WorldWideScience

Sample records for brain cannabinoid system

  1. Cannabinoids on the Brain

    Directory of Open Access Journals (Sweden)

    Andrew J. Irving

    2002-01-01

    Full Text Available Cannabis has a long history of consumption both for recreational and medicinal uses. Recently there have been significant advances in our understanding of how cannabis and related compounds (cannabinoids affect the brain and this review addresses the current state of knowledge of these effects. Cannabinoids act primarily via two types of receptor, CB1 and CB2, with CB1 receptors mediating most of the central actions of cannabinoids. The presence of a new type of brain cannabinoid receptor is also indicated. Important advances have been made in our understanding of cannabinoid receptor signaling pathways, their modulation of synaptic transmission and plasticity, the cellular targets of cannabinoids in different central nervous system (CNS regions and, in particular, the role of the endogenous brain cannabinoid (endocannabinoid system. Cannabinoids have widespread actions in the brain: in the hippocampus they influence learning and memory; in the basal ganglia they modulate locomotor activity and reward pathways; in the hypothalamus they have a role in the control of appetite. Cannabinoids may also be protective against neurodegeneration and brain damage and exhibit anticonvulsant activity. Some of the analgesic effects of cannabinoids also appear to involve sites within the brain. These advances in our understanding of the actions of cannabinoids and the brain endocannabinoid system have led to important new insights into neuronal function which are likely to result in the development of new therapeutic strategies for the treatment of a number of key CNS disorders.

  2. Studies of the brain cannabinoid system using positron emission tomography

    International Nuclear Information System (INIS)

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available

  3. Studies of the brain cannabinoid system using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  4. Cannabinoid receptor localization in brain

    Energy Technology Data Exchange (ETDEWEB)

    Herkenham, M.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; de Costa, B.R.; Rice, K.C. (National Institute of Mental Health, Bethesda, MD (USA))

    1990-03-01

    (3H)CP 55,940, a radiolabeled synthetic cannabinoid, which is 10-100 times more potent in vivo than delta 9-tetrahydrocannabinol, was used to characterize and localize a specific cannabinoid receptor in brain sections. The potencies of a series of natural and synthetic cannabinoids as competitors of (3H)CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in our in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience. Autoradiography of cannabinoid receptors in brain sections from several mammalian species, including human, reveals a unique and conserved distribution; binding is most dense in outflow nuclei of the basal ganglia--the substantia nigra pars reticulata and globus pallidus--and in the hippocampus and cerebellum. Generally high densities in forebrain and cerebellum implicate roles for cannabinoids in cognition and movement. Sparse densities in lower brainstem areas controlling cardiovascular and respiratory functions may explain why high doses of delta 9-tetrahydrocannabinol are not lethal.

  5. Cannabinoid system and cyclooxygenases inhibitors

    OpenAIRE

    Păunescu, H; Coman, OA; Coman, L.; Ghiţă, I; Georgescu, SR; Drăia, F; Fulga, I

    2011-01-01

    Rationale. The cannabinoid system consists of a complex array of receptors, substances with agonist/antagonist properties for those receptors, biosynthetic machineries and mechanisms for cellular uptake and degradation for endocannabinoids. This system is in interrelation with other systems that comprise lipid mediators like prostaglandins/leukotrienes systems. A clear antagonist, additive or synergic effect of nonsteroidal anti–inflammatory drugs (NSAIDs)–cannabinoid associations was not yet...

  6. Cellular mechanisms underlying the interaction between cannabinoid and opioid system.

    Science.gov (United States)

    Parolaro, D; Rubino, T; Viganò, D; Massi, P; Guidali, C; Realini, N

    2010-04-01

    Recently, the presence of functional interaction between the opioid and cannabinoid system has been shown in various pharmacological responses. Although there is an increasing interest for the feasible therapeutic application of a co-administration of cannabinoids and opioids in some disorders (i.e. to manage pain, to modulate immune system and emotions) and the combined use of the two drugs by drug abusers is becoming largely diffuse, only few papers focused on cellular and molecular mechanisms underlying this interaction. This review updates the biochemical and molecular underpinnings of opioid and cannabinoid interaction, both within the central nervous system and periphery. The most convincing theory for the explanation of this reciprocal interaction involves (i) the release of opioid peptides by cannabinoids or endocannabinoids by opioids, (ii) the existence of a direct receptor-receptor interaction when the receptors are co-expressed in the same cells, and (iii) the interaction of their intracellular pathways. Finally, the cannabinoid/opioid interaction might be different in the brain rewarding networks and in those accounting for other pharmacological effects (antinociception, modulation of emotionality and cognitive behavior), as well as between the central nervous system and periphery. Further insights about the cannabinoid/opioid interaction could pave the way for new and promising therapeutic approaches. PMID:20017730

  7. Cannabinoid Signaling and Neuroinflammatory Diseases: A Melting pot for the Regulation of Brain Immune Responses.

    Science.gov (United States)

    Chiurchiù, Valerio; Leuti, Alessandro; Maccarrone, Mauro

    2015-06-01

    The concept of the central nervous system (CNS) as an immune-privileged site, essentially due to the presence of the blood brain barrier, appears to be overly simplistic. Indeed, within healthy CNS immune activities are permitted and are required for neuronal function and host defense, not only due to the presence of the resident innate immune cells of the brain, but also by virtue of a complex cross-talk of the CNS with peripheral immune cells. Nonetheless, long-standing and persisting neuroinflammatory responses are most often detrimental and characterize several neuroinflammatory diseases, including multiple sclerosis, Alzheimer's disease and amyotrophic lateral sclerosis. A growing body of evidence suggests that Cannabis sativa-derived phytocannabinoids, as well as synthetic cannabinoids, are endowed with significant immunoregulatory and anti-inflammatory properties, both in peripheral tissues and in the CNS, through the activation of cannabinoid receptors. In this review, the immunomodulatory effects of cannabinoid signaling on the most relevant brain immune cells will be discussed. In addition, the impact of cannabinoid regulation on the overall integration of the manifold brain immune responses will also be highlighted, along with the implication of these compounds as potential agents for the management of neuroinflammatory disorders. PMID:25601726

  8. Brain innate immunity in the regulation of neuroinflammation: therapeutic strategies by modulating CD200-CD200R interaction involve the cannabinoid system.

    Science.gov (United States)

    Hernangómez, Miriam; Carrillo-Salinas, Francisco J; Mecha, Miriam; Correa, Fernando; Mestre, Leyre; Loría, Frida; Feliú, Ana; Docagne, Fabian; Guaza, Carmen

    2014-01-01

    The central nervous system (CNS) innate immune response includes an arsenal of molecules and receptors expressed by professional phagocytes, glial cells and neurons that is involved in host defence and clearance of toxic and dangerous cell debris. However, any uncontrolled innate immune responses within the CNS are widely recognized as playing a major role in the development of autoimmune disorders and neurodegeneration, with multiple sclerosis (MS) Alzheimer's disease (AD) being primary examples. Hence, it is important to identify the key regulatory mechanisms involved in the control of CNS innate immunity and which could be harnessed to explore novel therapeutic avenues. Neuroimmune regulatory proteins (NIReg) such as CD95L, CD200, CD47, sialic acid, complement regulatory proteins (CD55, CD46, fH, C3a), HMGB1, may control the adverse immune responses in health and diseases. In the absence of these regulators, when neurons die by apoptosis, become infected or damaged, microglia and infiltrating immune cells are free to cause injury as well as an adverse inflammatory response in acute and chronic settings. We will herein provide new emphasis on the role of the pair CD200-CD200R in MS and its experimental models: experimental autoimmune encephalomyelitis (EAE) and Theiler's virus induced demyelinating disease (TMEV-IDD). The interest of the cannabinoid system as inhibitor of inflammation prompt us to introduce our findings about the role of endocannabinoids (eCBs) in promoting CD200-CD200 receptor (CD200R) interaction and the benefits caused in TMEV-IDD. Finally, we also review the current data on CD200-CD200R interaction in AD, as well as, in the aging brain. PMID:24588829

  9. Cannabinoids in Neurodegenerative Disorders and Stroke/Brain Trauma: From Preclinical Models to Clinical Applications.

    Science.gov (United States)

    Fernández-Ruiz, Javier; Moro, María A; Martínez-Orgado, José

    2015-10-01

    Cannabinoids form a singular family of plant-derived compounds (phytocannabinoids), endogenous signaling lipids (endocannabinoids), and synthetic derivatives with multiple biological effects and therapeutic applications in the central and peripheral nervous systems. One of these properties is the regulation of neuronal homeostasis and survival, which is the result of the combination of a myriad of effects addressed to preserve, rescue, repair, and/or replace neurons, and also glial cells against multiple insults that may potentially damage these cells. These effects are facilitated by the location of specific targets for the action of these compounds (e.g., cannabinoid type 1 and 2 receptors, endocannabinoid inactivating enzymes, and nonendocannabinoid targets) in key cellular substrates (e.g., neurons, glial cells, and neural progenitor cells). This potential is promising for acute and chronic neurodegenerative pathological conditions. In this review, we will collect all experimental evidence, mainly obtained at the preclinical level, supporting that different cannabinoid compounds may be neuroprotective in adult and neonatal ischemia, brain trauma, Alzheimer's disease, Parkinson's disease, Huntington's chorea, and amyotrophic lateral sclerosis. This increasing experimental evidence demands a prompt clinical validation of cannabinoid-based medicines for the treatment of all these disorders, which, at present, lack efficacious treatments for delaying/arresting disease progression, despite the fact that the few clinical trials conducted so far with these medicines have failed to demonstrate beneficial effects. PMID:26260390

  10. Cannabinoid regulation of brain reward processing with an emphasis on the role of CB1 receptors: a step back into the future

    OpenAIRE

    George ePanagis; Brian eMackey; Styliani eVlachou

    2014-01-01

    Over the last decades the endocannabinoid system has been implicated in a large variety of functions, including a crucial modulation of brain reward circuits and the regulation of motivational processes. Importantly, behavioural studies have shown that cannabinoid compounds activate brain reward mechanisms and circuits in a similar manner to other drugs of abuse, such as nicotine, alcohol, cocaine and heroin, although the conditions under which cannabinoids exert their rewarding effects may b...

  11. Cannabinoid effects on CB1 receptor density in the adolescent brain: an autoradiographic study using the synthetic cannabinoid HU210.

    Science.gov (United States)

    Dalton, Victoria S; Zavitsanou, Katerina

    2010-11-01

    The short- and long-term behavioral effects of cannabinoids differ in adolescent and adult rodents. Few studies though have examined the underlying neurochemical changes that occur in the brain following adolescent cannabinoid exposure. In this study, we examined the effect of treatment with the synthetic cannabinoid, HU210, on CB1 receptor density in the brain and on body weight in adolescent male rats. Rats were treated daily with 25, 50, or 100 μg/kg HU210 for 4 or 14 days, or received a single dose of 100 μg/kg HU210 and sacrificed 24 h later. Receptor density was investigated using in vitro autoradiography with the CB1 receptor ligand [(3)H] CP55,940. In contrast to adult animals treated under the same paradigm in a previous study, adolescents continued on average, to gain weight over the course of the study. Weight gain was slowest in the 100 μg/kg group and improved dose dependently with controls gaining the most weight. Following the acute dose of HU210, a trend for a reduction in [(3)H] CP55,940 binding and a significant effect of treatment was observed. Statistically significant, dose-dependent, region-specific decreases in binding were observed in all brain regions examined following 4 and 14 days treatment. The pattern of CB1 receptor downregulation was similar to that observed in adults treated with cannabinoids in previous studies; however, its magnitude was smaller in adolescents. This reduced compensatory response may contribute to some acute behavioral effects, the pharmacological cross-tolerance and the long-lasting, adverse psychological consequences of cannabinoid exposure during adolescence. PMID:20842718

  12. The Endocannabinoid System, Cannabinoids, and Pain

    Directory of Open Access Journals (Sweden)

    Perry G. Fine

    2013-10-01

    Full Text Available The endocannabinoid system is involved in a host of homeostatic and physiologic functions, including modulation of pain and inflammation. The specific roles of currently identified endocannabinoids that act as ligands at endogenous cannabinoid receptors within the central nervous system (primarily but not exclusively CB1 receptors and in the periphery (primarily but not exclusively CB2 receptors are only partially elucidated, but they do exert an influence on nociception. Exogenous plant-based cannabinoids (phytocannabinoids and chemically related compounds, like the terpenes, commonly found in many foods, have been found to exert significant analgesic effects in various chronic pain conditions. Currently, the use of Δ9-tetrahydrocannabinol is limited by its psychoactive effects and predominant delivery route (smoking, as well as regulatory or legal constraints. However, other phytocannabinoids in combination, especially cannabidiol and β-caryophyllene, delivered by the oral route appear to be promising candidates for the treatment of chronic pain due to their high safety and low adverse effects profiles. This review will provide the reader with the foundational basic and clinical science linking the endocannabinoid system and the phytocannabinoids with their potentially therapeutic role in the management of chronic pain.

  13. Feeding induced by cannabinoids is mediated independently of the melanocortin system.

    Directory of Open Access Journals (Sweden)

    Puspha Sinnayah

    Full Text Available BACKGROUND: Cannabinoids, the active components of marijuana, stimulate appetite, and cannabinoid receptor-1 (CB1-R antagonists suppress appetite and promote weight loss. Little is known about how CB1-R antagonists affect the central neurocircuitry, specifically the melanocortin system that regulates energy balance. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that peripherally administered CB1-R antagonist (AM251 or agonist equally suppressed or stimulated feeding respectively in A(y , which lack a functional melanocortin system, and wildtype mice, demonstrating that cannabinoid effects on feeding do not require melanocortin circuitry. CB1-R antagonist or agonist administered into the ventral tegmental area (VTA equally suppressed or stimulated feeding respectively, in both genotypes. In addition, peripheral and central cannabinoid administration similarly induced c-Fos activation in brain sites suggesting mediation via motivational dopaminergic circuitry. Amperometry-detected increases in evoked dopamine (DA release by the CB1-R antagonist in nucleus accumbens slices indicates that AM251 modulates DA release from VTA terminals. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that the effects of cannabinoids on energy balance are independent of hypothalamic melanocortin circuitry and is primarily driven by the reward system.

  14. Modulation Of The Endo-Cannabinoid System: Therapeutic Potential Against Cocaine Dependence

    OpenAIRE

    Tanda, Gianluigi

    2007-01-01

    Dependence on cocaine is still a main unresolved medical and social concern, and in spite of research efforts, no pharmacological therapy against cocaine dependence is yet available. Recent studies have shown that the endocannabinoid system participates in specific stages and aspects of drug dependence in general, and some of this evidence suggests an involvement of the cannabinoid system in cocaine effects. For example, cocaine administration has been shown to alter brain endocannabinoid lev...

  15. Cannabinoids and their medicinal potential

    Directory of Open Access Journals (Sweden)

    Deepika Tikoo

    2012-04-01

    Full Text Available Cannabis sativa L preparations have been used therapeutically since many years. Inspite of their medicinal value, the danger of its abusive potential led to the ban on its use in clinical practice in many countries. The recent research and in depth knowledge about the cannabinoid system which throw a light on their disease management potential has paved way for the cannabinoids to become a new therapeutic focus of attention. Cannabinoids are a group of compounds that mediate their effects through cannabinoid receptors which include CB1, predominantly expressed in the brain and CB2 which is primarily found in the cells of the immune system. Despite the addictive properties of cannabis, the therapeutic value of cannabinoids is too high to be put aside. Numerous diseases such as anorexia, pain, inflammation, obesity, cardiovascular disorders, neurodegenerative diseases, cancer, gastrointestinal diseases, hepatic disorders, skin related diseases, respiratory disorders like asthma and eye diseases like glaucoma have suggested cannabinoid agonists/ antagonists/ cannabinoids related compounds as potential treatment options. Developments of new specific ligands for the cannabinoid receptors are now underway and it needs to be seen, if in future, they can prove to be a boon for the medical world. The paper reviews the current understanding of the cannabinoid receptors, their ligands and their possible role in various diseases supported by preclinical and clinical studies. [Int J Basic Clin Pharmacol 2012; 1(2.000: 48-59

  16. Chemical probes for the study of the endogenous cannabinoid system

    OpenAIRE

    Rueda Zubiaurre, Ainoa

    2015-01-01

    La química biológica nació hace dos décadas con objeto de estudiar la interfase entre la química y la biología, utilizando para ello herramientas capaces de interrogar los distintos sistemas biológicos, facilitando así la comprensión de los mismos.1-3 Sin embargo, existen sistemas biológicos de gran relevancia cuyo estudio no ha sido abordado hasta ahora. Uno de ellos es el sistema cannabinoide endógeno (endogenous cannabinoid system, ECS), que durante los últimos años ha sido relacionado con...

  17. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid.

    Science.gov (United States)

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E; Redhi, Godfrey H; Panlilio, Leigh V; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R

    2013-11-01

    In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ(9)-tetrahydrocannabinol (THC), marijuana's main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737

  18. The role of cannabinoids in adult neurogenesis.

    Science.gov (United States)

    Prenderville, Jack A; Kelly, Áine M; Downer, Eric J

    2015-08-01

    The processes underpinning post-developmental neurogenesis in the mammalian brain continue to be defined. Such processes involve the proliferation of neural stem cells and neural progenitor cells (NPCs), neuronal migration, differentiation and integration into a network of functional synapses within the brain. Both intrinsic (cell signalling cascades) and extrinsic (neurotrophins, neurotransmitters, cytokines, hormones) signalling molecules are intimately associated with adult neurogenesis and largely dictate the proliferative activity and differentiation capacity of neural cells. Cannabinoids are a unique class of chemical compounds incorporating plant-derived cannabinoids (the active components of Cannabis sativa), the endogenous cannabinoids and synthetic cannabinoid ligands, and these compounds are becoming increasingly recognized for their roles in neural developmental processes. Indeed, cannabinoids have clear modulatory roles in adult neurogenesis, probably through activation of both CB1 and CB2 receptors. In recent years, a large body of literature has deciphered the signalling networks involved in cannabinoid-mediated regulation of neurogenesis. This timely review summarizes the evidence that the cannabinoid system is intricately associated with neuronal differentiation and maturation of NPCs and highlights intrinsic/extrinsic signalling mechanisms that are cannabinoid targets. Overall, these findings identify the central role of the cannabinoid system in adult neurogenesis in the hippocampus and the lateral ventricles and hence provide insight into the processes underlying post-developmental neurogenesis in the mammalian brain. PMID:25951750

  19. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making

    OpenAIRE

    Khani, Abbas; Kermani, Mojtaba; Hesam, 6Soghra; Haghparast, Abbas; Enrike G Argandoña; Rainer, Gregor

    2015-01-01

    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test...

  20. Augmented inhibition from cannabinoid sensitive interneurons diminishes CA1 output after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Brian Neal Johnson

    2014-12-01

    Full Text Available The neurological impairments associated with traumatic brain injury include learning and memory deficits and increased risk of seizures. The hippocampus is critically involved in both of these phenomena and highly susceptible to damage by traumatic brain injury. To examine network activity in the hippocampal CA1 region after lateral fluid percussion injury, we used a combination of voltage sensitive dye, field potential and patch clamp recording in mouse hippocampal brain slices. When the stratum radiatum was stimulated in slices from injured mice we found decreased depolarization in stratum radiatum and increased hyperpolarization in stratum oriens, together with a decrease in the percentage of pyramidal neurons firing stimulus-evoked action potentials. Increased hyperpolarization in stratum oriens persisted when glutamatergic transmission was blocked. However, we found no changes in stratum oriens responses when the alveus was stimulated to directly activate stratum oriens. These results suggest that the increased stratum oriens hyperpolarization evoked by stratum radiatum stimulation was mediated by interneurons that have cell bodies and/or axons in stratum radiatum, and form synapses in stratum pyramidale and stratum oriens. A low concentration (100 nM of the synthetic cannabinoid WIN55,212-2,restored CA1 output in slices from injured animals. These findings support the hypothesis that increased GABAergic signaling by cannabinoid sensitive interneurons contributes to the reduced CA1 output following traumatic brain injury.

  1. Brain neuronal CB2 cannabinoid receptors in drug abuse and depression: from mice to human subjects.

    Directory of Open Access Journals (Sweden)

    Emmanuel S Onaivi

    Full Text Available BACKGROUND: Addiction and major depression are mental health problems associated with stressful events in life with high relapse and reoccurrence even after treatment. Many laboratories were not able to detect the presence of cannabinoid CB2 receptors (CB2-Rs in healthy brains, but there has been demonstration of CB2-R expression in rat microglial cells and other brain associated cells during inflammation. Therefore, neuronal expression of CB2-Rs had been ambiguous and controversial and its role in depression and substance abuse is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study we tested the hypothesis that genetic variants of CB2 gene might be associated with depression in a human population and that alteration in CB2 gene expression may be involved in the effects of abused substances including opiates, cocaine and ethanol in rodents. Here we demonstrate that a high incidence of (Q63R but not (H316Y polymorphism in the CB2 gene was found in Japanese depressed subjects. CB2-Rs and their gene transcripts are expressed in the brains of naïve mice and are modulated following exposure to stressors and administration of abused drugs. Mice that developed alcohol preference had reduced CB2 gene expression and chronic treatment with JWH015 a putative CB2-R agonist, enhanced alcohol consumption in stressed but not in control mice. The direct intracerebroventricular microinjection of CB2 anti-sense oligonucleotide into the mouse brain reduced mouse aversions in the plus-maze test, indicating the functional presence of CB2-Rs in the brain that modifies behavior. We report for the using electron microscopy the sub cellular localization of CB2-Rs that are mainly on post-synaptic elements in rodent brain. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate the functional expression of CB2-Rs in brain that may provide novel targets for the effects of cannabinoids in depression and substance abuse disorders beyond neuro-immunocannabinoid activity.

  2. Pharmacological Activation/Inhibition of the Cannabinoid System Affects Alcohol Withdrawal-Induced Neuronal Hypersensitivity to Excitotoxic Insults

    OpenAIRE

    Rubio, Marina; Villain, Hélène; Docagne, Fabian; Roussel, Benoit D.; Ramos, José Antonio; Vivien, Denis; Fernandez-Ruiz, Javier; Ali, Carine

    2011-01-01

    Cessation of chronic ethanol consumption can increase the sensitivity of the brain to excitotoxic damages. Cannabinoids have been proposed as neuroprotectants in different models of neuronal injury, but their effect have never been investigated in a context of excitotoxicity after alcohol cessation. Here we examined the effects of the pharmacological activation/inhibition of the endocannabinoid system in an in vitro model of chronic ethanol exposure and withdrawal followed by an excitotoxic c...

  3. Brain Innate Immunity in the Regulation of Neuroinflammation: Therapeutic Strategies by Modulating CD200-CD200R Interaction Involve the Cannabinoid System

    OpenAIRE

    Hernangómez, Miriam; Carrillo-Salinas, Francisco J.; Mecha, Miriam; Correa, Fernando; Mestre, Leyre; Loría, Frida; Feliú, Ana; Docagne, Fabian; Guaza, Carmen

    2014-01-01

    The central nervous system (CNS) innate immune response includes an arsenal of molecules and receptors expressed by professional phagocytes, glial cells and neurons that is involved in host defence and clearance of toxic and dangerous cell debris. However, any uncontrolled innate immune responses within the CNS are widely recognized as playing a major role in the development of autoimmune disorders and neurodegeneration, with multiple sclerosis (MS) Alzheimer's disease (AD) being primary exam...

  4. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

    Science.gov (United States)

    Pertwee, Roger G

    2012-12-01

    Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released 'endocannabinoids' or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive 'multi-targeting'. PMID:23108552

  5. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making.

    Science.gov (United States)

    Khani, Abbas; Kermani, Mojtaba; Hesam, Soghra; Haghparast, Abbas; Argandoña, Enrike G; Rainer, Gregor

    2015-06-01

    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test days, the rats received local injections of either vehicle or ACEA, a cannabinoid type-1 receptor (CB1R) agonist in the ACC or OFC. We measured spontaneous locomotor activity following the same treatments and characterized CB1Rs localization on different neuronal populations within these regions using immunohistochemistry. We showed that CB1R activation in the ACC impaired decision making such that rats were less willing to invest physical effort to gain high reward. Similarly, CB1R activation in the OFC induced impulsive pattern of choice such that rats preferred small immediate rewards to large delayed rewards. Control tasks ensured that the effects were specific for differential cost-benefit tasks. Furthermore, we characterized widespread colocalizations of CB1Rs on GABAergic axonal ends but few colocalizations on glutamatergic, dopaminergic, and serotonergic neuronal ends. These results provide first direct evidence that the cannabinoid system plays a critical role in regulating cost-benefit decision making in the ACC and OFC and implicate cannabinoid modulation of synaptic ends of predominantly interneurons and to a lesser degree other neuronal populations in these two frontal regions. PMID:25529106

  6. Cannabinoid-receptor expression in human leukocytes.

    Science.gov (United States)

    Bouaboula, M; Rinaldi, M; Carayon, P; Carillon, C; Delpech, B; Shire, D; Le Fur, G; Casellas, P

    1993-05-15

    Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS), probably through the cannabinoid receptor, which has recently been cloned in rat and human. While numerous reports have also described effects of cannabinoids on the immune system, the observation of both mRNA and cannabinoid receptor has hitherto been exclusively confined to the brain, a reported detection in the testis being the sole example of its presence at the periphery. Here we report the expression of the cannabinoid receptor on human immune tissues using a highly sensitive polymerase-chain-reaction-based method for mRNA quantification. We show that, although present in a much lower abundance than in brain, cannabinoid receptor transcripts are found in human spleen, tonsils and peripheral blood leukocytes. The distribution pattern displays important variations of the mRNA level for the cannabinoid receptor among the main human blood cell subpopulations. The rank order of mRNA levels in these cells is B cells > natural killer cells > or = polymorphonuclear neutrophils > or = T8 cells > monocytes > T4 cells. Cannabinoid-receptor mRNA, which is also found in monocytic, as well as T and B leukemia cell lines but not in Jurkat cells, presents a great diversity of expression on these cells as well, B-cell lines expressing a much higher level than T-cell lines. The cannabinoid receptor PCR products from leukocytes and brain are identical both in size and sequence suggesting a strong similarity between central and peripheral cannabinoid receptors. The expression of this receptor was demonstrated on membranes of the myelomonocytic U937 cells using the synthetic cannabinoid [3H]CP-55940 as ligand. The Kd determined from Scatchard analysis was 0.1 nM and the Bmax for membranes was 525 fmol/mg protein. The demonstration of cannabinoid-receptor expression at both mRNA and protein levels on human leukocytes provides a molecular basis for cannabinoid action on these cells. PMID

  7. Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation.

    Science.gov (United States)

    McCoy, Kathleen L

    2016-01-01

    Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them. PMID:27597805

  8. Feeding Induced by Cannabinoids Is Mediated Independently of the Melanocortin System

    OpenAIRE

    Sinnayah, Puspha; Jobst, Erin E.; Rathner, Joseph A.; Caldera-Siu, Angela D.; Tonelli-Lemos, Luciana; Eusterbrock, Aaron J.; Enriori, Pablo J.; Pothos, Emmanuel N.; Grove, Kevin L.; Cowley, Michael A.

    2008-01-01

    Background Cannabinoids, the active components of marijuana, stimulate appetite, and cannabinoid receptor-1 (CB1-R) antagonists suppress appetite and promote weight loss. Little is known about how CB1-R antagonists affect the central neurocircuitry, specifically the melanocortin system that regulates energy balance. Methodology/Principal Findings Here, we show that peripherally administered CB1-R antagonist (AM251) or agonist equally suppressed or stimulated feeding respectively in Ay , which...

  9. Interaction between the cholecystokinin and endogenous cannabinoid systems in cued fear expression and extinction retention.

    Science.gov (United States)

    Bowers, Mallory E; Ressler, Kerry J

    2015-02-01

    Post-traumatic stress disorder (PTSD) is thought to develop, in part, from improper inhibition of fear. Accordingly, one of the most effective treatment strategies for PTSD is exposure-based psychotherapy. Ideally, neuroscience would inform adjunct therapies that target the neurotransmitter systems involved in extinction processes. Separate studies have implicated the cholecystokinin (CCK) and endocannabinoid systems in fear; however, there is a high degree of anatomical colocalization between the cannabinoid 1 receptor (Cnr1) and CCK in the basolateral amygdala (BLA), a brain region critical for emotion regulation. Although most research has focused on GABA and GABAergic plasticity as the mechanism by which Cnr1 mediates fear inhibition, we hypothesize that a functional interaction between Cnr1 and CCKB receptor (CCKBR) is critical for fear extinction processes. In this study, systemic pharmacological manipulation of the cannabinoid system modulated cued fear expression in C57BL/6J mice after consolidation of auditory fear conditioning. Knockout of the CCKBR, however, had no effect on fear- or anxiety-like behaviors. Nonetheless, administration of a Cnr1 antagonist increased freezing behavior during a cued fear expression test in wild-type subjects, but had no effect on freezing behavior in CCKBR knockout littermates. In addition, we found that Cnr1-positive fibers form perisomatic clusters around CCKBR-positive cell bodies in the BLA. These CCKBR-positive cells comprise a molecularly heterogenous population of excitatory and inhibitory neurons. These findings provide novel evidence that Cnr1 contributes to cued fear expression via an interaction with the CCK system. Dysfunctional Cnr1-CCKBR interactions might contribute to the etiology of, or result from, fear-related psychiatric disease. PMID:25176168

  10. Pharmacology of cannabinoids.

    Science.gov (United States)

    Grotenhermen, Franjo

    2004-01-01

    Dronabinol (Delta 9-tetrahydocannabinol, THC), the main source of the pharmacological effects caused by the use of cannabis, is an agonist to both the CB1 and the CB2 subtype of cannabinoid receptors. It is available on prescription in several countries. The non-psychotropic cannabidiol (CBD), some analogues of natural cannabinoids and their metabolites, antagonists at the cannabinoid receptors and modulators of the endogenous cannabinoid system are also promising candidates for clinical research and therapeutic uses. Cannabinoid receptors are distributed in the central nervous system and many peripheral tissues including spleen, leukocytes; reproductive, urinary and gastrointestinal tracts; endocrine glands, arteries and heart. Five endogenous cannabinoids have been detected so far, of whom anandamide and 2-arachidonylglycerol are best characterized. There is evidence that besides the two cannabinoid receptor subtypes cloned so far additional cannabinoid receptor subtypes and vanilloid receptors are involved in the complex physiological functions of the cannabinoid system that include motor coordination, memory procession, control of appetite, pain modulation and neuroprotection. Strategies to modulate their activity include inhibition of re-uptake into cells and inhibition of their degradation to increase concentration and duration of action. Properties of cannabinoids that might be of therapeutic use include analgesia, muscle relaxation, immunosuppression, anti-inflammation, anti-allergic effects, sedation, improvement of mood, stimulation of appetite, anti-emesis, lowering of intraocular pressure, bronchodilation, neuroprotection and antineoplastic effects. PMID:15159677

  11. CHROMENOPYRAZOLES: NON-PSYCHOACTIVE AND SELECTIVE CB1 CANNABINOID AGONISTS WITH PERIPHERAL ANTINOCICEPTIVE PROPERTIES

    OpenAIRE

    Cumella, Jose; Hernández-Folgado, Laura; Girón, Rocio; Sánchez, Eva; Morales, Paula; Hurst, Dow P.; Gómez-Cañas, Maria; Gómez-Ruiz, Maria; Pinto, Diana C. G. A.; Goya, Pilar; Reggio, Patricia H; Martin, María Isabel; Fernández-Ruiz, Javier; Artur M. S. Silva; Jagerovic, Nadine

    2012-01-01

    The unwanted psychoactive effects of cannabinoid receptor agonists have limited their development as medicines. These CB1 mediated side effects are due to the fact that CB1 receptors are largely expressed in the Central Nervous System (CNS). Since it is known that CB1 receptors are also located peripherally, there is a growing interest in targeting cannabinoid receptors located outside the brain. A library of chromenopyrazoles designed in analogy to the classical cannabinoid cannabinol were s...

  12. Novel cannabinoid receptors

    OpenAIRE

    Brown, A J

    2007-01-01

    Cannabinoids have numerous physiological effects. In the years since the molecular identification of the G protein-coupled receptors CB1 and CB2, the ion channel TRPV1, and their corresponding endogenous ligand systems, many cannabinoid-evoked actions have been shown conclusively to be mediated by one of these specific receptor targets. However, there remain several examples where these classical cannabinoid receptors do not explain observed pharmacology. Studies using mice genetically delete...

  13. The endogenous cannabinoid system protects against colonic inflammation

    OpenAIRE

    Massa, Federico; MARSICANO, Giovanni; Hermann, Heike; Cannich, Astrid; Monory, Krisztina; Cravatt, Benjamin F.; Ferri, Gian-Luca; Sibaev, Andrei; Storr, Martin; Lutz, Beat

    2004-01-01

    Excessive inflammatory responses can emerge as a potential danger for organisms’ health. Physiological balance between pro- and anti-inflammatory processes constitutes an important feature of responses against harmful events. Here, we show that cannabinoid receptors type 1 (CB1) mediate intrinsic protective signals that counteract proinflammatory responses. Both intrarectal infusion of 2,4-dinitrobenzene sulfonic acid (DNBS) and oral administration of dextrane sulfate sodium induced stronger ...

  14. Mastering tricyclic ring systems for desirable functional cannabinoid activity

    Science.gov (United States)

    Petrov, Ravil R.; Knight, Lindsay; Chen, Shao-Rui; Wager-Miller, Jim; McDaniel, Steven W.; Diaz, Fanny; Barth, Francis; Pan, Hui-Lin; Mackie, Ken; Cavasotto, Claudio N.; Diaz, Philippe

    2013-01-01

    There is growing interest in using cannabinoid receptor 2 (CB2) agonists for the treatment of neuropathic pain and other indications. In continuation of our ongoing program aiming for the development of new small molecule cannabinoid ligands, we have synthesized a novel series of carbazole and γ-carboline derivatives. The affinities of the newly synthesized compounds were determined by a competitive radioligand displacement assay for human CB2 cannabinoid receptor and rat CB1 cannabinoid receptor. Functional activity and selectivity at human CB1 and CB2 receptors were characterized using receptor internalization and [35S]GTP-γ-S assays. The structure-activity relationship and optimization studies of the carbazole series have led to the discovery of a non-selective CB1 and CB2 agonist, compound 4. Our subsequent research efforts to increase CB2 selectivity of this lead compound have led to the discovery of CB2 selective compound 64, which robustly internalized CB2 receptors. Compound 64 had potent inhibitory effects on pain hypersensitivity in a rat model of neuropathic pain. Other potent and CB2 receptor–selective compounds, including compounds 63 and 68, and a selective CB1 agonist, compound 74 were also discovered. In addition, we identified the CB2 ligand 35 which failed to promote CB2 receptor internalization and inhibited compound CP55,940-induced CB2 internalization despite a high CB2 receptor affinity. The present study provides novel tricyclic series as a starting point for further investigations of CB2 pharmacology and pain treatment. PMID:24125850

  15. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.

    Science.gov (United States)

    Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang

    2016-04-01

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes. PMID:25833102

  16. Preclinical evaluation and quantification of [18F]MK-9470 as a radioligand for PET imaging of the type 1 cannabinoid receptor in rat brain

    International Nuclear Information System (INIS)

    [18F]MK-9470 is an inverse agonist for the type 1 cannabinoid (CB1) receptor allowing its use in PET imaging. We characterized the kinetics of [18F]MK-9470 and evaluated its ability to quantify CB1 receptor availability in the rat brain. Dynamic small-animal PET scans with [18F]MK-9470 were performed in Wistar rats on a FOCUS-220 system for up to 10 h. Both plasma and perfused brain homogenates were analysed using HPLC to quantify radiometabolites. Displacement and blocking experiments were done using cold MK-9470 and another inverse agonist, SR141716A. The distribution volume (VT) of [18F]MK-9470 was used as a quantitative measure and compared to the use of brain uptake, expressed as SUV, a simplified method of quantification. The percentage of intact [18F]MK-9470 in arterial plasma samples was 80 ± 23 % at 10 min, 38 ± 30 % at 40 min and 13 ± 14 % at 210 min. A polar radiometabolite fraction was detected in plasma and brain tissue. The brain radiometabolite concentration was uniform across the whole brain. Displacement and pretreatment studies showed that 56 % of the tracer binding was specific and reversible. VT values obtained with a one-tissue compartment model plus constrained radiometabolite input had good identifiability (≤10 %). Ignoring the radiometabolite contribution using a one-tissue compartment model alone, i.e. without constrained radiometabolite input, overestimated the [18F]MK-9470 VT, but was correlated. A correlation between [18F]MK-9470 VT and SUV in the brain was also found (R 2 = 0.26-0.33; p ≤ 0.03). While the presence of a brain-penetrating radiometabolite fraction complicates the quantification of [18F]MK-9470 in the rat brain, its tracer kinetics can be modelled using a one-tissue compartment model with and without constrained radiometabolite input. (orig.)

  17. Brain and Nervous System

    Science.gov (United States)

    ... to Know About Zika & Pregnancy Brain and Nervous System KidsHealth > For Parents > Brain and Nervous System Print ... is quite the juggler. Anatomy of the Nervous System If you think of the brain as a ...

  18. Elevated Brain Cannabinoid CB1 Receptor Availability in Posttraumatic Stress Disorder: A Positron Emission Tomography Study

    OpenAIRE

    Neumeister, Alexander; Normandin, Marc D.; Pietrzak, Robert H.; Piomelli, Daniele; Zheng, Ming-Qiang; Gujarro-Anton, Ana; Potenza, Marc N.; Bailey, Christopher R.; Lin, Shu-fei; Najafzadeh, Soheila; Ropchan, Jim; Henry, Shannan; Corsi-Travali, Stefani; Carson, Richard E; Huang, Yiyun

    2013-01-01

    Endocannabinoids and their attending cannabinoid type 1 receptor (CB1) have been implicated in animal models of posttraumatic stress disorder (PTSD). However, their specific role has not been studied in people with PTSD. Herein, we present an in vivo imaging study using positron emission tomography (PET) and the CB1-selective radioligand [11C]OMAR in individuals with PTSD, and healthy controls with lifetime histories of trauma (trauma controls [TC]) and those without such histories (healthy c...

  19. Structure of a cannabinoid receptor and functional expression of the cloned cDNA.

    Science.gov (United States)

    Matsuda, L A; Lolait, S J; Brownstein, M J; Young, A C; Bonner, T I

    1990-08-01

    Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS) in a complex and dose-dependent manner. Although CNS depression and analgesia are well documented effects of the cannabinoids, the mechanisms responsible for these and other cannabinoid-induced effects are not so far known. The hydrophobic nature of these substances has suggested that cannabinoids resemble anaesthetic agents in their action, that is, they nonspecifically disrupt cellular membranes. Recent evidence, however, has supported a mechanism involving a G protein-coupled receptor found in brain and neural cell lines, and which inhibits adenylate cyclase activity in a dose-dependent, stereoselective and pertussis toxin-sensitive manner. Also, the receptor is more responsive to psychoactive cannabinoids than to non-psychoactive cannabinoids. Here we report the cloning and expression of a complementary DNA that encodes a G protein-coupled receptor with all of these properties. Its messenger RNA is found in cell lines and regions of the brain that have cannabinoid receptors. These findings suggest that this protein is involved in cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users of marijuana. PMID:2165569

  20. Effect of cannabinoids on the binding of /sup 3/H-(3-MeHis/sup 2/)TRH to rat brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Matwyshyn, G.A.; Das, S.; Bhargava, H.N.

    1986-03-05

    Cannabinoids, particularly ..delta../sup 9/-THC is known to affect thyroid function. The effect of naturally occurring and synthetic cannabinoids on brain TRH receptors labeled with /sup 3/H-(3-MeHis/sup 2/)TRH(MeTRH) was determined. /sup 3/H-MeTRH bound to brain membranes at a single high affinity binding sites with a B/sub max/ of 48 +/- 2 fmol/mg protein and K/sub d/ of 4.2 +/- 0.4 nM. At 2 nM concentration the amount of /sup 3/H-MeTRH bound specifically was 10.9 +/- 0.6 fmol/mg protein. ..delta.. /sup 9/-THC (10/sup -7/ to 10/sup -3/ M) stimulated the binding of /sup 3/H-MeTRH with maximal stimulation of 60% at 10/sup -4/M concentration. Cannabinol (10/sup -6/-/sup -4/M) also enhanced the binding of /sup 3/H-MeTRH with maximal (58%) stimulation occurring at 10/sup -5/M concentration. Cannabidiol, on the other hand, had no effect on the binding of /sup 3/H-MeTRH up to 10/sup -5/M concentration. However, at 10/sup -4/M concentration of cannabidiol, the binding of /sup 3/H-MeTRH was decreased by 65%. The water soluble synthetic cannabinoids, naboctate, menabitan and SP 111 A inhibited the binding of /sup 3/H-MeTRH only at 10/sup -4/ or 10/sup -3/M concentration. These results suggest differential interaction of cannabinoids with brain TRH receptors.

  1. Fasting induces CART down-regulation in the zebrafish nervous system in a cannabinoid receptor 1-dependent manner.

    Science.gov (United States)

    Nishio, Shin-Ichi; Gibert, Yann; Berekelya, Liubov; Bernard, Laure; Brunet, Frédéric; Guillot, Etienne; Le Bail, Jean-Christophe; Sánchez, Juan Antonio; Galzin, Anne Marie; Triqueneaux, Gerard; Laudet, Vincent

    2012-08-01

    Central and peripheral mechanisms modulate food intake and energy balance in mammals and the precise role of the type 1 cannabinoid receptor (CB1) in these processes is still being explored. Using the zebrafish, Danio rerio, we show that rimonabant, a CB1-specific antagonist with an EC(50) of 5.15 × 10(-8) m, decreases embryonic yolk sac reserve use. We reveal a developmental overlap between CART genes and CB1 expression in the hypothalamus and medulla oblongata, two brain structures that play crucial roles in appetite regulation in mammals. We show that morpholino knockdown of CB1 or fasting decreases cocaine- and amphetamine-related transcript (CART)-3 expression. Strikingly, this down-regulation occurs only in regions coexpressing CB1 and CART3, reinforcing the link between CB1, CART, and appetite regulation. We show that rimonabant treatment impairs the fasting-induced down-regulation of CART expression in specific brain regions, whereas vehicle alone-treated embryos do not display this rescue of CART expression. Our data reveal that CB1 lies upstream of CART and signals the appetite through the down-regulation of CART expression. Thus, our results establish the zebrafish as a promising system to study appetite regulation. PMID:22700585

  2. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat

    OpenAIRE

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alter...

  3. Pharmacological blockade of either, cannabinoid CB1 or CB2 receptors, prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rats.

    OpenAIRE

    EDUARDO eBLANCO-CALVO; PATRICIA eRIVERA; SERGIO eARRABAL; ANTONIO eVARGAS; FRANCISCO JAVIER ePAVON; ANTONIA eSERRANO; PABLO eGALEANO; LETICIA eRUBIO; JUAN eSUAREZ; FERNANDO eRODRIGUEZ DE FONSECA

    2014-01-01

    Addiction to major drugs of abuse such as cocaine has been recently linked to alterations on adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulated this proliferative response since pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors by modulating not only neurogenesis but also cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation . To this...

  4. [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor

    OpenAIRE

    Burns, H. Donald; Van Laere, Koen; Sanabria-Bohórquez, Sandra; Hamill, Terence G.; Bormans, Guy; Eng, Wai-si; Gibson, Ray; Ryan, Christine; Connolly, Brett; Patel, Shil; Krause, Stephen; Vanko, Amy; Van Hecken, Anne; DUPONT, Patrick; De Lepeleire, Inge

    2007-01-01

    [(18)F]MK-9470 is a selective, high-affinity, inverse agonist (human IC(50), 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in human brain imaging. Autoradiographic studies in rhesus monkey brain showed that [(18)F]MK-9470 binding is aligned with the reported distribution of CB1 receptors with high specific binding in the cerebral cortex, cerebellum, caudate/putamen, globus pallidus, substantia nigra, and hippocampus. Positron emission tomography (PET) imaging...

  5. Differential treatment regimen-related effects of cannabinoids on D1 and D2 receptors in adolescent and adult rat brain.

    Science.gov (United States)

    Dalton, Victoria S; Zavitsanou, Katerina

    2010-12-01

    Animal studies suggest differential effects of cannabinoids on dopamine-related behaviours in adolescence and adulthood however few studies have investigated the underlying neurochemical effects of cannabinoids during adolescence. The aim of the present study was to compare the effects of treatment with the synthetic cannabinoid, HU210, on dopamine receptor density in adolescent and adult rats. Adolescent (postnatal day (PND) 35) and adult (PND 70) rats received a single dose of 100μg/kg HU210 or 25, 50 or 100μg/kg HU210 for 4 or 14 days. Dopamine D1 receptor (D1R) or D2 receptor (D2R) density was measured in the medial and lateral (CPUL) caudate putamen, nucleus accumbens, olfactory tubercle (TU) and substantia nigra (D1R only) using in vitro autoradiography. D1R and D2R densities were 1.6-1.7- and 1.1-1.4-fold higher respectively in adolescent control rats compared to adults. In adult rats, D1R density was increased by 1.2- and 1.3-fold (pHU210 treatment. A significant overall effect of treatment (pHU210. In adolescents, an overall effect of treatment on D1R density after a single exposure to HU210 was seen (p=0.0026) but no changes in D1R or D2R densities were observed in other treatment groups. These results suggest that the adolescent rat brain does not display the same compensatory mechanisms activated in the adult brain following cannabinoid treatment. PMID:20673846

  6. Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans

    OpenAIRE

    Rabinak, Christine A.; Angstadt, Mike; Lyons, Maryssa; Mori, Shoko; Milad, Mohammed R; Liberzon, Israel; Phan, K. Luan

    2013-01-01

    Pre-extinction administration of ∆9-tetrahydrocannibinol (THC) facilitates recall of extinction in healthy humans, and evidence from animal studies suggest that this likely involves via enhancement of the cannabinoid system within the ventromedial prefrontal cortex (vmPFC) and hippocampus (HIPP), brain structures critical to fear extinction. However, the effect of cannabinoids on the underlying neural circuitry of extinction memory recall in humans has not been demonstrated. We conducted a fu...

  7. Pharmacokinetics and pharmacodynamics of cannabinoids.

    Science.gov (United States)

    Grotenhermen, Franjo

    2003-01-01

    Delta(9)-Tetrahydrocannabinol (THC) is the main source of the pharmacological effects caused by the consumption of cannabis, both the marijuana-like action and the medicinal benefits of the plant. However, its acid metabolite THC-COOH, the non-psychotropic cannabidiol (CBD), several cannabinoid analogues and newly discovered modulators of the endogenous cannabinoid system are also promising candidates for clinical research and therapeutic uses. Cannabinoids exert many effects through activation of G-protein-coupled cannabinoid receptors in the brain and peripheral tissues. Additionally, there is evidence for non-receptor-dependent mechanisms. Natural cannabis products and single cannabinoids are usually inhaled or taken orally; the rectal route, sublingual administration, transdermal delivery, eye drops and aerosols have only been used in a few studies and are of little relevance in practice today. The pharmacokinetics of THC vary as a function of its route of administration. Pulmonary assimilation of inhaled THC causes a maximum plasma concentration within minutes, psychotropic effects start within seconds to a few minutes, reach a maximum after 15-30 minutes, and taper off within 2-3 hours. Following oral ingestion, psychotropic effects set in with a delay of 30-90 minutes, reach their maximum after 2-3 hours and last for about 4-12 hours, depending on dose and specific effect. At doses exceeding the psychotropic threshold, ingestion of cannabis usually causes enhanced well-being and relaxation with an intensification of ordinary sensory experiences. The most important acute adverse effects caused by overdosing are anxiety and panic attacks, and with regard to somatic effects increased heart rate and changes in blood pressure. Regular use of cannabis may lead to dependency and to a mild withdrawal syndrome. The existence and the intensity of possible long-term adverse effects on psyche and cognition, immune system, fertility and pregnancy remain controversial

  8. Evaluation of MRI and cannabinoid type 1 receptor PET templates constructed using DARTEL for spatial normalization of rat brains

    Energy Technology Data Exchange (ETDEWEB)

    Kronfeld, Andrea; Müller-Forell, Wibke [Institute of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, Mainz 55131 (Germany); Buchholz, Hans-Georg; Maus, Stephan; Reuss, Stefan; Schreckenberger, Mathias; Miederer, Isabelle, E-mail: isabelle.miederer@unimedizin-mainz.de [Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, Mainz 55131 (Germany); Lutz, Beat [Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz 55128 (Germany)

    2015-12-15

    Purpose: Image registration is one prerequisite for the analysis of brain regions in magnetic-resonance-imaging (MRI) or positron-emission-tomography (PET) studies. Diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) is a nonlinear, diffeomorphic algorithm for image registration and construction of image templates. The goal of this small animal study was (1) the evaluation of a MRI and calculation of several cannabinoid type 1 (CB1) receptor PET templates constructed using DARTEL and (2) the analysis of the image registration accuracy of MR and PET images to their DARTEL templates with reference to analytical and iterative PET reconstruction algorithms. Methods: Five male Sprague Dawley rats were investigated for template construction using MRI and [{sup 18}F]MK-9470 PET for CB1 receptor representation. PET images were reconstructed using the algorithms filtered back-projection, ordered subset expectation maximization in 2D, and maximum a posteriori in 3D. Landmarks were defined on each MR image, and templates were constructed under different settings, i.e., based on different tissue class images [gray matter (GM), white matter (WM), and GM + WM] and regularization forms (“linear elastic energy,” “membrane energy,” and “bending energy”). Registration accuracy for MRI and PET templates was evaluated by means of the distance between landmark coordinates. Results: The best MRI template was constructed based on gray and white matter images and the regularization form linear elastic energy. In this case, most distances between landmark coordinates were <1 mm. Accordingly, MRI-based spatial normalization was most accurate, but results of the PET-based spatial normalization were quite comparable. Conclusions: Image registration using DARTEL provides a standardized and automatic framework for small animal brain data analysis. The authors were able to show that this method works with high reliability and validity. Using DARTEL

  9. Evaluation of MRI and cannabinoid type 1 receptor PET templates constructed using DARTEL for spatial normalization of rat brains

    International Nuclear Information System (INIS)

    Purpose: Image registration is one prerequisite for the analysis of brain regions in magnetic-resonance-imaging (MRI) or positron-emission-tomography (PET) studies. Diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) is a nonlinear, diffeomorphic algorithm for image registration and construction of image templates. The goal of this small animal study was (1) the evaluation of a MRI and calculation of several cannabinoid type 1 (CB1) receptor PET templates constructed using DARTEL and (2) the analysis of the image registration accuracy of MR and PET images to their DARTEL templates with reference to analytical and iterative PET reconstruction algorithms. Methods: Five male Sprague Dawley rats were investigated for template construction using MRI and [18F]MK-9470 PET for CB1 receptor representation. PET images were reconstructed using the algorithms filtered back-projection, ordered subset expectation maximization in 2D, and maximum a posteriori in 3D. Landmarks were defined on each MR image, and templates were constructed under different settings, i.e., based on different tissue class images [gray matter (GM), white matter (WM), and GM + WM] and regularization forms (“linear elastic energy,” “membrane energy,” and “bending energy”). Registration accuracy for MRI and PET templates was evaluated by means of the distance between landmark coordinates. Results: The best MRI template was constructed based on gray and white matter images and the regularization form linear elastic energy. In this case, most distances between landmark coordinates were <1 mm. Accordingly, MRI-based spatial normalization was most accurate, but results of the PET-based spatial normalization were quite comparable. Conclusions: Image registration using DARTEL provides a standardized and automatic framework for small animal brain data analysis. The authors were able to show that this method works with high reliability and validity. Using DARTEL templates

  10. Blockade of cannabinoid CB receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity

    DEFF Research Database (Denmark)

    Hansen, H.H.; Ramos, J.A.; Fernández-Ruiz, J.; Azcoitia, I.; Hansen, Harald S.; Pons, S.; García-Segura, L.M.; Romero, J.

    2002-01-01

    The ability of cannabinoid CB, receptors to influence glutamatergic excitatory neurotransmission has fueled interest in how these receptors and their endogenous ligands may interact in conditions of excitotoxic insults. The present study characterized the impact of stimulated and inhibited CB...

  11. Cannabinoid receptor type-1: breaking the dogmas

    Science.gov (United States)

    Busquets Garcia, Arnau; Soria-Gomez, Edgar; Bellocchio, Luigi; Marsicano, Giovanni

    2016-01-01

    The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB 1). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB 1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB 1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB 1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile.

  12. 大麻素系统在骨科中的应用进展%Recent progress in the application of cannabinoid system in orthopaedics

    Institute of Scientific and Technical Information of China (English)

    杨豪; 王建儒; 郑召民

    2013-01-01

    Cannabinoids have been implicated in many physiological processes, ranging from appetite regulation and pain perception to motor function development and immune response regulation. And cannabinoids have been approved for clinical use in the treatment of the following symptoms, such as nausea and vomiting caused by cytostatic therapy, loss of appetite in HIV/Aids-related cachexia, refractory spasticity caused by multiple sclerosis, the side effects of chemotherapy in cancer patients, chronic pain and so on. Recent studies found the expressions of cannabinoids and cannabinoid receptors in the bone and synovial tissues, and their important roles in bone metabolism were conifrmed. Preclinical testing in animal models demonstrated that cannabinoids could alleviate the development of arthritis, prevent osteoporosis and improve the neurological function following spinal cord injury. So the recent progress in the application of cannabinoid system in orthopaedics was reviewed in this paper, with the expectation to provide a new direction for orthopaedic research and apply cannabinoid drugs in the clinical treatment of orthopaedic diseases.

