WorldWideScience

Sample records for brain computer interfaces

  1. Brain-computer interface

    DEFF Research Database (Denmark)

    2014-01-01

    A computer-implemented method of providing an interface between a user and a processing unit, the method comprising : presenting one or more stimuli to a user, each stimulus varying at a respective stimulation frequency, each stimulation frequency being associated with a respective user......-selectable input; receiving at least one signal indicative of brain activity of the user; and determining, from the received signal, which of the one or more stimuli the user attends to and selecting the user-selectable input associated with the stimulation frequency of the determined stimuli as being a user...

  2. Robust Brain-Computer Interfaces

    NARCIS (Netherlands)

    Reuderink, B.

    2011-01-01

    A brain-computer interface (BCI) enables direct communication from the brain to devices, bypassing the traditional pathway of peripheral nerves and muscles. Current BCIs aimed at patients require that the user invests weeks, or even months, to learn the skill to intentionally modify their brain

  3. Emotional Brain-Computer Interfaces

    NARCIS (Netherlands)

    Garcia Molina, Gary; Tsoneva, Tsvetomira; Cohn, J.; Nijholt, Antinus; Pantic, Maja

    2009-01-01

    Research in Brain-computer interface (BCI) has significantly increased during the last few years. In addition to their initial role as assisting devices for the physically challenged, BCIs are now proposed for a wider range of applications. As in any HCI application, BCIs can also benefit from

  4. Emotional Brain-Computer Interfaces

    NARCIS (Netherlands)

    Garcia Molina, G.; Nijholt, A.; Nijholt, Antinus; Tsoneva, T.; Heylen, Dirk K.J.; Heylen, D.K.J.

    2013-01-01

    Research in brain-computer interface (BCI) has significantly increased during the last few years. Additionally to their initial role as assisting devices for the physically challenged, BCIs are now proposed for a wider range of applications. As any human-machine interaction system, BCIs can benefit

  5. Brain Computer Interfaces, a Review

    Science.gov (United States)

    Nicolas-Alonso, Luis Fernando; Gomez-Gil, Jaime

    2012-01-01

    A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices. PMID:22438708

  6. Brain computer interfaces, a review.

    Science.gov (United States)

    Nicolas-Alonso, Luis Fernando; Gomez-Gil, Jaime

    2012-01-01

    A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or 'locked in' by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices.

  7. Brain Computer Interfaces, a Review

    Directory of Open Access Journals (Sweden)

    Luis Fernando Nicolas-Alonso

    2012-01-01

    Full Text Available A brain-computer interface (BCI is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices.

  8. Experiencing Brain-Computer Interface Control

    NARCIS (Netherlands)

    van de Laar, B.L.A.

    2016-01-01

    Brain-Computer Interfaces (BCIs) are systems that extract information from the user’s brain activity and employ it in some way in an interactive system. While historically BCIs were mainly catered towards paralyzed or otherwise physically handicapped users, the last couple of years applications with

  9. Brain-Computer Interfaces in Medicine

    Science.gov (United States)

    Shih, Jerry J.; Krusienski, Dean J.; Wolpaw, Jonathan R.

    2012-01-01

    Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroencephalography-based spelling and single-neuron-based device control, researchers have gone on to use electroencephalographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function. PMID:22325364

  10. Brain-computer interfaces in medicine.

    Science.gov (United States)

    Shih, Jerry J; Krusienski, Dean J; Wolpaw, Jonathan R

    2012-03-01

    Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroencephalography-based spelling and single-neuron-based device control, researchers have gone on to use electroencephalographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function. Copyright © 2012 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  11. The Brain-Computer Interface Cycle

    NARCIS (Netherlands)

    Gerven, Marcel; Farquhar, Jason; Schaefer, Rebecca; Vlek, Rutger; Geuze, Jeroen; Nijholt, Antinus; Ramsay, Nick; Haselager, Pim; Vuurpijl, Louis; Gielen, Stan; Desain, Peter

    2009-01-01

    Brain–computer interfaces (BCIs) have attracted much attention recently, triggered by new scientific progress in understanding brain function and by impressive applications. The aim of this review is to give an overview of the various steps in the BCI cycle, i.e., the loop from the measurement of

  12. Brain-computer interfaces in neurological rehabilitation.

    Science.gov (United States)

    Daly, Janis J; Wolpaw, Jonathan R

    2008-11-01

    Recent advances in analysis of brain signals, training patients to control these signals, and improved computing capabilities have enabled people with severe motor disabilities to use their brain signals for communication and control of objects in their environment, thereby bypassing their impaired neuromuscular system. Non-invasive, electroencephalogram (EEG)-based brain-computer interface (BCI) technologies can be used to control a computer cursor or a limb orthosis, for word processing and accessing the internet, and for other functions such as environmental control or entertainment. By re-establishing some independence, BCI technologies can substantially improve the lives of people with devastating neurological disorders such as advanced amyotrophic lateral sclerosis. BCI technology might also restore more effective motor control to people after stroke or other traumatic brain disorders by helping to guide activity-dependent brain plasticity by use of EEG brain signals to indicate to the patient the current state of brain activity and to enable the user to subsequently lower abnormal activity. Alternatively, by use of brain signals to supplement impaired muscle control, BCIs might increase the efficacy of a rehabilitation protocol and thus improve muscle control for the patient.

  13. Brain computer interface for operating a robot

    Science.gov (United States)

    Nisar, Humaira; Balasubramaniam, Hari Chand; Malik, Aamir Saeed

    2013-10-01

    A Brain-Computer Interface (BCI) is a hardware/software based system that translates the Electroencephalogram (EEG) signals produced by the brain activity to control computers and other external devices. In this paper, we will present a non-invasive BCI system that reads the EEG signals from a trained brain activity using a neuro-signal acquisition headset and translates it into computer readable form; to control the motion of a robot. The robot performs the actions that are instructed to it in real time. We have used the cognitive states like Push, Pull to control the motion of the robot. The sensitivity and specificity of the system is above 90 percent. Subjective results show a mixed trend of the difficulty level of the training activities. The quantitative EEG data analysis complements the subjective results. This technology may become very useful for the rehabilitation of disabled and elderly people.

  14. Brain-computer interfaces for neurorehabilitation.

    Science.gov (United States)

    Sreedharan, Sujesh; Sitaram, Ranganatha; Paul, Joseph S; Kesavadas, C

    2013-01-01

    Brain-computer interfaces (BCIs) enable control of computers and other assistive devices, such as neuro-prostheses, which are used for communication, movement restoration, neuro-modulation, and muscle stimulation, by using only signals measured directly from the brain. A BCI creates a new output channel for the brain to a computer or a device. This requires retrieval of signals of interest from the brain, and its use for neuro-rehabilitation by means of interfacing the signals to a computerized device. Brain signals such as action potentials from single neurons or nerve fibers, extracellular local field potentials (LFPs), electrocorticograms, electroencephalogram and its components such as the event-related brain potentials, real-time functional magnetic resonance imaging, near-infrared spectroscopy, and magneto-encephalogram have been used. BCIs are envisaged to be useful for communication, control and self-regulation of brain function. BCIs employ neurofeedback to enable operant conditioning to allow the user to learn using it. Paralytic conditions arising from stroke or other diseases are being targeted for BCI application. Neurofeedback strategies ranging from sensory feedback to direct brain stimulation are being employed. Existing BCIs are limited in their throughput in terms of letters per minute or commands per minute, and need extensive training to use the BCI. Further, they can cause rapid fatigue due to use and have limited adaptability to changes in the patient's brain state. The challenge before BCI technology for neuro-rehabilitation today is to enable effective clinical use of BCIs with minimal effort to set up and operate.

  15. Competing and collaborating brains: multi-brain computer interfacing

    NARCIS (Netherlands)

    Nijholt, Antinus; Hassanieu, Aboul Ella; Azar, Ahmad Taher

    2015-01-01

    In this chapter we survey the possibilities of brain-computer interface applications that assume two or more users, where at least one of the users’ brain activity is used as input to the application. Such ‘applications’ were already explored by artists who introduced artistic EEG applications in

  16. A brain computer interface-based explorer.

    Science.gov (United States)

    Bai, Lijuan; Yu, Tianyou; Li, Yuanqing

    2015-04-15

    In recent years, various applications of brain computer interfaces (BCIs) have been studied. In this paper, we present a hybrid BCI combining P300 and motor imagery to operate an explorer. Our system is mainly composed of a BCI mouse, a BCI speller and an explorer. Through this system, the user can access his computer and manipulate (open, close, copy, paste, and delete) files such as documents, pictures, music, movies and so on. The system has been tested with five subjects, and the experimental results show that the explorer can be successfully operated according to subjects' intentions. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Brain-computer interface in paralysis.

    Science.gov (United States)

    Birbaumer, Niels; Murguialday, Ander Ramos; Cohen, Leonardo

    2008-12-01

    Communication with patients suffering from locked-in syndrome and other forms of paralysis is an unsolved challenge. Movement restoration for patients with chronic stroke or other brain damage also remains a therapeutic problem and available treatments do not offer significant improvements. This review considers recent research in brain-computer interfaces (BCIs) as promising solutions to these challenges. Experimentation with nonhuman primates suggests that intentional goal directed movements of the upper limbs can be reconstructed and transmitted to external manipulandum or robotic devices controlled from a relatively small number of microelectrodes implanted into movement-relevant brain areas after some training, opening the door for the development of BCI or brain-machine interfaces in humans. Although noninvasive BCIs using electroencephalographic recordings or event-related-brain-potentials in healthy individuals and patients with amyotrophic lateral sclerosis or stroke can transmit up to 80 bits/min of information, the use of BCIs - invasive or noninvasive - in severely or totally paralyzed patients has met some unforeseen difficulties. Invasive and noninvasive BCIs using recordings from nerve cells, large neuronal pools such as electrocorticogram and electroencephalography, or blood flow based measures such as functional magnetic resonance imaging and near-infrared spectroscopy show potential for communication in locked-in syndrome and movement restoration in chronic stroke, but controlled phase III clinical trials with larger populations of severely disturbed patients are urgently needed.

  18. Hardware enhance of brain computer interfaces

    Science.gov (United States)

    Wu, Jerry; Szu, Harold; Chen, Yuechen; Guo, Ran; Gu, Xixi

    2015-05-01

    The history of brain-computer interfaces (BCIs) starts with Hans Berger's discovery of the electrical activity of the human brain and the development of electroencephalography (EEG). Recent years, BCI researches are focused on Invasive, Partially invasive, and Non-invasive BCI. Furthermore, EEG can be also applied to telepathic communication which could provide the basis for brain-based communication using imagined speech. It is possible to use EEG signals to discriminate the vowels and consonants embedded in spoken and in imagined words and apply to military product. In this report, we begin with an example of using high density EEG with high electrode density and analysis the results by using BCIs. The BCIs in this work is enhanced by A field-programmable gate array (FPGA) board with optimized two dimension (2D) image Fast Fourier Transform (FFT) analysis.

  19. Brain-computer interfaces and neurorehabilitation.

    Science.gov (United States)

    Carabalona, Roberta; Castiglioni, Paolo; Gramatica, Furio

    2009-01-01

    A brain-computer interface (BCI) directly uses brain-activity signals to allow users to operate the environment without any muscular activation. Thanks to this feature, BCI systems can be employed not only as assistive devices, but also as neurorehabilitation tools in clinical settings. However, several critical issues need to be addressed before using BCI in neurorehabilitation, issues ranging from signal acquisition and selection of the proper BCI paradigm to the evaluation of the affective state, cognitive load and system acceptability of the users. Here we discuss these issues, illustrating how a rehabilitation program can benefit from BCI sessions, and summarize the results obtained so far in this field. Also provided are experimental data concerning two important topics related to BCI usability in rehabilitation: the possibility of using dry electrodes for EEG acquisition, and the monitoring of psychophysiological effects during BCI tasks.

  20. The brain-computer interface cycle.

    Science.gov (United States)

    van Gerven, Marcel; Farquhar, Jason; Schaefer, Rebecca; Vlek, Rutger; Geuze, Jeroen; Nijholt, Anton; Ramsey, Nick; Haselager, Pim; Vuurpijl, Louis; Gielen, Stan; Desain, Peter

    2009-08-01

    Brain-computer interfaces (BCIs) have attracted much attention recently, triggered by new scientific progress in understanding brain function and by impressive applications. The aim of this review is to give an overview of the various steps in the BCI cycle, i.e., the loop from the measurement of brain activity, classification of data, feedback to the subject and the effect of feedback on brain activity. In this article we will review the critical steps of the BCI cycle, the present issues and state-of-the-art results. Moreover, we will develop a vision on how recently obtained results may contribute to new insights in neurocognition and, in particular, in the neural representation of perceived stimuli, intended actions and emotions. Now is the right time to explore what can be gained by embracing real-time, online BCI and by adding it to the set of experimental tools already available to the cognitive neuroscientist. We close by pointing out some unresolved issues and present our view on how BCI could become an important new tool for probing human cognition.

  1. Affective Brain-Computer Interfaces (aBCI 2011)

    NARCIS (Netherlands)

    Mühl, C.; Nijholt, Antinus; Allison, Brandan; Dunne, Stephen; Heylen, Dirk K.J.; D' Mello, Sidney; Graesser, Arthur; Schuller, Björn; Martin, Jean-Claude

    2011-01-01

    Recently, many groups (see Zander and Kothe. Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. J. Neural Eng., 8, 2011) have worked toward expanding brain-computer interface (BCI) systems to include not only active control,

  2. Brain-Computer Interfaces for Speech Communication.

    Science.gov (United States)

    Brumberg, Jonathan S; Nieto-Castanon, Alfonso; Kennedy, Philip R; Guenther, Frank H

    2010-04-01

    This paper briefly reviews current silent speech methodologies for normal and disabled individuals. Current techniques utilizing electromyographic (EMG) recordings of vocal tract movements are useful for physically healthy individuals but fail for tetraplegic individuals who do not have accurate voluntary control over the speech articulators. Alternative methods utilizing EMG from other body parts (e.g., hand, arm, or facial muscles) or electroencephalography (EEG) can provide capable silent communication to severely paralyzed users, though current interfaces are extremely slow relative to normal conversation rates and require constant attention to a computer screen that provides visual feedback and/or cueing. We present a novel approach to the problem of silent speech via an intracortical microelectrode brain computer interface (BCI) to predict intended speech information directly from the activity of neurons involved in speech production. The predicted speech is synthesized and acoustically fed back to the user with a delay under 50 ms. We demonstrate that the Neurotrophic Electrode used in the BCI is capable of providing useful neural recordings for over 4 years, a necessary property for BCIs that need to remain viable over the lifespan of the user. Other design considerations include neural decoding techniques based on previous research involving BCIs for computer cursor or robotic arm control via prediction of intended movement kinematics from motor cortical signals in monkeys and humans. Initial results from a study of continuous speech production with instantaneous acoustic feedback show the BCI user was able to improve his control over an artificial speech synthesizer both within and across recording sessions. The success of this initial trial validates the potential of the intracortical microelectrode-based approach for providing a speech prosthesis that can allow much more rapid communication rates.

  3. Towards zero training for brain-computer interfacing

    National Research Council Canada - National Science Library

    Krauledat, Matthias; Tangermann, Michael; Blankertz, Benjamin; Müller, Klaus-Robert

    2008-01-01

    .... This challenges a stable operation of Brain-Computer Interface (BCI) systems. The classical approach is to train users by neurofeedback to produce fixed stereotypical patterns of brain activity...

  4. Affective brain-computer music interfacing

    Science.gov (United States)

    Daly, Ian; Williams, Duncan; Kirke, Alexis; Weaver, James; Malik, Asad; Hwang, Faustina; Miranda, Eduardo; Nasuto, Slawomir J.

    2016-08-01

    Objective. We aim to develop and evaluate an affective brain-computer music interface (aBCMI) for modulating the affective states of its users. Approach. An aBCMI is constructed to detect a user's current affective state and attempt to modulate it in order to achieve specific objectives (for example, making the user calmer or happier) by playing music which is generated according to a specific affective target by an algorithmic music composition system and a case-based reasoning system. The system is trained and tested in a longitudinal study on a population of eight healthy participants, with each participant returning for multiple sessions. Main results. The final online aBCMI is able to detect its users current affective states with classification accuracies of up to 65% (3 class, p\\lt 0.01) and modulate its user's affective states significantly above chance level (p\\lt 0.05). Significance. Our system represents one of the first demonstrations of an online aBCMI that is able to accurately detect and respond to user's affective states. Possible applications include use in music therapy and entertainment.

  5. Towards psychologically adaptive brain-computer interfaces

    Science.gov (United States)

    Myrden, A.; Chau, T.

    2016-12-01

    Objective. Brain-computer interface (BCI) performance is sensitive to short-term changes in psychological states such as fatigue, frustration, and attention. This paper explores the design of a BCI that can adapt to these short-term changes. Approach. Eleven able-bodied individuals participated in a study during which they used a mental task-based EEG-BCI to play a simple maze navigation game while self-reporting their perceived levels of fatigue, frustration, and attention. In an offline analysis, a regression algorithm was trained to predict changes in these states, yielding Pearson correlation coefficients in excess of 0.45 between the self-reported and predicted states. Two means of fusing the resultant mental state predictions with mental task classification were investigated. First, single-trial mental state predictions were used to predict correct classification by the BCI during each trial. Second, an adaptive BCI was designed that retrained a new classifier for each testing sample using only those training samples for which predicted mental state was similar to that predicted for the current testing sample. Main results. Mental state-based prediction of BCI reliability exceeded chance levels. The adaptive BCI exhibited significant, but practically modest, increases in classification accuracy for five of 11 participants and no significant difference for the remaining six despite a smaller average training set size. Significance. Collectively, these findings indicate that adaptation to psychological state may allow the design of more accurate BCIs.

  6. Brain-Computer Interfaces : Beyond Medical Applications

    NARCIS (Netherlands)

    Erp, J.B.F. van; Lotte, F.; Tangermann, M.

    2012-01-01

    Brain-computer interaction has already moved from assistive care to applications such as gaming. Improvements in usability, hardware, signal processing, and system integration should yield applications in other nonmedical areas.

  7. Touch-based Brain Computer Interfaces: State of the art

    NARCIS (Netherlands)

    Erp, J.B.F. van; Brouwer, A.M.

    2014-01-01

    Brain Computer Interfaces (BCIs) rely on the user's brain activity to control equipment or computer devices. Many BCIs are based on imagined movement (called active BCIs) or the fact that brain patterns differ in reaction to relevant or attended stimuli in comparison to irrelevant or unattended

  8. Multimodal and Multi-Brain Computer Interfaces: A Review

    NARCIS (Netherlands)

    Nijholt, Antinus

    2015-01-01

    In this short paper we survey recent research views in non-traditional brain-computer interfaces. That is, interfaces that can process brain activity input, but that are designed for non-clinical purposes, that are meant to be used by ‘healthy’ users, that process other user input as well, and that

  9. Brain-computer interfaces for arts

    NARCIS (Netherlands)

    Gürkök, Hayrettin; Nijholt, Antinus; D' Mello, S.; Pantic, Maja

    2013-01-01

    We experience positive emotions when our hedonic needs, such as virtuosity or relatedness, are satisfied. Creating art is one way of satisfying these needs, so artistic computer applications can be considered as ‘affective’. Artistic braincomputer interfaces (BCIs), which allow people to create art

  10. Brain-Computer Interfaces Revolutionizing Human-Computer Interaction

    CERN Document Server

    Graimann, Bernhard; Allison, Brendan

    2010-01-01

    A brain-computer interface (BCI) establishes a direct output channel between the human brain and external devices. BCIs infer user intent via direct measures of brain activity and thus enable communication and control without movement. This book, authored by experts in the field, provides an accessible introduction to the neurophysiological and signal-processing background required for BCI, presents state-of-the-art non-invasive and invasive approaches, gives an overview of current hardware and software solutions, and reviews the most interesting as well as new, emerging BCI applications. The book is intended not only for students and young researchers, but also for newcomers and other readers from diverse backgrounds keen to learn about this vital scientific endeavour.

  11. [A review of brain-computer interfaces (BCIs)].

    Science.gov (United States)

    Yang, Bang-hua; Yan, Guo-zheng; Yan, Rong-guo

    2005-07-01

    This paper introduces the general constitutions and principle of BCI systems. In addition, some characteristics and limitations of different research methods are discussed and compared. Finally, this paper points out the existing problems and future trends of BCIs. brain-computer interface (BCI), human-computer Interface (HCI), electroencephalography (EEG).

  12. Multimodal human-machine interface based on a brain-computer interface and an electrooculography interface.

    Science.gov (United States)

    Iáñez, Eduardo; Ùbeda, Andrés; Azorín, José M

    2011-01-01

    This paper describes a multimodal interface that combines a Brain-Computer Interface (BCI) with an electrooculography (EOG) interface. The non-invasive spontaneous BCI registers the electrical brain activity through surface electrodes. The EOG interface detects the eye movements through electrodes placed on the face around the eyes. Both kind of signals are registered together and processed to obtain the mental task that the user is thinking and the eye movement performed by the user. Both commands (mental task and eye movement) are combined in order to move a dot in a graphic user interface (GUI). Several experimental tests have been made where the users perform a trajectory to get closer to some targets. To perform the trajectory the user moves the dot in a plane with the EOG interface and using the BCI the dot changes its height.

  13. A versatile hardware platform for brain computer interfaces.

    Science.gov (United States)

    Garcia, Pablo A; Haberman, Marcelo; Spinelli, Enrique M

    2010-01-01

    This article presents the development of a versatile hardware platform for brain computer interfaces (BCI). The aim of this work is to produce a small, autonomous and configurable BCI platform adaptable to the user's needs.

  14. A tactile P300 brain-computer interface

    NARCIS (Netherlands)

    Brouwer, A.M.; Erp, J.B.F. van

    2010-01-01

    De werking van de eerste Brain-Computer-Interface gebaseerd op tactiele EEG response wordt gedemonstreerd en het effect van het aantal gebruikte vibro-tactiele tactoren en stimulus-timing parameters wordt onderzocht

  15. Brain-Computer Interfaces for HCI and Games

    NARCIS (Netherlands)

    Nijholt, Antinus; Tan, Desney; Allison, Brandan; Millán, Jose del R.; Graimann, Bernhard; Jackson, Melody Moore

    2008-01-01

    We study the research themes and the state-of-the-art of brain-computer interaction. Brain-computer interface research has seen much progress in the medical domain, for example for prosthesis control or as biofeedback therapy for the treatment of neurological disorders. Here, however, we look at

  16. Brain-Computer Interfaces and Human-Computer Interaction

    NARCIS (Netherlands)

    Tan, Desney; Tan, Desney S.; Nijholt, Antinus

    2010-01-01

    Advances in cognitive neuroscience and brain imaging technologies have started to provide us with the ability to interface directly with the human brain. This ability is made possible through the use of sensors that can monitor some of the physical processes that occur within the brain that

  17. Playing with your Brain: Brain-Computer Interfaces and Games

    NARCIS (Netherlands)

    Nijholt, Antinus; Tan, Desney; Bernhaupt, R.; Tscheligi, M.

    2007-01-01

    In this workshop we investigate a possible role of brain-computer interaction in computer games and entertainment computing. The assumption is that brain activity, whether it is consciously controlled and directed by the user or just recorded in order to obtain information about the user’s affective

  18. Engineering brain-computer interfaces: past, present and future.

    Science.gov (United States)

    Hughes, M A

    2014-06-01

    Electricity governs the function of both nervous systems and computers. Whilst ions move in polar fluids to depolarize neuronal membranes, electrons move in the solid-state lattices of microelectronic semiconductors. Joining these two systems together, to create an iono-electric brain-computer interface, is an immense challenge. However, such interfaces offer (and in select clinical contexts have already delivered) a method of overcoming disability caused by neurological or musculoskeletal pathology. To fulfill their theoretical promise, several specific challenges demand consideration. Rate-limiting steps cover a diverse range of disciplines including microelectronics, neuro-informatics, engineering, and materials science. As those who work at the tangible interface between brain and outside world, neurosurgeons are well placed to contribute to, and inform, this cutting edge area of translational research. This article explores the historical background, status quo, and future of brain-computer interfaces; and outlines the challenges to progress and opportunities available to the clinical neurosciences community.

  19. P300-based brain computer interface experimental setup

    NARCIS (Netherlands)

    Arboleda, C.; Garcia Cossio, E.; Posada, A.; Torres, R.

    2009-01-01

    A Brain-Computer interface (BCI) is a communication system that enables the generation of a control signal from brain signals such as sensorymotor rhythms and evoked potentials; therefore, it constitutes a novel communication option for people with severe motor disabilities (such as Amyotrophic

  20. Measuring Emotion Regulation with Single Dry Electrode Brain Computer Interface

    NARCIS (Netherlands)

    van der Wal, C.N.; Irrmischer, M.; Guo, Y.; Friston, K.; Faisal, A.; Hill, S.; Peng, H.

    2015-01-01

    Wireless brain computer interfaces (BCI’s) are promising for new intelligent applications in which emotions are detected by measuring brain activity. Applications, such as serious games and video game therapy, are measuring and using the user’s emotional state in order to determine the intensity

  1. Brain-computer interfaces in the continuum of consciousness.

    Science.gov (United States)

    Kübler, Andrea; Kotchoubey, Boris

    2007-12-01

    To summarize recent developments and look at important future aspects of brain-computer interfaces. Recent brain-computer interface studies are largely targeted at helping severely or even completely paralysed patients. The former are only able to communicate yes or no via a single muscle twitch, and the latter are totally nonresponsive. Such patients can control brain-computer interfaces and use them to select letters, words or items on a computer screen, for neuroprosthesis control or for surfing the Internet. This condition of motor paralysis, in which cognition and consciousness appear to be unaffected, is traditionally opposed to nonresponsiveness due to disorders of consciousness. Although these groups of patients may appear to be very alike, numerous transition states between them are demonstrated by recent studies. All nonresponsive patients can be regarded on a continuum of consciousness which may vary even within short time periods. As overt behaviour is lacking, cognitive functions in such patients can only be investigated using neurophysiological methods. We suggest that brain-computer interfaces may provide a new tool to investigate cognition in disorders of consciousness, and propose a hierarchical procedure entailing passive stimulation, active instructions, volitional paradigms, and brain-computer interface operation.

  2. Perspectives on User Experience Evaluation of Brain-Computer Interfaces

    NARCIS (Netherlands)

    van de Laar, B.L.A.; Gürkök, Hayrettin; Plass - Oude Bos, D.; Nijboer, Femke; Nijholt, Antinus; Stephanidis, Constantine

    2011-01-01

    The research on brain-computer interfaces (BCIs) is pushing hard to bring technologies out of the lab and into society and onto the market. The nascent merge between the field of BCI and human-computer interaction (HCI) is paving the way for new applications such as BCI-controlled gaming. The

  3. Preface (to: Brain-Computer Interfaces. Applying our Minds to Human-Computer Interaction)

    NARCIS (Netherlands)

    Tan, Desney; Tan, Desney S.; Nijholt, Antinus

    2010-01-01

    The advances in cognitive neuroscience and brain imaging technologies provide us with the increasing ability to interface directly with activity in the brain. Researchers have begun to use these technologies to build brain-computer interfaces. Originally, these interfaces were meant to allow

  4. A Hybrid Brain-Computer Interface-Based Mail Client

    Directory of Open Access Journals (Sweden)

    Tianyou Yu

    2013-01-01

    Full Text Available Brain-computer interface-based communication plays an important role in brain-computer interface (BCI applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG. With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI. An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method.

  5. A hybrid brain-computer interface-based mail client.

    Science.gov (United States)

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng

    2013-01-01

    Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method.

  6. Towards brain-computer music interfaces: progress and challenges

    OpenAIRE

    Miranda, E. R.; Durrant, Simon; Anders, T.

    2008-01-01

    Brain-Computer Music Interface (BCMI) is a new research area that is emerging at the cross roads of neurobiology,engineering sciences and music. This research involves three major challenging problems: the extraction of meaningful control information from signals emanating directly from the brain, the design of generative music techniques that respond to such information, and the training of subjects to use the system. We have implemented a proof-of-concept BCMI system that is able to use ...

  7. Tutorial: Signal Processing in Brain-Computer Interfaces

    NARCIS (Netherlands)

    Garcia Molina, G.

    2010-01-01

    Research in Electroencephalogram (EEG) based Brain-Computer Interfaces (BCIs) has been considerably expanding during the last few years. Such an expansion owes to a large extent to the multidisciplinary and challenging nature of BCI research. Signal processing undoubtedly constitutes an essential

  8. The Future of Brain-Computer Interfacing (keynote paper)

    NARCIS (Netherlands)

    Nijholt, Antinus

    In this paper we survey some early applications and research on brain-computer interfacing. We emphasize and revalue the role the views on artistic and playful applications have played. In previous years various road maps for BCI research appeared. The interest in medical applications has guided BCI

  9. Quantitative analysis of task selection for brain-computer interfaces

    NARCIS (Netherlands)

    Llera, A.; Gomez, V.; Kappen, B.

    2014-01-01

    OBJECTIVE: To assess quantitatively the impact of task selection in the performance of brain-computer interfaces (BCI). APPROACH: We consider the task-pairs derived from multi-class BCI imagery movement tasks in three different datasets. We analyze for the first time the benefits of task selection

  10. Third Workshop on Affective Brain-Computer Interfaces: introduction

    NARCIS (Netherlands)

    Mühl, C.; Chanel, G.; Allison, B.; Nijholt, Antinus

    2013-01-01

    Following the first and second workshop on affective brain-computer interfaces, held in conjunction with ACII in Amsterdam (2009) and Memphis (2011), the third workshop explores the advantages and limitations of using neurophysiological signals for the automatic recognition of affective and

  11. Brain-computer interfacing under distraction: an evaluation study

    DEFF Research Database (Denmark)

    Brandl, Stephanie; Frølich, Laura; Höhne, Johannes

    2016-01-01

    Objective. While motor-imagery based brain-computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach...

  12. Brain-Computer Interface Games: Towards a Framework.

    NARCIS (Netherlands)

    Gürkök, Hayrettin; Nijholt, Antinus; Poel, Mannes; Herrlich, Marc; Malaka, Rainer; Masuch, Maic

    2012-01-01

    The brain-computer interface (BCI) community started to consider games as potential applications while the games community started to consider BCI as a game controller. However, there is a discrepancy between the BCI games developed by the two communities. In this paper, we propose a preliminary BCI

  13. Brain-Computer Interface Games: Towards a Framework

    NARCIS (Netherlands)

    Gürkök, Hayrettin; Nijholt, Antinus; Poel, Mannes; Nakatsu, Ryohei; Rauterberg, Matthias; Ciancarini, Paolo

    2015-01-01

    The brain-computer interface (BCI) community has started to consider games as potential applications, while the game community has started to consider BCI as a game controller. However, there is a discrepancy between the BCI games developed by the two communities. This not only adds to the workload

  14. Real-time brain computer interface using imaginary movements

    DEFF Research Database (Denmark)

    El-Madani, Ahmad; Sørensen, Helge Bjarup Dissing; Kjær, Troels W.

    2015-01-01

    Background: Brain Computer Interface (BCI) is the method of transforming mental thoughts and imagination into actions. A real-time BCI system can improve the quality of life of patients with severe neuromuscular disorders by enabling them to communicate with the outside world. In this paper...

  15. [The current state of the brain-computer interface problem].

    Science.gov (United States)

    Shurkhay, V A; Aleksandrova, E V; Potapov, A A; Goryainov, S A

    2015-01-01

    It was only 40 years ago that the first PC appeared. Over this period, rather short in historical terms, we have witnessed the revolutionary changes in lives of individuals and the entire society. Computer technologies are tightly connected with any field, either directly or indirectly. We can currently claim that computers are manifold superior to a human mind in terms of a number of parameters; however, machines lack the key feature: they are incapable of independent thinking (like a human). However, the key to successful development of humankind is collaboration between the brain and the computer rather than competition. Such collaboration when a computer broadens, supplements, or replaces some brain functions is known as the brain-computer interface. Our review focuses on real-life implementation of this collaboration.

  16. A brain-computer interface to support functional recovery

    DEFF Research Database (Denmark)

    Kjaer, Troels W; Sørensen, Helge Bjarup Dissing

    2013-01-01

    Brain-computer interfaces (BCI) register changes in brain activity and utilize this to control computers. The most widely used method is based on registration of electrical signals from the cerebral cortex using extracranially placed electrodes also called electroencephalography (EEG). The features...... extracted from the EEG may, besides controlling the computer, also be fed back to the patient for instance as visual input. This facilitates a learning process. BCI allow us to utilize brain activity in the rehabilitation of patients after stroke. The activity of the cerebral cortex varies with the type...... of movement we imagine, and by letting the patient know the type of brain activity best associated with the intended movement the rehabilitation process may be faster and more efficient. The focus of BCI utilization in medicine has changed in recent years. While we previously focused on devices facilitating...

  17. Control of a mobile robot through brain computer interface

    Directory of Open Access Journals (Sweden)

    Robinson Jimenez Moreno

    2015-07-01

    Full Text Available This paper poses a control interface to command the movement of a mobile robot according to signals captured from the user's brain. These signals are acquired and interpreted by Emotiv EPOC device, a 14-electrode type sensor which captures electroencephalographic (EEG signals with high resolution, which, in turn, are sent to a computer for processing. One brain-computer interface (BCI was developed based on the Emotiv software and SDK in order to command the mobile robot from a distance. Functionality tests are performed with the sensor to discriminate shift intentions of a user group, as well as with a fuzzy controller to hold the direction in case of concentration loss. As conclusion, it was possible to obtain an efficient system for robot movements by brain commands.

  18. Exploring EEG signals in a Brain-Computer Interface

    Science.gov (United States)

    Zubrycki, Paweł; Mulawka, Jan

    2014-11-01

    This article shows the basic methods of electroencephalography EEG signal exploration. It contains information about data acquisition and different methods in which brain-computer interfaces can be made. The main focus of the paper is to find a way to determine the best set of parameters to detect movement of a hand in EEG signal. In the introduction there is also short introduction to EEG as well as fundamentals of support vector machine.

  19. Brain-computer interface design using alpha wave

    Science.gov (United States)

    Zhao, Hai-bin; Wang, Hong; Liu, Chong; Li, Chun-sheng

    2010-01-01

    A brain-computer interface (BCI) is a novel communication system that translates brain activity into commands for a computer or other electronic devices. BCI system based on non-invasive scalp electroencephalogram (EEG) has become a hot research area in recent years. BCI technology can help improve the quality of life and restore function for people with severe motor disabilities. In this study, we design a real-time asynchronous BCI system using Alpha wave. The basic theory of this BCI system is alpha wave-block phenomenon. Alpha wave is the most prominent wave in the whole realm of brain activity. This system includes data acquisition, feature selection and classification. The subject can use this system easily and freely choose anyone of four commands with only short-time training. The results of the experiment show that this BCI system has high classification accuracy, and has potential application for clinical engineering and is valuable for further research.

  20. A brain-computer interface controlled mail client.

    Science.gov (United States)

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Wang, Cong

    2013-01-01

    In this paper, we propose a brain-computer interface (BCI) based mail client. This system is controlled by hybrid features extracted from scalp-recorded electroencephalographic (EEG). We emulate the computer mouse by the motor imagery-based mu rhythm and the P300 potential. Furthermore, an adaptive P300 speller is included to provide text input function. With this BCI mail client, users can receive, read, write mails, as well as attach files in mail writing. The system has been tested on 3 subjects. Experimental results show that mail communication with this system is feasible.

  1. A Multi-purpose Brain-Computer Interface Output Device

    Science.gov (United States)

    Thompson, David E; Huggins, Jane E

    2012-01-01

    While brain-computer interfaces (BCIs) are a promising alternative access pathway for individuals with severe motor impairments, many BCI systems are designed as standalone communication and control systems, rather than as interfaces to existing systems built for these purposes. While an individual communication and control system may be powerful or flexible, no single system can compete with the variety of options available in the commercial assistive technology (AT) market. BCIs could instead be used as an interface to these existing AT devices and products, which are designed for improving access and agency of people with disabilities and are highly configurable to individual user needs. However, interfacing with each AT device and program requires significant time and effort on the part of researchers and clinicians. This work presents the Multi-Purpose BCI Output Device (MBOD), a tool to help researchers and clinicians provide BCI control of many forms of AT in a plug-and-play fashion, i.e. without the installation of drivers or software on the AT device, and a proof-of-concept of the practicality of such an approach. The MBOD was designed to meet the goals of target device compatibility, BCI input device compatibility, convenience, and intuitive command structure. The MBOD was successfully used to interface a BCI with multiple AT devices (including two wheelchair seating systems), as well as computers running Windows (XP and 7), Mac and Ubuntu Linux operating systems. PMID:22208120

  2. A multi-purpose brain-computer interface output device.

    Science.gov (United States)

    Thompson, David E; Huggins, Jane E

    2011-10-01

    While brain-computer interfaces (BCIs) are a promising alternative access pathway for individuals with severe motor impairments, many BCI systems are designed as stand-alone communication and control systems, rather than as interfaces to existing systems built for these purposes. An individual communication and control system may be powerful or flexible, but no single system can compete with the variety of options available in the commercial assistive technology (AT) market. BCls could instead be used as an interface to these existing AT devices and products, which are designed for improving access and agency of people with disabilities and are highly configurable to individual user needs. However, interfacing with each AT device and program requires significant time and effort on the part of researchers and clinicians. This work presents the Multi-Purpose BCI Output Device (MBOD), a tool to help researchers and clinicians provide BCI control of many forms of AT in a plug-and-play fashion, i.e., without the installation of drivers or software on the AT device, and a proof-of-concept of the practicality of such an approach. The MBOD was designed to meet the goals of target device compatibility, BCI input device compatibility, convenience, and intuitive command structure. The MBOD was successfully used to interface a BCI with multiple AT devices (including two wheelchair seating systems), as well as computers running Windows (XP and 7), Mac and Ubuntu Linux operating systems.

  3. Workshops of the Sixth International Brain-Computer Interface Meeting: brain-computer interfaces past, present, and future.

    Science.gov (United States)

    Huggins, Jane E; Guger, Christoph; Ziat, Mounia; Zander, Thorsten O; Taylor, Denise; Tangermann, Michael; Soria-Frisch, Aureli; Simeral, John; Scherer, Reinhold; Rupp, Rüdiger; Ruffini, Giulio; Robinson, Douglas K R; Ramsey, Nick F; Nijholt, Anton; Müller-Putz, Gernot; McFarland, Dennis J; Mattia, Donatella; Lance, Brent J; Kindermans, Pieter-Jan; Iturrate, Iñaki; Herff, Christian; Gupta, Disha; Do, An H; Collinger, Jennifer L; Chavarriaga, Ricardo; Chase, Steven M; Bleichner, Martin G; Batista, Aaron; Anderson, Charles W; Aarnoutse, Erik J

    2017-01-01

    The Sixth International Brain-Computer Interface (BCI) Meeting was held 30 May-3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain-machine interface research. Topics included BCI for specific populations or applications, advancing BCI research through use of specific signals or technological advances, and translational and commercial issues to bring both implanted and non-invasive BCIs to market. BCI research is growing and expanding in the breadth of its applications, the depth of knowledge it can produce, and the practical benefit it can provide both for those with physical impairments and the general public. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and highlighting important issues and calls for action to support future research and development.

  4. A brain-computer interface to support functional recovery.

    Science.gov (United States)

    Kjaer, Troels W; Sørensen, Helge B

    2013-01-01

    Brain-computer interfaces (BCI) register changes in brain activity and utilize this to control computers. The most widely used method is based on registration of electrical signals from the cerebral cortex using extracranially placed electrodes also called electroencephalography (EEG). The features extracted from the EEG may, besides controlling the computer, also be fed back to the patient for instance as visual input. This facilitates a learning process. BCI allow us to utilize brain activity in the rehabilitation of patients after stroke. The activity of the cerebral cortex varies with the type of movement we imagine, and by letting the patient know the type of brain activity best associated with the intended movement the rehabilitation process may be faster and more efficient. The focus of BCI utilization in medicine has changed in recent years. While we previously focused on devices facilitating communication in the rather few patients with locked-in syndrome, much interest is now devoted to the therapeutic use of BCI in rehabilitation. For this latter group of patients, the device is not intended to be a lifelong assistive companion but rather a 'teacher' during the rehabilitation period. Copyright © 2013 S. Karger AG, Basel.

  5. From assistance towards restoration with epidural brain-computer interfacing.

    Science.gov (United States)

    Gharabaghi, Alireza; Naros, Georgios; Walter, Armin; Grimm, Florian; Schuermeyer, Marc; Roth, Alexander; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels

    2014-01-01

    Today's implanted brain-computer interfaces make direct contact with the brain or even penetrate the tissue, bearing additional risks with regard to safety and stability. What is more, these approaches aim to control prosthetic devices as assistive tools and do not yet strive to become rehabilitative tools for restoring lost motor function. We introduced a less invasive, implantable interface by applying epidural electrocorticography in a chronic stroke survivor with a persistent motor deficit. He was trained to modulate his natural motor-related oscillatory brain activity by receiving online feedback. Epidural recordings of field potentials in the beta-frequency band projecting onto the anatomical hand knob proved most successful in discriminating between the attempt to move the paralyzed hand and to rest. These spectral features allowed for fast and reliable control of the feedback device in an online closed-loop paradigm. Only seven training sessions were required to significantly improve maximum wrist extension. For patients suffering from severe motor deficits, epidural implants may decode and train the brain activity generated during attempts to move with high spatial resolution, thus facilitating specific and high-intensity practice even in the absence of motor control. This would thus transform them from pure assistive devices to restorative tools in the context of reinforcement learning and neurorehabilitation.

  6. Brain-computer interface after nervous system injury.

    Science.gov (United States)

    Burns, Alexis; Adeli, Hojjat; Buford, John A

    2014-12-01

    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders. © The Author(s) 2014.

  7. Brain-computer interface systems: progress and prospects.

    Science.gov (United States)

    Allison, Brendan Z; Wolpaw, Elizabeth Winter; Wolpaw, Jonathan R

    2007-07-01

    Brain-computer interface (BCI) systems support communication through direct measures of neural activity without muscle activity. BCIs may provide the best and sometimes the only communication option for users disabled by the most severe neuromuscular disorders and may eventually become useful to less severely disabled and/or healthy individuals across a wide range of applications. This review discusses the structure and functions of BCI systems, clarifies terminology and addresses practical applications. Progress and opportunities in the field are also identified and explicated.

  8. An associative Brain-Computer-Interface for acute stroke patients

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Stevenson, Andrew James Thomas; Aliakbaryhosseinabadi, Susan

    2016-01-01

    An efficient innovative Brain-Computer-Interface system that empowers chronic stroke patients to control an artificial activation of their lower limb muscle through task specific motor intent has been tested in the past. In the current study it was applied to acute stroke patients. The system...... (tibialis anterior). This activation is precisely and individually timed such that the sensory signal arising from the stimulation reaches the motor cortex during its maximum activation due to the intention. The output of the motor cortical area representing the dorsiflexor muscles was significantly...

  9. Encoder-decoder optimization for brain-computer interfaces.

    Directory of Open Access Journals (Sweden)

    Josh Merel

    2015-06-01

    Full Text Available Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model" and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.

  10. Hacking the brain: Brain-computer interfacing technology and the ethics of neurosecurity

    NARCIS (Netherlands)

    Ienca, M.; Haselager, W.F.G.

    2016-01-01

    Brain-computer interfacing technologies are used as assistive technologies for patients as well as healthy subjects to control devices solely by brain activity. Yet the risks associated with the misuse of these technologies remain largely unexplored. Recent findings have shown that BCIs are

  11. BCILAB: a platform for brain-computer interface development.

    Science.gov (United States)

    Kothe, Christian Andreas; Makeig, Scott

    2013-10-01

    The past two decades have seen dramatic progress in our ability to model brain signals recorded by electroencephalography, functional near-infrared spectroscopy, etc., and to derive real-time estimates of user cognitive state, response, or intent for a variety of purposes: to restore communication by the severely disabled, to effect brain-actuated control and, more recently, to augment human-computer interaction. Continuing these advances, largely achieved through increases in computational power and methods, requires software tools to streamline the creation, testing, evaluation and deployment of new data analysis methods. Here we present BCILAB, an open-source MATLAB-based toolbox built to address the need for the development and testing of brain-computer interface (BCI) methods by providing an organized collection of over 100 pre-implemented methods and method variants, an easily extensible framework for the rapid prototyping of new methods, and a highly automated framework for systematic testing and evaluation of new implementations. To validate and illustrate the use of the framework, we present two sample analyses of publicly available data sets from recent BCI competitions and from a rapid serial visual presentation task. We demonstrate the straightforward use of BCILAB to obtain results compatible with the current BCI literature. The aim of the BCILAB toolbox is to provide the BCI community a powerful toolkit for methods research and evaluation, thereby helping to accelerate the pace of innovation in the field, while complementing the existing spectrum of tools for real-time BCI experimentation, deployment and use.

  12. Brain-computer interfaces current trends and applications

    CERN Document Server

    Azar, Ahmad

    2015-01-01

    The success of a BCI system depends as much on the system itself as on the user’s ability to produce distinctive EEG activity. BCI systems can be divided into two groups according to the placement of the electrodes used to detect and measure neurons firing in the brain. These groups are: invasive systems, electrodes are inserted directly into the cortex are used for single cell or multi unit recording, and electrocorticography (EcoG), electrodes are placed on the surface of the cortex (or dura); noninvasive systems, they are placed on the scalp and use electroencephalography (EEG) or magnetoencephalography (MEG) to detect neuron activity. The book is basically divided into three parts. The first part of the book covers the basic concepts and overviews of Brain Computer Interface. The second part describes new theoretical developments of BCI systems. The third part covers views on real applications of BCI systems.

  13. Brain-computer interfaces for EEG neurofeedback: peculiarities and solutions.

    Science.gov (United States)

    Huster, René J; Mokom, Zacharais N; Enriquez-Geppert, Stefanie; Herrmann, Christoph S

    2014-01-01

    Neurofeedback training procedures designed to alter a person's brain activity have been in use for nearly four decades now and represent one of the earliest applications of brain-computer interfaces (BCI). The majority of studies using neurofeedback technology relies on recordings of the electroencephalogram (EEG) and applies neurofeedback in clinical contexts, exploring its potential as treatment for psychopathological syndromes. This clinical focus significantly affects the technology behind neurofeedback BCIs. For example, in contrast to other BCI applications, neurofeedback BCIs usually rely on EEG-derived features with only a minimum of additional processing steps being employed. Here, we highlight the peculiarities of EEG-based neurofeedback BCIs and consider their relevance for software implementations. Having reviewed already existing packages for the implementation of BCIs, we introduce our own solution which specifically considers the relevance of multi-subject handling for experimental and clinical trials, for example by implementing ready-to-use solutions for pseudo-/sham-neurofeedback. © 2013.

  14. fNIRS-based brain-computer interfaces: a review.

    Science.gov (United States)

    Naseer, Noman; Hong, Keum-Shik

    2015-01-01

    A brain-computer interface (BCI) is a communication system that allows the use of brain activity to control computers or other external devices. It can, by bypassing the peripheral nervous system, provide a means of communication for people suffering from severe motor disabilities or in a persistent vegetative state. In this paper, brain-signal generation tasks, noise removal methods, feature extraction/selection schemes, and classification techniques for fNIRS-based BCI are reviewed. The most common brain areas for fNIRS BCI are the primary motor cortex and the prefrontal cortex. In relation to the motor cortex, motor imagery tasks were preferred to motor execution tasks since possible proprioceptive feedback could be avoided. In relation to the prefrontal cortex, fNIRS showed a significant advantage due to no hair in detecting the cognitive tasks like mental arithmetic, music imagery, emotion induction, etc. In removing physiological noise in fNIRS data, band-pass filtering was mostly used. However, more advanced techniques like adaptive filtering, independent component analysis (ICA), multi optodes arrangement, etc. are being pursued to overcome the problem that a band-pass filter cannot be used when both brain and physiological signals occur within a close band. In extracting features related to the desired brain signal, the mean, variance, peak value, slope, skewness, and kurtosis of the noised-removed hemodynamic response were used. For classification, the linear discriminant analysis method provided simple but good performance among others: support vector machine (SVM), hidden Markov model (HMM), artificial neural network, etc. fNIRS will be more widely used to monitor the occurrence of neuro-plasticity after neuro-rehabilitation and neuro-stimulation. Technical breakthroughs in the future are expected via bundled-type probes, hybrid EEG-fNIRS BCI, and through the detection of initial dips.

  15. fNIRS-based brain-computer interfaces: a review

    Directory of Open Access Journals (Sweden)

    Noman eNaseer

    2015-01-01

    Full Text Available A brain-computer interface (BCI is a communication system that allows the use of brain activity to control computers or other external devices. It can, by bypassing the peripheral nervous system, provide a means of communication for people suffering from severe motor disabilities or in a persistent vegetative state. In this paper, brain-signal generation tasks, noise removal methods, feature extraction/selection schemes, and classification techniques for fNIRS-based BCI are reviewed. The most common brain areas for fNIRS BCI are the primary motor cortex and the prefrontal cortex. In relation to the motor cortex, motor imagery tasks were preferred to motor execution tasks since possible proprioceptive feedback could be avoided. In relation to the prefrontal cortex, fNIRS showed a significant advantage due to no hair in detecting the cognitive tasks like mental arithmetic, music imagery, emotion induction, etc. In removing physiological noise in fNIRS data, band-pass filtering was mostly used. However, more advanced techniques like adaptive filtering, independent component analysis, multi optodes arrangement, etc. are being pursued to overcome the problem that a band-pass filter cannot be used when both brain and physiological signals occur within a close band. In extracting features related to the desired brain signal, the mean, variance, peak value, slope, skewness, and kurtosis of the noised-removed hemodynamic response were used. For classification, the linear discriminant analysis method provided simple but good performance among others: support vector machine, hidden Markov model, artificial neural network, etc. fNIRS will be more widely used to monitor the occurrence of neuro-plasticity after neuro-rehabilitation and neuro-stimulation. Technical breakthroughs in the future are expected via bundled-type probes, hybrid EEG-fNIRS BCI, and through the detection of initial dips.

  16. Brain-computer interfaces: military, neurosurgical, and ethical perspective.

    Science.gov (United States)

    Kotchetkov, Ivan S; Hwang, Brian Y; Appelboom, Geoffrey; Kellner, Christopher P; Connolly, E Sander

    2010-05-01

    Brain-computer interfaces (BCIs) are devices that acquire and transform neural signals into actions intended by the user. These devices have been a rapidly developing area of research over the past 2 decades, and the military has made significant contributions to these efforts. Presently, BCIs can provide humans with rudimentary control over computer systems and robotic devices. Continued advances in BCI technology are especially pertinent in the military setting, given the potential for therapeutic applications to restore function after combat injury, and for the evolving use of BCI devices in military operations and performance enhancement. Neurosurgeons will play a central role in the further development and implementation of BCIs, but they will also have to navigate important ethical questions in the translation of this highly promising technology. In the following commentary the authors discuss realistic expectations for BCI use in the military and underscore the intersection of the neurosurgeon's civic and clinical duty to care for those who serve their country.

  17. Designing Guiding Systems for Brain-Computer Interfaces

    Science.gov (United States)

    Kosmyna, Nataliya; Lécuyer, Anatole

    2017-01-01

    Brain–Computer Interface (BCI) community has focused the majority of its research efforts on signal processing and machine learning, mostly neglecting the human in the loop. Guiding users on how to use a BCI is crucial in order to teach them to produce stable brain patterns. In this work, we explore the instructions and feedback for BCIs in order to provide a systematic taxonomy to describe the BCI guiding systems. The purpose of our work is to give necessary clues to the researchers and designers in Human–Computer Interaction (HCI) in making the fusion between BCIs and HCI more fruitful but also to better understand the possibilities BCIs can provide to them. PMID:28824400

  18. Designing Guiding Systems for Brain-Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Nataliya Kosmyna

    2017-07-01

    Full Text Available Brain–Computer Interface (BCI community has focused the majority of its research efforts on signal processing and machine learning, mostly neglecting the human in the loop. Guiding users on how to use a BCI is crucial in order to teach them to produce stable brain patterns. In this work, we explore the instructions and feedback for BCIs in order to provide a systematic taxonomy to describe the BCI guiding systems. The purpose of our work is to give necessary clues to the researchers and designers in Human–Computer Interaction (HCI in making the fusion between BCIs and HCI more fruitful but also to better understand the possibilities BCIs can provide to them.

  19. Neuroanatomical correlates of brain-computer interface performance.

    Science.gov (United States)

    Kasahara, Kazumi; DaSalla, Charles Sayo; Honda, Manabu; Hanakawa, Takashi

    2015-04-15

    Brain-computer interfaces (BCIs) offer a potential means to replace or restore lost motor function. However, BCI performance varies considerably between users, the reasons for which are poorly understood. Here we investigated the relationship between sensorimotor rhythm (SMR)-based BCI performance and brain structure. Participants were instructed to control a computer cursor using right- and left-hand motor imagery, which primarily modulated their left- and right-hemispheric SMR powers, respectively. Although most participants were able to control the BCI with success rates significantly above chance level even at the first encounter, they also showed substantial inter-individual variability in BCI success rate. Participants also underwent T1-weighted three-dimensional structural magnetic resonance imaging (MRI). The MRI data were subjected to voxel-based morphometry using BCI success rate as an independent variable. We found that BCI performance correlated with gray matter volume of the supplementary motor area, supplementary somatosensory area, and dorsal premotor cortex. We suggest that SMR-based BCI performance is associated with development of non-primary somatosensory and motor areas. Advancing our understanding of BCI performance in relation to its neuroanatomical correlates may lead to better customization of BCIs based on individual brain structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. An optical brain computer interface for environmental control.

    Science.gov (United States)

    Ayaz, Hasan; Shewokis, Patricia A; Bunce, Scott; Onaral, Banu

    2011-01-01

    A brain computer interface (BCI) is a system that translates neurophysiological signals detected from the brain to supply input to a computer or to control a device. Volitional control of neural activity and its real-time detection through neuroimaging modalities are key constituents of BCI systems. The purpose of this study was to develop and test a new BCI design that utilizes intention-related cognitive activity within the dorsolateral prefrontal cortex using functional near infrared (fNIR) spectroscopy. fNIR is a noninvasive, safe, portable and affordable optical technique with which to monitor hemodynamic changes, in the brain's cerebral cortex. Because of its portability and ease of use, fNIR is amenable to deployment in ecologically valid natural working environments. We integrated a control paradigm in a computerized 3D virtual environment to augment interactivity. Ten healthy participants volunteered for a two day study in which they navigated a virtual environment with keyboard inputs, but were required to use the fNIR-BCI for interaction with virtual objects. Results showed that participants consistently utilized the fNIR-BCI with an overall success rate of 84% and volitionally increased their cerebral oxygenation level to trigger actions within the virtual environment.

  1. [Brain-Computer Interface: the First Clinical Experience in Russia].

    Science.gov (United States)

    Mokienko, O A; Lyukmanov, R Kh; Chernikova, L A; Suponeva, N A; Piradov, M A; Frolov, A A

    2016-01-01

    Motor imagery is suggested to stimulate the same plastic mechanisms in the brain as a real movement. The brain-computer interface (BCI) controls motor imagery by converting EEG during this process into the commands for an external device. This article presents the results of two-stage study of the clinical use of non-invasive BCI in the rehabilitation of patients with severe hemiparesis caused by focal brain damage. It was found that the ability to control BCI did not depend on the duration of a disease, brain lesion localization and the degree of neurological deficit. The first step of the study involved 36 patients; it showed that the efficacy of rehabilitation was higher in the group with the use of BCI (the score on the Action Research Arm Test (ARAT) improved from 1 [0; 2] to 5 [0; 16] points, p = 0.012; no significant improvement was observed in control group). The second step of the study involved 19 patients; the complex BCI-exoskeleton (i.e. with the kinesthetic feedback) was used for motor imagery trainings. The improvement of the motor function of hands was proved by ARAT (the score improved from 2 [0; 37] to 4 [1; 45:5] points, p = 0.005) and Fugl-Meyer scale (from 72 [63; 110 ] to 79 [68; 115] points, p = 0.005).

  2. A Brain-Computer Interface Project Applied in Computer Engineering

    Science.gov (United States)

    Katona, Jozsef; Kovari, Attila

    2016-01-01

    Keeping up with novel methods and keeping abreast of new applications are crucial issues in engineering education. In brain research, one of the most significant research areas in recent decades, many developments have application in both modern engineering technology and education. New measurement methods in the observation of brain activity open…

  3. Physiological regulation of thinking: brain-computer interface (BCI) research.

    Science.gov (United States)

    Birbaumer, Niels; Weber, Cornelia; Neuper, Christa; Buch, Ethan; Haapen, Klaus; Cohen, Leonardo

    2006-01-01

    The discovery of event-related desynchronization (ERD) and event-related synchronization (ERS) by Pfurtscheller paved the way for the development of brain-computer interfaces (BCIs). BCIs allow control of computers or external devices with the regulation of brain activity only. Two different research traditions produced two different types of BCIs: invasive BCIs, realized with implanted electrodes in brain tissue and noninvasive BCIs using electrophysiological recordings in humans such as electroencephalography (EEG) and magnetoencephalography (MEG) and metabolic changes such as functional magnetic resonance imaging (fMRI) and near infrared spectroscopy (NIRS). Clinical applications were reserved with few exceptions for the noninvasive approach: communication with the completely paralyzed and locked-in syndrome with slow cortical potentials (SCPs), sensorimotor rhythms (SMRs), and P300 and restoration of movement and cortical reorganization in high spinal cord lesions and chronic stroke. It was demonstrated that noninvasive EEG-based BCIs allow brain-derived communication in paralyzed and locked-in patients. Movement restoration was achieved with noninvasive BCIs based on SMRs control in single cases with spinal cord lesions and chronic stroke. At present no firm conclusion about the clinical utility of BCI for the control of voluntary movement can be made. Invasive multielectrode BCIs in otherwise healthy animals allowed execution of reaching, grasping, and force variations from spike patterns and extracellular field potentials. Whether invasive approaches allow superior brain control of motor responses compared to noninvasive BCI with intelligent peripheral devices and electrical muscle stimulation and EMG feedback remains to be demonstrated. The newly developed fMRI-BCIs and NIRS-BCIs offer promise for the learned regulation of emotional disorders and also disorders of small children (in the case of NIRS).

  4. Region based Brain Computer Interface for a home control application.

    Science.gov (United States)

    Akman Aydin, Eda; Bay, Omer Faruk; Guler, Inan

    2015-08-01

    Environment control is one of the important challenges for disabled people who suffer from neuromuscular diseases. Brain Computer Interface (BCI) provides a communication channel between the human brain and the environment without requiring any muscular activation. The most important expectation for a home control application is high accuracy and reliable control. Region-based paradigm is a stimulus paradigm based on oddball principle and requires selection of a target at two levels. This paper presents an application of region based paradigm for a smart home control application for people with neuromuscular diseases. In this study, a region based stimulus interface containing 49 commands was designed. Five non-disabled subjects were attended to the experiments. Offline analysis results of the experiments yielded 95% accuracy for five flashes. This result showed that region based paradigm can be used to select commands of a smart home control application with high accuracy in the low number of repetitions successfully. Furthermore, a statistically significant difference was not observed between the level accuracies.

  5. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.

    Science.gov (United States)

    Zander, Thorsten O; Kothe, Christian

    2011-04-01

    Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.

  6. BCILAB: a platform for brain-computer interface development

    Science.gov (United States)

    Kothe, Christian Andreas; Makeig, Scott

    2013-10-01

    Objective. The past two decades have seen dramatic progress in our ability to model brain signals recorded by electroencephalography, functional near-infrared spectroscopy, etc., and to derive real-time estimates of user cognitive state, response, or intent for a variety of purposes: to restore communication by the severely disabled, to effect brain-actuated control and, more recently, to augment human-computer interaction. Continuing these advances, largely achieved through increases in computational power and methods, requires software tools to streamline the creation, testing, evaluation and deployment of new data analysis methods. Approach. Here we present BCILAB, an open-source MATLAB-based toolbox built to address the need for the development and testing of brain-computer interface (BCI) methods by providing an organized collection of over 100 pre-implemented methods and method variants, an easily extensible framework for the rapid prototyping of new methods, and a highly automated framework for systematic testing and evaluation of new implementations. Main results. To validate and illustrate the use of the framework, we present two sample analyses of publicly available data sets from recent BCI competitions and from a rapid serial visual presentation task. We demonstrate the straightforward use of BCILAB to obtain results compatible with the current BCI literature. Significance. The aim of the BCILAB toolbox is to provide the BCI community a powerful toolkit for methods research and evaluation, thereby helping to accelerate the pace of innovation in the field, while complementing the existing spectrum of tools for real-time BCI experimentation, deployment and use.

  7. A Review of Hybrid Brain-Computer Interface Systems

    Directory of Open Access Journals (Sweden)

    Setare Amiri

    2013-01-01

    Full Text Available Increasing number of research activities and different types of studies in brain-computer interface (BCI systems show potential in this young research area. Research teams have studied features of different data acquisition techniques, brain activity patterns, feature extraction techniques, methods of classifications, and many other aspects of a BCI system. However, conventional BCIs have not become totally applicable, due to the lack of high accuracy, reliability, low information transfer rate, and user acceptability. A new approach to create a more reliable BCI that takes advantage of each system is to combine two or more BCI systems with different brain activity patterns or different input signal sources. This type of BCI, called hybrid BCI, may reduce disadvantages of each conventional BCI system. In addition, hybrid BCIs may create more applications and possibly increase the accuracy and the information transfer rate. However, the type of BCIs and their combinations should be considered carefully. In this paper, after introducing several types of BCIs and their combinations, we review and discuss hybrid BCIs, different possibilities to combine them, and their advantages and disadvantages.

  8. P300-based brain computer interface experimental setup.

    Science.gov (United States)

    Arboleda, Carolina; Garcia, Eliana; Posada, Alejandro; Torres, Robinson

    2009-01-01

    A Brain-Computer interface (BCI) is a communication system that enables the generation of a control signal from brain signals such as sensorymotor rhythms and evoked potentials; therefore, it constitutes a novel communication option for people with severe motor disabilities (such as Amyotrophic Lateral Sclerosis patients). This paper presents the development of a P300-based BCI. This prototype uses a homemade six-channel electroencephalograph for the acquisition of the signals, and a visual stimulation matrix; since this matrix contains letters of the alphabet as well as images associated to them, it permits word-writing and the elaboration of messages with the images. To process the signals the software BCI2000 and MATLAB 7.0 were used. The latter was used to program three linear translation algorithms (Stepwise Linear Discriminant Analysis, Lineal Discriminant Analysis and Least Squares) to convert the brain signals into communication signals. These algorithms had a classification accuracy of 90.73 %, 95.75 % and 89.45 % respectively, when using raw data; and of 90.78%, 49.48 % and 53.9 %, when data was previously common-average filtered. The experimental setup was tested in ten healthy volunteers; 5 of them got a 100% success, 1 a 90% success, 2 an around 70% success and 2 a 50% success, in the online free-spelling tests.

