily living scale (ADL) and clock drawing test(CDT). According to the diagnostic and statistical manual of mental disorders, fourth edition(DSM-Ⅳ) and Mayo clinic rochester(MCR), 14 patients were diagnosed as AD, 9 patients as amnestic mild cognitive impairment(aMCI), and 10 patients as normal cognition. Every person was taken a cerebral proton magnetic resonance spectroscopy(1H-MRS) scan to measure the levels of n-acetylaspartate(NAA), choline(Cho), myo-inositol(MI) and Creatine(Cr) in the left HIP and the left FC. Results While compared with the group with normal cognition, the ratio of NAA/Cr in the AD group reduced 10.2% in the left HIP and 5.3% in the left FC, and the ratio of Cho/Cr increased 17.5% in the left HIP and 16.7% in the left FC, and the ratio of MI/Cr increased 39.5% in the left HIP and 19.2% in the left FC. The ratio of NAA/Cr of the left HIP in the AD group was lower than that in the aMCI group at the decrease rate of 6.4%, while the ratio of NAA/Cr of the left FC was not significantly different between the two groups. The AD group had higher ratios of Cho/Cr at the increase rate of 9.3% in the HIP and 12.3% in the FC, and higher MI/Cr ratios at the increase rate of 30% in the HIP and 17% in the FC than in the aMCI group. The aMCI group showed significantly lower ratio of NAA/Cr at the decrease rate of 4.1% and higher ratio of

  13. Neuronal degeneration in the hippocampus and dorsolateral prefrontal cortex in depressive disorder Correlation between 1H-MRS and Minnesota Multiphasic Personality Inventory

    Institute of Scientific and Technical Information of China (English)

    Jun Xia; Minjie Yang; Yi Lei; Yicheng Zhou

    2010-01-01

    Previous studies using magnetic resonance imaging(MRI)and functional MRI to study depression have primarily focused on proton magnetic resonance spectroscopy(1H-MRS)appearance in various areas of the brain and volume measurements in the limbic system.However,results have not been consistent.To the best of our knowledge,very little is known about the relationship between 1H-MRS appearance and depression inventory.In the present study,the relationship between 1H-MRS appearance in depressive patients and Minnesota Multiphasic Personality Inventory-2 scale was analyzed.MRI and 1H-MRS exhibited widened sulci and cisterns,as well as an absence of abnormal signals in depressive patients.In addition,N-acetyl aspartate/total creatine ratios in bilateral hippocampi and dorsolateral prefrontal cortex were significantly less in depressive patients than in control subjects(P < 0.01).In contrast,choline-containing compounds/total creatine ratios in the dorsolateral prefrontal cortex were significantly greater in depressive patients than in control subjects(P < 0.01).These ratios significantly and positively correlated with patient total depression scores as assessed using the Minnesota Multiphasic Personality Inventory-2 scale(r=0.934 7,0.878 7,P < 0.01).These results suggested that 1H-MRS could be used to reveal a reduced number of neurons in the hippocampus and dorsolateral prefrontal cortex,as well as altered membrane phospholipid metabolism in the dorsolateral prefrontal cortex,in patients with depressive disorder.Abnormal mechanisms partially reflected severity of depressive disorder.

  14. Differential Local Connectivity and Neuroinflammation Profiles in the Medial Prefrontal Cortex and Hippocampus in the Valproic Acid Rat Model of Autism.

    Science.gov (United States)

    Codagnone, Martín Gabriel; Podestá, María Fernanda; Uccelli, Nonthué Alejandra; Reinés, Analía

    2015-01-01

    Autism spectrum disorders (ASD) are a group of developmental disabilities characterized by impaired social interaction, communication deficit and repetitive and stereotyped behaviors. Neuroinflammation and synaptic alterations in several brain areas have been suggested to contribute to the physiopathology of ASD. Although the limbic system plays an important role in the functions found impaired in ASD, reports on these areas are scarce and results controversial. In the present study we searched in the medial prefrontal cortex (mPFC) and hippocampus of rats exposed to the valproic acid (VPA) model of ASD for early structural and molecular changes, coincident in time with the behavioral alterations. After confirming delayed growth and maturation in VPA rats, we were able to detect decreased exploratory activity and social interaction at an early time point (postnatal day 35). In mPFC, although typical cortical column organization was preserved in VPA animals, we found that interneuronal space was wider than in controls. Hippocampal CA3 (cornu ammonis 3) pyramidal layer and the granular layer of the dentate gyrus both showed a disorganized spatial arrangement in VPA animals. Neuronal alterations were accompanied with increased tomato lectin and glial fibrillary acidic protein (GFAP) immunostainings both in the mPFC and hippocampus. In the latter region, the increased GFAP immunoreactivity was CA3 specific. At the synaptic level, while mPFC from VPA animals showed increased synaptophysin (SYN) immunostaining, a SYN deficit was found in all hippocampal subfields. Additionally, both the mPFC and the hippocampus of VPA rats showed increased neuronal cell adhesion molecule (NCAM) immunostaining together with decreased levels of its polysialylated form (PSA-NCAM). Interestingly, these changes were more robust in the CA3 hippocampal subfield. Our results indicate that exploratory and social deficits correlate with region-dependent neuronal disorganization and reactive

  15. Changes of CREB in rat hippocampus, prefrontal cortex and nucleus accumbens during three phases of morphine induced conditioned place preference in rats

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lian-fang; ZHU Yong-ping

    2006-01-01

    Objective: To investigate the changes in CREB (cAMP response element binding protein) in hippocampus, PFC(prefrontal cortex) and NAc (nucleus accumbens) during three phases of morphine induced CPP (conditioned place preference) in rats, and to elucidate the role of CREB during the progress of conditioned place preference. Methods: Morphine induced CPP acquisition, extinction and drug primed reinstatement model was established, and CREB expression in each brain area was measured by Western Blot methods. Results: Eight alternating injections of morphine (10 mg/kg) induced CPP, and 8 d saline extinction training that extinguished CPP. CPP was reinstated following a priming injection of morphine (2.5 mg/kg). During the phases of CPP acquisition and reinstatement, the level of CREB expression was significantly changed in different brain areas.Conclusion: It was proved that CPP model can be used as an effective tool to investigate the mechanisms underlying drug-induced reinstatement of drug seeking after extinction, and that morphine induced CPP and drug primed reinstatement may involve activation of the transcription factor CREB in several brain areas, suggesting that the CREB and its target gene regulation pathway may mediate the basic mechanism underlying opioid dependence and its drug seeking behavior.

  16. Mescaline-induced changes of brain-cortex ribosomes. Effect of mescaline on the hydrogen-bonded structure of ribonucleic acid of brain-cortex ribosomes.

    Science.gov (United States)

    Datta, R K; Ghosh, J J

    1970-05-01

    1. The action of mescaline sulphate on the hydrogen-bonded structure of the RNA constituent of ribosomes of goat brain-cortex slices was studied by using the hyperchromic effect of heating and formaldehyde reaction. 2. The ribosomal total RNA species of the mescaline-treated brain-cortex slices have a smaller proportion of hydrogen-bonded structure than the ribosomal RNA species of the untreated brain-cortex slices. 3. Mescaline also appears to have affected this lowering of hydrogen-bonded structure of the ribosomal 28S RNA of brain-cortex tissue.

  17. Prenatal alcohol exposure alters p35, CDK5 and GSK3β in the medial frontal cortex and hippocampus of adolescent mice

    Directory of Open Access Journals (Sweden)

    Samantha L. Goggin

    2014-01-01

    Full Text Available Fetal alcohol spectrum disorders (FASDs are the number one cause of preventable mental retardation. An estimated 2–5% of children are diagnosed as having a FASD. While it is known that children prenatally exposed to alcohol experience cognitive deficits and a higher incidence of psychiatric illness later in life, the pathways underlying these abnormalities remain uncertain. GSK3β and CDK5 are protein kinases that are converging points for a vast number of signaling cascades, including those controlling cellular processes critical to learning and memory. We investigated whether levels of GSK3β and CDK5 are affected by moderate prenatal alcohol exposure (PAE, specifically in the hippocampus and medial frontal cortex of the adolescent mouse. In the present work we utilized immunoblotting techniques to demonstrate that moderate PAE increased hippocampal p35 and β-catenin, and decreased total levels of GSK3β, while increasing GSK3β Ser9 and Tyr216 phosphorylation. Interestingly, different alterations were seen in the medial frontal cortex where p35 and CDK5 were decreased and increased total GSK3β was accompanied by reduced Tyr216 of the enzyme. These results suggest that kinase dysregulation during adolescence might be an important contributing factor to the effects of PAE on hippocampal and medial frontal cortical functioning; and by extension, that global modulation of these kinases may produce differing effects depending on brain region.

  18. Glucocorticoids modulate the NGF mRNA response in the rat hippocampus after traumatic brain injury.

    Science.gov (United States)

    Grundy, P L; Patel, N; Harbuz, M S; Lightman, S L; Sharples, P M

    2001-02-23

    Nerve growth factor (NGF) expression in the rat hippocampus is increased after experimental traumatic brain injury (TBI) and is neuroprotective. Glucocorticoids are regulators of brain neurotrophin levels and are often prescribed following TBI. The effect of adrenalectomy (ADX) and corticosterone (CORT) replacement on the expression of NGF mRNA in the hippocampus after TBI has not been investigated to date. We used fluid percussion injury and in situ hybridisation to evaluate the expression of NGF mRNA in the hippocampus 4 h after TBI in adrenal-intact or adrenalectomised rats (with or without CORT replacement). TBI increased expression of NGF mRNA in sham-ADX rats, but not in ADX rats. Furthermore, CORT replacement in ADX rats restored the increase in NGF mRNA induced by TBI. These findings suggest that glucocorticoids have an important role in the induction of hippocampal NGF mRNA after TBI.

  19. Effects of the Bee Venom Herbal Acupuncture on the Neurotransmitters of the Rat Brain Cortex

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2001-02-01

    Full Text Available In order to study the effects of bee venom Herbal Acupuncture on neurotransmitters in the rat brain cortex, herbal acupuncture with bee venom group and normal saline group was performed at LI4 bilaterally of the rat. the average optical density of neurotransmitters from the cerebral cortex was analysed 30 minutes after the herbal aqupuncture, by the immunohistochemistry. The results were as follows: 1. The density of NADPH-diaphorase in bee venom group was increased significantly at the motor cortex, visual cortex, auditory cortex, cingulate cortex, retrosplenial cortex and perirhinal cortex compared to the normal saline group. 2. The average optical density of vasoactive intestinal peptide in bee venom group had significant changes at the insular cortex, retrosplenial cortex and perirhinal cortex, compared to the normal saline group. 3. The average optical density of neuropeptide-Y in bee venom group increased significantly at the visual cortex and cingulate cortex, compared to the normal saline group.

  20. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats

    Directory of Open Access Journals (Sweden)

    Alfonso Díaz

    2016-01-01

    Full Text Available Energy drinks (EDs are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx and hippocampus (Hp of adult rats (90 days old. Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats.

  1. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats

    Science.gov (United States)

    Díaz, Alfonso; Treviño, Samuel; Guevara, Jorge; Muñoz-Arenas, Guadalupe; Brambila, Eduardo; Espinosa, Blanca; Moreno-Rodríguez, Albino; Lopez-Lopez, Gustavo; Peña-Rosas, Ulises; Venegas, Berenice; Handal-Silva, Anabella; Morán-Perales, José Luis; Flores, Gonzalo; Aguilar-Alonso, Patricia

    2016-01-01

    Energy drinks (EDs) are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis) at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx) and hippocampus (Hp) of adult rats (90 days old). Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats. PMID:27069534

  2. Co-administration of creatine plus pyruvate prevents the effects of phenylalanine administration to female rats during pregnancy and lactation on enzymes activity of energy metabolism in cerebral cortex and hippocampus of the offspring.

    Science.gov (United States)

    Bortoluzzi, Vanessa Trindade; de Franceschi, Itiane Diehl; Rieger, Elenara; Wannmacher, Clóvis Milton Duval

    2014-08-01

    Phenylketonuria (PKU) is the most frequent inborn error of metabolism. It is caused by deficiency in the activity of phenylalanine hydroxylase, leading to accumulation of phenylalanine and its metabolites. Untreated maternal PKU or hyperphenylalaninemia may result in nonphenylketonuric offspring with low birth weight and neonatal sequelae, especially microcephaly and intellectual disability. The mechanisms underlying the neuropathology of brain injury in maternal PKU syndrome are poorly understood. In the present study, we evaluated the possible preventive effect of the co-administration of creatine plus pyruvate on the effects elicited by phenylalanine administration to female Wistar rats during pregnancy and lactation on some enzymes involved in the phosphoryltransfer network in the brain cortex and hippocampus of the offspring at 21 days of age. Phenylalanine administration provoked diminution of body, brain cortex an hippocampus weight and decrease of adenylate kinase, mitochondrial and cytosolic creatine kinase activities. Co-administration of creatine plus pyruvate was effective in the prevention of those alterations provoked by phenylalanine, suggesting that altered energy metabolism may be important in the pathophysiology of maternal PKU. If these alterations also occur in maternal PKU, it is possible that pyruvate and creatine supplementation to the phenylalanine-restricted diet might be beneficial to phenylketonuric mothers.

  3. The hippocampus: A central node in a large-scale brain network for memory.

    Science.gov (United States)

    Huijgen, J; Samson, S

    2015-03-01

    The medial temporal lobe is a key region in the formation and consolidation of conscious or declarative memories. In this review, we will first consider the role of the hippocampus and its surrounding medial temporal lobe structures in recognition memory from a historical perspective. According to the dual process model of recognition memory, recognition judgments can be based on the recollection of details about previous presented stimuli or on the feeling of familiarity. Studies in humans, primates and rodents suggest that the hippocampus, the parahippocampal cortex and the perirhinal cortex play different roles in recollection and familiarity. Then, we will describe the role of the hippocampus and neocortex in memory consolidation: a process in which novel memories become integrated into long-term memory. After presenting possible mechanisms underlying sleep-dependent declarative memory consolidation, we will discuss the phenomenon of accelerated long-term forgetting. This type of memory deficit is often observed in epileptic patients with a hippocampal lesion, and provides a novel opportunity to investigate post-encoding and memory consolidation processes.

  4. Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex.

    Science.gov (United States)

    Schlichting, Margaret L; Mumford, Jeanette A; Preston, Alison R

    2015-01-01

    The episodic memory system enables accurate retrieval while maintaining flexibility by representing both specific episodes and generalizations across events. Although theories suggest that the hippocampus (HPC) is dedicated to represent specific episodes while the medial prefrontal cortex (MPFC) generalizes, other accounts posit that HPC can also integrate related memories. Here we use high-resolution functional magnetic resonance imaging in humans to examine how representations of memory elements change to either differentiate or generalize across related events. We show that while posterior HPC and anterior MPFC maintain distinct memories for individual events, anterior HPC and posterior MPFC integrate across memories. Integration is particularly likely for established memories versus those encoded simultaneously, highlighting the greater impact of prior knowledge on new encoding. We also show dissociable coding signatures in ventrolateral PFC, a region previously implicated in interference resolution. These data highlight how memory elements are represented to simultaneously promote generalization across memories and protect from interference. PMID:26303198

  5. Hippocampus, caudate nucleus and entorhinal cortex volumetric MRI measurements in discrimination between Alzheimer’s disease, mild cognitive impairment, and normal aging

    Directory of Open Access Journals (Sweden)

    Rasha Elshafey

    2014-06-01

    Conclusion: Semi-automated MR volumetric measurements can be used to determine atrophy in hippocampus, caudate nucleus and entorhinal cortex which aided in discrimination of healthy elderly control subjects from subjects with AD and MCI and predict clinical decline of MCI leading to increase the efficiency of clinical treatments, delay institutionalization and improve cognition and behavioral symptoms.

  6. Functional differentiation of the premotor cortex: Behavioural and brain imaging studies in humans

    OpenAIRE

    Potgieser, Adriaan Remco Ewoud

    2015-01-01

    The premotor cortex is a brain structure that is involved in the preparation of movements. It has an important role in the final integration of task-related information and to funnel this to the primary motor cortex, which subsequently causes the execution of a movement. Premotor areas can also influence motor output through their direct interactions with both the spinal cord. Within the premotor cortex, the ventral premotor cortex (PMv), dorsal premotor cortex (PMd) and supplementary motor a...

  7. Localization of glucocorticoid receptor messenger ribonucleic acid in hippocampus of rat brain using in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.; Matocha, M.F.; Rapoport, S.I.

    1988-08-01

    An in situ hybridization procedure was applied to quantify glucocorticoid receptor (GR) mRNAs in the hippocampus of rat brain. Hybridization was carried out using a radiolabeled antisense probe complementary to the rat liver GR gene. The specificity of the method was validated by showing: 1) a high cellular grain density in sections hybridized with an antisense but not a sense probe; 2) agreement between the experimental and theoretical temperature at which 50% of the hybrids melted, and 3) a high signal distribution of GR mRNA in the hippocampus, a region of brain known to preferentially concentrate steroid hormones. Within the hippocampus, however, subregional differences in hybridization densities were observed. Quantitative autoradiography indicated that the average neuronal silver grain number was highest in the pyramidal cell layers of CA2 and CA4 and lowest in those of CA1 and CA3. Also, there was a significant difference in the average grain number between all of the cell fields except for that between CA2 and CA4. These results show that contiguous but neuroanatomically distinct cell fields of the hippocampus express different levels of GR transcripts, and indicate that differential regulation of GR expression occurs in subpopulations of hippocampal neurons.

  8. Prefrontal cortex and hippocampus in behavioural flexibility and posttraumatic functional recovery

    DEFF Research Database (Denmark)

    Rytter, Hana Malá; Andersen, Lykke Grønbech; Christensen, Rie Friis;

    2015-01-01

    Within one experiment and one T-maze, we examined the consequences of (i) bilateral lesions of the anteromedial prefrontal cortex (PFC), (ii) bilateral transections of the fimbria-fornix (FF), or (iii) combined lesions of both PFC and FF (COMB) on rats' ability to perform reversal or set-shifting...

  9. Implication of Tryptophan 2,3-Dioxygenase and its Novel Variants in the Hippocampus and Cerebellum During the Developing and Adult Brain

    Directory of Open Access Journals (Sweden)

    Masaaki Kanai

    2010-07-01

    Full Text Available Tryptophan 2,3-dioxygenase (TDO is a first and rate-limiting enzyme for the kynurenine pathway of tryptophan metabolism. Using Tdo-/-mice, we have recently shown that TDO plays a pivotal role in systemic tryptophan metabolism and brain serotonin synthesis as well as emotional status and adult neurogenesis. However, the expression of TDO in the brain has not yet been well characterized, in contrast to its predominant expression in the liver. To further examine the possible role of local TDO in the brain, we quantified the levels of tdo mRNA in various nervous tissues, using Northern blot and quantitative real-time RT-PCR. Higher levels of tdo mRNA expression were detected in the cerebellum and hippocampus. We also identified two novel variants of the tdo gene, termed tdo variant1 and variant2, in the brain. Similar to the known TDO form (TDO full-form, tetramer formation and enzymatic activity were obtained when these variant forms were expressed in vitro. While quantitative real-time RT-PCR revealed that the tissue distribution of these variants was similar to that of tdo full-form, the expression patterns of these variants during early postnatal development in the hippocampus and cerebellum differed. Our findings indicate that in addition to hepatic TDO, TDO and its variants in the brain might function in the developing and adult nervous system. Given the previously reported associations of tdo gene polymorphisms in the patients with autism and Tourette syndrome, the expression of TDO in the brain suggests the possible influence of TDO on psychiatric status. Potential functions of TDOs in the cerebellum, hippocampus and cerebral cortex under physiological and pathological conditions are discussed.

  10. Effects of visual deprivation during brain development on expression of AMPA receptor subunits in rat’s hippocampus

    Directory of Open Access Journals (Sweden)

    Sayyed Alireza Talaei

    2015-06-01

    Conclusion: Dark rearing of rats during critical period of brain development changes the relative expression and also arrangement of both AMPA receptor subunits, GluR1 and GluR2 in the hippocampus, age dependently.

  11. Moderate traumatic brain injury promotes proliferation of quiescent neural progenitors in the adult hippocampus

    OpenAIRE

    Gao, Xiang; Enikolopov, Grigori; Chen, Jinhui

    2009-01-01

    Recent evidence shows that traumatic brain injury (TBI) regulates proliferation of neural stem/progenitor cells in the dentate gyrus (DG) of adult hippocampus. There are distinct classes of neural stem/progenitor cells in the adult DG, including quiescent neural progenitors (QNPs), which carry stem cell properties, and their progeny, amplifying neural progenitors (ANPs). The response of each class of progenitors to TBI is not clear. We here used a transgenic reporter Nestin-GFP mouse line, in...

  12. Studies of the macroscopic and microscopic morphology (hippocampus of brain in Vencobb broiler

    Directory of Open Access Journals (Sweden)

    Shailesh Kumar Gupta

    2016-05-01

    Full Text Available Aim: The aim of this study was to study the anatomy of different parts of brain and histology of hippocampus of Vencobb broiler chicken. Materials and Methods: A 12 adult experimental birds were sacrificed by cervical dislocation. After separation of the brain, gross anatomy features were studied. Brain tissue was fixed in 10% buffered neutral formalin for 2-3 days, and then routine dehydration process in ascending grades of ethyl alcohol was done. After xylene cleaning, paraffin impregnation was prepared. Paraffin blocks were cut, and slides were stained by Harris hematoxylin and eosin. Photography was carried out both under lower (×10 and higher (×40 magnifications. Results: The brain structure (dorsal view of Vencobb bird resembled the outline of a playing card symbol of a “spade.” The brain subdivisions are cerebrum, cerebellum, and medulla oblongata. Cerebrum was devoid of usual convolutions (elevations, gyri, depressions (grooves, and sulci. The cerebral hemispheres were tightly apposed along a median sulcus called interhemispheric fissure and cerebrum and cerebellum were separated by a small transverse fissure. The olfactory bulb was small structures, and the pineal body was clearly visible. The optic lobes were partially hidden under cerebral hemispheres, but laterally, it was large, prominent rounded or spherical bodies of the midbrain. The hippocampal area appeared as dorso-medial protrusion. Different types of neurons were distinguished in the hippocampus were pyramidal neurons, pyramidal-like neurons, and multipolar neurons, etc. There was rich vascularization in the form of blood capillaries throughout the hippocampus. Conclusion: Cerebrum was pear shaped and largest part of the brain. Cerebrum hemisphere was smooth devoid of convolutions, gyri, and depressions, but in the surface of cerebellum, there was the presence of a number of transverse depression (grooves and sulci subdividing into many folds. Olfactory bulb was poorly

  13. Fluoride and arsenic exposure impairs learning and memory and decreases mGluR5 expression in the hippocampus and cortex in rats.

    Directory of Open Access Journals (Sweden)

    Shoufang Jiang

    Full Text Available Fluoride and arsenic are two common inorganic contaminants in drinking water that are associated with impairment in child development and retarded intelligence. The present study was conducted to explore the effects on spatial learning, memory, glutamate levels, and group I metabotropic glutamate receptors (mGluRs expression in the hippocampus and cortex after subchronic exposure to fluoride, arsenic, and a fluoride and arsenic combination in rats. Weaned male Sprague-Dawley rats were assigned to four groups. The control rats drank tap water. Rats in the three exposure groups drank water with sodium fluoride (120 mg/L, sodium arsenite (70 mg/L, and a sodium fluoride (120 mg/L and sodium arsenite (70 mg/L combination for 3 months. Spatial learning and memory was measured in Morris water maze. mGluR1 and mGluR5 mRNA and protein expression in the hippocampus and cortex was detected using RT-PCR and Western blot, respectively. Compared with controls, learning and memory ability declined in rats that were exposed to fluoride and arsenic both alone and combined. Combined fluoride and arsenic exposure did not have a more pronounced effect on spatial learning and memory compared with arsenic and fluoride exposure alone. Compared with controls, glutamate levels decreased in the hippocampus and cortex of rats exposed to fluoride and combined fluoride and arsenic, and in cortex of arsenic-exposed rats. mGluR5 mRNA and protein expressions in the hippocampus and mGluR5 protein expression in the cortex decreased in rats exposed to arsenic alone. Interestingly, compared with fluoride and arsenic exposure alone, fluoride and arsenic combination decreased mGluR5 mRNA expression in the cortex and protein expression in the hippocampus, suggesting a synergistic effect of fluoride and arsenic. These data indicate that fluoride and arsenic, either alone or combined, can decrease learning and memory ability in rats. The mechanism may be associated with changes of

  14. Mescaline-induced changes of brain-cortex ribosomes. Role of sperimidine in counteracting the destabilizing effect of mescaline of brain-cortex ribosomes.

    Science.gov (United States)

    Datta, R K; Antopol, W; Ghosh, J J

    1971-11-01

    1. The effect of spermidine on the mescaline-induced changes of brain-cortex ribosomes was studied by adding spermidine during the treatment of goat brain-cortex slices with mescaline. 2. Mescaline treatment of brain-cortex slices removed a portion of the endogenous spermidine from ribosomes and this removal was significantly prevented when spermidine was present during mescaline treatment. 3. Spermidine present during mescaline treatment of brain-cortex slices counteracted, to some extent, the destabilizing effect of mescaline on ribosomes with respect to heat denaturation. 4. Mescaline treatment of brain-cortex slices made ribosomes more susceptible to breakdown, releasing protein and RNA, and resulting in loss of ribosomal enzymic activities. However, spermidine present during mescaline treatment counteracted moderately the mescaline-induced ribosomal susceptibility to breakdown and ribosomal loss of enzymic activities. 5. Ribosomes of mescaline-treated cortex slices were rapidly degraded by ribonuclease and trypsin. However, if spermidine was present during mescaline treatment of brain-cortex slices the rates of degradation diminished.

  15. Protection of Cactus Polysaccharide against H2O2-induced damage in the rat cerebral cortex and hippocampus Differences In time of administration

    Institute of Scientific and Technical Information of China (English)

    Xianju Huang; Qin Li; Lianjun Guo; Zankai Yan

    2008-01-01

    BACKGROUND: Pharmacological research has shown that cactus polysaccharide (CP) has anti-oxidant, anti-inflammatory, antitumor, anti-aging, and immune-stimulating activities. It may also provide protective effects against oxidative stress injuries in the rat brain.OBJECTIVE: To validate the effects of CP on H2O2-induced oxidative stress injuries in the ratcerebral cortex and hippocampal slices 30 minutes prior to injury, as well as 30 minutes and 2.5 hours after injury.DESIGN: A randomized controlled experiment.SETTINGS: Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology; Department of Pharmacology, College of Medical Science, Yangtze University.MATERIALS: A total of 50 male Sprague Dawley (SD) rats, normal grade and weighing 200-300 g, were provided by the Laboratory Animal Center of Tongji Medical College, Huazhong University of Science and Technology. The protocol was performed in accordance with ethical guidelines for the use and care of ani-mals. Cactus polysaccharide, a dried needle crystal, was extracted from Opuntia milpa alta at the Chemistry and Environment Engineering School of Yangtze University. The following chemicals and instruments were used: 2,3,5-triphenyl tetrazolium chloride (Sigma, St Louis, Missouri, USA); lactate dehydrogenase (LDH), superoxide dismutase (SOD), glutathione (GSH), and total antioxidant competence (T-AOC) assays (Jiancheng-Bioeng Institute, Nanjing); McIllwain tissue chopper (Mickle Laboratory Engineering, USA); and ELISA reader and Magellan software (TECAN, Austria).METHODS: This experiment was performed at the Department of Pharmacology, Medical College of Yangtze University, between March and June 2006. All rats were sacrificed after anesthesia. The cerebral cortex and hippocampus were dissected. Several cerebral cortex and hippocampus slices were selected as controls, while other sections were co-incubated with H2O2 for 30 minutes to induce an oxidative stress injury. The

  16. Activity of the anterior cingulate cortex and ventral hippocampus underlie increases in contextual fear generalization.

    Science.gov (United States)

    Cullen, Patrick K; Gilman, T Lee; Winiecki, Patrick; Riccio, David C; Jasnow, Aaron M

    2015-10-01

    Memories for context become less specific with time resulting in animals generalizing fear from training contexts to novel contexts. Though much attention has been given to the neural structures that underlie the long-term consolidation of a context fear memory, very little is known about the mechanisms responsible for the increase in fear generalization that occurs as the memory ages. Here, we examine the neural pattern of activation underlying the expression of a generalized context fear memory in male C57BL/6J mice. Animals were context fear conditioned and tested for fear in either the training context or a novel context at recent and remote time points. Animals were sacrificed and fluorescent in situ hybridization was performed to assay neural activation. Our results demonstrate activity of the prelimbic, infralimbic, and anterior cingulate (ACC) cortices as well as the ventral hippocampus (vHPC) underlie expression of a generalized fear memory. To verify the involvement of the ACC and vHPC in the expression of a generalized fear memory, animals were context fear conditioned and infused with 4% lidocaine into the ACC, dHPC, or vHPC prior to retrieval to temporarily inactivate these structures. The results demonstrate that activity of the ACC and vHPC is required for the expression of a generalized fear memory, as inactivation of these regions returned the memory to a contextually precise form. Current theories of time-dependent generalization of contextual memories do not predict involvement of the vHPC. Our data suggest a novel role of this region in generalized memory, which should be incorporated into current theories of time-dependent memory generalization. We also show that the dorsal hippocampus plays a prolonged role in contextually precise memories. Our findings suggest a possible interaction between the ACC and vHPC controls the expression of fear generalization.

  17. Protection of Cactus Polysaccharide against H2O2-induced damage in the rat cerebral cortex and hippocampus Differences In time of administration

    Institute of Scientific and Technical Information of China (English)

    Xianju Huang; Qin Li; Lianjun Guo; Zankai Yan

    2008-01-01

    BACKGROUND: Pharmacological research has shown that cactus polysaccharide (CP) has anti-oxidant, anti-inflammatory, antitumor, anti-aging, and immune-stimulating activities. It may also provide protective effects against oxidative stress injuries in the rat brain.OBJECTIVE: To validate the effects of CP on H2O2-induced oxidative stress injuries in the ratcerebral cortex and hippocampal slices 30 minutes prior to injury, as well as 30 minutes and 2.5 hours after injury.DESIGN: A randomized controlled experiment.SETTINGS: Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology; Department of Pharmacology, College of Medical Science, Yangtze University.MATERIALS: A total of 50 male Sprague Dawley (SD) rats, normal grade and weighing 200-300 g, were provided by the Laboratory Animal Center of Tongji Medical College, Huazhong University of Science and Technology. The protocol was performed in accordance with ethical guidelines for the use and care of ani-mals. Cactus polysaccharide, a dried needle crystal, was extracted from Opuntia milpa alta at the Chemistry and Environment Engineering School of Yangtze University. The following chemicals and instruments were used: 2,3,5-triphenyl tetrazolium chloride (Sigma, St Louis, Missouri, USA); lactate dehydrogenase (LDH), superoxide dismutase (SOD), glutathione (GSH), and total antioxidant competence (T-AOC) assays (Jiancheng-Bioeng Institute, Nanjing); McIllwain tissue chopper (Mickle Laboratory Engineering, USA); and ELISA reader and Magellan software (TECAN, Austria).METHODS: This experiment was performed at the Department of Pharmacology, Medical College of Yangtze University, between March and June 2006. All rats were sacrificed after anesthesia. The cerebral cortex and hippocampus were dissected. Several cerebral cortex and hippocampus slices were selected as controls, while other sections were co-incubated with H2O2 for 30 minutes to induce an oxidative stress injury. The

  18. Learning an operant conditioning task differentially induces gliogenesis in the medial prefrontal cortex and neurogenesis in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Maximiliano Rapanelli

    Full Text Available Circuit modification associated with learning and memory involves multiple events, including the addition and remotion of newborn cells trough adulthood. Adult neurogenesis and gliogenesis were mainly described in models of voluntary exercise, enriched environments, spatial learning and memory task; nevertheless, it is unknown whether it is a common mechanism among different learning paradigms, like reward dependent tasks. Therefore, we evaluated cell proliferation, neurogenesis, astrogliogenesis, survival and neuronal maturation in the medial prefrontal cortex (mPFC and the hippocampus (HIPP during learning an operant conditioning task. This was performed by using endogenous markers of cell proliferation, and a bromodeoxiuridine (BrdU injection schedule in two different phases of learning. Learning an operant conditioning is divided in two phases: a first phase when animals were considered incompletely trained (IT, animals that were learning the task when they performed between 50% and 65% of the responses, and a second phase when animals were considered trained (Tr, animals that completely learned the task when they reached 100% of the responses with a latency time lower than 5 seconds. We found that learning an operant conditioning task promoted cell proliferation in both phases of learning in the mPFC and HIPP. Additionally, the results presented showed that astrogliogenesis was induced in the medial prefrontal cortex (mPFC in both phases, however, the first phase promoted survival of these new born astrocytes. On the other hand, an increased number of new born immature neurons was observed in the HIPP only in the first phase of learning, whereas, decreased values were observed in the second phase. Finally, we found that neuronal maturation was induced only during the first phase. This study shows for the first time that learning a reward-dependent task, like the operant conditioning, promotes neurogenesis, astrogliogenesis, survival and

  19. Stress induced a shift from dorsal hippocampus to prefrontal cortex-dependent memory retrieval: role of regional corticosterone.

    Directory of Open Access Journals (Sweden)

    Gaelle eDominguez

    2014-05-01

    Full Text Available Most of the deleterious effects of stress on memory retrieval are due to a dysfunction of the hippocampo-prefrontal cortex interplay. The role of the stress-induced regional corticosterone increase in such dysfunction remains however unclear, since there is no published study as yet dedicated to measuring corticosterone concentrations simultaneously in both the prefrontal cortex (mPFC and the hippocampus (dHPC in relation with memory impairments. To that aim, we first showed in Experiment 1 that an acute stress (3 electric footschocks; 0.9 mA each delivered before memory testing reversed the memory retrieval pattern (MRP in a serial discrimination task in which mice learned two successive discriminations. More precisely, whereas non-stressed animals remembered accurately the first learned discrimination and not the second one, stressed mice remembered more accurately the second discrimination but not the first one. We demonstrated that local inactivation of dHPC or mPFC with the anesthetic lidocaine recruited the dHPC activity in non-stress conditions whereas the stress-induced MRP inversion recruited the mPFC activity. In a second experiment, we showed that acute stress induced a very similar time-course evolution of corticosterone rises within both the mPFC and dHPC. In a 3rd experiment, we found however that in situ injections of corticosterone either within the mPFC or the dHPC before memory testing favored the emergence of the mPFC-dependent MRP but blocked the emergence of the dHPC-dependent one. Overall, our study evidences that the simultaneous increase of corticosterone after stress in both areas induces a shift from dHPC (non stress condition to mPFC-dependent memory retrieval pattern and that corticosterone is critically involved in mediating the deleterious effects of stress on cognitive functions involving the mPFC-HPC interplay.

  20. Age-related decreases in SYN levels associated with increases in MAP-2, apoE, and GFAP levels in the rhesus macaque prefrontal cortex and hippocampus

    OpenAIRE

    Haley, Gwendolen E.; Kohama, Steven G.; Urbanski, Henryk F.; Raber, Jacob

    2010-01-01

    Loss of synaptic integrity in the hippocampus and prefrontal cortex (PFC) may play an integral role in age-related cognitive decline. Previously, we showed age-related increases in the dendritic marker microtubule associated protein 2 (MAP-2) and the synaptic marker synaptophysin (SYN) in mice. Similarly, apolipoprotein E (apoE), involved in lipid transport and metabolism, and glial fibrillary acidic protein (GFAP), a glia specific marker, increase with age in rodents. In this study, we asses...

  1. Effects of Chloroquine on GFAP, PCNA and Cyclin D1 in Hippocampus and Cerebral Cortex of Rats with Seizures Induced by Pentylenetetrazole

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuhua; ZHU Changgeng; LIU Qingying; WANG Wei

    2005-01-01

    The effects of chloroquine on glial fibrillary acidic protein (GFAP), proliferation cell nuclear antigen (PCNA) and Cyclin D1 in hippocampus and cerebral cortex of rats with seizures induced by pentylenetetrazole (PTZ) were observed in the present study. Forty-eight male adult Sprague-Dawley (SD) rats were randomly divided into control group, chloroquine intervening group, and PTZ group. The behavior and electroencephalogram (EEG) were observed and recor ded. GFAP and PCNA were examined with immunohistochemistry. The content of Cyclin D1 in hippocampus and cerebral cortex was inspected with Western blot. The results showed no seizure activity in the control group, severe seizure activity in the PTZ group (Ⅳ-Ⅴ degree), and slight seizure activity ( Ⅰ - Ⅲ degree) in the chloroquine intervening group (P<0. 05). EEG recordings showed no epileptic spikes in the control group, high amplitude with fast frequency in the PTZ group, low-amplitude and slow frequency in the chloroquine intervening group. The expression of GFAP and the positive index of PCNA in the PTZ group were higher than those of control group (P <0.05 and P<0.01, respectively). No differences in GFAP expression and PCNA index were observed between chloroquine intervening and control groups (P>0.05). The content of Cyclin D1 in hippocampus and cerebral cortex was significantly higher in the PTZ group than in control and chloroquine intervening groups (P< 0.05). Therefore, it is considered that chloroquine, by inhibiting the functions and proliferation of glial cells in the hippocampus and cerebral cortex, can alleviate the seizure activities. These results suggest that chloroquine may be an ideal anticonvulsant in preventing and treating epilepsy.

  2. Brain iron deficiency and excess; cognitive impairment and neurodegeneration with involvement of striatum and hippocampus.

    Science.gov (United States)

    Youdim, M B H

    2008-08-01

    While iron deficiency is not perceived as a life threatening disorder, it is the most prevalent nutritional abnormality in the world, and a better understanding of modes and sites of action, can help devise better treatment programs for those who suffer from it. Nowhere is this more important than in infants and children that make up the bulk of iron deficiency in society. Although the effects of iron deficiency have been extensively studied in systemic organs, until very recently little attention was paid to its effects on brain function. The studies of Oski at Johns Hopkin Medical School in 1974, demonstrating the impairment of learning in young school children with iron deficiency, prompted us to study its relevance to brain biochemistry and function in an animal model of iron deficiency. Indeed, rats made iron deficient have lowered brain iron and impaired behaviours including learning. This can become irreversible especially in newborns, even after long-term iron supplementation. We have shown that in this condition it is the brain striatal dopaminergic-opiate system which becomes defective, resulting in alterations in circadian behaviours, cognitive impairment and neurochemical changes closely associated with them. More recently we have extended these studies and have established that cognitive impairment may be closely associated with neuroanatomical damage and zinc metabolism in the hippocampus due to iron deficiency, and which may result from abnormal cholinergic function. The hippocampus is the focus of many studies today, since this brain structure has high zinc concentration and is highly involved in many forms of cognitive deficits as a consequence of cholinergic deficiency and has achieved prominence because of dementia in ageing and Alzheimer's disease. Thus, it is now apparent that cognitive impairment may not be attributed to a single neurotransmitter, but rather, alterations and interactions of several systems in different brain regions. In animal

  3. Mescaline-induced changes of brain-cortex ribosomes. Mescaline demethylase activity of brain-cortex soluble supernatant.

    Science.gov (United States)

    Datta, R K; Ghosh, J J

    1977-02-01

    Brain-cortex slices demethylate mescaline and p-methoxyacetanilide, a reference O-demethylating substrate, though the rate of demethylation of mescaline is about one third that of the reference substrate. The demethylase activity is localized mostly in the soluble supernatant (105 000 x g). It is purified 47-fold with respect to the demethylation of mescaline by ammonium sulfate precipitation and DEAE cellulose chromatography. The partially purified demethylase, which is stable for 3-5 days at -5 degrees C in the presence of dithiothreitol and glutathione and is inhibited by p-chloromercuribenzoate, has maximal activity at pH between 7.2 and 8.0. It demethylates mescaline into 3,4-dimethoxy-5-hydroxyphenethylamine and 3,5-dimethoxy-4-hydroxyphenethylamine and some unidentified derivatives.

  4. Overexpression of brain-derived neurotrophic factor in the hippocampus protects against post-stroke depression

    Institute of Scientific and Technical Information of China (English)

    Hao-hao Chen; Ning Zhang; Wei-yun Li; Ma-rong Fang; Hui Zhang; Yuan-shu Fang; Ming-xing Ding; Xiao-yan Fu

    2015-01-01

    Post-stroke depression is associated with reduced expression of brain-derived neurotrophic factor (BDNF). In this study, we evaluated whether BDNF overexpression affects depression-like behavior in a rat model of post-stroke depression. The middle cerebral artery was occluded to produce a model of focal cerebral ischemia. These rats were then subjected to isolation-housing combined with chronic unpredictable mild stress to generate a model of post-stroke depression. ABDNF gene lentiviral vector was injected into the hippocampus. At 7 days after injection, western blot assay and real-time quantitative PCR revealed that BDNF expression in the hippo-campus was increased in depressive rats injected with BDNF lentivirus compared with depressive rats injected with control vector. Furthermore, sucrose solution consumption was higher, and horizontal and vertical movement scores were increased in the open ifeld test in these rats as well. These ifndings suggest that BDNF overexpression in the hippocampus of post-stroke depressive rats alleviates depression-like behaviors.

  5. Effect of zinc supplementation on neuronal precursor proliferation in the rat hippocampus after traumatic brain injury.

    Science.gov (United States)

    Cope, Elise C; Morris, Deborah R; Gower-Winter, Shannon D; Brownstein, Naomi C; Levenson, Cathy W

    2016-05-01

    There is great deal of debate about the possible role of adult-born hippocampal cells in the prevention of depression and related mood disorders. We first showed that zinc supplementation prevents the development of the depression-like behavior anhedonia associated with an animal model of traumatic brain injury (TBI). This work then examined the effect of zinc supplementation on the proliferation of new cells in the hippocampus that have the potential to participate in neurogenesis. Rats were fed a zinc adequate (ZA, 30ppm) or zinc supplemented (ZS, 180ppm) diet for 4wk followed by TBI using controlled cortical impact. Stereological counts of EdU-positive cells showed that TBI doubled the density of proliferating cells 24h post-injury (pdepression associated with brain injury, and suggest that other zinc dependent mechanisms are needed for the anti-depressant effect of zinc in this model of TBI. PMID:26902472

  6. Effect of zinc supplementation on neuronal precursor proliferation in the rat hippocampus after traumatic brain injury.

    Science.gov (United States)

    Cope, Elise C; Morris, Deborah R; Gower-Winter, Shannon D; Brownstein, Naomi C; Levenson, Cathy W

    2016-05-01

    There is great deal of debate about the possible role of adult-born hippocampal cells in the prevention of depression and related mood disorders. We first showed that zinc supplementation prevents the development of the depression-like behavior anhedonia associated with an animal model of traumatic brain injury (TBI). This work then examined the effect of zinc supplementation on the proliferation of new cells in the hippocampus that have the potential to participate in neurogenesis. Rats were fed a zinc adequate (ZA, 30ppm) or zinc supplemented (ZS, 180ppm) diet for 4wk followed by TBI using controlled cortical impact. Stereological counts of EdU-positive cells showed that TBI doubled the density of proliferating cells 24h post-injury (pzinc significantly increased this by an additional 2-fold (pzinc supplementation resulted in significant increases in the density of new doublecortin-positive neurons one week post-TBI that were maintained for 4wk after injury (pzinc supplementation on neuronal precursor cells in the hippocampus was robust, use of targeted irradiation to eliminate these cells after zinc supplementation and TBI revealed that these cells are not the sole mechanism through which zinc acts to prevent depression associated with brain injury, and suggest that other zinc dependent mechanisms are needed for the anti-depressant effect of zinc in this model of TBI.

  7. In humans IL-6 is released from the brain during and after exercise and paralleled by enhanced IL-6 mRNA expression in the hippocampus of mice

    DEFF Research Database (Denmark)

    Rasmussen, Per; Vedel, J-C; Olesen, J;

    2011-01-01

    Aim: Plasma interleukin-6 (IL-6) increases during exercise by release from active muscles and during prolonged exercise also from the brain. The IL-6 release from muscles continues into recovery and we tested whether the brain also releases IL-6 in recovery from prolonged exercise in humans....... Additionally, it was evaluated in mice whether brain release of IL-6 reflected enhanced IL-6 mRNA expression in the brain as modulated by brain glycogen levels. Methods: Nine healthy male subjects completed 4 h of ergometer rowing while the arterio-jugular venous difference (a-v diff) for IL-6 was determined....... The IL-6 mRNA and the glycogen content were determined in mouse hippocampus, cerebellum and cortex before and after 2 h treadmill running (N = 8). Results: At rest, the IL-6 a-v diff was negligible but decreased to -2.2 ± 1.9 pg ml(-1) at the end of exercise and remained low (-2.1 ± 2.1 pg ml(-1) ) 1 h...

  8. Acute nicotine enhances spontaneous recovery of contextual fear and changes c-fos early gene expression in infralimbic cortex, hippocampus, and amygdala.

    Science.gov (United States)

    Kutlu, Munir G; Tumolo, Jessica M; Holliday, Erica; Garrett, Brendan; Gould, Thomas J

    2016-08-01

    Exposure therapy, which focuses on extinguishing fear-triggering cues and contexts, is widely used to treat post-traumatic stress disorder (PTSD). Yet, PTSD patients who received successful exposure therapy are vulnerable to relapse of fear response after a period of time, a phenomenon known as spontaneous recovery (SR). Increasing evidence suggests ventral hippocampus, basolateral amygdala, and infralimbic cortex may be involved in SR. PTSD patients also show high rates of comorbidity with nicotine dependence. While the comorbidity between smoking and PTSD might suggest nicotine may alter SR, the effects of nicotine on SR of contextual fear are unknown. In the present study, we tested the effects of acute nicotine administration on SR of extinguished contextual fear memories and c-fos immediate early gene immunohistochemistry in mice. Our results demonstrated that acute nicotine enhanced SR of extinguished fear whereas acute nicotine did not affect retrieval of unextinguished contextual memories. This suggests that the effect of acute nicotine on SR is specific for memories that have undergone extinction treatment. C-fos immunoreactive (IR) cells in the ventral hippocampus and basolateral amygdala were increased in the nicotine-treated mice following testing for SR, whereas the number of IR cells in the infralimbic cortex was decreased in the same group. Overall, this study suggests that nicotine may adversely affect context-specific relapse of fear memories and this effect is potentially mediated by the suppression of cortical regions and increased activity in the ventral hippocampus and amygdala. PMID:27421892

  9. Functional differentiation of the premotor cortex : Behavioural and brain imaging studies in humans

    NARCIS (Netherlands)

    Potgieser, Adriaan Remco Ewoud

    2015-01-01

    The premotor cortex is a brain structure that is involved in the preparation of movements. It has an important role in the final integration of task-related information and to funnel this to the primary motor cortex, which subsequently causes the execution of a movement. Premotor areas can also infl

  10. Regional Susceptibility to Domoic Acid in Primary Astrocyte Cells Cultured from the Brain Stem and Hippocampus

    Directory of Open Access Journals (Sweden)

    Olga M. Pulido

    2008-02-01

    Full Text Available Domoic acid is a marine biotoxin associated with harmful algal blooms and is the causative agent of amnesic shellfish poisoning in marine animals and humans. It is also an excitatory amino acid analog to glutamate and kainic acid which acts through glutamate receptors eliciting a very rapid and potent neurotoxic response. The hippocampus, among other brain regions, has been identified as a specific target site having high sensitivity to DOM toxicity. Histopathology evidence indicates that in addition to neurons, the astrocytes were also injured. Electron microscopy data reported in this study further supports the light microscopy findings. Furthermore, the effect of DOM was confirmed by culturing primary astrocytes from the hippocampus and the brain stem and subsequently exposing them to domoic acid. The RNA was extracted and used for biomarker analysis. The biomarker analysis was done for the early response genes including c-fos, c-jun, c-myc, Hsp-72; specific marker for the astrocytes- GFAP and the glutamate receptors including GluR 2, NMDAR 1, NMDAR 2A and B. Although, the astrocyte-GFAP and c-fos were not affected, c-jun and GluR 2 were down-regulated. The microarray analysis revealed that the chemokines / cytokines, tyrosine kinases (Trk, and apoptotic genes were altered. The chemokines that were up-regulated included - IL1-a, IL-1B, IL-6, the small inducible cytokine, interferon protein IP-10, CXC chemokine LIX, and IGF binding proteins. The Bax, Bcl-2, Trk A and Trk B were all downregulated. Interestingly, only the hippocampal astrocytes were affected. Our findings suggest that astrocytes may present a possible target for pharmacological interventions for the prevention and treatment of amnesic shellfish poisoning and for other brain pathologies involving excitotoxicity

  11. Cross-Generational trans Fat Consumption Favors Self-Administration of Amphetamine and Changes Molecular Expressions of BDNF, DAT, and D1/D2 Receptors in the Cortex and Hippocampus of Rats.

    Science.gov (United States)

    Kuhn, Fábio Teixeira; Dias, Verônica Tironi; Roversi, Karine; Vey, Luciana Taschetto; de Freitas, Daniele Leão; Pase, Camila Simonetti; Roversi, Katiane; Veit, Juliana Cristina; Emanuelli, Tatiana; Bürger, Marilise Escobar

    2015-11-01

    Amphetamine (AMPH) is an addictive psychostimulant drug whose use has been related to neurotoxicity. Experimentally, AMPH increases anxiety-like symptoms, showing addictive properties. In the last decades, the growing consumption of processed foods has provided an excess of saturated and trans fats in detriment of essential fatty acids, which may modify the lipid profile of brain membranes, thus modifying its permeability and dopaminergic neurotransmission. Here, we assessed the influence of brain incorporation of different fatty acids (FA) on AMPH self-administration. Three groups of young male rats were orally supplemented from weaning with a mixture of soybean oil (SO, rich in n-6 FA) and fish oil (FO, rich in n-3 FA), hydrogenated vegetable fat (HVF, rich in trans fatty acids--TFA), or water (control group). These animals were born from dams that were supplemented with the same fat from pregnancy to lactation. Anxiety-like symptoms and locomotor index were assessed in elevated plus maze and open-field (OF), respectively, while brain molecular expressions of dopaminergic receptors, dopamine transporter (DAT), and BDNF were determined in the cortex and hippocampus. HVF increased the frequency of AMPH self-administration and was associated with reinforcement and withdrawal signs as observed by increased anxiety-like symptoms. Contrarily, SO/FO decreased these parameters. Increased BDNF protein together with decreased DAT expression was observed in the hippocampus of HVF group. Based on these findings, our study points to a harmful influence of trans fats on drug addiction and craving symptoms, whose mechanism may be related to changes in the dopaminergic neurotransmission.

  12. Predicting rapid response to cognitive-behavioural treatment for panic disorder: the role of hippocampus, insula, and dorsolateral prefrontal cortex.

    Science.gov (United States)

    Reinecke, Andrea; Thilo, Kai; Filippini, Nicola; Croft, Alison; Harmer, Catherine J

    2014-11-01

    Although cognitive-behavioural therapy (CBT) is an effective first-line intervention for anxiety disorders, treatments remain long and cost-intensive, difficult to access, and a subgroup of patients fails to show any benefits at all. This study aimed to identify functional and structural brain markers that predict a rapid response to CBT. Such knowledge will be important to establish the mechanisms underlying successful treatment and to develop more effective, shorter interventions. Fourteen unmedicated patients with panic disorder underwent 3 T functional and structural magnetic resonance imaging (MRI) before receiving four sessions of exposure-based CBT. Symptom severity was measured before and after treatment. During functional MRI, patients performed an emotion regulation task, either viewing negative images naturally, or intentionally down-regulating negative affect by using previously taught strategies of cognitive reappraisal. Structural MRI images were analysed including left and right segmentation and volume estimation. Improved response to brief CBT was predicted by increased pre-treatment activation in bilateral insula and left dorsolateral prefrontal cortex (dlPFC) during threat processing, as well as increased right hippocampal gray matter volume. Previous work links these regions to improved threat processing and fear memory activation, suggesting that the activation of such mechanisms is crucial for exposure-based CBT to be effective.

  13. Functionally Brain Network Connected to the Retrosplenial Cortex of Rats Revealed by 7T fMRI.

    Science.gov (United States)

    Wang, Jingjuan; Nie, Binbin; Duan, Shaofeng; Zhu, Haitao; Liu, Hua; Shan, Baoci

    2016-01-01

    Functional networks are regarded as important mechanisms for increasing our understanding of brain function in healthy and diseased states, and increased interest has been focused on extending the study of functional networks to animal models because such models provide a functional understanding of disease progression, therapy and repair. In rodents, the retrosplenial cortex (RSC) is an important cortical region because it has a large size and presents transitional patterns of lamination between the neocortex and archicortex. In addition, a number of invasive studies have highlighted the importance of the RSC for many functions. However, the network based on the RSC in rodents remains unclear. Based on the critical importance of the RSC, we defined the bilateral RSCs as two regions of interest and estimated the network based on the RSC. The results showed that the related regions include the parietal association cortex, hippocampus, thalamus nucleus, midbrain structures, and hypothalamic mammillary bodies. Our findings indicate two possible major networks: a sensory-cognitive network that has a hub in the RSCs and processes sensory information, spatial learning, and episodic memory; and a second network that is involved in the regulation of visceral functions and arousal. In addition, functional asymmetry between the bilateral RSCs was observed.

  14. Total Phenolic Content and Antioxidant Activity of Different Types of Chocolate, Milk, Semisweet, Dark, and Soy, in Cerebral Cortex, Hippocampus, and Cerebellum of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Niara da Silva Medeiros

    2015-01-01

    Full Text Available Chocolate is a product consumed worldwide and it stands out for presenting an important amount of phenolic compounds. In this study, the total phenolic content and antioxidant activity in the cerebral cortex, hippocampus, and cerebellum of male Wistar rats when consuming different types of chocolate, including milk, semisweet, dark, and soy, was evaluated. The total polyphenols concentration and antioxidant activity in vitro by the method of DPPH radical-scavenging test were evaluated in chocolate samples. Lipid peroxidation (TBARS, protein oxidation (carbonyl, sulfhydryl groups, and activity of SOD enzyme in cerebral cortex, hippocampus, and cerebellum of rats treated or not with hydrogen peroxide and/or chocolate were also evaluated. The dark chocolate demonstrated higher phenolic content and antioxidant activity, followed by semisweet, soy, and milk chocolates. The addition of chocolate in the diet of the rats reduced lipid peroxidation and protein oxidation caused by hydrogen peroxide. In the sulfhydryl assay, we observed that the levels of nonenzymatic defenses only increased with the chocolate treatments The SOD enzyme activity was modulated in the tissues treated with the chocolates. We observed in the samples of chocolate a significant polyphenol content and an important antioxidant activity; however, additional studies with different chocolates and other tissues are necessary to further such findings.

  15. Assessing Competence of Broccoli Consumption on Inflammatory and Antioxidant Pathways in Restraint-Induced Models: Estimation in Rat Hippocampus and Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Leila Khalaj

    2013-01-01

    Full Text Available A growing body of evidence advocated the protective and therapeutic potential of natural compounds and phytochemicals used in diets against pathological conditions. Herein, the outcome of dietary whole broccoli consumption prior to restraint stress has been investigated in the hippocampus and prefrontal cortex of male rats, two important regions involved in the processing of responses to stressful events. Interestingly, a region-specific effect was detected regarding some of antioxidant defense system factors: nuclear factor erythroid-derived 2-related factor 2 (Nrf-2 antioxidant pathway, mitochondrial prosurvival proteins involved in mitochondrial biogenesis, and apoptotic cell death proteins. Dietary broccoli supplementation modulated the restraint-induced changes towards a consistent overall protection in the hippocampus. In the prefrontal cortex, however, despite activation of most of the protective factors, presumably as an attempt to save the system against the stress insult, some detrimental outcomes such as induced malate dehydrogenase (MDA level and cleaved form of caspase-3 were detectable. Such diversity may be attributed in one hand to the different basic levels and/or availability of defensive mechanisms within the two studied cerebral regions, and on the other hand to the probable dose-dependent and hormetic effects of whole broccoli. More experiments are essential to demonstrate these assumptions.

  16. Ganoderma lucidum spore powder modulates Bcl-2 and Bax expression in the hippocampus and cerebral cortex, and improves learning and memory in pentylenetetrazole-kindled rats

    Institute of Scientific and Technical Information of China (English)

    Shuang Zhao; Shengchang Zhang; Shuqiu Wang

    2011-01-01

    We studied the effects of Ganoderma lucidum spore powder on Bax and Bcl-2 expression and neuronal apoptosis in pentylenetetrazole-kindled epileptic rats. Sixty adult rats were randomly divided into a control group, an epileptic group (kindled) and three medication groups ( 150, 300,450 mg/kg given to kindled rats). Bax and Bcl-2 immunohistochemistry and TUNEL labeling show ed that the number of Bax- and TUNEL-positive cells in the hippocampus and cerebral cortex decreased significantly in the high-dose medication group, while the number of Bcl-2immunoreactive cells increased. The Morris water maze test showed that high-dose treatment significantly shortened escape latency and increased spatial probe trial performance. Our findings indicate that a high dose of Ganoderma lucidum spore powder upregulates the expressionof antiapoptotic Bcl-2 protein in the hippocampus and cerebral cortex, inhibits proapoptotic Bax expression, and decreases seizure-induced neuronal apoptosis. Further,Ganoderma lucidum appears to protect against epilepsy-related learning and memory impairments.

  17. Differential expression of postsynaptic NMDA and AMPA receptor subunits in the hippocampus and prefrontal cortex of the flinders sensitive line rat model of depression.

    Science.gov (United States)

    Treccani, Giulia; Gaarn du Jardin, Kristian; Wegener, Gregers; Müller, Heidi Kaastrup

    2016-11-01

    Glutamatergic abnormalities have recently been implicated in the pathophysiology of depression, and the ionotropic glutamate receptors in particular have been suggested as possible underlying molecular determinants. The Flinders Sensitive Line (FSL) rats constitute a validated model of depression with dysfunctional regulation of glutamate transmission relatively to their control strain Flinders Resistant Line (FRL). To gain insight into how signaling through glutamate receptors may be altered in the FSL rats, we investigated the expression and phosphorylation of AMPA and NMDA receptor subunits in an enriched postsynaptic fraction of the hippocampus and prefrontal cortex. Compared to the hippocampal postsynaptic fractions of FRL rats, FSL rats exhibited decreased and increased levels of the NMDA receptor subunits GluN2A and GluN2B, respectively, causing a lower ratio of GluN2A/GluN2B. The GluA2/GluA3 AMPA receptor subunit ratio was significantly decreased while the expression of the individual GluA1, GluA2, and GluA3 subunits were unaltered including phosphorylation levels of GluA1 at S831 and S845. There were no changes in the prefrontal cortex. These results support altered expression of postsynaptic glutamate receptors in the hippocampus of FSL rats, which may contribute to the depressive-like phenotype of these rats. PMID:27262028

  18. Induction of brain CYP2E1 by chronic ethanol treatment and related oxidative stress in hippocampus, cerebellum, and brainstem

    International Nuclear Information System (INIS)

    Ethanol is one of the most commonly abused substances, and oxidative stress is an important causative factor in ethanol-induced neurotoxicity. Cytochrome P450 2E1 (CYP2E1) is involved in ethanol metabolism in the brain. This study investigates the role of brain CYP2E1 in the susceptibility of certain brain regions to ethanol neurotoxicity. Male Wistar rats were intragastrically treated with ethanol (3.0 g/kg, 30 days). CYP2E1 protein, mRNA expression, and catalytic activity in various brain regions were respectively assessed by immunoblotting, quantitative quantum dot immunohistochemistry, real-time RT-PCR, and LC–MS. The generation of reactive oxygen species (ROS) was analyzed using a laser confocal scanning microscope. The hippocampus, cerebellum, and brainstem were selectively damaged after ethanol treatment, indicated by both lactate dehydrogenase (LDH) activity and histopathological analysis. Ethanol markedly increased the levels of CYP2E1 protein, mRNA expression, and activity in the hippocampus and cerebellum. CYP2E1 protein and activity were significantly increased by ethanol in the brainstem, with no change in mRNA expression. ROS levels induced by ethanol paralleled the enhanced CYP2E1 proteins in the hippocampus, granular layer and white matter of cerebellum as well as brainstem. Brain CYP2E1 activity was positively correlated with the damage to the hippocampus, cerebellum, and brainstem. These results suggest that the selective sensitivity of brain regions to ethanol neurodegeneration may be attributed to the regional and cellular-specific induction of CYP2E1 by ethanol. The inhibition of CYP2E1 levels may attenuate ethanol-induced oxidative stress via ROS generation.

  19. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth

    Directory of Open Access Journals (Sweden)

    Fabienne eCazalis

    2011-01-01

    Full Text Available In this fMRI study, the functions of the Anterior Cingulate Cortex were studied in a group of adolescents who had sustained a moderate to severe Traumatic Brain Injury. A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered.In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the Anterior Cingulate Cortex in the Traumatic Brain Injury group, but not in the Control group, was associated with task difficulty; conversely, activity of the left Sensorimotor Cortex in the Control group, but not in the TBI group, was correlated with task difficulty.In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe Traumatic Brain Injury was done using fMRI and the same spatial working memory task. The patient group was studied at two time points: one time point during the post-acute phase and one time point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12 month period, patients recruited less of the Anterior Cingulate Cortex and more of the left Sensorimotor Cortex in response to increasing task difficulty.The role of Anterior Cingulate Cortex in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the Anterior Cingulate Cortex functions in the existing literature.

  20. The expression of TRPA1 mRNA in the rat brain

    Institute of Scientific and Technical Information of China (English)

    Peng Du; Shua Li; Jinyu Zheng; Zhi-yuan Yu; Minjie Xie; Wei Wang

    2006-01-01

    Objective: To investigate the distribution of TRPA1 (one kind of the TRP-like ion channel family) channel in the hippocampus and cerebral cortex of rat. Methods: RT-PCR was used to amplify the fragment of TRPA1 in the DRG (dorsal root ganglion), hippocampus and cerebral cortex of adult SD rat. In situ hybridization staining was used to show the distribution of TRPA1 mRNA in the hippocampus and cerebral cortex of adult rat brain. Results: Both RT-PCR and in situ hybridization staining showed that TRPA1 mRNA was expressed in hippocampus and cerebral cortex of the adult rat brain. Conclusion: Ourresults suggest that there is expression of TRPA1 mRNA both in the hippocampus and cerebral cortex of the adult rat brain.

  1. Concurrent assessment of memory for object and place: Evidence for different preferential importance of perirhinal cortex and hippocampus and for promnestic effect of a neurokinin-3 R agonist.