  13. Cannabinoids promote oligodendrocyte progenitor survival: Involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling

    OpenAIRE

    Molina-Holgado, E; Vela, J.M. (José Miguel); Arévalo, Maria Ángeles; Almazán, G.; Molina-Holgado, F.; Borrell, Jose; Guaza, Carmen

    2002-01-01

    Cannabinoids exert pleiotropic actions in the CNS, including the inhibition of inflammatory responses and the enhancement of neuronal survival after injury. Although cannabinoid receptors are distributed widely in brain, their presence has not been investigated previously in oligodendrocytes. This study examined the expression of cannabinoid type 1 (CB1) receptors in rat oligodendrocytes in vivo and in culture and explored their biological function. Expression of CB1 receptors by oligodendroc...

  14. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    Energy Technology Data Exchange (ETDEWEB)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.

  15. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    International Nuclear Information System (INIS)

    The mechanism by which delta9 tetrahydrocannabinol (delta9THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5'-Trimethylammonium-delta8THC (TMA) is a positively charged analog of delta-8THC modified on the 5' carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of [3H]-5'-trimethylammonium-delta-8THC ([3H]TMA) to rat neuronal membranes. [3H]TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of [3H]TMA binding activity of approximately 60,000 daltons apparent molecular weight

  16. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities

    OpenAIRE

    Pertwee, Roger G.

    2012-01-01

    Human tissues express cannabinoid CB1 and CB2 receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB1/CB2 receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ9-tetrahydrocannabinol (Δ9-THC)) and Sativex (Δ9-THC with cannabidiol). These can be presc...

  17. Characterisation of the cannabinoid receptor system in synovial tissue and fluid in patients with osteoarthritis and rheumatoid arthritis

    OpenAIRE

    Richardson, Denise; Pearson, Richard G; Kurian, Nisha; Latif, M. Liaque; Garle, Michael J; Barrett, David A; Kendall, David A; Scammell, Brigitte E; Reeve, Alison J; Chapman, Victoria

    2008-01-01

    Introduction Cannabis-based medicines have a number of therapeutic indications, including anti-inflammatory and analgesic effects. The endocannabinoid receptor system, including the cannabinoid receptor 1 (CB1) and receptor 2 (CB2) and the endocannabinoids, are implicated in a wide range of physiological and pathophysiological processes. Pre-clinical and clinical studies have demonstrated that cannabis-based drugs have therapeutic potential in inflammatory diseases, including rheumatoid arthr...

  18. Cannabinoid-hypocretin cross-talk in the central nervous system: what we know so far

    Directory of Open Access Journals (Sweden)

    África eFlores

    2013-12-01

    Full Text Available Emerging findings suggest the existence of a cross-talk between hypocretinergic and endocannabinoid systems. Although few studies have examined this relationship, the apparent overlap observed in the neuroanatomical distribution of both systems as well as their putative functions strongly point to the existence of such cross-modulation. In agreement, biochemical and functional studies have revealed the existence of heterodimers between CB1 cannabinoid receptor and hypocretin receptor-1, which modulates the cellular localization and downstream signalling of both receptors. Moreover, the activation of hypocretin receptor-1 stimulates the synthesis of 2-arachidonoyl glycerol culminating in the retrograde inhibition of neighbouring cells and suggesting that endocannabinoids could contribute to some hypocretin effects. Pharmacological data indicate that endocannabinoids and hypocretins might have common physiological functions in the regulation of appetite, reward and analgesia. In contrast, these neuromodulatory systems seem to play antagonistic roles in the regulation of sleep/wake cycle and anxiety-like responses. The present review attempts to piece together what is known about this interesting interaction and describe its potential therapeutic implications.

  19. Cannabinoid conditioned reward and aversion: behavioral and neural processes.

    Science.gov (United States)

    Murray, Jennifer E; Bevins, Rick A

    2010-03-10

    The discovery that delta-9-tetrahydrocannabinol (Δ(9)-THC) is the primary psychoactive ingredient in marijuana prompted research that helped elucidate the endogenous cannabinoid system of the brain. Δ(9)-THC and other cannabinoid ligands with agonist action (CP 55,940, HU210, and WIN 55,212-2) increase firing of dopamine neurons and increase synaptic dopamine in brain regions associated with reward and drug addiction. Such changes in cellular processes have prompted investigators to examine the conditioned rewarding effects of the cannabinoid ligands using the place conditioning task with rats and mice. As reviewed here, these cannabinoid ligands can condition place preferences (evidence for rewarding effects) and place aversions (evidence for aversive qualities). Notably, the procedural details used in these place conditioning studies have varied across laboratories. Such variation includes differences in apparatus type, existence of procedural biases, dose, number of conditioning trials, injection-to-placement intervals, and pre-training drug exposure. Some differences in outcome across studies can be explained by these procedural variables. For example, low doses of Δ(9)-THC appear to have conditioned rewarding effects, whereas higher doses have aversive effects that either mask these rewarding effects or condition a place aversion. Throughout this review we highlight key areas that need further research. PMID:20495676

  20. Cannabinoids: Medical implications.

    Science.gov (United States)

    Schrot, Richard J; Hubbard, John R

    2016-05-01

    Herbal cannabis has been used for thousands of years for medical purposes. With elucidation of the chemical structures of tetrahydrocannabinol (THC) and cannabidiol (CBD) and with discovery of the human endocannabinoid system, the medical usefulness of cannabinoids has been more intensively explored. While more randomized clinical trials are needed for some medical conditions, other medical disorders, like chronic cancer and neuropathic pain and certain symptoms of multiple sclerosis, have substantial evidence supporting cannabinoid efficacy. While herbal cannabis has not met rigorous FDA standards for medical approval, specific well-characterized cannabinoids have met those standards. Where medical cannabis is legal, patients typically see a physician who "certifies" that a benefit may result. Physicians must consider important patient selection criteria such as failure of standard medical treatment for a debilitating medical disorder. Medical cannabis patients must be informed about potential adverse effects, such as acute impairment of memory, coordination and judgment, and possible chronic effects, such as cannabis use disorder, cognitive impairment, and chronic bronchitis. In addition, social dysfunction may result at work/school, and there is increased possibility of motor vehicle accidents. Novel ways to manipulate the endocannbinoid system are being explored to maximize benefits of cannabinoid therapy and lessen possible harmful effects. Key messages The medical disorders with the current best evidence that supports a benefit for cannabinoid use are the following: multiple sclerosis patient-reported symptoms of spasticity (nabiximols, nabilone, dronabinol, and oral cannabis extract), multiple sclerosis central pain or painful spasms (nabiximols, nabilone, dronabinol, and oral cannabis extract), multiple sclerosis bladder frequency (nabiximols), and chronic cancer pain/neuropathic pain (nabiximols and smoked THC). Herbal cannabis has not met rigorous US FDA

  1. Male and female rats differ in brain cannabinoid CB1 receptor density and function and in behavioural traits predisposing to drug addiction: effect of ovarian hormones.

    Science.gov (United States)

    Castelli, Maria Paola; Fadda, Paola; Casu, Angelo; Spano, Maria Sabrina; Casti, Alberto; Fratta, Walter; Fattore, Liana

    2014-01-01

    Sex-dependent differences are frequently observed in the biological and behavioural effects of substances of abuse, including cannabis. We recently demonstrated a modulating effect of sex and oestrous cycle on cannabinoid-taking and seeking behaviours. Here, we investigated the influence of sex and oestrogen in the regulation of cannabinoid CB1 receptor density and function, measured by [(3)H]CP55940 and CP55940-stimulated [(35)S]GTPγS binding autoradiography, respectively, in the prefrontal cortex (Cg1 and Cg3), caudate- putamen, nucleus accumbens, amygdala and hippocampus of male and cycling female rats, as well as ovariectomised (OVX) rats and OVX rats primed with oestradiol (10 µg/rat) (OVX+E). CB1 receptor density was significantly lower in the prefrontal cortex and amygdala of cycling females than in males and in OVX females, a difference that appeared to be oestradiol-dependent, because it was no more evident in the OVX+E group. CP55940-stimulated [(35)S]GTPγS binding was significantly higher in the Cg3 of OVX rats relative to cycling and OVX+E rats. No difference was observed in CB1 receptor density or function in any of the other brain areas analysed. Finally, sex and oestradiol were also found to affect motor activity, social behaviour and sensorimotor gating in rats tested in locomotor activity boxes, social interaction and prepulse inhibition tasks, respectively. Our findings provide biochemical evidence for sex- and hormone- dependent differences in the density and function of CB1 receptors in selected brain regions, and in behaviours associated with greater vulnerability to drug addiction, revealing a more vulnerable behavioural phenotype in female than in male rats. PMID:23829370

  2. Increased brain metabolism after acute administration of the synthetic cannabinoid HU210: a small animal PET imaging study with 18F-FDG.

    Science.gov (United States)

    Nguyen, Vu H; Verdurand, Mathieu; Dedeurwaerdere, Stefanie; Wang, Hongqin; Zahra, David; Gregoire, Marie-Claude; Zavitsanou, Katerina

    2012-02-10

    Cannabis use has been shown to alter brain metabolism in both rat models and humans although the observations between both species are conflicting. In the present study, we examined the short term effects of a single-dose injection of the synthetic cannabinoid agonist HU210 on glucose metabolism in the rat brain using small animal (18)F-2-fluoro-deoxyglucose (FDG) Positron Emission Tomography (PET) 15 min (Day 1) and 24h (Day 2) post-injection of the agonist in the same animal. Young adult male Wistar rats received an intra-peritoneal injection of HU210 (100 μg/kg, n=7) or vehicle (n=5) on Day 1. Approximately 1mCi of (18)F-FDG was injected intravenously into each animal at 15 min (Day 1) and 24h (Day 2) post-injection of HU210. A 5-min Computer Tomography (CT) scan followed by a 20-min PET scan was performed 40 min after each (18)F-FDG injection. Standardised Uptake Values (SUVs) were calculated for 10 brain regions of interest (ROIs). Global increased SUVs in the whole brain, hence global brain metabolism, were observed following HU210 treatment on Day 1 compared to the controls (21%, PHU210 treated group returned to control levels (21-30% decrease compared to Day 1), in all ROIs investigated (PHU210 increases brain glucose metabolism in the rat brain shortly after administration, in line with normalised human in vivo studies, an effect that was no longer apparent 24 h later. PMID:22155282

  3. Central nervous system: brain

    International Nuclear Information System (INIS)

    Present radiopharmaceuticals and detector systems have provided nuclear medicine physicians with tools capable of detecting a variety of brain abnormalities with little radiation exposure to pediatric patients. It is essential that the referring physician as well as the physician performing the procedure recognize both the limitations and virtues of these techniques. Appropriate selection of brain imaging procedures in each specific case must be the rule. Brain scintigraphy reliably solves certain problems, such as detecting or excluding intracranial tumors and identifying early cerebral inflammatory disease, cerebral ischemic disease, and a variety of congenital anomalies. Other situations, such as seizures without a focal neurologic deficit, acute meningitis, and hydrocephalus, are less often benefited by these studies. The role of these procedures in acute trauma and its sequelae is at the present time limited in pediatric practice. (auth)

  4. Preparation of iodine-123 labeled AM251: a potential SPECT radioligand for the brain cannabinoid CB1 receptor

    International Nuclear Information System (INIS)

    We report the synthesis and labeling with iodine-123 of N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251). This compound is an analog of the recently described cannabinoid receptor antagonist, SR141716A, in which a 4-chlorophenyl group is replaced by 4-iodophenyl. Labeling in good yield (62%) and radiochemical purity (> 95%), and high specific activity (> 2500 Ci/mmol) was achieved by an iododestannylation reaction using the tributyltin precursor, no carrier added I-123 iodide, and chloramine-T. (author)

  5. Preparation of iodine-123 labeled AM251: a potential SPECT radioligand for the brain cannabinoid CB1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Ruoxi; Makriyannis, Alexandros [Connecticut Univ., Molecular and Cell Biology Dept., Storrs, CT (United States); Gatley, S.J. [Brookhaven National Lab., Medical Dept., Upton, NY (United States)

    1996-10-01

    We report the synthesis and labeling with iodine-123 of N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251). This compound is an analog of the recently described cannabinoid receptor antagonist, SR141716A, in which a 4-chlorophenyl group is replaced by 4-iodophenyl. Labeling in good yield (62%) and radiochemical purity (> 95%), and high specific activity (> 2500 Ci/mmol) was achieved by an iododestannylation reaction using the tributyltin precursor, no carrier added I-123 iodide, and chloramine-T. (author).

  6. Acute and chronic effects of cannabinoids on human brain: gene-environment interactions related to psychiatric disorders

    OpenAIRE

    Batalla Cases, Albert

    2014-01-01

    Tesi realitzada a l'Institut Clínic de Neurociències / Hospital Clínic 1) Introduction Cannabis use has been associated to mental health problems and worsened outcome of established psychiatric disorders. Disturbances of the endocannabinoid system may be responsible for long-lasting effects, such as neuropsychological deficits and morphological brain alterations. As not all the exposed individuals are equally affected, proneness to cannabis induced impairment may rely on key factors su...

  7. Consequences of Cannabinoid and Monoaminergic System Disruption in a Mouse Model of Autism Spectrum Disorders

    OpenAIRE

    Onaivi, E. S.; Benno, R; Halpern, T; Mehanovic, M; Schanz, N; Sanders, C.; Yan, X.; Ishiguro, H; Liu, Q-R; Berzal, A.L; Viveros, M. P.; Ali, S.F

    2011-01-01

    Autism spectrum disorders (ASDs) are heterogenous neurodevelopmental disorders characterized by impairment in social, communication skills and stereotype behaviors. While autism may be uniquely human, there are behavioral characteristics in ASDs that can be mimicked using animal models. We used the BTBR T+tf/J mice that have been shown to exhibit autism-like behavioral phenotypes to 1). Evaluate cannabinoid-induced behavioral changes using forced swim test (FST) and spontaneous wheel running ...

  8. The role of cannabinoids and endocannabinoid system in the treatment of epilepsy

    Directory of Open Access Journals (Sweden)

    Pędracka Monika

    2015-12-01

    Full Text Available Introduction. The treatment of epilepsy is still a major challenge. Despite the introduction of many new antiepileptic drugs, approximately 30% of patients still remain drug resistant. In the absence of a satisfactory therapy outcome, which is sometimes associated with numerous side effects, there is a need for new and effective drugs with low toxicity. Cannabinoids have been shown in preliminary animal model studies and in studies of patients with epilepsy to have antiepileptic activity.

  9. Deuterium labeled cannabinoids

    International Nuclear Information System (INIS)

    Complex reactions involving ring opening, ring closure and rearrangements hamper complete understanding of the fragmentation processes in the mass spectrometric fragmentation patterns of cannabinoids. Specifically labelled compounds are very powerful tools for obtaining more insight into fragmentation mechanisms and ion structures and therefore the synthesis of specifically deuterated cannabinoids was undertaken. For this, it was necessary to investigate the preparation of cannabinoids, appropriately functionalized for specific introduction of deuterium atom labels. The results of mass spectrometry with these labelled cannabinoids are described. (Auth.)

  10. Cannabinoid modulation of neuroinflammatory disorders.

    Science.gov (United States)

    Saito, Viviane M; Rezende, Rafael M; Teixeira, Antonio L

    2012-06-01

    In recent years, a growing interest has been dedicated to the study of the endocannabinoid system. The isolation of Cannabis sativa main psychotropic compound, Δ(9)-tetrahydrocannabinol (THC), has led to the discovery of an atypical neurotransmission system that modulates the release of other neurotransmitters and participates in many biological processes, including the cascade of inflammatory responses. In this context, cannabinoids have been studied for their possible therapeutic properties in neuroinflammatory diseases. In this review, historic and biochemical aspects of cannabinoids are discussed, as well as their function as modulators of inflammatory processes and therapeutic perspectives for neurodegenerative disorders, particularly, multiple sclerosis. PMID:23204985

  11. The effect of anaesthesia on [{sup 18}F]MK-9470 binding to the type 1 cannabinoid receptor in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Casteels, Cindy; Van Laere, Koen [KU Leuven and University Hospital Gasthuisberg, Division of Nuclear Medicine, Leuven (Belgium); KU Leuven, MoSAIC, Molecular Small Animal Imaging Center, Leuven (Belgium); Bormans, Guy [KU Leuven, MoSAIC, Molecular Small Animal Imaging Center, Leuven (Belgium); KU Leuven, Laboratory for Radiopharmacy, Leuven (Belgium)

    2010-06-15

    Small animal PET can be applied to study molecular processes in animal models of a variety of human diseases. In order to keep the animals in a restricted position during imaging, anaesthesia is in many instances inevitable. Using small animal PET and ex vivo autoradiography, we examined the influence of pentobarbital and isoflurane anaesthesia on the rat brain uptake of [{sup 18}F]MK-9470, a radioligand for the type 1 cannabinoid receptor. PET imaging was performed on adult Wistar rats under pentobarbital (n=6) and isoflurane anaesthesia (n=7), and under control conditions (free moving during tracer uptake, n=8). Parametric PET images were generated, anatomically standardized and analysed by voxel-based Statistical Parametric Mapping and a predefined volume of interest approach. Immediately after in vivo PET, brains were processed for ex vivo autoradiography using manually placed regions of interest. An extra group (n=6) was included ex vivo, in which animals were intravenously injected without the use of anaesthetics. Using in vivo and ex vivo molecular imaging techniques, no significant changes in absolute [{sup 18}F]MK-9470 uptake were present in the brain of pentobarbital and isoflurane rats as compared to control conditions. Relative [{sup 18}F]MK-9470 uptake PET values obtained applying global scaling were, however, decreased in the cortex under both anaesthetics (pentobarbital: -13.3{+-}1.4%; isoflurane -8.7 {+-} 3.1%), while an increase was seen in the cerebellum by 13.5 {+-} 4.0% and 13.9 {+-} 4.1% under pentobarbital and isoflurane, respectively. Ex vivo results were in agreement with in vivo findings. These findings suggest a similar, regionally specific interference of pentobarbital and isoflurane anaesthesia with in vivo CB1 receptor imaging using [{sup 18}F]MK-9470. (orig.)

  12. The effect of anaesthesia on [18F]MK-9470 binding to the type 1 cannabinoid receptor in the rat brain

    International Nuclear Information System (INIS)

    Small animal PET can be applied to study molecular processes in animal models of a variety of human diseases. In order to keep the animals in a restricted position during imaging, anaesthesia is in many instances inevitable. Using small animal PET and ex vivo autoradiography, we examined the influence of pentobarbital and isoflurane anaesthesia on the rat brain uptake of [18F]MK-9470, a radioligand for the type 1 cannabinoid receptor. PET imaging was performed on adult Wistar rats under pentobarbital (n=6) and isoflurane anaesthesia (n=7), and under control conditions (free moving during tracer uptake, n=8). Parametric PET images were generated, anatomically standardized and analysed by voxel-based Statistical Parametric Mapping and a predefined volume of interest approach. Immediately after in vivo PET, brains were processed for ex vivo autoradiography using manually placed regions of interest. An extra group (n=6) was included ex vivo, in which animals were intravenously injected without the use of anaesthetics. Using in vivo and ex vivo molecular imaging techniques, no significant changes in absolute [18F]MK-9470 uptake were present in the brain of pentobarbital and isoflurane rats as compared to control conditions. Relative [18F]MK-9470 uptake PET values obtained applying global scaling were, however, decreased in the cortex under both anaesthetics (pentobarbital: -13.3±1.4%; isoflurane -8.7 ± 3.1%), while an increase was seen in the cerebellum by 13.5 ± 4.0% and 13.9 ± 4.1% under pentobarbital and isoflurane, respectively. Ex vivo results were in agreement with in vivo findings. These findings suggest a similar, regionally specific interference of pentobarbital and isoflurane anaesthesia with in vivo CB1 receptor imaging using [18F]MK-9470. (orig.)

  13. Your Brain and Nervous System

    Science.gov (United States)

    ... Help White House Lunch Recipes Your Brain & Nervous System KidsHealth > For Kids > Your Brain & Nervous System Print A A A Text Size What's in ... spinal cord and nerves — known as the nervous system — that let messages flow back and forth between ...

  14. Human Laboratory Studies on Cannabinoids and Psychosis.

    Science.gov (United States)

    Sherif, Mohamed; Radhakrishnan, Rajiv; D'Souza, Deepak Cyril; Ranganathan, Mohini

    2016-04-01

    Some of the most compelling evidence supporting an association between cannabinoid agonists and psychosis comes from controlled laboratory studies in humans. Randomized, double-blind, placebo-controlled, crossover laboratory studies demonstrate that cannabinoid agonists, including phytocannabinoids and synthetic cannabinoids, produce a wide range of positive, negative, and cognitive symptoms and psychophysiologic deficits in healthy human subjects that resemble the phenomenology of schizophrenia. These effects are time locked to drug administration, are dose related, and are transient and rarely necessitate intervention. The magnitude of effects is similar to the effects of ketamine but qualitatively distinct from other psychotomimetic drugs, including ketamine, amphetamine, and salvinorin A. Cannabinoid agonists have also been shown to transiently exacerbate symptoms in individuals with schizophrenia in laboratory studies. Patients with schizophrenia are more vulnerable than healthy control subjects to the acute behavioral and cognitive effects of cannabinoid agonists and experience transient exacerbation of symptoms despite treatment with antipsychotic medications. Furthermore, laboratory studies have failed to demonstrate any "beneficial" effects of cannabinoid agonists in individuals with schizophrenia-challenging the cannabis self-medication hypothesis. Emerging evidence suggests that polymorphisms of several genes related to dopamine metabolism (e.g., COMT, DAT1, and AKT1) may moderate the effects of cannabinoid agonists in laboratory studies. Cannabinoid agonists induce dopamine release, although the magnitude of release does not appear to be commensurate to the magnitude and spectrum of their acute psychotomimetic effects. Interactions between the endocannabinoid, gamma-aminobutyric acid, and glutamate systems and their individual and interactive effects on neural oscillations provide a plausible mechanism underlying the psychotomimetic effects of

  15. Exogenous delta⁹-tetrahydrocannabinol influences circulating endogenous cannabinoids in humans.

    Science.gov (United States)

    Walter, Carmen; Ferreirós, Nerea; Bishay, Philipp; Geisslinger, Gerd; Tegeder, Irmgard; Lötsch, Jörn

    2013-10-01

    Delta⁹-tetrahydrocannabinol (THC) competes with the endogenous cannabinoids arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol (2-AG) at cannabinoid receptors. This may cause adaptive changes in the endocannabinoid signaling cascade with possible consequences for the biological functions of the endocannabinoid system. We show that administration of a single oral dose of 20 mg THC to 30 healthy volunteers resulted in higher circulating concentrations of anandamide, 2-AG, palmitoyl ethanolamide, and oleoylethanolamide at 2 and 3 hours after administration as compared with placebo. At 2 hours after THC administration, changes in oleoylethanolamide plasma concentrations from baseline were linearly related to the THC plasma concentrations. In rats, treatment with the CB₁/CB₂ agonist WIN 55,212 also increased plasma endocannabinoid concentrations. However, this was associated with a decrease of ethanolamide endocannabinoids in specific brain regions including spinal cord, cortex, and hypothalamus; whereas 2-arachidonoyl glycerol increased in the cortex. Thus, administration of THC to human volunteers influenced the concentrations of circulating endocannabinoids, which was mimicked by WIN-55,212 in rats, suggesting that exogenous cannabinoids may lead to changes in the endocannabinoid system that can be detected in plasma. PMID:23899642

  16. Cannabinoid Hyperemesis Syndrome

    OpenAIRE

    Galli, Jonathan A.; Sawaya, Ronald Andari; Friedenberg, Frank K.

    2011-01-01

    Coinciding with the increasing rates of cannabis abuse has been the recognition of a new clinical condition known as Cannabinoid Hyperemesis Syndrome. Cannabinoid Hyperemesis Syndrome is characterized by chronic cannabis use, cyclic episodes of nausea and vomiting, and frequent hot bathing. Cannabinoid Hyperemesis Syndrome occurs by an unknown mechanism. Despite the well-established anti-emetic properties of marijuana, there is increasing evidence of its paradoxical effects on the gastrointes...

  17. Identification of a Functionally Relevant Cannabinoid Receptor on Mouse Spleen Cells that Is Involved in Cannabinoid-Mediated Immune Modulation

    OpenAIRE

    Kaminski, Norbert E.; Abood, Mary E.; Kessler, Fay K.; Martin, Billy R.; Schatz, Anthony R.

    1992-01-01

    Extensive behavioral and biochemical characterization of cannabinoid-mediated effects on the central nervous system has revealed at least three lines of evidence supporting the role of a putative guanine nucleotide-binding protein-coupled cannabinoid receptor for cannabimimetic effects, (i) stereoselectivity, (ii) inhibition of the adenylate cyclase/cAMP second messenger system, and (iii) radioligand-binding studies with the synthetic cannabinoid [3H]CP-55,940 indicating a high degree of spec...

  18. Regulation of nausea and vomiting by cannabinoids

    OpenAIRE

    Parker, Linda A; Rock, Erin M; Limebeer, Cheryl L

    2011-01-01

    Considerable evidence demonstrates that manipulation of the endocannabinoid system regulates nausea and vomiting in humans and other animals. The anti-emetic effect of cannabinoids has been shown across a wide variety of animals that are capable of vomiting in response to a toxic challenge. CB1 agonism suppresses vomiting, which is reversed by CB1 antagonism, and CB1 inverse agonism promotes vomiting. Recently, evidence from animal experiments suggests that cannabinoids may be especially usef...

  19. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB{sub 1} receptors and apoptotic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Tomiyama, Ken-ichi; Funada, Masahiko, E-mail: mfunada@ncnp.go.jp

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB{sub 1} receptor antagonist AM251, but not with the selective CB{sub 2} receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB{sub 1} receptors.

  20. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death

    International Nuclear Information System (INIS)

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB1 receptor antagonist AM251, but not with the selective CB2 receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB1 receptor, but not by the CB2 receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB1 receptor, but not by the CB2 receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB1 receptors

  1. Role of the Cannabinoid System in Pain Control and Therapeutic Implications for the Management of Acute and Chronic Pain Episodes

    OpenAIRE

    Manzanares, J.; Julian, MD; Carrascosa, A

    2006-01-01

    Cannabis extracts and synthetic cannabinoids are still widely considered illegal substances. Preclinical and clinical studies have suggested that they may result useful to treat diverse diseases, including those related with acute or chronic pain. The discovery of cannabinoid receptors, their endogenous ligands, and the machinery for the synthesis, transport, and degradation of these retrograde messengers, has equipped us with neurochemical tools for novel drug design. Agonist-activated canna...

  2. Cannabinoids in the management of difficult to treat pain

    OpenAIRE

    Russo, Ethan

    2008-01-01

    Ethan B RussoGW Pharmaceuticals, Vashon, WA, USAAbstract: This article reviews recent research on cannabinoid analgesia via the endocannabinoid system and non-receptor mechanisms, as well as randomized clinical trials employing cannabinoids in pain treatment. Tetrahydrocannabinol (THC, Marinol®) and nabilone (Cesamet®) are currently approved in the United States and other countries, but not for pain indications. Other synthetic cannabinoids, such as ajulemic acid, are in devel...

  3. Cannabinoids in the management of difficult to treat pain

    OpenAIRE

    Russo, Ethan B

    2008-01-01

    This article reviews recent research on cannabinoid analgesia via the endocannabinoid system and non-receptor mechanisms, as well as randomized clinical trials employing cannabinoids in pain treatment. Tetrahydrocannabinol (THC, Marinol®) and nabilone (Cesamet®) are currently approved in the United States and other countries, but not for pain indications. Other synthetic cannabinoids, such as ajulemic acid, are in development. Crude herbal cannabis remains illegal in most jurisdictions but is...

  4. Effects of cannabinoids and their receptors on viral infections.

    Science.gov (United States)

    Tahamtan, Alireza; Tavakoli-Yaraki, Masoumeh; Rygiel, Tomasz P; Mokhtari-Azad, Talat; Salimi, Vahid

    2016-01-01

    Cannabinoids, the active ingredient in marijuana, and their derivatives have received remarkable attention in the last two decades because they can affect tumor growth and metastasis. There is a large body of evidence from in vivo and in vitro models showing that cannabinoids and their receptors influence the immune system, viral pathogenesis, and viral replication. The present study reviews current insights into the role of cannabinoids and their receptors on viral infections. The results reported here indicate that cannabinoids and their receptors have different sequels for viral infection. Although activation or inhibition of cannabinoid receptors in the majority of viral infections are proper targets for development of safe and effective treatments, caution is required before using pharmaceutical cannabinoids as a treatment agent for patients with viral infections. PMID:26059175

  5. Cannabinoids and zebrafish

    NARCIS (Netherlands)

    Akhtar, Muhammad Tayyab

    2013-01-01

    Cannabinoids are a group of terpenophenolic compounds and are naturally found in the cannabis plant (Cannabis sativa L). Δ9-Tetrahydrocannabinol (Δ9-THC) is the psychoactive cannabinoid. The high lipophilicity of Δ9-THC is a hindering factor in the further development of this compound into a large s

  6. Brain and nervous system (image)

    Science.gov (United States)

    The nervous system controls the many complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, nerve ...

  7. Cannabinoid Modulation of Neuroinflammatory Disorders

    OpenAIRE

    Saito, Viviane M; Rezende, Rafael M; Teixeira, Antonio L.

    2012-01-01

    In recent years, a growing interest has been dedicated to the study of the endocannabinoid system. The isolation of Cannabis sativa main psychotropic compound, Δ9-tetrahydrocannabinol (THC), has led to the discovery of an atypical neurotransmission system that modulates the release of other neurotransmitters and participates in many biological processes, including the cascade of inflammatory responses. In this context, cannabinoids have been studied for their possible therapeutic properties i...

  8. Cannabinoid hyperemesis syndrome.

    Science.gov (United States)

    Galli, Jonathan A; Sawaya, Ronald Andari; Friedenberg, Frank K

    2011-12-01

    Coinciding with the increasing rates of cannabis abuse has been the recognition of a new clinical condition known as Cannabinoid Hyperemesis Syndrome. Cannabinoid Hyperemesis Syndrome is characterized by chronic cannabis use, cyclic episodes of nausea and vomiting, and frequent hot bathing. Cannabinoid Hyperemesis Syndrome occurs by an unknown mechanism. Despite the well-established anti-emetic properties of marijuana, there is increasing evidence of its paradoxical effects on the gastrointestinal tract and CNS. Tetrahydrocannabinol, cannabidiol, and cannabigerol are three cannabinoids found in the cannabis plant with opposing effects on the emesis response. The clinical course of Cannabinoid Hyperemesis Syndrome may be divided into three phases: prodromal, hyperemetic, and recovery phase. The hyperemetic phase usually ceases within 48 hours, and treatment involves supportive therapy with fluid resuscitation and anti-emetic medications. Patients often demonstrate the learned behavior of frequent hot bathing, which produces temporary cessation of nausea, vomiting, and abdominal pain. The broad differential diagnosis of nausea and vomiting often leads to delay in the diagnosis of Cannabinoid Hyperemesis Syndrome. Cyclic Vomiting Syndrome shares several similarities with CHS and the two conditions are often confused. Knowledge of the epidemiology, pathophysiology, and natural course of Cannabinoid Hyperemesis Syndrome is limited and requires further investigation. PMID:22150623

  9. Case Series of Synthetic Cannabinoid Intoxication from One Toxicology Center

    Directory of Open Access Journals (Sweden)

    Kenneth D. Katz

    2016-05-01

    Full Text Available Synthetic cannabinoid use has risen at alarming rates. This case series describes 11 patients exposed to the synthetic cannabinoid, MAB-CHMINACA who presented to an emergency department with life-threatening toxicity including obtundation, severe agitation, seizures and death. All patients required sedatives for agitation, nine required endotracheal intubation, three experienced seizures, and one developed hyperthermia. One developed anoxic brain injury, rhabdomyolysis and died. A significant number were pediatric patients. The mainstay of treatment was aggressive sedation and respiratory support. Synthetic cannabinoids pose a major public health risk. Emergency physicians must be aware of their clinical presentation, diagnosis and treatment.

  10. Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression

    OpenAIRE

    Rieder, Sadiye Amcaoglu; Chauhan, Ashok; Singh, Ugra; Nagarkatti, Mitzi; Nagarkatti, Prakash

    2009-01-01

    Cannabinoids are a group of compounds present in Cannabis plant (Cannabis sativa L.). They mediate their physiological and behavioral effects by activating specific cannabinoid receptors. With the recent discovery of the cannabinoid receptors (CB1 and CB2) and the endocannabinoid system, research in this field has expanded exponentially. Cannabinoids have been shown to act as potent immunosuppressive and anti-inflammatory agents and have been shown to mediate beneficial effects in a wide rang...

  11. Therapeutic potential of cannabinoid medicines.

    Science.gov (United States)

    Robson, P J

    2014-01-01

    Cannabis was extensively used as a medicine throughout the developed world in the nineteenth century but went into decline early in the twentieth century ahead of its emergence as the most widely used illicit recreational drug later that century. Recent advances in cannabinoid pharmacology alongside the discovery of the endocannabinoid system (ECS) have re-ignited interest in cannabis-based medicines. The ECS has emerged as an important physiological system and plausible target for new medicines. Its receptors and endogenous ligands play a vital modulatory role in diverse functions including immune response, food intake, cognition, emotion, perception, behavioural reinforcement, motor co-ordination, body temperature, wake/sleep cycle, bone formation and resorption, and various aspects of hormonal control. In disease it may act as part of the physiological response or as a component of the underlying pathology. In the forefront of clinical research are the cannabinoids delta-9-tetrahydrocannabinol and cannabidiol, and their contrasting pharmacology will be briefly outlined. The therapeutic potential and possible risks of drugs that inhibit the ECS will also be considered. This paper will then go on to review clinical research exploring the potential of cannabinoid medicines in the following indications: symptomatic relief in multiple sclerosis, chronic neuropathic pain, intractable nausea and vomiting, loss of appetite and weight in the context of cancer or AIDS, psychosis, epilepsy, addiction, and metabolic disorders. PMID:24006213

  12. Effect of Cannabinoid Receptor Activation on Spreading Depression

    OpenAIRE

    Kazemi, Hadi; Rahgozar, Mehdi; Speckmann, Erwin-Josef; Gorji, Ali

    2012-01-01

    Objective(s):The objective of this study was to evaluate the effect of cannabinoid on cortical spreading depression (CSD) in rat brain. Cannabis has been used for centuries for both symptomatic and prophylactic treatment of different types of headaches including migraine. CSD is believed to be a putative neuronal mechanism underlying migraine aura and subsequent pain. Materials and Methods:The effects of Delta9-tetrahydrocannabinol (THC), as well as, cannabinoid CB1 and CB2 receptor agonists ...

  13. The role of cannabinoids in regulation of nausea and vomiting, and visceral pain.

    Science.gov (United States)

    Malik, Zubair; Baik, Daniel; Schey, Ron

    2015-02-01

    Marijuana derived from the plant Cannabis sativa has been used for the treatment of many gastrointestinal (GI) disorders, including anorexia, emesis, abdominal pain, diarrhea, and others. However, its psychotropic side effects have often limited its use. Several cannabinoid receptors, which include the cannabinoid receptor 1 (CB1), CB2, and possibly GPR55, have been identified throughout the GI tract. These receptors may play a role in the regulation of food intake, nausea and emesis, gastric secretion and gastroprotection, GI motility, ion transport, visceral sensation, intestinal inflammation, and cell proliferation in the gut. However, the regulation of nausea and vomiting by cannabinoids and the endocannabinoid system has shed new knowledge in this field. Thus far, despite evidence of visceral sensitivity inhibition in animal models, data in irritable bowel syndrome (IBS) patients is scarce and not supportive. Furthermore, many compounds that either act directly at the receptor or increase (or reduce) ligand availability have the potential to affect other brain functions and cause side effects. Novel drug targets such as FAAH and monoacylglycerol lipase (MAGL) inhibitors appear to be promising in animal models, but more studies are necessary to prove their efficiency. The promise of emerging drugs that are more selective and peripherally acting suggest that, in the near future, cannabinoids will play a major role in managing an array of GI diseases. PMID:25715910

  14. GABA(A) receptor density is altered by cannabinoid treatment in the hippocampus of adult but not adolescent rats.

    Science.gov (United States)

    Verdurand, Mathieu; Dalton, Victoria Stephanie; Zavitsanou, Katerina

    2010-09-10

    Cannabinoids are known to induce transient psychotic symptoms and cognitive dysfunction in healthy individuals and contribute to trigger schizophrenia in vulnerable individuals, particularly during adolescence. Converging preclinical evidence suggests important interactions between cannabinoid and GABAergic systems. In the present study, we compared the effects of cannabinoid treatment on GABA(A) receptor binding in the brain of adolescent and adult rats. Adolescent (5 weeks old) and adult (10 weeks old) rats were treated with the synthetic cannabinoid HU210 (25, 50 or 100 microg/kg/day) or vehicle for 1, 4 or 14 days. Rats were sacrificed 24 h after the last injection and GABA(A) receptor density was measured in several brain regions using [(35)S]TBPS and in vitro autoradiography. Adolescent rats had higher numbers of GABA(A) receptors compared to adults. A 24% increase of binding in adult rats treated with 100 microg/kg HU210 for 14 days compared to controls was observed in the CA1 region of the hippocampus (16.1 versus 12.9 fmol/mg tissue equivalent, t=2.720, pHU210 did not affect GABA(A) receptors in adolescent rats in any treatment regimen and in adult rats treated with HU210 for 1 or 4 days. These data suggest that long-term, high-dose treatment with HU210 increases GABA(A) receptors in the hippocampus of adult rats, changes that may interfere with associated hippocampal cognitive functions such as learning and memory. In addition, our results suggest that the adolescent brain does not display the same compensatory mechanisms that are activated in the adult brain following cannabinoid treatment. PMID:20599838

  15. Cannabis and Cannabinoids (PDQ)

    Science.gov (United States)

    ... Professionals Questions to Ask about Your Treatment Research Cannabis and Cannabinoids (PDQ®)–Patient Version Overview Go to ... treatment (see Question 9 ). Questions and Answers About Cannabis What is Cannabis ? Cannabis , also known as marijuana , ...

  16. Prevention of Alzheimer's disease pathology by cannabinoids: Neuroprotection mediated by blockade of microglial activation

    OpenAIRE

    Ramírez, B.G.; Blázquez, Cristina; Gómez del Pulgar, Teresa; Guzmán, M.; De Ceballos, ML

    2005-01-01

    Alzheimer's disease (AD) is characterized by enhanced β-amyloid peptide (βA) deposition along with glial activation in senile plaques, selective neuronal loss, and cognitive deficits. Cannabinoids are neuroprotective agents against excitotoxicity in vitro and acute brain damage in vivo. This background prompted us to study the localization, expression, and function of cannabinoid receptors in AD and the possible protective role of cannabinoids after βA treatment, both in vivo and in vitro. He...

  17. Emerging strategies for exploiting cannabinoid receptor agonists as medicines.

    Science.gov (United States)

    Pertwee, Roger G

    2009-02-01

    Medicines that activate cannabinoid CB(1) and CB(2) receptor are already in the clinic. These are Cesamet (nabilone), Marinol (dronabinol; Delta(9)-tetrahydrocannabinol) and Sativex (Delta(9)-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol can also be prescribed to stimulate appetite, while Sativex is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB(2) receptors; or (v) 'multi-targeting'. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed. PMID:19226257

  18. Comparative study of chitosan- and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids

    Energy Technology Data Exchange (ETDEWEB)

    Durán-Lobato, Matilde; Martín-Banderas, Lucía, E-mail: luciamartin@us.es [Universidad de Sevilla, Departmento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia (España) (Spain); Gonçalves, Lídia M. D. [Universidade de Lisboa, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade de Farmácia (Portugal); Fernández-Arévalo, Mercedes [Universidad de Sevilla, Departmento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia (España) (Spain); Almeida, Antonio J. [Universidade de Lisboa, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade de Farmácia (Portugal)

    2015-02-15

    The cannabinoid derivative 1-naphthalenyl[4-(pentyloxy)-1-naphthalenyl]methanone (CB13) has an important therapeutic potential as analgesic in chronic pain states that respond poorly to conventional drugs. However, the incidence of its mild-to-moderate and dose-dependent adverse effects, as well as its pharmacokinetic profile, actually holds back its use in humans. Thus, the use of a suitable carrier system for oral delivery of CB13 becomes an attractive strategy to develop a valuable therapy. Polymeric poly(lactic-co-glycolic) acid (PLGA) and lipid nanoparticles (LNPs) are widely studied delivery vehicles that improve the bioavailability of lipophilic compounds and present special interest in oral delivery. Their surface can be modified to improve the adhesion of particles to the oral mucosa and increase their circulation time in blood with additives such as chitosan (CS) and polyethylene glycol (PEG), which can be feasibly incorporated onto these particles in a post-production step. In this work, CS- and PEG-modified polymeric PLGA and LNPs were successfully obtained and comparatively evaluated under the same experimental conditions as oral carriers for CB13. All the formulations presented adequate blood compatibility and absence of cytotoxicity in Caco-2 cells. Coating with CS led to a higher interaction with Caco-2 cells and a limited uptake in THP1 cells, while coating with PEG led to a limited uptake in Caco-2 cells and strongly prevented THP1 cells uptake. The performance of each formulation is discussed as a comparison of the potential of these carriers as oral delivery systems of CB13.

  19. Comparative study of chitosan- and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids

    International Nuclear Information System (INIS)

    The cannabinoid derivative 1-naphthalenyl[4-(pentyloxy)-1-naphthalenyl]methanone (CB13) has an important therapeutic potential as analgesic in chronic pain states that respond poorly to conventional drugs. However, the incidence of its mild-to-moderate and dose-dependent adverse effects, as well as its pharmacokinetic profile, actually holds back its use in humans. Thus, the use of a suitable carrier system for oral delivery of CB13 becomes an attractive strategy to develop a valuable therapy. Polymeric poly(lactic-co-glycolic) acid (PLGA) and lipid nanoparticles (LNPs) are widely studied delivery vehicles that improve the bioavailability of lipophilic compounds and present special interest in oral delivery. Their surface can be modified to improve the adhesion of particles to the oral mucosa and increase their circulation time in blood with additives such as chitosan (CS) and polyethylene glycol (PEG), which can be feasibly incorporated onto these particles in a post-production step. In this work, CS- and PEG-modified polymeric PLGA and LNPs were successfully obtained and comparatively evaluated under the same experimental conditions as oral carriers for CB13. All the formulations presented adequate blood compatibility and absence of cytotoxicity in Caco-2 cells. Coating with CS led to a higher interaction with Caco-2 cells and a limited uptake in THP1 cells, while coating with PEG led to a limited uptake in Caco-2 cells and strongly prevented THP1 cells uptake. The performance of each formulation is discussed as a comparison of the potential of these carriers as oral delivery systems of CB13

  20. Cannabinoids and Dementia: A Review of Clinical and Preclinical Data

    Directory of Open Access Journals (Sweden)

    Michael Halpern

    2010-08-01

    Full Text Available The endocannabinoid system has been shown to be associated with neurodegenerative diseases and dementia. We review the preclinical and clinical data on cannabinoids and four neurodegenerative diseases: Alzheimer’s disease (AD, Huntington’s disease (HD, Parkinson’s disease (PD and vascular dementia (VD. Numerous studies have demonstrated an involvement of the cannabinoid system in neurotransmission, neuropathology and neurobiology of dementias. In addition, several candidate compounds have demonstrated efficacy in vitro. However, some of the substances produced inconclusive results in vivo. Therefore, only few trials have aimed to replicate the effects seen in animal studies in patients. Indeed, the literature on cannabinoid administration in patients is scarce. While preclinical findings suggest causal treatment strategies involving cannabinoids, clinical trials have only assessed the suitability of cannabinoid receptor agonists, antagonists and cannabidiol for the symptomatic treatment of dementia. Further research is needed, including in vivo models of dementia and human studies.

  1. Pleasure systems in the brain

    OpenAIRE

    Berridge, Kent C.; Kringelbach, Morten L.

    2015-01-01

    Pleasure is mediated by well-developed mesocorticolimbic circuitry, and serves adaptive functions. In affective disorders anhedonia (lack of pleasure) or dysphoria (negative affect) can result from breakdowns of that hedonic system. Human neuroimaging studies indicate that surprisingly similar circuitry is activated by quite diverse pleasures, suggesting a common neural currency shared by all. Wanting for rewards is generated by a large and distributed brain system. Liking, or pleasure itself...

  2. Cannabinoids and autoimmune diseases: A systematic review.

    Science.gov (United States)

    Katchan, Valeria; David, Paula; Shoenfeld, Yehuda

    2016-06-01

    Cannabinoids have shown to have a variety effects on body systems. Through CB1 and CB2 receptors, amongst other, they exert an effect by modulating neurotransmitter and cytokine release. Current research in the role of cannabinoids in the immune system shows that they possess immunosuppressive properties. They can inhibit proliferation of leucocytes, induce apoptosis of T cells and macrophages and reduce secretion of pro-inflammatory cytokines. In mice models, they are effective in reducing inflammation in arthritis, multiple sclerosis, have a positive effect on neuropathic pain and in type 1 diabetes mellitus. They are effective as treatment for fibromyalgia and have shown to have anti-fibrotic effect in scleroderma. Studies in human models are scarce and not conclusive and more research is required in this field. Cannabinoids can be therefore promising immunosuppressive and anti-fibrotic agents in the therapy of autoimmune disorders. PMID:26876387

  3. Cannabinoids in the management of spasticity associated with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Anna Maria Malfitano

    2008-08-01

    Full Text Available Anna Maria Malfitano, Maria Chiara Proto, Maurizio BifulcoDipartimento di Scienze Farmaceutiche, Università degli Studi di SalernoAbstract: The endocannabinoid system and cannabinoid-based treatments have been involved in a wide number of diseases. In particular, several studies suggest that cannabinoids and endocannabinoids may have a key role in the pathogenesis and therapy of multiple sclerosis (MS. In this study we highlight the main findings reported in literature about the relevance of cannabinoid drugs in the management and treatment of MS. An increasing body of evidence suggests that cannabinoids have beneficial effects on the symptoms of MS, including spasticity and pain. In this report we focus on the effects of cannabinoids in the relief of spasticity describing the main findings in vivo, in the mouse experimental allergic encephalomyelitis model of MS. We report on the current treatments used to control MS symptoms and the most recent clinical studies based on cannabinoid treatments, although long-term studies are required to establish whether cannabinoids may have a role beyond symptom amelioration in MS.Keywords: cannabinoids, multiple sclerosis, spasticity

  4. Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis

    OpenAIRE

    Müller Anke; Tauber Svantje; Ramirez-Rodriguez Gerardo; Leal-Galicia Perla; Fabel Klaus; Bick-Sander Anika; Wolf Susanne A; Melnik Andre; Waltinger Tim P; Ullrich Oliver; Kempermann Gerd

    2010-01-01

    Abstract Background Adult neurogenesis is a particular example of brain plasticity that is partially modulated by the endocannabinoid system. Whereas the impact of synthetic cannabinoids on the neuronal progenitor cells has been described, there has been lack of information about the action of plant-derived extracts on neurogenesis. Therefore we here focused on the effects of Δ9-tetrahydrocannabinol (THC) and Cannabidiol (CBD) fed to female C57Bl/6 and Nestin-GFP-reporter mice on proliferatio...

  5. Brain-Computer Interfacing for Intelligent Systems

    OpenAIRE

    Nijholt, Anton; Tan, Desney; Pfurtscheller, Gert; Brunner, Clemens; R. Millán, del, José; Allison, Brandan; Graimann, Bernhard; Florin POPESCU; Blankertz, Benjamin; Müller, Klaus-R

    2008-01-01

    Advances in cognitive neuroscience and brain-imaging technologies give us the unprecedented ability to interface directly with brain activity. These technologies let us monitor physical processes in the brain that correspond with certain forms of thought. Researchers have begun using these technologies to build brain-computer interfaces (BCIs)—communication systems that don't depend on the brain's normal output pathways of peripheral nerves and muscles. Four short articles provide a quick ove...

  6. Brain Facts: A Primer on the Brain and Nervous System.

    Science.gov (United States)

    Carey, Joseph, Ed.

    This booklet describes only a glimpse of what is known about the nervous system, brain disorders, and the exciting avenues of research that promise new therapies for many of the most devastating neurological and psychiatric diseases. The neuron, brain development, sensation and perception, learning and memory, movement, advances and challenges in…

  7. Detecting constitutive activity and protean agonism at cannabinoid-2 receptor.

    Science.gov (United States)

    Beltramo, Massimiliano; Brusa, Rossella; Mancini, Isabella; Scandroglio, Paola

    2010-01-01

    Since the cannabinoid system is involved in regulating several physiological functions such as locomotor activity, cognition, nociception, food intake, and inflammatory reaction, it has been the subject of intense study. Research on the pharmacology of this system has enormously progressed in the last 20years. One intriguing aspect that emerged from this research is that cannabinoid receptors (CBs) express a high level of constitutive activity. Investigation on this particular aspect of receptor pharmacology has largely focused on CB1, the CB subtype highly expressed in several brain regions. More recently, research on constitutive activity on the other CB subtype, CB2, was stimulated by the increasing interest on its potential as target for the treatment of various pathologies (e.g., pain and inflammation). There are several possible implications of constitutive activity on the therapeutic action of both agonists and antagonists, and consequently, it is important to have valuable methods to study this aspect of CB2 pharmacology. In the present chapter, we describe three methods to study constitutive activity at CB2: two classical methods relying on the detection of changes in cAMP level and GTPγS binding and a new one based on cell impedance measurement. In addition, we also included a section on detection of protean agonism, which is an interesting pharmacological phenomenon strictly linked to constitutive activity. PMID:21036225

  8. Therapeutic Potential of Cannabinoids in Psychosis.

    Science.gov (United States)

    Leweke, F Markus; Mueller, Juliane K; Lange, Bettina; Rohleder, Cathrin

    2016-04-01

    Over recent years, the interest in the endocannabinoid system (ECS) as a new target for the treatment of schizophrenia has evolved. The ECS represents one of the most relevant neurotransmitter systems in the brain and mainly fulfills a homeostatic role in terms of neurotransmission but also with respect to inflammatory processes. Two main approaches to the modulation of endocannabinoid functioning have been chosen so far. First, the selective blockade or inverse agonism of the type 1 cannabinoid receptor has been tested for the improvement of acute psychotic symptoms, as well as for the improvement of cognitive functions in schizophrenia. This was not effective in either case. Second, the modulation of endocannabinoid levels by use of the phytocannabinoid cannabidiol and selective fatty acid amide hydrolase inhibitors has been proposed, and the antipsychotic properties of cannabidiol are currently being investigated in humans. Unfortunately, for most of these trials that have focused on psychopathological and cognitive effects of cannabidiol, no published data are available. However, there is first evidence that cannabidiol may ameliorate psychotic symptoms with a superior side-effect profile compared with established antipsychotics. In conclusion, several clinical trials targeting the ECS in acute schizophrenia have either been completed or are underway. Although publicly available results are currently limited, preliminary data indicate that selected compounds modulating the ECS may be effective in acute schizophrenia. Nevertheless, so far, sample sizes of patients investigated are not sufficient to come to a final judgment, and no maintenance studies are available to ensure long-term efficacy and safety. PMID:26852073

  9. Cannabinoid-based medicines for neurological disorders--clinical evidence.

    Science.gov (United States)

    Wright, Stephen

    2007-08-01

    Whereas the cannabis plant has a long history of medicinal use, it is only in recent years that a sufficient understanding of the pharmacology of the main plant constituents has allowed for a better understanding of the most rational therapeutic targets. The distribution of cannabinoid receptors, both within the nervous system and without, and the development of pharmacological tools to investigate their function has lead to a substantial increase in efforts to develop cannabinoids as therapeutic agents. Concomitant with these efforts, the understanding of the pharmacology of plant cannabinoids at receptor and other systems distinct from the cannabinoid receptors suggests that the therapeutic applications of plant-derived cannabinoids (and presumably their synthetic derivatives also) may be diverse. This review aims to discuss the clinical evidence investigating the use of medicines derived, directly or indirectly, from plant cannabinoids with special reference to neurological disorders. Published studies suggest that the oral administration of cannabinoids may not be the preferred route of administration and that plant extracts show greater evidence of efficacy than synthetic compounds. One of these, Sativex (GW Pharmaceuticals), was approved as a prescription medicine in Canada in 2005 and is currently under regulatory review in the EU. PMID:17952657

  10. Long-term consequences of adolescent cannabinoid exposure in adult psychopathology

    Directory of Open Access Journals (Sweden)

    Justine eRenard

    2014-11-01

    Full Text Available Marijuana is the most widely used illicit drug among adolescents and young adults. Unique cognitive, emotional, and social changes occur during this critical period of development from childhood into adulthood. The adolescent brain is in a state of transition and differs from the adult brain with respect to both anatomy (e.g., neuronal connections and morphology and neurochemistry (e.g., dopamine, GABA, and glutamate. These changes are thought to support the emergence of adult cerebral processes and behaviors. The endocannabinoid system plays an important role in development by acting on synaptic plasticity, neuronal cell proliferation, migration, and differentiation. Delta-9-tetrahydrocanabinol (THC, the principal psychoactive component in marijuana, acts as an agonist of the cannabinoid type 1 receptor (CB1R. Thus, over-activation of the endocannabinoid system by chronic exposure to CB1R agonists (e.g. THC, CP-55,940, and WIN55,212-2 during adolescence can dramatically alter brain maturation and cause long-lasting neurobiological changes that ultimately affect the function and behavior of the adult brain. Indeed, emerging evidence from both human and animal studies demonstrates that early-onset marijuana use has long-lasting consequences on cognition; moreover, in humans, this use is associated with a two-fold increase in the risk of developing a psychotic disorder. Here, we review the relationship between cannabinoid exposure during adolescence and the increased risk of neuropsychiatric disorders, focusing on both clinical and animal studies.