  9. Effect of mindfulness meditation on brain-computer interface performance.

    Science.gov (United States)

    Tan, Lee-Fan; Dienes, Zoltan; Jansari, Ashok; Goh, Sing-Yau

    2014-01-01

    Electroencephalogram based brain-computer interfaces (BCIs) enable stroke and motor neuron disease patients to communicate and control devices. Mindfulness meditation has been claimed to enhance metacognitive regulation. The current study explores whether mindfulness meditation training can thus improve the performance of BCI users. To eliminate the possibility of expectation of improvement influencing the results, we introduced a music training condition. A norming study found that both meditation and music interventions elicited clear expectations for improvement on the BCI task, with the strength of expectation being closely matched. In the main 12 week intervention study, seventy-six healthy volunteers were randomly assigned to three groups: a meditation training group; a music training group; and a no treatment control group. The mindfulness meditation training group obtained a significantly higher BCI accuracy compared to both the music training and no-treatment control groups after the intervention, indicating effects of meditation above and beyond expectancy effects. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Ethical aspects of brain computer interfaces: a scoping review.

    Science.gov (United States)

    Burwell, Sasha; Sample, Matthew; Racine, Eric

    2017-11-09

    Brain-Computer Interface (BCI) is a set of technologies that are of increasing interest to researchers. BCI has been proposed as assistive technology for individuals who are non-communicative or paralyzed, such as those with amyotrophic lateral sclerosis or spinal cord injury. The technology has also been suggested for enhancement and entertainment uses, and there are companies currently marketing BCI devices for those purposes (e.g., gaming) as well as health-related purposes (e.g., communication). The unprecedented direct connection created by BCI between human brains and computer hardware raises various ethical, social, and legal challenges that merit further examination and discussion. To identify and characterize the key issues associated with BCI use, we performed a scoping review of biomedical ethics literature, analyzing the ethics concerns cited across multiple disciplines, including philosophy and medicine. Based on this investigation, we report that BCI research and its potential translation to therapeutic intervention generate significant ethical, legal, and social concerns, notably with regards to personhood, stigma, autonomy, privacy, research ethics, safety, responsibility, and justice. Our review of the literature determined, furthermore, that while these issues have been enumerated extensively, few concrete recommendations have been expressed. We conclude that future research should focus on remedying a lack of practical solutions to the ethical challenges of BCI, alongside the collection of empirical data on the perspectives of the public, BCI users, and BCI researchers.

  11. A high-performance brain-computer interface

    Science.gov (United States)

    Santhanam, Gopal; Ryu, Stephen I.; Yu, Byron M.; Afshar, Afsheen; Shenoy, Krishna V.

    2006-07-01

    Recent studies have demonstrated that monkeys and humans can use signals from the brain to guide computer cursors. Brain-computer interfaces (BCIs) may one day assist patients suffering from neurological injury or disease, but relatively low system performance remains a major obstacle. In fact, the speed and accuracy with which keys can be selected using BCIs is still far lower than for systems relying on eye movements. This is true whether BCIs use recordings from populations of individual neurons using invasive electrode techniques or electroencephalogram recordings using less- or non-invasive techniques. Here we present the design and demonstration, using electrode arrays implanted in monkey dorsal premotor cortex, of a manyfold higher performance BCI than previously reported. These results indicate that a fast and accurate key selection system, capable of operating with a range of keyboard sizes, is possible (up to 6.5 bits per second, or ~15wordsperminute, with 96 electrodes). The highest information throughput is achieved with unprecedentedly brief neural recordings, even as recording quality degrades over time. These performance results and their implications for system design should substantially increase the clinical viability of BCIs in humans.

  12. User-customized brain computer interfaces using Bayesian optimization.

    Science.gov (United States)

    Bashashati, Hossein; Ward, Rabab K; Bashashati, Ali

    2016-04-01

    The brain characteristics of different people are not the same. Brain computer interfaces (BCIs) should thus be customized for each individual person. In motor-imagery based synchronous BCIs, a number of parameters (referred to as hyper-parameters) including the EEG frequency bands, the channels and the time intervals from which the features are extracted should be pre-determined based on each subject's brain characteristics. To determine the hyper-parameter values, previous work has relied on manual or semi-automatic methods that are not applicable to high-dimensional search spaces. In this paper, we propose a fully automatic, scalable and computationally inexpensive algorithm that uses Bayesian optimization to tune these hyper-parameters. We then build different classifiers trained on the sets of hyper-parameter values proposed by the Bayesian optimization. A final classifier aggregates the results of the different classifiers. We have applied our method to 21 subjects from three BCI competition datasets. We have conducted rigorous statistical tests, and have shown the positive impact of hyper-parameter optimization in improving the accuracy of BCIs. Furthermore, We have compared our results to those reported in the literature. Unlike the best reported results in the literature, which are based on more sophisticated feature extraction and classification methods, and rely on prestudies to determine the hyper-parameter values, our method has the advantage of being fully automated, uses less sophisticated feature extraction and classification methods, and yields similar or superior results compared to the best performing designs in the literature.

  13. Proprioceptive feedback and brain computer interface (BCI based neuroprostheses.

    Directory of Open Access Journals (Sweden)

    Ander Ramos-Murguialday

    Full Text Available Brain computer interface (BCI technology has been proposed for motor neurorehabilitation, motor replacement and assistive technologies. It is an open question whether proprioceptive feedback affects the regulation of brain oscillations and therefore BCI control. We developed a BCI coupled on-line with a robotic hand exoskeleton for flexing and extending the fingers. 24 healthy participants performed five different tasks of closing and opening the hand: (1 motor imagery of the hand movement without any overt movement and without feedback, (2 motor imagery with movement as online feedback (participants see and feel their hand, with the exoskeleton moving according to their brain signals, (3 passive (the orthosis passively opens and closes the hand without imagery and (4 active (overt movement of the hand and rest. Performance was defined as the difference in power of the sensorimotor rhythm during motor task and rest and calculated offline for different tasks. Participants were divided in three groups depending on the feedback receiving during task 2 (the other tasks were the same for all participants. Group 1 (n = 9 received contingent positive feedback (participants' sensorimotor rhythm (SMR desynchronization was directly linked to hand orthosis movements, group 2 (n = 8 contingent "negative" feedback (participants' sensorimotor rhythm synchronization was directly linked to hand orthosis movements and group 3 (n = 7 sham feedback (no link between brain oscillations and orthosis movements. We observed that proprioceptive feedback (feeling and seeing hand movements improved BCI performance significantly. Furthermore, in the contingent positive group only a significant motor learning effect was observed enhancing SMR desynchronization during motor imagery without feedback in time. Furthermore, we observed a significantly stronger SMR desynchronization in the contingent positive group compared to the other groups during active and

  14. Language Model Applications to Spelling with Brain-Computer Interfaces

    Science.gov (United States)

    Mora-Cortes, Anderson; Manyakov, Nikolay V.; Chumerin, Nikolay; Van Hulle, Marc M.

    2014-01-01

    Within the Ambient Assisted Living (AAL) community, Brain-Computer Interfaces (BCIs) have raised great hopes as they provide alternative communication means for persons with disabilities bypassing the need for speech and other motor activities. Although significant advancements have been realized in the last decade, applications of language models (e.g., word prediction, completion) have only recently started to appear in BCI systems. The main goal of this article is to review the language model applications that supplement non-invasive BCI-based communication systems by discussing their potential and limitations, and to discern future trends. First, a brief overview of the most prominent BCI spelling systems is given, followed by an in-depth discussion of the language models applied to them. These language models are classified according to their functionality in the context of BCI-based spelling: the static/dynamic nature of the user interface, the use of error correction and predictive spelling, and the potential to improve their classification performance by using language models. To conclude, the review offers an overview of the advantages and challenges when implementing language models in BCI-based communication systems when implemented in conjunction with other AAL technologies. PMID:24675760

  15. Language Model Applications to Spelling with Brain-Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Anderson Mora-Cortes

    2014-03-01

    Full Text Available Within the Ambient Assisted Living (AAL community, Brain-Computer Interfaces (BCIs have raised great hopes as they provide alternative communication means for persons with disabilities bypassing the need for speech and other motor activities. Although significant advancements have been realized in the last decade, applications of language models (e.g., word prediction, completion have only recently started to appear in BCI systems. The main goal of this article is to review the language model applications that supplement non-invasive BCI-based communication systems by discussing their potential and limitations, and to discern future trends. First, a brief overview of the most prominent BCI spelling systems is given, followed by an in-depth discussion of the language models applied to them. These language models are classified according to their functionality in the context of BCI-based spelling: the static/dynamic nature of the user interface, the use of error correction and predictive spelling, and the potential to improve their classification performance by using language models. To conclude, the review offers an overview of the advantages and challenges when implementing language models in BCI-based communication systems when implemented in conjunction with other AAL technologies.

  16. Language model applications to spelling with Brain-Computer Interfaces.

    Science.gov (United States)

    Mora-Cortes, Anderson; Manyakov, Nikolay V; Chumerin, Nikolay; Van Hulle, Marc M

    2014-03-26

    Within the Ambient Assisted Living (AAL) community, Brain-Computer Interfaces (BCIs) have raised great hopes as they provide alternative communication means for persons with disabilities bypassing the need for speech and other motor activities. Although significant advancements have been realized in the last decade, applications of language models (e.g., word prediction, completion) have only recently started to appear in BCI systems. The main goal of this article is to review the language model applications that supplement non-invasive BCI-based communication systems by discussing their potential and limitations, and to discern future trends. First, a brief overview of the most prominent BCI spelling systems is given, followed by an in-depth discussion of the language models applied to them. These language models are classified according to their functionality in the context of BCI-based spelling: the static/dynamic nature of the user interface, the use of error correction and predictive spelling, and the potential to improve their classification performance by using language models. To conclude, the review offers an overview of the advantages and challenges when implementing language models in BCI-based communication systems when implemented in conjunction with other AAL technologies.

  17. Modern Electrophysiological Methods for Brain-Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Rolando Grave de Peralta Menendez

    2007-01-01

    Full Text Available Modern electrophysiological studies in animals show that the spectrum of neural oscillations encoding relevant information is broader than previously thought and that many diverse areas are engaged for very simple tasks. However, EEG-based brain-computer interfaces (BCI still employ as control modality relatively slow brain rhythms or features derived from preselected frequencies and scalp locations. Here, we describe the strategy and the algorithms we have developed for the analysis of electrophysiological data and demonstrate their capacity to lead to faster accurate decisions based on linear classifiers. To illustrate this strategy, we analyzed two typical BCI tasks. (1 Mu-rhythm control of a cursor movement by a paraplegic patient. For this data, we show that although the patient received extensive training in mu-rhythm control, valuable information about movement imagination is present on the untrained high-frequency rhythms. This is the first demonstration of the importance of high-frequency rhythms in imagined limb movements. (2 Self-paced finger tapping task in three healthy subjects including the data set used in the BCI-2003 competition. We show that by selecting electrodes and frequency ranges based on their discriminative power, the classification rates can be systematically improved with respect to results published thus far.

  18. P300 brain computer interface: current challenges and emerging trends

    Directory of Open Access Journals (Sweden)

    Reza eFazel-Rezai

    2012-07-01

    Full Text Available A brain-computer interface (BCI enables communication without movement based on brain signals measured with electroencephalography (EEG. BCIs usually rely on one of three types of signals: the P300 and other components of the event-related potential (ERP, steady state visual evoked potential (SSVEP, or event related desynchronization (ERD. Although P300 BCIs were introduced over twenty years ago, the past few years have seen a strong increase in P300 BCI research. This closed-loop BCI approach relies on the P300 and other components of the event-related potential (ERP, based on an oddball paradigm presented to the subject. In this paper, we overview the current status of P300 BCI technology, and then discuss new directions: paradigms for eliciting P300s; signal processing methods; applications; and hybrid BCIs. We conclude that P300 BCIs are quite promising, as several emerging directions have not yet been fully explored and could lead to improvements in bit rate, reliability, usability, and flexibility.

  19. P300 brain computer interface: current challenges and emerging trends

    Science.gov (United States)

    Fazel-Rezai, Reza; Allison, Brendan Z.; Guger, Christoph; Sellers, Eric W.; Kleih, Sonja C.; Kübler, Andrea

    2012-01-01

    A brain-computer interface (BCI) enables communication without movement based on brain signals measured with electroencephalography (EEG). BCIs usually rely on one of three types of signals: the P300 and other components of the event-related potential (ERP), steady state visual evoked potential (SSVEP), or event related desynchronization (ERD). Although P300 BCIs were introduced over twenty years ago, the past few years have seen a strong increase in P300 BCI research. This closed-loop BCI approach relies on the P300 and other components of the ERP, based on an oddball paradigm presented to the subject. In this paper, we overview the current status of P300 BCI technology, and then discuss new directions: paradigms for eliciting P300s; signal processing methods; applications; and hybrid BCIs. We conclude that P300 BCIs are quite promising, as several emerging directions have not yet been fully explored and could lead to improvements in bit rate, reliability, usability, and flexibility. PMID:22822397

  20. Performance monitoring for brain-computer-interface actions.

    Science.gov (United States)

    Schurger, Aaron; Gale, Steven; Gozel, Olivia; Blanke, Olaf

    2017-02-01

    When presented with a difficult perceptual decision, human observers are able to make metacognitive judgements of subjective certainty. Such judgements can be made independently of and prior to any overt response to a sensory stimulus, presumably via internal monitoring. Retrospective judgements about one's own task performance, on the other hand, require first that the subject perform a task and thus could potentially be made based on motor processes, proprioceptive, and other sensory feedback rather than internal monitoring. With this dichotomy in mind, we set out to study performance monitoring using a brain-computer interface (BCI), with which subjects could voluntarily perform an action - moving a cursor on a computer screen - without any movement of the body, and thus without somatosensory feedback. Real-time visual feedback was available to subjects during training, but not during the experiment where the true final position of the cursor was only revealed after the subject had estimated where s/he thought it had ended up after 6s of BCI-based cursor control. During the first half of the experiment subjects based their assessments primarily on the prior probability of the end position of the cursor on previous trials. However, during the second half of the experiment subjects' judgements moved significantly closer to the true end position of the cursor, and away from the prior. This suggests that subjects can monitor task performance when the task is performed without overt movement of the body. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Brain-computer interface control along instructed paths.

    Science.gov (United States)

    Sadtler, P T; Ryu, S I; Tyler-Kabara, E C; Yu, B M; Batista, A P

    2015-02-01

    Brain-computer interfaces (BCIs) are being developed to assist paralyzed people and amputees by translating neural activity into movements of a computer cursor or prosthetic limb. Here we introduce a novel BCI task paradigm, intended to help accelerate improvements to BCI systems. Through this task, we can push the performance limits of BCI systems, we can quantify more accurately how well a BCI system captures the user's intent, and we can increase the richness of the BCI movement repertoire. We have implemented an instructed path task, wherein the user must drive a cursor along a visible path. The instructed path task provides a versatile framework to increase the difficulty of the task and thereby push the limits of performance. Relative to traditional point-to-point tasks, the instructed path task allows more thorough analysis of decoding performance and greater richness of movement kinematics. We demonstrate that monkeys are able to perform the instructed path task in a closed-loop BCI setting. We further investigate how the performance under BCI control compares to native arm control, whether users can decrease their movement variability in the face of a more demanding task, and how the kinematic richness is enhanced in this task. The use of the instructed path task has the potential to accelerate the development of BCI systems and their clinical translation.

  2. Nonlinear dimensionality reduction of electroencephalogram (EEG) for Brain Computer interfaces.

    Science.gov (United States)

    Teli, Mohammad Nayeem; Anderson, Charles

    2009-01-01

    Patterns in electroencephalogram (EEG) signals are analyzed for a Brain Computer Interface (BCI). An important aspect of this analysis is the work on transformations of high dimensional EEG data to low dimensional spaces in which we can classify the data according to mental tasks being performed. In this research we investigate how a Neural Network (NN) in an auto-encoder with bottleneck configuration can find such a transformation. We implemented two approximate second-order methods to optimize the weights of these networks, because the more common first-order methods are very slow to converge for networks like these with more than three layers of computational units. The resulting non-linear projections of time embedded EEG signals show interesting separations that are related to tasks. The bottleneck networks do indeed discover nonlinear transformations to low-dimensional spaces that capture much of the information present in EEG signals. However, the resulting low-dimensional representations do not improve classification rates beyond what is possible using Quadratic Discriminant Analysis (QDA) on the original time-lagged EEG.

  3. Brain-computer interface controlled robotic gait orthosis.

    Science.gov (United States)

    Do, An H; Wang, Po T; King, Christine E; Chun, Sophia N; Nenadic, Zoran

    2013-12-09

    Excessive reliance on wheelchairs in individuals with tetraplegia or paraplegia due to spinal cord injury (SCI) leads to many medical co-morbidities, such as cardiovascular disease, metabolic derangements, osteoporosis, and pressure ulcers. Treatment of these conditions contributes to the majority of SCI health care costs. Restoring able-body-like ambulation in this patient population can potentially reduce the incidence of these medical co-morbidities, in addition to increasing independence and quality of life. However, no biomedical solution exists that can reverse this loss of neurological function, and hence novel methods are needed. Brain-computer interface (BCI) controlled lower extremity prostheses may constitute one such novel approach. One able-bodied subject and one subject with paraplegia due to SCI underwent electroencephalogram (EEG) recordings while engaged in alternating epochs of idling and walking kinesthetic motor imagery (KMI). These data were analyzed to generate an EEG prediction model for online BCI operation. A commercial robotic gait orthosis (RoGO) system (suspended over a treadmill) was interfaced with the BCI computer to allow for computerized control. The subjects were then tasked to perform five, 5-min-long online sessions where they ambulated using the BCI-RoGO system as prompted by computerized cues. The performance of this system was assessed with cross-correlation analysis, and omission and false alarm rates. The offline accuracy of the EEG prediction model averaged 86.30% across both subjects (chance: 50%). The cross-correlation between instructional cues and the BCI-RoGO walking epochs averaged across all subjects and all sessions was 0.812 ± 0.048 (p-value <10(-4)). Also, there were on average 0.8 false alarms per session and no omissions. These results provide preliminary evidence that restoring brain-controlled ambulation after SCI is feasible. Future work will test the function of this system in a population of subjects with

  4. Analysis of large-scale brain data for brain-computer interfaces.

    Science.gov (United States)

    Das, Koel; Meyer, Joerg; Nenadic, Zoran

    2006-01-01

    We present a systematic technique for extraction of useful information from large-scale neural data in the context of brain-computer interfaces. The technique is based on a direct linear discriminant analysis, recently developed for face recognition problems. We show that this technique is capable of extracting useful information from brain data in a systematic fashion and can serve as a general analytical tool for other types of biomedical data, such as images and collections of images (movies). The performance of the method is tested on intracranial electroencephalographic data recorded from the human brain.

  5. Papers from the Fifth International Brain-Computer Interface Meeting

    Science.gov (United States)

    Huggins, Jane E.; Wolpaw, Jonathan R.

    2014-06-01

    Brain-computer interfaces (BCIs), also known as brain-machine interfaces (BMIs), translate brain activity into new outputs that replace, restore, enhance, supplement or improve natural brain outputs. BCI research and development has grown rapidly for the past two decades. It is beginning to provide useful communication and control capacities to people with severe neuromuscular disabilities; and it is expanding into new areas such as neurorehabilitation that may greatly increase its clinical impact. At the same time, significant challenges remain, particularly in regard to translating laboratory advances into clinical use. The papers in this special section report some of the work presented at the Fifth International BCI Meeting held on 3-7 June 2013 at the Asilomar Conference Center in Pacific Grove, California, USA. Like its predecessors over the past 15 years, this meeting was supported by the National Institutes of Health, the National Science Foundation, and a variety of other governmental and private sponsors [1]. This fifth meeting was organized and managed by a program committee of BCI researchers from throughout the world [2]. It retained the distinctive retreat-style format developed by the Wadsworth Center researchers who organized and managed the first four meetings. The 301 attendees came from 165 research groups in 29 countries; 37% were students or postdoctoral fellows. Of more than 200 extended abstracts submitted for peer review, 25 were selected for oral presentation [3], and 181 were presented as posters [4] and published in the open-access conference proceedings [5]. The meeting featured 19 highly interactive workshops [6] covering the broad spectrum of BCI research and development, as well as many demonstrations of BCI systems and associated technology. Like the first four meetings, this one included attendees and embraced topics from across the broad spectrum of disciplines essential to effective BCI research and development, including

  6. Brain-Computer Interfaces and User Experience Evaluation

    NARCIS (Netherlands)

    van de Laar, B.L.A.; Gürkök, Hayrettin; Plass - Oude Bos, D.; Nijboer, Femke; Allison, Brendan Z.; Dunne, Stephen; Leeb, Robert; del R. Millán, José; Nijholt, Antinus

    2012-01-01

    The research on brain–computer interfaces (BCIs) is pushing hard to bring technologies out of the lab, into society and onto the market. The newly developing merge of the field of BCI with human–computer interaction (HCI) is paving the way for new applications such as BCI-controlled games. The

  7. Brain-computer interfacing based on cognitive control.

    Science.gov (United States)

    Vansteensel, Mariska J; Hermes, Dora; Aarnoutse, Erik J; Bleichner, Martin G; Schalk, Gerwin; van Rijen, Peter C; Leijten, Frans S S; Ramsey, Nick F

    2010-06-01

    Brain-computer interfaces (BCIs) translate deliberate intentions and associated changes in brain activity into action, thereby offering patients with severe paralysis an alternative means of communication with and control over their environment. Such systems are not available yet, partly due to the high performance standard that is required. A major challenge in the development of implantable BCIs is to identify cortical regions and related functions that an individual can reliably and consciously manipulate. Research predominantly focuses on the sensorimotor cortex, which can be activated by imagining motor actions. However, because this region may not provide an optimal solution to all patients, other neuronal networks need to be examined. Therefore, we investigated whether the cognitive control network can be used for BCI purposes. We also determined the feasibility of using functional magnetic resonance imaging (fMRI) for noninvasive localization of the cognitive control network. Three patients with intractable epilepsy, who were temporarily implanted with subdural grid electrodes for diagnostic purposes, attempted to gain BCI control using the electrocorticographic (ECoG) signal of the left dorsolateral prefrontal cortex (DLPFC). All subjects quickly gained accurate BCI control by modulation of gamma-power of the left DLPFC. Prelocalization of the relevant region was performed with fMRI and was confirmed using the ECoG signals obtained during mental calculation localizer tasks. The results indicate that the cognitive control network is a suitable source of signals for BCI applications. They also demonstrate the feasibility of translating understanding about cognitive networks derived from functional neuroimaging into clinical applications.

  8. A collaborative brain-computer interface for improving human performance.

    Directory of Open Access Journals (Sweden)

    Yijun Wang

    Full Text Available Electroencephalogram (EEG based brain-computer interfaces (BCI have been studied since the 1970s. Currently, the main focus of BCI research lies on the clinical use, which aims to provide a new communication channel to patients with motor disabilities to improve their quality of life. However, the BCI technology can also be used to improve human performance for normal healthy users. Although this application has been proposed for a long time, little progress has been made in real-world practices due to technical limits of EEG. To overcome the bottleneck of low single-user BCI performance, this study proposes a collaborative paradigm to improve overall BCI performance by integrating information from multiple users. To test the feasibility of a collaborative BCI, this study quantitatively compares the classification accuracies of collaborative and single-user BCI applied to the EEG data collected from 20 subjects in a movement-planning experiment. This study also explores three different methods for fusing and analyzing EEG data from multiple subjects: (1 Event-related potentials (ERP averaging, (2 Feature concatenating, and (3 Voting. In a demonstration system using the Voting method, the classification accuracy of predicting movement directions (reaching left vs. reaching right was enhanced substantially from 66% to 80%, 88%, 93%, and 95% as the numbers of subjects increased from 1 to 5, 10, 15, and 20, respectively. Furthermore, the decision of reaching direction could be made around 100-250 ms earlier than the subject's actual motor response by decoding the ERP activities arising mainly from the posterior parietal cortex (PPC, which are related to the processing of visuomotor transmission. Taken together, these results suggest that a collaborative BCI can effectively fuse brain activities of a group of people to improve the overall performance of natural human behavior.

  9. Brain-computer interfaces and disability: extending embodiment, reducing stigma?

    Science.gov (United States)

    Aas, Sean; Wasserman, David

    2016-01-01

    Brain-Computer Interfaces (BCIs) now enable an individual without limb function to "move" a detached mechanical arm to perform simple actions, such as feeding herself. This technology may eventually offer almost everyone a way to move objects at a distance, by exercising cognitive control of a mechanical device. At that point, BCIs may be seen less as an assistive technology for disabled people, and more as a tool, like the internet, which can benefit all users. We will argue that BCIs will have a significant but uncertain impact on attitudes toward disabilities and on norms of bodily form and function. It may be liberating, oppressive, or both. Its impact, we argue, will depend - though not in any simple way - on whether BCIs come to be seen as parts of the body itself or as external tools. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Brain-computer interfacing under distraction: an evaluation study

    Science.gov (United States)

    Brandl, Stephanie; Frølich, Laura; Höhne, Johannes; Müller, Klaus-Robert; Samek, Wojciech

    2016-10-01

    Objective. While motor-imagery based brain-computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach. This paper systematically investigates BCI performance under 6 types of distractions that mimic out-of-lab environments. Main results. We report results of 16 participants and show that the performance of the standard common spatial patterns (CSP) + regularized linear discriminant analysis classification pipeline drops significantly in this ‘simulated’ out-of-lab setting. We then investigate three methods for improving the performance: (1) artifact removal, (2) ensemble classification, and (3) a 2-step classification approach. While artifact removal does not enhance the BCI performance significantly, both ensemble classification and the 2-step classification combined with CSP significantly improve the performance compared to the standard procedure. Significance. Systematically analyzing out-of-lab scenarios is crucial when bringing BCI into everyday life. Algorithms must be adapted to overcome nonstationary environments in order to tackle real-world challenges.

  11. Stationary common spatial patterns for brain-computer interfacing

    Science.gov (United States)

    Samek, Wojciech; Vidaurre, Carmen; Müller, Klaus-Robert; Kawanabe, Motoaki

    2012-04-01

    Classifying motion intentions in brain-computer interfacing (BCI) is a demanding task as the recorded EEG signal is not only noisy and has limited spatial resolution but it is also intrinsically non-stationary. The non-stationarities in the signal may come from many different sources, for instance, electrode artefacts, muscular activity or changes of task involvement, and often deteriorate classification performance. This is mainly because features extracted by standard methods like common spatial patterns (CSP) are not invariant to variations of the signal properties, thus should also change over time. Although many extensions of CSP were proposed to, for example, reduce the sensitivity to noise or incorporate information from other subjects, none of them tackles the non-stationarity problem directly. In this paper, we propose a method which regularizes CSP towards stationary subspaces (sCSP) and show that this increases classification accuracy, especially for subjects who are hardly able to control a BCI. We compare our method with the state-of-the-art approaches on different datasets, show competitive results and analyse the reasons for the improvement.

  12. Variable Down-Selection for Brain-Computer Interfaces

    Science.gov (United States)

    Dias, Nuno S.; Kamrunnahar, Mst; Mendes, Paulo M.; Schiff, Steven J.; Correia, Jose H.

    A new formulation of principal component analysis (PCA) that considers group structure in the data is proposed as a variable down-selection method. Optimization of electrode channels is a key problem in brain-computer interfaces (BCI). BCI experiments generate large feature spaces compared to the sample size due to time limitations in EEG sessions. It is essential to understand the importance of the features in terms of physical electrode channels in order to design a high performance yet realistic BCI. The proposed algorithm produces a ranked list of original variables (electrode channels or features), according to their ability to discriminate movement imagery tasks. A linear discrimination analysis (LDA) classifier is applied to the selected variable subset. Evaluation of the down-selection method using synthetic datasets selected more than 83% of relevant variables. Classification of imagery tasks using real BCI datasets resulted in less than 19% classification error. Across-Group Variance (AGV) showed the best classification performance with the largest dimensionality reduction in comparison with other algorithms in common use.

  13. Flexibility and practicality graz brain-computer interface approach.

    Science.gov (United States)

    Scherer, Reinhold; Müller-Putz, Gernot R; Pfurtscheller, Gert

    2009-01-01

    "Graz brain-computer interface (BCI)" transforms changes in oscillatory electroencephalogram (EEG) activity into control signals for external devices and feedback. Steady-state evoked potentials (SSEPs) and event-related desynchronization (ERD) are employed to encode user messages. User-specific setup and training are important issues for robust and reliable classification. Furthermore, in order to implement small and thus affordable systems, focus is put on the minimization of the number of EEG sensors. The system also supports the self-paced operation mode, that is, users have on-demand access to the system at any time and can autonomously initiate communication. Flexibility, usability, and practicality are essential to increase user acceptance. Here, we illustrate the possibilities offered by now from EEG-based communication. Results of several studies with able-bodied and disabled individuals performed inside the laboratory and in real-world environments are presented; their characteristics are shown and open issues are mentioned. The applications include the control of neuroprostheses and spelling devices, the interaction with Virtual Reality, and the operation of off-the-shelf software such as Google Earth.

  14. Evaluation of a Compact Hybrid Brain-Computer Interface System

    Directory of Open Access Journals (Sweden)

    Jaeyoung Shin

    2017-01-01

    Full Text Available We realized a compact hybrid brain-computer interface (BCI system by integrating a portable near-infrared spectroscopy (NIRS device with an economical electroencephalography (EEG system. The NIRS array was located on the subjects’ forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA and baseline (BL tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation.

  15. Towards a communication brain computer interface based on semantic relations.

    Directory of Open Access Journals (Sweden)

    Jeroen Geuze

    Full Text Available This article investigates a possible Brain Computer Interface (BCI based on semantic relations. The BCI determines which prime word a subject has in mind by presenting probe words using an intelligent algorithm. Subjects indicate when a presented probe word is related to the prime word by a single finger tap. The detection of the neural signal associated with this movement is used by the BCI to decode the prime word. The movement detector combined both the evoked (ERP and induced (ERD responses elicited with the movement. Single trial movement detection had an average accuracy of 67%. The decoding of the prime word had an average accuracy of 38% when using 100 probes and 150 possible targets, and 41% after applying a dynamic stopping criterium, reducing the average number of probes to 47. The article shows that the intelligent algorithm used to present the probe words has a significantly higher performance than a random selection of probes. Simulations demonstrate that the BCI also works with larger vocabulary sizes, and the performance scales logarithmically with vocabulary size.

  16. Multiresolution analysis over simple graphs for brain computer interfaces

    Science.gov (United States)

    Asensio-Cubero, J.; Gan, J. Q.; Palaniappan, R.

    2013-08-01

    Objective. Multiresolution analysis (MRA) offers a useful framework for signal analysis in the temporal and spectral domains, although commonly employed MRA methods may not be the best approach for brain computer interface (BCI) applications. This study aims to develop a new MRA system for extracting tempo-spatial-spectral features for BCI applications based on wavelet lifting over graphs. Approach. This paper proposes a new graph-based transform for wavelet lifting and a tailored simple graph representation for electroencephalography (EEG) data, which results in an MRA system where temporal, spectral and spatial characteristics are used to extract motor imagery features from EEG data. The transformed data is processed within a simple experimental framework to test the classification performance of the new method. Main Results. The proposed method can significantly improve the classification results obtained by various wavelet families using the same methodology. Preliminary results using common spatial patterns as feature extraction method show that we can achieve comparable classification accuracy to more sophisticated methodologies. From the analysis of the results we can obtain insights into the pattern development in the EEG data, which provide useful information for feature basis selection and thus for improving classification performance. Significance. Applying wavelet lifting over graphs is a new approach for handling BCI data. The inherent flexibility of the lifting scheme could lead to new approaches based on the hereby proposed method for further classification performance improvement.

  17. Vibrotactile Feedback for Brain-Computer Interface Operation

    Directory of Open Access Journals (Sweden)

    Febo Cincotti

    2007-01-01

    Full Text Available To be correctly mastered, brain-computer interfaces (BCIs need an uninterrupted flow of feedback to the user. This feedback is usually delivered through the visual channel. Our aim was to explore the benefits of vibrotactile feedback during users' training and control of EEG-based BCI applications. A protocol for delivering vibrotactile feedback, including specific hardware and software arrangements, was specified. In three studies with 33 subjects (including 3 with spinal cord injury, we compared vibrotactile and visual feedback, addressing: (I the feasibility of subjects' training to master their EEG rhythms using tactile feedback; (II the compatibility of this form of feedback in presence of a visual distracter; (III the performance in presence of a complex visual task on the same (visual or different (tactile sensory channel. The stimulation protocol we developed supports a general usage of the tactors; preliminary experimentations. All studies indicated that the vibrotactile channel can function as a valuable feedback modality with reliability comparable to the classical visual feedback. Advantages of using a vibrotactile feedback emerged when the visual channel was highly loaded by a complex task. In all experiments, vibrotactile feedback felt, after some training, more natural for both controls and SCI users.

  18. Error probability of intracranial brain computer interfaces under non-task elicited brain states.

    Science.gov (United States)

    Torres Valderrama, Aldemar; Paclik, Pavel; Vansteensel, Mariska J; Aarnoutse, Erik J; Ramsey, Nick F

    2012-12-01

    Intracranial brain computer interfaces (BCIs) can be connected to the user's cortex permanently. The interfaces response when fed with non-task elicited brain activity becomes important as design criterion: ideally intracranial BCIs should remain silent. We study their error probability in the form of false alarms. Using electrocorticograms recorded during task and non-task brain states, we compute false alarms, investigate their origin and introduce strategies to reduce them, using signal detection theory, classifier cascading and adaptation concepts. We show that the incessant dynamics of the brain is prone to spontaneously produce signals, the spectral and topographical characteristics of which can resemble those associated with common control tasks, generating brain state classification errors. In addition to hit and bit rates, response of BCIs to non-task brain states constitutes an important measure of BCI performance. Static classification cascading reduces considerably false positives during no-task brain states. False alarms in intracranial BCIs are undesirable and could have dangerous consequences for the users. Designs which effectively incorporate the error correction strategies discussed in this paper, could be more successful when taken from the laboratory or acute care setting and used in the real world. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Preface (to: Towards Practical Brain-Computer Interfaces)

    NARCIS (Netherlands)

    Allison, Brendan Z.; Dunne, Stephen; Leeb, Robert; Millán, Jose del R.; Allison, Brendan Z.; Dunne, Stephen; Leeb, Robert; Millán, Jose del R.; Nijholt, Antinus

    2012-01-01

    Brain–computer interface (BCI) research is advancing rapidly. The last few years have seen a dramatic rise in journal publications, academic workshops and conferences, books, new products aimed at both healthy and disabled users, research funding from different sources, and media attention. This

  20. Brain-computer interfaces increase whole-brain signal to noise.

    Science.gov (United States)

    Papageorgiou, T Dorina; Lisinski, Jonathan M; McHenry, Monica A; White, Jason P; LaConte, Stephen M

    2013-08-13

    Brain-computer interfaces (BCIs) can convert mental states into signals to drive real-world devices, but it is not known if a given covert task is the same when performed with and without BCI-based control. Using a BCI likely involves additional cognitive processes, such as multitasking, attention, and conflict monitoring. In addition, it is challenging to measure the quality of covert task performance. We used whole-brain classifier-based real-time functional MRI to address these issues, because the method provides both classifier-based maps to examine the neural requirements of BCI and classification accuracy to quantify the quality of task performance. Subjects performed a covert counting task at fast and slow rates to control a visual interface. Compared with the same task when viewing but not controlling the interface, we observed that being in control of a BCI improved task classification of fast and slow counting states. Additional BCI control increased subjects' whole-brain signal-to-noise ratio compared with the absence of control. The neural pattern for control consisted of a positive network comprised of dorsal parietal and frontal regions and the anterior insula of the right hemisphere as well as an expansive negative network of regions. These findings suggest that real-time functional MRI can serve as a platform for exploring information processing and frontoparietal and insula network-based regulation of whole-brain task signal-to-noise ratio.

  1. An efficient ERP-based brain-computer interface using random set presentation and face familiarity

    National Research Council Canada - National Science Library

    Yeom, Seul-Ki; Fazli, Siamac; Müller, Klaus-Robert; Lee, Seong-Whan

    2014-01-01

    Event-related potential (ERP)-based P300 spellers are commonly used in the field of brain-computer interfaces as an alternative channel of communication for people with severe neuro-muscular diseases...

  2. Mind the Sheep! User Experience Evaluation & Brain-Computer Interface Games

    NARCIS (Netherlands)

    Gürkök, Hayrettin

    2012-01-01

    A brain-computer interface (BCI) infers our actions (e.g. a movement), intentions (e.g. preparation for a movement) and psychological states (e.g. emotion, attention) by interpreting our brain signals. It uses the inferences it makes to manipulate a computer. Although BCIs have long been used

  3. Topographical dynamics of brain connections for the design of asynchronous brain-computer interfaces.

    Science.gov (United States)

    Gouy-Pailler, Cédric; Achard, Sophie; Rivet, Bertrand; Jutten, Christian; Maby, Emmanuel; Souloumiac, Antoine; Congedo, Marco

    2007-01-01

    This article presents a new processing method to design brain-computer interfaces (BCIs). It shows how to use the perturbations of the communication between different cortical areas due to a cognitive task. For this, the network of the cerebral connections is built from correlations between cortical areas at specific frequencies and is analyzed using graph theory. This allows us to describe the topological organisation of the networks using quantitative measures. This method is applied to an auditive steady-state evoked potentials experiment (dichotic binaural listening) and compared to a more classical method based on spectral filtering.

  4. Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke.

    Science.gov (United States)

    Mukaino, Masahiko; Ono, Takashi; Shindo, Keiichiro; Fujiwara, Toshiyuki; Ota, Tetsuo; Kimura, Akio; Liu, Meigen; Ushiba, Junichi

    2014-04-01

    Brain computer interface technology is of great interest to researchers as a potential therapeutic measure for people with severe neurological disorders. The aim of this study was to examine the efficacy of brain computer interface, by comparing conventional neuromuscular electrical stimulation and brain computer interface-driven neuromuscular electrical stimulation, using an A-B-A-B withdrawal single-subject design. A 38-year-old male with severe hemiplegia due to a putaminal haemorrhage participated in this study. The design involved 2 epochs. In epoch A, the patient attempted to open his fingers during the application of neuromuscular electrical stimulation, irrespective of his actual brain activity. In epoch B, neuromuscular electrical stimulation was applied only when a significant motor-related cortical potential was observed in the electroencephalogram. The subject initially showed diffuse functional magnetic resonance imaging activation and small electro-encephalogram responses while attempting finger movement. Epoch A was associated with few neurological or clinical signs of improvement. Epoch B, with a brain computer interface, was associated with marked lateralization of electroencephalogram (EEG) and blood oxygenation level dependent responses. Voluntary electromyogram (EMG) activity, with significant EEG-EMG coherence, was also prompted. Clinical improvement in upper-extremity function and muscle tone was observed. These results indicate that self-directed training with a brain computer interface may induce activity- dependent cortical plasticity and promote functional recovery. This preliminary clinical investigation encourages further research using a controlled design.

  5. A subject-independent brain-computer interface based on smoothed, second-order baselining

    NARCIS (Netherlands)

    Reuderink, B.; Farquhar, J.D.R.; Poel, M.; Nijholt, A.

    2011-01-01

    A brain-computer interface (BCI) enables direct communication from the brain to devices, bypassing the traditional pathway of peripheral nerves and muscles. Traditional approaches to BCIs require the user to train for weeks or even months to learn to control the BCI. In contrast, BCIs based on

  6. Toward affective brain-computer interfaces : exploring the neurophysiology of affect during human media interaction

    NARCIS (Netherlands)

    Mühl, C.

    2012-01-01

    Affective Brain-Computer Interfaces (aBCI), the sensing of emotions from brain activity, seems a fantasy from the realm of science fiction. But unlike faster-than-light travel or teleportation, aBCI seems almost within reach due to novel sensor technologies, the advancement of neuroscience, and the

  7. Detection of User Independent Single Trial ERPs in Brain Computer Interfaces: An Adaptive Spatial Filtering Approach

    DEFF Research Database (Denmark)

    Leza, Cristina; Puthusserypady, Sadasivan

    2017-01-01

    Brain Computer Interfaces (BCIs) use brain signals to communicate with the external world. The main challenges to address are speed, accuracy and adaptability. Here, a novel algorithm for P300 based BCI spelling system is presented, specifically suited for single-trial detection of Event...

  8. Emulation of computer mouse control with a noninvasive brain computer interface

    Science.gov (United States)

    McFarland, Dennis J.; Krusienski, Dean J.; Sarnacki, William A.; Wolpaw, Jonathan R.

    2008-06-01

    Brain-computer interface (BCI) technology can provide nonmuscular communication and control to people who are severely paralyzed. BCIs can use noninvasive or invasive techniques for recording the brain signals that convey the user's commands. Although noninvasive BCIs are used for simple applications, it has frequently been assumed that only invasive BCIs, which use electrodes implanted in the brain, will be able to provide multidimensional sequential control of a robotic arm or a neuroprosthesis. The present study shows that a noninvasive BCI using scalp-recorded electroencephalographic (EEG) activity and an adaptive algorithm can provide people, including people with spinal cord injuries, with two-dimensional cursor movement and target selection. Multiple targets were presented around the periphery of a computer screen, with one designated as the correct target. The user's task was to use EEG to move a cursor from the center of the screen to the correct target and then to use an additional EEG feature to select the target. If the cursor reached an incorrect target, the user was instructed not to select it. Thus, this task emulated the key features of mouse operation. The results indicate that people with severe motor disabilities could use brain signals for sequential multidimensional movement and selection.

  9. BRAIN-COMPUTER-INTERFACE – SUPPORTED MOTOR IMAGERY TRAININTG FOR PATIENTS WITH HEMIPARESIS

    Directory of Open Access Journals (Sweden)

    O. A. Mokienko

    2013-01-01

    Full Text Available The aim of study was to assess the feasibility of motor imagery supported brain-computer interface in patients with hemiparesis. 13 patients with central paresis of the hand and 15 healthy volunteers were learning to control EEG-based interface with feedback. No differences on interface control quality were found between patients and healthy subjects. The trainings were accompanied by the desynchronization of sensorimotor rhythm. In patients with cortical damage the source of EEG-activity was dislocated.

  10. Interfacing brain with computer to improve communication and rehabilitation after brain damage.

    Science.gov (United States)

    Riccio, A; Pichiorri, F; Schettini, F; Toppi, J; Risetti, M; Formisano, R; Molinari, M; Astolfi, L; Cincotti, F; Mattia, D

    2016-01-01

    Communication and control of the external environment can be provided via brain-computer interfaces (BCIs) to replace a lost function in persons with severe diseases and little or no chance of recovery of motor abilities (ie, amyotrophic lateral sclerosis, brainstem stroke). BCIs allow to intentionally modulate brain activity, to train specific brain functions, and to control prosthetic devices, and thus, this technology can also improve the outcome of rehabilitation programs in persons who have suffered from a central nervous system injury (ie, stroke leading to motor or cognitive impairment). Overall, the BCI researcher is challenged to interact with people with severe disabilities and professionals in the field of neurorehabilitation. This implies a deep understanding of the disabled condition on the one hand, and it requires extensive knowledge on the physiology and function of the human brain on the other. For these reasons, a multidisciplinary approach and the continuous involvement of BCI users in the design, development, and testing of new systems are desirable. In this chapter, we will focus on noninvasive EEG-based systems and their clinical applications, highlighting crucial issues to foster BCI translation outside laboratories to eventually become a technology usable in real-life realm. © 2016 Elsevier B.V. All rights reserved.

  11. Semi-supervised adaptation in ssvep-based brain-computer interface using tri-training

    DEFF Research Database (Denmark)

    Bender, Thomas; Kjaer, Troels W.; Thomsen, Carsten E.

    2013-01-01

    This paper presents a novel and computationally simple tri-training based semi-supervised steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). It is implemented with autocorrelation-based features and a Naïve-Bayes classifier (NBC). The system uses nine characters...

  12. Phase synchronization for classification of spontaneous EEG signals in brain-computer interfaces

    OpenAIRE

    Gysels, Elly; Kunt, Murat; Celka, Patrick

    2007-01-01

    By directly analyzing brain activity, Brain-Computer Interfaces (BCIs) allow for communication that does not rely on any muscular control and therefore constitute a possible communication channel for the completely paralyzed. Typically, the user performs different mental tasks, that correspond to different output commands as recognized by the system. From the recorded brain signals (Electroencephalogram, EEG), features that characterize the mental tasks and allow their discrimination by a cla...

  13. Phase synchronization for classification of spontaneous EEG signals in brain-computer interfaces

    OpenAIRE

    Gysels, Elly

    2005-01-01

    By directly analyzing brain activity, Brain-Computer Interfaces (BCIs) allow for communication that does not rely on any muscular control and therefore constitute a possible communication channel for the completely paralyzed. Typically, the user performs different mental tasks, that correspond to different output commands as recognized by the system. From the recorded brain signals (Electroencephalogram, EEG), features that characterize the mental tasks and allow their discrimination by a cla...

  14. Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future.

    Science.gov (United States)

    Huggins, Jane E; Guger, Christoph; Allison, Brendan; Anderson, Charles W; Batista, Aaron; Brouwer, Anne-Marie A-M; Brunner, Clemens; Chavarriaga, Ricardo; Fried-Oken, Melanie; Gunduz, Aysegul; Gupta, Disha; Kübler, Andrea; Leeb, Robert; Lotte, Fabien; Miller, Lee E; Müller-Putz, Gernot; Rutkowski, Tomasz; Tangermann, Michael; Thompson, David Edward

    2014-01-01

    The Fifth International Brain-Computer Interface (BCI) Meeting met June 3-7th, 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in BCIs applications, and future BCI directions. BCI research is well established and transitioning to practical use to benefit people with physical impairments. At the same time, new applications are being explored, both for people with physical impairments and beyond. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and high-lighting important issues for future research and development.

  15. Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future

    Science.gov (United States)

    Huggins, Jane E.; Guger, Christoph; Allison, Brendan; Anderson, Charles W.; Batista, Aaron; Brouwer, Anne-Marie (A.-M.); Brunner, Clemens; Chavarriaga, Ricardo; Fried-Oken, Melanie; Gunduz, Aysegul; Gupta, Disha; Kübler, Andrea; Leeb, Robert; Lotte, Fabien; Miller, Lee E.; Müller-Putz, Gernot; Rutkowski, Tomasz; Tangermann, Michael; Thompson, David Edward

    2014-01-01

    The Fifth International Brain-Computer Interface (BCI) Meeting met June 3–7th, 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in BCIs applications, and future BCI directions. BCI research is well established and transitioning to practical use to benefit people with physical impairments. At the same time, new applications are being explored, both for people with physical impairments and beyond. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and high-lighting important issues for future research and development. PMID:25485284

  16. Predicting Mental-Imagery Based Brain-Computer Interface Performance from Psychometric Questionnaires

    OpenAIRE

    Jeunet, Camille; N'Kaoua, Bernard; Hachet, Martin; Lotte, Fabien

    2015-01-01

    International audience; Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer via their brain activity, measured while they are performing specific mental tasks. While very promising (e.g., assistive technologies for motor-disabled patients) MI-BCI remain barely used outside laboratories because of the difficulty encountered by users to control such systems. Indeed, although some users obtain very good control performance after training, a s...

  17. Ownership and Agency of an Independent Supernumerary Hand Induced by an Imitation Brain-Computer Interface.

    Science.gov (United States)

    Bashford, Luke; Mehring, Carsten

    2016-01-01

    To study body ownership and control, illusions that elicit these feelings in non-body objects are widely used. Classically introduced with the Rubber Hand Illusion, these illusions have been replicated more recently in virtual reality and by using brain-computer interfaces. Traditionally these illusions investigate the replacement of a body part by an artificial counterpart, however as brain-computer interface research develops it offers us the possibility to explore the case where non-body objects are controlled in addition to movements of our own limbs. Therefore we propose a new illusion designed to test the feeling of ownership and control of an independent supernumerary hand. Subjects are under the impression they control a virtual reality hand via a brain-computer interface, but in reality there is no causal connection between brain activity and virtual hand movement but correct movements are observed with 80% probability. These imitation brain-computer interface trials are interspersed with movements in both the subjects' real hands, which are in view throughout the experiment. We show that subjects develop strong feelings of ownership and control over the third hand, despite only receiving visual feedback with no causal link to the actual brain signals. Our illusion is crucially different from previously reported studies as we demonstrate independent ownership and control of the third hand without loss of ownership in the real hands.

  18. As We May Think and Be: Brain-computer interfaces to expand the substrate of mind

    Directory of Open Access Journals (Sweden)

    Mijail Demian Serruya

    2015-04-01

    Full Text Available Over a half-century ago, the scientist Vannevar Bush explored the conundrum of how to tap the exponentially rising sea of human knowledge for the betterment of humanity. In his description of a hypothetical electronic library he dubbed the memex, he anticipated internet search and online encyclopedias (Bush, 1945. By blurring the boundary between brain and computer, brain-computer interfaces (BCI could lead to more efficient use of electronic resources (Schalk, 2008. We could expand the substrate of the mind itself rather than merely interfacing it to external computers. Components of brain-computer interfaces could be re-arranged to create brain-brain interfaces, or tightly interconnected links between a person’s brain and ectopic neural modules. Such modules – whether sitting in a bubbling Petri dish, rendered in reciprocally linked integrated circuits, or implanted in our belly – would mark the first step on to a path of breaking out of the limitations imposed by our phylogenetic past Novel BCI architectures could generate novel abilities to navigate and access information that might speed translational science efforts and push the boundaries of human knowledge in an unprecedented manner.

  19. Continuous Force Decoding from Deep Brain Local Field Potentials for Brain Computer Interfacing.

    Science.gov (United States)

    Shah, Syed A; Tan, Huiling; Brown, Peter

    2017-01-01

    Current Brain Computer Interface (BCI) systems are limited by relying on neuronal spikes and decoding limited to kinematics only. For a BCI system to be practically useful, it should be able to decode brain information on a continuous basis with low latency. This study investigates if force can be decoded from local field potentials (LFP) recorded with deep brain electrodes located at the Subthalamic nucleus (STN) using data from 5 patients with Parkinson's disease, on a continuous basis with low latency. A Wiener-Cascade (WC) model based decoder was proposed using both time-domain and frequency-domain features. The results suggest that high gamma band (300-500Hz) activity, in addition to the beta (13-30Hz) and gamma band (55-90Hz) activity is the most informative for force prediction but combining all features led to better decoding performance. Furthermore, LFP signals preceding the force output by up to 1256 milliseconds were found to be predictive of the force output.

  20. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    Science.gov (United States)

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain.

  1. Brain-computer interface based on generation of visual images.

    Directory of Open Access Journals (Sweden)

    Pavel Bobrov

    Full Text Available This paper examines the task of recognizing EEG patterns that correspond to performing three mental tasks: relaxation and imagining of two types of pictures: faces and houses. The experiments were performed using two EEG headsets: BrainProducts ActiCap and Emotiv EPOC. The Emotiv headset becomes widely used in consumer BCI application allowing for conducting large-scale EEG experiments in the future. Since classification accuracy significantly exceeded the level of random classification during the first three days of the experiment with EPOC headset, a control experiment was performed on the fourth day using ActiCap. The control experiment has shown that utilization of high-quality research equipment can enhance classification accuracy (up to 68% in some subjects and that the accuracy is independent of the presence of EEG artifacts related to blinking and eye movement. This study also shows that computationally-inexpensive bayesian classifier based on covariance matrix analysis yields similar classification accuracy in this problem as a more sophisticated Multi-class Common Spatial Patterns (MCSP classifier.

  2. Brain-computer interface based on generation of visual images.

    Science.gov (United States)

    Bobrov, Pavel; Frolov, Alexander; Cantor, Charles; Fedulova, Irina; Bakhnyan, Mikhail; Zhavoronkov, Alexander

    2011-01-01

    This paper examines the task of recognizing EEG patterns that correspond to performing three mental tasks: relaxation and imagining of two types of pictures: faces and houses. The experiments were performed using two EEG headsets: BrainProducts ActiCap and Emotiv EPOC. The Emotiv headset becomes widely used in consumer BCI application allowing for conducting large-scale EEG experiments in the future. Since classification accuracy significantly exceeded the level of random classification during the first three days of the experiment with EPOC headset, a control experiment was performed on the fourth day using ActiCap. The control experiment has shown that utilization of high-quality research equipment can enhance classification accuracy (up to 68% in some subjects) and that the accuracy is independent of the presence of EEG artifacts related to blinking and eye movement. This study also shows that computationally-inexpensive bayesian classifier based on covariance matrix analysis yields similar classification accuracy in this problem as a more sophisticated Multi-class Common Spatial Patterns (MCSP) classifier.

  3. Performance measurement for brain-computer or brain-machine interfaces: a tutorial

    Science.gov (United States)

    Thompson, David E.; Quitadamo, Lucia R.; Mainardi, Luca; Rehman Laghari, Khalil ur; Gao, Shangkai; Kindermans, Pieter-Jan; Simeral, John D.; Fazel-Rezai, Reza; Matteucci, Matteo; Falk, Tiago H.; Bianchi, Luigi; Chestek, Cynthia A.; Huggins, Jane E.

    2014-06-01

    Objective. Brain-computer interfaces (BCIs) have the potential to be valuable clinical tools. However, the varied nature of BCIs, combined with the large number of laboratories participating in BCI research, makes uniform performance reporting difficult. To address this situation, we present a tutorial on performance measurement in BCI research. Approach. A workshop on this topic was held at the 2013 International BCI Meeting at Asilomar Conference Center in Pacific Grove, California. This paper contains the consensus opinion of the workshop members, refined through discussion in the following months and the input of authors who were unable to attend the workshop. Main results. Checklists for methods reporting were developed for both discrete and continuous BCIs. Relevant metrics are reviewed for different types of BCI research, with notes on their use to encourage uniform application between laboratories. Significance. Graduate students and other researchers new to BCI research may find this tutorial a helpful introduction to performance measurement in the field.

  4. Automated selection of brain regions for real-time fMRI brain-computer interfaces

    Science.gov (United States)

    Lührs, Michael; Sorger, Bettina; Goebel, Rainer; Esposito, Fabrizio

    2017-02-01

    Objective. Brain-computer interfaces (BCIs) implemented with real-time functional magnetic resonance imaging (rt-fMRI) use fMRI time-courses from predefined regions of interest (ROIs). To reach best performances, localizer experiments and on-site expert supervision are required for ROI definition. To automate this step, we developed two unsupervised computational techniques based on the general linear model (GLM) and independent component analysis (ICA) of rt-fMRI data, and compared their performances on a communication BCI. Approach. 3 T fMRI data of six volunteers were re-analyzed in simulated real-time. During a localizer run, participants performed three mental tasks following visual cues. During two communication runs, a letter-spelling display guided the subjects to freely encode letters by performing one of the mental tasks with a specific timing. GLM- and ICA-based procedures were used to decode each letter, respectively using compact ROIs and whole-brain distributed spatio-temporal patterns of fMRI activity, automatically defined from subject-specific or group-level maps. Main results. Letter-decoding performances were comparable to supervised methods. In combination with a similarity-based criterion, GLM- and ICA-based approaches successfully decoded more than 80% (average) of the letters. Subject-specific maps yielded optimal performances. Significance. Automated solutions for ROI selection may help accelerating the translation of rt-fMRI BCIs from research to clinical applications.

  5. Non invasive Brain-Computer Interface system: towards its application as assistive technology

    OpenAIRE

    Cincotti, Febo; Mattia, Donatella; Aloise, Fabio; Bufalari, Simona; Schalk, Gerwin; Oriolo, Giuseppe; Cherubini, Andrea; Marciani, Maria Grazia; Babiloni, Fabio

    2008-01-01

    The quality of life of people suffering from severe motor disabilities can benefit from the use of current assistive technology capable of ameliorating communication, house-environment management and mobility, according to the user's residual motor abilities. Brain Computer Interfaces (BCIs) are systems that can translate brain activity into signals that control external devices. Thus they can represent the only technology for severely paralyzed patients to increase or maintain their communic...

  6. Multi-modal affect induction for affective brain-computer interfaces

    NARCIS (Netherlands)

    Mühl, C.; Broek, E.L. van den; Brouwer, A.M.; Nijboer, F.; Wouwe, N.C. van; Heylen, D.

    2011-01-01

    Reliable applications of affective brain-computer interfaces (aBCI) in realistic, multi-modal environments require a detailed understanding of the processes involved in emotions. To explore the modalityspecific nature of affective responses, we studied neurophysiological responses (i.e., EEG) of 24

  7. Fully implanted brain-computer interface in a locked-in patient with ALS

    NARCIS (Netherlands)

    Vansteensel, Mariska J.; Pels, Elmar G M; Bleichner, Martin G.; Branco, Mariana P.; Denison, Timothy; Freudenburg, Zachary V.; Gosselaar, Peter; Leinders, Sacha; Ottens, Thomas H.; Van Den Boom, Max A.; Van Rijen, Peter C.; Aarnoutse, Erik J.; Ramsey, Nick F.

    2016-01-01

    Options for people with severe paralysis who have lost the ability to communicate orally are limited. We describe a method for communication in a patient with late-stage amyotrophic lateral sclerosis (ALS), involving a fully implanted brain-computer interface that consists of subdural electrodes

  8. Making brain-computer interfaces better: Improving usability through post-processing

    NARCIS (Netherlands)

    Plass - Oude Bos, D.

    2014-01-01

    Brain-computer interfaces (BCIs) allow you to control things directly with your mind. Unfortunately, such input devices based on observations of the body are plagued by noise, non-stationarities, and ambiguity. In the lab, we can protect systems somewhat from these influences, but in ‘the real

  9. Multi-modal affect induction for affective brain-computer interfaces

    NARCIS (Netherlands)

    Mühl, C.; van den Broek, Egon; Brouwer, Anne-Marie; Nijboer, Femke; van Wouwe, Nelleke; Heylen, Dirk K.J.; D’Mello, Sidney; Graesser, Arthur; Schuller, Björn; Martin, Jean-Claude

    2011-01-01

    Reliable applications of affective brain-computer interfaces (aBCI) in realistic, multi-modal environments require a detailed understanding of the processes involved in emotions. To explore the modality-specific nature of affective responses, we studied neurophysiological responses (i.e., EEG) of 24

  10. TOPICAL REVIEW: A review of classification algorithms for EEG-based brain computer interfaces

    Science.gov (United States)

    Lotte, F.; Congedo, M.; Lécuyer, A.; Lamarche, F.; Arnaldi, B.

    2007-06-01

    In this paper we review classification algorithms used to design brain-computer interface (BCI) systems based on electroencephalography (EEG). We briefly present the commonly employed algorithms and describe their critical properties. Based on the literature, we compare them in terms of performance and provide guidelines to choose the suitable classification algorithm(s) for a specific BCI.

  11. The Asilomar Survey: Stakeholders' Opinions on Ethical Issues Related to Brain-Computer Interfacing

    NARCIS (Netherlands)

    Nijboer, Femke; Clausen, Jens; Allison, Brendan Z.; Haselager, Pim

    2013-01-01

    Brain-Computer Interface (BCI) research and (future) applications raise important ethical issues that need to be addressed to promote societal acceptance and adequate policies. Here we report on a survey we conducted among 145 BCI researchers at the 4th International BCI conference, which took place

  12. Decoding the acts of language production for controlling brain computer interfaces

    NARCIS (Netherlands)

    Bleichner, M.G.

    2014-01-01

    Implantable brain computer interfaces (BCIs) promise to re-establish communication for severely paralyzed people. This thesis argues that decoding the acts of language production is a promising strategy for BCI control. Using high-field functional magnetic resonance imaging (fMRI) and high-density

  13. Covert attention as a paradigm for subject-independent brain-computer interfacing

    NARCIS (Netherlands)

    Wouters, H.J.P.; Gerven, M.A.J. van; Heskes, T.M.; Treder, M.S.; Bahramisharif, A.

    2012-01-01

    Covert attention has been introduced as a paradigm for gaze-independent brain computer interfacing (BCI). As we know that the applicability of a BCI system depends on the consistency of its paradigm over a group of subjects, one important feature of a BCI is its subject-independence. To generalize a

  14. Ethical Issues in Brain-Computer Interface Research, Development, and Dissemination

    NARCIS (Netherlands)

    Vlek, Rutger; Steines, David; Szibbo, Dyana; Kübler, Andrea; Schneider, Mary-Jane; Haselager, Pim; Nijboer, Femke

    The steadily growing field of brain-computer interfacing (BCI) may develop useful technologies, with a potential impact not only on individuals, but also on society as a whole. At the same time, the development of BCI presents significant ethical and legal challenges. In a workshop during the 4th

  15. Bigger data for big data: from Twitter to brain-computer interfaces.

    Science.gov (United States)

    Roesch, Etienne B; Stahl, Frederic; Gaber, Mohamed Medhat

    2014-02-01

    We are sympathetic with Bentley et al.'s attempt to encompass the wisdom of crowds in a generative model, but posit that a successful attempt at using big data will include more sensitive measurements, more varied sources of information, and will also build from the indirect information available through technology, from ancillary technical features to data from brain-computer interfaces.

  16. Connections that Count: Brain-Computer Interface Enables the Profoundly Paralyzed to Communicate

    Science.gov (United States)

    ... a team of researchers in developing a brain-computer interface (BCI) system to help the profoundly paralyzed communicate. Dr. Wolpaw has received support from two NIH Institutes—NIBIB and the National Institute of Child Health and Human Development—and the James S. McDonnell Foundation. "For the ...

  17. Measuring immersion and affect in a brain-computer interface game

    NARCIS (Netherlands)

    Hakvoort, Gido; Gürkök, Hayrettin; Plass - Oude Bos, D.; Obbink, Michel; Poel, Mannes; Campos, Pedro; Graham, Nicholas; Jorge, Joaquim; Nunes, Nuno; Palanque, Philippe; Winckler, Marco

    Brain-computer interfaces (BCIs) have widely been used in medical applications, to facilitate making selections. However, whether they are suitable for recreational applications is unclear as they have rarely been evaluated for user experience. As the scope of the BCI applications is expanding from

  18. Myndplay: Measuring Attention Regulation with Single Dry Electrode Brain Computer Interface

    NARCIS (Netherlands)

    van der Wal, C.N.; Irrmischer, M.; Guo, Y.; Friston, K.; Faisal, A.; Hill, S.; Peng, H.