    Science.gov (United States)

    Chao, Owen Y; Huston, Joseph P; Nikolaus, Susanne; de Souza Silva, Maria A

    2016-04-01

    We here explore the utility of a paradigm that allows the simultaneous assessment of memory for object (what) and object location (where) and their comparative predominance. Two identical objects are presented during a familiarity trial; during the test trial one of these is displaced, and a new object is presented in a familiar location. When tested 5 or 80min later, rats explored both the novel and the displaced objects more than two familiar stationary objects, indicating intact memory for both, object and place. When tested 24h later rats explored the novel object more than the displaced familiar one, suggesting that forgetting differently influenced object and place memory, with memory for object being more robust than memory for place. Animals that received post-trial administration of the neurokinin-3 receptor agonist senktide and were tested 24h later, now explored the novel and displaced objects equally, suggesting that the treatment prevented the selective decay of memory for location. Next, animals received NMDA lesions in either the perirhinal cortex or the hippocampus, which are hypothesized to be preferentially involved in memory for objects and memory for place, respectively. When tested 5 or 80min later, the perirhinal cortex lesion group explored the displaced object more, indicating relatively deficient object memory, while the hippocampal lesion led to the opposite pattern, demonstrating comparatively deficient place memory. These results suggest different preferential engagement of the perirhinal cortex and hippocampus in their processing of memory for object and place. This preference test lends itself to application in the comparison of selective lesions of neural sites and projection systems as well as to the assessment of possible preferential action of pharmacological agents on neurochemical processes that subserve object vs place learning. PMID:26899993

  2. Functional MRI of the brain: localisation of eloquent cortex in focal brain lesion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dymarkowski, S.; Sunaert, S.; Oostende, S. van; Hecke, P. van; Wilms, G.; Demaerel, P.; Marchal, G. [Department of Radiology, University Hospitals, Leuven (Belgium); Nuttin, B.; Plets, C. [Department of Neurosurgery, University Hospitals, Leuven (Belgium)

    1998-12-01

    The aim of this study was to assess the feasibility of functional MRI (fMRI) in a clinical environment on a large patient group, and to evaluate the pretherapeutic value of localisation of eloquent cortex. Forty patients with focal brain lesions of different origin were studied using fMRI. Functional information was obtained using motor, somatosensory, auditory and phonological stimuli depending on the localisation of the lesions. To obtain information about the spatial accuracy of fMRI, the results were compared with postoperative electrocortical stimulation. Two patients with secondary trigeminal neuralgia were scanned using a motor protocol and were implanted with an extradural plate electrode. Imaging was successful in 40 of 42 patients (including the 2 with trigeminal neuralgia). These patients were analysed for strength of activation, the relation of the lesion to activation sites and the presence of mass effect. The correlation between these data and surgical findings provided significant additional clinical information. Functional MRI can be accurately performed in patients with focal brain lesions using a dedicated approach. Functional MRI offers important clinical information as a contribution to a decrease in posttherapeutic morbidity. The accuracy of the technique can be confirmed by other modalities, including invasive cortical electrostimulation. (orig.) With 7 figs., 2 tabs., 25 refs.

  3. Constructing morphometric profiles along the human brain cortex using in vivo Magnetic Resonance Imaging (MRI)

    OpenAIRE

    Pérez Santonja, Javier

    2015-01-01

    The geometry of the brain cortex is comprised of gyri (outward folds) and sulci (inward folds). Several biological properties about the anatomy and physiology of the brain cortex have been measured at the top of the sulci and at the bottom of the gyri; however, no one has yet measured how the values of these properties (called biomarkers) change along the path joining the top of the sulci and the bottom of the gyri. In this work, a methodology to display that information is shown, using diffe...

  4. The bumps on the hippocampus

    Science.gov (United States)

    Gao, Yi; Ver Hoef, Lawrence

    2016-03-01

    The hippocampus has been the focus of more imaging research than any other subcortical structure in the human brain. However a feature that has been almost universally overlooked are the bumpy ridges on the inferior aspect of the hippocampus, which we refer to as hippocampal dentation. These bumps arise from folds in the CA1 layer of Ammon's horn. Similar to the folding of the cerebral cortex, hippocampal dentation allows for greater surface area in a confined space. However, while quantitative studies of radiologic brain images have been advancing for decades, examining numerous approaches to hippocampal segmentation and morphology analysis, virtually all published 3D renderings of the hippocampus show the under surface to be quite smooth or mildly irregular; we have rarely seen the characteristic bumpy structure in the reconstructed 3D scene, one exception being the 9.4T postmortem study. This is presumably due to the fact that, based on our experience with high resolution images, there is a dramatic degree of variability in hippocampal dentation between individuals from very smooth to highly dentated. An apparent question is, does this indicate that this specific morphological signature can only be captured using expensive ultra-high field techniques? Or, is such information buried in the data we commonly acquire, awaiting a computation technique that can extract and render it clearly? In this study, we propose a super-resolution technique that captures the fine scale morphometric features of the hippocampus based on common T1-weighted 3T MR images.

  5. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons

    Directory of Open Access Journals (Sweden)

    Rodrigo eSiqueira Kazu

    2014-11-01

    Full Text Available Quantitative analysis of the cellular composition of rodent, primate, insectivore and afrotherian brains has shown that nonneuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of artiodactyls, a group within the order Cetartiodactyla, believed to be a relatively recent radiation from the common Eutherian ancestor. We find that artiodactyls share nonneuronal scaling rules with all groups analyzed previously. Artiodactyls share with afrotherians and rodents, but not with primates, the neuronal scaling rules that apply to the cerebral cortex and cerebellum. The neuronal scaling rules that apply to the remaining brain areas are however distinct in artiodactyls. Importantly, we show that the folding index of the cerebral cortex scales with the number of neurons in the cerebral cortex in distinct fashions across artiodactyls, afrotherians, rodents, and primates, such that the artiodactyl cerebral cortex is more convoluted than primate cortices of similar numbers of neurons. Our findings suggest that the scaling rules found to be shared across modern afrotherians, glires and artiodactyls applied to the common Eutherian ancestor, such as the relationship between the mass of the cerebral cortex as a whole and its number of neurons. In turn, the distribution of neurons along the surface of the cerebral cortex, which is related to its degree of gyrification, appears to be a clade-specific characteristic. If the neuronal scaling rules for artiodactyls extend to all cetartiodactyls, we predict that the large cerebral cortex of cetaceans will still have fewer neurons than the human cerebral cortex.

  6. Training your brain: Do mental and physical (MAP) training enhance cognition through the process of neurogenesis in the hippocampus?

    OpenAIRE

    Curlik, D.M.; Shors, T. J.

    2012-01-01

    New neurons are produced each day in the hippocampus through the process of neurogenesis. Both mental and physical training can modify this process by increasing the number of new cells that mature into functional neurons in the adult brain. However, the mechanisms whereby these increases occur are not necessarily the same. Physical activity, especially aerobic exercise greatly increases the number of new neurons that are produced in the hippocamal formation. In contrast, mental training via ...

  7. To What Extent is Blood a Reasonable Surrogate for Brain in Gene Expression Studies: Estimation from Mouse Hippocampus and Spleen

    OpenAIRE

    Davies, Matthew N; Lawn, Sarah; Whatley, Steven; Fernandes, Cathy; Robert W Williams; Schalkwyk, Leonard C

    2009-01-01

    Microarrays are designed to measure genome-wide differences in gene expression. In cases where a tissue is not accessible for analysis (e.g. human brain), it is of interest to determine whether a second, accessible tissue could be used as a surrogate for transcription profiling. Surrogacy has applications in the study of behavioural and neurodegenerative disorders. Comparison between hippocampus and spleen mRNA obtained from a mouse recombinant inbred panel indicates a high degree of correlat...

  8. Rapid and long-term induction of effector immediate early genes (BDNF, Neuritin and Arc) in peri-infarct cortex and dentate gyrus after ischemic injury in rat brain

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Teilum, Maria; Wieloch, Tadeusz

    2007-01-01

    including cerebral cortex and hippocampus. Brain-derived neurotrophic factor (BDNF), Neuritin and Activity-regulated cytoskeleton-associated protein (Arc) belong to a subgroup of immediate early genes implicated in synaptic plasticity known as effector immediate early genes. Here, we investigated...... at 0-6 h of reperfusion for Neuritin and 0-12 h of reperfusion for Arc while BDNF was induced 0-9 h of reperfusion. Our study demonstrates a rapid and long-term activation of effector immediate early genes in distinct brain areas following ischemic injury in rat. Effector gene activation may be part...

  9. An Overview of Brain-Derived Neurotrophic Factor and Implications for Excitotoxic Vulnerability in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Patrick S. Murray

    2011-01-01

    Full Text Available The present paper examines the nature and function of brain-derived neurotrophic factor (BDNF in the hippocampal formation and the consequences of changes in its expression. The paper focuses on literature describing the role of BDNF in hippocampal development and neuroplasticity. BDNF expression is highly sensitive to developmental and environmental factors, and increased BDNF signaling enhances neurogenesis, neurite sprouting, electrophysiological activity, and other processes reflective of a general enhancement of hippocampal function. Such increases in activity may mediate beneficial effects such as enhanced learning and memory. However, the increased activity also comes at a cost: BDNF plasticity renders the hippocampus more vulnerable to hyperexcitability and/or excitotoxic damage. Exercise dramatically increases hippocampal BDNF levels and produces behavioral effects consistent with this phenomenon. In analyzing the literature regarding exercise-induced regulation of BDNF, this paper provides a theoretical model for how the potentially deleterious consequences of BDNF plasticity may be modulated by other endogenous factors. The peptide galanin may play such a role by regulating hippocampal excitability.

  10. Drosophila cortex and neuropile glia influence secondary axon tract growth, pathfinding, and fasciculation in the developing larval brain

    OpenAIRE

    Spindler, Shana R; Ortiz, Irma; Fung, Siaumin; Takashima, Shigeo; Hartenstein, Volker

    2009-01-01

    Glial cells play important roles in the developing brain during axon fasciculation, growth cone guidance, and neuron survival. In the Drosophila brain, three main classes of glia have been identified including surface, cortex, and neuropile glia. While surface glia ensheaths the brain and is involved in the formation of the blood-brain-barrier and the control of neuroblast proliferation, the range of functions for cortex and neuropile glia is less well understood. In this study, we use the ni...

  11. Study on cognition disorder and morphologic change of neurons in hippocampus area following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    洪军; 崔建忠; 周云涛; 高俊玲

    2002-01-01

    Objective: To explore the correlation between cognition disorder and morphologic change of hippocampal neurons after traumatic brain injury (TBI).   Methods: Wistar rat models with severe TBI were made by Marmarous method. The histopathological change of the neurons in the hippocampus area were studied with hematoxylin-eosin (HE) staining and terminal deoxynucleotidyl transferase-mediated X-dUPT nick end labeling (TUNEL), respectively. The cognitive function was evaluated with the Morris water maze test.   Results: The comprehensive neuronal degeneration and necrosis could be observed in CA2-3 regions of hippocampus at 3 days after injury. Apoptotic positive neurons in CA2-4 regions of hippocampus and dentate gyrus increased in the injured group at 24 hours following TBI. They peaked at 7 days and then declined. Significant impairment of spatial learning and memory was observed after injury in the rats.   Conclusions: The rats have obvious disorders in spatial learning and memory after severe TBI. Meanwhile, delayed neuronal necrosis and apoptosis can be observed in the neurons in the hippocampus area. It suggests that delayed hippocampal cell death may contribute to the functional deficit.

  12. Long-term expression of human contextual fear and extinction memories involves amygdala, hippocampus and ventromedial prefrontal cortex: a reinstatement study in two independent samples.

    Science.gov (United States)

    Lonsdorf, Tina B; Haaker, Jan; Kalisch, Raffael

    2014-12-01

    Human context conditioning studies have focused on acquisition and extinction. Subsequent long-term changes in fear behaviors not only depend on associative learning processes during those phases but also on memory consolidation processes and the later ability to retrieve and express fear and extinction memories. Clinical theories explain relapse after successful exposure-based treatment with return of fear memories and remission with stable extinction memory expression. We probed contextual fear and extinction memories 1 week (Day8) after conditioning (Day1) and subsequent extinction (Day2) by presenting conditioned contexts before (Test1) and after (Test2) a reinstatement manipulation. We find consistent activation patterns in two independent samples: activation of a subgenual part of the ventromedial prefrontal cortex before reinstatement (Test1) and (albeit with different temporal profiles between samples) of the amygdala after reinstatement (Test2) as well as up-regulation of anterior hippocampus activity after reinstatement (Test2 > Test1). These areas have earlier been implicated in the expression of cued extinction and fear memories. The present results suggest a general role for these structures in defining the balance between fear and extinction memories, independent of the conditioning mode. The results are discussed in the light of hypotheses implicating the anterior hippocampus in the processing of situational ambiguity.

  13. Alterations of motor performance and brain cortex mitochondrial function during ethanol hangover.

    Science.gov (United States)

    Bustamante, Juanita; Karadayian, Analia G; Lores-Arnaiz, Silvia; Cutrera, Rodolfo A

    2012-08-01

    Ethanol has been known to affect various behavioral parameters in experimental animals, even several hours after ethanol (EtOH) is absent from blood circulation, in the period known as hangover. The aim of this study was to assess the effects of acute ethanol hangover on motor performance in association with the brain cortex energetic metabolism. Evaluation of motor performance and brain cortex mitochondrial function during alcohol hangover was performed in mice 6 hours after a high ethanol dose (hangover onset). Animals were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Ethanol hangover group showed a bad motor performance compared with control animals (p hangover animals showed a 34% decrease in the respiratory control rate as compared with the control group. Mitochondrial complex activities were decreased being the complex I-III the less affected by the hangover condition; complex II-III was markedly decreased by ethanol hangover showing 50% less activity than controls. Complex IV was 42% decreased as compared with control animals. Hydrogen peroxide production was 51% increased in brain cortex mitochondria from the hangover group, as compared with the control animals. Quantification of the mitochondrial transmembrane potential indicated that ethanol injected animals presented 17% less ability to maintain the polarized condition as compared with controls. These results indicate that a clear decrease in proton motive force occurs in brain cortex mitochondria during hangover conditions. We can conclude that a decreased motor performance observed in the hangover group of animals could be associated with brain cortex mitochondrial dysfunction and the resulting impairment of its energetic metabolism. PMID:22608205

  14. Memantine treatment reduces the expression of the K(+)/Cl(-) cotransporter KCC2 in the hippocampus and cerebral cortex, and attenuates behavioural responses mediated by GABA(A) receptor activation in mice.

    Science.gov (United States)

    Molinaro, Gemma; Battaglia, Giuseppe; Riozzi, Barbara; Di Menna, Luisa; Rampello, Liborio; Bruno, Valeria; Nicoletti, Ferdinando

    2009-04-10

    A 7-day treatment with memantine (25 mg/kg, i.p.), a drug that is currently prescribed for the treatment of Alzheimer's disease, increased the levels of brain-derived neurotrophic factor (BDNF) and reduced the expression of the neuron-specific K(+)/Cl(-) co-transporter, KCC2, in the hippocampus and cerebral cortex of mice. Knowing that KCC2 maintains low intracellular Cl(-) concentrations, which drive Cl(-) influx in response to GABA(A) receptor activation, we monitored the behavioural response to the GABA(A) receptor enhancer, diazepam, in mice pre-treated for 7 days with saline or 25 mg/kg of memantine. Memantine treatment substantially attenuated motor impairment induced by an acute challenge with diazepam (6 mg/kg, i.p.), as assessed by the rotarod test and the horizontal wire test. We suggest that a prolonged treatment with memantine induces changes in the activity of GABA(A) receptors that might contribute to the therapeutic and/or toxic effects of the drug.

  15. Does progesterone show neuroprotective effects on traumatic brain injury through increasing phosphorylation of Akt in the hippocampus?

    Institute of Scientific and Technical Information of China (English)

    Richard Justin Garling; Lora Talley Watts; Shane Sprague; Lauren Fletcher; David F Jimenez; Murat Digicaylioglu

    2014-01-01

    There are currently no federally approved neuroprotective agents to treat traumatic brain injury. Progesterone, a hydrophobic steroid hormone, has been shown in recent studies to exhibit neu-roprotective effects in controlled cortical impact rat models. Akt is a protein kinase known to play a role in cell signaling pathways that reduce edema, inlfammation, apoptosis, and promote cell growth in the brain. This study aims to determine if progesterone modulates the phosphor-ylation of Aktvia its threonine 308 phosphorylation site. Phosphorylation at the threonine 308 site is one of several sites responsible for activating Akt and enabling the protein kinase to carry out its neuroprotective effects. To assess the effects of progesterone on Akt phosphorylation, C57BL/6 mice were treated with progesterone (8 mg/kg) at 1 (intraperitonally), 6, 24, and 48 hours (subcutaneously) post closed-skull traumatic brain injury. The hippocampus was harvest-ed at 72 hours post injury and prepared for western blot analysis. Traumatic brain injury caused a signiifcant decrease in Akt phosphorylation compared to sham operation. However, mice treat-ed with progesterone following traumatic brain injury had an increase in phosphorylation of Akt compared to traumatic brain injury vehicle. Our ifndings suggest that progesterone is a viable treatment option for activating neuroprotective pathways after traumatic brain injury.

  16. Determination of hyperactive areas of Cortex Cerebri with using brain SPECT study

    International Nuclear Information System (INIS)

    The aim of this study was the assessment of the ability to apply of SPECT technique to determination of hyperactive areas of cortex cerebri. Analysis included 50 patients (mean aged 44 - 58). Brain SPECT scanning was performed after 1 hour after the intravenous injection of 740 MBq of ethylcisteinate dimmer labeled 99m Technetium (99mTc-ECD) with the use one-head gamma camera with a low-energy, ultra-high resolution collimator. Qualitative and quantitative analysis was performed using specialised software. In 20 cases normal biodistribution of the radiotracer was observed (hyperactive areas in cerebellum and occiput). In patients with psychiatric and neurological disturbances hyperactive areas were visualized in 25 cases in temporal lobes, in 4 cases in parietal lobes and in 1 patient in frontal area and basal ganglia. It is concluded that a number of factors limit the wide-scale use of SPECT, including the sophistication of imaging equipment (single-head cameras are inferior to the newer multihead units) and the experience of the physicians interpreting the scans and utilizing the data. In many diseases physicians do not know which areas of the patient's brain according disorders. Brain SPECT study can be a very useful tool to evaluation of hyperactive areas of cortex cerebri. This technique visualization of cortex cerebri completes standard analysis of disorders of brain activity

  17. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Directory of Open Access Journals (Sweden)

    Burkhard Pleger

    Full Text Available The complex regional pain syndrome (CRPS is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1 and motor cortex (M1 contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  18. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Science.gov (United States)

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  19. Investigating the neurobiology of music: brain-derived neurotrophic factor modulation in the hippocampus of young adult mice.

    Science.gov (United States)

    Angelucci, Francesco; Fiore, Marco; Ricci, Enzo; Padua, Luca; Sabino, Andrea; Tonali, Pietro Attilio

    2007-09-01

    It has been shown that music might be able to improve mood state in people affected by psychiatric disorders, ameliorate cognitive deficits in people with dementia and increase motor coordination in Parkinson patients. Robust experimental evidence explaining the central effects of music, however, is missing. This study was designed to investigate the effect of music on brain neurotrophin production and behavior in the mouse. We exposed young adult mice to music with a slow rhythm (6 h/day; mild sound pressure levels, between 50 and 60 db) for 21 consecutive days. At the end of the treatment, mice were tested for passive avoidance learning and then killed for analysis of brain-derived neurotrophic factor (BDNF) and nerve growth factor with enzyme-linked immunosorbent assay (ELISA) in selected brain regions. We found that music-exposed mice showed increased BDNF, but not nerve growth factor in the hippocampus. Furthermore, we observed that music exposure significantly enhanced learning performance, as measured by the passive avoidance test. Our results demonstrate that exposure to music can modulate the activity of the hippocampus by influencing BDNF production. Our findings also suggest that music exposure might be of help in several central nervous system pathologies.

  20. Rabbit Forebrain cholinergic system : Morphological characterization of nuclei and distribution of cholinergic terminals in the cerebral cortex and hippocampus

    NARCIS (Netherlands)

    Varga, C; Hartig, W; Grosche, J; Luiten, PGM; Seeger, J; Brauer, K; Harkany, T; Härtig, Wolfgang; Keijser, Jan N.

    2003-01-01

    Although the rabbit brain, in particular the basal forebrain cholinergic system, has become a common model for neuropathological changes associated with Alzheimer's disease, detailed neuroanatomical studies on the morphological organization of basal forebrain cholinergic nuclei and on their output p

  1. Functional gradients through the cortex, multisensory integration and scaling laws in brain dynamics

    OpenAIRE

    Gonzalo-Fonrodona, Isabel

    2008-01-01

    In the context of the increasing number of works on multisensory and cross-modal effects in cerebral processing, a review is made on the functional model of human brain proposed by Justo Gonzalo (1910-1986), in relation to what he called central syndrome (caused by unilateral lesion in the parieto-occipital cortex, equidistant from the visual, tactile and auditory projection areas). The syndrome is featured by a bilateral, symmetric and multisensory involvement, and by a functional depression...

  2. Melatonin reduces traumatic brain injur y-induced oxidative stress in the cerebral cortex and blood of rats

    Institute of Scientific and Technical Information of China (English)

    Nilgnenol; Mustafa Nazrolu

    2014-01-01

    Free radicals induced by traumatic brain injury have deleterious effects on the function and antioxidant vitamin levels of several organ systems including the brain. Melatonin possesses antioxidant effect on the brain by maintaining antioxidant enzyme and vitamin levels. We in-vestigated the effects of melatonin on antioxidant ability in the cerebral cortex and blood of traumatic brain injury rats. Results showed that the cerebral cortex β-carotene, vitamin C, vita-min E, reduced glutathione, and erythrocyte reduced glutathione levels, and plasma vitamin C level were decreased by traumatic brain injury whereas they were increased following melatonin treatment. In conclusion, melatonin seems to have protective effects on traumatic brain inju-ry-induced cerebral cortex and blood toxicity by inhibiting free radical formation and supporting antioxidant vitamin redox system.

  3. To what extent is blood a reasonable surrogate for brain in gene expression studies: estimation from mouse hippocampus and spleen

    Directory of Open Access Journals (Sweden)

    Matthew N Davies

    2009-10-01

    Full Text Available Microarrays are designed to measure genome-wide differences in gene expression. In cases where a tissue is not accessible for analysis (e.g. human brain, it is of interest to determine whether a second, accessible tissue could be used as a surrogate for transcription profiling. Surrogacy has applications in the study of behavioural and neurodegenerative disorders. Comparison between hippocampus and spleen mRNA obtained from a mouse recombinant inbred panel indicates a high degree of correlation between the tissues for genes that display a high heritability of expression level. This correlation is not limited to apparent expression differences caused by sequence polymorphisms in the target sequences and includes both cis and trans genetic effects. A tissue such as blood could therefore give surrogate information on expression in brain for a subset of genes, in particular those co-expressed between the two tissues, which have heritably varying expression.

  4. Prolonged rote learning produces delayed memory facilitation and metabolic changes in the hippocampus of the ageing human brain.

    LENUS (Irish Health Repository)

    Roche, Richard Ap

    2009-01-01

    BACKGROUND: Repeated rehearsal is one method by which verbal material may be transferred from short- to long-term memory. We hypothesised that extended engagement of memory structures through prolonged rehearsal would result in enhanced efficacy of recall and also of brain structures implicated in new learning. Twenty-four normal participants aged 55-70 (mean = 60.1) engaged in six weeks of rote learning, during which they learned 500 words per week every week (prose, poetry etc.). An extensive battery of memory tests was administered on three occasions, each six weeks apart. In addition, proton magnetic resonance spectroscopy (1H-MRS) was used to measure metabolite levels in seven voxels of interest (VOIs) (including hippocampus) before and after learning. RESULTS: Results indicate a facilitation of new learning that was evident six weeks after rote learning ceased. This facilitation occurred for verbal\\/episodic material only, and was mirrored by a metabolic change in left posterior hippocampus, specifically an increase in NAA\\/(Cr+Cho) ratio. CONCLUSION: Results suggest that repeated activation of memory structures facilitates anamnesis and may promote neuronal plasticity in the ageing brain, and that compliance is a key factor in such facilitation as the effect was confined to those who engaged fully with the training.

  5. Endurance training effects on 5-HT(1B) receptors mRNA expression in cerebellum, striatum, frontal cortex and hippocampus of rats.

    Science.gov (United States)

    Chennaoui, M; Drogou, C; Gomez-Merino, D; Grimaldi, B; Fillion, G; Guezennec, C Y

    2001-07-01

    The 5-HT(1B) receptors are the predominant auto- and heteroreceptors located on serotonergic and non-serotonergic terminals where they regulate the neuronal release of neurotransmitters. The present study investigated the effects of a 7 week period of physical training on the expression of cerebral 5-HT(1B) receptors by measuring corresponding mRNA levels in rat. Using RNase protection assay technique, we have observed no change in 5-HT(1B) receptor mRNA levels in the striatum and in the hippocampus after moderate as well as after intensive training. In contrast, a significant decrease in 5-HT(1B) receptor mRNA levels was observed in cerebellum of intensively trained rats. Moreover, in frontal cortex, a significant decrease in 5-HT(1B) receptors mRNA level occurred in both groups of trained rats. These data suggest the existence of regional differences in the effect of physical exercise on the expression of 5-HT(1B) receptors. PMID:11516568

  6. Activation of a ventral hippocampus-medial prefrontal cortex pathway is both necessary and sufficient for an antidepressant response to ketamine.

    Science.gov (United States)

    Carreno, F R; Donegan, J J; Boley, A M; Shah, A; DeGuzman, M; Frazer, A; Lodge, D J

    2016-09-01

    A single sub-anesthetic dose of ketamine exerts rapid and sustained antidepressant effects. Here, we examined the role of the ventral hippocampus (vHipp)-medial prefrontal cortex (mPFC) pathway in ketamine's antidepressant response. Inactivation of the vHipp with lidocaine prevented the sustained, but not acute, antidepressant-like effect of ketamine as measured by the forced swim test (FST). Moreover, optogenetic as well as pharmacogenetic specific activation of the vHipp-mPFC pathway using DREADDs (designer receptors exclusively activated by designer drugs) mimicked the antidepressant-like response to ketamine; importantly, this was pathway specific, in that activation of a vHipp to nucleus accumbens circuit did not do this. Furthermore, optogenetic inactivation of the vHipp/mPFC pathway at the time of FST completely reversed ketamine's antidepressant response. In addition, we found that a transient increase in TrkB receptor phosphorylation in the vHipp contributes to ketamine's sustained antidepressant response. These data demonstrate that activity in the vHipp-mPFC pathway is both necessary and sufficient for the antidepressant-like effect of ketamine. PMID:26619811

  7. Role of the hippocampus in contextual modulation of fear extinction

    Institute of Scientific and Technical Information of China (English)

    Lingzhi Kong; Xihong Wu; Liang Li

    2008-01-01

    Fear extinction is an important form of emotional learning, and affects neural plasticity. Cue fear extinction is a classical form of inhibitory learning that can be used as an exposure-based treatment for phobia, because the long-term extinction memory produced during cue fear extinction can limit the over-expression of fear. The expression of this inhibitory memory partly depends on the context in which the extinction learning occurs. Studies such as transient inhibition, electrophysiology and brain imaging have proved that the hippocampus - an important structure in the limbic system - facilitates memory retrieval by contextual cues.Mediation of the hippocampus-medial prefrontal lobe circuit may be the neurobiological basis of this process.This article has reviewed the role of the hippocampus in the learning and retrieval of fear extinction.Contextual modulation of fear extinction may rely on a neural network consisting of the hippocampus, the medial prefrontal cortex and the amygdala.

  8. Altered reward processing in the orbitofrontal cortex and hippocampus in healthy first-degree relatives of patients with depression

    DEFF Research Database (Denmark)

    Macoveanu, J; Knorr, U; Skimminge, A;

    2014-01-01

    BACKGROUND: Healthy first-degree relatives of patients with major depression (rMD+) show brain structure and functional response anomalies and have elevated risk for developing depression, a disorder linked to abnormal serotonergic neurotransmission and reward processing. METHOD: In a two......-step functional magnetic resonance imaging (fMRI) investigation, we first evaluated whether positive and negative monetary outcomes were differentially processed by rMD+ individuals compared to healthy first-degree relatives of control probands (rMD-). Second, in a double-blinded placebo-controlled randomized...... trial we investigated whether a 4-week intervention with the selective serotonergic reuptake inhibitor (SSRI) escitalopram had a normalizing effect on behavior and brain responses of the rMD+ individuals. RESULTS: Negative outcomes increased the probability of risk-averse choices in the subsequent trial...

  9. Postnatal BDNF Expression Profiles in Prefrontal Cortex and Hippocampus of a Rat Schizophrenia Model Induced by MK-801 Administration

    OpenAIRE

    Chunmei Guo; Yang Yang; Yun'ai Su; Tianmei Si

    2010-01-01

    Neonatal blockade of N-methyl-D-aspartic acid (NMDA) receptors represents one of experimental animal models for schizophrenia. This study is to investigate the long-term brain-derived neurotrophic factor (BDNF) expression profiles in different regions and correlation with “schizophrenia-like” behaviors in the adolescence and adult of this rat model. The NMDA receptor antagonist MK801 was administered to female Sprague-Dawley rats on postnatal days (PND) 5 through 14. Open-field test was perfo...

  10. Occurrence of new neurons in the piriform cortex

    Directory of Open Access Journals (Sweden)

    Ti-Fei eYuan

    2015-01-01

    Full Text Available Adult neurogenesis has been well studied in hippocampus and subventricular zone; while this is much less appreciated in other brain regions, including amygdala, hypothalamus and piriform cortex. The present review aims at summarizing recent advances on the occurrence of new neurons in the piriform cortex, their potential origin and migration route from the subventricular zone. We further discuss the relevant implications in olfactory dysfunction accompanying the neuro-degenerative diseases.

  11. [Trajectories of alpha rhythm dipoles shifting over the human brain cortex].

    Science.gov (United States)

    Bark, E D; Shevelev, I A; Kulikov, M A; Kamenkovich, V M; Pokazan'eva, L N

    2005-01-01

    Dynamic study of 3D localization of the equivalent current dipoles (ECD)--sources of the EEG alpha rhythm in the human brain was performed in seven subjects with closed eyes using a one-dipole model. An exact localization of ECDs was obtained by combination of EEG and MRI mapping that allowed tracing of ECD shifts over the cortex with 4 ms step. Our data confirmed localization of these ECDs mainly in the occipital cortex and revealed their successive shift over this area during generation of each alpha-wave. Typical trajectories of these shifts were revealed and quantitatively compared by the hierarchical cluster analysis. The data obtained directly proved periodical rhythmic alpha-wave spreading process in the human visual cortex and an external control of this process. The data are discussed in terms of the "scanning hypothesis" (Pitts W., McCulloch W.H. Bull. Math. Biophys. 1947. V. 9. P. 127) which predicted a certain functional meaning of the alpha activity for cortical processing of sensory information in the human brain.

  12. Traumatic stress: effects on the brain

    OpenAIRE

    Bremner, J Douglas

    2006-01-01

    Brain areas implicated in the stress response include the amygdala, hippocampus, and prefrontal cortex. Traumatic stress can be associated with lasting changes in these brain areas. Traumatic stress is associated with increased cortisol and norepinephrine responses to subsequent stressors. Antidepressants have effets on the hippocampus that counteract the effects of stress. Findings from animal studies have been extended to patients with post-traumatic stress disorder (PTSD) showing smaller h...

  13. Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy

    International Nuclear Information System (INIS)

    The goal of this review is to summarize the rationale for and feasibility of hippocampal sparing techniques during brain irradiation. Radiotherapy is the most effective non-surgical treatment of brain tumors and with the improvement in overall survival for these patients over the last few decades, there is an effort to minimize potential adverse effects leading to possible worsening in quality of life, especially worsening of neurocognitive function. The hippocampus and associated limbic system have long been known to be important in memory formation and pre-clinical models show loss of hippocampal stem cells with radiation as well as changes in architecture and function of mature neurons. Cognitive outcomes in clinical studies are beginning to provide evidence of cognitive effects associated with hippocampal dose and the cognitive benefits of hippocampal sparing. Numerous feasibility planning studies support the feasibility of using modern radiotherapy systems for hippocampal sparing during brain irradiation. Although results of the ongoing phase II and phase III studies are needed to confirm the benefit of hippocampal sparing brain radiotherapy on neurocognitive function, it is now technically and dosimetrically feasible to create hippocampal sparing treatment plans with appropriate irradiation of target volumes. The purpose of this review is to provide a brief overview of studies that provide a rationale for hippocampal avoidance and provide summary of published feasibility studies in order to help clinicians prepare for clinical usage of these complex and challenging techniques

  14. Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala.

    Directory of Open Access Journals (Sweden)

    Harini Lakshminarasimhan

    Full Text Available Recent findings on stress induced structural plasticity in rodents have identified important differences between the hippocampus and amygdala. The same chronic immobilization stress (CIS, 2 h/day causes growth of dendrites and spines in the basolateral amygdala (BLA, but dendritic atrophy in hippocampal area CA3. CIS induced morphological changes also differ in their temporal longevity--BLA hypertrophy, unlike CA3 atrophy, persists even after 21 days of stress-free recovery. Furthermore, a single session of acute immobilization stress (AIS, 2 h leads to a significant increase in spine density 10 days, but not 1 day, later in the BLA. However, little is known about the molecular correlates of the differential effects of chronic and acute stress. Because BDNF is known to be a key regulator of dendritic architecture and spines, we investigated if the levels of BDNF expression reflect the divergent effects of stress on the hippocampus and amygdala. CIS reduces BDNF in area CA3, while it increases it in the BLA of male Wistar rats. CIS-induced increase in BDNF expression lasts for at least 21 days after the end of CIS in the BLA. But CIS-induced decrease in area CA3 BDNF levels, reverses to normal levels within the same period. Finally, BDNF is up regulated in the BLA 1 day after AIS and this increase persists even 10 days later. In contrast, AIS fails to elicit any significant change in area CA3 at either time points. Together, these findings demonstrate that both acute and chronic stress trigger opposite effects on BDNF levels in the BLA versus area CA3, and these divergent changes also follow distinct temporal profiles. These results point to a role for BDNF in stress-induced structural plasticity across both hippocampus and amygdala, two brain areas that have also been implicated in the cognitive and affective symptoms of stress-related psychiatric disorders.

  15. Reward Sensitivity Modulates Brain Activity in the Prefrontal Cortex, ACC and Striatum during Task Switching

    Science.gov (United States)

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C.; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  16. Two-dimensional electrophoretogram of acute brain injury-associated proteins Comparison between Injured and normal cerebral cortex

    Institute of Scientific and Technical Information of China (English)

    Xuejun Li; Xianrui Yuan; Cui Li; Zefeng Peng; Dun Yuan

    2008-01-01

    BACKGROUND:To this date,specific molecular markers for early diagnosis and prognosis monitoring ofcraniocerebral injury in clinical medicine do not exist.Therefore,differential detection of specific proteinsmight play an important role in diagnosis and treatment of this type of brain injury.OBJECTIVE:To compare differential cerebral cortical protein expression of craniocerebral injury patientsand normal subjects through the use of proteomics.DESIGN:Contrast observation.SETTING:Department of Neurosurgery,Xiangya Hospital of Central South University.PARTICIPANTS:Ten patients(6 males and 4 females,20-58 years old),with severe craniocerebral injury,were selected at the Department of Neurosurgery,Xiangya Hospital of Central South University,from June2004 to December 2006.All patients were diagnosed with CT test and Glasgow test(scores <8).Surgery was performed 4-12 hours after craniocerebral injury,and injured cortical tissues of the frontal and temporal lobes were resected for sampling.At the same time,control cortical tissues were collected from frontal and temporal lobes of 2 epileptic patients who underwent hippocampus-nucleus amygdala resection,and 2 lateral ventricular tumor patients who underwent tumor resection.The participants and their relatives provided confirmed consent,and this study received confirmed consent from the local ethics committee. METHODS:Ten samples from injured patients and 4 normal samples were compared through the use of proteomics.Total protein was separated by using two-dimensional electrophoresis with immobilized pH gradients,and the differential protein expressions were compared using image analysis after blue-sliver staining. Differential protein spot expressions were analyzed with a matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI/TOF MS) and electrospray ionization-quadrupole time of flight mass spectrometry(ESI-Qq TOF MS).MAIN OUTCOME MEASURES: ①Two-dimensional electrophoresis of protein from

  17. Increases in mature brain-derived neurotrophic factor protein in the frontal cortex and basal forebrain during chronic sleep restriction in rats: possible role in initiating allostatic adaptation.

    Science.gov (United States)

    Wallingford, J K; Deurveilher, S; Currie, R W; Fawcett, J P; Semba, K

    2014-09-26

    Chronic sleep restriction (CSR) has various negative consequences on cognitive performance and health. Using a rat model of CSR that uses alternating cycles of 3h of sleep deprivation (using slowly rotating activity wheels) and 1h of sleep opportunity continuously for 4 days ('3/1' protocol), we previously observed not only homeostatic but also allostatic (adaptive) sleep responses to CSR. In particular, non-rapid eye movement sleep (NREMS) electroencephalogram (EEG) delta power, an index of sleep intensity, increased initially and then declined gradually during CSR, with no rebound during a 2-day recovery period. To study underlying mechanisms of these allostatic responses, we examined the levels of brain-derived neurotrophic factor (BDNF), which is known to regulate NREMS EEG delta activity, during the same CSR protocol. Mature BDNF protein levels were measured in the frontal cortex and basal forebrain, two brain regions involved in sleep and EEG regulation, and the hippocampus, using Western blot analysis. Adult male Wistar rats were housed in motorized activity wheels, and underwent the 3/1 CSR protocol for 27 h, for 99 h, or for 99 h followed by 24h of recovery. Additional rats were housed in either locked wheels (locked wheel controls [LWCs]) or unlocked wheels that rats could rotate freely (wheel-running controls [WRCs]). BDNF levels did not differ between WRC and LWC groups. BDNF levels were increased, compared to the control levels, in all three brain regions after 27 h, and were increased less strongly after 99 h, of CSR. After 24h of recovery, BDNF levels were at the control levels. This time course of BDNF levels parallels the previously reported changes in NREMS delta power during the same CSR protocol. Changes in BDNF protein levels in the cortex and basal forebrain may be part of the molecular mechanisms underlying allostatic sleep responses to CSR. PMID:25010399

  18. The Pattern of Brain-Derived Neurotrophic Factor Gene Expression in the Hippocampus of Diabetic Rats

    OpenAIRE

    Iraj Salehi; Safar Farajnia; Mustafa Mohammadi; Masoud Sabouri Ghannad

    2010-01-01

    Objective(s)The aim of this study was to evaluate the effects of regular exercise in preventing diabetes complication in the hippocampus of streptozotocin (STZ)-induced diabetic rat.Materials and MethodsA total of 48 male wistar rats were divided into four groups (control, control exercise, diabetic and diabetic exercise). Diabetes was induced by injection of single dose of STZ. Exercise was performed for one hr every day, over a period of 8 weeks. The antioxidant enzymes (SOD, GPX, CAT and G...

  19. Impaired assessment of cumulative lifetime familiarity for object concepts after left anterior temporal-lobe resection that includes perirhinal cortex but spares the hippocampus.

    Science.gov (United States)

    Bowles, Ben; Duke, Devin; Rosenbaum, R Shayna; McRae, Ken; Köhler, Stefan

    2016-09-01

    The ability to recognize the prior occurrence of objects can operate effectively even in the absence of successful recollection of episodic contextual detail about a relevant past object encounter. The pertinent process, familiarity assessment, is typically probed in humans with recognition-memory tasks that include an experimentally controlled study phase for a list of items. When meaningful stimuli such as words or pictures of common objects are employed, participants must judge familiarity with reference to the recent experimental encounter rather than their lifetime of autobiographical experience, which may have involved hundreds or thousands of exposures across numerous episodic contexts. Humans can, however, also judge the cumulative familiarity of objects concepts they have encountered over their lifetime. At present, little is known about the cognitive and neural mechanisms that support this ability. Here, we tested an individual (NB) with a rare left anterior temporal-lobe lesion that included perirhinal cortex but spared the hippocampus, who had previously been found to exhibit selective impairments in familiarity assessment on verbal recognition-memory tasks. As NB exhibits normal recollection abilities, her case presents a unique opportunity to examine potential links between both types of familiarity. In Experiment 1, we demonstrated that NB's impairment in making recognition judgments affects cumulative frequency judgments for exposure to concept names in a recent study episode. Experiments 2 and 3 revealed, with a task borrowed from the semantic-memory literature, that NB's impairments do indeed extend to abnormalities in judging cumulative lifetime familiarity for object concepts. These abnormalities were not limited to verbal processing, and were present even when pictures were offered as additional cues. Moreover, they showed sensitivity to concept structure as reflected in semantic feature norms; we only observed them for judgments on object

  20. Severe cell reduction in the future brain cortex in human growth-restricted fetuses and infants

    DEFF Research Database (Denmark)

    Samuelsen, Grethe B; Pakkenberg, Bente; Bogdanović, Nenad;

    2007-01-01

    OBJECTIVE: The objective of the study was to test the hypothesis that the total number of cells in the cortical part of the cerebral wall is the same in intrauterine growth-restricted (IUGR) fetuses, compared with normally grown fetuses. STUDY DESIGN: The total cell number in the cerebral wall...... with controls. The daily increase in brain cells in the future cortex was only half of that of the controls. In the 3 other developmental zones, no significant differences in cell numbers could be demonstrated. CONCLUSIONS: IUGR in humans is associated with a severe reduction in cortical growth...

  1. Binding of mescaline with subcellular fractions upon incubation of brain cortex slices with [14C] mescaline.

    Science.gov (United States)

    Datta, R K; Antopol, W; Ghosh, J J

    1977-01-01

    Incubation of brain cortex slices in the presence of glucose resulted in the permeation of about 65% of [14C] mescaline into slices. Of this, about one-third radioactivity was bound with nuclei, mitochondria, microsomes, and ribosomes. Dialysis of subcellular fractions did not markedly reduce the amounts of radioactivity bound to the fractions. The permeation into slices and the binding of mescaline to subcellular fractions were fairly time-dependent, but were inhibited by the presence of potassium cyanide, or by the absence of glucose and by heating to 80 degrees C for 1 min.

  2. Characterization of 5-HT1D receptor binding sites in post-mortem human brain cortex.

    OpenAIRE

    Martial, J; de Montigny, C; Cecyre, D; Quirion, R

    1991-01-01

    The present study provides further evidence for the presence of serotonin1D (5-HT1D) receptors in post-mortem human brain. Receptor binding parameters in temporal cortex homogenates were assessed using [3H]5-HT in the presence of 100 nM 8-OH-DPAT, 1 microM propranolol and 1 microM mesulergine to prevent labelling of the 5-HT1A, 5-HT1B and 5-HT1C sites, respectively. Under these conditions, [3H]5-HT apparently bound to a class of high affinity (Kd = 5.0 +/- 1.0 nM) low capacity (Bmax = 96 +/- ...

  3. Protective effects of chronic treatment with a standardized extract of Ginkgo biloba L. in the prefrontal cortex and dorsal hippocampus of middle-aged rats.

    Science.gov (United States)

    Ribeiro, Marcelo L; Moreira, Luciana M; Arçari, Demetrius P; Dos Santos, Letícia França; Marques, Antônio Cezar; Pedrazzoli, José; Cerutti, Suzete M

    2016-10-15

    This study assessed the effects of chronic treatment with a standardized extract of Ginkgo biloba L. (EGb) on short-term and long-term memory as well as on anxiety-like and locomotor activity using the plus-maze discriminative avoidance task (PM-DAT). Additionally, we evaluated the antioxidant and neuroprotective effects of EGb on the prefrontal cortex (PFC) and dorsal hippocampus (DH) of middle-aged rats using the comet assay. Twelve-month-old male Wistar rats were administered vehicle or EGb (0.5mgkg(-1) or 1.0gkg(-1)) for 30days. Behavioural data showed that EGb treatment improved short-term memory. Neither an anti-anxiety effect nor a change in locomotor activity was observed. Twenty-four hours after the behavioural tests, the rats were decapitated, and the PFC and DH were quickly dissected out and prepared for the comet assay. The levels of DNA damage in the PFC were significantly lower in rats that were treated with 1.0gkg(-1) EGb. Both doses of EGb decreased H2O2-induced DNA breakage in cortical cells, whereas the levels of DNA damage in the EGb-treated animals were significantly lower than those in the control animals. No significant differences in the level of DNA damage in hippocampal cells were observed among the experimental groups. EGb treatment was not able to reduce H2O2-induced DNA damage in hippocampal cells. Altogether, our data provide the first demonstration that chronic EGb treatment improved the short-term memory of middle-aged rats, an effect that could be associated with a reduction in free radical production in the PFC. These data suggest that EGb treatment might increase the survival of cortical neurons and corroborate and extend the view that EGb has protective and therapeutic properties. PMID:27424157

  4. Rapid and long-term induction of effector immediate early genes (BDNF, Neuritin and Arc) in peri-infarct cortex and dentate gyrus after ischemic injury in rat brain.

    Science.gov (United States)

    Rickhag, Mattias; Teilum, Maria; Wieloch, Tadeusz

    2007-06-01

    The genomic response following brain ischemia is very complex and involves activation of both protective and detrimental signaling pathways. Immediate early genes (IEGs) represent the first wave of gene expression following ischemia and are induced in extensive regions of the ischemic brain including cerebral cortex and hippocampus. Brain-derived neurotrophic factor (BDNF), Neuritin and Activity-regulated cytoskeleton-associated protein (Arc) belong to a subgroup of immediate early genes implicated in synaptic plasticity known as effector immediate early genes. Here, we investigated the spatial and temporal activation pattern for these genes during the first 24 h of reperfusion following 2-h occlusion of the middle cerebral artery. Neuritin showed a persistent activation in frontal-cingulate cortex while Arc displayed a biphasic response. Also, in dentate gyrus, activation was observed at 0-6 h of reperfusion for Neuritin and 0-12 h of reperfusion for Arc while BDNF was induced 0-9 h of reperfusion. Our study demonstrates a rapid and long-term activation of effector immediate early genes in distinct brain areas following ischemic injury in rat. Effector gene activation may be part of long-term synaptic responses of ischemic brain tissue. PMID:17397810

  5. Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Becker, J S; Zoriy, M V; Pickhardt, C; Palomero-Gallagher, N; Zilles, K

    2005-05-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) was used to produce images of element distribution in 20-microm thin sections of human brain tissue. The sample surface was scanned (raster area approximately 80 mm(2)) with a focused laser beam (wavelength 213 nm, diameter of laser crater 50 microm, and laser power density 3 x 10(9) W cm(-2)) in a cooled laser ablation chamber developed for these measurements. The laser ablation system was coupled to a double-focusing sector field ICPMS. Ion intensities of 31P+, 32S+, 56Fe+, 63Cu+, 64Zn+, 232Th+, and 238U+ were measured within the area of interest of the human brain tissue (hippocampus) by LA-ICPMS. The quantitative determination of copper, zinc, uranium, and thorium distribution in thin slices of the human hippocampus was performed using matrix-matched laboratory standards. In addition, a new arrangement in solution-based calibration using a micronebulizer, which was inserted directly into the laser ablation chamber, was applied for validation of synthetic laboratory standard. The mass spectrometric analysis yielded an inhomogeneous distribution (layered structure) for P, S, Cu, and Zn in thin brain sections of the hippocampus. In contrast, Th and U are more homogeneously distributed at a low-concentration level with detection limits in the low-nanogram per gram range. The unique analytical capability and the limits of LA-ICPMS will be demonstrated for the imaging of element distribution in thin cross sections of brain tissue from the hippocampus. LA-ICPMS provides new information on the spatial element distribution of the layered structure in thin sections of brain tissues from the hippocampus. PMID:15889910

  6. Where do the photons collapse - in the retina or in the brain cortex?

    CERN Document Server

    Georgiev, D D

    2002-01-01

    While looking for evidence of quantum coherent states within the brain many quantum mind advocates proposed experiments based on the assumption that the coherence state of natural light could somehow be preserved thorough the neural processing, or in other words they suppose that photons collapse not in the retina, but in the brain cortex. In this paper I show that photons collapse within the retina and subsequent processing of information at the level of neural membranes proceeds. The changes of the membrane potential of the neurons in the primary sensory cortical regions are shown to be relevant to inputting sensory information, which is converted into microtubule subunits pattern and specific quantum states. The role of the associative cortical regions in the conscious experience is thoroughly revised. One of the strangest observations, namely the existence of the so called grandmother cells, is explained by quantum state processing. The question why classical computing is needed at all gets unexpected ans...

  7. Localization of brain activity by temporal anti-correlation with the posterior cingulate cortex.

    Science.gov (United States)

    Wang, Shijie; Zhang, Zhiqiang; Lu, Guangming; Luo, Limin

    2007-01-01

    The default mode network of brain function hypothesis has recently attracted more attention in the neuro-science community. In this study, we addressed a new data-driven method that based on temporal anti-correlation with the posterior cingulate cortex, one node of the default mode network, to localize the brain activation related to task and spontaneous epileptic discharges. The experimental results of real fMRI data analysis show not only the task-related activation region can be robustly recognized without any prior information on the functional activation paradigm, but also the epileptogenic zone in some patients with frequent interictal epileptiform discharges can be localized reliably using resting-state fMRI without EEG. PMID:18003186

  8. Cortex-sparing fiber dissection: an improved method for the study of white matter anatomy in the human brain

    Science.gov (United States)

    Martino, Juan; De Witt Hamer, Philip C; Vergani, Francesco; Brogna, Christian; de Lucas, Enrique Marco; Vázquez-Barquero, Alfonso; García-Porrero, Juan A; Duffau, Hugues

    2011-01-01

    Classical fiber dissection of post mortem human brains enables us to isolate a fiber tract by removing the cortex and overlying white matter. In the current work, a modification of the dissection methodology is presented that preserves the cortex and the relationships within the brain during all stages of dissection, i.e. ‘cortex-sparing fiber dissection’. Thirty post mortem human hemispheres (15 right side and 15 left side) were dissected using cortex-sparing fiber dissection. Magnetic resonance imaging study of a healthy brain was analyzed using diffusion tensor imaging (DTI)-based tractography software. DTI fiber tract reconstructions were compared with cortex-sparing fiber dissection results. The fibers of the superior longitudinal fasciculus (SLF), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF) were isolated so as to enable identification of their cortical terminations. Two segments of the SLF were identified: first, an indirect and superficial component composed of a horizontal and vertical segment; and second, a direct and deep component or arcuate fasciculus. The IFOF runs within the insula, temporal stem and sagittal stratum, and connects the frontal operculum with the occipital, parietal and temporo-basal cortex. The UF crosses the limen insulae and connects the orbito-frontal gyri with the anterior temporal lobe. Finally, a portion of the ILF was isolated connecting the fusiform gyrus with the occipital gyri. These results indicate that cortex-sparing fiber dissection facilitates study of the 3D anatomy of human brain tracts, enabling the tracing of fibers to their terminations in the cortex. Consequently, it is an important tool for neurosurgical training and neuroanatomical research. PMID:21767263

  9. Effect of propofol on brain-derived neurotrophic factor and tyrosine kinase receptor B in the hippocampus of aged rats with chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Gang Chen; Qiang Fu; Jiangbei Cao; Weidong Mi

    2012-01-01

    We intraperitoneally injected 10 and 50 mg/kg of propofol for 7 consecutive days to treat a rat model of chronic cerebral ischemia. A low-dose of propofol promoted the expression of brain-derived neurotrophic factor, tyrosine kinase receptor B, phosphorylated cAMP response element binding protein, and cAMP in the hippocampus of aged rats with chronic cerebral ischemia, but a high-dose of propofol inhibited their expression. Results indicated that the protective effect of propofol against cerebral ischemia in aged rats is related to changes in the expression of brain-derived neurotrophic factor and tyrosine kinase receptor B in the hippocampus, and that the cAMP-cAMP responsive element binding protein pathway is involved in the regulatory effect of propofol on brain-derived neurotrophic factor expression.

  10. Using Individualized Brain Network for Analyzing Structural Covariance of the Cerebral Cortex in Alzheimer's Patients

    Science.gov (United States)

    Kim, Hee-Jong; Shin, Jeong-Hyeon; Han, Cheol E.; Kim, Hee Jin; Na, Duk L.; Seo, Sang Won; Seong, Joon-Kyung

    2016-01-01

    Cortical thinning patterns in Alzheimer's disease (AD) have been widely reported through conventional regional analysis. In addition, the coordinated variance of cortical thickness in different brain regions has been investigated both at the individual and group network levels. In this study, we aim to investigate network architectural characteristics of a structural covariance network (SCN) in AD, and further to show that the structural covariance connectivity becomes disorganized across the brain regions in AD, while the normal control (NC) subjects maintain more clustered and consistent coordination in cortical atrophy variations. We generated SCNs directly from T1-weighted MR images of individual patients using surface-based cortical thickness data, with structural connectivity defined as similarity in cortical thickness within different brain regions. Individual SCNs were constructed using morphometric data from the Samsung Medical Center (SMC) dataset. The structural covariance connectivity showed higher clustering than randomly generated networks, as well as similar minimum path lengths, indicating that the SCNs are “small world.” There were significant difference between NC and AD group in characteristic path lengths (z = −2.97, p brain regions with co-atrophy of the cerebral cortex due to normal aging or AD. We applied our method to the AD Neuroimaging Initiative (ADNI) data to show consistency in results with the SMC dataset. PMID:27635121

  11. THYROID HORMONE INSUFFICIENCY DURING BRAIN DEVELOPMENT REDUCES PARVALBUMIN IMMUNOREACTIVITY AND INHIBITORY FUNCTION IN THE HIPPOCAMPUS.

    Science.gov (United States)

    The EPA must evaluate the risk of exposure of the developing brain to chemicals with the potential to disrupt thyroid hormone homeostasis. The existing literature identifies morphological and neurochemical indices of severe neonatal hypothyroidism in the early postnatal period i...

  12. Paternal deprivation affects the development of corticotrophin-releasing factor-expressing neurones in prefrontal cortex, amygdala and hippocampus of the biparental Octodon degus.

    Science.gov (United States)

    Seidel, K; Poeggel, G; Holetschka, R; Helmeke, C; Braun, K

    2011-11-01

    Although the critical role of maternal care on the development of brain and behaviour of the offspring has been extensively studied, knowledge about the importance of paternal care is comparatively scarce. In biparental species, paternal care significantly contributes to a stimulating socio-emotional family environment, which most likely also includes protection from stressful events. In the biparental caviomorph rodent Octodon degus, we analysed the impact of paternal care on the development of neurones in prefrontal-limbic brain regions, which express corticotrophin-releasing factor (CRF). CRF is a polypeptidergic hormone that is expressed and released by a neuronal subpopulation in the brain, and which not only is essential for regulating stress and emotionality, but also is critically involved in cognitive functions. At weaning age [postnatal day (P)21], paternal deprivation resulted in an elevated density of CRF-containing neurones in the orbitofrontal cortex and in the basolateral amygdala of male degus, whereas a reduced density of CRF-expressing neurones was measured in the dentate gyrus and stratum pyramidale of the hippocampal CA1 region at this age. With the exception of the CA1 region, the deprivation-induced changes were no longer evident in adulthood (P90), which suggests a transient change that, in later life, might be normalised by other socio-emotional experience. The central amygdala, characterised by dense clusters of CRF-immunopositive neuropil, and the precentral medial, anterior cingulate, infralimbic and prelimbic cortices, were not affected by paternal deprivation. Taken together, this is the first evidence that paternal care interferes with the developmental expression pattern of CRF-expressing interneurones in an age- and region-specific manner.

  13. Circadian oscillators in the mouse brain: molecular clock components in the neocortex and cerebellar cortex.

    Science.gov (United States)

    Rath, Martin F; Rovsing, Louise; Møller, Morten

    2014-09-01

    The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice with conditional cell-specific clock gene deletions. This prompted us to analyze the molecular clockwork of the mouse neocortex and cerebellum in detail. Here, by use of in situ hybridization and quantitative RT-PCR, we show that clock genes are expressed in all six layers of the neocortex and the Purkinje and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes are similar in the neocortex and cerebellum, but they are delayed by 5 h as compared to the SCN, suggestively reflecting a master-slave relationship between the SCN and extra-hypothalamic oscillators. Furthermore, ARNTL protein products are detectable in neurons of the mouse neocortex and cerebellum, as revealed by immunohistochemistry. These findings give reason to further pursue the physiological significance of circadian oscillators in the mouse neocortex and cerebellum.

  14. BDNF Meditated trkB and Synapsin I Changes within the Hippocampus after Mild Traumatic Brain Injury in Rat:Reflections of Injury-induced Neuroplasticity

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionTraumatic brain injury (TBI) can produce chronic cognitive learning/memory deficits that are thought to be mediated, in part, by impaired hippocampal function. Brain-derived neurotrophic factor (BDNF), its signal transduction receptor trkB and its downstream effector synapsin I are involved in this period. BDNF, trkB and the slope of field excitatory post-synaptic potential(fEPSP) were measured in the hippocampus of rat after fluid percussion brain injury (FPI). Isofluorane anaesthe- tizeed 50...

  15. Functional connectivity between brain areas estimated by analysis of gamma waves

    OpenAIRE

    F. Kheiri; Bragin, A.; Jr, EJ

    2013-01-01

    The goal of this study is to investigate functional connectivity between different brain regions by analyzing the temporal relationship of the maxima of gamma waves recorded in multiple brain areas. Local field potentials were recorded from motor cortex, hippocampus, entorhinal cortex and piriform cortex of rats. Gamma activity was filtered and separated into two bands; high (65–90Hz) and low (30–55Hz) gamma. Maxima for gamma activity waves were detected and functional connectivity between di...

  16. Prospective representation of navigational goals in the human hippocampus.

    Science.gov (United States)

    Brown, Thackery I; Carr, Valerie A; LaRocque, Karen F; Favila, Serra E; Gordon, Alan M; Bowles, Ben; Bailenson, Jeremy N; Wagner, Anthony D

    2016-06-10

    Mental representation of the future is a fundamental component of goal-directed behavior. Computational and animal models highlight prospective spatial coding in the hippocampus, mediated by interactions with the prefrontal cortex, as a putative mechanism for simulating future events. Using whole-brain high-resolution functional magnetic resonance imaging and multi-voxel pattern classification, we tested whether the human hippocampus and interrelated cortical structures support prospective representation of navigational goals. Results demonstrated that hippocampal activity patterns code for future goals to which participants subsequently navigate, as well as for intervening locations along the route, consistent with trajectory-specific simulation. The strength of hippocampal goal representations covaried with goal-related coding in the prefrontal, medial temporal, and medial parietal cortex. Collectively, these data indicate that a hippocampal-cortical network supports prospective simulation of navigational events during goal-directed planning.

  17. Oral administration of curcumin relieves behavioral alterations and oxidative stress in the frontal cortex, hippocampus, and striatum of ovariectomized Wistar rats.

    Science.gov (United States)

    Da Silva Morrone, Maurilio; Schnorr, Carlos Eduardo; Behr, Guilherme Antônio; Gasparotto, Juciano; Bortolin, Rafael Calixto; Moresco, Karla Suzana; Bittencourt, Leonardo; Zanotto-Filho, Alfeu; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2016-06-01

    Menopause occurs gradually and is characterized by increased susceptibility to developing mood disorders. Several studies have suggested treatments based on the antioxidant properties of vitamins and herbal compounds as an alternative to hormone replacement therapies, with few or none reporting toxicity. The present study was performed to explore the effects of curcumin oral supplementation on anxiety-like behavior and oxidative stress parameters in different central nervous system (CNS) areas of ovariectomized (OVX) rats. Female Wistar rats were randomly divided into either sham-operated or OVX groups. Sham-operated group (n=8) and an OVX group (n=11) were treated with vehicle, and the other two OVX groups received curcumin at 50 or 100mg/kg/day doses (n=8/group). Elevated plus maze (EPM) test was performed on the 28th day of treatment. On the 30th day, animals were killed and the dissected brain regions were removed and stored at-80°C until analysis. Ovariectomy induced deficit in the locomotor activity and increased anxiety-like behavior. Moreover, OVX rats showed increased lipid oxidized in the frontal cortex and striatum, increased hippocampal and striatal carbonylated protein level, and decreased striatal thiol content of non-protein fraction indicative of a glutathione (GSH) pool. Curcumin oral treatment for 30days reduced oxidative stress in the CNS areas as well as the behavior alterations resulting from ovariectomy. Curcumin supplementation attenuated most of these parameters to sham comparable values, suggesting that curcumin could have positive effects against anxiety-like disturbances and brain oxidative damage due to hormone deprivation. PMID:27142750

  18. Cannabinoid CB1 receptors in the dorsal hippocampus and prelimbic medial prefrontal cortex modulate anxiety-like behavior in rats: additional evidence.

    Science.gov (United States)

    Lisboa, Sabrina F; Borges, Anna A; Nejo, Priscila; Fassini, Aline; Guimarães, Francisco S; Resstel, Leonardo B

    2015-06-01

    Endocannabinoids (ECBs) such as anandamide (AEA) act by activating cannabinoid type 1 (CB1) or 2 (CB2) receptors. The anxiolytic effect of drugs that facilitate ECB effects is associated with increase in AEA levels in several encephalic areas, including the prefrontal cortex (PFC). Activation of CB1 receptors by CB1 agonists injected directly into these areas is usually anxiolytic. However, depending on the encephalic region being investigated and on the stressful experiences, opposite effects were observed, as reported in the ventral HIP. In addition, contradictory results have been reported after CB1 activation in the dorsal HIP (dHIP). Therefore, in the present paper we have attempted to verify if directly interfering with ECB metabolism/reuptake in the prelimbic (PL) portion of the medial PFC (MPFC) and dHIP would produce different effects in two conceptually distinct animal models: the elevated plus maze (EPM) and the Vogel conflict test (VCT). We observed that drugs which interfere with ECB reuptake/metabolism in both the PL and in the dentate gyrus of the dHIP induced anxiolytic-like effect, in both the EPM and in the VCT via CB1 receptors, suggesting that CB1 signaling in these brain regions modulates defensive responses to both innate and learned threatening stimuli. This data further strengthens previous results indicating modulation of hippocampal and MPFC activity via CB1 by ECBs, which could be therapeutically targeted to treat anxiety disorders.

  19. Withania coagulans Extract Attenuates Histopathological Alteration and Apoptosis in Rat Brain Cortex Following Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Sarbishegi

    2016-01-01

    Full Text Available Background Cerebral ischemia and reperfusion (I/R is a pathological condition that arises by reduction or cessation in cerebral blood flow and return of oxygen and metabolites to brain cells, which cause oxidative damage. Objectives The aim of this study was to investigate the neuroprotective effects of Withania coagulans (WC extract on brain cortex in a rat model of I/R. Materials and Methods Thirty-two adult male Wistar rats weighing 280 - 300 g were used in this study. Animals were randomly divided to four groups (n = 8 as follow: sham operated group (I, I/R group (II, WCE500 + I/R (III and WCE1000 + I/R groups (IV. Pretreatment with WC extract (500, 1000 mg/kg was done by oral gavage for 30 days and global brain ischemia was induced by the common carotid occlusion for 30 minutes. After 72 hours, the animals were perfused transcardially and then the brains were prepared for histological study (H & E and TUNEL staining. Results The I/R group showed a significant increase in pycnotic (dying neurons and pretreatment with WC at doses of 500 mg/kg and 1000 mg/kg significantly reduced pycnotic and TUNEL positive neurons, in a dose dependent manner in ischemic brain cortex. Conclusions Our findings indicated that WC has neuroprotective effects and is able to reduce histopathological alterations and apoptosis in brain cortex I/R in rats.

  20. Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex

    NARCIS (Netherlands)

    Neubert, F.X.; Mars, R.B.; Sallet, J.; Rushworth, M.F.S.

    2015-01-01

    Reward-guided decision-making depends on a network of brain regions. Among these are the orbitofrontal and the anterior cingulate cortex. However, it is difficult to ascertain if these areas constitute anatomical and functional unities, and how these areas correspond between monkeys and humans. To a

  1. Using Individualized Brain Network for Analyzing Structural Covariance of the Cerebral Cortex in Alzheimer's Patients.