  11. Synthesis and biological evaluation of novel compounds as potential modulators of cannabinoid signalling pathways

    OpenAIRE

    De Bank, Paul A

    2001-01-01

    Most of the biological effects of cannabis are due to the activation of specific cannabinoid receptors. To date, two such receptors have been discovered and are found predominantly in the central nervous system (the CB1 receptor) or the immune system (the CB2 receptor). Endogenous cannabinoid receptor ligands, the endocannabinoids, have also been isolated and the mechanisms of their synthesis and degradation postulated. By modulating the activation of cannabinoid receptors and endocannabinoid...

  12. Synthetic cannabinoids: the multi-organ failure and metabolic derangements associated with getting high

    OpenAIRE

    Dolkar Sherpa; Paudel, Bishow M.; Subedi, Bishnu H.; Robert Dobbin Chow

    2015-01-01

    Synthetic cannabinoids (SC), though not detected with routine urine toxicology screening, can cause severe metabolic derangements and widespread deleterious effects in multiple organ systems. The diversity of effects is related to the wide distribution of cannabinoid receptors in multiple organ systems. Both cannabinoid-receptor-mediated and non-receptor-mediated effects can result in severe cardiovascular, renal, and neurologic manifestations. We report the case of a 45-year-old African Amer...

  13. Effects of endocannabinoid system modulation on cognitive and emotional behavior

    Directory of Open Access Journals (Sweden)

    Claudio eZanettini

    2011-09-01

    Full Text Available Cannabis has long been known to produce cognitive and emotional effects. Research has shown that cannabinoid drugs produce these effects by driving the brain's endogenous cannabinoid system and that this system plays a modulatory role in many cognitive and emotional processes. This review focuses on the effects of endocannabinoid-system modulation in animal models of cognition (learning and memory and emotion (anxiety and depression. We review studies in which natural or synthetic cannabinoid agonists were administered to directly stimulate cannabinoid receptors or, conversely, where cannabinoid antagonists were administered to inhibit the activity of cannabinoid receptors. In addition, studies are reviewed that involved genetic disruption of cannabinoid receptors or genetic or pharmacological manipulation of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH. Endocannabinoids affect the function of many neurotransmitter systems, some of which play opposing roles. The diversity of cannabinoid roles and the complexity of task-dependent activation of neuronal circuits may lead to the effects of endocannabinoid system modulation being strongly dependent on environmental conditions. Recent findings are reviewed that raise the possibility that endocannabinoid signaling may change the impact of environmental influences on emotional and cognitive behavior rather than affecting one or another specific behavior.

  14. Interaction between paired-pulse facilitation and long-term potentiation during the stimulation of the cannabinoid and vanilloid systems in the dentate gyrus.

    Science.gov (United States)

    Tahmasebi, Lida; Komaki, Alireza; Karamian, Ruhollah; Shahidi, Siamak; Sarihi, Abdolrahman; Komaki, Hamidreza

    2016-07-15

    Synaptic plasticity includes short-term and long-term changes in synaptic strength. Short-term plasticity can be used to assess the site mediating the long-lasting forms of synaptic plasticity such as long-term potentiation (LTP). The endogenous endocannabinoid systems can modulate LTP, and similarly, the activation of the vanilloid system has been shown to mediate synaptic plasticity in the hippocampus. In this study, we examined the interaction between short-term and long-term plasticity during the stimulation of the cannabinoid and vanilloid systems in the hippocampus of rats in vivo. Forty male Wistar rats, divided into four groups, were treated with the following compounds: control (saline+dimethyl sulfoxide), WIN55,212-2, capsaicin, and WIN55,212-2+capsaicin. The animals were anesthetized with urethane and then recording and stimulating electrodes were positioned at the dentate gyrus(DG) and perforant pathway(PP), respectively. Population spike (PS) amplitudes were measured before and after the induction of LTP, which was induced with high-frequency stimulation (HFS). The paired-pulse ratio (PPR) was measured before and after the induction of LTP in all groups. We showed that WIN55,212-2 reduced the PS amplitude after HFS, whereas the vanilloid agonist increased the induction of LTP compared with the control treatment. In the present study, we found that in the presence of WIN55,212-2 and capsaicin, the induction of LTP changed the PPR. Additionally, we showed that the co-administration of cannabinoid and vanilloid agonists modulate the PPR. These findings suggest the presynaptic expression of this LTP form, and therefore, this form of LTP is caused by the increase of neurotransmitter release. PMID:27130895

  15. Cannabinoids in the management of spasticity associated with multiple sclerosis

    OpenAIRE

    Anna Maria Malfitano; Maria Chiara Proto; Maurizio Bifulco

    2008-01-01

    Anna Maria Malfitano, Maria Chiara Proto, Maurizio BifulcoDipartimento di Scienze Farmaceutiche, Università degli Studi di SalernoAbstract: The endocannabinoid system and cannabinoid-based treatments have been involved in a wide number of diseases. In particular, several studies suggest that cannabinoids and endocannabinoids may have a key role in the pathogenesis and therapy of multiple sclerosis (MS). In this study we highlight the main findings reported in literature about the r...

  16. Medical cannabis vs. synthetic cannabinoids: What does the future hold?

    Science.gov (United States)

    Bolognini, D; Ross, R A

    2015-06-01

    The medical use of cannabis has an intricate therapeutic history that finds its roots in ancient China (∼2700 BC). The main psychoactive component of cannabis, Δ(9) -tetrahydrocannabinol (Δ(9) -THC), was discovered in 1964. This was a significant breakthrough, as it allowed the generation of synthetic analogs of Δ(9) -THC, the discovery of cannabinoid receptors, and the generation of synthetic small molecules. Despite this, today there is still a paucity of drugs that target the cannabinoid system. PMID:25761845

  17. Pharmacokinetics of Cannabinoids

    OpenAIRE

    McGilveray, Iain J

    2005-01-01

    Delta-9-tetrahydrocannabinol (Δ-9-THC) is the main psychoactive ingredient of cannabis (marijuana). The present review focuses on the pharmacokinetics of THC, but also includes known information for cannabinol and cannabidiol, as well as the synthetic marketed cannabinoids, dronabinol (synthetic THC) and nabilone. The variability of THC in plant material (0.3% to 30%) leads to variability in tissue THC levels from smoking, which is, in itself, a highly individual process. THC bioavailability ...

  18. Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans.

    Science.gov (United States)

    Rabinak, Christine A; Angstadt, Mike; Lyons, Maryssa; Mori, Shoko; Milad, Mohammed R; Liberzon, Israel; Phan, K Luan

    2014-09-01

    Pre-extinction administration of Δ9-tetrahydrocannibinol (THC) facilitates recall of extinction in healthy humans, and evidence from animal studies suggest that this likely occurs via enhancement of the cannabinoid system within the ventromedial prefrontal cortex (vmPFC) and hippocampus (HIPP), brain structures critical to fear extinction. However, the effect of cannabinoids on the underlying neural circuitry of extinction memory recall in humans has not been demonstrated. We conducted a functional magnetic resonance imaging (fMRI) study using a randomized, double-blind, placebo-controlled, between-subjects design (N=14/group) coupled with a standard Pavlovian fear extinction paradigm and an acute pharmacological challenge with oral dronabinol (synthetic THC) in healthy adult volunteers. We examined the effects of THC on vmPFC and HIPP activation when tested for recall of extinction learning 24 h after extinction learning. Compared to subjects who received placebo, participants who received THC showed increased vmPFC and HIPP activation to a previously extinguished conditioned stimulus (CS+E) during extinction memory recall. This study provides the first evidence that pre-extinction administration of THC modulates prefrontal-limbic circuits during fear extinction in humans and prompts future investigation to test if cannabinoid agonists can rescue or correct the impaired behavioral and neural function during extinction recall in patients with PTSD. Ultimately, the cannabinoid system may serve as a promising target for innovative intervention strategies (e.g. pharmacological enhancement of exposure-based therapy) in PTSD and other fear learning-related disorders. PMID:24055595

  19. Immune System to Brain Signaling: Neuropsychopharmacological Implications

    OpenAIRE

    Capuron, Lucile; Miller, Andrew H.

    2011-01-01

    There has been an explosion in our knowledge of the pathways and mechanisms by which the immune system can influence the brain and behavior. In the context of inflammation, pro-inflammatory cytokines can access the central nervous system and interact with a cytokine network in the brain to influence virtually every aspect of brain function relevant to behavior including neurotransmitter metabolism, neuroendocrine function, synaptic plasticity, and neurocircuits that regulate mood, motor activ...

  20. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation

    OpenAIRE

    De Petrocellis, Luciano; Melck, Dominique; Palmisano, Antonella; Bisogno, Tiziana; Laezza, Chiara; Bifulco, Maurizio; Di Marzo, Vincenzo

    1998-01-01

    Anandamide was the first brain metabolite shown to act as a ligand of “central” CB1 cannabinoid receptors. Here we report that the endogenous cannabinoid potently and selectively inhibits the proliferation of human breast cancer cells in vitro. Anandamide dose-dependently inhibited the proliferation of MCF-7 and EFM-19 cells with IC50 values between 0.5 and 1.5 μM and 83–92% maximal inhibition at 5–10 μM. The proliferation of several other nonmammary tumoral cell lines was not affected by 10 ...

  1. FABP-1 gene ablation impacts brain endocannabinoid system in male mice.

    Science.gov (United States)

    Martin, Gregory G; Chung, Sarah; Landrock, Danilo; Landrock, Kerstin K; Huang, Huan; Dangott, Lawrence J; Peng, Xiaoxue; Kaczocha, Martin; Seeger, Drew R; Murphy, Eric J; Golovko, Mikhail Y; Kier, Ann B; Schroeder, Friedhelm

    2016-08-01

    Liver fatty acid-binding protein (FABP1, L-FABP) has high affinity for and enhances uptake of arachidonic acid (ARA, C20:4, n-6) which, when esterified to phospholipids, is the requisite precursor for synthesis of endocannabinoids (EC) such as arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG). The brain derives most of its ARA from plasma, taking up ARA and transporting it intracellularly via cytosolic fatty acid-binding proteins (FABPs 3,5, and 7) localized within the brain. In contrast, the much more prevalent cytosolic FABP1 is not detectable in the brain but is instead highly expressed in the liver. Therefore, the possibility that FABP1 outside the central nervous system may regulate brain AEA and 2-AG was examined in wild-type (WT) and FABP1 null (LKO) male mice. LKO increased brain levels of AA-containing EC (AEA, 2-AG), correlating with increased free and total ARA in brain and serum. LKO also increased brain levels of non-ARA that contain potentiating endocannabinoids (EC*) such as oleoyl ethanolamide (OEA), PEA, 2-OG, and 2-PG. Concomitantly, LKO decreased serum total ARA-containing EC, but not non-ARA endocannabinoids. LKO did not elicit these changes in the brain EC and EC* as a result of compensatory up-regulation of brain protein levels of enzymes in EC synthesis (NAPEPLD, DAGLα) or cytosolic EC chaperone proteins (FABPs 3, 5, 7, SCP-2, HSP70), or cannabinoid receptors (CB1, TRVP1). These data show for the first time that the non-CNS fatty acid-binding protein FABP1 markedly affected brain levels of both ARA-containing endocannabinoids (AEA, 2-AG) as well as their non-ARA potentiating endocannabinoids. Fatty acid-binding protein-1 (FABP-1) is not detectable in brain but instead is highly expressed in liver. The possibility that FABP1 outside the central nervous system may regulate brain endocannabinoids arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) was examined in wild-type (WT) and FABP-1 null (LKO) male mice. LKO

  2. Novel endogenous peptide agonists of cannabinoid receptors

    OpenAIRE

    Gomes, Ivone; Grushko, Julia S.; Golebiewska, Urszula; Hoogendoorn, Sascha; Gupta, Achla; Heimann, Andrea S.; Ferro, Emer S.; Scarlata, Suzanne; Fricker, Lloyd D.; Devi, Lakshmi A.

    2009-01-01

    Hemopressin (Hp), a 9-residue α-hemoglobin-derived peptide, was previously reported to function as a CB1 cannabinoid receptor antagonist (1). In this study, we report that mass spectrometry (MS) data from peptidomics analyses of mouse brain extracts identified N-terminally extended forms of Hp containing either three (RVD-Hpα) or two (VD-Hpα) additional amino acids, as well as a β-hemoglobin-derived peptide with sequence similarity to that of hemopressin (VD-Hpβ). Characterization of the α-he...

  3. Brain and nervous system (image)

    Science.gov (United States)

    ... complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, nerve cells deteriorated ...

  4. Brain Prostheses as a Dynamic System (Immortalizing the Human Brain?)

    CERN Document Server

    Astakhov, Vadim

    2007-01-01

    Interest in development of brain prostheses, which might be proposed to recover mental functions lost due to neuron-degenerative disease or trauma, requires new methods in molecular engineering and nanotechnology to build artificial brain tissues. We develop a Dynamic Core model to analyze complexity of damaged biological neural network as well as transition and recovery of the system functionality due to changes in the system environment. We provide a method to model complexity of physical systems which might be proposed as an artificial tissue or prosthesis. Delocalization of Dynamic Core model is developed to analyze migration of mental functions in dynamic bio-systems which undergo architecture transition induced by trauma. Term Dynamic Core is used to define a set of causally related functions and Delocalization is used to describe the process of migration. Information geometry and topological formalisms are proposed to analyze information processes. A holographic model is proposed to construct dynamic e...

  5. Type 1 cannabinoid receptor mapping with [18F]MK-9470 PET in the rat brain after quinolinic acid lesion: a comparison to dopamine receptors and glucose metabolism

    International Nuclear Information System (INIS)

    Several lines of evidence imply early alterations in metabolic, dopaminergic and endocannabinoid neurotransmission in Huntington's disease (HD). Using [18F]MK-9470 and small animal PET, we investigated cerebral changes in type 1 cannabinoid (CB1) receptor binding in the quinolinic acid (QA) rat model of HD in relation to glucose metabolism, dopamine D2 receptor availability and amphetamine-induced turning behaviour. Twenty-one Wistar rats (11 QA and 10 shams) were investigated. Small animal PET acquisitions were conducted on a Focus 220 with approximately 18 MBq of [18F]MK-9470, [18F]FDG and [11C]raclopride. Relative glucose metabolism and parametric CB1 receptor and D2 binding images were anatomically standardized to Paxinos space and analysed voxel-wise using Statistical Parametric Mapping (SPM2). In the QA model, [18F]MK-9470 uptake, glucose metabolism and D2 receptor binding were reduced in the ipsilateral caudate-putamen by 7, 35 and 77%, respectively (all p -5), while an increase for these markers was observed on the contralateral side (>5%, all p -4). [18F]MK-9470 binding was also increased in the cerebellum (p = 2.10-5), where it was inversely correlated to the number of ipsiversive turnings (p = 7.10-6), suggesting that CB1 receptor upregulation in the cerebellum is related to a better functional outcome. Additionally, glucose metabolism was relatively increased in the contralateral hippocampus, thalamus and sensorimotor cortex (p = 1.10-6). These data point to in vivo changes in endocannabinoid transmission, specifically for CB1 receptors in the QA model, with involvement of the caudate-putamen, but also distant regions of the motor circuitry, including the cerebellum. These data also indicate the occurrence of functional plasticity on metabolism, D2 and CB1 neurotransmission in the contralateral hemisphere. (orig.)

  6. It's All in the Rhythm: The Role of Cannabinoids in Neural Oscillations and Psychosis.

    Science.gov (United States)

    Skosnik, Patrick D; Cortes-Briones, Jose A; Hajós, Mihály

    2016-04-01

    Evidence has accumulated over the past several decades suggesting that both exocannabinoids and endocannabinoids play a role in the pathophysiology of schizophrenia. The current article presents evidence suggesting that one of the mechanisms whereby cannabinoids induce psychosis is through the alteration in synchronized neural oscillations. Neural oscillations, particularly in the gamma (30-80 Hz) and theta (4-7 Hz) ranges, are disrupted in schizophrenia and are involved in various areas of perceptual and cognitive function. Regarding cannabinoids, preclinical evidence from slice and local field potential recordings has shown that central cannabinoid receptor (cannabinoid receptor type 1) agonists decrease the power of neural oscillations, particularly in the gamma and theta bands. Further, the administration of cannabinoids during critical stages of neural development has been shown to disrupt the brain's ability to generate synchronized neural oscillations in adulthood. In humans, studies examining the effects of chronic cannabis use (utilizing electroencephalography) have shown abnormalities in neural oscillations in a pattern similar to those observed in schizophrenia. Finally, recent studies in humans have also shown disruptions in neural oscillations after the acute administration of delta-9-tetrahydrocannabinol, the primary psychoactive constituent in cannabis. Taken together, these data suggest that both acute and chronic cannabinoids can disrupt the ability of the brain to generate synchronized oscillations at functionally relevant frequencies. Hence, this may represent one of the primary mechanisms whereby cannabinoids induce disruptions in attention, working memory, sensory-motor integration, and many other psychosis-related behavioral effects. PMID:26850792

  7. Cannabinoid Hyperemesis Syndrome: A Paradoxical Cannabis Effect

    Directory of Open Access Journals (Sweden)

    Ivonne Marie Figueroa-Rivera

    2015-01-01

    Full Text Available Despite well-established antiemetic properties of marijuana, there has been increasing evidence of a paradoxical effect in the gastrointestinal tract and central nervous system, given rise to a new and underrecognized clinical entity called the Cannabinoid Hyperemesis Syndrome. Reported cases in the medical literature have established a series of patients exhibiting a classical triad of symptoms: cyclic vomiting, chronic marijuana use, and compulsive bathing. We present a case of a 29-year-old man whose clinical presentation strongly correlates with cannabinoid hyperemesis syndrome. Despite a diagnosis of exclusion, this syndrome should be considered plausible in the setting of a patient with recurrent intractable vomiting and a strong history of cannabis use as presented in this case.

  8. Cannabinoid Hyperemesis Syndrome: A Paradoxical Cannabis Effect.

    Science.gov (United States)

    Figueroa-Rivera, Ivonne Marie; Estremera-Marcial, Rodolfo; Sierra-Mercado, Marielly; Gutiérrez-Núñez, José; Toro, Doris H

    2015-01-01

    Despite well-established antiemetic properties of marijuana, there has been increasing evidence of a paradoxical effect in the gastrointestinal tract and central nervous system, given rise to a new and underrecognized clinical entity called the Cannabinoid Hyperemesis Syndrome. Reported cases in the medical literature have established a series of patients exhibiting a classical triad of symptoms: cyclic vomiting, chronic marijuana use, and compulsive bathing. We present a case of a 29-year-old man whose clinical presentation strongly correlates with cannabinoid hyperemesis syndrome. Despite a diagnosis of exclusion, this syndrome should be considered plausible in the setting of a patient with recurrent intractable vomiting and a strong history of cannabis use as presented in this case. PMID:26266060

  9. TRAUMATIC BRAIN INJURY SURVEILLANCE SYSTEM (TBISS)

    Science.gov (United States)

    The National Center for Injury Prevention and Control (NCIPC), Centers for Disease Control and Prevention (CDC) had developed and maintains a surveillance system to understand the magnitude and characteristics of hospitalized and fatal traumatic brain injuries in the United State...

  10. Identification of Essential Cannabinoid-binding Domains: STRUCTURAL INSIGHTS INTO EARLY DYNAMIC EVENTS IN RECEPTOR ACTIVATION*

    OpenAIRE

    Shim, Joong-Youn; Bertalovitz, Alexander C.; Kendall, Debra A.

    2011-01-01

    The classical cannabinoid agonist HU210, a structural analog of (−)-Δ9-tetrahydrocannabinol, binds to brain cannabinoid (CB1) receptors and activates signal transduction pathways. To date, an exact molecular description of the CB1 receptor is not yet available. Utilizing the minor binding pocket of the CB1 receptor as the primary ligand interaction site, we explored HU210 binding using lipid bilayer molecular dynamics (MD) simulations. Among the potential ligand contact residues, we identifie...

  11. Cannabinoid Type 1 Receptors Transiently Silence Glutamatergic Nerve Terminals of Cultured Cerebellar Granule Cells

    OpenAIRE

    Ramírez-Franco, Jorge; Bartolomé-Martín, David; Alonso, Beatris; Torres, Magdalena; Sánchez-Prieto, José

    2014-01-01

    Cannabinoid receptors are the most abundant G protein-coupled receptors in the brain and they mediate retrograde short-term inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at many excitatory synapses. The induction of presynaptically silent synapses is a means of modulating synaptic strength, which is important for synaptic plasticity. Persistent activation of cannabinoid type 1 receptors (CB1Rs) mutes GABAergic terminals, although it is unclea...

  12. Ghrelin and cannabinoids require the ghrelin receptor to affect cellular energy metabolism

    OpenAIRE

    Lim, Chung Thong; Kola, Blerina; Feltrin, Daniel; Perez-Tilve, Diego; Tschöp, Matthias H.; Grossman, Ashley B; Korbonits, Márta

    2013-01-01

    Introduction Ghrelin is a potent orexigenic brain-gut peptide with lipogenic and diabetogenic effects, possibly mediated by growth hormone secretagogue receptor (GHS-R1a). Cannabinoids also have orexigenic and lipogenic effects. AMPK is a regulator of energy homeostasis and we have previously shown that ghrelin and cannabinoids stimulate hypothalamic AMPK activity while inhibiting it in the liver and adipose tissue, suggesting that AMPK mediates both the central appetite-inducing and peripher...

  13. Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects

    OpenAIRE

    Jiang, Wen; Zhang, Yun; Xiao, Lan; Van Cleemput, Jamie; Ji, Shao-Ping; Bai, Guang; Zhang, Xia

    2005-01-01

    The hippocampal dentate gyrus in the adult mammalian brain contains neural stem/progenitor cells (NS/PCs) capable of generating new neurons, i.e., neurogenesis. Most drugs of abuse examined to date decrease adult hippocampal neurogenesis, but the effects of cannabis (marijuana or cannabinoids) on hippocampal neurogenesis remain unknown. This study aimed at investigating the potential regulatory capacity of the potent synthetic cannabinoid HU210 on hippocampal neurogenesis and its possible cor...

  14. Brain-Computer Interface In Control Systems

    OpenAIRE

    Soukup, Michael

    2014-01-01

    A Brain-Computer Interface (BCI) is a system that allows for direct communication between the brain and an external device. Originally, the motivation for developing BCIs has been to provide severely disabled individuals with a basic communication system. Recent years, BCIs directed at regular consumers in practical control applications have gained popularity as well, for which the ultimate goal is to provide a more natural way of communicating with machines. However, BCIs intended at use in ...

  15. Novelty-induced emotional arousal modulates cannabinoid effects on recognition memory and adrenocortical activity

    NARCIS (Netherlands)

    Campolongo, P.; Morena, M.; Scaccianoce, S.; Trezza, V.; Chiarotti, F.; Schelling, G.; Cuomo, V.; Roozendaal, B.

    2013-01-01

    Although it is well established that cannabinoid drugs can influence cognitive performance, the findings-describing both enhancing and impairing effects-have been ambiguous. Here, we investigated the effects of posttraining systemic administration of the synthetic cannabinoid agonist WIN55,212-2 (0.

  16. Beyond THC: the new generation of cannabinoid designer drugs

    Directory of Open Access Journals (Sweden)

    Liana eFattore

    2011-09-01

    Full Text Available Synthetic cannabinoids are functionally similar to delta9-tetrahydrocannabinol (THC, the psychoactive principle of cannabis, and bind to the same cannabinoid receptors in the brain and peripheral organs. From 2008, synthetic cannabinoids were detected in herbal smoking mixtures sold on websites and in head shops under the brand name of Spice Gold, Yucatan Fire, Aroma, and others. Although these products (also known as Spice drugs or legal highs do not contain tobacco or cannabis, when smoked they produce effects similar to THC. Intoxication, withdrawal, psychosis and death have been recently reported after consumption, posing difficult social, political and health challenges. More than 140 different Spice products have been identified to date. The ability to induce strong cannabis-like psychoactive effects, along with the fact that they are readily available on the Internet, still legal in many countries, marketed as natural safe substances, and undetectable by conventional drug screening tests, has rendered these drugs very popular and particularly appealing to young and drug-naïve individuals seeking new experiences. An escalating number of compounds with cannabinoid receptor activity are currently being found as ingredients of Spice, of which almost nothing is known in terms of pharmacology, toxicology and safety. Since legislation started to control the synthetic cannabinoids identified in these herbal mixtures, many new analogs have appeared on the market. New cannabimimetic compounds are likely to be synthesized in the near future to replace banned synthetic cannabinoids, leading to a dog chasing its tail situation. Spice smokers are exposed to drugs that are extremely variable in composition and potency, and are at risk of serious, if not lethal, outcomes. Social and health professionals should maintain a high degree of alertness for Spice use and its possible psychiatric effects in vulnerable people.

  17. Role of cannabinoids in chronic liver diseases

    Institute of Scientific and Technical Information of China (English)

    Anna Parfieniuk; Robert Flisiak

    2008-01-01

    Cannabinoids are a group of compounds acting primarily via CB1 and CB2 receptors. The expression of cannabinoid receptors in normal liver is low or absent. However, many reports have proven up-regulation of the expression of CB1 and CB2 receptors in hepatic myofibroblasts and vascular endothelial cells, as well as increased concentration of endocannabinoids in liver in the course of chronic progressive liver diseases. It has been shown that CB1 receptor signalling exerts profibrogenic and proinflammatory effects in liver tissue, primarily due to the stimulation of hepatic stellate cells, whereas the activation of CB2 receptors inhibits or even reverses liver fibrogenesis. Similarly, CB1 receptor stimulation contributes to progression of liver steatosis. In end-stage liver disease, the endocannabi-noid system has been shown to contribute to hepatic encephalopathy and vascular effects, such as portal hypertension, splanchnic vasodilatation, relative pe-ripheral hypotension and probably cirrhotic cardiomy-opathy. So far, available evidence is based on cellular cultures or animal models. Clinical data on the effects of cannabinoids in chronic liver diseases are limited. However, recent studies have shown the contribution of cannabis smoking to the progression of liver fibrosis and steatosis. Moreover, controlling CB1 or CB2 signal-ling appears to be an attractive target in managing liver diseases.

  18. δ-Ctenitoxin-Pn1a, a Peptide from Phoneutria nigriventer Spider Venom, Shows Antinociceptive Effect Involving Opioid and Cannabinoid Systems, in Rats.

    Science.gov (United States)

    Emerich, Bruna Luiza; Ferreira, Renata C M; Cordeiro, Marta N; Borges, Márcia Helena; Pimenta, Adriano M C; Figueiredo, Suely G; Duarte, Igor Dimitri G; de Lima, Maria Elena

    2016-01-01

    PnTx4(6-1), henceforth renamed δ-Ctenitoxin-Pn1a (δ-CNTX-Pn1a), a peptide from Phoneutria nigriventer spider venom, initially described as an insect toxin, binds to site 3 of sodium channels in nerve cord synaptosomes and slows down sodium current inactivation in isolated axons in cockroaches (Periplaneta americana). δ-CNTX-Pn1a does not cause any apparent toxicity to mice, when intracerebroventricularly injected (30 μg). In this study, we evaluated the antinociceptive effect of δ-CNTX-Pn1a in three animal pain models and investigated its mechanism of action in acute pain. In the inflammatory pain model, induced by carrageenan, δ-CNTX-Pn1a restored the nociceptive threshold of rats, when intraplantarly injected, 2 h and 30 min after carrageenan administration. Concerning the neuropathic pain model, δ-CNTX-Pn1a, when intrathecally administered, reversed the hyperalgesia evoked by sciatic nerve constriction. In the acute pain model, induced by prostaglandin E₂, intrathecal administration of δ-CNTX-Pn1a caused a dose-dependent antinociceptive effect. Using antagonists of the receptors, we showed that the antinociceptive effect of δ-CNTX-Pn1a involves both the cannabinoid system, through CB₁ receptors, and the opioid system, through μ and δ receptors. Our data show, for the first time, that δ-Ctenitoxin-Pn1a is able to induce antinociception in inflammatory, neuropathic and acute pain models. PMID:27077886

  19. δ-Ctenitoxin-Pn1a, a Peptide from Phoneutria nigriventer Spider Venom, Shows Antinociceptive Effect Involving Opioid and Cannabinoid Systems, in Rats

    Science.gov (United States)

    Emerich, Bruna Luiza; Ferreira, Renata C. M.; Cordeiro, Marta N.; Borges, Márcia Helena; Pimenta, Adriano M. C.; Figueiredo, Suely G.; Duarte, Igor Dimitri G.; de Lima, Maria Elena

    2016-01-01

    PnTx4(6-1), henceforth renamed δ-Ctenitoxin-Pn1a (δ-CNTX-Pn1a), a peptide from Phoneutria nigriventer spider venom, initially described as an insect toxin, binds to site 3 of sodium channels in nerve cord synaptosomes and slows down sodium current inactivation in isolated axons in cockroaches (Periplaneta americana). δ-CNTX-Pn1a does not cause any apparent toxicity to mice, when intracerebroventricularly injected (30 μg). In this study, we evaluated the antinociceptive effect of δ-CNTX-Pn1a in three animal pain models and investigated its mechanism of action in acute pain. In the inflammatory pain model, induced by carrageenan, δ-CNTX-Pn1a restored the nociceptive threshold of rats, when intraplantarly injected, 2 h and 30 min after carrageenan administration. Concerning the neuropathic pain model, δ-CNTX-Pn1a, when intrathecally administered, reversed the hyperalgesia evoked by sciatic nerve constriction. In the acute pain model, induced by prostaglandin E2, intrathecal administration of δ-CNTX-Pn1a caused a dose-dependent antinociceptive effect. Using antagonists of the receptors, we showed that the antinociceptive effect of δ-CNTX-Pn1a involves both the cannabinoid system, through CB1 receptors, and the opioid system, through μ and δ receptors. Our data show, for the first time, that δ-Ctenitoxin-Pn1a is able to induce antinociception in inflammatory, neuropathic and acute pain models. PMID:27077886

  20. Constitutive cannabinoid 1 and mu opioid receptor activity in the ventral tegmental area: occurrence, function and therapeutic relevance

    OpenAIRE

    Meye, F J

    2012-01-01

    Cannabinoid 1 receptors (CB1Rs) play a crucial role in regulating systems dedicated to processing rewards and emotions. It was known that in artificial systems, CB1Rs can exhibit activity that is independent of the typical agonist-driven form. However, it remained largely unclear whether this constitutive activity also occurred in native tissue (e.g. the brain), and if so, what role it plays in neurotransmission and behavior. In this thesis we have taken a multi-disciplinary approach to show ...

  1. [Palliative pain therapy, cannabinoids].

    Science.gov (United States)

    Radbruch, L; Elsner, F

    2005-10-01

    Cancer pain treatment should follow the recommendations of the World Health Organisation. Treatment should be with oral application, regular application times and following the analgesic step-ladder. Non-opioids such as dipyrone or non-steroids are used for slight to moderate pain, step-2 opioids such as tramadol or tilidine/naloxone for moderate pain and step-3 opioids such as morphine, oxycodone or hydromorphone for severe pain. Transdermal application of fentanyl or buprenorphine offer a non-invasive parenteral alternative for patients with stable pain syndromes. Cannabinoids such as tetrahydrocannabinol offer a valuable add-on option for cancer patients with refractory pain, spasticity, nausea or appetite loss. PMID:15965665

  2. Therapeutic Potentials and uses of Cannabinoid Agonists in Health and Disease Conditions

    Directory of Open Access Journals (Sweden)

    A.O. Ibegbu

    2012-04-01

    Full Text Available Cannabis and its derivatives have great therapeutic potential and have been used for centuries for medicinal purposes. The side effects of cannabinoids include euphoric mood changes, acute psychotic episodes, initiation and exacerbation of schizophrenic psychosis in predisposed persons, impaired cognitive and psychomotor performance, tachycardia and hypotension. The production of complex behavioural effects by cannabinoids are mediated by cannabinoid receptors (CB1 and CB2 and by interactions with other neurochemical systems. It has been shown that the therapeutic and physiological effects of cannabinoids are dependent upon whether the administration is acute or chronic and on the route of administration. The physiological effects of cannabis and its derivatives include: reduction in psychomotor coordination and performance, alterations in thermoregulation, endocrine and reproductive functions and gut motility. There is also evidence of agonist selectivity for CB1 receptors coupled to different subtypes of Gi proteins or to Gi versus Go proteins. Cannabinoid-activated receptors distinct from CB1 or CB2 exist in the central nervous system. Cannabinoids are known to inhibit GABA-mediated inhibitory postsynaptic currents in the hippocampus via a presynaptic action at CB1 receptors located on GABAergic terminals. CB1 receptors have also been implicated in the inhibition of glutamatergic excitatory postsynaptic currents. The synthetic cannabinoid, Win 55,212-2, a mixed CB1-CB2 cannabinoid receptor agonist, was found to attenuate hyperalgesia in a rat model of neuropathic pain and suppress opioid-induced emesis in ferrets.

  3. The therapeutic potential of cannabinoids for movement disorders.

    Science.gov (United States)

    Kluger, Benzi; Triolo, Piera; Jones, Wallace; Jankovic, Joseph

    2015-03-01

    There is growing interest in the therapeutic potential of marijuana (cannabis) and cannabinoid-based chemicals within the medical community and, particularly, for neurological conditions. This interest is driven both by changes in the legal status of cannabis in many areas and increasing research into the roles of endocannabinoids within the central nervous system and their potential as symptomatic and/or neuroprotective therapies. We review basic science as well as preclinical and clinical studies on the therapeutic potential of cannabinoids specifically as it relates to movement disorders. The pharmacology of cannabis is complex, with over 60 neuroactive chemicals identified to date. The endocannabinoid system modulates neurotransmission involved in motor function, particularly within the basal ganglia. Preclinical research in animal models of several movement disorders have shown variable evidence for symptomatic benefits, but more consistently suggest potential neuroprotective effects in several animal models of Parkinson's (PD) and Huntington's disease (HD). Clinical observations and clinical trials of cannabinoid-based therapies suggests a possible benefit of cannabinoids for tics and probably no benefit for tremor in multiple sclerosis or dyskinesias or motor symptoms in PD. Data are insufficient to draw conclusions regarding HD, dystonia, or ataxia and nonexistent for myoclonus or RLS. Despite the widespread publicity about the medical benefits of cannabinoids, further preclinical and clinical research is needed to better characterize the pharmacological, physiological, and therapeutic effects of this class of drugs in movement disorders. PMID:25649017

  4. Cannabinoids as pharmacotherapies for neuropathic pain: from the bench to the bedside.

    Science.gov (United States)

    Rahn, Elizabeth J; Hohmann, Andrea G

    2009-10-01

    Neuropathic pain is a debilitating form of chronic pain resulting from nerve injury, disease states, or toxic insults. Neuropathic pain is often refractory to conventional pharmacotherapies, necessitating validation of novel analgesics. Cannabinoids, drugs that share the same target as Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the psychoactive ingredient in cannabis, have the potential to address this unmet need. Here, we review studies evaluating cannabinoids for neuropathic pain management in the clinical and preclinical literature. Neuropathic pain associated with nerve injury, diabetes, chemotherapeutic treatment, human immunodeficiency virus, multiple sclerosis, and herpes zoster infection is considered. In animals, cannabinoids attenuate neuropathic nociception produced by traumatic nerve injury, disease, and toxic insults. Effects of mixed cannabinoid CB(1)/CB(2) agonists, CB(2) selective agonists, and modulators of the endocannabinoid system (i.e., inhibitors of transport or degradation) are compared. Effects of genetic disruption of cannabinoid receptors or enzymes controlling endocannabinoid degradation on neuropathic nociception are described. Specific forms of allodynia and hyperalgesia modulated by cannabinoids are also considered. In humans, effects of smoked marijuana, synthetic Delta(9)-THC analogs (e.g., Marinol, Cesamet) and medicinal cannabis preparations containing both Delta(9)-THC and cannabidiol (e.g., Sativex, Cannador) in neuropathic pain states are reviewed. Clinical studies largely affirm that neuropathic pain patients derive benefits from cannabinoid treatment. Subjective (i.e., rating scales) and objective (i.e., stimulus-evoked) measures of pain and quality of life are considered. Finally, limitations of cannabinoid pharmacotherapies are discussed together with directions for future research. PMID:19789075

  5. The Antitumor Activity of Plant-Derived Non-Psychoactive Cannabinoids.

    Science.gov (United States)

    McAllister, Sean D; Soroceanu, Liliana; Desprez, Pierre-Yves

    2015-06-01

    As a therapeutic agent, most people are familiar with the palliative effects of the primary psychoactive constituent of Cannabis sativa (CS), Δ(9)-tetrahydrocannabinol (THC), a molecule active at both the cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor subtypes. Through the activation primarily of CB1 receptors in the central nervous system, THC can reduce nausea, emesis and pain in cancer patients undergoing chemotherapy. During the last decade, however, several studies have now shown that CB1 and CB2 receptor agonists can act as direct antitumor agents in a variety of aggressive cancers. In addition to THC, there are many other cannabinoids found in CS, and a majority produces little to no psychoactivity due to the inability to activate cannabinoid receptors. For example, the second most abundant cannabinoid in CS is the non-psychoactive cannabidiol (CBD). Using animal models, CBD has been shown to inhibit the progression of many types of cancer including glioblastoma (GBM), breast, lung, prostate and colon cancer. This review will center on mechanisms by which CBD, and other plant-derived cannabinoids inefficient at activating cannabinoid receptors, inhibit tumor cell viability, invasion, metastasis, angiogenesis, and the stem-like potential of cancer cells. We will also discuss the ability of non-psychoactive cannabinoids to induce autophagy and apoptotic-mediated cancer cell death, and enhance the activity of first-line agents commonly used in cancer treatment. PMID:25916739

  6. MicroRNA let-7d is a target of cannabinoid CB1 receptor and controls cannabinoid signaling.

    Science.gov (United States)

    Chiarlone, Anna; Börner, Christine; Martín-Gómez, Laura; Jiménez-González, Ada; García-Concejo, Adrián; García-Bermejo, María L; Lorente, Mar; Blázquez, Cristina; García-Taboada, Elena; de Haro, Amador; Martella, Elisa; Höllt, Volker; Rodríguez, Raquel; Galve-Roperh, Ismael; Kraus, Jürgen; Guzmán, Manuel

    2016-09-01

    Cannabinoid CB1 receptor, the molecular target of endocannabinoids and cannabis active components, is one of the most abundant metabotropic receptors in the brain. Cannabis is widely used for both recreational and medicinal purposes. Despite the ever-growing fundamental roles of microRNAs in the brain, the possible molecular connections between the CB1 receptor and microRNAs are surprisingly unknown. Here, by using reporter gene constructs that express interaction sequences for microRNAs in human SH-SY5Y neuroblastoma cells, we show that CB1 receptor activation enhances the expression of several microRNAs, including let-7d. This was confirmed by measuring hsa-let-7d expression levels. Accordingly, knocking-down CB1 receptor in zebrafish reduced dre-let-7d levels, and knocking-out CB1 receptor in mice decreased mmu-let-7d levels in the cortex, striatum and hippocampus. Conversely, knocking-down let-7d increased CB1 receptor mRNA expression in zebrafish, SH-SY5Y cells and primary striatal neurons. Likewise, in primary striatal neurons chronically exposed to a cannabinoid or opioid agonist, a let-7d-inhibiting sequence facilitated not only cannabinoid or opioid signaling but also cannabinoid/opioid cross-signaling. Taken together, these findings provide the first evidence for a bidirectional link between the CB1 receptor and a microRNA, namely let-7d, and thus unveil a new player in the complex process of cannabinoid action. PMID:27179908

  7. Cannabinoids and Reproduction: A Lasting and Intriguing History

    Directory of Open Access Journals (Sweden)

    Gilda Cobellis

    2010-10-01

    Full Text Available Starting from an historical overview of lasting Cannabis use over the centuries, we will focus on a description of the cannabinergic system, with a comprehensive analysis of chemical and pharmacological properties of endogenous and synthetic cannabimimetic analogues. The metabolic pathways and the signal transduction mechanisms, activated by cannabinoid receptors stimulation, will also be discussed. In particular, we will point out the action of cannabinoids and endocannabinoids on the different neuronal networks involved in reproductive axis, and locally, on male and female reproductive tracts, by emphasizing the pivotal role played by this system in the control of fertility.

  8. Plant cannabinoids: a neglected pharmacological treasure trove

    OpenAIRE

    Mechoulam, Raphael

    2005-01-01

    Most of the cannabinoids in Cannabis sativa L. have not been fully evaluated for their pharmacological activity. A publication in this issue presents evidence that a plant cannabinoid, Δ9-tetrahydrocannabivarin is a potent antagonist of anandamide, a major endogenous cannabinoid. It seems possible that many of the non-psychoactive constituents of this plant will be of biological interest.

  9. Effect of synthetic cannabinoid HU210 on memory deficits and neuropathology in Alzheimer's disease mouse model.

    Science.gov (United States)

    Chen, B; Bromley-Brits, K; He, G; Cai, F; Zhang, X; Song, W

    2010-05-01

    Cannabinoids have been shown to increase neurogenesis in adult brain, as well as protect neurons from excitotoxicity, calcium influx, inflammation, and ischemia. Recent studies have shown that synthetic cannabinoids can alleviate water maze impairments in rats treated with intracranial amyloid beta protein (Abeta); however it is unknown whether this effect is due to the cannabinoids' anti-inflammatory properties or whether it affects Abeta processing. Here we investigate whether cannabinoids have any effect on Alzheimer's disease in vivo. We found that HU210, a potent synthetic cannabinoid, did not improve water maze performance or a contextual fear conditioning task in an APP23/PS45 double transgenic mouse model of AD. HU210 had no effect on APP processing and Abeta generation, as well as neuritic plaque formation in the brains of AD transgenic mice. Our study showed that synthetic cannabinoid HU210 had no beneficial effects on AD neuropathology and behavioral deficits of AD model mice, which advises caution of such drug's application in AD therapies. PMID:20043809

  10. Cannabinoid modulation of drug reward and the implications of marijuana legalization.

    Science.gov (United States)

    Covey, Dan P; Wenzel, Jennifer M; Cheer, Joseph F

    2015-12-01

    Marijuana is the most popular illegal drug worldwide. Recent trends indicate that this may soon change; not due to decreased marijuana use, but to an amendment in marijuana's illegal status. The cannabinoid type 1 (CB1) receptor mediates marijuana's psychoactive and reinforcing properties. CB1 receptors are also part of the brain endocannabinoid (eCB) system and support numerous forms of learning and memory, including the conditioned reinforcing properties of cues predicting reward or punishment. This is accomplished via eCB-dependent alterations in mesolimbic dopamine function, which plays an obligatory role in reward learning and motivation. Presynaptic CB1 receptors control midbrain dopamine neuron activity and thereby shape phasic dopamine release in target regions, particularly the nucleus accumbens (NAc). By also regulating synaptic input to the NAc, CB1 receptors modulate NAc output onto downstream neurons of the basal ganglia motor circuit, and thereby support goal-directed behaviors. Abused drugs promote short- and long-term adaptations in eCB-regulation of mesolimbic dopamine function, and thereby hijack neural systems related to the pursuit of rewards to promote drug abuse. By pharmacologically targeting the CB1 receptors, marijuana has preferential access to this neuronal system and can potently alter eCB-dependent processing of reward-related stimuli. As marijuana legalization progresses, greater access to this drug should increase the utility of marijuana as a research tool to better understand the eCB system, which has the potential to advance cannabinoid-based treatments for drug addiction. PMID:25463025

  11. Aspartame and the rat brain monoaminergic system.

    Science.gov (United States)

    Perego, C; De Simoni, M G; Fodritto, F; Raimondi, L; Diomede, L; Salmona, M; Algeri, S; Garattini, S

    1988-12-01

    A high dose of aspartame (APM) was administered to rats to study possible effects on brain monoaminergic systems. APM and its metabolite phenylalanine (Phe) were given orally at doses of 1000 and 500 mg/kg, respectively. Significant increases were seen in brain Phe and tyrosine (Tyr) levels. Two different approaches were used to study monoaminergic systems: whole tissue measurements by HPLC-ED and in vivo voltammetry in freely moving rats. Dopamine, serotonin and their metabolites were taken as indexes of neuronal activity. In spite of the high dose used, no modification was found in monoamines or their metabolites in striatum, hippocampus and nucleus accumbens. PMID:2464204

  12. Antidepressant-like effects of the cannabinoid receptor ligands in the forced swimming test in mice: mechanism of action and possible interactions with cholinergic system.

    Science.gov (United States)

    Kruk-Slomka, Marta; Michalak, Agnieszka; Biala, Grazyna

    2015-05-01

    The purpose of the experiments was to explore the role of the endocannabinoid system, through cannabinoid (CB) receptor ligands, nicotine and scopolamine, in the depression-related responses using the forced swimming test (FST) in mice. Our results revealed that acute injection of oleamide (10 and 20 mg/kg), a CB1 receptor agonist, caused antidepressant-like effect in the FST, while AM 251 (0.25-3 mg/kg), a CB1 receptor antagonist, did not provoke any effect in this test. Moreover, acute administration of both CB2 receptor agonist, JWH 133 (0.5 and 1 mg/kg) and CB2 receptor antagonist, AM 630 (0.5 mg/kg), exhibited antidepressant action. Antidepressant effects of oleamide and JWH 133 were attenuated by acute injection of both non-effective dose of AM 251, as well as AM 630. Among the all CB compounds used, only the combination of non-effective dose of oleamide (2.5 mg/kg) with non-effective dose of nicotine (0.5 mg/kg) caused an antidepressant effect. However, none of the CB receptor ligands, had influence on the antidepressant effects provoked by nicotine (0.2 mg/kg) injection. In turn, the combination of non-effective dose of oleamide (2.5 mg/kg); JWH (2 mg/kg) or AM 630 (2 mg/kg), but not of AM 251 (0.25 mg/kg), with non-effective dose of scopolamine (0.1 mg/kg), exhibited antidepressant properties. Indeed, all of the CB compounds used, intensified the antidepressant-like effects induced by an acute injection of scopolamine (0.3 mg/kg). Our results provide clear evidence that the endocannabinoid system participates in the depression-related behavior and through interactions with cholinergic system modulate these kind of responses. PMID:25660201

  13. A runner's high depends on cannabinoid receptors in mice.

    Science.gov (United States)

    Fuss, Johannes; Steinle, Jörg; Bindila, Laura; Auer, Matthias K; Kirchherr, Hartmut; Lutz, Beat; Gass, Peter

    2015-10-20

    Exercise is rewarding, and long-distance runners have described a runner's high as a sudden pleasant feeling of euphoria, anxiolysis, sedation, and analgesia. A popular belief has been that endogenous endorphins mediate these beneficial effects. However, running exercise increases blood levels of both β-endorphin (an opioid) and anandamide (an endocannabinoid). Using a combination of pharmacologic, molecular genetic, and behavioral studies in mice, we demonstrate that cannabinoid receptors mediate acute anxiolysis and analgesia after running. We show that anxiolysis depends on intact cannabinoid receptor 1 (CB1) receptors on forebrain GABAergic neurons and pain reduction on activation of peripheral CB1 and CB2 receptors. We thus demonstrate that the endocannabinoid system is crucial for two main aspects of a runner's high. Sedation, in contrast, was not influenced by cannabinoid or opioid receptor blockage, and euphoria cannot be studied in mouse models. PMID:26438875

  14. Brain drug delivery systems for neurodegenerative disorders.

    Science.gov (United States)

    Garbayo, E; Ansorena, E; Blanco-Prieto, M J

    2012-09-01

    Neurodegenerative disorders (NDs) are rapidly increasing as population ages. However, successful treatments for NDs have so far been limited and drug delivery to the brain remains one of the major challenges to overcome. There has recently been growing interest in the development of drug delivery systems (DDS) for local or systemic brain administration. DDS are able to improve the pharmacological and therapeutic properties of conventional drugs and reduce their side effects. The present review provides a concise overview of the recent advances made in the field of brain drug delivery for treating neurodegenerative disorders. Examples include polymeric micro and nanoparticles, lipidic nanoparticles, pegylated liposomes, microemulsions and nanogels that have been tested in experimental models of Parkinson's, Alzheimer's and Huntington's disease. Overall, the results reviewed here show that DDS have great potential for NDs treatment. PMID:23016644

  15. The influence of cannabinoids on learning and memory processes of the dorsal striatum.

    Science.gov (United States)

    Goodman, Jarid; Packard, Mark G

    2015-11-01

    Extensive evidence indicates that the mammalian endocannabinoid system plays an integral role in learning and memory. Our understanding of how cannabinoids influence memory comes predominantly from studies examining cognitive and emotional memory systems mediated by the hippocampus and amygdala, respectively. However, recent evidence suggests that cannabinoids also affect habit or stimulus-response (S-R) memory mediated by the dorsal striatum. Studies implementing a variety of maze tasks in rats indicate that systemic or intra-dorsolateral striatum infusions of cannabinoid receptor agonists or antagonists impair habit memory. In mice, cannabinoid 1 (CB1) receptor knockdown can enhance or impair habit formation, whereas Δ(9)THC tolerance enhances habit formation. Studies in human cannabis users also suggest an enhancement of S-R/habit memory. A tentative conclusion based on the available data is that acute disruption of the endocannabinoid system with either agonists or antagonists impairs, whereas chronic cannabinoid exposure enhances, dorsal striatum-dependent S-R/habit memory. CB1 receptors are required for multiple forms of striatal synaptic plasticity implicated in memory, including short-term and long-term depression. Interactions with the hippocampus-dependent memory system may also have a role in some of the observed effects of cannabinoids on habit memory. The impairing effect often observed with acute cannabinoid administration argues for cannabinoid-based treatments for human psychopathologies associated with a dysfunctional habit memory system (e.g. post-traumatic stress disorder and drug addiction/relapse). In addition, the enhancing effect of repeated cannabinoid exposure on habit memory suggests a novel neurobehavioral mechanism for marijuana addiction involving the dorsal striatum-dependent memory system. PMID:26092091

  16. Cannabinoids Occlude the HIV-1 Tat-Induced Decrease in GABAergic Neurotransmission in Prefrontal Cortex Slices.

    Science.gov (United States)

    Xu, Changqing; Hermes, Douglas J; Mackie, Ken; Lichtman, Aron H; Ignatowska-Jankowska, Bogna M; Fitting, Sylvia

    2016-06-01

    In the era of combined antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) is now considered a chronic disease that specifically targets the brain and causes HIV-1-associated neurocognitive disorders (HAND). Endocannabinoids exhibit neuroprotective and anti-inflammatory properties in several central nervous system (CNS) disease models, but their effects in HAND are poorly understood. To address this issue, whole-cell recordings were performed on young (14-24 day old) C57BL/6J mice. We investigated the actions of the synthetic cannabinoid WIN55,212-2 (1 μM) and the endocannabinoid N-arachidonoyl ethanolamine (anandamide; AEA, 1 μM) in the presence of HIV-1 Tat on GABAergic neurotransmission in mouse prefrontal cortex (PFC) slices. We found a Tat concentration-dependent (5-50 nM) decrease in the frequency and amplitude of miniature inhibitory postsynaptic currents (mIPSCs). The cannabinoid 1 receptor (CB1R) antagonist rimonabant (1 μM) and zero extracellular calcium prevented the significant Tat-induced decrease in mIPSCs. Further, bath-applied WIN55,212-2 or AEA by itself, significantly decreased the frequency, but not amplitude of mIPSCs and/or spontaneous IPSCs (sIPSCs), and occluded a further downregulation of IPSCs by Tat. Pretreatment with rimonabant but not the CB2R antagonist AM630 (1 μM) prevented the WIN55,212-2- and AEA-induced decrease in IPSCs frequency without any further Tat effect. Results indicated a Tat-induced decrease in GABAergic neurotransmission, which was occluded by cannabinoids via a CB1R-related mechanism. Understanding the relationship between Tat toxicity and endocannabinoid signaling has the potential to identify novel therapeutic interventions to benefit individuals suffering from HAND and other cognitive impairments. PMID:26993829

  17. Cannabinoids enhance gastric X/A-like cells activity.

    Directory of Open Access Journals (Sweden)

    Bogusław Sawicki

    2008-06-01

    Full Text Available It has been reported that cannabinoids may cause overeating in humans and in laboratory animals. Although, endogenous cannabinoids and their receptors (CB1 have been found in the hypothalamus, and recently also in gastrointestinal tract, the precise mechanism of appetite control by cannabinoids remains unknown. Recently, ghrelin--a hormone secreted mainly from the stomach X/A-like cells was proposed to be an appetite stimulating agent. The aim of this study was the evaluation of the influence of a single ip injection of a stable analogue of endogenous cannabinoid--anandamide, R-(+-methanandamide (2.5 mg/kg and CP 55,940 (0.25 mg/kg, an exogenous agonist of CB1 receptors, on ghrelin plasma concentration and on ghrelin immunoreactivity in the gastric mucosa of male Wistar rats. Four hours after a single injection of both cannabinoids or vehicle, the animals were anaesthetized and blood was taken from the abdominal aorta to determinate plasma ghrelin concentration by RIA. Subsequently, the animals underwent resection of distal part of stomach. Immunohistochemical study of gastric mucosa, using the EnVision method and specific monoclonal antibodies against ghrelin was performed. The intensity of ghrelin immunoreactivity in X/A-like cells was analyzed using Olympus Cell D image analysis system. The attenuation of ghrelin-immunoreactivity of gastric mucosa, after a single injection of R-(+-methanandamide and CP 55,940 was accompanied by a significant increase of ghrelin plasma concentration. These results indicate that stimulation of appetite exerted by cannabinoids may be connected with an increase of ghrelin secretion from gastric X/A-like cells.