    2015-01-01

    Future applications for the detection of attention can be helped by the development and validation of single electrode brain computer interfaces that are small and user-friendly. The two objectives of this study were: to (1) understand the correlates of attention regulation as detected with the

  19. Performance of Brain-computer Interfacing based on tactile selective sensation and motor imagery

    DEFF Research Database (Denmark)

    Yao, Lin; Sheng, Xinjun; Mrachacz-Kersting, Natalie

    2018-01-01

    We proposed a multi-class tactile brain-computer interface that utilizes stimulus-induced oscillatory dynamics. It was hypothesized that somatosensory attention can modulate tactile induced oscillation changes, which can decode different sensation attention tasks. Subjects performed four tactile...

  20. Neuroengineering tools/applications for bidirectional interfaces, brain-computer interfaces, and neuroprosthetic implants - a review of recent progress.

    Science.gov (United States)

    Rothschild, Ryan Mark

    2010-01-01

    The main focus of this review is to provide a holistic amalgamated overview of the most recent human in vivo techniques for implementing brain-computer interfaces (BCIs), bidirectional interfaces, and neuroprosthetics. Neuroengineering is providing new methods for tackling current difficulties; however neuroprosthetics have been studied for decades. Recent progresses are permitting the design of better systems with higher accuracies, repeatability, and system robustness. Bidirectional interfaces integrate recording and the relaying of information from and to the brain for the development of BCIs. The concepts of non-invasive and invasive recording of brain activity are introduced. This includes classical and innovative techniques like electroencephalography and near-infrared spectroscopy. Then the problem of gliosis and solutions for (semi-) permanent implant biocompatibility such as innovative implant coatings, materials, and shapes are discussed. Implant power and the transmission of their data through implanted pulse generators and wireless telemetry are taken into account. How sensation can be relayed back to the brain to increase integration of the neuroengineered systems with the body by methods such as micro-stimulation and transcranial magnetic stimulation are then addressed. The neuroprosthetic section discusses some of the various types and how they operate. Visual prosthetics are discussed and the three types, dependant on implant location, are examined. Auditory prosthetics, being cochlear or cortical, are then addressed. Replacement hand and limb prosthetics are then considered. These are followed by sections concentrating on the control of wheelchairs, computers and robotics directly from brain activity as recorded by non-invasive and invasive techniques.

  1. Editorial: Arts and Brain-Computer Interfaces (BCIs)

    NARCIS (Netherlands)

    Nijholt, Antinus; Nam, Chang S.

    2015-01-01

    The primary goal of this special issue is to address contemporary challenges involved in designing BCI applications related to the creation and experience of art. This involves a low level artistic audification and visualization of brain activity patterns, a higher level musification and animation,

  2. Bottlenecks to Clinical Translation of Direct Brain-Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Mijail Demian Serruya

    2014-12-01

    Full Text Available Despite several decades of research into novel brain-implantable devices to treat a range of diseases, only two- cochlear implants for sensorineural hearing loss and deep brain stimulation for movement disorders- have yielded any appreciable clinical benefit. Obstacles to translation include technical factors (e.g., signal loss due to gliosis or micromotion, lack of awareness of current clinical options for patients that the new therapy must outperform, traversing between federal and corporate funding needed to support clinical trials, and insufficient management expertise. This commentary reviews these obstacles preventing the translation of promising new neurotechnologies into clinical application and suggests some principles that interdisciplinary teams in academia and industry could adopt to enhance their chances of success.

  3. Covert visuospatial attention orienting in a brain-computer interface for amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Marchetti, Mauro; Piccione, Francesco; Silvoni, Stefano; Gamberini, Luciano; Priftis, Konstantinos

    2013-06-01

    Brain-computer interfaces (BCIs) allow people to control devices by translating brain signals into commands. BCIs represent a concrete solution with regard to communication and motor control disabilities of patients with amyotrophic lateral sclerosis (ALS). Most of the BCIs rely on visual interfaces in which patients must move their eyes to achieve efficient BCI control. This fact represents a limitation of BCI use in ALS patients who are in the final stages of the disease. We aimed to improve visual interfaces for ALS patients to control the movement of a cursor on a monitor by orienting their covert visuospatial attention (i.e., orienting without eye movements). A total of 10 ALS patients with different levels of impairment used 2 new visual interfaces in an event-related potential (ERP)-based BCI. In the first interface, they were required to use exogenous visuospatial attention orienting (VAO), whereas in the second interface, they were required to use endogenous VAO. . ALS patients were able to use the 2 interfaces for controlling the ERP-based BCI system in real time. Nevertheless, better target classification and information transfer rate were associated with the interface that was based on endogenous VAO. ALS patients can exploit their covert VAO to control a BCI that does not require eye movements. The implementation of endogenous VAO in the design of covert visuospatial attention-based interfaces seems to be suitable for designing more ergonomic and efficient BCIs for ALS patients with impaired eye movements.

  4. Enrichment of Human-Computer Interaction in Brain-Computer Interfaces via Virtual Environments

    Directory of Open Access Journals (Sweden)

    Alonso-Valerdi Luz María

    2017-01-01

    Full Text Available Tridimensional representations stimulate cognitive processes that are the core and foundation of human-computer interaction (HCI. Those cognitive processes take place while a user navigates and explores a virtual environment (VE and are mainly related to spatial memory storage, attention, and perception. VEs have many distinctive features (e.g., involvement, immersion, and presence that can significantly improve HCI in highly demanding and interactive systems such as brain-computer interfaces (BCI. BCI is as a nonmuscular communication channel that attempts to reestablish the interaction between an individual and his/her environment. Although BCI research started in the sixties, this technology is not efficient or reliable yet for everyone at any time. Over the past few years, researchers have argued that main BCI flaws could be associated with HCI issues. The evidence presented thus far shows that VEs can (1 set out working environmental conditions, (2 maximize the efficiency of BCI control panels, (3 implement navigation systems based not only on user intentions but also on user emotions, and (4 regulate user mental state to increase the differentiation between control and noncontrol modalities.

  5. A covert attention P300-based brain-computer interface: Geospell.

    Science.gov (United States)

    Aloise, Fabio; Aricò, Pietro; Schettini, Francesca; Riccio, Angela; Salinari, Serenella; Mattia, Donatella; Babiloni, Fabio; Cincotti, Febo

    2012-01-01

    The Farwell and Donchin P300 speller interface is one of the most widely used brain-computer interface (BCI) paradigms for writing text. Recent studies have shown that the recognition accuracy of the P300 speller decreases significantly when eye movement is impaired. This report introduces the GeoSpell interface (Geometric Speller), which implements a stimulation framework for a P300-based BCI that has been optimised for operation in covert visual attention. We compared the Geospell with the P300 speller interface under overt attention conditions with regard to effectiveness, efficiency and user satisfaction. Ten healthy subjects participated in the study. The performance of the GeoSpell interface in covert attention was comparable with that of the P300 speller in overt attention. As expected, the effectiveness of the spelling decreased with the new interface in covert attention. The NASA task load index (TLX) for workload assessment did not differ significantly between the two modalities. This study introduces and evaluates a gaze-independent, P300-based brain-computer interface, the efficacy and user satisfaction of which were comparable with those off the classical P300 speller. Despite a decrease in effectiveness due to the use of covert attention, the performance of the GeoSpell far exceeded the threshold of accuracy with regard to effective spelling.

  6. Fully Implanted Brain-Computer Interface in a Locked-In Patient with ALS.

    Science.gov (United States)

    Vansteensel, Mariska J; Pels, Elmar G M; Bleichner, Martin G; Branco, Mariana P; Denison, Timothy; Freudenburg, Zachary V; Gosselaar, Peter; Leinders, Sacha; Ottens, Thomas H; Van Den Boom, Max A; Van Rijen, Peter C; Aarnoutse, Erik J; Ramsey, Nick F

    2016-11-24

    Options for people with severe paralysis who have lost the ability to communicate orally are limited. We describe a method for communication in a patient with late-stage amyotrophic lateral sclerosis (ALS), involving a fully implanted brain-computer interface that consists of subdural electrodes placed over the motor cortex and a transmitter placed subcutaneously in the left side of the thorax. By attempting to move the hand on the side opposite the implanted electrodes, the patient accurately and independently controlled a computer typing program 28 weeks after electrode placement, at the equivalent of two letters per minute. The brain-computer interface offered autonomous communication that supplemented and at times supplanted the patient's eye-tracking device. (Funded by the Government of the Netherlands and the European Union; ClinicalTrials.gov number, NCT02224469 .).

  7. Wyrm: A Brain-Computer Interface Toolbox in Python.

    Science.gov (United States)

    Venthur, Bastian; Dähne, Sven; Höhne, Johannes; Heller, Hendrik; Blankertz, Benjamin

    2015-10-01

    In the last years Python has gained more and more traction in the scientific community. Projects like NumPy, SciPy, and Matplotlib have created a strong foundation for scientific computing in Python and machine learning packages like scikit-learn or packages for data analysis like Pandas are building on top of it. In this paper we present Wyrm ( https://github.com/bbci/wyrm ), an open source BCI toolbox in Python. Wyrm is applicable to a broad range of neuroscientific problems. It can be used as a toolbox for analysis and visualization of neurophysiological data and in real-time settings, like an online BCI application. In order to prevent software defects, Wyrm makes extensive use of unit testing. We will explain the key aspects of Wyrm's software architecture and design decisions for its data structure, and demonstrate and validate the use of our toolbox by presenting our approach to the classification tasks of two different data sets from the BCI Competition III. Furthermore, we will give a brief analysis of the data sets using our toolbox, and demonstrate how we implemented an online experiment using Wyrm. With Wyrm we add the final piece to our ongoing effort to provide a complete, free and open source BCI system in Python.

  8. Evolution of the Brain Computing Interface (BCI and Proposed Electroencephalography (EEG Signals Based Authentication Model

    Directory of Open Access Journals (Sweden)

    Ramzan Qaseem

    2018-01-01

    Full Text Available With current advancements in the field of Brain Computer interface it is required to study how it will affect the other technologies currently in use. In this paper, the authors motivate the need of Brain Computing Interface in the era of IoT (Internet of Things, and analyze how BCI in the presence of IoT could have serious privacy breach if not protected by new kind of more secure protocols. Security breach and hacking has been around for a long time but now we are sensitive towards data as our lives depend on it. When everything is interconnected through IoT and considering that we control all interconnected things by means of our brain using BCI (Brain Computer Interface, the meaning of security breach becomes much more sensitive than in the past. This paper describes the old security methods being used for authentication and how they can be compromised. Considering the sensitivity of data in the era of IoT, a new form of authentication is required, which should incorporate BCI rather than usual authentication techniques.

  9. [Rehabilitation of post stroke patients using a bioengineering system "brain-computer interface + exoskeleton"].

    Science.gov (United States)

    Kotov, S V; Turbina, L G; Bobrov, P D; Frolov, A A; Pavlova, O G; Kurganskaia, M E; Biriukova, E V

    2014-01-01

    Objective. To investigate the possibility of using a bioengineering system, which includes an electroencephalograph and a personal computer with a software for synchronous data transmission, recognition and classification of EEG signals, development of directions for intended actions in real time in the combination with the hand exoskeleton (the bioengineering system "brain-computer interface + exoskeleton"), in motor rehabilitation of post stroke patients with paresis of the upper extremity. Material and methods. Brain-computer interface is a promising field of neurorehabilitation. Rehabilitation treatment, including 8-10 sessions, was conducted in 5 patients with paresis of the upper extremity. All patients had large MRI lesions in cortical/subcortical areas. Results. Positive changes in neurological status measured with the NIHSS, a significant increase in the volume and power of movements in the paretic hand, improvement of coordination and slight decrease in the level of spasticity were found after the treatment. There was an increase in daily activities measured with the Barthel index, mostly due to the improvement of fine motor skills. The level of disability assessed by the modified Rankin scale was changed significantly. Conclusion. The use of "brain-computer interface + exoskeleton" in the rehabilitation of post stroke patients with hand paresis provided positive results that would need to be verified in further studies.

  10. Improved Targeting Through Collaborative Decision-Making and Brain Computer Interfaces

    Science.gov (United States)

    Stoica, Adrian; Barrero, David F.; McDonald-Maier, Klaus

    2013-01-01

    This paper reports a first step toward a brain-computer interface (BCI) for collaborative targeting. Specifically, we explore, from a broad perspective, how the collaboration of a group of people can increase the performance on a simple target identification task. To this end, we requested a group of people to identify the location and color of a sequence of targets appearing on the screen and measured the time and accuracy of the response. The individual results are compared to a collective identification result determined by simple majority voting, with random choice in case of drawn. The results are promising, as the identification becomes significantly more reliable even with this simple voting and a small number of people (either odd or even number) involved in the decision. In addition, the paper briefly analyzes the role of brain-computer interfaces in collaborative targeting, extending the targeting task by using a BCI instead of a mechanical response.

  11. Brain-computer-interfaces in their ethical, social and cultural contexts

    CERN Document Server

    Grübler, Gerd

    2014-01-01

    This volume summarizes the ethical, social and cultural contexts of interfacing brains and computers. It is intended for the interdisciplinary community of BCI stakeholders. Insofar, engineers, neuroscientists, psychologists, physicians, care-givers and also users and their relatives are concerned. For about the last twenty years brain-computer-interfaces (BCIs) have been investigated with increasing intensity and have in principle shown their potential to be useful tools in diagnostics, rehabilitation and assistive technology. The central promise of BCI technology is enabling severely impaired people in mobility, grasping, communication, and entertainment. Successful applications are for instance communication devices enabling locked-in patients in staying in contact with their environment, or prostheses enabling paralysed people in reaching and grasping. In addition to this, it serves as an introduction to the whole field of BCI for any interested reader.

  12. Neuroengineering tools/applications for bidirectional interfaces, brain computer interfaces, and neuroprosthetic implants - a review of recent progress

    Directory of Open Access Journals (Sweden)

    Ryan M Rothschild

    2010-10-01

    Full Text Available The main focus of this review is to provide a holistic amalgamated overview of the most recent human in vivo techniques for implementing brain-computer interfaces (BCIs, bidirectional interfaces and neuroprosthetics. Neuroengineering is providing new methods for tackling current difficulties; however neuroprosthetics have been studied for decades. Recent progresses are permitting the design of better systems with higher accuracies, repeatability and system robustness. Bidirectional interfaces integrate recording and the relaying of information from and to the brain for the development of BCIs. The concepts of non-invasive and invasive recording of brain activity are introduced. This includes classical and innovative techniques like electroencephalography (EEG and near-infrared spectroscopy (NIRS. Then the problem of gliosis and solutions for (semi- permanent implant biocompatibility such as innovative implant coatings, materials and shapes are discussed. Implant power and the transmission of their data through implanted pulse generators (IPGs and wireless telemetry are taken into account. How sensation can be relayed back to the brain to increase integration of the neuroengineered systems with the body by methods such as micro-stimulation and transcranial magnetic stimulation (TMS are then addressed. The neuroprosthetic section discusses some of the various types and how they operate. Visual prosthetics are discussed and the three types, dependant on implant location, are examined. Auditory prosthetics, being cochlear or cortical, are then addressed. Replacement hand and limb prosthetics are then considered. These are followed by sections concentrating on the control of wheelchairs, computers and robotics directly from brain activity as recorded by non-invasive and invasive techniques.

  13. On the control of brain-computer interfaces by users with cerebral palsy

    OpenAIRE

    Daly I.; Billinger M.; Laparra-Hernandez J.; Aloise F.; Garcia M.L.; Faller J.; Scherer R.; Muller-Putz G.

    2013-01-01

    Brain-computer interfaces (BCIs) have been proposed as a potential assistive device for individuals with cerebral palsy (CP) to assist with their communication needs. However, it is unclear how well-suited BCIs are to individuals with CP. Therefore, this study aims to investigate to what extent these users are able to gain control of BCIs FP7 Framework EU Research Project ABC 287774 Daly, I.; Billinger, M.; Laparra Hernandez, J.; Aloise, F.; Lloria Garcia, M.; Faller, J.; Scherer, R.....

  14. The Impact of Flow in an EEG-based Brain Computer Interface

    OpenAIRE

    Mladenović, Jelena; Frey, Jérémy; Bonnet-Save, Manon; Mattout, Jérémie; Lotte, Fabien

    2017-01-01

    International audience; Major issues in Brain Computer Interfaces (BCIs) include low usability and poor user performance. This paper tackles them by ensuring the users to be in a state of immersion, control and motivation, called state of flow. Indeed, in various disciplines, being in the state of flow was shown to improve performances and learning. Hence, we intended to draw BCI users in a flow state to improve both their subjective experience and their performances. In a Motor Imagery BCI g...

  15. Designing a Brain-Computer Interface controlled video-game using consumer grade EEG hardware

    OpenAIRE

    van Vliet, Marijn; Robben, Arne; Chumerin, Nikolay; Manyakov, Nikolay V.; Combaz, Adrien; Van Hulle, Marc

    2012-01-01

    This paper describes our first attempt to port a brain-computer interface (BCI), created in a research lab and running on expensive equipment, to consumer grade equipment, allowing one to reach a much broader audience and raise public awareness of this new technology. With the BCI, the user can perform a complicated task through mind control only: playing a tactical video-game. Reliable control is accomplished by adapting a Steady-State Visual Evoked Potential (SSVEP) classifier to be robust ...

  16. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.

    Science.gov (United States)

    Lo, Chi-Chun; Chien, Tsung-Yi; Chen, Yu-Chun; Tsai, Shang-Ho; Fang, Wai-Chi; Lin, Bor-Shyh

    2016-02-06

    Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype.

  17. Training to use a commercial brain-computer interface as access technology: a case study.

    Science.gov (United States)

    Taherian, Sarvnaz; Selitskiy, Dmitry; Pau, James; Davies, T Claire; Owens, R Glynn

    2016-01-01

    This case study describes how an individual with spastic quadriplegic cerebral palsy was trained over a period of four weeks to use a commercial electroencephalography (EEG)-based brain-computer interface (BCI). The participant spent three sessions exploring the system, and seven sessions playing a game focused on EEG feedback training of left and right arm motor imagery and a customised, training game paradigm was employed. The participant showed improvement in the production of two distinct EEG patterns. The participant's performance was influenced by motivation, fatigue and concentration. Six weeks post-training the participant could still control the BCI and used this to type a sentence using an augmentative and alternative communication application on a wirelessly linked device. The results from this case study highlight the importance of creating a dynamic, relevant and engaging training environment for BCIs. Implications for Rehabilitation Customising a training paradigm to suit the users' interests can influence adherence to assistive technology training. Mood, fatigue, physical illness and motivation influence the usability of a brain-computer interface. Commercial brain-computer interfaces, which require little set up time, may be used as access technology for individuals with severe disabilities.

  18. Brain-computer interfaces: a unique window into the hearing soul

    DEFF Research Database (Denmark)

    Treder, Matthias S.; Miklody, Daniel; Blankertz, Benjamin

    quality measure'. We were able to show that for stimuli close to the perceptual threshold, there was sometimes a discrepancy between overt responses and brain responses, shedding light on subjects using different response criteria (e.g., more liberal or more conservative). To conclude, brain-computer...... interfaces (BCIs) open up an new window into auditory perceptual experience. Although the application to cochlear implant (CI) patients is challenging due to electrical artefacts produced by the implant, we believe that this technology has the potential to contribute to the quality assessment and enhancement...

  19. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Jiang, Ning; Stevenson, Andrew James Thomas

    2016-01-01

    Brain-computer interfaces (BCIs) have the potential to improve functionality in chronic stoke patients when applied over a large number of sessions. Here, we evaluate the effect and the underlying mechanisms of three BCI training sessions in a double-blind-sham-controlled design. The applied BCI......-associative group. Fugl-Meyer motor scores (0.8±0.46 point difference p=0.01), foot (but not finger) tapping frequency, and 10-m walking speed improved significantly for the BCIassociative group, indicating clinically relevant improvements. For the BCI as applied here, the precise coupling between the brain command...

  20. EXPERIMENTAL AND THEORETICAL FOUNDATIONS AND PRACTICAL IMPLEMENTATION OF TECHNOLOGY BRAIN-COMPUTER INTERFACE

    Directory of Open Access Journals (Sweden)

    A. Ya. Kaplan

    2013-01-01

    Full Text Available Technology brain-computer interface (BCI allow saperson to learn how to control external devices via thevoluntary regulation of own EEG directly from the brain without the involvement in the process of nerves and muscles. At the beginning the main goal of BCI was to replace or restore motor function to people disabled by neuromuscular disorders. Currently, the task of designing the BCI increased significantly, more capturing different aspects of life a healthy person. This article discusses the theoretical, experimental and technological base of BCI development and systematized critical fields of real implementation of these technologies.

  1. Brain-Computer Interfaces Applying Our Minds to Human-computer Interaction

    CERN Document Server

    Tan, Desney S

    2010-01-01

    For generations, humans have fantasized about the ability to create devices that can see into a person's mind and thoughts, or to communicate and interact with machines through thought alone. Such ideas have long captured the imagination of humankind in the form of ancient myths and modern science fiction stories. Recent advances in cognitive neuroscience and brain imaging technologies have started to turn these myths into a reality, and are providing us with the ability to interface directly with the human brain. This ability is made possible through the use of sensors that monitor physical p

  2. Tactile event-related potentials in amyotrophic lateral sclerosis (ALS): Implications for brain-computer interface.

    Science.gov (United States)

    Silvoni, S; Konicar, L; Prats-Sedano, M A; Garcia-Cossio, E; Genna, C; Volpato, C; Cavinato, M; Paggiaro, A; Veser, S; De Massari, D; Birbaumer, N

    2016-01-01

    We investigated neurophysiological brain responses elicited by a tactile event-related potential paradigm in a sample of ALS patients. Underlying cognitive processes and neurophysiological signatures for brain-computer interface (BCI) are addressed. We stimulated the palm of the hand in a group of fourteen ALS patients and a control group of ten healthy participants and recorded electroencephalographic signals in eyes-closed condition. Target and non-target brain responses were analyzed and classified offline. Classification errors served as the basis for neurophysiological brain response sub-grouping. A combined behavioral and quantitative neurophysiological analysis of sub-grouped data showed neither significant between-group differences, nor significant correlations between classification performance and the ALS patients' clinical state. Taking sequential effects of stimuli presentation into account, analyses revealed mean classification errors of 19.4% and 24.3% in healthy participants and ALS patients respectively. Neurophysiological correlates of tactile stimuli presentation are not altered by ALS. Tactile event-related potentials can be used to monitor attention level and task performance in ALS and may constitute a viable basis for future BCIs. Implications for brain-computer interface implementation of the proposed method for patients in critical conditions, such as the late stage of ALS and the (completely) locked-in state, are discussed. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Soft drink effects on sensorimotor rhythm brain computer interface performance and resting-state spectral power.

    Science.gov (United States)

    Mundahl, John; Jianjun Meng; He, Jeffrey; Bin He

    2016-08-01

    Brain-computer interface (BCI) systems allow users to directly control computers and other machines by modulating their brain waves. In the present study, we investigated the effect of soft drinks on resting state (RS) EEG signals and BCI control. Eight healthy human volunteers each participated in three sessions of BCI cursor tasks and resting state EEG. During each session, the subjects drank an unlabeled soft drink with either sugar, caffeine, or neither ingredient. A comparison of resting state spectral power shows a substantial decrease in alpha and beta power after caffeine consumption relative to control. Despite attenuation of the frequency range used for the control signal, caffeine average BCI performance was the same as control. Our work provides a useful characterization of caffeine, the world's most popular stimulant, on brain signal frequencies and their effect on BCI performance.

  4. Brain-Computer Interface application: auditory serial interface to control a two-class motor-imagery-based wheelchair.

    Science.gov (United States)

    Ron-Angevin, Ricardo; Velasco-Álvarez, Francisco; Fernández-Rodríguez, Álvaro; Díaz-Estrella, Antonio; Blanca-Mena, María José; Vizcaíno-Martín, Francisco Javier

    2017-05-30

    Certain diseases affect brain areas that control the movements of the patients' body, thereby limiting their autonomy and communication capacity. Research in the field of Brain-Computer Interfaces aims to provide patients with an alternative communication channel not based on muscular activity, but on the processing of brain signals. Through these systems, subjects can control external devices such as spellers to communicate, robotic prostheses to restore limb movements, or domotic systems. The present work focus on the non-muscular control of a robotic wheelchair. A proposal to control a wheelchair through a Brain-Computer Interface based on the discrimination of only two mental tasks is presented in this study. The wheelchair displacement is performed with discrete movements. The control signals used are sensorimotor rhythms modulated through a right-hand motor imagery task or mental idle state. The peculiarity of the control system is that it is based on a serial auditory interface that provides the user with four navigation commands. The use of two mental tasks to select commands may facilitate control and reduce error rates compared to other endogenous control systems for wheelchairs. Seventeen subjects initially participated in the study; nine of them completed the three sessions of the proposed protocol. After the first calibration session, seven subjects were discarded due to a low control of their electroencephalographic signals; nine out of ten subjects controlled a virtual wheelchair during the second session; these same nine subjects achieved a medium accuracy level above 0.83 on the real wheelchair control session. The results suggest that more extensive training with the proposed control system can be an effective and safe option that will allow the displacement of a wheelchair in a controlled environment for potential users suffering from some types of motor neuron diseases.

  5. Sheet music by mind: Towards a brain-computer interface for composing.

    Science.gov (United States)

    Pinegger, Andreas; Wriessnegger, Selina C; Muller-Putz, Gernot R

    2015-08-01

    Providing brain-computer interface (BCI) users engaging applications should be one of the main targets in BCI research. A painting application, a web browser and other applications can already be controlled via BCI. Another engaging application would be a music composer for self-expression. In this work, we describe Brain Composing: A BCI controlled music composing software. We tested and evaluated the implemented brain composing system with five volunteers. Using a tap water-based electrode biosignal amplifier further improved the usability of the system. Three participants reached accuracies above 77% and were able to copy-compose a given melody. Results of questionnaires support that our brain composing system is an attractive and easy way to compose music via a BCI.

  6. Brain Computer Interface-Controlling Devices Utilizing The Alpha Brain Waves

    Directory of Open Access Journals (Sweden)

    Rohan Hundia

    2015-01-01

    Full Text Available Abstract This paper describes the development and testing of an interface system whereby one can control external devices by voluntarily controlling alpha waves that is through eye movement. Such a system may be used for the control of prosthetics robotic arms and external devices like wheelchairs using the alpha brain waves and the Mu rhythm. The response generated through the movement of the eye detecting and controlling the amplitude of the alpha brain waves is interfaced and processed to control Robotic systems and smart home control. In order to measure the response of alpha waves over different lobes of the brain initially I measured these signals over 32 regions using silver chloride plated electrodes. By the opening and the closure of the eyes and the movement in the up-down left-right directions and processing these movements measuring them over the occipital region I was able to differentiate the amplitude of the alpha waves generated due to these several movements. In the First session testing period subjects were asked to close and open their eyes and they were able to control limited movements of a Robot and a prosthetic arm. In the Second 2session the movement of the eyes was also considered left-right up-down along with the opening and closure during this time span they were able to control more dimensions of the robot several devices at the same time using different eye movements.

  7. Brain Painting: First Evaluation of a New Brain-Computer Interface Application with ALS-Patients and Healthy Volunteers.

    Science.gov (United States)

    Münßinger, Jana I; Halder, Sebastian; Kleih, Sonja C; Furdea, Adrian; Raco, Valerio; Hösle, Adi; Kübler, Andrea

    2010-01-01

    Brain-computer interfaces (BCIs) enable paralyzed patients to communicate; however, up to date, no creative expression was possible. The current study investigated the accuracy and user-friendliness of P300-Brain Painting, a new BCI application developed to paint pictures using brain activity only. Two different versions of the P300-Brain Painting application were tested: A colored matrix tested by a group of ALS-patients (n = 3) and healthy participants (n = 10), and a black and white matrix tested by healthy participants (n = 10). The three ALS-patients achieved high accuracies; two of them reaching above 89% accuracy. In healthy subjects, a comparison between the P300-Brain Painting application (colored matrix) and the P300-Spelling application revealed significantly lower accuracy and P300 amplitudes for the P300-Brain Painting application. This drop in accuracy and P300 amplitudes was not found when comparing the P300-Spelling application to an adapted, black and white matrix of the P300-Brain Painting application. By employing a black and white matrix, the accuracy of the P300-Brain Painting application was significantly enhanced and reached the accuracy of the P300-Spelling application. ALS-patients greatly enjoyed P300-Brain Painting and were able to use the application with the same accuracy as healthy subjects. P300-Brain Painting enables paralyzed patients to express themselves creatively and to participate in the prolific society through exhibitions.

  8. Brain Painting: first evaluation of a new brain-computer interface application with ALS patients and healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Jana I. Muenssinger

    2010-11-01

    Full Text Available Brain-computer interfaces (BCI enable paralyzed patients to communicate; however, up to date, no creative expression was possible. The current study investigated the accuracy and user friendliness of P300-Brain Painting, a new BCI-application developed to paint pictures using brain activity only. Two different versions of the P300-Brain Painting application were tested: A coloured matrix tested by a group of ALS-patients (n = 3 and healthy participants (n = 10, and a black & white matrix tested by healthy participants (n = 10. The three ALS-patients achieved high accuracies; two of them reaching above 89% accuracy. In healthy subjects, a comparison between the P300-Brain Painting application (coloured matrix and the P300-Spelling application revealed significantly lower accuracy and P300 amplitudes for the P300-Brain Painting application. This drop in accuracy and P300 amplitudes was not found when comparing the P300-Spelling application to an adapted, black & white matrix of the P300-Brain Painting application. By employing a black and white matrix, the accuracy of the P300-Brain Painting application was significantly enhanced and reached the accuracy of the P300-Spelling application. ALS patients greatly enjoyed P300-Brain Painting and were able to use the application with the same accuracy as healthy subjects. P300-Brain Painting enables paralyzed patients to express themselves creatively and to participate in the prolific society through exhibitions.

  9. Cognitive assessment of executive functions using brain computer interface and eye-tracking

    Directory of Open Access Journals (Sweden)

    P. Cipresso

    2013-03-01

    Full Text Available New technologies to enable augmentative and alternative communication in Amyotrophic Lateral Sclerosis (ALS have been recently used in several studies. However, a comprehensive battery for cognitive assessment has not been implemented yet. Brain computer interfaces are innovative systems able to generate a control signal from brain responses conveying messages directly to a computer. Another available technology for communication purposes is the Eye-tracker system, that conveys messages from eye-movement to a computer. In this study we explored the use of these two technologies for the cognitive assessment of executive functions in a healthy population and in a ALS patient, also verifying usability, pleasantness, fatigue, and emotional aspects related to the setting. Our preliminary results may have interesting implications for both clinical practice (the availability of an effective tool for neuropsychological evaluation of ALS patients and ethical issues.

  10. Large-Scale Assessment of a Fully Automatic Co-Adaptive Motor Imagery-Based Brain Computer Interface

    National Research Council Canada - National Science Library

    Acqualagna, Laura; Botrel, Loic; Vidaurre, Carmen; Kübler, Andrea; Blankertz, Benjamin

    2016-01-01

    In the last years Brain Computer Interface (BCI) technology has benefited from the development of sophisticated machine leaning methods that let the user operate the BCI after a few trials of calibration...

  11. Mining multi-channel EEG for its information content: An ANN-based method for a brain-computer interface

    DEFF Research Database (Denmark)

    Peters, B.O.; Pfurtscheller, G.; Flyvbjerg, H.

    1998-01-01

    . This high recognition rate makes the classifier suitable for a so-called 'Brain-Computer Interface', a system that allows one to control a computer, or another device, with ones brain waves. Our classifier Laplace filters the EEG spatially, but makes use of its entire frequency range, and automatically...

  12. Convolutional neural networks for P300 detection with application to brain-computer interfaces.

    Science.gov (United States)

    Cecotti, Hubert; Gräser, Axel

    2011-03-01

    A Brain-Computer Interface (BCI) is a specific type of human-computer interface that enables the direct communication between human and computers by analyzing brain measurements. Oddball paradigms are used in BCI to generate event-related potentials (ERPs), like the P300 wave, on targets selected by the user. A P300 speller is based on this principle, where the detection of P300 waves allows the user to write characters. The P300 speller is composed of two classification problems. The first classification is to detect the presence of a P300 in the electroencephalogram (EEG). The second one corresponds to the combination of different P300 responses for determining the right character to spell. A new method for the detection of P300 waves is presented. This model is based on a convolutional neural network (CNN). The topology of the network is adapted to the detection of P300 waves in the time domain. Seven classifiers based on the CNN are proposed: four single classifiers with different features set and three multiclassifiers. These models are tested and compared on the Data set II of the third BCI competition. The best result is obtained with a multiclassifier solution with a recognition rate of 95.5 percent, without channel selection before the classification. The proposed approach provides also a new way for analyzing brain activities due to the receptive field of the CNN models.

  13. Towards Effective Non-Invasive Brain-Computer Interfaces Dedicated to Gait Rehabilitation Systems

    Directory of Open Access Journals (Sweden)

    Thierry Castermans

    2013-12-01

    Full Text Available In the last few years, significant progress has been made in the field of walk rehabilitation. Motor cortex signals in bipedal monkeys have been interpreted to predict walk kinematics. Epidural electrical stimulation in rats and in one young paraplegic has been realized to partially restore motor control after spinal cord injury. However, these experimental trials are far from being applicable to all patients suffering from motor impairments. Therefore, it is thought that more simple rehabilitation systems are desirable in the meanwhile. The goal of this review is to describe and summarize the progress made in the development of non-invasive brain-computer interfaces dedicated to motor rehabilitation systems. In the first part, the main principles of human locomotion control are presented. The paper then focuses on the mechanisms of supra-spinal centers active during gait, including results from electroencephalography, functional brain imaging technologies [near-infrared spectroscopy (NIRS, functional magnetic resonance imaging (fMRI, positron-emission tomography (PET, single-photon emission-computed tomography (SPECT] and invasive studies. The first brain-computer interface (BCI applications to gait rehabilitation are then presented, with a discussion about the different strategies developed in the field. The challenges to raise for future systems are identified and discussed. Finally, we present some proposals to address these challenges, in order to contribute to the improvement of BCI for gait rehabilitation.

  14. Student teaching and research laboratory focusing on brain-computer interface paradigms--A creative environment for computer science students.

    Science.gov (United States)

    Rutkowski, Tomasz M

    2015-08-01

    This paper presents an applied concept of a brain-computer interface (BCI) student research laboratory (BCI-LAB) at the Life Science Center of TARA, University of Tsukuba, Japan. Several successful case studies of the student projects are reviewed together with the BCI Research Award 2014 winner case. The BCI-LAB design and project-based teaching philosophy is also explained. Future teaching and research directions summarize the review.

  15. A comparison study of visually stimulated brain-computer and eye-tracking interfaces

    Science.gov (United States)

    Suefusa, Kaori; Tanaka, Toshihisa

    2017-06-01

    Objective. Brain-computer interfacing (BCI) based on visual stimuli detects the target on a screen on which a user is focusing. The detection of the gazing target can be achieved by tracking gaze positions with a video camera, which is called eye-tracking or eye-tracking interfaces (ETIs). The two types of interface have been developed in different communities. Thus, little work on a comprehensive comparison between these two types of interface has been reported. This paper quantitatively compares the performance of these two interfaces on the same experimental platform. Specifically, our study is focused on two major paradigms of BCI and ETI: steady-state visual evoked potential-based BCIs and dwelling-based ETIs. Approach. Recognition accuracy and the information transfer rate were measured by giving subjects the task of selecting one of four targets by gazing at it. The targets were displayed in three different sizes (with sides 20, 40 and 60 mm long) to evaluate performance with respect to the target size. Main results. The experimental results showed that the BCI was comparable to the ETI in terms of accuracy and the information transfer rate. In particular, when the size of a target was relatively small, the BCI had significantly better performance than the ETI. Significance. The results on which of the two interfaces works better in different situations would not only enable us to improve the design of the interfaces but would also allow for the appropriate choice of interface based on the situation. Specifically, one can choose an interface based on the size of the screen that displays the targets.

  16. Brain Computer Interface: Assessment of Spinal Cord Injury Patient towards Motor Movement through EEG application

    Directory of Open Access Journals (Sweden)

    Syam Syahrull Hi-Fi

    2017-01-01

    Full Text Available Electroencephalography (EEG associated with motor task have been comprehensively investigated and it can also describe the brain activities while spinal cord injury (SCI patient with para/tetraplegia performing movement with their limbs. This paper reviews on conducted research regarding application of brain computer interface (BCI that offer alternative for neural impairments community such as spinal cord injury patient (SCI which include the experimental design, signal analysis of EEG band signal and data processing methods. The findings claim that the EEG signals of SCI patients associated with movement tasks can be stimulated through mental and motor task. Other than that EEG signal component such as alpha and beta frequency bands indicate significance for analysing the brain activity of subjects with SCI during movements.

  17. fMRI Brain-Computer Interface: A Tool for Neuroscientific Research and Treatment

    Directory of Open Access Journals (Sweden)

    Ranganatha Sitaram

    2007-01-01

    Full Text Available Brain-computer interfaces based on functional magnetic resonance imaging (fMRI-BCI allow volitional control of anatomically specific regions of the brain. Technological advancement in higher field MRI scanners, fast data acquisition sequences, preprocessing algorithms, and robust statistical analysis are anticipated to make fMRI-BCI more widely available and applicable. This noninvasive technique could potentially complement the traditional neuroscientific experimental methods by varying the activity of the neural substrates of a region of interest as an independent variable to study its effects on behavior. If the neurobiological basis of a disorder (e.g., chronic pain, motor diseases, psychopathy, social phobia, depression is known in terms of abnormal activity in certain regions of the brain, fMRI-BCI can be targeted to modify activity in those regions with high specificity for treatment. In this paper, we review recent results of the application of fMRI-BCI to neuroscientific research and psychophysiological treatment.

  18. A development architecture for serious games using BCI (brain computer interface) sensors.

    Science.gov (United States)

    Sung, Yunsick; Cho, Kyungeun; Um, Kyhyun

    2012-11-12

    Games that use brainwaves via brain-computer interface (BCI) devices, to improve brain functions are known as BCI serious games. Due to the difficulty of developing BCI serious games, various BCI engines and authoring tools are required, and these reduce the development time and cost. However, it is desirable to reduce the amount of technical knowledge of brain functions and BCI devices needed by game developers. Moreover, a systematic BCI serious game development process is required. In this paper, we present a methodology for the development of BCI serious games. We describe an architecture, authoring tools, and development process of the proposed methodology, and apply it to a game development approach for patients with mild cognitive impairment as an example. This application demonstrates that BCI serious games can be developed on the basis of expert-verified theories.

  19. The Berlin Brain-Computer Interface: Progress Beyond Communication and Control.

    Science.gov (United States)

    Blankertz, Benjamin; Acqualagna, Laura; Dähne, Sven; Haufe, Stefan; Schultze-Kraft, Matthias; Sturm, Irene; Ušćumlic, Marija; Wenzel, Markus A; Curio, Gabriel; Müller, Klaus-Robert

    2016-01-01

    The combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability. While we assume we are still a long way away from integrating Brain-Computer Interface (BCI) technology in general interaction with computers, or from implementing neurotechnological measures in safety-critical workplaces, results have already now been obtained involving a BCI as research tool. In this article, we discuss the reasons why, in some of the prospective application domains, considerable effort is still required to make the systems ready to deal with the full complexity of the real world.

  20. The Berlin Brain-Computer Interface: Progress Beyond Communication and Control

    Directory of Open Access Journals (Sweden)

    Benjamin Blankertz

    2016-11-01

    Full Text Available The combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability. While we assume we are still a long way away from integrating Brain-Computer Interface (BCI technology in general interaction with computers, or from implementing neurotechnological measures in safety-critical workplaces, results have already now been obtained involving a BCI as research tool. In this article, we discuss the reasons why, in some of the prospective application domains, considerable effort is still required to make the systems ready to deal with the full complexity of the real world.

  1. Brain-computer interface devices for patients with paralysis and amputation: a meeting report

    Science.gov (United States)

    Bowsher, K.; Civillico, E. F.; Coburn, J.; Collinger, J.; Contreras-Vidal, J. L.; Denison, T.; Donoghue, J.; French, J.; Getzoff, N.; Hochberg, L. R.; Hoffmann, M.; Judy, J.; Kleitman, N.; Knaack, G.; Krauthamer, V.; Ludwig, K.; Moynahan, M.; Pancrazio, J. J.; Peckham, P. H.; Pena, C.; Pinto, V.; Ryan, T.; Saha, D.; Scharen, H.; Shermer, S.; Skodacek, K.; Takmakov, P.; Tyler, D.; Vasudevan, S.; Wachrathit, K.; Weber, D.; Welle, C. G.; Ye, M.

    2016-04-01

    Objective. The Food and Drug Administration’s (FDA) Center for Devices and Radiological Health (CDRH) believes it is important to help stakeholders (e.g., manufacturers, health-care professionals, patients, patient advocates, academia, and other government agencies) navigate the regulatory landscape for medical devices. For innovative devices involving brain-computer interfaces, this is particularly important. Approach. Towards this goal, on 21 November, 2014, CDRH held an open public workshop on its White Oak, MD campus with the aim of fostering an open discussion on the scientific and clinical considerations associated with the development of brain-computer interface (BCI) devices, defined for the purposes of this workshop as neuroprostheses that interface with the central or peripheral nervous system to restore lost motor or sensory capabilities. Main results. This paper summarizes the presentations and discussions from that workshop. Significance. CDRH plans to use this information to develop regulatory considerations that will promote innovation while maintaining appropriate patient protections. FDA plans to build on advances in regulatory science and input provided in this workshop to develop guidance that provides recommendations for premarket submissions for BCI devices. These proceedings will be a resource for the BCI community during the development of medical devices for consumers.

  2. A plug-and-play brain-computer interface to operate commercial assistive technology.

    Science.gov (United States)

    Thompson, David E; Gruis, Kirsten L; Huggins, Jane E

    2014-03-01

    To determine if a brain-computer interface (BCI) could be used as a plug-and-play input device to operate commercial assistive technology (AT), and to quantify the performance impact of such operation. Using a hardware device designed in our lab, participants (11 with amyotrophic lateral sclerosis, 22 controls) were asked to operate two devices using a BCI. Results were compared to traditional BCI operation by the same users. Performance was assessed using both accuracy and BCI utility, a throughput metric. 95% confidence bounds on performance differences were developed using a linear mixed model. The observed differences in accuracy and throughput were small and not statistically significant. The confidence bounds indicate that if there is a performance impact of using a BCI to control an AT device, the impact could easily be overcome by the benefits of the AT device itself. BCI control of AT devices is possible, and the performance difference appears to be very small. BCI designers are encouraged to incorporate standard outputs into their design to enable future users to interface with familiar AT devices. Brain-computer interface (BCI) control of assistive technology (AT) devices is possible. The performance impact of such control is low when BCIs are commercially available, AT providers can use a BCI as an input device to existing AT devices already in use by their clients.

  3. Optimal Achievable Encoding for Brain Machine Interface

    Science.gov (United States)

    2017-12-22

    Brain - Machine Interface Eduardo Chichilnisky Leland Stanford Junior...Oct 2016 – 30 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Optimal Achievable Encoding for Brain - Machine Interface 5b...Stanford Artificial Retina 15. SUBJECT TERMS Artificial retina, Retinal prosthesis, Brain - machine interface , Brain -computer interface ,

  4. Personality Trait and Facial Expression Filter-Based Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Seongah Chin

    2013-02-01

    Full Text Available In this paper, we present technical approaches that bridge the gap in the research related to the use of brain-computer interfaces for entertainment and facial expressions. Such facial expressions that reflect an individual's personal traits can be used to better realize artificial facial expressions in a gaming environment based on a brain-computer interface. First, an emotion extraction filter is introduced in order to classify emotions on the basis of the users' brain signals in real time. Next, a personality trait filter is defined to classify extrovert and introvert types, which manifest as five traits: very extrovert, extrovert, medium, introvert and very introvert. In addition, facial expressions derived from expression rates are obtained by an extrovert-introvert fuzzy model through its defuzzification process. Finally, we confirm this validation via an analysis of the variance of the personality trait filter, a k-fold cross validation of the emotion extraction filter, an accuracy analysis, a user study of facial synthesis and a test case game.

  5. Feature extraction for EEG-based brain-computer interfaces by wavelet packet best basis decomposition.

    Science.gov (United States)

    Yang, Bang-hua; Yan, Guo-zheng; Yan, Rong-guo; Wu, Ting

    2006-12-01

    A method based on wavelet packet best basis decomposition (WPBBD) is investigated for the purpose of extracting features of electroencephalogram signals produced during motor imagery tasks in brain-computer interfaces. The method includes the following three steps. (1) Original signals are decomposed by wavelet packet transform (WPT) and a wavelet packet library can be formed. (2) The best basis for classification is selected from the library. (3) Subband energies included in the best basis are used as effective features. Three different motor imagery tasks are discriminated using the features. The WPBBD produces a 70.3% classification accuracy, which is 4.2% higher than that of the existing wavelet packet method.

  6. Portable non-invasive brain-computer interface: challenges and opportunities of optical modalities

    Science.gov (United States)

    Scholl, Clara A.; Hendrickson, Scott M.; Swett, Bruce A.; Fitch, Michael J.; Walter, Erich C.; McLoughlin, Michael P.; Chevillet, Mark A.; Blodgett, David W.; Hwang, Grace M.

    2017-05-01

    The development of portable non-invasive brain computer interface technologies with higher spatio-temporal resolution has been motivated by the tremendous success seen with implanted devices. This talk will discuss efforts to overcome several major obstacles to viability including approaches that promise to improve spatial and temporal resolution. Optical approaches in particular will be highlighted and the potential benefits of both Blood-Oxygen Level Dependent (BOLD) and Fast Optical Signal (FOS) will be discussed. Early-stage research into the correlations between neural activity and FOS will be explored.

  7. Hybrid EEG-EOG brain-computer interface system for practical machine control.

    Science.gov (United States)

    Punsawad, Yunyong; Wongsawat, Yodchanan; Parnichkun, Manukid

    2010-01-01

    Practical issues such as accuracy with various subjects, number of sensors, and time for training are important problems of existing brain-computer interface (BCI) systems. In this paper, we propose a hybrid framework for the BCI system that can make machine control more practical. The electrooculogram (EOG) is employed to control the machine in the left and right directions while the electroencephalogram (EEG) is employed to control the forword, no action, and complete stop motions of the machine. By using only 2-channel biosignals, the average classification accuracy of more than 95% can be achieved.

  8. Brain-computer interface research a state-of-the-art summary

    CERN Document Server

    Allison, Brendan; Edlinger, Günter; Leuthardt, E C

    Brain-computer interfaces (BCIs) are rapidly developing into a mainstream, worldwide research endeavor. With so many new groups and projects, it can be difficult to identify the best ones. This book summarizes ten leading projects from around the world. About 60 submissions were received in 2011 for the highly competitive BCI Research Award, and an international jury selected the top ten. This Brief gives a concise but carefully illustrated and fully up-to-date description of each of these projects, together with an introduction and concluding chapter by the editors.

  9. [Research of controlling of smart home system based on P300 brain-computer interface].

    Science.gov (United States)

    Wang, Jinjia; Yang, Chengjie

    2014-08-01

    Using electroencephalogram (EEG) signal to control external devices has always been the research focus in the field of brain-computer interface (BCI). This is especially significant for those disabilities who have lost capacity of movements. In this paper, the P300-based BCI and the microcontroller-based wireless radio frequency (RF) technology are utilized to design a smart home control system, which can be used to control household appliances, lighting system, and security devices directly. Experiment results showed that the system was simple, reliable and easy to be populirised.

  10. Brain-computer interface research a state-of-the-art summary 3

    CERN Document Server

    Guger, Christoph; Allison, Brendan

    2014-01-01

    This book provides a cutting-edge overview of the latest developments in Brain-Computer-Interfaces (BCIs), reported by leading research groups. As the reader will discover, BCI research is moving ahead rapidly, with many new ideas, research initiatives, and improved technologies, e.g. BCIs that enable people to communicate just by thinking - without any movement at all. Several different groups are helping severely disabled users communicate using BCIs, and BCI technology is also being extended to facilitate recovery from stroke, epilepsy, and other conditions. Each year, hundreds of the top

  11. Feature extraction for EEG-based brain computer interfaces by wavelet packet best basis decomposition

    Science.gov (United States)

    Yang, Bang-hua; Yan, Guo-zheng; Yan, Rong-guo; Wu, Ting

    2006-12-01

    A method based on wavelet packet best basis decomposition (WPBBD) is investigated for the purpose of extracting features of electroencephalogram signals produced during motor imagery tasks in brain-computer interfaces. The method includes the following three steps. (1) Original signals are decomposed by wavelet packet transform (WPT) and a wavelet packet library can be formed. (2) The best basis for classification is selected from the library. (3) Subband energies included in the best basis are used as effective features. Three different motor imagery tasks are discriminated using the features. The WPBBD produces a 70.3% classification accuracy, which is 4.2% higher than that of the existing wavelet packet method.

  12. [The P300-based brain-computer interface: presentation of the complex "flash + movement" stimuli].

    Science.gov (United States)

    Ganin, I P; Kaplan, A Ia

    2014-01-01

    The P300 based brain-computer interface requires the detection of P300 wave of brain event-related potentials. Most of its users learn the BCI control in several minutes and after the short classifier training they can type a text on the computer screen or assemble an image of separate fragments in simple BCI-based video games. Nevertheless, insufficient attractiveness for users and conservative stimuli organization in this BCI may restrict its integration into real information processes control. At the same time initial movement of object (motion-onset stimuli) may be an independent factor that induces P300 wave. In current work we checked the hypothesis that complex "flash + movement" stimuli together with drastic and compact stimuli organization on the computer screen may be much more attractive for user while operating in P300 BCI. In 20 subjects research we showed the effectiveness of our interface. Both accuracy and P300 amplitude were higher for flashing stimuli and complex "flash + movement" stimuli compared to motion-onset stimuli. N200 amplitude was maximal for flashing stimuli, while for "flash + movement" stimuli and motion-onset stimuli it was only a half of it. Similar BCI with complex stimuli may be embedded into compact control systems requiring high level of user attention under impact of negative external effects obstructing the BCI control.

  13. A robust sensor-selection method for P300 brain-computer interfaces

    Science.gov (United States)

    Cecotti, H.; Rivet, B.; Congedo, M.; Jutten, C.; Bertrand, O.; Maby, E.; Mattout, J.

    2011-02-01

    A brain-computer interface (BCI) is a specific type of human-computer interface that enables direct communication between human and computer through decoding of brain activity. As such, event-related potentials like the P300 can be obtained with an oddball paradigm whose targets are selected by the user. This paper deals with methods to reduce the needed set of EEG sensors in the P300 speller application. A reduced number of sensors yields more comfort for the user, decreases installation time duration, may substantially reduce the financial cost of the BCI setup and may reduce the power consumption for wireless EEG caps. Our new approach to select relevant sensors is based on backward elimination using a cost function based on the signal to signal-plus-noise ratio, after some spatial filtering. We show that this cost function selects sensors' subsets that provide a better accuracy in the speller recognition rate during the test sessions than selected subsets based on classification accuracy. We validate our selection strategy on data from 20 healthy subjects.

  14. EDITORIAL: Special issue containing contributions from the Fourth International Brain-Computer Interface Meeting Special issue containing contributions from the Fourth International Brain-Computer Interface Meeting

    Science.gov (United States)

    Vaughan, Theresa M.; Wolpaw, Jonathan R.

    2011-04-01

    This special issue of Journal of Neural Engineering is a result of the Fourth International Brain-Computer Interface Meeting, which was held at the Asilomar Conference Center in Monterey, California, USA from 31 May to 4 June, 2010. The meeting was sponsored by the National Institutes of Health, The National Science Foundation and the Department of Defense, and was organized by the Wadsworth Center of the New York State Department of Health. It attracted over 260 participants from 17 countries—including many graduate students and postdoctoral fellows—and featured 19 workshops, platform presentations from 26 research groups, 170 posters, multiple brain-computer interface (BCI) demonstrations, and a keynote address by W Zev Rymer of the Rehabilitation Institute of Chicago. The number of participants and the diversity of the topics covered greatly exceeded those of the previous meeting in 2005, and testified to the continuing rapid expansion and growing sophistication of this exciting and still relatively new research field. BCI research focuses primarily on using brain signals to replace or restore the motor functions that people have lost due to amyotrophic lateral sclerosis (ALS), a brainstem stroke, or some other devastating neuromuscular disorder. In the last few years, attention has also turned towards using BCIs to improve rehabilitation after a stroke, and beyond that to enhancing or supplementing the capabilities of even those without disabilities. These diverse interests were represented in the wide range of topics covered in the workshops. While some workshops addressed broad traditional topics, such as signal acquisition, feature extraction and translation, and software development, many addressed topics that were entirely new or focused sharply on areas that have become important only recently. These included workshops on optimizing P300-based BCIs; improving the mutual adaptations of the BCI and the user; BCIs that can control neuroprostheses

  15. Gaze-and-brain-controlled interfaces for human-computer and human-robot interaction

    Directory of Open Access Journals (Sweden)

    Shishkin S. L.

    2017-09-01

    Full Text Available Background. Human-machine interaction technology has greatly evolved during the last decades, but manual and speech modalities remain single output channels with their typical constraints imposed by the motor system’s information transfer limits. Will brain-computer interfaces (BCIs and gaze-based control be able to convey human commands or even intentions to machines in the near future? We provide an overview of basic approaches in this new area of applied cognitive research. Objective. We test the hypothesis that the use of communication paradigms and a combination of eye tracking with unobtrusive forms of registering brain activity can improve human-machine interaction. Methods and Results. Three groups of ongoing experiments at the Kurchatov Institute are reported. First, we discuss the communicative nature of human-robot interaction, and approaches to building a more e cient technology. Specifically, “communicative” patterns of interaction can be based on joint attention paradigms from developmental psychology, including a mutual “eye-to-eye” exchange of looks between human and robot. Further, we provide an example of “eye mouse” superiority over the computer mouse, here in emulating the task of selecting a moving robot from a swarm. Finally, we demonstrate a passive, noninvasive BCI that uses EEG correlates of expectation. This may become an important lter to separate intentional gaze dwells from non-intentional ones. Conclusion. The current noninvasive BCIs are not well suited for human-robot interaction, and their performance, when they are employed by healthy users, is critically dependent on the impact of the gaze on selection of spatial locations. The new approaches discussed show a high potential for creating alternative output pathways for the human brain. When support from passive BCIs becomes mature, the hybrid technology of the eye-brain-computer (EBCI interface will have a chance to enable natural, fluent, and the

  16. Gaze-and-brain-controlled interfaces for human-computer and human-robot interaction.

    Directory of Open Access Journals (Sweden)

    Shishkin S. L.

    2017-10-01

    Full Text Available Background. Human-machine interaction technology has greatly evolved during the last decades, but manual and speech modalities remain single output channels with their typical constraints imposed by the motor system’s information transfer limits. Will brain-computer interfaces (BCIs and gaze-based control be able to convey human commands or even intentions to machines in the near future? We provide an overview of basic approaches in this new area of applied cognitive research. Objective. We test the hypothesis that the use of communication paradigms and a combination of eye tracking with unobtrusive forms of registering brain activity can improve human-machine interaction. Methods and Results. Three groups of ongoing experiments at the Kurchatov Institute are reported. First, we discuss the communicative nature of human-robot interaction, and approaches to building a more e cient technology. Specifically, “communicative” patterns of interaction can be based on joint attention paradigms from developmental psychology, including a mutual “eye-to-eye” exchange of looks between human and robot. Further, we provide an example of “eye mouse” superiority over the computer mouse, here in emulating the task of selecting a moving robot from a swarm. Finally, we demonstrate a passive, noninvasive BCI that uses EEG correlates of expectation. This may become an important lter to separate intentional gaze dwells from non-intentional ones. Conclusion. The current noninvasive BCIs are not well suited for human-robot interaction, and their performance, when they are employed by healthy users, is critically dependent on the impact of the gaze on selection of spatial locations. The new approaches discussed show a high potential for creating alternative output pathways for the human brain. When support from passive BCIs becomes mature, the hybrid technology of the eye-brain-computer (EBCI interface will have a chance to enable natural, fluent, and the

  17. The Use of a Brain Computer Interface Remote Control to Navigate a Recreational Device

    Directory of Open Access Journals (Sweden)

    Shih Chung Chen

    2013-01-01

    Full Text Available People suffering from paralysis caused by serious neural disorder or spinal cord injury also need to be given a means of recreation other than general living aids. Although there have been a proliferation of brain computer interface (BCI applications, developments for recreational activities are scarcely seen. The objective of this study is to develop a BCI-based remote control integrated with commercial devices such as the remote controlled Air Swimmer. The brain is visually stimulated using boxes flickering at preprogrammed frequencies to activate a brain response. After acquiring and processing these brain signals, the frequency of the resulting peak, which corresponds to the user’s selection, is determined by a decision model. Consequently, a command signal is sent from the computer to the wireless remote controller via a data acquisition (DAQ module. A command selection training (CST and simulated path test (SPT were conducted by 12 subjects using the BCI control system and the experimental results showed a recognition accuracy rate of 89.51% and 92.31% for the CST and SPT, respectively. The fastest information transfer rate demonstrated a response of 105 bits/min and 41.79 bits/min for the CST and SPT, respectively. The BCI system was proven to be able to provide a fast and accurate response for a remote controller application.

  18. Brain-Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Perspectives

    Science.gov (United States)

    Yuan, Han; He, Bin

    2014-01-01

    Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e. the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g. electroencephalography (EEG), and have demonstrated the capability of multi-dimensional prosthesis control. This article reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications are reviewed. Lastly, limitations of SMR-BCIs and future outlooks are also discussed. PMID:24759276

  19. Evolution of brain-computer interfaces: going beyond classic motor physiology

    Science.gov (United States)

    Leuthardt, Eric C.; Schalk, Gerwin; Roland, Jarod; Rouse, Adam; Moran, Daniel W.

    2010-01-01

    The notion that a computer can decode brain signals to infer the intentions of a human and then enact those intentions directly through a machine is becoming a realistic technical possibility. These types of devices are known as brain-computer interfaces (BCIs). The evolution of these neuroprosthetic technologies could have significant implications for patients with motor disabilities by enhancing their ability to interact and communicate with their environment. The cortical physiology most investigated and used for device control has been brain signals from the primary motor cortex. To date, this classic motor physiology has been an effective substrate for demonstrating the potential efficacy of BCI-based control. However, emerging research now stands to further enhance our understanding of the cortical physiology underpinning human intent and provide further signals for more complex brain-derived control. In this review, the authors report the current status of BCIs and detail the emerging research trends that stand to augment clinical applications in the future. PMID:19569892

  20. Control of a visual keyboard using an electrocorticographic brain-computer interface.

    Science.gov (United States)

    Krusienski, Dean J; Shih, Jerry J

    2011-05-01

    Brain-computer interfaces (BCIs) are devices that enable severely disabled people to communicate and interact with their environments using their brain waves. Most studies investigating BCI in humans have used scalp EEG as the source of electrical signals and focused on motor control of prostheses or computer cursors on a screen. The authors hypothesize that the use of brain signals obtained directly from the cortical surface will more effectively control a communication/spelling task compared to scalp EEG. A total of 6 patients with medically intractable epilepsy were tested for the ability to control a visual keyboard using electrocorticographic (ECOG) signals. ECOG data collected during a P300 visual task paradigm were preprocessed and used to train a linear classifier to subsequently predict the intended target letters. The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in 5 of the 6 people tested. ECOG data from electrodes outside the language cortex contributed to the classifier and enabled participants to write words on a visual keyboard. This is a novel finding because previous invasive BCI research in humans used signals exclusively from the motor cortex to control a computer cursor or prosthetic device. These results demonstrate that ECOG signals from electrodes both overlying and outside the language cortex can reliably control a visual keyboard to generate language output without voice or limb movements.

  1. Afferent and efferent activity control in the design of brain computer interfaces for motor rehabilitation.

    Science.gov (United States)

    Cho, Woosang; Vidaurre, Carmen; Hoffmann, Ulrich; Birbaumer, Niels; Ramos-Murguialday, Ander

    2011-01-01

    Stroke is a cardiovascular accident within the brain resulting in motor and sensory impairment in most of the survivors. A stroke can produce complete paralysis of the limb although sensory abilities are normally preserved. Functional electrical stimulation (FES), robotics and brain computer interfaces (BCIs) have been used to induce motor rehabilitation. In this work we measured the brain activity of healthy volunteers using electroencephalography (EEG) during FES, passive movements, active movements, motor imagery of the hand and resting to compare afferent and efferent brain signals produced during these motor related activities and to define possible features for an online FES-BCI. In the conditions in which the hand was moved we limited the movement range in order to control the afferent flow. Although we observed that there is a subject dependent frequency and spatial distribution of efferent and afferent signals, common patterns between conditions and subjects were present mainly in the low beta frequency range. When averaging all the subjects together the most significant frequency bin comparing each condition versus rest was exactly the same for all conditions but motor imagery. These results suggest that to implement an on-line FES-BCI, afferent brain signals resulting from FES have to be filtered and time-frequency-spatial features need to be used.

  2. A subject-independent pattern-based Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Andreas Markus Ray

    2015-10-01

    Full Text Available While earlier Brain-Computer Interface (BCI studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method for real-time pattern classification and neurofeedback of brain states from electroencephalographic (EEG signals. It involves the creation of a fused classification model based on the method of Common Spatial Patterns (CSPs from data of several healthy individuals. The subject-independent model is then used to classify EEG data in real-time and provide feedback to new individuals. In a series of offline experiments involving training and testing of the classifier with individual data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved, demonstrating that the classification system at hand can reliably decode two types of imagery used in our experiments, i.e. happy emotional imagery and motor imagery. In a subsequent experiment it is shown that the classifier can be used to provide neurofeedback to new subjects, and that these subjects learn to match their brain pattern to that of the fused classification model in a few days of neurofeedback training. This finding can have important implications for future studies on neurofeedback and its clinical applications on neuropsychiatric disorders.