    Science.gov (United States)

    Kim, Hee-Jong; Shin, Jeong-Hyeon; Han, Cheol E; Kim, Hee Jin; Na, Duk L; Seo, Sang Won; Seong, Joon-Kyung

    2016-01-01

    Cortical thinning patterns in Alzheimer's disease (AD) have been widely reported through conventional regional analysis. In addition, the coordinated variance of cortical thickness in different brain regions has been investigated both at the individual and group network levels. In this study, we aim to investigate network architectural characteristics of a structural covariance network (SCN) in AD, and further to show that the structural covariance connectivity becomes disorganized across the brain regions in AD, while the normal control (NC) subjects maintain more clustered and consistent coordination in cortical atrophy variations. We generated SCNs directly from T1-weighted MR images of individual patients using surface-based cortical thickness data, with structural connectivity defined as similarity in cortical thickness within different brain regions. Individual SCNs were constructed using morphometric data from the Samsung Medical Center (SMC) dataset. The structural covariance connectivity showed higher clustering than randomly generated networks, as well as similar minimum path lengths, indicating that the SCNs are "small world." There were significant difference between NC and AD group in characteristic path lengths (z = -2.97, p < 0.01) and small-worldness values (z = 4.05, p < 0.01). Clustering coefficients in AD was smaller than that of NC but there was no significant difference (z = 1.81, not significant). We further observed that the AD patients had significantly disrupted structural connectivity. We also show that the coordinated variance of cortical thickness is distributed more randomly from one region to other regions in AD patients when compared to NC subjects. Our proposed SCN may provide surface-based measures for understanding interaction between two brain regions with co-atrophy of the cerebral cortex due to normal aging or AD. We applied our method to the AD Neuroimaging Initiative (ADNI) data to show consistency in results with the SMC

  2. Using Individualized Brain Network for Analyzing Structural Covariance of the Cerebral Cortex in Alzheimer's Patients.

    Science.gov (United States)

    Kim, Hee-Jong; Shin, Jeong-Hyeon; Han, Cheol E; Kim, Hee Jin; Na, Duk L; Seo, Sang Won; Seong, Joon-Kyung

    2016-01-01

    Cortical thinning patterns in Alzheimer's disease (AD) have been widely reported through conventional regional analysis. In addition, the coordinated variance of cortical thickness in different brain regions has been investigated both at the individual and group network levels. In this study, we aim to investigate network architectural characteristics of a structural covariance network (SCN) in AD, and further to show that the structural covariance connectivity becomes disorganized across the brain regions in AD, while the normal control (NC) subjects maintain more clustered and consistent coordination in cortical atrophy variations. We generated SCNs directly from T1-weighted MR images of individual patients using surface-based cortical thickness data, with structural connectivity defined as similarity in cortical thickness within different brain regions. Individual SCNs were constructed using morphometric data from the Samsung Medical Center (SMC) dataset. The structural covariance connectivity showed higher clustering than randomly generated networks, as well as similar minimum path lengths, indicating that the SCNs are "small world." There were significant difference between NC and AD group in characteristic path lengths (z = -2.97, p < 0.01) and small-worldness values (z = 4.05, p < 0.01). Clustering coefficients in AD was smaller than that of NC but there was no significant difference (z = 1.81, not significant). We further observed that the AD patients had significantly disrupted structural connectivity. We also show that the coordinated variance of cortical thickness is distributed more randomly from one region to other regions in AD patients when compared to NC subjects. Our proposed SCN may provide surface-based measures for understanding interaction between two brain regions with co-atrophy of the cerebral cortex due to normal aging or AD. We applied our method to the AD Neuroimaging Initiative (ADNI) data to show consistency in results with the SMC

  3. Chronic type 2 diabetes reduces the integrity of the blood-brain barrier by reducing tight junction proteins in the hippocampus.

    Science.gov (United States)

    Yoo, Dae Young; Yim, Hee Sun; Jung, Hyo Young; Nam, Sung Min; Kim, Jong Whi; Choi, Jung Hoon; Seong, Je Kyung; Yoon, Yeo Sung; Kim, Dae Won; Hwang, In Koo

    2016-07-01

    In the present study, we investigated the effects of type 2 diabetes-induced hyperglycemia on the integrity of the blood-brain barrier and tight junction markers in the rat hippocampus. Forty-week-old diabetic (Zucker diabetic fatty, ZDF) rats and littermate control (Zucker lean control, ZLC) rats were used in this study. We evaluated the integrity of the blood-brain barrier by measuring sodium fluorescein extravasation and blood vessel ultrastructure. In addition, tight junction markers, such as zona occludens-1, occludin and claudin-5, were quantified by western blot analysis. ZDF rats showed significantly increased sodium fluorescein leakage in the hippocampus. Tight junction markers, such as occludin and claudin-5, were significantly decreased in the hippocampi of ZDF rats compared to those of ZLC rats. In addition, ZDF rats showed ultrastructural changes with phagocytic findings in the blood vessels. These results suggest that chronic untreated diabetes impairs the permeability of the hippocampal blood-brain barrier by down-regulating occludin and claudin-5, indicating that chronic untreated diabetes may cause hippocampus-dependent dysfunction. PMID:26876499

  4. Cl- conduction of GABA(A)-receptor complex of synaptic membranes of rat brain cortex after development of chronic epileptization of the brain (pharmacological kindling).

    Science.gov (United States)

    Rebrov, I G; Karpova, M N; Andreev, A A; Klishina, N Y; Kalinina, M V; Kusnetzova, L V

    2008-03-01

    Experiments on Wistar rats showed that basal and muscimol-induced 36Cl- entry into synaptoneurosomes isolated from the brain cortex decreased after kindling (30 mg/kg pentylenetetrazole intraperitoneally for 30 days) in animals with seizure severity score 4-5. Changes in Cl- conduction during kindling are discussed.

  5. Expression of glutamatergic genes in healthy humans across 16 brain regions; altered expression in the hippocampus after chronic exposure to alcohol or cocaine.

    Science.gov (United States)

    Enoch, M-A; Rosser, A A; Zhou, Z; Mash, D C; Yuan, Q; Goldman, D

    2014-11-01

    We analyzed global patterns of expression in genes related to glutamatergic neurotransmission (glutamatergic genes) in healthy human adult brain before determining the effects of chronic alcohol and cocaine exposure on gene expression in the hippocampus. RNA-Seq data from 'BrainSpan' was obtained across 16 brain regions from nine control adults. We also generated RNA-Seq data from postmortem hippocampus from eight alcoholics, eight cocaine addicts and eight controls. Expression analyses were undertaken of 28 genes encoding glutamate ionotropic (AMPA, kainate, NMDA) and metabotropic receptor subunits, together with glutamate transporters. The expression of each gene was fairly consistent across the brain with the exception of the cerebellum, the thalamic mediodorsal nucleus and the striatum. GRIN1, encoding the essential NMDA subunit, had the highest expression across all brain regions. Six factors accounted for 84% of the variance in global gene expression. GRIN2B (encoding GluN2B), was up-regulated in both alcoholics and cocaine addicts (FDR corrected P = 0.008). Alcoholics showed up-regulation of three genes relative to controls and cocaine addicts: GRIA4 (encoding GluA4), GRIK3 (GluR7) and GRM4 (mGluR4). Expression of both GRM3 (mGluR3) and GRIN2D (GluN2D) was up-regulated in alcoholics and down-regulated in cocaine addicts relative to controls. Glutamatergic genes are moderately to highly expressed throughout the brain. Six factors explain nearly all the variance in global gene expression. At least in the hippocampus, chronic alcohol use largely up-regulates glutamatergic genes. The NMDA GluN2B receptor subunit might be implicated in a common pathway to addiction, possibly in conjunction with the GABAB1 receptor subunit. PMID:25262781

  6. Effects of imipramine treatment on delta-opioid receptors of the rat brain cortex and striatum.

    Science.gov (United States)

    Varona, Adolfo; Gil, Javier; Saracibar, Gonzalo; Maza, Jose Luis; Echevarria, Enrique; Irazusta, Jon

    2003-01-01

    Imipramine (CAS 113-52-0) is being utilized widely for the treatment of major depression. In recent years, there has been evidence of the involvement of the endogenous opioid system in major depression and its treatment. There is some evidence indicating that opioid receptors could be involved in the antidepressant mechanism of action. Regarding this topic, mood-related behavior of endogenous enkephalins seems to be mediated by delta-opioid receptors. In this work, the effects of subacute (5 day) and chronic (15 day) treatments of imipramine on the density and the affinity of the delta-receptors in the striatum and in the parietal and frontal cortices of the rat brain are described. Studied parameters (Bmax and Kd) were calculated by a saturation binding assay with the delta-opioid agonists [3H]-DPDPE (tyrosyl-2,6-3H(N)-(2-D-penicillamine-5-D-penicillamine)-enkephalin) as specific ligand and DSLET ([D-serine2]-D-leucine-enkephalin-threonine) as non-radioactive competing ligand. It was found that 15 days treatment significantly decreased the delta-opioid receptor density,without changing the affinity, in the frontal cortex of the rat brain. That decrease was confirmed by delta-opioid receptor immunostaining. These results suggest that delta-opioid receptors could play a role in the chronic action mechanism of imipramine. PMID:12608010

  7. Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Maren Geissler

    Full Text Available Intraperitoneal transplantation of human umbilical cord blood (hUCB cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury.

  8. Brain-computer interfaces: an overview of the hardware to record neural signals from the cortex.

    Science.gov (United States)

    Stieglitz, Thomas; Rubehn, Birthe; Henle, Christian; Kisban, Sebastian; Herwik, Stanislav; Ruther, Patrick; Schuettler, Martin

    2009-01-01

    Brain-computer interfaces (BCIs) record neural signals from cortical origin with the objective to control a user interface for communication purposes, a robotic artifact or artificial limb as actuator. One of the key components of such a neuroprosthetic system is the neuro-technical interface itself, the electrode array. In this chapter, different designs and manufacturing techniques will be compared and assessed with respect to scaling and assembling limitations. The overview includes electroencephalogram (EEG) electrodes and epicortical brain-machine interfaces to record local field potentials (LFPs) from the surface of the cortex as well as intracortical needle electrodes that are intended to record single-unit activity. Two exemplary complementary technologies for micromachining of polyimide-based arrays and laser manufacturing of silicone rubber are presented and discussed with respect to spatial resolution, scaling limitations, and system properties. Advanced silicon micromachining technologies have led to highly sophisticated intracortical electrode arrays for fundamental neuroscientific applications. In this chapter, major approaches from the USA and Europe will be introduced and compared concerning complexity, modularity, and reliability. An assessment of the different technological solutions comparable to a strength weaknesses opportunities, and threats (SWOT) analysis might serve as guidance to select the adequate electrode array configuration for each control paradigm and strategy to realize robust, fast, and reliable BCIs. PMID:19660664

  9. Human Umbilical Cord Blood Cells Restore Brain Damage Induced Changes in Rat Somatosensory Cortex

    Science.gov (United States)

    Geißler, Maren; Dinse, Hubert R.; Neuhoff, Sandra; Kreikemeier, Klaus; Meier, Carola

    2011-01-01

    Intraperitoneal transplantation of human umbilical cord blood (hUCB) cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury. PMID:21673795

  10. Expression of receptor for advanced glycation endproducts and nuclear factor κB in brain hippocampus of rat with chronic fluorosis

    Institute of Scientific and Technical Information of China (English)

    张凯琳

    2014-01-01

    Objective To investigate the expressions of receptor for advanced glycation endproducts(RAGE)and nuclear factorκB(NF-κB)in brain hippocampus of rat with chronic fluorosis,and to reveal the mechanism of brain damage resulted from chronic fluorosis.Methods Sixty clean grade SD rats were randomly divided to three groups(20 rats in each group,10 female and 10 male)fed with different contents of fluoride,control group with normal tap-water(<0.5 mg/L fluoride),

  11. THE EFFECT OF UNFAVOURABLE FACTORS ON PERUVATE KINASE ACTIVITY IN BRAIN CORTEX OF WHITE RATS IN POSTNATAL ONTOGENESIS

    Directory of Open Access Journals (Sweden)

    L. M. Guseynova

    2012-12-01

    Full Text Available The effect of unionizated electromagnetic radiation (EMI of different intensity and hypoxia on pyruvate kinase activity (PK; EC 2.7.1.40 in the tissues of right and left hemispheres of white rats has been studied during postnatal ontogenesis. The highest hyperactivity of PK was revealed in the left hemisphere of brain cortex both in the control animals and after the influence of extremal environmental factors. It was stated that hypoxia induces higher changes in the dynamics of changes in the dynamics of changes in the PK-activity in the tissues of brain cortex than EMI, which leads to changes in energy supply of brain. The changes in the PK-activity are supposed to be caused by involving decay products and activation of biosynthetic processes into energy supply of cells.

  12. Expression of brain-derived neurotrophic factor in rat hippocampus following focal cerebral ischemic injury

    Institute of Scientific and Technical Information of China (English)

    Yingping Li; Ruifang Guo; Kaifeng Lu

    2008-01-01

    BACKGROUND: The functional role of brain-derived neurotrophic factor (BDNF) is enhanced following cerebral ischemic injury providing neurons with an important self-protection mechanism in early stage ischemia/hypoxia.OBJECTIVE: To investigate the expression pattern of BDNF in different rat hippocampal regions following focal cerebral ischemic injury.DESIGN, TIME AND SETTING: We performed a comparative and neurobiological study of animals in the Department of Histology and Embryology and the Central Laboratory, Hebei Medical University from March to December 2003.MATERIALS: Forty healthy Sprague Dawley rats were randomly divided into a cerebral ischemla group and a sham operation group, with 20 rats per group.METHODS: In the cerebral ischemia group, we occluded the right middle cerebral artery with a suture,threading it to a depth of 17-19 mm. In the sham operation group, the threading depth was approximately 10 mm.MAIN OUTCOME MEASURES: We analyzed the expression of BDNF in different hippocampal regions by immunohistochemical staining of brain sections taken on post-operative days 7, 14, 21 and 30.RESULTS: Sham operation group: We observed a number of a few BDNF-positive cells with light staining in the hippocampal CAI CA4 regions and dentate gyrus. Cerebral ischemia group: compared with the sham operation group, BDNF increased on day 7, significantly increased on day 14, and reached a peak on day 21 (P < 0.05). Furthermore, immunologically reactive products were darkly stained, and neurons had long axons.BDNF was particularly highly expressed in the hippocampal CA3 and CA4 regions and dentate gyrus.CONCLUSION: Cerebral ischemic injury can damage hippocampal neurons. Neurons can increase their anti-ischemic capacity by increasing BDNF expression in the hippocampal CA3 and CA4 regions and dentate gyrus.

  13. EVALUATION OF NEUROPROTECTIVE EFFECTS OF LONG-TERM LOW DOSE HORMONE REPLACEMENT THERAPY ON POSTMENOPAUSAL WOMEN BRAIN HIPPOCAMPUS USING MAGNETIC RESONANCE SCANNER

    Institute of Scientific and Technical Information of China (English)

    Ling Hu; Yun Yue; Ping-ping Zuo; Zheng-yu Jin; Feng Feng; Hui You; Ming-li Li; Qin-sheng Ge

    2006-01-01

    Objective To investigate the effects of long-term low dose hormone replacement therapy (HRT) on postmenopausal women in hormone level,cognition score,hippocampus volume,and magnetic resonance spectroscopy (MRS) parameters.Methods A total of 182 postmenopausal women aged 50-87 years were chosen at Peking Union Medical College Hospital and assigned to HRT group and control group.The volunteers of HRT group had taken low dose hormone [estradiol (E2) 0.5-1.0 mg and progesterone 0.5-2.0 mg,once a day] for 4-33 years.The concentrations of E2,progesterone,and testosterone were measured using enzyme-linked immunosorbent assay (ELISA).The gene types of apolipoprotein E (ApoE) were measured by polymerase chain reaction,and the subjects with susceptible genes (ApoE ε3/ε4) of Alzheimer's disease (AD) were screened.Their hippocampus volumes and MRS parameters were obtained through magnetic resonance imaging (MRI),and results in two groups were analyzed by statistical method.Results Compared with control group,the concentrations of E2 at each age stage in HRT group were significantly higher (P<0.05) except the 80-89 years old subgroup;yet,there were no statistical differences in the concentrations of progesterone and testosterone between the two groups.There was no obvious difference in ApoE subtypes distribution between the two groups.The results of hippocampus MRI for the subjects with susceptible genes ApoE ε3/ε4 (HRT group 14 cases,control group 11 cases) showed that the ratio of bilateral hippocampus volume to whole brain volume in HRT group (0.406±0.028) was significantly higher than control group (0.369±0.031,P<0.05).The results of 1H MRS for the subjects with susceptible genes ApoE ε3/ε4 (HRT group 12 cases,control group 11 cases) showed that the N-acetylaspartate/total creatine at the area of hippocampus in HRT group (1.54±0.08) were significantly higher than control group (1.45±0.13,P<0.05).Conclusions For postmenopausal women,long-term low dose HRT can

  14. SU-E-T-589: Optimization of Patient Head Angle Position to Spare Hippocampus During the Brain Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, G; Kang, Y [Radiation Oncology, Seoul St. Mary’s Hospital, Seoul (Korea, Republic of); Kang, S; Kim, T; Kim, D; Suh, T [The Catholic University of Korea, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: Hippocampus is one of the important organs which controls emotions, behaviors, movements the memorizing and learning ability. In the conventional head & neck therapy position, it is difficult to perform the hippocampal-sparing brain radiation therapy. The purpose of this study is to investigate optimal head angle which can save the hippocampal-sparing and organ at risk (OAR) in conformal radiation therapy (CRT), Intensity modulation radiation therapy (IMRT) and helical tomotherapy (HT). Methods: Three types of radiation treatment plans, CRT, IMRT and Tomotherapy plans, were performed for 10 brain tumor patients. The image fusion between CT and MRI data were used in the contour due to the limited delineation of the target and OAR in the CT scan. The optimal condition plan was determined by comparing the dosimetric performance of the each plan with the use of various parameters which include three different techniques (CRT, IMRT, HT) and 4 angle (0, 15, 30, 40 degree). The each treatment plans of three different techniques were compared with the following parameters: conformity index (CI), homogeneity index (HI), target coverage, dose in the OARs, monitor units (MU), beam on time and the normal tissue complication probability (NTCP). Results: HI, CI and target coverage was most excellent in head angle 30 degree among all angle. When compared by modality, target coverage and CI showed good results in IMRT and TOMO than compared to the CRT. HI at the head angle 0 degrees is 1.137±0.17 (CRT), 1.085±0.09 (IMRT) and 1.077±0.06 (HT). HI at the head angle 30 degrees is 1.056±0.08 (CRT), 1.020±0.05 (IMRT) and 1.022±0.07 (HT). Conclusion: The results of our study show that when head angle tilted at 30 degree, target coverage, HI, CI were improved, and the dose delivered to OAR was reduced compared with conventional supine position in brain radiation therapy. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid

  15. Drosophila cortex and neuropile glia influence secondary axon tract growth, pathfinding, and fasciculation in the developing larval brain.

    Science.gov (United States)

    Spindler, Shana R; Ortiz, Irma; Fung, Siaumin; Takashima, Shigeo; Hartenstein, Volker

    2009-10-15

    Glial cells play important roles in the developing brain during axon fasciculation, growth cone guidance, and neuron survival. In the Drosophila brain, three main classes of glia have been identified including surface, cortex, and neuropile glia. While surface glia ensheaths the brain and is involved in the formation of the blood-brain-barrier and the control of neuroblast proliferation, the range of functions for cortex and neuropile glia is less well understood. In this study, we use the nirvana2-GAL4 driver to visualize the association of cortex and neuropile glia with axon tracts formed by different brain lineages and selectively eliminate these glial populations via induced apoptosis. The larval central brain consists of approximately 100 lineages. Each lineage forms a cohesive axon bundle, the secondary axon tract (SAT). While entering and traversing the brain neuropile, SATs interact in a characteristic way with glial cells. Some SATs are completely invested with glial processes; others show no particular association with glia, and most fall somewhere in between these extremes. Our results demonstrate that the elimination of glia results in abnormalities in SAT fasciculation and trajectory. The most prevalent phenotype is truncation or misguidance of axon tracts, or abnormal fasciculation of tracts that normally form separate pathways. Importantly, the degree of glial association with a given lineage is positively correlated with the severity of the phenotype resulting from glial ablation. Previous studies have focused on the embryonic nerve cord or adult-specific compartments to establish the role of glia. Our study provides, for the first time, an analysis of glial function in the brain during axon formation and growth in larval development. PMID:19646433

  16. Evidence that brain glucose availability influences exercise-enhanced extracellular 5-HT level in hippocampus: a microdialysis study in exercising rats.

    Science.gov (United States)

    Béquet, F; Gomez-Merino, D; Berthelot, M; Guezennec, C Y

    2002-09-01

    The relationship between brain glucose and serotonin is still unclear and no direct evidence of an action of brain glucose on serotonergic metabolism in central fatigue phenomena has been shown yet. In order to determine whether or not brain glucose could influence the brain 5-hydroxytryptamine (5-HT) system, we have monitored in microdialysis the effects of a direct injection of glucose in rat brain hippocampus on serotonergic metabolism [i.e. 5-HT, 5-hydroxyindoleacetic acid (5-HIAA) and tryptophan (TRP)], during high intensive treadmill running. The injection was performed just before and after exercise. We have shown that glucose induced a decrease of brain 5-HT levels to a minimum of 73.0 +/- 3.5% of baseline after the first injection (P exercise-induced 5-HT enhanced levels. We have observed the same phenomenon concerning the 5-HIAA, but brain TRP levels were not decreased by the injections. In conclusion, this study demonstrates that brain glucose can act on serotonergic metabolism and thus can prevent exercise-induced increase of 5-HT levels. The results also suggest that extracellular brain glucose does not act on the synthesis way of 5-HT, but probably on the release/reuptake system. PMID:12193220

  17. A 'complex' of brain metabolites distinguish altered chemistry in the cingulate cortex of episodic migraine patients.

    Science.gov (United States)

    Becerra, L; Veggeberg, R; Prescot, A; Jensen, J E; Renshaw, P; Scrivani, S; Spierings, E L H; Burstein, R; Borsook, D

    2016-01-01

    Despite the prevalence of migraine, the pathophysiology of the disease remains unclear. Current understanding of migraine has alluded to the possibility of a hyperexcitable brain. The aim of the current study is to investigate human brain metabolite differences in the anterior cingulate cortex (ACC) during the interictal phase in migraine patients. We hypothesized that there may be differences in levels of excitatory neurotransmitters and/or their derivatives in the migraine cohort in support of the theory of hyperexcitability in migraine. 2D J-resolved proton magnetic resonance spectroscopy ((1)H-MRS) data were acquired on a 3 Tesla (3 T) MRI from a voxel placed over the ACC of 32 migraine patients (MP; 23 females, 9 males, age 33 ± 9.6 years) and 33 healthy controls (HC; 25 females, 8 males, age 32 ± 9.6 years). Amplitude correlation matrices were constructed for each subject to evaluate metabolite discriminability. ProFit-estimated metabolite peak areas were normalized to a water reference signal to assess subject differences. The initial analysis of variance (ANOVA) was performed to test for group differences for all metabolites/creatine (Cre) ratios between healthy controls and migraineurs but showed no statistically significant differences. In addition, we used a multivariate approach to distinguish migraineurs from healthy subjects based on the metabolite/Cre ratio. A quadratic discriminant analysis (QDA) model was used to identify 3 metabolite ratios sufficient to minimize minimum classification error (MCE). The 3 selected metabolite ratios were aspartate (Asp)/Cre, N-acetyl aspartate (NAA)/Cre, and glutamine (Gln)/Cre. These findings are in support of a 'complex' of metabolite alterations, which may underlie changes in neuronal chemistry in the migraine brain. Furthermore, the parallel changes in the three-metabolite 'complex' may confer more subtle but biological processes that are ongoing. The data also support the current theory that the

  18. Sevoflurane effects on cyclic adenosine monophosphate response element binding protein, phosphorylated cyclic adenosine monophosphate response element binding protein, and Livin expression in the cortex and hippocampus of a vascular cognitive impairment rat model

    Institute of Scientific and Technical Information of China (English)

    Bin Wu; Ling Dan; Xianlin Zhu

    2009-01-01

    BACKGROUND: Neuronal necrosis and apoptosis play important roles in the pathophysiology of cerebral ischemia and resulting cognitive impairment. However, inhibition of neuronal necrosis and apoptosis has been shown to attenuate cognitive impairment following cerebral ischemia.OBJECTIVE: To investigate the effects of sevoflurane on cyclic adenosine monophosphate response element binding protein (CREB), phosphorylated CREB (pCREB), and Livin expression in the cortex and hippocampus of a rat model of vascular cognitive impairment.DESIGN, TIME AND SETTING: A randomized, controlled experiment was performed in the Chongqing Key Laboratory of Neurology between June 2007 and July 2008.MATERIALS: Sevoflurane was provided by Abbott Laboratory, UK; Morris water maze was provided by Chinese Academy of Medical Sciences, China; goat anti-rat CREB, goat anti-rat pCREB and goat anti-rat Livin antibodies were provided by Biosource International, USA.METHODS: A total of 42 female, Wistar rats were randomly assigned to the following groups: sham operation, vascular cognitive impairment, and sevoflurane treatment. The vascular cognitive impairment rat model was established by permanent bilateral occlusion of both common carotid arteries, and 1.0 MAC sevoflurane was immediately administered by inhalation for 2 hours.MAIN OUTCOME MEASURES: CREB, pCREB, and Livin expression was measured in the cortex and hippocampus by Western blot and reverse transcription-polymerase chain reaction. Behavior was evaluated with Morris water maze.RESULTS: CREB, pCREB, and Livin expression in the sevoflurane treatment group was significantly greater than the vascular cognitive impairment group (P<0.01). However, expression of CREB and pCREB was significantly less in the sevoflurane treatment and vascular cognitive impairment groups, compared with the sham operation group (P<0.01). Livin expression in the sevoflurane treatment and vascular cognitive impairment groups was significantly greater than the sham

  19. Effect of Panax notoginseng saponins on the expression of beta-amyloid protein in the cortex of the parietal lobe and hippocampus, and spatial learning and memory in a mouse model of senile dementia

    Institute of Scientific and Technical Information of China (English)

    Zhenguo Zhong; Dengpan Wu; Liang Lü; Jinsheng Wang; Wenyan Zhang; Zeqiang Qu

    2008-01-01

    immunohistochemistry. The mRNA content of App, tau, acetylcholinesterase, and synaptophysin (Syp) was tested by real time PCR and RT-PCR.RESULTS: The PCR results show that PNS can downregulate the expression of the App gene and upregulate the expression of the Syp gene in the parietal cortex and hippocampus of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than those of the PNS low-dosage group and the huperzine A group (P < 0.05). The results of the Morris water maze and immunohistochemistry indicated that PNS can improve the capacity for spatial learning and memory in SAMP8 mice, and reduce the content of A β1-40,A β1-42 and expression of App in the brains of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than that of the PNS low-dosage group and the huperzine A group (P < 0.05).CONCLUSION: These results support the hypothesis that PNS plays a therapeutic and protective role on the pathological lesions and learning dysfunction of Alzheimer's disease. The therapeutic effects of PNS for Alzheimer's disease are possibly achieved through downregulating the expression of the App gene and upregulating the expression of the Syp gene. The therapeutic effects of PNS are dose-dependent and are greater than the effect of huperzine A.

  20. Deep brain stimulation in the lateral orbitofrontal cortex impairs spatial reversal learning.

    Science.gov (United States)

    Klanker, Marianne; Post, Ger; Joosten, Ruud; Feenstra, Matthijs; Denys, Damiaan

    2013-05-15

    Deep Brain Stimulation (DBS) is a successful novel treatment for treatment-resistant obsessive-compulsive disorder and is currently under investigation for addiction and eating disorders. Clinical and preclinical studies have shown functional changes in the orbitofrontal cortex (OFC) following DBS in the ventral capsule/ventral striatum. These findings suggest that DBS can affect neural activity in distant regions that are connected to the site of electrode implantation. However, the behavioral consequences of direct OFC stimulation are not known. Here, we studied the effects of direct stimulation in the lateral OFC on spatial discrimination and reversal learning in rats. Rats were implanted with stimulating electrodes and were trained on a spatial discrimination and reversal learning task. DBS in the OFC did not affect acquisition of a spatial discrimination. Stimulated animals made more incorrect responses during the first reversal. Acquisition of the second reversal was not affected. These results suggest that DBS may inhibit activity in the OFC, or may disrupt output of the OFC to other cortical or subcortical areas, resulting in perseverative behavior or an inability to adapt behavior to altered response-reward contingencies.

  1. Astroglial Control of the Antidepressant-Like Effects of Prefrontal Cortex Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    A. Etiévant

    2015-08-01

    Full Text Available Although deep brain stimulation (DBS shows promising efficacy as a therapy for intractable depression, the neurobiological bases underlying its therapeutic action remain largely unknown. The present study was aimed at characterizing the effects of infralimbic prefrontal cortex (IL-PFC DBS on several pre-clinical markers of the antidepressant-like response and at investigating putative non-neuronal mechanism underlying DBS action. We found that DBS induced an antidepressant-like response that was prevented by IL-PFC neuronal lesion and by adenosine A1 receptor antagonists including caffeine. Moreover, high frequency DBS induced a rapid increase of hippocampal mitosis and reversed the effects of stress on hippocampal synaptic metaplasticity. In addition, DBS increased spontaneous IL-PFC low-frequency oscillations and both raphe 5-HT firing activity and synaptogenesis. Unambiguously, a local glial lesion counteracted all these neurobiological effects of DBS. Further in vivo electrophysiological results revealed that this astrocytic modulation of DBS involved adenosine A1 receptors and K+ buffering system. Finally, a glial lesion within the site of stimulation failed to counteract the beneficial effects of low frequency (30 Hz DBS. It is proposed that an unaltered neuronal–glial system constitutes a major prerequisite to optimize antidepressant DBS efficacy. It is also suggested that decreasing frequency could heighten antidepressant response of partial responders.

  2. Changes of brain derived neurotrophic factor in hippocampus of chronic lead exposed rats%慢性染铅大鼠海马脑源性神经营养因子的改变

    Institute of Scientific and Technical Information of China (English)

    李积胜; 刘亚华; 杨峰

    2004-01-01

    Objective: To investigate the changes of brain derived neurotrophic factor(BDNF) in hippocampus of chronic lead exposed rats. Methods: Wistar rats were exposed to lead by drinking 0.02%、0.2% lead acetate solution for three months, respectively. Investigate the changes of learning and memory ability by Y-labyrinth experiment, study the changes of BDNF positive neuron in CA1, CA3 and dentate gyrus in hippocampus of rats by immunohistochemistry. Results: BDNF positive neurons distribute everywhere in the hippocampus under normal condition. Compared with the contral group, the number of BDNF positive neurons in the hippocampus subregions were decreased significantly of two different dosage (0.02%, 0.2% ) chronic lead exposed groups( P < 0. 05). Conclusion: These results suggest that the reduction of BDNF positive neuron in hippocampus might be related to the impact of lead on learning and memory.

  3. Role of the parahippocampal cortex in memory for the configuration but not the identity of objects: converging evidence from patients with selective thermal lesions and fMRI

    Directory of Open Access Journals (Sweden)

    Veronique D Bohbot

    2015-08-01

    Full Text Available The parahippocampal cortex and hippocampus are brain structures known to be involved in memory. However, the unique contribution of the parahippocampal cortex remains unclear. The current study investigates memory for object identity and memory of the configuration of objects in patients with small thermo-coagulation lesions to the hippocampus or the parahippocampal cortex. Results showed that in contrast to control participants and patients with damage to the hippocampus leaving the parahippocampal cortex intact, patients with lesions that included the right parahippocampal cortex were severely impaired on a task that required learning the spatial configuration of objects on a computer screen; these patients, however, were not impaired at learning the identity of objects. Conversely, we found that patients with lesions to the right hippocampus or left hippocampus, sparing the parahippocampal cortex, performed just as well as the control participants. Furthermore, they were not impaired on the object identity task. In the fMRI experiment, healthy young adults performed the same tasks. Consistent with the findings of the lesion study, the fMRI results showed significant activity in the right parahippocampal cortex in the memory for the spatial configuration condition, but not memory for object identity. Furthermore, the pattern of fMRI activity measured in the baseline control conditions decreased specifically in the parahippocampal cortex as a result of the experimental task, providing evidence for task specific repetition suppression. In summary, while our previous studies demonstrated that the hippocampus is critical to the construction of a cognitive map, both the lesion and fMRI studies have shown an involvement of the right parahippocampal cortex for learning spatial configurations of objects but not object identity, and that this takes place independent of the hippocampus.

  4. GPR39 (zinc receptor) knockout mice exhibit depression-like behavior and CREB/BDNF down-regulation in the hippocampus

    DEFF Research Database (Denmark)

    Młyniec, Katarzyna; Budziszewska, Bogusława; Holst, Birgitte;

    2015-01-01

    suspension test, and light/dark test. We also investigated whether lack of GPR39 would change levels of cAMP response element-binding protein (CREB),brain-derived neurotrophic factor (BDNF) and tropomyosin related kinase B (TrkB) protein in the hippocampus and frontal cortex of GPR39 knockout mice subjected...... and BDNF levels in the hippocampus, but not in the frontal cortex, which indicates region specificity for the impaired CREB/BDNF pathway (which is important in antidepressant response) in the absence of GPR39. There were no changes in TrkB protein in either structure. In the present study, we also...

  5. Differential expression of postsynaptic NMDA and AMPA receptor subunits in the hippocampus and prefrontal cortex of the Flinders Sensitive Line rat model of depression

    DEFF Research Database (Denmark)

    Treccani, Giulia; du Jardin, Kristian Gaarn; Wegener, Gregers;

    2016-01-01

    "Using a subcellular fractionation approach for purification of the Triton-Insoluble postsynaptic Fraction (TIF), the authors show altered expression of NMDA receptor subunits in the hippocampus of the Flinders Sensitive Line rat model of depression. Altered composition of NMDA receptors may...... represent a critical component of the depressive-like behaviors observed in this model. " This article is protected by copyright. All rights reserved....

  6. Changes in the biogenic amine content of the prefrontal cortex, amygdala, dorsal hippocampus, and nucleus accumbens of rats submitted to single and repeated sessions of the elevated plus-maze test

    Directory of Open Access Journals (Sweden)

    Carvalho M.C.

    2005-01-01

    Full Text Available It has been demonstrated that exposure to a variety of stressful experiences enhances fearful reactions when behavior is tested in current animal models of anxiety. Until now, no study has examined the neurochemical changes during the test and retest sessions of rats submitted to the elevated plus maze (EPM. The present study uses a new approach (HPLC by looking at the changes in dopamine and serotonin levels in the prefrontal cortex, amygdala, dorsal hippocampus, and nucleus accumbens in animals upon single or double exposure to the EPM (one-trial tolerance. The study involved two experiments: i saline or midazolam (0.5 mg/kg before the first trial, and ii saline or midazolam before the second trial. For the biochemical analysis a control group injected with saline and not tested in the EPM was included. Stressful stimuli in the EPM were able to elicit one-trial tolerance to midazolam on re-exposure (61.01%. Significant decreases in serotonin contents occurred in the prefrontal cortex (38.74%, amygdala (78.96%, dorsal hippocampus (70.33%, and nucleus accumbens (73.58% of the animals tested in the EPM (P < 0.05 in all cases in relation to controls not exposed to the EPM. A significant decrease in dopamine content was also observed in the amygdala (54.74%, P < 0.05. These changes were maintained across trials. There was no change in the turnover rates of these monoamines. We suggest that exposure to the EPM causes reduced monoaminergic neurotransmission activity in limbic structures, which appears to underlie the "one-trial tolerance" phenomenon.

  7. Three-dimensional visualization of functional brain tissue and functional magnetic resonance imaging-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex

    International Nuclear Information System (INIS)

    Objective: To assess the value of three -dimensional visualization of functional brain tissue and the functional magnetic resonance imaging (fMRI)-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex. Method: Sixty patients with tumor located in the central sulcus were enrolled. Thirty patients were randomly assigned to function group and 30 to control group. Patients in function group underwent fMRI to localize the functional brain tissues. Then the function information was transferred to the neurosurgical navigator. The patients in control group underwent surgery with navigation without function information. The therapeutic effect, excision rate. improvement of motor function, and survival quality during follow-up were analyzed. Result: All patients in function group were accomplished visualization of functional brain tissues and fMRI-integrated neuronavigation. The locations of tumors, central sulcus and motor cortex were marked during the operation. The fMRI -integrated information played a great role in both pre- and post-operation. Pre-operation: designing the location of the skin flap and window bone, determining the relationship between the tumor and motor cortex, and designing the pathway for the resection. Post- operation: real-time navigation of relationship between the tumor and motor cortex, assisting to localize the motor cortex using interoperation ultra-sound for correcting the displacement by the CSF outflow and collapsing tumor. The patients in the function group had better results than the patients in the control group in therapeutic effect (u=2.646, P=0.008), excision rate (χ=7.200, P<0.01), improvement of motor function (u=2.231, P=0.026), and survival quality (KPS uc= 2.664, P=0.008; Zubrod -ECOG -WHO uc=2.135, P=0.033). Conclusions: Using preoperative three -dimensional visualization of cerebral function tissue and the fMRI-integrated neuronavigation technology, combining intraoperative accurate positioning

  8. 反复力竭游泳运动对小鼠前脑皮层和海马的影响%Effects of repeated exhaustive swimming exercise on the prefrontal cortex and hippocampus in mice

    Institute of Scientific and Technical Information of China (English)

    蔡成法; 李亚

    2014-01-01

    Acute stress and chronic stress can damage the brain prefrontal cortex( PFC)and hippo-campus( HP)function,then reduce learning and memory abilities of animal or human. Model of exhaustive exercise mice was set up by the way of repeatedly( four weeks)exhausted swimming. Membrane fluidity and free calcium concentrations([ Ca2+]i)of prefrontal cortical and hippocam-pal synaptosomes in mice were detected. The results show that,compared with control group mice, the membrane fluidity of synaptosomes in PFC and HP of exhaustive exercise group mice were signif-icantly decreased at 0 h and 12 h,after repeatedly exhausted exercise. The synaptosomal[ Ca2+]i in PFC and HP were significantly increased at 0 h,12 h and 24 h in exhaustive exercise group mice. The[ Ca2+]i in PFC and HP at 1 week were remarkably reduced than the exhaustive exercise 0 h group mice,respectively. The generation and recovery of exercise-induced central fatigue in mice after exhausted exercise which may be nearly related to the changes of membrane fluidity and [ Ca2+]i of synaptosomes.%急性应激和长期慢性应激均可损伤脑内的海马和前额叶,继而降低动物或人的学习记忆能力。采用4周反复力竭游泳运动方式建立力竭运动小鼠模型。在反复性力竭游泳运动后即刻(0 h)、12 h、24 h和1周,检测小鼠前脑皮层和海马突触体膜流动性变化,以及突触体内游离Ca2+浓度。结果表明,反复性力竭游泳运动后,与对照组小鼠比较,力竭运动组小鼠前脑皮层和海马突触体膜流动性在0 h、12 h显著降低,24 h有所恢复,1周后基本恢复到正常水平。力竭运动组小鼠前脑皮层和海马突触体内游离Ca2+浓度在0 h、12 h和24 h后显著增加,1周后前脑皮层和海马突触体内游离Ca2+浓度明显回落。力竭游泳运动所致小鼠运动性中枢疲劳的产生和恢复可能与突触体膜流动性和突触体内游离Ca2+浓度的变化密切相关。

  9. Distinct proteins in cortex of rats with closed traumatic brain injury detected by a WCX-2 protein chip

    Institute of Scientific and Technical Information of China (English)

    Li Zhan; Lin Liang; Qingming Shu; Shuwang Yang; Yongliang Zhang

    2007-01-01

    BACKGROUND: Mechanical injury can cause the changes of polygene expression spectrum in rat cerebral cortical nerve cells, and then result in the changes of intracellular protein expression. At present, dielectrophoresis is combined with mass spectrum technique to detect the expression of different proteins in rat cortex after brain injury, but the protein chip technique requires further investigation. OBJECTIVE: To analyze the differences of protein expression spectrum in rat cerebral cortex before and after closed traumatic brain injury using WCX-2 protein chip technique. DESIGN: A randomized controlled animal experiment.SETTING: Training Division of the Medical College of Chinese People's Armed Police Force. MATERIALS: Seventy-two male SD rats of clean degree, 350 - 450 g, were provided by the Experimental Animal Center, Academy of Military Medical Sciences of Chinese PLA. Urea, trifluoroacetic acid, CHAPS and Tris (Sigma, USA); WCX-2 (Ciphergen, USA). Ultra-high speed hypothermia centrifuger (Bechman, USA); Rotary tissue microtome (Keuca, Germany); Biochip processor and PBS II-C protein chip reader (Ciphergen, USA).METHODS: The experiments were carried out in the Institute of Molecular Pathology, Central Laboratory, and Department of Pathology, Medical College of Chinese People's Armed Police Force from June 2005 to March 2006.①Grouping and treatment: The experiments were completed in molecular pathological institute, central laboratory and pathological department.①The rats were randomly divided into control group (n =12) and brain injury group (n =60). Marmarou's weight-dropping models were duplicated at different time points in the brain injury group. In the control group, the rats were only treated by incising the skin of head top, without fixing the stainless steel hitting backup plate at the vault of skull, and obtain brain cortex for pathological and protein chip research, and they were killed after 24 hours. The rats in the brain injury group were

  10. Behavioral Effects of Deep Brain Stimulation of the Anterior Nucleus of Thalamus, Entorhinal Cortex and Fornix in a Rat Model of Alzheimer's Disease

    Institute of Scientific and Technical Information of China (English)

    Chao Zhang; Wen-Han Hu; De-Long Wu; Kai Zhang; Jian-Guo Zhang

    2015-01-01

    Background:Recent clinical and preclinical studies have suggested that deep brain stimulation (DBS) can be used as a tool to enhance cognitive functions.The aim of the present study was to investigate the impact of DBS at three separate targets in the Papez circuit,including the anterior nucleus of thalamus (ANT),the entorhinal cortex (EC),and the fornix (FX),on cognitive behaviors in an Alzheimer's disease (AD) rat model.Methods:Forty-eight rats were subjected to an intrahippocampal injection ofamyloid peptides 1-42 to induce an AD model.Rats were divided into six groups:DBS and sham DBS groups of ANT,EC,and FX.Spatial learning and memory were assessed by the Morris water maze (MWM).Recognition memory was investigated by the novel object recognition memory test (NORM).Locomotor and anxiety-related behaviors were detected by the open field test (OF).By using two-way analysis of variance (ANOVA),behavior differences between the six groups were analyzed.Results:In the MWM,the ANT,EC,and FX DBS groups performed differently in terms of the time spent in the platform zone (F(2.23) =6.04,P < 0.01),the frequency of platform crossing (F(2,23) =11.53,P < 0.001),and the percent time spent within the platform quadrant (F(2,23) =6.29,P < 0.01).In the NORM,the EC and FX DBS groups spent more time with the novel object,although the ANT DBS group did not (F(2,23) =10.03,P < 0.001).In the OF,all of the groups showed a similar total distance moved (F(1.42) =1.14,P =0.29)and relative time spent in the center (F(2,42) =0.56,P =0.58).Conclusions:Our results demonstrated that DBS of the EC and FX facilitated hippocampus-dependent spatial memory more prominently thanANT DBS.In addition,hippocampus-independent recognition memory was enhanced by EC and FX DBS.None of the targets showed side-effects of anxiety or locomotor behaviors.

  11. Effects of pentoxifylline, 7-nitroindazole, and imipramine on tumor necrosis factor-α and indoleamine 2,3-dioxygenase enzyme activity in the hippocampus and frontal cortex of chronic mild-stress-exposed rats

    Directory of Open Access Journals (Sweden)

    Mohamed BMSA

    2013-05-01

    Full Text Available Bassim MSA Mohamed,1,6 Sawsan Aboul-Fotouh,2,5 Eman A Ibrahim,3 Hanan Shehata,4 Amal A Mansour,4 Nemat AZ Yassin,1 Wafaa El-Eraky,1 Ahmed M Abdel-Tawab2,5 1Department of Pharmacology, National Research Centre, Cairo, Egypt; 2Department of Pharmacology, 3Department of Pathology, 4Department of Medical Biochemistry and Molecular Biology, 5Clinical Pharmacology Unit, Ain Shams University, Cairo, Egypt; 6Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada Objectives: This study aimed to investigate the role of tumor necrosis factor (TNF-α and the neuronal nitric oxide synthase enzyme in dysregulation of indoleamine 2,3-dioxygenase (IDO enzyme, and hence serotonin availability in chronic mild stress (CMS, an animal model of depression. Methods: Rats were divided into five groups: two control and CMS-exposed for 6 weeks, and another three groups exposed to CMS and administered pentoxifylline 50 mg/kg/day intraperitoneally, 7-nitroindazole 40 mg/kg/day subcutaneously, or imipramine 20 mg/kg/day intraperitoneally for the previous 3 CMS weeks. Rats were assessed for neurochemical and immunohistochemical abnormalities. Results: Pentoxifylline-, 7-nitroindazole-, and imipramine-treated rats showed amelioration of CMS-induced behavioral deficits that was accompanied by significant reduction in kynurenine/serotonin molar ratio and nitrates/nitrites in frontal cortex and hippocampus. In the pentoxifylline and 7-nitroindazole groups, serum TNF-α was reduced relative to the CMS group (18.54 ± 0.85 and 19.16 ± 1.54 vs 26.20 ± 1.83 pg/mL, respectively; P < 0.05. Exposure to CMS increased TNF-α and IDO immunohistochemical staining scores in both hippocampus and midbrain raphe nuclei. 7-Nitroindazole and pentoxifylline significantly (P < 0.05 reduced TNF-α immunostaining in hippocampus and raphe nuclei, with significant (P < 0.01 reduction of IDO immunostaining in raphe nuclei. Likewise, imipramine reduced TNF

  12. Cholesterol metabolism changes under long-term dietary restrictions while the cholesterol homeostasis remains unaffected in the cortex and hippocampus of aging rats

    OpenAIRE

    Smiljanic, Kosara; Vanmierlo, Tim; Djordjevic, Aleksandra Mladenovic; Perovic, Milka; Ivkovic, Sanja; Luetjohann, Dieter; Kanazir, Selma

    2014-01-01

    Maintaining cholesterol homeostasis in the brain is vital for its proper functioning. While it is well documented that dietary restriction modulates the metabolism of cholesterol peripherally, little is known as to how it can affect cholesterol metabolism in the brain. The present study was designed to elucidate the impact of long-term dietary restriction on brain cholesterol metabolism. Three-month-old male Wistar rats were exposed to long-term dietary restriction until 12 and 24 months of a...

  13. The neuron-astrocyte-microglia triad in normal brain ageing and in a model of neuroinflammation in the rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Francesca Cerbai

    Full Text Available Ageing is accompanied by a decline in cognitive functions; along with a variety of neurobiological changes. The association between inflammation and ageing is based on complex molecular and cellular changes that we are only just beginning to understand. The hippocampus is one of the structures more closely related to electrophysiological, structural and morphological changes during ageing. In the present study we examined the effect of normal ageing and LPS-induced inflammation on astroglia-neuron interaction in the rat hippocampus of adult, normal aged and LPS-treated adult rats. Astrocytes were smaller, with thicker and shorter branches and less numerous in CA1 Str. radiatum of aged rats in comparison to adult and LPS-treated rats. Astrocyte branches infiltrated apoptotic neurons of aged and LPS-treated rats. Cellular debris, which were more numerous in CA1 of aged and LPS-treated rats, could be found apposed to astrocytes processes and were phagocytated by reactive microglia. Reactive microglia were present in the CA1 Str. Radiatum, often in association with apoptotic cells. Significant differences were found in the fraction of reactive microglia which was 40% of total in adult, 33% in aged and 50% in LPS-treated rats. Fractalkine (CX3CL1 increased significantly in hippocampus homogenates of aged and LPS-treated rats. The number of CA1 neurons decreased in aged rats. In the hippocampus of aged and LPS-treated rats astrocytes and microglia may help clearing apoptotic cellular debris possibly through CX3CL1 signalling. Our results indicate that astrocytes and microglia in the hippocampus of aged and LPS-infused rats possibly participate in the clearance of cellular debris associated with programmed cell death. The actions of astrocytes may represent either protective mechanisms to control inflammatory processes and the spread of further cellular damage to neighboring tissue, or they may contribute to neuronal damage in pathological conditions.

  14. Indicaxanthin from Opuntia ficus-indica Crosses the Blood-Brain Barrier and Modulates Neuronal Bioelectric Activity in Rat Hippocampus at Dietary-Consistent Amounts.

    Science.gov (United States)

    Allegra, Mario; Carletti, Fabio; Gambino, Giuditta; Tutone, Marco; Attanzio, Alessandro; Tesoriere, Luisa; Ferraro, Giuseppe; Sardo, Pierangelo; Almerico, Anna Maria; Livrea, Maria Antonia

    2015-08-26

    Indicaxanthin is a bioactive and bioavailable betalain pigment from the Opuntia ficus-indica fruits. In this in vivo study, kinetic measurements showed that indicaxanthin is revealed in the rat brain within 1 h from oral administration of 2 μmol/kg, an amount compatible with a dietary consumption of cactus pear fruits in humans. A peak (20 ± 2.4 ng of indicaxanthin per whole brain) was measured after 2.5 h; thereafter the molecule disappeared with first order kinetics within 4 h. The potential of indicaxanthin to affect neural activities was in vivo investigated by a microiontophoretic approach. Indicaxanthin, administered in a range between 0.085 ng and 0.34 ng per neuron, dose-dependently modulated the rate of discharge of spontaneously active neurons of the hippocampus, with reduction of the discharge and related changes of latency and duration of the effect. Indicaxanthin (0.34 ng/neuron) showed inhibitory effects on glutamate-induced excitation, indicating activity at the level of glutamatergic synapses. A molecular target of indicaxanthin is suggested by in silico molecular modeling of indicaxanthin with N-methyl-D-aspartate receptor (NMDAR), the most represented of the glutamate receptor family in hippocampus. Therefore, at nutritionally compatible amounts indicaxanthin (i) crosses the rat BBB and accumulates in brain; (ii) can affect the bioelectric activity of hippocampal neurons locally treated with amounts comparable with those measured in the brain; and (iii) modulates glutamate-induced neuronal excitation. The potential of dietary indicaxanthin as a natural neuromodulatory agent deserves further mechanistic and neurophysiologic investigation. PMID:26227670

  15. Indicaxanthin from Opuntia ficus-indica Crosses the Blood-Brain Barrier and Modulates Neuronal Bioelectric Activity in Rat Hippocampus at Dietary-Consistent Amounts.

    Science.gov (United States)

    Allegra, Mario; Carletti, Fabio; Gambino, Giuditta; Tutone, Marco; Attanzio, Alessandro; Tesoriere, Luisa; Ferraro, Giuseppe; Sardo, Pierangelo; Almerico, Anna Maria; Livrea, Maria Antonia

    2015-08-26

    Indicaxanthin is a bioactive and bioavailable betalain pigment from the Opuntia ficus-indica fruits. In this in vivo study, kinetic measurements showed that indicaxanthin is revealed in the rat brain within 1 h from oral administration of 2 μmol/kg, an amount compatible with a dietary consumption of cactus pear fruits in humans. A peak (20 ± 2.4 ng of indicaxanthin per whole brain) was measured after 2.5 h; thereafter the molecule disappeared with first order kinetics within 4 h. The potential of indicaxanthin to affect neural activities was in vivo investigated by a microiontophoretic approach. Indicaxanthin, administered in a range between 0.085 ng and 0.34 ng per neuron, dose-dependently modulated the rate of discharge of spontaneously active neurons of the hippocampus, with reduction of the discharge and related changes of latency and duration of the effect. Indicaxanthin (0.34 ng/neuron) showed inhibitory effects on glutamate-induced excitation, indicating activity at the level of glutamatergic synapses. A molecular target of indicaxanthin is suggested by in silico molecular modeling of indicaxanthin with N-methyl-D-aspartate receptor (NMDAR), the most represented of the glutamate receptor family in hippocampus. Therefore, at nutritionally compatible amounts indicaxanthin (i) crosses the rat BBB and accumulates in brain; (ii) can affect the bioelectric activity of hippocampal neurons locally treated with amounts comparable with those measured in the brain; and (iii) modulates glutamate-induced neuronal excitation. The potential of dietary indicaxanthin as a natural neuromodulatory agent deserves further mechanistic and neurophysiologic investigation.

  16. How Two Brains Make One Synchronized Mind in the Inferior Frontal Cortex: fNIRS-Based Hyperscanning During Cooperative Singing.

    Science.gov (United States)

    Osaka, Naoyuki; Minamoto, Takehiro; Yaoi, Ken; Azuma, Miyuki; Shimada, Yohko Minamoto; Osaka, Mariko

    2015-01-01

    One form of communication that is common in all cultures is people singing together. Singing together reflects an index of cognitive synchronization and cooperation of human brains. Little is known about the neural synchronization mechanism, however. Here, we examined how two brains make one synchronized behavior using cooperated singing/humming between two people and hyperscanning, a new brain scanning technique. Hyperscanning allowed us to observe dynamic cooperation between interacting participants. We used functional near-infrared spectroscopy (fNIRS) to simultaneously record the brain activity of two people while they cooperatively sang or hummed a song in face-to-face (FtF) or face-to-wall (FtW) conditions. By calculating the inter-brain wavelet transform coherence between two interacting brains, we found a significant increase in the neural synchronization of the left inferior frontal cortex (IFC) for cooperative singing or humming regardless of FtF or FtW compared with singing or humming alone. On the other hand, the right IFC showed an increase in neural synchronization for humming only, possibly due to more dependence on musical processing. PMID:26635703

  17. Cocaine-induced reduction of brain neuropeptide Y synthesis dependent on medial prefrontal cortex.

    OpenAIRE

    Wahlestedt, C; Karoum, F; Jaskiw, G; Wyatt, R. J.; Larhammar, D; Ekman, R.; Reis, D J

    1991-01-01

    Repeated administration of cocaine elicits substantial, long-lasting, but reversible reductions in neuropeptide Y (NPY) and NPY mRNA in the rat cerebral cortex and nucleus accumbens. The NPY reduction appears to be mediated through a decrease in NPY biosynthesis, occurring transneuronally, perhaps in response to changes in synaptic dopamine associated with mesolimbic and mesocortical dopamine neurons. The medial prefrontal cortex appears necessary for maintenance of cocaine's action on this n...

  18. Voluntary exercise prior to traumatic brain injury alters miRNA expression in the injured mouse cerebral cortex

    OpenAIRE

    Miao, W.; T.H. Bao; Han, J. H.; Yin, M.; Yan, Y.; Wang, W. W.; Zhu, Y. H.

    2015-01-01

    MicroRNAs (miRNAs) may be important mediators of the profound molecular and cellular changes that occur after traumatic brain injury (TBI). However, the changes and possible roles of miRNAs induced by voluntary exercise prior to TBI are still not known. In this report, the microarray method was used to demonstrate alterations in miRNA expression levels in the cerebral cortex of TBI mice that were pretrained on a running wheel (RW). Voluntary RW exercise prior to TBI: i) significantly decrease...

  19. Expressions of Neuregulin 1β and ErbB4 in Prefrontal Cortex and Hippocampus of a Rat Schizophrenia Model Induced by Chronic MK-801 Administration

    OpenAIRE

    Yu Feng; Xiao-Dong Wang; Chun-Mei Guo; Yang Yang; Ji-Tao Li; Yun-Ai Su; Tian-Mei Si

    2010-01-01

    Recent human genetic studies and postmortem brain examinations of schizophrenia patients strongly indicate that dysregulation of NRG1 and ErbB4 may be important pathogenic factors of schizophrenia. However, this hypothesis has not been validated and fully investigated in animal models of schizophrenia. In this study we quantitatively examined NRG1 and ErbB4 protein expressions by immunohistochemistry and Western blot in the brain of a rat schizophrenia model induced by chronic administration ...

  20. Insulin Like Growth Factor 2 Expression in the Rat Brain Both in Basal Condition and following Learning Predominantly Derives from the Maternal Allele

    OpenAIRE

    Xiaojing Ye; Amy Kohtz; Gabriella Pollonini; Andrea Riccio; Alberini, Cristina M

    2015-01-01

    Insulin like growth factor 2 (Igf2) is known as a maternally imprinted gene involved in growth and development. Recently, Igf2 was found to also be regulated and required in the adult rat hippocampus for long-term memory formation, raising the question of its allelic regulation in adult brain regions following experience and in cognitive processes. We show that, in adult rats, Igf2 is abundantly expressed in brain regions involved in cognitive functions, like hippocampus and prefrontal cortex...

  1. Dynamic changes of glial fibrillary acidic protein and nestin in the hippocampus of adult rat brain following ischemic vascular dementia

    Institute of Scientific and Technical Information of China (English)

    Tianping Yu; Peng Zhang; Xiong Zhang; Linhui Wang; Mingyuan Tian; Yu Li

    2011-01-01

    Vascular dementia produced by permanent ligation of bilateral common carotid arteries involves progressive deterioration of intellectual and cognitive function in rats, which are closely associated with the hippocampus. This study used immunohistochemical analysis to detect the expression of glial fibrillary acidic protein and nestin in the hippocampus in a vascular dementia model. The results revealed that both glial fibrillary acidic protein and nestin expression were increased 1 day after permanent ligation of the bilateral common carotid arteries, compared with a sham-operated group. The expression of glial fibrillary acidic protein peaked at 7 days post-surgery. The expression of nestin was a little weaker than that of glial fibrillary acidic protein, and peaked at 14 days (P<0.01). The expression of both proteins slightly decreased at 21 and 28 days, accompanied by recovery of cerebral blood flow. In conclusion, this study demonstrated that glial fibrillary acidic protein and nestin exhibited dynamic expression in the rat hippocampus after permanent ligation of bilateral common carotid arteries. This finding suggests that dynamic alterations in protein expression play an important role in the pathogenesis of vascular dementia.

  2. Effect of Heroin on DLG4 Expression in Hippocampus, Amygdala and Frontal Cortex of Rats%海洛因对大鼠海马、杏仁核和额叶皮质DLG4的影响

    Institute of Scientific and Technical Information of China (English)

    罗良鸣; 龚群; 刘建锋; 赵明权; 陈冬冬; 谢耀耀; 朱华

    2015-01-01

    目的:检测不同时程海洛因依赖大鼠海马、杏仁核和额叶皮质discs 大同源物4(discs large ho-molog 4,DLG4)的蛋白表达,探讨海洛因依赖对突触后致密结构的影响。方法采用腹腔内递增注射海洛因的方法,建立海洛因依赖的大鼠模型,用免疫组织化学法检测海洛因依赖9、18和36 d大鼠海马、杏仁核和额叶皮质DLG4蛋白的表达,并与对照组进行比较。结果随海洛因依赖时间的延长,海马、杏仁核和额叶皮质DLG4蛋白的表达逐渐降低。结论海洛因依赖可影响海马、杏仁核和额叶皮质突触后致密结构,并随依赖时间的延长,影响更加明显。%Objective To observe the expression of discs large hom olog 4 (DLG4) protein in hippocam-pus, am ygdala and frontal cortex of rats and evaluate postsynaptic density in heroin dependence. Meth-ods The rat heroin dependent m odel was established by increasing intraperitoneal injection of heroin. DLG4 proteins in hippocam pus, am ygdala and frontal cortex of heroin dependent 9, 18, 36 days rats w ere detected with im munohistochem ical staining and com pared with that in the control group. Results DLG4 proteins in hippocam pus, am ygdala and frontal cortex w ere gradually reduced with extension of heroin dependent tim e. Conclusion Heroin dependence can affect postsynaptic density of hippocam pus, am ygdala and frontal cortex. The changes becom e m ore apparent with extension of heroin dependence tim e.

  3. Incomplete brain infarction of reperfused cortex may be quantitated with iomazenil

    DEFF Research Database (Denmark)

    Nakagawara, J; Sperling, B; Lassen, N A

    1997-01-01

    cortex showed significant decrease of Vd (P mild cortical atrophy was observed in two reperfused areas where the asymmetry ratio was moderately reduced (0.64 and 0......BACKGROUND AND PURPOSE: [123I]Iomazenil is a specific radioligand for the central benzodiazepine receptor that may be useful as an indicator of the intactness of cortical neurons after focal cerebral ischemia. We evaluated the binding of this receptor in reperfused cortex among patients...... with ischemic stroke to detect viable neurons in cortex that appeared structurally intact on conventional neuroimaging studies. METHODS: Fourteen patients were selected by (1) angiography within 24 hours of onset showing embolic occlusion of an intracranial artery, (2) cerebral blood flow showing ischemia...

  4. A Heuristic Image Search Algorithm for Active Shape Model Segmentation of the Caudate Nucleus and Hippocampus in Brain MR Images of Children with FASD

    Directory of Open Access Journals (Sweden)

    A A Eicher

    2012-09-01

    Full Text Available Magnetic Resonance Imaging provides a non-invasive means to study the neural correlates of Fetal Alcohol Spectrum Disorder (FASD - the most common form of preventable mental retardation worldwide. One approach aims to detect brain abnormalities through an assessment of volume and shape of two sub-cortical structures, the caudate nucleus and hippocampus. We present a method for automatically segmenting these structures from high-resolution MR images captured as part of an ongoing study into the neural correlates of FASD. Our method incorporates an Active Shape Model, which is used to learn shape variation from manually segmented training data. A modified discrete Geometrically Deformable Model is used to generate point correspondence between training models. An ASM is then created from the landmark points. Experiments were conducted on the image search phase of ASM segmentation, in order to find the technique best suited to segmentation of the hippocampus and caudate nucleus. Various popular image search techniques were tested, including an edge detection method and a method based on grey profile Mahalanobis distance measurement. A novel heuristic image search method was also developed and tested. This heuristic method improves image segmentation by taking advantage of characteristics specific to the target data, such as a relatively homogeneous tissue colour in target structures. Results show that ASMs that use the heuristic image search technique produce the most accurate segmentations. An ASM constructed using this technique will enable researchers to quickly, reliably, and automatically segment test data for use in the FASD study.