  18. Localization and function of the cannabinoid CB1 receptor in the anterolateral bed nucleus of the stria terminalis.

    Directory of Open Access Journals (Sweden)

    Nagore Puente

    Full Text Available BACKGROUND: The bed nucleus of the stria terminalis (BNST is involved in behaviors related to natural reward, drug addiction and stress. In spite of the emerging role of the endogenous cannabinoid (eCB system in these behaviors, little is known about the anatomy and function of this system in the anterolateral BNST (alBNST. The aim of this study was to provide a detailed morphological characterization of the localization of the cannabinoid 1 (CB1 receptor a necessary step toward a better understanding of the physiological roles of the eCB system in this region of the brain. METHODOLOGY/PRINCIPAL FINDINGS: We have combined anatomical approaches at the confocal and electron microscopy level to ex-vivo electrophysiological techniques. Here, we report that CB1 is localized on presynaptic membranes of about 55% of immunopositive synaptic terminals for the vesicular glutamate transporter 1 (vGluT1, which contain abundant spherical, clear synaptic vesicles and make asymmetrical synapses with alBNST neurons. About 64% of vGluT1 immunonegative synaptic terminals show CB1 immunolabeling. Furthermore, 30% and 35% of presynaptic boutons localize CB1 in alBNST of conditional mutant mice lacking CB1 mainly from GABAergic neurons (GABA-CB1-KO mice and mainly from cortical glutamatergic neurons (Glu-CB1-KO mice, respectively. Extracellular field recordings and whole cell patch clamp in the alBNST rat brain slice preparation revealed that activation of CB1 strongly inhibits excitatory and inhibitory synaptic transmission. CONCLUSIONS/SIGNIFICANCE: This study supports the anterolateral BNST as a potential neuronal substrate of the effects of cannabinoids on stress-related behaviors.

  19. What Are Synthetic Cannabinoids?

    Science.gov (United States)

    ... the same brain cell receptors as delta-9-tetrahydrocannabinol (THC), the mind-altering ingredient in marijuana. So far, ... than marijuana to the cell receptors affected by THC, and may produce much stronger effects. The resulting ...

  20. Evaluation of the In Vivo and Ex Vivo Binding of Novel BC1 Cannabinoid Receptor Radiotracers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.; Gatley, J.; Gifford, A.

    2002-01-01

    The primary active ingredient of marijuana, 9-tetrahydrocannabinol, exerts its psychoactive effects by binding to cannabinoid CB1 receptors. These receptors are found throughout the brain with high concentrations in the hippocampus and cerebellum. The current study was conducted to evaluate the binding of a newly developed putative cannabinoid antagonist, AM630, and a classical cannabinoid 8-tetrahydrocannabinol as potential PET and/or SPECT imaging agents for brain CB1 receptors. For both of these ligands in vivo and ex vivo studies in mice were conducted. AM630 showed good overall brain uptake (as measure by %IA/g) and a moderately rapid clearance from the brain with a half-clearance time of approximately 30 minutes. However, AM630 did not show selective binding to CB1 cannabinoid receptors. Ex vivo autoradiography supported the lack of selective binding seen in the in vivo study. Similar to AM630, 8-tetrahydrocanibol also failed to show selective binding to CB1 receptor rich brain areas. The 8-tetrahydrocanibol showed moderate overall brain uptake and relatively slow brain clearance as compared to AM630. Further studies were done with AM2233, a cannabinoid ligand with a similar structure as AM630. These studies were done to develop an ex vivo binding assay to quantify the displacement of [131I]AM2233 binding by other ligands in Swiss-Webster and CB1 receptor knockout mice. By developing this assay we hoped to determine the identity of an unknown binding site for AM2233 present in the hippocampus of CB1 knockout mice. Using an approach based on incubation of brain slices prepared from mice given intravenous [131I]AM2233 in either the presence or absence of AM2233 (unlabelled) it was possible to demonstrate a significant AM2233-displacable binding in the Swiss-Webster mice. Future studies will determine if this assay is appropriate for identifying the unknown binding site for AM2233 in the CB1 knockout mice.

  1. Cancer of the Brain and Other Nervous System

    Science.gov (United States)

    ... Show More Cancer and the Brain Figure: Brain Anatomy Click to enlarge. There are many types of brain and spinal cord tumors. Together, the brain and spinal cord make up the central nervous system (CNS). The tumors may be either benign (not ...

  2. Cannabinoid antagonist in nanostructured lipid carriers (NLCs): design, characterization and in vivo study

    International Nuclear Information System (INIS)

    This study describes the preparation, characterization, and in vivo evaluation in rats of nanostructured lipid carriers (NLCs) encapsulating rimonabant (RMN) as prototypical cannabinoid antagonist. A study was conducted in order to optimize NLC production by melt and ultrasonication method. NLCs were prepared by alternatively adding the lipid phase into the aqueous one (direct protocol) or the aqueous phase into the lipid one (reverse protocol). RMN-NLCs have been characterized by cryogenic transmission electron microscopy (cryo-TEM), X-ray, photon correlation spectroscopy (PCS) and sedimentation field flow fractionation (SdFFF). Reverse NLCs were treated with polysorbate 80. RMN release kinetics have been determined in vitro by dialysis method. In vivo RMN biodistribution in rats was evaluated after intranasal (i.n.) administration of reverse RMN-NLC. The reverse protocol enabled to prevent the lost of lipid phase and to achieve higher RMN encapsulation efficacy (EE) with respect to the direct protocol (98% w/w versus 67% w/w). The use of different protocols did not affect NLC morphology and dimensional distribution. An in vitro dissolutive release rate of RMN was calculated. The in vivo data indicate that i.n. administration of RMN by reverse NLC treated with polysorbate 80 increased RMN concentration in the brain with respect to the drug in solution. The nanoencapsulation protocol presented here appears as an optimal strategy to improve the low solubility of cannabinoid compounds in an aqueous system suitable for in vivo administration. - Highlights: • Rimonabant (RMN) can be encapsulated in nanostructured lipid carriers (NLCs). • Nanoencapsulation improves RMN solubility in a stable physiologic aqueous formulation. • RMN is released in vitro from NLC by a controlled dissolutive release modality. • I.n. administration leads to higher RMN concentration in the brain with respect to plasma. • NLC increases RMN concentration in the brain with respect to

  3. Cannabinoid antagonist in nanostructured lipid carriers (NLCs): design, characterization and in vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, Elisabetta; Ravani, Laura [Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara (Italy); Drechsler, Markus [BIMF/Soft Matter Electron Microscopy, University of Bayreuth (Germany); Mariani, Paolo [Department of Life and Environmental Sciences and CNISM, Università Politecnica delle Marche, I-60100 Ancona (Italy); Contado, Catia [Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara (Italy); Ruokolainen, Janne [Department of Applied Physics, Aalto University, 00076 Aalto (Finland); Ratano, Patrizia; Campolongo, Patrizia [Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Roma (Italy); Trezza, Viviana [Department of Science, Roma Tre University, 00146 Roma (Italy); Nastruzzi, Claudio, E-mail: nas@unife.it [Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara (Italy); Cortesi, Rita [Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara (Italy)

    2015-03-01

    This study describes the preparation, characterization, and in vivo evaluation in rats of nanostructured lipid carriers (NLCs) encapsulating rimonabant (RMN) as prototypical cannabinoid antagonist. A study was conducted in order to optimize NLC production by melt and ultrasonication method. NLCs were prepared by alternatively adding the lipid phase into the aqueous one (direct protocol) or the aqueous phase into the lipid one (reverse protocol). RMN-NLCs have been characterized by cryogenic transmission electron microscopy (cryo-TEM), X-ray, photon correlation spectroscopy (PCS) and sedimentation field flow fractionation (SdFFF). Reverse NLCs were treated with polysorbate 80. RMN release kinetics have been determined in vitro by dialysis method. In vivo RMN biodistribution in rats was evaluated after intranasal (i.n.) administration of reverse RMN-NLC. The reverse protocol enabled to prevent the lost of lipid phase and to achieve higher RMN encapsulation efficacy (EE) with respect to the direct protocol (98% w/w versus 67% w/w). The use of different protocols did not affect NLC morphology and dimensional distribution. An in vitro dissolutive release rate of RMN was calculated. The in vivo data indicate that i.n. administration of RMN by reverse NLC treated with polysorbate 80 increased RMN concentration in the brain with respect to the drug in solution. The nanoencapsulation protocol presented here appears as an optimal strategy to improve the low solubility of cannabinoid compounds in an aqueous system suitable for in vivo administration. - Highlights: • Rimonabant (RMN) can be encapsulated in nanostructured lipid carriers (NLCs). • Nanoencapsulation improves RMN solubility in a stable physiologic aqueous formulation. • RMN is released in vitro from NLC by a controlled dissolutive release modality. • I.n. administration leads to higher RMN concentration in the brain with respect to plasma. • NLC increases RMN concentration in the brain with respect to

  4. CB2 Cannabinoid Receptor As Potential Target against Alzheimer's Disease

    Science.gov (United States)

    Aso, Ester; Ferrer, Isidro

    2016-01-01

    The CB2 receptor is one of the components of the endogenous cannabinoid system, a complex network of signaling molecules and receptors involved in the homeostatic control of several physiological functions. Accumulated evidence suggests a role for CB2 receptors in Alzheimer's disease (AD) and indicates their potential as a therapeutic target against this neurodegenerative disease. Levels of CB2 receptors are significantly increased in post-mortem AD brains, mainly in microglia surrounding senile plaques, and their expression levels correlate with the amounts of Aβ42 and β-amyloid plaque deposition. Moreover, several studies on animal models of AD have demonstrated that specific CB2 receptor agonists, which are devoid of psychoactive effects, reduce AD-like pathology, resulting in attenuation of the inflammation associated with the disease but also modulating Aβ and tau aberrant processing, among other effects. CB2 receptor activation also improves cognitive impairment in animal models of AD. This review discusses available data regarding the role of CB2 receptors in AD and the potential usefulness of specific agonists of these receptors against AD. PMID:27303261

  5. Dual intracellular signaling pathways mediated by the human cannabinoid CB1 receptor.

    Science.gov (United States)

    Calandra, B; Portier, M; Kernéis, A; Delpech, M; Carillon, C; Le Fur, G; Ferrara, P; Shire, D

    1999-06-25

    It has long been established that the cannabinoid CB1 receptor transduces signals through a pertussis toxin-sensitive Gi/Go inhibitory pathway. Although there have been reports that the cannabinoid CB1 receptor can also mediate an increase in cyclic AMP levels, in most cases the presence of an adenylyl cyclase costimulant or the use of very high amounts of agonist was necessary. Here, we present evidence for dual coupling of the cannabinoid CB receptor to the classical pathway and to a pertussis toxin-insensitive adenylyl cyclase stimulatory pathway initiated with low quantities of agonist in the absence of any costimulant. Treatment of Chinese hamster ovary (CHO) cells expressing the cannabinoid CB1 receptor with the cannabinoid CP 55,940, {(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hyd roxypropyl) cyclohexan-1-ol} resulted in cyclic AMP accumulation in a dose-response manner, an accumulation blocked by the cannabinoid CB1 receptor-specific antagonist SR 141716A, {N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1H-pyrazole-3-carboxamide hydrochloride}. In CHO cells coexpressing the cannabinoid CB1 receptor and a cyclic AMP response element (CRE)-luciferase reporter gene system, CP 55,940 induced luciferase expression by a pathway blocked by the protein kinase A inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-89). Under the same conditions the peripheral cannabinoid CB2 receptor proved to be incapable of inducing cAMP accumulation or luciferase activity. This incapacity allowed us to study the luciferase activation mediated by CB /CB2 chimeric constructs, from which we determined that the first and second internal loop regions of the cannabinoid CB1 receptor were involved in transducing the pathway leading to luciferase gene expression. PMID:10422789

  6. An update on PPAR activation by cannabinoids.

    Science.gov (United States)

    O'Sullivan, Saoirse Elizabeth

    2016-06-01

    Some cannabinoids activate the different isoforms of PPARs (α, β and γ), as shown through the use of reporter gene assays, binding studies, selective antagonists and knockout studies. Activation of all isoforms, but primarily PPARα and γ, mediates some (but not all) of the analgesic, neuroprotective, neuronal function modulation, anti-inflammatory, metabolic, anti-tumour, gastrointestinal and cardiovascular effects of some cannabinoids, often in conjunction with activation of the more traditional target sites of action such as the cannabinoid CB1 and CB2 receptors and the TRPV1 ion channel. PPARs also mediate some of the effects of inhibitors of endocannabinoid degradation or transport. Cannabinoids may be chaperoned to the PPARs by fatty acid binding proteins. The aims of this review are to update the evidence supporting PPAR activation by cannabinoids and to review the physiological responses to cannabinoids that are mediated, and not mediated, by PPAR activation. PMID:27077495

  7. Acute Poisonings from Synthetic Cannabinoids - 50 U.S. Toxicology Investigators Consortium Registry Sites, 2010-2015.

    Science.gov (United States)

    Riederer, Anne M; Campleman, Sharan L; Carlson, Robert G; Boyer, Edward W; Manini, Alex F; Wax, Paul M; Brent, Jeffrey A

    2016-01-01

    Recent reports suggest that acute intoxications by synthetic cannabinoids are increasing in the United States (1,2). Synthetic cannabinoids, which were research compounds in the 1980s, are now produced overseas; the first shipment recognized to contain synthetic cannabinoids was seized at a U.S. border in 2008 (3). Fifteen synthetic cannabinoids are Schedule I controlled substances (3), but enforcement is hampered by the continual introduction of new chemical compounds (1,3). Studies of synthetic cannabinoids indicate higher cannabinoid receptor binding affinities, effects two to 100 times more potent than Δ(9)-tetrahydrocannabinol (the principal psychoactive constituent of cannabis), noncannabinoid receptor binding, and genotoxicity (4,5). Acute synthetic cannabinoid exposure reportedly causes a range of mild to severe neuropsychiatric, cardiovascular, renal, and other effects (4,6,7); chronic use might lead to psychosis (6,8). During 2010-2015, physicians in the Toxicology Investigators Consortium (ToxIC) treated 456 patients for synthetic cannabinoid intoxications; 277 of the 456 patients reported synthetic cannabinoids as the sole toxicologic agent. Among these 277 patients, the most common clinical signs of intoxication were neurologic (agitation, central nervous system depression/coma, and delirium/toxic psychosis). Relative to all cases logged by 50 different sites in the ToxIC Case Registry, there was a statistically significant association between reporting year and the annual proportion of synthetic cannabinoid cases. In 2015, reported cases of synthetic cannabinoid intoxication increased at several ToxIC sites, corroborating reported upward trends in the numbers of such cases (1,2) and underscoring the need for prevention. PMID:27413997

  8. Cannabinoids in the management of difficult to treat pain.

    Science.gov (United States)

    Russo, Ethan B

    2008-02-01

    This article reviews recent research on cannabinoid analgesia via the endocannabinoid system and non-receptor mechanisms, as well as randomized clinical trials employing cannabinoids in pain treatment. Tetrahydrocannabinol (THC, Marinol((R))) and nabilone (Cesamet((R))) are currently approved in the United States and other countries, but not for pain indications. Other synthetic cannabinoids, such as ajulemic acid, are in development. Crude herbal cannabis remains illegal in most jurisdictions but is also under investigation. Sativex((R)), a cannabis derived oromucosal spray containing equal proportions of THC (partial CB(1) receptor agonist ) and cannabidiol (CBD, a non-euphoriant, anti-inflammatory analgesic with CB(1) receptor antagonist and endocannabinoid modulating effects) was approved in Canada in 2005 for treatment of central neuropathic pain in multiple sclerosis, and in 2007 for intractable cancer pain. Numerous randomized clinical trials have demonstrated safety and efficacy for Sativex in central and peripheral neuropathic pain, rheumatoid arthritis and cancer pain. An Investigational New Drug application to conduct advanced clinical trials for cancer pain was approved by the US FDA in January 2006. Cannabinoid analgesics have generally been well tolerated in clinical trials with acceptable adverse event profiles. Their adjunctive addition to the pharmacological armamentarium for treatment of pain shows great promise. PMID:18728714

  9. Cannabinoids: new promising agents in the treatment of neurological diseases.

    Science.gov (United States)

    Giacoppo, Sabrina; Mandolino, Giuseppe; Galuppo, Maria; Bramanti, Placido; Mazzon, Emanuela

    2014-01-01

    Nowadays, Cannabis sativa is considered the most extensively used narcotic. Nevertheless, this fame obscures its traditional employ in native medicine of South Africa, South America, Turkey, Egypt and in many regions of Asia as a therapeutic drug. In fact, the use of compounds containing Cannabis and their introduction in clinical practice is still controversial and strongly limited by unavoidable psychotropic effects. So, overcoming these adverse effects represents the main open question on the utilization of cannabinoids as new drugs for treatment of several pathologies. To date, therapeutic use of cannabinoid extracts is prescribed in patients with glaucoma, in the control of chemotherapy-related vomiting and nausea, for appetite stimulation in patients with anorexia-cachexia syndrome by HIV, and for the treatment of multiple sclerosis symptoms. Recently, researcher efforts are aimed to employ the therapeutic potentials of Cannabis sativa in the modulation of cannabinoid receptor activity within the central nervous system, particularly for the treatment of neurodegenerative diseases, as well as psychiatric and non-psychiatric disorders. This review evaluates the most recent available data on cannabinoids utilization in experimental and clinical studies, and highlights their beneficial effects in the prevention of the main neurological diseases and for the clinical treatment of symptoms with them correlated. PMID:25407719

  10. Cannabinoids: New Promising Agents in the Treatment of Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Sabrina Giacoppo

    2014-11-01

    Full Text Available Nowadays, Cannabis sativa is considered the most extensively used narcotic. Nevertheless, this fame obscures its traditional employ in native medicine of South Africa, South America, Turkey, Egypt and in many regions of Asia as a therapeutic drug. In fact, the use of compounds containing Cannabis and their introduction in clinical practice is still controversial and strongly limited by unavoidable psychotropic effects. So, overcoming these adverse effects represents the main open question on the utilization of cannabinoids as new drugs for treatment of several pathologies. To date, therapeutic use of cannabinoid extracts is prescribed in patients with glaucoma, in the control of chemotherapy-related vomiting and nausea, for appetite stimulation in patients with anorexia-cachexia syndrome by HIV, and for the treatment of multiple sclerosis symptoms. Recently, researcher efforts are aimed to employ the therapeutic potentials of Cannabis sativa in the modulation of cannabinoid receptor activity within the central nervous system, particularly for the treatment of neurodegenerative diseases, as well as psychiatric and non-psychiatric disorders. This review evaluates the most recent available data on cannabinoids utilization in experimental and clinical studies, and highlights their beneficial effects in the prevention of the main neurological diseases and for the clinical treatment of symptoms with them correlated.

  11. volBrain: An Online MRI Brain Volumetry System.

    Science.gov (United States)

    Manjón, José V; Coupé, Pierrick

    2016-01-01

    The amount of medical image data produced in clinical and research settings is rapidly growing resulting in vast amount of data to analyze. Automatic and reliable quantitative analysis tools, including segmentation, allow to analyze brain development and to understand specific patterns of many neurological diseases. This field has recently experienced many advances with successful techniques based on non-linear warping and label fusion. In this work we present a novel and fully automatic pipeline for volumetric brain analysis based on multi-atlas label fusion technology that is able to provide accurate volumetric information at different levels of detail in a short time. This method is available through the volBrain online web interface (http://volbrain.upv.es), which is publically and freely accessible to the scientific community. Our new framework has been compared with current state-of-the-art methods showing very competitive results. PMID:27512372

  12. volBrain: An Online MRI Brain Volumetry System

    Science.gov (United States)

    Manjón, José V.; Coupé, Pierrick

    2016-01-01

    The amount of medical image data produced in clinical and research settings is rapidly growing resulting in vast amount of data to analyze. Automatic and reliable quantitative analysis tools, including segmentation, allow to analyze brain development and to understand specific patterns of many neurological diseases. This field has recently experienced many advances with successful techniques based on non-linear warping and label fusion. In this work we present a novel and fully automatic pipeline for volumetric brain analysis based on multi-atlas label fusion technology that is able to provide accurate volumetric information at different levels of detail in a short time. This method is available through the volBrain online web interface (http://volbrain.upv.es), which is publically and freely accessible to the scientific community. Our new framework has been compared with current state-of-the-art methods showing very competitive results.

  13. Brain dopaminergic systems : imaging with positron tomography

    International Nuclear Information System (INIS)

    Imaging of the dopaminergic system in the human brain with the in vivo use of Positron Emission Tomography emerged in the late 1980s as a tool of major importance in clinical neurosciences and pharmacology. The last few years have witnessed rapid development of new radiotracers specific to receptors, reuptake sites and enzymes of the dopamine system; the application of these radiotracers has led to major break-troughs in the pathophysiology and therapy of movement disorders and schizophrenic-like psychoses. This book is the first to collect, in a single volume, state-of-the-art contributions to the various aspects of this research. Its contents address methodological issues related to the design, labelling, quantitative imaging and compartmental modeli-sation of radioligands of the post-synaptic, pre-synaptic and enzyme sites of the dopamine system and to their use in clinical research in the fields of Parkinson's disease as well as other movement disorders, psychoses and neuroleptic receptor occupancy. The chapters were written by leading European scientists in the field of PET, gathered together in Caen (France, November 1990) under the aegis of the EEC Concerted Action on PET Investigations of Cellular Regeneration and Degeneration. This book provides a current and comprehensive overview on PET studies of the brain dopamine system which should aid and interest neurologists , psychiatrists, pharmacologists and medical imaging scientists. (author). refs.; figs.; tabs

  14. 2012 Division of Medicinal Chemistry Award Address: Trekking the Cannabinoid Road: A Personal Perspective

    OpenAIRE

    Makriyannis, Alexandros

    2014-01-01

    My involvement with the field of cannabinoids spans close to three decades, and covers a major part of my scientific career. It also reflects the robust progress in this initially largely unexplored area of biology. During this period of time, I have witnessed the growth of modern cannabinoid biology, starting from the discovery of its two receptors and followed by the characterization of its endogenous ligands and the identification of the enzyme systems involved in their biosynthesis and bi...

  15. A synthetic cannabinoid agonist promotes oligodendrogliogenesis during viral encephalitis in rats

    OpenAIRE

    Solbrig, Marylou V.; Fan, Yijun; Hermanowicz, Neal; Morgese, Maria Grazia; Giuffrida, Andrea

    2010-01-01

    Chronic CNS infection by several families of viruses can produce deficits in prefrontal cortex (PFC) and striatal function. Cannabinoid drugs have been long known for their anti-inflammatory properties and their ability to modulate adult neuro and gliogenesis. Therefore, we explored the effects of systemic administration of the cannabinoid agonist WIN55,212-2(WIN) on prefrontal cortex(PFC) and striatal cytogenesis in a viral model of CNS injury and inflammation based on Borna Disease (BD) vir...

  16. Opposite function of dopamine D1 and NMDA receptors in striatal cannabinoid-mediated signaling

    OpenAIRE

    Daigle, Tanya L.; Wetsel, William C.; Caron, Marc G.

    2011-01-01

    It is well established that the cannabinoid and dopamine systems interact at various levels to regulate basal ganglia function. While it is well known that acute administration of cannabinoids to mice can modify dopamine-dependent behaviors, an understanding of the intraneuronal signaling pathways employed by these agents in the striatum is not well understood. Here we use knockout (KO) mouse models to examine the regulation of striatal ERK1/2 signaling by behaviorally relevant doses of canna...

  17. The periaqueductal gray contributes to bidirectional enhancement of antinociception between morphine and cannabinoids

    OpenAIRE

    Wilson-Poe, Adrianne R.; Pocius, Edvinas; Herschbach, Melissa; Morgan, Michael M

    2012-01-01

    Co-administration of opioids and cannabinoids can enhance pain relief even when administered on different days. Repeated systemic administration of morphine has been shown to enhance the antinociceptive effect of tetrahydrocannbinol (THC) administered 12 hours later, and repeated microinjection of the cannabinoid receptor agonist HU-210 into the ventrolateral periaqueductal gray (PAG) has been shown to enhance the antinociceptive effect of morphine administered one day later. The primary obje...

  18. Promising cannabinoid-based therapies for Parkinson’s disease: motor symptoms to neuroprotection

    OpenAIRE

    More, Sandeep Vasant; Choi, Dong-Kug

    2015-01-01

    Parkinson’s disease (PD) is a slow insidious neurological disorder characterized by a loss of dopaminergic neurons in the midbrain. Although several recent preclinical advances have proposed to treat PD, there is hardly any clinically proved new therapeutic for its cure. Increasing evidence suggests a prominent modulatory function of the cannabinoid signaling system in the basal ganglia. Hence, use of cannabinoids as a new therapeutic target has been recommended as a promising therapy for PD....

  19. Hippocampal Cannabinoid Transmission Modulates Dopamine Neuron Activity: Impact on Rewarding Memory Formation and Social Interaction

    OpenAIRE

    Loureiro, Michael; Renard, Justine; Zunder, Jordan; Laviolette, Steven R

    2015-01-01

    Disturbances in cannabinoid type 1 receptor (CB1R) signaling have been linked to emotional and cognitive deficits characterizing neuropsychiatric disorders, including schizophrenia. Thus, there is growing interest in characterizing the relationship between cannabinoid transmission, emotional processing, and dopamine (DA)-dependent behavioral deficits. The CB1R is highly expressed in the mammalian nervous system, particularly in the hippocampus. Activation of the ventral hippocampal subregion ...

  20. Cannabinoids in health and disease

    OpenAIRE

    Kogan, Natalya M.; Mechoulam, Raphael

    2007-01-01

    Cannabis sativa L. preparations have been used in medicine for millenia. However, concern over the dangers of abuse led to the banning of the medicinal use of marijuana in most countries in the 1930s. Only recently, marijuana and individual natural and synthetic cannabinoid receptor agonists and antagonists, as well as chemically related compounds, whose mechanism of action is still obscure, have come back to being considered of therapeutic value. However, their use is highly restricted. Desp...

  1. The Role of Cannabinoid Receptors in the Descending Modulation of Pain

    Directory of Open Access Journals (Sweden)

    Francesco Rossi

    2010-08-01

    Full Text Available The endogenous antinociceptive descending pathway represents a circuitry of the supraspinal central nervous system whose task is to counteract pain. It includes the periaqueductal grey (PAG-rostral ventromedial medulla (RVM-dorsal horn (DH axis, which is the best characterized pain modulation system through which pain is endogenously inhibited. Thus, an alternative rational strategy for silencing pain is the activation of this anatomical substrate. Evidence of the involvement of cannabinoid receptors (CB in the supraspinal modulation of pain can be found in several studies in which intra-cerebral microinjections of cannabinoid ligands or positive modulators have proved to be analgesic in different pain models, whereas cannabinoid receptor antagonists or antisense nucleotides towards CB1 receptors have facilitated pain. Like opioids, cannabinoids produce centrally-mediated analgesia by activating a descending pathway which includes PAG and its projection to downstream RVM neurons, which in turn send inhibitory projections to the dorsal horn of the spinal cord. Indeed, several studies underline a supraspinal regulation of cannabinoids on g-aminobutyric acid (GABA and glutamate release which inhibit and enhance the antinociceptive descending pathway, respectively. Cannabinoid receptor activation expressed on presynaptic GABAergic terminals reduces the probability of neurotransmitter release thus dis-inhibiting the PAG-RVM-dorsal horn antinociceptive pathway. Cannabinoids seem to increase glutamate release (maybe as consequence of GABA decrease and to require glutamate receptor activation to induce antinociception. The consequent outcome is behavioral analgesia, which is reproduced in several pain conditions, from acute to chronic pain models such as inflammatory and neuropathic pain. Taken together these findings would suggest that supraspinal cannabinoid receptors have broad applications, from pain control to closely related central nervous system

  2. Cannabinoids and Tremor Induced by Motor-related Disorders: Friend or Foe?

    Science.gov (United States)

    Arjmand, Shokouh; Vaziri, Zohreh; Behzadi, Mina; Abbassian, Hassan; Stephens, Gary J; Shabani, Mohammad

    2015-10-01

    Tremor arises from an involuntary, rhythmic muscle contraction/relaxation cycle and is a common disabling symptom of many motor-related diseases such as Parkinson disease, multiple sclerosis, Huntington disease, and forms of ataxia. In the wake of anecdotal, largely uncontrolled, observations claiming the amelioration of some symptoms among cannabis smokers, and the high density of cannabinoid receptors in the areas responsible for motor function, including basal ganglia and cerebellum, many researchers have pursued the question of whether cannabinoid-based compounds could be used therapeutically to alleviate tremor associated with central nervous system diseases. In this review, we focus on possible effects of cannabinoid-based medicines, in particular on Parkinsonian and multiple sclerosis-related tremors and the common probable molecular mechanisms. While, at present, inconclusive results have been obtained, future investigations should extend preclinical studies with different cannabinoids to controlled clinical trials to determine potential benefits in tremor. PMID:26152606

  3. Gastric acid inhibitory and gastric protective effects of Cannabis and cannabinoids.

    Science.gov (United States)

    Abdel-Salam, Omar

    2016-05-01

    Cannabis sativa has long been known for its psychotropic effect. Only recently with the discovery of the cannabinoid receptors, their endogenous legends and the enzymes responsible for their synthesis and degradation, the role of this 'endocannabinoid system' in different pathophysiologic processes is beginning to be delineated. There is evidence that CB1 receptor stimulation with synthetic cannabinoids or Cannabis sativa extracts rich in Δ(9)-tetrahydrocannabinol inhibit gastric acid secretion in humans and experimental animals. This is specially seen when gastric acid secretion is stimulated by pentagastrin, carbachol or 2-deoxy-d-glucose. Cannabis and/or cannabinoids protect the gastric mucosa against noxious challenge with non-steroidal anti-inflammatory drugs, ethanol as well as against stress-induced mucosal damage. Cannabis/cannabinoids might protect the gastric mucosa by virtue of its antisecretory, antioxidant, anti-inflammatory, and vasodilator properties. PMID:27261847

  4. Striatal but not frontal cortical up-regulation of the epidermal growth factor receptor in rats exposed to immune activation in utero and cannabinoid treatment in adolescence.

    Science.gov (United States)

    Idrizi, Rejhan; Malcolm, Peter; Weickert, Cynthia Shannon; Zavitsanou, Katerina; Suresh Sundram

    2016-06-30

    In utero maternal immune activation (MIA) and cannabinoid exposure during adolescence constitute environmental risk factors for schizophrenia. We investigated these risk factors alone and in combination ("two-hit") on epidermal growth factor receptor (EGFR) and neuregulin-1 receptor (ErbB4) levels in the rat brain. EGFR but not ErbB4 receptor protein levels were significantly increased in the nucleus accumbens and striatum of "two-hit" rats only, with no changes seen at the mRNA level. These findings support region specific EGF-system dysregulation as a plausible mechanism in this animal model of schizophrenia pathogenesis. PMID:27138815

  5. Euphol, a tetracyclic triterpene produces antinociceptive effects in inflammatory and neuropathic pain: the involvement of cannabinoid system.

    Science.gov (United States)

    Dutra, Rafael Cypriano; Simão da Silva, Kathryn Ana Bortolini; Bento, Allisson Freire; Marcon, Rodrigo; Paszcuk, Ana Flávia; Meotti, Flávia Carla; Pianowski, Luiz Francisco; Calixto, João B

    2012-09-01

    Persistent pains associated with inflammatory and neuropathic states are prevalent and debilitating diseases, which still remain without a safe and adequate treatment. Euphol, an alcohol tetracyclic triterpene, has a wide range of pharmacological properties and is considered to have anti-inflammatory action. Here, we assessed the effects and the underlying mechanisms of action of euphol in preventing inflammatory and neuropathic pain. Oral treatment with euphol (30 and 100 mg/kg) reduced carrageenan-induced mechanical hyperalgesia. Likewise, euphol given through the spinal and intracerebroventricular routes prevented mechanical hyperalgesia induced by carrageenan. Euphol consistently blocked the mechanical hyperalgesia induced by complete Freund's adjuvant, keratinocyte-derived chemokine, interleukin-1β, interleukin-6 and tumor necrosis factor-alpha associated with the suppression of myeloperoxidase activity in the mouse paw. Oral treatment with euphol was also effective in preventing the mechanical nociceptive response induced by ligation of the sciatic nerve and also significantly reduced the levels and mRNA of cytokines/chemokines in both paw and spinal cord tissues following i.pl. injection of complete Freund's adjuvant. In addition, the pre-treatment with either CB₁R or CB₂R antagonists, as well as the knockdown gene of the CB₁R and CB₂R, significantly reversed the antinociceptive effect of euphol. Interestingly, even in higher doses, euphol did not cause any relevant action in the central nervous system. Considering that few drugs are currently available for the treatment of chronic pain states, the present results provided evidence that euphol constitutes a promising molecule for the management of inflammatory and neuropathic pain states. PMID:22613837

  6. Evaluation of intraoperative brain shift using an ultrasound-linked navigation system for brain tumor surgery

    International Nuclear Information System (INIS)

    Image-guided neurosurgery using navigation systems is an essential tool to increase accuracy in brain tumor surgery. However, brain shift during surgery has remained problematic. The present study evaluated the utility of a new ultrasound (US)-linked navigation system for brain tumor surgery in 64 patients with intracranial tumors. The navigation system consisted of a StealthStationTM navigation system, a SonoNavTM system, and a standard US scanner. This system determines the orientation of the US images and reformats the images from preoperative computed tomography (CT) or magnetic resonance (MR) imaging to match the US images. The system was used intraoperatively to measure brain shift several times, using the results to guide tumor resection. US-linked navigation provided information regarding brain shift, and extent of tumor resection during surgery. Evaluation of brain shift was easily achieved in all patients, without using intraoperative CT or MR imaging. Accurate information regarding the true anatomical configuration of the patient could be obtained in all phases of the operation. Magnitude of brain shift increased progressively from pre- to post-resection and depended on the type of cranial structure. Integration of the US scanner with the navigation system allowed comparisons between the intraoperative US and preoperative images, thus improving interpretation of US images. The system also improved the rate of tumor resection by facilitating the detection of remnant tumor tissue. This US-linked navigation system provides information on brain shift, and improves the accuracy and utility of image-guided surgery. (author)

  7. Role of Cannabinoids in the Regulation of Bone Remodelling

    Directory of Open Access Journals (Sweden)

    Aymen I Idris

    2012-11-01

    Full Text Available The endocannabinoid system plays a key role in regulating a variety of physiological processes such as appetite control and energy balance, pain perception, and immune responses. Recent studies have implicated the endocannabinoid system in the regulation of bone cell activity and bone remodelling. These studies showed that endogenous cannabinoid ligands, cannabinoid receptors and the enzymes responsible for ligand synthesis and breakdown all play important roles in bone mass and in the regulation of bone disease. These findings suggest that the endocannabinoid pathway could be of value as a therapeutic target for the prevention and treatment of bone diseases. Here, we review the role of the skeletal endocannabinoid system in the regulation of bone remodelling in health and disease.

  8. Promising cannabinoid-based therapies for Parkinson's disease: motor symptoms to neuroprotection.

    Science.gov (United States)

    More, Sandeep Vasant; Choi, Dong-Kug

    2015-01-01

    Parkinson's disease (PD) is a slow insidious neurological disorder characterized by a loss of dopaminergic neurons in the midbrain. Although several recent preclinical advances have proposed to treat PD, there is hardly any clinically proved new therapeutic for its cure. Increasing evidence suggests a prominent modulatory function of the cannabinoid signaling system in the basal ganglia. Hence, use of cannabinoids as a new therapeutic target has been recommended as a promising therapy for PD. The elements of the endocannabinoid system are highly expressed in the neural circuit of basal ganglia wherein they bidirectionally interact with dopaminergic, glutamatergic, and GABAergic signaling systems. As the cannabinoid signaling system undergoes a biphasic pattern of change during progression of PD, it explains the motor inhibition typically observed in patients with PD. Cannabinoid agonists such as WIN-55,212-2 have been demonstrated experimentally as neuroprotective agents in PD, with respect to their ability to suppress excitotoxicity, glial activation, and oxidative injury that causes degeneration of dopaminergic neurons. Additional benefits provided by cannabinoid related compounds including CE-178253, oleoylethanolamide, nabilone and HU-210 have been reported to possess efficacy against bradykinesia and levodopa-induced dyskinesia in PD. Despite promising preclinical studies for PD, use of cannabinoids has not been studied extensively at the clinical level. In this review, we reassess the existing evidence suggesting involvement of the endocannabinoid system in the cause, symptomatology, and treatment of PD. We will try to identify future threads of research that will help in the understanding of the potential therapeutic benefits of the cannabinoid system for treating PD. PMID:25888232

  9. Direct Quantification of Cannabinoids and Cannabinoid Glucuronides in Whole Blood by Liquid Chromatography Tandem Mass Spectrometry

    OpenAIRE

    Schwope, David M.; Scheidweiler, Karl B.; Huestis, Marilyn A.

    2011-01-01

    The first method for quantifying cannabinoids and cannabinoid glucuronides in whole blood by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated. Solid-phase extraction followed protein precipitation with acetonitrile. HPLC separation was achieved in 16 min via gradient elution. Electrospray ionization was utilized for cannabinoid detection; both positive (Δ9-tetrahydrocannabinol [THC], cannabinol [CBN]) and negative (11-hydroxy-THC [11-OH-THC], 11-nor-9-carb...

  10. "Diff-ability" Not "Disability": Right-Brained Thinkers in a Left-Brained Education System

    Science.gov (United States)

    Edmonds, Casey

    2012-01-01

    This article draws on critical disability studies, challenging the exclusion of right-brained thinkers from an education system designed to privilege left-brained thinkers. It focuses on individuals who are labelled dyspraxic, providing data from qualitative interviews with adults about childhood experiences in school and the impact on their…

  11. Brain regional differences in CB1 receptor adaptation and regulation of transcription

    OpenAIRE

    Lazenka, M.F.; Selley, D.E.; Sim-Selley, L.J.

    2012-01-01

    Cannabinoid CB1 receptors (CB1Rs) are expressed throughout the brain and mediate the central effects of cannabinoids, including Δ9-tetrahydrocannabinol (THC), the main psychoactive constituent of marijuana. Repeated THC administration produces tolerance to cannabinoid-mediated effects, although the magnitude of tolerance varies by effect. Consistent with this observation, CB1R desensitization and downregulation, as well induction of immediate early genes (IEGs), varies by brain region. Zif268...

  12. Synthesis and Biological Evaluation of Thiophene-Based Cannabinoid Receptor Type 2 Radiotracers for PET Imaging

    Science.gov (United States)

    Haider, Ahmed; Müller Herde, Adrienne; Slavik, Roger; Weber, Markus; Mugnaini, Claudia; Ligresti, Alessia; Schibli, Roger; Mu, Linjing; Mensah Ametamey, Simon

    2016-01-01

    Over the past two decades, our understanding of the endocannabinoid system has greatly improved due to the wealth of results obtained from exploratory studies. Currently, two cannabinoid receptor subtypes have been well-characterized. The cannabinoid receptor type 1 (CB1) is widely expressed in the central nervous system, while the levels of the cannabinoid receptor type 2 (CB2) in the brain and spinal cord of healthy individuals are relatively low. However, recent studies demonstrated a CB2 upregulation on activated microglia upon neuroinflammation, an indicator of neurodegeneration. Our research group aims to develop a suitable positron emission tomography (PET) tracer to visualize the CB2 receptor in patients suffering from neurodegenerative diseases. Herein we report two novel thiophene-based 11C-labeled PET ligands designated [11C]AAT-015 and [11C]AAT-778. The reference compounds were synthesized using Gewald reaction conditions to obtain the aminothiophene intermediates, followed by amide formation. Saponification of the esters provided their corresponding precursors. Binding affinity studies revealed Ki-values of 3.3 ± 0.5 nM (CB2) and 1.0 ± 0.2 μM (CB1) for AAT-015. AAT-778 showed similar Ki-values of 4.3 ± 0.7 nM (CB2) and 1.1 ± 0.1 μM (CB1). Radiosynthesis was carried out under basic conditions using [11C]iodomethane as methylating agent. After semi-preparative HPLC purification both radiolabeled compounds were obtained in 99% radiochemical purity and the radiochemical yields ranged from 12 to 37%. Specific activity was between 96 and 449 GBq/μmol for both tracers. In order to demonstrate CB2 specificity of [11C]AAT-015 and [11C]AAT-778, we carried out autoradiography studies using CB2-positive mouse/rat spleen tissues. The obtained results revealed unspecific binding in spleen tissue that was not blocked by an excess of CB2-specific ligand GW402833. For in vivo analysis, [11C]AAT-015 was administered to healthy rats via tail-vein injection

  13. G-protein coupling of cannabinoid receptors

    International Nuclear Information System (INIS)

    Full text: Since the cloning of the cannabinoid CB1 and CB2 receptors in the early 1990's extensive research has focused on understanding their signal transduction pathways. While it has been known for sometime that both receptors can couple to intracellular signalling via pertussis toxin sensitive G-proteins (Gi/Go), the specificity and kinetics of these interactions have only recently been elucidated. We have developed an in situ reconstitution approach to investigating receptor-G-protein interactions. This approach involves chaotropic extraction of receptor containing membranes in order to inactivate or remove endogenous G-proteins. Recombinant or isolated brain G-proteins can then be added back to the receptors, and their activation monitored through the binding of [35S]-GTPγS. This technique has been utilised for an extensive study of cannabinoid receptor mediated activation of G-proteins. In these studies we have established that CB1 couples with high affinity to both Gi and Go type G-proteins. In contrast, CB2 couples strongly to Gi, but has a very low affinity for Go. This finding correlated well with the previous findings that while CB1 and CB2 both couple to the inhibition of adenylate cyclase, CB1 but not CB2 could also inhibit calcium channels. We then examined the ability of a range of cannabinoid agonists to activate the Gi and Go via CB1. Conventional receptor theory suggests that a receptor is either active or inactive with regard to a G-protein and that the active receptor activates all relevant G-proteins equally. However, in this study we found that agonists could produce different degrees of activation, depending on which G-protein was present. Further studies have compared the ability of the two endocannabinoids to drive the activation of Gi or Go. These studies show that agonists can induce multiple forms of activated receptor that differ in their ability to catalyse the activation of Gi or Go. The ability of an agonist to drive a receptor

  14. Two action systems in the human brain.

    Science.gov (United States)

    Binkofski, Ferdinand; Buxbaum, Laurel J

    2013-11-01

    The distinction between dorsal and ventral visual processing streams, first proposed by Ungerleider and Mishkin (1982) and later refined by Milner and Goodale (1995) has been elaborated substantially in recent years, spurred by two developments. The first was proposed in large part by Rizzolatti and Matelli (2003) and is a more detailed description of the multiple neural circuits connecting the frontal, temporal, and parietal cortices. Secondly, there are a number of behavioral observations that the classic "two visual systems" hypothesis is unable to accommodate without additional assumptions. The notion that the Dorsal stream is specialized for "where" or "how" actions and the Ventral stream for "What" knowledge cannot account for two prominent disorders of action, limb apraxia and optic ataxia, that represent a double dissociation in terms of the types of actions that are preserved and impaired. A growing body of evidence, instead, suggests that there are at least two distinct Dorsal routes in the human brain, referred to as the "Grasp" and "Use" systems. Both of these may be differentiated from the Ventral route in terms of neuroanatomic localization, representational specificity, and time course of information processing. PMID:22889467

  15. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development.

    Science.gov (United States)

    Sharma, Charu; Sadek, Bassem; Goyal, Sameer N; Sinha, Satyesh; Kamal, Mohammad Amjad; Ojha, Shreesh

    2015-01-01

    The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2) which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ(9)-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics. PMID:26664449

  16. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development

    Directory of Open Access Journals (Sweden)

    Charu Sharma

    2015-01-01

    Full Text Available The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2 which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ9-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics.

  17. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development

    Science.gov (United States)

    Sharma, Charu; Sadek, Bassem; Goyal, Sameer N.; Sinha, Satyesh; Ojha, Shreesh

    2015-01-01

    The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2) which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ9-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics. PMID:26664449

  18. An animal model of female adolescent cannabinoid exposure elicits a long-lasting deficit in presynaptic long-term plasticity.

    Science.gov (United States)

    Lovelace, Jonathan W; Corches, Alex; Vieira, Philip A; Hiroto, Alex S; Mackie, Ken; Korzus, Edward

    2015-12-01

    Cannabis continues to be the most accessible and popular illicit recreational drug. Whereas current data link adolescence cannabinoid exposure to increased risk for dependence on other drugs, depression, anxiety disorders and psychosis, the mechanism(s) underlying these adverse effects remains controversial. Here we show in a mouse model of female adolescent cannabinoid exposure deficient endocannabinoid (eCB)-mediated signaling and presynaptic forms of long-term depression at adult central glutamatergic synapses in the prefrontal cortex. Increasing endocannabinoid levels by blockade of monoacylglycerol lipase, the primary enzyme responsible for degrading the endocannabinoid 2-arachidonoylglycerol (2-AG), with the specific inhibitor JZL 184 ameliorates eCB-LTD deficits. The observed deficit in cortical presynaptic signaling may represent a neural maladaptation underlying network instability and abnormal cognitive functioning. Our study suggests that adolescent cannabinoid exposure may permanently impair brain functions, including the brain's intrinsic ability to appropriately adapt to external influences. PMID:25979486

  19. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  20. [Cannabinoids for symptomatic therapy of multiple sclerosis].

    Science.gov (United States)

    Husseini, L; Leussink, V I; Warnke, C; Hartung, H-P; Kieseier, B C

    2012-06-01

    Spasticity represents a common troublesome symptom in patients with multiple sclerosis (MS). Treatment of spasticity remains difficult, which has prompted some patients to self-medicate with and perceive benefits from cannabis. Advances in the understanding of cannabinoid biology support these anecdotal observations. Various clinical reports as well as randomized, double-blind, placebo-controlled studies have now demonstrated clinical efficacy of cannabinoids for the treatment of spasticity in MS patients. Sativex is a 1:1 mix of delta-9-tetrahydocannabinol and cannabidiol extracted from cloned Cannabis sativa chemovars, which recently received a label for treating MS-related spasticity in Germany. The present article reviews the current understanding of cannabinoid biology and the value of cannabinoids as a symptomatic treatment option in MS. PMID:22080198

  1. Peripheral cannabinoid receptor, CB2, regulates bone mass

    Science.gov (United States)

    Ofek, Orr; Karsak, Meliha; Leclerc, Nathalie; Fogel, Meirav; Frenkel, Baruch; Wright, Karen; Tam, Joseph; Attar-Namdar, Malka; Kram, Vardit; Shohami, Esther; Mechoulam, Raphael; Zimmer, Andreas; Bab, Itai

    2006-01-01

    The endogenous cannabinoids bind to and activate two G protein-coupled receptors, the predominantly central cannabinoid receptor type 1 (CB1) and peripheral cannabinoid receptor type 2 (CB2). Whereas CB1 mediates the cannabinoid psychotropic, analgesic, and orectic effects, CB2 has been implicated recently in the regulation of liver fibrosis and atherosclerosis. Here we show that CB2-deficient mice have a markedly accelerated age-related trabecular bone loss and cortical expansion, although cortical thickness remains unaltered. These changes are reminiscent of human osteoporosis and may result from differential regulation of trabecular and cortical bone remodeling. The CB2–/– phenotype is also characterized by increased activity of trabecular osteoblasts (bone-forming cells), increased osteoclast (the bone-resorbing cell) number, and a markedly decreased number of diaphyseal osteoblast precursors. CB2 is expressed in osteoblasts, osteocytes, and osteoclasts. A CB2-specific agonist that does not have any psychotropic effects enhances endocortical osteoblast number and activity and restrains trabecular osteoclastogenesis, apparently by inhibiting proliferation of osteoclast precursors and receptor activator of NF-κB ligand expression in bone marrow-derived osteoblasts/stromal cells. The same agonist attenuates ovariectomy-induced bone loss and markedly stimulates cortical thickness through the respective suppression of osteoclast number and stimulation of endocortical bone formation. These results demonstrate that the endocannabinoid system is essential for the maintenance of normal bone mass by osteoblastic and osteoclastic CB2 signaling. Hence, CB2 offers a molecular target for the diagnosis and treatment of osteoporosis, the most prevalent degenerative disease in developed countries. PMID:16407142

  2. Breast cancer brain metastases: new directions in systemic therapy

    OpenAIRE

    Lin, Nancy U

    2013-01-01

    The management of patients with brain metastases from breast cancer continues to be a major clinical challenge. The standard initial therapeutic approach depends upon the size, location, and number of metastatic lesions and includes consideration of surgical resection, whole-brain radiotherapy, and stereotactic radiosurgery. As systemic therapies for control of extracranial disease improve, patients are surviving long enough to experience subsequent progression events in the brain. Therefore,...

  3. Intracerebroventricular injections of dronabinol, a cannabinoid receptor agonist, does not attenuate serotonin-induced apnea in Sprague-Dawley rats

    OpenAIRE

    Calik, Michael W.; Carley, David W

    2016-01-01

    Background Evidence suggests that vagal nerve activity may play a role in sleep apnea induction. In anesthetized rats, dronabinol, a cannabinoid (CB) receptor agonist, injected into the nodose ganglia attenuates reflex apnea and increases genioglossus activity, and reflex apnea attenuation is blocked by systemic pre-treatment with cannabinoid type 1 and/or type 2 receptor antagonists. However, it is unclear whether dronabinol has similar effects in the central nervous system; CB receptors are...

  4. Distribution of CB1 Cannabinoid Receptors and Their Relationship with Mu-Opioid Receptors in the Rat Periaqueductal Gray

    OpenAIRE

    Wilson-Poe, A R; Morgan, M.M.; Aicher, S.A.; Hegarty, D.M.

    2012-01-01

    The periaqueductal gray (PAG) is part of a descending pain modulatory system that, when activated, produces widespread and profound antinociception. Microinjection of either opioids or cannabinoids into the PAG elicits antinociception. Moreover, microinjection of the cannabinoid 1 (CB1) receptor agonist HU-210 into the PAG enhances the antinociceptive effect of subsequent morphine injections, indicating a direct relationship between these two systems. The objective of this study was to charac...

  5. Finding cannabinoids in hair does not prove cannabis consumption.

    Science.gov (United States)

    Moosmann, Bjoern; Roth, Nadine; Auwärter, Volker

    2015-01-01

    Hair analysis for cannabinoids is extensively applied in workplace drug testing and in child protection cases, although valid data on incorporation of the main analytical targets, ∆9-tetrahydrocannabinol (THC) and 11-nor-9-carboxy-THC (THC-COOH), into human hair is widely missing. Furthermore, ∆9-tetrahydrocannabinolic acid A (THCA-A), the biogenetic precursor of THC, is found in the hair of persons who solely handled cannabis material. In the light of the serious consequences of positive test results the mechanisms of drug incorporation into hair urgently need scientific evaluation. Here we show that neither THC nor THCA-A are incorporated into human hair in relevant amounts after systemic uptake. THC-COOH, which is considered an incontestable proof of THC uptake according to the current scientific doctrine, was found in hair, but was also present in older hair segments, which already grew before the oral THC intake and in sebum/sweat samples. Our studies show that all three cannabinoids can be present in hair of non-consuming individuals because of transfer through cannabis consumers, via their hands, their sebum/sweat, or cannabis smoke. This is of concern for e.g. child-custody cases as cannabinoid findings in a child's hair may be caused by close contact to cannabis consumers rather than by inhalation of side-stream smoke. PMID:26443501

  6. Brain MR imaging in systemic lupus erythematous

    International Nuclear Information System (INIS)

    To present MR imaging findings of intracranial lesions in systemic lupus erythematosus(SLE), a retrospective study was performed on MR images of 33 SLE patients with neurologic symptoms and signs. MR imaging was performed on either a 0.5 T (21 patients) or 2.0 T unit (12 patients), using T1-weighted, proton-density-weighted, and T2-weighted spin echo sequences in all patients. In seven patients, post-contrast T1-weighted images were also obtained after administration of gadopentetate dimeglumine. The main MR findings consisted of focal lesions suggesting ischemia/infarct (15 patients), diffuse brain atrophy (8), and findings associated with infection (4). The MR findings were normal in 11 patients (33%). The focal lesions suggesting ischemia/infarcts presumably secondary to vasculitis were distributed in the cortex or subcortical white matter (7 patients), deep periventricular white matter (3), or in both areas (5). Most of the focal lesions were multiple and small in size. The findings associated with infection were variable and included communicating hydrocephalus, meningeal enhancement, granuloma, etc. MR findings of SLE were non-specific and therefore clinical correlation is needed when evaluating SLE in MR

  7. Cannabinoids and Glucocorticoids in the Basolateral Amygdala Modulate Hippocampal-Accumbens Plasticity After Stress.

    Science.gov (United States)

    Segev, Amir; Akirav, Irit

    2016-03-01

    Acute stress results in release of glucocorticoids, which are potent modulators of learning and plasticity. This process is presumably mediated by the basolateral amygdala (BLA) where cannabinoids CB1 receptors have a key role in regulating the hypothalamic-pituitary-adrenal (HPA) axis. Growing attention has been focused on nucleus accumbens (NAc) plasticity, which regulates mood and motivation. The NAc integrates affective and context-dependent input from the BLA and ventral subiculum (vSub), respectively. As our previous data suggest that the CB1/2 receptor agonist WIN55,212-2 (WIN) and glucocorticoid receptor (GR) antagonist RU-38486 (RU) can prevent the effects of stress on emotional memory, we examined whether intra-BLA WIN and RU can reverse the effects of acute stress on NAc plasticity. Bilateral, ipsilateral, and contralateral BLA administration of RU or WIN reversed the stress-induced impairment in vSub-NAc long-term potentiation (LTP) and the decrease in cAMP response element-binding protein (CREB) activity in the NAc. BLA CB1 receptors were found to mediate the preventing effects of WIN on plasticity, but not the preventing effects of RU, after stress. Inactivating the ipsilateral BLA, but not the contralateral BLA, impaired LTP. The possible mechanisms underlying the effects of BLA on NAc plasticity are discussed; the data suggest that BLA-induced changes in the NAc may be mediated through neural pathways in the brain's stress circuit rather than peripheral pathways. The results suggest that glucocorticoid and cannabinoid systems in the BLA can restore normal function of the NAc and hence may have a central role in the treatment of a variety of stress-related disorders. PMID:26289146

  8. Brain barrier systems: a new frontier in metal neurotoxicological research

    International Nuclear Information System (INIS)

    The concept of brain barriers or a brain barrier system embraces the blood-brain interface, referred to as the blood-brain barrier, and the blood-cerebrospinal fluid (CSF) interface, referred to as the blood-CSF barrier. These brain barriers protect the CNS against chemical insults, by different complementary mechanisms. Toxic metal molecules can either bypass these mechanisms or be sequestered in and therefore potentially deleterious to brain barriers. Supportive evidence suggests that damage to blood-brain interfaces can lead to chemical-induced neurotoxicities. This review article examines the unique structure, specialization, and function of the brain barrier system, with particular emphasis on its toxicological implications. Typical examples of metal transport and toxicity at the barriers, such as lead (Pb), mercury (Hg), iron (Fe), and manganese (Mn), are discussed in detail with a special focus on the relevance to their toxic neurological consequences. Based on these discussions, the emerging research needs, such as construction of the new concept of blood-brain regional barriers, understanding of chemical effect on aged or immature barriers, and elucidation of the susceptibility of tight junctions to toxicants, are identified and addressed in this newly evolving field of neurotoxicology. They represent both clear challenges and fruitful research domains not only in neurotoxicology, but also in neurophysiology and pharmacology

  9. Genetic variations in the human cannabinoid receptor gene are associated with happiness.

    Directory of Open Access Journals (Sweden)

    Masahiro Matsunaga

    Full Text Available Happiness has been viewed as a temporary emotional state (e.g., pleasure and a relatively stable state of being happy (subjective happiness level. As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater

  10. Epigenetic Regulation of Immunological Alterations Following Prenatal Exposure to Marijuana Cannabinoids and its Long Term Consequences in Offspring

    OpenAIRE

    Zumbrun, Elizabeth E.; Sido, Jessica M.; Nagarkatti, Prakash S.; Nagarkatti, Mitzi

    2015-01-01

    Use of marijuana during pregnancy is fairly commonplace and can be expected increase in frequency as more states legalize its recreational use. The cannabinoids present in marijuana have been shown to be immunosuppressive, yet the effect of prenatal exposure to cannabinoids on the immune system of the developing fetus, its long term consequences during adult stage of life, and transgenerational effects have not been well characterized. Confounding factors such as coexisting drug use make the ...