  3. Brain-computer interfaces: communication and restoration of movement in paralysis.

    Science.gov (United States)

    Birbaumer, Niels; Cohen, Leonardo G

    2007-03-15

    The review describes the status of brain-computer or brain-machine interface research. We focus on non-invasive brain-computer interfaces (BCIs) and their clinical utility for direct brain communication in paralysis and motor restoration in stroke. A large gap between the promises of invasive animal and human BCI preparations and the clinical reality characterizes the literature: while intact monkeys learn to execute more or less complex upper limb movements with spike patterns from motor brain regions alone without concomitant peripheral motor activity usually after extensive training, clinical applications in human diseases such as amyotrophic lateral sclerosis and paralysis from stroke or spinal cord lesions show only limited success, with the exception of verbal communication in paralysed and locked-in patients. BCIs based on electroencephalographic potentials or oscillations are ready to undergo large clinical studies and commercial production as an adjunct or a major assisted communication device for paralysed and locked-in patients. However, attempts to train completely locked-in patients with BCI communication after entering the complete locked-in state with no remaining eye movement failed. We propose that a lack of contingencies between goal directed thoughts and intentions may be at the heart of this problem. Experiments with chronically curarized rats support our hypothesis; operant conditioning and voluntary control of autonomic physiological functions turned out to be impossible in this preparation. In addition to assisted communication, BCIs consisting of operant learning of EEG slow cortical potentials and sensorimotor rhythm were demonstrated to be successful in drug resistant focal epilepsy and attention deficit disorder. First studies of non-invasive BCIs using sensorimotor rhythm of the EEG and MEG in restoration of paralysed hand movements in chronic stroke and single cases of high spinal cord lesions show some promise, but need extensive

  4. Performance variation in motor imagery brain-computer interface: a brief review.

    Science.gov (United States)

    Ahn, Minkyu; Jun, Sung Chan

    2015-03-30

    Brain-computer interface (BCI) technology has attracted significant attention over recent decades, and has made remarkable progress. However, BCI still faces a critical hurdle, in that performance varies greatly across and even within subjects, an obstacle that degrades the reliability of BCI systems. Understanding the causes of these problems is important if we are to create more stable systems. In this short review, we report the most recent studies and findings on performance variation, especially in motor imagery-based BCI, which has found that low-performance groups have a less-developed brain network that is incapable of motor imagery. Further, psychological and physiological states influence performance variation within subjects. We propose a possible strategic approach to deal with this variation, which may contribute to improving the reliability of BCI. In addition, the limitations of current work and opportunities for future studies are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A square root ensemble Kalman filter application to a motor-imagery brain-computer interface.

    Science.gov (United States)

    Kamrunnahar, M; Schiff, S J

    2011-01-01

    We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%-90% for the hand movements and 70%-90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models.

  6. Single-trial EEG source reconstruction for brain-computer interface.

    Science.gov (United States)

    Noirhomme, Quentin; Kitney, Richard I; Macq, Benoĺt

    2008-05-01

    A new way to improve the classification rate of an EEG-based brain-computer interface (BCI) could be to reconstruct the brain sources of EEG and to apply BCI methods to these derived sources instead of raw measured electrode potentials. EEG source reconstruction methods are based on electrophysiological information that could improve the discrimination between BCI tasks. In this paper, we present an EEG source reconstruction method for BCI. The results are compared with results from raw electrode potentials to enable direct evaluation of the method. Features are based on frequency power change and Bereitschaft potential. The features are ranked with mutual information before being fed to a proximal support vector machine. The dataset IV of the BCI competition II and data from four subjects serve as test data. Results show that the EEG inverse solution improves the classification rate and can lead to results comparable to the best currently known methods.

  7. A closed-loop brain computer interface for real-time seizure detection and control.

    Science.gov (United States)

    Liang, Sheng-Fu; Shaw, Fu-Zen; Young, Chung-Ping; Chang, Da-Wei; Liao, Yi-Cheng

    2010-01-01

    The worldwide prevalence of epilepsy is approximately 1%, and 25% of epilepsy patients cannot be treated sufficiently by available therapies. Brain stimulation with closed-loop seizure control has recently been proposed as an innovative and effective alternative. In this paper, a portable closed-loop brain computer interface for seizure control was developed and shown with several aspects of advantages, including high seizure detection rate (92-99% during wake-sleep states), low false detection rate (1.2-2.5%), and small size. The seizure detection and electrical stimulation latency was not greater than 0.6 s after seizure onset. A wireless communication feature also provided flexibility for subjects freeing from the hassle of wires. Experimental data from freely moving rats supported the functional possibility of a real-time closed-loop seizure controller.

  8. Towards Practical Brain-Computer Interfaces Bridging the Gap from Research to Real-World Applications

    CERN Document Server

    Dunne, Stephen; Leeb, Robert; Millán, José; Nijholt, Anton

    2013-01-01

    Brain-computer interfaces (BCIs) are devices that enable people to communicate via thought alone. Brain signals can be directly translated into messages or commands. Until recently, these devices were used primarily to help people who could not move. However, BCIs are now becoming practical tools for a wide variety of people, in many different situations. What will BCIs in the future be like? Who will use them, and why? This book, written by many of the top BCI researchers and developers, reviews the latest progress in the different components of BCIs. Chapters also discuss practical issues in an emerging BCI enabled community. The book is intended both for professionals and for interested laypeople who are not experts in BCI research.

  9. GO-STOP Control Using Optical Brain-Computer Interface during Calculation Task

    Science.gov (United States)

    Utsugi, Kei; Obata, Akiko; Sato, Hiroki; Aoki, Ryuta; Maki, Atsushi; Koizumi, Hideaki; Sagara, Kazuhiko; Kawamichi, Hiroaki; Atsumori, Hirokazu; Katura, Takusige

    We have developed a prototype optical brain-computer interface (BCI) system that can be used by an operator to manipulate external, electrically controlled equipment. Our optical BCI uses near-infrared spectroscopy and functions as a compact, practical, unrestrictive, non-invasive brain-switch. The optical BCI system measured spatiotemporal changes in the hemoglobin concentrations in the blood flow of a subject's prefrontal cortex at 22 measurement points. An exponential moving average (EMA) filter was applied to the data, and then their weighted sum with a taskrelated parameter derived from a pretest is utilized for time-indicated control (GO-STOP) of an external object. In experiments using untrained subjects, the system achieved control patterns within an accuracy of ±6 sec for more than 80% control.

  10. Permanency analysis on human electroencephalogram signals for pervasive Brain-Computer Interface systems.

    Science.gov (United States)

    Sadeghi, Koosha; Junghyo Lee; Banerjee, Ayan; Sohankar, Javad; Gupta, Sandeep K S

    2017-07-01

    Brain-Computer Interface (BCI) systems use some permanent features of brain signals to recognize their corresponding cognitive states with high accuracy. However, these features are not perfectly permanent, and BCI system should be continuously trained over time, which is tedious and time consuming. Thus, analyzing the permanency of signal features is essential in determining how often to repeat training. In this paper, we monitor electroencephalogram (EEG) signals, and analyze their behavior through continuous and relatively long period of time. In our experiment, we record EEG signals corresponding to rest state (eyes open and closed) from one subject everyday, for three and a half months. The results show that signal features such as auto-regression coefficients remain permanent through time, while others such as power spectral density specifically in 5-7 Hz frequency band are not permanent. In addition, eyes open EEG data shows more permanency than eyes closed data.

  11. A Development Architecture for Serious Games Using BCI (Brain Computer Interface Sensors

    Directory of Open Access Journals (Sweden)

    Kyhyun Um

    2012-11-01

    Full Text Available Games that use brainwaves via brain–computer interface (BCI devices, to improve brain functions are known as BCI serious games. Due to the difficulty of developing BCI serious games, various BCI engines and authoring tools are required, and these reduce the development time and cost. However, it is desirable to reduce the amount of technical knowledge of brain functions and BCI devices needed by game developers. Moreover, a systematic BCI serious game development process is required. In this paper, we present a methodology for the development of BCI serious games. We describe an architecture, authoring tools, and development process of the proposed methodology, and apply it to a game development approach for patients with mild cognitive impairment as an example. This application demonstrates that BCI serious games can be developed on the basis of expert-verified theories.

  12. A Review of EEG-Based Brain-Computer Interfaces as Access Pathways for Individuals with Severe Disabilities

    Science.gov (United States)

    Moghimi, Saba; Kushki, Azadeh; Guerguerian, Anne Marie; Chau, Tom

    2013-01-01

    Electroencephalography (EEG) is a non-invasive method for measuring brain activity and is a strong candidate for brain-computer interface (BCI) development. While BCIs can be used as a means of communication for individuals with severe disabilities, the majority of existing studies have reported BCI evaluations by able-bodied individuals.…

  13. Estimating cognitive load during self-regulation of brain activity and neurofeedback with therapeutic brain-computer interfaces.

    Science.gov (United States)

    Bauer, Robert; Gharabaghi, Alireza

    2015-01-01

    Neurofeedback (NFB) training with brain-computer interfaces (BCIs) is currently being studied in a variety of neurological and neuropsychiatric conditions in an aim to reduce disorder-specific symptoms. For this purpose, a range of classification algorithms has been explored to identify different brain states. These neural states, e.g., self-regulated brain activity vs. rest, are separated by setting a threshold parameter. Measures such as the maximum classification accuracy (CA) have been introduced to evaluate the performance of these algorithms. Interestingly enough, precisely these measures are often used to estimate the subject's ability to perform brain self-regulation. This is surprising, given that the goal of improving the tool that differentiates between brain states is different from the aim of optimizing NFB for the subject performing brain self-regulation. For the latter, knowledge about mental resources and work load is essential in order to adapt the difficulty of the intervention accordingly. In this context, we apply an analytical method and provide empirical data to determine the zone of proximal development (ZPD) as a measure of a subject's cognitive resources and the instructional efficacy of NFB. This approach is based on a reconsideration of item-response theory (IRT) and cognitive load theory for instructional design, and combines them with the CA curve to provide a measure of BCI performance.

  14. Estimating cognitive load during self-regulation of brain activity and neurofeedback with therapeutic brain-computer interfaces

    Directory of Open Access Journals (Sweden)

    Robert eBauer

    2015-02-01

    Full Text Available Neurofeedback training with brain-computer interfaces is currently studied in a variety of neurological and neuropsychiatric conditions to reduce disorder-specific symptoms. For this purpose, a variety of classification algorithms have been explored to distinguish different brain states. These neural states, e.g. self-regulated brain activity versus rest, are separated by setting a threshold parameter. Measures such as the maximum classification accuracy have been introduced to evaluate the performance of these algorithms. Interestingly, the very same measures are often used to estimate the subject’s ability to perform brain self-regulation. This is surprising, as the goal of improving the tool that differentiates brain states is different from the aim of optimizing neurofeedback for the subject who performs brain self-regulation. For the latter, knowledge about mental resources and work load is essential to adapt the difficulty of the intervention.In this context, we apply an analytical method and provide empirical data to determine the zone of proximal development as a measure of a subject’s cognitive resources and the instructional efficacy of neurofeedback. This approach is based on a reconsideration of item-response theory and cognitive load theory for instructional design, and combines them with the classification accuracy curve as a measure of BCI performance.

  15. Quantum neural network-based EEG filtering for a brain-computer interface.

    Science.gov (United States)

    Gandhi, Vaibhav; Prasad, Girijesh; Coyle, Damien; Behera, Laxmidhar; McGinnity, Thomas Martin

    2014-02-01

    A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics. The results from a number of benchmark tests show that simple signals such as dc, staircase dc, and sinusoidal signals embedded within high noise can be accurately filtered and particle swarm optimization can be employed to select model parameters. The RQNN filtering procedure is applied in a two-class motor imagery-based brain-computer interface where the objective was to filter electroencephalogram (EEG) signals before feature extraction and classification to increase signal separability. A two-step inner-outer fivefold cross-validation approach is utilized to select the algorithm parameters subject-specifically for nine subjects. It is shown that the subject-specific RQNN EEG filtering significantly improves brain-computer interface performance compared to using only the raw EEG or Savitzky-Golay filtered EEG across multiple sessions.

  16. Bayesian inference for an adaptive Ordered Probit model: an application to Brain Computer Interfacing.

    Science.gov (United States)

    Yoon, Ji Won; Roberts, Stephen J; Dyson, Mathew; Gan, John Q

    2011-09-01

    This paper proposes an algorithm for adaptive, sequential classification in systems with unknown labeling errors, focusing on the biomedical application of Brain Computer Interfacing (BCI). The method is shown to be robust in the presence of label and sensor noise. We focus on the inference and prediction of target labels under a nonlinear and non-Gaussian model. In order to handle missing or erroneous labeling, we model observed labels as a noisy observation of a latent label set with multiple classes (≥ 2). Whilst this paper focuses on the method's application to BCI systems, the algorithm has the potential to be applied to many application domains in which sequential missing labels are to be imputed in the presence of uncertainty. This dynamic classification algorithm combines an Ordered Probit model and an Extended Kalman Filter (EKF). The EKF estimates the parameters of the Ordered Probit model sequentially with time. We test the performance of the classification approach by processing synthetic datasets and real experimental EEG signals with multiple classes (2, 3 and 4 labels) for a Brain Computer Interfacing (BCI) experiment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. An efficient ERP-based brain-computer interface using random set presentation and face familiarity.

    Directory of Open Access Journals (Sweden)

    Seul-Ki Yeom

    Full Text Available Event-related potential (ERP-based P300 spellers are commonly used in the field of brain-computer interfaces as an alternative channel of communication for people with severe neuro-muscular diseases. This study introduces a novel P300 based brain-computer interface (BCI stimulus paradigm using a random set presentation pattern and exploiting the effects of face familiarity. The effect of face familiarity is widely studied in the cognitive neurosciences and has recently been addressed for the purpose of BCI. In this study we compare P300-based BCI performances of a conventional row-column (RC-based paradigm with our approach that combines a random set presentation paradigm with (non- self-face stimuli. Our experimental results indicate stronger deflections of the ERPs in response to face stimuli, which are further enhanced when using the self-face images, and thereby improving P300-based spelling performance. This lead to a significant reduction of stimulus sequences required for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-based BCI setup.

  18. Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users.

    Science.gov (United States)

    Rutkowski, Tomasz M; Mori, Hiromu

    2015-04-15

    The paper presents a report on the recently developed BCI alternative for users suffering from impaired vision (lack of focus or eye-movements) or from the so-called "ear-blocking-syndrome" (limited hearing). We report on our recent studies of the extents to which vibrotactile stimuli delivered to the head of a user can serve as a platform for a brain computer interface (BCI) paradigm. In the proposed tactile and bone-conduction auditory BCI novel multiple head positions are used to evoke combined somatosensory and auditory (via the bone conduction effect) P300 brain responses, in order to define a multimodal tactile and bone-conduction auditory brain computer interface (tbcaBCI). In order to further remove EEG interferences and to improve P300 response classification synchrosqueezing transform (SST) is applied. SST outperforms the classical time-frequency analysis methods of the non-linear and non-stationary signals such as EEG. The proposed method is also computationally more effective comparing to the empirical mode decomposition. The SST filtering allows for online EEG preprocessing application which is essential in the case of BCI. Experimental results with healthy BCI-naive users performing online tbcaBCI, validate the paradigm, while the feasibility of the concept is illuminated through information transfer rate case studies. We present a comparison of the proposed SST-based preprocessing method, combined with a logistic regression (LR) classifier, together with classical preprocessing and LDA-based classification BCI techniques. The proposed tbcaBCI paradigm together with data-driven preprocessing methods are a step forward in robust BCI applications research. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Control of a nursing bed based on a hybrid brain-computer interface.

    Science.gov (United States)

    Nengneng Peng; Rui Zhang; Haihua Zeng; Fei Wang; Kai Li; Yuanqing Li; Xiaobin Zhuang

    2016-08-01

    In this paper, we propose an intelligent nursing bed system which is controlled by a hybrid brain-computer interface (BCI) involving steady-state visual evoked potential (SSVEP) and P300. Specifically, the hybrid BCI includes an asynchronous brain switch based on SSVEP and P300, and a P300-based BCI. The brain switch is used to turn on/off the control system of the electric nursing bed through idle/control state detection, whereas the P300-based BCI is for operating the nursing bed. At the beginning, the user may focus on one group of flashing buttons in the graphic user interface (GUI) of the brain switch, which can simultaneously evoke SSVEP and P300, to switch on the control system. Here, the combination of SSVEP and P300 is used for improving the performance of the brain switch. Next, the user can control the nursing bed using the P300-based BCI. The GUI of the P300-based BCI includes 10 flashing buttons, which correspond to 10 functional operations, namely, left-side up, left-side down, back up, back down, bedpan open, bedpan close, legs up, legs down, right-side up, and right-side down. For instance, he/she can focus on the flashing button "back up" in the GUI of the P300-based BCI to activate the corresponding control such that the nursing bed is adjusted up. Eight healthy subjects participated in our experiment, and obtained an average accuracy of 93.75% and an average false positive rate (FPR) of 0.15 event/min. The effectiveness of our system was thus demonstrated.

  20. Multi-objective metaheuristics for preprocessing EEG data in brain-computer interfaces

    Science.gov (United States)

    Aler, Ricardo; Vega, Alicia; Galván, Inés M.; Nebro, Antonio J.

    2012-03-01

    In the field of brain-computer interfaces, one of the main issues is to classify the electroencephalogram (EEG) accurately. EEG signals have a good temporal resolution, but a low spatial one. In this article, metaheuristics are used to compute spatial filters to improve the spatial resolution. Additionally, from a physiological point of view, not all frequency bands are equally relevant. Both spatial filters and relevant frequency bands are user-dependent. In this article a multi-objective formulation for spatial filter optimization and frequency-band selection is proposed. Several multi-objective metaheuristics have been tested for this purpose. The experimental results show, in general, that multi-objective algorithms are able to select a subset of the available frequency bands, while maintaining or improving the accuracy obtained with the whole set. Also, among the different metaheuristics tested, GDE3, which is based on differential evolution, is the most useful algorithm in this context.

  1. Design of a Workstation for People with Upper-Limb Disabilities Using a Brain Computer Interface

    Directory of Open Access Journals (Sweden)

    John E. Muñoz-Cardona

    2013-11-01

    Full Text Available  This paper shows the design of work-station for work-related inclusion people upper-limb disability. The system involves the use of novel brain computer interface used to bridge the user-computer interaction. Our hope objective is elucidating functional, technological, ergonomic and procedural aspects to runaway operation station; with propose to scratch barrier to impossibility access to TIC’s tools and work done for individual disability person. We found access facility ergonomics, adaptability and portable issue of workstation are most important design criteria. Prototype implementations in workplace environment have TIR estimate of 43% for retrieve. Finally we list a typology of services that could be the most appropriate for the process of labor including: telemarketing, telesales, telephone surveys, order taking, social assistance in disasters, general information and inquiries, reservations at tourist sites, technical support, emergency, online support and after-sales services.

  2. Joint Time-Frequency-Space Classification of EEG in a Brain-Computer Interface Application

    Directory of Open Access Journals (Sweden)

    Molina Gary N Garcia

    2003-01-01

    Full Text Available Brain-computer interface is a growing field of interest in human-computer interaction with diverse applications ranging from medicine to entertainment. In this paper, we present a system which allows for classification of mental tasks based on a joint time-frequency-space decorrelation, in which mental tasks are measured via electroencephalogram (EEG signals. The efficiency of this approach was evaluated by means of real-time experimentations on two subjects performing three different mental tasks. To do so, a number of protocols for visualization, as well as training with and without feedback, were also developed. Obtained results show that it is possible to obtain good classification of simple mental tasks, in view of command and control, after a relatively small amount of training, with accuracies around 80%, and in real time.

  3. Brain-computer interface analysis of a dynamic visuo-motor task.

    Science.gov (United States)

    Logar, Vito; Belič, Aleš

    2011-01-01

    The area of brain-computer interfaces (BCIs) represents one of the more interesting fields in neurophysiological research, since it investigates the development of the machines that perform different transformations of the brain's "thoughts" to certain pre-defined actions. Experimental studies have reported some successful implementations of BCIs; however, much of the field still remains unexplored. According to some recent reports the phase coding of informational content is an important mechanism in the brain's function and cognition, and has the potential to explain various mechanisms of the brain's data transfer, but it has yet to be scrutinized in the context of brain-computer interface. Therefore, if the mechanism of phase coding is plausible, one should be able to extract the phase-coded content, carried by brain signals, using appropriate signal-processing methods. In our previous studies we have shown that by using a phase-demodulation-based signal-processing approach it is possible to decode some relevant information on the current motor action in the brain from electroencephalographic (EEG) data. In this paper the authors would like to present a continuation of their previous work on the brain-information-decoding analysis of visuo-motor (VM) tasks. The present study shows that EEG data measured during more complex, dynamic visuo-motor (dVM) tasks carries enough information about the currently performed motor action to be successfully extracted by using the appropriate signal-processing and identification methods. The aim of this paper is therefore to present a mathematical model, which by means of the EEG measurements as its inputs predicts the course of the wrist movements as applied by each subject during the task in simulated or real time (BCI analysis). However, several modifications to the existing methodology are needed to achieve optimal decoding results and a real-time, data-processing ability. The information extracted from the EEG could

  4. A Study on a Brain-Computer Interface for Motor Assist by Prefrontal Cortex

    Science.gov (United States)

    Misawa, Tadanobu; Takano, Shinya; Shimokawa, Tetsuya; Hirobayashi, Shigeki

    In recent times, considerable research has been conducted on the development of brain-computer interfaces (BCIs). Although there have been several reports on BCIs that assist motor functions by measurement of brain activity in the motor cortex, only a few studies have reported on BCI that assist motor functions by measurement of activity in areas other than the motor cortex. In this study, we experimentally develop a BCI that assists motor functions on the basis of brain activity in the prefrontal cortex. In this BCI system, subjects are shown the labyrinth problem. Concretely, brain activity is measured using fNIRS and the data are acquired in real time. The signal processing module implements low pass filtering of these signals. Further, the pattern classification module used in this system currently is a support vector machine. 22 subjects, both male and female, volunteered to participate in this experiment. 8 of these 22 subjects were able to solve the labyrinth problem. In this experiment, we could not obtain a high distinction. However, these results show that it is possible to develop BCI systems that assist motor functions using information from the prefrontal cortex.

  5. Enhanced inter-subject brain computer interface with associative sensorimotor oscillations.

    Science.gov (United States)

    Saha, Simanto; Ahmed, Khawza I; Mostafa, Raqibul; Khandoker, Ahsan H; Hadjileontiadis, Leontios

    2017-02-01

    Electroencephalography (EEG) captures electrophysiological signatures of cortical events from the scalp with high-dimensional electrode montages. Usually, excessive sources produce outliers and potentially affect the actual event related sources. Besides, EEG manifests inherent inter-subject variability of the brain dynamics, at the resting state and/or under the performance of task(s), caused probably due to the instantaneous fluctuation of psychophysiological states. A wavelet coherence (WC) analysis for optimally selecting associative inter-subject channels is proposed here and is being used to boost performances of motor imagery (MI)-based inter-subject brain computer interface (BCI). The underlying hypothesis is that optimally associative inter-subject channels can reduce the effects of outliers and, thus, eliminate dissimilar cortical patterns. The proposed approach has been tested on the dataset IVa from BCI competition III, including EEG data acquired from five healthy subjects who were given visual cues to perform 280 trials of MI for the right hand and right foot. Experimental results have shown increased classification accuracy (81.79%) using the WC-based selected 16 channels compared to the one (56.79%) achieved using all the available 118 channels. The associative channels lie mostly around the sensorimotor regions of the brain, reinforced by the previous literature, describing spatial brain dynamics during sensorimotor oscillations. Apparently, the proposed approach paves the way for optimised EEG channel selection that could boost further the efficiency and real-time performance of BCI systems.

  6. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness

    Science.gov (United States)

    Pichiorri, F.; De Vico Fallani, F.; Cincotti, F.; Babiloni, F.; Molinari, M.; Kleih, S. C.; Neuper, C.; Kübler, A.; Mattia, D.

    2011-04-01

    The main purpose of electroencephalography (EEG)-based brain-computer interface (BCI) technology is to provide an alternative channel to support communication and control when motor pathways are interrupted. Despite the considerable amount of research focused on the improvement of EEG signal detection and translation into output commands, little is known about how learning to operate a BCI device may affect brain plasticity. This study investigated if and how sensorimotor rhythm-based BCI training would induce persistent functional changes in motor cortex, as assessed with transcranial magnetic stimulation (TMS) and high-density EEG. Motor imagery (MI)-based BCI training in naïve participants led to a significant increase in motor cortical excitability, as revealed by post-training TMS mapping of the hand muscle's cortical representation; peak amplitude and volume of the motor evoked potentials recorded from the opponens pollicis muscle were significantly higher only in those subjects who develop a MI strategy based on imagination of hand grasping to successfully control a computer cursor. Furthermore, analysis of the functional brain networks constructed using a connectivity matrix between scalp electrodes revealed a significant decrease in the global efficiency index for the higher-beta frequency range (22-29 Hz), indicating that the brain network changes its topology with practice of hand grasping MI. Our findings build the neurophysiological basis for the use of non-invasive BCI technology for monitoring and guidance of motor imagery-dependent brain plasticity and thus may render BCI a viable tool for post-stroke rehabilitation.

  7. Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain-computer interface

    Directory of Open Access Journals (Sweden)

    Brittany Mei Young

    2014-07-01

    Full Text Available This study aims to examine the changes in task-related brain activity induced by rehabilitative therapy using brain-computer interface (BCI technologies and whether these changes are relevant to functional gains achieved through the use of these therapies. Stroke patients with persistent upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device (n=8 or no therapy (n=6. Behavioral assessments using the Stroke Impact Scale, the Action Research Arm Test, and the Nine-Hole Peg Test as well as task-based fMRI scans were conducted before, during, after, and one month after therapy administration or at analogous intervals in the absence of therapy. Laterality Index (LI during finger tapping of each hand were calculated for each time point and assessed for correlation with behavioral outcomes. Brain activity during finger tapping of each hand shifted over the course of BCI therapy but not in the absence of therapy to greater involvement of the non-lesioned hemisphere (and lesser involvement of the stroke-lesioned hemisphere as measured by LI. Moreover, changes from baseline LI values during finger tapping of the impaired hand were correlated with gains in both objective and subjective behavioral measures. These findings suggest that the administration of interventional BCI therapy can induce differential changes in brain activity patterns between the lesioned and nonlesioned hemisphere and that these brain changes are associated with changes in specific motor functions.

  8. Combining Brain-Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges.

    Science.gov (United States)

    Millán, J D R; Rupp, R; Müller-Putz, G R; Murray-Smith, R; Giugliemma, C; Tangermann, M; Vidaurre, C; Cincotti, F; Kübler, A; Leeb, R; Neuper, C; Müller, K-R; Mattia, D

    2010-01-01

    In recent years, new research has brought the field of electroencephalogram (EEG)-based brain-computer interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely, "Communication and Control", "Motor Substitution", "Entertainment", and "Motor Recovery". We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users' mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices.

  9. Combining Brain-Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges

    Directory of Open Access Journals (Sweden)

    José del R. Millán

    2010-09-01

    Full Text Available In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT. In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication & Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI to improve BCI usability, and the development of novel BCI technology including better EEG devices.

  10. [The P300 based brain-computer interface: effect of stimulus position in a stimulus train].

    Science.gov (United States)

    Ganin, I P; Shishkin, S L; Kochetova, A G; Kaplan, A Ia

    2012-01-01

    The P300 brain-computer interface (BCI) is currently the most efficient BCI. This interface is based on detection of the P300 wave of the brain potentials evoked when a symbol related to the intended input is highlighted. To increase operation speed of the P300 BCI, reduction of the number of stimuli repetitions is needed. This reduction leads to increase of the relative contribution to the input symbol detection from the reaction to the first target stimulus. It is known that the event-related potentials (ERP) to the first stimulus presentations can be different from the ERP to stimuli presented latter. In particular, the amplitude of responses to the first stimulus presentations is often increased, which is beneficial for their recognition by the BCI. However, this effect was not studied within the BCI framework. The current study examined the ERP obtained from healthy participants (n = 14) in the standard P300 BCI paradigm using 10 trials, as well as in the modified P300 BCI with stimuli presented on moving objects in triple-trial (n = 6) and single-trial (n = 6) stimulation modes. Increased ERP amplitude was observed in response to the first target stimuli in both conditions, as well as in the single-trial mode comparing to triple-trial. We discuss the prospects of using the specific features of the ERP to first stimuli and the single-trial ERP for optimizing the high-speed modes in the P300 BCIs.

  11. Current trends in hardware and software for brain-computer interfaces (BCIs).

    Science.gov (United States)

    Brunner, P; Bianchi, L; Guger, C; Cincotti, F; Schalk, G

    2011-04-01

    A brain-computer interface (BCI) provides a non-muscular communication channel to people with and without disabilities. BCI devices consist of hardware and software. BCI hardware records signals from the brain, either invasively or non-invasively, using a series of device components. BCI software then translates these signals into device output commands and provides feedback. One may categorize different types of BCI applications into the following four categories: basic research, clinical/translational research, consumer products, and emerging applications. These four categories use BCI hardware and software, but have different sets of requirements. For example, while basic research needs to explore a wide range of system configurations, and thus requires a wide range of hardware and software capabilities, applications in the other three categories may be designed for relatively narrow purposes and thus may only need a very limited subset of capabilities. This paper summarizes technical aspects for each of these four categories of BCI applications. The results indicate that BCI technology is in transition from isolated demonstrations to systematic research and commercial development. This process requires several multidisciplinary efforts, including the development of better integrated and more robust BCI hardware and software, the definition of standardized interfaces, and the development of certification, dissemination and reimbursement procedures.

  12. SSVEP and ANN based optimal speller design for Brain Computer Interface

    Directory of Open Access Journals (Sweden)

    Irshad Ahmad Ansari

    2015-07-01

    Full Text Available This work put forwards an optimal BCI (Brain Computer Interface speller design based on Steady State Visual Evoked Potentials (SSVEP and Artificial Neural Network (ANN in order to help the people with severe motor impairments. This work is carried out to enhance the accuracy and communication rate of  BCI system. To optimize the BCI system, the work has been divided into two steps: First, designing of an encoding technique to choose characters from the speller interface and the second is the development and implementation of feature extraction algorithm to acquire optimal features, which is used to train the BCI system for classification using neural network. Optimization of speller interface is focused on representation of character matrix and its designing parameters. Then again, a lot of deliberations made in order to optimize selection of features and user’s time window. Optimized system works nearly the same with the new user and gives character per minute (CPM of 13 ± 2 with an average accuracy of 94.5% by choosing first two harmonics of power spectral density as the feature vectors and using the 2 second time window for each selection. Optimized BCI performs better with experienced users with an average accuracy of 95.1%. Such a good accuracy has not been reported before in account of fair enough CPM.DOI: 10.15181/csat.v2i2.1059

  13. Brain-computer interface: changes in performance using virtual reality techniques.

    Science.gov (United States)

    Ron-Angevin, Ricardo; Díaz-Estrella, Antonio

    2009-01-09

    The ability to control electroencephalographic (EEG) signals when different mental tasks are carried out would provide a method of communication for people with serious motor function problems. This system is known as a brain-computer interface (BCI). Due to the difficulty of controlling one's own EEG signals, a suitable training protocol is required to motivate subjects, as it is necessary to provide some type of visual feedback allowing subjects to see their progress. Conventional systems of feedback are based on simple visual presentations, such as a horizontal bar extension. However, virtual reality is a powerful tool with graphical possibilities to improve BCI-feedback presentation. The objective of the study is to explore the advantages of the use of feedback based on virtual reality techniques compared to conventional systems of feedback. Sixteen untrained subjects, divided into two groups, participated in the experiment. A group of subjects was trained using a BCI system, which uses conventional feedback (bar extension), and another group was trained using a BCI system, which submits subjects to a more familiar environment, such as controlling a car to avoid obstacles. The obtained results suggest that EEG behaviour can be modified via feedback presentation. Significant differences in classification error rates between both interfaces were obtained during the feedback period, confirming that an interface based on virtual reality techniques can improve the feedback control, specifically for untrained subjects.

  14. Computer interfacing

    CERN Document Server

    Dixey, Graham

    1994-01-01

    This book explains how computers interact with the world around them and therefore how to make them a useful tool. Topics covered include descriptions of all the components that make up a computer, principles of data exchange, interaction with peripherals, serial communication, input devices, recording methods, computer-controlled motors, and printers.In an informative and straightforward manner, Graham Dixey describes how to turn what might seem an incomprehensible 'black box' PC into a powerful and enjoyable tool that can help you in all areas of your work and leisure. With plenty of handy

  15. Endogenous Sensory Discrimination and Selection by a Fast Brain Switch for a High Transfer Rate Brain-Computer Interface.

    Science.gov (United States)

    Xu, Ren; Jiang, Ning; Dosen, Strahinja; Lin, Chuang; Mrachacz-Kersting, Natalie; Dremstrup, Kim; Farina, Dario

    2016-08-01

    In this study, we present a novel multi-class brain-computer interface (BCI) for communication and control. In this system, the information processing is shared by the algorithm (computer) and the user (human). Specifically, an electro-tactile cycle was presented to the user, providing the choice (class) by delivering timely sensory input. The user discriminated these choices by his/her endogenous sensory ability and selected the desired choice with an intuitive motor task. This selection was detected by a fast brain switch based on real-time detection of movement-related cortical potentials from scalp EEG. We demonstrated the feasibility of such a system with a four-class BCI, yielding a true positive rate of  ∼ 80% and  ∼ 70%, and an information transfer rate of  ∼ 7 bits/min and  ∼ 5 bits/min, for the movement and imagination selection command, respectively. Furthermore, when the system was extended to eight classes, the throughput of the system was improved, demonstrating the capability of accommodating a large number of classes. Combining the endogenous sensory discrimination with the fast brain switch, the proposed system could be an effective, multi-class, gaze-independent BCI system for communication and control applications.

  16. EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme.

    Science.gov (United States)

    Ji, Hongfei; Li, Jie; Lu, Rongrong; Gu, Rong; Cao, Lei; Gong, Xiaoliang

    2016-01-01

    Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI.

  17. A self-organizing maps classifier structure for brain computer interfaces

    Directory of Open Access Journals (Sweden)

    Leandro Bueno

    Full Text Available AbstractIntroductionBrain Computer Interfaces provide an alternative communication path to severe paralyzed people and uses electrical signals related to brain activity in order to identify the user’s intention. In this paper a classifier based on a Self-Organizing Map is introduced.MethodsElectroencephalography signal is used on this work as a source for the user’s intention. This signal represents the brain activity and is processed in order to extract the frequency features presented to the classifier, which uses a Self-Organizing Map and a series of probability masks in order to identify the correct class.ResultsThe proposed structure was evaluated using a dataset of Electroencephalography with three mental tasks. The system was able to identify the different states of the users intention with an accuracy of 71.21% for a three-class problem using only 25 neurons for one of the users.ConclusionThe classifier proposed in this paper has an accuracy that is around the value of similar works in the literature, using the same data, but using a small time window for the classification, meaning the system can have a better time response for the user.

  18. Reinforcement learning for adaptive threshold control of restorative brain-computer interfaces: a Bayesian simulation.

    Science.gov (United States)

    Bauer, Robert; Gharabaghi, Alireza

    2015-01-01

    Restorative brain-computer interfaces (BCI) are increasingly used to provide feedback of neuronal states in a bid to normalize pathological brain activity and achieve behavioral gains. However, patients and healthy subjects alike often show a large variability, or even inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the treatment rationale, the classifier of restorative BCIs usually has a constrained feature space, thus limiting the possibility of classifier adaptation. In this context, we applied a Bayesian model of neurofeedback and reinforcement learning for different threshold selection strategies to study the impact of threshold adaptation of a linear classifier on optimizing restorative BCIs. For each feedback iteration, we first determined the thresholds that result in minimal action entropy and maximal instructional efficiency. We then used the resulting vector for the simulation of continuous threshold adaptation. We could thus show that threshold adaptation can improve reinforcement learning, particularly in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an explanation for the achieved benefits of adaptive threshold setting.

  19. Brain-Computer Interface for Control of Wheelchair Using Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Rahib H. Abiyev

    2016-01-01

    Full Text Available The design of brain-computer interface for the wheelchair for physically disabled people is presented. The design of the proposed system is based on receiving, processing, and classification of the electroencephalographic (EEG signals and then performing the control of the wheelchair. The number of experimental measurements of brain activity has been done using human control commands of the wheelchair. Based on the mental activity of the user and the control commands of the wheelchair, the design of classification system based on fuzzy neural networks (FNN is considered. The design of FNN based algorithm is used for brain-actuated control. The training data is used to design the system and then test data is applied to measure the performance of the control system. The control of the wheelchair is performed under real conditions using direction and speed control commands of the wheelchair. The approach used in the paper allows reducing the probability of misclassification and improving the control accuracy of the wheelchair.

  20. Reinforcement learning for adaptive threshold control of restorative brain-computer interfaces: a Bayesian simulation

    Directory of Open Access Journals (Sweden)

    Robert eBauer

    2015-02-01

    Full Text Available Restorative brain-computer interfaces (BCI are increasingly used to provide feedback of neuronal states in a bid to normalize pathological brain activity and achieve behavioral gains. However, patients and healthy subjects alike often show a large variability, or even inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the treatment rationale, the classifier of restorative BCIs usually has a constrained feature space, thus limiting the possibility of classifier adaptation.In this context, we applied a Bayesian model of neurofeedback and reinforcement learning for different threshold selection strategies to study the impact of threshold adaptation of a linear classifier on optimizing restorative BCIs. For each feedback iteration, we first determined the thresholds that result in minimal action entropy and maximal instructional efficiency. We then used the resulting vector for the simulation of continuous threshold adaptation. We could thus show that threshold adaptation can improve reinforcement learning, particularly in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an explanation for the achieved benefits of adaptive threshold setting.

  1. Visual perception affected by motivation and alertness controlled by a noninvasive brain-computer interface.

    Directory of Open Access Journals (Sweden)

    Vladimir A Maksimenko

    Full Text Available The influence of motivation and alertness on brain activity associated with visual perception was studied experimentally using the Necker cube, which ambiguity was controlled by the contrast of its ribs. The wavelet analysis of recorded multichannel electroencephalograms (EEG allowed us to distinguish two different scenarios while the brain processed the ambiguous stimulus. The first scenario is characterized by a particular destruction of alpha rhythm (8-12 Hz with a simultaneous increase in beta-wave activity (20-30 Hz, whereas in the second scenario, the beta rhythm is not well pronounced while the alpha-wave energy remains unchanged. The experiments were carried out with a group of financially motivated subjects and another group of unpaid volunteers. It was found that the first scenario occurred mainly in the motivated group. This can be explained by the increased alertness of the motivated subjects. The prevalence of the first scenario was also observed in a group of subjects to whom images with higher ambiguity were presented. We believe that the revealed scenarios can occur not only during the perception of bistable images, but also in other perceptual tasks requiring decision making. The obtained results may have important applications for monitoring and controlling human alertness in situations which need substantial attention. On the base of the obtained results we built a brain-computer interface to estimate and control the degree of alertness in real time.

  2. Affective Aspects of Perceived Loss of Control and Potential Implications for Brain-Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Sebastian Grissmann

    2017-07-01

    Full Text Available Most brain-computer interfaces (BCIs focus on detecting single aspects of user states (e.g., motor imagery in the electroencephalogram (EEG in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios.

  3. A Fuzzy Integral Ensemble Method in Visual P300 Brain-Computer Interface.

    Science.gov (United States)

    Cavrini, Francesco; Bianchi, Luigi; Quitadamo, Lucia Rita; Saggio, Giovanni

    2016-01-01

    We evaluate the possibility of application of combination of classifiers using fuzzy measures and integrals to Brain-Computer Interface (BCI) based on electroencephalography. In particular, we present an ensemble method that can be applied to a variety of systems and evaluate it in the context of a visual P300-based BCI. Offline analysis of data relative to 5 subjects lets us argue that the proposed classification strategy is suitable for BCI. Indeed, the achieved performance is significantly greater than the average of the base classifiers and, broadly speaking, similar to that of the best one. Thus the proposed methodology allows realizing systems that can be used by different subjects without the need for a preliminary configuration phase in which the best classifier for each user has to be identified. Moreover, the ensemble is often capable of detecting uncertain situations and turning them from misclassifications into abstentions, thereby improving the level of safety in BCI for environmental or device control.

  4. A novel brain-computer interface based on the rapid serial visual presentation paradigm.

    Science.gov (United States)

    Acqualagna, Laura; Treder, Matthias Sebastian; Schreuder, Martijn; Blankertz, Benjamin

    2010-01-01

    Most present-day visual brain computer interfaces (BCIs) suffer from the fact that they rely on eye movements, are slow-paced, or feature a small vocabulary. As a potential remedy, we explored a novel BCI paradigm consisting of a central rapid serial visual presentation (RSVP) of the stimuli. It has a large vocabulary and realizes a BCI system based on covert non-spatial selective visual attention. In an offline study, eight participants were presented sequences of rapid bursts of symbols. Two different speeds and two different color conditions were investigated. Robust early visual and P300 components were elicited time-locked to the presentation of the target. Offline classification revealed a mean accuracy of up to 90% for selecting the correct symbol out of 30 possibilities. The results suggest that RSVP-BCI is a promising new paradigm, also for patients with oculomotor impairments.

  5. DARPA-funded efforts in the development of novel brain-computer interface technologies.

    Science.gov (United States)

    Miranda, Robbin A; Casebeer, William D; Hein, Amy M; Judy, Jack W; Krotkov, Eric P; Laabs, Tracy L; Manzo, Justin E; Pankratz, Kent G; Pratt, Gill A; Sanchez, Justin C; Weber, Douglas J; Wheeler, Tracey L; Ling, Geoffrey S F

    2015-04-15

    The Defense Advanced Research Projects Agency (DARPA) has funded innovative scientific research and technology developments in the field of brain-computer interfaces (BCI) since the 1970s. This review highlights some of DARPA's major advances in the field of BCI, particularly those made in recent years. Two broad categories of DARPA programs are presented with respect to the ultimate goals of supporting the nation's warfighters: (1) BCI efforts aimed at restoring neural and/or behavioral function, and (2) BCI efforts aimed at improving human training and performance. The programs discussed are synergistic and complementary to one another, and, moreover, promote interdisciplinary collaborations among researchers, engineers, and clinicians. Finally, this review includes a summary of some of the remaining challenges for the field of BCI, as well as the goals of new DARPA efforts in this domain. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  6. FORCe: Fully Online and Automated Artifact Removal for Brain-Computer Interfacing.

    Science.gov (United States)

    Daly, Ian; Scherer, Reinhold; Billinger, Martin; Müller-Putz, Gernot

    2015-09-01

    A fully automated and online artifact removal method for the electroencephalogram (EEG) is developed for use in brain-computer interfacing (BCI). The method (FORCe) is based upon a novel combination of wavelet decomposition, independent component analysis, and thresholding. FORCe is able to operate on a small channel set during online EEG acquisition and does not require additional signals (e.g., electrooculogram signals). Evaluation of FORCe is performed offline on EEG recorded from 13 BCI particpants with cerebral palsy (CP) and online with three healthy participants. The method outperforms the state-of the-art automated artifact removal methods Lagged Auto-Mutual Information Clustering (LAMIC) and Fully Automated Statistical Thresholding for EEG artifact Rejection (FASTER), and is able to remove a wide range of artifact types including blink, electromyogram (EMG), and electrooculogram (EOG) artifacts.

  7. Brain Computer Interface for Micro-controller Driven Robot Based on Emotiv Sensors

    Directory of Open Access Journals (Sweden)

    Parth Gargava

    2017-08-01

    Full Text Available A Brain Computer Interface (BCI is developed to navigate a micro-controller based robot using Emotiv sensors. The BCI system has a pipeline of 5 stages- signal acquisition, pre-processing, feature extraction, classification and CUDA inter- facing. It shall aid in serving a prototype for physical movement of neurological patients who are unable to control or operate on their muscular movements. All stages of the pipeline are designed to process bodily actions like eye blinks to command navigation of the robot. This prototype works on features learning and classification centric techniques using support vector machine. The suggested pipeline, ensures successful navigation of a robot in four directions in real time with accuracy of 93 percent.

  8. Identification of motor imagery tasks through CC-LR algorithm in brain computer interface.

    Science.gov (United States)

    Siuly; Li, Yan; Wen, Peng

    2013-01-01

    This study focuses on the identification of Motor Imagery (MI) tasks for the development of Brain Computer Interface (BCI) technologies combining Cross-Correlation and Logistic Regression (CC-LR) techniques. The proposed method is tested on two benchmark data sets, IVa and IVb of BCI Competition III, and the performance is evaluated through a 3-fold cross-validation procedure. The experimental outcomes are compared with two recently reported algorithms, R-Common Spatial Pattern (CSP) with aggregation and Clustering Technique (CT)-based Least Square Support Vector Machine (LS-SVM) and also other four algorithms using data set IVa. The results demonstrate that our proposed method results in an improvement of at least 3.47% compared with the existing methods tested.

  9. Brain-computer interface using P300 and virtual reality: A gaming approach for treating ADHD

    DEFF Research Database (Denmark)

    Rohani, Darius Adam; Sørensen, Helge Bjarup Dissing; Puthusserypady, Sadasivan

    2014-01-01

    and template-based features to detect these P300 responses. In an experimental setup using five subjects, an average error below 30% was achieved. To make it more challenging the BCI system has been embedded inside an immersive 3D virtual reality (VR) classroom with simulated distractions, which was created...... by combining a low-cost infrared camera and an “off-axis perspective projection” algorithm. This system is intended for kids by operating with four electrodes, as well as a non-intrusive VR setting. With the promising results, and considering the simplicity of the scheme, we hope to encourage future studies......This paper presents a novel brain-computer interface (BCI) system aiming at the rehabilitation of attention-deficit/hyperactive disorder in children. It uses the P300 potential in a series of feedback games to improve the subjects' attention. We applied a support vector machine (SVM) using temporal...

  10. Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface

    Science.gov (United States)

    Blakely, Tim M.; Miller, Kai J.; Rao, Rajesh P. N.; Ojemann, Jeffrey G.

    2014-01-01

    Human subjects can learn to control a one-dimensional electrocorticographic (ECoG) brain-computer interface (BCI) using modulation of primary motor (M1) high-gamma activity (signal power in the 75–200 Hz range). However, the stability and dynamics of the signals over the course of new BCI skill acquisition have not been investigated. In this study, we report 3 characteristic periods in evolution of the high-gamma control signal during BCI training: initial, low task accuracy with corresponding low power modulation in the gamma spectrum, followed by a second period of improved task accuracy with increasing average power separation between activity and rest, and a final period of high task accuracy with stable (or decreasing) power separation and decreasing trial-to-trial variance. These findings may have implications in the design and implementation of BCI control algorithms. PMID:25599079

  11. Flashing characters with famous faces improves ERP-based brain-computer interface performance

    Science.gov (United States)

    Kaufmann, T.; Schulz, S. M.; Grünzinger, C.; Kübler, A.

    2011-10-01

    Currently, the event-related potential (ERP)-based spelling device, often referred to as P300-Speller, is the most commonly used brain-computer interface (BCI) for enhancing communication of patients with impaired speech or motor function. Among numerous improvements, a most central feature has received little attention, namely optimizing the stimulus used for eliciting ERPs. Therefore we compared P300-Speller performance with the standard stimulus (flashing characters) against performance with stimuli known for eliciting particularly strong ERPs due to their psychological salience, i.e. flashing familiar faces transparently superimposed on characters. Our results not only indicate remarkably increased ERPs in response to familiar faces but also improved P300-Speller performance due to a significant reduction of stimulus sequences needed for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-Speller.

  12. Steady State Visual Evoked Potential Based Brain-Computer Interface for Cognitive Assessment

    DEFF Research Database (Denmark)

    Westergren, Nicolai; Bendtsen, Rasmus L.; Kjær, Troels W.

    2016-01-01

    decline is important. Cognitive decline may be detected using fullyautomated computerized assessment. Such systems will provide inexpensive and widely available screenings of cognitive ability. The aim of this pilot study is to develop a real time steady state visual evoked potential (SSVEP) based brain-computer...... interface (BCI) for neurological cognitive assessment. It is intended for use by patients who suffer from diseases impairing their motor skills, but are still able to control their gaze. Results are based on 11 healthy test subjects. The system performance have an average accuracy of 100% ± 0%. The test...... subjects achieved an information transfer rate (ITR) of 14:64 bits/min ± 7:63 bits=min and a subject test performance of 47:22% ± 34:10%. This study suggests that BCI may be applicable in practice as a computerized cognitive assessment tool. However, many improvements are required for the system...

  13. Recursive N-way partial least squares for brain-computer interface.

    Directory of Open Access Journals (Sweden)

    Andrey Eliseyev

    Full Text Available In the article tensor-input/tensor-output blockwise Recursive N-way Partial Least Squares (RNPLS regression is considered. It combines the multi-way tensors decomposition with a consecutive calculation scheme and allows blockwise treatment of tensor data arrays with huge dimensions, as well as the adaptive modeling of time-dependent processes with tensor variables. In the article the numerical study of the algorithm is undertaken. The RNPLS algorithm demonstrates fast and stable convergence of regression coefficients. Applied to Brain Computer Interface system calibration, the algorithm provides an efficient adjustment of the decoding model. Combining the online adaptation with easy interpretation of results, the method can be effectively applied in a variety of multi-modal neural activity flow modeling tasks.

  14. Towards Development of a 3-State Self-Paced Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Ali Bashashati

    2007-01-01

    the presence of a right- or a left-hand movement and the second classifies the detected movement as a right or a left one. In an offline analysis of the EEG data collected from four able-bodied individuals, the 3-state brain-computer interface shows a comparable performance with a 2-state system and significant performance improvement if used as a 2-state BCI, that is, in detecting the presence of a right- or a left-hand movement (regardless of the type of movement. It has an average true positive rate of 37.5% and 42.8% (at false positives rate of 1% in detecting right- and left-hand extensions, respectively, in the context of a 3-state self-paced BCI and average detection rate of 58.1% (at false positive rate of 1% in the context of a 2-state self-paced BCI.

  15. Rapid prototyping of an EEG-based brain-computer interface (BCI).

    Science.gov (United States)

    Guger, C; Schlögl, A; Neuper, C; Walterspacher, D; Strein, T; Pfurtscheller, G

    2001-03-01

    The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional digital signal processor (DSP) board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive (AAR) model and linear discriminant analysis (LDA).

  16. Goal selection versus process control in a brain-computer interface based on sensorimotor rhythms.

    Science.gov (United States)

    Royer, Audrey S; He, Bin

    2009-02-01

    In a brain-computer interface (BCI) utilizing a process control strategy, the signal from the cortex is used to control the fine motor details normally handled by other parts of the brain. In a BCI utilizing a goal selection strategy, the signal from the cortex is used to determine the overall end goal of the user, and the BCI controls the fine motor details. A BCI based on goal selection may be an easier and more natural system than one based on process control. Although goal selection in theory may surpass process control, the two have never been directly compared, as we are reporting here. Eight young healthy human subjects participated in the present study, three trained and five naïve in BCI usage. Scalp-recorded electroencephalograms (EEG) were used to control a computer cursor during five different paradigms. The paradigms were similar in their underlying signal processing and used the same control signal. However, three were based on goal selection, and two on process control. For both the trained and naïve populations, goal selection had more hits per run, was faster, more accurate (for seven out of eight subjects) and had a higher information transfer rate than process control. Goal selection outperformed process control in every measure studied in the present investigation.

  17. Brain computer interface learning for systems based on electrocorticography and intracortical microelectrode arrays.

    Science.gov (United States)

    Hiremath, Shivayogi V; Chen, Weidong; Wang, Wei; Foldes, Stephen; Yang, Ying; Tyler-Kabara, Elizabeth C; Collinger, Jennifer L; Boninger, Michael L

    2015-01-01

    A brain-computer interface (BCI) system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.

  18. Using the electrocorticographic speech network to control a brain-computer interface in humans

    Science.gov (United States)

    Leuthardt, Eric C.; Gaona, Charles; Sharma, Mohit; Szrama, Nicholas; Roland, Jarod; Freudenberg, Zac; Solis, Jamie; Breshears, Jonathan; Schalk, Gerwin

    2011-06-01

    Electrocorticography (ECoG) has emerged as a new signal platform for brain-computer interface (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been brain signals from the sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the speech network, could be used to further improve on or complement existing motor-based control paradigms. We demonstrate here for the first time that ECoG signals associated with different overt and imagined phoneme articulation can enable invasively monitored human patients to control a one-dimensional computer cursor rapidly and accurately. This phonetic content was distinguishable within higher gamma frequency oscillations and enabled users to achieve final target accuracies between 68% and 91% within 15 min. Additionally, one of the patients achieved robust control using recordings from a microarray consisting of 1 mm spaced microwires. These findings suggest that the cortical network associated with speech could provide an additional cognitive and physiologic substrate for BCI operation and that these signals can be acquired from a cortical array that is small and minimally invasive.

  19. Using the Electrocorticographic Speech Network to Control a Brain-Computer Interface in Humans

    Science.gov (United States)

    Leuthardt, Eric C.; Gaona, Charles; Sharma, Mohit; Szrama, Nicholas; Roland, Jarod; Freudenberg, Zac; Solis, Jamie; Breshears, Jonathan; Schalk, Gerwin

    2013-01-01

    Electrocorticography (ECoG) has emerged as a new signal platform for brain-computer interface (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been brain signals from sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the speech network, could be used to further improve on or complement existing motor-based control paradigms. We demonstrate here for the first time that ECoG signals associated with different overt and imagined phoneme articulation can enable invasively monitored human patients to control a one-dimensional computer cursor rapidly and accurately. This phonetic content was distinguishable within higher gamma frequency oscillations and enabled users to achieve final target accuracies between 68 and 91% within 15 minutes. Additionally, one of the patients achieved robust control using recordings from a microarray consisting of 1 mm spaced microwires. These findings suggest that the cortical network associated with speech could provide an additional cognitive and physiologic substrate for BCI operation and that these signals can be acquired from a cortical array that is small and minimally invasive. PMID:21471638

  20. Beyond intuitive anthropomorphic control: recent achievements using brain computer interface technologies

    Science.gov (United States)

    Pohlmeyer, Eric A.; Fifer, Matthew; Rich, Matthew; Pino, Johnathan; Wester, Brock; Johannes, Matthew; Dohopolski, Chris; Helder, John; D'Angelo, Denise; Beaty, James; Bensmaia, Sliman; McLoughlin, Michael; Tenore, Francesco

    2017-05-01

    Brain-computer interface (BCI) research has progressed rapidly, with BCIs shifting from animal tests to human demonstrations of controlling computer cursors and even advanced prosthetic limbs, the latter having been the goal of the Revolutionizing Prosthetics (RP) program. These achievements now include direct electrical intracortical microstimulation (ICMS) of the brain to provide human BCI users feedback information from the sensors of prosthetic limbs. These successes raise the question of how well people would be able to use BCIs to interact with systems that are not based directly on the body (e.g., prosthetic arms), and how well BCI users could interpret ICMS information from such devices. If paralyzed individuals could use BCIs to effectively interact with such non-anthropomorphic systems, it would offer them numerous new opportunities to control novel assistive devices. Here we explore how well a participant with tetraplegia can detect infrared (IR) sources in the environment using a prosthetic arm mounted camera that encodes IR information via ICMS. We also investigate how well a BCI user could transition from controlling a BCI based on prosthetic arm movements to controlling a flight simulator, a system with different physical dynamics than the arm. In that test, the BCI participant used environmental information encoded via ICMS to identify which of several upcoming flight routes was the best option. For both tasks, the BCI user was able to quickly learn how to interpret the ICMSprovided information to achieve the task goals.

  1. Brain Computer Interface Learning for Systems Based on Electrocorticography and Intracortical Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Shivayogi V Hiremath

    2015-06-01

    Full Text Available A brain-computer interface (BCI system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.

  2. Affective Interaction with a Virtual Character through an fNIRS Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Gabor Aranyi

    2016-07-01

    Full Text Available Affective Brain-Computer Interfaces (BCI harness Neuroscience knowledge to develop affective interaction from first principles. In this paper, we explore affective engagement with a virtual agent through Neurofeedback (NF. We report an experiment where subjects engage with a virtual agent by expressing positive attitudes towards her under a NF paradigm. We use for affective input the asymmetric activity in the dorsolateral prefrontal cortex (DL-PFC, which has been previously found to be related to the high-level affective-motivational dimension of approach/avoidance. The magnitude of left-asymmetric DL-PFC activity, measured using fNIRS and treated as a proxy for approach, is mapped onto a control mechanism for the virtual agent’s facial expressions, in which Action Units are activated through a neural network. We carried out an experiment with 18 subjects, which demonstrated that subjects are able to successfully engage with the virtual agent by controlling their mental disposition through NF, and that they perceived the agent’s responses as realistic and consistent with their projected mental disposition. This interaction paradigm is particularly relevant in the case of affective BCI as it facilitates the volitional activation of specific areas normally not under conscious control. Overall, our contribution reconciles a model of affect derived from brain metabolic data with an ecologically valid, yet computationally controllable, virtual affective communication environment.

  3. Impact of spatial filters during sensor selection in a visual P300 brain-computer interface.

    Science.gov (United States)

    Rivet, B; Cecotti, H; Maby, E; Mattout, J

    2012-01-01

    A challenge in designing a Brain-Computer Interface (BCI) is the choice of the channels, e.g. the most relevant sensors. Although a setup with many sensors can be more efficient for the detection of Event-Related Potential (ERP) like the P300, it is relevant to consider only a low number of sensors for a commercial or clinical BCI application. Indeed, a reduced number of sensors can naturally increase the user comfort by reducing the time required for the installation of the EEG (electroencephalogram) cap and can decrease the price of the device. In this study, the influence of spatial filtering during the process of sensor selection is addressed. Two of them maximize the Signal to Signal-plus-Noise Ratio (SSNR) for the different sensor subsets while the third one maximizes the differences between the averaged P300 waveform and the non P300 waveform. We show that the locations of the most relevant sensors subsets for the detection of the P300 are highly dependent on the use of spatial filtering. Applied on data from 20 healthy subjects, this study proves that subsets obtained where sensors are suppressed in relation to their individual SSNR are less efficient than when sensors are suppressed in relation to their contribution once the different selected sensors are combined for enhancing the signal. In other words, it highlights the difference between estimating the P300 projection on the scalp and evaluating the more efficient sensor subsets for a P300-BCI. Finally, this study explores the issue of channel commonality across subjects. The results support the conclusion that spatial filters during the sensor selection procedure allow selecting better sensors for a visual P300 Brain-Computer Interface.

  4. TiD-Introducing and Benchmarking an Event-Delivery System for Brain-Computer Interfaces.

    Science.gov (United States)

    Breitwieser, Christian; Tavella, Michele; Schreuder, Martijn; Cincotti, Febo; Leeb, Robert; Muller-Putz, Gernot R

    2017-12-01

    In this paper, we present and analyze an event distribution system for brain-computer interfaces. Events are commonly used to mark and describe incidents during an experiment and are therefore critical for later data analysis or immediate real-time processing. The presented approach, called Tools for brain-computer interaction interface D (TiD), delivers messages in XML format via a buslike system using transmission control protocol connections or shared memory. A dedicated server dispatches TiD messages to distributed or local clients. The TiD message is designed to be flexible and contains time stamps for event synchronization, whereas events describe incidents, which occur during an experiment. TiD was tested extensively toward stability and latency. The effect of an occurring event jitter was analyzed and benchmarked on a reference implementation under different conditions as gigabit and 100-Mb Ethernet or Wi-Fi with a different number of event receivers. A 3-dB signal attenuation, which occurs when averaging jitter influenced trials aligned by events, is starting to become visible at around 1-2 kHz in the case of a gigabit connection. Mean event distribution times across operating systems are ranging from 0.3 to 0.5ms for a gigabit network connection for 106 events. Results for other environmental conditions are available in this paper. References already using TiD for event distribution are provided showing the applicability of TiD for event delivery with distributed or local clients.

  5. Usability of Three Electroencephalogram Headsets for Brain-Computer Interfaces: A Within Subject Comparison

    NARCIS (Netherlands)

    Gamboa, H.; Nijboer, Femke; van de Laar, B.L.A.; Plácido da Silva, H.; Gilleade, K.; Gerritsen, Steven; Nijholt, Antinus; Bermúdez i Badia, S.; Poel, Mannes; Fairclough, S.

    Currently the field of brain–computer interfacing is increasingly focused on developing usable brain–computer interfaces (BCIs) to better ensure technology transfer and acceptance. Many studies have investigated the usability of BCI applications as a whole. Here we aim to investigate one specific

  6. Feasibility of approaches combining sensor and source features in brain-computer interface.

    Science.gov (United States)

    Ahn, Minkyu; Hong, Jun Hee; Jun, Sung Chan

    2012-02-15

    Brain-computer interface (BCI) provides a new channel for communication between brain and computers through brain signals. Cost-effective EEG provides good temporal resolution, but its spatial resolution is poor and sensor information is blurred by inherent noise. To overcome these issues, spatial filtering and feature extraction techniques have been developed. Source imaging, transformation of sensor signals into the source space through source localizer, has gained attention as a new approach for BCI. It has been reported that the source imaging yields some improvement of BCI performance. However, there exists no thorough investigation on how source imaging information overlaps with, and is complementary to, sensor information. Information (visible information) from the source space may overlap as well as be exclusive to information from the sensor space is hypothesized. Therefore, we can extract more information from the sensor and source spaces if our hypothesis is true, thereby contributing to more accurate BCI systems. In this work, features from each space (sensor or source), and two strategies combining sensor and source features are assessed. The information distribution among the sensor, source, and combined spaces is discussed through a Venn diagram for 18 motor imagery datasets. Additional 5 motor imagery datasets from the BCI Competition III site were examined. The results showed that the addition of source information yielded about 3.8% classification improvement for 18 motor imagery datasets and showed an average accuracy of 75.56% for BCI Competition data. Our proposed approach is promising, and improved performance may be possible with better head model. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Simple adaptive sparse representation based classification schemes for EEG based brain-computer interface applications.

    Science.gov (United States)

    Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No

    2015-11-01

    One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Decoding of intended saccade direction in an oculomotor brain-computer interface

    Science.gov (United States)

    Jia, Nan; Brincat, Scott L.; Salazar-Gómez, Andrés F.; Panko, Mikhail; Guenther, Frank H.; Miller, Earl K.