  5. Decreased levels of pNR1 S897 protein in the cortex of neonatal Sprague Dawley rats with hypoxic-ischemic or NMDA-induced brain damage

    International Nuclear Information System (INIS)

    Our objective was to investigate the protein level of phosphorylated N-methyl-D-aspartate (NMDA) receptor-1 at serine 897 (pNR1 S897) in both NMDA-induced brain damage and hypoxic-ischemic brain damage (HIBD), and to obtain further evidence that HIBD in the cortex is related to NMDA toxicity due to a change of the pNR1 S897 protein level. At postnatal day 7, male and female Sprague-Dawley rats (13.12 ± 0.34 g) were randomly divided into normal control, phosphate-buffered saline (PBS) cerebral microinjection, HIBD, and NMDA cerebral microinjection groups. Immunofluorescence and Western blot (N = 10 rats per group) were used to examine the protein level of pNR1 S897. Immunofluorescence showed that control and PBS groups exhibited significant neuronal cytoplasmic staining for pNR1 S897 in the cortex. Both HIBD and NMDA-induced brain damage markedly decreased pNR1 S897 staining in the ipsilateral cortex, but not in the contralateral cortex. Western blot analysis showed that at 2 and 24 h after HIBD, the protein level of pNR1 S897 was not affected in the contralateral cortex (P > 0.05), whereas it was reduced in the ipsilateral cortex (P < 0.05). At 2 h after NMDA injection, the protein level of pNR1 S897 in the contralateral cortex was also not affected (P > 0.05). The levels in the ipsilateral cortex were decreased, but the change was not significant (P > 0.05). The similar reduction in the protein level of pNR1 S897 following both HIBD and NMDA-induced brain damage suggests that HIBD is to some extent related to NMDA toxicity possibly through NR1 phosphorylation of serine 897

  6. 慢性应激损害大鼠学习记忆且抑制海马及额叶FGF2蛋白表达%Chronic Stress Impairs Learning and Memory and Down-Regulates Expression of FGF2 in Hippocampus and Prefrontal Cortex of Rats

    Institute of Scientific and Technical Information of China (English)

    汤明明; 侯公林

    2011-01-01

    It is well documented that chronic stress can produce cognitive impairment, and that the hippocampus and prefrontal cortex play an important role in the process of learning and memory. The present study investigated the effects of chronic stress through examination of the modulation tone of FGF2 protein in hippocampus and prefrontal cortex. The fibroblast growth factor-2 (FGF2), a mitogen that is involved in brain development and regeneration, has been shown to facilitate neurogenesis and synaptic plasticity, as well as be involved in the mechanism of neurodegenerative disorders.In the experiment, sixteen male Sprague-Dawley rats were randomly assigned into control group and stress group and the chronic unpredictable mild stress (CUMS) model was performed to construct chronic stress model of rats. The stress group received 35 days CUMS which were consisted of food deprivation, water deprivation, clip tail, feet shock, forced swimming in cold water, wet bedding, and disturbed light-dark cycle. Following the last stressor, stressed and non-stressed rats began training in the Morris Water Maze (MWM) and Y Maze to test the change of the ability of learning and memory about space clue fixed position and conditioned escape response. The changes of protein level of FGF2 in hippocampus and prefrontal cortex were observed by Westernblot analysis and Immunohistochemistry analysis.Compared with the rats of control group, the rats of stress group have obvious impairments in learning and memory. In the MWM, the rats exposed to stress had longer latencies to reach the hidden platform during training phase (p<0.01), and passed fewer times through the platform location (p<0.01). In the Y maze test, stressed rats needed more learning performances (p<0.05) and had less precision rate (p<0.05). The protein level of FGF2 was downregulated in hippocampus of rats (p<0.001), especially the dentate gyms, CA1 neurons and CA3 pyramidal neurons. The same changes also happened in prefrontal

  7. Electrical impedance of mouse brain cortex in vitro from 4.7 kHz to 2.0 MHz.

    Science.gov (United States)

    Wilson, M T; Elbohouty, M; Voss, L J; Steyn-Ross, D A

    2014-02-01

    The electrical impedance of samples of mouse brain cortex has been measured between 4.7 kHz and 2.0 MHz. Brain slices of thickness 400 μm were prepared from two mice. Each slice was placed in either normal artificial cerebrospinal fluid or magnesium-free artificial cerebrospinal fluid; the latter induces seizure-like electrical behaviour. A total of 74 samples of cortex of approximate size 2 mm × 2 mm were then cut from these slices. Each sample in turn was placed between two flat Ag/AgCl electrodes and electrical impedance measured with an Agilent E4980A four-point impedance monitor. The measurements showed two regions of significant dispersion. Circuits based on the Cole-Cole and Fricke models, consisting of inductive, nonlinear capacitive and resistive elements were used to model the behaviour. Distributions of values for each circuit element have been determined for the samples prepared in seizing and non-seizing conditions. Few differences were found between the values of circuit elements between the seizing and non-seizing groups.

  8. Higher Brain Functions Served by the Lowly Rodent Primary Visual Cortex

    Science.gov (United States)

    Gavornik, Jeffrey P.; Bear, Mark F.

    2014-01-01

    It has been more than 50 years since the first description of ocular dominance plasticity--the profound modification of primary visual cortex (V1) following temporary monocular deprivation. This discovery immediately attracted the intense interest of neurobiologists focused on the general question of how experience and deprivation modify the brain…

  9. Persistent Angiogenesis in the Autism Brain: An Immunocytochemical Study of Postmortem Cortex, Brainstem and Cerebellum

    Science.gov (United States)

    Azmitia, E. C.; Saccomano, Z. T.; Alzoobaee, M. F.; Boldrini, M.; Whitaker-Azmitia, P. M.

    2016-01-01

    In the current work, we conducted an immunocytochemical search for markers of ongoing neurogenesis (e.g. nestin) in auditory cortex from postmortem sections of autism spectrum disorder (ASD) and age-matched control donors. We found nestin labeling in cells of the vascular system, indicating blood vessels plasticity. Evidence of angiogenesis was…

  10. Rosemary extract improves cognitive deficits in a rats model of repetitive mild traumatic brain injury associated with reduction of astrocytosis and neuronal degeneration in hippocampus.

    Science.gov (United States)

    Song, Hai; Xu, Lincheng; Zhang, Rongping; Cao, Zhenzhen; Zhang, Huan; Yang, Li; Guo, Zeyun; Qu, Yongqiang; Yu, Jianyun

    2016-05-27

    In this study, we investigated whether Rosemary extract (RE) improved cognitive deficits in repetitive mild Traumatic brain injury (rmTBI) rats and its potential mechanisms. The present results showed that rmTBI caused cognitive deficits, such as increased latency to find platform and decreased time spent in target quadrant in Morris water maze (MWM). These behavioral alterations were accompanying with the increased neuronal degeneration and glial fibrillary acidic protein (GFAP)-positive cells, increased Reactive oxygen species (ROS) generation, decreased activity of Superoxide Dismutase (SOD), Glutathione Peroxidase (GPx) and Catalase (CAT), elevated protein level of IL-1β, IL-6 and TNF-α in hippocampus. Treatment with RE prevented these changes above. Our findings confirmed the effect of rosemary extract on improvement of cognitive deficits and suggested its mechanisms might be mediated by anti-oxidative and anti-inflammatory. Therefore, rosemary extract may be a potential treatment to improve cognitive deficits in rmTBI patients. PMID:27113205

  11. Experimental study on alteration of adrenergic receptors activity in neuronal membranes protein of cerebral cortex following brain trauma in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-wei; XU Ru-xiang; QI Yi-long; CHEN Chang-cai

    2001-01-01

    Objective: To define the course of changes taken by α1 and β adrenergic receptors (AR) activity after traumatic brain injury (TBI) and explore the approach for secondary brain injury (SBI) management. Methods: The neuronal membrane protein of cortex were extracted from the rats subject to traumatic brain injury, and the changes of α1- and β-AR activities in the neuronal membranes were examined by radio ligand binding assay (RLBA). Results: α1- and β-AR activities underwent obvious changes, reaching their peak values at 24 h after TBI. α1-AR binding density (Bmax) reduced by 22.6%while the ligand affinity increased by 66.7%, and for β-AR, however, Bmax increased by 116.9% and the ligand affinity reduced by 50.7%. Their antagonists could counteract the changes ofα1- and β-AR activity. Conclusion: The patterns of changes varies between α1- and β-AR activity after TBI, suggesting their different roles in the neuronal membranes after brain trauma, and timely administration of AR antagonists is potentially beneficial in TBI management.

  12. Manipulation of Dysfunctional Spinal Joints Affects Sensorimotor Integration in the Prefrontal Cortex: A Brain Source Localization Study

    Directory of Open Access Journals (Sweden)

    Dina Lelic

    2016-01-01

    Full Text Available Objectives. Studies have shown decreases in N30 somatosensory evoked potential (SEP peak amplitudes following spinal manipulation (SM of dysfunctional segments in subclinical pain (SCP populations. This study sought to verify these findings and to investigate underlying brain sources that may be responsible for such changes. Methods. Nineteen SCP volunteers attended two experimental sessions, SM and control in random order. SEPs from 62-channel EEG cap were recorded following median nerve stimulation (1000 stimuli at 2.3 Hz before and after either intervention. Peak-to-peak amplitude and latency analysis was completed for different SEPs peak. Dipolar models of underlying brain sources were built by using the brain electrical source analysis. Two-way repeated measures ANOVA was used to assessed differences in N30 amplitudes, dipole locations, and dipole strengths. Results. SM decreased the N30 amplitude by 16.9±31.3% (P=0.02, while no differences were seen following the control intervention (P=0.4. Brain source modeling revealed a 4-source model but only the prefrontal source showed reduced activity by 20.2±12.2% (P=0.03 following SM. Conclusion. A single session of spinal manipulation of dysfunctional segments in subclinical pain patients alters somatosensory processing at the cortical level, particularly within the prefrontal cortex.

  13. Manipulation of Dysfunctional Spinal Joints Affects Sensorimotor Integration in the Prefrontal Cortex: A Brain Source Localization Study.

    Science.gov (United States)

    Lelic, Dina; Niazi, Imran Khan; Holt, Kelly; Jochumsen, Mads; Dremstrup, Kim; Yielder, Paul; Murphy, Bernadette; Drewes, Asbjørn Mohr; Haavik, Heidi

    2016-01-01

    Objectives. Studies have shown decreases in N30 somatosensory evoked potential (SEP) peak amplitudes following spinal manipulation (SM) of dysfunctional segments in subclinical pain (SCP) populations. This study sought to verify these findings and to investigate underlying brain sources that may be responsible for such changes. Methods. Nineteen SCP volunteers attended two experimental sessions, SM and control in random order. SEPs from 62-channel EEG cap were recorded following median nerve stimulation (1000 stimuli at 2.3 Hz) before and after either intervention. Peak-to-peak amplitude and latency analysis was completed for different SEPs peak. Dipolar models of underlying brain sources were built by using the brain electrical source analysis. Two-way repeated measures ANOVA was used to assessed differences in N30 amplitudes, dipole locations, and dipole strengths. Results. SM decreased the N30 amplitude by 16.9 ± 31.3% (P = 0.02), while no differences were seen following the control intervention (P = 0.4). Brain source modeling revealed a 4-source model but only the prefrontal source showed reduced activity by 20.2 ± 12.2% (P = 0.03) following SM. Conclusion. A single session of spinal manipulation of dysfunctional segments in subclinical pain patients alters somatosensory processing at the cortical level, particularly within the prefrontal cortex. PMID:27047694

  14. Brain banks as key part of biochemical and molecular studies on cerebral cortex involvement in Parkinson's disease.

    Science.gov (United States)

    Ravid, Rivka; Ferrer, Isidro

    2012-04-01

    Exciting developments in basic and clinical neuroscience and recent progress in the field of Parkinson's disease (PD) are partly a result of the availability of human specimens obtained through brain banks. These banks have optimized the methodological, managerial and organizational procedures; standard operating procedures; and ethical, legal and social issues, including the code of conduct for 21st Century brain banking and novel protocols. The present minireview focuses on current brain banking organization and management, as well as the likely future direction of the brain banking field. We emphasize the potentials and pitfalls when using high-quality specimens of the human central nervous system for advancing PD research. PD is a generalized disease in which α-synuclein is not a unique component but, instead, is only one of the players accounting for the complex impairment of biochemical/molecular processes involved in metabolic pathways. This is particularly important in the cerebral cortex, where altered cognition has a complex neurochemical substrate. Mitochondria and energy metabolism impairment, abnormal RNA, microRNA, protein synthesis, post-translational protein modifications and alterations in the lipid composition of membranes and lipid rafts are part of these complementary factors. We have to be alert to the possible pitfalls of each specimen and its suitability for a particular study. Not all samples qualify for the study of DNA, RNA, proteins, post-translational modifications, lipids and metabolomes, although the use of carefully selected samples and appropriate methods minimizes pitfalls and errors and guarantees high-quality reserach.

  15. Effects of Mood Stabilizers on Brain Energy Metabolism in Mice Submitted to an Animal Model of Mania Induced by Paradoxical Sleep Deprivation.

    Science.gov (United States)

    Streck, Emilio L; Scaini, Giselli; Jeremias, Gabriela C; Rezin, Gislaine T; Gonçalves, Cinara L; Ferreira, Gabriela K; Réus, Gislaine Z; Resende, Wilson R; Valvassori, Samira S; Kapczinski, Flávio; Andersen, Mônica L; Quevedo, João

    2015-06-01

    There is a body of evidence suggesting that mitochondrial dysfunction is involved in bipolar disorder (BD) pathogenesis. Studies suggest that abnormalities in circadian cycles are involved in the pathophysiology of affective disorders; paradoxical sleep deprivation (PSD) induces hyperlocomotion in mice. Thus, the present study aims to investigate the effects of lithium (Li) and valproate (VPA) in an animal model of mania induced by PSD for 96 h. PSD increased exploratory activity, and mood stabilizers prevented PSD-induced behavioral effects. PSD also induced a significant decrease in the activity of complex II-III in hippocampus and striatum; complex IV activity was decreased in prefrontal cortex, cerebellum, hippocampus, striatum and cerebral cortex. Additionally, VPA administration was able to prevent PSD-induced inhibition of complex II-III and IV activities in prefrontal cortex, cerebellum, hippocampus, striatum and cerebral cortex, whereas Li administration prevented PSD-induced inhibition only in prefrontal cortex and hippocampus. Regarding the enzymes of Krebs cycle, only citrate synthase activity was increased by PSD in prefrontal cortex. We also found a similar effect in creatine kinase, an important enzyme that acts in the buffering of ATP levels in brain; its activity was increased in prefrontal cortex, hippocampus and cerebral cortex. These results are consistent with the connection of mitochondrial dysfunction and hyperactivity in BD and suggest that the present model fulfills adequate face, construct and predictive validity as an animal model of mania. PMID:25894682

  16. The Brain Prize 2011

    Science.gov (United States)

    Soltesz, Ivan

    2012-01-01

    The Grete Lundbeck European Brain Research Foundation awarded the inaugural Brain Prize 2011 to Péter Somogyi, Tamás Freund and György Buzsáki ‘for their wide-ranging, technically and conceptually brilliant research on the functional organization of neuronal circuits in the cerebral cortex, especially in the hippocampus, a region that is crucial for certain forms of memory’. The present article highlights key findings and major conceptual contributions by these three scientists that were recognized by the award. PMID:21917323

  17. A Cognição Social e o Córtex Cerebral Social Cognition and the Brain Cortex

    Directory of Open Access Journals (Sweden)

    Judith Butman

    2001-01-01

    Full Text Available A cognição social é o processo que orienta condutas frente a outros indivíduos da mesma espécie. Várias estruturas cerebrais têm um papel chave para controlar as condutas sociais: o córtex pré-frontal ventromedial, a amígdala, o córtex somatosensorial direito e a ínsula. O córtex pré-frontal ventromedial está comprometido com o raciocínio social e com a tomada de decisões; a amígdala com o julgamento social de faces; o córtex somatosensorial direito, com a empatia e com a simulação; enquanto que a insula, com a resposta autonômica. Estes achados estão de acordo com a hipótese do marcador somático, um mecanismo específico por meio do qual adquirimos, representamos ou memorizamos os valores de nossas ações. Estas estruturas cerebrais atuam como mediadores entre as representações perceptuais dos estímulos sensoriais e a recuperação do conhecimento que o estímulo pode ativar. O sistema límbico é a zona limítrofe; nela, a psicologia se encontra com a neurologia. A correta sincronização destas zonas e estruturas, no adulto, é a chave para uma situação livre de patologia.Social cognition refers to the processes that subserve behavior in response to other individuals of the same species. Several brain structures play a key role in guiding social behaviors: ventromedial prefrontal cortex, amygdala, right somatosensory cortex and insula. The ventromedial prefrontal cortex is most directly involved in social reasoning and decision making; the amygdala in social judgment of faces, the right somatosensory cortex in empathy and simulation and the insula in autonomic responses. These findings are corresponding to the somatic marker hypothesis, particular mechanism by which we acquire, represent and retrieve the values of our actions. These brain structures appear to mediate between perceptual representation of social stimuli and retrieval of knowledge that such stimuli can trigger. The limbic system is the border zone

  18. Decreased levels of pNR1 S897 protein in the cortex of neonatal Sprague Dawley rats with hypoxic-ischemic or NMDA-induced brain damage

    Directory of Open Access Journals (Sweden)

    Ming-Yan Hei

    2012-10-01

    Full Text Available Our objective was to investigate the protein level of phosphorylated N-methyl-D-aspartate (NMDA receptor-1 at serine 897 (pNR1 S897 in both NMDA-induced brain damage and hypoxic-ischemic brain damage (HIBD, and to obtain further evidence that HIBD in the cortex is related to NMDA toxicity due to a change of the pNR1 S897 protein level. At postnatal day 7, male and female Sprague Dawley rats (13.12 ± 0.34 g were randomly divided into normal control, phosphate-buffered saline (PBS cerebral microinjection, HIBD, and NMDA cerebral microinjection groups. Immunofluorescence and Western blot (N = 10 rats per group were used to examine the protein level of pNR1 S897. Immunofluorescence showed that control and PBS groups exhibited significant neuronal cytoplasmic staining for pNR1 S897 in the cortex. Both HIBD and NMDA-induced brain damage markedly decreased pNR1 S897 staining in the ipsilateral cortex, but not in the contralateral cortex. Western blot analysis showed that at 2 and 24 h after HIBD, the protein level of pNR1 S897 was not affected in the contralateral cortex (P > 0.05, whereas it was reduced in the ipsilateral cortex (P 0.05. The levels in the ipsilateral cortex were decreased, but the change was not significant (P > 0.05. The similar reduction in the protein level of pNR1 S897 following both HIBD and NMDA-induced brain damage suggests that HIBD is to some extent related to NMDA toxicity possibly through NR1 phosphorylation of serine 897.

  19. Benefits of Physical Exercise on the Aging Brain: The Role of the Prefrontal Cortex

    OpenAIRE

    Berchicci, Marika; Lucci, Giuliana; Di Russo, Francesco

    2013-01-01

    Motor planning in older adults likely relies on the overengagement of the prefrontal cortex (PFC) and is associated with slowness of movement and responses. Does a physically active lifestyle counteract the overrecruitment of the PFC during action preparation? This study used high-resolution electroencephalography to measure the effect of physical exercise on the executive functions of the PFC preceding a visuomotor discriminative task. A total of 130 participants aged 15–86 were divided into...

  20. Cross-generational trans fat intake facilitates mania-like behavior: oxidative and molecular markers in brain cortex.

    Science.gov (United States)

    Trevizol, F; Roversi, Kr; Dias, V T; Roversi, K; Barcelos, R C S; Kuhn, F T; Pase, C S; Golombieski, R; Veit, J C; Piccolo, J; Pochmann, D; Porciúncula, L O; Emanuelli, T; Rocha, J B T; Bürger, M E

    2015-02-12

    Since that fast food consumption have raised concerns about people's health, we evaluated the influence of trans fat consumption on behavioral, biochemical and molecular changes in the brain-cortex of second generation rats exposed to a model of mania. Two successive generations of female rats were supplemented with soybean oil (SO, rich in n-6 FA, control group), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in trans FA) from pregnancy, lactation to adulthood, when male rats from 2nd generation received amphetamine (AMPH-4 mg/kg-i.p., once a day, for 14 days) treatment. AMPH increased locomotor index in all animals, which was higher in the HVF group. While the FO group showed increased n-3 polyunsaturated fatty acid (PUFA) incorporation and reduced n-6/n-3 PUFA ratio, HVF allowed trans fatty acid (TFA) incorporation and increased n-6/n-3 PUFA ratio in the brain-cortex. In fact, the FO group showed minor AMPH-induced hyperactivity, decreased reactive species (RS) generation per se, causing no changes in protein carbonyl (PC) levels and dopamine transporter (DAT). FO supplementation showed molecular changes, since proBDNF was increased per se and reduced by AMPH, decreasing the brain-derived neurotrophic factor (BDNF) level following drug treatment. Conversely, HVF was related to increased hyperactivity, higher PC level per se and higher AMPH-induced PC level, reflecting on DAT, whose levels were decreased per se as well as in AMPH-treated groups. In addition, while HVF increased BDNF-mRNA per se, AMPH reduced this value, acting on BDNF, whose level was lower in the same AMPH-treated experimental group. ProBDNF level was influenced by HVF supplementation, but it was not sufficient to modify BDNF level. These findings reinforce that prolonged consumption of trans fat allows TFA incorporation in the cortex, facilitating hyperactive behavior, oxidative damages and molecular changes. Our study is a warning about cross-generational consumption

  1. Cross-generational trans fat intake facilitates mania-like behavior: oxidative and molecular markers in brain cortex.

    Science.gov (United States)

    Trevizol, F; Roversi, Kr; Dias, V T; Roversi, K; Barcelos, R C S; Kuhn, F T; Pase, C S; Golombieski, R; Veit, J C; Piccolo, J; Pochmann, D; Porciúncula, L O; Emanuelli, T; Rocha, J B T; Bürger, M E

    2015-02-12

    Since that fast food consumption have raised concerns about people's health, we evaluated the influence of trans fat consumption on behavioral, biochemical and molecular changes in the brain-cortex of second generation rats exposed to a model of mania. Two successive generations of female rats were supplemented with soybean oil (SO, rich in n-6 FA, control group), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in trans FA) from pregnancy, lactation to adulthood, when male rats from 2nd generation received amphetamine (AMPH-4 mg/kg-i.p., once a day, for 14 days) treatment. AMPH increased locomotor index in all animals, which was higher in the HVF group. While the FO group showed increased n-3 polyunsaturated fatty acid (PUFA) incorporation and reduced n-6/n-3 PUFA ratio, HVF allowed trans fatty acid (TFA) incorporation and increased n-6/n-3 PUFA ratio in the brain-cortex. In fact, the FO group showed minor AMPH-induced hyperactivity, decreased reactive species (RS) generation per se, causing no changes in protein carbonyl (PC) levels and dopamine transporter (DAT). FO supplementation showed molecular changes, since proBDNF was increased per se and reduced by AMPH, decreasing the brain-derived neurotrophic factor (BDNF) level following drug treatment. Conversely, HVF was related to increased hyperactivity, higher PC level per se and higher AMPH-induced PC level, reflecting on DAT, whose levels were decreased per se as well as in AMPH-treated groups. In addition, while HVF increased BDNF-mRNA per se, AMPH reduced this value, acting on BDNF, whose level was lower in the same AMPH-treated experimental group. ProBDNF level was influenced by HVF supplementation, but it was not sufficient to modify BDNF level. These findings reinforce that prolonged consumption of trans fat allows TFA incorporation in the cortex, facilitating hyperactive behavior, oxidative damages and molecular changes. Our study is a warning about cross-generational consumption

  2. The functional organization of human epileptic hippocampus.

    Science.gov (United States)

    Klimes, Petr; Duque, Juliano J; Brinkmann, Ben; Van Gompel, Jamie; Stead, Matt; St Louis, Erik K; Halamek, Josef; Jurak, Pavel; Worrell, Gregory

    2016-06-01

    The function and connectivity of human brain is disrupted in epilepsy. We previously reported that the region of epileptic brain generating focal seizures, i.e., the seizure onset zone (SOZ), is functionally isolated from surrounding brain regions in focal neocortical epilepsy. The modulatory effect of behavioral state on the spatial and spectral scales over which the reduced functional connectivity occurs, however, is unclear. Here we use simultaneous sleep staging from scalp EEG with intracranial EEG recordings from medial temporal lobe to investigate how behavioral state modulates the spatial and spectral scales of local field potential synchrony in focal epileptic hippocampus. The local field spectral power and linear correlation between adjacent electrodes provide measures of neuronal population synchrony at different spatial scales, ∼1 and 10 mm, respectively. Our results show increased connectivity inside the SOZ and low connectivity between electrodes in SOZ and outside the SOZ. During slow-wave sleep, we observed decreased connectivity for ripple and fast ripple frequency bands within the SOZ at the 10 mm spatial scale, while the local synchrony remained high at the 1 mm spatial scale. Further study of these phenomena may prove useful for SOZ localization and help understand seizure generation, and the functional deficits seen in epileptic eloquent cortex. PMID:27030735

  3. Stepwise Connectivity of the Modal Cortex Reveals the Multimodal Organization of the Human Brain

    Science.gov (United States)

    Sepulcre, Jorge; Sabuncu, Mert R.; Yeo, Thomas B.; Liu, Hesheng; Johnson, Keith A.

    2012-01-01

    How human beings integrate information from external sources and internal cognition to produce a coherent experience is still not well understood. During the past decades, anatomical, neurophysiological and neuroimaging research in multimodal integration have stood out in the effort to understand the perceptual binding properties of the brain. Areas in the human lateral occipito-temporal, prefrontal and posterior parietal cortices have been associated with sensory multimodal processing. Even though this, rather patchy, organization of brain regions gives us a glimpse of the perceptual convergence, the articulation of the flow of information from modality-related to the more parallel cognitive processing systems remains elusive. Using a method called Stepwise Functional Connectivity analysis, the present study analyzes the functional connectome and transitions from primary sensory cortices to higher-order brain systems. We identify the large-scale multimodal integration network and essential connectivity axes for perceptual integration in the human brain. PMID:22855814

  4. Is Spreading Depolarization Characterized by an Abrupt, Massive Release of Gibbs Free Energy from the Human Brain Cortex?

    Science.gov (United States)

    Dreier, Jens P.; Isele, Thomas; Reiffurth, Clemens; Offenhauser, Nikolas; Kirov, Sergei A.; Dahlem, Markus A.; Herreras, Oscar

    2012-01-01

    In the evolution of the cerebral cortex, the sophisticated organization in a steady state far away from thermodynamic equilibrium has produced the side effect of two fundamental pathological network events: ictal epileptic activity and spreading depolarization. Ictal epileptic activity describes the partial disruption, and spreading depolarization describes the near-complete disruption of the physiological double Gibbs–Donnan steady state. The occurrence of ictal epileptic activity in patients has been known for decades. Recently, unequivocal electrophysiological evidence has been found in patients that spreading depolarizations occur abundantly in stroke and brain trauma. The authors propose that the ion changes can be taken to estimate relative changes in Gibbs free energy from state to state. The calculations suggest that in transitions from the physiological state to ictal epileptic activity to spreading depolarization to death, the cortex releases Gibbs free energy in a stepwise fashion. Spreading depolarization thus appears as a twilight state close to death. Consistently, electrocorticographic recordings in the core of focal ischemia or after cardiac arrest display a smooth transition from the initial spreading depolarization component to the later ultraslow negative potential, which is assumed to reflect processes in cellular death. PMID:22829393

  5. Induction and requirement of gene expression in the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory avoidance memory

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2011-01-01

    Full Text Available Abstract Background Memory consolidation is a process to stabilize short-term memory, generating long-term memory. A critical biochemical feature of memory consolidation is a requirement for gene expression. Previous studies have shown that fear memories are consolidated through the activation of gene expression in the amygdala and hippocampus, indicating essential roles of these brain regions in memory formation. However, it is still poorly understood whether gene expression in brain regions other than the amygdala/hippocampus is required for the consolidation of fear memory; however, several brain regions are known to play modulatory roles in fear memory formation. Results To further understand the mechanisms underlying the formation of fear memory, we first identified brain regions where gene expression is activated after learning inhibitory avoidance (IA by analyzing the expression of the immediately early genes c-fos and Arc as markers. Similarly with previous findings, the induction of c-fos and Arc expression was observed in the amygdala and hippocampus. Interestingly, we also observed the induction of c-fos and Arc expression in the medial prefrontal cortex (mPFC: prelimbic (PL and infralimbic (IL regions and Arc expression in the anterior cingulate cortex (ACC. We next examined the roles of these brain regions in the consolidation of IA memory. Consistent with previous findings, inhibiting protein synthesis in the hippocampus blocked the consolidation of IA memory. More importantly, inhibition in the mPFC or ACC also blocked the formation of IA memory. Conclusion Our observations indicated that the formation of IA memory requires gene expression in the ACC and mPFC as well as in the amygdala and hippocampus, suggesting essential roles of the ACC and mPFC in IA memory formation.

  6. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons

    OpenAIRE

    Rodrigo eSiqueira Kazu; Jose eMaldonado; Bruno eMota; Paul eManger; Suzana eHerculano-Houzel

    2014-01-01

    Quantitative analysis of the cellular composition of rodent, primate, insectivore, and afrotherian brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of artiodactyls, a group within the order Cetartiodactyla, belie...

  7. Differential erbB signaling in astrocytes from the cerebral cortex and the hypothalamus of the human brain. : ErbB signaling in human astrocytes

    OpenAIRE

    Sharif, Ariane; Duhem-Tonnelle, Véronique; Allet, Cécile; Baroncini, Marc; Loyens, Anne; Kerr-Conte, Julie; Collier, Francis; Blond, Serge; Ojeda, Sergio; Junier, Marie-Pierre; Prévot, Vincent

    2009-01-01

    Studies in rodents have shown that astroglial erbB tyrosine kinase receptors are key regulatory elements in neuron-glia communication. Although both astrocytes and deregulation of erbB functions have been implicated in the pathogenesis of many common human brain disorders, erbB signaling in native human brain astrocytes has never been explored. Taking advantage of our ability to perform primary cultures from the cortex and the hypothalamus of human fetuses, we conducted a thorough analysis of...

  8. Deep brain stimulation versus motor cortex stimulation for neuropathic pain: A minireview of the literature and proposal for future research.

    Science.gov (United States)

    Honey, C Michael; Tronnier, Volker M; Honey, Christopher R

    2016-01-01

    The treatment of neuropathic pain remains a public health concern. A growing cohort of patients is plagued by medically refractory, unrelenting severe neuropathic pain that ruins their quality of life and productivity. For this group, neurosurgery can offer two different kinds of neuromodulation that may help: deep brain simulation (DBS) and motor cortex stimulation (MCS). Unfortunately, there is no consensus on how to perform these procedures, which stimulation parameters to select, how to measure success, and which patients may benefit. This brief review highlights the literature supporting each technique and attempts to provide some comparisons and contrasts between DBS and MCS for the treatment of neuropathic pain. Finally, we highlight the current unanswered questions in the field and suggest future research strategies that may advance the care of our patients with neuropathic pain.

  9. Effects of unpredictable chronic stress on behavior and brain-derived neurotrophic factor expression in CA3 subfield and dentate gyrus of the hippocampus in different aged rats

    Institute of Scientific and Technical Information of China (English)

    LI Ying; JI Yong-juan; JIANG Hong; LIU De-xiang; ZHANG Qian; FAN Shu-jian; PAN Fang

    2009-01-01

    Background Brain-derived neurotrophic factor (BDNF) is a stress-responsive intercellular messenger modifying hypothalamic-pituitary-adrenal (HPA) axis activity. The interaction between stress and age in BDNF expression is currently not fully understood. This study was conducted to observe unpredictable stress effect on behavior and BDNF expression in CA3 subfield (CA3) and dentate gyrus of hippocampus in different aged rats. Methods Forty-eight Wistar rats of two different ages (2 months and 15 months) were randomly assigned to six groups: two control groups and four stress groups. The rats in the stress group received three weeks of unpredictable mild stress. The depression state and the stress level of the animals were determined by sucrose preference test and observation of exploratory behavior in an open field (OF) test. The expressions of BDNF in CA3 and dentate gyrus of the hippocampus were measured using immunohistochemistry. Results Age and stress had different effects on the behavior of different aged animals (age: F=6.173, P <0.05, stress: F=6.056, P <0.05). Stress was the main factor affecting sucrose preference (F=123.608, P <0.05). Decreased sucrose preference and suppressed behavior emerged directly following stress, lasting to at least the eighth day after stress in young animals (P <0.05). The older stress rats showed a lower sucrose preference than young stress rats (P <0.05). Older control rats behaved differently from the younger control animals in the OF test, spending more time in the central square (P <0.05), exhibiting fewer vertical movements (P <0.05) and less grooming (P <0.05). Following exposure to stress, older-aged rats showed no obvious changes in vertical movement and grooming. This indicates that aged rats were in an unexcited state before the stress period, and responded less to stressful stimuli than younger rats. There was significantly lower BDNF expression in the CA3 and dentate gyrus regions of the hippocampus following stress

  10. Effect of propofol pretreatment on apoptosis in rat brain cortex after focal cerebral ischemia and reperfusion

    Institute of Scientific and Technical Information of China (English)

    Haiyan Xu; Chengwei Zhang; Chunxiao Zhang

    2011-01-01

    The present study aimed to observe cortical expression of Bcl-2 and Bax, cysteine-dependent aspartate directed proteases-3 activity and apoptotic cell death in a rat model of middle cerebral artery occlusion pretreated with propofol. Results showed that, propofol pretreatment significantly reduced oxidative stress levels and attenuated neuronal apoptosis in the cortex of rats. Propofol pretreatment upregulated Bcl-2 expression, and downregulated Bax expression and cysteine-dependent aspartate directed proteases-3 activity. These findings indicate that propofol pretreatment inhibits cell apoptosis during focal cerebral ischemia/reperfusion injury. This neuroprotective effect is most likely achieved through the Bcl-2/Bax/cysteine-dependent aspartate directed proteases-3 pathway.

  11. Brain region-specificity of palmitic acid-induced abnormalities associated with Alzheimer's disease

    OpenAIRE

    Melrose Joseph; Balu Deebika; Patil Sachin; Chan Christina

    2008-01-01

    Abstract Background Alzheimer's disease (AD) is a progressive, neurodegenerative disease mostly affecting the basal forebrain, cortex and hippocampus whereas the cerebellum is relatively spared. The reason behind this region-specific brain damage in AD is not well understood. Here, we report our data suggesting "differential free fatty acid metabolism in the different brain areas" as a potentially important factor in causing the region-specific damage observed in AD brain. Findings The astrog...

  12. Effect of chronic aluminum exposure on the levels of conjugated dienes and enzymatic antioxidants in hippocampus and whole brain of rat

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.; Shukla, G.S. [Industrial Toxicology Research Centre, Lucknow (India)

    1995-11-01

    The reported association between elevated tissue levels of aluminum (Al) and certain human neurological disorders have evoked increasing attention on the neurotoxic effects of aluminum. High levels of Al have been reported in hippocampal neurons comprising neurofibrillary tangles in senile dementia of Alzheimer`s type, amyotropic lateral sclerosis and Parkinsonian dementia of Guam. Aluminum is considered to be the causal factor for a high incidence of dialysis encephalopathy. It has been shown that the incidence of Alzheimer`s disease was higher in places with a high Al content in drinking water compared to low level areas. Varied uses of Al in pharmaceutical preparations, foods, water purification and many house-hold items have increased the risk of its exposure to general population. The exposure may be as high as 500 mg/kg/day in children with uremia who are treated with Al containing phosphate binding gels. Aluminum ingestion in humans and experimental animals have been reported to produce behavioural dysfunctions. The mechanism of al neurotoxicity is not understood at present. Attempts made in this direction have reported its interaction with blood-brain barrier function, decreased membrane fluidity, glutathione depletion and increased brain lipid peroxidation. These studies indicate the possibility that oxidative stress may be one of the possible mechanisms of Al-induced neurotoxicity. Since Al has been reported to be in high concentrations in hippocampal neurons in certain neurological diseases and there is wealth of evidence implicating hippocampal impairment and memory dysfunction, we attempted to investigate the effect of chronic Al intoxication on the status of enzymatic antioxidants and the extent of peroxidative damage in hippocampus and whole brain of rat. 16 refs., 4 figs., 1 tab.

  13. Entorhinal cortex and consolidated memory.

    Science.gov (United States)

    Takehara-Nishiuchi, Kaori

    2014-07-01

    The entorhinal cortex is thought to support rapid encoding of new associations by serving as an interface between the hippocampus and neocortical regions. Although the entorhinal-hippocampal interaction is undoubtedly essential for initial memory acquisition, the entorhinal cortex contributes to memory retrieval even after the hippocampus is no longer necessary. This suggests that during memory consolidation additional synaptic reinforcement may take place within the cortical network, which may change the connectivity of entorhinal cortex with cortical regions other than the hippocampus. Here, I outline behavioral and physiological findings which collectively suggest that memory consolidation involves the gradual strengthening of connection between the entorhinal cortex and the medial prefrontal/anterior cingulate cortex (mPFC/ACC), a region that may permanently store the learned association. This newly formed connection allows for close interaction between the entorhinal cortex and the mPFC/ACC, through which the mPFC/ACC gains access to neocortical regions that store the content of memory. Thus, the entorhinal cortex may serve as a gatekeeper of cortical memory network by selectively interacting either with the hippocampus or mPFC/ACC depending on the age of memory. This model provides a new framework for a modification of cortical memory network during systems consolidation, thereby adding a fresh dimension to future studies on its biological mechanism.

  14. Issues in Localization of brain function: The case of lateralized frontal cortex in cognition, emotion, and psychopathology

    Directory of Open Access Journals (Sweden)

    Gregory A. Miller

    2013-01-01

    Full Text Available The appeal of simple, sweeping portraits of large-scale brain mechanisms relevant to psychological phenomena competes with a rich, complex research base. As a prominent example, two views of frontal brain organization have emphasized dichotomous lateralization as a function of either emotional valence (positive/negative or approach/avoidance motivation. Compelling findings support each. The literature has struggled to choose between them for three decades, without success. Both views are proving untenable as comprehensive models. Recent evidence indicates that positive valence and approach motivation are associated with different areas in the left hemisphere. Evidence of other frontal lateralizations, involving distinctions among dimensions of depression and anxiety, make a dichotomous view even more problematic. Hemodynamic and electromagnetic neuroimaging studies suggest considerable functional differentiation, in specialization and activation, of subregions of frontal cortex, including their connectivity to each other and to other regions. Such findings contribute to a more nuanced understanding of functional localization that accommodates aspects of multiple theoretical perspectives.

  15. Age-related differences in functional nodes of the brain cortex - a high model order group ICA study

    Directory of Open Access Journals (Sweden)

    Harri Littow

    2010-08-01

    Full Text Available Functional MRI measured with blood oxygen dependent (BOLD contrast in the absence of intermittent tasks reflects spontaneous activity of so called resting state networks (RSN of the brain. Group level independent component analysis (ICA of BOLD data can separate the human brain cortex into 42 independent RSNs. In this study we evaluated age related effects from primary motor and sensory, and, higher level control RSNs. 168 healthy subjects were scanned and divided into three groups: 55 adolescents (ADO, 13.2 ± 2.4 yrs, 59 young adults (YA, 22.2 ± 0.6yrs , and 54 older adults (OA, 42.7 ± 0.5 yrs, all with normal IQ. High model order group probabilistic ICA components (70 were calculated and dual regression analysis was used to compare 21 RSN’s spatial differences between groups. The power spectra were derived from individual ICA mixing matrix time series of the group analyses for frequency domain analysis. We show that primary sensory and motor networks tend to alter more in younger age groups, whereas associative and higher level cognitive networks consolidate and re-arrange until older adulthood. The change has a common trend: both spatial extent and the low frequency power of the RSN’s reduce with increasing age. We interpret these result as a sign of normal pruning via focusing of activity to less distributed local hubs.

  16. Does noninvasive brain stimulation applied over the dorsolateral prefrontal cortex nonspecifically influence mood and emotional processing in healthy individuals?

    Directory of Open Access Journals (Sweden)

    Marine eMondino

    2015-10-01

    Full Text Available The dorsolateral prefrontal cortex (DLPFC is often targeted with noninvasive brain stimulation (NIBS to modulate in vivo human behaviors. This brain region plays a key role in mood, emotional processing and attentional processing of emotional information. In this article, we ask the question: when we target the DLPFC with NIBS, do we modulate these processes altogether, nonspecifically, or can we modulate them selectively? We thus review articles investigating the effects of NIBS applied over the DLPFC on mood, emotional processing and attentional processing of emotional stimuli in healthy subjects. We discuss that NIBS over the DLPFC can modulate emotional processing and attentional processing of emotional stimuli, without specifically influencing mood. Indeed, there seems to be a lack of evidence that NIBS over the DLPFC influence on mood in healthy individuals. Finally, there appears to be a hemispheric lateralization: when applied over the left DLPFC, NIBS improved processing of positive stimuli and reduced selective attention for stimuli expressing anger, whereas when applied over the right DLPFC, it increased selective attention for stimuli expressing anger.

  17. Distribution of vesicular glutamate transporters in the human brain

    Directory of Open Access Journals (Sweden)

    Erika eVigneault

    2015-03-01

    Full Text Available Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3 are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains.

  18. Experimental Traumatic Brain Injury Results in Long-Term Recovery of Functional Responsiveness in Sensory Cortex but Persisting Structural Changes and Sensorimotor, Cognitive, and Emotional Deficits.

    Science.gov (United States)

    Johnstone, Victoria P A; Wright, David K; Wong, Kendrew; O'Brien, Terence J; Rajan, Ramesh; Shultz, Sandy R

    2015-09-01

    Traumatic brain injury (TBI) is a leading cause of death worldwide. In recent studies, we have shown that experimental TBI caused an immediate (24-h post) suppression of neuronal processing, especially in supragranular cortical layers. We now examine the long-term effects of experimental TBI on the sensory cortex and how these changes may contribute to a range of TBI morbidities. Adult male Sprague-Dawley rats received either a moderate lateral fluid percussion injury (n=14) or a sham surgery (n=12) and 12 weeks of recovery before behavioral assessment, magnetic resonance imaging, and electrophysiological recordings from the barrel cortex. TBI rats demonstrated sensorimotor deficits, cognitive impairments, and anxiety-like behavior, and this was associated with significant atrophy of the barrel cortex and other brain structures. Extracellular recordings from ipsilateral barrel cortex revealed normal neuronal responsiveness and diffusion tensor MRI showed increased fractional anisotropy, axial diffusivity, and tract density within this region. These findings suggest that long-term recovery of neuronal responsiveness is owing to structural reorganization within this region. Therefore, it is likely that long-term structural and functional changes within sensory cortex post-TBI may allow for recovery of neuronal responsiveness, but that this recovery does not remediate all behavioral deficits. PMID:25739059

  19. Effects of white spirits on rat brain 5-HT receptor functions and synaptic remodeling

    DEFF Research Database (Denmark)

    Lam, Henrik Rye; Plenge, P.; Jørgensen, O.S.

    2001-01-01

    applied as indices for synaptic remodeling in forebrain, hippocampus, and entorhinal cortex. Male Wistar rats were exposed to 0, 400, or 800 ppm of aromatic (20 vol.% aromatic hydrocarbons) or dearomatized white spirit (catalytically hydrogenated white spirit) in the inhaled air for 6 h/day, 7 days...... ratio in forebrain, whereas NCAM increased in hippocampus and the NCAM/SNAP-25 ratio decreased in entorhinal cortex. Dearomatized white spirit did not affect NCAM, SNAP-25, or NCAM/SNAP-25 ratio in any brain region. The affected 5-HT receptor expression and synaptic plasticity marker proteins indicate...

  20. Characterization and distribution of [125I]epidepride binding to dopamine D2 receptors in basal ganglia and cortex of human brain

    International Nuclear Information System (INIS)

    The distribution and pharmacology of the binding of 125I-epidepride, a substituted benzamide with high affinity and selectivity for dopamine (DA) D2 receptors in rat brain is described in human brain. Saturation analysis of the binding of 125I-epidepride to membranes derived from striatum and regions of cortex demonstrated similar Kd values (34 and 28-33 pM, respectively) but differing maximum density of binding site values (152 and 3-8 fmol/mg of protein, respectively). The pharmacological profile of binding in cortex was also similar to striatum (epidepride greater than spiperone greater than butaclamol = flupenthixol greater than clozapine) except that an additional low-affinity site, blocked by the alpha-2 adrenergic antagonist idazoxan, was present in cortex. Quantification by autoradiography also demonstrated the greatest binding in the basal ganglia, with the striatum exhibiting greater binding than the pallidal complex or midbrain regions. For the pallidum, binding in the external segment was higher than the internal segment. Within the midbrain the binding of 125I-epidepride correlated well with the known distribution of DA-containing cell bodies, with the substantia nigra (pars compacta and pars lateralis) and ventral tegmental area (A10) higher than area A8 and central gray. Binding in frontal and parietal cortex was highest in the internal layers (layers V and VI). Temporal cortex showed a 2-fold higher density of binding than other cortical regions and a trilaminar pattern; binding was greater in the external (layers I and II) and internal layers than in the middle layers (III and IV). This pattern changed in the parahippocampal complex. Within the lateral occipitotemporal cortex, binding was densest in layers I to III and very low in layers IV to VI, but binding was almost nonexistent in the adjacent entorhinal cortex

  1. Characterization and distribution of (125I)epidepride binding to dopamine D2 receptors in basal ganglia and cortex of human brain

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, J.N.; Janowsky, A.; Neve, K.A. (Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia (USA))

    1991-06-01

    The distribution and pharmacology of the binding of {sup 125}I-epidepride, a substituted benzamide with high affinity and selectivity for dopamine (DA) D2 receptors in rat brain is described in human brain. Saturation analysis of the binding of {sup 125}I-epidepride to membranes derived from striatum and regions of cortex demonstrated similar Kd values (34 and 28-33 pM, respectively) but differing maximum density of binding site values (152 and 3-8 fmol/mg of protein, respectively). The pharmacological profile of binding in cortex was also similar to striatum (epidepride greater than spiperone greater than butaclamol = flupenthixol greater than clozapine) except that an additional low-affinity site, blocked by the alpha-2 adrenergic antagonist idazoxan, was present in cortex. Quantification by autoradiography also demonstrated the greatest binding in the basal ganglia, with the striatum exhibiting greater binding than the pallidal complex or midbrain regions. For the pallidum, binding in the external segment was higher than the internal segment. Within the midbrain the binding of {sup 125}I-epidepride correlated well with the known distribution of DA-containing cell bodies, with the substantia nigra (pars compacta and pars lateralis) and ventral tegmental area (A10) higher than area A8 and central gray. Binding in frontal and parietal cortex was highest in the internal layers (layers V and VI). Temporal cortex showed a 2-fold higher density of binding than other cortical regions and a trilaminar pattern; binding was greater in the external (layers I and II) and internal layers than in the middle layers (III and IV). This pattern changed in the parahippocampal complex. Within the lateral occipitotemporal cortex, binding was densest in layers I to III and very low in layers IV to VI, but binding was almost nonexistent in the adjacent entorhinal cortex.

  2. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona [Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radiodiagnosis, Lucknow, UP (India); Husain, Nuzhat; Srivastava, Savita [CSM Medical University, Department of Pathology, Lucknow (India); Rathore, Ram K.S.; Sarma, Manoj K. [Indian Institute of Technology, Department of Mathematics and Statistics, Kanpur (India); Malik, Gyanendra K. [CSM Medical University, Department of Pediatrics, Lucknow (India); Das, Vinita [CSM Medical University, Department of Obstetrics and Gynecology, Lucknow (India); Pradhan, Mandakini [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Medical Genetics, Lucknow (India); Pandey, Chandra M. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Biostatistics, Lucknow (India); Narayana, Ponnada A. [University of Texas Medical School at Houston, Department of Diagnostic and Interventional Imaging, Houston, TX (United States)

    2009-09-15

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA {<=} 28 weeks for frontal cortical region and GA{<=}22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  3. Calretinin and parvalbumin immunoreactive interneurons in the retrosplenial cortex of the rat brain: Qualitative and quantitative analyses.

    Science.gov (United States)

    Salaj, Martin; Druga, Rastislav; Cerman, Jiří; Kubová, Hana; Barinka, Filip

    2015-11-19

    The retrosplenial cortex (RSC) is a mesocortical region broadly involved with memory and navigation. It shares many characteristics with the perirhinal cortex (PRC), both of which appear to be significantly involved in the spreading of epileptic activity. We hypothesized that RSC possesses an interneuronal composition similar to that of PRC. To prove the hypothesis we studied the general pattern of calretinin (CR) and parvalbumin (PV) immunoreactivity in the RSC of the rat brain, its optical density as well as the morphological features and density of CR- and PV-immunoreactive (CR+ and PV+) interneurons. We also analyzed the overall neuronal density on Nissl-stained sections in RSC. Finally, we compared our results with our earlier analysis of PRC (Barinka et al., 2012). Compared to PRC, RSC was observed to have a higher intensity of PV staining and lower intensity of CR staining of neuropil. Vertically-oriented bipolar neurons were the most common morphological type among CR+ neurons. The staining pattern did not allow for a similarly detailed analysis of somatodendritic morphology of PV+ neurons. RSC possessed lower absolute (i.e., neurons/mm(3)) and relative (i.e., percentage of the overall neuronal population) densities of CR+ neurons and similar absolute and lower relative densities of PV+ neurons relative to PRC. CR: PV neuronal ratio in RSC (1:2 in area 29 and 1:2.2 in area 30) differed from PRC (1:1.2 in area 35 and 1:1.7 in area 36). In conclusion, RSC, although similar in many aspects to PRC, differs strikingly in the interneuronal composition relative to PRC.

  4. Brain cells in the avian 'prefrontal cortex' code for features of slot-machine-like gambling.

    Directory of Open Access Journals (Sweden)

    Damian Scarf

    Full Text Available Slot machines are the most common and addictive form of gambling. In the current study, we recorded from single neurons in the 'prefrontal cortex' of pigeons while they played a slot-machine-like task. We identified four categories of neurons that coded for different aspects of our slot-machine-like task. Reward-Proximity neurons showed a linear increase in activity as the opportunity for a reward drew near. I-Won neurons fired only when the fourth stimulus of a winning (four-of-a-kind combination was displayed. I-Lost neurons changed their firing rate at the presentation of the first nonidentical stimulus, that is, when it was apparent that no reward was forthcoming. Finally, Near-Miss neurons also changed their activity the moment it was recognized that a reward was no longer available, but more importantly, the activity level was related to whether the trial contained one, two, or three identical stimuli prior to the display of the nonidentical stimulus. These findings not only add to recent neurophysiological research employing simulated gambling paradigms, but also add to research addressing the functional correspondence between the avian NCL and primate PFC.

  5. Acute administration of l-tyrosine alters energetic metabolism of hippocampus and striatum of infant rats.

    Science.gov (United States)

    Ramos, Andrea C; Ferreira, Gabriela K; Carvalho-Silva, Milena; Furlanetto, Camila B; Gonçalves, Cinara L; Ferreira, Gustavo C; Schuck, Patrícia F; Streck, Emilio L

    2013-08-01

    Tyrosinemia type II is an inborn error of metabolism caused by mutations in the gene that encodes tyrosine aminotransferase, which leads to increased blood tyrosine levels. Considering that tyrosine levels are highly elevated in fluids of patients with tyrosinemia type II, and that previous studies demonstrated significant alterations in brain energy metabolism of young rats caused by l-tyrosine, the present study aimed to evaluate the effect of acute administration of l-tyrosine on the activities of citrate synthase, malate dehydrogenase, succinate dehydrogenase, and mitochondrial respiratory chain complexes I, II, II-III, and IV in posterior cortex, hippocampus, and striatum of infant rats. Wistar rats (10 days old) were killed 1h after a single intraperitoneal injection of tyrosine (500 mg/kg) or saline. The activities of energy metabolism enzymes were evaluated in brain of rats. Our results demonstrated that acute administration of l-tyrosine inhibited the activity of citrate synthase activity in striatum and increased the activities of malate dehydrogenase and succinate dehydrogenase in hippocampus. On the other hand, these enzymes were not affected in posterior cortex. The activities of complex I and complex II were inhibited by acute administration of l-tyrosine in striatum. On the other hand, the acute administration of l-tyrosine increased the activity of activity of complex II-III in hippocampus. Complex IV was not affected by acute administration of l-tyrosine in infant rats. Our results indicate an alteration in the energy metabolism in hippocampus and striatum of infant rats after acute administration of l-tyrosine. If the same effects occur in the brain of the patients, it is possible that energy metabolism impairment may be contribute to possible damage in memory and cognitive processes in patients with tyrosinemia type II.

  6. Apelin-13 as a novel target for intervention in secondary injury after traumatic brain injury.

    Science.gov (United States)

    Bao, Hai-Jun; Qiu, Hai-Yang; Kuai, Jin-Xia; Song, Cheng-Jie; Wang, Shao-Xian; Wang, Chao-Qun; Peng, Hua-Bin; Han, Wen-Can; Wu, Yong-Ping

    2016-07-01

    The adipocytokine, apelin-13, is an abundantly expressed peptide in the nervous system. Apelin-13 protects the brain against ischemia/reperfusion injury and attenuates traumatic brain injury by suppressing autophagy. However, secondary apelin-13 effects on traumatic brain injury-induced neural cell death and blood-brain barrier integrity are still not clear. Here, we found that apelin-13 significantly decreases cerebral water content, mitigates blood-brain barrier destruction, reduces aquaporin-4 expression, diminishes caspase-3 and Bax expression in the cerebral cortex and hippocampus, and reduces apoptosis. These results show that apelin-13 attenuates secondary injury after traumatic brain injury and exerts a neuroprotective effect. PMID:27630697

  7. Differential production of reactive oxygen species in distinct brain regions of hypoglycemic mice.

    Science.gov (United States)

    Amador-Alvarado, Leticia; Montiel, Teresa; Massieu, Lourdes

    2014-09-01

    Hypoglycemia is a serious complication of insulin therapy in patients suffering from type 1 Diabetes Mellitus. Severe hypoglycemia leading to coma (isoelectricity) induces massive neuronal death in vulnerable brain regions such as the hippocampus, the striatum and the cerebral cortex. It has been suggested that the production of reactive oxygen species (ROS) and oxidative stress is involved in hypoglycemic brain damage, and that ROS generation is stimulated by glucose reintroduction (GR) after the hypoglycemic coma. However, the distribution of ROS in discrete brain regions has not been studied in detail. Using the oxidation sensitive marker dihydroethidium (DHE) we have investigated the distribution of ROS in different regions of the mouse brain during prolonged severe hypoglycemia without isoelectricity, as well as the effect of GR on ROS levels. Results show that ROS generation increases in the hippocampus, the cerebral cortex and the striatum after prolonged severe hypoglycemia before the coma. The hippocampus showed the largest increases in ROS levels. GR further stimulated ROS production in the hippocampus and the striatum while in the cerebral cortex, only the somatosensory and parietal areas were significantly affected by GR. Results suggest that ROS are differentially produced during the hypoglycemic insult and that a different response to GR is present among distinct brain regions.

  8. Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills.

    Science.gov (United States)

    Bolognini, Nadia; Fregni, Felipe; Casati, Carlotta; Olgiati, Elena; Vallar, Giuseppe

    2010-08-19

    Recent evidence suggests that behavioural gains induced by behavioural training are maximized when combined with techniques of cortical neuromodulation, such as transcranial Direct Current Stimulation (tDCS). Here we address the validity of this appealing approach by investigating the effect of coupling a multisensory visual field exploration training with tDCS of the posterior parietal cortex (PPC). The multisensory visual field exploration training consisted in the practice of visual search through the systematic audio-visual stimulation of the visual field. Neurologically unimpaired participants performed a bimodal exploration training for 30 min, while simultaneously receiving anodal-excitatory PPC tDCS or sham tDCS. In two different experiments, the left and the right hemisphere were stimulated. Outcome measures included visual exploration speed at different time intervals during the training, and the post-training effects on tests assessing visual scanning and visuo-spatial orienting. Results show that PPC tDCS applied to the right, but not to the left, hemisphere increases the training-induced behavioural improvement of visual exploration, as compared to sham tDCS. In addition, right PPC tDCS brings about an improvement of covert visual orienting, in a task different from the visual search practice. In an additional experiment, we confirm that right parietal tDCS by itself, even without the associated training, can lead to enhancement of visual search. Overall, anodal PPC tDCS is a promising technique to enhance visuo-spatial abilities, when combined to a visual field exploration training task. PMID:20599813

  9. Brain metabolite abnormalities in ventromedial prefrontal cortex are related to duration of hypercortisolism and anxiety in patients with Cushing's syndrome.

    Science.gov (United States)

    Crespo, Iris; Santos, Alicia; Gómez-Ansón, Beatriz; López-Mourelo, Olga; Pires, Patricia; Vives-Gilabert, Yolanda; Webb, Susan M; Resmini, Eugenia

    2016-09-01

    Chronic exposure to excessive glucocorticoid (GC) concentration in Cushing's syndrome (CS) can affect the brain structurally and functionally; ventromedial prefrontal cortex (vmPFC) is rich in GC receptors and therefore particularly vulnerable to excessive GC concentration. Proton magnetic resonance spectroscopy ((1)H-MRS) is a sensitive, non-invasive imaging technique that provides information on brain metabolites in vivo. Our aim was to investigate metabolite concentrations in vmPFC of CS patients and their relationship with clinical outcome. Twenty-two right-handed CS patients (7 active/15 in remission, 19 females, 41.6 ± 12.3 years) and 22 right-handed healthy controls (14 females, 41.7 ± 11 years) underwent brain MRI and (1)H-MRS exams at 3 Tesla. Concentrations of glutamate (Glu), glutamate + glutamine (Glx), creatine (Cr), N-Acetyl-aspartate (NAA), N-Acetyl-aspartate + N-acetylaspartylglutamate (total NAA), choline-containing compounds (Cho) and myoinositol (MI) were determined. Moreover, anxiety and depressive symptoms were evaluated with the State-Trait Anxiety Inventory (STAI) and the Beck Depression Inventory-II (BDI-II) test, respectively. CS patients had lower concentrations of glutamate and total NAA in the vmPFC than healthy controls (8.6 ± 1.2 vs. 9.3 ± 0.7 mmol/L, and 6.4 ± 0.8 vs. 6.8 ± 0.4 mmol/L, respectively; p < 0.05). Duration of hypercortisolism was negatively correlated with total NAA (r = -0.488, p < 0.05). Moreover, the concentration of total NAA was negatively correlated with anxiety state (r = -0.359, p < 0.05). Brain metabolites are abnormal in the vmPFC of patients with CS. Decreased total NAA and glutamate concentrations indicate neuronal dysfunction that appear to be related with duration of hypercortisolism and anxiety.

  10. Brain metabolite abnormalities in ventromedial prefrontal cortex are related to duration of hypercortisolism and anxiety in patients with Cushing's syndrome.

    Science.gov (United States)

    Crespo, Iris; Santos, Alicia; Gómez-Ansón, Beatriz; López-Mourelo, Olga; Pires, Patricia; Vives-Gilabert, Yolanda; Webb, Susan M; Resmini, Eugenia

    2016-09-01

    Chronic exposure to excessive glucocorticoid (GC) concentration in Cushing's syndrome (CS) can affect the brain structurally and functionally; ventromedial prefrontal cortex (vmPFC) is rich in GC receptors and therefore particularly vulnerable to excessive GC concentration. Proton magnetic resonance spectroscopy ((1)H-MRS) is a sensitive, non-invasive imaging technique that provides information on brain metabolites in vivo. Our aim was to investigate metabolite concentrations in vmPFC of CS patients and their relationship with clinical outcome. Twenty-two right-handed CS patients (7 active/15 in remission, 19 females, 41.6 ± 12.3 years) and 22 right-handed healthy controls (14 females, 41.7 ± 11 years) underwent brain MRI and (1)H-MRS exams at 3 Tesla. Concentrations of glutamate (Glu), glutamate + glutamine (Glx), creatine (Cr), N-Acetyl-aspartate (NAA), N-Acetyl-aspartate + N-acetylaspartylglutamate (total NAA), choline-containing compounds (Cho) and myoinositol (MI) were determined. Moreover, anxiety and depressive symptoms were evaluated with the State-Trait Anxiety Inventory (STAI) and the Beck Depression Inventory-II (BDI-II) test, respectively. CS patients had lower concentrations of glutamate and total NAA in the vmPFC than healthy controls (8.6 ± 1.2 vs. 9.3 ± 0.7 mmol/L, and 6.4 ± 0.8 vs. 6.8 ± 0.4 mmol/L, respectively; p < 0.05). Duration of hypercortisolism was negatively correlated with total NAA (r = -0.488, p < 0.05). Moreover, the concentration of total NAA was negatively correlated with anxiety state (r = -0.359, p < 0.05). Brain metabolites are abnormal in the vmPFC of patients with CS. Decreased total NAA and glutamate concentrations indicate neuronal dysfunction that appear to be related with duration of hypercortisolism and anxiety. PMID:27103571

  11. Brain metabolites in the hippocampus-amygdala region and cerebellum in autism: an {sup 1}H-MR spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, H.; Harada, M.; Hisaoka, S.; Nishitani, H. [Dept. of Radiology, Univ. of Tokushima, Tokushima City (Japan); Mori, K. [Dept. of Pediatrics, Univ. of Tokushima (Japan)

    1999-07-01

    Histological abnormalities of the brain in autism have been investigated extensively. We studied metabolites in the hippocampusamygdala (HA) region and cerebellum. We examined the right HA region and left cerebellar hemisphere of 27 autistic patients 2-18 years old, 21 boys and 6 girls and 10 normal children 6-14 years old, 4 boys and 6 girls, using the STEAM sequence. This sequence was used to minimise the influence of relaxation times. The N-acetyl aspartate (NAA) concentration was significantly lower (P=0.042) in autistic patients than in normal children (9.37 and 10.95 mM, respectively). There was no significant difference in other metabolites. The correlation coefficient (r value) of NAA between the HA region and cerebellum was 0.616. The decreased NAA concentration may be due to neuronal hypofunction or immature neurons. The NAA concentration in the HA region and cerebellum may be related, because of neuronal circuits or networks. (orig.)

  12. Brain metabolites in the hippocampus-amygdala region and cerebellum in autism: an 1H-MR spectroscopy study

    International Nuclear Information System (INIS)

    Histological abnormalities of the brain in autism have been investigated extensively. We studied metabolites in the hippocampusamygdala (HA) region and cerebellum. We examined the right HA region and left cerebellar hemisphere of 27 autistic patients 2-18 years old, 21 boys and 6 girls and 10 normal children 6-14 years old, 4 boys and 6 girls, using the STEAM sequence. This sequence was used to minimise the influence of relaxation times. The N-acetyl aspartate (NAA) concentration was significantly lower (P=0.042) in autistic patients than in normal children (9.37 and 10.95 mM, respectively). There was no significant difference in other metabolites. The correlation coefficient (r value) of NAA between the HA region and cerebellum was 0.616. The decreased NAA concentration may be due to neuronal hypofunction or immature neurons. The NAA concentration in the HA region and cerebellum may be related, because of neuronal circuits or networks. (orig.)

  13. Role of Nitric Oxide in Radioinduced Effects in Developing Brain Cortex

    International Nuclear Information System (INIS)

    Nowadays, prenatal exposure is a very important topic in radiopathology.Unfortunately, pregnant women have been sometimes exposed or have to expose to ionising radiation, for example, during a medical treatment.There are lots of studies made by the International Commission of Radiation Protection (ICRP) about the effects of ionising radiation and the consequences that are suffered by the exposed foetus.Hence, it has been argued that developing mammalian brain is substantially more susceptible to teratogenic insult than most other embryonic and foetal structures.Presumably, this reflects its architectural complexity, its long developmental period, the vulnerability of the undifferentiated neural cell and the inability of the brain to replace lost neurones.Furthermore, there is abundant information on the biological effects caused by prenatal exposure of mammals to ionising radiation.Only two conspicuous effects on brain growth and development have emerged thus far in the study of atomic bomb survivors exposed prenatally in Hiroshima and Nagasaki.These are some cases of severe mental retardation and some of small head size without apparent metal retardation. Additionally, groups within the survivors have shown significantly reduced IQ scores.This increase would be dose-related and, if the shift of IQ had no clear dose threshold, might, in turn, show no threshold.Besides, it has been studied that ionising radiation implies molecular ionisation and excitation in the biological systems.When radiation has a high linear transfer energy (LET) damage may be produce trough energy absorbed directly by the target molecule (direct mechanism).However, when radiation has a low LET (like γ and X radiation), and without forgetting that biological systems are basically aqueous, damage may be produce trough generation of species highly reactive (like free radicals and reactive oxygen species - ROS) by molecules of water which has adsorbed energy radiation (indirect mechanism

  14. High membrane protein oxidation in the human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Matthias Granold

    2015-04-01

    Full Text Available Oxidative stress is thought to be one of the main mediators of neuronal damage in human neurodegenerative disease. Still, the dissection of causal relationships has turned out to be remarkably difficult. Here, we have analyzed global protein oxidation in terms of carbonylation of membrane proteins and cytoplasmic proteins in three different mammalian species: aged human cortex and cerebellum from patients with or without Alzheimer's disease, mouse cortex and cerebellum from young and old animals, and adult rat hippocampus and cortex subjected or not subjected to cerebral ischemia. Most tissues showed relatively similar levels of protein oxidation. However, human cortex was affected by severe membrane protein oxidation, while exhibiting lower than average cytoplasmic protein oxidation. In contrast, ex vivo autooxidation of murine cortical tissue primarily induced aqueous protein oxidation, while in vivo biological aging or cerebral ischemia had no major effect on brain protein oxidation. The unusually high levels of membrane protein oxidation in the human cortex were also not predicted by lipid peroxidation, as the levels of isoprostane immunoreactivity in human samples were considerably lower than in rodent tissues. Our results indicate that the aged human cortex is under steady pressure from specific and potentially detrimental membrane protein oxidation. The pronounced difference between humans, mice and rats regarding the primary site of cortical oxidation might have contributed to the unresolved difficulties in translating into therapies the wealth of data describing successful antioxidant neuroprotection in rodents.