  11. Pharmacological blockade of either, cannabinoid CB1 or CB2 receptors, prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rats.

    Directory of Open Access Journals (Sweden)

    EDUARDO eBLANCO-CALVO

    2014-01-01

    Full Text Available Addiction to major drugs of abuse such as cocaine has been recently linked to alterations on adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulated this proliferative response since pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors by modulating not only neurogenesis but also cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation . To this end we examined if pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg or CB2 receptors (AM630, 3 mg/kg affects cell proliferation (labeled with BrdU, found in the subventricular zone (SVZ of the lateral ventricles and the dentate subgranular zone (SGZ. In addition, we measured cell apoptosis (monitored by the expression of cleaved caspase-3 and glial activation ( by analizing the expression of GFAP and Iba-1 in the striatum and hippocampus, during acute or repeated (4 days cocaine administration (20 mg/kg. Results showed that acute cocaine decreased the number of BrdU+ cells in SVZ and SGZ. In contrast, repeated cocaine reduced the number of BrdU+ cells in SVZ only. Both acute and repeated cocaine increased the number of cleaved caspase-3+, GFAP+ and Iba1+ cells in the hippocampus, an effect counteracted by AM630 or Rimonabant that increased the number of BrdU+, GFAP+ and Iba1+ cells in the hippocampus. These results indicate that changes on neurogenic, apoptotic and gliosis processes, which were produced as a consequence of repeated cocaine administration, were normalized by the pharmacological blockade of CB1 and CB2. The restoring effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with a prevention of the induction of conditioned locomotion, but not of cocaine-induced sensitization.

  12. Oleamide is a selective endogenous agonist of rat and human CB1 cannabinoid receptors

    OpenAIRE

    Leggett, James D; Aspley, S; Beckett, S R G; D'Antona, A M; Kendall, D A

    2004-01-01

    The ability of the endogenous fatty acid amide, cis-oleamide (ODA), to bind to and activate cannabinoid CB1 and CB2 receptors was investigated.ODA competitively inhibited binding of the nonselective cannabinoid agonist [3H]CP55,940 and the selective CB1 antagonist [3H]SR141716A to rat whole-brain membranes with Ki values of 1.14 μM (0.52–2.53 μM, Hill slope=0.80, n=6) and 2.63 μM (0.62–11.20 μM, Hill slope=0.92, n=4), respectively. AEA inhibited [3H]CP55,940 binding in rat whole-brain membran...

  13. Totally Tubular: The Mystery behind Function and Origin of the Brain Ventricular System

    OpenAIRE

    Lowery, Laura Anne; Sive, Hazel

    2009-01-01

    A unique feature of the vertebrate brain is the brain ventricular system, a series of connected cavities which are filled with cerebrospinal fluid (CSF) and surrounded by neuroepithelium. While CSF is critical for both adult brain function and embryonic brain development, neither development nor function of the brain ventricular system is fully understood. In this review, we discuss the mystery of why vertebrate brains have ventricles, and whence they originate. The brain ventricular system d...

  14. Functional role of cannabinoid receptors in urinary bladder

    OpenAIRE

    Tyagi, Pradeep; Tyagi, Vikas; Yoshimura, Naoki; Chancellor, Michael

    2010-01-01

    Cannabinoids, the active components of Cannabis sativa (maijuana), and their derivatives produce a wide spectrum of central and peripheral effects, some of which may have clinical applications. The discovery of specific cannabinoid receptors and a family of endogenous ligands of those receptors has attracted much attention to the general cannabinoid pharmacology. In recent years, studies on the functional role of cannabinoid receptors in bladder have been motivated by the therapeutic effects ...

  15. Peripherally Selective Cannabinoid 1 Receptor (CB1R) Agonists for the Treatment of Neuropathic Pain.

    Science.gov (United States)

    Seltzman, Herbert H; Shiner, Craig; Hirt, Erin E; Gilliam, Anne F; Thomas, Brian F; Maitra, Rangan; Snyder, Rod; Black, Sherry L; Patel, Purvi R; Mulpuri, Yatendra; Spigelman, Igor

    2016-08-25

    Alleviation of neuropathic pain by cannabinoids is limited by their central nervous system (CNS) side effects. Indole and indene compounds were engineered for high hCB1R affinity, peripheral selectivity, metabolic stability, and in vivo efficacy. An epithelial cell line assay identified candidates with <1% blood-brain barrier penetration for testing in a rat neuropathy induced by unilateral sciatic nerve entrapment (SNE). The SNE-induced mechanical allodynia was reversibly suppressed, partially or completely, after intraperitoneal or oral administration of several indenes. At doses that relieve neuropathy symptoms, the indenes completely lacked, while the brain-permeant CB1R agonist HU-210 (1) exhibited strong CNS side effects, in catalepsy, hypothermia, and motor incoordination assays. Pharmacokinetic findings of ∼0.001 cerebrospinal fluid:plasma ratio further supported limited CNS penetration. Pretreatment with selective CB1R or CB2R blockers suggested mainly CB1R contribution to an indene's antiallodynic effects. Therefore, this class of CB1R agonists holds promise as a viable treatment for neuropathic pain. PMID:27482723

  16. Identification of essential cannabinoid-binding domains: structural insights into early dynamic events in receptor activation.

    Science.gov (United States)

    Shim, Joong-Youn; Bertalovitz, Alexander C; Kendall, Debra A

    2011-09-23

    The classical cannabinoid agonist HU210, a structural analog of (-)-Δ(9)-tetrahydrocannabinol, binds to brain cannabinoid (CB1) receptors and activates signal transduction pathways. To date, an exact molecular description of the CB1 receptor is not yet available. Utilizing the minor binding pocket of the CB1 receptor as the primary ligand interaction site, we explored HU210 binding using lipid bilayer molecular dynamics (MD) simulations. Among the potential ligand contact residues, we identified residues Phe-174(2.61), Phe-177(2.64), Leu-193(3.29), and Met-363(6.55) as being critical for HU210 binding by mutational analysis. Using these residues to guide the simulations, we determined essential cannabinoid-binding domains in the CB1 receptor, including the highly sought after hydrophobic pocket important for the binding of the C3 alkyl chain of classical and nonclassical cannabinoids. Analyzing the simulations of the HU210-CB1 receptor complex, the CP55940-CB1 receptor complex, and the (-)-Δ(9)-tetrahydrocannabinol-CB1 receptor complex, we found that the positioning of the C3 alkyl chain and the aromatic stacking between Trp-356(6.48) and Trp-279(5.43) is crucial for the Trp-356(6.48) rotamer change toward receptor activation through the rigid-body movement of H6. The functional data for the mutant receptors demonstrated reductions in potency for G protein activation similar to the reductions seen in ligand binding affinity for HU210. PMID:21795705

  17. Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Federal Interagency Traumatic Brain Injury Research (FITBIR) informatics system is an extensible, scalable informatics platform for TBI relevant imaging,...

  18. Detection of asymptomatic brain involvement in systemic sclerosis

    International Nuclear Information System (INIS)

    Systemic sclerosis is a chronic connective tissue disease, characterized by vascular changes, accompanied by fibrosis of the skin and internal organs. Neuropsychiatric symptoms are considered rare in these patients. Objectives The aim of the study was to evaluate frequency of morphological brain abnormalities in those patients with systemic sclerosis, who demonstrate no clinical symptoms of central nervous system involvement. 24 patients with systemic sclerosis, who had no neurological or psychiatric abnormalities were included into the study. In all patients brain magnetic resonance imaging was performed. Fluid attenuated inversion-recovery and fast spin-echo magnetic resonance imaging sequences were used. In 37% (9/24) of these patients brain magnetic resonance images revealed abnormalities. These included: cortical and subcortical atrophy (4/24), single focal lesions (5/24) or diffuse lesions (2/24). In 3 patients simultaneous presence of more then one of these abnormalities was detected. Brain computer tomography revealed abnormalities in 2/24 (8%) of patients. Our results indicate, that the central nervous system may be involved in systemic sclerosis despite lack of neuropsychiatric symptoms. Brain magnetic resonance imaging allows early detection of these abnormalities. We suggest to perform brain magnetic resonance in all patients of systemic sclerosis before introducing treatment. (authors)

  19. New Heuristics for Interfacing Human Motor System using Brain Waves

    Directory of Open Access Journals (Sweden)

    Mohammed El-Dosuky

    2012-09-01

    Full Text Available There are many new forms of interfacing human users to machines. We persevere here electric-mechanical form of interaction between human and machine. The emergence of brain-computer interface allows mind-to-movement systems. The story of the Pied Piper inspired us to devise some new heuristics for interfacing human motor system using brain waves, by combining head helmet and LumbarMotionMonitor. For the simulation we use java GridGain. Brain responses of classified subjects during training indicates that Probe can be the best stimulus to rely on in distinguishing between knowledgeable and not knowledgeable

  20. New Heuristics for Interfacing Human Motor System using Brain Waves

    OpenAIRE

    Mohammed El-Dosuky; Ahmed El-Bassiouny; Taher Hamza; Magdy Rashad

    2012-01-01

    There are many new forms of interfacing human users to machines. We persevere here electric-mechanical form of interaction between human and machine. The emergence of brain-computer interface allows mind-to-movement systems. The story of the Pied Piper inspired us to devise some new heuristics for interfacing human motor system using brain waves, by combining head helmet and LumbarMotionMonitor. For the simulation we use java GridGain. Brain responses of classified subjects during training in...

  1. SQUID based multichannel system for brain functional imaging

    OpenAIRE

    Vettoliere, Antonio

    2012-01-01

    A multichannel system for brain imaging containing 163 SQUID magnetometers arranged in a helmet shaped multisensorial array has been developed. To this aim, a previous investigation of a several SQUID configurations has been performed in order to choose a SQUID sensor having best performance for brain imaging on the basis of system working conditions. In particular, magnetometer and planar gradiometer have been designed, fabricated and characterized. Furthermore, a small magnetometer has b...

  2. Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice

    Directory of Open Access Journals (Sweden)

    Martín-Moreno Ana María

    2012-01-01

    Full Text Available Abstract Background Alzheimer's disease (AD brain shows an ongoing inflammatory condition and non-steroidal anti-inflammatories diminish the risk of suffering the neurologic disease. Cannabinoids are neuroprotective and anti-inflammatory agents with therapeutic potential. Methods We have studied the effects of prolonged oral administration of transgenic amyloid precursor protein (APP mice with two pharmacologically different cannabinoids (WIN 55,212-2 and JWH-133, 0.2 mg/kg/day in the drinking water during 4 months on inflammatory and cognitive parameters, and on 18F-fluoro-deoxyglucose (18FDG uptake by positron emission tomography (PET. Results Novel object recognition was significantly reduced in 11 month old Tg APP mice and 4 month administration of JWH was able to normalize this cognitive deficit, although WIN was ineffective. Wild type mice cognitive performance was unaltered by cannabinoid administration. Tg APP mice showed decreased 18FDG uptake in hippocampus and cortical regions, which was counteracted by oral JWH treatment. Hippocampal GFAP immunoreactivity and cortical protein expression was unaffected by genotype or treatment. In contrast, the density of Iba1 positive microglia was increased in Tg APP mice, and normalized following JWH chronic treatment. Both cannabinoids were effective at reducing the enhancement of COX-2 protein levels and TNF-α mRNA expression found in the AD model. Increased cortical β-amyloid (Aβ levels were significantly reduced in the mouse model by both cannabinoids. Noteworthy both cannabinoids enhanced Aβ transport across choroid plexus cells in vitro. Conclusions In summary we have shown that chronically administered cannabinoid showed marked beneficial effects concomitant with inflammation reduction and increased Aβ clearance.

  3. Local activation of cannabinoid CB1 receptors in the urinary bladder reduces the inflammation-induced sensitization of bladder afferents

    Directory of Open Access Journals (Sweden)

    Cervero Fernando

    2011-05-01

    Full Text Available Abstract Background Systemic administration of cannabinoid agonists is known to reduce pain induced by bladder inflammation and to modulate cystometric parameters in vivo. We have previously reported that intravesical administration of a cannabinoid agonist reduces the electrical activity of bladder afferents under normal conditions. However, the effects of local activation of bladder cannabinoid receptors on afferent activity during inflammation are unknown. This study was aimed to assess the effects of intravesical administration of a cannabinoid agonist on the discharges of afferent fibers in inflamed bladders ex vivo. We also characterized the expression of CB1 receptors in the bladder and their localization and co-expression with TRPV1, a marker of nociceptive afferents. Results Compared to untreated animals, afferent fiber activity in inflamed bladders was increased for intravesical pressures between 10 and 40 mmHg. Local treatment with a non selective cannabinoid agonist (AZ12646915 significantly reduced the afferent activity at intravesical pressures above 20 mmHg. This effect was blocked by AM251 but not by AM630 (selective for CB1 and CB2 respectively. Finally, CB1 was co-expressed with TRPV1 in control and inflamed bladders. Conclusion These results demonstrate that sensitization of bladder afferents induced by inflammation is partly suppressed by intravesical activation of cannabinoid receptors, an effect that appears to be mediated by CB1 receptors. Also, TRPV1 positive fibers were found to co-express CB1, supporting the hypothesis of a direct action of the cannabinoid agonist on nociceptive afferents. Taken together, these results indicate a peripheral modulation by the cannabinoid system of bladder hypersensitivity during inflammation.

  4. [Cannabinoid drugs for neurological diseases: what is behind?].

    Science.gov (United States)

    Fernández-Ruiz, Javier

    2012-05-16

    In recent years progress has been made in the development of pharmaceuticals based on the plant Cannabis sativa or on synthetic molecules with a similar action. Some of these pharmaceuticals, such as the mouth spray Sativex, have recently been approved for the treatment of spasticity in multiple sclerosis, but they are not the first and others, such as Marinol or Cesamet for the treatment of vomiting and nausea, and anorexia-cachexia syndrome, had already been approved. This incipient clinical use of cannabinoid drugs confirms something that was already known from fairly ancient times up to practically the last century, which is the potential use of this plant for medicinal applications - something which was brought to a standstill by the abusive use of preparations of the plant for recreational purposes. In any case, this incipient clinical use of cannabinoid drugs is not backed just by the anecdote of the medicinal use of cannabis since ancient times, but instead the boost it has been given by scientific research, which has made it possible to identify the target molecules that are activated or inhibited by these substances. These targets are part of a new system of intercellular communication that is especially active in the central nervous system, which is called the 'endogenous cannabinoid system' and, like many other systems, can be manipulated pharmacologically. The aim of this review is to probe further into the scientific knowledge about this system generated in the last few years, as a necessary step to justify the development of pharmaceuticals based on its activation or inhibition and which can be useful in different neurological diseases. PMID:22573509

  5. Cannabinoids as therapeutic agents in cardiovascular disease: a tale of passions and illusions.

    Science.gov (United States)

    Mendizábal, V E; Adler-Graschinsky, E

    2007-06-01

    In addition to their classical known effects, such as analgesia, impairment of cognition and learning and appetite enhancement, cannabinoids have also been related to the regulation of cardiovascular responses and implicated in cardiovascular pathology. Elevated levels of endocannabinoids have been related to the extreme hypotension associated with various forms of shock as well as to the cardiovascular abnormalities that accompany cirrhosis. In contrast, cannabinoids have also been associated with beneficial effects on the cardiovascular system, such as a protective role in atherosclerosis progression and in cerebral and myocardial ischaemia. In addition, it has also been suggested that the pharmacological manipulation of the endocannabinoid system may offer a novel approach to antihypertensive therapy. During the last decades, the tremendous increase in the understanding of the molecular basis of cannabinoid activity has encouraged many pharmaceutical companies to develop more potent synthetic cannabinoid analogues and antagonists, leading to an explosion of basic research and clinical trials. Consequently. not only the synthetic THC dronabinol (Marinol) and the synthetic THC analogue nabilone (Cesamet) have been approved in the United States, but also the standardized cannabis extract (Sativex) in Canada. At least three strategies can be foreseen in the future clinical use of cannabinoid-based drugs: (a) the use of CB(1) receptor antagonists, such as the recently approved rimonabant (b) the use of CB(2)-selective agonists, and (c) the use of inhibitors of endocannabinoid degradation. In this context, the present review examines the effects of cannabinoids and of the pharmacological manipulation of the endocannabinoid system, in cardiovascular pathophysiology. PMID:17450170

  6. Cannabinoid administration increases 5HT1A receptor binding and mRNA expression in the hippocampus of adult but not adolescent rats.

    Science.gov (United States)

    Zavitsanou, K; Wang, H; Dalton, V S; Nguyen, V

    2010-08-11

    The endocannabinoid and serotonin systems share a high level of overlap in terms of the physiological processes that they regulate, however, little is known about their functional interactions particularly during adolescence, a vulnerable period for both the development of psychosis and for initiation to substance use. In the present study, the effects of cannabinoid treatment on serotonin 5HT1A receptor density and mRNA expression were investigated in two age groups: Adolescent (postnatal day 35) and adult (postnatal day 70) rats were injected with the synthetic cannabinoid HU210 (25, 50 or 100 microg/kg) or vehicle for 1, 4 or 14 days and sacrificed 24 h after the last injection. 5HT1A receptor density was measured in different brain regions using [(3)H]8-OH-DPAT quantitative autoradiography whereas mRNA expression was measured in adjacent brain sections. Higher levels of both serotonin 5HT1A receptor binding and mRNA expression were observed in limbic regions in adolescent control animals compared to adults. 5HT1A receptor density was increased by 23% in the CA1 region of the hippocampus of adult rats treated with 100 microg/kg HU210 for 4 days compared to vehicle treated controls. The same treatment increased mRNA expression by 27% and by 14% in the CA1 region and dentate gyrus of the hippocampus respectively. 5HT1A receptor density was increased by 22% in the CA1 of adult animals treated with 50 microg HU210, by 26% in the dentate gurus of adult rats treated with 100 microg for 14 days. By contrast, 5HT1A receptor density or mRNA expression was not affected in the brain of adolescent animals in any of the brain regions examined. These results suggest that cannabinoid treatment has differential effects on serotonin-related neurochemistry in adolescent compared to adult rats. The effects in the adult brain may compromise hippocampal function and could account for the cognitive deficits seen in habitual heavy cannabis users. PMID:20438810

  7. 2012 Division of medicinal chemistry award address. Trekking the cannabinoid road: a personal perspective.

    Science.gov (United States)

    Makriyannis, Alexandros

    2014-05-22

    My involvement with the field of cannabinoids spans close to 3 decades and covers a major part of my scientific career. It also reflects the robust progress in this initially largely unexplored area of biology. During this period of time, I have witnessed the growth of modern cannabinoid biology, starting from the discovery of its two receptors and followed by the characterization of its endogenous ligands and the identification of the enzyme systems involved in their biosynthesis and biotransformation. I was fortunate enough to start at the beginning of this new era and participate in a number of the new discoveries. It has been a very exciting journey. With coverage of some key aspects of my work during this period of "modern cannabinoid research," this Award Address, in part historical, intends to give an account of how the field grew, the key discoveries, and the most promising directions for the future. PMID:24707904

  8. A runner’s high depends on cannabinoid receptors in mice

    Science.gov (United States)

    Fuss, Johannes; Steinle, Jörg; Bindila, Laura; Auer, Matthias K.; Kirchherr, Hartmut; Lutz, Beat; Gass, Peter

    2015-01-01

    Exercise is rewarding, and long-distance runners have described a runner’s high as a sudden pleasant feeling of euphoria, anxiolysis, sedation, and analgesia. A popular belief has been that endogenous endorphins mediate these beneficial effects. However, running exercise increases blood levels of both β-endorphin (an opioid) and anandamide (an endocannabinoid). Using a combination of pharmacologic, molecular genetic, and behavioral studies in mice, we demonstrate that cannabinoid receptors mediate acute anxiolysis and analgesia after running. We show that anxiolysis depends on intact cannabinoid receptor 1 (CB1) receptors on forebrain GABAergic neurons and pain reduction on activation of peripheral CB1 and CB2 receptors. We thus demonstrate that the endocannabinoid system is crucial for two main aspects of a runner's high. Sedation, in contrast, was not influenced by cannabinoid or opioid receptor blockage, and euphoria cannot be studied in mouse models. PMID:26438875

  9. Medullary Endocannabinoids Contribute to the Differential Resting Baroreflex Sensitivity in Rats with Altered Brain Renin-Angiotensin System Expression

    Science.gov (United States)

    Schaich, Chris L.; Grabenauer, Megan; Thomas, Brian F.; Shaltout, Hossam A.; Gallagher, Patricia E.; Howlett, Allyn C.; Diz, Debra I.

    2016-01-01

    CB1 cannabinoid receptors are expressed on vagal afferent fibers and neurons within the solitary tract nucleus (NTS), providing anatomical evidence for their role in arterial baroreflex modulation. To better understand the relationship between the brain renin-angiotensin system (RAS) and endocannabinoid expression within the NTS, we measured dorsal medullary endocannabinoid tissue content and the effects of CB1 receptor blockade at this brain site on cardiac baroreflex sensitivity (BRS) in ASrAOGEN rats with low glial angiotensinogen, normal Sprague-Dawley rats and (mRen2)27 rats with upregulated brain RAS expression. Mass spectrometry revealed higher levels of the endocannabinoid 2-arachidonoylglycerol in (mRen2)27 compared to ASrAOGEN rats (2.70 ± 0.28 vs. 1.17 ± 0.09 ng/mg tissue; P NTS did not change cardiac BRS in anesthetized Sprague-Dawley rats (1.04 ± 0.05 ms/mmHg baseline vs. 1.17 ± 0.11 ms/mmHg after 10 min). However, SR141716A in (mRen2)27 rats dose-dependently improved BRS in this strain: 0.36 pmol of SR141716A increased BRS from 0.43 ± 0.03 to 0.71 ± 0.04 ms/mmHg (P < 0.001), and 36 pmol of SR141716A increased BRS from 0.47 ± 0.02 to 0.94 ± 0.10 ms/mmHg (P < 0.01). In contrast, 0.36 pmol (1.50 ± 0.12 vs. 0.86 ± 0.08 ms/mmHg; P < 0.05) and 36 pmol (1.38 ± 0.16 vs. 0.46 ± 0.003 ms/mmHg; P < 0.01) of SR141716A significantly reduced BRS in ASrAOGEN rats. These observations reveal differential dose-related effects of the brain endocannabinoid system that influence cardiovagal BRS in animals with genetic alterations in the brain RAS. PMID:27375489

  10. Medullary Endocannabinoids Contribute to the Differential Resting Baroreflex Sensitivity in Rats with Altered Brain Renin-Angiotensin System Expression.

    Science.gov (United States)

    Schaich, Chris L; Grabenauer, Megan; Thomas, Brian F; Shaltout, Hossam A; Gallagher, Patricia E; Howlett, Allyn C; Diz, Debra I

    2016-01-01

    CB1 cannabinoid receptors are expressed on vagal afferent fibers and neurons within the solitary tract nucleus (NTS), providing anatomical evidence for their role in arterial baroreflex modulation. To better understand the relationship between the brain renin-angiotensin system (RAS) and endocannabinoid expression within the NTS, we measured dorsal medullary endocannabinoid tissue content and the effects of CB1 receptor blockade at this brain site on cardiac baroreflex sensitivity (BRS) in ASrAOGEN rats with low glial angiotensinogen, normal Sprague-Dawley rats and (mRen2)27 rats with upregulated brain RAS expression. Mass spectrometry revealed higher levels of the endocannabinoid 2-arachidonoylglycerol in (mRen2)27 compared to ASrAOGEN rats (2.70 ± 0.28 vs. 1.17 ± 0.09 ng/mg tissue; P NTS did not change cardiac BRS in anesthetized Sprague-Dawley rats (1.04 ± 0.05 ms/mmHg baseline vs. 1.17 ± 0.11 ms/mmHg after 10 min). However, SR141716A in (mRen2)27 rats dose-dependently improved BRS in this strain: 0.36 pmol of SR141716A increased BRS from 0.43 ± 0.03 to 0.71 ± 0.04 ms/mmHg (P < 0.001), and 36 pmol of SR141716A increased BRS from 0.47 ± 0.02 to 0.94 ± 0.10 ms/mmHg (P < 0.01). In contrast, 0.36 pmol (1.50 ± 0.12 vs. 0.86 ± 0.08 ms/mmHg; P < 0.05) and 36 pmol (1.38 ± 0.16 vs. 0.46 ± 0.003 ms/mmHg; P < 0.01) of SR141716A significantly reduced BRS in ASrAOGEN rats. These observations reveal differential dose-related effects of the brain endocannabinoid system that influence cardiovagal BRS in animals with genetic alterations in the brain RAS. PMID:27375489

  11. Novelty-Induced Emotional Arousal Modulates Cannabinoid Effects on Recognition Memory and Adrenocortical Activity

    OpenAIRE

    Campolongo, Patrizia; Morena, Maria; Scaccianoce, Sergio; Trezza, Viviana; Chiarotti, Flavia; Schelling, Gustav; Cuomo, Vincenzo; Roozendaal, Benno

    2013-01-01

    Although it is well established that cannabinoid drugs can influence cognitive performance, the findings—describing both enhancing and impairing effects—have been ambiguous. Here, we investigated the effects of posttraining systemic administration of the synthetic cannabinoid agonist WIN55,212-2 (0.1, 0.3, or 1.0 mg/kg) on short- and long-term retention of object recognition memory under two conditions that differed in their training-associated arousal level. In male Sprague-Dawley rats that ...

  12. Tuning pathological brain oscillations with neurofeedback: A systems neuroscience framework

    Directory of Open Access Journals (Sweden)

    Tomas eRos

    2014-12-01

    Full Text Available Neurofeedback is emerging as a promising technique that enables self-regulation of ongoing brain oscillations. However, despite a rise in empirical evidence attesting to its clinical benefits, a solid theoretical basis is still lacking on the manner in which neurofeedback is able to achieve these outcomes. The present work attempts to bring together various concepts from neurobiology, engineering, and dynamical systems so as to propose a contemporary theoretical framework for the mechanistic effects of neurofeedback. The objective is to provide a firmly neurophysiological account of neurofeedback, which goes beyond traditional behaviorist interpretations that attempt to explain psychological processes solely from a descriptive standpoint whilst treating the brain as a ‘black box’. To this end, we interlink evidence from experimental findings that encompass a broad range of intrinsic brain phenomena: starting from ‘bottom-up’ mechanisms of neural synchronization, followed by ‘top-down’ regulation of internal brain states, moving to dynamical systems plus control-theoretic principles, and concluding with activity-dependent as well as homeostatic forms of brain plasticity. In support of our framework, we examine the effects of neurofeedback in several brain disorders, including attention-deficit hyperactivity (ADHD and post-traumatic stress disorder (PTSD. The central thesis put forward is that neurofeedback tunes brain oscillations toward a homeostatic set-point which maintains optimal network flexibility and stability (i.e. self-organized criticality.

  13. The Role of Cannabinoid Transmission in Emotional Memory Formation: Implications for Addiction and Schizophrenia

    Directory of Open Access Journals (Sweden)

    Huibing eTan

    2014-06-01

    Full Text Available Emerging evidence from both basic and clinical research demonstrates an important role for endocannabinoid (ECB signaling in the processing of emotionally salient information, learning and memory. Cannabinoid transmission within neural circuits involved in emotional processing has been shown to modulate the acquisition, recall and extinction of emotionally salient memories and importantly, can strongly modulate the emotional salience of incoming sensory information. Two neural regions in particular, the medial prefrontal cortex (PFC and the basolateral nucleus of the amygdala (BLA, play important roles in emotional regulation and contain high levels of cannabinoid receptors. Furthermore, both regions show profound abnormalities in neuropsychiatric disorders such as addiction and schizophrenia. Considerable evidence has demonstrated that cannabinoid transmission functionally interacts with dopamine (DA, a neurotransmitter system that is of exceptional importance for both addictive behaviours and the neuropsychopathology of disorders like schizophrenia. Research in our laboratory has focused on how cannabinoid transmission both within and extrinsic to the mesolimbic DA system, including the BLAmPFC circuitry, can modulate both rewarding and aversive emotional information. In this review, we will summarize clinical and basic neuroscience research demonstrating the importance of cannabinoid signaling within this neural circuitry. In particular, evidence will be reviewed emphasizing the importance of cannabinoid signaling within the BLAmPFC circuitry in the context of emotional salience processing, memory formation and memory-related plasticity. We propose that aberrant states of hyper or hypoactive ECB signaling within the amygdala-prefrontal cortical circuit may lead to dysregulation of mesocorticolimbic DA transmission controlling the processing of emotionally salient information. These disturbances may in turn lead to emotional processing

  14. Cannabinoid hyper-emesis syndrome: An enigma

    Directory of Open Access Journals (Sweden)

    Neeraj Gupta

    2013-01-01

    Full Text Available Marijuana is one of the most frequently abused illicit substances in the world especially Australia. Cannabinoid Hyperemesis Syndrome (CHS is characterized by a triad of symptoms: Cyclic vomiting, chronic marijuana use, and compulsive bathing. It involves recurrent episodes of self-limited nausea and vomiting lasting several days and patients are asymptomatic between episodes. We believe that Cannabinoid Hyper emesis Syndrome is much more common than currently recognized. We present a unique case with an apparent positive family history of the same clinical entity.

  15. FDTD analysis of a noninvasive hyperthermia system for brain tumors

    Directory of Open Access Journals (Sweden)

    Yacoob Sulafa M

    2012-08-01

    Full Text Available Abstract Background Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. Methods The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. Results The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. Conclusions The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  16. Brain renin angiotensin system in cardiac hypertrophy and failure

    Directory of Open Access Journals (Sweden)

    MichaelBader

    2012-01-01

    Full Text Available Brain renin-angiotensin system (RAS is significantly involved in the roles of the endocrine RAS in cardiovascular regulation. Our studies indicate that the brain RAS participates in the development of cardiac hypertrophy and fibrosis through sympathetic activation. Inhibition of sympathetic hyperactivity after myocardial infarction through suppression of the brain RAS appears beneficial. The brain RAS is involved in the modulation of circadian rhythms of arterial pressure, contributing to nondipping hypertension. We conclude that the brain RAS in pathophysiological states interacts synergistically with the chronically overactive RAS through a positive biofeedback in order to maintain a state of alert diseased conditions, such as cardiac hypertrophy and failure. Therefore, targeting brain RAS with drugs such as angiotensin converting inhibitors or receptor blockers having increased brain penetrability could be of advantage. These RAS-targeting drugs are first-line therapy for all heart failure patients. Since the RAS has both endocrine and local tissue components, RAS drugs are being developed to attain increased tissue penetrability and volume of distribution and consequently an efficient inhibition of both RAS components.

  17. Multiple brain atlas database and atlas-based neuroimaging system.

    Science.gov (United States)

    Nowinski, W L; Fang, A; Nguyen, B T; Raphel, J K; Jagannathan, L; Raghavan, R; Bryan, R N; Miller, G A

    1997-01-01

    For the purpose of developing multiple, complementary, fully labeled electronic brain atlases and an atlas-based neuroimaging system for analysis, quantification, and real-time manipulation of cerebral structures in two and three dimensions, we have digitized, enhanced, segmented, and labeled the following print brain atlases: Co-Planar Stereotaxic Atlas of the Human Brain by Talairach and Tournoux, Atlas for Stereotaxy of the Human Brain by Schaltenbrand and Wahren, Referentially Oriented Cerebral MRI Anatomy by Talairach and Tournoux, and Atlas of the Cerebral Sulci by Ono, Kubik, and Abernathey. Three-dimensional extensions of these atlases have been developed as well. All two- and three-dimensional atlases are mutually preregistered and may be interactively registered with an actual patient's data. An atlas-based neuroimaging system has been developed that provides support for reformatting, registration, visualization, navigation, image processing, and quantification of clinical data. The anatomical index contains about 1,000 structures and over 400 sulcal patterns. Several new applications of the brain atlas database also have been developed, supported by various technologies such as virtual reality, the Internet, and electronic publishing. Fusion of information from multiple atlases assists the user in comprehensively understanding brain structures and identifying and quantifying anatomical regions in clinical data. The multiple brain atlas database and atlas-based neuroimaging system have substantial potential impact in stereotactic neurosurgery and radiotherapy by assisting in visualization and real-time manipulation in three dimensions of anatomical structures, in quantitative neuroradiology by allowing interactive analysis of clinical data, in three-dimensional neuroeducation, and in brain function studies. PMID:9148878

  18. Motivational effects of cannabinoids are mediated by ??-opioid and k-opioid receptor

    OpenAIRE

    Ghozland, Sandy; Matthes, Hans W.D.; Simonin, Frederic; Filliol, Dominique; Kieffer, Brigitte L.; Maldonado, Rafael

    2002-01-01

    Repeated THC administration produces motivational and somatic adaptive changes leading to dependence in rodents. To investigate the molecular basis for cannabinoid dependence and its possible relationship with the endogenous opioid system, we explored ??9-tetrahydrocannabinol (THC) activity in mice lacking ??-, ??- or ??-opioid receptor genes. Acute THCinduced hypothermia, antinociception, and ypolocomotion remained unaffected in these mice, whereas THC tolerance and withdrawal...

  19. Cannabinoids Reverse the Effects of Early Stress on Neurocognitive Performance in Adulthood

    Science.gov (United States)

    Alteba, Shirley; Korem, Nachshon; Akirav, Irit

    2016-01-01

    Early life stress (ES) significantly increases predisposition to psychopathologies. Cannabinoids may cause cognitive deficits and exacerbate the effects of ES. Nevertheless, the endocannabinoid system has been suggested as a therapeutic target for the treatment of stress- and anxiety-related disorders. Here we examined whether cannabinoids…

  20. Brain-Based Indices for User System Symbiosis

    NARCIS (Netherlands)

    Erp, J.B.F. van; Veltman, J.A.; Grootjen, M.

    2010-01-01

    The future generation user system interfaces need to be user-centric which goes beyond user-friendly and includes understanding and anticipating user intentions. We introduce the concept of operator models, their role in implementing user-system symbiosis, and the usefulness of brain-based indices o

  1. Clearance systems in the brain-implications for Alzheimer disease.

    Science.gov (United States)

    Tarasoff-Conway, Jenna M; Carare, Roxana O; Osorio, Ricardo S; Glodzik, Lidia; Butler, Tracy; Fieremans, Els; Axel, Leon; Rusinek, Henry; Nicholson, Charles; Zlokovic, Berislav V; Frangione, Blas; Blennow, Kaj; Ménard, Joël; Zetterberg, Henrik; Wisniewski, Thomas; de Leon, Mony J

    2015-08-01

    Accumulation of toxic protein aggregates-amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles-is the pathological hallmark of Alzheimer disease (AD). Aβ accumulation has been hypothesized to result from an imbalance between Aβ production and clearance; indeed, Aβ clearance seems to be impaired in both early and late forms of AD. To develop efficient strategies to slow down or halt AD, it is critical to understand how Aβ is cleared from the brain. Extracellular Aβ deposits can be removed from the brain by various clearance systems, most importantly, transport across the blood-brain barrier. Findings from the past few years suggest that astroglial-mediated interstitial fluid (ISF) bulk flow, known as the glymphatic system, might contribute to a larger portion of extracellular Aβ (eAβ) clearance than previously thought. The meningeal lymphatic vessels, discovered in 2015, might provide another clearance route. Because these clearance systems act together to drive eAβ from the brain, any alteration to their function could contribute to AD. An understanding of Aβ clearance might provide strategies to reduce excess Aβ deposits and delay, or even prevent, disease onset. In this Review, we describe the clearance systems of the brain as they relate to proteins implicated in AD pathology, with the main focus on Aβ. PMID:26195256

  2. Combined cannabinoid therapy via an oromucosal spray.

    Science.gov (United States)

    Perez, Jordi

    2006-08-01

    Extensive basic science research has identified the potential therapeutic benefits of active compounds extracted from the Cannabis sativa L. plant (the cannabinoids). It is recognized that a significant proportion of patients suffering with the debilitating symptoms of pain and spasticity in multiple sclerosis or other conditions smoke cannabis despite the legal implications and stigma associated with this controlled substance. GW Pharmaceuticals have developed Sativex (GW- 1,000-02), a combined cannabinoid medicine that delivers and maintains therapeutic levels of two principal cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), via an oromucosal pump spray, that aims to minimize psychotropic side effects. Sativex has proved to be well tolerated and successfully self-administered and self-titrated in both healthy volunteers and patient cohorts. Clinical assessment of this combined cannabinoid medicine has demonstrated efficacy in patients with intractable pain (chronic neuropathic pain, pain due to brachial plexus nerve injury, allodynic peripheral neuropathic pain and advanced cancer pain), rheumatoid arthritis and multiple sclerosis (bladder problems, spasticity and central pain), with no significant intoxication-like symptoms, tolerance or withdrawal syndrome. PMID:16969427

  3. Cannabinoid receptor CB2 modulates axon guidance

    DEFF Research Database (Denmark)

    Duff, Gabriel; Argaw, Anteneh; Cecyre, Bruno; Cherif, Hosni; Tea, Nicolas; Zabouri, Nawal; Casanova, Christian; Ptito, Maurice; Bouchard, Jean-François

    2013-01-01

    Navigation of retinal projections towards their targets is regulated by guidance molecules and growth cone transduction mechanisms. Here, we present in vitro and in vivo evidences that the cannabinoid receptor 2 (CB2R) is expressed along the retino-thalamic pathway and exerts a modulatory action ...

  4. Combined local blood–brain barrier opening and systemic methotrexate for the treatment of brain tumors

    OpenAIRE

    Cooper, Itzik; Last, David; Guez, David; Sharabi, Shirley; Elhaik Goldman, Shirin; Lubitz, Irit; Daniels, Dianne; Salomon,Sharona; Tamar, Gregory; Tamir, Tzur; Mardor, Ronni; Fridkin, Mati; Shechter, Yoram; Mardor, Yael

    2015-01-01

    Despite aggressive therapy, existing treatments offer poor prognosis for glioblastoma multiforme patients, in part due to poor penetration of most drugs across the blood–brain barrier (BBB). We propose a minimal-invasive combined treatment approach consisting of local BBB disruption in the tumor in parallel to systemic drug administration. Local BBB disruption is obtained by convection-enhanced delivery of a novel BBB disruption agent, enabling efficient/targeted delivery of the systemically ...

  5. Cannabinoids for Symptom Management and Cancer Therapy: The Evidence.

    Science.gov (United States)

    Davis, Mellar P

    2016-07-01

    Cannabinoids bind not only to classical receptors (CB1 and CB2) but also to certain orphan receptors (GPR55 and GPR119), ion channels (transient receptor potential vanilloid), and peroxisome proliferator-activated receptors. Cannabinoids are known to modulate a multitude of monoamine receptors. Structurally, there are 3 groups of cannabinoids. Multiple studies, most of which are of moderate to low quality, demonstrate that tetrahydrocannabinol (THC) and oromucosal cannabinoid combinations of THC and cannabidiol (CBD) modestly reduce cancer pain. Dronabinol and nabilone are better antiemetics for chemotherapy-induced nausea and vomiting (CINV) than certain neuroleptics, but are not better than serotonin receptor antagonists in reducing delayed emesis, and cannabinoids have largely been superseded by neurokinin-1 receptor antagonists and olanzapine; both cannabinoids have been recommended for breakthrough nausea and vomiting among other antiemetics. Dronabinol is ineffective in ameliorating cancer anorexia but does improve associated cancer-related dysgeusia. Multiple cancers express cannabinoid receptors directly related to the degree of anaplasia and grade of tumor. Preclinical in vitro and in vivo studies suggest that cannabinoids may have anticancer activity. Paradoxically, cannabinoid receptor antagonists also have antitumor activity. There are few randomized smoked or vaporized cannabis trials in cancer on which to judge the benefits of these forms of cannabinoids on symptoms and the clinical course of cancer. Smoked cannabis has been found to contain Aspergillosis. Immunosuppressed patients should be advised of the risks of using "medical marijuana" in this regard. PMID:27407130

  6. Synthetic cannabinoids: the multi-organ failure and metabolic derangements associated with getting high.

    Science.gov (United States)

    Sherpa, Dolkar; Paudel, Bishow M; Subedi, Bishnu H; Chow, Robert Dobbin

    2015-01-01

    Synthetic cannabinoids (SC), though not detected with routine urine toxicology screening, can cause severe metabolic derangements and widespread deleterious effects in multiple organ systems. The diversity of effects is related to the wide distribution of cannabinoid receptors in multiple organ systems. Both cannabinoid-receptor-mediated and non-receptor-mediated effects can result in severe cardiovascular, renal, and neurologic manifestations. We report the case of a 45-year-old African American male with ST-elevation myocardial infarction, subarachnoid hemorrhage, reversible cardiomyopathy, acute rhabdomyolysis, and severe metabolic derangement associated with the use of K2, an SC. Though each of these complications has been independently associated with SCs, the combination of these effects in a single patient has not been heretofore reported. This case demonstrates the range and severity of complications associated with the recreational use of SCs. Though now banned in the United States, use of systemic cannabinoids is still prevalent, especially among adolescents. Clinicians should be aware of their continued use and the potential for harm. To prevent delay in diagnosis, tests to screen for these substances should be made more readily available. PMID:26333853

  7. Synthetic cannabinoids: the multi-organ failure and metabolic derangements associated with getting high

    Directory of Open Access Journals (Sweden)

    Dolkar Sherpa

    2015-09-01

    Full Text Available Synthetic cannabinoids (SC, though not detected with routine urine toxicology screening, can cause severe metabolic derangements and widespread deleterious effects in multiple organ systems. The diversity of effects is related to the wide distribution of cannabinoid receptors in multiple organ systems. Both cannabinoid-receptor-mediated and non-receptor-mediated effects can result in severe cardiovascular, renal, and neurologic manifestations. We report the case of a 45-year-old African American male with ST-elevation myocardial infarction, subarachnoid hemorrhage, reversible cardiomyopathy, acute rhabdomyolysis, and severe metabolic derangement associated with the use of K2, an SC. Though each of these complications has been independently associated with SCs, the combination of these effects in a single patient has not been heretofore reported. This case demonstrates the range and severity of complications associated with the recreational use of SCs. Though now banned in the United States, use of systemic cannabinoids is still prevalent, especially among adolescents. Clinicians should be aware of their continued use and the potential for harm. To prevent delay in diagnosis, tests to screen for these substances should be made more readily available.

  8. Khat (Catha edulis F.) and cannabinoids: Parallel and contrasting behavioral effects in preclinical and clinical studies.

    Science.gov (United States)

    Geresu, Berhanu

    2015-11-01

    After a brief outline of Catha edulis F. (khat) and the cannabinoid systems, the interactions between the pharmacological effects of khat and cannabinoids will be reviewed. Khat chewing is a widespread habit that has a deep-rooted sociocultural tradition in Africa and the Middle East. Experimental studies conducted to investigate khat's central and peripheral effects have revealed an amphetamine-like mechanism of action mediated through the dopaminergic system. The endocannabinoid system comprises the receptors, the endogenous agonists and the related biochemical machinery responsible for synthesizing these substances and terminating their actions. Endocannabinoids are synthesized "on demand" from membrane phospholipids and then rapidly cleared by cellular uptake and enzymatic degradation. Khat and cannabinoids produce a body of parallel and contrasting behavioral effects. Concurrent consumption of khat and cannabinoids may increase the risk of getting or precipitating psychosis, has rewarding and motivational effect, increases the threshold of pain perception and impairs learning and memory. On the other hand, the action of cannabis to enhance food intake is likely to reduce khat's appetite suppressant effects. PMID:26469212

  9. Shared visual attention and memory systems in the Drosophila brain.

    Directory of Open Access Journals (Sweden)

    Bruno van Swinderen

    Full Text Available BACKGROUND: Selective attention and memory seem to be related in human experience. This appears to be the case as well in simple model organisms such as the fly Drosophila melanogaster. Mutations affecting olfactory and visual memory formation in Drosophila, such as in dunce and rutabaga, also affect short-term visual processes relevant to selective attention. In particular, increased optomotor responsiveness appears to be predictive of visual attention defects in these mutants. METHODOLOGY/PRINCIPAL FINDINGS: To further explore the possible overlap between memory and visual attention systems in the fly brain, we screened a panel of 36 olfactory long term memory (LTM mutants for visual attention-like defects using an optomotor maze paradigm. Three of these mutants yielded high dunce-like optomotor responsiveness. We characterized these three strains by examining their visual distraction in the maze, their visual learning capabilities, and their brain activity responses to visual novelty. We found that one of these mutants, D0067, was almost completely identical to dunce(1 for all measures, while another, D0264, was more like wild type. Exploiting the fact that the LTM mutants are also Gal4 enhancer traps, we explored the sufficiency for the cells subserved by these elements to rescue dunce attention defects and found overlap at the level of the mushroom bodies. Finally, we demonstrate that control of synaptic function in these Gal4 expressing cells specifically modulates a 20-30 Hz local field potential associated with attention-like effects in the fly brain. CONCLUSIONS/SIGNIFICANCE: Our study uncovers genetic and neuroanatomical systems in the fly brain affecting both visual attention and odor memory phenotypes. A common component to these systems appears to be the mushroom bodies, brain structures which have been traditionally associated with odor learning but which we propose might be also involved in generating oscillatory brain activity

  10. A navigational guidance system in the human brain.

    Science.gov (United States)

    Spiers, Hugo J; Maguire, Eleanor A

    2007-01-01

    Finding your way in large-scale space requires knowing where you currently are and how to get to your goal destination. While much is understood about the neural basis of one's current position during navigation, surprisingly little is known about how the human brain guides navigation to goals. Computational accounts argue that specific brain regions support navigational guidance by coding the proximity and direction to the goal, but empirical evidence for such mechanisms is lacking. Here, we scanned subjects with functional magnetic resonance imaging as they navigated to goal destinations in a highly accurate virtual simulation of a real city. Brain activity was then analyzed in combination with metric measures of proximity and direction to goal destinations that were derived from each individual subject's coordinates at every second of navigation. We found that activity in the medial prefrontal cortex was positively correlated, and activity in a right subicular/entorhinal region was negatively correlated with goal proximity. By contrast, activity in bilateral posterior parietal cortex was correlated with egocentric direction to goals. Our results provide empirical evidence for a navigational guidance system in the human brain, and define more precisely the contribution of these three brain regions to human navigation. In addition, these findings may also have wider implications for how the brain monitors and integrates different types of information in the service of goal-directed behavior in general. PMID:17492693

  11. Cannabinoid receptor-specific mechanisms to alleviate pain in sickle cell anemia via inhibition of mast cell activation and neurogenic inflammation.

    Science.gov (United States)

    Vincent, Lucile; Vang, Derek; Nguyen, Julia; Benson, Barbara; Lei, Jianxun; Gupta, Kalpna

    2016-05-01

    Sickle cell anemia is a manifestation of a single point mutation in hemoglobin, but inflammation and pain are the insignia of this disease which can start in infancy and continue throughout life. Earlier studies showed that mast cell activation contributes to neurogenic inflammation and pain in sickle mice. Morphine is the common analgesic treatment but also remains a major challenge due to its side effects and ability to activate mast cells. We, therefore, examined cannabinoid receptor-specific mechanisms to mitigate mast cell activation, neurogenic inflammation and hyperalgesia, using HbSS-BERK sickle and cannabinoid receptor-2-deleted sickle mice. We show that cannabinoids mitigate mast cell activation, inflammation and neurogenic inflammation in sickle mice via both cannabinoid receptors 1 and 2. Thus, cannabinoids influence systemic and neural mechanisms, ameliorating the disease pathobiology and hyperalgesia in sickle mice. This study provides 'proof of principle' for the potential of cannabinoid/cannabinoid receptor-based therapeutics to treat several manifestations of sickle cell anemia. PMID:26703965

  12. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  13. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Dolores Hernán Pérez de la Ossa

    Full Text Available Cannabinoids, the active components of marijuana and their derivatives, are currently investigated due to their potential therapeutic application for the management of many different diseases, including cancer. Specifically, Δ(9-Tetrahydrocannabinol (THC and Cannabidiol (CBD - the two major ingredients of marijuana - have been shown to inhibit tumor growth in a number of animal models of cancer, including glioma. Although there are several pharmaceutical preparations that permit the oral administration of THC or its analogue nabilone or the oromucosal delivery of a THC- and CBD-enriched cannabis extract, the systemic administration of cannabinoids has several limitations in part derived from the high lipophilicity exhibited by these compounds. In this work we analyzed CBD- and THC-loaded poly-ε-caprolactone microparticles as an alternative delivery system for long-term cannabinoid administration in a murine xenograft model of glioma. In vitro characterization of THC- and CBD-loaded microparticles showed that this method of microencapsulation facilitates a sustained release of the two cannabinoids for several days. Local administration of THC-, CBD- or a mixture (1:1 w:w of THC- and CBD-loaded microparticles every 5 days to mice bearing glioma xenografts reduced tumour growth with the same efficacy than a daily local administration of the equivalent amount of those cannabinoids in solution. Moreover, treatment with cannabinoid-loaded microparticles enhanced apoptosis and decreased cell proliferation and angiogenesis in these tumours. Our findings support that THC- and CBD-loaded microparticles could be used as an alternative method of cannabinoid delivery in anticancer therapies.

  14. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme.

    Science.gov (United States)

    Hernán Pérez de la Ossa, Dolores; Lorente, Mar; Gil-Alegre, Maria Esther; Torres, Sofía; García-Taboada, Elena; Aberturas, María Del Rosario; Molpeceres, Jesús; Velasco, Guillermo; Torres-Suárez, Ana Isabel

    2013-01-01

    Cannabinoids, the active components of marijuana and their derivatives, are currently investigated due to their potential therapeutic application for the management of many different diseases, including cancer. Specifically, Δ(9)-Tetrahydrocannabinol (THC) and Cannabidiol (CBD) - the two major ingredients of marijuana - have been shown to inhibit tumor growth in a number of animal models of cancer, including glioma. Although there are several pharmaceutical preparations that permit the oral administration of THC or its analogue nabilone or the oromucosal delivery of a THC- and CBD-enriched cannabis extract, the systemic administration of cannabinoids has several limitations in part derived from the high lipophilicity exhibited by these compounds. In this work we analyzed CBD- and THC-loaded poly-ε-caprolactone microparticles as an alternative delivery system for long-term cannabinoid administration in a murine xenograft model of glioma. In vitro characterization of THC- and CBD-loaded microparticles showed that this method of microencapsulation facilitates a sustained release of the two cannabinoids for several days. Local administration of THC-, CBD- or a mixture (1:1 w:w) of THC- and CBD-loaded microparticles every 5 days to mice bearing glioma xenografts reduced tumour growth with the same efficacy than a daily local administration of the equivalent amount of those cannabinoids in solution. Moreover, treatment with cannabinoid-loaded microparticles enhanced apoptosis and decreased cell proliferation and angiogenesis in these tumours. Our findings support that THC- and CBD-loaded microparticles could be used as an alternative method of cannabinoid delivery in anticancer therapies. PMID:23349970

  15. Brain-machine interface circuits and systems

    CERN Document Server

    Zjajo, Amir

    2016-01-01

    This book provides a complete overview of significant design challenges in respect to circuit miniaturization and power reduction of the neural recording system, along with circuit topologies, architecture trends, and (post-silicon) circuit optimization algorithms. The introduced novel circuits for signal conditioning, quantization, and classification, as well as system configurations focus on optimized power-per-area performance, from the spatial resolution (i.e. number of channels), feasible wireless data bandwidth and information quality to the delivered power of implantable system.