    2017-08-01

    Objective. To date, invasive brain-computer interface (BCI) research has largely focused on replacing lost limb functions using signals from the hand/arm areas of motor cortex. However, the oculomotor system may be better suited to BCI applications involving rapid serial selection from spatial targets, such as choosing from a set of possible words displayed on a computer screen in an augmentative and alternative communication (AAC) application. Here we aimed to demonstrate the feasibility of a BCI utilizing the oculomotor system. Approach. We developed a chronic intracortical BCI in monkeys to decode intended saccadic eye movement direction using activity from multiple frontal cortical areas. Main results. Intended saccade direction could be decoded in real time with high accuracy, particularly at contralateral locations. Accurate decoding was evident even at the beginning of the BCI session; no extensive BCI experience was necessary. High-frequency (80-500 Hz) local field potential magnitude provided the best performance, even over spiking activity, thus simplifying future BCI applications. Most of the information came from the frontal and supplementary eye fields, with relatively little contribution from dorsolateral prefrontal cortex. Significance. Our results support the feasibility of high-accuracy intracortical oculomotor BCIs that require little or no practice to operate and may be ideally suited for ‘point and click’ computer operation as used in most current AAC systems.

  9. sBCI-Headset—Wearable and Modular Device for Hybrid Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Tatsiana Malechka

    2015-02-01

    Full Text Available Severely disabled people, like completely paralyzed persons either with tetraplegia or similar disabilities who cannot use their arms and hands, are often considered as a user group of Brain Computer Interfaces (BCI. In order to achieve high acceptance of the BCI by this user group and their supporters, the BCI system has to be integrated into their support infrastructure. Critical disadvantages of a BCI are the time consuming preparation of the user for the electroencephalography (EEG measurements and the low information transfer rate of EEG based BCI. These disadvantages become apparent if a BCI is used to control complex devices. In this paper, a hybrid BCI is described that enables research for a Human Machine Interface (HMI that is optimally adapted to requirements of the user and the tasks to be carried out. The solution is based on the integration of a Steady-state visual evoked potential (SSVEP-BCI, an Event-related (de-synchronization (ERD/ERS-BCI, an eye tracker, an environmental observation camera, and a new EEG head cap for wearing comfort and easy preparation. The design of the new fast multimodal BCI (called sBCI system is described and first test results, obtained in experiments with six healthy subjects, are presented. The sBCI concept may also become useful for healthy people in cases where a “hands-free” handling of devices is necessary.

  10. Brain-computer interface training combined with transcranial direct current stimulation in patients with chronic severe hemiparesis: Proof of concept study.

    Science.gov (United States)

    Kasashima-Shindo, Yuko; Fujiwara, Toshiyuki; Ushiba, Junichi; Matsushika, Yayoi; Kamatani, Daiki; Oto, Misa; Ono, Takashi; Nishimoto, Atsuko; Shindo, Keiichiro; Kawakami, Michiyuki; Tsuji, Tetsuya; Liu, Meigen

    2015-04-01

    Brain-computer interface technology has been applied to stroke patients to improve their motor function. Event-related desynchronization during motor imagery, which is used as a brain-computer interface trigger, is sometimes difficult to detect in stroke patients. Anodal transcranial direct current stimulation (tDCS) is known to increase event-related desynchronization. This study investigated the adjunctive effect of anodal tDCS for brain-computer interface training in patients with severe hemiparesis. Eighteen patients with chronic stroke. A non-randomized controlled study. Subjects were divided between a brain-computer interface group and a tDCS- brain-computer interface group and participated in a 10-day brain-computer interface training. Event-related desynchronization was detected in the affected hemisphere during motor imagery of the affected fingers. The tDCS-brain-computer interface group received anodal tDCS before brain-computer interface training. Event-related desynchronization was evaluated before and after the intervention. The Fugl-Meyer Assessment upper extremity motor score (FM-U) was assessed before, immediately after, and 3 months after, the intervention. Event-related desynchronization was significantly increased in the tDCS- brain-computer interface group. The FM-U was significantly increased in both groups. The FM-U improvement was maintained at 3 months in the tDCS-brain-computer interface group. Anodal tDCS can be a conditioning tool for brain-computer interface training in patients with severe hemiparetic stroke.

  11. Adaptive estimation of hand movement trajectory in an EEG based brain-computer interface system.

    Science.gov (United States)

    Robinson, Neethu; Guan, Cuntai; Vinod, A P

    2015-12-01

    The various parameters that define a hand movement such as its trajectory, speed, etc, are encoded in distinct brain activities. Decoding this information from neurophysiological recordings is a less explored area of brain-computer interface (BCI) research. Applying non-invasive recordings such as electroencephalography (EEG) for decoding makes the problem more challenging, as the encoding is assumed to be deep within the brain and not easily accessible by scalp recordings. EEG based BCI systems can be developed to identify the neural features underlying movement parameters that can be further utilized to provide a detailed and well defined control command set to a BCI output device. A real-time continuous control is better suited for practical BCI systems, and can be achieved by continuous adaptive reconstruction of movement trajectory than discrete brain activity classifications. In this work, we adaptively reconstruct/estimate the parameters of two-dimensional hand movement trajectory, namely movement speed and position, from multi-channel EEG recordings. The data for analysis is collected by performing an experiment that involved center-out right-hand movement tasks in four different directions at two different speeds in random order. We estimate movement trajectory using a Kalman filter that models the relation between brain activity and recorded parameters based on a set of defined predictors. We propose a method to define these predictor variables that includes spatial, spectral and temporally localized neural information and to select optimally informative variables. The proposed method yielded correlation of (0.60 ± 0.07) between recorded and estimated data. Further, incorporating the proposed predictor subset selection, the correlation achieved is (0.57 ± 0.07, p reduction in number of predictors (76%) for the savings of computational time. The proposed system provides a real time movement control system using EEG-BCI with control over movement speed

  12. Non invasive Brain-Computer Interface system: towards its application as assistive technology

    Science.gov (United States)

    Cincotti, Febo; Mattia, Donatella; Aloise, Fabio; Bufalari, Simona; Schalk, Gerwin; Oriolo, Giuseppe; Cherubini, Andrea; Marciani, Maria Grazia; Babiloni, Fabio

    2010-01-01

    The quality of life of people suffering from severe motor disabilities can benefit from the use of current assistive technology capable of ameliorating communication, house-environment management and mobility, according to the user's residual motor abilities. Brain Computer Interfaces (BCIs) are systems that can translate brain activity into signals that control external devices. Thus they can represent the only technology for severely paralyzed patients to increase or maintain their communication and control options. Here we report on a pilot study in which a system was implemented and validated to allow disabled persons to improve or recover their mobility (directly or by emulation) and communication within the surrounding environment. The system is based on a software controller that offers to the user a communication interface that is matched with the individual's residual motor abilities. Patients (n=14) with severe motor disabilities due to progressive neurodegenerative disorders were trained to use the system prototype under a rehabilitation program carried out in a house-like furnished space. All users utilized regular assistive control options (e.g., microswitches or head trackers). In addition, four subjects learned to operate the system by means of a non-invasive EEG-based BCI. This system was controlled by the subjects' voluntary modulations of EEG sensorimotor rhythms recorded on the scalp; this skill was learnt even though the subjects have not had control over their limbs for a long time. We conclude that such a prototype system, which integrates several different assistive technologies including a BCI system, can potentially facilitate the translation from pre-clinical demonstrations to a clinical useful BCI. PMID:18394526

  13. Multi-class motor imagery EEG decoding for brain-computer interfaces.

    Science.gov (United States)

    Wang, Deng; Miao, Duoqian; Blohm, Gunnar

    2012-01-01

    Recent studies show that scalp electroencephalography (EEG) as a non-invasive interface has great potential for brain-computer interfaces (BCIs). However, one factor that has limited practical applications for EEG-based BCI so far is the difficulty to decode brain signals in a reliable and efficient way. This paper proposes a new robust processing framework for decoding of multi-class motor imagery (MI) that is based on five main processing steps. (i) Raw EEG segmentation without the need of visual artifact inspection. (ii) Considering that EEG recordings are often contaminated not just by electrooculography (EOG) but also other types of artifacts, we propose to first implement an automatic artifact correction method that combines regression analysis with independent component analysis for recovering the original source signals. (iii) The significant difference between frequency components based on event-related (de-) synchronization and sample entropy is then used to find non-contiguous discriminating rhythms. After spectral filtering using the discriminating rhythms, a channel selection algorithm is used to select only relevant channels. (iv) Feature vectors are extracted based on the inter-class diversity and time-varying dynamic characteristics of the signals. (v) Finally, a support vector machine is employed for four-class classification. We tested our proposed algorithm on experimental data that was obtained from dataset 2a of BCI competition IV (2008). The overall four-class kappa values (between 0.41 and 0.80) were comparable to other models but without requiring any artifact-contaminated trial removal. The performance showed that multi-class MI tasks can be reliably discriminated using artifact-contaminated EEG recordings from a few channels. This may be a promising avenue for online robust EEG-based BCI applications.

  14. Multi-class motor imagery EEG decoding for brain-computer interfaces

    Directory of Open Access Journals (Sweden)

    Deng eWang

    2012-10-01

    Full Text Available Recent studies show that scalp electroencephalography (EEG as a non-invasive interface has great potential for brain-computer interfaces (BCIs. However, one factor that has limited practical applications for EEG-based BCI so far is the difficulty to decode brain signals in a reliable and efficient way. This paper proposes a new robust processing framework for decoding of multi-class motor imagery (MI that is based on five main processing steps. (i Raw EEG segmentation without the need of visual artifact inspection. (ii Considering that EEG recordings are often contaminated not just by electrooculography (EOG but also other types of artifacts, we propose to first implement an automatic artifact correction method that combines regression analysis with independent component analysis (ICA for recovering the original source signals. (iii The significant difference between frequency components based on event-related (de- synchronization and sample entropy is then used to find non-continuous discriminating rhythms. After spectral filtering using the discriminating rhythms, a channel selection algorithm is used to select only relevant channels. (iv Feature vectors are extracted based on the inter-class diversity and time-varying dynamic characteristics of the signals. (v Finally, a support vector machine (SVM is employed for four-class classification. We tested our proposed algorithm on experimental data that was obtained from dataset 2a of BCI competition IV (2008. The overall four-class kappa values (between 0.41 and 0.80 were comparable to other models but without requiring any artifact-contaminated trial removal. The performance showed that multi-class MI tasks can be reliably discriminated using artifact-contaminated EEG recordings from a few channels. This may be a promising avenue for online robust EEG-based BCI applications.

  15. Spatiotemporal Beamforming: A Transparent and Unified Decoding Approach to Synchronous Visual Brain-Computer Interfacing

    Directory of Open Access Journals (Sweden)

    Benjamin Wittevrongel

    2017-11-01

    Full Text Available Brain-Computer Interfaces (BCIs decode brain activity with the aim to establish a direct communication channel with an external device. Albeit they have been hailed to (re-establish communication in persons suffering from severe motor- and/or communication disabilities, only recently BCI applications have been challenging other assistive technologies. Owing to their considerably increased performance and the advent of affordable technological solutions, BCI technology is expected to trigger a paradigm shift not only in assistive technology but also in the way we will interface with technology. However, the flipside of the quest for accuracy and speed is most evident in EEG-based visual BCI where it has led to a gamut of increasingly complex classifiers, tailored to the needs of specific stimulation paradigms and use contexts. In this contribution, we argue that spatiotemporal beamforming can serve several synchronous visual BCI paradigms. We demonstrate this for three popular visual paradigms even without attempting to optimizing their electrode sets. For each selectable target, a spatiotemporal beamformer is applied to assess whether the corresponding signal-of-interest is present in the preprocessed multichannel EEG signals. The target with the highest beamformer output is then selected by the decoder (maximum selection. In addition to this simple selection rule, we also investigated whether interactions between beamformer outputs could be employed to increase accuracy by combining the outputs for all targets into a feature vector and applying three common classification algorithms. The results show that the accuracy of spatiotemporal beamforming with maximum selection is at par with that of the classification algorithms and interactions between beamformer outputs do not further improve that accuracy.

  16. Motor imagery based brain-computer interfaces: An emerging technology to rehabilitate motor deficits.

    Science.gov (United States)

    Alonso-Valerdi, Luz Maria; Salido-Ruiz, Ricardo Antonio; Ramirez-Mendoza, Ricardo A

    2015-12-01

    When the sensory-motor integration system is malfunctioning provokes a wide variety of neurological disorders, which in many cases cannot be treated with conventional medication, or via existing therapeutic technology. A brain-computer interface (BCI) is a tool that permits to reintegrate the sensory-motor loop, accessing directly to brain information. A potential, promising and quite investigated application of BCI has been in the motor rehabilitation field. It is well-known that motor deficits are the major disability wherewith the worldwide population lives. Therefore, this paper aims to specify the foundation of motor rehabilitation BCIs, as well as to review the recent research conducted so far (specifically, from 2007 to date), in order to evaluate the suitability and reliability of this technology. Although BCI for post-stroke rehabilitation is still in its infancy, the tendency is towards the development of implantable devices that encompass a BCI module plus a stimulation system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A noninvasive brain computer interface using visually-induced near-infrared spectroscopy responses.

    Science.gov (United States)

    Chen, Cheng-Hsuan; Ho, Ming-Shan; Shyu, Kuo-Kai; Hsu, Kou-Cheng; Wang, Kuo-Wei; Lee, Po-Lei

    2014-09-19

    Visually-induced near-infrared spectroscopy (NIRS) response was utilized to design a brain computer interface (BCI) system. Four circular checkerboards driven by distinct flickering sequences were displayed on a LCD screen as visual stimuli to induce subjects' NIRS responses. Each flickering sequence was a concatenated sequence of alternative flickering segments and resting segments. The flickering segment was designed with fixed duration of 3s whereas the resting segment was chosen randomly within 15-20s to create the mutual independencies among different flickering sequences. Six subjects were recruited in this study and subjects were requested to gaze at the four visual stimuli one-after-one in a random order. Since visual responses in human brain are time-locked to the onsets of visual stimuli and the flicker sequences of distinct visual stimuli were designed mutually independent, the NIRS responses induced by user's gazed targets can be discerned from non-gazed targets by applying a simple averaging process. The accuracies for the six subjects were higher than 90% after 10 or more epochs being averaged. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Channel selection based on phase measurement in P300-based brain-computer interface.

    Directory of Open Access Journals (Sweden)

    Minpeng Xu

    Full Text Available Most EEG-based brain-computer interface (BCI paradigms include specific electrode positions. As the structures and activities of the brain vary with each individual, contributing channels should be chosen based on original records of BCIs. Phase measurement is an important approach in EEG analyses, but seldom used for channel selections. In this paper, the phase locking and concentrating value-based recursive feature elimination approach (PLCV-RFE is proposed to produce robust-EEG channel selections in a P300 speller. The PLCV-RFE, deriving from the phase resetting mechanism, measures the phase relation between EEGs and ranks channels by the recursive strategy. Data recorded from 32 electrodes on 9 subjects are used to evaluate the proposed method. The results show that the PLCV-RFE substantially reduces channel sets and improves recognition accuracies significantly. Moreover, compared with other state-of-the-art feature selection methods (SSNRSF and SVM-RFE, the PLCV-RFE achieves better performance. Thus the phase measurement is available in the channel selection of BCI and it may be an evidence to indirectly support that phase resetting is at least one reason for ERP generations.

  19. Brain-computer interfaces in the completely locked-in state and chronic stroke.

    Science.gov (United States)

    Chaudhary, U; Birbaumer, N; Ramos-Murguialday, A

    2016-01-01

    Brain-computer interfaces (BCIs) use brain activity to control external devices, facilitating paralyzed patients to interact with the environment. In this chapter, we discuss the historical perspective of development of BCIs and the current advances of noninvasive BCIs for communication in patients with amyotrophic lateral sclerosis and for restoration of motor impairment after severe stroke. Distinct techniques have been explored to control a BCI in patient population especially electroencephalography (EEG) and more recently near-infrared spectroscopy (NIRS) because of their noninvasive nature and low cost. Previous studies demonstrated successful communication of patients with locked-in state (LIS) using EEG- and invasive electrocorticography-BCI and intracortical recordings when patients still showed residual eye control, but not with patients with complete LIS (ie, complete paralysis). Recently, a NIRS-BCI and classical conditioning procedure was introduced, allowing communication in patients in the complete locked-in state (CLIS). In severe chronic stroke without residual hand function first results indicate a possible superior motor rehabilitation to available treatment using BCI training. Here we present an overview of the available studies and recent results, which open new doors for communication, in the completely paralyzed and rehabilitation in severely affected stroke patients. We also reflect on and describe possible neuronal and learning mechanisms responsible for BCI control and perspective for future BMI research for communication in CLIS and stroke motor recovery. © 2016 Elsevier B.V. All rights reserved.

  20. A telepresence mobile robot controlled with a noninvasive brain-computer interface.

    Science.gov (United States)

    Escolano, Carlos; Antelis, Javier Mauricio; Minguez, Javier

    2012-06-01

    This paper reports an electroencephalogram-based brain-actuated telepresence system to provide a user with presence in remote environments through a mobile robot, with access to the Internet. This system relies on a P300-based brain-computer interface (BCI) and a mobile robot with autonomous navigation and camera orientation capabilities. The shared-control strategy is built by the BCI decoding of task-related orders (selection of visible target destinations or exploration areas), which can be autonomously executed by the robot. The system was evaluated using five healthy participants in two consecutive steps: 1) screening and training of participants and 2) preestablished navigation and visual exploration telepresence tasks. On the basis of the results, the following evaluation studies are reported: 1) technical evaluation of the device and its main functionalities and 2) the users' behavior study. The overall result was that all participants were able to complete the designed tasks, reporting no failures, which shows the robustness of the system and its feasibility to solve tasks in real settings where joint navigation and visual exploration were needed. Furthermore, the participants showed great adaptation to the telepresence system.

  1. Brain-computer interface and semantic classical conditioning of communication in paralysis.

    Science.gov (United States)

    De Massari, Daniele; Matuz, Tamara; Furdea, Adrian; Ruf, Carolin A; Halder, Sebastian; Birbaumer, Niels

    2013-02-01

    We propose a classical semantic conditioning procedure to allow basic yes-no communication in the completely locked-in state as an alternative to instrumental-operant learning of brain responses, which is the common approach in brain-computer interface research. More precisely, it was intended to establish cortical responses to the trueness of a statement irrespective of the particular constituent words and letters or sounds of the words. As unconditioned stimulus short aversive stimuli consisting of 1-ms electrical pulses were used. True and false statements were presented acoustically and only the true statements were immediately followed by electrical stimuli. 15 healthy participants and one locked-in ALS patient underwent the experiment. Three different classifiers were employed in order to differentiate between the two cortical responses by means of electroencephalographic recordings. The offline analysis revealed that semantic classical conditioning can be applied successfully to enable basic communication using a non-muscular channel. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Spectral Transfer Learning using Information Geometry for a User-Independent Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Nicholas Roy Waytowich

    2016-09-01

    Full Text Available Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI technologies to fields such as medicine, industry and recreation. However, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter- individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry, STIG, which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both offline and real-time feedback analysis during a rapid serial visual presentation task (RSVP. For detection of single-trial, event-related potentials (ERPs, the proposed method can significantly outperform existing calibration-free techniques as well as outperform traditional within-subject calibration techniques when limited data is available. This method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.

  3. Brain computer interface using a simplified functional near-infrared spectroscopy system

    Science.gov (United States)

    Coyle, Shirley M.; Ward, Tomás E.; Markham, Charles M.

    2007-09-01

    A brain-computer interface (BCI) is a device that allows a user to communicate with external devices through thought processes alone. A novel signal acquisition tool for BCIs is near-infrared spectroscopy (NIRS), an optical technique to measure localized cortical brain activity. The benefits of using this non-invasive modality are safety, portability and accessibility. A number of commercial multi-channel NIRS system are available; however we have developed a straightforward custom-built system to investigate the functionality of a fNIRS-BCI system. This work describes the construction of the device, the principles of operation and the implementation of a fNIRS-BCI application, 'Mindswitch' that harnesses motor imagery for control. Analysis is performed online and feedback of performance is presented to the user. Mindswitch presents a basic 'on/off' switching option to the user, where selection of either state takes 1 min. Initial results show that fNIRS can support simple BCI functionality and shows much potential. Although performance may be currently inferior to many EEG systems, there is much scope for development particularly with more sophisticated signal processing and classification techniques. We hope that by presenting fNIRS as an accessible and affordable option, a new avenue of exploration will open within the BCI research community and stimulate further research in fNIRS-BCIs.

  4. The Human Factors and Ergonomics of P300-Based Brain-Computer Interfaces.

    Science.gov (United States)

    Powers, J Clark; Bieliaieva, Kateryna; Wu, Shuohao; Nam, Chang S

    2015-08-10

    Individuals with severe neuromuscular impairments face many challenges in communication and manipulation of the environment. Brain-computer interfaces (BCIs) show promise in presenting real-world applications that can provide such individuals with the means to interact with the world using only brain waves. Although there has been a growing body of research in recent years, much relates only to technology, and not to technology in use-i.e., real-world assistive technology employed by users. This review examined the literature to highlight studies that implicate the human factors and ergonomics (HFE) of P300-based BCIs. We assessed 21 studies on three topics to speak directly to improving the HFE of these systems: (1) alternative signal evocation methods within the oddball paradigm; (2) environmental interventions to improve user performance and satisfaction within the constraints of current BCI systems; and (3) measures and methods of measuring user acceptance. We found that HFE is central to the performance of P300-based BCI systems, although researchers do not often make explicit this connection. Incorporation of measures of user acceptance and rigorous usability evaluations, increased engagement of disabled users as test participants, and greater realism in testing will help progress the advancement of P300-based BCI systems in assistive applications.

  5. The Human Factors and Ergonomics of P300-Based Brain-Computer Interfaces

    Directory of Open Access Journals (Sweden)

    J. Clark Powers

    2015-08-01

    Full Text Available Individuals with severe neuromuscular impairments face many challenges in communication and manipulation of the environment. Brain-computer interfaces (BCIs show promise in presenting real-world applications that can provide such individuals with the means to interact with the world using only brain waves. Although there has been a growing body of research in recent years, much relates only to technology, and not to technology in use—i.e., real-world assistive technology employed by users. This review examined the literature to highlight studies that implicate the human factors and ergonomics (HFE of P300-based BCIs. We assessed 21 studies on three topics to speak directly to improving the HFE of these systems: (1 alternative signal evocation methods within the oddball paradigm; (2 environmental interventions to improve user performance and satisfaction within the constraints of current BCI systems; and (3 measures and methods of measuring user acceptance. We found that HFE is central to the performance of P300-based BCI systems, although researchers do not often make explicit this connection. Incorporation of measures of user acceptance and rigorous usability evaluations, increased engagement of disabled users as test participants, and greater realism in testing will help progress the advancement of P300-based BCI systems in assistive applications.

  6. Modulation of Posterior Alpha Activity by Spatial Attention Allows for Controlling A Continuous Brain-Computer Interface

    NARCIS (Netherlands)

    Horschig, J.M.; Oosterheert, W.; Oostenveld, R.; Jensen, O.

    2015-01-01

    Here we report that the modulation of alpha activity by covert attention can be used as a control signal in an online brain-computer interface, that it is reliable, and that it is robust. Subjects were instructed to orient covert visual attention to the left or right hemifield. We decoded the

  7. The Changes in the Hemodynamic Activity of the Brain during Motor Imagery Training with the Use of Brain-Computer Interface

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Silchenko, A.V.; Tintěra, J.; Rydlo, J.

    2016-01-01

    Roč. 42, č. 1 (2016), s. 1-12 ISSN 0362-1197 R&D Projects: GA MŠk ED1.1.00/02.0070 Grant - others:GA MŠk(CZ) EE.2.3.20.0073 Institutional support: RVO:67985807 Keywords : brain-computer interface * motor imagery * hemodynamic activity * brain plasticity * functional MRI Subject RIV: IN - Informatics, Computer Science

  8. A Benchmark Dataset for SSVEP-Based Brain-Computer Interfaces.

    Science.gov (United States)

    Wang, Yijun; Chen, Xiaogang; Gao, Xiaorong; Gao, Shangkai

    2017-10-01

    This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain- computer interface (BCI) speller. The dataset consists of 64-channel Electroencephalogram (EEG) data from 35 healthy subjects (8 experienced and 27 naïve) while they performed a cue-guided target selecting task. The virtual keyboard of the speller was composed of 40 visual flickers, which were coded using a joint frequency and phase modulation (JFPM) approach. The stimulation frequencies ranged from 8 Hz to 15.8 Hz with an interval of 0.2 Hz. The phase difference between two adjacent frequencies was . For each subject, the data included six blocks of 40 trials corresponding to all 40 flickers indicated by a visual cue in a random order. The stimulation duration in each trial was five seconds. The dataset can be used as a benchmark dataset to compare the methods for stimulus coding and target identification in SSVEP-based BCIs. Through offline simulation, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data. The dataset also provides high-quality data for computational modeling of SSVEPs. The dataset is freely available fromhttp://bci.med.tsinghua.edu.cn/download.html.

  9. Playing checkers with your mind: an interactive multiplayer hardware game platform for brain-computer interfaces.

    Science.gov (United States)

    Akhtar, Aadeel; Norton, James J S; Kasraie, Mahsa; Bretl, Timothy

    2014-01-01

    In this paper we describe a multiplayer brain-computer interface (BCI) based on the classic game of checkers using steady-state visually evoked potentials (SSVEPs). Previous research in BCI gaming focuses mainly on the production of software-based games using a computer screen--few hardware-based BCI games using a physical board have been developed. Hardware-based games can present a unique set of challenges when compared to software-based games. Depending on where the user is sitting, some stimuli might be farther away from the player, at a steeper viewing angle, conflated with competing stimuli, or occluded by physical barriers. In our game, we light squares on a checkerboard with flickering LEDs to elicit SSVEP responses in the subjects. When a subject attends to a particular square, the resulting SSVEPs are classified and a robot arm moves the selected piece. In a set of pilot experiments we investigated the ability of two subjects to use the SSVEP-based hardware game platform, and assessed how interstimulus distance, interstimulus angle, distance between target stimulus and subject, number of competing stimuli, and visual occlusions of the stimuli influence classification accuracy.

  10. Neurobionics and the brain-computer interface: current applications and future horizons.

    Science.gov (United States)

    Rosenfeld, Jeffrey V; Wong, Yan Tat

    2017-05-01

    The brain-computer interface (BCI) is an exciting advance in neuroscience and engineering. In a motor BCI, electrical recordings from the motor cortex of paralysed humans are decoded by a computer and used to drive robotic arms or to restore movement in a paralysed hand by stimulating the muscles in the forearm. Simultaneously integrating a BCI with the sensory cortex will further enhance dexterity and fine control. BCIs are also being developed to: provide ambulation for paraplegic patients through controlling robotic exoskeletons; restore vision in people with acquired blindness; detect and control epileptic seizures; and improve control of movement disorders and memory enhancement. High-fidelity connectivity with small groups of neurons requires microelectrode placement in the cerebral cortex. Electrodes placed on the cortical surface are less invasive but produce inferior fidelity. Scalp surface recording using electroencephalography is much less precise. BCI technology is still in an early phase of development and awaits further technical improvements and larger multicentre clinical trials before wider clinical application and impact on the care of people with disabilities. There are also many ethical challenges to explore as this technology evolves.

  11. Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface.

    Science.gov (United States)

    Jarosiewicz, Beata; Sarma, Anish A; Bacher, Daniel; Masse, Nicolas Y; Simeral, John D; Sorice, Brittany; Oakley, Erin M; Blabe, Christine; Pandarinath, Chethan; Gilja, Vikash; Cash, Sydney S; Eskandar, Emad N; Friehs, Gerhard; Henderson, Jaimie M; Shenoy, Krishna V; Donoghue, John P; Hochberg, Leigh R

    2015-11-11

    Brain-computer interfaces (BCIs) promise to restore independence for people with severe motor disabilities by translating decoded neural activity directly into the control of a computer. However, recorded neural signals are not stationary (that is, can change over time), degrading the quality of decoding. Requiring users to pause what they are doing whenever signals change to perform decoder recalibration routines is time-consuming and impractical for everyday use of BCIs. We demonstrate that signal nonstationarity in an intracortical BCI can be mitigated automatically in software, enabling long periods (hours to days) of self-paced point-and-click typing by people with tetraplegia, without degradation in neural control. Three key innovations were included in our approach: tracking the statistics of the neural activity during self-timed pauses in neural control, velocity bias correction during neural control, and periodically recalibrating the decoder using data acquired during typing by mapping neural activity to movement intentions that are inferred retrospectively based on the user's self-selected targets. These methods, which can be extended to a variety of neurally controlled applications, advance the potential for intracortical BCIs to help restore independent communication and assistive device control for people with paralysis. Copyright © 2015, American Association for the Advancement of Science.

  12. A novel Bayesian framework for discriminative feature extraction in Brain-Computer Interfaces.

    Science.gov (United States)

    Suk, Heung-Il; Lee, Seong-Whan

    2013-02-01

    As there has been a paradigm shift in the learning load from a human subject to a computer, machine learning has been considered as a useful tool for Brain-Computer Interfaces (BCIs). In this paper, we propose a novel Bayesian framework for discriminative feature extraction for motor imagery classification in an EEG-based BCI in which the class-discriminative frequency bands and the corresponding spatial filters are optimized by means of the probabilistic and information-theoretic approaches. In our framework, the problem of simultaneous spatiospectral filter optimization is formulated as the estimation of an unknown posterior probability density function (pdf) that represents the probability that a single-trial EEG of predefined mental tasks can be discriminated in a state. In order to estimate the posterior pdf, we propose a particle-based approximation method by extending a factored-sampling technique with a diffusion process. An information-theoretic observation model is also devised to measure discriminative power of features between classes. From the viewpoint of classifier design, the proposed method naturally allows us to construct a spectrally weighted label decision rule by linearly combining the outputs from multiple classifiers. We demonstrate the feasibility and effectiveness of the proposed method by analyzing the results and its success on three public databases.

  13. A cell-phone-based brain-computer interface for communication in daily life.

    Science.gov (United States)

    Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping

    2011-04-01

    Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.

  14. Design and Implementation of a Brain Computer Interface System for Controlling a Robotic Claw

    Science.gov (United States)

    Angelakis, D.; Zoumis, S.; Asvestas, P.

    2017-11-01

    The aim of this paper is to present the design and implementation of a brain-computer interface (BCI) system that can control a robotic claw. The system is based on the Emotiv Epoc headset, which provides the capability of simultaneous recording of 14 EEG channels, as well as wireless connectivity by means of the Bluetooth protocol. The system is initially trained to decode what user thinks to properly formatted data. The headset communicates with a personal computer, which runs a dedicated software application, implemented under the Processing integrated development environment. The application acquires the data from the headset and invokes suitable commands to an Arduino Uno board. The board decodes the received commands and produces corresponding signals to a servo motor that controls the position of the robotic claw. The system was tested successfully on a healthy, male subject, aged 28 years. The results are promising, taking into account that no specialized hardware was used. However, tests on a larger number of users is necessary in order to draw solid conclusions regarding the performance of the proposed system.

  15. Brain-computer interface with language model-EEG fusion for locked-in syndrome

    Science.gov (United States)

    Oken, Barry S.; Orhan, Umut; Roark, Brian; Erdogmus, Deniz; Fowler, Andrew; Mooney, Aimee; Peters, Betts; Miller, Meghan; Fried-Oken, Melanie B.

    2013-01-01

    Background Some non-invasive brain computer interface (BCI) systems are currently available for locked-in syndrome (LIS) but none have incorporated a statistical language model during text generation. Objective To begin to address the communication needs of individuals with LIS using a non-invasive BCI that involves Rapid Serial Visual Presentation (RSVP) of symbols and a unique classifier with EEG and language model fusion. Methods The RSVP Keyboard™ was developed with several unique features. Individual letters are presented at 2.5 per sec. Computer classification of letters as targets or non-targets based on EEG is performed using machine learning that incorporates a language model for letter prediction via Bayesian fusion enabling targets to be presented only 1–4 times. Nine participants with LIS and nine healthy controls were enrolled. After screening, subjects first calibrated the system, and then completed a series of balanced word generation mastery tasks that were designed with five incremental levels of difficulty, that increased by selecting phrases for which the utility of the language model decreased naturally. Results Six participants with LIS and nine controls completed the experiment. All LIS participants successfully mastered spelling at level one and one subject achieved level five. Six of nine control participants achieved level five. Conclusions Individuals who have incomplete LIS may benefit from an EEG-based BCI system, which relies on EEG classification and a statistical language model. Steps to further improve the system are discussed. PMID:24370570

  16. Brain-computer interface with language model-electroencephalography fusion for locked-in syndrome.

    Science.gov (United States)

    Oken, Barry S; Orhan, Umut; Roark, Brian; Erdogmus, Deniz; Fowler, Andrew; Mooney, Aimee; Peters, Betts; Miller, Meghan; Fried-Oken, Melanie B

    2014-05-01

    Some noninvasive brain-computer interface (BCI) systems are currently available for locked-in syndrome (LIS) but none have incorporated a statistical language model during text generation. To begin to address the communication needs of individuals with LIS using a noninvasive BCI that involves rapid serial visual presentation (RSVP) of symbols and a unique classifier with electroencephalography (EEG) and language model fusion. The RSVP Keyboard was developed with several unique features. Individual letters are presented at 2.5 per second. Computer classification of letters as targets or nontargets based on EEG is performed using machine learning that incorporates a language model for letter prediction via Bayesian fusion enabling targets to be presented only 1 to 4 times. Nine participants with LIS and 9 healthy controls were enrolled. After screening, subjects first calibrated the system, and then completed a series of balanced word generation mastery tasks that were designed with 5 incremental levels of difficulty, which increased by selecting phrases for which the utility of the language model decreased naturally. Six participants with LIS and 9 controls completed the experiment. All LIS participants successfully mastered spelling at level 1 and one subject achieved level 5. Six of 9 control participants achieved level 5. Individuals who have incomplete LIS may benefit from an EEG-based BCI system, which relies on EEG classification and a statistical language model. Steps to further improve the system are discussed.

  17. Broad-Band Visually Evoked Potentials: Re(convolution in Brain-Computer Interfacing.

    Directory of Open Access Journals (Sweden)

    Jordy Thielen

    Full Text Available Brain-Computer Interfaces (BCIs allow users to control devices and communicate by using brain activity only. BCIs based on broad-band visual stimulation can outperform BCIs using other stimulation paradigms. Visual stimulation with pseudo-random bit-sequences evokes specific Broad-Band Visually Evoked Potentials (BBVEPs that can be reliably used in BCI for high-speed communication in speller applications. In this study, we report a novel paradigm for a BBVEP-based BCI that utilizes a generative framework to predict responses to broad-band stimulation sequences. In this study we designed a BBVEP-based BCI using modulated Gold codes to mark cells in a visual speller BCI. We defined a linear generative model that decomposes full responses into overlapping single-flash responses. These single-flash responses are used to predict responses to novel stimulation sequences, which in turn serve as templates for classification. The linear generative model explains on average 50% and up to 66% of the variance of responses to both seen and unseen sequences. In an online experiment, 12 participants tested a 6 × 6 matrix speller BCI. On average, an online accuracy of 86% was reached with trial lengths of 3.21 seconds. This corresponds to an Information Transfer Rate of 48 bits per minute (approximately 9 symbols per minute. This study indicates the potential to model and predict responses to broad-band stimulation. These predicted responses are proven to be well-suited as templates for a BBVEP-based BCI, thereby enabling communication and control by brain activity only.

  18. A New Statistical Model of Electroencephalogram Noise Spectra for Real-Time Brain-Computer Interfaces.

    Science.gov (United States)

    Paris, Alan; Atia, George K; Vosoughi, Azadeh; Berman, Stephen A

    2017-08-01

    A characteristic of neurological signal processing is high levels of noise from subcellular ion channels up to whole-brain processes. In this paper, we propose a new model of electroencephalogram (EEG) background periodograms, based on a family of functions which we call generalized van der Ziel-McWhorter (GVZM) power spectral densities (PSDs). To the best of our knowledge, the GVZM PSD function is the only EEG noise model that has relatively few parameters, matches recorded EEG PSD's with high accuracy from 0 to over 30 Hz, and has approximately 1/fθ behavior in the midfrequencies without infinities. We validate this model using three approaches. First, we show how GVZM PSDs can arise in a population of ion channels at maximum entropy equilibrium. Second, we present a class of mixed autoregressive models, which simulate brain background noise and whose periodograms are asymptotic to the GVZM PSD. Third, we present two real-time estimation algorithms for steady-state visual evoked potential (SSVEP) frequencies, and analyze their performance statistically. In pairwise comparisons, the GVZM-based algorithms showed statistically significant accuracy improvement over two well-known and widely used SSVEP estimators. The GVZM noise model can be a useful and reliable technique for EEG signal processing. Understanding EEG noise is essential for EEG-based neurology and applications such as real-time brain-computer interfaces, which must make accurate control decisions from very short data epochs. The GVZM approach represents a successful new paradigm for understanding and managing this neurological noise.

  19. A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives

    Science.gov (United States)

    Lee, Yushin; Yun, Myung Hwan

    2017-01-01

    A new Brain-Computer Interface (BCI) technique, which is called a hybrid BCI, has recently been proposed to address the limitations of conventional single BCI system. Although some hybrid BCI studies have shown promising results, the field of hybrid BCI is still in its infancy and there is much to be done. Especially, since the hybrid BCI systems are so complicated and complex, it is difficult to understand the constituent and role of a hybrid BCI system at a glance. Also, the complicated and complex systems make it difficult to evaluate the usability of the systems. We systematically reviewed and analyzed the current state-of-the-art hybrid BCI studies, and proposed a systematic taxonomy for classifying the types of hybrid BCIs with multiple taxonomic criteria. After reviewing 74 journal articles, hybrid BCIs could be categorized with respect to 1) the source of brain signals, 2) the characteristics of the brain signal, and 3) the characteristics of operation in each system. In addition, we exhaustively reviewed recent literature on usability of BCIs. To identify the key evaluation dimensions of usability, we focused on task and measurement characteristics of BCI usability. We classified and summarized 31 BCI usability journal articles according to task characteristics (type and description of task) and measurement characteristics (subjective and objective measures). Afterwards, we proposed usability dimensions for BCI and hybrid BCI systems according to three core-constructs: Satisfaction, effectiveness, and efficiency with recommendations for further research. This paper can help BCI researchers, even those who are new to the field, can easily understand the complex structure of the hybrid systems at a glance. Recommendations for future research can also be helpful in establishing research directions and gaining insight in how to solve ergonomics and HCI design issues surrounding BCI and hybrid BCI systems by usability evaluation. PMID:28453547

  20. Eye-gaze independent EEG-based brain-computer interfaces for communication.

    Science.gov (United States)

    Riccio, A; Mattia, D; Simione, L; Olivetti, M; Cincotti, F

    2012-08-01

    The present review systematically examines the literature reporting gaze independent interaction modalities in non-invasive brain-computer interfaces (BCIs) for communication. BCIs measure signals related to specific brain activity and translate them into device control signals. This technology can be used to provide users with severe motor disability (e.g. late stage amyotrophic lateral sclerosis (ALS); acquired brain injury) with an assistive device that does not rely on muscular contraction. Most of the studies on BCIs explored mental tasks and paradigms using visual modality. Considering that in ALS patients the oculomotor control can deteriorate and also other potential users could have impaired visual function, tactile and auditory modalities have been investigated over the past years to seek alternative BCI systems which are independent from vision. In addition, various attentional mechanisms, such as covert attention and feature-directed attention, have been investigated to develop gaze independent visual-based BCI paradigms. Three areas of research were considered in the present review: (i) auditory BCIs, (ii) tactile BCIs and (iii) independent visual BCIs. Out of a total of 130 search results, 34 articles were selected on the basis of pre-defined exclusion criteria. Thirteen articles dealt with independent visual BCIs, 15 reported on auditory BCIs and the last six on tactile BCIs, respectively. From the review of the available literature, it can be concluded that a crucial point is represented by the trade-off between BCI systems/paradigms with high accuracy and speed, but highly demanding in terms of attention and memory load, and systems requiring lower cognitive effort but with a limited amount of communicable information. These issues should be considered as priorities to be explored in future studies to meet users' requirements in a real-life scenario.

  1. A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives.

    Science.gov (United States)

    Choi, Inchul; Rhiu, Ilsun; Lee, Yushin; Yun, Myung Hwan; Nam, Chang S

    2017-01-01

    A new Brain-Computer Interface (BCI) technique, which is called a hybrid BCI, has recently been proposed to address the limitations of conventional single BCI system. Although some hybrid BCI studies have shown promising results, the field of hybrid BCI is still in its infancy and there is much to be done. Especially, since the hybrid BCI systems are so complicated and complex, it is difficult to understand the constituent and role of a hybrid BCI system at a glance. Also, the complicated and complex systems make it difficult to evaluate the usability of the systems. We systematically reviewed and analyzed the current state-of-the-art hybrid BCI studies, and proposed a systematic taxonomy for classifying the types of hybrid BCIs with multiple taxonomic criteria. After reviewing 74 journal articles, hybrid BCIs could be categorized with respect to 1) the source of brain signals, 2) the characteristics of the brain signal, and 3) the characteristics of operation in each system. In addition, we exhaustively reviewed recent literature on usability of BCIs. To identify the key evaluation dimensions of usability, we focused on task and measurement characteristics of BCI usability. We classified and summarized 31 BCI usability journal articles according to task characteristics (type and description of task) and measurement characteristics (subjective and objective measures). Afterwards, we proposed usability dimensions for BCI and hybrid BCI systems according to three core-constructs: Satisfaction, effectiveness, and efficiency with recommendations for further research. This paper can help BCI researchers, even those who are new to the field, can easily understand the complex structure of the hybrid systems at a glance. Recommendations for future research can also be helpful in establishing research directions and gaining insight in how to solve ergonomics and HCI design issues surrounding BCI and hybrid BCI systems by usability evaluation.

  2. Advantages of closed-loop calibration in intracortical brain-computer interfaces for people with tetraplegia

    Science.gov (United States)

    Jarosiewicz, Beata; Masse, Nicolas Y.; Bacher, Daniel; Cash, Sydney S.; Eskandar, Emad; Friehs, Gerhard; Donoghue, John P.; Hochberg, Leigh R.

    2013-08-01

    Objective. Brain-computer interfaces (BCIs) aim to provide a means for people with severe motor disabilities to control their environment directly with neural activity. In intracortical BCIs for people with tetraplegia, the decoder that maps neural activity to desired movements has typically been calibrated using ‘open-loop’ (OL) imagination of control while a cursor automatically moves to targets on a computer screen. However, because neural activity can vary across contexts, a decoder calibrated using OL data may not be optimal for ‘closed-loop’ (CL) neural control. Here, we tested whether CL calibration creates a better decoder than OL calibration even when all other factors that might influence performance are held constant, including the amount of data used for calibration and the amount of elapsed time between calibration and testing. Approach. Two people with tetraplegia enrolled in the BrainGate2 pilot clinical trial performed a center-out-back task using an intracortical BCI, switching between decoders that had been calibrated on OL versus CL data. Main results. Even when all other variables were held constant, CL calibration improved neural control as well as the accuracy and strength of the tuning model. Updating the CL decoder using additional and more recent data resulted in further improvements. Significance. Differences in neural activity between OL and CL contexts contribute to the superiority of CL decoders, even prior to their additional ‘adaptive’ advantage. In the near future, CL decoder calibration may enable robust neural control without needing to pause ongoing, practical use of BCIs, an important step toward clinical utility.

  3. Improving zero-training brain-computer interfaces by mixing model estimators

    Science.gov (United States)

    Verhoeven, T.; Hübner, D.; Tangermann, M.; Müller, K. R.; Dambre, J.; Kindermans, P. J.

    2017-06-01

    Objective. Brain-computer interfaces (BCI) based on event-related potentials (ERP) incorporate a decoder to classify recorded brain signals and subsequently select a control signal that drives a computer application. Standard supervised BCI decoders require a tedious calibration procedure prior to every session. Several unsupervised classification methods have been proposed that tune the decoder during actual use and as such omit this calibration. Each of these methods has its own strengths and weaknesses. Our aim is to improve overall accuracy of ERP-based BCIs without calibration. Approach. We consider two approaches for unsupervised classification of ERP signals. Learning from label proportions (LLP) was recently shown to be guaranteed to converge to a supervised decoder when enough data is available. In contrast, the formerly proposed expectation maximization (EM) based decoding for ERP-BCI does not have this guarantee. However, while this decoder has high variance due to random initialization of its parameters, it obtains a higher accuracy faster than LLP when the initialization is good. We introduce a method to optimally combine these two unsupervised decoding methods, letting one method’s strengths compensate for the weaknesses of the other and vice versa. The new method is compared to the aforementioned methods in a resimulation of an experiment with a visual speller. Main results. Analysis of the experimental results shows that the new method exceeds the performance of the previous unsupervised classification approaches in terms of ERP classification accuracy and symbol selection accuracy during the spelling experiment. Furthermore, the method shows less dependency on random initialization of model parameters and is consequently more reliable. Significance. Improving the accuracy and subsequent reliability of calibrationless BCIs makes these systems more appealing for frequent use.

  4. Brain computer interfaces as intelligent sensors for enhancing human-computer interaction

    NARCIS (Netherlands)

    Poel, M.; Nijboer, F.; Broek, E.L. van den; Fairclough, S.; Nijholt, A.

    2012-01-01

    BCIs are traditionally conceived as a way to control apparatus, an interface that allows you to act on" external devices as a form of input control. We propose an alternative use of BCIs, that of monitoring users as an additional intelligent sensor to enrich traditional means of interaction. This

  5. Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems

    Science.gov (United States)

    Abu-Alqumsan, Mohammad; Ebert, Felix; Peer, Angelika

    2017-06-01

    Objective. This work proposes principled strategies for self-adaptations in EEG-based Brain-computer interfaces (BCIs) as a way out of the bandwidth bottleneck resulting from the considerable mismatch between the low-bandwidth interface and the bandwidth-hungry application, and a way to enable fluent and intuitive interaction in embodiment systems. The main focus is laid upon inferring the hidden target goals of users while navigating in a remote environment as a basis for possible adaptations. Approach. To reason about possible user goals, a general user-agnostic Bayesian update rule is devised to be recursively applied upon the arrival of evidences, i.e. user input and user gaze. Experiments were conducted with healthy subjects within robotic embodiment settings to evaluate the proposed method. These experiments varied along three factors: the type of the robot/environment (simulated and physical), the type of the interface (keyboard or BCI), and the way goal recognition (GR) is used to guide a simple shared control (SC) driving scheme. Main results. Our results show that the proposed GR algorithm is able to track and infer the hidden user goals with relatively high precision and recall. Further, the realized SC driving scheme benefits from the output of the GR system and is able to reduce the user effort needed to accomplish the assigned tasks. Despite the fact that the BCI requires higher effort compared to the keyboard conditions, most subjects were able to complete the assigned tasks, and the proposed GR system is additionally shown able to handle the uncertainty in user input during SSVEP-based interaction. The SC application of the belief vector indicates that the benefits of the GR module are more pronounced for BCIs, compared to the keyboard interface. Significance. Being based on intuitive heuristics that model the behavior of the general population during the execution of navigation tasks, the proposed GR method can be used without prior tuning for the

  6. Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems.

    Science.gov (United States)

    Abu-Alqumsan, Mohammad; Ebert, Felix; Peer, Angelika

    2017-06-01

    This work proposes principled strategies for self-adaptations in EEG-based Brain-computer interfaces (BCIs) as a way out of the bandwidth bottleneck resulting from the considerable mismatch between the low-bandwidth interface and the bandwidth-hungry application, and a way to enable fluent and intuitive interaction in embodiment systems. The main focus is laid upon inferring the hidden target goals of users while navigating in a remote environment as a basis for possible adaptations. To reason about possible user goals, a general user-agnostic Bayesian update rule is devised to be recursively applied upon the arrival of evidences, i.e. user input and user gaze. Experiments were conducted with healthy subjects within robotic embodiment settings to evaluate the proposed method. These experiments varied along three factors: the type of the robot/environment (simulated and physical), the type of the interface (keyboard or BCI), and the way goal recognition (GR) is used to guide a simple shared control (SC) driving scheme. Our results show that the proposed GR algorithm is able to track and infer the hidden user goals with relatively high precision and recall. Further, the realized SC driving scheme benefits from the output of the GR system and is able to reduce the user effort needed to accomplish the assigned tasks. Despite the fact that the BCI requires higher effort compared to the keyboard conditions, most subjects were able to complete the assigned tasks, and the proposed GR system is additionally shown able to handle the uncertainty in user input during SSVEP-based interaction. The SC application of the belief vector indicates that the benefits of the GR module are more pronounced for BCIs, compared to the keyboard interface. Being based on intuitive heuristics that model the behavior of the general population during the execution of navigation tasks, the proposed GR method can be used without prior tuning for the individual users. The proposed methods can be

  7. The effect of monitor raster latency on VEPs, ERPs and Brain-Computer Interface performance.

    Science.gov (United States)

    Nagel, Sebastian; Dreher, Werner; Rosenstiel, Wolfgang; Spüler, Martin

    2017-11-29

    Visual neuroscience experiments and Brain-Computer Interface (BCI) control often require strict timings in a millisecond scale. As most experiments are performed using a personal computer (PC), the latencies that are introduced by the setup should be taken into account and be corrected. As a standard computer monitor uses a rastering to update each line of the image sequentially, this causes a monitor raster latency which depends on the position, on the monitor and the refresh rate. We technically measured the raster latencies of different monitors and present the effects on visual evoked potentials (VEPs) and error-related potentials (ERPs). Additionally we present a method for correcting the monitor raster latency and analyzed the performance difference of a code-modulated VEP BCI speller by correcting the latency. There are currently no other methods validating the effects of monitor raster latency on VEPs and ERPs. The timings of VEPs and ERPs are directly affected by the raster latency. Furthermore, correcting the raster latency resulted in a significant reduction of the target prediction error from 7.98% to 4.61% and also in a more reliable classification of targets by significantly increasing the distance between the most probable and the second most probable target by 18.23%. The monitor raster latency affects the timings of VEPs and ERPs, and correcting resulted in a significant error reduction of 42.23%. It is recommend to correct the raster latency for an increased BCI performance and methodical correctness. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A hybrid three-class brain-computer interface system utilizing SSSEPs and transient ERPs

    Science.gov (United States)

    Breitwieser, Christian; Pokorny, Christoph; Müller-Putz, Gernot R.

    2016-12-01

    Objective. This paper investigates the fusion of steady-state somatosensory evoked potentials (SSSEPs) and transient event-related potentials (tERPs), evoked through tactile simulation on the left and right-hand fingertips, in a three-class EEG based hybrid brain-computer interface. It was hypothesized, that fusing the input signals leads to higher classification rates than classifying tERP and SSSEP individually. Approach. Fourteen subjects participated in the studies, consisting of a screening paradigm to determine person dependent resonance-like frequencies and a subsequent online paradigm. The whole setup of the BCI system was based on open interfaces, following suggestions for a common implementation platform. During the online experiment, subjects were instructed to focus their attention on the stimulated fingertips as indicated by a visual cue. The recorded data were classified during runtime using a multi-class shrinkage LDA classifier and the outputs were fused together applying a posterior probability based fusion. Data were further analyzed offline, involving a combined classification of SSSEP and tERP features as a second fusion principle. The final results were tested for statistical significance applying a repeated measures ANOVA. Main results. A significant classification increase was achieved when fusing the results with a combined classification compared to performing an individual classification. Furthermore, the SSSEP classifier was significantly better in detecting a non-control state, whereas the tERP classifier was significantly better in detecting control states. Subjects who had a higher relative band power increase during the screening session also achieved significantly higher classification results than subjects with lower relative band power increase. Significance. It could be shown that utilizing SSSEP and tERP for hBCIs increases the classification accuracy and also that tERP and SSSEP are not classifying control- and non

  9. Asynchronous gaze-independent event-related potential-based brain-computer interface.

    Science.gov (United States)

    Aloise, Fabio; Aricò, Pietro; Schettini, Francesca; Salinari, Serenella; Mattia, Donatella; Cincotti, Febo

    2013-10-01

    In this study a gaze independent event related potential (ERP)-based brain computer interface (BCI) for communication purpose was combined with an asynchronous classifier endowed with dynamical stopping feature. The aim was to evaluate if and how the performance of such asynchronous system could be negatively affected in terms of communication efficiency and robustness to false positives during the intentional no-control state. The proposed system was validated with the participation of 9 healthy subjects. A comparison was performed between asynchronous and synchronous classification technique outputs while users were controlling the same gaze independent BCI interface. The performance of both classification techniques were assessed both off-line and on-line by means of the efficiency metric introduced by Bianchi et al. (2007). This latter metric allows to set a different misclassification cost for wrong classifications and abstentions. Robustness was evaluated as the rate of false positives occurring during voluntary no-control states. The asynchronous classifier did not exhibited significantly higher accuracy or lower error rate with respect to the synchronous classifier (accuracy: 74.66% versus 87.96%, error rate: 7.11% versus 12.04% respectively). However, the on-line and off-line analysis revealed that the communication efficiency was significantly improved (pinterface is a promising solution to be further explored in order to increase the general usability of ERP-based BCI systems designed for severely disabled people with an impairment of the voluntary control of eye movements. In fact, the asynchronous classifier can improve communication efficiency automatically adapting the number of stimulus repetitions to the current user's state and suspending the control if he/she does not intend to select an item. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Electrophysiological Brain Activity during the Control of a Motor Imagery-Based Brain–Computer Interface

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Aziatskaya, G.A.; Bobrov, P.D.; Luykmanov, R. Kh.; Fedotova, I.R.; Húsek, Dušan; Snášel, V.

    2017-01-01

    Roč. 43, č. 5 (2017), s. 501-511 ISSN 0362-1197 Institutional support: RVO:67985807 Keywords : brain–computer interface * neurointerface * EEG * motor imagery * EEG rhythm synchronization and desynchronization * independent component analysis * EEG inverse problem * neurorehabilitation Subject RIV: IN - Informatics, Computer Science

  11. Brain-Computer Interfaces for Multimodal Interaction: A Survey and Principles

    NARCIS (Netherlands)

    Gürkök, Hayrettin; Nijholt, Antinus

    For decades, brain–computer interfaces (BCIs) have been used for restoring the communication and mobility of disabled people through applications such as spellers, web browsers, and wheelchair controls. In parallel to advances in computational intelligence and the production of consumer BCI

  12. Ensemble of Neural Network Conditional Random Fields for Self-Paced Brain Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Hossein Bashashati

    2017-07-01

    Full Text Available Classification of EEG signals in self-paced Brain Computer Interfaces (BCI is an extremely challenging task. The main difficulty stems from the fact that start time of a control task is not defined. Therefore it is imperative to exploit the characteristics of the EEG data to the extent possible. In sensory motor self-paced BCIs, while performing the mental task, the user’s brain goes through several well-defined internal state changes. Applying appropriate classifiers that can capture these state changes and exploit the temporal correlation in EEG data can enhance the performance of the BCI. In this paper, we propose an ensemble learning approach for self-paced BCIs. We use Bayesian optimization to train several different classifiers on different parts of the BCI hyper- parameter space. We call each of these classifiers Neural Network Conditional Random Field (NNCRF. NNCRF is a combination of a neural network and conditional random field (CRF. As in the standard CRF, NNCRF is able to model the correlation between adjacent EEG samples. However, NNCRF can also model the nonlinear dependencies between the input and the output, which makes it more powerful than the standard CRF. We compare the performance of our algorithm to those of three popular sequence labeling algorithms (Hidden Markov Models, Hidden Markov Support Vector Machines and CRF, and to two classical classifiers (Logistic Regression and Support Vector Machines. The classifiers are compared for the two cases: when the ensemble learning approach is not used and when it is. The data used in our studies are those from the BCI competition IV and the SM2 dataset. We show that our algorithm is considerably superior to the other approaches in terms of the Area Under the Curve (AUC of the BCI system.

  13. Asynchronous brain-computer interface for cognitive assessment in people with cerebral palsy

    Science.gov (United States)

    Alcaide-Aguirre, R. E.; Warschausky, S. A.; Brown, D.; Aref, A.; Huggins, J. E.

    2017-12-01

    Objective. Typically, clinical measures of cognition require motor or speech responses. Thus, a significant percentage of people with disabilities are not able to complete standardized assessments. This situation could be resolved by employing a more accessible test administration method, such as a brain-computer interface (BCI). A BCI can circumvent motor and speech requirements by translating brain activity to identify a subject’s response. By eliminating the need for motor or speech input, one could use a BCI to assess an individual who previously did not have access to clinical tests. Approach. We developed an asynchronous, event-related potential BCI-facilitated administration procedure for the peabody picture vocabulary test (PPVT-IV). We then tested our system in typically developing individuals (N  =  11), as well as people with cerebral palsy (N  =  19) to compare results to the standardized PPVT-IV format and administration. Main results. Standard scores on the BCI-facilitated PPVT-IV, and the standard PPVT-IV were highly correlated (r  =  0.95, p  <  0.001), with a mean difference of 2.0  ±  6.4 points, which is within the standard error of the PPVT-IV. Significance. Thus, our BCI-facilitated PPVT-IV provided comparable results to the standard PPVT-IV, suggesting that populations for whom standardized cognitive tests are not accessible could benefit from our BCI-facilitated approach.

  14. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces

    Science.gov (United States)

    Iturrate, I.; Montesano, L.; Minguez, J.

    2013-04-01

    Objective. A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user’s mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials.Approach. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance.Results and significance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.

  15. Towards a symbiotic brain-computer interface: exploring the application-decoder interaction.

    Science.gov (United States)

    Verhoeven, T; Buteneers, P; Wiersema, J R; Dambre, J; Kindermans, P J

    2015-12-01

    State of the art brain-computer interface (BCI) research focuses on improving individual components such as the application or the decoder that converts the user's brain activity to control signals. In this study, we investigate the interaction between these components in the P300 speller, a BCI for communication. We introduce a synergistic approach in which the stimulus presentation sequence is modified to enhance the machine learning decoding. In this way we aim for an improved overall BCI performance. First, a new stimulus presentation paradigm is introduced which provides us flexibility in tuning the sequence of visual stimuli presented to the user. Next, an experimental setup in which this paradigm is compared to other paradigms uncovers the underlying mechanism of the interdependence between the application and the performance of the decoder. Extensive analysis of the experimental results reveals the changing requirements of the decoder concerning the data recorded during the spelling session. When few data is recorded, the balance in the number of target and non-target stimuli shown to the user is more important than the signal-to-noise rate (SNR) of the recorded response signals. Only when more data has been collected, the SNR becomes the dominant factor. For BCIs in general, knowing the dominant factor that affects the decoder performance and being able to respond to it is of utmost importance to improve system performance. For the P300 speller, the proposed tunable paradigm offers the possibility to tune the application to the decoder's needs at any time and, as such, fully exploit this application-decoder interaction.

  16. Combining multiple features for error detection and its application in brain-computer interface.

    Science.gov (United States)

    Tong, Jijun; Lin, Qinguang; Xiao, Ran; Ding, Lei

    2016-02-04

    Brain-computer interface (BCI) is an assistive technology that conveys users' intentions by decoding various brain activities and translating them into control commands, without the need of verbal instructions and/or physical interactions. However, errors existing in BCI systems affect their performance greatly, which in turn confines the development and application of BCI technology. It has been demonstrated viable to extract error potential from electroencephalography recordings. This study proposed a new approach of fusing multiple-channel features from temporal, spectral, and spatial domains through two times of dimensionality reduction based on neural network. 26 participants (13 males, mean age = 28.8 ± 5.4, range 20-37) took part in the study, who engaged in a P300 speller task spelling cued words from a 36-character matrix. In order to evaluate the generalization ability across subjects, the data from 16 participants were used for training and the rest for testing. The total classification accuracy with combination of features is 76.7 %. The receiver operating characteristic (ROC) curve and area under ROC curve (AUC) further indicate the superior performance of the combination of features over any single features in error detection. The average AUC reaches 0.7818 with combined features, while 0.7270, 0.6376, 0.7330 with single temporal, spectral, and spatial features respectively. The proposed method combining multiple-channel features from temporal, spectral, and spatial domain has better classification performance than any individual feature alone. It has good generalization ability across subject and provides a way of improving error detection, which could serve as promising feedbacks to promote the performance of BCI systems.

  17. Towards a symbiotic brain-computer interface: exploring the application-decoder interaction

    Science.gov (United States)

    Verhoeven, T.; Buteneers Wiersema, P., Jr.; Dambre, J.; Kindermans, PJ

    2015-12-01

    Objective. State of the art brain-computer interface (BCI) research focuses on improving individual components such as the application or the decoder that converts the user’s brain activity to control signals. In this study, we investigate the interaction between these components in the P300 speller, a BCI for communication. We introduce a synergistic approach in which the stimulus presentation sequence is modified to enhance the machine learning decoding. In this way we aim for an improved overall BCI performance. Approach. First, a new stimulus presentation paradigm is introduced which provides us flexibility in tuning the sequence of visual stimuli presented to the user. Next, an experimental setup in which this paradigm is compared to other paradigms uncovers the underlying mechanism of the interdependence between the application and the performance of the decoder. Main results. Extensive analysis of the experimental results reveals the changing requirements of the decoder concerning the data recorded during the spelling session. When few data is recorded, the balance in the number of target and non-target stimuli shown to the user is more important than the signal-to-noise rate (SNR) of the recorded response signals. Only when more data has been collected, the SNR becomes the dominant factor. Significance. For BCIs in general, knowing the dominant factor that affects the decoder performance and being able to respond to it is of utmost importance to improve system performance. For the P300 speller, the proposed tunable paradigm offers the possibility to tune the application to the decoder’s needs at any time and, as such, fully exploit this application-decoder interaction.

  18. Detecting awareness in patients with disorders of consciousness using a hybrid brain-computer interface.

    Science.gov (United States)

    Pan, Jiahui; Xie, Qiuyou; He, Yanbin; Wang, Fei; Di, Haibo; Laureys, Steven; Yu, Ronghao; Li, Yuanqing

    2014-10-01

    The bedside detection of potential awareness in patients with disorders of consciousness (DOC) currently relies only on behavioral observations and tests; however, the misdiagnosis rates in this patient group are historically relatively high. In this study, we proposed a visual hybrid brain-computer interface (BCI) combining P300 and steady-state evoked potential (SSVEP) responses to detect awareness in severely brain injured patients. Four healthy subjects, seven DOC patients who were in a vegetative state (VS, n = 4) or minimally conscious state (MCS, n = 3), and one locked-in syndrome (LIS) patient attempted a command-following experiment. In each experimental trial, two photos were presented to each patient; one was the patient's own photo, and the other photo was unfamiliar. The patients were instructed to focus on their own or the unfamiliar photos. The BCI system determined which photo the patient focused on with both P300 and SSVEP detections. Four healthy subjects, one of the 4 VS, one of the 3 MCS, and the LIS patient were able to selectively attend to their own or the unfamiliar photos (classification accuracy, 66-100%). Two additional patients (one VS and one MCS) failed to attend the unfamiliar photo (50-52%) but achieved significant accuracies for their own photo (64-68%). All other patients failed to show any significant response to commands (46-55%). Through the hybrid BCI system, command following was detected in four healthy subjects, two of 7 DOC patients, and one LIS patient. We suggest that the hybrid BCI system could be used as a supportive bedside tool to detect awareness in patients with DOC.