  15. Association between serotonin transporter genotype, brain structure and adolescent-onset major depressive disorder: a longitudinal prospective study

    OpenAIRE

    Little, K.; Olsson, C. A.; Whittle, S; Youssef, G J; Byrne, M L; J.G. Simmons; Yücel, M; Foley, D L; Allen, N. B.

    2014-01-01

    The extent to which brain structural abnormalities might serve as neurobiological endophenotypes that mediate the link between the variation in the promoter of the serotonin transporter gene (5-HTTLPR) and depression is currently unknown. We therefore investigated whether variation in hippocampus, amygdala, orbitofrontal cortex (OFC) and anterior cingulate cortex volumes at age 12 years mediated a putative association between 5-HTTLPR genotype and first onset of major depressive disorder (MDD...

  16. Enduring Consequences of Early-Life Infection on Glial and Neural Cell Genesis Within Cognitive Regions of the Brain

    OpenAIRE

    Bland, Sondra T.; Beckley, Jacob T; Young, Sarah; Tsang, Verne; Watkins, Linda R; Steven F. Maier; Staci D. Bilbo

    2009-01-01

    Systemic infection with Escherichia coli on postnatal day (P) 4 in rats results in significantly altered brain cytokine responses and behavioral changes in adulthood, but only in response to a subsequent immune challenge with lipopolysaccharide [LPS]. The basis for these changes may be long-term changes in glial cell function. We assessed glial and neural cell genesis in the hippocampus, parietal cortex (PAR), and pre-frontal cortex (PFC), in neonates just after the infection, as well as in a...

  17. Processing of visual gravitational motion in the peri-sylvian cortex: Evidence from brain-damaged patients.

    Science.gov (United States)

    Maffei, Vincenzo; Mazzarella, Elisabetta; Piras, Fabrizio; Spalletta, Gianfranco; Caltagirone, Carlo; Lacquaniti, Francesco; Daprati, Elena

    2016-05-01

    Rich behavioral evidence indicates that the brain estimates the visual direction and acceleration of gravity quite accurately, and the underlying mechanisms have begun to be unraveled. While the neuroanatomical substrates of gravity direction processing have been studied extensively in brain-damaged patients, to our knowledge no such study exists for the processing of visual gravitational motion. Here we asked 31 stroke patients to intercept a virtual ball moving along the vertical under either natural gravity or artificial reversed gravity. Twenty-seven of them also aligned a luminous bar to the vertical direction (subjective visual vertical, SVV). Using voxel-based lesion-symptom mapping as well as lesion subtraction analysis, we found that lesions mainly centered on the posterior insula are associated with greater deviations of SVV, consistent with several previous studies. Instead, lesions mainly centered on the parietal operculum decrease the ability to discriminate natural from unnatural gravitational acceleration with a timed motor response in the interception task. Both the posterior insula and the parietal operculum belong to the vestibular cortex, and presumably receive multisensory information about the gravity vector. We speculate that an internal model estimating the effects of gravity on visual objects is constructed by transforming the vestibular estimates of mechanical gravity, which are computed in the brainstem and cerebellum, into internalized estimates of virtual gravity, which are stored in the cortical vestibular network. The present lesion data suggest a specific role for the parietal operculum in detecting the mismatch between predictive signals from the internal model and the online visual signals. PMID:27007069

  18. The exposure to nicotine affects expression of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in neonate rats.

    Science.gov (United States)

    Xiaoyu, Wang

    2015-02-01

    In the current study effect of nicotine on expression of neurotrophins, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) has been studied in hippocampus and frontal cortex during development of brain in rats. Neurotrophins are factors that help in development of brain among which BDNF and NGF are very important, expressed at different stages during the developmental process. Different sedatives are reported to alter the expression of these factors. In this study, three groups of neonate rats (1-5, 5-10 and 10-15 days age) were used each having 20 rats. Ten were subjected to a dose of 66 μg of nicotine while other ten received the same amount of saline at the same time interval. Then expression of the BDNF and NGF was observed in hippocampus and frontal cortex tissue using immunoassay. Western blotting was used to observe the presence of BDNF in hippocampus as well as frontal cortex. In all groups there was a significant decrease in concentration of neurotrophic factors where nicotine was applied as compared to control. The highest expression of BDNF and NGF in hippocampus and frontal cortex was observed in 10-15 days group (G3) and in 5-10 group (G2) as compared to the control, P BDNF and it effects the development of brain in neonates that can further impair brain functions.

  19. The Piriform Cortex and Human Focal Epilepsy

    OpenAIRE

    Vaughan, David N.; Graeme D. Jackson

    2014-01-01

    It is surprising that the piriform cortex, when compared to the hippocampus, has been given relatively little significance in human epilepsy. Like the hippocampus, it has a phylogenetically preserved three-layered cortex that is vulnerable to excitotoxic injury, has broad connections to both limbic and cortical areas, and is highly epileptogenic – being critical to the kindling process. The well-known phenomenon of early olfactory auras in temporal lobe epilepsy highlights its clinical releva...

  20. Brain correlates of music-evoked emotions.

    Science.gov (United States)

    Koelsch, Stefan

    2014-03-01

    Music is a universal feature of human societies, partly owing to its power to evoke strong emotions and influence moods. During the past decade, the investigation of the neural correlates of music-evoked emotions has been invaluable for the understanding of human emotion. Functional neuroimaging studies on music and emotion show that music can modulate activity in brain structures that are known to be crucially involved in emotion, such as the amygdala, nucleus accumbens, hypothalamus, hippocampus, insula, cingulate cortex and orbitofrontal cortex. The potential of music to modulate activity in these structures has important implications for the use of music in the treatment of psychiatric and neurological disorders.

  1. Combined compared to dissociated oral and intestinal sucrose stimuli induce different brain hedonic processes

    Directory of Open Access Journals (Sweden)

    Caroline eClouard

    2014-08-01

    Full Text Available The characterization of brain networks contributing to the processing of oral and/or intestinal sugar signals in a relevant animal model might help to understand the neural mechanisms related to the control of food intake in humans and suggest potential causes for impaired eating behaviors. This study aimed at comparing the brain responses triggered by oral and/or intestinal sucrose sensing in pigs. Seven animals underwent brain single photon emission computed tomography (99mTc-HMPAO further to oral stimulation with neutral or sucrose artificial saliva paired with saline or sucrose infusion in the duodenum, the proximal part of the intestine. Oral and/or duodenal sucrose sensing induced differential cerebral blood flow (CBF changes in brain regions known to be involved in memory, reward processes and hedonic (i.e. pleasure evaluation of sensory stimuli, including the dorsal striatum, prefrontal cortex, cingulate cortex, insular cortex, hippocampus and parahippocampal cortex. Sucrose duodenal infusion only and combined sucrose stimulation induced similar activity patterns in the putamen, ventral anterior cingulate cortex and hippocampus. Some brain deactivations in the prefrontal and insular cortices were only detected in the presence of oral sucrose stimulation. Finally, activation of the right insular cortex was only induced by combined oral and duodenal sucrose stimulation, while specific activity patterns were detected in the hippocampus and parahippocampal cortex with oral sucrose dissociated from caloric load. This study sheds new light on the brain hedonic responses to sugar and has potential implications to unravel the neuropsychological mechanisms underlying food pleasure and motivation.

  2. Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain

    Directory of Open Access Journals (Sweden)

    Minchenko Dimitri

    2010-04-01

    Full Text Available Abstract Background The Rett Syndrome (RTT brain displays regional histopathology and volumetric reduction, with frontal cortex showing such abnormalities, whereas the occipital cortex is relatively less affected. Results Using microarrays and quantitative PCR, the mRNA expression profiles of these two neuroanatomical regions were compared in postmortem brain tissue from RTT patients and normal controls. A subset of genes was differentially expressed in the frontal cortex of RTT brains, some of which are known to be associated with neurological disorders (clusterin and cytochrome c oxidase subunit 1 or are involved in synaptic vesicle cycling (dynamin 1. RNAi-mediated knockdown of MeCP2 in vitro, followed by further expression analysis demonstrated that the same direction of abnormal expression was recapitulated with MeCP2 knockdown, which for cytochrome c oxidase subunit 1 was associated with a functional respiratory chain defect. Chromatin immunoprecipitation (ChIP analysis showed that MeCP2 associated with the promoter regions of some of these genes suggesting that loss of MeCP2 function may be responsible for their overexpression. Conclusions This study has shed more light on the subset of aberrantly expressed genes that result from MECP2 mutations. The mitochondrion has long been implicated in the pathogenesis of RTT, however it has not been at the forefront of RTT research interest since the discovery of MECP2 mutations. The functional consequence of the underexpression of cytochrome c oxidase subunit 1 indicates that this is an area that should be revisited.

  3. Traumatic brain injury and the effects of diazepam, diltiazem, and MK-801 on GABA-A receptor subunit expression in rat hippocampus

    Directory of Open Access Journals (Sweden)

    Meyer Rebecca C

    2010-05-01

    Full Text Available Abstract Background Excitatory amino acid release and subsequent biochemical cascades following traumatic brain injury (TBI have been well documented, especially glutamate-related excitotoxicity. The effects of TBI on the essential functions of inhibitory GABA-A receptors, however, are poorly understood. Methods We used Western blot procedures to test whether in vivo TBI in rat altered the protein expression of hippocampal GABA-A receptor subunits α1, α2, α3, α5, β3, and γ2 at 3 h, 6 h, 24 h, and 7 days post-injuy. We then used pre-injury injections of MK-801 to block calcium influx through the NMDA receptor, diltiazem to block L-type voltage-gated calcium influx, or diazepam to enhance chloride conductance, and re-examined the protein expressions of α1, α2, α3, and γ2, all of which were altered by TBI in the first study and all of which are important constituents in benzodiazepine-sensitive GABA-A receptors. Results Western blot analysis revealed no injury-induced alterations in protein expression for GABA-A receptor α2 or α5 subunits at any time point post-injury. Significant time-dependent changes in α1, α3, β3, and γ2 protein expression. The pattern of alterations to GABA-A subunits was nearly identical after diltiazem and diazepam treatment, and MK-801 normalized expression of all subunits 24 hours post-TBI. Conclusions These studies are the first to demonstrate that GABA-A receptor subunit expression is altered by TBI in vivo, and these alterations may be driven by calcium-mediated cascades in hippocampal neurons. Changes in GABA-A receptors in the hippocampus after TBI may have far-reaching consequences considering their essential importance in maintaining inhibitory balance and their extensive impact on neuronal function.

  4. Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seong-Hun; Jung, In-Soo; Han, Gi-Yeon; Kim, Nam-Hee; Kim, Hyun-Jung [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Chan-Wha, E-mail: cwkim@korea.ac.kr [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer A transgenic mouse model expressing NSE-htau23 was used. Black-Right-Pointing-Pointer 2D-gel electrophoresis to analyze the cortex proteins of transgenic mice was used. Black-Right-Pointing-Pointer Differentially expressed spots in different stages of AD were identified. Black-Right-Pointing-Pointer GSTP1 and CAII were downregulated with the progression of AD. Black-Right-Pointing-Pointer SCRN1 and ATP6VE1 were up regulated and down regulated differentially. -- Abstract: Alzheimer's disease (AD) involves regionalized neuronal death, synaptic loss, and an accumulation of intracellular neurofibrillary tangles and extracellular senile plaques. Although there have been numerous studies on tau proteins and AD in various stages of neurodegenerative disease pathology, the relationship between tau and AD is not yet fully understood. A transgenic mouse model expressing neuron-specific enolase (NSE)-controlled human wild-type tau (NSE-htau23), which displays some of the typical Alzheimer-associated pathological features, was used to analyze the brain proteome associated with tau tangle deposition. Two-dimensional electrophoresis was performed to compare the cortex proteins of transgenic mice (6- and 12-month-old) with those of control mice. Differentially expressed spots in different stages of AD were identified with ESI-Q-TOF (electrospray ionization quadruple time-of-flight) mass spectrometry and liquid chromatography/tandem mass spectrometry. Among the identified proteins, glutathione S-transferase P 1 (GSTP1) and carbonic anhydrase II (CAII) were down-regulated with the progression of AD, and secerin-1 (SCRN1) and V-type proton ATPase subunit E 1 (ATP6VE1) were up-regulated only in the early stages, and down-regulated in the later stages of AD. The proteins, which were further confirmed by RT-PCR at the mRNA level and with western blotting at the protein level, are expected to be good candidates as drug targets for AD. The

  5. Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer’s disease

    International Nuclear Information System (INIS)

    Highlights: ► A transgenic mouse model expressing NSE-htau23 was used. ► 2D-gel electrophoresis to analyze the cortex proteins of transgenic mice was used. ► Differentially expressed spots in different stages of AD were identified. ► GSTP1 and CAII were downregulated with the progression of AD. ► SCRN1 and ATP6VE1 were up regulated and down regulated differentially. -- Abstract: Alzheimer’s disease (AD) involves regionalized neuronal death, synaptic loss, and an accumulation of intracellular neurofibrillary tangles and extracellular senile plaques. Although there have been numerous studies on tau proteins and AD in various stages of neurodegenerative disease pathology, the relationship between tau and AD is not yet fully understood. A transgenic mouse model expressing neuron-specific enolase (NSE)-controlled human wild-type tau (NSE-htau23), which displays some of the typical Alzheimer-associated pathological features, was used to analyze the brain proteome associated with tau tangle deposition. Two-dimensional electrophoresis was performed to compare the cortex proteins of transgenic mice (6- and 12-month-old) with those of control mice. Differentially expressed spots in different stages of AD were identified with ESI-Q-TOF (electrospray ionization quadruple time-of-flight) mass spectrometry and liquid chromatography/tandem mass spectrometry. Among the identified proteins, glutathione S-transferase P 1 (GSTP1) and carbonic anhydrase II (CAII) were down-regulated with the progression of AD, and secerin-1 (SCRN1) and V-type proton ATPase subunit E 1 (ATP6VE1) were up-regulated only in the early stages, and down-regulated in the later stages of AD. The proteins, which were further confirmed by RT-PCR at the mRNA level and with western blotting at the protein level, are expected to be good candidates as drug targets for AD. The study of up- and down-regulation of proteins during the progression of AD helps to explain the mechanisms associated with neuronal

  6. Obesity in Aging Exacerbates Blood–Brain Barrier Disruption, Neuroinflammation, and Oxidative Stress in the Mouse Hippocampus: Effects on Expression of Genes Involved in Beta-Amyloid Generation and Alzheimer’s Disease

    Science.gov (United States)

    Tucsek, Zsuzsanna; Toth, Peter; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Szalai, Gabor; Sonntag, William E.; Csiszar, Anna

    2014-01-01

    There is growing evidence that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular damage and neuroinflammation, we compared young (7 months) and aged (24 months) high fat diet–fed obese C57BL/6 mice. Aging exacerbated obesity-induced systemic inflammation and blood–brain barrier disruption, as indicated by the increased circulating levels of proinflammatory cytokines and increased presence of extravasated immunoglobulin G in the hippocampus, respectively. Obesity-induced blood–brain barrier damage was associated with microglia activation, upregulation of activating Fc-gamma receptors and proinflammatory cytokines, and increased oxidative stress. Treatment of cultured primary microglia with sera derived from aged obese mice resulted in significantly more pronounced microglia activation and oxidative stress, as compared with treatment with young sera. Serum-induced activation and oxidative stress were also exacerbated in primary microglia derived from aged animals. Hippocampal expression of genes involved in regulation of the cellular amyloid precursor protein–dependent signaling pathways, beta-amyloid generation, and the pathogenesis of tauopathy were largely unaffected by obesity in aged mice. Collectively, obesity in aging is associated with a heightened state of systemic inflammation, which exacerbates blood–brain barrier disruption. The resulting neuroinflammation and oxidative stress in the mouse hippocampus likely contribute to the significant cognitive decline observed in aged obese animals. PMID:24269929

  7. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer's disease.

    Science.gov (United States)

    Tucsek, Zsuzsanna; Toth, Peter; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Szalai, Gabor; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna

    2014-10-01

    There is growing evidence that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular damage and neuroinflammation, we compared young (7 months) and aged (24 months) high fat diet-fed obese C57BL/6 mice. Aging exacerbated obesity-induced systemic inflammation and blood-brain barrier disruption, as indicated by the increased circulating levels of proinflammatory cytokines and increased presence of extravasated immunoglobulin G in the hippocampus, respectively. Obesity-induced blood-brain barrier damage was associated with microglia activation, upregulation of activating Fc-gamma receptors and proinflammatory cytokines, and increased oxidative stress. Treatment of cultured primary microglia with sera derived from aged obese mice resulted in significantly more pronounced microglia activation and oxidative stress, as compared with treatment with young sera. Serum-induced activation and oxidative stress were also exacerbated in primary microglia derived from aged animals. Hippocampal expression of genes involved in regulation of the cellular amyloid precursor protein-dependent signaling pathways, beta-amyloid generation, and the pathogenesis of tauopathy were largely unaffected by obesity in aged mice. Collectively, obesity in aging is associated with a heightened state of systemic inflammation, which exacerbates blood-brain barrier disruption. The resulting neuroinflammation and oxidative stress in the mouse hippocampus likely contribute to the significant cognitive decline observed in aged obese animals.

  8. Phenotypic Heterogeneity and Plasticity of Isocortical and Hippocampal Astrocytes in the Human Brain

    OpenAIRE

    Sosunov, Alexander A.; Wu, Xiaoping; Tsankova, Nadejda M.; Guilfoyle, Eileen; Guy M McKhann; Goldman, James E.

    2014-01-01

    To examine the diversity of astrocytes in the human brain, we immunostained surgical specimens of temporal cortex and hippocampus and autopsy brains for CD44, a plasma membrane protein and extracellular matrix receptor. CD44 antibodies outline the details of astrocyte morphology to a degree not possible with glial fibrillary acidic protein (GFAP) antibodies. CD44+ astrocytes could be subdivided into two groups. First, CD44+ astrocytes with long processes were consistently found in the subpial...

  9. HPLC determination of brain biogenic amines following treatment with bispyridinium aldoxime K203.

    Science.gov (United States)

    Hashemi, F; Laufer, R; Szegi, P; Csomor, V; Kalász, H; Tekes, Kornélia

    2014-03-01

    Effect of a new acetylcholine-esterase reactivator, K203 as a new potential antidote in organophosphate intoxications was studied on dopamine (DA), homovanillic acid (HVA), serotonin (5-HT) and 5-hydroxyindolacetic acid (5-HIAA) levels in seven brain regions (cerebellum, spinal cord, hippocampus, hypothalamus, striatum, medulla oblongata and frontal cortex) of rats by an optimized and validated HPLC method. No significant change in brain level of these neurotransmitters was found either 15 or 60 min following treatment. However, when 5-HIAA/5-HT ratios were calculated as measure of turnover, significant decreases were found in the cerebellum, hippocampus, hypothalamus and the frontal cortex 15 min following K203 administration, but after 60 min only in the frontal cortex. PMID:24631794

  10. Cortical Connectivity Maps Reveal Anatomically Distinct Areas in the Parietal Cortex of the Rat

    Directory of Open Access Journals (Sweden)

    Aaron eWilber

    2015-01-01

    Full Text Available A central feature of theories of spatial navigation involves the representation of spatial relationships between objects in complex environments. The parietal cortex has long been linked to the processing of spatial visual information and recent evidence from single unit recording in rodents suggests a role for this region in encoding egocentric and world-centered frames. The rat parietal cortex can be subdivided into up to four distinct rostral-caudal and medial-lateral regions, which includes a zone previously characterized as secondary visual cortex. At present, very little is known regarding the relative connectivity of these parietal subdivisions. Thus, we set out to map the connectivity of the entire anterior-posterior and medial-lateral span of this region. To do this we used anterograde and retrograde tracers in conjunction with open source neuronal segmentation and tracer detection tools to generate whole brain connectivity maps of parietal inputs and outputs. Our present results show that inputs to the parietal cortex varied significantly along the medial-lateral, but not the rostral-caudal axis. Specifically, retrosplenial connectivity is greater medially, but connectivity with visual cortex, though generally sparse, is more significant laterally. Finally, based on connection density, the connectivity between parietal cortex and hippocampus is indirect and likely achieved largely via dysgranular retrosplenial cortex. Thus, similar to primates, the parietal cortex of rats exhibits a difference in connectivity along the medial-lateral axis, which may represent functionally distinct areas.

  11. Correlation of brain-derived neurotrophic factor to cognitive impairment following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Dezhi Kang; Zhang Guo

    2008-01-01

    BACKGROUND: In vitro and in vivo studies have confirmed that brain-derived neurotrophic factor (BDNF) can promote survival and differentiation of cholinergic, dopaminergic and motor neurons, and axonal regeneration. BDNF has neuroprotective effects on the nervous system. OBJECTIVE: To explore changes in BDNF expression and cognitive function in rats after brain injury DESIGN, TIME AND SETTING: The neuropathology experiment was performed at the Second Research Room, Department of Neurosurgery, Fujian Medical University (China) from July 2007 to July 2008. MATERIALS: A total of 72 healthy, male, Sprague Dawley, rats were selected for this study. METHODS: Rat models of mild and moderate traumatic brain injury were created by percussion, according to Feeney's method (n = 24, each group). A bone window was made in rats from the sham operation group (n = 24), but no attack was conducted. MAIN OUTCOME MEASURES: At days 1,2, 4 and 7 following injury, BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was examined by immunohistochemistry (streptavidin-biotin-peroxidase complex method). Changes in rat cognitive function were assessed by the walking test, balance-beam test and memory function detection. RESULTS: Cognitive impairment was aggravated at day 2, and recovered to normal at days 3 and 7 in rats from the mild and moderate traumatic brain injury groups. BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was increased at 1 day, decreased at day 2, and then gradually increased in the mild and moderate traumatic brain injury groups. BDNF expression was greater in rats from the moderate traumatic brain injury group than in the sham operation and mild traumatic brain injury groups (P < 0.05). CONCLUSION: BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain is correlated to cognitive impairment after traumatic brain injury. BDNF has a protective effect on cognitive function in rats

  12. Brain Basics

    Medline Plus

    Full Text Available ... medications could reduce the amount of trial and error and frustration that many people with depression experience ... early brain development, and may also assist in learning and memory. hippocampus —A portion of the brain ...

  13. Evaluation of Krebs cycle enzymes in the brain of rats after chronic administration of antidepressants.

    Science.gov (United States)

    Scaini, Giselli; Santos, Patricia M; Benedet, Joana; Rochi, Natália; Gomes, Lara M; Borges, Lislaine S; Rezin, Gislaine T; Pezente, Daiana P; Quevedo, João; Streck, Emilio L

    2010-05-31

    Several works report brain impairment of metabolism as a mechanism underlying depression. Citrate synthase and succinate dehydrogenase are enzymes localized within cells in the mitochondrial matrix and are important steps of Krebs cycle. In addition, citrate synthase has been used as a quantitative enzyme marker for the presence of intact mitochondria. Thus, we investigated citrate synthase and succinate dehydrogenase activities from rat brain after chronic administration of paroxetine, nortriptiline and venlafaxine. Adult male Wistar rats received daily injections of paroxetine (10mg/kg), nortriptiline (15mg/kg), venlafaxine (10mg/kg) or saline in 1.0mL/kg volume for 15 days. Twelve hours after the last administration, the rats were killed by decapitation, the hippocampus, striatum and prefrontal cortex were immediately removed, and activities of citrate synthase and succinate dehydrogenase were measured. We verified that chronic administration of paroxetine increased citrate synthase activity in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected. Chronic administration of nortriptiline and venlafaxine did not affect the enzyme activity in these brain areas. Succinate dehydrogenase activity was increased by chronic administration of paroxetine and nortriptiline in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected either. Chronic administration of venlafaxine increased succinate dehydrogenase activity in prefrontal cortex, but did not affect the enzyme activity in cerebellum, hippocampus, striatum and cerebral cortex. Considering that metabolism impairment is probably involved in the pathophysiology of depressive disorders, an increase in these enzymes by antidepressants may be an important mechanism of action of these drugs.

  14. The Role of Hippocampus in the Pathophysiology of Depression

    Directory of Open Access Journals (Sweden)

    Özlem Donat Eker

    2009-06-01

    Full Text Available Hippocampus, as a part of the limbic cortex, has a variety of functions ranging from mating behavior to memory besides its role in the regulation of emotions. The hippocampus has reciprocal interactions of with other brain regions which act in the pathophysiology of major depressive disorder (MDD. Moreover, since the hippocampus is a scene for the neurogenesis, which can be seen as a response to antidepressant treatment, the hippocampus became a focus of attention in neuroimaging studies of MDD. It has been shown that brain derived neurotrophic factor (BDNF, that is responsible from the neurogenesis, is associated with the response to the antidepressants and antidepressant drugs are ineffective if neurogenesis is hindered.Hippocampal atrophy is expected with the decrease of neurogenesis as a result of the lower BDNF levels with the deleterious effects of glucocorticoids in depression. Recurrent and severe depression seems to cause such a volume reduction though first episode MDD subjects do not differ from healthy individuals in respect to their hippocampal volumes (HCVs measured by magnetic resonance imaging methods. One may argue regarding these findings that the atrophy in the hippocampus may be observed in the long term and the decrease in BDNF levels may predispose the volume reduction. Although it has been postulated that smaller HCV as a result of genetic and environmental factors and prior to the illness, may cause a vulnerability to MDD, sufficient evidence has not been accumulated yet and the view that HCV loss develops as depression progresses is widely accepted. Findings that serum BDNF (sBDNF is lower in MDD patients though HCVs of patients do not differ from healthy individuals and the positive correlation of sBDNF with HCV seen only in the patient group support this view. It can be assumed that depressed patients have sensitivity for the fluctuations in BDNF levels. Follow-up studies which consider effects of hipotalamo

  15. Expression of c-fos in Rat Brain as a Prelude Marker of Central Nervous System Injury in Response to Methylmercury-stimulation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To probe into the prelude marker of central nervous system injury in response to methyl mercury chloride (MMC) stimulation and the signal transduction molecular mechanism of injury in rat brain induced by MMC. Methods The expression of c-fos mRNA in brain and the expression of c-FOS protein in cortex, hippocampus and ependyma were observed using reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemical methods. The control group was injected with physiological saline of 0.9%, while the concentrations for the exposure groups were 0.05 and 0.5,5 mg/kg MMC respectively, and the sampling times points were 20, 60, 240, 1440 min. Results The expression of c-FOS protein in cortex and hippocampus increased significantly, the accumulation of mercury in the brain induced by 0.05 mg/Kg MMC for 20 min had no significant difference compared with the control group. The mean value was 0.0044 mg/Kg, while the protein c-FOS expression had significant difference compared with the control group (P<0.01). More sensitive expression occurred in hippocampus and cortex, but not in ependyma. Conclusion The expression of c-FOS protein in cortex and hippocampus can predict the neurotoxicity of MMC in the early time, and immediately early gene (IEG) c-fos participates in the process of brain injury induced by MMC.

  16. Dysfunction of mitochondrial dynamics in the brains of scrapie-infected mice

    International Nuclear Information System (INIS)

    Highlights: • Mfn1 and Fis1 are significantly increased in the hippocampal region of the ME7 prion-infected brain, whereas Dlp1 is significantly decreased in the infected brain. • Dlp1 is significantly decreased in the cytosolic fraction of the hippocampus in the infected brain. • Neuronal mitochondria in the prion-infected brains are enlarged and swollen compared to those of control brains. • There are significantly fewer mitochondria in the ME7-infected brain compared to the number in control brain. - Abstract: Mitochondrial dysfunction is a common and prominent feature of many neurodegenerative diseases, including prion diseases; it is induced by oxidative stress in scrapie-infected animal models. In previous studies, we found swelling and dysfunction of mitochondria in the brains of scrapie-infected mice compared to brains of controls, but the mechanisms underlying mitochondrial dysfunction remain unclear. To examine whether the dysregulation of mitochondrial proteins is related to the mitochondrial dysfunction associated with prion disease, we investigated the expression patterns of mitochondrial fusion and fission proteins in the brains of ME7 prion-infected mice. Immunoblot analysis revealed that Mfn1 was up-regulated in both whole brain and specific brain regions, including the cerebral cortex and hippocampus, of ME7-infected mice compared to controls. Additionally, expression levels of Fis1 and Mfn2 were elevated in the hippocampus and the striatum, respectively, of the ME7-infected brain. In contrast, Dlp1 expression was significantly reduced in the hippocampus in the ME7-infected brain, particularly in the cytosolic fraction. Finally, we observed abnormal mitochondrial enlargement and histopathological change in the hippocampus of the ME7-infected brain. These observations suggest that the mitochondrial dysfunction, which is presumably caused by the dysregulation of mitochondrial fusion and fission proteins, may contribute to the

  17. Dysfunction of mitochondrial dynamics in the brains of scrapie-infected mice

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hong-Seok [Department of Microbiology, College of Medicine, Hallym University, 1 Okcheon-dong, Chuncheon, Gangwon-do 200-702 (Korea, Republic of); Ilsong Institute of Life Science, Hallym University, 1605-4 Gwanyang-dong, Dongan-gu, Anyang, Gyeonggi-do 431-060 (Korea, Republic of); Choi, Yeong-Gon; Shin, Hae-Young; Oh, Jae-Min [Ilsong Institute of Life Science, Hallym University, 1605-4 Gwanyang-dong, Dongan-gu, Anyang, Gyeonggi-do 431-060 (Korea, Republic of); Park, Jeong-Ho [Department of Microbiology, College of Medicine, Hallym University, 1 Okcheon-dong, Chuncheon, Gangwon-do 200-702 (Korea, Republic of); Ilsong Institute of Life Science, Hallym University, 1605-4 Gwanyang-dong, Dongan-gu, Anyang, Gyeonggi-do 431-060 (Korea, Republic of); Kim, Jae-Il [Department of Food Science and Nutrition, Pukyong National University, 599-1 Daeyeon-3-dong, Nam-gu, Busan 608-737 (Korea, Republic of); Carp, Richard I. [New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 (United States); Choi, Eun-Kyoung, E-mail: ekchoi@hallym.ac.kr [Ilsong Institute of Life Science, Hallym University, 1605-4 Gwanyang-dong, Dongan-gu, Anyang, Gyeonggi-do 431-060 (Korea, Republic of); Kim, Yong-Sun, E-mail: yskim@hallym.ac.kr [Department of Microbiology, College of Medicine, Hallym University, 1 Okcheon-dong, Chuncheon, Gangwon-do 200-702 (Korea, Republic of); Ilsong Institute of Life Science, Hallym University, 1605-4 Gwanyang-dong, Dongan-gu, Anyang, Gyeonggi-do 431-060 (Korea, Republic of)

    2014-05-30

    Highlights: • Mfn1 and Fis1 are significantly increased in the hippocampal region of the ME7 prion-infected brain, whereas Dlp1 is significantly decreased in the infected brain. • Dlp1 is significantly decreased in the cytosolic fraction of the hippocampus in the infected brain. • Neuronal mitochondria in the prion-infected brains are enlarged and swollen compared to those of control brains. • There are significantly fewer mitochondria in the ME7-infected brain compared to the number in control brain. - Abstract: Mitochondrial dysfunction is a common and prominent feature of many neurodegenerative diseases, including prion diseases; it is induced by oxidative stress in scrapie-infected animal models. In previous studies, we found swelling and dysfunction of mitochondria in the brains of scrapie-infected mice compared to brains of controls, but the mechanisms underlying mitochondrial dysfunction remain unclear. To examine whether the dysregulation of mitochondrial proteins is related to the mitochondrial dysfunction associated with prion disease, we investigated the expression patterns of mitochondrial fusion and fission proteins in the brains of ME7 prion-infected mice. Immunoblot analysis revealed that Mfn1 was up-regulated in both whole brain and specific brain regions, including the cerebral cortex and hippocampus, of ME7-infected mice compared to controls. Additionally, expression levels of Fis1 and Mfn2 were elevated in the hippocampus and the striatum, respectively, of the ME7-infected brain. In contrast, Dlp1 expression was significantly reduced in the hippocampus in the ME7-infected brain, particularly in the cytosolic fraction. Finally, we observed abnormal mitochondrial enlargement and histopathological change in the hippocampus of the ME7-infected brain. These observations suggest that the mitochondrial dysfunction, which is presumably caused by the dysregulation of mitochondrial fusion and fission proteins, may contribute to the

  18. Metabolic demand stimulates CREB signaling in the limbic cortex: implication for the induction of hippocampal synaptic plasticity by intrinsic stimulus for survival

    Directory of Open Access Journals (Sweden)

    Nelly M Estrada

    2009-06-01

    Full Text Available Caloric restriction by fasting has been implicated to facilitate synaptic plasticity and promote contextual learning. However, cellular and molecular mechanisms underlying the effect of fasting on memory consolidation are not completely understood. We hypothesized that fasting-induced enhancement of synaptic plasticity was mediated by the increased signaling mediated by CREB (c-AMP response element binding protein, an important nuclear protein and the transcription factor that is involved in the consolidation of memories in the hippocampus. In the in vivo rat model of 18 h fasting, the expression of phosphorylated CREB (pCREB was examined using anti-phospho-CREB (Ser133 in cardially-perfused and cryo-sectioned rat brain specimens. When compared with control animals, the hippocampus exhibited up to a two-fold of increase in pCREB expression in fasted animals. The piriform cortex, the entorhinal cortex, and the cortico-amygdala transitional zone also significantly increased immunoreactivities to pCREB. In contrast, the amygdala did not show any change in the magnitude of pCREB expression in response to fasting. The arcuate nucleus in the medial hypothalamus, which was previously reported to up-regulate CREB phosphorylation during fasting of up to 48 h, was also strongly immunoreactive and provided a positive control in the present study. Our findings demonstrate a metabolic demand not only stimulates cAMP-dependent signaling cascades in the hypothalamus, but also signals to various limbic brain regions including the hippocampus by activating the CREB signaling mechanism. The hippocampus is a primary brain structure for learning and memory. It receives hypothalamic and arcuate projections directly from the fornix. The hippocampus is also situated centrally for functional interactions with other limbic cortexes by establishing reciprocal synaptic connections. We suggest that hippocampal neurons and those in the surrounding limbic cortexes are

  19. Mnemonic convergence in the human hippocampus

    Science.gov (United States)

    Backus, Alexander R.; Bosch, Sander E.; Ekman, Matthias; Grabovetsky, Alejandro Vicente; Doeller, Christian F.

    2016-01-01

    The ability to form associations between a multitude of events is the hallmark of episodic memory. Computational models have espoused the importance of the hippocampus as convergence zone, binding different aspects of an episode into a coherent representation, by integrating information from multiple brain regions. However, evidence for this long-held hypothesis is limited, since previous work has largely focused on representational and network properties of the hippocampus in isolation. Here we identify the hippocampus as mnemonic convergence zone, using a combination of multivariate pattern and graph-theoretical network analyses of functional magnetic resonance imaging data from humans performing an associative memory task. We observe overlap of conjunctive coding and hub-like network attributes in the hippocampus. These results provide evidence for mnemonic convergence in the hippocampus, underlying the integration of distributed information into episodic memory representations. PMID:27325442

  20. Cognitive improvement following transvenous adipose-derived mesenchymal stem cell transplantation in a rat model of traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dongfei Li; Chun Yang; Rongmei Qu; Huiying Yang; Meichun Yu; Hui Tao; Jingxing Dai; Lin Yuan

    2011-01-01

    The effects of adipose-derived mesenchymal stem cell (ADMSC) transplantation for the repair of traumatic brain injury remain poorly understood. The present study observed neurological functional changes in a rat model of traumatic brain injury following ADMSC transplantation via the tail vein.Cell transplants were observed in injured cerebral cortex, and expression of brain-derived nerve growth factor was significantly increased in the injured hippocampus following transplantation. Results demonstrated that transvenous ADMSC transplants migrated to the injured cerebral cortex and significantly improved cognitive function.

  1. The occurrence of diffuse axonal injury in the brain:associated with the accumulation and clearance of myelin debris

    Institute of Scientific and Technical Information of China (English)

    Liang Wen; Jun Xu; Tianxiang Zhan; Hao Wang; Xin Huang; Wenchao Liu; Xiaofeng Yang; Renya Zhan

    2014-01-01

    The accumulation of myelin debris may be a major contributor to the inlfammatory response after diffuse axonal injury. In this study, we examined the accumulation and clearance of myelin debris in a rat model of diffuse axonal injury. Oil Red O staining was performed on sections from the cerebral cortex, hippocampus and brain stem to identify the myelin debris. Seven days after diffuse axonal injury, many Oil Red O-stained particles were observed in the cerebral cortex, hippocampus and brain stem. In the cerebral cortex and hippocampus, the amount of myelin debris peaked at 14 days after injury, and decreased signiifcantly at 28 days. In the brain stem, the amount of myelin debris peaked at 7 days after injury, and decreased signiifcantly at 14 and 28 days. In the cortex and hippocampus, some myelin debris could still be observed at 28 days after diffuse axonal injury. Our ifndings suggest that myelin debris may persist in the rat central ner-vous system after diffuse axonal injury, which would hinder recovery.

  2. Distribution of beta-amyloid in the canine brain.

    Science.gov (United States)

    Hou, Y; White, R G; Bobik, M; Marks, J S; Russell, M J

    1997-03-01

    The distribution of amyloid-beta protein (A beta) in the canine brain was demonstrated by immunochemistry on serially sectioned tissues from 10 aged mixed breed dogs. Summation of quantitative data and relegation to anatomical sites for the 10 dogs showed A beta to be widely distributed in the cortex and hippocampus while completely absent in the brain stem and cerebellum. The highest density of A beta was in the dentate gyrus of the hippocampus. Cortical areas exhibiting the greatest A beta deposition were the posterior and medial suprasylvius gyrus and the proreus gyrus of the frontal lobe. Unlike humans the canine entorhinal cortex, amygdala, basal ganglia and olfactory bulbs were rarely affected. This suggested that the highly developed olfactory pathways of the canine are generally spared from A beta deposition. PMID:9141082

  3. PET study of cholinergic system in the brain

    International Nuclear Information System (INIS)

    Recently, we have developed a method to measure acetylcholinesterase (AChE) activity, a functional marker for cholinergic system, by positron emission tomography (PET) and carbon-11 labeled N-methyl-4-piperidyl acetate. Kinetic analysis of the radioactivity in the brain and the plasma yielded a rate constant ''k 3'' as an index of AChE activity. The ratios for the k 3 values for the cerebral cortex/thalamus/cerebellum/striatum found in healthy participants were 1/ 3/ 8/ 10, respectively, corresponding well with AChE activity ratios in the brain at necropsy (1/ 3/ 8/ 38), except for the striatum. In 23 healthy volunteers (age range: 24-89 years), there was no age-related decline of k 3 values in the cerebral cortex, suggesting AChE activity is preserved in aged cerebral cortex. In 11 patients with Alzheimer's disease, there was a significant reduction (-24%) of k 3 values in the cerebral cortex and hippocampus, suggesting a loss of ascending cholinergic system from the basal forebrain to the cerebral cortex and hippocampus. In 16 patients with Parkinson's disease, there was a significant reduction (-18%) of k 3 values in the cerebral cortex. In 10 patients with progressive supra nuclear palsy, there was a significant reduction (-38%) of k 3 values in the thalamus. This technique is useful for investigating central cholinergic system in neuro degenerative disorders with dementia. (author)

  4. PET study of cholinergic system in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Shinotoh, Hitoshi [Chiba Univ. (Japan). School of Medicine

    1999-01-01

    Recently, we have developed a method to measure acetylcholinesterase (AChE) activity, a functional marker for cholinergic system, by positron emission tomography (PET) and carbon-11 labeled N-methyl-4-piperidyl acetate. Kinetic analysis of the radioactivity in the brain and the plasma yielded a rate constant ``k 3`` as an index of AChE activity. The ratios for the k 3 values for the cerebral cortex/thalamus/cerebellum/striatum found in healthy participants were 1/ 3/ 8/ 10, respectively, corresponding well with AChE activity ratios in the brain at necropsy (1/ 3/ 8/ 38), except for the striatum. In 23 healthy volunteers (age range: 24-89 years), there was no age-related decline of k 3 values in the cerebral cortex, suggesting AChE activity is preserved in aged cerebral cortex. In 11 patients with Alzheimer`s disease, there was a significant reduction (-24%) of k 3 values in the cerebral cortex and hippocampus, suggesting a loss of ascending cholinergic system from the basal forebrain to the cerebral cortex and hippocampus. In 16 patients with Parkinson`s disease, there was a significant reduction (-18%) of k 3 values in the cerebral cortex. In 10 patients with progressive supra nuclear palsy, there was a significant reduction (-38%) of k 3 values in the thalamus. This technique is useful for investigating central cholinergic system in neuro degenerative disorders with dementia. (author)

  5. Microglia/monocytes with NG2 expression have no phagocytic function in the cortex after LPS focal injection into the rat brain.

    Science.gov (United States)

    Zhu, Lie; Xiang, Ping; Guo, Kun; Wang, Anni; Lu, Jia; Tay, Samuel Sam Wah; Jiang, Hua; He, Bei Ping

    2012-09-01

    While OX42(+) microglia/macrophages have been considered as a scavenger in the brain, NG2(+) cells are generally considered as oligodendrocyte progenitor cells or function-unknown glial cells. Recent evidence showed that under some pathological conditions, certain cells have become positive for both anti-NG2 and anti-OX42 antibodies. Our results suggested that some OX42(+) microglia or macrophages were induced to express NG2 proteins 3 and 5 days later after focal injection of lipopolysaccharide into the brain cortex of Sprague-Dawley rats. In consideration of the induction of NG2 expression may associate with gaining or losing functions of microglia/macrophages, we further showed that, while OX42(+) or ED1(+) microglia/macrophages presented active phagocytic function, NG2(+) /OX42(+) cells failed to engulf latex beads. The induced expression of NG2 protein may possibly indicate the functional diversity of activated microglia/macrophages in the brain.

  6. Hippocampus in health and disease: An overview

    Directory of Open Access Journals (Sweden)

    Kuljeet Singh Anand

    2012-01-01

    Full Text Available Hippocampus is a complex brain structure embedded deep into temporal lobe. It has a major role in learning and memory. It is a plastic and vulnerable structure that gets damaged by a variety of stimuli. Studies have shown that it also gets affected in a variety of neurological and psychiatric disorders. In last decade or so, lot has been learnt about conditions that affect hippocampus and produce changes ranging from molecules to morphology. Progresses in radiological delineation, electrophysiology, and histochemical characterization have made it possible to study this archicerebral structure in greater detail. Present paper attempts to give an overview of hippocampus, both in health and diseases.

  7. A central role for the retrosplenial cortex in de novo environmental learning.

    Science.gov (United States)

    Auger, Stephen D; Zeidman, Peter; Maguire, Eleanor A

    2015-01-01

    With experience we become accustomed to the types of environments that we normally encounter as we navigate in the world. But how does this fundamental knowledge develop in the first place and what brain regions are involved? To examine de novo environmental learning, we created an 'alien' virtual reality world populated with landmarks of which participants had no prior experience. They learned about this environment by moving within it during functional MRI (fMRI) scanning while we tracked their evolving knowledge. Retrosplenial cortex (RSC) played a central and highly selective role by representing only the most stable, permanent features in this world. Subsequently, increased coupling was noted between RSC and hippocampus, with hippocampus then expressing knowledge of permanent landmark locations and overall environmental layout. Studying how environmental representations emerge from scratch provided a new window into the information processing underpinning the brain's navigation system, highlighting the key influence of the RSC. PMID:26284602

  8. Developmental Profile, Morphology, and Synaptic Connectivity of Cajal-Retzius Cells in the Postnatal Mouse Hippocampus.

    Science.gov (United States)

    Anstötz, Max; Huang, Hao; Marchionni, Ivan; Haumann, Iris; Maccaferri, Gianmaria; Lübke, Joachim H R

    2016-02-01

    Cajal-Retzius (CR) cells are early generated neurons, involved in the assembly of developing neocortical and hippocampal circuits. However, their roles in networks of the postnatal brain remain poorly understood. In order to get insights into these latter functions, we have studied their morphological and synaptic properties in the postnatal hippocampus of the CXCR4-EGFP mouse, where CR cells are easily identifiable. Our data indicate that CR cells are nonuniformly distributed along different subfields of the hippocampal formation, and that their postnatal decline is regulated in a region-specific manner. In fact, CR cells persist in distinct areas of fully mature animals. Subclasses of CR cells project and target either local (molecular layers) or distant regions [subicular complex and entorhinal cortex (EC)] of the hippocampal formation, but have similar firing patterns. Lastly, CR cells are biased toward targeting dendritic shafts compared with spines, and produce large-amplitude glutamatergic unitary postsynaptic potentials on γ-aminobutyric acid (GABA) containing interneurons. Taken together, our results suggest that CR cells are involved in a novel excitatory loop of the postnatal hippocampal formation, which potentially contributes to shaping the flow of information between the hippocampus, parahippocampal regions and entorhinal cortex, and to the low seizure threshold of these brain areas.

  9. A silicon based implantable microelectrode array for electrophysiological and dopamine recording from cortex to striatum in the non-human primate brain.

    Science.gov (United States)

    Zhang, Song; Song, Yilin; Wang, Mixia; Zhang, Zhiming; Fan, Xinyi; Song, Xianteng; Zhuang, Ping; Yue, Feng; Chan, Piu; Cai, Xinxia

    2016-11-15

    Dual-mode, multielectrode recordings have become routine in rodent neuroscience research and have recently been adapted to the non-human primate. However, robust and reliable application of acute, multielectrode recording methods in monkeys especially for deep brain nucleus research remains a challenge. In this paper, We described a low cost silicon based 16-site implantable microelectrode array (MEA) chip fabricated by standard lithography technology for in vivo test. The array was 25mm long and designed to use in non-human primate models, for electrophysiological and electrochemical recording. We presented a detailed protocol for array fabrication, then showed that the device can record Spikes, LFPs and dopamine (DA) variation continuously from cortex to striatum in an esthetized monkey. Though our experiment, high-quality electrophysiological signals were obtained from the animal. Across any given microelectrode, spike amplitudes ranged from 70 to 300μV peak to peak, with a mean signal-to-noise ratio of better than 5:1. Calibration results showed the MEA probe had high sensitivity and good selectivity for DA. The DA concentration changed from 42.8 to 481.6μM when the MEA probe inserted from cortex into deep brain nucleus of striatum, which reflected the inhomogeneous distribution of DA in brains. Compared with existing methods allowing single mode (electrophysiology or electrochemistry) recording. This system is designed explicitly for dual-mode recording to meet the challenges of recording in non-human primates. PMID:27155116

  10. Providing and optimizing functional MR (Magnetic Resonance) of motor cortex of human brain by MRI ( Magnetic Resonance Imaging) facilities of Imam Khomeinie Hospital

    CERN Document Server

    Khosravie, H R

    2000-01-01

    During the stimulation, an observable increased signal (%2-%5)in respective sensory-motor cortex was obtained after correcting for partial volume effects, optimizing S/N,and incorporating small vowels. The 2 D F A S T functional image obtained by this method, showed an anatomical association of the increased signal with gray matter of sensory-motor cortex(in T 1 weighted image). The resultant data showed the feasibility of functional magnetic resonance imaging using optimized gradient echo sequences on a standard 1.5 T imager. Display of human brain cortical activity is accomplished using various techniques, by them different spatial and temporal resolution may be obtained. F MRI technique with proper spatial and temporal resolution due to its noninvasivity is one of the promising techniques for detection of brain activities. This can be used as an important tool by neurologists, since a great development has been achieved for display different brain function. This thesis report the results of simulation effe...

  11. Investigation of Higher Brain Functions in Music Composition Using Models of the Cortex Based on Physical System Analogies.

    Science.gov (United States)

    Leng, Xiaodan

    The trion model was developed using the Mountcastle organizational principle for the column as the basic neuronal network in the cortex and the physical system analogy of Fisher's ANNNI spin model. An essential feature is that it is highly structured in time and in spatial connections. Simulations of a network of trions have shown that large numbers of quasi-stable, periodic spatial-temporal firing patterns can be excited. Characteristics of these patterns include the quality of being readily enhanced by only a small change in connection strengths, and that the patterns evolve in certain natural sequences from one to another. With only somewhat different parameters than used for studying memory and pattern recognition, much more flowing and intriguing patterns emerged from the simulations. The results were striking when these probabilistic evolutions were mapped onto pitches and instruments to produce music: For example different simple mappings of the same evolution give music having the "flavor" of a minuet, a waltz, folk music, or styles of specific periods. A theme can be learned so that evolutions have this theme and its variations reoccurring more often. That the trion model is a viable model for the coding of musical structure in human composition and perception is suggested. It is further proposed that model is relevant for examining creativity in the higher cognitive functions of mathematics and chess, which are similar to music. An even higher level of cortical organization was modeled by coupling together several trion networks. Further, one of the crucial features of higher brain function, especially in music composition or appreciation, is the role of emotion and mood as controlled by the many neuromodulators or neuropeptides. The MILA model whose underlying basis is zero-level representation of Kac-Moody algebra is used to modulate periodically the firing threshold of each network. Our preliminary results show that the introduction of "neuromodulation

  12. Gene expression of fatty acid transport and binding proteins in the blood-brain barrier and the cerebral cortex of the rat: differences across development and with different DHA brain status.

    Science.gov (United States)

    Pélerin, Hélène; Jouin, Mélanie; Lallemand, Marie-Sylvie; Alessandri, Jean-Marc; Cunnane, Stephen C; Langelier, Bénédicte; Guesnet, Philippe

    2014-11-01

    Specific mechanisms for maintaining docosahexaenoic acid (DHA) concentration in brain cells but also transporting DHA from the blood across the blood-brain barrier (BBB) are not agreed upon. Our main objective was therefore to evaluate the level of gene expression of fatty acid transport and fatty acid binding proteins in the cerebral cortex and at the BBB level during the perinatal period of active brain DHA accretion, at weaning, and until the adult age. We measured by real time RT-PCR the mRNA expression of different isoforms of fatty acid transport proteins (FATPs), long-chain acyl-CoA synthetases (ACSLs), fatty acid binding proteins (FABPs) and the fatty acid transporter (FAT)/CD36 in cerebral cortex and isolated microvessels at embryonic day 18 (E18) and postnatal days 14, 21 and 60 (P14, P21 and P60, respectively) in rats receiving different n-3 PUFA dietary supplies (control, totally deficient or DHA-supplemented). In control rats, all the genes were expressed at the BBB level (P14 to P60), the mRNA levels of FABP5 and ACSL3 having the highest values. Age-dependent differences included a systematic decrease in the mRNA expressions between P14-P21 and P60 (2 to 3-fold), with FABP7 mRNA abundance being the most affected (10-fold). In the cerebral cortex, mRNA levels varied differently since FATP4, ACSL3 and ACSL6 and the three FABPs genes were highly expressed. There were no significant differences in the expression of the 10 genes studied in n-3 deficient or DHA-supplemented rats despite significant differences in their brain DHA content, suggesting that brain DHA uptake from the blood does not necessarily require specific transporters within cerebral endothelial cells and could, under these experimental conditions, be a simple passive diffusion process. PMID:25123062

  13. Cyclooxygenase I and II inhibitors distinctly enhance hippocampal- and cortex-dependent cognitive functions in mice.

    Science.gov (United States)

    Syed, Huma; Ikram, Muhammad Faisal; Yaqinuddin, Ahmed; Ahmed, Touqeer

    2015-11-01

    Cyclooxygenase (COX) enzymes are expressed in the brain; however, their role in hippocampus-dependent and cortex-dependent cognitive functions remains to be fully elucidated. The aim of the present study was to comparatively investigate the effects of piroxicam, a selective COX-I inhibitor, and celecoxib, a selective COX‑II inhibitor, on cognitive functions in an AlCl3‑induced neurotoxicity mouse model to understand the specific role of each COX enzyme in the hippocampus and cortex. The AlCl3 (250 mg/kg) was administered to the mice in drinking water and the drugs were administered in feed for 30 days. Assessments of memory, including a Morris water maze, social behavior and nesting behavior were performed in control and treated mice. The RNA expression of the COX enzymes were analyzed using reverse transcription‑quantitative polymerase chain reaction analysis. An ex‑vivo 2,2‑Diphenyl‑1‑picrylhydrazyl assay was performed in the hippocampus and cortex. Following 30 days of treatment with thedrugs, the mice in the celecoxib‑ and piroxicam‑treated groups exhibited enhanced learning (6.84 ± 0.76 and 9.20 ± 1.08, respectively), compared with the AlCl3‑induced neurotoxicity group (21.14 ± 0.76) on the fifth day of the Morris water maze test. Celecoxib treatment improved social affiliation in the AlCl3‑induced neurotoxicity group, the results of which were superior to piroxicam. Piroxicam led to better improvement in nesting score in the AlCl3‑induced neurotoxicity group. Both drugs decreased the expression levels of COX‑I and COX‑II in the hippocampus and cortex, and rescued oxidative stress levels. These findings suggested that each drug distinctly affected cognitive functions, highlighting the distinctive roles of COX-I and COX-II in learning and memory.

  14. Intra-Amniotic LPS Induced Region-Specific Changes in Presynaptic Bouton Densities in the Ovine Fetal Brain

    Directory of Open Access Journals (Sweden)

    Eveline Strackx

    2015-01-01

    Full Text Available Rationale. Chorioamnionitis has been associated with increased risk for fetal brain damage. Although, it is now accepted that synaptic dysfunction might be responsible for functional deficits, synaptic densities/numbers after a fetal inflammatory challenge have not been studied in different regions yet. Therefore, we tested in this study the hypothesis that LPS-induced chorioamnionitis caused profound changes in synaptic densities in different regions of the fetal sheep brain. Material and Methods. Chorioamnionitis was induced by a 10 mg intra-amniotic LPS injection at two different exposure intervals. The fetal brain was studied at 125 days of gestation (term = 150 days either 2 (LPS2D group or 14 days (LPS14D group after LPS or saline injection (control group. Synaptophysin immunohistochemistry was used to quantify the presynaptic density in layers 2-3 and 5-6 of the motor cortex, somatosensory cortex, entorhinal cortex, and piriforme cortex, in the nucleus caudatus and putamen and in CA1/2, CA3, and dentate gyrus of the hippocampus. Results. There was a significant reduction in presynaptic bouton densities in layers 2-3 and 5-6 of the motor cortex and in layers 2-3 of the entorhinal and the somatosensory cortex, in the nucleus caudate and putamen and the CA1/2 and CA3 of the hippocampus in the LPS2D compared to control animals. Only in the motor cortex and putamen, the presynaptic density was significantly decreased in the LPS14 D compared to the control group. No changes were found in the dentate gyrus of the hippocampus and the piriforme cortex. Conclusion. We demonstrated that LPS-induced chorioamnionitis caused a decreased density in presynaptic boutons in different areas in the fetal brain. These synaptic changes seemed to be region-specific, with some regions being more affected than others, and seemed to be transient in some regions.

  15. Effect ofXl Feng capsule on expression of MRP1of hippocampus and cortex in epileptic rats induced by lithium-pilocarpine%熄风胶囊对氯化锂-匹罗卡品癫痫大鼠皮质和海马多药耐药相关蛋白1表达影响的研究

    Institute of Scientific and Technical Information of China (English)

    李新民; 任艳艳; 陈会; 路岩莉

    2012-01-01

    [目的]研究熄风胶囊对氯化锂-匹罗卡品癫痫大鼠皮质和海马多药耐药相关蛋白1( MRP1)表达的影响.[方法]1)利用氯化锂-匹罗卡品制作癫痫大鼠模型.2)实验大鼠按随机数字表法随机分为正常组、模型组、熄风胶囊高剂量组(熄高组)、熄风胶囊中剂量组(熄中组)、熄风胶囊低剂量组(熄低组)、熄风胶囊大剂量+卡马西平(CBZ)组(联高组)、熄风胶囊大剂量+CBZ1/2剂量(联低组)和CBZ组.3)通过Western-blot方法检测癫痫大鼠海马和皮质MRP1的表达程度.[结果]实验结果显示治疗组与模型组之间比较差异有统计学意义(P<0.05).[结论]熄风胶囊能有效抑制MRP1的过度表达.%[Objective] To sludy the intervention effect of Xi Feng capsule on medicine-related protein 1 (MRP1) of hippocampus and cortex in epileptic rats induced by Lithium-Pilocarpine. [Methods] 1 (Epilepsy was duplicated in rats with lithium-pilocarpine chemical ignition. 2)A1I the experimental rats were randomly divided into eight groups: normal control group, model group, Xi Feng intervention group(Xi Feng high-dose group), Xi Feng intervention group(Xi Feng middle-dose group), Xi Feng intervention group(Xi Feng low-dose group), Xi Feng high-dose+CBZ group, Xi Feng high-dose+CBZ 1/2 dose group, CBZ group. 3)The expression of MKP1 of hippocampus and cortex in epileptic rats was observed by Western-blot. [Results] The result of Westem-blol method suggested that there was a significant difference between intervention group of Xi Feng capsule and model group (P<0.05). [Conclusion] Xi Feng capsule single and combined with CBZ could efficiently depress the overexpression of MRP1 of the hippocampus and cortex in epileptic rats induced by Lithium-Pilocarpine.

  16. Ⅱ型糖尿病兔大脑皮质和海马神经元的神经丝蛋白表达%THE EXPRESSION OF NEUROFILAMENT PROTEINS IN CEREBRAL CORTEX AND HIPPOCAMPUS IN TYPE Ⅱ DIABETES IN RABBITS

    Institute of Scientific and Technical Information of China (English)

    马志健; 刘正清; 张秋菊; 蔡维君; 李明波; 刘小丹; 陈二云

    2002-01-01

    Objective:To investigate the morphological changes of the neuronal neurites in diabetic rabbit brain. Methods: Twenty- four New Zealand White rabbits were divided into 2 groups: control group and type Ⅱ diabetic group induced by high - carbohydrate and high- fat diet. The levels of blood sugar and insulin were detected at week 0(w0), w4, w8, w13, w18, w23 and w28. Brain tissue was stained by Nissl staining and immunolistochemistry with a specific antibody to neurofilament proteins. Result: In diabetic rabbits, the amount of large pyramidal neuron was significantly reduced, and neuronal neurites became swollen, whorled, disrupted and changed in caliber. In hippocampus CA1 region neurofilament staining was very weak. Conclusion: Neurotoxicity of chronic hyperglycemia might be relevant to vascular chronic complications, which affected the expression of NF and led to neurophysiological and structural changes in the brain of rabbits with type Ⅱ diabetes.

  17. In vitro evidence that phytanic acid compromises Na(+),K(+)-ATPase activity and the electron flow through the respiratory chain in brain cortex from young rats.

    Science.gov (United States)

    Busanello, Estela Natacha Brandt; Viegas, Carolina Maso; Moura, Alana Pimentel; Tonin, Anelise Miotti; Grings, Mateus; Vargas, Carmen R; Wajner, Moacir

    2010-09-17

    Phytanic acid (Phyt) tissue concentrations are increased in Refsum disease and other peroxisomal disorders characterized by neurologic damage and brain abnormalities. The present work investigated the in vitro effects of Phyt, at concentrations found in these peroxisomal disorders, on important parameters of energy metabolism in brain cortex of young rats. The parameters analyzed were CO(2) production from labeled acetate and glucose, the activities of the citric acid cycle enzymes citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, fumarase and malate dehydrogenase, as well as of the respiratory chain complexes I-IV, creatine kinase and Na(+),K(+)-ATPase. Our results show that Phyt did not alter citric acid cycle enzyme activities, or CO(2) production from acetate, reflecting no impairment of the functionality of the citric acid cycle. In contrast, respiratory chain activities were reduced at complexes I, II, I-III, II-III and IV. Membrane synaptical Na(+),K(+)-ATPase activity was also reduced by Phyt, with no alteration of creatine kinase activity. Considering the importance of the electron flow through the respiratory chain for brain energy metabolism (oxidative phosphorylation) and of Na(+),K(+)-ATPase activity for maintaining membrane potential necessary for neurotransmission, the data indicate that Phyt impairs brain bioenergetics at the level of energy formation, as well as neurotransmission. It is presumed that Phyt-induced impairment of these important systems may be involved at least in part in the neurological damage found in patients affected by disorders in which brain Phyt concentrations are increased.

  18. Navigating the auditory scene: an expert role for the hippocampus.

    Science.gov (United States)

    Teki, Sundeep; Kumar, Sukhbinder; von Kriegstein, Katharina; Stewart, Lauren; Lyness, C Rebecca; Moore, Brian C J; Capleton, Brian; Griffiths, Timothy D

    2012-08-29

    Over a typical career piano tuners spend tens of thousands of hours exploring a specialized acoustic environment. Tuning requires accurate perception and adjustment of beats in two-note chords that serve as a navigational device to move between points in previously learned acoustic scenes. It is a two-stage process that depends on the following: first, selective listening to beats within frequency windows, and, second, the subsequent use of those beats to navigate through a complex soundscape. The neuroanatomical substrates underlying brain specialization for such fundamental organization of sound scenes are unknown. Here, we demonstrate that professional piano tuners are significantly better than controls matched for age and musical ability on a psychophysical task simulating active listening to beats within frequency windows that is based on amplitude modulation rate discrimination. Tuners show a categorical increase in gray matter volume in the right frontal operculum and right superior temporal lobe. Tuners also show a striking enhancement of gray matter volume in the anterior hippocampus, parahippocampal gyrus, and superior temporal gyrus, and an increase in white matter volume in the posterior hippocampus as a function of years of tuning experience. The relationship with gray matter volume is sensitive to years of tuning experience and starting age but not actual age or level of musicality. Our findings support a role for a core set of regions in the hippocampus and superior temporal cortex in skilled exploration of complex sound scenes in which precise sound "templates" are encoded and consolidated into memory over time in an experience-dependent manner. PMID:22933806

  19. The study of neurogenesis contributed by the expression of survivin in hippocampus after traumatic brain injury%脑创伤后海马区生存素蛋白促进神经再生的研究

    Institute of Scientific and Technical Information of China (English)

    张琳; 颜荣; 刘晓智; 赵玉军; 陈镭

    2015-01-01

    目的 观察脑创伤后抗凋亡因子生存素(Survivin)的表达变化及其与内源性神经再生的相关性,探讨Survivin蛋白在促进创伤后内源性神经再生中的作用及其机制.方法 健康成年雄性C57BL/6小鼠80只,随机分为假手术组和创伤组(TBI组).在创伤(或假手术)后的12 h,1、2、5、7、14 d(n=6)取打击(或假手术)侧的海马,进行Western blot分析.进一步用免疫荧光双染的方法观察Survivin在不同类型细胞的表达(n=4).结果 Survivin蛋白在创伤后1d表达开始增高(42 003.15,P<0.05),2d时到达高峰(90 403.34,P<0.01),持续至第7天开始下降.小鼠打击侧海马齿状回颗粒细胞下层的Survivin+、溴脱氧尿嘧啶核苷(BrdU+)和双皮质素(DCX+)细胞均明显增加;绝大多数的Survivin+细胞呈现BrdU+,一部分Survivin+细胞呈现DCX+.结论 脑创伤后Survivin基因被激活,蛋白表达量明显增高;Survivin蛋白在受伤侧海马的神经干细胞和未成熟神经元中呈现高表达,与神经源性细胞的增殖有相关性.%Objective To investigate the expression of survivin after traumatic brain injury (TBI) ; and the relationship between the up-regulation of survivin and endogenous neurogenesis.Further to demonstrate the role of increased survivin to promote the adult neurogenesis,and detect the possible mechanism in this process.Finally to find the approach that can promote restoration of nervous function after TBI.Methods Adult male C57BL/6 mice,total n =80,were randomly divided into sham-operation group and TBI group.Mice in TBI and sham-operation group were sacrificed at 12 hours,1,2,5,7 and 14 days post TBI and sham-operation (n =6 for each point),and hippocampus tissues from the ipsilateral hemispheres were carried out for Western blotting.Double-label immunofluorescence staining was adopted to detect survivin expression in difference kinds of cells in the hippocampus (n =4).Results The up-regulation of survivin protein starting at day 1

  20. Acute exercise increases brain region-specific expression of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins.