  16. Memory Systems and the Addicted Brain

    OpenAIRE

    Goodman, Jarid; Packard, Mark G.

    2016-01-01

    The view that anatomically distinct memory systems differentially contribute to the development of drug addiction and relapse has received extensive support. The present brief review revisits this hypothesis as it was originally proposed 20 years ago (1) and highlights several recent developments. Extensive research employing a variety of animal learning paradigms indicates that dissociable neural systems mediate distinct types of learning and memory. Each memory system potentially contribute...

  17. Systemic inflammatory challenges compromise survival after experimental stroke via augmenting brain inflammation, blood- brain barrier damage and brain oedema independently of infarct size

    OpenAIRE

    Dénes Ádám; Ferenczi Szilamér; Kovács Krisztina J.

    2011-01-01

    Abstract Background Systemic inflammation impairs outcome in stroke patients and experimental animals via mechanisms which are poorly understood. Circulating inflammatory mediators can activate cerebrovascular endothelium or glial cells in the brain and impact on ischaemic brain injury. One of the most serious early clinical complications of cerebral ischaemia is brain oedema, which compromises survival in the first 24-48 h. It is not understood whether systemic inflammatory challenges impair...

  18. Prospects on Brain-Machine Interfaces for Space System Control

    OpenAIRE

    Menon, C.; de Negueruela, Christina; Millán, José Del R; Tonet, O.; Carpi, F.; Broschart, M.; Ferrez, Pierre W.; Buttfield, Anna; Dario, P.; Citi, L; Laschi, C.; Tombini, M.; Sepulveda, F.; Poli, R.; Palaniappan, R.

    2006-01-01

    The dream of controlling and guiding computer-based systems using human brain signals has slowly but steadily become a reality. The available technology allows real-time implementation of systems that measure neuronal activity, convert their signals, and translate their output for the purpose of controlling mechanical systems. This paper describes the state of the art of non-invasive BMIs and critically investigates both the current technological limits and the future potential that BMIs have...

  19. El sistema cannabinoide en situaciones de neuroinflamación: perspectivas terapéuticas en la esclerosis múltiple

    OpenAIRE

    Docagne, F.; Mestre, L; Correa, F.; Clemente, D; S. Ortega-Gutiérrez; Molina, E.; Arévalo-Martín, A.; Borrell, Jose; Guaza, Carmen

    2006-01-01

    [EN]Introduction. The endocannabinoid system consists of cannabinoid receptors, endogenous ligands and the enzymatic elements involved in their synthesis and breakdown. Aim. To report on currently held knowledge about the functioning of the system as a modulator of the neuroinflammatory processes associated with chronic diseases such as multiple sclerosis. Development. Cannabinoids are synthesised and released on demand and their production increases in times of neuroinflammation ...

  20. Disposition of Cannabichromene, Cannabidiol, and Δ9-Tetrahydrocannabinol and its Metabolites in Mouse Brain following Marijuana Inhalation Determined by High-Performance Liquid Chromatography–Tandem Mass Spectrometry

    OpenAIRE

    Poklis, Justin L.; Thompson, Candace C.; Long, Kelly A.; Lichtman, Aron H.; Poklis, Alphonse

    2010-01-01

    A liquid chromatography–tandem mass spectrometry (LC–MS–MS) method was developed for the analysis of marijuana cannabinoids in mouse brain tissue using an Applied Biosystems 3200 Q trap with a turbo V source for TurbolonSpray attached to a Shimadzu SCL HPLC system. The method included cannabichromene (CBC), cannabidiol (CBD), D9-tetrahydrocannabinol (THC), 11-hydroxytetrahydrocannabinol (11-OH-THC), and 11-nor-D9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH). These compounds were isolated...

  1. Cannabinoid-induced autophagy: Protective or death role?

    Science.gov (United States)

    Costa, Lia; Amaral, Cristina; Teixeira, Natércia; Correia-da-Silva, Georgina; Fonseca, Bruno M

    2016-01-01

    Autophagy, the "self-digestion" mechanism of the cells, is an evolutionary conserved catabolic process that targets portions of cytoplasm, damaged organelles and proteins for lysosomal degradation, which plays a crucial role in development and disease. Cannabinoids are active compounds of Cannabis sativa and the most prevalent psychoactive substance is Δ(9)-tetrahydrocannabinol (THC). Cannabinoid compounds can be divided in three types: the plant-derived natural products (phytocannabinoids), the cannabinoids produced endogenously (endocannabinoids) and the synthesized compounds (synthetic cannabinoids). Various studies reported a cannabinoid-induced autophagy mechanism in cancer and non-cancer cells. In this review we focus on the recent advances in the cannabinoid-induced autophagy and highlight the molecular mechanisms involved in these processes. PMID:26732541

  2. Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Müller Anke

    2010-06-01

    Full Text Available Abstract Background Adult neurogenesis is a particular example of brain plasticity that is partially modulated by the endocannabinoid system. Whereas the impact of synthetic cannabinoids on the neuronal progenitor cells has been described, there has been lack of information about the action of plant-derived extracts on neurogenesis. Therefore we here focused on the effects of Δ9-tetrahydrocannabinol (THC and Cannabidiol (CBD fed to female C57Bl/6 and Nestin-GFP-reporter mice on proliferation and maturation of neuronal progenitor cells and spatial learning performance. In addition we used cannabinoid receptor 1 (CB1 deficient mice and treatment with CB1 antagonist AM251 in Nestin-GFP-reporter mice to investigate the role of the CB1 receptor in adult neurogenesis in detail. Results THC and CBD differed in their effects on spatial learning and adult neurogenesis. CBD did not impair learning but increased adult neurogenesis, whereas THC reduced learning without affecting adult neurogenesis. We found the neurogenic effect of CBD to be dependent on the CB1 receptor, which is expressed over the whole dentate gyrus. Similarly, the neurogenic effect of environmental enrichment and voluntary wheel running depends on the presence of the CB1 receptor. We found that in the absence of CB1 receptors, cell proliferation was increased and neuronal differentiation reduced, which could be related to CB1 receptor mediated signaling in Doublecortin (DCX-expressing intermediate progenitor cells. Conclusion CB1 affected the stages of adult neurogenesis that involve intermediate highly proliferative progenitor cells and the survival and maturation of new neurons. The pro-neurogenic effects of CBD might explain some of the positive therapeutic features of CBD-based compounds.

  3. Gz mediates the long-lasting desensitization of brain CB1 receptors and is essential for cross-tolerance with morphine

    Directory of Open Access Journals (Sweden)

    Rodríguez-Muñoz María

    2009-03-01

    Full Text Available Abstract Background Although the systemic administration of cannabinoids produces antinociception, their chronic use leads to analgesic tolerance as well as cross-tolerance to morphine. These effects are mediated by cannabinoids binding to peripheral, spinal and supraspinal CB1 and CB2 receptors, making it difficult to determine the relevance of each receptor type to these phenomena. However, in the brain, the CB1 receptors (CB1Rs are expressed at high levels in neurons, whereas the expression of CB2Rs is marginal. Thus, CB1Rs mediate the effects of smoked cannabis and are also implicated in emotional behaviors. We have analyzed the production of supraspinal analgesia and the development of tolerance at CB1Rs by the direct injection of a series of cannabinoids into the brain. The influence of the activation of CB1Rs on supraspinal analgesia evoked by morphine was also evaluated. Results Intracerebroventricular (icv administration of cannabinoid receptor agonists, WIN55,212-2, ACEA or methanandamide, generated a dose-dependent analgesia. Notably, a single administration of these compounds brought about profound analgesic tolerance that lasted for more than 14 days. This decrease in the effect of cannabinoid receptor agonists was not mediated by depletion of CB1Rs or the loss of regulated G proteins, but, nevertheless, it was accompanied by reduced morphine analgesia. On the other hand, acute morphine administration produced tolerance that lasted only 3 days and did not affect the CB1R. We found that both neural mu-opioid receptors (MORs and CB1Rs interact with the HINT1-RGSZ module, thereby regulating pertussis toxin-insensitive Gz proteins. In mice with reduced levels of these Gz proteins, the CB1R agonists produced no such desensitization or morphine cross-tolerance. On the other hand, experimental enhancement of Gz signaling enabled an acute icv administration of morphine to produce a long-lasting tolerance at MORs that persisted for more than

  4. GPR55: a new member of the cannabinoid receptor clan?

    OpenAIRE

    Pertwee, R. G.

    2007-01-01

    In this issue of the British Journal of Pharmacology, Ryberg et al. present convincing in vitro evidence that the orphan GPCR, GPR55, is a cannabinoid receptor. GPR55 was activated by a range of plant, synthetic and endogenous cannabinoids and blocked by the non-psychoactive phytocannabinoid, cannabidiol. Their experiments have revealed several differences between the pharmacology of GPR55 and the established cannabinoid CB1 and CB2 receptors. For example, the CB1 receptor antagonist, AM251, ...

  5. MEMORY SYSTEMS AND THE ADDICTED BRAIN

    Directory of Open Access Journals (Sweden)

    Jarid eGoodman

    2016-02-01

    Full Text Available The view that anatomically distinct memory systems differentially contribute to the development of drug addiction and relapse has received extensive support. The present brief review revisits this hypothesis as it was originally proposed twenty years ago (White, 1996 and highlights several recent developments. Extensive research employing a variety of animal learning paradigms indicates that dissociable neural systems mediate distinct types of learning and memory. Each memory system potentially contributes unique components to the learned behavior supporting drug addiction and relapse. In particular, the shift from recreational drug use to compulsive drug abuse may reflect a neuroanatomical shift from cognitive control of behavior mediated by the hippocampus/dorsomedial striatum toward habitual control of behavior mediated by the dorsolateral striatum (DLS. In addition, stress/anxiety may constitute a cofactor that facilitates DLS-dependent memory, and this may serve as a neurobehavioral mechanism underlying the increased drug use and relapse in humans following stressful life events. Evidence supporting the multiple systems view of drug addiction comes predominantly from studies of learning and memory that have employed as reinforcers addictive substances often considered within the context of drug addiction research, including cocaine, alcohol, and amphetamines. In addition, recent evidence suggests that the memory systems approach may also be helpful for understanding topical sources of addiction that reflect emerging health concerns, including marijuana use, high-fat diet, and video game playing.

  6. Memory Systems and the Addicted Brain

    Science.gov (United States)

    Goodman, Jarid; Packard, Mark G.

    2016-01-01

    The view that anatomically distinct memory systems differentially contribute to the development of drug addiction and relapse has received extensive support. The present brief review revisits this hypothesis as it was originally proposed 20 years ago (1) and highlights several recent developments. Extensive research employing a variety of animal learning paradigms indicates that dissociable neural systems mediate distinct types of learning and memory. Each memory system potentially contributes unique components to the learned behavior supporting drug addiction and relapse. In particular, the shift from recreational drug use to compulsive drug abuse may reflect a neuroanatomical shift from cognitive control of behavior mediated by the hippocampus/dorsomedial striatum toward habitual control of behavior mediated by the dorsolateral striatum (DLS). In addition, stress/anxiety may constitute a cofactor that facilitates DLS-dependent memory, and this may serve as a neurobehavioral mechanism underlying the increased drug use and relapse in humans following stressful life events. Evidence supporting the multiple systems view of drug addiction comes predominantly from studies of learning and memory that have employed as reinforcers addictive substances often considered within the context of drug addiction research, including cocaine, alcohol, and amphetamines. In addition, recent evidence suggests that the memory systems approach may also be helpful for understanding topical sources of addiction that reflect emerging health concerns, including marijuana use, high-fat diet, and video game playing. PMID:26941660

  7. Memory Systems and the Addicted Brain.

    Science.gov (United States)

    Goodman, Jarid; Packard, Mark G

    2016-01-01

    The view that anatomically distinct memory systems differentially contribute to the development of drug addiction and relapse has received extensive support. The present brief review revisits this hypothesis as it was originally proposed 20 years ago (1) and highlights several recent developments. Extensive research employing a variety of animal learning paradigms indicates that dissociable neural systems mediate distinct types of learning and memory. Each memory system potentially contributes unique components to the learned behavior supporting drug addiction and relapse. In particular, the shift from recreational drug use to compulsive drug abuse may reflect a neuroanatomical shift from cognitive control of behavior mediated by the hippocampus/dorsomedial striatum toward habitual control of behavior mediated by the dorsolateral striatum (DLS). In addition, stress/anxiety may constitute a cofactor that facilitates DLS-dependent memory, and this may serve as a neurobehavioral mechanism underlying the increased drug use and relapse in humans following stressful life events. Evidence supporting the multiple systems view of drug addiction comes predominantly from studies of learning and memory that have employed as reinforcers addictive substances often considered within the context of drug addiction research, including cocaine, alcohol, and amphetamines. In addition, recent evidence suggests that the memory systems approach may also be helpful for understanding topical sources of addiction that reflect emerging health concerns, including marijuana use, high-fat diet, and video game playing. PMID:26941660

  8. LiCABEDS II. Modeling of ligand selectivity for G-protein-coupled cannabinoid receptors.

    Science.gov (United States)

    Ma, Chao; Wang, Lirong; Yang, Peng; Myint, Kyaw Z; Xie, Xiang-Qun

    2013-01-28

    The cannabinoid receptor subtype 2 (CB2) is a promising therapeutic target for blood cancer, pain relief, osteoporosis, and immune system disease. The recent withdrawal of Rimonabant, which targets another closely related cannabinoid receptor (CB1), accentuates the importance of selectivity for the development of CB2 ligands in order to minimize their effects on the CB1 receptor. In our previous study, LiCABEDS (Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps) was reported as a generic ligand classification algorithm for the prediction of categorical molecular properties. Here, we report extension of the application of LiCABEDS to the modeling of cannabinoid ligand selectivity with molecular fingerprints as descriptors. The performance of LiCABEDS was systematically compared with another popular classification algorithm, support vector machine (SVM), according to prediction precision and recall rate. In addition, the examination of LiCABEDS models revealed the difference in structure diversity of CB1 and CB2 selective ligands. The structure determination from data mining could be useful for the design of novel cannabinoid lead compounds. More importantly, the potential of LiCABEDS was demonstrated through successful identification of newly synthesized CB2 selective compounds. PMID:23278450

  9. The Potential Role of Cannabinoids in Modulating Serotonergic Signaling by Their Influence on Tryptophan Metabolism

    Directory of Open Access Journals (Sweden)

    Dietmar Fuchs

    2010-08-01

    Full Text Available Phytocannabinoids present in Cannabis plants are well known to exert potent anti-inflammatory and immunomodulatory effects. Previously, we have demonstrated that the psychoactive D9-tetrahydrocannabinol (THC and the non-psychotropic cannabidiol (CBD modulate mitogen-induced Th1-type immune responses in peripheral blood mononuclear cells (PBMC. The suppressive effect of both cannabinoids on mitogen-induced tryptophan degradation mediated by indoleamine-2,3-dioxygenase (IDO, suggests an additional mechanism by which antidepressive effects of cannabinoids might be linked to the serotonergic system. Here, we will review the role of tryptophan metabolism in the course of cell mediated immune responses and the relevance of cannabinoids in serotonergic signaling. We conclude that in particular the non-psychotropic CBD might be useful for the treatment of mood disorders in patients with inflammatory diseases, since this cannabinoid seems to be safe and its effects on activation-induced tryptophan degradation by CBD were more potent as compared to THC.

  10. Core and shell song systems unique to the parrot brain

    DEFF Research Database (Denmark)

    Chakraborty, Mukta; Harpøth, Solveig Walløe; Nedergaard, Signe;

    2015-01-01

    The ability to imitate complex sounds is rare, and among birds has been found only in parrots, songbirds, and hummingbirds. Parrots exhibit the most advanced vocal mimicry among non-human animals. A few studies have noted differences in connectivity, brain position and shape in the vocal learning...... systems of parrots relative to songbirds and hummingbirds. However, only one parrot species, the budgerigar, has been examined and no differences in the presence of song system structures were found with other avian vocal learners. Motivated by questions of whether there are important differences in the...... vocal systems of parrots relative to other vocal learners, we used specialized constitutive gene expression, singing-driven gene expression, and neural connectivity tracing experiments to further characterize the song system of budgerigars and/or other parrots. We found that the parrot brain uniquely...

  11. Core and Shell Song Systems Unique to the Parrot Brain

    OpenAIRE

    Mukta Chakraborty; Solveig Walløe; Signe Nedergaard; Fridel, Emma E.; Torben Dabelsteen; Bente Pakkenberg; Bertelsen, Mads F; Gerry M Dorrestein; Brauth, Steven E.; Sarah E Durand; Jarvis, Erich D

    2015-01-01

    The ability to imitate complex sounds is rare, and among birds has been found only in parrots, songbirds, and hummingbirds. Parrots exhibit the most advanced vocal mimicry among non-human animals. A few studies have noted differences in connectivity, brain position and shape in the vocal learning systems of parrots relative to songbirds and hummingbirds. However, only one parrot species, the budgerigar, has been examined and no differences in the presence of song system structures were found ...

  12. Synthetic Cannabinoid 'Bonzai' Intoxication: Six Case Series.

    Science.gov (United States)

    Ergül, Dursun Fırat; Ekemen, Serdar; Yelken, Birgül Büyükkıdan

    2015-10-01

    In the language of the streets, 'bonzai', known as '1-naphthalenyl of methanol', also known as JWH-18 group, is a drug belonging to the group of synthetic cannabinoids. At the beginning of 2004, it started to be sold on the internet and it is seen that private markets. It has structurally similar chemical characteristics as delta 9-tetrahydrocannabinol (THC), the active substance in marijuana. In 2013, in a study conducted by the European Monitoring Centre of Drugs and Drug Addiction (EMCDDA), 102 varieties of synthetic cannabinoids were identified; however, more than 200 substances have been reported since 1997. In this study, we report the difficulties in the clinical course, treatment and management of six patients that had a use history of bonzai although it was not detected in blood in a short period of time in the intensive care unit. PMID:27366526

  13. Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb.

    Science.gov (United States)

    Izzo, Angelo A; Borrelli, Francesca; Capasso, Raffaele; Di Marzo, Vincenzo; Mechoulam, Raphael

    2009-10-01

    Delta(9)-tetrahydrocannabinol binds cannabinoid (CB(1) and CB(2)) receptors, which are activated by endogenous compounds (endocannabinoids) and are involved in a wide range of physiopathological processes (e.g. modulation of neurotransmitter release, regulation of pain perception, and of cardiovascular, gastrointestinal and liver functions). The well-known psychotropic effects of Delta(9)-tetrahydrocannabinol, which are mediated by activation of brain CB(1) receptors, have greatly limited its clinical use. However, the plant Cannabis contains many cannabinoids with weak or no psychoactivity that, therapeutically, might be more promising than Delta(9)-tetrahydrocannabinol. Here, we provide an overview of the recent pharmacological advances, novel mechanisms of action, and potential therapeutic applications of such non-psychotropic plant-derived cannabinoids. Special emphasis is given to cannabidiol, the possible applications of which have recently emerged in inflammation, diabetes, cancer, affective and neurodegenerative diseases, and to Delta(9)-tetrahydrocannabivarin, a novel CB(1) antagonist which exerts potentially useful actions in the treatment of epilepsy and obesity. PMID:19729208

  14. The meningeal lymphatic system: a route for HIV brain migration?

    Science.gov (United States)

    Lamers, Susanna L; Rose, Rebecca; Ndhlovu, Lishomwa C; Nolan, David J; Salemi, Marco; Maidji, Ekaterina; Stoddart, Cheryl A; McGrath, Michael S

    2016-06-01

    Two innovative studies recently identified functional lymphatic structures in the meninges that may influence the development of HIV-associated neurological disorders (HAND). Until now, blood vessels were assumed to be the sole transport system by which HIV-infected monocytes entered the brain by bypassing a potentially hostile blood-brain barrier through inflammatory-mediated semi-permeability. A cascade of specific chemokine signals promote monocyte migration from blood vessels to surrounding brain tissues via a well-supported endothelium, where the cells differentiate into tissue macrophages capable of productive HIV infection. Lymphatic vessels on the other hand are more loosely organized than blood vessels. They absorb interstitial fluid from bodily tissues where HIV may persist and exchange a variety of immune cells (CD4(+) T cells, monocytes, macrophages, and dendritic cells) with surrounding tissues through discontinuous endothelial junctions. We propose that the newly discovered meningeal lymphatics are key to HIV migration among viral reservoirs and brain tissue during periods of undetectable plasma viral loads due to suppressive combinational antiretroviral therapy, thus redefining the migration process in terms of a blood-lymphatic transport system. PMID:26572785

  15. Prospects of brain-machine interfaces for space system control

    Science.gov (United States)

    Menon, Carlo; de Negueruela, Cristina; Millán, José del R.; Tonet, Oliver; Carpi, Federico; Broschart, Michael; Ferrez, Pierre; Buttfield, Anna; Tecchio, Franca; Sepulveda, Francisco; Citi, Luca; Laschi, Cecilia; Tombini, Mario; Dario, Paolo; Maria Rossini, Paolo; De Rossi, Danilo

    2009-02-01

    The dream of controlling and guiding computer-based systems using human brain signals has slowly but steadily become a reality. The available technology allows real-time implementation of systems that measure neuronal activity, convert their signals, and translate their output for the purpose of controlling mechanical and electronic systems. This paper describes the state of the art of non-invasive brain-machine interfaces (BMIs) and critically investigates both the current technological limits and the future potential that BMIs have for space applications. We present an assessment of the advantages that BMIs can provide and justify the preferred candidate concepts for space applications together with a vision of future directions for their implementation.

  16. The dopaminergic system in the aging brain of Drosophila

    Directory of Open Access Journals (Sweden)

    Katherine E White

    2010-12-01

    Full Text Available Drosophila models of Parkinson’s disease are characterised by two principal phenotypes: the specific loss of dopaminergic neurons in the aging brain and defects in motor behavior. However, an age-related analysis of these baseline parameters in wildtype Drosophila is lacking. Here we analysed the dopaminergic system and motor behavior in aging Drosophila. Dopaminergic neurons in the adult brain can be grouped into bilateral symmetric clusters, each comprising a stereotypical number of cells. Analysis of TH>mCD8::GFP and cell type-specific MARCM clones revealed that dopaminergic neurons show cluster-specific, stereotypical projection patterns with terminal arborization in target regions that represent distinct functional areas of the adult brain. Target areas include the mushroom bodies, involved in memory formation and motivation, and the central complex, involved in the control of motor behavior, indicating that similar to the mammalian brain, dopaminergic neurons in the fly brain are involved in the regulation of specific behaviors. Behavioral analysis revealed that Drosophila show an age-related decline in startle-induced locomotion and negative geotaxis. Motion tracking however, revealed that walking activity and exploration behavior, but not centrophobism increase at late stages of life. Analysis of TH>Dcr2, mCD8::GFP revealed a specific effect of Dcr2 expression on walking activity but not on exploratory or centrophobic behavior, indicating that the siRNA pathway may modulate distinct dopaminergic behaviors in Drosophila. Moreover, dopaminergic neurons were maintained between early- and late life, as quantified by TH>mCD8::GFP and anti-TH labelling, indicating that adult onset, age-related degeneration of dopaminergic neurons does not occur in the aging brain of Drosophila. Taken together, our data establish baseline parameters in Drosophila for the study of Parkinson’s disease as well as other disorders affecting dopaminergic neurons

  17. Interaction between lexical and grammatical language systems in the brain

    Science.gov (United States)

    Ardila, Alfredo

    2012-06-01

    This review concentrates on two different language dimensions: lexical/semantic and grammatical. This distinction between a lexical/semantic system and a grammatical system is well known in linguistics, but in cognitive neurosciences it has been obscured by the assumption that there are several forms of language disturbances associated with focal brain damage and hence language includes a diversity of functions (phoneme discrimination, lexical memory, grammar, repetition, language initiation ability, etc.), each one associated with the activity of a specific brain area. The clinical observation of patients with cerebral pathology shows that there are indeed only two different forms of language disturbances (disturbances in the lexical/semantic system and disturbances in the grammatical system); these two language dimensions are supported by different brain areas (temporal and frontal) in the left hemisphere. Furthermore, these two aspects of the language are developed at different ages during child's language acquisition, and they probably appeared at different historical moments during human evolution. Mechanisms of learning are different for both language systems: whereas the lexical/semantic knowledge is based in a declarative memory, grammatical knowledge corresponds to a procedural type of memory. Recognizing these two language dimensions can be crucial in understanding language evolution and human cognition.

  18. A Review of Hybrid Brain-Computer Interface Systems

    Directory of Open Access Journals (Sweden)

    Setare Amiri

    2013-01-01

    Full Text Available Increasing number of research activities and different types of studies in brain-computer interface (BCI systems show potential in this young research area. Research teams have studied features of different data acquisition techniques, brain activity patterns, feature extraction techniques, methods of classifications, and many other aspects of a BCI system. However, conventional BCIs have not become totally applicable, due to the lack of high accuracy, reliability, low information transfer rate, and user acceptability. A new approach to create a more reliable BCI that takes advantage of each system is to combine two or more BCI systems with different brain activity patterns or different input signal sources. This type of BCI, called hybrid BCI, may reduce disadvantages of each conventional BCI system. In addition, hybrid BCIs may create more applications and possibly increase the accuracy and the information transfer rate. However, the type of BCIs and their combinations should be considered carefully. In this paper, after introducing several types of BCIs and their combinations, we review and discuss hybrid BCIs, different possibilities to combine them, and their advantages and disadvantages.

  19. Treatment of Tourette Syndrome with Cannabinoids

    Directory of Open Access Journals (Sweden)

    Kirsten R. Müller-Vahl

    2013-01-01

    Full Text Available Cannabinoids have been used for hundred of years for medical purposes. To day, the cannabinoid delta-9-tetrahydrocannabinol (THC and the cannabis extract nabiximols are approved for the treatment of nausea, anorexia and spasticity, respectively. In Tourette syndrome (TS several anecdotal reports provided evidence that marijuana might be effective not only in the suppression of tics, but also in the treatment of associated behavioural problems. At the present time there are only two controlled trials available investigating the effect of THC in the treatment of TS. Using both self and examiner rating scales, in both studies a significant tic reduction could be observed after treatment with THC compared to placebo, without causing significant adverse effects. Available data about the effect of THC on obsessive-compulsive symptoms are inconsistent. According to a recent Cochrane review on the efficacy of cannabinoids in TS, definite conclusions cannot be drawn, because longer trials including a larger number of patients are missing. Notwithstanding this appraisal, by many experts THC is recommended for the treatment of TS in adult patients, when first line treatments failed to improve the tics. In treatment resistant adult patients, therefore, treatment with THC should be taken into consideration.

  20. Quantification of Cannabinoid Content in Cannabis

    Science.gov (United States)

    Tian, Y.; Zhang, F.; Jia, K.; Wen, M.; Yuan, Ch.

    2015-09-01

    Cannabis is an economically important plant that is used in many fields, in addition to being the most commonly consumed illicit drug worldwide. Monitoring the spatial distribution of cannabis cultivation and judging whether it is drug- or fiber-type cannabis is critical for governments and international communities to understand the scale of the illegal drug trade. The aim of this study was to investigate whether the cannabinoids content in cannabis could be spectrally quantified using a spectrometer and to identify the optimal wavebands for quantifying the cannabinoid content. Spectral reflectance data of dried cannabis leaf samples and the cannabis canopy were measured in the laboratory and in the field, respectively. Correlation analysis and the stepwise multivariate regression method were used to select the optimal wavebands for cannabinoid content quantification based on the laboratory-measured spectral data. The results indicated that the delta-9-tetrahydrocannabinol (THC) content in cannabis leaves could be quantified using laboratory-measured spectral reflectance data and that the 695 nm band is the optimal band for THC content quantification. This study provides prerequisite information for designing spectral equipment to enable immediate quantification of THC content in cannabis and to discriminate drug- from fiber-type cannabis based on THC content quantification in the field.

  1. The discovery of a cannabinoid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Devane, W.A.

    1989-01-01

    A tritiated form of CP-55,940, a Pfizer cannabinoid analog that is 20- to 100-fold more potent than {Delta}{sup 9}-tetrahydrocannabinol in various in vivo and in vitro models of cannabimimetric activity, was used as the tool with which to probe for a cannabinoid receptor in rat cortical membranes. The bound and free ligand were successfully separated using a centrifugation assay. Specific binding was saturable, rapidly attained, and completely reversible. The K{sub D}'s derived from kinetic analysis of binding agreed well with the K{sub D}'s derived from saturation and displacement analysis. The ({sup 3}H)CP-55,940 binding site exhibited high affinity with a K{sub D} of 68 pM as determined by LIGAND analysis of homologous displacement studies. The ability of other cannabinoid drugs to displace ({sup 3}H)CP-55,940 binding correlated well with the potency of these drugs in in vivo and in vitro models of cannabimimetic activity. The K{sub i} of {Delta}{sup 9}-THC was 1.6 nM. Cannabidiol and cannabigerol, which both lack psychoactivity in man, displaced specific binding by less than 50% at 1 {mu}M.

  2. The fibrinolytic system facilitates tumor cell migration across the blood-brain barrier in experimental melanoma brain metastasis

    International Nuclear Information System (INIS)

    Patients with metastatic tumors to the brain have a very poor prognosis. Increased metastatic potential has been associated with the fibrinolytic system. We investigated the role of the fibrinolytic enzyme plasmin in tumor cell migration across brain endothelial cells and growth of brain metastases in an experimental metastatic melanoma model. Metastatic tumors to the brain were established by direct injection into the striatum or by intracarotid injection of B16F10 mouse melanoma cells in C57Bl mice. The role of plasminogen in the ability of human melanoma cells to cross a human blood-brain barrier model was studied on a transwell system. Wild type mice treated with the plasmin inhibitor epsilon-aminocaproic acid (EACA) and plg-/- mice developed smaller tumors and survived longer than untreated wild type mice. Tumors metastasized to the brain of wild type mice treated with EACA and plg-/- less efficiently than in untreated wild type mice. No difference was observed in the tumor growth in any of the three groups of mice. Human melanoma cells were able to cross the human blood-brain barrier model in a plasmin dependent manner. Plasmin facilitates the development of tumor metastasis to the brain. Inhibition of the fibrinolytic system could be considered as means to prevent tumor metastasis to the brain

  3. Cannabinoid receptor type 1 protects nigrostriatal dopaminergic neurons against MPTP neurotoxicity by inhibiting microglial activation.

    Science.gov (United States)

    Chung, Young C; Bok, Eugene; Huh, Sue H; Park, Ju-Young; Yoon, Sung-Hwa; Kim, Sang R; Kim, Yoon-Seong; Maeng, Sungho; Park, Sung Hyun; Jin, Byung K

    2011-12-15

    This study examined whether the cannabinoid receptor type 1 (CB(1)) receptor contributes to the survival of nigrostriatal dopaminergic (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. MPTP induced significant loss of nigrostriatal DA neurons and microglial activation in the substantia nigra (SN), visualized with tyrosine hydroxylase or macrophage Ag complex-1 immunohistochemistry. Real-time PCR, ELISA, Western blotting, and immunohistochemistry disclosed upregulation of proinflammatory cytokines, activation of microglial NADPH oxidase, and subsequent reactive oxygen species production and oxidative damage of DNA and proteins in MPTP-treated SN, resulting in degeneration of DA neurons. Conversely, treatment with nonselective cannabinoid receptor agonists (WIN55,212-2 and HU210) led to increased survival of DA neurons in the SN, their fibers and dopamine levels in the striatum, and improved motor function. This neuroprotection by cannabinoids was accompanied by suppression of NADPH oxidase reactive oxygen species production and reduced expression of proinflammatory cytokines from activated microglia. Interestingly, cannabinoids protected DA neurons against 1-methyl-4-phenyl-pyridinium neurotoxicity in cocultures of mesencephalic neurons and microglia, but not in neuron-enriched mesencephalic cultures devoid of microglia. The observed neuroprotection and inhibition of microglial activation were reversed upon treatment with CB(1) receptor selective antagonists AM251 and/or SR14,716A, confirming the involvement of the CB(1) receptor. The present in vivo and in vitro findings clearly indicate that the CB(1) receptor possesses anti-inflammatory properties and inhibits microglia-mediated oxidative stress. Our results collectively suggest that the cannabinoid system is beneficial for the treatment of Parkinson's disease and other disorders associated with neuroinflammation and microglia-derived oxidative damage

  4. The Potential of Systems Thinking in Teacher Reform as Theorized for the Teaching Brain Framework

    Science.gov (United States)

    Rodriguez, Vanessa

    2013-01-01

    The teaching brain is a dynamic system that is in constant interaction with the learning brain. If we fail to explore the teaching brain we will continue to design educational reform policies that ignore the most important lens in the classroom: the teachers'. Master teachers recognize their perspective and leverage their teaching brains to embody…

  5. Core and Shell Song Systems Unique to the Parrot Brain.

    Directory of Open Access Journals (Sweden)

    Mukta Chakraborty

    Full Text Available The ability to imitate complex sounds is rare, and among birds has been found only in parrots, songbirds, and hummingbirds. Parrots exhibit the most advanced vocal mimicry among non-human animals. A few studies have noted differences in connectivity, brain position and shape in the vocal learning systems of parrots relative to songbirds and hummingbirds. However, only one parrot species, the budgerigar, has been examined and no differences in the presence of song system structures were found with other avian vocal learners. Motivated by questions of whether there are important differences in the vocal systems of parrots relative to other vocal learners, we used specialized constitutive gene expression, singing-driven gene expression, and neural connectivity tracing experiments to further characterize the song system of budgerigars and/or other parrots. We found that the parrot brain uniquely contains a song system within a song system. The parrot "core" song system is similar to the song systems of songbirds and hummingbirds, whereas the "shell" song system is unique to parrots. The core with only rudimentary shell regions were found in the New Zealand kea, representing one of the only living species at a basal divergence with all other parrots, implying that parrots evolved vocal learning systems at least 29 million years ago. Relative size differences in the core and shell regions occur among species, which we suggest could be related to species differences in vocal and cognitive abilities.

  6. Systemic stimulation of TLR2 impairs neonatal mouse brain development.

    Directory of Open Access Journals (Sweden)

    Xiaonan Du

    Full Text Available BACKGROUND: Inflammation is associated with perinatal brain injury but the underlying mechanisms are not completely characterized. Stimulation of Toll-like receptors (TLRs through specific agonists induces inflammatory responses that trigger both innate and adaptive immune responses. The impact of engagement of TLR2 signaling pathways on the neonatal brain is still unclear. The aim of this study was to investigate the potential effect of a TLR2 agonist on neonatal brain development. METHODOLOGY/PRINCIPAL FINDINGS: Mice were injected intraperitoneally (i.p. once a day from postnatal day (PND 3 to PND11 with endotoxin-free saline, a TLR2 agonist Pam(3CSK(4 (5 mg/kg or Lipopolysaccharide (LPS, 0.3 mg/kg. Pups were sacrificed at PND12 or PND53 and brain, spleen and liver were collected and weighed. Brain sections were stained for brain injury markers. Long-term effects on memory function were assessed using the Trace Fear Conditioning test at PND50. After 9 days of Pam(3CSK(4 administration, we found a decreased volume of cerebral gray matter, white matter in the forebrain and cerebellar molecular layer that was accompanied by an increase in spleen and liver weight at PND12. Such effects were not observed in Pam3CSK4-treated TLR 2-deficient mice. Pam3CSK4-treated mice also displayed decreased hippocampus neuronal density, and increased cerebral microglia density, while there was no effect on caspase-3 or general cell proliferation at PND12. Significantly elevated levels of IL-1β, IL-6, KC, and MCP-1 were detected after the first Pam3CSK4 injection in brain homogenates of PND3 mice. Pam(3CSK(4 administration did not affect long-term memory function nor the volume of gray or white matter. CONCLUSIONS/SIGNIFICANCE: Repeated systemic exposure to the TLR2 agonist Pam(3CSK(4 can have a short-term negative impact on the neonatal mouse brain.

  7. The CB1 cannabinoid receptor drives corticospinal motor neuron differentiation through the Ctip2/Satb2 transcriptional regulation axis

    OpenAIRE

    Díaz-Alonso, Javier; Aguado, Tania; Wu, Chia-Shan; Palazuelos, Javier; Hofmann, Clementine; Garcez, Patricia; Guillemot, Francois; Lu, Hui-Chen; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2012-01-01

    The generation and specification of pyramidal neuron subpopulations during development relies on a complex network of transcription factors. The CB1 cannabinoid receptor is the major molecular target of endocannabinoids and marijuana active compounds. This receptor has been shown to influence neural progenitor proliferation and axonal growth, but its involvement in neuronal differentiation and the functional impact in the adulthood caused by altering its signaling during brain development are...

  8. Pineal Proteins Upregulate Specific Antioxidant Defense Systems in the Brain

    Directory of Open Access Journals (Sweden)

    Vijay K. Bharti

    2009-01-01

    Full Text Available The neuroendocrine functions of the pineal affect a wide variety of glandular and nervous system processes. Beside melatonin (MEL, the pineal gland secretes and expresses certain proteins essential for various physiological functions. It has been suggested that the pineal gland may also have an antioxidant role due to secretory product other than MEL. Therefore, the present study was designed to study the effect of buffalo (Bubalus bubalis pineal proteins (PP on the antioxidant defense system in the brain of female rats. The twenty-four rats were taken in present study and were divided into four groups: control (0 day, control (28 day, vehicle control and buffalo PP. The PP was injected 100 µg/kg BW intraperitoneal (i.p. daily for 28 days. The activities of superoxide dismutase (SOD, glutathione peroxidase (GPx, catalase (CAT, glutathione reductase (GR and reduced glutathione (GSH concentration and the levels of lipid peroxidation (LPO in the brain tissue were measured to assess the antioxidant systems. These enzymes protect from adverse effects of free radicals and help in amelioration of oxidative stress. Buffalo pineal proteins administration did not cause any effect on brain LPO, whereas GPx, GR and GSH were significantly (p < 0.05 decreased. However, SOD and CAT activities were increased to significant levels than the control in PP treated rats. Our study herein suggested that buffalo (Bubalus bubalis pineal proteins upregulates specific antioxidant defense systems and can be useful in control of various oxidative stress-induced neuronal diseases.

  9. Systemic progesterone for modulating electrocautery-induced secondary brain injury.

    Science.gov (United States)

    Un, Ka Chun; Wang, Yue Chun; Wu, Wutian; Leung, Gilberto Ka Kit

    2013-09-01

    Bipolar electrocautery is an effective and commonly used haemostatic technique but it may also cause iatrogenic brain trauma due to thermal injury and secondary inflammatory reactions. Progesterone has anti-inflammatory and neuroprotective actions in traumatic brain injury. However, its potential use in preventing iatrogenic brain trauma has not been explored. We conducted a pilot animal study to investigate the effect of systemic progesterone on brain cellular responses to electrocautery-induced injury. Adult male Sprague-Dawley rats received standardized bipolar electrocautery (40 W for 2 seconds) over the right cerebral cortex. The treatment group received progesterone intraperitoneally 2 hours prior to surgery; the control group received the drug vehicle only. Immunohistochemical studies showed that progesterone could significantly reduce astrocytic hypertrophy on postoperative day 1, 3 and 7, as well as macrophage infiltration on day 3. The number of astrocytes, however, was unaffected. Our findings suggest that progesterone should be further explored as a neuroprotective agent against electrocautery-induced or other forms of iatrogenic trauma during routine neurosurgical procedures. Future studies may focus on different dosing regimens, neuronal survival, functional outcome, and to compare progesterone with other agents such as dexamethasone. PMID:23830688

  10. Romantic love: a mammalian brain system for mate choice

    OpenAIRE

    Fisher, Helen E.; Aron, Arthur; Brown, Lucy L.

    2006-01-01

    Mammals and birds regularly express mate preferences and make mate choices. Data on mate choice among mammals suggest that this behavioural ‘attraction system’ is associated with dopaminergic reward pathways in the brain. It has been proposed that intense romantic love, a human cross-cultural universal, is a developed form of this attraction system. To begin to determine the neural mechanisms associated with romantic attraction in humans, we used functional magnetic resonance imaging (fMRI) t...

  11. The Immune System and Developmental Programming of Brain and Behavior

    OpenAIRE

    Bilbo, Staci D; Schwarz, Jaclyn M.

    2012-01-01

    The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease i...

  12. Tuning pathological brain oscillations with neurofeedback: A systems neuroscience framework

    OpenAIRE

    Tomas eRos; Baars, Bernard J.; Lanius, Ruth A.; Patrik eVuilleumier

    2014-01-01

    Neurofeedback is emerging as a promising technique that enables self-regulation of ongoing brain oscillations. However, despite a rise in empirical evidence attesting to its clinical benefits, a solid theoretical basis is still lacking on the manner in which neurofeedback is able to achieve these outcomes. The present work attempts to bring together various concepts from neurobiology, engineering, and dynamical systems so as to propose a contemporary theoretical framework for the mechanistic ...

  13. Towards an hybrid system for annotating brain MRI images

    OpenAIRE

    Mechouche, Ammar; Golbreich, Christine; Gibaud, Bernard

    2006-01-01

    This paper describes a method combining symbolic and numerical techniques for annotating brain Magnetic Resonance images. The goal is to assist existing automatic labelling methods which are mostly statistical in nature and do not work very well in certain situations such as the presence of lesions. The system uses existing statistical methods for generating ABox facts that constitute a set of initial information sufficient for fruitful reasoning. The reasoning is supported by an OWL ontology...

  14. Endocannabinoid System: A Multi-Facet Therapeutic Target.

    Science.gov (United States)

    Kaur, Rimplejeet; Ambwani, Sneha R; Singh, Surjit

    2016-01-01

    the therapeutic targets for both cannabinoid receptor agonists and antagonists. One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that act selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted. Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids. In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as "protective" and "disease inducing substance", time-dependent changes in the expression of cannabinoid receptors. PMID:27086601

  15. Brain CB2 Receptors: Implications for Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Michelle Roche

    2010-08-01

    Full Text Available Although previously thought of as the peripheral cannabinoid receptor, it is now accepted that the CB2 receptor is expressed in the central nervous system on microglia, astrocytes and subpopulations of neurons. Expression of the CB2 receptor in the brain is significantly lower than that of the CB1 receptor. Conflicting findings have been reported on the neurological effects of pharmacological agents targeting the CB2 receptor under normal conditions. Under inflammatory conditions, CB2 receptor expression in the brain is enhanced and CB2 receptor agonists exhibit potent anti-inflammatory effects. These findings have prompted research into the CB2 receptor as a possible target for the treatment of neuroinflammatory and neurodegenerative disorders. Neuroinflammatory alterations are also associated with neuropsychiatric disorders and polymorphisms in the CB2 gene have been reported in depression, eating disorders and schizophrenia. This review will examine the evidence to date for a role of brain CB2 receptors in neuropsychiatric disorders.

  16. Synthetic cannabinoid hyperemesis resulting in rhabdomyolysis and acute renal failure.

    Science.gov (United States)

    Argamany, Jacqueline R; Reveles, Kelly R; Duhon, Bryson

    2016-04-01

    Synthetic cannabinoid usage has increased in the past decade. Concurrently, emergency management of associated adverse effects due to synthetic cannabinoid usage has also risen. Reported toxicities include psychosis, seizures, cardiotoxicity, acute kidney injury, and death. While cannabis was first described as a cause of acute hyperemesis in 2004, a more recent case series also describes the association between cannabinoid hyperemesis and risk of acute renal failure. Synthetic cannabinoids have also been reported to cause acute hyperemesis and acute renal failure; however, the risk of rhabdomyolysis-induced renal failure has yet to be elucidated. In this article, we report the first known case of synthetic cannabinoid hyperemesis leading to rhabdomyolysis and acute renal failure. PMID:26422191

  17. Constitutive cannabinoid 1 and mu opioid receptor activity in the ventral tegmental area: occurrence, function and therapeutic relevance

    NARCIS (Netherlands)

    Meye, F.J.

    2012-01-01

    Cannabinoid 1 receptors (CB1Rs) play a crucial role in regulating systems dedicated to processing rewards and emotions. It was known that in artificial systems, CB1Rs can exhibit activity that is independent of the typical agonist-driven form. However, it remained largely unclear whether this consti

  18. Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Monnot, Andrew D.; Behl, Mamta; Ho, Sanna; Zheng, Wei, E-mail: wzheng@purdue.edu

    2011-11-15

    Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+ 55%) and decrease (- 56%) in CSF Cu levels (p < 0.05), respectively; however, neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+ 92%) and significantly slower (- 53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p < 0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.

  19. Cannabinoid modulation of functional connectivity within regions processing attentional salience.

    Science.gov (United States)

    Bhattacharyya, Sagnik; Falkenberg, Irina; Martin-Santos, Rocio; Atakan, Zerrin; Crippa, Jose A; Giampietro, Vincent; Brammer, Mick; McGuire, Philip

    2015-05-01

    There is now considerable evidence to support the hypothesis that psychotic symptoms are the result of abnormal salience attribution, and that the attribution of salience is largely mediated through the prefrontal cortex, the striatum, and the hippocampus. Although these areas show differential activation under the influence of delta-9-tetrahydrocannabinol (delta-9-THC) and cannabidiol (CBD), the two major derivatives of cannabis sativa, little is known about the effects of these cannabinoids on the functional connectivity between these regions. We investigated this in healthy occasional cannabis users by employing event-related functional magnetic resonance imaging (fMRI) following oral administration of delta-9-THC, CBD, or a placebo capsule. Employing a seed cluster-based functional connectivity analysis that involved using the average time series from each seed cluster for a whole-brain correlational analysis, we investigated the effect of drug condition on functional connectivity between the seed clusters and the rest of the brain during an oddball salience processing task. Relative to the placebo condition, delta-9-THC and CBD had opposite effects on the functional connectivity between the dorsal striatum, the prefrontal cortex, and the hippocampus. Delta-9-THC reduced fronto-striatal connectivity, which was related to its effect on task performance, whereas this connection was enhanced by CBD. Conversely, mediotemporal-prefrontal connectivity was enhanced by delta-9-THC and reduced by CBD. Our results suggest that the functional integration of brain regions involved in salience processing is differentially modulated by single doses of delta-9-THC and CBD and that this relates to the processing of salient stimuli. PMID:25249057

  20. Cannabinoid facilitation of fear extinction memory recall in humans.

    Science.gov (United States)

    Rabinak, Christine A; Angstadt, Mike; Sripada, Chandra S; Abelson, James L; Liberzon, Israel; Milad, Mohammed R; Phan, K Luan

    2013-01-01

    A first-line approach to treat anxiety disorders is exposure-based therapy, which relies on extinction processes such as repeatedly exposing the patient to stimuli (conditioned stimuli; CS) associated with the traumatic, fear-related memory. However, a significant number of patients fail to maintain their gains, partly attributed to the fact that this inhibitory learning and its maintenance is temporary and conditioned fear responses can return. Animal studies have shown that activation of the cannabinoid system during extinction learning enhances fear extinction and its retention. Specifically, CB1 receptor agonists, such as Δ9-tetrahydrocannibinol (THC), can facilitate extinction recall by preventing recovery of extinguished fear in rats. However, this phenomenon has not been investigated in humans. We conducted a study using a randomized, double-blind, placebo-controlled, between-subjects design, coupling a standard Pavlovian fear extinction paradigm and simultaneous skin conductance response (SCR) recording with an acute pharmacological challenge with oral dronabinol (synthetic THC) or placebo (PBO) 2 h prior to extinction learning in 29 healthy adult volunteers (THC = 14; PBO = 15) and tested extinction retention 24 h after extinction learning. Compared to subjects that received PBO, subjects that received THC showed low SCR to a previously extinguished CS when extinction memory recall was tested 24 h after extinction learning, suggesting that THC prevented the recovery of fear. These results provide the first evidence that pharmacological enhancement of extinction learning is feasible in humans using cannabinoid system modulators, which may thus warrant further development and clinical testing. This article is part of a Special Issue entitled 'Cognitive Enhancers'. PMID:22796109

  1. Cannabinoid CB1 receptor agonists do not decrease, but may increase, acoustic trauma-induced tinnitus in rats

    Directory of Open Access Journals (Sweden)

    Yiwen eZheng

    2015-03-01

    Full Text Available Tinnitus has been suggested to arise from neuronal hyperactivity in auditory areas of the brain and anti-epileptic drugs are sometimes used to provide relief from tinnitus. Recently, the anti-epileptic properties of the cannabinoid drugs have gained increasing interest; however, the use of cannabinoids as a form of treatment for tinnitus is controversial. In the present study, we tested whether a combination of delta-9-tetrahydrocannabinol (delta-9-THC and cannabidiol (CBD, delivered in a 1:1 ratio, could affect tinnitus perception in a rat model of acoustic trauma-induced tinnitus. Following sham treatment or acoustic trauma, the animals were divided into the following groups: 1 sham (i.e. no acoustic trauma with vehicle treatment; 2 sham with drug treatment (i.e. delta-9-THC + CBD; 3 acoustic trauma-exposed exhibiting tinnitus, with drug treatment; and 4 acoustic trauma-exposed exhibiting no tinnitus, with drug treatment. The animals received either the vehicle or the cannabinoid drugs every day, 30 min before the tinnitus behavioural testing. Acoustic trauma caused a significant increase in the auditory brainstem response (ABR thresholds in the exposed animals, indicating hearing loss; however, there was a partial recovery over 6 months. Acoustic trauma did not always result in tinnitus; however among those that did exhibit tinnitus, some of them had tinnitus at multiple frequencies while others had it only at a single frequency. The cannabinoids significantly increased the number of tinnitus animals in the exposed-tinnitus group, but not in the sham group. The results suggest that cannabinoids may promote the development of tinnitus, especially when there is pre-existing hearing damage.

  2. Clinical Analysis for Brain Tumor-Related Epilepsy during Chemotherapy for Systemic Cancer with Single Brain Metastasis

    OpenAIRE

    Kim, Young Zoon; Lee, Eun Hee; Lee, Kyoung Soo

    2011-01-01

    Purpose The purpose of this prospective observational study was to determine the incidence, patterns, and predisposing factors for brain tumor-related epilepsy (BTRE) during chemotherapy for systemic cancer with single brain metastasis (BM). Materials and Methods Between February 2006 and June 2010, 103 patients who underwent chemotherapy for systemic cancer with single BM were enrolled. We compared the clinical factors of patients and BM between patients with and without BTRE. We determined ...

  3. Blockade of Nicotine and Cannabinoid Reinforcement and Relapse by a Cannabinoid CB1-Receptor Neutral Antagonist AM4113 and Inverse Agonist Rimonabant in Squirrel Monkeys.

    Science.gov (United States)

    Schindler, Charles W; Redhi, Godfrey H; Vemuri, Kiran; Makriyannis, Alexandros; Le Foll, Bernard; Bergman, Jack; Goldberg, Steven R; Justinova, Zuzana

    2016-08-01

    Nicotine, the main psychoactive component of tobacco, and (-)-Δ(9)-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, play major roles in tobacco and marijuana dependence as reinforcers of drug-seeking and drug-taking behavior. Drugs that act as inverse agonists of cannabinoid CB1 receptors in the brain can attenuate the rewarding and abuse-related effects of nicotine and THC, but their clinical use is hindered by potentially serious side effects. The recently developed CB1-receptor neutral antagonists may provide an alternative therapeutic approach to nicotine and cannabinoid dependence. Here we compare attenuation of nicotine and THC reinforcement and reinstatement in squirrel monkeys by the CB1-receptor inverse agonist rimonabant and by the recently developed CB1-receptor neutral antagonist AM4113. Both rimonabant and AM4113 reduced two effects of nicotine and THC that play major roles in tobacco and marijuana dependence: (1) maintenance of high rates of drug-taking behavior, and (2) priming- or cue-induced reinstatement of drug-seeking behavior in abstinent subjects (models of relapse). In contrast, neither rimonabant nor AM4113 modified cocaine-reinforced or food-reinforced operant behavior under similar experimental conditions. However, both rimonabant and AM4113 reduced cue-induced reinstatement in monkeys trained to self-administer cocaine, suggesting the involvement of a common cannabinoid-mediated mechanism in the cue-induced reinstatement for different drugs of abuse. These findings point to CB1-receptor neutral antagonists as a new class of medications for treatment of both tobacco dependence and cannabis dependence. PMID:26888056

  4. Maze learning by a hybrid brain-computer system.

    Science.gov (United States)

    Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan

    2016-01-01

    The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation. PMID:27619326

  5. Defining the brain systems of lust, romantic attraction, and attachment.

    Science.gov (United States)

    Fisher, Helen E; Aron, Arthur; Mashek, Debra; Li, Haifang; Brown, Lucy L

    2002-10-01

    Mammals and birds have evolved three primary, discrete, interrelated emotion-motivation systems in the brain for mating, reproduction, and parenting: lust, attraction, and male-female attachment. Each emotion-motivation system is associated with a specific constellation of neural correlates and a distinct behavioral repertoire. Lust evolved to initiate the mating process with any appropriate partner; attraction evolved to enable individuals to choose among and prefer specific mating partners, thereby conserving their mating time and energy; male-female attachment evolved to enable individuals to cooperate with a reproductive mate until species-specific parental duties have been completed. The evolution of these three emotion-motivation systems contribute to contemporary patterns of marriage, adultery, divorce, remarriage, stalking, homicide and other crimes of passion, and clinical depression due to romantic rejection. This article defines these three emotion-motivation systems. Then it discusses an ongoing project using functional magnetic resonance imaging of the brain to investigate the neural circuits associated with one of these emotion-motivation systems, romantic attraction. PMID:12238608

  6. Study of pathogenesis and the change of immune system of radiation brain injury

    International Nuclear Information System (INIS)

    Radiation brain injury is a severe complication of the pate tumour after radiotherapy. Review the pathogenesis of radiation brain injury and ion irradiation and the change of immune system then conclude the change of immune system that radiation brain injury can cause. (authors)

  7. Sexually-dimorphic effects of cannabinoid compounds on emotion and cognition

    Directory of Open Access Journals (Sweden)

    Tiziana eRubino

    2011-09-01

    Full Text Available This review addresses the issue of sex differences in the response to cannabinoid compounds focusing mainly on behaviours belonging to the cognitive and emotional sphere. Sexual dimorphism exists in the different components of the endocannabinoid system.. Males seem to have higher CB1 receptor binding sites than females, but females seem to possess more efficient CB1 receptors. Differences between sexes have been also observed in the metabolic processing of THC, the main psychoactive ingredient of marijuana. The consistent dimorphism in the endocannabinoid system and THC metabolism may justify at least in part the different sensitivity observed between male and female animals in different behavioural paradigms concerning emotion and cognition after treatment with cannabinoid compounds.On the bases of these observations, we would like to emphasize the need of including females in basic research and to analyze results for sex differences in epidemiological studies.