  19. Online EEG Classification of Covert Speech for Brain-Computer Interfacing.

    Science.gov (United States)

    Sereshkeh, Alborz Rezazadeh; Trott, Robert; Bricout, Aurélien; Chau, Tom

    2017-12-01

    Brain-computer interfaces (BCIs) for communication can be nonintuitive, often requiring the performance of hand motor imagery or some other conversation-irrelevant task. In this paper, electroencephalography (EEG) was used to develop two intuitive online BCIs based solely on covert speech. The goal of the first BCI was to differentiate between 10[Formula: see text]s of mental repetitions of the word "no" and an equivalent duration of unconstrained rest. The second BCI was designed to discern between 10[Formula: see text]s each of covert repetition of the words "yes" and "no". Twelve participants used these two BCIs to answer yes or no questions. Each participant completed four sessions, comprising two offline training sessions and two online sessions, one for testing each of the BCIs. With a support vector machine and a combination of spectral and time-frequency features, an average accuracy of [Formula: see text] was reached across participants in the online classification of no versus rest, with 10 out of 12 participants surpassing the chance level (60.0% for [Formula: see text]). The online classification of yes versus no yielded an average accuracy of [Formula: see text], with eight participants exceeding the chance level. Task-specific changes in EEG beta and gamma power in language-related brain areas tended to provide discriminatory information. To our knowledge, this is the first report of online EEG classification of covert speech. Our findings support further study of covert speech as a BCI activation task, potentially leading to the development of more intuitive BCIs for communication.

  20. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.

    Science.gov (United States)

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2015-11-30

    Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Evaluating brain-computer interface performance using color in the P300 checkerboard speller.

    Science.gov (United States)

    Ryan, D B; Townsend, G; Gates, N A; Colwell, K; Sellers, E W

    2017-10-01

    Current Brain-Computer Interface (BCI) systems typically flash an array of items from grey to white (GW). The objective of this study was to evaluate BCI performance using uniquely colored stimuli. In addition to the GW stimuli, the current study tested two types of color stimuli (grey to color [GC] and color intensification [CI]). The main hypotheses were that in a checkboard paradigm, unique color stimuli will: (1) increase BCI performance over the standard GW paradigm; (2) elicit larger event-related potentials (ERPs); and, (3) improve offline performance with an electrode selection algorithm (i.e., Jumpwise). Online results (n=36) showed that GC provides higher accuracy and information transfer rate than the CI and GW conditions. Waveform analysis showed that GC produced higher amplitude ERPs than CI and GW. Information transfer rate was improved by the Jumpwise-selected channel locations in all conditions. Unique color stimuli (GC) improved BCI performance and enhanced ERPs. Jumpwise-selected electrode locations improved offline performance. These results show that in a checkerboard paradigm, unique color stimuli increase BCI performance, are preferred by participants, and are important to the design of end-user applications; thus, could lead to an increase in end-user performance and acceptance of BCI technology. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.

  2. Predictive spelling with a P300-based brain-computer interface: Increasing the rate of communication

    Science.gov (United States)

    Ryan, D.B.; Frye, G.E.; Townsend, G.; Berry, D.R.; Mesa-G, S.; Gates, N.A.; Sellers, E.W.

    2010-01-01

    This study compared a conventional P300 speller brain-computer interface (BCI) to one used in conjunction with a predictive spelling program. Performance differences in accuracy, bit rate, selections per minute, and output characters per minute (OCM) were examined. An 8×9 matrix of letters, numbers, and other keyboard commands was used. Participants (n = 24) were required to correctly complete the same 58 character sentence (i.e., correcting for errors) using the predictive speller (PS) and the non-predictive speller (NS), counterbalanced. The PS produced significantly higher OCMs than the NS. Time to complete the task in the PS condition was 12min 43sec as compared to 20min 20sec in the NS condition. Despite the marked improvement in overall output, accuracy was significantly higher in the NS paradigm. P300 amplitudes were significantly larger in the NS than in the PS paradigm; which is attributed to increased workload and task demands. These results demonstrate the potential efficacy of predictive spelling in the context of BCI. PMID:21278858

  3. A cognitive brain-computer interface for patients with amyotrophic lateral sclerosis.

    Science.gov (United States)

    Hohmann, M R; Fomina, T; Jayaram, V; Widmann, N; Förster, C; Just, J; Synofzik, M; Schölkopf, B; Schöls, L; Grosse-Wentrup, M

    2016-01-01

    Brain-computer interfaces (BCIs) are often based on the control of sensorimotor processes, yet sensorimotor processes are impaired in patients suffering from amyotrophic lateral sclerosis (ALS). We devised a new paradigm that targets higher-level cognitive processes to transmit information from the user to the BCI. We instructed five ALS patients and twelve healthy subjects to either activate self-referential memories or to focus on a process without mnemonic content while recording a high-density electroencephalogram (EEG). Both tasks are designed to modulate activity in the default mode network (DMN) without involving sensorimotor pathways. We find that the two tasks can be distinguished after only one experimental session from the average of the combined bandpower modulations in the theta- (4-7Hz) and alpha-range (8-13Hz), with an average accuracy of 62.5% and 60.8% for healthy subjects and ALS patients, respectively. The spatial weights of the decoding algorithm show a preference for the parietal area, consistent with modulation of neural activity in primary nodes of the DMN. © 2016 Elsevier B.V. All rights reserved.

  4. SSVEP recognition using common feature analysis in brain-computer interface.

    Science.gov (United States)

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2015-04-15

    Canonical correlation analysis (CCA) has been successfully applied to steady-state visual evoked potential (SSVEP) recognition for brain-computer interface (BCI) application. Although the CCA method outperforms the traditional power spectral density analysis through multi-channel detection, it requires additionally pre-constructed reference signals of sine-cosine waves. It is likely to encounter overfitting in using a short time window since the reference signals include no features from training data. We consider that a group of electroencephalogram (EEG) data trials recorded at a certain stimulus frequency on a same subject should share some common features that may bear the real SSVEP characteristics. This study therefore proposes a common feature analysis (CFA)-based method to exploit the latent common features as natural reference signals in using correlation analysis for SSVEP recognition. Good performance of the CFA method for SSVEP recognition is validated with EEG data recorded from ten healthy subjects, in contrast to CCA and a multiway extension of CCA (MCCA). Experimental results indicate that the CFA method significantly outperformed the CCA and the MCCA methods for SSVEP recognition in using a short time window (i.e., less than 1s). The superiority of the proposed CFA method suggests it is promising for the development of a real-time SSVEP-based BCI. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The advantages of the surface Laplacian in brain-computer interface research.

    Science.gov (United States)

    McFarland, Dennis J

    2015-09-01

    Brain-computer interface (BCI) systems frequently use signal processing methods, such as spatial filtering, to enhance performance. The surface Laplacian can reduce spatial noise and aid in identification of sources. In BCI research, these two functions of the surface Laplacian correspond to prediction accuracy and signal orthogonality. In the present study, an off-line analysis of data from a sensorimotor rhythm-based BCI task dissociated these functions of the surface Laplacian by comparing nearest-neighbor and next-nearest neighbor Laplacian algorithms. The nearest-neighbor Laplacian produced signals that were more orthogonal while the next-nearest Laplacian produced signals that resulted in better accuracy. Both prediction and signal identification are important for BCI research. Better prediction of user's intent produces increased speed and accuracy of communication and control. Signal identification is important for ruling out the possibility of control by artifacts. Identifying the nature of the control signal is relevant both to understanding exactly what is being studied and in terms of usability for individuals with limited motor control. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Leveraging anatomical information to improve transfer learning in brain-computer interfaces

    Science.gov (United States)

    Wronkiewicz, Mark; Larson, Eric; Lee, Adrian K. C.

    2015-08-01

    Objective. Brain-computer interfaces (BCIs) represent a technology with the potential to rehabilitate a range of traumatic and degenerative nervous system conditions but require a time-consuming training process to calibrate. An area of BCI research known as transfer learning is aimed at accelerating training by recycling previously recorded training data across sessions or subjects. Training data, however, is typically transferred from one electrode configuration to another without taking individual head anatomy or electrode positioning into account, which may underutilize the recycled data. Approach. We explore transfer learning with the use of source imaging, which estimates neural activity in the cortex. Transferring estimates of cortical activity, in contrast to scalp recordings, provides a way to compensate for variability in electrode positioning and head morphologies across subjects and sessions. Main results. Based on simulated and measured electroencephalography activity, we trained a classifier using data transferred exclusively from other subjects and achieved accuracies that were comparable to or surpassed a benchmark classifier (representative of a real-world BCI). Our results indicate that classification improvements depend on the number of trials transferred and the cortical region of interest. Significance. These findings suggest that cortical source-based transfer learning is a principled method to transfer data that improves BCI classification performance and provides a path to reduce BCI calibration time.

  7. A Gaze Independent Brain-Computer Interface Based on Visual Stimulation through Closed Eyelids

    Science.gov (United States)

    Hwang, Han-Jeong; Ferreria, Valeria Y.; Ulrich, Daniel; Kilic, Tayfun; Chatziliadis, Xenofon; Blankertz, Benjamin; Treder, Matthias

    2015-10-01

    A classical brain-computer interface (BCI) based on visual event-related potentials (ERPs) is of limited application value for paralyzed patients with severe oculomotor impairments. In this study, we introduce a novel gaze independent BCI paradigm that can be potentially used for such end-users because visual stimuli are administered on closed eyelids. The paradigm involved verbally presented questions with 3 possible answers. Online BCI experiments were conducted with twelve healthy subjects, where they selected one option by attending to one of three different visual stimuli. It was confirmed that typical cognitive ERPs can be evidently modulated by the attention of a target stimulus in eyes-closed and gaze independent condition, and further classified with high accuracy during online operation (74.58% ± 17.85 s.d.; chance level 33.33%), demonstrating the effectiveness of the proposed novel visual ERP paradigm. Also, stimulus-specific eye movements observed during stimulation were verified as reflex responses to light stimuli, and they did not contribute to classification. To the best of our knowledge, this study is the first to show the possibility of using a gaze independent visual ERP paradigm in an eyes-closed condition, thereby providing another communication option for severely locked-in patients suffering from complex ocular dysfunctions.

  8. Subject Combination and Electrode Selection in Cooperative Brain-Computer Interface Based on Event Related Potentials

    Directory of Open Access Journals (Sweden)

    Hubert Cecotti

    2014-04-01

    Full Text Available New paradigms are required in Brain-Computer Interface (BCI systems for the needs and expectations of healthy people. To solve this issue, we explore the emerging field of cooperative BCIs, which involves several users in a single BCI system. Contrary to classical BCIs that are dependent on the unique subject’s will, cooperative BCIs are used for problem solving tasks where several people shall be engaged by sharing a common goal. Similarly as combining trials over time improves performance, combining trials across subjects can significantly improve performance compared with when only a single user is involved. Yet, cooperative BCIs may only be used in particular settings, and new paradigms must be proposed to efficiently use this approach. The possible benefits of using several subjects are addressed, and compared with current single-subject BCI paradigms. To show the advantages of a cooperative BCI, we evaluate the performance of combining decisions across subjects with data from an event-related potentials (ERP based experiment where each subject observed the same sequence of visual stimuli. Furthermore, we show that it is possible to achieve a mean AUC superior to 0.95 with 10 subjects and 3 electrodes on each subject, or with 4 subjects and 6 electrodes on each subject. Several emerging challenges and possible applications are proposed to highlight how cooperative BCIs could be efficiently used with current technologies and leverage BCI applications.

  9. An Asynchronous P300-Based Brain-Computer Interface Web Browser for Severely Disabled People.

    Science.gov (United States)

    Martinez-Cagigal, Victor; Gomez-Pilar, Javier; Alvarez, Daniel; Hornero, Roberto

    2017-08-01

    This paper presents an electroencephalographic (EEG) P300-based brain-computer interface (BCI) Internet browser. The system uses the "odd-ball" row-col paradigm for generating the P300 evoked potentials on the scalp of the user, which are immediately processed and translated into web browser commands. There were previous approaches for controlling a BCI web browser. However, to the best of our knowledge, none of them was focused on an assistive context, failing to test their applications with a suitable number of end users. In addition, all of them were synchronous applications, where it was necessary to introduce a "read-mode" command in order to avoid a continuous command selection. Thus, the aim of this study is twofold: 1) to test our web browser with a population of multiple sclerosis (MS) patients in order to assess the usefulness of our proposal to meet their daily communication needs; and 2) to overcome the aforementioned limitation by adding a threshold that discerns between control and non-control states, allowing the user to calmly read the web page without undesirable selections. The browser was tested with sixteen MS patients and five healthy volunteers. Both quantitative and qualitative metrics were obtained. MS participants reached an average accuracy of 84.14%, whereas 95.75% was achieved by control subjects. Results show that MS patients can successfully control the BCI web browser, improving their personal autonomy.

  10. Affective Stimuli for an Auditory P300 Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Akinari Onishi

    2017-09-01

    Full Text Available Gaze-independent brain computer interfaces (BCIs are a potential communication tool for persons with paralysis. This study applies affective auditory stimuli to investigate their effects using a P300 BCI. Fifteen able-bodied participants operated the P300 BCI, with positive and negative affective sounds (PA: a meowing cat sound, NA: a screaming cat sound. Permuted stimuli of the positive and negative affective sounds (permuted-PA, permuted-NA were also used for comparison. Electroencephalography data was collected, and offline classification accuracies were compared. We used a visual analog scale (VAS to measure positive and negative affective feelings in the participants. The mean classification accuracies were 84.7% for PA and 67.3% for permuted-PA, while the VAS scores were 58.5 for PA and −12.1 for permuted-PA. The positive affective stimulus showed significantly higher accuracy and VAS scores than the negative affective stimulus. In contrast, mean classification accuracies were 77.3% for NA and 76.0% for permuted-NA, while the VAS scores were −50.0 for NA and −39.2 for permuted NA, which are not significantly different. We determined that a positive affective stimulus with accompanying positive affective feelings significantly improved BCI accuracy. Additionally, an ALS patient achieved 90% online classification accuracy. These results suggest that affective stimuli may be useful for preparing a practical auditory BCI system for patients with disabilities.

  11. Toward a model-based predictive controller design in brain-computer interfaces.

    Science.gov (United States)

    Kamrunnahar, M; Dias, N S; Schiff, S J

    2011-05-01

    A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.

  12. Critical issues using brain-computer interfaces for augmentative and alternative communication.

    Science.gov (United States)

    Hill, Katya; Kovacs, Thomas; Shin, Sangeun

    2015-03-01

    Brain-computer interfaces (BCIs) may potentially be of significant practical value to patients in advanced stages of amyotrophic lateral sclerosis and locked-in syndrome for whom conventional augmentative and alternative communication (AAC) systems, which require some measure of consistent voluntary muscle control, are not satisfactory options. However, BCIs have primarily been used for communication in laboratory research settings. This article discusses 4 critical issues that should be addressed as BCIs are translated out of laboratory settings to become fully functional BCI/AAC systems that may be implemented clinically. These issues include (1) identification of primary, secondary, and tertiary system features; (2) integrating BCI/AAC systems in the World Health Organization's International Classification of Functioning, Disability and Health framework; (3) implementing language-based assessment and intervention; and (4) performance measurement. A clinical demonstration project is presented as an example of research beginning to address these critical issues. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. A high-speed brain-computer interface (BCI) using dry EEG electrodes.

    Science.gov (United States)

    Spüler, Martin

    2017-01-01

    Recently, brain-computer interfaces (BCIs) based on visual evoked potentials (VEPs) have been shown to achieve remarkable communication speeds. As they use electroencephalography (EEG) as non-invasive method for recording neural signals, the application of gel-based EEG is time-consuming and cumbersome. In order to achieve a more user-friendly system, this work explores the usability of dry EEG electrodes with a VEP-based BCI. While the results show a high variability between subjects, they also show that communication speeds of more than 100 bit/min are possible using dry EEG electrodes. To reduce performance variability and deal with the lower signal-to-noise ratio of the dry EEG electrodes, an averaging method and a dynamic stopping method were introduced to the BCI system. Those changes were shown to improve performance significantly, leading to an average classification accuracy of 76% with an average communication speed of 46 bit/min, which is equivalent to a writing speed of 8.8 error-free letters per minute. Although the BCI system works substantially better with gel-based EEG, dry EEG electrodes are more user-friendly and still allow high-speed BCI communication.

  14. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Directory of Open Access Journals (Sweden)

    Olesya eMokienko

    2013-11-01

    Full Text Available Background: Motor imagery (MI is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms.Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI.Subjects and methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years were either trained with an MI-based BCI (BCI-trained, n = 5 or received no BCI training (n = 6, controls. Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS.Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17% during MI, which was also observed only in BCI-trained subjects.Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy.

  15. Evaluation of different EEG acquisition systems concerning their suitability for building a brain-computer interface

    Directory of Open Access Journals (Sweden)

    Andreas Pinegger

    2016-09-01

    Full Text Available One important aspect in non-invasive brain-computer interface (BCI research is to acquire the electroencephalogram (EEG in a proper way. From an end-user perspective this means with maximum comfort and without any extra inconveniences (e.g., washing the hair. Whereas from a technical perspective, the signal quality has to be optimal to make the BCI work effectively and efficiently.In this work we evaluated three different commercially available EEG acquisition systems that differ in the type of electrode (gel-, water-, and dry-based, the amplifier technique, and the data transmission method. Every system was tested regarding three different aspects, namely, technical, BCI effectiveness and efficiency (P300 communication and control, and user satisfaction (comfort.We found that the water-based system had the lowest short circuit noise level, the hydrogel-based system had the highest P300 spelling accuracies, and the dry electrode system caused the least inconveniences.Therefore, building a reliable BCI is possible with all evaluated systems and it is on the user to decide which system meets the given requirements best.

  16. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks.

    Science.gov (United States)

    Buccino, Alessio Paolo; Keles, Hasan Onur; Omurtag, Ahmet

    2016-01-01

    Non-invasive Brain-Computer Interfaces (BCI) have demonstrated great promise for neuroprosthetics and assistive devices. Here we aim to investigate methods to combine Electroencephalography (EEG) and functional Near-Infrared Spectroscopy (fNIRS) in an asynchronous Sensory Motor rhythm (SMR)-based BCI. We attempted to classify 4 different executed movements, namely, Right-Arm-Left-Arm-Right-Hand-Left-Hand tasks. Previous studies demonstrated the benefit of EEG-fNIRS combination. However, since normally fNIRS hemodynamic response shows a long delay, we investigated new features, involving slope indicators, in order to immediately detect changes in the signals. Moreover, Common Spatial Patterns (CSPs) have been applied to both EEG and fNIRS signals. 15 healthy subjects took part in the experiments and since 25 trials per class were available, CSPs have been regularized with information from the entire population of participants and optimized using genetic algorithms. The different features have been compared in terms of performance and the dynamic accuracy over trials shows that the introduced methods diminish the fNIRS delay in the detection of changes.

  17. A Step towards EEG-based brain computer interface for autism intervention.

    Science.gov (United States)

    Fan, Jing; Wade, Joshua W; Bian, Dayi; Key, Alexandra P; Warren, Zachary E; Mion, Lorraine C; Sarkar, Nilanjan

    2015-08-01

    Autism Spectrum Disorder (ASD) is a prevalent and costly neurodevelopmental disorder. Individuals with ASD often have deficits in social communication skills as well as adaptive behavior skills related to daily activities. We have recently designed a novel virtual reality (VR) based driving simulator for driving skill training for individuals with ASD. In this paper, we explored the feasibility of detecting engagement level, emotional states, and mental workload during VR-based driving using EEG as a first step towards a potential EEG-based Brain Computer Interface (BCI) for assisting autism intervention. We used spectral features of EEG signals from a 14-channel EEG neuroheadset, together with therapist ratings of behavioral engagement, enjoyment, frustration, boredom, and difficulty to train a group of classification models. Seven classification methods were applied and compared including Bayes network, naïve Bayes, Support Vector Machine (SVM), multilayer perceptron, K-nearest neighbors (KNN), random forest, and J48. The classification results were promising, with over 80% accuracy in classifying engagement and mental workload, and over 75% accuracy in classifying emotional states. Such results may lead to an adaptive closed-loop VR-based skill training system for use in autism intervention.

  18. Design of a Mobile Brain Computer Interface-Based Smart Multimedia Controller

    Science.gov (United States)

    Tseng, Kevin C.; Lin, Bor-Shing; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-01-01

    Music is a way of expressing our feelings and emotions. Suitable music can positively affect people. However, current multimedia control methods, such as manual selection or automatic random mechanisms, which are now applied broadly in MP3 and CD players, cannot adaptively select suitable music according to the user’s physiological state. In this study, a brain computer interface-based smart multimedia controller was proposed to select music in different situations according to the user’s physiological state. Here, a commercial mobile tablet was used as the multimedia platform, and a wireless multi-channel electroencephalograph (EEG) acquisition module was designed for real-time EEG monitoring. A smart multimedia control program built in the multimedia platform was developed to analyze the user’s EEG feature and select music according his/her state. The relationship between the user’s state and music sorted by listener’s preference was also examined in this study. The experimental results show that real-time music biofeedback according a user’s EEG feature may positively improve the user’s attention state. PMID:25756862

  19. Brain Computer Interface based robotic rehabilitation with online modification of task speed.

    Science.gov (United States)

    Sarac, Mine; Koyas, Ela; Erdogan, Ahmetcan; Cetin, Mujdat; Patoglu, Volkan

    2013-06-01

    We present a systematic approach that enables online modification/adaptation of robot assisted rehabilitation exercises by continuously monitoring intention levels of patients utilizing an electroencephalogram (EEG) based Brain-Computer Interface (BCI). In particular, we use Linear Discriminant Analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with motor imagery; however, instead of providing a binary classification output, we utilize posterior probabilities extracted from LDA classifier as the continuous-valued outputs to control a rehabilitation robot. Passive velocity field control (PVFC) is used as the underlying robot controller to map instantaneous levels of motor imagery during the movement to the speed of contour following tasks. In other words, PVFC changes the speed of contour following tasks with respect to intention levels of motor imagery. PVFC also allows decoupling of the task and the speed of the task from each other, and ensures coupled stability of the overall robot patient system. The proposed framework is implemented on AssistOn-Mobile--a series elastic actuator based on a holonomic mobile platform, and feasibility studies with healthy volunteers have been conducted test effectiveness of the proposed approach. Giving patients online control over the speed of the task, the proposed approach ensures active involvement of patients throughout exercise routines and has the potential to increase the efficacy of robot assisted therapies.

  20. Brain-Computer Interface-Based Communication in the Completely Locked-In State.

    Science.gov (United States)

    Chaudhary, Ujwal; Xia, Bin; Silvoni, Stefano; Cohen, Leonardo G; Birbaumer, Niels

    2017-01-01

    Despite partial success, communication has remained impossible for persons suffering from complete motor paralysis but intact cognitive and emotional processing, a state called complete locked-in state (CLIS). Based on a motor learning theoretical context and on the failure of neuroelectric brain-computer interface (BCI) communication attempts in CLIS, we here report BCI communication using functional near-infrared spectroscopy (fNIRS) and an implicit attentional processing procedure. Four patients suffering from advanced amyotrophic lateral sclerosis (ALS)-two of them in permanent CLIS and two entering the CLIS without reliable means of communication-learned to answer personal questions with known answers and open questions all requiring a "yes" or "no" thought using frontocentral oxygenation changes measured with fNIRS. Three patients completed more than 46 sessions spread over several weeks, and one patient (patient W) completed 20 sessions. Online fNIRS classification of personal questions with known answers and open questions using linear support vector machine (SVM) resulted in an above-chance-level correct response rate over 70%. Electroencephalographic oscillations and electrooculographic signals did not exceed the chance-level threshold for correct communication despite occasional differences between the physiological signals representing a "yes" or "no" response. However, electroencephalogram (EEG) changes in the theta-frequency band correlated with inferior communication performance, probably because of decreased vigilance and attention. If replicated with ALS patients in CLIS, these positive results could indicate the first step towards abolition of complete locked-in states, at least for ALS.

  1. Amyotrophic lateral sclerosis progression and stability of brain-computer interface communication.

    Science.gov (United States)

    Silvoni, Stefano; Cavinato, Marianna; Volpato, Chiara; Ruf, Carolin A; Birbaumer, Niels; Piccione, Francesco

    2013-09-01

    Our objective was to investigate the relationship between brain-computer interface (BCI) communication skill and disease progression in amyotrophic lateral sclerosis (ALS). We sought also to assess stability of BCI communication performance over time and whether it is related to the progression of neurological impairment before entering the locked-in state. A three years follow-up, BCI evaluation in a group of ALS patients (n = 24) was conducted. For a variety of reasons only three patients completed the three years follow-up. BCI communication skill and disability level, using the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised, were assessed at admission and at each of the three follow-ups. Multiple non-parametric statistical methods were used to ensure reliability of the dependent variables: correlations, paired test and factor analysis of variance. Results demonstrated no significant relationship between BCI communication skill (BCI-CS) and disease evolution. The patients who performed the follow-up evaluations preserved their BCI-CS over time. Patients' age at admission correlated positively with the ability to achieve control over a BCI. In conclusion, disease evolution in ALS does not affect the ability to control a BCI for communication. BCI performance can be maintained in the different stages of the illness.

  2. Brain-Computer Interface for Clinical Purposes: Cognitive Assessment and Rehabilitation

    Directory of Open Access Journals (Sweden)

    Laura Carelli

    2017-01-01

    Full Text Available Alongside the best-known applications of brain-computer interface (BCI technology for restoring communication abilities and controlling external devices, we present the state of the art of BCI use for cognitive assessment and training purposes. We first describe some preliminary attempts to develop verbal-motor free BCI-based tests for evaluating specific or multiple cognitive domains in patients with Amyotrophic Lateral Sclerosis, disorders of consciousness, and other neurological diseases. Then we present the more heterogeneous and advanced field of BCI-based cognitive training, which has its roots in the context of neurofeedback therapy and addresses patients with neurological developmental disorders (autism spectrum disorder and attention-deficit/hyperactivity disorder, stroke patients, and elderly subjects. We discuss some advantages of BCI for both assessment and training purposes, the former concerning the possibility of longitudinally and reliably evaluating cognitive functions in patients with severe motor disabilities, the latter regarding the possibility of enhancing patients’ motivation and engagement for improving neural plasticity. Finally, we discuss some present and future challenges in the BCI use for the described purposes.

  3. Comparison of sensor selection mechanisms for an ERP-based brain-computer interface.

    Science.gov (United States)

    Feess, David; Krell, Mario M; Metzen, Jan H

    2013-01-01

    A major barrier for a broad applicability of brain-computer interfaces (BCIs) based on electroencephalography (EEG) is the large number of EEG sensor electrodes typically used. The necessity for this results from the fact that the relevant information for the BCI is often spread over the scalp in complex patterns that differ depending on subjects and application scenarios. Recently, a number of methods have been proposed to determine an individual optimal sensor selection. These methods have, however, rarely been compared against each other or against any type of baseline. In this paper, we review several selection approaches and propose one additional selection criterion based on the evaluation of the performance of a BCI system using a reduced set of sensors. We evaluate the methods in the context of a passive BCI system that is designed to detect a P300 event-related potential and compare the performance of the methods against randomly generated sensor constellations. For a realistic estimation of the reduced system's performance we transfer sensor constellations found on one experimental session to a different session for evaluation. We identified notable (and unanticipated) differences among the methods and could demonstrate that the best method in our setup is able to reduce the required number of sensors considerably. Though our application focuses on EEG data, all presented algorithms and evaluation schemes can be transferred to any binary classification task on sensor arrays.

  4. Comparison of sensor selection mechanisms for an ERP-based brain-computer interface.

    Directory of Open Access Journals (Sweden)

    David Feess

    Full Text Available A major barrier for a broad applicability of brain-computer interfaces (BCIs based on electroencephalography (EEG is the large number of EEG sensor electrodes typically used. The necessity for this results from the fact that the relevant information for the BCI is often spread over the scalp in complex patterns that differ depending on subjects and application scenarios. Recently, a number of methods have been proposed to determine an individual optimal sensor selection. These methods have, however, rarely been compared against each other or against any type of baseline. In this paper, we review several selection approaches and propose one additional selection criterion based on the evaluation of the performance of a BCI system using a reduced set of sensors. We evaluate the methods in the context of a passive BCI system that is designed to detect a P300 event-related potential and compare the performance of the methods against randomly generated sensor constellations. For a realistic estimation of the reduced system's performance we transfer sensor constellations found on one experimental session to a different session for evaluation. We identified notable (and unanticipated differences among the methods and could demonstrate that the best method in our setup is able to reduce the required number of sensors considerably. Though our application focuses on EEG data, all presented algorithms and evaluation schemes can be transferred to any binary classification task on sensor arrays.

  5. Binary particle swarm optimization for frequency band selection in motor imagery based brain-computer interfaces.

    Science.gov (United States)

    Wei, Qingguo; Wei, Zhonghai

    2015-01-01

    A brain-computer interface (BCI) enables people suffering from affective neurological diseases to communicate with the external world. Common spatial pattern (CSP) is an effective algorithm for feature extraction in motor imagery based BCI systems. However, many studies have proved that the performance of CSP depends heavily on the frequency band of EEG signals used for the construction of covariance matrices. The use of different frequency bands to extract signal features may lead to different classification performances, which are determined by the discriminative and complementary information they contain. In this study, the broad frequency band (8-30 Hz) is divided into 10 sub-bands of band width 4 Hz and overlapping 2 Hz. Binary particle swarm optimization (BPSO) is used to find the best sub-band set to improve the performance of CSP and subsequent classification. Experimental results demonstrate that the proposed method achieved an average improvement of 6.91% in cross-validation accuracy when compared to broad band CSP.

  6. Functional network reorganization during learning in a brain-computer interface paradigm.

    Science.gov (United States)

    Jarosiewicz, Beata; Chase, Steven M; Fraser, George W; Velliste, Meel; Kass, Robert E; Schwartz, Andrew B

    2008-12-09

    Efforts to study the neural correlates of learning are hampered by the size of the network in which learning occurs. To understand the importance of learning-related changes in a network of neurons, it is necessary to understand how the network acts as a whole to generate behavior. Here we introduce a paradigm in which the output of a cortical network can be perturbed directly and the neural basis of the compensatory changes studied in detail. Using a brain-computer interface, dozens of simultaneously recorded neurons in the motor cortex of awake, behaving monkeys are used to control the movement of a cursor in a three-dimensional virtual-reality environment. This device creates a precise, well-defined mapping between the firing of the recorded neurons and an expressed behavior (cursor movement). In a series of experiments, we force the animal to relearn the association between neural firing and cursor movement in a subset of neurons and assess how the network changes to compensate. We find that changes in neural activity reflect not only an alteration of behavioral strategy but also the relative contributions of individual neurons to the population error signal.

  7. Robust EEG Channel Selection across Subjects for Brain-Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Lal Thomas Navin

    2005-01-01

    Full Text Available Most EEG-based brain-computer interface (BCI paradigms come along with specific electrode positions, for example, for a visual-based BCI, electrode positions close to the primary visual cortex are used. For new BCI paradigms it is usually not known where task relevant activity can be measured from the scalp. For individual subjects, Lal et al. in 2004 showed that recording positions can be found without the use of prior knowledge about the paradigm used. However it remains unclear to what extent their method of recursive channel elimination (RCE can be generalized across subjects. In this paper we transfer channel rankings from a group of subjects to a new subject. For motor imagery tasks the results are promising, although cross-subject channel selection does not quite achieve the performance of channel selection on data of single subjects. Although the RCE method was not provided with prior knowledge about the mental task, channels that are well known to be important (from a physiological point of view were consistently selected whereas task-irrelevant channels were reliably disregarded.

  8. A Generalizable Brain-Computer Interface (BCI) Using Machine Learning for Feature Discovery.

    Science.gov (United States)

    Nurse, Ewan S; Karoly, Philippa J; Grayden, David B; Freestone, Dean R

    2015-01-01

    This work describes a generalized method for classifying motor-related neural signals for a brain-computer interface (BCI), based on a stochastic machine learning method. The method differs from the various feature extraction and selection techniques employed in many other BCI systems. The classifier does not use extensive a-priori information, resulting in reduced reliance on highly specific domain knowledge. Instead of pre-defining features, the time-domain signal is input to a population of multi-layer perceptrons (MLPs) in order to perform a stochastic search for the best structure. The results showed that the average performance of the new algorithm outperformed other published methods using the Berlin BCI IV (2008) competition dataset and was comparable to the best results in the Berlin BCI II (2002-3) competition dataset. The new method was also applied to electroencephalography (EEG) data recorded from five subjects undertaking a hand squeeze task and demonstrated high levels of accuracy with a mean classification accuracy of 78.9% after five-fold cross-validation. Our new approach has been shown to give accurate results across different motor tasks and signal types as well as between subjects.

  9. Selection of Optimal Frequency Bands of the Electroencephalogram Signal in Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    P. I. Sotnikov

    2015-01-01

    Full Text Available This article proposes a new method to increase the performance of brain-computer interface (BCI taking into account the individual characteristics of users. The idea of the method consists in the automatic selection of the most informative frequency bands of the electroencep halogram (EEG signal. As a measure of information content we use the accuracy of the imagery movement classes’ separation. The first part of the article explores differences in sensorimotor rhythms of the EEG signal between users. The second part provides a mathematical formulation of the optimal frequency bands selection problem, which is considered as a one-criterion optimization task. Boundaries of the frequency bands are considered as the variable parameters while the assessment of the classification accuracy acts as an objective function. In the following sections we propose to find a solution of the optimization task using a genetic algorithm. In the last section we compare the efficiency of the described method with other ones, including the algorithm based on the estimation of the EEG signal energy in the classical frequency bands. As a test data we use EEG recordings submitted to BCI Competition IV. In conclusion the main results and future lines of research are discussed.

  10. Affective three-dimensional brain-computer interface created using a prism array-based display

    Science.gov (United States)

    Mun, Sungchul; Park, Min-Chul

    2014-12-01

    To avoid the vergence-accommodation mismatch and provide a strong sense of presence to users, we applied a prism array-based display when presenting three-dimensional (3-D) objects. Emotional pictures were used as visual stimuli to increase the signal-to-noise ratios of steady-state visually evoked potentials (SSVEPs) because involuntarily motivated selective attention by affective mechanisms can enhance SSVEP amplitudes, thus producing increased interaction efficiency. Ten male and nine female participants voluntarily participated in our experiments. Participants were asked to control objects under three viewing conditions: two-dimension (2-D), stereoscopic 3-D, and prism. The participants performed each condition in a counter-balanced order. One-way repeated measures analysis of variance showed significant increases in the positive predictive values in the prism condition compared to the 2-D and 3-D conditions. Participants' subjective ratings of realness and engagement were also significantly greater in the prism condition than in the 2-D and 3-D conditions, while the ratings for visual fatigue were significantly reduced in the prism condition than in the 3-D condition. The proposed methods are expected to enhance the sense of reality in 3-D space without causing critical visual fatigue. In addition, people who are especially susceptible to stereoscopic 3-D may be able to use the affective brain-computer interface.

  11. Non-target adjacent stimuli classification improves performance of classical ERP-based brain computer interface

    Science.gov (United States)

    Ceballos, G. A.; Hernández, L. F.

    2015-04-01

    Objective. The classical ERP-based speller, or P300 Speller, is one of the most commonly used paradigms in the field of Brain Computer Interfaces (BCI). Several alterations to the visual stimuli presentation system have been developed to avoid unfavorable effects elicited by adjacent stimuli. However, there has been little, if any, regard to useful information contained in responses to adjacent stimuli about spatial location of target symbols. This paper aims to demonstrate that combining the classification of non-target adjacent stimuli with standard classification (target versus non-target) significantly improves classical ERP-based speller efficiency. Approach. Four SWLDA classifiers were trained and combined with the standard classifier: the lower row, upper row, right column and left column classifiers. This new feature extraction procedure and the classification method were carried out on three open databases: the UAM P300 database (Universidad Autonoma Metropolitana, Mexico), BCI competition II (dataset IIb) and BCI competition III (dataset II). Main results. The inclusion of the classification of non-target adjacent stimuli improves target classification in the classical row/column paradigm. A gain in mean single trial classification of 9.6% and an overall improvement of 25% in simulated spelling speed was achieved. Significance. We have provided further evidence that the ERPs produced by adjacent stimuli present discriminable features, which could provide additional information about the spatial location of intended symbols. This work promotes the searching of information on the peripheral stimulation responses to improve the performance of emerging visual ERP-based spellers.

  12. Design of a Mobile Brain Computer Interface-Based Smart Multimedia Controller

    Directory of Open Access Journals (Sweden)

    Kevin C. Tseng

    2015-03-01

    Full Text Available Music is a way of expressing our feelings and emotions. Suitable music can positively affect people. However, current multimedia control methods, such as manual selection or automatic random mechanisms, which are now applied broadly in MP3 and CD players, cannot adaptively select suitable music according to the user’s physiological state. In this study, a brain computer interface-based smart multimedia controller was proposed to select music in different situations according to the user’s physiological state. Here, a commercial mobile tablet was used as the multimedia platform, and a wireless multi-channel electroencephalograph (EEG acquisition module was designed for real-time EEG monitoring. A smart multimedia control program built in the multimedia platform was developed to analyze the user’s EEG feature and select music according his/her state. The relationship between the user’s state and music sorted by listener’s preference was also examined in this study. The experimental results show that real-time music biofeedback according a user’s EEG feature may positively improve the user’s attention state.

  13. Scientific profile of brain-computer interfaces: Bibliometric analysis in a 10-year period.

    Science.gov (United States)

    Hu, Kejia; Chen, Chao; Meng, Qingyao; Williams, Ziv; Xu, Wendong

    2016-12-02

    With the tremendous advances in the field of brain-computer interfaces (BCI), the literature in this field has grown exponentially; examination of highly cited articles is a tool that can help identify outstanding scientific studies and landmark papers. This study examined the characteristics of 100 highly cited BCI papers over the past 10 years. The Web of Science was searched for highly cited papers related to BCI research published from 2006 to 2015. The top 100 highly cited articles were identified. The number of citations and countries, and the corresponding institutions, year of publication, study design, and research area were noted and analyzed. The 100 highly cited articles had a mean of 137.1(SE: 15.38) citations. These articles were published in 45 high-impact journals, and mostly in TRANSACTIONS ON BIOMEDICAL ENGINEERING (n=14). Of the 100 articles, 72 were original articles and the rest were review articles. These articles came from 15 countries, with the USA contributing most of the highly cited articles (n=52). Fifty-seven institutions produced these 100 highly cited articles, led by Duke University (n=7). This study provides a historical perspective on the progress in the field of BCI, allows recognition of the most influential reports, and provides useful information that can indicate areas requiring further investigation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. A P300 brain-computer interface based on a modification of the mismatch negativity paradigm.

    Science.gov (United States)

    Jin, Jing; Sellers, Eric W; Zhou, Sijie; Zhang, Yu; Wang, Xingyu; Cichocki, Andrzej

    2015-05-01

    The P300-based brain-computer interface (BCI) is an extension of the oddball paradigm, and can facilitate communication for people with severe neuromuscular disorders. It has been shown that, in addition to the P300, other event-related potential (ERP) components have been shown to contribute to successful operation of the P300 BCI. Incorporating these components into the classification algorithm can improve the classification accuracy and information transfer rate (ITR). In this paper, a single character presentation paradigm was compared to a presentation paradigm that is based on the visual mismatch negativity. The mismatch negativity paradigm showed significantly higher classification accuracy and ITRs than a single character presentation paradigm. In addition, the mismatch paradigm elicited larger N200 and N400 components than the single character paradigm. The components elicited by the presentation method were consistent with what would be expected from a mismatch paradigm and a typical P300 was also observed. The results show that increasing the signal-to-noise ratio by increasing the amplitude of ERP components can significantly improve BCI speed and accuracy. The mismatch presentation paradigm may be considered a viable option to the traditional P300 BCI paradigm.

  15. Idle state classification using spiking activity and local field potentials in a brain computer interface.

    Science.gov (United States)

    Williams, Jordan J; Tien, Rex N; Inoue, Yoh; Schwartz, Andrew B

    2016-08-01

    Previous studies of intracortical brain-computer interfaces (BCIs) have often focused on or compared the use of spiking activity and local field potentials (LFPs) for decoding kinematic movement parameters. Conversely, using these signals to detect the initial intention to use a neuroprosthetic device or not has remained a relatively understudied problem. In this study, we examined the relative performance of spiking activity and LFP signals in detecting discrete state changes in attention regarding a user's desire to actively control a BCI device. Preliminary offline results suggest that the beta and high gamma frequency bands of LFP activity demonstrated a capacity for discriminating idle/active BCI control states equal to or greater than firing rate activity on the same channel. Population classifier models using either signal modality demonstrated an indistinguishably high degree of accuracy in decoding rest periods from active BCI reach periods as well as other portions of active BCI task trials. These results suggest that either signal modality may be used to reliably detect discrete state changes on a fine time scale for the purpose of gating neural prosthetic movements.

  16. Time-Shift Correlation Algorithm for P300 Event Related Potential Brain-Computer Interface Implementation.

    Science.gov (United States)

    Liu, Ju-Chi; Chou, Hung-Chyun; Chen, Chien-Hsiu; Lin, Yi-Tseng; Kuo, Chung-Hsien

    2016-01-01

    A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI). The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN), and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM) and accuracy-recognition mode (AM), were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR). When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints.

  17. Time-Shift Correlation Algorithm for P300 Event Related Potential Brain-Computer Interface Implementation

    Directory of Open Access Journals (Sweden)

    Ju-Chi Liu

    2016-01-01

    Full Text Available A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI. The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN, and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM and accuracy-recognition mode (AM, were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR. When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints.

  18. An Auditory-Tactile Visual Saccade-Independent P300 Brain-Computer Interface.

    Science.gov (United States)

    Yin, Erwei; Zeyl, Timothy; Saab, Rami; Hu, Dewen; Zhou, Zongtan; Chau, Tom

    2016-02-01

    Most P300 event-related potential (ERP)-based brain-computer interface (BCI) studies focus on gaze shift-dependent BCIs, which cannot be used by people who have lost voluntary eye movement. However, the performance of visual saccade-independent P300 BCIs is generally poor. To improve saccade-independent BCI performance, we propose a bimodal P300 BCI approach that simultaneously employs auditory and tactile stimuli. The proposed P300 BCI is a vision-independent system because no visual interaction is required of the user. Specifically, we designed a direction-congruent bimodal paradigm by randomly and simultaneously presenting auditory and tactile stimuli from the same direction. Furthermore, the channels and number of trials were tailored to each user to improve online performance. With 12 participants, the average online information transfer rate (ITR) of the bimodal approach improved by 45.43% and 51.05% over that attained, respectively, with the auditory and tactile approaches individually. Importantly, the average online ITR of the bimodal approach, including the break time between selections, reached 10.77 bits/min. These findings suggest that the proposed bimodal system holds promise as a practical visual saccade-independent P300 BCI.

  19. sw-SVM: sensor weighting support vector machines for EEG-based brain-computer interfaces

    Science.gov (United States)

    Jrad, N.; Congedo, M.; Phlypo, R.; Rousseau, S.; Flamary, R.; Yger, F.; Rakotomamonjy, A.

    2011-10-01

    In many machine learning applications, like brain-computer interfaces (BCI), high-dimensional sensor array data are available. Sensor measurements are often highly correlated and signal-to-noise ratio is not homogeneously spread across sensors. Thus, collected data are highly variable and discrimination tasks are challenging. In this work, we focus on sensor weighting as an efficient tool to improve the classification procedure. We present an approach integrating sensor weighting in the classification framework. Sensor weights are considered as hyper-parameters to be learned by a support vector machine (SVM). The resulting sensor weighting SVM (sw-SVM) is designed to satisfy a margin criterion, that is, the generalization error. Experimental studies on two data sets are presented, a P300 data set and an error-related potential (ErrP) data set. For the P300 data set (BCI competition III), for which a large number of trials is available, the sw-SVM proves to perform equivalently with respect to the ensemble SVM strategy that won the competition. For the ErrP data set, for which a small number of trials are available, the sw-SVM shows superior performances as compared to three state-of-the art approaches. Results suggest that the sw-SVM promises to be useful in event-related potentials classification, even with a small number of training trials.

  20. Performance predictors of brain-computer interfaces in patients with amyotrophic lateral sclerosis

    Science.gov (United States)

    Geronimo, A.; Simmons, Z.; Schiff, S. J.

    2016-04-01

    Objective. Patients with amyotrophic lateral sclerosis (ALS) may benefit from brain-computer interfaces (BCI), but the utility of such devices likely will have to account for the functional, cognitive, and behavioral heterogeneity of this neurodegenerative disorder. Approach. In this study, a heterogeneous group of patients with ALS participated in a study on BCI based on the P300 event related potential and motor-imagery. Results. The presence of cognitive impairment in these patients significantly reduced the quality of the control signals required to use these communication systems, subsequently impairing performance, regardless of progression of physical symptoms. Loss in performance among the cognitively impaired was accompanied by a decrease in the signal-to-noise ratio of task-relevant EEG band power. There was also evidence that behavioral dysfunction negatively affects P300 speller performance. Finally, older participants achieved better performance on the P300 system than the motor-imagery system, indicating a preference of BCI paradigm with age. Significance. These findings highlight the importance of considering the heterogeneity of disease when designing BCI augmentative and alternative communication devices for clinical applications.

  1. Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude

    Science.gov (United States)

    Halder, Sebastian; Hammer, Eva Maria; Kleih, Sonja Claudia; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels; Kübler, Andrea

    2013-01-01

    Objective Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball. Methods Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude. Results Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy. Conclusions Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection. Significance Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population. PMID:23457444

  2. A brain-computer interface based attention training program for treating attention deficit hyperactivity disorder.

    Directory of Open Access Journals (Sweden)

    Choon Guan Lim

    Full Text Available Attention deficit hyperactivity disorder (ADHD symptoms can be difficult to treat. We previously reported that a 20-session brain-computer interface (BCI attention training programme improved ADHD symptoms. Here, we investigated a new more intensive BCI-based attention training game system on 20 unmedicated ADHD children (16 males, 4 females with significant inattentive symptoms (combined and inattentive ADHD subtypes. This new system monitored attention through a head band with dry EEG sensors, which was used to drive a feed forward game. The system was calibrated for each user by measuring the EEG parameters during a Stroop task. Treatment consisted of an 8-week training comprising 24 sessions followed by 3 once-monthly booster training sessions. Following intervention, both parent-rated inattentive and hyperactive-impulsive symptoms on the ADHD Rating Scale showed significant improvement. At week 8, the mean improvement was -4.6 (5.9 and -4.7 (5.6 respectively for inattentive symptoms and hyperactive-impulsive symptoms (both p<0.01. Cohen's d effect size for inattentive symptoms was large at 0.78 at week 8 and 0.84 at week 24 (post-boosters. Further analysis showed that the change in the EEG based BCI ADHD severity measure correlated with the change ADHD Rating Scale scores. The BCI-based attention training game system is a potential new treatment for ADHD.ClinicalTrials.gov NCT01344044.

  3. Prediction of auditory and visual p300 brain-computer interface aptitude.

    Directory of Open Access Journals (Sweden)

    Sebastian Halder

    Full Text Available OBJECTIVE: Brain-computer interfaces (BCIs provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball. METHODS: Forty healthy participants performed an electroencephalography (EEG based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude. RESULTS: Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy. CONCLUSIONS: Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection. SIGNIFICANCE: Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population.

  4. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks.

    Directory of Open Access Journals (Sweden)

    Alessio Paolo Buccino

    Full Text Available Non-invasive Brain-Computer Interfaces (BCI have demonstrated great promise for neuroprosthetics and assistive devices. Here we aim to investigate methods to combine Electroencephalography (EEG and functional Near-Infrared Spectroscopy (fNIRS in an asynchronous Sensory Motor rhythm (SMR-based BCI. We attempted to classify 4 different executed movements, namely, Right-Arm-Left-Arm-Right-Hand-Left-Hand tasks. Previous studies demonstrated the benefit of EEG-fNIRS combination. However, since normally fNIRS hemodynamic response shows a long delay, we investigated new features, involving slope indicators, in order to immediately detect changes in the signals. Moreover, Common Spatial Patterns (CSPs have been applied to both EEG and fNIRS signals. 15 healthy subjects took part in the experiments and since 25 trials per class were available, CSPs have been regularized with information from the entire population of participants and optimized using genetic algorithms. The different features have been compared in terms of performance and the dynamic accuracy over trials shows that the introduced methods diminish the fNIRS delay in the detection of changes.

  5. A Fuzzy Integral Ensemble Method in Visual P300 Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Francesco Cavrini

    2016-01-01

    Full Text Available We evaluate the possibility of application of combination of classifiers using fuzzy measures and integrals to Brain-Computer Interface (BCI based on electroencephalography. In particular, we present an ensemble method that can be applied to a variety of systems and evaluate it in the context of a visual P300-based BCI. Offline analysis of data relative to 5 subjects lets us argue that the proposed classification strategy is suitable for BCI. Indeed, the achieved performance is significantly greater than the average of the base classifiers and, broadly speaking, similar to that of the best one. Thus the proposed methodology allows realizing systems that can be used by different subjects without the need for a preliminary configuration phase in which the best classifier for each user has to be identified. Moreover, the ensemble is often capable of detecting uncertain situations and turning them from misclassifications into abstentions, thereby improving the level of safety in BCI for environmental or device control.

  6. Computational Assessment of Neural Probe and Brain Tissue Interface under Transient Motion

    Directory of Open Access Journals (Sweden)

    Michael Polanco

    2016-06-01

    Full Text Available The functional longevity of a neural probe is dependent upon its ability to minimize injury risk during the insertion and recording period in vivo, which could be related to motion-related strain between the probe and surrounding tissue. A series of finite element analyses was conducted to study the extent of the strain induced within the brain in an area around a neural probe. This study focuses on the transient behavior of neural probe and brain tissue interface with a viscoelastic model. Different stages of the interface from initial insertion of neural probe to full bonding of the probe by astro-glial sheath formation are simulated utilizing analytical tools to investigate the effects of relative motion between the neural probe and the brain while friction coefficients and kinematic frequencies are varied. The analyses can provide an in-depth look at the quantitative benefits behind using soft materials for neural probes.

  7. EDITORIAL: Special section on gaze-independent brain-computer interfaces Special section on gaze-independent brain-computer interfaces

    Science.gov (United States)

    Treder, Matthias S.

    2012-08-01

    Restoring the ability to communicate and interact with the environment in patients with severe motor disabilities is a vision that has been the main catalyst of early brain-computer interface (BCI) research. The past decade has brought a diversification of the field. BCIs have been examined as a tool for motor rehabilitation and their benefit in non-medical applications such as mental-state monitoring for improved human-computer interaction and gaming has been confirmed. At the same time, the weaknesses of some approaches have been pointed out. One of these weaknesses is gaze-dependence, that is, the requirement that the user of a BCI system voluntarily directs his or her eye gaze towards a visual target in order to efficiently operate a BCI. This not only contradicts the main doctrine of BCI research, namely that BCIs should be independent of muscle activity, but it can also limit its real-world applicability both in clinical and non-medical settings. It is only in a scenario devoid of any motor activity that a BCI solution is without alternative. Gaze-dependencies have surfaced at two different points in the BCI loop. Firstly, a BCI that relies on visual stimulation may require users to fixate on the target location. Secondly, feedback is often presented visually, which implies that the user may have to move his or her eyes in order to perceive the feedback. This special section was borne out of a BCI workshop on gaze-independent BCIs held at the 2011 Society for Applied Neurosciences (SAN) Conference and has then been extended with additional contributions from other research groups. It compiles experimental and methodological work that aims toward gaze-independent communication and mental-state monitoring. Riccio et al review the current state-of-the-art in research on gaze-independent BCIs [1]. Van der Waal et al present a tactile speller that builds on the stimulation of the fingers of the right and left hand [2]. H¨ohne et al analyze the ergonomic aspects

  8. Modulation of Posterior Alpha Activity by Spatial Attention Allows for Controlling A Continuous Brain-Computer Interface.

    Science.gov (United States)

    Horschig, Jörn M; Oosterheert, Wouter; Oostenveld, Robert; Jensen, Ole

    2015-11-01

    Here we report that the modulation of alpha activity by covert attention can be used as a control signal in an online brain-computer interface, that it is reliable, and that it is robust. Subjects were instructed to orient covert visual attention to the left or right hemifield. We decoded the direction of attention from the magnetoencephalogram by a template matching classifier and provided the classification outcome to the subject in real-time using a novel graphical user interface. Training data for the templates were obtained from a Posner-cueing task conducted just before the BCI task. Eleven subjects participated in four sessions each. Eight of the subjects achieved classification rates significantly above chance level. Subjects were able to significantly increase their performance from the first to the second session. Individual patterns of posterior alpha power remained stable throughout the four sessions and did not change with increased performance. We conclude that posterior alpha power can successfully be used as a control signal in brain-computer interfaces. We also discuss several ideas for further improving the setup and propose future research based on solid hypotheses about behavioral consequences of modulating neuronal oscillations by brain computer interfacing.

  9. Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces

    Science.gov (United States)

    Lu, Jun; McFarland, Dennis J.; Wolpaw, Jonathan R.

    2013-02-01

    Objective. Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an ‘adaptive Laplacian (ALAP) filter’, can provide better performance for SMR-based BCIs. Approach. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Main results. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Significance. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.

  10. Task-induced frequency modulation features for brain-computer interfacing.

    Science.gov (United States)

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects' intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects' intents with an accuracy comparable to task-induced amplitude modulation. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  11. Task-induced frequency modulation features for brain-computer interfacing

    Science.gov (United States)

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Objective. Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects’ intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects’ intents with an accuracy comparable to task-induced amplitude modulation. Approach. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. Main results. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Significance. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  12. Is Neural Activity Detected by ERP-Based Brain-Computer Interfaces Task Specific?

    Directory of Open Access Journals (Sweden)

    Markus A Wenzel

    Full Text Available Brain-computer interfaces (BCIs that are based on event-related potentials (ERPs can estimate to which stimulus a user pays particular attention. In typical BCIs, the user silently counts the selected stimulus (which is repeatedly presented among other stimuli in order to focus the attention. The stimulus of interest is then inferred from the electroencephalogram (EEG. Detecting attention allocation implicitly could be also beneficial for human-computer interaction (HCI, because it would allow software to adapt to the user's interest. However, a counting task would be inappropriate for the envisaged implicit application in HCI. Therefore, the question was addressed if the detectable neural activity is specific for silent counting, or if it can be evoked also by other tasks that direct the attention to certain stimuli.Thirteen people performed a silent counting, an arithmetic and a memory task. The tasks required the subjects to pay particular attention to target stimuli of a random color. The stimulus presentation was the same in all three tasks, which allowed a direct comparison of the experimental conditions.Classifiers that were trained to detect the targets in one task, according to patterns present in the EEG signal, could detect targets in all other tasks (irrespective of some task-related differences in the EEG.The neural activity detected by the classifiers is not strictly task specific but can be generalized over tasks and is presumably a result of the attention allocation or of the augmented workload. The results may hold promise for the transfer of classification algorithms from BCI research to implicit relevance detection in HCI.

  13. Is Implicit Motor Imagery a Reliable Strategy for a Brain-Computer Interface?

    Science.gov (United States)

    Osuagwu, Bethel A; Zych, Magdalena; Vuckovic, Aleksandra

    2017-12-01

    Explicit motor imagery (eMI) is a widely used brain-computer interface (BCI) paradigm, but not everybody can accomplish this task. Here, we propose a BCI based on implicit motor imagery (iMI). We compared classification accuracy between eMI and iMI of hands. Fifteen able-bodied people were asked to judge the laterality of hand images presented on a computer screen in a lateral or medial orientation. This judgment task is known to require mental rotation of a person's own hands, which in turn is thought to involve iMI. The subjects were also asked to perform eMI of the hands. Their electroencephalography was recorded. Linear classifiers were designed based on common spatial patterns. For discrimination between left hand and right hand, the classifier achieved maximum of 81 ± 8% accuracy for eMI and 83 ± 3% for iMI. These results show that iMI can be used to achieve similar classification accuracy as eMI. Additional classification was performed between iMI in medial and lateral orientations of a single hand; the classifier achieved 81 ± 7% for the left hand and 78 ± 7% for the right hand, which indicate distinctive spatial patterns of cortical activity for iMI of a single hand in different directions. These results suggest that a special BCI based on iMI may be constructed, for people who cannot perform explicit imagination, for rehabilitation of movement, or for treatment of bodily spatial neglect.

  14. Neural correlates of user-initiated motor success and failure - A brain-computer interface perspective.

    Science.gov (United States)

    Yazmir, Boris; Reiner, Miriam

    2016-11-02

    Any motor action is, by nature, potentially accompanied by human errors. In order to facilitate development of error-tailored Brain-Computer Interface (BCI) correction systems, we focused on internal, human-initiated errors, and investigated EEG correlates of user outcome successes and errors during a continuous 3D virtual tennis game against a computer player. We used a multisensory, 3D, highly immersive environment. Missing and repelling the tennis ball were considered, as 'error' (miss) and 'success' (repel). Unlike most previous studies, where the environment "encouraged" the participant to perform a mistake, here errors happened naturally, resulting from motor-perceptual-cognitive processes of incorrect estimation of the ball kinematics, and can be regarded as user internal, self-initiated errors. Results show distinct and well-defined Event-Related Potentials (ERPs), embedded in the ongoing EEG, that differ across conditions by waveforms, scalp signal distribution maps, source estimation results (sLORETA) and time-frequency patterns, establishing a series of typical features that allow valid discrimination between user internal outcome success and error. The significant delay in latency between positive peaks of error- and success-related ERPs, suggests a cross-talk between top-down and bottom-up processing, represented by an outcome recognition process, in the context of the game world. Success-related ERPs had a central scalp distribution, while error-related ERPs were centro-parietal. The unique characteristics and sharp differences between EEG correlates of error/success provide the crucial components for an improved BCI system. The features of the EEG waveform can be used to detect user action outcome, to be fed into the BCI correction system. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Brain-Computer Interface Epoc Emotiv a potenciál jeho komerčního využití

    OpenAIRE

    Vencelides, David

    2012-01-01

    This work is focused on Brain Computer Interface. Specifically, the device EPOC Emotiv. The first part focuses on the introduction to the topic Brain Computer Interface. Definition of terms, a brief history and ways to measure brain activity. The second part deals with specific BCI products that are available on the consumer market open for sale at a price accessible to the ordinary customer. The third part focuses on the specific BCI product EPOC Emotiv In this part the device is introduced ...

  16. Toward brain-actuated car applications: Self-paced control with a motor imagery-based brain-computer interface.

    Science.gov (United States)

    Yu, Yang; Zhou, Zongtan; Yin, Erwei; Jiang, Jun; Tang, Jingsheng; Liu, Yadong; Hu, Dewen

    2016-10-01

    This study presented a paradigm for controlling a car using an asynchronous electroencephalogram (EEG)-based brain-computer interface (BCI) and presented the experimental results of a simulation performed in an experimental environment outside the laboratory. This paradigm uses two distinct MI tasks, imaginary left- and right-hand movements, to generate a multi-task car control strategy consisting of starting the engine, moving forward, turning left, turning right, moving backward, and stopping the engine. Five healthy subjects participated in the online car control experiment, and all successfully controlled the car by following a previously outlined route. Subject S1 exhibited the most satisfactory BCI-based performance, which was comparable to the manual control-based performance. We hypothesize that the proposed self-paced car control paradigm based on EEG signals could potentially be used in car control applications, and we provide a complementary or alternative way for individuals with locked-in disorders to achieve more mobility in the future, as well as providing a supplementary car-driving strategy to assist healthy people in driving a car. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Brain-computer interface based on detection of movement intention as a means of brain wave modulation enhancement

    Science.gov (United States)

    Pulido Castro, Sergio D.; López López, Juan M.

    2017-11-01

    Movement intention (MI) is the mental state in which it is desired to make an action that implies movement. There are certain signals that are directly related with MI; mainly obtained in the primary motor cortex. These signals can be used in a brain-computer interface (BCI). BCIs have a wide variety of applications for the general population, classified in two groups: optimization of conventional neuromuscular performances and enhancement of conventional neuromuscular performances beyond normal capacities. The main goal of this project is to analyze if neural rhythm modulation enhancement could be achieved by practicing, through a BCI based on MI detection, which was designed in a previous study. A six-session experiment was made with eight healthy subjects. Each session was composed by two stages: a training stage and a testing stage, which allowed control of a videogame. The scores in the game were recorded and analyzed. Changes in alpha and beta bands were also analyzed in order to observe if attention could in fact be enhanced. The obtained results were partially satisfactory, as most subjects showed a clear improvement in performance at some point in the trials. As well, the alpha to beta wave ratio of all the tasks was analyzed to observe if there are changes as the experiment progresses. The results are promising, and a different protocol must be implemented to assess the impact of the BCI on the attention span, which can be analyzed with the alpha and beta waves.

  18. Robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery from stroke: updates and advances.

    Science.gov (United States)

    Boninger, Michael L; Wechsler, Lawrence R; Stein, Joel

    2014-11-01

    The aim of this study was to describe the current state and latest advances in robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery for stroke. The authors of this summary recently reviewed this work as part of a national presentation. The article represents the information included in each area. Each area has seen great advances and challenges as products move to market and experiments are ongoing. Robotics, stem cells, and brain-computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial.

  19. Navigation with a passive brain based interface

    NARCIS (Netherlands)

    Erp, J.B.F. van; Werkhoven, P.J.; Thurlings, M.E.; Brouwer, A.-M.

    2009-01-01

    In this paper, we describe a Brain Computer Interface (BCI) for navigation. The system is based on detecting brain signals that are elicited by tactile stimulation on the torso indicating the desired direction.