    Science.gov (United States)

    Takimoto, Masaki; Hamada, Taku

    2014-05-01

    The brain is capable of oxidizing lactate and ketone bodies through monocarboxylate transporters (MCTs). We examined the protein expression of MCT1, MCT2, MCT4, glucose transporter 1 (GLUT1), and cytochrome-c oxidase subunit IV (COX IV) in the rat brain within 24 h after a single exercise session. Brain samples were obtained from sedentary controls and treadmill-exercised rats (20 m/min, 8% grade). Acute exercise resulted in an increase in lactate in the cortex, hippocampus, and hypothalamus, but not the brainstem, and an increase in β-hydroxybutyrate in the cortex alone. After a 2-h exercise session MCT1 increased in the cortex and hippocampus 5 h postexercise, and the effect lasted in the cortex for 24 h postexercise. MCT2 increased in the cortex and hypothalamus 5-24 h postexercise, whereas MCT2 increased in the hippocampus immediately after exercise, and remained elevated for 10 h postexercise. Regional upregulation of MCT2 after exercise was associated with increases in brain-derived neurotrophic factor and tyrosine-related kinase B proteins, but not insulin-like growth factor 1. MCT4 increased 5-10 h postexercise only in the hypothalamus, and was associated with increased hypoxia-inducible factor-1α expression. However, none of the MCT isoforms in the brainstem was affected by exercise. Whereas GLUT 1 in the cortex increased only at 18 h postexercise, COX IV in the hippocampus increased 10 h after exercise and remained elevated for 24 h postexercise. These results suggest that acute prolonged exercise induces the brain region-specific upregulation of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins. PMID:24610532

  1. Upregulation of nucleoside triphosphate diphosphohydrolase-1 and ecto-5'-nucleotidase in rat hippocampus after repeated low-dose dexamethasone administration.

    Science.gov (United States)

    Drakulić, Dunja; Stanojlović, Miloš; Nedeljković, Nadežda; Grković, Ivana; Veličković, Nataša; Guševac, Ivana; Mitrović, Nataša; Buzadžić, Ivana; Horvat, Anica

    2015-04-01

    Although dexamethasone (DEX), a synthetic glucocorticoid receptor (GR) analog with profound effects on energy metabolism, immune system, and hypothalamic-pituitary-adrenal axis, is widely used therapeutically, its impact on the brain is poorly understood. The aim of the present study was to explore the effect of repeated low-dose DEX administration on the activity and expression of the ectonucleotidase enzymes which hydrolyze and therefore control extracellular ATP and adenosine concentrations in the synaptic cleft. Ectonucleotidases tested were ectonucleoside triphosphate diphosphohydrolase 1-3 (NTPDase1-3) and ecto-5'-nucleotidase (eN), whereas the effects were evaluated in two brain areas that show different sensitivity to glucocorticoid action, hippocampus, and cerebral cortex. In the hippocampus, but not in cerebral cortex, modest level of neurodegenerative changes as well as increase in ATP, ADP, and AMP hydrolysis and upregulation of NTPDase1 and eN mRNA expression ensued under the influence of DEX. The observed pattern of ectonucleotidase activation, which creates tissue volume with enhanced capacity for adenosine formation, is the hallmark of the response after different insults to the brain.

  2. Cerebral cortex: a target and source of insulin?

    Science.gov (United States)

    Csajbók, Éva A; Tamás, Gábor

    2016-08-01

    Recent results suggest that insulin is synthesised by a subpopulation of neurons in the cerebral cortex and neural progenitor cells of the hippocampus. Supplementing the slow supply of insulin to the brain by pancreatic beta cells, the insulin locally released by neurons provides a rapid means of regulating local microcircuits, effectively modulating synaptic transmission and on-demand energy homeostasis of neural networks. Modulation of insulin production by brain neurons via glucagon-like peptide 1 (GLP-1) agonists might be useful in counteracting diabetes, obesity and neurodegenerative diseases. Replacement of lost pancreatic beta cells by autologous transplantation of insulin-producing neural progenitor cells could be a viable therapy for diabetes. PMID:27207082

  3. Effect of Kangxin Capsule(康欣胶囊) on the Expression of Nerve Growth Factors in Parietal Lobe of Cortex and Hippocampus CA1 Area of Vascular Dementia Model Rats

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To observe the effect of Kangxin Capsule (康欣胶囊, KXC) on the expression of nerve growth factor (NGF) as well as the morphology and amount of nerve synapse in the cortical parietal lobe and hippocampus CA1 area of vascular dementia (VD) model rats. Methods: The model rats of VD made by photochemical reaction technique were randomly divided into five groups: the model group (MG), the high-dose, middle-dose and low-dose KXC groups (HDG, MDG and LDG), and the Western medicine hydergin control group (WMG). They were treated respectively with distilled water, high, middle and low dosage of KXC suspended liquid, and hydergin for a month. Besides, a blank group consisting of normal (non-model)rats was set up for control (CG). The ultrastructure of nerve synapse in the cortical parietal lobe and hippocampus CA1 area of the rats were observed and its density estimated. The condition of NGF positive neurons in the above-mentioned two regions were also observed by immunohistochemical stain. Results: All the KXC or hydergin treated groups demonstrated a normal amount of nerve synapse with integral structure in the cortical parietal lobe and hippocampus CA1 area, which approached that in the CG and was superior to that in the MG. Also, the NGF positive neuron in all the treated groups was much more than that in MG with significant difference ( P<0.01 ), approaching to that in the CG. Conclusion: KXC could elevate the expression of NGF in the cortical parietal lobe and hippocampus CA1 area, preserve the number and morphology of synapse,thus to protect the function of nerve system from ischemic injury.

  4. Impairment of learning and memory after photothrombosis of the prefrontal cortex in rat brain: effects of Noopept.

    Science.gov (United States)

    Romanova, G A; Shakova, F M; Gudasheva, T A; Ostrovskaya, R U

    2002-12-01

    Experiments were performed on rats trained conditioned passive avoidance response. Acquisition and retention of memory traces were impaired after photothrombosis of the prefrontal cortex. The acyl-prolyl-containing dipeptide Noopept facilitated retention and retrieval of a conditioned passive avoidance response, normalized learning capacity in animals with ischemic damage to the cerebral cortex, and promoted finish training in rats with hereditary learning deficit. These results show that Noopept improves all three stages of memory. It should be emphasized that the effect of Noopept was most pronounced in animals with impaired mnesic function. PMID:12660828

  5. Quantitative autoradiography of (/sup 3/H)corticosterone receptors in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Sapolsky, R.M.; McEwen, B.S. (Rockefeller Univ., New York (USA)); Rainbow, T.C. (Pennsylvania Univ., Philadelphia (USA). School of Medicine)

    1983-07-25

    The authors have quantified corticosterone receptors in rat brain by optical density measurements of tritium-film autoradiograms. Rats were injected i.v. with 500 ..mu..Ci (/sup 3/H)corticosterone to label brain receptors. Frozen sections of brain were cut with a cryostat and exposed for 2 months against tritium-sensitive sheet film (LKB Ultrofilm). Tritium standards were used to convert optical density readings into molar concentrations of receptor. High levels of corticosterone receptors were present throughout the pyramidal and granule cell layers of the hippocampus. Moderate levels of receptors were found in the neuropil of the hippocampus, the lateral septum, the cortical nucleus of the amygdala and the entorhinal cortex. All other brain regions had low levels of receptors. These results extend previous non-quantitative autoradiographic studies of corticosterone receptors and provide a general procedure for the quantitative autoradiography of steroid hormone receptors in brain tissue.

  6. Effect of chronic intermittent hypoxia on the expression of Nip3, cell apoptosis, β-amyloid protein deposit in mice brain cortex

    Institute of Scientific and Technical Information of China (English)

    ZENG Yi-ming; CAI Kai-jin; CHEN Xiao-yong; WU Minx-ia; LIN Xi

    2009-01-01

    Background Chronic intermittent hypoxia (CIH) is the most important pathophysiologic feature of sleep apnea syndrome (SAS). To explore the relationship between SAS and dementia, the effects of CIH on the expression of Nip3, neuron apoptosis andβ-amyloid protein deposit in the brain cortex of the frontal lobe of mice were evaluated in this study. Methods Thirty male ICR mice were divided into four groups: control group (A, n=-10, sham hypoxia/reoxygenation), 2 weeks CIH group (B, n=-5), 4 weeks CIH group (C, n=-5), and 8 weeks CIH group (D, n=10). The ICR mice were placed in a chamber and exposed to intermittent hypoxia (oxygen concentration changed periodically from (21.72±0.55)% to (6.84±0.47)% every two minutes, eight hours per day). Neuron apoptosis of the cortex of the frontal lobe was detected by means of terminal deoxy-nucleotidyl transferase-mediated in situ end labeling (TUNEL). Immunohistochemical staining was performed for measuring expression of Nip3 and β-amyloid protein. The ultrastructure of neurons was observed under a transmission electron microscope. Results TUNEL positive neurons in each square millimeter in the cortex of the frontal lobe were categorized by median or Ri into group A (1,5.5), group B (133, 13), group C (252, 21), and group D (318, 24). There were significant differences among the above four groups (P=0.000). The significance test was performed between the control group and each CIH group respectively: group A and B (P>0.05); group A and C (P 0.05); groups A and C (P<0.005); and groups A and D (P<0.005). There was no significant difference between groups B and C, groups B and D, and groups C and D. The expression of Nip3 was closely correlated with neuron apoptosis in the brain (P <0.05). The expression ofβ-amyloid protein in the brain of mice was negative in all CIH groups and the control group. Ultrastructure observation showed karyopyknosis of nucleus, swelling of chondriosomes, deposit of lipofuscins and degeneration of

  7. A Single Brain-Derived Neurotrophic Factor Infusion into the Dorsomedial Prefrontal Cortex Attenuates Cocaine Self-Administration-Induced Phosphorylation of Synapsin in the Nucleus Accumbens during Early Withdrawal

    OpenAIRE

    Sun, Wei-Lun; Eisenstein, Sarah A.; Zelek-Molik, Agnieszka; McGinty, Jacqueline F.

    2015-01-01

    Background: Dysregulation in the prefrontal cortex-nucleus accumbens pathway has been implicated in cocaine addiction. We have previously demonstrated that one intra-dorsomedial prefrontal cortex brain-derived neurotrophic factor (BDNF) infusion immediately following the last cocaine self-administration session caused a long-lasting inhibition of cocaine-seeking and normalized the cocaine-induced disturbance of glutamate transmission in the nucleus accumbens after extinction and a cocaine pri...

  8. Changes in brain oxidative metabolism induced by water maze training.

    Science.gov (United States)

    Conejo, N M; González-Pardo, H; Vallejo, G; Arias, J L

    2007-03-16

    Although the hippocampus has been shown to be essential for spatial memory, the contribution of associated brain regions is not well established. Wistar rats were trained to find a hidden escape platform in the water maze during eight days. Following training, the oxidative metabolism in different brain regions was evaluated using cytochrome oxidase histochemistry. Metabolic activations were found in the prelimbic cortex, cornu ammonis (CA) 1 subfield of the dorsal hippocampus and the anterior thalamic nuclei, relative to yoked swim controls and naïve rats. In addition, many cross-correlations in brain metabolism were observed among the latter regions. These results support the implication of a hippocampal-prefrontal-thalamic system to spatial memory in rats. PMID:17222984

  9. Restraint stress-induced morphological changes at the blood-brain barrier in adult rats

    Directory of Open Access Journals (Sweden)

    Petra eSántha

    2016-01-01

    Full Text Available Stress is well known to contribute to the development of both neurological and psychiatric diseases. While the role of the blood-brain barrier is increasingly recognised in the development of neurodegenerative disorders, such as Alzheimer’s disease, dysfunction of the blood-brain barrier has been linked to stress-related psychiatric diseases only recently. In the present study the effects of restraint stress with different duration (1, 3 and 21 days were investigated on the morphology of the blood-brain barrier in male adult Wistar rats. Frontal cortex and hippocampus sections were immunostained for markers of brain endothelial cells (claudin-5, occludin and glucose transporter-1 and astroglia (GFAP. Staining pattern and intensity were visualized by confocal microscopy and evaluated by several types of image analysis. The ultrastructure of brain capillaries was investigated by electron microscopy. Morphological changes and intensity alterations in brain endothelial tight junction proteins claudin-5 and occludin were induced by stress. Following restraint stress significant increases in the fluorescence intensity of glucose transporter-1 were detected in brain endothelial cells in the frontal cortex and hippocampus. Significant reductions in GFAP fluorescence intensity were observed in the frontal cortex in all stress groups. As observed by electron microscopy, one-day acute stress induced morphological changes indicating damage in capillary endothelial cells in both brain regions. After 21 days of stress thicker and irregular capillary basal membranes in the hippocampus and edema in astrocytes in both regions were seen. These findings indicate that stress exerts time-dependent changes in the staining pattern of tight junction proteins occludin, claudin-5 and glucose transporter-1 at the level of brain capillaries and in the ultrastructure of brain endothelial cells and astroglial endfeet, which may contribute to neurodegenerative processes

  10. Pharmacokinetics and dopamine/acetylcholine releasing effects of ginsenoside Re in hippocampus and mPFC of freely moving rats

    Institute of Scientific and Technical Information of China (English)

    Jing SHI; Wei XUE; Wen-jie ZHAO; Ke-xin LI

    2013-01-01

    Aim: To investigate the pharmacokinetics and dopamine/acetylcholine-releasing effects of ginsenoside Re (Re) in brain regions related to learning and memory,and to clarify the neurochemical mechanisms underlying its anti-dementia activity.Methods: Microdialysis was conducted on awake,freely moving adult male SD rats with dialysis probes implanted into the hippocampus,medial prefrontal cortex (mPFC) or the third ventricle.The concentrations of Re,dopamine (DA) and acetylcholine (ACh) in dialysates were determined using LC-MS/MS.Results: Subcutaneous administration of a single dose of Re (12.5,25 or 50 mg/kg) rapidly distributed to the cerebrospinal fluid and exhibited linear pharmacokinetics.The peak concentration (Cmax) occurred at 60 min for all doses.Re was not detectable after 240 min in the dialysates for the low dose of 12.5 mg/kg.At the same time,Re dose-dependently increased extracellular levels of DA and ACh in the hippocampus and mPFC,and more prominent effects were observed in the hippocampus.Conclusion: The combined study of the pharmacokinetics and pharmacodynamics of Re demonstrate that increase of extracellular levels of DA and ACh,particularly in the hippocampus,may contribute,at least in part,to the anti-dementia activity of Re.

  11. 创伤性脑损伤后大鼠海马区糖皮质激素受体mRNA的表达%Expression of glucocorticoid receptor mRNA in rat hippocampus after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    高伟; 贺晓生; 梁明; 顼红雨

    2011-01-01

    Objective To explore the expression of glucocorticoid receptor (GR) mRNA in rat hippocampus and its effect on cognitive function after traumatic brain injury (TBI). Methods The rat TBI model by lateral acceleration rotation of head was established. GR mRNA levels were detected by reverse transcription polymerase chain reaction (RT-PCR), and cognitive function was evaluated by Morris water maze.Results Expression of GR mRNA in rat hippocampus remained in low level from 4 d to 7 d after TBI. Morris water maze test showed significant impairment of cognitive functions in rats. Conclusion Down-regulation of GR mRNA in hippocampus induces the cognitive dysfunction in rats.%目的 研究创伤性脑损伤(TBI)后大鼠海马区糖皮质激素受体(GR)mRNA表达的变化及其对大鼠认知功能的影响.方法 建立大鼠头颅侧向旋转加速脑创伤模型,应用逆转录酶-聚合酶链式反应(RT-PCR)和Morris水迷宫检测伤后大鼠海马区GR mRNA的表达与学习记忆功能的关系.结果 伤后4~7 d大鼠海马区GR持续低表达;Morris水迷宫检测伤后大鼠出现认知功能障碍.结论 TBI大鼠海马区GR mRNA的降低影响大鼠认知功能.

  12. Brain glycogen supercompensation following exhaustive exercise.

    Science.gov (United States)

    Matsui, Takashi; Ishikawa, Taro; Ito, Hitoshi; Okamoto, Masahiro; Inoue, Koshiro; Lee, Min-Chul; Fujikawa, Takahiko; Ichitani, Yukio; Kawanaka, Kentaro; Soya, Hideaki

    2012-02-01

    Brain glycogen localized in astrocytes, a critical energy source for neurons, decreases during prolonged exhaustive exercise with hypoglycaemia. However, it is uncertain whether exhaustive exercise induces glycogen supercompensation in the brain as in skeletal muscle. To explore this question, we exercised adult male rats to exhaustion at moderate intensity (20 m min(-1)) by treadmill, and quantified glycogen levels in several brain loci and skeletal muscles using a high-power (10 kW) microwave irradiation method as a gold standard. Skeletal muscle glycogen was depleted by 82-90% with exhaustive exercise, and supercompensated by 43-46% at 24 h after exercise. Brain glycogen levels decreased by 50-64% with exhaustive exercise, and supercompensated by 29-63% (whole brain 46%, cortex 60%, hippocampus 33%, hypothalamus 29%, cerebellum 63% and brainstem 49%) at 6 h after exercise. The brain glycogen supercompensation rates after exercise positively correlated with their decrease rates during exercise. We also observed that cortical and hippocampal glycogen supercompensation were sustained until 24 h after exercise (long-lasting supercompensation), and their basal glycogen levels increased with 4 weeks of exercise training (60 min day(-1) at 20 m min(-1)). These results support the hypothesis that, like the effect in skeletal muscles, glycogen supercompensation also occurs in the brain following exhaustive exercise, and the extent of supercompensation is dependent on that of glycogen decrease during exercise across brain regions. However, supercompensation in the brain preceded that of skeletal muscles. Further, the long-lasting supercompensation of the cortex and hippocampus is probably a prerequisite for their training adaptation (increased basal levels), probably to meet the increased energy demands of the brain in exercising animals. PMID:22063629

  13. Brain Basics

    Medline Plus

    Full Text Available ... ADHD , schizophrenia , and depression . Hippocampus —Helps create and file new memories. When the hippocampus is damaged, a ... portion of the brain involved in creating and filing new memories. hypothalmic-pituitary-adrenal (HPA) axis —A ...

  14. Cathepsin L Plays a Major Role in Cholecystokinin Production in Mouse Brain Cortex and in Pituitary AtT-20 Cells: Protease Gene Knockout and Inhibitor Studies

    Science.gov (United States)

    Beinfeld, Margery C.; Funkelstein, Lydiane; Foulon, Thierry; Cadel, Sandrine; Kitagawa, Kouki; Toneff, Thomas; Reinheckel, Thomas; Peters, Christoph; Hook, Vivian

    2009-01-01

    Cholecystokinin (CCK) is a peptide neurotransmitter whose production requires proteolytic processing of the proCCK precursor to generate active CCK8 neuropeptide in brain. This study demonstrates the significant role of the cysteine protease cathepsin L for CCK8 production. In cathepsin L knockout (KO) mice, CCK8 levels were substantially reduced in brain cortex by an average of 75%. To evaluate the role of cathepsin L in producing CCK in the regulated secretory pathway of neuroendocrine cells, pituitary AtT-20 cells that stably produce CCK were treated with the specific cathepsin L inhibitor, CLIK-148. CLIK-148 inhibitor treatment resulted in decreased amounts of CCK secreted from the regulated secretory pathway of AtT-20 cells. CLIK-148 also reduced cellular levels of CCK9 (Arg-CCK8), consistent with CCK9 as an intermediate product of cathepsin L, shown by the decreased ratio of CCK9/CCK8. The decreased CCK0/CCK8 ratio also suggests a shift in the production to CCK8 over CCK9 during inhibition of cathepsin L. During reduction of the PC1/3 processing enzyme by siRNA, the ratio of CCK9/CCK8 was increased, suggesting a shift to the cathepsin L pathway for production of CCK9. The changes in ratios of CCK9 compared to CCK8 are consistent with dual roles of the cathepsin L protease pathway that includes aminopeptidase B to remove NH2-terminal Arg or Lys, and the PC1/3 protease pathway. These results suggest that cathepsin L functions as a major protease responsible for CCK8 production in mouse brain cortex, and participates with PC1/3 for CCK8 production in pituitary cells. PMID:19589362

  15. Lack of potassium channel induces proliferation and survival causing increased neurogenesis and two-fold hippocampus enlargement

    DEFF Research Database (Denmark)

    Almgren, Malin; Persson, Ann-Sophie; Fenghua, Chen;

    2007-01-01

    The megencephaly mice show dramatic progressive increase in brain size and seizures. The overgrowth affects primarily the hippocampus and ventral cortex. The phenotype originates from a mutation in the Shaker-like voltage-gated potassium channel Kv1.1 brain, which results in a malfunctioning...... protein. A key question in elucidating the mechanism behind the unique brain overgrowth is whether it is caused by an increase in cell number. By applying stereological techniques, we found that the number of both neurons and astrocytes, as well as structure volume, was increased approximately two...... lower in mceph/mceph supporting additional overgrowth mechanism than induced by seizures. In conclusion, lack of a functional Kv1.1 ion channel subunit in the mceph/mceph mice causes a unique neuronal hyperplasia in distinct hippocampal regions and consequently hippocampal enlargement from 2 to 3 weeks...

  16. Glucocorticoid exerts its non-genomic effect on IPSC by activation of a phospholipase C-dependent pathway in prefrontal cortex of rats.

    Science.gov (United States)

    Teng, Zenghui; Zhang, Mingyue; Zhao, Minggao; Zhang, Weiqi

    2013-07-01

    In response to stressor, the brain activates a comprehensive stress system. Among others, this stress system causes release of glucocorticoids that also feed back to the brain. Glucocorticoids affect brain function by activation of both delayed, genomic and rapid, non-genomic mechanisms in rodents. Here we report that application of the potent glucocorticoid receptor agonist dexamethasone (DEX) caused a rapid increase of spontaneous and miniature inhibitory postsynaptic currents (IPSCs) and elicited intermittent burst activities through a non-genomic pathway, involving membrane-located receptors. The onset of the rapid effect in prefrontal cortex (PFC, hippocampus (glucocorticoids could rapidly enhance IPSCs and evoke burst activities by activation of at least two different signalling pathways in hippocampus and PFC of rats.

  17. Structural organization of long-range GABAergic projection system of the hippocampus

    Directory of Open Access Journals (Sweden)

    Shozo Jinno

    2009-07-01

    Full Text Available GABA is a key mediator of neural activity in the mammalian central nervous system, and a diverse set of GABAergic neurons utilize GABA as transmitter. It has been widely accepted that GABAergic neurons typically serve as interneurons while glutamatergic principal cells send excitatory signals to remote areas. In general, glutamatergic projection neurons monosynaptically innervate both principal cells and local GABAergic interneurons in each target area, and these GABAergic cells play a vital role in modulation of the activity of principal cells. The formation and recall of sensory, motor and cognitive representations require coordinated fast communication among multiple areas of the cerebral cortex, which are thought to be mostly mediated by glutamatergic neurons. However, there is an increasing body of evidence showing that specific subpopulations of cortical GABAergic neurons send long-range axonal projections to subcortical and other cortical areas. In particular, a variety of GABAergic neurons in the hippocampus project to neighboring and remote areas. Using anatomical, molecular and electrophysiological approaches, several types of GABAergic projection neurons have been shown to exist in the hippocampus. The target areas of these cells are the subiculum and other retrohippocampal areas, the medial septum and the contralateral dentate gyrus. The long-range GABAergic projection system of the hippocampus may serve to coordinate precisely the multiple activity patterns of widespread cortical cell assemblies in different brain states and among multiple functionally related areas.

  18. Endurance training increases brain lactate uptake during hypoglycemia by up regulation of brain lactate transporters.

    Science.gov (United States)

    Aveseh, Malihe; Nikooie, Rohollah; Sheibani, Vahid; Esmaeili-Mahani, Saeed

    2014-08-25

    The capacity of the brain to metabolize non-glucose substrates under hypoglycemic state maintains its energy requirements. We hypothesized that exercise-induced increase in capacity for brain utilization of lactate by up regulation of the monocarboxylate transporters (MCTs) may contribute metabolic substrates during hypoglycemia in diabetic rats induced by streptozotocin. The induced diabetes increased MCT1 and MCT2 expression in the cortex and the hippocampus in the sedentary diabetic animals. There were exercise-induced increases in MCT1 in the cortex and the hippocampus and MCT2 expression in the cortex in trained diabetic animals; whereas, no changes were found in the healthy trained animals. Both diabetic and healthy trained animals showed higher values for brain lactate uptake during insulin-induced hypoglycemia when animals were intraperitoneally injected by L(+)-lactic acid. However, the response of counterregulatory hormones during hypoglycemia were blunted in the diabetic trained animals which indicates to carefully monitoring of glycemic targets both during and following prolonged exercise. PMID:25004253

  19. The Anti-apoptosis Effects of Daidzein in the Brain of D-Galactose Treated Mice

    Directory of Open Access Journals (Sweden)

    Xiang-bin Hu

    2007-07-01

    Full Text Available The purpose of this study was to explore the neuroprotective effects of daidzein on the apoptotic pathway in the hippocampus and cortex of D-galactose treated mice. For this purpose we have examined the expression of bcl-2 mRNA, bax mRNA and caspase-3 in the hippocampus and cortex of D-galactose-treated mice after fed with 10 or 5 mg/kg of daidzein. The results of in situ hybridization experiments indicate that daidzein could help increase the transcriptions of bcl-2 and decrease the transcriptions of bax in those brain regions of D-galactose-treated mice. Furthermore, immunohistochemical studies showed that daidzein could reduce the expression of caspase-3 in both brain regions. These results suggest that daidzein in soybean can inhibit the D-gal induced apoptosis via Bcl-2/Bax apoptotic pathway and be a potential medical candidate for neurodegeneration therapy.

  20. Molecularly Defined Circuitry Reveals Input-Output Segregation in Deep Layers of the Medial Entorhinal Cortex.

    Science.gov (United States)

    Sürmeli, Gülşen; Marcu, Daniel Cosmin; McClure, Christina; Garden, Derek L F; Pastoll, Hugh; Nolan, Matthew F

    2015-12-01

    Deep layers of the medial entorhinal cortex are considered to relay signals from the hippocampus to other brain structures, but pathways for routing of signals to and from the deep layers are not well established. Delineating these pathways is important for a circuit level understanding of spatial cognition and memory. We find that neurons in layers 5a and 5b have distinct molecular identities, defined by the transcription factors Etv1 and Ctip2, and divergent targets, with extensive intratelencephalic projections originating in layer 5a, but not 5b. This segregation of outputs is mirrored by the organization of glutamatergic input from stellate cells in layer 2 and from the hippocampus, with both preferentially targeting layer 5b over 5a. Our results suggest a molecular and anatomical organization of input-output computations in deep layers of the MEC, reveal precise translaminar microcircuitry, and identify molecularly defined pathways for spatial signals to influence computation in deep layers.

  1. Dopamine D4 receptors modulate brain metabolic activity in the prefrontal cortex and cerebellum at rest and in response to methylphenidate

    Energy Technology Data Exchange (ETDEWEB)

    Michaelides, M.; Wang, G.; Michaelides, M.; Pascau, J.; Gispert, J.-D.; Delis, F.; Grandy, D.K.; Wang, G.-J.; Desco, M.; Rubinstein, M.; Volkow, N.D.; Thanos, P.K.

    2010-07-16

    Methylphenidate (MP) is widely used to treat attention deficit hyperactivity disorder (ADHD). Variable number of tandem repeats polymorphisms in the dopamine D4 receptor (D{sub 4}) gene have been implicated in vulnerability to ADHD and the response to MP. Here we examined the contribution of dopamine D4 receptors (D4Rs) to baseline brain glucose metabolism and to the regional metabolic responses to MP. We compared brain glucose metabolism (measured with micro-positron emission tomography and [{sup 18}F]2-fluoro-2-deoxy-D-glucose) at baseline and after MP (10 mg/kg, i.p.) administration in mice with genetic deletion of the D{sub 4}. Images were analyzed using a novel automated image registration procedure. Baseline D{sub 4}{sup -/-} mice had lower metabolism in the prefrontal cortex (PFC) and greater metabolism in the cerebellar vermis (CBV) than D{sub 4}{sup +/+} and D{sub 4}{sup +/-} mice; when given MP, D{sub 4}{sup -/-} mice increased metabolism in the PFC and decreased it in the CBV, whereas in D{sub 4}{sup +/+} and D{sub 4}{sup +/-} mice, MP decreased metabolism in the PFC and increased it in the CBV. These findings provide evidence that D4Rs modulate not only the PFC, which may reflect the activation by dopamine of D4Rs located in this region, but also the CBV, which may reflect an indirect modulation as D4Rs are minimally expressed in this region. As individuals with ADHD show structural and/or functional abnormalities in these brain regions, the association of ADHD with D4Rs may reflect its modulation of these brain regions. The differential response to MP as a function of genotype could explain differences in brain functional responses to MP between patients with ADHD and healthy controls and between patients with ADHD with different D{sub 4} polymorphisms.

  2. The role of the ventromedial prefrontal cortex in memory consolidation

    NARCIS (Netherlands)

    Nieuwenhuis, I.L.C.; Takashima, A.

    2011-01-01

    System-level memory consolidation theory posits that the hippocampus initially links the neocortical representations, followed by a shift to a hippocampus-independent neocortical network. With consolidation, an increase in activity in the human subgenual ventromedial prefrontal cortex (vmPFC) has re

  3. Effect of Transcranial Magnetic Stimulation on the Expression of c-Fos and Brain-derived Neurotrophic Factor of the Cerebral Cortex in Rats with Cerebral Infarct

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaoqiao; MEI Yuanwu; LIU Chuanyu; YU Shanchun

    2007-01-01

    The effect of transcranial magnetic stimulation (TMS) on the neurological functional recovery and expression of c-Fos and brain-derived neurotrophic factor (BDNF) of the cerebral cortex in rats with cerebral infarction was investigated. Cerebral infarction models were established by using left middle cerebral artery occlusion (MCAO) and were randomly divided into a model group (n=40) and a TMS group (n=40). TMS treatment (2 times per day, 30 pulses per time) with a frequency of 0.5 Hz and magnetic field intensity of 1.33 Tesla was carried out in TMS group after MCAO. Modified neurological severity score (NSS) were recorded before and 1, 7, 14, 21, and 28 day(s) after MCAO. The expression of c-Fos and BDNF was immunohistochemically detected 1, 7,14, 21, and 28 day(s) after infarction respectively. Our results showed that a significant recovery of NSS (P<0.05) was found in animals treated by TMS on day 7, 14, 21, and 28 as compared with the animals in the model group. The positive expression of c-Fos and BDNF was detected in the cortex surrounding the infarction areas, while the expression of c-Fos and BDNF increased significantly in TMS treatment group in comparison with those in model group 7, 14, 21, and 28 days (P<0.05) and 7,14, 21 days (P<0.01) after infarction, respectively. It is concluded that TMS has therapeutic effect on cerebral infarction and this may have something to do with TMS's ability to promote the expression of c-Fos and BDNF of the cerebral cortex in rats with cerebral infarction.

  4. Abnormal Brain Default-Mode Network Functional Connectivity in Drug Addicts

    OpenAIRE

    Ma, Ning; Liu, Ying; Fu, Xian-ming; Li, Nan; Wang, Chang-Xin; Zhang, Hao; Qian, Ruo-Bing; Xu, Hu-Sheng; Hu, Xiaoping; Zhang, Da-Ren

    2011-01-01

    Background The default mode network (DMN) is a set of brain regions that exhibit synchronized low frequency oscillations at resting-state, and is believed to be relevant to attention and self-monitoring. As the anterior cingulate cortex and hippocampus are impaired in drug addiction and meanwhile are parts of the DMN, the present study examined addiction-related alteration of functional connectivity of the DMN. Methodology Resting-state functional magnetic resonance imaging data of chronic he...

  5. Oxidative Stress Biomarkers in Some Rat Brain Structures and Peripheral Organs Underwent Cocaine

    OpenAIRE

    Pomierny-Chamioło, Lucyna; Moniczewski, Andrzej; Wydra, Karolina; Suder, Agata; Filip, Małgorzata

    2012-01-01

    Oxidative stress (OS) generates or intensifies cocaine-evoked toxicity in the brain and peripheral organs. The aim of this study was to examine superoxide dismutase (SOD) activity and lipid peroxidation [measured by malondialdehyde (MDA) levels] in rats during maintenance of cocaine self-administration and after withdrawal by a yoked-triad procedure. Our results indicate that repeated cocaine self-administration provoked an elevation of SOD activity in the hippocampus, frontal cortex, dorsal ...

  6. Issues in localization of brain function: The case of lateralized frontal cortex in cognition, emotion, and psychopathology

    OpenAIRE

    Miller, Gregory A.; Crocker, Laura D.; Spielberg, Jeffrey M.; Zachary P. Infantolino; Wendy eHeller

    2013-01-01

    The appeal of simple, sweeping portraits of large-scale brain mechanisms relevant to psychological phenomena competes with a rich, complex research base. As a prominent example, two views of frontal brain organization have emphasized dichotomous lateralization as a function of either emotional valence (positive/negative) or approach/avoidance motivation. Compelling findings support each. The literature has struggled to choose between them for three decades, without success. Both views are pro...

  7. [The effect of intracerebral mesenchymal stem cells transplantation on the density of microvascular network of the pial matter of the rat brain cortex].

    Science.gov (United States)

    Dvoretskiĭ, D P; Sokolova, I B; Sergeev, I V; Bilibina, A A

    2012-04-01

    Using a TV installation for studying the microcirculation (with 30-160-fold magnification), the density of microvascular network in the pia matter of the rat brain sensomotor cortex was determined after intracerebral transplantation of mesenchymal stem cells (MSC) or (as control) of the MSC cultivation nutrition medium, or of saline. The results have shown that intracerebral transplantation does not change density of microvascular network in the pia mater of the ipsilateral hemisphere. Transplantation of the MSC led to a 1.8-fold increase of density of the pia matter of the contralateral hemisphere as compared with control animals; the number of arterioles in the same zone was 2.5-fold higher than in intact rats. PMID:22834342

  8. Adult Onset-hypothyroidism has Minimal Effects on Synaptic Transmission in the Hippocampus of Rats Independent of Hypothermia

    Science.gov (United States)

    Introduction: Thyroid hormones (TH) influence central nervous system (CNS) function during development and in adulthood. The hippocampus, a brain area critical for learning and memory is sensitive to TH insufficiency. Synaptic transmission in the hippocampus is impaired following...

  9. Acute iron overload and oxidative stress in brain

    International Nuclear Information System (INIS)

    An in vivo model in rat was developed by intraperitoneally administration of Fe-dextran to study oxidative stress triggered by Fe-overload in rat brain. Total Fe levels, as well as the labile iron pool (LIP) concentration, in brain from rats subjected to Fe-overload were markedly increased over control values, 6 h after Fe administration. In this in vivo Fe overload model, the ascorbyl (A·)/ascorbate (AH−) ratio, taken as oxidative stress index, was assessed. The A·/AH− ratio in brain was significantly higher in Fe-dextran group, in relation to values in control rats. Brain lipid peroxidation indexes, thiobarbituric acid reactive substances (TBARS) generation rate and lipid radical (LR·) content detected by Electron Paramagnetic Resonance (EPR), in Fe-dextran supplemented rats were similar to control values. However, values of nuclear factor-kappaB deoxyribonucleic acid (NFκB DNA) binding activity were significantly increased (30%) after 8 h of Fe administration, and catalase (CAT) activity was significantly enhanced (62%) 21 h after Fe administration. Significant enhancements in Fe content in cortex (2.4 fold), hippocampus (1.6 fold) and striatum (2.9 fold), were found at 6 h after Fe administration. CAT activity was significantly increased after 8 h of Fe administration in cortex, hippocampus and striatum (1.4 fold, 86, and 47%, respectively). Fe response in the whole brain seems to lead to enhanced NF-κB DNA binding activity, which may contribute to limit oxygen reactive species-dependent damage by effects on the antioxidant enzyme CAT activity. Moreover, data shown here clearly indicate that even though Fe increased in several isolated brain areas, this parameter was more drastically enhanced in striatum than in cortex and hippocampus. However, comparison among the net increase in LR· generation rate, in different brain areas, showed enhancements in cortex lipid peroxidation, without changes in striatum and hippocampus LR· generation rate after 6 h

  10. Acute iron overload and oxidative stress in brain.

    Science.gov (United States)

    Piloni, Natacha E; Fermandez, Virginia; Videla, Luis A; Puntarulo, Susana

    2013-12-01

    An in vivo model in rat was developed by intraperitoneally administration of Fe-dextran to study oxidative stress triggered by Fe-overload in rat brain. Total Fe levels, as well as the labile iron pool (LIP) concentration, in brain from rats subjected to Fe-overload were markedly increased over control values, 6h after Fe administration. In this in vivo Fe overload model, the ascorbyl (A)/ascorbate (AH(-)) ratio, taken as oxidative stress index, was assessed. The A/AH(-) ratio in brain was significantly higher in Fe-dextran group, in relation to values in control rats. Brain lipid peroxidation indexes, thiobarbituric acid reactive substances (TBARS) generation rate and lipid radical (LR) content detected by Electron Paramagnetic Resonance (EPR), in Fe-dextran supplemented rats were similar to control values. However, values of nuclear factor-kappaB deoxyribonucleic acid (NFκB DNA) binding activity were significantly increased (30%) after 8h of Fe administration, and catalase (CAT) activity was significantly enhanced (62%) 21h after Fe administration. Significant enhancements in Fe content in cortex (2.4 fold), hippocampus (1.6 fold) and striatum (2.9 fold), were found at 6h after Fe administration. CAT activity was significantly increased after 8h of Fe administration in cortex, hippocampus and striatum (1.4 fold, 86, and 47%, respectively). Fe response in the whole brain seems to lead to enhanced NF-κB DNA binding activity, which may contribute to limit oxygen reactive species-dependent damage by effects on the antioxidant enzyme CAT activity. Moreover, data shown here clearly indicate that even though Fe increased in several isolated brain areas, this parameter was more drastically enhanced in striatum than in cortex and hippocampus. However, comparison among the net increase in LR generation rate, in different brain areas, showed enhancements in cortex lipid peroxidation, without changes in striatum and hippocampus LR generation rate after 6h of Fe overload

  11. The prefrontal cortex in the Göttingen minipig brain defined by neural projection criteria and cytoarchitecture

    DEFF Research Database (Denmark)

    Jelsing, J; Hay-Schmidt, Anders; Dyrby, Tim;

    2006-01-01

    the medial and rostral pole of the frontal lobe as well as the anterior cingulate, anterior insular and dorsomedial frontal cortices. Subsequently, the reciprocity and specificity of these connections were tested from injections into the traced frontal cortices indicating that the PFC has cortical...... connections to different parts of the MD nucleus. Although the granular layer IV, characteristic of primate PFC could not be identified, both cytoarchitectonic and connectional data suggests that the Gottingen minipig has a structurally divided prefrontal cortex. Stereological estimates of PFC volume showed...

  12. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jian-Qin Wang

    2014-01-01

    Full Text Available Objective. Numerous epidemiological studies have linked diabetes mellitus (DM with an increased risk of developing Alzheimer’s disease (AD. However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ- induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC. Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies.

  13. Histomorphological Phenotyping of the Adult Mouse Brain.

    Science.gov (United States)

    Mikhaleva, Anna; Kannan, Meghna; Wagner, Christel; Yalcin, Binnaz

    2016-01-01

    This article describes a series of standard operating procedures for morphological phenotyping of the mouse brain using basic histology. Many histological studies of the mouse brain use qualitative approaches based on what the human eye can detect. Consequently, some phenotypic information may be missed. Here we describe a quantitative approach for the assessment of brain morphology that is simple and robust. A total of 78 measurements are made throughout the brain at specific and well-defined regions, including the cortex, the hippocampus, and the cerebellum. Experimental design and timeline considerations, including strain background effects, the importance of sectioning quality, measurement variability, and efforts to correct human errors are discussed. © 2016 by John Wiley & Sons, Inc. PMID:27584555

  14. Current trends in intraoperative optical imaging for functional brain mapping and delineation of lesions of language cortex.

    Science.gov (United States)

    Prakash, Neal; Uhlemann, Falk; Sheth, Sameer A; Bookheimer, Susan; Martin, Neil; Toga, Arthur W

    2009-08-01

    Resection of a cerebral arteriovenous malformation (AVM), epileptic focus, or glioma, ideally has a prerequisite of microscopic delineation of the lesion borders in relation to the normal gray and white matter that mediate critical functions. Currently, Wada testing and functional magnetic resonance imaging (fMRI) are used for preoperative mapping of critical function, whereas electrical stimulation mapping (ESM) is used for intraoperative mapping. For lesion delineation, MRI and positron emission tomography (PET) are used preoperatively, whereas microscopy and histological sectioning are used intraoperatively. However, for lesions near eloquent cortex, these imaging techniques may lack sufficient resolution to define the relationship between the lesion and language function, and thus not accurately determine which patients will benefit from neurosurgical resection of the lesion without iatrogenic aphasia. Optical techniques such as intraoperative optical imaging of intrinsic signals (iOIS) show great promise for the precise functional mapping of cortices, as well as delineation of the borders of AVMs, epileptic foci, and gliomas. Here we first review the physiology of neuroimaging, and then progress towards the validation and justification of using intraoperative optical techniques, especially in relation to neurosurgical planning of resection AVMs, epileptic foci, and gliomas near or in eloquent cortex. We conclude with a short description of potential novel intraoperative optical techniques.

  15. Persimmon leaf flavonoid induces brain ischemic tolerance in mice

    Institute of Scientific and Technical Information of China (English)

    Mingsan Miao; Xuexia Zhang; Linan Wang

    2013-01-01

    The persimmon leaf has been shown to improve cerebral ischemic outcomes; however, its mechanism of action remains unclear. In this study, mice were subjected to 10 minutes of ischemic preconditioning, and persimmon leaf flavonoid was orally administered for 5 days. Results showed that the persimmon leaf flavonoid significantly improved the content of tissue type plasminogen activator and 6-keto prostaglandin-F1 α in the cerebral cortex, decreased the content of thromboxane B2, and reduced the content of plasminogen activator inhibitor-1 in mice. Following optical microscopy, persimmon leaf flavonoid was also shown to reduce cell swelling and nuclear hyperchromatism in the cerebral cortex and hippocampus of mice. These results suggested that persimmon leaf flavonoid can effectively inhibit brain thrombosis, improve blood supply to the brain, and relieve ischemia-induced pathological damage, resulting in brain ischemic tolerance.

  16. Inhibition of aminoacylase 3 protects rat brain cortex neuronal cells from the toxicity of 4-hydroxy-2-nonenal mercapturate and 4-hydroxy-2-nonenal

    Energy Technology Data Exchange (ETDEWEB)

    Tsirulnikov, Kirill; Abuladze, Natalia [Department of Medicine, University of California at Los Angeles, CA 90095 (United States); Bragin, Anatol [Department of Neurology, University of California at Los Angeles, CA 90095 (United States); Brain Research Institute, University of California at Los Angeles, CA 90095 (United States); Faull, Kym [Brain Research Institute, University of California at Los Angeles, CA 90095 (United States); Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, CA 90095 (United States); Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, CA 90095 (United States); Cascio, Duilio [Institute of Genomics and Proteomics, University of California at Los Angeles, CA 90095 (United States); Damoiseaux, Robert; Schibler, Matthew J. [California NanoSystems Institute, University of California at Los Angeles, CA 90095 (United States); Pushkin, Alexander, E-mail: apushkin@mednet.ucla.edu [Department of Medicine, University of California at Los Angeles, CA 90095 (United States)

    2012-09-15

    4-Hydroxy-2-nonenal (4HNE) and acrolein (ACR) are highly reactive neurotoxic products of lipid peroxidation that are implicated in the pathogenesis and progression of Alzheimer's and Parkinson's diseases. Conjugation with glutathione (GSH) initiates the 4HNE and ACR detoxification pathway, which generates the mercapturates of 4HNE and ACR that can be excreted. Prior work has shown that the efficiency of the GSH-dependent renal detoxification of haloalkene derived mercapturates is significantly decreased upon their deacetylation because of rapid transformation of the deacetylated products into toxic compounds mediated by β-lyase. The enzymes of the GSH-conjugation pathway and β-lyases are expressed in the brain, and we hypothesized that a similar toxicity mechanism may be initiated in the brain by the deacetylation of 4HNE- and ACR-mercapturate. The present study was performed to identify an enzyme(s) involved in 4HNE- and ACR-mercapturate deacetylation, characterize the brain expression of this enzyme and determine whether its inhibition decreases 4HNE and 4HNE-mercapturate neurotoxicity. We demonstrated that of two candidate deacetylases, aminoacylases 1 (AA1) and 3 (AA3), only AA3 efficiently deacetylates both 4HNE- and ACR-mercapturate. AA3 was further localized to neurons and blood vessels. Using a small molecule screen we generated high-affinity AA3 inhibitors. Two of them completely protected rat brain cortex neurons expressing AA3 from the toxicity of 4HNE-mercapturate. 4HNE-cysteine (4HNE-Cys) was also neurotoxic and its toxicity was mostly prevented by a β-lyase inhibitor, aminooxyacetate. The results suggest that the AA3 mediated deacetylation of 4HNE-mercapturate may be involved in the neurotoxicity of 4HNE.

  17. Elemental concentration analysis in brain of young, adult and old wistar rats by X-ray total reflection fluorescence with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Serpa, Renata F.B.; Jesus, Edgar F.O. de; Lopes, Ricardo T. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Instrumentacao Nuclear]. E-mail: renata@lin.ufrj.br; Anjos, Marcelino J. dos [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail: marcelin@lin.ufrj.br; Carmo, Maria da Graca T. do [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Nutricao]. E-mail: tcarmo@editema.com.br; Rocha, Monica S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Dept. de Farmacologia]. E-mail: mrocha@farmaco.ufrj.br; Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil]. E-mail: silvana@fec.unicamp.br; Martinez, Ana Maria B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Dept. de Histologia]. E-mail: martinez@histo.ufrj.br

    2005-07-01

    The mainly goal of this work is to compare the elemental concentrations with different postnatal ages (2, 8, 20, 48 and 72 weeks) at three different regions of the rat brain, namely temporal cortex, entorhinal cortex and hippocampus by X-Ray Total Reflection Fluorescence with Synchrotron Radiation (SR-TXRF). The advantages for this analytical multielemental technique are: low background, linear relation in the quantification analysis and low detection limit (ngg{sup -1}). The fluorescence measurements were carried out at XRF beamline at the Brazilian Light Synchrotron Laboratory (Campinas, Brazil). It was possible to determine the following elements: Ti, Mn, Fe, Cu, Zn, Br, Rb and Sr (at trace level) and P, S, Cl, K and Ca (at major levels) were determined in the brain. In general, Fe levels were more pronounced in entorhinal cortex. There was also observed that the hippocampus of the old female rat presented the highest concentrations for Al, P, S, K, and Zn. In contrast to this, the hippocampus and entorhinal cortex presented the less levels for Al and K in the young animals. On the other hand, Cl levels were more conspicuous in the entorhinal cortex of the oldest male animal studied. (author)

  18. Carnosine reverses the aging-induced down regulation of brain regional serotonergic system.

    Science.gov (United States)

    Banerjee, Soumyabrata; Ghosh, Tushar K; Poddar, Mrinal K

    2015-12-01

    The purpose of the present investigation was to study the role of carnosine, an endogenous dipeptide biomolecule, on brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) serotonergic system during aging. Results showed an aging-induced brain region specific significant (a) increase in Trp (except cerebral cortex) and their 5-HIAA steady state level with an increase in their 5-HIAA accumulation and declination, (b) decrease in their both 5-HT steady state level and 5-HT accumulation (except cerebral cortex). A significant decrease in brain regional 5-HT/Trp ratio (except cerebral cortex) and increase in 5-HIAA/5-HT ratio were also observed during aging. Carnosine at lower dosages (0.5-1.0μg/Kg/day, i.t. for 21 consecutive days) didn't produce any significant response in any of the brain regions, but higher dosages (2.0-2.5μg/Kg/day, i.t. for 21 consecutive days) showed a significant response on those aging-induced brain regional serotonergic parameters. The treatment with carnosine (2.0μg/Kg/day, i.t. for 21 consecutive days), attenuated these brain regional aging-induced serotonergic parameters and restored towards their basal levels that observed in 4 months young control rats. These results suggest that carnosine attenuates and restores the aging-induced brain regional down regulation of serotonergic system towards that observed in young rats' brain regions. PMID:26364584

  19. 柴胡疏肝散对抑郁模型大鼠海马乙酰胆碱代谢的影响%Effect of Chaihu Shugan Powderon metabolism of ach in brain hippocampus tissue of depressive rats

    Institute of Scientific and Technical Information of China (English)

    董海影; 张晓杰

    2011-01-01

    Objective: To observe the changes of acetylcholine metabolism of hippocampal of depression models on rats and the effect of Chaihu Shugan Powder on it.Method: 60 male Sprague-Dawley rats of 4 - 5 month were randomly divided into four groups and 15 rats in 4 groups: normal control group, model group, western medicine group and Chinese medicine group.The depressed modle was reduced by single feed combined with CUMS.After twenty-one days,behavior changes in rats were detected through open-field test, sugar consumption test and body weight;expression changes of acetylcholine transferase and acetylcholinesterase in hippocampus of rats brain were observed with immunochemistry method; ChAT mRNA expression was detected with RT-PCR; the activity of AChE in hippocampus of rats brain tissue was measured with colorimetric method.Results:On the 21st day of model replication, compared with normal control group, the scores of horizontal activity and vertical activity,weight and sugar preference degrees in model group decreased significantly (P<0.01-0.001); Compared with model group,western medicine group and Chinese medicine group got significantly higher scores of horizontal activity and vertical activity, weight and sugar preference degrees (P<0.05-0.001).The results of immunochemistry staining showed that ChAT, AChEprotein expression was significantly increased in hippocampus of model group compared with that of normal control group (P<0.05);Compared with model group, western medicine group and Chinese medicine group had significantly lower ChAT, AChE protein expression in hippocampus (P<0.05).RT-PCR results showed that expression levels of ChAT mRNA in hippocampus of rats of model group were significantly raised compared with those of normal control group (P<0.05); Compared with those of model group,expression levels of ChAT mRNA in hippocampus of rats of western medicine group and Chinese medicine group was significantly reduced (P<0.05); The results of

  20. The change of pathology and expression of caspase-3 in cerebral cortex and hippocampus and cerebellum of alcoholism rats%大鼠酒精中毒后大脑皮质、海马、小脑的病理学改变及caspase-3的异常表达

    Institute of Scientific and Technical Information of China (English)

    贾明月; 朱丹; 陈嘉峰

    2012-01-01

    目的 探讨大鼠慢性酒精中毒后大脑皮质、海马、小脑的病理学改变及caspase-3的异常表达.方法 选用健康雄性Wistar大鼠随机分为两组,其中酒精中毒组30只;盐水对照组20只.酒精中毒组每日每只大鼠分别按8ml/kg灌胃2w,随后再按照10ml/kg灌胃1w,按12ml/kg灌胃1w,共灌胃4w.每日灌胃两次,其间隔均为6h,酒精浓度为50%.对照组用等量的生理盐水灌胃.并对两组大鼠进行体重、一般生物学特征、HE染色、TUNEL染色、免疫组化caspase-3的检测.结果 造模成功后,两组大鼠的体重存在的统计学差异;HE染色后酒精组大鼠大脑皮质、海马、小脑锥体细胞数目减少,部分神经元变性、坏死;TUNEL法测定酒精组大鼠凋亡细胞数量明显多于对照组(P<0.05),酒精组大鼠大脑皮质、海马、小脑的caspase-3表达明显高于对照组(P<0.05).结论 慢性酒精中毒可引起大鼠大脑皮质、海马及小脑的病理学改变,出现神经细胞凋亡,引起与凋亡相对应部位caspase-3阳性表达,并参与大鼠酒精中毒后凋亡机制的发生、发展.%Objective To discuse the change of pathology and expression of caspase-3 in cerebral cortex, hippocampus and cerebellum of alcoholism rats. Methods There were 50 male healthy Wistar rats divided into 2 groups randomly, alcoholism group,30 rats,saline control group,20 rats. Alcoholic group;every rat was fed with 8ml/kg50% alcohol twice a day, and two weeks later, increased to 10ml/kg for one week, then 12ml/kg for one week. The interval of time was 6 hours of all. Control group: every rat was fed with the same dosage of 0.9% sodium chloride at the same time for four weeks. During the experiment, we measured their weight, observed their general condition, HE dyes, TUNEL dying and expression of caspase-3 by SP dying method. Results After 4 weeks,the alcoholic group rats appeared malnutrition,emaciated,moreover,some also appeared the performance of

  1. Fmr1基因在大鼠快速眼动睡眠剥夺后脑皮质、海马和丘脑区的表达%Expressions of gene Fmr1 in rat cortex, hippocampus and thalamus areas after the rapid eyes movement sleep deprivation

    Institute of Scientific and Technical Information of China (English)

    范贵民; 武冬梅; 王培君; 熊慧; 杨迎峰; 范洪儒; 王景涛

    2014-01-01

    Objective To investigate the expression of gene Fmr1 in rats cortex, hippocampus and hypothalamus areas after the rapid eyes movement ( REM ) sleep deprivation .Methods Using the modified multiple platform method (MMPM), 126 rats were randomly and averagely divided into three groups , the normal control group ( CC), the environmental control group (TC) and the sleep deprivation group (SD).Each group was detected on day 1, day 2, day 3, day 5, day 7, and day 9, and the sample tissues were extracted from 7 rats at each time point.Immunohistochemistry and RT-PCR were operated to analysis the expression of gene Fmr 1.Results The expressions of gene Fmr1 were increased gradually in the cortex and thalamus of the SD group after 3 days ( P 0.05).The expressions of gene Fmr1 were decreased gradually in hippocampus for SD after 3 days ( P 0.05 ) . Conclusion The expressions of gene Fmr 1 were increased gradually in the cortex and thalamus but decreased in the hippocampus in the SD group after 3 days.%目的:探讨快速眼动( REM)睡眠剥夺过程中Fmr1基因在大鼠皮质、海马和丘脑区的表达及变化。方法采用改良多平台水环境法( MMPM )制作大鼠睡眠剥夺模型,采用免疫组织化学法及RT-PCR方法检测Fmr1基因的表达变化。结果在皮质和丘脑中,与CC组和TC组相比,SD1d和SD2d组的Fmr1基因表达无明显变化,SD3d组开始增高(P<0.05),SD5d、SD7d组和SD9d组显著增高(P<0.01);在海马中,与CC组和TC组相比,SD1d和SD2d组的Fmr1基因表达无明显变化,SD3d组开始降低(P<0.05),SD5d、SD7d组和SD9d组显著降低(P<0.01)。结论Fmr1基因在大鼠睡眠剥夺第3天开始表达发生变化,在皮质和丘脑中表达增高,在海马中表达降低。

  2. Human brain activity patterns beyond the isoelectric line of extreme deep coma.

    Directory of Open Access Journals (Sweden)

    Daniel Kroeger

    Full Text Available The electroencephalogram (EEG reflects brain electrical activity. A flat (isoelectric EEG, which is usually recorded during very deep coma, is considered to be a turning point between a living brain and a deceased brain. Therefore the isoelectric EEG constitutes, together with evidence of irreversible structural brain damage, one of the criteria for the assessment of brain death. In this study we use EEG recordings for humans on the one hand, and on the other hand double simultaneous intracellular recordings in the cortex and hippocampus, combined with EEG, in cats. They serve to demonstrate that a novel brain phenomenon is observable in both humans and animals during coma that is deeper than the one reflected by the isoelectric EEG, and that this state is characterized by brain activity generated within the hippocampal formation. This new state was induced either by medication applied to postanoxic coma (in human or by application of high doses of anesthesia (isoflurane in animals leading to an EEG activity of quasi-rhythmic sharp waves which henceforth we propose to call ν-complexes (Nu-complexes. Using simultaneous intracellular recordings in vivo in the cortex and hippocampus (especially in the CA3 region we demonstrate that ν-complexes arise in the hippocampus and are subsequently transmitted to the cortex. The genesis of a hippocampal ν-complex depends upon another hippocampal activity, known as ripple activity, which is not overtly detectable at the cortical level. Based on our observations, we propose a scenario of how self-oscillations in hippocampal neurons can lead to a whole brain phenomenon during coma.

  3. Association between the fMRI manifestations of activated brain areas and muscle strength in patients with space-occupying lesions in motor cortex

    Institute of Scientific and Technical Information of China (English)

    Wenbin Zheng; Xiaoke Chen; Guorui Liu; Renhua Wu

    2006-01-01

    simple active finger-tapping movements, and for the 3 cases whose clinical symptoms were severe in the patient group, the simple passive finger-tapping movements were used. The manifestations in the activated brain areas were analyzed in the patients with brain tumor of different muscle strength and the controls. The motor deficit and activation of contralateral primary motor cortex (M1) in simple finger-tapping movements were observed in the patient group.MAIN OUTCOME MEASURES: ① Brain areas activated by finger-tapping movements in each group; ② Activated volumes in hemisphere by finger-tapping movements between groups.RESULTS: The contralateral M1 area could not be activated in 1 case in the patient group,, all the other 22 patients and 9 healthy subjects were involved in the analysis of results. ① In the control group, unilateral finger tapping movement activated the contralateral primary motor cortex (M1), bilateral SMA and bilateral PMC. The activation volume was the largest in contralateral primary motor cortex (M1), smaller in the SMA,and the smallest in PMC. The finger tapping movement in healthy subjects could activate contralateral primary motor cortex (M1), bilateral SMA and bilateral PMC, which had no obvious differences from the manifestations of brain functional area activated by active finger tapping. There was no significant difference in the volume of activated functional areas between right and left hands. In the patient group, the central sulcus around the tumor in the activated M1 area displaced towards dorsal or ventral side, also extended. The distance of displacement in the functional area was determined as compared with the contralateral central sulcus, and the results suggested the M1 displacement, including that there were 10 cases with the M1 displacement larger than 10 mm in the patients with motor deficit, which were obviously more than in those without motor deficit (n =1, P < 0.01), and the activated volume in contralateral M1 area

  4. Brain Basics

    Medline Plus

    Full Text Available ... may help improve treatments for anxiety disorders like phobias or post-traumatic stress disorder (PTSD) . Prefrontal cortex ( ... brain's structure, studies show that brain growth in children with autism appears to peak early. And as ...

  5. Ethanolic extract of Astragali radix and Salviae radix prohibits oxidative brain injury by psycho-emotional stress in whisker removal rat model.

    Directory of Open Access Journals (Sweden)

    Hyeong-Geug Kim

    Full Text Available Myelophil, an ethanolic extract of Astragali Radix and Salviae Radix, has been clinically used to treat chronic fatigue and stress related disorders in South Korea. In this study, we investigated the protective effects of Myelophil on a whisker removal-induced psycho-emotional stress model. SD rats were subjected to whisker removal after oral administration of Myelophil or ascorbic acid for consecutive 4 days. Whisker removal considerably increased total reactive oxygen species in serum levels as well as cerebral cortex and hippocampal regions in brain tissues. Lipidperoxidation levels were also increased in the cerebral cortex, hippocampus regions, and brain tissue injuries as shown in histopathology and immunohistochemistry. However, Myelophil significantly ameliorated these alterations, and depletion of glutathione contents in both cerebral cortex and hippocampus regions respectively. Serum levels of corticosterone and adrenaline were notably altered after whisker removal stress, whereas these abnormalities were significantly normalized by pre-treatment with Myelophil. The NF-κB was notably activated in both cerebral cortex and hippocampus after whisker removal stress, while it was efficiently blocked by pre-treatment with Myelophil. Myelophil also significantly normalizes alterations of tumor necrosis factor-α, interleukin (IL-1β, IL-6 and interferon-γ in both gene expressions and protein levels. These results suggest that Myelophil has protective effects on brain damages in psycho-emotional stress, and the underlying mechanisms involve regulation of inflammatory proteins, especially NF-κB modulation.

  6. Elemental concentration analysis in brain structures from young, adult and old Wistar rats by total reflection X-ray fluorescence with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Serpa, R.F.B. [Federal University of Rio de Janeiro/COPPE, Nuclear Instrumentation Laboratory, P.O. Box: 68509, Zip Code: 21941-972, Rio de Janeiro (Brazil)]. E-mail: renata@lin.ufrj.br; Jesus, E.F.O. de [Federal University of Rio de Janeiro/COPPE, Nuclear Instrumentation Laboratory, P.O. Box: 68509, Zip Code: 21941-972, Rio de Janeiro (Brazil); Anjos, M.J. [Federal University of Rio de Janeiro/COPPE, Nuclear Instrumentation Laboratory, P.O. Box: 68509, Zip Code: 21941-972, Rio de Janeiro (Brazil); University of Rio de Janeiro State, Physics Institute, RJ (Brazil); Carmo, M.G.T. do [Federal University of Rio de Janeiro, Nutrition Institute, RJ (Brazil); Moreira, S. [University of Campinas State, Civil Engineering Department, SP (Brazil); Rocha, M.S. [Federal University of Rio de Janeiro, Department of Basics and Clinic Pharmacy, RJ (Brazil); Martinez, A.M.B. [Federal University of Rio de Janeiro, Department of Histology and Embryology, RJ (Brazil); Lopes, R.T. [Federal University of Rio de Janeiro/COPPE, Nuclear Instrumentation Laboratory, P.O. Box: 68509, Zip Code: 21941-972, Rio de Janeiro (Brazil)

    2006-11-15

    The knowledge of the spatial distribution and the local concentration of trace elements in tissues are of great importance since trace elements are involved in a number of metabolic and physiological processes in the human body, and their deficiency and excess may lead to different metabolic disorders. In this way, the main goal of this work is to compare the elemental concentration in different brain structures, namely temporal cortex, entorhinal cortex, visual cortex and hippocampus, from Wistar female rats (n = 15) with different ages: 2, 8 and 48 weeks. The measurements were performed at the Synchrotron Light Brazilian Laboratory, Campinas, Sao Paulo, Brazil. In the entorhinal cortex, the following elements decreased with age: Zn, S, Cl, K, Ca and Br. In the temporal cortex, Ca, Fe and Br levels increased with aging and on the other hand, P, S, Cl, K and Rb levels decreased with aging. In the visual cortex almost all the elements decreased with aging: Cl, Ca, Fe, Ni and Zn. In the hippocampus, in turn, most of the elements identified, increased with aging: Al, P, S, K, Fe, Cu, Zn and Rb. The increase of Fe with aging in the hippocampus is an important fact that will be studied, since it is involved in oxidative stress. It is believed that oxidative stress is the one of the main causes responsible for neuronal death in Parkinson's disease.