  8. Beta-caryophyllene is a dietary cannabinoid

    Science.gov (United States)

    Gertsch, Jürg; Leonti, Marco; Raduner, Stefan; Racz, Ildiko; Chen, Jian-Zhong; Xie, Xiang-Qun; Altmann, Karl-Heinz; Karsak, Meliha; Zimmer, Andreas

    2008-01-01

    The psychoactive cannabinoids from Cannabis sativa L. and the arachidonic acid-derived endocannabinoids are nonselective natural ligands for cannabinoid receptor type 1 (CB1) and CB2 receptors. Although the CB1 receptor is responsible for the psychomodulatory effects, activation of the CB2 receptor is a potential therapeutic strategy for the treatment of inflammation, pain, atherosclerosis, and osteoporosis. Here, we report that the widespread plant volatile (E)-β-caryophyllene [(E)-BCP] selectively binds to the CB2 receptor (Ki = 155 ± 4 nM) and that it is a functional CB2 agonist. Intriguingly, (E)-BCP is a common constituent of the essential oils of numerous spice and food plants and a major component in Cannabis. Molecular docking simulations have identified a putative binding site of (E)-BCP in the CB2 receptor, showing ligand π–π stacking interactions with residues F117 and W258. Upon binding to the CB2 receptor, (E)-BCP inhibits adenylate cylcase, leads to intracellular calcium transients and weakly activates the mitogen-activated kinases Erk1/2 and p38 in primary human monocytes. (E)-BCP (500 nM) inhibits lipopolysaccharide (LPS)-induced proinflammatory cytokine expression in peripheral blood and attenuates LPS-stimulated Erk1/2 and JNK1/2 phosphorylation in monocytes. Furthermore, peroral (E)-BCP at 5 mg/kg strongly reduces the carrageenan-induced inflammatory response in wild-type mice but not in mice lacking CB2 receptors, providing evidence that this natural product exerts cannabimimetic effects in vivo. These results identify (E)-BCP as a functional nonpsychoactive CB2 receptor ligand in foodstuff and as a macrocyclic antiinflammatory cannabinoid in Cannabis. PMID:18574142

  9. Cannabinoid hyperemesis syndrome with extreme hydrophilia

    Directory of Open Access Journals (Sweden)

    Enuh HA

    2013-08-01

    Full Text Available Hilary A Enuh,1 Julia Chin,1 Jay Nfonoyim21Department of Medicine, 2Critical Care Unit, Richmond University Medical Center, Staten Island, NY, USAAbstract: Marijuana is the most widely used recreational drug in the US. Hyperemetic hydrophilic syndrome is a previously described but infrequently recognized condition of cannabinoid abuse with hyperemesis and obsessive hot showering. We present a 47-year-old male known marijuana addict with intractable abdominal pain who could not wait for physical examination, meal, or medication, because of obsessive compulsive warm baths. He had a history of epilepsy and addiction to marijuana, which he took on the day of admission. He presented to the hospital with a seizure, complicated by nausea, vomiting, and severe abdominal pain. His examination was unremarkable, except for mild epigastric tenderness. His laboratory and radiological tests were within normal limits, except for a positive urine drug screen for marijuana and opiates. He took himself immediately to the bathroom and remained under a hot shower with the exception of two 15-minute breaks for the rest of the day. He stated that it made him feel better than medication. Receiving medication and even eating was a problem because of this compulsive showering. Abstinence from marijuana during the hospital stay made the patient's nausea and vomiting resolve significantly. Cannabinoid hyperemesis is a differential diagnosis among patients with intractable nausea, vomiting, and obsessive hot bathing. The syndrome is an unmistakable indication of marijuana addiction. A thorough history and observation is very valuable. Recognition of this entity will reduce unnecessary testing and utilization of health care resources.Keywords: cannabinoid, compulsive bathing, cyclic vomiting, hyperemesis, hydrophilia, marijuana

  10. Systemic LPS administration induces brain inflammation but not dopaminergic neuronal death in the substantia nigra

    OpenAIRE

    Jeong, Hey-Kyeong; Jou, Ilo; Joe, Eun-hye

    2010-01-01

    It has been suggested that brain inflammation is important in aggravation of brain damage and/or that inflammation causes neurodegenerative diseases including Parkinson's disease (PD). Recently, systemic inflammation has also emerged as a risk factor for PD. In the present study, we evaluated how systemic inflammation induced by intravenous (iv) lipopolysaccharides (LPS) injection affected brain inflammation and neuronal damage in the rat. Interestingly, almost all brain inflammatory response...

  11. Cannabinoid receptor 2 as a potential therapeutic target in rheumatoid arthritis

    OpenAIRE

    Fukuda, Shin; Kohsaka, Hitoshi; Takayasu, Aiko; Yokoyama, Waka; Miyabe, Chie; Miyabe, Yoshishige; Harigai, Masayoshi; Miyasaka, Nobuyuki; Nanki, Toshihiro

    2014-01-01

    Background Some of cannabinoids, which are chemical compounds contained in marijuana, are immunosuppressive. One of the receptors, CB receptor 1 (CB1), is expressed predominantly by the cells in the central nervous system, whereas CB receptor 2 (CB2) is expressed primarily by immune cells. Theoretically, selective CB2 agonists should be devoid of psychoactive effects. In this study, we investigated therapeutic effects of a selective CB2 agonist on arthritis. Methods The expression of CB2 was ...

  12. Emerging treatment options for spasticity in multiple sclerosis – clinical utility of cannabinoids

    OpenAIRE

    Ashton JC

    2011-01-01

    John C AshtonDepartment of Pharmacology and Toxicology, Otago School of Medical Sciences, University of Otago, Dunedin, New ZealandAbstract: Multiple sclerosis (MS) is a widespread and common disabling autoimmune disease of the central nervous system. The main disabling symptom is muscle spasticity, which occurs in most patients. Treatment of spasticity with existing drugs is often poor, and there is a need for new and additional treatments. This article reviews the use of cannabinoids for th...

  13. On the Role of Cannabinoid CB1- and μ-Opioid Receptors in Motor Impulsivity

    OpenAIRE

    Wiskerke, Joost; van Mourik, Yvar; Schetters, Dustin; Schoffelmeer, Anton N. M.; Pattij, Tommy

    2012-01-01

    Previous studies using a rat 5-choice serial reaction time task have established a critical role for dopamine D2 receptors in regulating increments in motor impulsivity induced by acute administration of the psychostimulant drugs amphetamine and nicotine. Here we investigated whether cannabinoid CB1 and/or μ-opioid receptors are involved in nicotine-induced impulsivity, given recent findings indicating that both receptor systems mediate amphetamine-induced motor impulsivity. Results showed th...

  14. Fatal intoxication with synthetic cannabinoid MDMB-CHMICA.

    Science.gov (United States)

    Adamowicz, Piotr

    2016-04-01

    MDMB-CHMICA is a synthetic cannabinoid that appeared on the European drug market in September 2014. This substance was found in Poland in the herbal mixture "Mocarz" ("Strongman"), which caused a large outbreak of intoxications at the beginning of July 2015. This paper describes the circumstances of death and toxicological findings in a fatal intoxication with MDMB-CHMICA (in combination with alcohol). Loss of consciousness and asystole occurred a few minutes after smoking the 'legal high'. The man died after 4 days of hospitalisation. The cause of death accepted by the medical examiner was multiple organ failure. MDMB-CHMICA was detected and quantified in blood (ante- and postmortem) and internal organs tissues. The samples were analysed using liquid chromatography with mass spectrometry (LC-MS/MS). The concentration of MDMB-CHMICA in antemortem blood was 5.6ng/mL. Although the death occurred after 4 days from administration a relatively high concentration (2.6ng/g) was estimated in the brain. Traces of this compound were also found in other postmortem materials (blood, stomach, liver, bile, and kidney). The presented case shows the health risks associated with MDMB-CHMICA use. The administration of this substance can lead to the number of organ failures, cardiac arrest and consequently death. PMID:26934903

  15. Psychoactive cannabinoids reduce gastrointestinal propulsion and motility in rodents.

    Science.gov (United States)

    Shook, J E; Burks, T F

    1989-05-01

    Marijuana has been reported to be an effective antinauseant and antiemetic in patients receiving cancer chemotherapy. Whether this is due to psychological changes, central antiemetic properties and/or direct effects on gastrointestinal (GI) function is not known. The purpose of these investigations was to determine whether the major constituents of marijuana and the synthetic cannabinoid nabilone have any effects on GI function which can be detected in rodent models of GI transit and motility. Intravenous delta 9-tetrahydrocannabinol (delta 9-THC) slowed the rate of gastric emptying and small intestinal transit in mice and in rats. Delta 9,11-THC, cannabinol and nabilone given i.v. also inhibited small intestinal transit in mice, but were less effective in reducing gastric emptying. Cannabidiol given i.v. had no effect on gastric emptying or intestinal transit. Those cannabinoids which inhibited GI transit did so at doses equal to, or lower, than those reported to produce central nervous system activity. In rats, delta 9-THC produced greater inhibition of gastric emptying and small intestinal transit than large bowel transit, indicating a selectivity for the more proximal sections of the gut. In addition, i.v. delta 9-THC decreased the frequency of both gastric and intestinal contractions without altering intraluminal pressure. Such changes probably reflect a decrease in propulsive activity, without change in basal tone. These data indicate that delta 9-THC, delta 9,11-THC, cannabinol and nabilone (but not cannabidiol) exert an inhibitory effect on GI transit and motility in rats. PMID:2542532

  16. The Endocannabinoid System as Pharmacological Target Derived from Its CNS Role in Energy Homeostasis and Reward. Applications in Eating Disorders and Addiction

    OpenAIRE

    Francisco-Javier Bermúdez-Silva; Maria-Paz Viveros; Ana-Belén Lopez-Rodriguez; Wagner, Edward J.

    2011-01-01

    The endocannabinoid system (ECS) has been implicated in many physiological functions, including the regulation of appetite, food intake and energy balance, a crucial involvement in brain reward systems and a role in psychophysiological homeostasis (anxiety and stress responses). We first introduce this important regulatory system and chronicle what is known concerning the signal transduction pathways activated upon the binding of endogenous cannabinoid ligands to the Gi/0-coupled CB1 cannabin...

  17. A Brain-like Learning System with Supervised, Unsupervised and Reinforcement Learning

    Science.gov (United States)

    Sasakawa, Takafumi; Hu, Jinglu; Hirasawa, Kotaro

    Our brain has three different learning paradigms: supervised, unsupervised and reinforcement learning. And it is suggested that those learning paradigms relate deeply to the cerebellum, cerebral cortex and basal ganglia in the brain, respectively. Inspired by these knowledge of brain, we present a brain-like learning system with those three different learning algorithms. The proposed system consists of three parts: the supervised learning (SL) part, the unsupervised learning (UL) part and the reinforcement learning (RL) part. The SL part, corresponding to the cerebellum of brain, learns an input-output mapping by supervised learning. The UL part, corresponding to the cerebral cortex of brain, is a competitive learning network, and divides an input space to subspaces by unsupervised learning. The RL part, corresponding to the basal ganglia of brain, optimizes the model performance by reinforcement learning. Numerical simulations show that the proposed brain-like learning system optimizes its performance automatically and has superior performance to an ordinary neural network.

  18. Failure to extinguish fear and genetic variability in the human cannabinoid receptor 1.

    Science.gov (United States)

    Heitland, I; Klumpers, F; Oosting, R S; Evers, D J J; Leon Kenemans, J; Baas, J M P

    2012-01-01

    Failure to extinguish fear can lead to persevering anxiety and has been postulated as an important mechanism in the pathogenesis of human anxiety disorders. In animals, it is well documented that the endogenous cannabinoid system has a pivotal role in the successful extinction of fear, most importantly through the cannabinoid receptor 1. However, no human studies have reported a translation of this preclinical evidence yet. Healthy medication-free human subjects (N=150) underwent a fear conditioning and extinction procedure in a virtual reality environment. Fear potentiation of the eyeblink startle reflex was measured to assess fear-conditioned responding, and subjective fear ratings were collected. Participants were genotyped for two polymorphisms located within the promoter region (rs2180619) and the coding region (rs1049353) of cannabinoid receptor 1. As predicted from the preclinical literature, acquisition and expression of conditioned fear did not differ between genotypes. Crucially, whereas both homozygote (G/G, N=23) and heterozygote (A/G, N=68) G-allele carriers of rs2180619 displayed robust extinction of fear, extinction of fear-potentiated startle was absent in A/A homozygotes (N=51). Additionally, this resistance to extinguish fear left A/A carriers of rs2180619 with significantly higher levels of fear-potentiated startle at the end of the extinction training. No effects of rs1049353 genotype were observed regarding fear acquisition and extinction. These results suggest for the first time involvement of the human endocannabinoid system in fear extinction. Implications are that genetic variability in this system may underlie individual differences in anxiety, rendering cannabinoid receptor 1 a potential target for novel pharmacological treatments of anxiety disorders. PMID:23010766

  19. PET study of cholinergic system in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Shinotoh, Hitoshi [Chiba Univ. (Japan). School of Medicine

    1999-01-01

    Recently, we have developed a method to measure acetylcholinesterase (AChE) activity, a functional marker for cholinergic system, by positron emission tomography (PET) and carbon-11 labeled N-methyl-4-piperidyl acetate. Kinetic analysis of the radioactivity in the brain and the plasma yielded a rate constant ``k 3`` as an index of AChE activity. The ratios for the k 3 values for the cerebral cortex/thalamus/cerebellum/striatum found in healthy participants were 1/ 3/ 8/ 10, respectively, corresponding well with AChE activity ratios in the brain at necropsy (1/ 3/ 8/ 38), except for the striatum. In 23 healthy volunteers (age range: 24-89 years), there was no age-related decline of k 3 values in the cerebral cortex, suggesting AChE activity is preserved in aged cerebral cortex. In 11 patients with Alzheimer`s disease, there was a significant reduction (-24%) of k 3 values in the cerebral cortex and hippocampus, suggesting a loss of ascending cholinergic system from the basal forebrain to the cerebral cortex and hippocampus. In 16 patients with Parkinson`s disease, there was a significant reduction (-18%) of k 3 values in the cerebral cortex. In 10 patients with progressive supra nuclear palsy, there was a significant reduction (-38%) of k 3 values in the thalamus. This technique is useful for investigating central cholinergic system in neuro degenerative disorders with dementia. (author)

  20. PET study of cholinergic system in the brain

    International Nuclear Information System (INIS)

    Recently, we have developed a method to measure acetylcholinesterase (AChE) activity, a functional marker for cholinergic system, by positron emission tomography (PET) and carbon-11 labeled N-methyl-4-piperidyl acetate. Kinetic analysis of the radioactivity in the brain and the plasma yielded a rate constant ''k 3'' as an index of AChE activity. The ratios for the k 3 values for the cerebral cortex/thalamus/cerebellum/striatum found in healthy participants were 1/ 3/ 8/ 10, respectively, corresponding well with AChE activity ratios in the brain at necropsy (1/ 3/ 8/ 38), except for the striatum. In 23 healthy volunteers (age range: 24-89 years), there was no age-related decline of k 3 values in the cerebral cortex, suggesting AChE activity is preserved in aged cerebral cortex. In 11 patients with Alzheimer's disease, there was a significant reduction (-24%) of k 3 values in the cerebral cortex and hippocampus, suggesting a loss of ascending cholinergic system from the basal forebrain to the cerebral cortex and hippocampus. In 16 patients with Parkinson's disease, there was a significant reduction (-18%) of k 3 values in the cerebral cortex. In 10 patients with progressive supra nuclear palsy, there was a significant reduction (-38%) of k 3 values in the thalamus. This technique is useful for investigating central cholinergic system in neuro degenerative disorders with dementia. (author)

  1. Phase I hydroxylated metabolites of the K2 synthetic cannabinoid JWH-018 retain in vitro and in vivo cannabinoid 1 receptor affinity and activity.

    Directory of Open Access Journals (Sweden)

    Lisa K Brents

    Full Text Available BACKGROUND: K2 products are synthetic cannabinoid-laced, marijuana-like drugs of abuse, use of which is often associated with clinical symptoms atypical of marijuana use, including hypertension, agitation, hallucinations, psychosis, seizures and panic attacks. JWH-018, a prevalent K2 synthetic cannabinoid, is structurally distinct from Δ(9-THC, the main psychoactive ingredient in marijuana. Since even subtle structural differences can lead to differential metabolism, formation of novel, biologically active metabolites may be responsible for the distinct effects associated with K2 use. The present study proposes that K2's high adverse effect occurrence is due, at least in part, to distinct JWH-018 metabolite activity at the cannabinoid 1 receptor (CB1R. METHODS/PRINCIPAL FINDINGS: JWH-018, five potential monohydroxylated metabolites (M1-M5, and one carboxy metabolite (M6 were examined in mouse brain homogenates containing CB1Rs, first for CB1R affinity using a competition binding assay employing the cannabinoid receptor radioligand [(3H]CP-55,940, and then for CB1R intrinsic efficacy using an [(35S]GTPγS binding assay. JWH-018 and M1-M5 bound CB1Rs with high affinity, exhibiting K(i values that were lower than or equivalent to Δ(9-THC. These molecules also stimulated G-proteins with equal or greater efficacy relative to Δ(9-THC, a CB1R partial agonist. Most importantly, JWH-018, M2, M3, and M5 produced full CB1R agonist levels of activation. CB1R-mediated activation was demonstrated by blockade with O-2050, a CB1R-selective neutral antagonist. Similar to Δ(9-THC, JWH-018 and M1 produced a marked depression of locomotor activity and core body temperature in mice that were both blocked by the CB1R-preferring antagonist/inverse agonist AM251. CONCLUSIONS/SIGNIFICANCE: Unlike metabolites of most drugs, the studied JWH-018 monohydroxylated compounds, but not the carboxy metabolite, retain in vitro and in vivo activity at CB1Rs. These observations

  2. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat.

    Science.gov (United States)

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2'-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned locomotion

  3. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat

    Science.gov (United States)

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2′-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned

  4. Species differences in cannabinoid receptor 2 and receptor responses to cocaine self-administration in mice and rats.

    Science.gov (United States)

    Zhang, Hai-Ying; Bi, Guo-Hua; Li, Xia; Li, Jie; Qu, Hong; Zhang, Shi-Jian; Li, Chuan-Yun; Onaivi, Emmanuel S; Gardner, Eliot L; Xi, Zheng-Xiong; Liu, Qing-Rong

    2015-03-01

    The discovery of functional cannabinoid receptors 2 (CB2Rs) in brain suggests a potential new therapeutic target for neurological and psychiatric disorders. However, recent findings in experimental animals appear controversial. Here we report that there are significant species differences in CB2R mRNA splicing and expression, protein sequences, and receptor responses to CB2R ligands in mice and rats. Systemic administration of JWH133, a highly selective CB2R agonist, significantly and dose-dependently inhibited intravenous cocaine self-administration under a fixed ratio (FR) schedule of reinforcement in mice, but not in rats. However, under a progressive ratio (PR) schedule of reinforcement, JWH133 significantly increased breakpoint for cocaine self-administration in rats, but decreased it in mice. To explore the possible reasons for these conflicting findings, we examined CB2R gene expression and receptor structure in the brain. We found novel rat-specific CB2C and CB2D mRNA isoforms in addition to CB2A and CB2B mRNA isoforms. In situ hybridization RNAscope assays found higher levels of CB2R mRNA in different brain regions and cell types in mice than in rats. By comparing CB2R-encoding regions, we observed a premature stop codon in the mouse CB2R gene that truncated 13 amino-acid residues including a functional autophosphorylation site in the intracellular C-terminus. These findings suggest that species differences in the splicing and expression of CB2R genes and receptor structures may in part explain the different effects of CB2R-selective ligands on cocaine self-administration in mice and rats. PMID:25374096

  5. Cannabinoids for the Treatment of Schizophrenia? A Balanced Neurochemical Framework for Both Adverse and Therapeutic Effects of Cannabis Use

    Directory of Open Access Journals (Sweden)

    Carissa M. Coulston

    2011-01-01

    Full Text Available Recent studies have found that cannabinoids may improve neuropsychological performance, ameliorate negative symptoms, and have antipsychotic properties for a subgroup of the schizophrenia population. These findings are in contrast to the longstanding history of adverse consequences of cannabis use, predominantly on the positive symptoms, and a balanced neurochemical basis for these opposing views is lacking. This paper details a review of the neurobiological substrates of schizophrenia and the neurochemical effects of cannabis use in the normal population, in both cortical (in particular prefrontal and subcortical brain regions. The aim of this paper is to provide a holistic neurochemical framework in which to understand how cannabinoids may impair, or indeed, serve to ameliorate the positive and negative symptoms as well as cognitive impairment. Directions in which future research can proceed to resolve the discrepancies are briefly discussed.

  6. On the role of cannabinoid CB1- and µ-opioid receptors in nicotine-induced motor impulsivity

    Directory of Open Access Journals (Sweden)

    TommyPattij

    2012-06-01

    Full Text Available Previous studies using a rat 5-choice serial reaction time task (5-CSRTT have established a critical role for dopamine D2 receptors in regulating increments in motor impulsivity induced by acute administration of the psychostimulant drugs amphetamine and nicotine. Here we investigated whether cannabinoid CB1 and/or µ-opioid receptors are involved in nicotine-induced impulsivity, given recent findings indicating that both receptor systems mediate amphetamine-induced motor impulsivity. Results showed that the cannabinoid CB1 receptor antagonist SR141716A, but not the opioid receptor antagonist naloxone, reduced nicotine-induced premature responding. In contrast, SR141716A did not affect impulsivity following a challenge with the dopamine transporter inhibitor GBR 12909, a form of drug-induced impulsivity that was previously found to be dependent on µ-opioid receptor activation. Finally, unlike SR141716A and the dopamine D2 receptor antagonist eticlopride, naloxone did not affect impulsivity when the intertrial interval was lengthened from 5 to 7s, i.e. under conditions of heightened cognitive load resulting in higher levels of premature responding. Together, these findings indicate that nicotine-induced motor impulsivity is cannabinoid, but not opioid receptor-dependent. These data confirm that the endogenous cannabinoid, dopamine, and opioid systems each play important, but distinct roles in regulating motor impulsivity. The rather complex interplay between these neurotransmitter systems modulating impulsivity will be discussed in terms of the differential involvement of mesocortical and mesolimbic neurocircuitry.

  7. Emotional Arousal and Multiple Memory Systems in the Mammalian Brain

    Directory of Open Access Journals (Sweden)

    Mark G. Packard

    2012-03-01

    Full Text Available Emotional arousal induced by stress and/or anxiety can exert complex effects on learning and memory processes in mammals. Recent studies have begun to link study of the influence of emotional arousal on memory with earlier research indicating that memory is organized in multiple systems in the brain that differ in terms of the type of memory they mediate. Specifically, these studies have examined whether emotional arousal may have a differential effect on the cognitive and stimulus-response habit memory processes subserved by the hippocampus and dorsal striatum, respectively. Evidence indicates that stress or the peripheral injection of anxiogenic drugs can bias animals and humans towards the use of striatal-dependent habit memory in dual-solution tasks in which both hippocampal and stritatal-based strategies can provide an adequate solution. A bias towards the use of habit memory can also be produced by intra-basolateral amygdala administration of anxiogenic drugs, consistent with the well documented role of efferent projections of this brain region in mediating the modulatory influence of emotional arousal on memory. In some learning situations, the bias towards the use of habit memory produced by emotional arousal appears to result from an impairing effect on hippocampus-dependent cognitive memory. Further research examining the neural mechanisms linking emotion and the relative use of multiple memory systems should prove useful in view of the potential role for maladaptive habitual behaviors in various human psychopathologies.

  8. Brain systems underlying encounter expectancy bias in spider phobia.

    Science.gov (United States)

    Aue, Tatjana; Hoeppli, Marie-Eve; Piguet, Camille; Hofstetter, Christoph; Rieger, Sebastian W; Vuilleumier, Patrik

    2015-06-01

    Spider-phobic individuals are characterized by exaggerated expectancies to be faced with spiders (so-called encounter expectancy bias). Whereas phobic responses have been linked to brain systems mediating fear, little is known about how the recruitment of these systems relates to exaggerated expectancies of threat. We used fMRI to examine spider-phobic and control participants while they imagined visiting different locations in a forest after having received background information about the likelihood of encountering different animals (spiders, snakes, and birds) at these locations. Critically, imagined encounter expectancies modulated brain responses differently in phobics as compared with controls. Phobics displayed stronger negative modulation of activity in the lateral prefrontal cortex, precuneus, and visual cortex by encounter expectancies for spiders, relative to snakes or birds (within-participants analysis); these effects were not seen in controls. Between-participants correlation analyses within the phobic group further corroborated the hypothesis that these phobia-specific modulations may underlie irrationality in encounter expectancies (deviations of encounter expectancies from objective background information) in spider phobia; the greater the negative modulation a phobic participant displayed in the lateral prefrontal cortex, precuneus, and visual cortex, the stronger was her bias in encounter expectancies for spiders. Interestingly, irrationality in expectancies reflected in frontal areas relied on right rather than left hemispheric deactivations. Our data accord with the idea that expectancy biases in spider phobia may reflect deficiencies in cognitive control and contextual integration that are mediated by right frontal and parietal areas. PMID:25694215

  9. Fluidic system for long-term in vitro culturing and monitoring of organotypic brain slices

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Troels-Smith, Ane R.; Dimaki, Maria;

    2015-01-01

    Brain slice preparations cultured in vitro have long been used as a simplified model for studying brain development, electrophysiology, neurodegeneration and neuroprotection. In this paper an open fluidic system developed for improved long term culturing of organotypic brain slices is presented...... their structure better than the control slices cultured using the standard interface method....

  10. Proteomics of the photoneuroendocrine circadian system of the brain

    DEFF Research Database (Denmark)

    Møller, Morten; Lund-Andersen, Casper; Rovsing, Louise;

    2010-01-01

    The photoneuroendocrine circadian system of the brain consists of (a) specialized photoreceptors in the retina, (b) a circadian generator located in the forebrain that contains "clock genes," (c) specialized nuclei in the forebrain involved in neuroendocrine secretion, and (d) the pineal gland. The...... circadian generator is a nucleus, called the suprachiasmatic nucleus (SCN). The neurons of this nucleus contain "clock genes," the transcription of which exhibits a circadian rhythm. Most circadian rhythms are generated by the neurons of this nucleus and, via neuronal and humoral connections, the SCN......-generating system in mammals is described, and recent proteomic studies that investigate day/night changes in the retina, SCN, and pineal gland are reviewed. Further circadian changes controlled by the SCN in gene and protein expression in the liver are discussed....

  11. How Can Brain Learn to Control a Nonholonomic System?

    Directory of Open Access Journals (Sweden)

    Noriyasu Homma

    2010-01-01

    Full Text Available Humans can often conduct both linear and nonlinear control tasks after a sufficient number of trials, even if they initially do not have sufficient knowledge about the system's dynamics and the way to control it. Theoretically, it is well known that some nonlinear systems cannot be stabilized asymptotically by any linear controllers and we have reported by an f-MRI experiment that different types of information may be involved in linear and nonlinear control tasks, respectively, from a brain function mapping point of view. In this paper, from a controllability analysis, we still show a possibility that human may use a linear control scheme for such nonlinear control tasks by switching the linear controllers with a virtual constraint. It is suggested that the proposed virtual constraint can play an important role to overcome a limitation of the linear controllers and to mimic human control behavior.

  12. Modulation of the Endocannabinoid System: Vulnerability Factor and New Treatment Target for Stimulant Addiction.

    Directory of Open Access Journals (Sweden)

    DidierJutras-Aswad

    2013-09-01

    Full Text Available Cannabis is one of the most widely used illicit substance among users of stimulants such as cocaine and amphetamine. Interestingly, recent accumulating evidence points toward the involvement of the endocannabinoid system (ECBS in the neurobiological processes related to stimulant addiction. This article presents an up-to-date review with deep-insights into the pivotal role of the ECBS in the neurobiology of stimulant addiction and the effects of its modulation on addictive behaviors. The aims of this article are to: 1 review the role of cannabis use and ECBS modulation in the neurobiological substrates of psychostimulant addiction and 2 evaluate the potential of cannabinoid-based pharmacological strategies to treat stimulant addiction. A growing number of studies support a critical role of the ECBS and its modulation by synthetic or natural cannabinoid in various neurobiological and behavioral aspects of stimulants addiction. Thus, cannabinoids modulate brain reward systems closely involved in stimulants addiction, and provide further evidence that the cannabinoid system could be explored as a potential drug discovery target for treating addiction across different classes of stimulants.

  13. Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB₁R signaling and anxiety-like behavior.

    Science.gov (United States)

    Imperatore, Roberta; Morello, Giovanna; Luongo, Livio; Taschler, Ulrike; Romano, Rosaria; De Gregorio, Danilo; Belardo, Carmela; Maione, Sabatino; Di Marzo, Vincenzo; Cristino, Luigia

    2015-11-01

    Endocannabinoids (eCB) are key regulators of excitatory/inhibitory neurotransmission at cannabinoid-1-receptor (CB1 R)-expressing axon terminals. The most abundant eCB in the brain, that is 2-arachidonoylglycerol (2-AG), is hydrolyzed by the enzyme monoacylglycerol lipase (MAGL), whose chronic inhibition in the brain was reported to cause CB1 R desensitization. We employed the MAGL knock-out mouse (MAGL-/-), a genetic model of congenital and sustained elevation of 2-AG levels in the brain, to provide morphological and biochemical evidence for β-arrestin2-mediated CB1 R desensitization in brain regions involved in the control of emotional states, that is, the prefrontal cortex (PFC), amygdala, hippocampus and cerebellar cortex. We found a widespread CB1 R/β-arrestin2 co-expression in the mPFC, amygdala and hippocampus accompanied by impairment of extracellular signal-regulated kinase signaling and elevation of vesicular glutamate transporter (VGluT1) at CB1 R-positive excitatory terminals in the mPFC, or vesicular GABA transporter (VGAT) at CB1 R-positive inhibitory terminals in the amygdala and hippocampus. The impairment of CB1 R signaling in MAGL-/- mice was also accompanied by enhanced excitatory drive in the basolateral amygdala (BLA)-mPFC circuit, with subsequent elevation of glutamate release to the mPFC and anxiety-like and obsessive-compulsive behaviors, as assessed by the light/dark box and marble burying tests, respectively. Collectively, these data provide evidence for a β-arrestin2-mediated desensitization of CB1 R in MAGL-/- mice, with impact on the synaptic plasticity of brain circuits involved in emotional functions. In this study, the authors provide evidence that congenitally enhanced endocannabinoid levels in the neuronal circuits underlying anxiety-like behavioral states (mainly medial prefrontal cortex, amygdala and hippocampus) lead to CB1R desenistization and anxiety and depression. MAGL-/- mice, a model of congenital overactivity of the e

  14. Cannabinoid receptor-interacting protein Crip1a modulates CB1 receptor signaling in mouse hippocampus.

    Science.gov (United States)

    Guggenhuber, Stephan; Alpar, Alan; Chen, Rongqing; Schmitz, Nina; Wickert, Melanie; Mattheus, Tobias; Harasta, Anne E; Purrio, Martin; Kaiser, Nadine; Elphick, Maurice R; Monory, Krisztina; Kilb, Werner; Luhmann, Heiko J; Harkany, Tibor; Lutz, Beat; Klugmann, Matthias

    2016-05-01

    The cannabinoid type 1 receptor (Cnr1, CB1R) mediates a plethora of physiological functions in the central nervous system as a presynaptic modulator of neurotransmitter release. The recently identified cannabinoid receptor-interacting protein 1a (Cnrip1a, CRIP1a) binds to the C-terminal domain of CB1R, a region known to be important for receptor desensitization and internalization. Evidence that CRIP1a and CB1R interact in vivo has been reported, but the neuroanatomical distribution of CRIP1a is unknown. Moreover, while alterations of hippocampal CRIP1a levels following limbic seizures indicate a role in controlling excessive neuronal activity, the physiological function of CRIP1a in vivo has not been investigated. In this study, we analyzed the spatial distribution of CRIP1a in the hippocampus and examined CRIP1a as a potential modulator of CB1R signaling. We found that Cnrip1a mRNA is co-expressed with Cnr1 mRNA in pyramidal neurons and interneurons of the hippocampal formation. CRIP1a protein profiles were largely segregated from CB1R profiles in mossy cell terminals but not in hippocampal CA1 region. CB1R activation induced relocalization to close proximity with CRIP1a. Adeno-associated virus-mediated overexpression of CRIP1a specifically in the hippocampus revealed that CRIP1a modulates CB1R activity by enhancing cannabinoid-induced G protein activation. CRIP1a overexpression extended the depression of excitatory currents by cannabinoids in pyramidal neurons of the hippocampus and diminished the severity of chemically induced acute epileptiform seizures. Collectively, our data indicate that CRIP1a enhances hippocampal CB1R signaling in vivo. PMID:25772509

  15. The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction: implications in psychosis and schizophrenia.

    Directory of Open Access Journals (Sweden)

    Pilar eSánchez-Blázquez

    2014-01-01

    Full Text Available The endocannabinoid system is widespread throughout the central nervous system and its type 1 receptor (CB1 plays a crucial role in preventing the neurotoxicity caused by activation of glutamate N-methyl-D-aspartate receptors (NMDARs. Indeed, it is the activity of NMDARs themselves that provides the demands on the endogenous cannabinoids in order to control their calcium currents. Therefore, a physiological role of this system is to maintain NMDAR activity within safe limits, thereby protecting neural cells from excitotoxicity. Thus, cannabinoids may be able to control NMDAR overactivation-related neural dysfunctions; however the major obstacles to the therapeutic utilization of these compounds are their psychotropic effects and negative influence on cognitive performance. Studies in humans have indicated that abuse of smoked cannabis can promote psychosis and even circumstantially precipitate symptoms of schizophrenia, although the latter appears to require a prior vulnerability in the individual. It is possible that cannabinoids provoke psychosis/schizophrenia reflecting a mechanism common to neuroprotection the reduction of NMDAR activity. Cannabinoids are proposed to produce such effect by reducing the pre-synaptic release of glutamate or interfering with postsynaptic NMDAR-regulated signaling pathways. The efficacy of such control requires the endocannabinoid system to apply its negative influence in a manner that is proportional to the strength of NMDAR signaling. Thus, cannabinoids acting at the wrong time or exerting an inappropriate influence on their receptors may cause NMDAR hypofunction. The purpose of the present review is to draw the attention of the reader to the newly described functional and physical CB1-NMDAR association, which may elucidate the scenario required for the rapid and efficacious control of NMDAR activity. Whether alterations in these mechanisms may increase NMDAR hypofunction leading to vulnerability to

  16. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries

    Science.gov (United States)

    Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki

    2016-06-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries.

  17. Cannabinoid receptor 2: Potential role in immunomodulation and neuroinflammation Review

    OpenAIRE

    Rom, Slava; Persidsky, Yuri

    2013-01-01

    An accumulating body of evidence suggests that endocannabinoids and cannabinoid receptors type 1 and 2 (CB1, CB2) play a significant role in physiologic and pathologic processes, including cognitive and immune functions. While the addictive properties of marijuana, an extract from the Cannabis plant, are well recognized, there is growing appreciation of the therapeutic potential of cannabinoids in multiple pathologic conditions involving chronic inflammation (inflammatory bowel disease, arthr...

  18. Cannabinoids and cancer: pros and cons of an antitumour strategy

    OpenAIRE

    Bifulco, Maurizio; Laezza, Chiara; Pisanti, Simona; Gazzerro, Patrizia

    2006-01-01

    In the last two decades, research has dramatically increased the knowledge of cannabinoids biology and pharmacology. In mammals, compounds with properties similar to active components of Cannabis sativa, the so called ‘endocannabinoids', have been shown to modulate key cell-signalling pathways involved in cancer cell growth, invasion and metastasis. To date, cannabinoids have been licensed for clinical use as palliative treatment of chemotherapy, but increased evidences showed direct antiprol...

  19. Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier

    Directory of Open Access Journals (Sweden)

    Ravi Kant Upadhyay

    2014-01-01

    Full Text Available Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.

  20. Participation of cannabinoid receptors in peripheral nociception induced by some NSAIDs

    Directory of Open Access Journals (Sweden)

    L.C.R. Silva

    2012-12-01

    Full Text Available Nonsteroidal anti-inflammatory drugs (NSAIDs have been used extensively to control inflammatory pain. Several peripheral antinociceptive mechanisms have been described, such as opioid system and NO/cGMP/KATP pathway activation. There is evidence that the cannabinoid system can also contribute to the in vivo pharmacological effects of ibuprofen and indomethacin. However, there is no evidence of the involvement of the endocannabinoid system in the peripheral antinociception induced by NSAIDs. Thus, the aim of this study was to investigate the participation of the endocannabinoid system in the peripheral antinociceptive effect of NSAIDs. All experiments were performed on male Wistar rats (160-200 g; N = 4 per group. Hyperalgesia was induced by a subcutaneous intraplantar (ipl injection of prostaglandin E2 (PGE2, 2 μg/paw in the rat’s hindpaw and measured by the paw pressure test 3 h after injection. The weight in grams required to elicit a nociceptive response, paw flexion, was determined as the nociceptive threshold. The hyperalgesia was calculated as the difference between the measurements made before and after PGE2, which induced hyperalgesia (mean = 83.3 ± 4.505 g. AM-251 (80 μg/paw and AM-630 (100 μg/paw were used as CB1 and CB2 cannabinoid receptor antagonists, respectively. Ipl injection of 40 μg dipyrone (mean = 5.825 ± 2.842 g, 20 μg diclofenac (mean = 4.825 ± 3.850 g and 40 μg indomethacin (mean = 6.650 ± 3.611 g elicited a local peripheral antinociceptive effect. This effect was not antagonized by ipl CB1 cannabinoid antagonist to dipyrone (mean = 5.00 ± 0.9815 g, diclofenac (mean = 2.50 ± 0.8337 g and indomethacin (mean = 6.650 ± 4.069 g or CB2 cannabinoid antagonist to dipyrone (mean = 1.050 ± 6.436 g, diclofenac (mean = 6.675 ± 1.368 g and indomethacin (mean = 2.85 ± 5.01 g. Thus, cannabinoid receptors do not seem to be involved in the peripheral antinociceptive mechanism of the NSAIDs dipyrone, diclofenac and

  1. Participation of cannabinoid receptors in peripheral nociception induced by some NSAIDs

    International Nuclear Information System (INIS)

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used extensively to control inflammatory pain. Several peripheral antinociceptive mechanisms have been described, such as opioid system and NO/cGMP/KATP pathway activation. There is evidence that the cannabinoid system can also contribute to the in vivo pharmacological effects of ibuprofen and indomethacin. However, there is no evidence of the involvement of the endocannabinoid system in the peripheral antinociception induced by NSAIDs. Thus, the aim of this study was to investigate the participation of the endocannabinoid system in the peripheral antinociceptive effect of NSAIDs. All experiments were performed on male Wistar rats (160-200 g; N = 4 per group). Hyperalgesia was induced by a subcutaneous intraplantar (ipl) injection of prostaglandin E2 (PGE2, 2 µg/paw) in the rat's hindpaw and measured by the paw pressure test 3 h after injection. The weight in grams required to elicit a nociceptive response, paw flexion, was determined as the nociceptive threshold. The hyperalgesia was calculated as the difference between the measurements made before and after PGE2, which induced hyperalgesia (mean = 83.3 ± 4.505 g). AM-251 (80 µg/paw) and AM-630 (100 µg/paw) were used as CB1 and CB2 cannabinoid receptor antagonists, respectively. Ipl injection of 40 µg dipyrone (mean = 5.825 ± 2.842 g), 20 µg diclofenac (mean = 4.825 ± 3.850 g) and 40 µg indomethacin (mean = 6.650 ± 3.611 g) elicited a local peripheral antinociceptive effect. This effect was not antagonized by ipl CB1 cannabinoid antagonist to dipyrone (mean = 5.00 ± 0.9815 g), diclofenac (mean = 2.50 ± 0.8337 g) and indomethacin (mean = 6.650 ± 4.069 g) or CB2 cannabinoid antagonist to dipyrone (mean = 1.050 ± 6.436 g), diclofenac (mean = 6.675 ± 1.368 g) and indomethacin (mean = 2.85 ± 5.01 g). Thus, cannabinoid receptors do not seem to be involved in the peripheral antinociceptive mechanism of the NSAIDs dipyrone, diclofenac and

  2. Participation of cannabinoid receptors in peripheral nociception induced by some NSAIDs

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.C.R.; Romero, T.R.L.; Guzzo, L.S.; Duarte, I.D.G. [Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2012-09-21

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used extensively to control inflammatory pain. Several peripheral antinociceptive mechanisms have been described, such as opioid system and NO/cGMP/KATP pathway activation. There is evidence that the cannabinoid system can also contribute to the in vivo pharmacological effects of ibuprofen and indomethacin. However, there is no evidence of the involvement of the endocannabinoid system in the peripheral antinociception induced by NSAIDs. Thus, the aim of this study was to investigate the participation of the endocannabinoid system in the peripheral antinociceptive effect of NSAIDs. All experiments were performed on male Wistar rats (160-200 g; N = 4 per group). Hyperalgesia was induced by a subcutaneous intraplantar (ipl) injection of prostaglandin E{sub 2} (PGE{sub 2}, 2 µg/paw) in the rat's hindpaw and measured by the paw pressure test 3 h after injection. The weight in grams required to elicit a nociceptive response, paw flexion, was determined as the nociceptive threshold. The hyperalgesia was calculated as the difference between the measurements made before and after PGE{sub 2}, which induced hyperalgesia (mean = 83.3 ± 4.505 g). AM-251 (80 µg/paw) and AM-630 (100 µg/paw) were used as CB{sub 1} and CB{sub 2} cannabinoid receptor antagonists, respectively. Ipl injection of 40 µg dipyrone (mean = 5.825 ± 2.842 g), 20 µg diclofenac (mean = 4.825 ± 3.850 g) and 40 µg indomethacin (mean = 6.650 ± 3.611 g) elicited a local peripheral antinociceptive effect. This effect was not antagonized by ipl CB{sub 1} cannabinoid antagonist to dipyrone (mean = 5.00 ± 0.9815 g), diclofenac (mean = 2.50 ± 0.8337 g) and indomethacin (mean = 6.650 ± 4.069 g) or CB{sub 2} cannabinoid antagonist to dipyrone (mean = 1.050 ± 6.436 g), diclofenac (mean = 6.675 ± 1.368 g) and indomethacin (mean = 2.85 ± 5.01 g). Thus, cannabinoid receptors do not seem to be involved in the peripheral antinociceptive mechanism of

  3. Deep Brain Stimulation Response in Pathologically Confirmed Cases of Multiple System Atrophy

    OpenAIRE

    Ullman, Michael; Vedam-Mai, Vinata; Resnick, Andrew S.; Yachnis, Anthony T.; McFarland, Nikolaus R.; Merritt, Stacy; Zeilman, Pamela; Foote, Kelly D; Okun, Michael S.

    2011-01-01

    Deep brain stimulation is a treatment for select cases of medication refractory movement disorders including Parkinson’s disease. Deep brain stimulation has not been recommended for treatment in multiple system atrophy patients. However, the paucity of literature documenting the effects of deep brain stimulation in multiple system atrophy patients and the revelation of a levodopa-responsive subtype of multiple system atrophy suggests further investigation is necessary.

  4. Cannabinoids decrease the th17 inflammatory autoimmune phenotype.

    Science.gov (United States)

    Kozela, Ewa; Juknat, Ana; Kaushansky, Nathali; Rimmerman, Neta; Ben-Nun, Avraham; Vogel, Zvi

    2013-12-01

    Cannabinoids, the Cannabis constituents, are known to possess anti-inflammatory properties but the mechanisms involved are not understood. Here we show that the main psychoactive cannabinoid, Δ-9-tetrahydrocannabinol (THC), and the main nonpsychoactive cannabinoid, cannabidiol (CBD), markedly reduce the Th17 phenotype which is known to be increased in inflammatory autoimmune pathologies such as Multiple Sclerosis. We found that reactivation by MOG35-55 of MOG35-55-specific encephalitogenic T cells (cells that induce Experimental Autoimmune Encephalitis when injected to mice) in the presence of spleen derived antigen presenting cells led to a large increase in IL-17 production and secretion. In addition, we found that the cannabinoids CBD and THC dose-dependently (at 0.1-5 μM) suppressed the production and secretion of this cytokine. Moreover, the mRNA and protein of IL-6, a key factor in Th17 induction, were also decreased. Pretreatment with CBD also resulted in increased levels of the anti-inflammatory cytokine IL-10. Interestingly, CBD and THC did not affect the levels of TNFα and IFNγ. The downregulation of IL-17 secretion by these cannabinoids does not seem to involve the CB1, CB2, PPARγ, 5-HT1A or TRPV1 receptors. In conclusion, the results show a unique cannabinoid modulation of the autoimmune cytokine milieu combining suppression of the pathogenic IL-17 and IL-6 cytokines along with boosting the expression of the anti-inflammatory cytokine IL-10. PMID:23892791

  5. Behavioural and molecular consequences of chronic cannabinoid treatment in Huntington's disease transgenic mice.

    Science.gov (United States)

    Dowie, M J; Howard, M L; Nicholson, L F B; Faull, R L M; Hannan, A J; Glass, M

    2010-09-29

    Early loss of CB1 receptors is a hallmark of human Huntington's disease. Data from rodent studies suggest that preservation and activation of CB1 receptors may be protective against disease progression. R6/1 transgenic mice are considered to be a model of early pathogenic changes in Huntington's disease. We have shown previously that levels of CB1 in R6/1 mice prior to the onset of motor symptoms (12 weeks of age) remain high enough to justify commencement of cannabinoid drug treatment. Eight weeks of daily treatment with the cannabinoid agonists HU210 (0.01 mg/kg) and Delta(9)-tetrahydrocannabinol (THC, 10.00 mg/kg), or the inhibitor of endocannabinoid metabolism URB597 (0.30 mg/kg), did not alter the progressive deterioration of performance observed in motor behavioural testing. HU210-treated R6/1 mice experienced a significant increase in seizure events suggesting that this therapy may lower the seizure threshold and cautioning against highly efficacious agonists as potential therapy in this disease. Molecular characterisation of brains at the end of the study showed that there were no significant effects of HU210 or THC treatment on the ligand binding of cannabinoid CB1, dopamine D1, D2, serotonin 5HT2A or GABA(A) receptors, nor CB1 or fatty acid amide hydrolase (FAAH) mRNA expression in R6/1 mice. Intriguingly, a significant increase in the number of ubiquitinated aggregates was observed in the striatum with HU210 treatment, indicating an influence of CB1 on the disease process. Chronic URB597 treatment preserved CB1 receptors in the R6/1 striatum, suggesting that the manipulation of endocannabinoid levels warrants further exploration. PMID:20600638

  6. CB1 cannabinoid receptor antagonism promotes remodeling and cannabinoid treatment prevents endothelial dysfunction and hypotension in rats with myocardial infarction

    OpenAIRE

    Wagner, Jens A.; Hu, Kai; Karcher, Jan; Bauersachs, Johann; Schäfer, Andreas; Laser, Martin; Han, Hong; Ertl, Georg

    2003-01-01

    To study the long-term effects of altered cannabinoid receptor activity on myocardial and vascular function, Wistar rats were treated with the selective CB1 antagonist AM-251 (0.5 mg kg−1 d−1), the potent synthetic cannabinoid HU-210 (50 μg kg−1 d−1) or vehicle for 12 weeks after coronary artery ligation or sham operation.AM-251 further reduced the pressure-generating capacity, shifted the pressure volume curve to the right (P

  7. The Human Nervous System: A Framework for Teaching and the Teaching Brain

    Science.gov (United States)

    Rodriguez, Vanessa

    2013-01-01

    The teaching brain is a new concept that mirrors the complex, dynamic, and context-dependent nature of the learning brain. In this article, I use the structure of the human nervous system and its sensing, processing, and responding components as a framework for a re-conceptualized teaching system. This teaching system is capable of responses on an…

  8. Improved Classification Methods for Brain Computer Interface System

    Directory of Open Access Journals (Sweden)

    YI Fang

    2012-03-01

    Full Text Available Brain computer interface (BCI aims at providing a new communication way without brain’s normal output through nerve and muscle. The electroencephalography (EEG has been widely used for BCI system because it is a non-invasive approach. For the EEG signals of left and right hand motor imagery, the event-related desynchronization (ERD and event-related synchronization(ERS are used as classification features in this paper. The raw data are transformed by nonlinear methods and classified by Fisher classifier. Compared with the linear methods, the classification accuracy can get an obvious increase to 86.25%. Two different nonlinear transform were arised and one of them is under the consideration of the relativity of two channels of EEG signals. With these nonlinear transform, the performance are also stable with the balance of two misclassifications.

  9. BrainFrame: a knowledge visualization system for the neurosciences

    Science.gov (United States)

    Barnes, Steven J.; Shaw, Chris D.

    2009-01-01

    Neuroscience has benefited from an explosion of new experimental techniques; many have only become feasible in the wake of improvements in computing speed and data storage. At the same time, these new computation-intensive techniques have led to a growing gulf between the data and the knowledge extracted from those data. That is, in the neurosciences there is a paucity of effective knowledge management techniques and an accelerating accumulation of experimental data. The purpose of the project described in the present paper is to create a visualization of the knowledge base of the neurosciences. At run-time, this 'BrainFrame' project accesses several web-based ontologies and generates a semantically zoomable representation of any one of many levels of the human nervous system.

  10. Whole brain radiotherapy for brain metastases from breast cancer: estimation of survival using two stratification systems

    International Nuclear Information System (INIS)

    Brain metastases (BM) are the most common form of intracranial cancer. The incidence of BM seems to have increased over the past decade. Recursive partitioning analysis (RPA) of data from three Radiation Therapy Oncology Group (RTOG) trials (1200 patients) has allowed three prognostic groups to be identified. More recently a simplified stratification system that uses the evaluation of three main prognostics factors for radiosurgery in BM was developed. To analyze the overall survival rate (OS), prognostic factors affecting outcomes and to estimate the potential improvement in OS for patients with BM from breast cancer, stratified by RPA class and brain metastases score (BS-BM). From January 1996 to December 2004, 174 medical records of patients with diagnosis of BM from breast cancer, who received WBRT were analyzed. The surgery followed by WBRT was used in 15.5% of patients and 84.5% of others patients were submitted at WBRT alone; 108 patients (62.1%) received the fractionation schedule of 30 Gy in 10 fractions. Solitary BM was present in 37.9 % of patients. The prognostic factors evaluated for OS were: age, Karnofsky Performance Status (KPS), number of lesions, localization of lesions, neurosurgery, chemotherapy, absence extracranial disease, RPA class, BS-BM and radiation doses and fractionation. The OS in 1, 2 and 3 years was 33.4 %, 16.7%, and 8.8 %, respectively. The RPA class analysis showed strong relation with OS (p < 0.0001). The median survival time by RPA class in months was: class I 11.7, class II 6.2 and class III 3.0. The significant prognostic factors associated with better OS were: higher KPS (p < 0.0001), neurosurgery (P < 0.0001), single metastases (p = 0.003), BS-BM (p < 0.0001), control primary tumor (p = 0.002) and absence of extracranial metastases (p = 0.001). In multivariate analysis, the factors associated positively with OS were: neurosurgery (p < 0.0001), absence of extracranial metastases (p <0.0001) and RPA class I (p < 0.0001). Our

  11. Brain Malformations

    Science.gov (United States)

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  12. Endogenous cannabinoid release within prefrontal-limbic pathways affects memory consolidation of emotional training

    NARCIS (Netherlands)

    Morena, M.; Roozendaal, B.; Trezza, V.; Ratano, P.; Peloso, A.; Hauer, D.; Atsak, P.; Trabace, L.; Cuomo, V.; McGaugh, J.L.; Schelling, G.; Campolongo, P.

    2014-01-01

    Previous studies have provided extensive evidence that administration of cannabinoid drugs after training modulates the consolidation of memory for an aversive experience. The present experiments investigated whether the memory consolidation is regulated by endogenously released cannabinoids. The ex

  13. Phospholipase C I and II brain isozymes: immunohistochemical localization in neuronal systems in rat brain.

    OpenAIRE

    Gerfen, C R; Choi, W C; Suh, P G; Rhee, S G

    1988-01-01

    Two distinct inositol phospholipid-specific phospholipase C (PLC; phosphatidylcholine phosphatidohydrolase, EC 3.1.4.3) isozymes, PLC-I and PLC-II, have been purified and characterized from bovine brain. Monoclonal antibodies that distinguish between these isozymes are used in the present study to map isozyme distribution in the rat brain with immunohistochemical techniques. Both isozymes are localized in neurons, and, whereas PLC-II is rather ubiquitous--being expressed in most neurons, PLC-...