  20. Training leads to increased auditory brain-computer interface performance of end-users with motor impairments.

    Science.gov (United States)

    Halder, S; Käthner, I; Kübler, A

    2016-02-01

    Auditory brain-computer interfaces are an assistive technology that can restore communication for motor impaired end-users. Such non-visual brain-computer interface paradigms are of particular importance for end-users that may lose or have lost gaze control. We attempted to show that motor impaired end-users can learn to control an auditory speller on the basis of event-related potentials. Five end-users with motor impairments, two of whom with additional visual impairments, participated in five sessions. We applied a newly developed auditory brain-computer interface paradigm with natural sounds and directional cues. Three of five end-users learned to select symbols using this method. Averaged over all five end-users the information transfer rate increased by more than 1800% from the first session (0.17 bits/min) to the last session (3.08 bits/min). The two best end-users achieved information transfer rates of 5.78 bits/min and accuracies of 92%. Our results show that an auditory BCI with a combination of natural sounds and directional cues, can be controlled by end-users with motor impairment. Training improves the performance of end-users to the level of healthy controls. To our knowledge, this is the first time end-users with motor impairments controlled an auditory brain-computer interface speller with such high accuracy and information transfer rates. Further, our results demonstrate that operating a BCI with event-related potentials benefits from training and specifically end-users may require more than one session to develop their full potential. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Keeping Disability in Mind: A Case Study in Implantable Brain-Computer Interface Research.

    Science.gov (United States)

    Sullivan, Laura Specker; Klein, Eran; Brown, Tim; Sample, Matthew; Pham, Michelle; Tubig, Paul; Folland, Raney; Truitt, Anjali; Goering, Sara

    2017-06-22

    Brain-Computer Interface (BCI) research is an interdisciplinary area of study within Neural Engineering. Recent interest in end-user perspectives has led to an intersection with user-centered design (UCD). The goal of user-centered design is to reduce the translational gap between researchers and potential end users. However, while qualitative studies have been conducted with end users of BCI technology, little is known about individual BCI researchers' experience with and attitudes towards UCD. Given the scientific, financial, and ethical imperatives of UCD, we sought to gain a better understanding of practical and principled considerations for researchers who engage with end users. We conducted a qualitative interview case study with neural engineering researchers at a center dedicated to the creation of BCIs. Our analysis generated five themes common across interviews. The thematic analysis shows that participants identify multiple beneficiaries of their work, including other researchers, clinicians working with devices, device end users, and families and caregivers of device users. Participants value experience with device end users, and personal experience is the most meaningful type of interaction. They welcome (or even encourage) end-user input, but are skeptical of limited focus groups and case studies. They also recognize a tension between creating sophisticated devices and developing technology that will meet user needs. Finally, interviewees espouse functional, assistive goals for their technology, but describe uncertainty in what degree of function is "good enough" for individual end users. Based on these results, we offer preliminary recommendations for conducting future UCD studies in BCI and neural engineering.

  2. Advancing the detection of steady-state visual evoked potentials in brain-computer interfaces

    Science.gov (United States)

    Abu-Alqumsan, Mohammad; Peer, Angelika

    2016-06-01

    Objective. Spatial filtering has proved to be a powerful pre-processing step in detection of steady-state visual evoked potentials and boosted typical detection rates both in offline analysis and online SSVEP-based brain-computer interface applications. State-of-the-art detection methods and the spatial filters used thereby share many common foundations as they all build upon the second order statistics of the acquired Electroencephalographic (EEG) data, that is, its spatial autocovariance and cross-covariance with what is assumed to be a pure SSVEP response. The present study aims at highlighting the similarities and differences between these methods. Approach. We consider the canonical correlation analysis (CCA) method as a basis for the theoretical and empirical (with real EEG data) analysis of the state-of-the-art detection methods and the spatial filters used thereby. We build upon the findings of this analysis and prior research and propose a new detection method (CVARS) that combines the power of the canonical variates and that of the autoregressive spectral analysis in estimating the signal and noise power levels. Main results. We found that the multivariate synchronization index method and the maximum contrast combination method are variations of the CCA method. All three methods were found to provide relatively unreliable detections in low signal-to-noise ratio (SNR) regimes. CVARS and the minimum energy combination methods were found to provide better estimates for different SNR levels. Significance. Our theoretical and empirical results demonstrate that the proposed CVARS method outperforms other state-of-the-art detection methods when used in an unsupervised fashion. Furthermore, when used in a supervised fashion, a linear classifier learned from a short training session is able to estimate the hidden user intention, including the idle state (when the user is not attending to any stimulus), rapidly, accurately and reliably.

  3. High performance communication by people with paralysis using an intracortical brain-computer interface

    Science.gov (United States)

    Pandarinath, Chethan; Nuyujukian, Paul; Blabe, Christine H; Sorice, Brittany L; Saab, Jad; Willett, Francis R; Hochberg, Leigh R

    2017-01-01

    Brain-computer interfaces (BCIs) have the potential to restore communication for people with tetraplegia and anarthria by translating neural activity into control signals for assistive communication devices. While previous pre-clinical and clinical studies have demonstrated promising proofs-of-concept (Serruya et al., 2002; Simeral et al., 2011; Bacher et al., 2015; Nuyujukian et al., 2015; Aflalo et al., 2015; Gilja et al., 2015; Jarosiewicz et al., 2015; Wolpaw et al., 1998; Hwang et al., 2012; Spüler et al., 2012; Leuthardt et al., 2004; Taylor et al., 2002; Schalk et al., 2008; Moran, 2010; Brunner et al., 2011; Wang et al., 2013; Townsend and Platsko, 2016; Vansteensel et al., 2016; Nuyujukian et al., 2016; Carmena et al., 2003; Musallam et al., 2004; Santhanam et al., 2006; Hochberg et al., 2006; Ganguly et al., 2011; O’Doherty et al., 2011; Gilja et al., 2012), the performance of human clinical BCI systems is not yet high enough to support widespread adoption by people with physical limitations of speech. Here we report a high-performance intracortical BCI (iBCI) for communication, which was tested by three clinical trial participants with paralysis. The system leveraged advances in decoder design developed in prior pre-clinical and clinical studies (Gilja et al., 2015; Kao et al., 2016; Gilja et al., 2012). For all three participants, performance exceeded previous iBCIs (Bacher et al., 2015; Jarosiewicz et al., 2015) as measured by typing rate (by a factor of 1.4–4.2) and information throughput (by a factor of 2.2–4.0). This high level of performance demonstrates the potential utility of iBCIs as powerful assistive communication devices for people with limited motor function. Clinical Trial No: NCT00912041 DOI: http://dx.doi.org/10.7554/eLife.18554.001 PMID:28220753

  4. Novel semi-dry electrodes for brain-computer interface applications

    Science.gov (United States)

    Wang, Fei; Li, Guangli; Chen, Jingjing; Duan, Yanwen; Zhang, Dan

    2016-08-01

    Objectives. Modern applications of brain-computer interfaces (BCIs) based on electroencephalography rely heavily on the so-called wet electrodes (e.g. Ag/AgCl electrodes) which require gel application and skin preparation to operate properly. Recently, alternative ‘dry’ electrodes have been developed to increase ease of use, but they often suffer from higher electrode-skin impedance and signal instability. In the current paper, we have proposed a novel porous ceramic-based ‘semi-dry’ electrode. The key feature of the semi-dry electrodes is that their tips can slowly and continuously release a tiny amount of electrolyte liquid to the scalp, which provides an ionic conducting path for detecting neural signals. Approach. The performance of the proposed electrode was evaluated by simultaneous recording of the wet and semi-dry electrodes pairs in five classical BCI paradigms: eyes open/closed, the motor imagery BCI, the P300 speller, the N200 speller and the steady-state visually evoked potential-based BCI. Main results. The grand-averaged temporal cross-correlation was 0.95 ± 0.07 across the subjects and the nine recording positions, and these cross-correlations were stable throughout the whole experimental protocol. In the spectral domain, the semi-dry/wet coherence was greater than 0.80 at all frequencies and greater than 0.90 at frequencies above 10 Hz, with the exception of a dip around 50 Hz (i.e. the powerline noise). More importantly, the BCI classification accuracies were also comparable between the two types of electrodes. Significance. Overall, these results indicate that the proposed semi-dry electrode can effectively capture the electrophysiological responses and is a feasible alternative to the conventional dry electrode in BCI applications.

  5. Flight simulation using a Brain-Computer Interface: A pilot, pilot study.

    Science.gov (United States)

    Kryger, Michael; Wester, Brock; Pohlmeyer, Eric A; Rich, Matthew; John, Brendan; Beaty, James; McLoughlin, Michael; Boninger, Michael; Tyler-Kabara, Elizabeth C

    2017-01-01

    As Brain-Computer Interface (BCI) systems advance for uses such as robotic arm control it is postulated that the control paradigms could apply to other scenarios, such as control of video games, wheelchair movement or even flight. The purpose of this pilot study was to determine whether our BCI system, which involves decoding the signals of two 96-microelectrode arrays implanted into the motor cortex of a subject, could also be used to control an aircraft in a flight simulator environment. The study involved six sessions in which various parameters were modified in order to achieve the best flight control, including plane type, view, control paradigm, gains, and limits. Successful flight was determined qualitatively by evaluating the subject's ability to perform requested maneuvers, maintain flight paths, and avoid control losses such as dives, spins and crashes. By the end of the study, it was found that the subject could successfully control an aircraft. The subject could use both the jet and propeller plane with different views, adopting an intuitive control paradigm. From the subject's perspective, this was one of the most exciting and entertaining experiments she had performed in two years of research. In conclusion, this study provides a proof-of-concept that traditional motor cortex signals combined with a decoding paradigm can be used to control systems besides a robotic arm for which the decoder was developed. Aside from possible functional benefits, it also shows the potential for a new recreational activity for individuals with disabilities who are able to master BCI control. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Exploring combinations of auditory and visual stimuli for gaze-independent brain-computer interfaces.

    Directory of Open Access Journals (Sweden)

    Xingwei An

    Full Text Available For Brain-Computer Interface (BCI systems that are designed for users with severe impairments of the oculomotor system, an appropriate mode of presenting stimuli to the user is crucial. To investigate whether multi-sensory integration can be exploited in the gaze-independent event-related potentials (ERP speller and to enhance BCI performance, we designed a visual-auditory speller. We investigate the possibility to enhance stimulus presentation by combining visual and auditory stimuli within gaze-independent spellers. In this study with N = 15 healthy users, two different ways of combining the two sensory modalities are proposed: simultaneous redundant streams (Combined-Speller and interleaved independent streams (Parallel-Speller. Unimodal stimuli were applied as control conditions. The workload, ERP components, classification accuracy and resulting spelling speed were analyzed for each condition. The Combined-speller showed a lower workload than uni-modal paradigms, without the sacrifice of spelling performance. Besides, shorter latencies, lower amplitudes, as well as a shift of the temporal and spatial distribution of discriminative information were observed for Combined-speller. These results are important and are inspirations for future studies to search the reason for these differences. For the more innovative and demanding Parallel-Speller, where the auditory and visual domains are independent from each other, a proof of concept was obtained: fifteen users could spell online with a mean accuracy of 87.7% (chance level <3% showing a competitive average speed of 1.65 symbols per minute. The fact that it requires only one selection period per symbol makes it a good candidate for a fast communication channel. It brings a new insight into the true multisensory stimuli paradigms. Novel approaches for combining two sensory modalities were designed here, which are valuable for the development of ERP-based BCI paradigms.

  7. Automatic artefact removal in a self-paced hybrid brain- computer interface system.

    Science.gov (United States)

    Yong, Xinyi; Fatourechi, Mehrdad; Ward, Rabab K; Birch, Gary E

    2012-07-27

    A novel artefact removal algorithm is proposed for a self-paced hybrid brain-computer interface (BCI) system. This hybrid system combines a self-paced BCI with an eye-tracker to operate a virtual keyboard. To select a letter, the user must gaze at the target for at least a specific period of time (dwell time) and then activate the BCI by performing a mental task. Unfortunately, electroencephalogram (EEG) signals are often contaminated with artefacts. Artefacts change the quality of EEG signals and subsequently degrade the BCI's performance. To remove artefacts in EEG signals, the proposed algorithm uses the stationary wavelet transform combined with a new adaptive thresholding mechanism. To evaluate the performance of the proposed algorithm and other artefact handling/removal methods, semi-simulated EEG signals (i.e., real EEG signals mixed with simulated artefacts) and real EEG signals obtained from seven participants are used. For real EEG signals, the hybrid BCI system's performance is evaluated in an online-like manner, i.e., using the continuous data from the last session as in a real-time environment. With semi-simulated EEG signals, we show that the proposed algorithm achieves lower signal distortion in both time and frequency domains. With real EEG signals, we demonstrate that for dwell time of 0.0s, the number of false-positives/minute is 2 and the true positive rate (TPR) achieved by the proposed algorithm is 44.7%, which is more than 15.0% higher compared to other state-of-the-art artefact handling methods. As dwell time increases to 1.0s, the TPR increases to 73.1%. The proposed artefact removal algorithm greatly improves the BCI's performance. It also has the following advantages: a) it does not require additional electrooculogram/electromyogram channels, long data segments or a large number of EEG channels, b) it allows real-time processing, and c) it reduces signal distortion.

  8. Multiple frequencies sequential coding for SSVEP-based brain-computer interface.

    Directory of Open Access Journals (Sweden)

    Yangsong Zhang

    Full Text Available BACKGROUND: Steady-state visual evoked potential (SSVEP-based brain-computer interface (BCI has become one of the most promising modalities for a practical noninvasive BCI system. Owing to both the limitation of refresh rate of liquid crystal display (LCD or cathode ray tube (CRT monitor, and the specific physiological response property that only a very small number of stimuli at certain frequencies could evoke strong SSVEPs, the available frequencies for SSVEP stimuli are limited. Therefore, it may not be enough to code multiple targets with the traditional frequencies coding protocols, which poses a big challenge for the design of a practical SSVEP-based BCI. This study aimed to provide an innovative coding method to tackle this problem. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we present a novel protocol termed multiple frequencies sequential coding (MFSC for SSVEP-based BCI. In MFSC, multiple frequencies are sequentially used in each cycle to code the targets. To fulfill the sequential coding, each cycle is divided into several coding epochs, and during each epoch, certain frequency is used. Obviously, different frequencies or the same frequency can be presented in the coding epochs, and the different epoch sequence corresponds to the different targets. To show the feasibility of MFSC, we used two frequencies to realize four targets and carried on an offline experiment. The current study shows that: 1 MFSC is feasible and efficient; 2 the performance of SSVEP-based BCI based on MFSC can be comparable to some existed systems. CONCLUSIONS/SIGNIFICANCE: The proposed protocol could potentially implement much more targets with the limited available frequencies compared with the traditional frequencies coding protocol. The efficiency of the new protocol was confirmed by real data experiment. We propose that the SSVEP-based BCI under MFSC might be a promising choice in the future.

  9. An SSVEP-actuated brain computer interface using phase-tagged flickering sequences: a cursor system.

    Science.gov (United States)

    Lee, Po-Lei; Sie, Jyun-Jie; Liu, Yu-Ju; Wu, Chi-Hsun; Lee, Ming-Huan; Shu, Chih-Hung; Li, Po-Hung; Sun, Chia-Wei; Shyu, Kuo-Kai

    2010-07-01

    This study presents a new steady-state visual evoked potential (SSVEP)-based brain computer interface (BCI). SSVEPs, induced by phase-tagged flashes in eight light emitting diodes (LEDs), were used to control four cursor movements (up, right, down, and left) and four button functions (on, off, right-, and left-clicks) on a screen menu. EEG signals were measured by one EEG electrode placed at Oz position, referring to the international EEG 10-20 system. Since SSVEPs are time-locked and phase-locked to the onsets of SSVEP flashes, EEG signals were bandpass-filtered and segmented into epochs, and then averaged across a number of epochs to sharpen the recorded SSVEPs. Phase lags between the measured SSVEPs and a reference SSVEP were measured, and targets were recognized based on these phase lags. The current design used eight LEDs to flicker at 31.25 Hz with 45 degrees phase margin between any two adjacent SSVEP flickers. The SSVEP responses were filtered within 29.25-33.25 Hz and then averaged over 60 epochs. Owing to the utilization of high-frequency flickers, the induced SSVEPs were away from low-frequency noises, 60 Hz electricity noise, and eye movement artifacts. As a consequence, we achieved a simple architecture that did not require eye movement monitoring or other artifact detection and removal. The high-frequency design also achieved a flicker fusion effect for better visualization. Seven subjects were recruited in this study to sequentially input a command sequence, consisting of a sequence of eight cursor functions, repeated three times. The accuracy and information transfer rate (mean +/- SD) over the seven subjects were 93.14 +/- 5.73% and 28.29 +/- 12.19 bits/min, respectively. The proposed system can provide a reliable channel for severely disabled patients to communicate with external environments.

  10. Describing different brain computer interface systems through a unique model: a UML implementation.

    Science.gov (United States)

    Quitadamo, Lucia Rita; Marciani, Maria Grazia; Cardarilli, Gian Carlo; Bianchi, Luigi

    2008-01-01

    All the protocols currently implemented in brain computer interface (BCI) experiments are characterized by different structural and temporal entities. Moreover, due to the lack of a unique descriptive model for BCI systems, there is not a standard way to define the structure and the timing of a BCI experimental session among different research groups and there is also great discordance on the meaning of the most common terms dealing with BCI, such as trial, run and session. The aim of this paper is to provide a unified modeling language (UML) implementation of BCI systems through a unique dynamic model which is able to describe the main protocols defined in the literature (P300, mu-rhythms, SCP, SSVEP, fMRI) and demonstrates to be reasonable and adjustable according to different requirements. This model includes a set of definitions of the typical entities encountered in a BCI, diagrams which explain the structural correlations among them and a detailed description of the timing of a trial. This last represents an innovation with respect to the models already proposed in the literature. The UML documentation and the possibility of adapting this model to the different BCI systems built to date, make it a basis for the implementation of new systems and a mean for the unification and dissemination of resources. The model with all the diagrams and definitions reported in the paper are the core of the body language framework, a free set of routines and tools for the implementation, optimization and delivery of cross-platform BCI systems.

  11. Common spatial pattern patches - an optimized filter ensemble for adaptive brain-computer interfaces.

    Science.gov (United States)

    Sannelli, Claudia; Vidaurre, Carmen; Muller, Klaus-Robert; Blankertz, Benjamin

    2010-01-01

    Laplacian filters are commonly used in Brain Computer Interfacing (BCI). When only data from few channels are available, or when, like at the beginning of an experiment, no previous data from the same user is available complex features cannot be used. In this case band power features calculated from Laplacian filtered channels represents an easy, robust and general feature to control a BCI, since its calculation does not involve any class information. For the same reason, the performance obtained with Laplacian features is poor in comparison to subject-specific optimized spatial filters, such as Common Spatial Patterns (CSP) analysis, which, on the other hand, can be used just in a later phase of the experiment, since they require a considerable amount of training data in order to enroll a stable and good performance. This drawback is particularly evident in case of poor performing BCI users, whose data is highly non-stationary and contains little class relevant information. Therefore, Laplacian filtering is preferred to CSP, e.g., in the initial period of co-adaptive calibration, a novel BCI paradigm designed to alleviate the problem of BCI illiteracy. In fact, in the co-adaptive calibration design the experiment starts with a subject-independent classifier and simple features are needed in order to obtain a fast adaptation of the classifier to the newly acquired user's data. Here, the use of an ensemble of local CSP patches (CSPP) is proposed, which can be considered as a compromise between Laplacians and CSP: CSPP needs less data and channels than CSP, while being superior to Laplacian filtering. This property is shown to be particularly useful for the co-adaptive calibration design and is demonstrated on off-line data from a previous co-adaptive BCI study.

  12. Decoding Sensorimotor Rhythms during Robotic-Assisted Treadmill Walking for Brain Computer Interface (BCI Applications.

    Directory of Open Access Journals (Sweden)

    Eliana García-Cossio

    Full Text Available Locomotor malfunction represents a major problem in some neurological disorders like stroke and spinal cord injury. Robot-assisted walking devices have been used during rehabilitation of patients with these ailments for regaining and improving walking ability. Previous studies showed the advantage of brain-computer interface (BCI based robot-assisted training combined with physical therapy in the rehabilitation of the upper limb after stroke. Therefore, stroke patients with walking disorders might also benefit from using BCI robot-assisted training protocols. In order to develop such BCI, it is necessary to evaluate the feasibility to decode walking intention from cortical patterns during robot-assisted gait training. Spectral patterns in the electroencephalogram (EEG related to robot-assisted active and passive walking were investigated in 10 healthy volunteers (mean age 32.3±10.8, six female and in three acute stroke patients (all male, mean age 46.7±16.9, Berg Balance Scale 20±12.8. A logistic regression classifier was used to distinguish walking from baseline in these spectral EEG patterns. Mean classification accuracies of 94.0±5.4% and 93.1±7.9%, respectively, were reached when active and passive walking were compared against baseline. The classification performance between passive and active walking was 83.4±7.4%. A classification accuracy of 89.9±5.7% was achieved in the stroke patients when comparing walking and baseline. Furthermore, in the healthy volunteers modulation of low gamma activity in central midline areas was found to be associated with the gait cycle phases, but not in the stroke patients. Our results demonstrate the feasibility of BCI-based robotic-assisted training devices for gait rehabilitation.

  13. Transferring brain-computer interfaces beyond the laboratory: successful application control for motor-disabled users.

    Science.gov (United States)

    Leeb, Robert; Perdikis, Serafeim; Tonin, Luca; Biasiucci, Andrea; Tavella, Michele; Creatura, Marco; Molina, Alberto; Al-Khodairy, Abdul; Carlson, Tom; Millán, José D R

    2013-10-01

    Brain-computer interfaces (BCIs) are no longer only used by healthy participants under controlled conditions in laboratory environments, but also by patients and end-users, controlling applications in their homes or clinics, without the BCI experts around. But are the technology and the field mature enough for this? Especially the successful operation of applications - like text entry systems or assistive mobility devices such as tele-presence robots - requires a good level of BCI control. How much training is needed to achieve such a level? Is it possible to train naïve end-users in 10 days to successfully control such applications? In this work, we report our experiences of training 24 motor-disabled participants at rehabilitation clinics or at the end-users' homes, without BCI experts present. We also share the lessons that we have learned through transferring BCI technologies from the lab to the user's home or clinics. The most important outcome is that 50% of the participants achieved good BCI performance and could successfully control the applications (tele-presence robot and text-entry system). In the case of the tele-presence robot the participants achieved an average performance ratio of 0.87 (max. 0.97) and for the text entry application a mean of 0.93 (max. 1.0). The lessons learned and the gathered user feedback range from pure BCI problems (technical and handling), to common communication issues among the different people involved, and issues encountered while controlling the applications. The points raised in this paper are very widely applicable and we anticipate that they might be faced similarly by other groups, if they move on to bringing the BCI technology to the end-user, to home environments and towards application prototype control. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. High performance communication by people with paralysis using an intracortical brain-computer interface.

    Science.gov (United States)

    Pandarinath, Chethan; Nuyujukian, Paul; Blabe, Christine H; Sorice, Brittany L; Saab, Jad; Willett, Francis R; Hochberg, Leigh R; Shenoy, Krishna V; Henderson, Jaimie M

    2017-02-21

    Brain-computer interfaces (BCIs) have the potential to restore communication for people with tetraplegia and anarthria by translating neural activity into control signals for assistive communication devices. While previous pre-clinical and clinical studies have demonstrated promising proofs-of-concept (Serruya et al., 2002; Simeral et al., 2011; Bacher et al., 2015; Nuyujukian et al., 2015; Aflalo et al., 2015; Gilja et al., 2015; Jarosiewicz et al., 2015; Wolpaw et al., 1998; Hwang et al., 2012; Spüler et al., 2012; Leuthardt et al., 2004; Taylor et al., 2002; Schalk et al., 2008; Moran, 2010; Brunner et al., 2011; Wang et al., 2013; Townsend and Platsko, 2016; Vansteensel et al., 2016; Nuyujukian et al., 2016; Carmena et al., 2003; Musallam et al., 2004; Santhanam et al., 2006; Hochberg et al., 2006; Ganguly et al., 2011; O'Doherty et al., 2011; Gilja et al., 2012), the performance of human clinical BCI systems is not yet high enough to support widespread adoption by people with physical limitations of speech. Here we report a high-performance intracortical BCI (iBCI) for communication, which was tested by three clinical trial participants with paralysis. The system leveraged advances in decoder design developed in prior pre-clinical and clinical studies (Gilja et al., 2015; Kao et al., 2016; Gilja et al., 2012). For all three participants, performance exceeded previous iBCIs (Bacher et al., 2015; Jarosiewicz et al., 2015) as measured by typing rate (by a factor of 1.4-4.2) and information throughput (by a factor of 2.2-4.0). This high level of performance demonstrates the potential utility of iBCIs as powerful assistive communication devices for people with limited motor function.Clinical Trial No: NCT00912041.

  15. Steady state visual evoked potential (SSVEP) based brain-computer interface (BCI) performance under different perturbations.

    Science.gov (United States)

    İşcan, Zafer; Nikulin, Vadim V

    2018-01-01

    Brain-computer interface (BCI) paradigms are usually tested when environmental and biological artifacts are intentionally avoided. In this study, we deliberately introduced different perturbations in order to test the robustness of a steady state visual evoked potential (SSVEP) based BCI. Specifically we investigated to what extent a drop in performance is related to the degraded quality of EEG signals or rather due to increased cognitive load. In the online tasks, subjects focused on one of the four circles and gave feedback on the correctness of the classification under four conditions randomized across subjects: Control (no perturbation), Speaking (counting loudly and repeatedly from one to ten), Thinking (mentally counting repeatedly from one to ten), and Listening (listening to verbal counting from one to ten). Decision tree, Naïve Bayes and K-Nearest Neighbor classifiers were used to evaluate the classification performance using features generated by canonical correlation analysis. During the online condition, Speaking and Thinking decreased moderately the mean classification accuracy compared to Control condition whereas there was no significant difference between Listening and Control conditions across subjects. The performances were sensitive to the classification method and to the perturbation conditions. We have not observed significant artifacts in EEG during perturbations in the frequency range of interest except in theta band. Therefore we concluded that the drop in the performance is likely to have a cognitive origin. During the Listening condition relative alpha power in a broad area including central and temporal regions primarily over the left hemisphere correlated negatively with the performance thus most likely indicating active suppression of the distracting presentation of the playback. This is the first study that systematically evaluates the effects of natural artifacts (i.e. mental, verbal and audio perturbations) on SSVEP-based BCIs. The

  16. A brain-computer interface with vibrotactile biofeedback for haptic information

    Directory of Open Access Journals (Sweden)

    Acharya Soumyadipta

    2007-10-01

    Full Text Available Abstract Background It has been suggested that Brain-Computer Interfaces (BCI may one day be suitable for controlling a neuroprosthesis. For closed-loop operation of BCI, a tactile feedback channel that is compatible with neuroprosthetic applications is desired. Operation of an EEG-based BCI using only vibrotactile feedback, a commonly used method to convey haptic senses of contact and pressure, is demonstrated with a high level of accuracy. Methods A Mu-rhythm based BCI using a motor imagery paradigm was used to control the position of a virtual cursor. The cursor position was shown visually as well as transmitted haptically by modulating the intensity of a vibrotactile stimulus to the upper limb. A total of six subjects operated the BCI in a two-stage targeting task, receiving only vibrotactile biofeedback of performance. The location of the vibration was also systematically varied between the left and right arms to investigate location-dependent effects on performance. Results and Conclusion Subjects are able to control the BCI using only vibrotactile feedback with an average accuracy of 56% and as high as 72%. These accuracies are significantly higher than the 15% predicted by random chance if the subject had no voluntary control of their Mu-rhythm. The results of this study demonstrate that vibrotactile feedback is an effective biofeedback modality to operate a BCI using motor imagery. In addition, the study shows that placement of the vibrotactile stimulation on the biceps ipsilateral or contralateral to the motor imagery introduces a significant bias in the BCI accuracy. This bias is consistent with a drop in performance generated by stimulation of the contralateral limb. Users demonstrated the capability to overcome this bias with training.

  17. Decoding Sensorimotor Rhythms during Robotic-Assisted Treadmill Walking for Brain Computer Interface (BCI) Applications.

    Science.gov (United States)

    García-Cossio, Eliana; Severens, Marianne; Nienhuis, Bart; Duysens, Jacques; Desain, Peter; Keijsers, Nöel; Farquhar, Jason

    2015-01-01

    Locomotor malfunction represents a major problem in some neurological disorders like stroke and spinal cord injury. Robot-assisted walking devices have been used during rehabilitation of patients with these ailments for regaining and improving walking ability. Previous studies showed the advantage of brain-computer interface (BCI) based robot-assisted training combined with physical therapy in the rehabilitation of the upper limb after stroke. Therefore, stroke patients with walking disorders might also benefit from using BCI robot-assisted training protocols. In order to develop such BCI, it is necessary to evaluate the feasibility to decode walking intention from cortical patterns during robot-assisted gait training. Spectral patterns in the electroencephalogram (EEG) related to robot-assisted active and passive walking were investigated in 10 healthy volunteers (mean age 32.3±10.8, six female) and in three acute stroke patients (all male, mean age 46.7±16.9, Berg Balance Scale 20±12.8). A logistic regression classifier was used to distinguish walking from baseline in these spectral EEG patterns. Mean classification accuracies of 94.0±5.4% and 93.1±7.9%, respectively, were reached when active and passive walking were compared against baseline. The classification performance between passive and active walking was 83.4±7.4%. A classification accuracy of 89.9±5.7% was achieved in the stroke patients when comparing walking and baseline. Furthermore, in the healthy volunteers modulation of low gamma activity in central midline areas was found to be associated with the gait cycle phases, but not in the stroke patients. Our results demonstrate the feasibility of BCI-based robotic-assisted training devices for gait rehabilitation.

  18. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli

    Science.gov (United States)

    Hill, N. J.; Schölkopf, B.

    2012-04-01

    We report on the development and online testing of an electroencephalogram-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects' modulation of N1 and P3 ERP components measured during single 5 s stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare ‘oddball’ stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject's attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology.

  19. Self-paced brain-computer interface control of ambulation in a virtual reality environment

    Science.gov (United States)

    Wang, Po T.; King, Christine E.; Chui, Luis A.; Do, An H.; Nenadic, Zoran

    2012-10-01

    Objective. Spinal cord injury (SCI) often leaves affected individuals unable to ambulate. Electroencephalogram (EEG) based brain-computer interface (BCI) controlled lower extremity prostheses may restore intuitive and able-body-like ambulation after SCI. To test its feasibility, the authors developed and tested a novel EEG-based, data-driven BCI system for intuitive and self-paced control of the ambulation of an avatar within a virtual reality environment (VRE). Approach. Eight able-bodied subjects and one with SCI underwent the following 10-min training session: subjects alternated between idling and walking kinaesthetic motor imageries (KMI) while their EEG were recorded and analysed to generate subject-specific decoding models. Subjects then performed a goal-oriented online task, repeated over five sessions, in which they utilized the KMI to control the linear ambulation of an avatar and make ten sequential stops at designated points within the VRE. Main results. The average offline training performance across subjects was 77.2±11.0%, ranging from 64.3% (p = 0.001 76) to 94.5% (p = 6.26×10-23), with chance performance being 50%. The average online performance was 8.5±1.1 (out of 10) successful stops and 303±53 s completion time (perfect = 211 s). All subjects achieved performances significantly different than those of random walk (p online sessions. Significance. By using a data-driven machine learning approach to decode users’ KMI, this BCI-VRE system enabled intuitive and purposeful self-paced control of ambulation after only 10 minutes training. The ability to achieve such BCI control with minimal training indicates that the implementation of future BCI-lower extremity prosthesis systems may be feasible.

  20. A dry EEG-system for scientific research and brain-computer interfaces

    Directory of Open Access Journals (Sweden)

    Thorsten Oliver Zander

    2011-05-01

    Full Text Available Although it ranks among the oldest tools in neuroscientific research, electroencephalography (EEG still forms the method of choice in a wide variety of clinical and research applications. In the context of Brain-Computer Interfacing (BCI, EEG recently has become a tool to enhance Human-Machine Interaction (HMI. EEG could be employed in a wider range of environments, especially for the use of BCI systems in a clinical context or at the homes of patients. However, the application of EEG in these contexts is impeded by the cumbersome preparation of the electrodes with conductive gel that is necessary to lower the impedance between electrodes and scalp. Dry electrodes could provide a solution to this barrier and allow for EEG applications outside the laboratory. In addition, dry electrodes may reduce the time needed for neurological exams in clinical practice. This study evaluates a prototype of a three-channel dry electrode EEG system, comparing it to state-of-the-art conventional EEG electrodes. Two experimental paradigms were used: first, Event-Related Potentials (ERP were investigated with a variant of the oddball paradigm. Second, features of the frequency domain were compared by a paradigm inducing occipital alpha. Furthermore, both paradigms were used to evaluate BCI classification accuracies of both EEG systems. Amplitude and temporal structure of ERPs as well as features in the frequency domain did not differ significantly between the EEG systems. BCI classification accuracies were equally high in both systems when the frequency domain was considered. With respect to the oddball classification accuracy, there were slight differences between the wet and dry electrode systems. We conclude that the tested dry electrodes were capable to detect EEG signals with good quality and that these signals can be used for research or BCI applications. Easy to handle electrodes may help to foster the use of EEG among a wider range of potential users.

  1. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli.

    Science.gov (United States)

    Hill, N J; Schölkopf, B

    2012-04-01

    We report on the development and online testing of an electroencephalogram-based brain-computer interface (BCI) that aims to be usable by completely paralysed users-for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects' modulation of N1 and P3 ERP components measured during single 5 s stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare 'oddball' stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject's attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology.

  2. Learning from label proportions in brain-computer interfaces: Online unsupervised learning with guarantees

    Science.gov (United States)

    Verhoeven, Thibault; Schmid, Konstantin; Müller, Klaus-Robert; Tangermann, Michael; Kindermans, Pieter-Jan

    2017-01-01

    Objective Using traditional approaches, a brain-computer interface (BCI) requires the collection of calibration data for new subjects prior to online use. Calibration time can be reduced or eliminated e.g., by subject-to-subject transfer of a pre-trained classifier or unsupervised adaptive classification methods which learn from scratch and adapt over time. While such heuristics work well in practice, none of them can provide theoretical guarantees. Our objective is to modify an event-related potential (ERP) paradigm to work in unison with the machine learning decoder, and thus to achieve a reliable unsupervised calibrationless decoding with a guarantee to recover the true class means. Method We introduce learning from label proportions (LLP) to the BCI community as a new unsupervised, and easy-to-implement classification approach for ERP-based BCIs. The LLP estimates the mean target and non-target responses based on known proportions of these two classes in different groups of the data. We present a visual ERP speller to meet the requirements of LLP. For evaluation, we ran simulations on artificially created data sets and conducted an online BCI study with 13 subjects performing a copy-spelling task. Results Theoretical considerations show that LLP is guaranteed to minimize the loss function similar to a corresponding supervised classifier. LLP performed well in simulations and in the online application, where 84.5% of characters were spelled correctly on average without prior calibration. Significance The continuously adapting LLP classifier is the first unsupervised decoder for ERP BCIs guaranteed to find the optimal decoder. This makes it an ideal solution to avoid tedious calibration sessions. Additionally, LLP works on complementary principles compared to existing unsupervised methods, opening the door for their further enhancement when combined with LLP. PMID:28407016

  3. On the control of brain-computer interfaces by users with cerebral palsy.

    Science.gov (United States)

    Daly, Ian; Billinger, Martin; Laparra-Hernández, José; Aloise, Fabio; García, Mariano Lloria; Faller, Josef; Scherer, Reinhold; Müller-Putz, Gernot

    2013-09-01

    Brain-computer interfaces (BCIs) have been proposed as a potential assistive device for individuals with cerebral palsy (CP) to assist with their communication needs. However, it is unclear how well-suited BCIs are to individuals with CP. Therefore, this study aims to investigate to what extent these users are able to gain control of BCIs. This study is conducted with 14 individuals with CP attempting to control two standard online BCIs (1) based upon sensorimotor rhythm modulations, and (2) based upon steady state visual evoked potentials. Of the 14 users, 8 are able to use one or other of the BCIs, online, with a statistically significant level of accuracy, without prior training. Classification results are driven by neurophysiological activity and not seen to correlate with occurrences of artifacts. However, many of these users' accuracies, while statistically significant, would require either more training or more advanced methods before practical BCI control would be possible. The results indicate that BCIs may be controlled by individuals with CP but that many issues need to be overcome before practical application use may be achieved. This is the first study to assess the ability of a large group of different individuals with CP to gain control of an online BCI system. The results indicate that six users could control a sensorimotor rhythm BCI and three a steady state visual evoked potential BCI at statistically significant levels of accuracy (SMR accuracies; mean ± STD, 0.821 ± 0.116, SSVEP accuracies; 0.422 ± 0.069). Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Real-Time Control of an Articulatory-Based Speech Synthesizer for Brain Computer Interfaces.

    Directory of Open Access Journals (Sweden)

    Florent Bocquelet

    2016-11-01

    Full Text Available Restoring natural speech in paralyzed and aphasic people could be achieved using a Brain-Computer Interface (BCI controlling a speech synthesizer in real-time. To reach this goal, a prerequisite is to develop a speech synthesizer producing intelligible speech in real-time with a reasonable number of control parameters. We present here an articulatory-based speech synthesizer that can be controlled in real-time for future BCI applications. This synthesizer converts movements of the main speech articulators (tongue, jaw, velum, and lips into intelligible speech. The articulatory-to-acoustic mapping is performed using a deep neural network (DNN trained on electromagnetic articulography (EMA data recorded on a reference speaker synchronously with the produced speech signal. This DNN is then used in both offline and online modes to map the position of sensors glued on different speech articulators into acoustic parameters that are further converted into an audio signal using a vocoder. In offline mode, highly intelligible speech could be obtained as assessed by perceptual evaluation performed by 12 listeners. Then, to anticipate future BCI applications, we further assessed the real-time control of the synthesizer by both the reference speaker and new speakers, in a closed-loop paradigm using EMA data recorded in real time. A short calibration period was used to compensate for differences in sensor positions and articulatory differences between new speakers and the reference speaker. We found that real-time synthesis of vowels and consonants was possible with good intelligibility. In conclusion, these results open to future speech BCI applications using such articulatory-based speech synthesizer.

  5. High-resolution EEG techniques for brain-computer interface applications.

    Science.gov (United States)

    Cincotti, Febo; Mattia, Donatella; Aloise, Fabio; Bufalari, Simona; Astolfi, Laura; De Vico Fallani, Fabrizio; Tocci, Andrea; Bianchi, Luigi; Marciani, Maria Grazia; Gao, Shangkai; Millan, Jose; Babiloni, Fabio

    2008-01-15

    High-resolution electroencephalographic (HREEG) techniques allow estimation of cortical activity based on non-invasive scalp potential measurements, using appropriate models of volume conduction and of neuroelectrical sources. In this study we propose an application of this body of technologies, originally developed to obtain functional images of the brain's electrical activity, in the context of brain-computer interfaces (BCI). Our working hypothesis predicted that, since HREEG pre-processing removes spatial correlation introduced by current conduction in the head structures, by providing the BCI with waveforms that are mostly due to the unmixed activity of a small cortical region, a more reliable classification would be obtained, at least when the activity to detect has a limited generator, which is the case in motor related tasks. HREEG techniques employed in this study rely on (i) individual head models derived from anatomical magnetic resonance images, (ii) distributed source model, composed of a layer of current dipoles, geometrically constrained to the cortical mantle, (iii) depth-weighted minimum L(2)-norm constraint and Tikhonov regularization for linear inverse problem solution and (iv) estimation of electrical activity in cortical regions of interest corresponding to relevant Brodmann areas. Six subjects were trained to learn self modulation of sensorimotor EEG rhythms, related to the imagination of limb movements. Off-line EEG data was used to estimate waveforms of cortical activity (cortical current density, CCD) on selected regions of interest. CCD waveforms were fed into the BCI computational pipeline as an alternative to raw EEG signals; spectral features are evaluated through statistical tests (r(2) analysis), to quantify their reliability for BCI control. These results are compared, within subjects, to analogous results obtained without HREEG techniques. The processing procedure was designed in such a way that computations could be split into a

  6. Neuro-navegática: software developed for interaction with brain-computer interface to assist the process of school inclusion of people with cerebral palsy

    OpenAIRE

    Heidrich, Regina de Oliveira; Branco, Marsal Avila Alves; Mossmann, João Batista; Schuh, Anderson

    2014-01-01

    A Brain-Computer Interface (BCI), allows a person to transfer commands to a computer directly. Instead of using a keyboard, mouse or other input device, the user of this interface simply sends commands via brain waves and the computer responds to them. This paper aims to present a game developed to assist the process of educational inclusion of people with cerebral palsy. Qualitative research approach. To develop this research, we chose the case study, because it is a multifaceted research, i...

  7. Are we there yet? Evaluating commercial grade brain-computer interface for control of computer applications by individuals with cerebral palsy.

    Science.gov (United States)

    Taherian, Sarvnaz; Selitskiy, Dmitry; Pau, James; Claire Davies, T

    2017-02-01

    Using a commercial electroencephalography (EEG)-based brain-computer interface (BCI), the training and testing protocol for six individuals with spastic quadriplegic cerebral palsy (GMFCS and MACS IV and V) was evaluated. A customised, gamified training paradigm was employed. Over three weeks, the participants spent two sessions exploring the system, and up to six sessions playing the game which focussed on EEG feedback of left and right arm motor imagery. The participants showed variable inconclusive results in the ability to produce two distinct EEG patterns. Participant performance was influenced by physical illness, motivation, fatigue and concentration. The results from this case study highlight the infancy of BCIs as a form of assistive technology for people with cerebral palsy. Existing commercial BCIs are not designed according to the needs of end-users. Implications for Rehabilitation Mood, fatigue, physical illness and motivation influence the usability of a brain-computer interface. Commercial brain-computer interfaces are not designed for practical assistive technology use for people with cerebral palsy. Practical brain-computer interface assistive technologies may need to be flexible to suit individual needs.

  8. Evaluating a multi-player brain-computer interface game: challenge versus co-experience

    NARCIS (Netherlands)

    Gürkök, Hayrettin; Volpe, G; Reidsma, Dennis; Poel, Mannes; Camurri, A.; Obbink, Michel; Nijholt, Antinus

    2013-01-01

    Brain–computer interfaces (BCIs) have started to be considered as game controllers. The low level of control they provide prevents them from providing perfect control but allows the design of challenging games which can be enjoyed by players. Evaluation of enjoyment, or user experience (UX), is

  9. Ethical Issues in Brain-Computer Interface Research, Development, and Dissemination

    NARCIS (Netherlands)

    Vlek, R.J.; Steines, D.; Szibbo, D.; Kübler, A.; Schneider, M.J.; Haselager, W.F.G.; Nijboer, F.

    2012-01-01

    The steadily growing field of brain–computer interfacing (BCI) may develop useful technologies, with a potential impact not only on individuals, but also on society as a whole. At the same time, the development of BCI presents significant ethical and legal challenges. In a workshop during the 4th

  10. User-centered design in brain-computer interfaces-a case study.

    Science.gov (United States)

    Schreuder, Martijn; Riccio, Angela; Risetti, Monica; Dähne, Sven; Ramsay, Andrew; Williamson, John; Mattia, Donatella; Tangermann, Michael

    2013-10-01

    The array of available brain-computer interface (BCI) paradigms has continued to grow, and so has the corresponding set of machine learning methods which are at the core of BCI systems. The latter have evolved to provide more robust data analysis solutions, and as a consequence the proportion of healthy BCI users who can use a BCI successfully is growing. With this development the chances have increased that the needs and abilities of specific patients, the end-users, can be covered by an existing BCI approach. However, most end-users who have experienced the use of a BCI system at all have encountered a single paradigm only. This paradigm is typically the one that is being tested in the study that the end-user happens to be enrolled in, along with other end-users. Though this corresponds to the preferred study arrangement for basic research, it does not ensure that the end-user experiences a working BCI. In this study, a different approach was taken; that of a user-centered design. It is the prevailing process in traditional assistive technology. Given an individual user with a particular clinical profile, several available BCI approaches are tested and - if necessary - adapted to him/her until a suitable BCI system is found. Described is the case of a 48-year-old woman who suffered from an ischemic brain stem stroke, leading to a severe motor- and communication deficit. She was enrolled in studies with two different BCI systems before a suitable system was found. The first was an auditory event-related potential (ERP) paradigm and the second a visual ERP paradigm, both of which are established in literature. The auditory paradigm did not work successfully, despite favorable preconditions. The visual paradigm worked flawlessly, as found over several sessions. This discrepancy in performance can possibly be explained by the user's clinical deficit in several key neuropsychological indicators, such as attention and working memory. While the auditory paradigm relies

  11. Operation of a brain-computer interface walking simulator for individuals with spinal cord injury.

    Science.gov (United States)

    King, Christine E; Wang, Po T; Chui, Luis A; Do, An H; Nenadic, Zoran

    2013-07-17

    Spinal cord injury (SCI) can leave the affected individuals with paraparesis or paraplegia, thus rendering them unable to ambulate. Since there are currently no restorative treatments for this population, novel approaches such as brain-controlled prostheses have been sought. Our recent studies show that a brain-computer interface (BCI) can be used to control ambulation within a virtual reality environment (VRE), suggesting that a BCI-controlled lower extremity prosthesis for ambulation may be feasible. However, the operability of our BCI has not yet been tested in a SCI population. Five participants with paraplegia or tetraplegia due to SCI underwent a 10-min training session in which they alternated between kinesthetic motor imagery (KMI) of idling and walking while their electroencephalogram (EEG) were recorded. Participants then performed a goal-oriented online task, where they utilized KMI to control the linear ambulation of an avatar while making 10 sequential stops at designated points within the VRE. Multiple online trials were performed in a single day, and this procedure was repeated across 5 experimental days. Classification accuracy of idling and walking was estimated offline and ranged from 60.5% (p = 0.0176) to 92.3% (p = 1.36×10-20) across participants and days. Offline analysis revealed that the activation of mid-frontal areas mostly in the μ and low β bands was the most consistent feature for differentiating between idling and walking KMI. In the online task, participants achieved an average performance of 7.4±2.3 successful stops in 273±51 sec. These performances were purposeful, i.e. significantly different from the random walk Monte Carlo simulations (p<0.01), and all but one participant achieved purposeful control within the first day of the experiments. Finally, all participants were able to maintain purposeful control throughout the study, and their online performances improved over time. The results of this study demonstrate that

  12. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans

    Science.gov (United States)

    Wolpaw, Jonathan R.; McFarland, Dennis J.

    2004-12-01

    Brain-computer interfaces (BCIs) can provide communication and control to people who are totally paralyzed. BCIs can use noninvasive or invasive methods for recording the brain signals that convey the user's commands. Whereas noninvasive BCIs are already in use for simple applications, it has been widely assumed that only invasive BCIs, which use electrodes implanted in the brain, can provide multidimensional movement control of a robotic arm or a neuroprosthesis. We now show that a noninvasive BCI that uses scalp-recorded electroencephalographic activity and an adaptive algorithm can provide humans, including people with spinal cord injuries, with multidimensional point-to-point movement control that falls within the range of that reported with invasive methods in monkeys. In movement time, precision, and accuracy, the results are comparable to those with invasive BCIs. The adaptive algorithm used in this noninvasive BCI identifies and focuses on the electroencephalographic features that the person is best able to control and encourages further improvement in that control. The results suggest that people with severe motor disabilities could use brain signals to operate a robotic arm or a neuroprosthesis without needing to have electrodes implanted in their brains. brain-machine interface | electroencephalography

  13. 뇌-컴퓨터 쿸터페쿴스 (Brain-Computer Interfaces) 기술엿 대한 국내·외 연구개발 뿙향 조사 (Research and Development in Brain-Computer Interfacing Technology: A Comprehensive Technical Review). Final Report.

    NARCIS (Netherlands)

    Nam, Chang Soo; Kim, Sung-Phil; Krusienkki, Dean; Nijholt, Antinus

    2015-01-01

    This report commisioned by the Korean American Scientists and Engineers Association (KSEA) and written with the support of the Korea Federation of Science and Technology Societies (KOFST) surveys research and development trends in the area of brain-computer interface (Brain-Computer Interfaces, BCI)

  14. A brain-actuated wheelchair: asynchronous and non-invasive Brain-computer interfaces for continuous control of robots.

    Science.gov (United States)

    Galán, F; Nuttin, M; Lew, E; Ferrez, P W; Vanacker, G; Philips, J; Millán, J Del R

    2008-09-01

    To assess the feasibility and robustness of an asynchronous and non-invasive EEG-based Brain-Computer Interface (BCI) for continuous mental control of a wheelchair. In experiment 1 two subjects were asked to mentally drive both a real and a simulated wheelchair from a starting point to a goal along a pre-specified path. Here we only report experiments with the simulated wheelchair for which we have extensive data in a complex environment that allows a sound analysis. Each subject participated in five experimental sessions, each consisting of 10 trials. The time elapsed between two consecutive experimental sessions was variable (from 1h to 2months) to assess the system robustness over time. The pre-specified path was divided into seven stretches to assess the system robustness in different contexts. To further assess the performance of the brain-actuated wheelchair, subject 1 participated in a second experiment consisting of 10 trials where he was asked to drive the simulated wheelchair following 10 different complex and random paths never tried before. In experiment 1 the two subjects were able to reach 100% (subject 1) and 80% (subject 2) of the final goals along the pre-specified trajectory in their best sessions. Different performances were obtained over time and path stretches, what indicates that performance is time and context dependent. In experiment 2, subject 1 was able to reach the final goal in 80% of the trials. The results show that subjects can rapidly master our asynchronous EEG-based BCI to control a wheelchair. Also, they can autonomously operate the BCI over long periods of time without the need for adaptive algorithms externally tuned by a human operator to minimize the impact of EEG non-stationarities. This is possible because of two key components: first, the inclusion of a shared control system between the BCI system and the intelligent simulated wheelchair; second, the selection of stable user-specific EEG features that maximize the

  15. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.

    Science.gov (United States)

    Vasilyev, Anatoly; Liburkina, Sofya; Yakovlev, Lev; Perepelkina, Olga; Kaplan, Alexander

    2017-03-01

    Motor imagery (MI) is considered to be a promising cognitive tool for improving motor skills as well as for rehabilitation therapy of movement disorders. It is believed that MI training efficiency could be improved by using the brain-computer interface (BCI) technology providing real-time feedback on person's mental attempts. While BCI is indeed a convenient and motivating tool for practicing MI, it is not clear whether it could be used for predicting or measuring potential positive impact of the training. In this study, we are trying to establish whether the proficiency in BCI control is associated with any of the neurophysiological or psychological correlates of motor imagery, as well as to determine possible interrelations among them. For that purpose, we studied motor imagery in a group of 19 healthy BCI-trained volunteers and performed a correlation analysis across various quantitative assessment metrics. We examined subjects' sensorimotor event-related EEG events, corticospinal excitability changes estimated with single-pulse transcranial magnetic stimulation (TMS), BCI accuracy and self-assessment reports obtained with specially designed questionnaires and interview routine. Our results showed, expectedly, that BCI performance is dependent on the subject's capability to suppress EEG sensorimotor rhythms, which in turn is correlated with the idle state amplitude of those oscillations. Neither BCI accuracy nor the EEG features associated with MI were found to correlate with the level of corticospinal excitability increase during motor imagery, and with assessed imagery vividness. Finally, a significant correlation was found between the level of corticospinal excitability increase and kinesthetic vividness of imagery (KVIQ-20 questionnaire). Our results suggest that two distinct neurophysiological mechanisms might mediate possible effects of motor imagery: the non-specific cortical sensorimotor disinhibition and the focal corticospinal excitability increase

  16. Automatic artefact removal in a self-paced hybrid brain- computer interface system

    Directory of Open Access Journals (Sweden)

    Yong Xinyi

    2012-07-01

    Full Text Available Abstract Background A novel artefact removal algorithm is proposed for a self-paced hybrid brain-computer interface (BCI system. This hybrid system combines a self-paced BCI with an eye-tracker to operate a virtual keyboard. To select a letter, the user must gaze at the target for at least a specific period of time (dwell time and then activate the BCI by performing a mental task. Unfortunately, electroencephalogram (EEG signals are often contaminated with artefacts. Artefacts change the quality of EEG signals and subsequently degrade the BCI’s performance. Methods To remove artefacts in EEG signals, the proposed algorithm uses the stationary wavelet transform combined with a new adaptive thresholding mechanism. To evaluate the performance of the proposed algorithm and other artefact handling/removal methods, semi-simulated EEG signals (i.e., real EEG signals mixed with simulated artefacts and real EEG signals obtained from seven participants are used. For real EEG signals, the hybrid BCI system’s performance is evaluated in an online-like manner, i.e., using the continuous data from the last session as in a real-time environment. Results With semi-simulated EEG signals, we show that the proposed algorithm achieves lower signal distortion in both time and frequency domains. With real EEG signals, we demonstrate that for dwell time of 0.0s, the number of false-positives/minute is 2 and the true positive rate (TPR achieved by the proposed algorithm is 44.7%, which is more than 15.0% higher compared to other state-of-the-art artefact handling methods. As dwell time increases to 1.0s, the TPR increases to 73.1%. Conclusions The proposed artefact removal algorithm greatly improves the BCI’s performance. It also has the following advantages: a it does not require additional electrooculogram/electromyogram channels, long data segments or a large number of EEG channels, b it allows real-time processing, and c it reduces signal distortion.

  17. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study

    Science.gov (United States)

    Jeunet, Camille; Jahanpour, Emilie; Lotte, Fabien

    2016-06-01

    Objective. While promising, electroencephaloraphy based brain-computer interfaces (BCIs) are barely used due to their lack of reliability: 15% to 30% of users are unable to control a BCI. Standard training protocols may be partly responsible as they do not satisfy recommendations from psychology. Our main objective was to determine in practice to what extent standard training protocols impact users’ motor imagery based BCI (MI-BCI) control performance. Approach. We performed two experiments. The first consisted in evaluating the efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second experiment was aimed at measuring the correlations between motor tasks and MI-BCI performance. The ten best and ten worst performers of the first study were recruited for an MI-BCI experiment during which they had to learn to perform two MI tasks. We also assessed users’ spatial ability and pre-training μ rhythm amplitude, as both have been related to MI-BCI performance in the literature. Main results. Around 17% of the participants were unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This suggests that standard training protocols are suboptimal for skill teaching. No correlation was found between motor tasks and MI-BCI performance. However, spatial ability played an important role in MI-BCI performance. In addition, once the spatial ability covariable had been controlled for, using an ANCOVA, it appeared that participants who faced difficulty during the first experiment improved during the second while the others did not. Significance. These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when faced

  18. EEG Subspace Analysis and Classification Using Principal Angles for Brain-Computer Interfaces

    Science.gov (United States)

    Ashari, Rehab Bahaaddin

    Brain-Computer Interfaces (BCIs) help paralyzed people who have lost some or all of their ability to communicate and control the outside environment from loss of voluntary muscle control. Most BCIs are based on the classification of multichannel electroencephalography (EEG) signals recorded from users as they respond to external stimuli or perform various mental activities. The classification process is fraught with difficulties caused by electrical noise, signal artifacts, and nonstationarity. One approach to reducing the effects of similar difficulties in other domains is the use of principal angles between subspaces, which has been applied mostly to video sequences. This dissertation studies and examines different ideas using principal angles and subspaces concepts. It introduces a novel mathematical approach for comparing sets of EEG signals for use in new BCI technology. The success of the presented results show that principal angles are also a useful approach to the classification of EEG signals that are recorded during a BCI typing application. In this application, the appearance of a subject's desired letter is detected by identifying a P300-wave within a one-second window of EEG following the flash of a letter. Smoothing the signals before using them is the only preprocessing step that was implemented in this study. The smoothing process based on minimizing the second derivative in time is implemented to increase the classification accuracy instead of using the bandpass filter that relies on assumptions on the frequency content of EEG. This study examines four different ways of removing outliers that are based on the principal angles and shows that the outlier removal methods did not help in the presented situations. One of the concepts that this dissertation focused on is the effect of the number of trials on the classification accuracies. The achievement of the good classification results by using a small number of trials starting from two trials only

  19. Rapid P300 brain-computer interface communication with a head-mounted display

    Directory of Open Access Journals (Sweden)

    Ivo eKäthner

    2015-06-01

    Full Text Available Visual ERP (P300 based brain-computer interfaces (BCIs allow for fast and reliable spelling and are intended as a muscle-independent communication channel for people with severe paralysis. However, they require the presentation of visual stimuli in the field of view of the user. A head mounted display could allow convenient presentation of visual stimuli in situations, where mounting a conventional monitor might be difficult or not feasible (e.g. at a patient’s bedside. To explore if similar accuracies can be achieved with a virtual reality (VR headset compared to a conventional flat screen monitor, we conducted an experiment with 18 healthy participants. We also evaluated it with a person in the locked-in state (LIS to verify that usage of the headset is possible for a severely paralyzed person. Healthy participants performed online spelling with three different display methods. In one condition a 5x5 letter matrix was presented on a conventional 22 inch TFT monitor. Two configurations of the VR headset were tested. In the first (glasses A, the same 5x5 matrix filled the field of view of the user. In the second (glasses B, single letters of the matrix filled the field of view of the user. The participant in the LIS tested the VR headset on 3 different occasions (glasses A condition only. For healthy participants, average online spelling accuracies were 94% (15.5 bits/min using three flash sequences for spelling with the monitor and glasses A and 96% (16.2 bits/min with glasses B. In one session, the participant in the LIS reached an online spelling accuracy of 100% (10 bits/min using the glasses A condition. We also demonstrated that spelling with one flash sequence is possible with the VR headset for healthy users (mean: 32.1 bits/min, maximum reached by one user: 71.89 bits/min at 100% accuracy. We conclude that the VR headset allows for rapid P300 BCI communication in healthy users and may be a suitable display option for severely

  20. An optimized ERP brain-computer interface based on facial expression changes

    Science.gov (United States)

    Jin, Jing; Daly, Ian; Zhang, Yu; Wang, Xingyu; Cichocki, Andrzej

    2014-06-01

    Objective. Interferences from spatially adjacent non-target stimuli are known to evoke event-related potentials (ERPs) during non-target flashes and, therefore, lead to false positives. This phenomenon was commonly seen in visual attention-based brain-computer interfaces (BCIs) using conspicuous stimuli and is known to adversely affect the performance of BCI systems. Although users try to focus on the target stimulus, they cannot help but be affected by conspicuous changes of the stimuli (such as flashes or presenting images) which were adjacent to the target stimulus. Furthermore, subjects have reported that conspicuous stimuli made them tired and annoyed. In view of this, the aim of this study was to reduce adjacent interference, annoyance and fatigue using a new stimulus presentation pattern based upon facial expression changes. Our goal was not to design a new pattern which could evoke larger ERPs than the face pattern, but to design a new pattern which could reduce adjacent interference, annoyance and fatigue, and evoke ERPs as good as those observed during the face pattern. Approach. Positive facial expressions could be changed to negative facial expressions by minor changes to the original facial image. Although the changes are minor, the contrast is big enough to evoke strong ERPs. In this paper, a facial expression change pattern between positive and negative facial expressions was used to attempt to minimize interference effects. This was compared against two different conditions, a shuffled pattern containing the same shapes and colours as the facial expression change pattern, but without the semantic content associated with a change in expression, and a face versus no face pattern. Comparisons were made in terms of classification accuracy and information transfer rate as well as user supplied subjective measures. Main results. The results showed that interferences from adjacent stimuli, annoyance and the fatigue experienced by the subjects could be

  1. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.

    Science.gov (United States)

    Baek, Hyun Jae; Kim, Hyun Seok; Heo, Jeong; Lim, Yong Gyu; Park, Kwang Suk

    2013-04-01

    Brain-computer interface (BCI) technologies have been intensely studied to provide alternative communication tools entirely independent of neuromuscular activities. Current BCI technologies use electroencephalogram (EEG) acquisition methods that require unpleasant gel injections, impractical preparations and clean-up procedures. The next generation of BCI technologies requires practical, user-friendly, nonintrusive EEG platforms in order to facilitate the application of laboratory work in real-world settings. A capacitive electrode that does not require an electrolytic gel or direct electrode-scalp contact is a potential alternative to the conventional wet electrode in future BCI systems. We have proposed a new capacitive EEG electrode that contains a conductive polymer-sensing surface, which enhances electrode performance. This paper presents results from five subjects who exhibited visual or auditory steady-state responses according to BCI using these new capacitive electrodes. The steady-state visual evoked potential (SSVEP) spelling system and the auditory steady-state response (ASSR) binary decision system were employed. Offline tests demonstrated BCI performance high enough to be used in a BCI system (accuracy: 95.2%, ITR: 19.91 bpm for SSVEP BCI (6 s), accuracy: 82.6%, ITR: 1.48 bpm for ASSR BCI (14 s)) with the analysis time being slightly longer than that when wet electrodes were employed with the same BCI system (accuracy: 91.2%, ITR: 25.79 bpm for SSVEP BCI (4 s), accuracy: 81.3%, ITR: 1.57 bpm for ASSR BCI (12 s)). Subjects performed online BCI under the SSVEP paradigm in copy spelling mode and under the ASSR paradigm in selective attention mode with a mean information transfer rate (ITR) of 17.78 ± 2.08 and 0.7 ± 0.24 bpm, respectively. The results of these experiments demonstrate the feasibility of using our capacitive EEG electrode in BCI systems. This capacitive electrode may become a flexible and non-intrusive tool fit for various applications in

  2. Automatic artefact removal in a self-paced hybrid brain- computer interface system

    Science.gov (United States)

    2012-01-01

    Background A novel artefact removal algorithm is proposed for a self-paced hybrid brain-computer interface (BCI) system. This hybrid system combines a self-paced BCI with an eye-tracker to operate a virtual keyboard. To select a letter, the user must gaze at the target for at least a specific period of time (dwell time) and then activate the BCI by performing a mental task. Unfortunately, electroencephalogram (EEG) signals are often contaminated with artefacts. Artefacts change the quality of EEG signals and subsequently degrade the BCI’s performance. Methods To remove artefacts in EEG signals, the proposed algorithm uses the stationary wavelet transform combined with a new adaptive thresholding mechanism. To evaluate the performance of the proposed algorithm and other artefact handling/removal methods, semi-simulated EEG signals (i.e., real EEG signals mixed with simulated artefacts) and real EEG signals obtained from seven participants are used. For real EEG signals, the hybrid BCI system’s performance is evaluated in an online-like manner, i.e., using the continuous data from the last session as in a real-time environment. Results With semi-simulated EEG signals, we show that the proposed algorithm achieves lower signal distortion in both time and frequency domains. With real EEG signals, we demonstrate that for dwell time of 0.0s, the number of false-positives/minute is 2 and the true positive rate (TPR) achieved by the proposed algorithm is 44.7%, which is more than 15.0% higher compared to other state-of-the-art artefact handling methods. As dwell time increases to 1.0s, the TPR increases to 73.1%. Conclusions The proposed artefact removal algorithm greatly improves the BCI’s performance. It also has the following advantages: a) it does not require additional electrooculogram/electromyogram channels, long data segments or a large number of EEG channels, b) it allows real-time processing, and c) it reduces signal distortion. PMID:22838499

  3. (Covert attention and visual speller design in an ERP-based brain-computer interface

    Directory of Open Access Journals (Sweden)

    Treder Matthias S

    2010-05-01

    Full Text Available Abstract Background In a visual oddball paradigm, attention to an event usually modulates the event-related potential (ERP. An ERP-based brain-computer interface (BCI exploits this neural mechanism for communication. Hitherto, it was unclear to what extent the accuracy of such a BCI requires eye movements (overt attention or whether it is also feasible for targets in the visual periphery (covert attention. Also unclear was how the visual design of the BCI can be improved to meet peculiarities of peripheral vision such as low spatial acuity and crowding. Method Healthy participants (N = 13 performed a copy-spelling task wherein they had to count target intensifications. EEG and eye movements were recorded concurrently. First, (covert attention was investigated by way of a target fixation condition and a central fixation condition. In the latter, participants had to fixate a dot in the center of the screen and allocate their attention to a target in the visual periphery. Second, the effect of visual speller layout was investigated by comparing the symbol Matrix to an ERP-based Hex-o-Spell, a two-levels speller consisting of six discs arranged on an invisible hexagon. Results We assessed counting errors, ERP amplitudes, and offline classification performance. There is an advantage (i.e., less errors, larger ERP amplitude modulation, better classification of overt attention over covert attention, and there is also an advantage of the Hex-o-Spell over the Matrix. Using overt attention, P1, N1, P2, N2, and P3 components are enhanced by attention. Using covert attention, only N2 and P3 are enhanced for both spellers, and N1 and P2 are modulated when using the Hex-o-Spell but not when using the Matrix. Consequently, classifiers rely mainly on early evoked potentials in overt attention and on later cognitive components in covert attention. Conclusions Both overt and covert attention can be used to drive an ERP-based BCI, but performance is markedly lower

  4. Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface.