  7. Reduced basal and novelty-induced levels of activity-regulated cytoskeleton associated protein (Arc) and c-Fos mRNA in the cerebral cortex and hippocampus of APPswe/PS1ΔE9 transgenic mice

    DEFF Research Database (Denmark)

    Christensen, Ditte Z; Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2013-01-01

    to a novel open field environment was compromised in different neocortical areas and the hippocampal formation in APP/PS1ΔE9 transgenic mice characterized by pronounced accumulation and deposition of beta amyloid (Aβ). Notably, the basal level of Arc and c-fos mRNA in the neocortex was significantly lower...... in APP/PS1ΔE9 compared to wild-type mice. Novelty exposure induced an increase in Arc and c-Fos mRNA in the medial prefrontal cortex (mPFC), parietal cortex, and hippocampal formation in both APP/PS1ΔE9 transgenic and wild-type mice. However, novelty-induced IEG expression did not reach the same levels...... in APP/PS1ΔE9 as in the wild-type mice. In contrast, synaptophysin levels did not differ between mutant and wild type mice, suggesting that the observed effect was not due to a general decrease in the number of presynapses. These data suggest a reduction in basal and novelty-induced neuronal activity...

  8. Electroacupuncture stimulation of the brachial plexus trunk on the healthy side promotes brain-derived neurotrophic factor mRNA expression in the ischemic cerebral cortex of a rat model of cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Zongjun Guo; Lumin Wang

    2012-01-01

    A rat model of cerebral ischemia/reperfusion was established by suture occlusion of the left middle cerebral artery. In situ hybridization results showed that the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic rat cerebral cortex increased after cerebral ischemia/ reperfusion injury. Low frequency continuous wave electroacupuncture (frequency 2-6 Hz, current intensity 2 mA) stimulation of the brachial plexus trunk on the healthy (right) side increased the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic cerebral cortex 14 days after cerebral ischemia/reperfusion injury. At the same time, electroacupuncture stimulation of the healthy brachial plexus truck significantly decreased neurological function scores and alleviated neurological function deficits. These findings suggest that electroacupuncture stimulation of the brachial plexus trunk on the healthy (right) side can greatly increase brain-derived neurotrophic factor mRNA expression and improve neurological function.

  9. Neural stem cell transplantation in the hippocampus of rats with cerebral ischemia/reperfusion injury Activation of the phosphatidylinositol-3 kinase/Akt pathway and increased brain-derived neurotrophic factor expression

    Institute of Scientific and Technical Information of China (English)

    Yu Zhao; Shengtao Yao; Shijun Wang

    2010-01-01

    The phosphatidylinositol-3 kinase (PI3K)/Akt pathway and brain-derived neurotrophic factor (BDNF) are involved in neurological functional recovery following cerebral ischemia. Therefore, we hypothesized that mechanisms of neuroprotection by transplantation of neural stem cells (NSCs) on cerebral ischemia contributed to activation of the PI3K/Akt pathway and enhanced BDNF expression. In the present study, Wortmannin (a specific, covalent inhibitor of PI3K) was administered adjacent to ischemic hippocampus by stereotactic transplantation to further confirm the neuroprotective mechanisms of NSC transplantation following cerebral ischemia. Results showed that focal infarct volume was significantly smaller in the NSCs group, but the neurological behavior score in the NSC group was significantly greater than the middle cerebral artery occlusion model group, Wortmannin treatment group, and NSCs + Wortmannin treatment group. Protein expression of RDNF was significantly greater in the NSC group compared with the Wortmannin treatment group and NSCs + Wortmannin treatment group. These results suggest that the neuroprotective role of NSC transplantation in the cerebral ischemia activated the PI3K/Akt pathway and upregulated BDNF expression in lesioned brains.

  10. Brain glycogen decreases during prolonged exercise

    Science.gov (United States)

    Matsui, Takashi; Soya, Shingo; Okamoto, Masahiro; Ichitani, Yukio; Kawanaka, Kentaro; Soya, Hideaki

    2011-01-01

    Abstract Brain glycogen could be a critical energy source for brain activity when the glucose supply from the blood is inadequate (hypoglycaemia). Although untested, it is hypothesized that during prolonged exhaustive exercise that induces hypoglycaemia and muscular glycogen depletion, the resultant hypoglycaemia may cause a decrease in brain glycogen. Here, we tested this hypothesis and also investigated the possible involvement of brain monoamines with the reduced levels of brain glycogen. For this purpose, we exercised male Wistar rats on a treadmill for different durations (30–120 min) at moderate intensity (20 m min−1) and measured their brain glycogen levels using high-power microwave irradiation (10 kW). At the end of 30 and 60 min of running, the brain glycogen levels remained unchanged from resting levels, but liver and muscle glycogen decreased. After 120 min of running, the glycogen levels decreased significantly by ∼37–60% in five discrete brain loci (the cerebellum 60%, cortex 48%, hippocampus 43%, brainstem 37% and hypothalamus 34%) compared to those of the sedentary control. The brain glycogen levels in all five regions after running were positively correlated with the respective blood and brain glucose levels. Further, in the cortex, the levels of methoxyhydroxyphenylglycol (MHPG) and 5-hydroxyindoleacetic acid (5-HIAA), potential involved in degradation of the brain glycogen, increased during prolonged exercise and negatively correlated with the glycogen levels. These results support the hypothesis that brain glycogen could decrease with prolonged exhaustive exercise. Increased monoamines together with hypoglycaemia should be associated with the development of decreased brain glycogen, suggesting a new clue towards the understanding of central fatigue during prolonged exercise. PMID:21521757

  11. Differential impact of REM sleep deprivation on cytoskeletal proteins of brain regions involved in sleep regulation.

    Science.gov (United States)

    Rodríguez-Vázquez, Jennifer; Camacho-Arroyo, Ignacio; Velázquez-Moctezuma, Javier

    2012-01-01

    Rapid eye movement (REM) sleep is involved in memory consolidation, which implies synaptic plasticity. This process requires protein synthesis and the reorganization of the neural cytoskeleton. REM sleep deprivation (REMSD) has an impact on some neuronal proteins involved in synaptic plasticity, such as glutamate receptors and postsynaptic density protein 95, but its effects on cytoskeletal proteins is unknown. In this study, the effects of REMSD on the content of the cytoskeletal proteins MAP2 and TAU were analyzed. Adult female rats were submitted to selective REMSD by using the multiple platform technique. After 24, 48 or 72 h of REMSD, rats were decapitated and the following brain areas were dissected: pons, preoptic area, hippocampus and frontal cortex. Protein extraction and Western blot were performed. Results showed an increase in TAU content in the pons, preoptic area and hippocampus after 24 h of REMSD, while in the frontal cortex a significant increase in TAU content was observed after 72 h of REMSD. A TAU content decrease was observed in the hippocampus after 48 h of REMSD. Interestingly, a marked increase in TAU content was observed after 72 h of REMSD. MAP2 content only increased in the preoptic area at 24 h, and in the frontal cortex after 24 and 72 h of REMSD, without significant changes in the pons and hippocampus. These results support the idea that REM sleep plays an important role in the organization of neural cytoskeleton, and that this effect is tissue-specific.

  12. A role for dorsal and ventral hippocampus in response learning.

    Science.gov (United States)

    Fidalgo, C; Conejo, N M; González-Pardo, H; Lazo, P S; Arias, J L

    2012-07-01

    The hippocampus and the striatum have been traditionally considered as part of different and independent memory systems despite growing evidence supporting that both brain regions may even compete for behavioral control in particular learning tasks. In this regard, it has been reported that the hippocampus could be necessary for the use of idiothetic cues in several types of spatial learning tasks. Accordingly, the ventral striatum receives strong anatomical projections from the hippocampus, suggesting a participation of both regions in goal-directed behavior. Our work examined the role of the dorsal and ventral hippocampus on a response learning task. Cytochrome c oxidase (C.O.) quantitative histochemistry was used as an index of brain oxidative metabolism. In addition, determination of C.O. subunit I levels in the hippocampus by western blot analysis was performed to assess the contribution of this subunit to overall C.O. activity. Increased brain oxidative metabolism was found in most of the studied hippocampal subregions when experimental group was compared with a swim control group. However, no differences were found in the amount of C.O. subunit I expressed in the hippocampus by western blot analysis. Our results support that both the dorsal and ventral hippocampus are associated with the use of response strategies during response learning. PMID:22507525

  13. Regional Distribution of Copper, Zinc and Iron in Brain of Wistar Rat Model for Non-Wilsonian Brain Copper Toxicosis.

    Science.gov (United States)

    Pal, Amit; Prasad, Rajendra

    2016-03-01

    In previous studies, we have reported first in vivo evidence of copper deposition in the choroid plexus, cognitive impairments, astrocytes swelling (Alzheimer type II cells) and astrogliosis (increase in number of astrocytes), and degenerated neurons coupled with significant increase in the hippocampus copper and zinc content in copper-intoxicated Wistar rats. Nonetheless, hippocampus iron levels were not affected by chronic copper-intoxication. Notwithstanding information on distribution of copper, zinc and iron status in different regions of brain due to chronic copper exposure remains fragmentary. In continuation with our previous study, the aim of this study was to investigate the effects of intraperitoneally injected copper lactate (0.15 mg Cu/100 g body weight) daily for 90 days on copper, zinc and iron levels in different regions of the brain using atomic absorption spectrophotometry. Copper-intoxicated group showed significantly increased cortex, cerebellum and striatum copper content (76, 46.8 and 80.7 % increase, respectively) compared to control group. However, non-significant changes were observed for the zinc and iron content in cortex, cerebellum and striatum due to chronic copper exposure. In conclusion, the current study demonstrates that chronic copper toxicity causes differential copper buildup in cortex, cerebellum and striatum region of central nervous system of male Wistar rats; signifying the critical requirement to discretely evaluate the effect of copper neurotoxicity in different brain regions, and ensuing neuropathological and cognitive dysfunctions. PMID:26855494

  14. Parcellation of parietal cortex: convergence between lesion-symptom mapping and mapping of the intact functioning brain.

    Science.gov (United States)

    Vandenberghe, Rik; Gillebert, Céline R

    2009-05-16

    Spatial-attentional deficits are highly prevalent following stroke. They can be clinically detected by means of conventional bedside tests such as target cancellation, line bisection and the visual extinction test. Until recently, lesion mapping studies and functional imaging of the intact brain did not agree very well on exactly which parietal areas play a key role in selective attention: the inferior parietal lobule or the intraparietal sulcus. Recently, the use of a contrastive approach in patients akin to that commonly used in functional imaging studies in healthy volunteers together with voxel-based lesion-symptom mapping have allowed to bring the patient lesion mapping much closer to the functional imaging results obtained in healthy controls. In this review we focus on converging evidence obtained from patient lesion studies and from fMRI studies in the intact brain in humans. This has yielded novel insights into the functional segregation between the middle third of the intraparietal sulcus, the superior parietal lobule and the temporoparietal junction in the intact brain and also enhanced our understanding of the pathogenetic mechanisms underlying deficits arising in patients. PMID:19118580

  15. Stress-induced impairment of glutamatergic terminals ultrastructure: High vulnerability of medial prefrontal cortex and preventing action of desipramine

    DEFF Research Database (Denmark)

    Nava, N.; Popoli, M.; Musazzi, L.;

    2013-01-01

    Background: Limbic structures where glutamatergic transmission is considered to be prevalent such as amygdala, hippocampus and prefrontal cortex, have shown a deep impairment in stress-related disorders [1]. A number of studies have highlighted the cumulative effects of stress and its major...... mediators, glucocorticoids, on brain volume and dendritic remodeling, in both humans and rodents. Nevertheless, few is still known on the structural changes exerted by behavioral stress on the features of glutamatergic synapses as sites of neuronal communication. Indeed, in excitatory synapses synaptic...

  16. Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury

    Directory of Open Access Journals (Sweden)

    Ziebell Jenna M

    2012-10-01

    Full Text Available Abstract Background Since their discovery, the morphology of microglia has been interpreted to mirror their function, with ramified microglia constantly surveying the micro-environment and rapidly activating when changes occur. In 1899, Franz Nissl discovered what we now recognize as a distinct microglial activation state, microglial rod cells (Stäbchenzellen, which he observed adjacent to neurons. These rod-shaped microglia are typically found in human autopsy cases of paralysis of the insane, a disease of the pre-penicillin era, and best known today from HIV-1-infected brains. Microglial rod cells have been implicated in cortical ‘synaptic stripping’ but their exact role has remained unclear. This is due at least in part to a scarcity of experimental models. Now we have noted these rod microglia after experimental diffuse brain injury in brain regions that have an associated sensory sensitivity. Here, we describe the time course, location, and surrounding architecture associated with rod microglia following experimental diffuse traumatic brain injury (TBI. Methods Rats were subjected to a moderate midline fluid percussion injury (mFPI, which resulted in transient suppression of their righting reflex (6 to 10 min. Multiple immunohistochemistry protocols targeting microglia with Iba1 and other known microglia markers were undertaken to identify the morphological activation of microglia. Additionally, labeling with Iba1 and cell markers for neurons and astrocytes identified the architecture that surrounds these rod cells. Results We identified an abundance of Iba1-positive microglia with rod morphology in the primary sensory barrel fields (S1BF. Although present for at least 4 weeks post mFPI, they developed over the first week, peaking at 7 days post-injury. In the absence of contusion, Iba1-positive microglia appear to elongate with their processes extending from the apical and basal ends. These cells then abut one another and lay adjacent

  17. Segregation of the human medial prefrontal cortex in social cognition

    Directory of Open Access Journals (Sweden)

    Danilo eBzdok

    2013-05-01

    Full Text Available While the human medial prefrontal cortex (mPFC is widely believed to be a key node of neural networks relevant for socio-emotional processing, its functional subspecialization is still poorly understood. We thus revisited the often assumed differentiation of the mPFC in social cognition along its ventral-dorsal axis. Our neuroinformatic analysis was based on a neuroimaging meta-analysis of perspective-taking that yielded two separate clusters in the ventral and dorsal mPFC, respectively. We determined each seed region’s brain-wide interaction pattern by two complementary measures of functional connectivity: co-activation across a wide range of neuroimaging studies archived in the BrainMap database and correlated signal fluctuations during unconstrained (resting cognition. Furthermore, we characterized the functions associated with these two regions using the BrainMap database. Across methods, the ventral mPFC was more strongly connected with the nucleus accumbens, hippocampus, posterior cingulate cortex, and retrosplenial cortex, while the dorsal mPFC was more strongly connected with the inferior frontal gyrus, temporo-parietal junction, and middle temporal gyrus. Further, the ventral mPFC was selectively associated with action execution, olfaction, and reward related tasks, while the dorsal mPFC was selectively associated with perspective-taking and episodic memory retrieval. The ventral mPFC is therefore predominantly involved in sensory-driven, approach/avoidance-modulating, and evaluation-related processing, whereas the dorsal mPFC is predominantly involved in internally driven, memory-informed, and metacognition-related processing in social cognition.

  18. Post-conditioning exacerbates the MnSOD immune-reactivity after experimental cerebral global ischemia and reperfusion in the rat brain hippocampus.

    Science.gov (United States)

    Nemethova, Miroslava; Danielisova, Viera; Gottlieb, Miroslav; Burda, Jozef

    2008-01-01

    This study monitored the effects of sub-lethal ischemia (post-conditioning) applied after a previous ischemic attack by way of the MnSOD immune-reactivity examined in CA1 and dentate gyrus of the rat hippocampus. The experimental 10 min transient cerebral ischemia was followed by 2 days of reperfusion, the rats then underwent a second ischemia (4 or 6 min post-conditioning). MnSOD immune-reactivity was evaluated after 5 h, 1 and 2 days. Results obtained by computer microdensitometric image analysis indicated that 4 min of ischemic post-conditioning caused higher MnSOD immune-reactivity than 6 min. However, higher viability of CA1 neurons after stronger (6 min) post-conditioning when production of MnSOD is lower, as well as differences between MnSOD in CA1 and dentate gyrus indicates another mechanism switching pro-apoptotic destination of CA1 neurons to anti-apoptotic. PMID:17936646

  19. Opiate antagonist binding sites in discrete brain regions of spontaneously hypertensive and normotensive Wistar-Kyoto rats

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, N.H.; Gulati, A.; Bhargava, H.N. (Univ. of Illinois, Chicago (USA))

    1991-01-01

    The binding of {sup 3}H-naltrexone, an opiate receptor antagonist, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. {sup 3}H-Naltrexone bound to membranes of brain regions and spinal cord at a single high affinity site with an apparent dissociation constant value of 3 nM. The highest density of {sup 3}H-naltrexone binding sites were in hippocampus and lowest in the cerebral cortex. The receptor density (B{sub max}value) and apparent dissociation constant (K{sub d} value) values of {sup 3}H-naltrexone to bind to opiate receptors on the membranes of amygdala, hippocampus, corpus striatum, pons and medulla, midgrain, cortex and spinal cord of WKY and SHR rates did not differ. The B{sub max} value of {sup 3}H-naltrexone binding to membranes of hypothalamus of SHR rates was 518% higher than WKY rats but the K{sub d} values in the two strains did not differ. It is concluded that SHR rats have higher density of opiate receptors labeled with {sup 3}H-naltrexone in the hypothalamus only, in comparison with WKY rats, and that such a difference in the density of opiate receptors may be related to the elevated blood pressure in SHR rats.

  20. Whole-Brain Monosynaptic Afferent Inputs to Basal Forebrain Cholinergic System

    Science.gov (United States)

    Hu, Rongfeng; Jin, Sen; He, Xiaobin; Xu, Fuqiang; Hu, Ji

    2016-01-01

    The basal forebrain cholinergic system (BFCS) robustly modulates many important behaviors, such as arousal, attention, learning and memory, through heavy projections to cortex and hippocampus. However, the presynaptic partners governing BFCS activity still remain poorly understood. Here, we utilized a recently developed rabies virus-based cell-type-specific retrograde tracing system to map the whole-brain afferent inputs of the BFCS. We found that the BFCS receives inputs from multiple cortical areas, such as orbital frontal cortex, motor cortex, and insular cortex, and that the BFCS also receives dense inputs from several subcortical nuclei related to motivation and stress, including lateral septum, central amygdala, paraventricular nucleus of hypothalamus, dorsal raphe, and parabrachial nucleus. Interestingly, we found that the BFCS receives inputs from the olfactory areas and the entorhinal–hippocampal system. These results greatly expand our knowledge about the connectivity of the mouse BFCS and provided important preliminary indications for future exploration of circuit function. PMID:27777554

  1. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer's disease mice

    Directory of Open Access Journals (Sweden)

    LaFerla Frank M

    2005-10-01

    Full Text Available Abstract Background Alzheimer's disease is a complex neurodegenerative disorder characterized pathologically by a temporal and spatial progression of beta-amyloid (Aβ deposition, neurofibrillary tangle formation, and synaptic degeneration. Inflammatory processes have been implicated in initiating and/or propagating AD-associated pathology within the brain, as inflammatory cytokine expression and other markers of inflammation are pronounced in individuals with AD pathology. The current study examines whether inflammatory processes are evident early in the disease process in the 3xTg-AD mouse model and if regional differences in inflammatory profiles exist. Methods Coronal brain sections were used to identify Aβ in 2, 3, and 6-month 3xTg-AD and non-transgenic control mice. Quantitative real-time RT-PCR was performed on microdissected entorhinal cortex and hippocampus tissue of 2, 3, and 6-month 3xTg-AD and non-transgenic mice. Microglial/macrophage cell numbers were quantified using unbiased stereology in 3xTg-AD and non-transgenic entorhinal cortex and hippocampus containing sections. Results We observed human Aβ deposition at 3 months in 3xTg-AD mice which is enhanced by 6 months of age. Interestingly, we observed a 14.8-fold up-regulation of TNF-α and 10.8-fold up-regulation of MCP-1 in the entorhinal cortex of 3xTg-AD mice but no change was detected over time in the hippocampus or in either region of non-transgenic mice. Additionally, this increase correlated with a specific increase in F4/80-positive microglia and macrophages in 3xTg-AD entorhinal cortex. Conclusion Our data provide evidence for early induction of inflammatory processes in a model that develops amyloid and neurofibrillary tangle pathology. Additionally, our results link inflammatory processes within the entorhinal cortex, which represents one of the earliest AD-affected brain regions.

  2. Egocentric spatial orientation in a water maze by rats subjected to transection of the fimbria-fornix and/or ablation of the prefrontal cortex

    DEFF Research Database (Denmark)

    Mogensen, Jesper; Moustgaard, Anette; Khan, Usman;

    2005-01-01

    prefrontal cortex, hippocampus, fimbria-fornix, egocentrisk spatial orientering, vandlabyrint, adfærdsstrategier, kognitive strategier, funktionel genopretning, rehabilitering, problemløsning, rotter...

  3. Food related processes in the insular cortex

    OpenAIRE

    Frank, Sabine; Kullmann, Stephanie; Veit, Ralf

    2013-01-01

    The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex. In this review, we will specifically focus on the involvement of the insula in food processing and on multim...

  4. Food related processes in the insular cortex

    OpenAIRE

    Sabine eFrank; Stephanie eKullmann; Ralf eVeit

    2013-01-01

    The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex.In this review, we will specifically focus on the involvement of the insula in food processing and on multimo...

  5. N-methyl-D-aspartate receptor - nitric oxide synthase pathway in the cortex of Nogo-A-deficient rats in relation to brain laterality and schizophrenia

    Directory of Open Access Journals (Sweden)

    Zdena eKristofikova

    2013-08-01

    Full Text Available It has been suggested that Nogo-A, a myelin-associated protein, could play a role in the pathogenesis of schizophrenia and that Nogo-A-deficient rodents could serve as an animal model for schizophrenic symptoms. Since changes in brain laterality are typical of schizophrenia, we investigated whether Nogo-A-deficient rats showed any signs of disturbed asymmetry in cortical N-methyl-D-aspartate (NMDA receptor–nitric oxide synthase (NOS pathway, which is reported as dysfunctional in schizophrenia. In particular, we measured separately in the right and left hemisphere of young and old Nogo-A-deficient male rats the expression of NMDA receptor subunits (NR1, NR2A and NR2B in the frontal cortex and activities of NOS isoforms (neuronal (nNOS, endothelial (eNOS and inducible (iNOS in the parietal cortex. In young controls, we observed right/left asymmetry of iNOS activity and three positive correlations (between NR1 in the left and NR2B laterality, between NR2B in the right and left sides, and between NR1 in the right side and nNOS laterality. In old controls, we found bilateral decreases in NR1, an increase in NR2B in the right side and two changes in correlations in the NR1–nNOS pathway. In young Nogo-A-deficient rats, we observed an increase in iNOS activity in the left hemisphere and two changes in correlations in NR1–nNOS and NR2A–eNOS, compared to young controls. Finally, we revealed in old Nogo-A-deficient animals, bilateral decreases in NR1 and one change in correlation between eNOS–iNOS, compared to old controls. Although some findings from schizophrenic brains did not manifest in Nogo-A-deficient rats (e.g., no alterations in NR2B, others did (e.g., alterations demonstrating accelerated ageing in young but not old animals, those occurring exclusively in the right hemisphere in young and old animals and those suggesting abnormal frontoparietal cortical interactions in young animals.

  6. Association of amyloid burden, brain atrophy and memory deficits in aged apolipoprotein ε4 mice.

    Science.gov (United States)

    Yin, Junxiang; Turner, Gregory H; Coons, Stephen W; Maalouf, Marwan; Reiman, Eric M; Shi, Jiong

    2014-03-01

    Apolipoprotein E ε4 allele (ApoE4) has been associated with increased risk of sporadic Alzheimer's disease (AD) and of conversion from mild cognitive impairment to AD. But the underlying mechanism of ApoE4 affecting brain atrophy and cognition is not fully understood. We investigated the effect of ApoE4 on amyloid beta (Aβ) protein burden and its correlation with the structure change of hippocampus and cortex, cognitive and behavioral changes in ApoE4 transgenic mice. Male ApoE4 transgenic mice and age-matched control mice at age 12 months and 24 months were tested in the Morris Water Maze (MWM). Brain volume changes (including whole brain, hippocampus, cortex, total ventricles and caudate putamen) were assessed by using small animal 7T-MRI. Aβ level was assessed by immunohistochemistry (IHC) and immunoprecipitation/western blot. In MWM, escape latency was longer and time spent in the target quadrant was shorter in aged ApoE4 mice (12- and 24-month-old), suggesting age- and ApoE4-dependent visuospatial deficits. Atrophy on MRI was prominent in the hippocampus (p=0.039) and cortex (p=0.013) of ApoE4 mice (24-month-old) as compared to age-matched control mice. IHC revealed elevated Aβ deposition in the hippocampus. Consistently, both soluble and insoluble Aβ aggregates were increased in aged ApoE4 mice. This increase was correlated inversely with hippocampal atrophy and cognitive deficits. These data give further evidence that ApoE4 plays an important role in brain atrophy and memory impairment by modulating amyloid production and deposition.

  7. Divergent responses of inflammatory mediators within the amygdala and medial prefrontal cortex to acute psychological stress.

    Science.gov (United States)

    Vecchiarelli, Haley A; Gandhi, Chaitanya P; Gray, J Megan; Morena, Maria; Hassan, Kowther I; Hill, Matthew N

    2016-01-01

    There is now a growing body of literature that indicates that stress can initiate inflammatory processes, both in the periphery and brain; however, the spatiotemporal nature of this response is not well characterized. The aim of this study was to examine the effects of an acute psychological stress on changes in mRNA and protein levels of a wide range of inflammatory mediators across a broad temporal range, in key corticolimbic brain regions involved in the regulation of the stress response (amygdala, hippocampus, hypothalamus, medial prefrontal cortex). mRNA levels of inflammatory mediators were analyzed immediately following 30min or 120min of acute restraint stress and protein levels were examined 0h through 24h post-termination of 120min of acute restraint stress using both multiplex and ELISA methods. Our data demonstrate, for the first time, that exposure to acute psychological stress results in an increase in the protein level of several inflammatory mediators in the amygdala while concomitantly producing a decrease in the protein level of multiple inflammatory mediators within the medial prefrontal cortex. This pattern of changes seemed largely restricted to the amygdala and medial prefrontal cortex, with stress producing few changes in the mRNA or protein levels of inflammatory mediators within the hippocampus or hypothalamus. Consistent with previous research, stress resulted in a general elevation in multiple inflammatory mediators within the circulation. These data indicate that neuroinflammatory responses to stress do not appear to be generalized across brain structures and exhibit a high degree of spatiotemporal specificity. Given the impact of inflammatory signaling on neural excitability and emotional behavior, these data may provide a platform with which to explore the importance of inflammatory signaling within the prefrontocortical-amygdala circuit in the regulation of the neurobehavioral responses to stress.

  8. Oxymatrine reduces neuroinflammation in rat brain A signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Jiahui Mao; Yae Hu; Ailing Zhou; Bing Zheng; Yi Liu; Yueming Du; Jia Li; Jinyang Lu; Pengcheng Zhou

    2012-01-01

    Cerebral neuroinflammation models were established by injecting 10 μg lipopolysaccharide into the hippocampus of male Sprague-Dawley rats.The rats were treated with an intraperitoneal injection of 120,90,or 60 mg/kg oxymatrine daily for three days prior to the lipopolysaccharide injection.Twenty-four hours after model induction,the hippocampus was analyzed by real-time quantitative PCR,and the cerebral cortex was analyzed by enzyme-linked immunosorbent assay and western blot assay.The results of the enzyme-linked immunosorbent assay and the real-time quantitative PCR showed that the secretion and mRNA expression of the pro-inflammatory cytokines interleukin-1β and tumor necrosis factor-α were significantly decreased in the hippocampus and cerebral cortex of model rats treated with oxymatrine.Western blot assay and real-time quantitative PCR analysis indicated that toll-like receptor 4 mRNA and protein expression were significantly decreased in the groups receiving different doses of oxymatrine.Additionally,120 and 90 mg/kg oxymatrine were shown to reduce protein levels of nuclear factor-kB p65 in the nucleus and of phosphorylated IkBα in the cytoplasm of brain cells,as detected by western blot assay.Experimental findings indicate that oxymatrine may inhibit neuroinflammation in rat brain via downregulating the expression of molecules in the toll-like receptor 4/nuclear factor-kB signaling pathway.

  9. Sex differences in volume and structural covariance of the anterior and posterior hippocampus.

    Science.gov (United States)

    Persson, Jonas; Spreng, R Nathan; Turner, Gary; Herlitz, Agneta; Morell, Arvid; Stening, Eva; Wahlund, Lars-Olof; Wikström, Johan; Söderlund, Hedvig

    2014-10-01

    Sex differences in episodic and spatial memory are frequently observed, suggesting that there may be sex-related structural differences in the hippocampus (HC). Earlier findings are inconsistent, possibly due to a known variability along the hippocampal longitudinal axis. Here, we assessed potential sex differences in hippocampal volume and structural covariance with the rest of the brain in young men and women (N=76), considering the anterior (aHC) and posterior (pHC) hippocampus separately. Women exhibited a larger pHC than men adjusted for brain size. Using partial least squares, we identified two significant patterns of structural covariance of the aHC and pHC. The first included brain areas that covaried positively and negatively in volume with both the aHC and pHC in men, but showed greater covariance with the aHC than pHC in women. The second pattern revealed distinct structural covariance of the aHC and pHC that showed a clear difference between men and women: in men the pHC showed reliable structural covariance with the medial and lateral parietal lobes and the prefrontal cortex, whereas in women the aHC showed reliable structural covariance with the anterior temporal lobe bilaterally. This pattern converges with resting state functional connectivity of the aHC and pHC and suggests that these hippocampal sections interact with different brain regions, consistent with a division of labor with regards to episodic and spatial memory. Our findings lend support to a division of the HC into an anterior and posterior part and identify sex as a potential moderating factor when investigating hippocampal structure and connectivity.

  10. Long-Term Effects of Maternal Deprivation on Cholinergic System in Rat Brain

    Directory of Open Access Journals (Sweden)

    Branka Marković

    2014-01-01

    Full Text Available Numerous clinical studies have demonstrated an association between early stressful life events and adult life psychiatric disorders including schizophrenia. In rodents, early life exposure to stressors such as maternal deprivation (MD produces numerous hormonal, neurochemical, and behavioral changes and is accepted as one of the animal models of schizophrenia. The stress induces acetylcholine (Ach release in the forebrain and the alterations in cholinergic neurotransmitter system are reported in schizophrenia. The aim of this study was to examine long-term effects of maternal separation on acetylcholinesterase (AChE activity in different brain structures and the density of cholinergic fibers in hippocampus and retrosplenial (RS cortex. Wistar rats were separated from their mothers on the postnatal day (P 9 for 24 h and sacrificed on P60. Control group of rats was bred under the same conditions, but without MD. Brain regions were collected for AChE activity measurements and morphometric analysis. Obtained results showed significant decrease of the AChE activity in cortex and increase in the hippocampus of MD rats. Density of cholinergic fibers was significantly increased in CA1 region of hippocampus and decreased in RS cortex. Our results indicate that MD causes long-term structure specific changes in the cholinergic system.

  11. Effects of Rhizoma Acori Tatarinowii extracts on gamma-aminobutyric acid type A receptor alpha 1 subunit brain expression during development in a recurrent seizure rat model

    Institute of Scientific and Technical Information of China (English)

    Liqun Liu; Ding'an Mao; Keqiang Chi; Xingfang Li; Tao Bo; Jinming Guo; Zhuwen Yi

    2011-01-01

    Extracts from Rhizoma Acori Tatarinowii (Grassleaf Sweetflag Rhizome, Shichangpu) have been shown to improve learning and memory, reduce anxiety, allay excitement, and suppress seizures. Rhizoma Acori Tatarinowii extracts interact with γ-aminobutyric acid and activate the γ-aminobutyric acid type A receptor, although few studies have addressed the precise effects of γ-aminobutyric acid type A receptor α1 subunit. In the present study, γ-aminobutyric acid type A receptor α1 subunit protein expression in the cerebral cortex and hippocampus, and pathological scores of brain injury, were significantly greater following recurrent seizures, but significantly decreased following treatment with Rhizoma Acori Tatarinowii extracts. These results indicated that Rhizoma Acori Tatarinowii extracts down-regulated γ-aminobutyric acid type A receptor α1 subunit protein expression in the cerebral cortex and hippocampus and protected seizure-induced brain injury during development.

  12. Neurobiological toxicity of radiation in hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Son, Yeong Hoon; Kim, Joong Sun [Research center, Dongnam institute of radiological and Medical Sciences (DIRAMS), Busan (Korea, Republic of); Kim, Sung Ho; Moon, Chang Jong [College of Veterinary Medicine, Chonnam National University, Gwangju (Korea, Republic of)

    2014-11-15

    Ionizing radiation affects multiple organs, which differ in their apparent response. Nevertheless, the adult brain is less vulnerable to radiation than other radiosensitive organs. Clinically, patients receive partial large-field or whole-brain irradiation for cancer treatment yearly, long-term survivors increases, and thus, radiation induced side effects, including cognitive impairment, will become a major health problem. Although the most commonly reported noxious effects of irradiation occur via damage to DNA and consequent disruption of protein synthesis, there are also specific effects on biochemical pathways that have indirect effects on DNA transcription. The hippocampus dependent memory dysfunction is consistent with the changes in neurogenesis after 1 and 3 dyas after irradiation. At 30 and 90 days following irradiation, mice displayed significant depression-like behaviors. Hippocampal dysfunction during the chronic phase following cranial irradiation may be associated with decreases in the neurogenesis and synaptic plasticity related signals, concomitant with microglial reduction in the hippocampus.

  13. Adult Neurogenesis in the Mammalian Hippocampus: Why the Dentate Gyrus?

    Science.gov (United States)

    Drew, Liam J.; Fusi, Stefano; Hen, René

    2013-01-01

    In the adult mammalian brain, newly generated neurons are continuously incorporated into two networks: interneurons born in the subventricular zone migrate to the olfactory bulb, whereas the dentate gyrus (DG) of the hippocampus integrates locally born principal neurons. That the rest of the mammalian brain loses significant neurogenic capacity…

  14. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  15. Tunicamycin-induced unfolded protein response in the developing mouse brain

    International Nuclear Information System (INIS)

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific

  16. Tunicamycin-induced unfolded protein response in the developing mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiping; Wang, Xin [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Ke, Zun-Ji [Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203 (China); Comer, Ashley L.; Xu, Mei; Frank, Jacqueline A. [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Zhang, Zhuo; Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Luo, Jia, E-mail: jialuo888@uky.edu [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States)

    2015-03-15

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific.

  17. The hippocampus - pictorial essay

    International Nuclear Information System (INIS)

    Full text: We aim to demonstrate the anatomy and pathology of the hippocampus. It is important that radiologists distinguish normal and abnormal hippocampal hippocampal MR appearances, since hippocampal sclerosis is the commonest cause of surgically treatable temporal lobe epilepsy. The detailed anatomy of the hippocampus is reviewed and correlated with normal MR appearances. Our radiology database was reviewed to determine both common and unusual pathologies affecting the hippocampus. Most scans were performed for our large Comprehensive Epilepsy Program, for investigation of epilepsy of possible seizures. Less frequent indications included memory loss (acute or chronic), stroke, headache, and altered conscious state. Hippocampal sclerosis was the commonest MR abnormality. This was occasionally bilateral or associated with other pathology. Other common findings included mild hippocampal asymmetry, bilateral atrophy, or normal variants such as choroid fissure cysts. Other pathologies included cortical developmental malformations, infarction, posttraumatic gliosis, herpes, simplex encephalitis, paraneoplastic limbic encephalitis, vascular malformations, sarcoidosis, benign tumours such as gangliogliomas and dysembyoplastic neuroepithelial tumours (DNET) and malignant tumours. The hippocampus has a complex anatomy visible on high resolution MRI. In the clinical context of epilepsy, hippocampal sclerosis is an important pathology, but a range of conditions may affect the hippocampus, readily demonstrated by MRI. Copyright (2002) Blackwell Science Pty Ltd

  18. 力竭运动后小鼠前脑皮层和海马神经元功能的变化及其机制%Effects of exhausted exercise on the prefrontal cortex and hippocampus function in mice and its mechanism

    Institute of Scientific and Technical Information of China (English)

    蔡成法; 李亚

    2014-01-01

    目的:研究力竭游泳运动对小鼠前脑皮层和海马神经元功能的影响及其作用机制。方法:采用力竭游泳运动小鼠模型,检测反复(4周)力竭游泳运动后即刻(0小时)、12小时、24小时和1周小鼠前脑皮层、海马突触体膜流动性和突触体内游离 Ca2+浓度的变化,通过 Morris 水迷宫测试小鼠空间学习记忆能力。结果:反复力竭游泳运动后,与正常对照组小鼠比较,力竭运动组在12 h 和24 h 小鼠的逃避潜伏期(训练周期1)明显增加,第一象限停留时间明显减少,其空间学习记忆能力显著降低(P <0.01,P <0.05);力竭运动组小鼠前脑皮层和海马突触体膜流动性在0 h、12 h 显著降低(P <0.01,P <0.05);前脑皮层和海马突触体内游离 Ca2+浓度在0 h、12 h 和24 h 显著增加(P <0.05,P <0.01),力竭运动后1周前脑皮层和海马突触体内游离 Ca2+浓度明显恢复(P <0.05)。结论:力竭游泳运动所致小鼠空间学习记忆功能损伤以及运动性中枢疲劳的产生和恢复可能与突触体膜流动性和突触体内游离 Ca2+浓度的变化密切相关。%Objective:To study the effect of exhausted exercise on the prefrontal cortex( PFC) and hippocampus( HP)function and its mechanism. Methods:The repeatedly(4 weeks) exhausted exercise model mice were applied. The spatial learning - memory abilities of mice were tested,using Morris water maze task. The changes of synaptosomal membrane fluidity and [Ca2 + ]i of the PFC and HP in exhausted exercise mice brain were examined,at 0 h (immediately),12 h,24 h,respectively. Results:After repeatedly exhausted exercise,the escape latency was significantly increased and the swimming time of first quadrants were significantly decreased at 12 h,24 h in exhaustive exercise group mice(P < 0. 01,P < 0. 05). Compared with control mice,the ability of spatial learning and memory of the exhaustive exercise group mice were

  19. The Role of Neonatal Carnitine Palmitoyl Transferase Deficiency Type II on Proliferation of Neuronal Progenitor Cells and Layering of the Cerebral Cortex in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Heepeel Chang

    2007-06-01

    Full Text Available Neonatal Carnitine Palmitoyl Transferase Deficiency Type II, characterized by the absence of CPT II enzyme, is one of the lethal disorders of mitochondrial fatty acid oxidation. CPT II regulates the conversion of long chain fatty acids, so that its product, acyl-CoA esters, can enter the Krebs cycle and generate energy. Neonatal mutations of CPT II lead to severe disruption of the metabolism of long-chain fatty acids and result in dysmorphic features, cystic renal dysplasia, and neuronal migration defects. Examination of the brain from an approximately 15-week gestation human fetus with CPT II deficiency revealed premature formation of cerebral cortical gyri and sulci and significantly lower levels of neuronal cell proliferation in the ventricular and subventricular zones as compared to the reference cases. We used immunohistochemical markers to further characterize the effect of CPT II deficiency on progenitor cell proliferation and layering of neurons. These studies demonstrated a premature generation of layer 5 cortical neurons. In addition, both the total number and percentage of progenitor cells proliferating in the ventricular zone were markedly reduced in the CPT II case in comparison to a reference case. Our results indicate that CPT II deficiency alters the normal program of cellular proliferation and differentiation in the cortex, with early differentiation of progenitor cells associated with premature cortical maturation.

  20. Motor cortex stimulation(MCS) for intractable complex regional pain syndrome (CRPS) type II: PSM analysis of Tc-99m ECD brain perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. A.; Son, B. C.; Yoo, I. R.; Kim, S. H.; Kim, E. N.; Park, Y. H.; Lee, S. Y.; Sohn, H. S.; Chung, S. K. [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    We had experienced a patient with intractable CRPS in whom statistical parametric mapping (SPM) analysis of cerebral perfusion explained the mechanism of pain control by MCS. A 43-year-old man presented spontaneous severe burning pain in his left hand and forearm and allodynia over the left arm and left hemibody. After the electrodes for neuromodulation therapy were inserted in the central sulcus, the baseline and stimulation brain perfusion SPECT using Tc-99m ECD were obtained within two days. The differences between the baseline and stimulation SPECT images, estimated at every voxel using t-statistics using SPM-99 software, were considered significant at a threshold of uncorrected P values less than 0.01. Among several areas significantly activated following pain relief with MCS, ipsilateral pyramidal tract in the cerebral peduncle might be related to the mechanism of pain control with MCS through efferent motor pathway. The result suggested that corticospinal neurons themselves or motor cortex efferent pathway maintained by the presence of intact corticospinal neurons could play an important role in producing pain control after MCS. This study would helpful in understanding of neurophysiology.

  1. Frontopolar cortex and decision-making efficiency: comparing brain activity of experts with different professional background during an exploration-exploitation task

    Directory of Open Access Journals (Sweden)

    Daniella eLaureiro-Martínez

    2014-01-01

    Full Text Available An optimal balance between efficient exploitation of available resources and creative exploration of alternatives is critical for adaptation and survival. Previous studies associated these behavioral drives with, respectively, the dopaminergic mesocorticolimbic system and frontopolar-intraparietal networks. We study the activation of these systems in two age and gender-matched groups of experienced decision-makers differing in prior professional background, with the aim to understand the neural bases of individual differences in decision-making efficiency (performance divided by response time. We compare brain activity of entrepreneurs (who currently manage the organization they founded based on their venture idea and managers (who are constantly involved in making strategic decisions but have no venture experience engaged in a gambling-task assessing exploitative vs. explorative decision-making. Compared with managers, entrepreneurs showed higher decision-making efficiency, and a stronger activation in regions of frontopolar cortex previously associated with explorative choice. Moreover, activity across a network of regions previously linked to explore/exploit tradeoffs explained individual differences in choice efficiency. These results suggest new avenues for the study of individual differences in the neural antecedents of efficient decision-making.

  2. Genetic Variation in the Catechol-O-Methyl Transferase Val108/158Met Is Linked to the Caudate and Posterior Cingulate Cortex Volume in Healthy Subjects: Voxel-Based Morphometry Analysis of Brain Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Keita Watanabe

    Full Text Available The effect of the catechol-O-methyltransferase (COMT Val158Met polymorphism on brain morphology has been investigated but remains controversial. We hypothesized that a comparison between Val/Val and Val/Met individuals, which may represent the most different combinations concerning the effects of the COMT genotype, may reveal new findings. We investigated the brain morphology using 3-Tesla magnetic resonance imaging in 27 Val/Val and 22 Val/Met individuals. Voxel-based morphometry revealed that the volumes of the bilateral caudate and posterior cingulate cortex were significantly smaller in Val/Val individuals than in Val/Met individuals [right caudate: false discovery rate (FDR-corrected p = 0.048; left caudate: FDR-corrected p = 0.048; and bilateral posterior cingulate cortex: FDR-corrected p = 0.048]. This study demonstrates that interacting functional variants of COMT affect gray matter regional volumes in healthy subjects.

  3. Chronic methamphetamine treatment reduces the expression of synaptic plasticity genes and changes their DNA methylation status in the mouse brain.

    Science.gov (United States)

    Cheng, Min-Chih; Hsu, Shih-Hsin; Chen, Chia-Hsiang

    2015-12-10

    Methamphetamine (METH) is a highly addictive psychostimulant that may cause long-lasting synaptic dysfunction and abnormal gene expression. We aimed to explore the differential expression of synaptic plasticity genes in chronic METH-treated mouse brain. We used the RT(2) Profiler PCR Array and the real-time quantitative PCR to characterize differentially expressed synaptic plasticity genes in the frontal cortex and the hippocampus of chronic METH-treated mice compared with normal saline-treated mice. We further used pyrosequencing to assess DNA methylation changes in the CpG region of the five immediate early genes (IEGs) in chronic METH-treated mouse brain. We detected six downregulated genes in the frontal cortex and the hippocampus of chronic METH-treated mice, including five IEGs (Arc, Egr2, Fos, Klf10, and Nr4a1) and one neuronal receptor gene (Grm1), compared with normal saline-treated group, but only four genes (Arc, Egr2, Fos, and Nr4a1) were confirmed to be different. Furthermore, we found several CpG sites of the Arc and the Fos that had significant changes in DNA methylation status in the frontal cortex of chronic METH-treated mice, while the klf10 and the Nr4a1 that had significant changes in the hippocampus. Our results show that chronic administration of METH may lead to significant downregulation of the IEGs expression in both the frontal cortex and the hippocampus, which may partly account for the molecular mechanism of the action of METH. Furthermore, the changes in DNA methylation status of the IEGs in the brain indicate that an epigenetic mechanism-dependent transcriptional regulation may contribute to METH addiction, which warrants additional study. PMID:26496011

  4. Enhanced metabolic capacity of the frontal cerebral cortex after Pavlovian conditioning.

    Science.gov (United States)

    Bruchey, A K; Gonzalez-Lima, F

    2008-03-18

    While Pavlovian conditioning alters stimulus-evoked metabolic activity in the cerebral cortex, less is known about the effects of Pavlovian conditioning on neuronal metabolic capacity. Pavlovian conditioning may increase prefrontal cortical metabolic capacity, as suggested by evidence of changes in cortical synaptic strengths, and evidence for a shift in memory initially processed in subcortical regions to more distributed prefrontal cortical circuits. Quantitative cytochrome oxidase histochemistry was used to measure cumulative changes in brain metabolic capacity associated with both cued and contextual Pavlovian conditioning in rats. The cued conditioned group received tone-foot-shock pairings to elicit a conditioned freezing response to the tone conditioned stimulus, while the contextually conditioned group received pseudorandom tone-foot-shock pairings in an excitatory context. Untrained control group was handled daily, but did not receive any tone presentations or foot shocks. The cued conditioned group had higher cytochrome oxidase activity in the infralimbic and anterior cingulate cortex, and lower cytochrome oxidase activity in dorsal hippocampus than the other two groups. A significant increase in cytochrome oxidase activity was found in anterior cortical areas (medial, dorsal and lateral frontal cortex; agranular insular cortex; lateral and medial orbital cortex and prelimbic cortex) in both conditioned groups, as compared with the untrained control group. In addition, no differences in cytochrome oxidase activity in the somatosensory regions and the amygdala were detected among all groups. The findings indicate that cued and contextual Pavlovian conditioning induces sustained increases in frontal cortical neuronal metabolic demand resulting in regional enhancement in the metabolic capacity of anterior cortical regions. Enhanced metabolic capacity of these anterior cortical areas after Pavlovian conditioning suggests that the frontal cortex may play a

  5. Glutamate (mGluR-5 gene expression in brain regions of streptozotocin induced diabetic rats as a function of age: role in regulation of calcium release from the pancreatic islets in vitro

    Directory of Open Access Journals (Sweden)

    Paulose CS

    2009-11-01

    Full Text Available Abstract Metabotrophic glutamate receptors (mGluRs modulate cellular activities involved in the processes of differentiation and degeneration. In this study, we have analysed the expression pattern of group-I metabotropic glutamate receptor (mGlu-5 in cerebral cortex, corpus striatum, brainstem and hippocampus of streptozotocin induced and insulin treated diabetic rats (D+I as a function of age. Also, the functional role of glutamate receptors in intra cellular calcium release from the pancreatic islets was studied in vitro. The gene expression studies showed that mGlu-5 mRNA in the cerebral cortex increased siginficantly in 7 weeks old diabetic rats whereas decreased expression was observed in brainstem, corpus striatum and hippocampus when compared to control. 90 weeks old diabetic rats showed decreased expression in cerebral cortex, corpus striatum and hippocampus whereas in brainstem the expression increased significantly compared to their respective controls. In 7 weeks old D+I group, mGlu-5 mRNA expression was significantly decreased in cerebral cortex and corpus striatum whereas the expression increased significantly in brainstem and hippocampus. 90 weeks old D+I group showed an increased expression in cerebral cortex, while it was decreased significantly in corpus striatum, brainstem and hippocampus compared to their respective controls. In vitro studies showed that glutamate at lower concentration (10-7 M stimulated calcium release from the pancreatic islets. Our results suggest that mGlu-5 receptors have differential expression in brain regions of diabetes and D+I groups as a function of age. This will have clinical significance in management of degeneration in brain function and memory enhancement through glutamate receptors. Also, the regulatory role of glutamate receptors in calcium release has immense therapeutic application in insulin secretion and function.

  6. Haptoglobin increases with age in rat hippocampus and modulates Apolipoprotein E mediated cholesterol trafficking in neuroblastoma cell lines

    Directory of Open Access Journals (Sweden)

    Maria Stefania eSpagnuolo

    2014-08-01

    Full Text Available Alteration in cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative disorders. Apolipoprotein E (ApoE is the major component of brain lipoproteins supporting cholesterol transport. We previously reported that the acute-phase protein Haptoglobin (Hpt binds ApoE, and influences its function in blood cholesterol homeostasis. Major aim of this study was to investigate whether Hpt influences the mechanisms by which cholesterol is shuttled from astrocytes to neurons. In detail it was studied Hpt effect on ApoE-dependent cholesterol efflux from astrocytes and ApoE-mediated cholesterol incorporation in neurons. We report here that Hpt impairs ApoE-mediated cholesterol uptake in human neuroblastoma cell line SH-SY5Y, and limits the toxicity of a massive concentration of cholesterol for these cells, while it does not affect cholesterol efflux from the human glioblastoma-astrocytoma cell line U-87 MG. As aging is the most important nongenetic risk factor for various neurodegenerative disorders, and our results suggest that Hpt modulates ApoE functions, we evaluated the Hpt and ApoE expression profiles in cerebral cortex and hippocampus of adolescent (2 months, adult (5 and 8 months, and middle-aged (16 months rats. Hpt mRNA level was higher in hippocampus of 8 and 16 month-old than in 2-month old rats (p<0.05, and Hpt concentration increased with the age from adolescence to middle-age (p<0.001. ApoE concentration, in hippocampus, was higher (p<0.001 in 5 month-old rats compared to 2 month but did not further change with aging. No age-related changes of Hpt (protein and mRNA were found in the cortex. Our results suggest that aging is associated with changes, particularly in the hippocampus, in the Hpt/ApoE ratio. Age-related changes in the concentration of Hpt were also found in human cerebrospinal fluids.The age-related changes might affect neuronal function and survival in brain, and have important implications in

  7. Brain-derived neurotrophic factor--a major player in stimulation-induced homeostatic metaplasticity of human motor cortex?

    DEFF Research Database (Denmark)

    Mastroeni, Claudia; Bergmann, Til Ole; Rizzo, Vincenzo;

    2013-01-01

    Repetitive transcranial magnetic stimulation (rTMS) of the human motor hand area (M1HAND) can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter-individual......Repetitive transcranial magnetic stimulation (rTMS) of the human motor hand area (M1HAND) can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter......-individual variability which has been partially attributed to the val(66)met polymorphism in the brain-derived neurotrophic factor (BDNF) gene. Here we used theta burst stimulation (TBS) to examine whether the BDNF val(66)met genotype can be used to predict the expression of TBS-induced homeostatic metaplasticity in...... effects was modulated by the BDNF val(66)met polymorphism, our results do not support the notion that the BDNF val(66)met genotype is a major player with regard to TBS-induced plasticity and metaplasticity in the human M1HAND....

  8. Acute Sleep Deprivation Induces a Local Brain Transfer Information Increase in the Frontal Cortex in a Widespread Decrease Context

    Directory of Open Access Journals (Sweden)

    Joan F. Alonso

    2016-04-01

    Full Text Available Sleep deprivation (SD has adverse effects on mental and physical health, affecting the cognitive abilities and emotional states. Specifically, cognitive functions and alertness are known to decrease after SD. The aim of this work was to identify the directional information transfer after SD on scalp EEG signals using transfer entropy (TE. Using a robust methodology based on EEG recordings of 18 volunteers deprived from sleep for 36 h, TE and spectral analysis were performed to characterize EEG data acquired every 2 h. Correlation between connectivity measures and subjective somnolence was assessed. In general, TE showed medium- and long-range significant decreases originated at the occipital areas and directed towards different regions, which could be interpreted as the transfer of predictive information from parieto-occipital activity to the rest of the head. Simultaneously, short-range increases were obtained for the frontal areas, following a consistent and robust time course with significant maps after 20 h of sleep deprivation. Changes during sleep deprivation in brain network were measured effectively by TE, which showed increased local connectivity and diminished global integration. TE is an objective measure that could be used as a potential measure of sleep pressure and somnolence with the additional property of directed relationships.

  9. Acute Sleep Deprivation Induces a Local Brain Transfer Information Increase in the Frontal Cortex in a Widespread Decrease Context

    Science.gov (United States)

    Alonso, Joan F.; Romero, Sergio; Mañanas, Miguel A.; Alcalá, Marta; Antonijoan, Rosa M.; Giménez, Sandra

    2016-01-01

    Sleep deprivation (SD) has adverse effects on mental and physical health, affecting the cognitive abilities and emotional states. Specifically, cognitive functions and alertness are known to decrease after SD. The aim of this work was to identify the directional information transfer after SD on scalp EEG signals using transfer entropy (TE). Using a robust methodology based on EEG recordings of 18 volunteers deprived from sleep for 36 h, TE and spectral analysis were performed to characterize EEG data acquired every 2 h. Correlation between connectivity measures and subjective somnolence was assessed. In general, TE showed medium- and long-range significant decreases originated at the occipital areas and directed towards different regions, which could be interpreted as the transfer of predictive information from parieto-occipital activity to the rest of the head. Simultaneously, short-range increases were obtained for the frontal areas, following a consistent and robust time course with significant maps after 20 h of sleep deprivation. Changes during sleep deprivation in brain network were measured effectively by TE, which showed increased local connectivity and diminished global integration. TE is an objective measure that could be used as a potential measure of sleep pressure and somnolence with the additional property of directed relationships. PMID:27089346

  10. Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Tamar ePashut

    2014-06-01

    Full Text Available Although transcranial magnetic stimulation (TMS is a popular tool for both basic research and clinical applications, its actions on nerve cells are only partially understood. We have previously predicted, using compartmental modeling, that magnetic stimulation of central nervous system neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. The simulations also predict that neurons with low current threshold are more susceptible to magnetic stimulation. Here we tested these theoretical predictions by combining in vitro patch-clamp recordings from rat brain slices with magnetic stimulation and compartmental modeling. In agreement with the modeling, our recordings demonstrate the dependence of magnetic stimulation-triggered action potentials on the type and state of the neuron and its orientation within the magnetic field. Our results suggest that the observed effects of TMS are deeply rooted in the biophysical properties of single neurons in the central nervous system and provide a framework both for interpreting existing TMS data and developing new simulation-based tools and therapies.

  11. Acute Sleep Deprivation Induces a Local Brain Transfer Information Increase in the Frontal Cortex in a Widespread Decrease Context.

    Science.gov (United States)

    Alonso, Joan F; Romero, Sergio; Mañanas, Miguel A; Alcalá, Marta; Antonijoan, Rosa M; Giménez, Sandra

    2016-01-01

    Sleep deprivation (SD) has adverse effects on mental and physical health, affecting the cognitive abilities and emotional states. Specifically, cognitive functions and alertness are known to decrease after SD. The aim of this work was to identify the directional information transfer after SD on scalp EEG signals using transfer entropy (TE). Using a robust methodology based on EEG recordings of 18 volunteers deprived from sleep for 36 h, TE and spectral analysis were performed to characterize EEG data acquired every 2 h. Correlation between connectivity measures and subjective somnolence was assessed. In general, TE showed medium- and long-range significant decreases originated at the occipital areas and directed towards different regions, which could be interpreted as the transfer of predictive information from parieto-occipital activity to the rest of the head. Simultaneously, short-range increases were obtained for the frontal areas, following a consistent and robust time course with significant maps after 20 h of sleep deprivation. Changes during sleep deprivation in brain network were measured effectively by TE, which showed increased local connectivity and diminished global integration. TE is an objective measure that could be used as a potential measure of sleep pressure and somnolence with the additional property of directed relationships. PMID:27089346

  12. Imaging of Copper, Zinc and other Elements in Thin Section of Human Brain Samples (Hippocampus) by Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    OpenAIRE

    Becker, J. S.; Zoriy, M. V.; Pickhardt, C.; Palomero-Gallagher, N.; Zilles, K.

    2005-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) was used to produce images of element distribution in 20-microm thin sections of human brain tissue. The sample surface was scanned (raster area approximately 80 mm(2)) with a focused laser beam (wavelength 213 nm, diameter of laser crater 50 microm, and laser power density 3 x 10(9) W cm(-2)) in a cooled laser ablation chamber developed for these measurements. The laser ablation system was coupled to a double-focusing sec...

  13. Serotonin Receptors in Hippocampus

    Directory of Open Access Journals (Sweden)

    Laura Cristina Berumen

    2012-01-01

    Full Text Available Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system.

  14. Zingiber officinale Mitigates Brain Damage and Improves Memory Impairment in Focal Cerebral Ischemic Rat

    Directory of Open Access Journals (Sweden)

    Jintanaporn Wattanathorn

    2011-01-01

    Full Text Available Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect of Zingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO. Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA, superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia.

  15. Optogenetic dissection of medial prefrontal cortex circuitry

    Directory of Open Access Journals (Sweden)

    Danai eRiga

    2014-12-01

    Full Text Available The medial prefrontal cortex (mPFC is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g. thalamus, striatum, amygdala and hippocampus, the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders.

  16. Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Gary E Strangman

    2010-10-01

    Full Text Available Cognitive deficits following traumatic brain injury (TBI commonly include difficulties with memory, attention, and executive dysfunction. These deficits are amenable to cognitive rehabilitation, but optimally selecting rehabilitation programs for individual patients remains a challenge. Recent methods for quantifying regional brain morphometry allow for automated quantification of tissue volumes in numerous distinct brain structures. We hypothesized that such quantitative structural information could help identify individuals more or less likely to benefit from memory rehabilitation. Fifty individuals with TBI of all severities who reported having memory difficulties first underwent structural MRI scanning. They then participated in a 12 session memory rehabilitation program emphasizing internal memory strategies (I-MEMS. Primary outcome measures (HVLT, RBMT were collected at the time of the MRI scan, immediately following therapy, and again at one month post-therapy. Regional brain volumes were used to predict outcome, adjusting for standard predictors (e.g., injury severity, age, education, pretest scores. We identified several brain regions that provided significant predictions of rehabilitation outcome, including the volume of the hippocampus, the lateral prefrontal cortex, the thalamus, and several subregions of the cingulate cortex. The prediction range of regional brain volumes were in some cases nearly equal in magnitude to prediction ranges provided by pretest scores on the outcome variable. We conclude that specific cerebral networks including these regions may contribute to learning during I-MEMS rehabilitation, and suggest that morphometric measures may provide substantial predictive value for rehabilitation outcome in other cognitive interventions as well.

  17. Progesterone mediates brain functional connectivity changes during the menstrual cycle - A pilot resting state MRI study

    Directory of Open Access Journals (Sweden)

    Katrin eArelin

    2015-02-01

    Full Text Available The growing interest in intrinsic brain organization has sparked various innovative approaches to generating comprehensive connectivity-based maps of the human brain. Prior reports point to a sexual dimorphism of the structural and functional human connectome. However, it is uncertain whether subtle changes in sex hormones, as occur during the monthly menstrual cycle, substantially impact the functional architecture of the female brain. Here, we performed eigenvector centrality (EC mapping in 32 longitudinal resting state fMRI scans of a single healthy subject without oral contraceptive use, across four menstrual cycles, and assessed estrogen and progesterone levels. To investigate associations between cycle-dependent hormones and brain connectivity, we performed correlation analyses between the EC maps and the respective hormone levels. On the whole brain level, we found a significant positive correlation between progesterone and EC in the bilateral DLPFC and bilateral sensorimotor cortex. In a secondary region-of-interest analysis, we detected a progesterone-modulated increase in functional connectivity of both bilateral DLPFC and bilateral sensorimotor cortex with the hippocampus. Our results suggest that the menstrual cycle substantially impacts intrinsic functional connectivity, particularly in brain areas associated with contextual memory-regulation, such as the hippocampus. These findings are the first to link the subtle hormonal fluctuations that occur during the menstrual cycle, to significant changes in regional functional connectivity in the hippocampus in a longitudinal design, given the limitation of data acquisition in a single subject. Our study demonstrates the feasibility of such a longitudinal rs-fMRI design and illustrates a means of creating a personalized map of the human brain by integrating potential mediators of brain states, such as menstrual cycle phase.

  18. Altered organization of GABAA receptor mRNA expression in the depressed suicide brain

    Directory of Open Access Journals (Sweden)

    Michael O Poulter

    2010-03-01

    Full Text Available Inter-relationships ordinarily exist between mRNA expression of GABA-A subunits in the frontopolar cortex (FPC of individuals that had died suddenly from causes other than suicide. However, these correlations were largely absent in persons that had died by suicide. In the present investigation, these findings were extended by examining GABA-A receptor expression patterns (of controls and depressed individuals that died by suicide in the orbital frontal cortex (OFC, hippocampus, amygdala. locus coeruleus (LC,and paraventricular nucleus (PVN, all of which have been implicated in either depression, anxiety or stress responsivity. Results Using QPCR analysis, we found that in controls the inter-relations between GABA-A subunits varied across brain regions, being high in the hippocampus and amygdala, intermediate in the LC, and low in the OFC and PVN. The GABA-A subunit inter-relations were markedly different in persons that died by suicide, being reduced in hippocampus and amygdala, stable in the LC, but more coordinated in the OFC and to some extent in the PVN. Conclusions It seems that altered brain region-specific inhibitory signaling, stemming from altered GABA-A subunit coordination, are associated with depression/suicide. Although, it is unknown whether GABA-A subunit re-organization was specifically tied to depression, suicide, or the accompanying distress, these data show that the co-ordinate expression of this transcriptome does vary depending on brain region and is plastic.

  19. Simultaneous Two-photon in Vivo Imaging of Synaptic Inputs and Postsynaptic Targets in the Mouse Retrosplenial Cortex.

    Science.gov (United States)

    Łukasiewicz, Kacper; Robacha, Magdalena; Bożycki, Łukasz; Radwanska, Kasia; Czajkowski, Rafał

    2016-01-01

    This video shows the craniotomy procedure that allows chronic imaging of neurons in the mouse retrosplenial cortex (RSC) using in vivo two-photon microscopy in Thy1-GFP transgenic mouse line. This approach creates a possibility to investigate the correlation of behavioural manipulations with changes in neuronal morphology in vivo. The cranial window implantation procedure was considered to be limited only to the easily accessible cortex regions such as the barrel field. Our approach allows visualization of neurons in the highly vascularized RSC. RSC is an important element of the brain circuit responsible for spatial memory, previously deemed to be problematic for in vivo two-photon imaging. The cranial window implantation over the RSC is combined with an injection of mCherry-expressing recombinant adeno-associated virus (rAAV(mCherry)) into the dorsal hippocampus. The expressed mCherry spreads out to axonal projections from the hippocampus to RSC, enabling the visualization of changes in both presynaptic axonal boutons and postsynaptic dendritic spines in the cortex. This technique allows long-term monitoring of experience-dependent structural plasticity in RSC.

  20. Age-related changes in kynurenic acid production in rat brain

    DEFF Research Database (Denmark)

    Gramsbergen, J B; Schmidt, W; Turski, W A;

    1992-01-01

    -dependent increase of KYNA concentration in brain tissue, suggest an enhanced KYNA tone in the aged brain. Together with the reported decline in cerebral excitatory amino acid receptor densities with age, increased production of KYNA may play a role in cognitive and memory dysfunction in old animals....... investigated in tissue slices and was found to be significantly enhanced in the cortex and hippocampus of old animals. The effect of depolarizing agents or sodium replacement was virtually identical in tissues from young and old rats. These data, which are in excellent agreement with reports on an age...... months of age in all five brain regions examined. No changes were observed in the liver. The changes were particularly pronounced in the cortex and in the striatum where enzyme activity increased three-fold during the period studied. KYNA production from its bioprecursor L-kynurenine was also...

  1. A quantitative transcriptome reference map of the normal human hippocampus.

    Science.gov (United States)

    Caracausi, Maria; Rigon, Vania; Piovesan, Allison; Strippoli, Pierluigi; Vitale, Lorenza; Pelleri, Maria Chiara

    2016-01-01

    We performed an innovative systematic meta-analysis of 41 gene expression profiles of normal human hippocampus to provide a quantitative transcriptome reference map of it, i.e. a reference typical value of expression for each of the 30,739 known mapped and the 16,258 uncharacterized (unmapped) transcripts. For this aim, we used the software called TRAM (Transcriptome Mapper), which is able to generate transcriptome maps based on gene expression data from multiple sources. We also analyzed differential expression by comparing the hippocampus with the whole brain transcriptome map to identify a typical expression pattern of this subregion compared with the whole organ. Finally, due to the fact that the hippocampus is one of the main brain region to be severely affected in trisomy 21 (the best known genetic cause of intellectual disability), a particular attention was paid to the expression of chromosome 21 (chr21) genes. Data were downloaded from microarray databases, processed, and analyzed using TRAM software. Among the main findings, the most over-expressed loci in the hippocampus are the expressed sequence tag cluster Hs.732685 and the member of the calmodulin gene family CALM2. The tubulin folding cofactor B (TBCB) gene is the best gene at behaving like a housekeeping gene. The hippocampus vs. the whole brain differential transcriptome map shows the over-expression of LINC00114, a long non-coding RNA mapped on chr21. The hippocampus transcriptome map was validated in vitro by assaying gene expression through several magnitude orders by "Real-Time" reverse transcription polymerase chain reaction (RT-PCR). The highly significant agreement between in silico and experimental data suggested that our transcriptome map may be a useful quantitative reference benchmark for gene expression studies related to human hippocampus. Furthermore, our analysis yielded biological insights about those genes that have an intrinsic over-/under-expression in the hippocampus. PMID

  2. Neuronal and inducible nitric oxide synthase upregulation in the rat medial prefrontal cortex following acute restraint stress: A dataset

    Directory of Open Access Journals (Sweden)

    Jereme G. Spiers

    2016-03-01

    Full Text Available This data article provides additional evidence on gene expression changes in the neuronal and inducible isoforms of nitric oxide synthase in the medial prefrontal cortex following acute stress. Male Wistar rats aged 6–8 weeks were exposed to control or restraint stress conditions for up to four hours in the dark cycle after which the brain was removed and the medial prefrontal cortex isolated by cryodissection. Following RNA extraction and cDNA synthesis, gene expression data were measured using quantitative real-time PCR. The mRNA levels of the neuronal and inducible nitric oxide synthase isoforms, and the inhibitory subunit of NF-κB, I kappa B alpha were determined using the ΔΔCT method relative to control animals. This data article presents complementary results related to the research article entitled ‘Acute restraint stress induces specific changes in nitric oxide production and inflammatory markers in the rat hippocampus and striatum’ [1].

  3. Reduced myelin basic protein and actin-related gene expression in visual cortex in schizophrenia.

    Science.gov (United States)

    Matthews, Paul R; Eastwood, Sharon L; Harrison, Paul J

    2012-01-01

    Most brain gene expression studies of schizophrenia have been conducted in the frontal cortex or hippocampus. The extent to which alterations occur in other cortical regions is not well established. We investigated primary visual cortex (Brodmann area 17) from the Stanley Neuropathology Consortium collection of tissue from 60 subjects with schizophrenia, bipolar disorder, major depression, or controls. We first carried out a preliminary array screen of pooled RNA, and then used RT-PCR to quantify five mRNAs which the array identified as differentially expressed in schizophrenia (myelin basic protein [MBP], myelin-oligodendrocyte glycoprotein [MOG], β-actin [ACTB], thymosin β-10 [TB10], and superior cervical ganglion-10 [SCG10]). Reduced mRNA levels were confirmed by RT-PCR for MBP, ACTB and TB10. The MBP reduction was limited to transcripts containing exon 2. ACTB and TB10 mRNAs were also decreased in bipolar disorder. None of the transcripts were altered in subjects with major depression. Reduced MBP mRNA in schizophrenia replicates findings in other brain regions and is consistent with oligodendrocyte involvement in the disorder. The decreases in expression of ACTB, and the actin-binding protein gene TB10, suggest changes in cytoskeletal organisation. The findings confirm that the primary visual cortex shows molecular alterations in schizophrenia and extend the evidence for a widespread, rather than focal, cortical pathophysiology.

  4. The role of the medial prefrontal cortex in the conditioning and extinction of fear

    Directory of Open Access Journals (Sweden)

    Thomas Francis Giustino

    2015-11-01

    Full Text Available Once acquired, a fearful memory can persist for a lifetime. Although learned fear can be extinguished, extinction memories are fragile. The resilience of fear memories to extinction may contribute to the maintenance of disorders of fear and anxiety, including post-traumatic stress disorder (PTSD. As such, considerable effort has been placed on understanding the neural circuitry underlying the acquisition, expression, and extinction of emotional memories in rodent models as well as in humans. A triad of brain regions, including the prefrontal cortex, hippocampus, and amygdala, form an essential brain circuit involved in fear conditioning and extinction. Within this circuit, the prefrontal cortex is thought to exert top-down control over subcortical structures to regulate appropriate behavioral responses. Importantly, a division of labor has been proposed in which the prelimbic (PL and infralimbic (IL subdivisions of the medial prefrontal cortex (mPFC regulate the expression and suppression of fear in rodents, respectively. Here we critically review the anatomical and physiological evidence that has led to this proposed dichotomy of function within mPFC. We propose that under some conditions, the PL and IL act in concert, exhibiting similar patterns of neural activity in response to aversive conditioned stimuli and during the expression or inhibition of conditioned fear. This may stem from common synaptic inputs, parallel downstream outputs, or cortico-cortical interactions. Despite this functional covariation, these mPFC subdivisions may still be coding for largely opposing behavioral outcomes, with PL biased towards fear expression and IL towards suppression.

  5. Reduced myelin basic protein and actin-related gene expression in visual cortex in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Paul R Matthews

    Full Text Available Most brain gene expression studies of schizophrenia have been conducted in the frontal cortex or hippocampus. The extent to which alterations occur in other cortical regions is not well established. We investigated primary visual cortex (Brodmann area 17 from the Stanley Neuropathology Consortium collection of tissue from 60 subjects with schizophrenia, bipolar disorder, major depression, or controls. We first carried out a preliminary array screen of pooled RNA, and then used RT-PCR to quantify five mRNAs which the array identified as differentially expressed in schizophrenia (myelin basic protein [MBP], myelin-oligodendrocyte glycoprotein [MOG], β-actin [ACTB], thymosin β-10 [TB10], and superior cervical ganglion-10 [SCG10]. Reduced mRNA levels were confirmed by RT-PCR for MBP, ACTB and TB10. The MBP reduction was limited to transcripts containing exon 2. ACTB and TB10 mRNAs were also decreased in bipolar disorder. None of the transcripts were altered in subjects with major depression. Reduced MBP mRNA in schizophrenia replicates findings in other brain regions and is consistent with oligodendrocyte involvement in the disorder. The decreases in expression of ACTB, and the actin-binding protein gene TB10, suggest changes in cytoskeletal organisation. The findings confirm that the primary visual cortex shows molecular alterations in schizophrenia and extend the evidence for a widespread, rather than focal, cortical pathophysiology.

  6. Sensibility about prefrontal cortex and hippocampus of rat depressive model affected by the inflammatory factor in cerebrospinal fluid:a magnetic resonance spectrum study%抑郁模型大鼠额叶及海马对脑脊液炎症因子敏感性的磁共振质子波谱研究

    Institute of Scientific and Technical Information of China (English)

    朱彦; 王冬青; 李月峰; 赵天; 赵亮; 殷瑞根

    2013-01-01

    Objective To explore the sensibility of the encephalic region affected by the inflammatory factor of cerebrospinal fluid(CSF) and the role of the inflammatory factor in the development of the depression.Methods Based on the evaluation of ethology,forty SD rats were randomly and equally divided into control group and model group which was exposed to chronic unpredictable mild stress for 4 weeks.Using analyzing technology 1 H-MRS to detect prefrontal cortex and hippocampus of each group and detecting the levels of interlukin 6(IL-6),interlukin 2 (IL-2),interlukin 10 (IL-10) in CSF at the beginning and 4 weeks later,and the correlation was analyzed between them.Results Compared with the control group,the values of Glx/ Cr and NAA/ Cr in bilateral prefrontal cortex were reduced which did not reach statistically significance (P > 0.05),and the value of Cho/ Cr had no significant difference.The values of Glx/Cr and NAA/Cr in left hippocampus reduced significantly(Glx/Cr:(1.16 ±0.07),t =2.50,P<0.05 ;NAA/Cr:(1.30 ±0.09),t=5.94,P<0.01),and the value of Cho/Cr was increased which did not reach statistically significance(P> 0.05).The values of Glx/Cr and NAA/Cr were reduced and the value of Cho/Cr was increased in right hippocampus which did not reach statistical significance(P>0.05).The depressive group had the significantly higher levels of IL-6,IL-2 in CSF(IL-6:(32.41 ± 3.52),t =11.46,P < 0.01 ; IL-2:(18.89 ± 2.56),t =7.42,P < 0.01),but no significant difference was found in the IL-10 level in CSF.The Glx/Cr of left hippocampus level was negatively correlated to the IL-6 and IL-2 level in CSF (IL-6:r =-0.555,P< 0.05 ; IL-2:r=-0.582,P< 0.05) ; the NAA/Cr of left hippocampus level was negatively correlated to the IL-6 and IL-2 level in CSF(IL-6:r=-0.582,P<0.05;IL-2:r=-0.607,P<0.05).Conclusion The development of inchoate depression has a correlation with the high sensibility of the left hippocampus affected by the inflammatory factor levels

  7. Region-specific vulnerability to endoplasmic reticulum stress-induced neuronal death in rat brain after status epilepticus

    Indian Academy of Sciences (India)

    Jing Chen; Hu Guo; Guo Zheng; Zhong-Nan Shi

    2013-12-01

    We sought to clarify the involvement and the intra-cerebral distribution variability of C/EBP homologous protein (CHOP), a representative molecule related to endoplasmic reticulum (ER) stress-induced cell death signalling pathways, in neuronal death resulting from status epilepticus in rats. The expression patterns of CHOP and glucose-regulated protein (GRP) 78, a good marker of ER stress, were assessed by Western blotting, real-time PCR, Hoechst and immunohistochemistry in the hippocampus, cortex and striatum on a status epilepticus (SE) model. Double-fluorescent staining of CHOP and the terminal deoxynucleotidyl transferase-mediated DNA nick-end labelling (TUNEL) method were performed to clarify the involvement of CHOP in cell death. SE resulted in a time-dependent increase in the expression of GRP78 and CHOP. The expression of GRP78 protein was increased at 3, 6 and 12 h after SE and no brain region variability was found. The expression of CHOP protein was also increased, reached its peak at 24 h and remained high at 48 h. CHOP protein expression, however, showed brain region variability with highest expression noted in the hippocampus followed by the striatum, and lowest in the cortex. The up-regulation of CHOP occurring at the transcriptional level was demonstrated by real-time PCR. Double fluorescence showed that CHOP expression strongly correlated with neurons undergoing apoptosis. The results indicated that SE compromises the function of the ER and that the hippocampus is more vulnerable than the cortex and the striatum.

  8. 新生小鼠海马、嗅球及皮质神经干细胞的分离培养及鉴定%Isolation and identification of neural stem cells from newborn mouse hippocampus, olfactory bulb and cortex

    Institute of Scientific and Technical Information of China (English)

    马浚宁; 高俊玮; 侯博儒; 任海军; 陈四化; 刘吉星; 严贵忠

    2014-01-01

    背景:从体外分离培养出高纯度、生物学性能均一的神经干细胞,建立起一套完整的神经干细胞培养体系,是进行神经干细胞研究的基础。  目的:建立新生小鼠海马、嗅球、皮质组织神经干细胞的分离培养体系,并对其生物学特性进行分析。  方法:分离新生昆明小鼠海马、嗅球、皮质组织,采用机械分离和胰酶消化法提取原代神经干细胞。采用无血清培养技术、机械吹打和酶消化法进行传代培养神经干细胞。以体积分数为10%的胎牛血清诱导分化神经干细胞。对神经干细胞及其分化产物行CD133、巢蛋白、β-微管蛋白Ⅲ、胶质纤维酸性蛋白免疫荧光染色鉴定。  结果与结论:从新生小鼠海马、嗅球、皮质可提取出具有自我更新和多向分化能力的神经干细胞,经巢蛋白、CD133免疫荧光染色检测呈阳性;神经干细胞经胎牛血清诱导后可分化为β-微管蛋白Ⅲ、胶质纤维酸性蛋白阳性细胞,并证实染色阳性细胞为神经元和星形胶质细胞。该实验建立了一套神经干细胞体外分离培养、纯化、鉴定、诱导分化方案,为后续神经干细胞研究的顺利进行奠定了实验基础。%BACKGROUND:To in vitro isolate neural stem cel s with high purity and uniform biological properties and to establish a complete set of neural stem cel culture system is the basis for neural stem cel research. OBJECTIVE:To establish an isolation and culture system for neural stem cel s from newborn mouse hippocampus, olfactory bulb and cortex and to analyze the biological properties of cel s. METHODS:Neural stem cel s were isolated from the hippocampus, olfactory bulb and cortex tissue of newborn Kunming mice by mechanical separation and trypsin digestion. Serum-free culture technology, mechanical pipetting and trypsin digestion were used for subculture of neural stem cel s. 10%fetal bovine serum was used

  9. Expressions of glial fibrillary acidic protein in the prefrontal cortex, hippocampus, and amygdala in post-stroke depression in rats%卒中后抑郁大鼠前额叶皮质、海马和杏仁核胶质纤维酸性蛋白表达

    Institute of Scientific and Technical Information of China (English)

    李云; 王玮; 李姝; 李漾超; 杨宁

    2016-01-01

    目的:探讨卒中后抑郁( post-stroke depression, PSD )大鼠前额叶皮质、海马和杏仁核中胶质纤维酸性蛋白(glial fibrilary acidic protein, GFAP)表达。方法健康成年SD大鼠随机分为正常组、抑郁组、卒中组和PSD组,每组5只。卒中组采用线栓法建立局灶性脑缺血模型;抑郁组采用慢性不可预见性温和应激(chronic unpredictable mild stress, CUMS )结合孤养建立大鼠慢性应激抑郁模型;PSD组采用线栓法建立局灶性脑缺血模型,术后1周加以CUMS 和孤养建立PSD 大鼠模型。在首次CUMS 后第1天、第8天、第15天和第29天进行蔗糖水消耗实验( sucrose preference test, SPT)和旷场实验(open-field test, OFT)评价抑郁行为,在第29天应用免疫荧光染色法检测前额叶皮质、海马和杏仁核GFAP表达。结果在CUMS后第29天时,抑郁组和PSD组SPT 蔗糖水消耗量以及OFT水平和垂直运动评分均显著低于正常组和卒中组(P均<0.05);PSD组前额叶皮质、海马和杏仁核GFAP免疫阳性细胞数量均显著少于正常组、抑郁组和卒中组(P均<0.05),而正常组、抑郁组和卒中组之间差异均无统计学意义( P均>0.05)。结论 PS D 大鼠前额叶皮质、海马和杏仁核GFAP表达下降可能在PSD发病过程中发挥着一定的作用。%Objective To investigate the expressions of glial fibrilary acidic protein (GFAP) in the prefrontal cortex, hippocampus and amygdala in post-stroke depression (PSD) in rats. Methods Healthy adult SD rats w ere randomly divided into a normal group, a depression group, a stroke group, and a PSD group ( n=5 in each group). A model of focal cerebral ischemia w as induced by the intraluminal suture method in the stroke group;a rat chronic stress depression model was induced by using chronic unpredicted mild stress (CUMS) combined w ith single housing in the depression group;a model of focal cerebral ischemia w as

  10. Transient and persistent expression of NT-3/HDNF mRNA in the rat brain during postnatal development.

    Science.gov (United States)

    Friedman, W J; Ernfors, P; Persson, H

    1991-06-01

    Neurotrophin-3 (NT-3) is closely related to two known neurotrophic agents, NGF and brain-derived neurotrophic factor (BDNF), and acts upon overlapping, yet distinct, populations of peripheral ganglia. NT-3 mRNA expression in the adult rat brain is largely confined to the hippocampus. In this study, we have used in situ hybridization to examine expression of this novel neurotrophic factor during postnatal development. The striking observation was made that NT-3 mRNA was transiently expressed at high levels in the cingulate cortex during the first 2 weeks of age. In the hippocampus, the adult pattern of expression, in the CA2, medial CA1, and granule layer of the dentate gyrus, was detected at all ages examined. However, there were two major differences in NT-3 mRNA expression in the developing hippocampus: Labeled cells were detected in the hilar region of the dentate gyrus at postnatal day 1 (P1) and 1 week that were absent by 2 weeks of age. Further, the caudal hippocampus, which has a lower intensity of labeling than the rostral region in the adult, was devoid of NT-3-expressing cells in the P1 and 1-week-old rat brain. These data indicate a substantial plasticity in NT-3 mRNA expression and suggest that the spectrum of neurons supported by NT-3 during development is partially different from that in the mature rat brain. PMID:2045877

  11. The Stressed Female Brain: Neuronal activity in the prelimbic but not infralimbic region of the medial prefrontal cortex suppresses learning after acute stress

    Directory of Open Access Journals (Sweden)

    Lisa Y. Maeng

    2013-12-01

    Full Text Available Women are nearly twice as likely as men to suffer from anxiety and post-traumatic stress disorder (PTSD, indicating that many females are especially vulnerable to stressful life experience. A profound sex difference in the response to stress is also observed in laboratory animals. Acute exposure to an uncontrollable stressful event disrupts associative learning during classical eyeblink conditioning in female rats but enhances this same type of learning process in males. These sex differences in response to stress are dependent on neuronal activity in similar but also different brain regions. Neuronal activity in the basolateral nucleus of the amygdala (BLA is necessary in both males and females. However, neuronal activity in the medial prefrontal cortex (mPFC during the stressor is necessary to modify learning in females but not in males. The mPFC is often divided into its prelimbic (PL and infralimbic (IL subregions, which differ both in structure and function. Through its connections to the BLA, we hypothesized that neuronal activity within the PL, but not IL, during the stressor is necessary to suppress learning in females. To test this hypothesis, either the PL or IL of adult female rats was bilaterally inactivated with GABAA agonist muscimol during acute inescapable swim stress. 24h later, all subjects were trained with classical eyeblink conditioning. Though stressed, females without neuronal activity in the PL learned well. In contrast, females with IL inactivation during the stressor did not learn well, behaving similar to stressed vehicle-treated females. These data suggest that exposure to a stressful event critically engages the PL, but not IL, to disrupt associative learning in females. Together with previous studies, these data indicate that the PL communicates with the BLA to suppress learning after a stressful experience in females. This circuit may be similarly engaged in women who become cognitively impaired after stressful

  12. Antidepressant actions of lateral habenula deep brain stimulation differentially correlate with CaMKII/GSK3/AMPK signaling locally and in the infralimbic cortex.

    Science.gov (United States)

    Kim, Yesul; Morath, Brooke; Hu, Chunling; Byrne, Linda K; Sutor, Shari L; Frye, Mark A; Tye, Susannah J

    2016-06-01

    High frequency deep brain stimulation (DBS) of the lateral habenula (LHb) reduces symptoms of depression in severely treatment-resistant individuals. Despite the observed therapeutic effects, the molecular underpinnings of DBS are poorly understood. This study investigated the efficacy of high frequency LHb DBS (130Hz; 200μA; 90μs) in an animal model of tricyclic antidepressant resistance. Further, we reported DBS mediated changes in Ca(2+)/calmodulin-dependent protein kinase (CaMKIIα/β), glycogen synthase kinase 3 (GSK3α/β) and AMP-activated protein kinase (AMPK) both locally and in the infralimbic cortex (IL). Protein expressions were then correlated to immobility time during the forced swim test (FST). Antidepressant actions were quantified via FST. Treatment groups comprised of animals treated with adrenocorticotropic hormone alone (ACTH; 100μg/day, 14days, n=7), ACTH with active DBS (n=7), sham DBS (n=8), surgery only (n=8) or control (n=8). Active DBS significantly reduced immobility in ACTH-treated animals (p<0.05). For this group, western blot results demonstrated phosphorylation status of LHb CaMKIIα/β and GSK3α/β significantly correlated to immobility time in the FST. Concurrently, we observed phosphorylation status of CaMKIIα/β, GSK3α/β, and AMPK in the IL to be negatively correlated with antidepressant actions of DBS. These findings suggest that activity dependent phosphorylation of CaMKIIα/β, and GSK3α/β in the LHb together with the downregulation of CaMKIIα/β, GSK3α/β, and AMPK in the IL, contribute to the antidepressant actions of DBS. PMID:26956153

  13. Neuropathologic features in the hippocampus and cerebellum of three older men with fragile X syndrome

    Directory of Open Access Journals (Sweden)

    Greco Claudia M

    2011-02-01

    Full Text Available Abstract Background Fragile X syndrome (FXS is the most common inherited form of intellectual disability, and is the most common single-gene disorder known to be associated with autism. Despite recent advances in functional neuroimaging and our understanding of the molecular pathogenesis, only limited neuropathologic information on FXS is available. Methods Neuropathologic examinations were performed on post-mortem brain tissue from three older men (aged 57, 64 and 78 years who had received a clinical or genetic diagnosis of FXS. In each case, physical and cognitive features were typical of FXS, and one man was also diagnosed with autism. Guided by reports of clinical and neuroimaging abnormalities of the limbic system and cerebellum of individuals with FXS, the current analysis focused on neuropathologic features present in the hippocampus and the cerebellar vermis. Results Histologic and immunologic staining revealed abnormalities in both the hippocampus and cerebellar vermis. Focal thickening of hippocampal CA1 and irregularities in the appearance of the dentate gyrus were identified. All lobules of the cerebellar vermis and the lateral cortex of the posterior lobe of the cerebellum had decreased numbers of Purkinje cells, which were occasionally misplaced, and often lacked proper orientation. There were mild, albeit excessive, undulations of the internal granular cell layer, with patchy foliar white matter axonal and astrocytic abnormalities. Quantitative analysis documented panfoliar atrophy of both the anterior and posterior lobes of the vermis, with preferential atrophy of the posterior lobule (VI to VII compared with age-matched normal controls. Conclusions Significant morphologic changes in the hippocampus and cerebellum in three adult men with FXS were identified. This pattern of pathologic features supports the idea that primary defects in neuronal migration, neurogenesis and aging may underlie the neuropathology reported in FXS.

  14. Microfiberoptic fluorescence photobleaching reveals size-dependent macromolecule diffusion in extracellular space deep in brain.

    Science.gov (United States)

    Zador, Zsolt; Magzoub, Mazin; Jin, Songwan; Manley, Geoffrey T; Papadopoulos, Marios C; Verkman, A S

    2008-03-01

    Diffusion in brain extracellular space (ECS) is important for nonsynaptic intercellular communication, extracellular ionic buffering, and delivery of drugs and metabolites. We measured macromolecular diffusion in normally light-inaccessible regions of mouse brain by microfiberoptic epifluorescence photobleaching, in which a fiberoptic with a micron-size tip is introduced deep in brain tissue. In brain cortex, the diffusion of a noninteracting molecule [fluorescein isothiocyanate (FITC)-dextran, 70 kDa] was slowed 4.5 +/- 0.5-fold compared with its diffusion in water (D(o)/D), and was depth-independent down to 800 microm from the brain surface. Diffusion was significantly accelerated (D(o)/D of 2.9+/-0.3) in mice lacking the glial water channel aquaporin-4. FITC-dextran diffusion varied greatly in different regions of brain, with D(o)/D of 3.5 +/- 0.3 in hippocampus and 7.4 +/- 0.3 in thalamus. Remarkably, D(o)/D in deep brain was strongly dependent on solute size, whereas diffusion in cortex changed little with solute size. Mathematical modeling of ECS diffusion required nonuniform ECS dimensions in deep brain, which we call "heterometricity," to account for the size-dependent diffusion. Our results provide the first data on molecular diffusion in ECS deep in brain in vivo and demonstrate previously unrecognized hindrance and heterometricity for diffusion of large macromolecules in deep brain.

  15. Differential oxidative stress and DNA damage in rat brain regions and blood following chronic arsenic exposure.

    Science.gov (United States)

    Mishra, D; Flora, S J S

    2008-05-01

    Chronic arsenic poisoning caused by contaminated drinking water is a wide spread and worldwide problem particularly in India and Bangladesh. One of the possible mechanisms suggested for arsenic toxicity is the generation of reactive oxygen species (ROS). The present study was planned 1) to evaluate if chronic exposure to arsenic leads to oxidative stress in blood and brain - parts of male Wistar rats and 2) to evaluate which brain region of the exposed animals was more sensitive to oxidative injury. Male Wistar rats were exposed to arsenic (50A ppm sodium arsenite in drinking water) for 10A months. The brain was dissected into five major parts, pons medulla, corpus striatum, cortex, hippocampus, and cerebellum. A number of biochemical variables indicative of oxidative stress were studied in blood and different brain regions. Single-strand DNA damage using comet assay was also assessed in lymphocytes. We observed a significant increase in blood and brain ROS levels accompanied by the depletion of GSH/GSSG ratio and glucose-6-phosphate dehydrogenase (G6PD) activity in different brain regions of arsenic-exposed rats. Chronic arsenic exposure also caused significant single-strand DNA damage in lymphocytes as depicted by comet with a tail in arsenic-exposed cells compared with the control cells. On the basis of results, we concluded that the cortex region of the brain was more sensitive to oxidative injury compared with the other regions studied. The present study, thus, leads us to suggest that arsenic induces differential oxidative stress in brain regions with cortex followed by hippocampus and causes single-strand DNA damage in lymphocytes.

  16. Gender and environmental effects on regional brain-derived neurotrophic factor expression after experimental traumatic brain injury.

    Science.gov (United States)

    Chen, X; Li, Y; Kline, A E; Dixon, C E; Zafonte, R D; Wagner, A K

    2005-01-01

    Alterations in brain-derived neurotrophic factor expression have been reported in multiple brain regions acutely after traumatic brain injury, however neither injury nor post-injury environmental enrichment has been shown to affect hippocampal brain-derived neurotrophic factor gene expression in male rats chronically post-injury. Studies have demonstrated hormone-related neuroprotection for female rats after traumatic brain injury, and estrogen and exercise both influence brain-derived neurotrophic factor levels. Despite recent studies suggesting that exposure post-traumatic brain injury to environmental enrichment improves cognitive recovery in male rats, we have shown that environmental enrichment mediated improvements with spatial learning are gender specific and only positively affect males. Therefore the purpose of this study was to evaluate the effect of gender and environmental enrichment on chronic post-injury cortical and hippocampal brain-derived neurotrophic factor protein expression. Sprague-Dawley male and cycling female rats were placed into environmental enrichment or standard housing after controlled cortical impact or sham surgery. Four weeks post-surgery, hippocampal and frontal cortex brain-derived neurotrophic factor expression were examined using Western blot. Results revealed significant increases in brain-derived neurotrophic factor expression in the frontal cortex ipsilateral to injury for males (P=0.03). Environmental enrichment did not augment this effect. Neither environmental enrichment nor injury significantly affected cortical brain-derived neurotrophic factor expression for females. In the hippocampus ipsilateral to injury brain-derived neurotrophic factor expression for both males and females was half (49% and 51% respectively) of that observed in shams housed in the standard environment. For injured males, there was a trend in this region for environmental enrichment to restore brain-derived neurotrophic factor levels to sham values

  17. Suppression of glucocorticoid secretion enhances cholinergic transmission in rat hippocampus.

    Science.gov (United States)

    Mizoguchi, Kazushige; Shoji, Hirotaka; Ikeda, Ryuji; Tanaka, Yayoi; Maruyama, Wakako; Tabira, Takeshi

    2008-08-15

    We previously demonstrated that suppression of glucocorticoid secretion by adrenalectomy (ADX) impaired prefrontal cortex-sensitive working memory, but not reference memory. Since the cholinergic system in the hippocampus is also involved in these memories, we examined the effects of glucocorticoid suppression on cholinergic transmission in the rat hippocampus. A microdialysis study revealed that ADX did not affect the basal acetylcholine release, but enhanced the KCl-evoked response. This enhanced response was reversed by the corticosterone replacement treatment. The extracellular choline concentrations increased under both basal and KCl-stimulated conditions in the ADX rats, and these increases were also reversed by the corticosterone replacement. These results indicate that suppression of glucocorticoid secretion enhances cholinergic transmission in the hippocampus in response to stimuli. It is possible that this enhanced cholinergic transmission may not contribute to the ADX-induced working memory impairment, but it may be involved in maintenance of reference memory.

  18. Acute administration of fenproporex increased acetylcholinesterase activity in brain of young rats

    Directory of Open Access Journals (Sweden)

    BRENA P. TEODORAK

    2015-08-01

    Full Text Available Fenproporex is the second most commonly amphetamine-based anorectic consumed worldwide; this drug is rapidly converted into amphetamine, in vivo, and acts by increasing dopamine levels in the synaptic cleft. Considering that fenproporex effects on the central nervous system are still poorly known and that acetylcholinesterase is a regulatory enzyme which is involved in cholinergic synapses and may indirectly modulate the release of dopamine, the present study investigated the effects of acute administration of fenproporex on acetylcholinesterase activity in brain of young rats. Young male Wistar rats received a single injection of fenproporex (6.25, 12.5 or 25mg/kg i.p. or vehicle (2% Tween 80. Two hours after the injection, the rats were killed by decapitation and the brain was removed for evaluation of acetylcholinesterase activity. Results showed that fenproporex administration increased acetylcholinesterase activity in the hippocampus and posterior cortex, whereas in the prefrontal cortex, striatum and cerebellum the enzyme activity was not altered. In conclusion, in the present study we demonstrated that acute administration of fenproporex exerts an effect in the cholinergic system causing an increase in the activity of acetylcholinesterase in a dose-dependent manner in the hippocampus and posterior cortex. Thus, we suggest that the imbalance in cholinergic homeostasis could be considered as an important pathophysiological mechanism underlying the brain damage observed in patients who use amphetamines such as fenproporex.

  19. Endogenous synthesis of corticosteroids in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Shimpei Higo

    Full Text Available BACKGROUND: Brain synthesis of steroids including sex-steroids is attracting much attention. The endogenous synthesis of corticosteroids in the hippocampus, however, has been doubted because of the inability to detect deoxycorticosterone (DOC synthase, cytochrome P450(c21. METHODOLOGY/PRINCIPAL FINDINGS: The expression of P450(c21 was demonstrated using mRNA analysis and immmunogold electron microscopic analysis in the adult male rat hippocampus. DOC production from progesterone (PROG was demonstrated by metabolism analysis of (3H-steroids. All the enzymes required for corticosteroid synthesis including P450(c21, P450(2D4, P450(11β1 and 3β-hydroxysteroid dehydrogenase (3β-HSD were localized in the hippocampal principal neurons as shown via in situ hybridization and immunoelectron microscopic analysis. Accurate corticosteroid concentrations in rat hippocampus were determined by liquid chromatography-tandem mass spectrometry. In adrenalectomized rats, net hippocampus-synthesized corticosterone (CORT and DOC were determined to 6.9 and 5.8 nM, respectively. Enhanced spinogenesis was observed in the hippocampus following application of low nanomolar (10 nM doses of CORT for 1 h. CONCLUSIONS/SIGNIFICANCE: These results imply the complete pathway of corticosteroid synthesis of 'pregnenolone →PROG→DOC→CORT' in the hippocampal neurons. Both P450(c21 and P450(2D4 can catalyze conversion of PROG to DOC. The low nanomolar level of CORT synthesized in hippocampal neurons may play a role in modulation of synaptic plasticity, in contrast to the stress effects by micromolar CORT from adrenal glands.

  20. Increase in brain /sup 125/I-cholecystokinin (CCK) receptor binding following chronic haloperidol treatment, intracisternal 6-hydroxydopamine or ventral tegmental lesions

    Energy Technology Data Exchange (ETDEWEB)

    Chang, R.S.L.; Lotti, V.J.; Martin, G.E.; Chen, T.B.

    1983-02-21

    Specific /sup 125/I-CCK receptor binding was significantly increased in brain tissue taken from guinea pig or mouse following chronic (2-3 week) daily administration of haloperidol (2-3 mg/kg/day). Scatchard analysis indicated the increase in CCK binding was due to an increased receptor number (B max) with no change in affinity (Kd). In guinea pigs, the increased CCK binding was observed in the mesolimbic regions and frontal cortex, but not in striatum, hippocampus nor posterior cortex. In mice, however, the increases occurred in both pooled cerebral cortical-hippocampal tissue, and in the remainder of the brain. Enhanced CCK receptor binding was also observed in membranes prepared from whole brain of mice one month following intracisternal injection of 6-hydroxydopamine. Additionally, an increase in CCK binding was observed in mesolimbic regions and frontal cortex, but not striatum or hippocampus, of guinea pigs 3 weeks after an unilateral radiofrequency lesions of the ipsilateral ventral tegmentum. The present studies demonstrate that three different procedures which reduce dopaminergic function in the brain enhance CCK receptor binding. The data provide further support for a functional interrelationship between dopaminergic systems and CCK in some brain regions and raise the possibility that CCK may play a role in the antipsychotic action of neuroleptics.

  1. Influence of an alcoholic diet prescribed to the dams during lactation period in the mineral concentration on pup's brain

    Energy Technology Data Exchange (ETDEWEB)

    Marins, Luciano A.; Serpa, Renata F.B.; Jesus, Edgar F.O. de; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Nuclear Instrumentation Lab.]. E-mail: renata@lin.ufrj.br; Anjos, Marcelino J. dos [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Physics Inst.]. E-mail: marcelin@lin.ufrj.br; Carmo, Maria G.T. do [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Nutrition Inst.; Rocha, Monica S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. of Basics and Clinic Pharmacy; Moreira, Silvana [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Civil Engineering Dept.

    2007-07-01

    It is known that during lactation, the ingestion of a diet that has obtained approximately one third of its calories from ethanol may reduce milk production, alter milk composition and retard offspring's body and central nervous system growth. In this way, the aim of this work was to study the elemental concentrations changes in the hippocampus, temporal cortex and entorhinal cortex of female pups Wistar rats related to dam's ethanol intake during lactation. On the 20 days after birth (n=6) the pups were killed. The pups from the control group were also killed on the 20 days after birth (n=6). The analysis of the elemental concentration was performed by Total Reflection X-ray Fluorescence Spectrometry with Synchrotron Radiation (SR-TXRF). These measurements were carried out at XRF beam line at Light Synchrotron Brazilian laboratory, Campinas, Brazil. The alcohol administration increased P, S and Cl levels in all brain areas studied. The K, Ca, Ti and Cu were also higher in the entorhinal cortex in the alcohol group than in the control group. Furthermore, K concentrations were also increased in the temporal cortex of the alcohol group in relation to the control group. However, the alcohol administration reduced Ca, Ti, Cu, Br and Rb levels in the temporal cortex and in the hippocampus. Therefore, the ethanol intake for the dams during lactation period leads to several changes in the brain mineral concentrations of their pups. (author)

  2. Effects of long-term, low-dose sex hormone replacement therapy on hippocampus and cognition of postmenopausal women of different apoE genotypes

    Institute of Scientific and Technical Information of China (English)

    Yun YUE; Ping-ping ZUO; Ling HU; Qin-jie TIAN; Jing-mei JIANG; Yi-long DONG; Zheng-yu JIN; Yu-hang CHENG; Xia HONG; Qin-sheng GE

    2007-01-01

    Aim: To study the effects of long-term, low-dose sex hormone replacement therapy (HRT) on the volume and biochemical changes of the hippocampus in postmeno-pausal women carrying apolipoprotein E (apoE) gene ε3 or ε4. Methods: Eighty-three postmenopausal women who had used a low dose of HRT for over 4 years were selected as the HRT group, and 99 postmenopausal women with matched age and education were enrolled as the control group. ApoE alleles were analyzed by PCR. Magnetic resonance imaging was performed to determine the volume of the brain hippocampus. Proton magnetic resonance spectroscopy was used to detect the biochemical changes in the anterior cingulate cortex and hippocampus in apoE ε4 and ε3 carriers. Six common cognitive tests were used to make an overall evaluation of cognitive function. Results: Analysis with the apoE ε4 carriers showed that the volume of the hippocampus of the control group were significantly lower than those of the HRT group. The biochemical analysis showed that there was an increase of N-acetylaspartate (NAA)/total creatine (tCr) and a decrease of myoinositol (mI)/tCr in the hippocampus of apoE ε4 carriers in the HRT group, compared with the control group. For the apoE ε3 carriers, the least squares means (LSMEAN) of the HRT group was higher than that of the control group. Conclusion: This study showed that long-term, low dose HRT might be beneficial for reducing the risk of AD development in vulnerable postmenopausal women. Meanwhile, HRT could increase the LSMEAN of apoE ε3 carriers.

  3. Neurons of the Dentate Molecular Layer in the Rabbit Hippocampus

    OpenAIRE

    Sancho-Bielsa, Francisco J.; Navarro-López, Juan D.; Gregori Alonso-Llosa; Asunción Molowny; Xavier Ponsoda; Javier Yajeya; Carlos López-García

    2012-01-01

    The molecular layer of the dentate gyrus appears as the main entrance gate for information into the hippocampus, i.e., where the perforant path axons from the entorhinal cortex synapse onto the spines and dendrites of granule cells. A few dispersed neuronal somata appear intermingled in between and probably control the flow of information in this area. In rabbits, the number of neurons in the molecular layer increases in the first week of postnatal life and then stabilizes to appear permanent...

  4. DHA Depletion in Rat Brain Is Associated With Impairment on Spatial Learning and Memory

    Institute of Scientific and Technical Information of China (English)

    YING XIAO; LING WANG; RUO-JUN XU; ZHEN-YU CHEN

    2006-01-01

    Objective To examine the effect of docosahexaenoic acid (DHA) deficiency in brain on spatial learning and memory in rats. Methods Sprague Dawley rats were fed with an n-3 fatty acid deficient diet for two generations to induce DHA depletion in brain. DHA in seven brain regions was analyzed using the gas-liquid chromatography. Morris water maze (MWM) was employed as an assessing index of spatial learning and memory in the n-3 fatty acid deficient adult rats of second generation. Results Feeding an n-3 deficient diet for two generations depleted DHA differently by 39%-63% in the seven brain regions including cerebellum, medulla, hypothalamus, striatum, hippocampus, cortex and midbrain. The MWM test showed that the n-3 deficient rats took a longer time and swam a longer distance to find the escape platform than the n-3 Adq group. Conclusion The spatial learning and memory in adult rats are partially impaired by brain DHA depletion.

  5. Differential changes of metabolic brain activity and interregional functional coupling in prefronto-limbic pathways during different stress conditions: Functional imaging in freely behaving rodent pups

    Directory of Open Access Journals (Sweden)

    Joerg Bock

    2012-05-01

    Full Text Available The trumpet-tailed rat or degu (Octodon degus is an established model to investigate the consequences of early stress on the development of emotional brain circuits and behaviour. The aim of this study was to identify brain circuits, that respond to different stress conditions and to test if acute stress alters functional coupling of brain activity among prefrontal and limbic regions. Using functional imaging (2-Fluoro-deoxyglucose method in 8 day old male degu pups the following stress conditions were compared: (A pups together with parents and siblings (control, (B separation of the litter from the parents, (C individual separation from parents and siblings, (D individual separation and presentation of maternal calls. Condition (B significantly downregulated brain activity in the prefrontal cortex, hippocampus, nucleus accumbens and sensory areas compared to controls. Activity decrease was even more pronounced during condition (C, where, in contrast to all other regions, activity in the PAG was increased. Interestingly, brain activity in stress-associated brain regions such as the amygdala and habenula was not affected. In condition (D maternal vocalizations reactivated brain activity in the cingulate and precentral medial cortex, nucleus accumbens and striatum and in sensory areas. In contrast, reduced activity was measured in the prelimbic and infralimbic cortex and in the hippocampus and amygdala. Correlation analysis revealed complex, region- and situation-specific changes of interregional functional coupling among prefrontal and limbic brain regions during stress exposure. We show here for the first time that early life stress results in a widespread reduction of brain activity in the infant brain and changes interregional functional coupling. Moreover, maternal vocalizations can partly buffer stress-induced decrease in brain activity in some regions and evoked very different functional coupling patterns compared to the three other

  6. Expression and distribution of N-methyl-D-aspartate receptor 2A/B in anterior thalamic nuclei and hippocampus of rats

    Institute of Scientific and Technical Information of China (English)

    Kai Fan; Xiaokai Ma; Bin Wang

    2006-01-01

    BACKGROUND: Several immunohistochemical and in situ hybridization studies have demonstrated the localization of various N-methyl-D-aspartate receptors (NMDAR) subunits in certain brain regions of mammals. These studies indicate that NMDAR are widespread in mammal brains, especially in cerebral cortex and hippocam pus.OBJECTIVE: To validate whether or not the NMDAR 2A/B localizes in rat anterior thalamic nuclei (ATN) and hippocampus, and observe its expression and distribution characteristics. DESIGN: Controlled study.SETTING: Department of Anatomy, College of Basic Medicine, Dalian Medical University. MATERIALS: Ten adult Sprague-Dawley rats of either gender, weighing 180-250 g, of clean grade, were provided by the Experimental Animal Center, Dalian Medical University. Rabbit polyclonal antibody to NMDAR 2A/B was the product of Chemicon Company.METHODS: This experiment was carried out in the Department of Anatomy, College of Basic Medicine, Dalian Medical University from September 2005 to May 2006. The anesthetized SD rats were transcardially perfused with 100 mL phosphate buffer solution, then perfused with paraformaldehyde through ascending aorta. After 30 minutes, their brains were harvested and post-fixed in PFA at 4 ℃ overnight. Hippocampal and anterior thalamic nuclear tissues were sliced in the coronal plane at 40 μm. The sections were stained by immunohistochemical ABC method, visualized by DAB, dehydrated routinely, performed transparence and coverslipped. Expression and distribution of NMDAR 2A/B in ATN and hippocampus of rats were observed under an optical microscope.MAIN OUTCOME MEASURES: Distribution and expression of NMDAR 2A/B in ATN and hippocampus of rats, RESULTS: NMDAR 2A/B positive neurons localized in ATN, pyramidal layer of hippocampus and granular layer of dentate gyrus in a compact and orderly pattern, and immunostained intensely. NMDAR 2A/B receptor positive neurons scattered with lower intensity of immunolabeling in other regions of

  7. Brain Basics

    Medline Plus

    Full Text Available ... at the front of the brain that, in humans, plays a role in executive functions such as ... to another. Share Science News Connectome Re-Maps Human Cortex ECT Lifts Depression, Sustains Remission in Older ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... may help improve treatments for anxiety disorders like phobias or post-traumatic stress disorder (PTSD) . Prefrontal cortex ( ... doctor, who ran some tests. After deciding her symptoms were not caused by a stroke, brain tumor, ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... the brain, which is linked to thought and emotion. It is also linked to reward systems in ... or-flight response and is also involved in emotions and memory. anterior cingulate cortex —Is involved in ...

  10. Magnetic micelles for DNA delivery to rat brains after mild traumatic brain injury.

    Science.gov (United States)

    Das, Mahasweta; Wang, Chunyan; Bedi, Raminder; Mohapatra, Shyam S; Mohapatra, Subhra

    2014-10-01

    Traumatic brain injury (TBI) causes significant mortality, long term disability and psychological symptoms. Gene therapy is a promising approach for treatment of different pathological conditions. Here we tested chitosan and polyethyleneimine (PEI)-coated magnetic micelles (CP-mag micelles or CPMMs), a potential MRI contrast agent, to deliver a reporter DNA to the brain after mild TBI (mTBI). CPMM-tomato plasmid (ptd) conjugate expressing a red-fluorescent protein (RFP) was administered intranasally immediately after mTBI or sham surgery in male SD rats. Evans blue extravasation following mTBI suggested CPMM-ptd entry into the brain via the compromised blood-brain barrier. Magnetofection increased the concentration of CPMMs in the brain. RFP expression was observed in the brain (cortex and hippocampus), lung and liver 48 h after mTBI. CPMM did not evoke any inflammatory response by themselves and were excreted from the body. These results indicate the possibility of using intranasally administered CPMM as a theranostic vehicle for mTBI. From the clinical editor: In this study, chitosan and PEI-coated magnetic micelles (CPMM) were demonstrated as potentially useful vehicles in traumatic brain injury in a rodent model. Magnetofection increased the concentration of CPMMs in the brain and, after intranasal delivery, CPMM did not evoke any inflammatory response and were excreted from the body. PMID:24486465

  11. Memory and brain-derived neurotrophic factor after subchronic or chronic amphetamine treatment in an animal model of mania.

    Science.gov (United States)

    Fries, Gabriel R; Valvassori, Samira S; Bock, Hugo; Stertz, Laura; Magalhães, Pedro Vieira da Silva; Mariot, Edimilson; Varela, Roger B; Kauer-Sant'Anna, Marcia; Quevedo, João; Kapczinski, Flávio; Saraiva-Pereira, Maria Luiza

    2015-09-01

    Progression of bipolar disorder (BD) has been associated with cognitive impairment and changes in neuroplasticity, including a decrease in serum brain-derived neurotrophic factor (BDNF). However, no study could examine BDNF levels directly in different brain regions after repeated mood episodes to date. The proposed animal model was designed to mimic several manic episodes and evaluate whether the performance in memory tasks and BDNF levels in hippocampus, prefrontal cortex, and amygdala would change after repeated amphetamine (AMPH) exposure. Adult male Wistar rats were divided into subchronic (AMPH for 7 days) and chronic groups (35 days), mimicking manic episodes at early and late stages of BD, respectively. After open field habituation or inhibitory avoidance test, rats were killed, brain regions were isolated, and BDNF mRNA and protein levels were measured by quantitative real-time PCR and ELISA, respectively. AMPH impaired habituation memory in both subchronic and chronic groups, and the impairment was worse in the chronic group. This was accompanied by increased Bdnf mRNA levels in the prefrontal cortex and amygdala region, as well as reduced BDNF protein in the hippocampus. In the inhibitory avoidance, AMPH significantly decreased the change from training to test when compared to saline. No difference was observed between subchronic and chronic groups, although chronically AMPH-treated rats presented increased Bdnf mRNA levels and decreased protein levels in hippocampus when compared to the subchronic group. Our results suggest that the cognitive impairment related to BD neuroprogression may be associated with BDNF alterations in hippocampus, prefrontal cortex, and amygdala. PMID:26026487

  12. Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine.

    Science.gov (United States)

    Banerjee, S; Poddar, M K

    2016-04-01

    Monoamine neurotransmitter, serotonin (5-HT) has its own specific receptors in both pre- and post-synapse. In the present study the role of carnosine on aging-induced changes of [(3)H]-5-HT receptor binding in different brain regions in a rat model was studied. The results showed that during aging (18 and 24 months) the [(3)H]-5-HT receptor binding was reduced in hippocampus, hypothalamus and pons-medulla with a decrease in their both Bmax and KD but in cerebral cortex the [(3)H]-5-HT binding was increased with the increase of its only Bmax. The aging-induced changes in [(3)H]-5-HT receptor binding with carnosine (2.0 μg/kg/day, intrathecally, for 21 consecutive days) attenuated in (a) 24-month-aged rats irrespective of the brain regions with the attenuation of its Bmax except hypothalamus where both Bmax and KD were significantly attenuated, (b) hippocampus and hypothalamus of 18-month-aged rats with the attenuation of its Bmax, and restored toward the [(3)H]-5-HT receptor binding that observed in 4-month-young rats. The decrease in pons-medullary [(3)H]-5-HT binding including its Bmax of 18-month-aged rats was promoted with carnosine without any significant change in its cerebral cortex. The [(3)H]-5-HT receptor binding with the same dosages of carnosine in 4-month-young rats (a) increased in the cerebral cortex and hippocampus with the increase in their only Bmax whereas (b) decreased in hypothalamus and pons-medulla with a decrease in their both Bmax and KD. These results suggest that carnosine treatment may (a) play a preventive role in aging-induced brain region-specific changes in serotonergic activity (b) not be worthy in 4-month-young rats in relation to the brain regional serotonergic activity. PMID:26808776

  13. Effects of brain focal ischemia or chronic stress on the hippocampus-dependent learning and memory function%脑缺血与慢性应激对依赖海马的学习记忆的影响

    Institute of Scientific and Technical Information of China (English)

    毛琳; 李德强; 罗本燕

    2011-01-01

    目的 对比脑缺血与慢性应激所致认知损害及海马病变的强弱,为临床改善脑卒中后认知障碍(poststroke cognitive impairment,PSCI)提供参考.方法 40只成年雄性SD大鼠平均分为4组:对照组、应激组、缺血组与缺血加应激组,缺血手术采用改良的选择性大脑中动脉栓塞术;应激处理采用连续3周的慢性不可预见性温和应激;Moms水迷宫实验评价依赖海马的学习记忆功能;免疫组织化学染色及半定量RT-PCR观察海马CA3区脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)的表达变化.结果 应激或缺血均可使大鼠学习功能明显下降,表现为与同时点对照组比较,逃避潜伏期显著延长,二者的综合作用更明显.慢性应激对学习功能的影响强于脑缺血损伤.应激或缺血均减弱记忆功能,但二者的作用差异无统计学意义.与对照相比,缺血显著增加海马CA3区BDNF的表达(27.0±2.5与20.1±2.1),应激降低BDNF的表达(15.2±1.8与20.1±2.1),二者综合作用仍显著降低BDNF的表达(8.2±1.5),差异均具有统计学意义(F=52.87,P<0.05).结论 缺血与应激均降低大鼠学习记忆功能,应激对认知功能的损害高于缺血,而缺血与应激的综合作用对认知功能损害与抑制BDNF表达作用更明显,提示进行PSCI的综合治疗时,要重视心理社会应激干预和抑郁状态的改善.%Objective To compare the intensity of cognitive impairment and the level of pathological lesion in hippocampus induced by ischemia or chronic stress for a more valuable guidance in the treatment of post-stroke cognitive impairment(PSCI).Methods Forty male adult SD rats were divided medially into 4 groups:control,stress,ischemia and ischemia plus stress.Animals in 3 treatment groups were subjected respectively to an operation of modified selective middle cerebral artery occlusion or a procedure of continuous 3-week chronic unpredictable mild stress or a combined program of

  14. Gestational stress and fluoxetine treatment differentially affect plasticity, methylation and serotonin levels in the PFC and hippocampus of rat dams.

    Science.gov (United States)

    Gemmel, Mary; Rayen, Ine; van Donkelaar, Eva; Loftus, Tiffany; Steinbusch, Harry W; Kokras, Nikolaos; Dalla, Christina; Pawluski, Jodi L

    2016-07-01

    Women are more likely to develop depression during childbearing years with up to 20% of women suffering from depression during pregnancy and in the postpartum period. Increased prevalence of depression during the perinatal period has resulted in frequent selective serotonin reuptake inhibitor (SSRI) antidepressant treatment; however the effects of such medications on the maternal brain remain limited. Therefore, the aim of the present study is to investigate the effects of the SSRI medication, fluoxetine, on neurobiological differences in the maternal brain. To model aspects of maternal depression, gestational stress was used. Sprague-Dawley rat dams were exposed to either gestational stress and/or fluoxetine (5mg/kg/day) to form the following four groups: 1. Control+Vehicle, 2. Stress+Vehicle, 3. Control+Fluoxetine, and 4. Stress+Fluoxetine. At weaning maternal brains were collected. Main findings show that gestational stress alone increased synaptophysin and serotonin metabolism in the cingulate cortex2 region of the cortex while fluoxetine treatment after stress normalized these effects. In the hippocampus, fluoxetine treatment, regardless of gestational stress exposure, decreased both global measures of methylation in the dentate gyrus, as measured by Dnmt3a immunoreactivity, as well as serotonin metabolism. No further changes in synaptophysin, PSD-95, or Dnmt3a immunoreactivity were seen in the cortical or hippocampal areas investigated. These findings show that gestational stress and SSRI medication affect the neurobiology of the maternal brain in a region-specific manner. This work adds to a much needed area of research aimed at understanding neurobiological changes associated with maternal depression and the role of SSRI treatment in altering these changes in the female brain. PMID:27060483

  15. Neuroinflammation in the normal aging hippocampus.

    Science.gov (United States)

    Barrientos, R M; Kitt, M M; Watkins, L R; Maier, S F

    2015-11-19

    A consequence of normal aging is a greater susceptibility to memory impairments following an immune challenge such as infection, surgery, or traumatic brain injury. The neuroinflammatory response, produced by these challenges results in increased and prolonged production of pro-inflammatory cytokines in the otherwise healthy aged brain. Here we discuss the mechanisms by which long-lasting elevations in pro-inflammatory cytokines in the hippocampus produce memory impairments. Sensitized microglia are a primary source of this exaggerated neuroinflammatory response and appear to be a hallmark of the normal aging brain. We review the current understanding of the causes and effects of normal aging-induced microglial sensitization, including dysregulations of the neuroendocrine system, potentiation of neuroinflammatory responses following an immune challenge, and the impairment of memories. We end with a discussion of therapeutic approaches to prevent these deleterious effects.

  16. Association between income and the hippocampus.

    Directory of Open Access Journals (Sweden)

    Jamie L Hanson

    Full Text Available Facets of the post-natal environment including the type and complexity of environmental stimuli, the quality of parenting behaviors, and the amount and type of stress experienced by a child affects brain and behavioral functioning. Poverty is a type of pervasive experience that is likely to influence biobehavioral processes because children developing in such environments often encounter high levels of stress and reduced environmental stimulation. This study explores the association between socioeconomic status and the hippocampus, a brain region involved in learning and memory that is known to be affected by stress. We employ a voxel-based morphometry analytic framework with region of interest drawing for structural brain images acquired from participants across the socioeconomic spectrum (n = 317. Children from lower income backgrounds had lower hippocampal gray matter density, a measure of volume. This finding is discussed in terms of disparities in education and health that are observed across the socioeconomic spectrum.

  17. Hippocampal damage and kainic acid injection induce a rapid increase in mRNA for BDNF and NGF in the rat brain.

    Science.gov (United States)

    Ballarín, M; Ernfors, P; Lindefors, N; Persson, H

    1991-10-01

    In situ hybridization and Northern blots were used to study expression of mRNAs for members of the nerve growth factor family in the rat brain following an excitatory stimulus. One hour after a unilateral needle insertion or saline injection into the dorsal hippocampus, the level of brain-derived neurotrophic factor (BDNF) mRNA increased markedly in granular neurons of the dentate gyrus and in the piriform cortex ipsilateral to the injection. The same treatment also increased the level of NGF mRNA in granular neurons of the ipsilateral dentate gyrus. The rapid increase in BDNF and NGF mRNA after a needle insertion or injection of saline was transient and preceded by an increase in c-fos mRNA in the same brain regions. In contrast to a needle insertion per se or a saline injection, 7 h after a unilateral injection of kainic acid into the dorsal hippocampus, the level of BDNF mRNA was dramatically increased in the ipsilateral hippocampus, as well as in the ipsilateral frontoparietal, piriform and perihinal cortex, the amygdaloid complex, claustrum, and ventromedial hypothalamus. A less pronounced increase was also seen in these brain areas on the contralateral side. Northern blots revealed that the level of BDNF mRNA increased 5- and 40-fold in the contra- and ipsilateral hippocampus, respectively, compared to sham-operated control animals. In contrast to BDNF and NGF, the level of hippocampus-derived neurotrophic factor/neurotrohin-3 (HDNF/NT-3) mRNA was not altered by either needle insertion or injection of saline or kainic acid.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1915733

  18. Comparative anatomy of marmoset and mouse cortex from genomic expression.

    Science.gov (United States)

    Mashiko, Hiromi; Yoshida, Aya C; Kikuchi, Satomi S; Niimi, Kimie; Takahashi, Eiki; Aruga, Jun; Okano, Hideyuki; Shimogori, Tomomi

    2012-04-11

    Advances in mouse neural circuit genetics, brain atlases, and behavioral assays provide a powerful system for modeling the genetic basis of cognition and psychiatric disease. However, a critical limitation of this approach is how to achieve concordance of mouse neurobiology with the ultimate goal of understanding the human brain. Previously, the common marmoset has shown promise as a genetic model system toward the linking of mouse and human studies. However, the advent of marmoset transgenic approaches will require an understanding of developmental principles in marmoset compared to mouse. In this study, we used gene expression analysis in marmoset brain to pose a series of fundamental questions on cortical development and evolution for direct comparison to existing mouse brain atlas expression data. Most genes showed reliable conservation of expression between marmoset and mouse. However, certain markers had strikingly divergent expression patterns. The lateral geniculate nucleus and pulvinar in the thalamus showed diversification of genetic organization between marmoset and mouse, suggesting they share some similarity. In contrast, gene expression patterns in early visual cortical areas showed marmoset-specific expression. In prefrontal cortex, some markers labeled architectonic areas and layers distinct between mouse and marmoset. Core hippocampus was conserved, while afferent areas showed divergence. Together, these results indicate that existing cortical areas are genetically conserved between marmoset and mouse, while differences in areal parcellation, afferent diversification, and layer complexity are associated with specific genes. Collectively, we propose that gene expression patterns in marmoset brain reveal important clues to the principles underlying the molecular evolution of cortical and cognitive expansion.

  19. Pain perception and its genesis in the human brain

    Institute of Scientific and Technical Information of China (English)

    Andrew CN CHEN

    2008-01-01

    In the past two decades, pain perception in the human brain has been studied with EEG/MEG brain topography and PET/ fMRI neuroimaging techniques. A host of cortical and subeortical loci can be activated by various nociceptive conditions. The activation in pain perception can be induced by physical (electrical, thermal, mechanical), chemical (capsacin, ascoric acid), psychological (anxiety, stress, nocebo) means, and pathological (e.g. migraine, neuropathic) diseases. This article deals mainly on the activation, but not modulation, of human pain in the brain. The brain areas identified are named pain representation, matrix, neuraxis, or signature. The sites are not uniformly isolated across various studies, but largely include a set of cores sites: thalamus and primary somatic area (SI), second somatic area (SII), insular cortex (IC), prefrontal cortex (PFC), cingnlate, and parietal cortices. Other areas less reported and considered important in pain perception include brainstem, hippocampus, amygdala and supplementary motor area (SMA). The issues of pain perception basically encompass both the site and the mode of brain function. Although the site issue is delineared to a large degree, the mode issue has been much less explored. From the temporal dynamics, IC can be considered as the initial stage in genesis of pain perception as conscious suffering, the unique aversion in the human brain.

  20. Magnesium regulates neural stem cell proliferation in the mouse hippocampus by altering mitochondrial function.

    Science.gov (United States)

    Jia, Shanshan; Mou, Chengzhi; Ma, Yihe; Han, Ruijie; Li, Xue

    2016-04-01

    In the adult brain, neural stem cells from the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the cortex progress through the following five developmental stages: radial glia-like cells, neural progenitor cells, neuroblasts, immature neurons, and mature neurons. These developmental stages are linked to both neuronal microenvironments and energy metabolism. Neurogenesis is restricted and has been demonstrated to arise from tissue microenvironments. We determined that magnesium, a key nutrient in cellular energy metabolism, affects neural stem cell (NSC) proliferation in cells derived from the embryonic hippocampus by influencing mitochondrial function. Densities of proliferating cells and NSCs both showed their highest values at 0.8 mM [Mg(2+) ]o , whereas lower proliferation rates were observed at 0.4 and 1.4 mM [Mg(2+) ]o . The numbers and sizes of the neurospheres reached the maximum at 0.8 mM [Mg(2+) ]o and were weaker under both low (0.4 mM) and high (1.4 mM) concentrations of magnesium. In vitro experimental evidence demonstrates that extracellular magnesium regulates the number of cultured hippocampal NSCs, affecting both magnesium homeostasis and mitochondrial function. Our findings indicate that the effect of [Mg(2+) ]o on NSC proliferation may lie downstream of alterations in mitochondrial function because mitochondrial membrane potential was highest in the NSCs in the moderate [Mg(2+) ]o (0.8 mM) group and lower in both the low (0.4 mM) and high (1.4 mM) [Mg(2+) ]o groups. Overall, these findings demonstrate a new function for magnesium in the brain in the regulation of hippocampal neural stem cells: affecting their cellular energy metabolism. PMID:26634890

  1. Are there volumetric brain differences associated with the use of cocaine and amphetamine-type stimulants?

    Science.gov (United States)

    Mackey, Scott; Paulus, Martin

    2013-03-01

    While a large number of studies have examined brain volume differences associated with cocaine use, much less is known about structural differences related to amphetamine-type stimulant (ATS) use. What is known about cocaine may help to interpret emerging information on the interaction of brain volume with ATS consumption. To date, volumetric studies on the two types of stimulant have focused almost exclusively on brain differences associated with chronic use. There is considerable variability in the findings between studies which may be explained in part by the wide variety of methodologies employed. Despite this variability, seven recurrent themes are worth noting: (1) loci of lower cortical volume (approximately 10% on average) are consistently reported, (2) almost all studies indicate less volume in all or parts of the frontal cortex, (3) more specifically, a core group of studies implicate the ventromedial prefrontal cortex (including the medial portion of the orbital frontal cortex) and (4) the insula, (5) an enlarged striatal volume has been repeatedly observed, (6) reports on volume differences in the hippocampus and amygdala have been equivocal, (7) evidence supporting differential interaction of brain structure with cocaine vs. ATS is scant but the volume of all or parts of the temporal cortex appear lower in a majority of studies on cocaine but not ATS. Future research should include longitudinal designs on larger sample sizes and examine other stages of exposure to psychostimulants. PMID:23253945

  2. Training-induced brain structure changes in the elderly.

    Science.gov (United States)

    Boyke, Janina; Driemeyer, Joenna; Gaser, Christian; Büchel, Christian; May, Arne

    2008-07-01

    It has been suggested that learning is associated with a transient and highly selective increase in brain gray matter in healthy young volunteers. It is not clear whether and to what extent the aging brain is still able to exhibit such structural plasticity. We built on our original study, now focusing on healthy senior citizens. We observed that elderly persons were able to learn three-ball cascade juggling, but with less proficiency compared with 20-year-old adolescents. Similar to the young group, gray-matter changes in the older brain related to skill acquisition were observed in area hMT/V5 (middle temporal area of the visual cortex). In addition, elderly volunteers who learned to juggle showed transient increases in gray matter in the hippocampus on the left side and in the nucleus accumbens bilaterally. PMID:18614670