    Science.gov (United States)

    Norton, James J S; Lee, Dong Sup; Lee, Jung Woo; Lee, Woosik; Kwon, Ohjin; Won, Phillip; Jung, Sung-Young; Cheng, Huanyu; Jeong, Jae-Woong; Akce, Abdullah; Umunna, Stephen; Na, Ilyoun; Kwon, Yong Ho; Wang, Xiao-Qi; Liu, ZhuangJian; Paik, Ungyu; Huang, Yonggang; Bretl, Timothy; Yeo, Woon-Hong; Rogers, John A

    2015-03-31

    Recent advances in electrodes for noninvasive recording of electroencephalograms expand opportunities collecting such data for diagnosis of neurological disorders and brain-computer interfaces. Existing technologies, however, cannot be used effectively in continuous, uninterrupted modes for more than a few days due to irritation and irreversible degradation in the electrical and mechanical properties of the skin interface. Here we introduce a soft, foldable collection of electrodes in open, fractal mesh geometries that can mount directly and chronically on the complex surface topology of the auricle and the mastoid, to provide high-fidelity and long-term capture of electroencephalograms in ways that avoid any significant thermal, electrical, or mechanical loading of the skin. Experimental and computational studies establish the fundamental aspects of the bending and stretching mechanics that enable this type of intimate integration on the highly irregular and textured surfaces of the auricle. Cell level tests and thermal imaging studies establish the biocompatibility and wearability of such systems, with examples of high-quality measurements over periods of 2 wk with devices that remain mounted throughout daily activities including vigorous exercise, swimming, sleeping, and bathing. Demonstrations include a text speller with a steady-state visually evoked potential-based brain-computer interface and elicitation of an event-related potential (P300 wave).

  5. Detecting number processing and mental calculation in patients with disorders of consciousness using a hybrid brain-computer interface system.

    Science.gov (United States)

    Li, Yuanqing; Pan, Jiahui; He, Yanbin; Wang, Fei; Laureys, Steven; Xie, Qiuyou; Yu, Ronghao

    2015-12-15

    For patients with disorders of consciousness such as coma, a vegetative state or a minimally conscious state, one challenge is to detect and assess the residual cognitive functions in their brains. Number processing and mental calculation are important brain functions but are difficult to detect in patients with disorders of consciousness using motor response-based clinical assessment scales such as the Coma Recovery Scale-Revised due to the patients' motor impairments and inability to provide sufficient motor responses for number- and calculation-based communication. In this study, we presented a hybrid brain-computer interface that combines P300 and steady state visual evoked potentials to detect number processing and mental calculation in Han Chinese patients with disorders of consciousness. Eleven patients with disorders of consciousness who were in a vegetative state (n = 6) or in a minimally conscious state (n = 3) or who emerged from a minimally conscious state (n = 2) participated in the brain-computer interface-based experiment. During the experiment, the patients with disorders of consciousness were instructed to perform three tasks, i.e., number recognition, number comparison, and mental calculation, including addition and subtraction. In each experimental trial, an arithmetic problem was first presented. Next, two number buttons, only one of which was the correct answer to the problem, flickered at different frequencies to evoke steady state visual evoked potentials, while the frames of the two buttons flashed in a random order to evoke P300 potentials. The patients needed to focus on the target number button (the correct answer). Finally, the brain-computer interface system detected P300 and steady state visual evoked potentials to determine the button to which the patients attended, further presenting the results as feedback. Two of the six patients who were in a vegetative state, one of the three patients who were in a minimally conscious state, and

  6. A comparative study: use of a Brain-computer Interface (BCI) device by people with cerebral palsy in interaction with computers.

    Science.gov (United States)

    Heidrich, Regina O; Jensen, Emely; Rebelo, Francisco; Oliveira, Tiago

    2015-01-01

    This article presents a comparative study among people with cerebral palsy and healthy controls, of various ages, using a Brain-computer Interface (BCI) device. The research is qualitative in its approach. Researchers worked with Observational Case Studies. People with cerebral palsy and healthy controls were evaluated in Portugal and in Brazil. The study aimed to develop a study for product evaluation in order to perceive whether people with cerebral palsy could interact with the computer and compare whether their performance is similar to that of healthy controls when using the Brain-computer Interface. Ultimately, it was found that there are no significant differences between people with cerebral palsy in the two countries, as well as between populations without cerebral palsy (healthy controls).

  7. A comparative study: use of a Brain-computer Interface (BCI device by people with cerebral palsy in interaction with computers

    Directory of Open Access Journals (Sweden)

    Regina O. Heidrich

    2015-12-01

    Full Text Available ABSTRACT This article presents a comparative study among people with cerebral palsy and healthy controls, of various ages, using a Brain-computer Interface (BCI device. The research is qualitative in its approach. Researchers worked with Observational Case Studies. People with cerebral palsy and healthy controls were evaluated in Portugal and in Brazil. The study aimed to develop a study for product evaluation in order to perceive whether people with cerebral palsy could interact with the computer and compare whether their performance is similar to that of healthy controls when using the Brain-computer Interface. Ultimately, it was found that there are no significant differences between people with cerebral palsy in the two countries, as well as between populations without cerebral palsy (healthy controls.

  8. Python Executable Script for Estimating Two Effective Parameters to Individualize Brain-Computer Interfaces: Individual Alpha Frequency and Neurophysiological Predictor.

    Science.gov (United States)

    Alonso-Valerdi, Luz María

    2016-01-01

    A brain-computer interface (BCI) aims to establish communication between the human brain and a computing system so as to enable the interaction between an individual and his environment without using the brain output pathways. Individuals control a BCI system by modulating their brain signals through mental tasks (e.g., motor imagery or mental calculation) or sensory stimulation (e.g., auditory, visual, or tactile). As users modulate their brain signals at different frequencies and at different levels, the appropriate characterization of those signals is necessary. The modulation of brain signals through mental tasks is furthermore a skill that requires training. Unfortunately, not all the users acquire such skill. A practical solution to this problem is to assess the user probability of controlling a BCI system. Another possible solution is to set the bandwidth of the brain oscillations, which is highly sensitive to the users' age, sex and anatomy. With this in mind, NeuroIndex, a Python executable script, estimates a neurophysiological prediction index and the individual alpha frequency (IAF) of the user in question. These two parameters are useful to characterize the user EEG signals, and decide how to go through the complex process of adapting the human brain and the computing system on the basis of previously proposed methods. NeuroIndeX is not only the implementation of those methods, but it also complements the methods each other and provides an alternative way to obtain the prediction parameter. However, an important limitation of this application is its dependency on the IAF value, and some results should be interpreted with caution. The script along with some electroencephalographic datasets are available on a GitHub repository in order to corroborate the functionality and usability of this application.

  9. Development traumatic brain injury computer user interface for disaster area in Indonesia supported by emergency broadband access network.

    Science.gov (United States)

    Sutiono, Agung Budi; Suwa, Hirohiko; Ohta, Toshizumi; Arifin, Muh Zafrullah; Kitamura, Yohei; Yoshida, Kazunari; Merdika, Daduk; Qiantori, Andri; Iskandar

    2012-12-01

    Disasters bring consequences of negative impacts on the environment and human life. One of the common cause of critical condition is traumatic brain injury (TBI), namely, epidural (EDH) and subdural hematoma (SDH), due to downfall hard things during earthquake. We proposed and analyzed the user response, namely neurosurgeon, general doctor/surgeon and nurse when they interacted with TBI computer interface. The communication systems was supported by TBI web based applications using emergency broadband access network with tethered balloon and simulated in the field trial to evaluate the coverage area. The interface consisted of demography data and multi tabs for anamnesis, treatment, follow up and teleconference interfaces. The interface allows neurosurgeon, surgeon/general doctors and nurses to entry the EDH and SDH patient's data during referring them on the emergency simulation and evaluated based on time needs and their understanding. The average time needed was obtained after simulated by Lenovo T500 notebook using mouse; 8-10 min for neurosurgeons, 12-15 min for surgeons/general doctors and 15-19 min for nurses. By using Think Pad X201 Tablet, the time needed for entry data was 5-7 min for neurosurgeon, 7-10 min for surgeons/general doctors and 12-16 min for nurses. We observed that the time difference was depending on the computer type and user literacy qualification as well as their understanding on traumatic brain injury, particularly for the nurses. In conclusion, there are five data classification for simply TBI GUI, namely, 1) demography, 2) specific anamnesis for EDH and SDH, 3) treatment action and medicine of TBI, 4) follow up data display and 5) teleneurosurgery for streaming video consultation. The type of computer, particularly tablet PC was more convenient and faster for entry data, compare to that computer mouse touched pad. Emergency broadband access network using tethered balloon is possible to be employed to cover the communications systems in

  10. Big data challenges in decoding cortical activity in a human with quadriplegia to inform a brain computer interface.

    Science.gov (United States)

    Friedenberg, David A; Bouton, Chad E; Annetta, Nicholas V; Skomrock, Nicholas; Mingming Zhang; Schwemmer, Michael; Bockbrader, Marcia A; Mysiw, W Jerry; Rezai, Ali R; Bresler, Herbert S; Sharma, Gaurav

    2016-08-01

    Recent advances in Brain Computer Interfaces (BCIs) have created hope that one day paralyzed patients will be able to regain control of their paralyzed limbs. As part of an ongoing clinical study, we have implanted a 96-electrode Utah array in the motor cortex of a paralyzed human. The array generates almost 3 million data points from the brain every second. This presents several big data challenges towards developing algorithms that should not only process the data in real-time (for the BCI to be responsive) but are also robust to temporal variations and non-stationarities in the sensor data. We demonstrate an algorithmic approach to analyze such data and present a novel method to evaluate such algorithms. We present our methodology with examples of decoding human brain data in real-time to inform a BCI.

  11. Control of a brain-computer interface using stereotactic depth electrodes in and adjacent to the hippocampus

    Science.gov (United States)

    Krusienski, D. J.; Shih, J. J.

    2011-04-01

    A brain-computer interface (BCI) is a device that enables severely disabled people to communicate and interact with their environments using their brain waves. Most research investigating BCI in humans has used scalp-recorded electroencephalography or intracranial electrocorticography. The use of brain signals obtained directly from stereotactic depth electrodes to control a BCI has not previously been explored. In this study, event-related potentials (ERPs) recorded from bilateral stereotactic depth electrodes implanted in and adjacent to the hippocampus were used to control a P300 Speller paradigm. The ERPs were preprocessed and used to train a linear classifier to subsequently predict the intended target letters. The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in the two subjects tested. Our results demonstrate that ERPs from hippocampal and hippocampal adjacent depth electrodes can be used to reliably control the P300 Speller BCI paradigm.

  12. Hybrid Brain-Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review.

    Science.gov (United States)

    Hong, Keum-Shik; Khan, Muhammad Jawad

    2017-01-01

    In this article, non-invasive hybrid brain-computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain-computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided.

  13. Clinical usefulness of brain-computer interface-controlled functional electrical stimulation for improving brain activity in children with spastic cerebral palsy: a pilot randomized controlled trial

    OpenAIRE

    Kim, Tae-Woo; Lee, Byoung-Hee

    2016-01-01

    [Purpose] Evaluating the effect of brain-computer interface (BCI)-based functional electrical stimulation (FES) training on brain activity in children with spastic cerebral palsy (CP) was the aim of this study. [Subjects and Methods] Subjects were randomized into a BCI-FES group (n=9) and a functional electrical stimulation (FES) control group (n=9). Subjects in the BCI-FES group received wrist and hand extension training with FES for 30 minutes per day, 5 times per week for 6 weeks under the...

  14. On the need to better specify the concept of control in brain-computer-interfaces/neurofeedback research

    Directory of Open Access Journals (Sweden)

    Guilherme eWood

    2014-09-01

    Full Text Available Aiming at a better specification of the concept of control in brain-computer-interfaces (BCI and neurofeedback research, we propose to distinguish self-control of brain activity from the broader concept of BCI control, since the first describes a neurocognitive phenomenon and is only one of the many components of BCI control. Based on this distinction, we developed a framework based on dual-processes theory that describes the cognitive determinants of self-control of brain activity as the interplay of automatic vs. controlled information processing. Further, we distinguish between cognitive processes that are necessary and sufficient to achieve a given level of self-control of brain activity and those which are not. We discuss that those cognitive processes which are not necessary for the learning process can hamper self-control because they cannot be completely turned-off at any time. This framework aims at a comprehensive description of the cognitive determinants of the acquisition of self-control of brain activity underlying those classes of BCI which require the user to achieve regulation of brain activity as well as neurofeedback learning.

  15. Low-power hardware implementation of movement decoding for brain computer interface with reduced-resolution discrete cosine transform.

    Science.gov (United States)

    Minho Won; Albalawi, Hassan; Xin Li; Thomas, Donald E

    2014-01-01

    This paper describes a low-power hardware implementation for movement decoding of brain computer interface. Our proposed hardware design is facilitated by two novel ideas: (i) an efficient feature extraction method based on reduced-resolution discrete cosine transform (DCT), and (ii) a new hardware architecture of dual look-up table to perform discrete cosine transform without explicit multiplication. The proposed hardware implementation has been validated for movement decoding of electrocorticography (ECoG) signal by using a Xilinx FPGA Zynq-7000 board. It achieves more than 56× energy reduction over a reference design using band-pass filters for feature extraction.

  16. A comparative study: use of a Brain-computer Interface (BCI) device by people with cerebral palsy in interaction with computers

    OpenAIRE

    Heidrich, Regina O.; Emely Jensen; Francisco Rebelo; Tiago Oliveira

    2015-01-01

    ABSTRACT This article presents a comparative study among people with cerebral palsy and healthy controls, of various ages, using a Brain-computer Interface (BCI) device. The research is qualitative in its approach. Researchers worked with Observational Case Studies. People with cerebral palsy and healthy controls were evaluated in Portugal and in Brazil. The study aimed to develop a study for product evaluation in order to perceive whether people with cerebral palsy could interact with the co...

  17. Improving brain computer interface research through user involvement - The transformative potential of integrating civil society organisations in research projects

    Science.gov (United States)

    Wakunuma, Kutoma; Rainey, Stephen; Hansen, Christian

    2017-01-01

    Research on Brain Computer Interfaces (BCI) often aims to provide solutions for vulnerable populations, such as individuals with diseases, conditions or disabilities that keep them from using traditional interfaces. Such research thereby contributes to the public good. This contribution to the public good corresponds to a broader drive of research and funding policy that focuses on promoting beneficial societal impact. One way of achieving this is to engage with the public. In practical terms this can be done by integrating civil society organisations (CSOs) in research. The open question at the heart of this paper is whether and how such CSO integration can transform the research and contribute to the public good. To answer this question the paper describes five detailed qualitative case studies of research projects including CSOs. The paper finds that transformative impact of CSO integration is possible but by no means assured. It provides recommendations on how transformative impact can be promoted. PMID:28207882

  18. Improving brain computer interface research through user involvement - The transformative potential of integrating civil society organisations in research projects.

    Science.gov (United States)

    Stahl, Bernd Carsten; Wakunuma, Kutoma; Rainey, Stephen; Hansen, Christian

    2017-01-01

    Research on Brain Computer Interfaces (BCI) often aims to provide solutions for vulnerable populations, such as individuals with diseases, conditions or disabilities that keep them from using traditional interfaces. Such research thereby contributes to the public good. This contribution to the public good corresponds to a broader drive of research and funding policy that focuses on promoting beneficial societal impact. One way of achieving this is to engage with the public. In practical terms this can be done by integrating civil society organisations (CSOs) in research. The open question at the heart of this paper is whether and how such CSO integration can transform the research and contribute to the public good. To answer this question the paper describes five detailed qualitative case studies of research projects including CSOs. The paper finds that transformative impact of CSO integration is possible but by no means assured. It provides recommendations on how transformative impact can be promoted.

  19. Simultaneous detection of P300 and steady-state visually evoked potentials for hybrid brain-computer interface.

    Science.gov (United States)

    Combaz, Adrien; Van Hulle, Marc M

    2015-01-01

    We study the feasibility of a hybrid Brain-Computer Interface (BCI) combining simultaneous visual oddball and Steady-State Visually Evoked Potential (SSVEP) paradigms, where both types of stimuli are superimposed on a computer screen. Potentially, such a combination could result in a system being able to operate faster than a purely P300-based BCI and encode more targets than a purely SSVEP-based BCI. We analyse the interactions between the brain responses of the two paradigms, and assess the possibility to detect simultaneously the brain activity evoked by both paradigms, in a series of 3 experiments where EEG data are analysed offline. Despite differences in the shape of the P300 response between pure oddball and hybrid condition, we observe that the classification accuracy of this P300 response is not affected by the SSVEP stimulation. We do not observe either any effect of the oddball stimulation on the power of the SSVEP response in the frequency of stimulation. Finally results from the last experiment show the possibility of detecting both types of brain responses simultaneously and suggest not only the feasibility of such hybrid BCI but also a gain over pure oddball- and pure SSVEP-based BCIs in terms of communication rate.

  20. Effects of neurofeedback training with an electroencephalogram-based brain-computer interface for hand paralysis in patients with chronic stroke: a preliminary case series study.

    Science.gov (United States)

    Shindo, Keiichiro; Kawashima, Kimiko; Ushiba, Junichi; Ota, Naoki; Ito, Mari; Ota, Tetsuo; Kimura, Akio; Liu, Meigen

    2011-10-01

    To explore the effectiveness of neurorehabilitative training using an electroencephalogram-based brain- computer interface for hand paralysis following stroke. A case series study. Eight outpatients with chronic stroke demonstrating moderate to severe hemiparesis. Based on analysis of volitionally decreased amplitudes of sensory motor rhythm during motor imagery involving extending the affected fingers, real-time visual feedback was provided. After successful motor imagery, a mechanical orthosis partially extended the fingers. Brain-computer interface interventions were carried out once or twice a week for a period of 4-7 months, and clinical and neurophysiological examinations pre- and post-intervention were compared. New voluntary electromyographic activity was measured in the affected finger extensors in 4 cases who had little or no muscle activity before the training, and the other participants exhibited improvement in finger function. Significantly greater suppression of the sensory motor rhythm over both hemispheres was observed during motor imagery. Transcranial magnetic stimulation showed increased cortical excitability in the damaged hemisphere. Success rates of brain-computer interface training tended to increase as the session progressed in 4 cases. Brain-computer interface training appears to have yielded some improvement in motor function and brain plasticity. Further controlled research is needed to clarify the role of the brain-computer interface system.

  1. An Efficient Framework for EEG Analysis with Application to Hybrid Brain Computer Interfaces Based on Motor Imagery and P300.

    Science.gov (United States)

    Long, Jinyi; Wang, Jue; Yu, Tianyou

    2017-01-01

    The hybrid brain computer interface (BCI) based on motor imagery (MI) and P300 has been a preferred strategy aiming to improve the detection performance through combining the features of each. However, current methods used for combining these two modalities optimize them separately, which does not result in optimal performance. Here, we present an efficient framework to optimize them together by concatenating the features of MI and P300 in a block diagonal form. Then a linear classifier under a dual spectral norm regularizer is applied to the combined features. Under this framework, the hybrid features of MI and P300 can be learned, selected, and combined together directly. Experimental results on the data set of hybrid BCI based on MI and P300 are provided to illustrate competitive performance of the proposed method against other conventional methods. This provides an evidence that the method used here contributes to the discrimination performance of the brain state in hybrid BCI.

  2. Neural Correlates of Phrase Quadrature Perception in Harmonic Rhythm: An EEG Study (Using a Brain-Computer Interface).

    Science.gov (United States)

    Fernández-Sotos, Alicia; Martínez-Rodrigo, Arturo; Moncho-Bogani, José; Latorre, José Miguel; Fernández-Caballero, Antonio

    2017-11-13

    For the sake of establishing the neural correlates of phrase quadrature perception in harmonic rhythm, a musical experiment has been designed to induce music-evoked stimuli related to one important aspect of harmonic rhythm, namely the phrase quadrature. Brain activity is translated to action through electroencephalography (EEG) by using a brain-computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. The results of processing the acquired signals are in line with previous studies that use different musical parameters to induce emotions. Indeed, our experiment shows statistical differences in theta and alpha bands between the fulfillment and break of phrase quadrature, an important cue of harmonic rhythm, in two classical sonatas.

  3. Hybrid gaze/EEG brain computer interface for robot arm control on a pick and place task.

    Science.gov (United States)

    Haofei Wang; Xujiong Dong; Zhaokang Chen; Shi, Bertram E

    2015-08-01

    We describe a hybrid brain computer interface that integrates gaze information from an eye tracker with brain activity information measured by electroencephalography (EEG). Users explicitly control the end effector of a robot arm to move in one of four directions using motor imagery to perform a pick and place task. Measurements of the natural eye gaze behavior of subjects is used to infer the instantaneous intent of the users based on the past gaze trajectory. This information is integrated with the output of the EEG classifier and contextual information about the environment probabilistically using Bayesian inference. Our experiments demonstrate that subjects can achieve 100% task completion within three minutes and that the integration of EEG and gaze information significantly improves performance over either cue in isolation.

  4. An Efficient Framework for EEG Analysis with Application to Hybrid Brain Computer Interfaces Based on Motor Imagery and P300

    Directory of Open Access Journals (Sweden)

    Jinyi Long

    2017-01-01

    Full Text Available The hybrid brain computer interface (BCI based on motor imagery (MI and P300 has been a preferred strategy aiming to improve the detection performance through combining the features of each. However, current methods used for combining these two modalities optimize them separately, which does not result in optimal performance. Here, we present an efficient framework to optimize them together by concatenating the features of MI and P300 in a block diagonal form. Then a linear classifier under a dual spectral norm regularizer is applied to the combined features. Under this framework, the hybrid features of MI and P300 can be learned, selected, and combined together directly. Experimental results on the data set of hybrid BCI based on MI and P300 are provided to illustrate competitive performance of the proposed method against other conventional methods. This provides an evidence that the method used here contributes to the discrimination performance of the brain state in hybrid BCI.

  5. Universal computer interfaces

    CERN Document Server

    Dheere, RFBM

    1988-01-01

    Presents a survey of the latest developments in the field of the universal computer interface, resulting from a study of the world patent literature. Illustrating the state of the art today, the book ranges from basic interface structure, through parameters and common characteristics, to the most important industrial bus realizations. Recent technical enhancements are also included, with special emphasis devoted to the universal interface adapter circuit. Comprehensively indexed.

  6. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair.

    Science.gov (United States)

    Long, Jinyi; Li, Yuanqing; Wang, Hongtao; Yu, Tianyou; Pan, Jiahui; Li, Feng

    2012-09-01

    Brain-computer interfaces (BCIs) are used to translate brain activity signals into control signals for external devices. Currently, it is difficult for BCI systems to provide the multiple independent control signals necessary for the multi-degree continuous control of a wheelchair. In this paper, we address this challenge by introducing a hybrid BCI that uses the motor imagery-based mu rhythm and the P300 potential to control a brain-actuated simulated or real wheelchair. The objective of the hybrid BCI is to provide a greater number of commands with increased accuracy to the BCI user. Our paradigm allows the user to control the direction (left or right turn) of the simulated or real wheelchair using left- or right-hand imagery. Furthermore, a hybrid manner can be used to control speed. To decelerate, the user imagines foot movement while ignoring the flashing buttons on the graphical user interface (GUI). If the user wishes to accelerate, then he/she pays attention to a specific flashing button without performing any motor imagery. Two experiments were conducted to assess the BCI control; both a simulated wheelchair in a virtual environment and a real wheelchair were tested. Subjects steered both the simulated and real wheelchairs effectively by controlling the direction and speed with our hybrid BCI system. Data analysis validated the use of our hybrid BCI system to control the direction and speed of a wheelchair.

  7. Effects of brain-computer interface-based functional electrical stimulation on brain activation in stroke patients: a pilot randomized controlled trial.

    Science.gov (United States)

    Chung, EunJung; Kim, Jung-Hee; Park, Dae-Sung; Lee, Byoung-Hee

    2015-03-01

    [Purpose] This study sought to determine the effects of brain-computer interface-based functional electrical stimulation (BCI-FES) on brain activation in patients with stroke. [Subjects] The subjects were randomized to in a BCI-FES group (n=5) and a functional electrical stimulation (FES) group (n=5). [Methods] Patients in the BCI-FES group received ankle dorsiflexion training with FES for 30 minutes per day, 5 times under the brain-computer interface-based program. The FES group received ankle dorsiflexion training with FES for the same amount of time. [Results] The BCI-FES group demonstrated significant differences in the frontopolar regions 1 and 2 attention indexes, and frontopolar 1 activation index. The FES group demonstrated no significant differences. There were significant differences in the frontopolar 1 region activation index between the two groups after the interventions. [Conclusion] The results of this study suggest that BCI-FES training may be more effective in stimulating brain activation than only FES training in patients recovering from stroke.

  8. A qualitative study adopting a user-centered approach to design and validate a brain computer interface for cognitive rehabilitation for people with brain injury.

    Science.gov (United States)

    Martin, Suzanne; Armstrong, Elaine; Thomson, Eileen; Vargiu, Eloisa; Solà, Marc; Dauwalder, Stefan; Miralles, Felip; Daly Lynn, Jean

    2017-07-14

    Cognitive rehabilitation is established as a core intervention within rehabilitation programs following a traumatic brain injury (TBI). Digitally enabled assistive technologies offer opportunities for clinicians to increase remote access to rehabilitation supporting transition into home. Brain Computer Interface (BCI) systems can harness the residual abilities of individuals with limited function to gain control over computers through their brain waves. This paper presents an online cognitive rehabilitation application developed with therapists, to work remotely with people who have TBI, who will use BCI at home to engage in the therapy. A qualitative research study was completed with people who are community dwellers post brain injury (end users), and a cohort of therapists involved in cognitive rehabilitation. A user-centered approach over three phases in the development, design and feasibility testing of this cognitive rehabilitation application included two tasks (Find-a-Category and a Memory Card task). The therapist could remotely prescribe activity with different levels of difficulty. The service user had a home interface which would present the therapy activities. This novel work was achieved by an international consortium of academics, business partners and service users.

  9. Current challenges facing the translation of brain computer interfaces from preclinical trials to use in human patients

    Directory of Open Access Journals (Sweden)

    Maxwell D. Murphy

    2016-01-01

    Full Text Available Current research in brain computer interface (BCI technology is advancing beyond preclinical studies, with trials beginning in human patients. To date, these trials have been carried out with several different types of recording interfaces. The success of these devices has varied widely, but different factors such as the level of invasiveness, timescale of recorded information, and ability to maintain stable functionality of the device over a long period of time all must be considered in addition to accuracy in decoding intent when assessing the most practical type of device moving forward. Here, we discuss various approaches to BCIs, distinguishing between devices focusing on control of operations extrinsic to the subject (e.g., prosthetic limbs, computer cursors and those focusing on control of operations intrinsic to the brain (e.g. using stimulation or external feedback, including closed-loop or adaptive devices. In this discussion, we consider the current challenges facing the translation of various types of BCI technology to eventual human application.

  10. A brain-computer interface based on self-regulation of gamma-oscillations in the superior parietal cortex

    Science.gov (United States)

    Grosse-Wentrup, Moritz; Schölkopf, Bernhard

    2014-10-01

    Objective. Brain-computer interface (BCI) systems are often based on motor- and/or sensory processes that are known to be impaired in late stages of amyotrophic lateral sclerosis (ALS). We propose a novel BCI designed for patients in late stages of ALS that only requires high-level cognitive processes to transmit information from the user to the BCI. Approach. We trained subjects via EEG-based neurofeedback to self-regulate the amplitude of gamma-oscillations in the superior parietal cortex (SPC). We argue that parietal gamma-oscillations are likely to be associated with high-level attentional processes, thereby providing a communication channel that does not rely on the integrity of sensory- and/or motor-pathways impaired in late stages of ALS. Main results. Healthy subjects quickly learned to self-regulate gamma-power in the SPC by alternating between states of focused attention and relaxed wakefulness, resulting in an average decoding accuracy of 70.2%. One locked-in ALS patient (ALS-FRS-R score of zero) achieved an average decoding accuracy significantly above chance-level though insufficient for communication (55.8%). Significance. Self-regulation of gamma-power in the SPC is a feasible paradigm for brain-computer interfacing and may be preserved in late stages of ALS. This provides a novel approach to testing whether completely locked-in ALS patients retain the capacity for goal-directed thinking.

  11. A Novel Multilayer Correlation Maximization Model for Improving CCA-Based Frequency Recognition in SSVEP Brain-Computer Interface.

    Science.gov (United States)

    Jiao, Yong; Zhang, Yu; Wang, Yu; Wang, Bei; Jin, Jing; Wang, Xingyu

    2017-08-13

    Multiset canonical correlation analysis (MsetCCA) has been successfully applied to optimize the reference signals by extracting common features from multiple sets of electroencephalogram (EEG) for steady-state visual evoked potential (SSVEP) recognition in brain-computer interface application. To avoid extracting the possible noise components as common features, this study proposes a sophisticated extension of MsetCCA, called multilayer correlation maximization (MCM) model for further improving SSVEP recognition accuracy. MCM combines advantages of both CCA and MsetCCA by carrying out three layers of correlation maximization processes. The first layer is to extract the stimulus frequency-related information in using CCA between EEG samples and sine-cosine reference signals. The second layer is to learn reference signals by extracting the common features with MsetCCA. The third layer is to re-optimize the reference signals set in using CCA with sine-cosine reference signals again. Experimental study is implemented to validate effectiveness of the proposed MCM model in comparison with the standard CCA and MsetCCA algorithms. Superior performance of MCM demonstrates its promising potential for the development of an improved SSVEP-based brain-computer interface.

  12. Towards a truly mobile auditory brain-computer interface: exploring the P300 to take away.

    Science.gov (United States)

    De Vos, Maarten; Gandras, Katharina; Debener, Stefan

    2014-01-01

    In a previous study we presented a low-cost, small, and wireless 14-channel EEG system suitable for field recordings (Debener et al., 2012, psychophysiology). In the present follow-up study we investigated whether a single-trial P300 response can be reliably measured with this system, while subjects freely walk outdoors. Twenty healthy participants performed a three-class auditory oddball task, which included rare target and non-target distractor stimuli presented with equal probabilities of 16%. Data were recorded in a seated (control condition) and in a walking condition, both of which were realized outdoors. A significantly larger P300 event-related potential amplitude was evident for targets compared to distractors (pbrain-computer interface (BCI) study. This leads us to conclude that a truly mobile auditory BCI system is feasible. © 2013.

  13. A Gaussian mixture model based adaptive classifier for fNIRS brain-computer interfaces and its testing via simulation.

    Science.gov (United States)

    Li, Zheng; Jiang, Yi-Han; Duan, Lian; Zhu, Chao-Zhe

    2017-08-01

    Functional near infra-red spectroscopy (fNIRS) is a promising brain imaging technology for brain-computer interfaces (BCI). Future clinical uses of fNIRS will likely require operation over long time spans, during which neural activation patterns may change. However, current decoders for fNIRS signals are not designed to handle changing activation patterns. The objective of this study is to test via simulations a new adaptive decoder for fNIRS signals, the Gaussian mixture model adaptive classifier (GMMAC). GMMAC can simultaneously classify and track activation pattern changes without the need for ground-truth labels. This adaptive classifier uses computationally efficient variational Bayesian inference to label new data points and update mixture model parameters, using the previous model parameters as priors. We test GMMAC in simulations in which neural activation patterns change over time and compare to static decoders and unsupervised adaptive linear discriminant analysis classifiers. Our simulation experiments show GMMAC can accurately decode under time-varying activation patterns: shifts of activation region, expansions of activation region, and combined contractions and shifts of activation region. Furthermore, the experiments show the proposed method can track the changing shape of the activation region. Compared to prior work, GMMAC performed significantly better than the other unsupervised adaptive classifiers on a difficult activation pattern change simulation: 99% versus  <54% in two-choice classification accuracy. We believe GMMAC will be useful for clinical fNIRS-based brain-computer interfaces, including neurofeedback training systems, where operation over long time spans is required.

  14. A Gaussian mixture model based adaptive classifier for fNIRS brain-computer interfaces and its testing via simulation

    Science.gov (United States)

    Li, Zheng; Jiang, Yi-han; Duan, Lian; Zhu, Chao-zhe

    2017-08-01

    Objective. Functional near infra-red spectroscopy (fNIRS) is a promising brain imaging technology for brain-computer interfaces (BCI). Future clinical uses of fNIRS will likely require operation over long time spans, during which neural activation patterns may change. However, current decoders for fNIRS signals are not designed to handle changing activation patterns. The objective of this study is to test via simulations a new adaptive decoder for fNIRS signals, the Gaussian mixture model adaptive classifier (GMMAC). Approach. GMMAC can simultaneously classify and track activation pattern changes without the need for ground-truth labels. This adaptive classifier uses computationally efficient variational Bayesian inference to label new data points and update mixture model parameters, using the previous model parameters as priors. We test GMMAC in simulations in which neural activation patterns change over time and compare to static decoders and unsupervised adaptive linear discriminant analysis classifiers. Main results. Our simulation experiments show GMMAC can accurately decode under time-varying activation patterns: shifts of activation region, expansions of activation region, and combined contractions and shifts of activation region. Furthermore, the experiments show the proposed method can track the changing shape of the activation region. Compared to prior work, GMMAC performed significantly better than the other unsupervised adaptive classifiers on a difficult activation pattern change simulation: 99% versus  <54% in two-choice classification accuracy. Significance. We believe GMMAC will be useful for clinical fNIRS-based brain-computer interfaces, including neurofeedback training systems, where operation over long time spans is required.

  15. Orientation-modulated attention effect on visual evoked potential: Application for PIN system using brain-computer interface.

    Science.gov (United States)

    Wilaiprasitporn, Theerawit; Yagi, Tohru

    2015-01-01

    This research demonstrates the orientation-modulated attention effect on visual evoked potential. We combined this finding with our previous findings about the motion-modulated attention effect and used the result to develop novel visual stimuli for a personal identification number (PIN) application based on a brain-computer interface (BCI) framework. An electroencephalography amplifier with a single electrode channel was sufficient for our application. A computationally inexpensive algorithm and small datasets were used in processing. Seven healthy volunteers participated in experiments to measure offline performance. Mean accuracy was 83.3% at 13.9 bits/min. Encouraged by these results, we plan to continue developing the BCI-based personal identification application toward real-time systems.

  16. An open-source and cross-platform framework for Brain Computer Interface-guided robotic arm control.

    Science.gov (United States)

    Kubben, Pieter L; Pouratian, Nader

    2012-01-01

    Brain Computer Interfaces (BCIs) have focused on several areas, of which motor substitution has received particular interest. Whereas open-source BCI software is available to facilitate cost-effective collaboration between research groups, it mainly focuses on communication and computer control. We developed an open-source and cross-platform framework, which works with cost-effective equipment that allows researchers to enter the field of BCI-based motor substitution without major investments upfront. It is based on the C++ programming language and the Qt framework, and offers a separate class for custom MATLAB/Simulink scripts. It has been tested using a 14-channel wireless electroencephalography (EEG) device and a low-cost robotic arm that offers 5° of freedom. The software contains four modules to control the robotic arm, one of which receives input from the EEG device. Strengths, current limitations, and future developments will be discussed.

  17. The computer graphics interface

    CERN Document Server

    Steinbrugge Chauveau, Karla; Niles Reed, Theodore; Shepherd, B

    2014-01-01

    The Computer Graphics Interface provides a concise discussion of computer graphics interface (CGI) standards. The title is comprised of seven chapters that cover the concepts of the CGI standard. Figures and examples are also included. The first chapter provides a general overview of CGI; this chapter covers graphics standards, functional specifications, and syntactic interfaces. Next, the book discusses the basic concepts of CGI, such as inquiry, profiles, and registration. The third chapter covers the CGI concepts and functions, while the fourth chapter deals with the concept of graphic obje

  18. Review of wireless and wearable electroencephalogram systems and brain-computer interfaces--a mini-review.

    Science.gov (United States)

    Lin, Chin-Teng; Ko, Li-Wei; Chang, Meng-Hsiu; Duann, Jeng-Ren; Chen, Jing-Ying; Su, Tung-Ping; Jung, Tzyy-Ping

    2010-01-01

    Biomedical signal monitoring systems have rapidly advanced in recent years, propelled by significant advances in electronic and information technologies. Brain-computer interface (BCI) is one of the important research branches and has become a hot topic in the study of neural engineering, rehabilitation, and brain science. Traditionally, most BCI systems use bulky, wired laboratory-oriented sensing equipments to measure brain activity under well-controlled conditions within a confined space. Using bulky sensing equipments not only is uncomfortable and inconvenient for users, but also impedes their ability to perform routine tasks in daily operational environments. Furthermore, owing to large data volumes, signal processing of BCI systems is often performed off-line using high-end personal computers, hindering the applications of BCI in real-world environments. To be practical for routine use by unconstrained, freely-moving users, BCI systems must be noninvasive, nonintrusive, lightweight and capable of online signal processing. This work reviews recent online BCI systems, focusing especially on wearable, wireless and real-time systems. Copyright 2009 S. Karger AG, Basel.

  19. Usability and Performance Measure of a Consumer-grade Brain Computer Interface System for Environmental Control by Neurological Patients

    Directory of Open Access Journals (Sweden)

    Farzin Deravi

    2015-07-01

    Full Text Available With the increasing incidence and prevalence of chronic brain injury patients and the current financial constraints in healthcare budgets, there is a need for a more intelligent way to realise the current practice of neuro-rehabilitation service provision. Brain-computer Interface (BCI systems have the potential to address this issue to a certain extent only if carefully designed research can demonstrate that these systems are accurate, safe, cost-effective, are able to increase patient/carer satisfaction and enhance their quality of life. Therefore, one of the objectives of the proposed study was to examine whether participants (patients with brain injury and a sample of reference population were able to use a low cost BCI system (Emotiv EPOC to interact with a computer and to communicate via spelling words. Patients participated in the study did not have prior experience in using BCI headsets so as to measure the user experience in the first-exposure to BCI training. To measure emotional arousal of participants we used an ElectroDermal Activity Sensor (Qsensor by Affectiva. For the signal processing and feature extraction of imagery controls the Cognitive Suite of Emotiv's Control Panel was used. Our study reports the key findings based on data obtained from a group of patients and a sample reference population and presents the implications for the design and development of a BCI system for communication and control. The study also evaluates the performance of the system when used practically in context of an acute clinical environment

  20. A Real-Time Magnetoencephalography Brain-Computer Interface Using Interactive 3D Visualization and the Hadoop Ecosystem.

    Science.gov (United States)

    McClay, Wilbert A; Yadav, Nancy; Ozbek, Yusuf; Haas, Andy; Attias, Hagaii T; Nagarajan, Srikantan S

    2015-09-30

    Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI) for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG) brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user's intent for specific keyboard strikes or mouse button presses. The BCI's data analytics OPEN ACCESS Brain. Sci. 2015, 5 420 of a subject's MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse.

  1. Severe motor disability affects functional cortical integration in the context of brain-computer interface (BCI) use.

    Science.gov (United States)

    Nam, Chang S; Woo, Jincheol; Bahn, Sangwoo

    2012-01-01

    The purpose of this study was to investigate cortical interaction between brain regions in people with and without severe motor disability during brain-computer interface (BCI) operation through coherence analysis. Eighteen subjects, including six patients with cerebral palsy (CP) and three patients with amyotrophic lateral sclerosis (ALS), participated. The results showed (1) the existence of BCI performance difference caused by severe motor disability; (2) different coherence patterns between participants with and without severe motor disability during BCI operation and (3) effects of motor disability on cortical connections varying in the brain regions for the different frequency bands, indicating reduced cortical differentiation and specialisation. Participants with severe neuromuscular impairments, as compared with the able-bodied group, recruited more cortical regions to compensate for the difficulties caused by their motor disability, reflecting a less efficient operating strategy for the BCI task. This study demonstrated that coherence analysis can be applied to examine the ways cortical networks cooperate with each other during BCI tasks. Few studies have investigated the electrophysiological underpinnings of differences in BCI performance. This study contributes by assessing neuronal synchrony among brain regions. Our findings revealed that severe motor disability causes more cortical areas to be recruited to perform the BCI task, indicating reduced cortical differentiation and specialisation.

  2. Brain-computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients?

    Science.gov (United States)

    Kübler, A; Birbaumer, N

    2008-11-01

    To investigate the relationship between physical impairment and brain-computer interface (BCI) performance. We present a meta-analysis of 29 patients with amyotrophic lateral sclerosis and six patients with other severe neurological diseases in different stages of physical impairment who were trained with a BCI. In most cases voluntary regulation of slow cortical potentials has been used as input signal for BCI-control. More recently sensorimotor rhythms and the P300 event-related brain potential were recorded. A strong correlation has been found between physical impairment and BCI performance, indicating that performance worsens as impairment increases. Seven patients were in the complete locked-in state (CLIS) with no communication possible. After removal of these patients from the analysis, the relationship between physical impairment and BCI performance disappeared. The lack of a relation between physical impairment and BCI performance was confirmed when adding BCI data of patients from other BCI research groups. Basic communication (yes/no) was not restored in any of the CLIS patients with a BCI. Whether locked-in patients can transfer learned brain control to the CLIS remains an open empirical question. Voluntary brain regulation for communication is possible in all stages of paralysis except the CLIS.

  3. Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report.

    Science.gov (United States)

    Broetz, Doris; Braun, Christoph; Weber, Cornelia; Soekadar, Surjo R; Caria, Andrea; Birbaumer, Niels

    2010-09-01

    There is no accepted and efficient rehabilitation strategy to reduce focal impairments for patients with chronic stroke who lack residual movements. A 67-year-old hemiplegic patient with no active finger extension was trained with a brain-computer interface (BCI) combined with a specific daily life-oriented physiotherapy. The BCI used electrical brain activity (EEG) and magnetic brain activity (MEG) to drive an orthosis and a robot affixed to the patient's affected upper extremity, which enabled him to move the paralyzed arm and hand driven by voluntary modulation of micro-rhythm activity. In addition, the patient practiced goal-directed physiotherapy training. Over 1 year, he completed 3 training blocks. Arm motor function, gait capacities (using Fugl-Meyer Assessment, Wolf Motor Function Test, Modified Ashworth Scale, 10-m walk speed, and goal attainment score), and brain reorganization (functional MRI, MEG) were repeatedly assessed. The ability of hand and arm movements as well as speed and safety of gait improved significantly (mean 46.6%). Improvement of motor function was associated with increased micro-oscillations in the ipsilesional motor cortex. This proof-of-principle study suggests that the combination of BCI training with goal-directed, active physical therapy may improve the motor abilities of chronic stroke patients despite apparent initial paralysis.

  4. A Real-Time Magnetoencephalography Brain-Computer Interface Using Interactive 3D Visualization and the Hadoop Ecosystem

    Directory of Open Access Journals (Sweden)

    Wilbert A. McClay

    2015-09-01

    Full Text Available Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user’s intent for specific keyboard strikes or mouse button presses. The BCI’s data analytics OPEN ACCESS Brain. Sci. 2015, 5 420 of a subject’s MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse.

  5. The Unlock Project: A Python-based framework for practical brain-computer interface communication “app” development

    Science.gov (United States)

    Brumberg, Jonathan S.; Lorenz, Sean D.; Galbraith, Byron V.; Guenther, Frank H.

    2013-01-01

    In this paper we present a framework for reducing the development time needed for creating applications for use in non-invasive brain-computer interfaces (BCI). Our framework is primarily focused on facilitating rapid software “app” development akin to current efforts in consumer portable computing (e.g. smart phones and tablets). This is accomplished by handling intermodule communication without direct user or developer implementation, instead relying on a core subsystem for communication of standard, internal data formats. We also provide a library of hardware interfaces for common mobile EEG platforms for immediate use in BCI applications. A use-case example is described in which a user with amyotrophic lateral sclerosis participated in an electroencephalography-based BCI protocol developed using the proposed framework. We show that our software environment is capable of running in real-time with updates occurring 50–60 times per second with limited computational overhead (5 ms system lag) while providing accurate data acquisition and signal analysis. PMID:23366434

  6. The Unlock Project: a Python-based framework for practical brain-computer interface communication "app" development.

    Science.gov (United States)

    Brumberg, Jonathan S; Lorenz, Sean D; Galbraith, Byron V; Guenther, Frank H

    2012-01-01

    In this paper we present a framework for reducing the development time needed for creating applications for use in non-invasive brain-computer interfaces (BCI). Our framework is primarily focused on facilitating rapid software "app" development akin to current efforts in consumer portable computing (e.g. smart phones and tablets). This is accomplished by handling intermodule communication without direct user or developer implementation, instead relying on a core subsystem for communication of standard, internal data formats. We also provide a library of hardware interfaces for common mobile EEG platforms for immediate use in BCI applications. A use-case example is described in which a user with amyotrophic lateral sclerosis participated in an electroencephalography-based BCI protocol developed using the proposed framework. We show that our software environment is capable of running in real-time with updates occurring 50-60 times per second with limited computational overhead (5 ms system lag) while providing accurate data acquisition and signal analysis.

  7. Motor imagery based brain-computer interface: a study of the effect of positive and negative feedback.

    Science.gov (United States)

    González-Franco, Mar; Yuan, Peng; Zhang, Dan; Hong, Bo; Gao, Shangkai

    2011-01-01

    Co-adaptation between the human brain and computers is an important issue in brain-computer interface (BCI) research. However, most of the research has focused on the computer side of BCI, such as developing powerful machine-learning algorithms, while less research has focused on investigating how BCI users may optimally adapt. This paper assesses the influences of positive and negative visual feedback on motor imagery (MI) skills by evaluating the performance. More precisely, a MI based BCI paradigm was employed with fake visual feedback, regardless of subjects' real performance. Subjects were exposed to two experimental conditions--one positive and one negative, in which 80% or 30% of the trials were associated with positive feedback, respectively. The main EEG feature for MI-BCI classification--the asymmetry of mu-rhythm between hemispheres--was more prominent only after the negative feedback session. In addition, the negative feedback condition was accompanied by larger heart rate variability compared to the positive feedback condition. Our results suggest that visual feedback is an important aspect to take into account when designing BCI skill acquisition sessions.

  8. A binary motor imagery tasks based brain-computer interface for two-dimensional movement control

    Science.gov (United States)

    Xia, Bin; Cao, Lei; Maysam, Oladazimi; Li, Jie; Xie, Hong; Su, Caixia; Birbaumer, Niels

    2017-12-01

    Objective. Two-dimensional movement control is a popular issue in brain–computer interface (BCI) research and has many applications in the real world. In this paper, we introduce a combined control strategy to a binary class-based BCI system that allows the user to move a cursor in a two-dimensional (2D) plane. Users focus on a single moving vector to control 2D movement instead of controlling vertical and horizontal movement separately. Approach. Five participants took part in a fixed-target experiment and random-target experiment to verify the effectiveness of the combination control strategy under the fixed and random routine conditions. Both experiments were performed in a virtual 2D dimensional environment and visual feedback was provided on the screen. Main results. The five participants achieved an average hit rate of 98.9% and 99.4% for the fixed-target experiment and the random-target experiment, respectively. Significance. The results demonstrate that participants could move the cursor in the 2D plane effectively. The proposed control strategy is based only on a basic two-motor imagery BCI, which enables more people to use it in real-life applications.

  9. Implementation of an Embedded Web Server Application for Wireless Control of Brain Computer Interface Based Home Environments.

    Science.gov (United States)

    Aydın, Eda Akman; Bay, Ömer Faruk; Güler, İnan

    2016-01-01

    Brain Computer Interface (BCI) based environment control systems could facilitate life of people with neuromuscular diseases, reduces dependence on their caregivers, and improves their quality of life. As well as easy usage, low-cost, and robust system performance, mobility is an important functionality expected from a practical BCI system in real life. In this study, in order to enhance users' mobility, we propose internet based wireless communication between BCI system and home environment. We designed and implemented a prototype of an embedded low-cost, low power, easy to use web server which is employed in internet based wireless control of a BCI based home environment. The embedded web server provides remote access to the environmental control module through BCI and web interfaces. While the proposed system offers to BCI users enhanced mobility, it also provides remote control of the home environment by caregivers as well as the individuals in initial stages of neuromuscular disease. The input of BCI system is P300 potentials. We used Region Based Paradigm (RBP) as stimulus interface. Performance of the BCI system is evaluated on data recorded from 8 non-disabled subjects. The experimental results indicate that the proposed web server enables internet based wireless control of electrical home appliances successfully through BCIs.

  10. Towards Brain-Computer Interface Control of a 6-Degree-of-Freedom Robotic Arm Using Dry EEG Electrodes

    Directory of Open Access Journals (Sweden)

    Alexander Astaras

    2013-01-01

    Full Text Available Introduction. Development of a robotic arm that can be operated using an exoskeletal position sensing harness as well as a dry electrode brain-computer interface headset. Design priorities comprise an intuitive and immersive user interface, fast and smooth movement, portability, and cost minimization. Materials and Methods. A robotic arm prototype capable of moving along 6 degrees of freedom has been developed, along with an exoskeletal position sensing harness which was used to control it. Commercially available dry electrode BCI headsets were evaluated. A particular headset model has been selected and is currently being integrated into the hybrid system. Results and Discussion. The combined arm-harness system has been successfully tested and met its design targets for speed, smooth movement, and immersive control. Initial tests verify that an operator using the system can perform pick and place tasks following a rather short learning curve. Further evaluation experiments are planned for the integrated BCI-harness hybrid setup. Conclusions. It is possible to design a portable robotic arm interface comparable in size, dexterity, speed, and fluidity to the human arm at relatively low cost. The combined system achieved its design goals for intuitive and immersive robotic control and is currently being further developed into a hybrid BCI system for comparative experiments.

  11. A Modular Framework for EEG Web Based Binary Brain Computer Interfaces to Recover Communication Abilities in Impaired People.

    Science.gov (United States)

    Placidi, Giuseppe; Petracca, Andrea; Spezialetti, Matteo; Iacoviello, Daniela

    2016-01-01

    A Brain Computer Interface (BCI) allows communication for impaired people unable to express their intention with common channels. Electroencephalography (EEG) represents an effective tool to allow the implementation of a BCI. The present paper describes a modular framework for the implementation of the graphic interface for binary BCIs based on the selection of symbols in a table. The proposed system is also designed to reduce the time required for writing text. This is made by including a motivational tool, necessary to improve the quality of the collected signals, and by containing a predictive module based on the frequency of occurrence of letters in a language, and of words in a dictionary. The proposed framework is described in a top-down approach through its modules: signal acquisition, analysis, classification, communication, visualization, and predictive engine. The framework, being modular, can be easily modified to personalize the graphic interface to the needs of the subject who has to use the BCI and it can be integrated with different classification strategies, communication paradigms, and dictionaries/languages. The implementation of a scenario and some experimental results on healthy subjects are also reported and discussed: the modules of the proposed scenario can be used as a starting point for further developments, and application on severely disabled people under the guide of specialized personnel.

  12. Towards user-friendly spelling with an auditory brain-computer interface: the CharStreamer paradigm.

    Directory of Open Access Journals (Sweden)

    Johannes Höhne

    Full Text Available Realizing the decoding of brain signals into control commands, brain-computer interfaces (BCI aim to establish an alternative communication pathway for locked-in patients. In contrast to most visual BCI approaches which use event-related potentials (ERP of the electroencephalogram, auditory BCI systems are challenged with ERP responses, which are less class-discriminant between attended and unattended stimuli. Furthermore, these auditory approaches have more complex interfaces which imposes a substantial workload on their users. Aiming for a maximally user-friendly spelling interface, this study introduces a novel auditory paradigm: "CharStreamer". The speller can be used with an instruction as simple as "please attend to what you want to spell". The stimuli of CharStreamer comprise 30 spoken sounds of letters and actions. As each of them is represented by the sound of itself and not by an artificial substitute, it can be selected in a one-step procedure. The mental mapping effort (sound stimuli to actions is thus minimized. Usability is further accounted for by an alphabetical stimulus presentation: contrary to random presentation orders, the user can foresee the presentation time of the target letter sound. Healthy, normal hearing users (n = 10 of the CharStreamer paradigm displayed ERP responses that systematically differed between target and non-target sounds. Class-discriminant features, however, varied individually from the typical N1-P2 complex and P3 ERP components found in control conditions with random sequences. To fully exploit the sequential presentation structure of CharStreamer, novel data analysis approaches and classification methods were introduced. The results of online spelling tests showed that a competitive spelling speed can be achieved with CharStreamer. With respect to user rating, it clearly outperforms a control setup with random presentation sequences.

  13. Towards User-Friendly Spelling with an Auditory Brain-Computer Interface: The CharStreamer Paradigm

    Science.gov (United States)

    Höhne, Johannes; Tangermann, Michael

    2014-01-01

    Realizing the decoding of brain signals into control commands, brain-computer interfaces (BCI) aim to establish an alternative communication pathway for locked-in patients. In contrast to most visual BCI approaches which use event-related potentials (ERP) of the electroencephalogram, auditory BCI systems are challenged with ERP responses, which are less class-discriminant between attended and unattended stimuli. Furthermore, these auditory approaches have more complex interfaces which imposes a substantial workload on their users. Aiming for a maximally user-friendly spelling interface, this study introduces a novel auditory paradigm: “CharStreamer”. The speller can be used with an instruction as simple as “please attend to what you want to spell”. The stimuli of CharStreamer comprise 30 spoken sounds of letters and actions. As each of them is represented by the sound of itself and not by an artificial substitute, it can be selected in a one-step procedure. The mental mapping effort (sound stimuli to actions) is thus minimized. Usability is further accounted for by an alphabetical stimulus presentation: contrary to random presentation orders, the user can foresee the presentation time of the target letter sound. Healthy, normal hearing users (n = 10) of the CharStreamer paradigm displayed ERP responses that systematically differed between target and non-target sounds. Class-discriminant features, however, varied individually from the typical N1-P2 complex and P3 ERP components found in control conditions with random sequences. To fully exploit the sequential presentation structure of CharStreamer, novel data analysis approaches and classification methods were introduced. The results of online spelling tests showed that a competitive spelling speed can be achieved with CharStreamer. With respect to user rating, it clearly outperforms a control setup with random presentation sequences. PMID:24886978

  14. Brain-computer interface game applications for combined neurofeedback and biofeedback treatment for children on the autism spectrum

    Directory of Open Access Journals (Sweden)

    Elisabeth V C Friedrich

    2014-07-01

    Full Text Available Individuals with Autism Spectrum Disorder (ASD show deficits in social and communicative skills, including imitation, empathy, and shared attention, as well as restricted interests and repetitive patterns of behaviors. Evidence for and against the idea that dysfunctions in the mirror neuron system are involved in imitation and could be one underlying cause for ASD is discussed in this review. Neurofeedback interventions have reduced symptoms in children with ASD by self-regulation of brain rhythms. However, cortical deficiencies are not the only cause of these symptoms. Peripheral physiological activity, such as the heart rate, is closely linked to neurophysiological signals and associated with social engagement. Therefore, a combined approach targeting the interplay between brain, body and behavior could be more effective. Brain-computer interface applications for combined neurofeedback and biofeedback treatment for children with ASD are currently nonexistent. To facilitate their use, we have designed an innovative game that includes social interactions and provides neural- and body-based feedback that corresponds directly to the underlying significance of the trained signals as well as to the behavior that is reinforced.

  15. A Real-Time Magnetoencephalography Brain-Computer Interface Using Interactive 3D Visualization and the Hadoop Ecosystem

    Science.gov (United States)

    McClay, Wilbert A.; Yadav, Nancy; Ozbek, Yusuf; Haas, Andy; Attias, Hagaii T.; Nagarajan, Srikantan S.

    2015-01-01

    Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI) for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG) brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user’s intent for specific keyboard strikes or mouse button presses. The BCI’s data analytics of a subject’s MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse. PMID:26437432

  16. Improving the accessibility at home: implementation of a domotic application using a p300-based brain computer interface system

    Directory of Open Access Journals (Sweden)

    Rebeca Corralejo Palacios

    2012-05-01

    Full Text Available The aim of this study was to develop a Brain Computer Interface (BCI application to control domotic devices usually present at home. Previous studies have shown that people with severe disabilities, both physical and cognitive ones, do not achieve high accuracy results using motor imagery-based BCIs. To overcome this limitation, we propose the implementation of a BCI application using P300 evoked potentials, because neither extensive training nor extremely high concentration level are required for this kind of BCIs. The implemented BCI application allows to control several devices as TV, DVD player, mini Hi-Fi system, multimedia hard drive, telephone, heater, fan and lights. Our aim is that potential users, i.e. people with severe disabilities, are able to achieve high accuracy. Therefore, this domotic BCI application is useful to increase

  17. The investigation of brain-computer interface for motor imagery and execution using functional near-infrared spectroscopy

    Science.gov (United States)

    Zhang, Zhen; Jiao, Xuejun; Xu, Fengang; Jiang, Jin; Yang, Hanjun; Cao, Yong; Fu, Jiahao

    2017-01-01

    Functional near-infrared spectroscopy (fNIRS), which can measure cortex hemoglobin activity, has been widely adopted in brain-computer interface (BCI). To explore the feasibility of recognizing motor imagery (MI) and motor execution (ME) in the same motion. We measured changes of oxygenated hemoglobin (HBO) and deoxygenated hemoglobin (HBR) on PFC and Motor Cortex (MC) when 15 subjects performing hand extension and finger tapping tasks. The mean, slope, quadratic coefficient and approximate entropy features were extracted from HBO as the input of support vector machine (SVM). For the four-class fNIRS-BCI classifiers, we realized 87.65% and 87.58% classification accuracy corresponding to hand extension and finger tapping tasks. In conclusion, it is effective for fNIRS-BCI to recognize MI and ME in the same motion.

  18. Multi-Modal Integration of EEG-fNIRS for Brain-Computer Interfaces - Current Limitations and Future Directions.

    Science.gov (United States)

    Ahn, Sangtae; Jun, Sung C

    2017-01-01

    Multi-modal integration, which combines multiple neurophysiological signals, is gaining more attention for its potential to supplement single modality's drawbacks and yield reliable results by extracting complementary features. In particular, integration of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) is cost-effective and portable, and therefore is a fascinating approach to brain-computer interface (BCI). However, outcomes from the integration of these two modalities have yielded only modest improvement in BCI performance because of the lack of approaches to integrate the two different features. In addition, mismatch of recording locations may hinder further improvement. In this literature review, we surveyed studies of the integration of EEG/fNIRS in BCI thoroughly and discussed its current limitations. We also suggested future directions for efficient and successful multi-modal integration of EEG/fNIRS in BCI systems.

  19. Multi-Modal Integration of EEG-fNIRS for Brain-Computer Interfaces – Current Limitations and Future Directions

    Science.gov (United States)

    Ahn, Sangtae; Jun, Sung C.

    2017-01-01

    Multi-modal integration, which combines multiple neurophysiological signals, is gaining more attention for its potential to supplement single modality’s drawbacks and yield reliable results by extracting complementary features. In particular, integration of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) is cost-effective and portable, and therefore is a fascinating approach to brain-computer interface (BCI). However, outcomes from the integration of these two modalities have yielded only modest improvement in BCI performance because of the lack of approaches to integrate the two different features. In addition, mismatch of recording locations may hinder further improvement. In this literature review, we surveyed studies of the integration of EEG/fNIRS in BCI thoroughly and discussed its current limitations. We also suggested future directions for efficient and successful multi-modal integration of EEG/fNIRS in BCI systems. PMID:29093673

  20. Brain-computer interface driven functional electrical stimulation system for overground walking in spinal cord injury participant.

    Science.gov (United States)

    King, Christine E; Wang, Po T; McCrimmon, Colin M; Chou, Cathy C Y; Do, An H; Nenadic, Zoran

    2014-01-01

    The current treatment for ambulation after spinal cord injury (SCI) is to substitute the lost behavior with a wheelchair; however, this can result in many co-morbidities. Thus, novel solutions for the restoration of walking, such as brain-computer interfaces (BCI) and functional electrical stimulation (FES) devices, have been sought. This study reports on the first electroencephalogram (EEG) based BCI-FES system for overground walking, and its performance assessment in an individual with paraplegia due to SCI. The results revealed that the participant was able to purposefully operate the system continuously in real time. If tested in a larger population of SCI individuals, this system may pave the way for the restoration of overground walking after SCI.