  14. Regulation of Energy Balance and Body Weight by the Brain: A Distributed System Prone to Disruption

    OpenAIRE

    Faulconbridge, Lucy F.; Hayes, Matthew R.

    2011-01-01

    The central nervous system control of energy balance is a multi-determined process involving a distributed and redundant network of communication that exists between various brain regions and the body. The brain continuously receives, processes, and issues autonomic and behavioral output commands to respond to internal signals of energy availability. These signals are communicated to the brain either through a humoral pathway via the circulatory system, or through neuronal communication via t...

  15. Systemic Stimulation of TLR2 Impairs Neonatal Mouse Brain Development

    OpenAIRE

    Xiaonan Du; Bobbi Fleiss; Hongfu Li; Barbara D'Angelo; Yanyan Sun; Changlian Zhu; Henrik Hagberg; Ofer Levy; Carina Mallard; Xiaoyang Wang

    2011-01-01

    Background: Inflammation is associated with perinatal brain injury but the underlying mechanisms are not completely characterized. Stimulation of Toll-like receptors (TLRs) through specific agonists induces inflammatory responses that trigger both innate and adaptive immune responses. The impact of engagement of TLR2 signaling pathways on the neonatal brain is still unclear. The aim of this study was to investigate the potential effect of a TLR2 agonist on neonatal brain development. Methodol...

  16. Cannabinoid inhibition of the capsaicin-induced calcium response in rat dorsal root ganglion neurones

    OpenAIRE

    Millns, Paul J; Chapman, Victoria; Kendall, David A.

    2001-01-01

    Cannabinoids have marked inhibitory effects on somatosensory processing, which may arise from actions at both peripheral and central cannabinoid receptors. Here, the effect of a synthetic cannabinoid agonist HU210 on capsaicin-evoked responses in adult rat dorsal root ganglion (DRG) neurones was studied. The vanilloid capsaicin produced a concentration-related increase in intracellular calcium in DRG neurones, which was significantly inhibited by HU210 (1 μM). The cannabinoid CB1 receptor ant...

  17. Acetaminophen from liver to brain: New insights into drug pharmacological action and toxicity.

    Science.gov (United States)

    Ghanem, Carolina I; Pérez, María J; Manautou, José E; Mottino, Aldo D

    2016-07-01

    Acetaminophen (APAP) is a well-known analgesic and antipyretic drug. It is considered to be safe when administered within its therapeutic range, but in cases of acute intoxication, hepatotoxicity can occur. APAP overdose is the leading cause of acute liver failure in the northern hemisphere. Historically, studies on APAP toxicity have been focused on liver, with alterations in brain function attributed to secondary effects of acute liver failure. However, in the last decade the pharmacological mechanism of APAP as a cannabinoid system modulator has been documented and some articles have reported "in situ" toxicity by APAP in brain tissue at high doses. Paradoxically, low doses of APAP have been reported to produce the opposite, neuroprotective effects. In this paper we present a comprehensive, up-to-date overview of hepatic toxicity as well as a thorough review of both toxic and beneficial effects of APAP in brain. PMID:26921661

  18. Neuron-type specific cannabinoid-mediated G protein signalling in mouse hippocampus.

    Science.gov (United States)

    Steindel, Frauke; Lerner, Raissa; Häring, Martin; Ruehle, Sabine; Marsicano, Giovanni; Lutz, Beat; Monory, Krisztina

    2013-03-01

    Type 1 cannabinoid receptor (CB1) is expressed in different neuronal populations in the mammalian brain. In particular, CB1 on GABAergic or glutamatergic neurons exerts different functions and display different pharmacological properties in vivo. This suggests the existence of neuron-type specific signalling pathways activated by different subpopulations of CB1. In this study, we analysed CB1 expression, binding and signalling in the hippocampus of conditional mutant mice, bearing CB1 deletion in GABAergic (GABA-CB1-KO mice) or cortical glutamatergic neurons (Glu-CB1-KO mice). Compared to their wild-type littermates, Glu-CB1-KO displayed a small decrease of CB1 mRNA amount, immunoreactivity and [³H]CP55,940 binding. Conversely, GABA-CB1-KO mice showed a drastic reduction of these parameters, confirming that CB1 is present at much higher density on hippocampal GABAergic interneurons than glutamatergic neurons. Surprisingly, however, saturation analysis of HU210-stimulated [(35) S]GTPγS binding demonstrated that 'glutamatergic' CB1 is more efficiently coupled to G protein signalling than 'GABAergic' CB1. Thus, the minority of CB1 on glutamatergic neurons is paradoxically several fold more strongly coupled to G protein signalling than 'GABAergic' CB1. This selective signalling mechanism raises the possibility of designing novel cannabinoid ligands that differentially activate only a subset of physiological effects of CB1 stimulation, thereby optimizing therapeutic action. PMID:23289830

  19. Control of Inhibition by the Direct Action of Cannabinoids on GABAA Receptors

    NARCIS (Netherlands)

    Golovko, Tatiana; Min, R.; Lozovaya, Natalia; Falconer, Caroline; Yatsenko, Natalia; Tsintsadze, Timur; Tsintsadze, Vera; Ledent, Catherine; Harvey, Robert J; Belelli, Delia; Lambert, Jeremy J; Rozov, Andrei; Burnashev, Nail

    2015-01-01

    Cannabinoids are known to regulate inhibitory synaptic transmission via activation of presynaptic G protein-coupled cannabinoid CB1 receptors (CB1Rs). Additionally, recent studies suggest that cannabinoids can also directly interact with recombinant GABAA receptors (GABAARs), potentiating currents a

  20. Individual Differences in Premotor Brain Systems Underlie Behavioral Apathy.

    Science.gov (United States)

    Bonnelle, Valerie; Manohar, Sanjay; Behrens, Tim; Husain, Masud

    2016-02-01

    Lack of physical engagement, productivity, and initiative-so-called "behavioral apathy"--is a common problem with significant impact, both personal and economic. Here, we investigate whether there might be a biological basis to such lack of motivation using a new effort and reward-based decision-making paradigm, combined with functional and diffusion-weighted imaging. We hypothesized that behavioral apathy in otherwise healthy people might be associated with differences in brain systems underlying either motivation to act (specifically in effort and reward-based decision-making) or in action processing (transformation of an intention into action). The results demonstrate that behavioral apathy is associated with increased effort sensitivity as well as greater recruitment of neural systems involved in action anticipation: supplementary motor area (SMA) and cingulate motor zones. In addition, decreased structural and functional connectivity between anterior cingulate cortex (ACC) and SMA were associated with increased behavioral apathy. These findings reveal that effort sensitivity and translation of intentions into actions might make a critical contribution to behavioral apathy. We propose a mechanism whereby inefficient communication between ACC and SMA might lead to increased physiological cost--and greater effort sensitivity--for action initiation in more apathetic people. PMID:26564255

  1. A new modular detector for a cylindrical brain SPECT system

    International Nuclear Information System (INIS)

    A new detector module has been developed for a prototype system, McSPECT 2, which is being constructed for high-resolution clinical brain imaging. The detector module is the building block of the cylindrical detector system of the McSPECT 2. Each detector module contains 5 NaI(Tl) bars and is backed by a glass window in an aluminum housing. Each detector module is associated with 6 PMTs to form a functional unit for position estimation. Bench-top tests performed on a sample unit demonstrated an average of 10.5% local energy resolution (ER) at 140 keV. Centroid calculations were applied in both orthogonal directions of the module for position estimation. In the longitudinal direction, a two-step centroid method yields a 13 cm UFOV (useful field-of-view) along the bar and an 11 cm CFOV (center FOV), with intrinsic spatial resolution of < 5.5 and 3.8 ± 0.3 mm FWHM, respectively. In the transverse direction, the task of identifying the bar detector involved in an event is simplified, with an accuracy better than 99% when photons are incident normally

  2. Immune system participates in brain regeneration and restoration of reproduction in the earthworm Dendrobaena veneta.

    Science.gov (United States)

    Molnar, Laszlo; Pollak, Edit; Skopek, Zuzanna; Gutt, Ewa; Kruk, Jerzy; Morgan, A John; Plytycz, Barbara

    2015-10-01

    Earthworm decerebration causes temporary inhibition of reproduction which is mediated by certain brain-derived neurohormones; thus, cocoon production is an apposite supravital marker of neurosecretory center functional recovery during brain regeneration. The core aim of the present study was to investigate aspects of the interactions of nervous and immune systems during brain regeneration in adult Dendrobaena veneta (Annelida; Oligochaeta). Surgical brain extirpation was combined, either with (i) maintenance of immune-competent coelomic cells (coelomocytes) achieved by surgery on prilocaine-anesthetized worms or (ii) prior extrusion of fluid-suspended coelomocytes by electrostimulation. Both brain renewal and cocoon output recovery were significantly faster in earthworms with relatively undisturbed coelomocyte counts compared with individuals where coelomocyte counts had been experimentally depleted. These observations provide empirical evidence that coelomocytes and/or coelomocyte-derived factors (e.g. riboflavin) participate in brain regeneration and, by implication, that there is close functional synergy between earthworm neural and immune systems. PMID:25863277

  3. Gene Risk Factors for Age-Related Brain Disorders May Affect Immune System Function

    Science.gov (United States)

    ... factors for age-related brain disorders may affect immune system function June 17, 2014 Scientists have discovered gene ... risk factors for age-related neurological disorders to immune system functions, such as inflammation, offers new insights into ...

  4. Clearance from the mouse brain by convection of interstitial fluid towards the ventricular system

    OpenAIRE

    Bedussi, Beatrice; van Lier, Monique G. J. T. B.; Bartstra, Jonas W.; de Vos, Judith; Siebes, Maria; VanBavel, Ed; Bakker, Erik N.T.P.

    2015-01-01

    Background In the absence of a true lymphatic system in the brain parenchyma, alternative clearance pathways for excess fluid and waste products have been proposed. Suggested mechanisms for clearance implicate a role for brain interstitial and cerebrospinal fluids. However, the proposed direction of flow, the anatomical structures involved, and the driving forces are controversial. Methods To trace the distribution of interstitial and cerebrospinal fluid in the brain, and to identify the anat...

  5. Plant-Derived and Endogenous Cannabinoids in Epilepsy.

    Science.gov (United States)

    Verrotti, Alberto; Castagnino, Miriam; Maccarrone, Mauro; Fezza, Filomena

    2016-05-01

    Cannabis is one of the oldest psychotropic drugs and its anticonvulsant properties have been known since the last century. The aim of this reveiw was to analyze the efficacy of cannabis in the treatment of epilepsy in adults and children. In addition, a description of the involvement of the endocannabinoid system in epilepsy is given in order to provide a biochemical background to the effects of endogenous cannabinoids in our body. General tolerability and adverse events associated with cannabis treatment are also investigated. Several anecdotal reports and clinical trials suggest that in the human population cannabis has anticonvulsant properties and could be effective in treating partial epilepsies and generalized tonic-clonic seizures, still known as "grand mal." They are based, among other factors, on the observation that in individuals who smoke marijuana to treat epilepsy, cessation of cannabis use precipitates the re-emergence of convulsive seizures, whereas resuming consumption of this psychotropic drug controls epilepsy in a reproducible manner. In conclusion, there is some anecdotal evidence for the potential efficacy of cannabis in treating epilepsy. Though there has been an increased effort by patients with epilepsy, their caregivers, growers, and legislators to legalize various forms of cannabis, there is still concern about its efficacy, relative potency, availability of medication-grade preparations, dosing, and potential short- and long-term side effects, including those on prenatal and childhood development. PMID:26892745

  6. Estrogenic effects of marijuana smoke condensate and cannabinoid compounds

    International Nuclear Information System (INIS)

    Chronic exposure to marijuana produces adverse effects on the endocrine and reproductive systems in humans; however, the experimental evidence for this presented thus far has not been without controversy. In this study, the estrogenic effect of marijuana smoke condensate (MSC) was evaluated using in vitro bioassays, viz., the cell proliferation assay, the reporter gene assay, and the ER competitive binding assay. The results of these assays were compared with those of three major cannabinoids, i.e., THC, CBD, and CBN. The estrogenic effect of MSC was further confirmed by the immature female rat uterotrophic assay. MSC stimulated the estrogenicity related to the ER-mediated pathway, while neither THC, CBD, nor CBN did. Moreover, treatment with 10 and 25 mg/kg MSC induced significant uterine response, and 10 mg/kg MSC resulted in an obvious change in the uterine epithelial cell appearance. MSC also enhanced the IGFBP-1 gene expression in a dose-dependent manner. To identify the constituents of MSC responsible for its estrogenicity, the MSC fractionated samples were examined using another cell proliferation assay, and the estrogenic active fraction was analyzed using GC-MS. In the organic acid fraction that showed the strongest estrogenic activity among the seven fractions of MSC, phenols were identified. Our results suggest that marijuana abuse is considered an endocrine-disrupting factor. Furthermore, these results suggest that the phenolic compounds contained in MSC play a role in its estrogenic effect

  7. Using cannabinoids in pain and palliative care.

    Science.gov (United States)

    Peat, Sue

    2010-10-01

    Interest in the use of cannabinoids in a clinical setting is gradually increasing, particularly in patients where more conventional treatments have failed. They have been reported as offering perceived benefits in a wide range of conditions, but the major interest at present is centred on their place in pain management and in the palliation of symptoms secondary to terminal cancer and neurological disease. The potential benefits include symptomatic relief for patients suffering from intractable neuropathic pain, anorexia, anxiety and muscle spasm. There is clear consensus that cannibinoids should not be used as a first-line monotherapy, but should be considered as valuable adjuvants to more commonly indicated therapeutic options in the management of palliative care patients. Scientific evidence documenting the benefits of the canibinoids nabilone and sativex is accumulating, but needs to be evaluated carefully in the light of the paucity of available data. Both drugs are usually used under the guidance of specialist units. Nabilone and Sativex are now controlled drugs, and are frequently used outside of their licensed indication (control of chemotherapy-induced nausea and vomiting) and hence particular care needs to be taken in evaluating the rational for their use. Sativex has been recently licenced for use in the management of patients with multiple sclerosis. PMID:20972379

  8. Evaluation of principal cannabinoids in airborne particulates

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, C., E-mail: balducci@iia.cnr.it [Italian National Research Council, Institute for Atmospheric Pollution (CNR-IIA), Monterotondo Stazione (Italy); Nervegna, G.; Cecinato, A. [Italian National Research Council, Institute for Atmospheric Pollution (CNR-IIA), Monterotondo Stazione (Italy)

    2009-05-08

    The determination of delta(9)-tetrahydrocannabinol ({Delta}{sup 9}-THC), cannabidiol (CND) and cannabinol (CNB), primary active components in cannabis preparation, was carried out on airborne particulates by applying a specific procedure consisting of soot extraction by ultrasonic bath, purification by solvent partitioning, derivatization with N-(t-butyldimethylsilyl)-N-methyl-trifluoroacetamide, and separation/detection through gas chromatography coupled with tandem mass spectrometry. The optimized procedure was found suitable for measuring the three psychotropic substances at concentrations ranging from ca. 0.001 to ca. 5.0 ng cm{sup -3} of air, with recoveries always higher than 82%, accuracy >7.3% and precision >90%. Application of the procedure performed on field in Rome and Bari, Italy, demonstrated that all three compounds contaminate the air in Italian cities whereas in Algiers, Algeria, only cannabinol, the most stable in the atmosphere, exceeded the limit of quantification of the method. The relative percentages of the three cannabinoids in general reproduced those typical of the Cannabis sativa plant and were very different from those found in human blood, urine and sweat.

  9. Evaluation of principal cannabinoids in airborne particulates

    International Nuclear Information System (INIS)

    The determination of delta(9)-tetrahydrocannabinol (Δ9-THC), cannabidiol (CND) and cannabinol (CNB), primary active components in cannabis preparation, was carried out on airborne particulates by applying a specific procedure consisting of soot extraction by ultrasonic bath, purification by solvent partitioning, derivatization with N-(t-butyldimethylsilyl)-N-methyl-trifluoroacetamide, and separation/detection through gas chromatography coupled with tandem mass spectrometry. The optimized procedure was found suitable for measuring the three psychotropic substances at concentrations ranging from ca. 0.001 to ca. 5.0 ng cm-3 of air, with recoveries always higher than 82%, accuracy >7.3% and precision >90%. Application of the procedure performed on field in Rome and Bari, Italy, demonstrated that all three compounds contaminate the air in Italian cities whereas in Algiers, Algeria, only cannabinol, the most stable in the atmosphere, exceeded the limit of quantification of the method. The relative percentages of the three cannabinoids in general reproduced those typical of the Cannabis sativa plant and were very different from those found in human blood, urine and sweat.

  10. Symptomatic treatment of multiple sclerosis using cannabinoids: recent advances.

    Science.gov (United States)

    Smith, Paul F

    2007-09-01

    Recent years have seen a dramatic increase in the number of clinical trials investigating the potential efficacy of medicinal cannabinoids for the symptomatic treatment of chronic pain and spasticity in multiple sclerosis (MS). A number of different cannabinoids have been used, including: delta9-tetrahydrocannabinol (THC) itself; the synthetic delta9-THC, dronabinol; a 1:1 ratio of delta9-THC:cannabidiol (Sativex); and the synthetic delta9-THC metabolites CT-3 and nabilone. Other Cannabis extracts have also been tested. While 2-3 years ago there was little consensus in the literature, now the majority of studies are beginning to suggest that cannabinoids are useful in the treatment of MS in at least a subset of individuals. Their adverse side-effect profile has generally been mild compared with other drugs used for pain and spasticity; nonetheless, there is still concern about potential long-term side effects, particularly psychiatric side effects and effects on fetal development. PMID:17868014

  11. Sickness behavior : immune system influences on brain and behavior

    OpenAIRE

    Karshikoff, Bianka

    2015-01-01

    Sickness behavior is a motivational state that redirects the needs and priorities of the organism during infection to aid recovery. The behavioral changes include fatigue, lowered mood and aches. Peripheral cytokines signal to the brain via autonomic nerves and the bloodbrain interface and change the inflammatory status of the brain, a mechanism that in recent years has been implied in complex syndromes like long-term pain, depression, fatigue and overall poor well-being. Epidemio...

  12. An adaptive brain actuated system for augmenting rehabilitation

    OpenAIRE

    Roset, Scott A.; Gant, Katie; Prasad, Abhishek; Sanchez, Justin C.

    2014-01-01

    For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation an...

  13. Using the endocannabinoid system as a neuroprotective strategy in perinatal hypoxic- ischemic brain injury

    Institute of Scientific and Technical Information of China (English)

    Lara-Celador, I.; Go(n)i-de-Cerio, F.; Antonia Alvarez; Enrique Hilario

    2013-01-01

    One of the most important causes of brain injury in the neonatal period is a perinatal hypoxic- ischemic event. This devastating condition can lead to long-term neurological deficits or even death. After hypoxic-ischemic brain injury, a variety of specific cellular mechanisms are set in motion, triggering cell damage and finally producing cell death. Effective therapeutic treatments against this phenomenon are still unavailable because of complex molecular mechanisms underlying hypoxic-ischemic brain injury. After a thorough understanding of the mechanism underlying neural plasticity following hypoxic-ischemic brain injury, various neuroprotective therapies have been developed for alleviating brain injury and improving long-term outcomes. Among them, the endocannabinoid system emerges as a natural system of neuroprotection. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. The aim of this review is to study the use of different therapies to induce long-term therapeutic effects after hypoxic-ischemic brain injury, and analyze the important role of the endocannabinoid system as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury.

  14. Efecto neuroprotector de los cannabinoides en las enfermedades neurodegenerativas

    OpenAIRE

    Carlos Suero-García; Lucia Martín-Banderas; Mª Ángeles Holgado

    2015-01-01

    Objetivos: Se analiza la situación actual de las investigaciones relacionadas con las sustancias cannabinoides, así como su interacción con el organismo, clasificación, efectos terapéuticos y su uso en las enfermedades neurodegenerativas. Métodos: Se realiza una exhaustiva revisión bibliográfica relacionada con las sustancias cannabinoides y sus derivados sintéticos, haciendo especial hincapié en la forma de interactuar con el organismo y los efectos que provocan dichas interacciones. Concret...

  15. [Analgesic effects of cannabinoids on central pain syndrome].

    Science.gov (United States)

    Igon'kina, S I; Churiukanov, M V; Churiukanov, V V; Kukushkin, M L

    2011-01-01

    It was shown that cannabinoids anandamide, HU210 and WIN 55,212-2 inhibit both spontaneous episodes of pain and mechanical allodynia in rats with central pain syndrome caused by disturbance of inhibitory processes in the dorsal horns of lumbar spinal cord. The analgesic effect is most pronounced in the intrathecal route of administration. The intensity of analgesic actions of cannabinoids on the central pain syndrome in rats, depending on the drug is as follows: HU210 > WIN 55,212-2 > anandamide. PMID:22359935

  16. Cannabinoids reverse the effects of early stress on neurocognitive performance in adulthood.

    Science.gov (United States)

    Alteba, Shirley; Korem, Nachshon; Akirav, Irit

    2016-07-01

    Early life stress (ES) significantly increases predisposition to psychopathologies. Cannabinoids may cause cognitive deficits and exacerbate the effects of ES. Nevertheless, the endocannabinoid system has been suggested as a therapeutic target for the treatment of stress- and anxiety-related disorders. Here we examined whether cannabinoids administered during "late adolescence" (extensive cannabis use in humans at the ages 18-25) could reverse the long-term adverse effects of ES on neurocognitive function in adulthood. Male and female rats were exposed to ES during post-natal days (P) 7-14, injected with the cannabinoid CB1/2 receptor agonist WIN55,212-2 (WIN; 1.2 mg/kg, i.p.) for 2 wk during late adolescence (P45-60) and tested in adulthood (P90) for working memory, anxiety, and alterations in CB1 receptors (CB1r), and glucocorticoid receptors (GRs) in the stress circuit [hippocampus, prefrontal cortex (PFC), and basolateral amygdala (BLA)]. ES males and females exhibited impaired performance in short-term memory in adulthood in the spatial location and social recognition tasks; males were also impaired in the novel object recognition task. WIN administered during late adolescence prevented these stress-induced impairments and reduced anxiety levels. WIN normalized the ES-induced up-regulation in PFC-GRs and CA1-CB1r in females. In males, WIN normalized the ES-induced up-regulation in PFC-GR and down-regulation in BLA-CB1r. There is a crucial role of the endocannabinoid system in the effects of early life stress on behavior at adulthood. Differences in recognition memory and in the expression of GRs and CB1r in the fear circuit suggest sex differences in the mechanism underlying coping with stress. PMID:27317195

  17. Regional research priorities in brain and nervous system disorders.

    Science.gov (United States)

    Ravindranath, Vijayalakshmi; Dang, Hoang-Minh; Goya, Rodolfo G; Mansour, Hader; Nimgaonkar, Vishwajit L; Russell, Vivienne Ann; Xin, Yu

    2015-11-19

    The characteristics of neurological, psychiatric, developmental and substance-use disorders in low- and middle-income countries are unique and the burden that they have will be different from country to country. Many of the differences are explained by the wide variation in population demographics and size, poverty, conflict, culture, land area and quality, and genetics. Neurological, psychiatric, developmental and substance-use disorders that result from, or are worsened by, a lack of adequate nutrition and infectious disease still afflict much of sub-Saharan Africa, although disorders related to increasing longevity, such as stroke, are on the rise. In the Middle East and North Africa, major depressive disorders and post-traumatic stress disorder are a primary concern because of the conflict-ridden environment. Consanguinity is a serious concern that leads to the high prevalence of recessive disorders in the Middle East and North Africa and possibly other regions. The burden of these disorders in Latin American and Asian countries largely surrounds stroke and vascular disease, dementia and lifestyle factors that are influenced by genetics. Although much knowledge has been gained over the past 10 years, the epidemiology of the conditions in low- and middle-income countries still needs more research. Prevention and treatments could be better informed with more longitudinal studies of risk factors. Challenges and opportunities for ameliorating nervous-system disorders can benefit from both local and regional research collaborations. The lack of resources and infrastructure for health-care and related research, both in terms of personnel and equipment, along with the stigma associated with the physical or behavioural manifestations of some disorders have hampered progress in understanding the disease burden and improving brain health. Individual countries, and regions within countries, have specific needs in terms of research priorities. PMID:26580328

  18. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    OpenAIRE

    Oosterveer, Maaike H.; Koolman, Anniek H; de Boer, Pieter T; Bos, Trijnie; Bleeker, Aycha; Bloks, Vincent W.; Kuipers, Folkert; Sauer, Pieter J. J.; van Dijk, Gertjan

    2011-01-01

    Background: Overactivity and/or dysregulation of the endocannabinoid system (ECS) contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1) in adipocyte function and CB1-receptor deficient (CB1-/-) mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose tissue is unknown. Methods: We evaluated adipose tissue differentiation/proliferation markers and q...

  19. On the role of cannabinoid CB1- and µ-opioid receptors in nicotine-induced motor impulsivity

    OpenAIRE

    TommyPattij

    2012-01-01

    Previous studies using a rat 5-choice serial reaction time task (5-CSRTT) have established a critical role for dopamine D2 receptors in regulating increments in motor impulsivity induced by acute administration of the psychostimulant drugs amphetamine and nicotine. Here we investigated whether cannabinoid CB1 and/or µ-opioid receptors are involved in nicotine-induced impulsivity, given recent findings indicating that both receptor systems mediate amphetamine-induced motor impulsivity. Re...

  20. The Smartphone Brain Scanner: A Portable Real-Time Neuroimaging System

    DEFF Research Database (Denmark)

    Stopczynski, Arkadiusz; Stahlhut, Carsten; Larsen, Jakob Eg; Petersen, Michael Kai; Hansen, Lars Kai

    2014-01-01

    Combining low-cost wireless EEG sensors with smartphones offers novel opportunities for mobile brain imaging in an everyday context. Here we present the technical details and validation of a framework for building multi-platform, portable EEG applications with real-time 3D source reconstruction....... The system – Smartphone Brain Scanner – combines an off-the-shelf neuroheadset or EEG cap with a smartphone or tablet, and as such represents the first fully portable system for real-time 3D EEG imaging. We discuss the benefits and challenges, including technical limitations as well as details of real......-time reconstruction of 3D images of brain activity. We present examples of brain activity captured in a simple experiment involving imagined finger tapping, which shows that the acquired signal in a relevant brain region is similar to that obtained with standard EEG lab equipment. Although the quality of the signal...

  1. ICI 182,780 penetrates brain and hypothalamic tissue and has functional effects in the brain after systemic dosing.

    Science.gov (United States)

    Alfinito, Peter D; Chen, Xiaohong; Atherton, James; Cosmi, Scott; Deecher, Darlene C

    2008-10-01

    Previous reports suggest the antiestrogen ICI 182,780 (ICI) does not cross the blood-brain barrier (BBB). However, this hypothesis has never been directly tested. In the present study, we tested whether ICI crosses the BBB, penetrates into brain and hypothalamic tissues, and affects known neuroendocrine functions in ovariectomized rats. Using HPLC with mass spectrometry, ICI (1.0 mg/kg.d, 3 d) was detected in plasma and brain and hypothalamic tissues for up to 24 h with maximum concentrations of 43.1 ng/ml, and 31.6 and 38.8 ng/g, respectively. To evaluate antiestrogenic effects of ICI in the brain after systemic dosing, we tested its ability to block the effect of 17 alpha-ethinyl estradiol (EE) (0.3 mg/kg, 8 d) on tail-skin temperature abatement in the morphine-dependent model of hot flush and on body weight change. In the morphine-dependent model, EE abated 64% of the naloxone-induced tail-skin temperature increase. ICI pretreatment (1.0, 3.0 mg/kg.d) dose dependently inhibited this effect. ICI (3.0 mg/kg.d) alone showed estrogenic-like actions, abating 30% the naloxone-induced flush. In body weight studies, EE-treated rats weighed 58.5 g less than vehicle-treated rats after 8 d dosing. This effect was partially blocked by ICI (3.0 mg/kg.d) pretreatment. Similar to EE treatment, rats receiving 1.0 or 3.0 mg/kg.d ICI alone showed little weight gain compared with vehicle-treated controls. Thus, ICI crosses the BBB, penetrates into brain and hypothalamic tissues, and has both antiestrogenic and estrogenic-like actions on neuroendocrine-related functions. PMID:18599545

  2. Brain Basics

    Medline Plus

    Full Text Available ... the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions ... basic working unit of the brain and nervous system. These cells are highly specialized for the function ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... Neurons & Neural Circuits Neurons are the basic working unit of the brain and nervous system. These cells ... A nerve cell that is the basic, working unit of the brain and nervous system, which processes ...

  4. Pathological Deformations of Brain Vascular System Modelling Using Analogous Eletromagnetic Systems

    Directory of Open Access Journals (Sweden)

    Klara Capova

    2004-01-01

    Full Text Available The contribution deals with the modelling and simulation of human brain haemodynamics using analogous electromagnetic systems characteristic especially propagation properties of distributed parameters circuits. The cascade connection of analogical transmission line elements represents the vascular tree both from the point of the parameters and the topology as well. In the paper there are presented simulation examples of the healthy cerebral system mainly in the big arteries in comparing with the pathologically changed ones. The various degrees of stenosis are considered for the simulations of blood pressure and blood flow velocity and the results are compared with the healthy arteries. According to the last investigations the pathological deformations of brain arteries are th most frequently reasons of deaths in the world. The stenoses or aneurysms change the physical properties of arteries and they follow insufficient vascularisation of the brain. These computer-aided non-invasive methods together with the non-invasive experimental techniques represent a helpful tool both for the diagnostics and the treatment of vascular pathological deformations.

  5. VERSATILITY OF THE COMPLEMENT SYSTEM IN NEUROINFLAMMATION, NEURODEGENERATION AND BRAIN HOMEOSTASIS

    Directory of Open Access Journals (Sweden)

    Franca Orsini

    2014-11-01

    Full Text Available The immune response after brain injury is highly complex and involves both local and systemic events at the cellular and molecular level. It is associated to a dramatic over-activation of enzyme systems, the expression of proinflammatory genes and the activation/recruitment of immune cells. The complement system represents a powerful component of the innate immunity and is highly involved in the inflammatory response. Complement components are synthesized predominantly by the liver and circulate in the bloodstream primed for activation. Moreover, brain cells can produce complement proteins and receptors. After acute brain injury, the rapid and uncontrolled activation of the complement leads to massive release of inflammatory anaphylatoxins, recruitment of cells to the injury site, phagocytosis and induction of blood brain barrier damage. Brain endothelial cells are particularly susceptible to complement-mediated effects, since they are exposed to both circulating and locally synthesized complement proteins. Conversely, during neurodegenerative disorders, complement factors play distinct roles depending on the stage and degree of neuropathology. In addition to the deleterious role of the complement, increasing evidence suggest that it may also play a role in normal nervous system development (wiring the brain and adulthood (either maintaining brain homeostasis or supporting regeneration after brain injury. This article represents a compendium of the current knowledge on the complement role in the brain, prompting a novel view that complement activation can result in either protective or detrimental effects in brain conditions that depend exquisitely on the nature, the timing and the degree of the stimuli that induce its activation. A deeper understanding of the acute, subacute and chronic consequences of complement activation is needed and may lead to new therapeutic strategies, including the ability of targeting selective step in the complement

  6. Synthetic Cannabinoids-Further Evidence Supporting the Relationship Between Cannabinoids and Psychosis.

    Science.gov (United States)

    Fattore, Liana

    2016-04-01

    Consumption of synthetic mind-altering compounds, also known as "new psychoactive substances," is increasing globally at an alarming rate. Synthetic cannabinoids (SCs) are among the most commonly used new psychoactive substances. They are usually purchased as marijuana-like drugs, marketed as herbal blends and perceived as risk-free by inexperienced users. Yet, contrary to Δ(9)-tetrahydrocannabinol, SCs may lead to severe health consequences, including anxiety, tachycardia, hallucinations, violent behavior, and psychosis. This review focuses on the latest (2010-2015) evidence of psychotic symptoms induced by ingestion of products containing SCs. Reports suggesting that SCs may either exacerbate previously stable psychotic symptoms (in vulnerable individuals) or trigger new-onset psychosis (in individuals with no previous history of psychosis) are reviewed. Pharmacology and toxicology of these compounds are discussed, with particular reference to their psychoactive effects. PMID:26970364

  7. Metabolites of synthetic cannabinoids in hair-proof of consumption or false friends for interpretation?

    Science.gov (United States)

    Franz, Florian; Angerer, Verena; Hermanns-Clausen, Maren; Auwärter, Volker; Moosmann, Bjoern

    2016-05-01

    The detection of drug metabolites in hair is widely accepted as a proof for systemic uptake of the drug, unless the metabolites can be formed as artefacts. However, regarding synthetic cannabinoids, not much is known about mechanisms of incorporation into hair. For a correct interpretation concerning hair findings of these compounds and their metabolites, it is necessary to identify the different routes of incorporation and to assess their contribution to analytical findings. This study presents the results of the LC-ESI-MS/MS analysis of an authentic hair sample taken from a patient with a known history of heavy consumption of synthetic cannabinoids. In the authentic hair sample, 5F-PB-22 and AB-CHMINACA as well as their main metabolites 5F-PB-22 3-carboxyindole, PB-22 5-OH-pentyl, and AB-CHMINACA valine were detected in all segments, comprising segments grown in a time period where the substances had not been distributed on the 'legal high' market. To enable interpretation of the results regarding the distribution of the detected analytes along the hair shaft, the stability of 5F-PB-22 and AB-CHMINACA in hair matrix and under thermal stress was assessed. The stability tests revealed that the three 'metabolites' are also formed in externally contaminated hair after storage of the samples under different conditions. In addition, 5F-PB-22 3-carboxyindole and AB-CHMINACA valine were identified as degradation products in smoke condensate. Therefore, interpretation of 'metabolite' findings of compounds comprising chemically labile amide/ester bonds or 5-fluoro-pentyl side chains should be carried out with utmost care, taking into account the different mechanisms of formation and incorporation into hair. Graphical Abstract Degradation processes leading to artefacts identical with main metabolites of synthetic cannabinoids. PMID:26935933

  8. Carnosine reverses the aging-induced down regulation of brain regional serotonergic system.

    Science.gov (United States)

    Banerjee, Soumyabrata; Ghosh, Tushar K; Poddar, Mrinal K

    2015-12-01

    The purpose of the present investigation was to study the role of carnosine, an endogenous dipeptide biomolecule, on brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) serotonergic system during aging. Results showed an aging-induced brain region specific significant (a) increase in Trp (except cerebral cortex) and their 5-HIAA steady state level with an increase in their 5-HIAA accumulation and declination, (b) decrease in their both 5-HT steady state level and 5-HT accumulation (except cerebral cortex). A significant decrease in brain regional 5-HT/Trp ratio (except cerebral cortex) and increase in 5-HIAA/5-HT ratio were also observed during aging. Carnosine at lower dosages (0.5-1.0μg/Kg/day, i.t. for 21 consecutive days) didn't produce any significant response in any of the brain regions, but higher dosages (2.0-2.5μg/Kg/day, i.t. for 21 consecutive days) showed a significant response on those aging-induced brain regional serotonergic parameters. The treatment with carnosine (2.0μg/Kg/day, i.t. for 21 consecutive days), attenuated these brain regional aging-induced serotonergic parameters and restored towards their basal levels that observed in 4 months young control rats. These results suggest that carnosine attenuates and restores the aging-induced brain regional down regulation of serotonergic system towards that observed in young rats' brain regions. PMID:26364584

  9. A model based system for the interpretation of MR human brain scans

    International Nuclear Information System (INIS)

    This paper describes a prototype system for identifying and characterizing Multiple Scleroris (MS) lesions in the brain from magnetic resonance (MR) images. The system is designed to obtain an initial segmentation of each cross-sectional image with low level vision methods, and then derive successive refinements of image subregions through a model-driven approach that correlates relevant information from T1 and T2 images and 3-D information from complementary cross-sections when necessary. The system uses a b-spline surface model of the brain that matches the characteristics of the individual's brain. The normal internal structures of the brain are then scaled proportionately before carrying out the successive refinement operations for the detection of the MS lesions. The low level vision and the solid modeling components of the system have been successfully tested on several hundred images from a number of MR patient studies. The first steps of model fitting have been implemented and show promising results

  10. Somatostatinergic systems: an update on brain functions in normal and pathological aging

    Directory of Open Access Journals (Sweden)

    CécileViollet

    2012-12-01

    Full Text Available Somatostatin is highly expressed in mammalian brain and is involved in many brain functions such as motor activity, sleep, sensory and cognitive processes. Five somatostatin receptors have been described: sst1, sst2 (A and B, sst3 to 5, all belonging to the G-protein-coupled receptor family. During the recent years, numerous studies contributed to clarify the role of somatostatin systems, especially long-range somatostatinergic interneurons, in several functions they have been previously involved in. New advances have also been made on the alterations of SRIF systems in several brain diseases and on the potential therapeutic target they represent in these pathologies.

  11. Systemic and Brain Pharmacokinetics of Perforin Inhibitor Prodrugs

    DEFF Research Database (Denmark)

    Gynther, Mikko; Pickering, Darryl S; Spicer, Julie;

    2016-01-01

    We have recently reported that by converting a perforin inhibitor into an l-type amino acid transporter 1 (LAT1)-utilizing prodrug its cellular uptake can be greatly increased. The aim of the present study was to determine the in vivo and brain pharmacokinetics of two perforin inhibitors and their...

  12. Clinical pharmacology of cannabinoids in early phase drug development

    NARCIS (Netherlands)

    Zuurman, Hillie Henka

    2008-01-01

    Although cannabis is especially known for its recreational use as a ‘soft drug’, its potential therapeutic properties have been recognized for hundreds of years. Since the isolation of THC from Cannabis sativa L, the discovery of cannabinoid receptors and their natural ligands (endocannabinoids) the

  13. Correlations between the Memory-Related Behavior and the Level of Oxidative Stress Biomarkers in the Mice Brain, Provoked by an Acute Administration of CB Receptor Ligands

    OpenAIRE

    Marta Kruk-Slomka; Anna Boguszewska-Czubara; Tomasz Slomka; Barbara Budzynska; Grazyna Biala

    2015-01-01

    The endocannabinoid system, through cannabinoid (CB) receptors, is involved in memory-related responses, as well as in processes that may affect cognition, like oxidative stress processes. The purpose of the experiments was to investigate the impact of CB1 and CB2 receptor ligands on the long-term memory stages in male Swiss mice, using the passive avoidance (PA) test, as well as the influence of these compounds on the level of oxidative stress biomarkers in the mice brain. A single injection...

  14. The Drosophila neural lineages: a model system to study brain development and circuitry

    OpenAIRE

    Spindler, Shana R; Hartenstein, Volker

    2010-01-01

    In Drosophila, neurons of the central nervous system are grouped into units called lineages. Each lineage contains cells derived from a single neuroblast. Due to its clonal nature, the Drosophila brain is a valuable model system to study neuron development and circuit formation. To better understand the mechanisms underlying brain development, genetic manipulation tools can be utilized within lineages to visualize, knock down, or over-express proteins. Here, we will introduce the formation an...

  15. Candidate PET radioligands for cannabinoid CB{sub 1} receptors: [{sup 18}F]AM5144 and related pyrazole compounds

    Energy Technology Data Exchange (ETDEWEB)

    Li Zizhong [Center for Translational Neuroimaging, Brookhaven National Laboratory, Upton, NY 11973 (United States); Gifford, Andrew [Center for Translational Neuroimaging, Brookhaven National Laboratory, Upton, NY 11973 (United States); Liu Qian [Center for Drug Discovery, Northeastern University, Boston, MA 02115 (United States); Thotapally, Rajesh [Center for Drug Discovery, Northeastern University, Boston, MA 02115 (United States); Ding Yushin [Center for Translational Neuroimaging, Brookhaven National Laboratory, Upton, NY 11973 (United States); Makriyannis, Alexandros [Center for Drug Discovery, Northeastern University, Boston, MA 02115 (United States); Gatley, S. John [Center for Translational Neuroimaging, Brookhaven National Laboratory, Upton, NY 11973 (United States) and Center for Drug Discovery, Northeastern University, Boston, MA 02115 (United States)]. E-mail: s.gatley@neu.edu

    2005-05-01

    Introduction: The mammalian brain contains abundant G protein-coupled cannabinoid CB{sub 1} receptors that respond to {delta}{sup 9}-tetrahydrocannabinol, the active ingredient of cannabis. The availability of a positron emission tomography (PET) radioligand would facilitate studies of the addictive and medicinal properties of compounds that bind to this receptor. Among the known classes of ligands for CB{sub 1} receptors, the pyrazoles are attractive targets for radiopharmaceutical development because they are antagonists and are generally less lipophilic than the other classes. Methods: A convenient high-yield synthesis of N-(4-[{sup 18}F]fluorophenyl)-5-(4-bromophenyl)-1-(2,4-dichlorophenyl)- 1H-pyrazole-3-carboxamide (AM5144) was devised by coupling the appropriate pyrazole-3-carboxyl chloride compound with 4-[{sup 18}F]fluoroaniline. The labeled precursor was synthesized from 1-[{sup 18}F]fluoro-4-nitrobenzene in 60% radiochemical yield for 10 min using an improved procedure involving sodium borohydride reduction with cobalt chloride catalysis. The product was purified by HPLC to give a specific activity >400 mCi/{mu}mol and a radiochemical purity >95%, and a PET study was conducted in a baboon. Results: Although the regional uptake of AM5144 in baboon brain was consistent with binding to cannabinoid CB{sub 1} receptors, absolute uptake at <0.003% injected radioactivity per cubic centimeter was lower than the previously reported uptake of the radioiodinated pyrazole AM281. Conclusions: The relatively poor brain uptake of AM5144 and other pyrazole CB{sub 1} receptor ligands is not surprising because of their high lipophilicity as compared with most brain PET radiotracers. However, for nine pyrazole compounds for which rodent data are available, brain uptake and calculated logP values are not correlated. Thus, high logP values should not preclude evaluation of radiotracers for targets such as the CB{sub 1} receptor that may require very lipophilic ligands.

  16. Pharmacological benefits of selective modulation of cannabinoid receptor type 2 (CB2) in experimental Alzheimer's disease.

    Science.gov (United States)

    Jayant, Shalini; Sharma, Brij Mohan; Bansal, Rani; Sharma, Bhupesh

    2016-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that pervasively affects the population across the world. Currently, there is no effective treatment available for this and existing drugs merely slow the progression of cognitive function decline. Thus, massive effort is required to find an intended therapeutic target to overcome this condition. The present study has been framed to investigate the ameliorative role of selective modulator of cannabinoid receptor type 2 (CB2), 1-phenylisatin in experimental AD condition. We have induced experimental AD in mice by using two induction models viz., intracerebroventricular (i.c.v.) administration of streptozotocin (STZ) and aluminum trichloride (AlCl3)+d-galactose. Morris water maze (MWM) and attentional set shifting test (ASST) were used to assess learning and memory. Hematoxylin-eosin and Congo red staining were used to examine the structural variation in brain. Brain oxidative stress (thiobarbituric acid reactive substance and glutathione), nitric oxide levels (nitrites/nitrates), acetyl cholinesterase activity, myeloperoxidase and calcium levels were also estimated. i.c.v. STZ as well as AlCl3+d-galactose have impaired spatial and reversal learning with executive functioning, increased brain oxidative and nitrosative stress, cholinergic activity, inflammation and calcium levels. Furthermore, these agents have also enhanced the burden of Aβ plaque in the brain. Treatment with 1-phenylisatin and donepezil attenuated i.c.v. STZ as well as AlCl3+d-galactose induced impairment of learning-memory, brain biochemistry and brain damage. Hence, this study concludes that CB2 receptor modulation can be a potential therapeutic target for the management of AD. PMID:26577751

  17. A study of cannabinoid-1 receptors during the early phase of excitotoxic damage to rat spinal locomotor networks in vitro.

    Science.gov (United States)

    Veeraraghavan, Priyadharishini; Dekanic, Ana; Nistri, Andrea

    2016-10-01

    Endocannabinoids acting on cannabinoid-1 receptors (CB1Rs) are proposed to protect brain and spinal neurons from excitotoxic damage. The ability to recover from spinal cord injury (SCI), in which excitotoxicity is a major player, is usually investigated at late times after modulation of CB1Rs whose role in the early phases of SCI remains unclear. Using the rat spinal cord in vitro as a model for studying SCI initial pathophysiology, we investigated if agonists or antagonists of CB1Rs might affect SCI induced by the excitotoxic agent kainate (KA) within 24h from a transient (1h) application of this glutamate agonist. The CB1 agonist anandamide (AEA or pharmacological block of its degradation) did not limit excitotoxic depolarization of spinal networks: cyclic adenosine monophosphate (cAMP) assay demonstrated that CB1Rs remained functional 24h later and similarly expressed among dead or survived cells. Locomotor-like network activity recorded from ventral roots could not recover with such treatments and was associated with persistent depression of synaptic transmission. Motoneurons, that are particularly vulnerable to KA, were not protected by AEA. Application of 2-arachidonoylglycerol also did not attenuate the electrophysiological and histological damage. The intensification of damage by the CB1 antagonist AM251 suggested that endocannabinoids were operative after excitotoxic stimulation, yet insufficient to contrast it efficiently. The present data indicate that the early phases of excitotoxic SCI could not be arrested by pharmacologically exploiting the endocannabinoid system, consistent with the notion that AEA and its derivatives are more useful to treat late SCI phases. PMID:27450568

  18. The Prorenin and (Prorenin Receptor: New Players in the Brain Renin-Angiotensin System?

    Directory of Open Access Journals (Sweden)

    Wencheng Li

    2012-01-01

    Full Text Available It is well known that the brain renin-angiotensin (RAS system plays an essential role in the development of hypertension, mainly through the modulation of autonomic activities and vasopressin release. However, how the brain synthesizes angiotensin (Ang II has been a debate for decades, largely due to the low renin activity. This paper first describes the expression of the vasoconstrictive arm of RAS components in the brain as well as their physiological and pathophysiological significance. It then focus on the (prorenin receptor (PRR, a newly discovered component of the RAS which has a high level in the brain. We review the role of prorenin and PRR in peripheral organs and emphasize the involvement of brain PRR in the pathogenesis of hypertension. Some future perspectives in PRR research are heighted with respect to novel therapeutic target for the treatment of hypertension and other cardiovascular diseases.

  19. A REVIEW ON INFLUENCE OF MUSIC ON BRAIN ACTIVITY USING SIGNAL PROCESSING AND IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Dr. K. ADALARASU,

    2011-04-01

    Full Text Available As per clinical neuroscience, listening to music involves many brain activities and its study has advanced greatly in the last thirty years. Research shows that music has significant effect on our body and mind. Music has a positive effect on the hormone system and allows the brain to concentrate more easily and assimilate more information in less time, thereby boosting learning and information intake and thus augmenting cognitive skills. Studies have found that the silence between two musical notes triggers brain cells and neurons which are responsible for the development of sharp memory. Music at different pitches (for example, Madhyamavati, Sankarabarnam raga and so on elicits exceptionally emotions and is capable ofreliably affecting the mood of individuals, which in turn changes the brain activity. This article provides a brief overview of currently available signal processing and imaging techniques to study the influence of different music on human brain activity.

  20. A Multilayer Perceptron Based Smart Pathological Brain Detection System by Fractional Fourier Entropy.

    Science.gov (United States)

    Zhang, Yudong; Sun, Yi; Phillips, Preetha; Liu, Ge; Zhou, Xingxing; Wang, Shuihua

    2016-07-01

    This work aims at developing a novel pathological brain detection system (PBDS) to assist neuroradiologists to interpret magnetic resonance (MR) brain images. We simplify this problem as recognizing pathological brains from healthy brains. First, 12 fractional Fourier entropy (FRFE) features were extracted from each brain image. Next, we submit those features to a multi-layer perceptron (MLP) classifier. Two improvements were proposed for MLP. One improvement is the pruning technique that determines the optimal hidden neuron number. We compared three pruning techniques: dynamic pruning (DP), Bayesian detection boundaries (BDB), and Kappa coefficient (KC). The other improvement is to use the adaptive real-coded biogeography-based optimization (ARCBBO) to train the biases and weights of MLP. The experiments showed that the proposed FRFE + KC-MLP + ARCBBO achieved an average accuracy of 99.53 % based on 10 repetitions of K-fold cross validation, which was better than 11 recent PBDS methods. PMID:27250502

  1. Stimulation of cannabinoid receptor 2 (CB2 suppresses microglial activation

    Directory of Open Access Journals (Sweden)

    Fernandez Francisco

    2005-12-01

    Full Text Available Abstract Background Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD, multiple sclerosis (MS, and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO, cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2. Methods In this study, we investigated the effects of a cannabinoid agonist on CD40 expression and function by cultured microglial cells activated by IFN-γ using RT-PCR, Western immunoblotting, flow cytometry, and anti-CB2 small interfering RNA (siRNA analyses. Furthermore, we examined if the stimulation of CB2 could modulate the capacity of microglial cells to phagocytise Aβ1–42 peptide using a phagocytosis assay. Results We found that the selective stimulation of cannabinoid receptor CB2 by JWH-015 suppressed IFN-γ-induced CD40 expression. In addition, this CB2 agonist markedly inhibited IFN-γ-induced phosphorylation of JAK/STAT1. Further, this stimulation was also able to suppress microglial TNF-α and nitric oxide production induced either by IFN-γ or Aβ peptide challenge in the presence of CD40 ligation. Finally, we showed that CB2 activation by JWH-015 markedly attenuated CD40-mediated inhibition of microglial phagocytosis of Aβ1–42 peptide. Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.

  2. SGIP1 alters internalization and modulates signaling of activated cannabinoid receptor 1 in a biased manner.

    Science.gov (United States)

    Hájková, Alena; Techlovská, Šárka; Dvořáková, Michaela; Chambers, Jayne Nicole; Kumpošt, Jiří; Hubálková, Pavla; Prezeau, Laurent; Blahos, Jaroslav

    2016-08-01

    Many diseases of the nervous system are accompanied by alterations in synaptic functions. Synaptic plasticity mediated by the endogenous cannabinoid system involves the activation of the cannabinoid receptor 1 (CB1R). The principles of CB1R signaling must be understood in detail for its therapeutic exploration. We detected the Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1) as a novel CB1R partner. SGIP1 is functionally linked to clathrin-mediated endocytosis and its overexpression in animals leads to an energy regulation imbalance resulting in obesity. We report that SGIP1 prevents the endocytosis of activated CB1R and that it alters signaling via the CB1R in a biased manner. CB1R mediated G-protein activation is selectively influenced by SGIP1, β-arrestin associated signaling is changed profoundly, most likely as a consequence of the prevention of the receptor's internalization elicited by SGIP1. PMID:26970018

  3. Dissociation of Category-Learning Systems via Brain Potentials

    Directory of Open Access Journals (Sweden)

    Robert G Morrison

    2015-07-01

    Full Text Available Behavioral, neuropsychological, and neuroimaging evidence has suggested that categories can often be learned via either an explicit rule-based mechanism critically dependent on medial temporal and prefrontal brain regions, or via an implicit information-integration mechanism relying on the basal ganglia. In this study, participants viewed sine-wave gratings (i.e., Gabor patches that varied on two dimensions and learned to categorize them via trial-by-trial feedback. Two different stimulus distributions were used; one was intended to encourage an explicit rule-based process and the other an implicit information-integration process. We monitored brain activity with scalp electroencephalography (EEG while each participant (1 passively observed stimuli represented of both distributions, (2 categorized stimuli from one distribution, and, one week later, (3 categorized stimuli from the other distribution. Categorization accuracy was similar for the two distributions. Subtractions of Event-Related Potentials (ERPs for correct and incorrect trials were used to identify neural differences in rule-based and information-integration categorization processes. We identified an occipital brain potential that was differentially modulated by categorization condition accuracy at an early latency (150 - 250 ms, likely reflecting the degree of holistic processing. A stimulus-locked late positive complex associated with explicit memory updating was modulated by accuracy in the rule-based, but not the information-integration task. Likewise, a feedback-locked P300 ERP associated with expectancy was correlated with performance only in the rule-based, but not the information-integration condition. These results provide additional evidence for distinct brain mechanisms supporting rule-based versus implicit information-integration category learning and use.

  4. Association between cerebral cannabinoid 1 receptor availability and body mass index in patients with food intake disorders and healthy subjects: a [(18)F]MK-9470 PET study.

    Science.gov (United States)

    Ceccarini, J; Weltens, N; Ly, H G; Tack, J; Van Oudenhove, L; Van Laere, K

    2016-01-01

    Although of great public health relevance, the mechanisms underlying disordered eating behavior and body weight regulation remain insufficiently understood. Compelling preclinical evidence corroborates a critical role of the endocannabinoid system (ECS) in the central regulation of appetite and food intake. However, in vivo human evidence on ECS functioning in brain circuits involved in food intake regulation as well as its relationship with body weight is lacking, both in health and disease. Here, we measured cannabinoid 1 receptor (CB1R) availability using positron emission tomography (PET) with [(18)F]MK-9470 in 54 patients with food intake disorders (FID) covering a wide body mass index (BMI) range (anorexia nervosa, bulimia nervosa, functional dyspepsia with weight loss and obesity; BMI range=12.5-40.6 kg/m(2)) and 26 age-, gender- and average BMI-matched healthy subjects (BMI range=18.5-26.6 kg/m(2)). The association between regional CB1R availability and BMI was assessed within predefined homeostatic and reward-related regions of interest using voxel-based linear regression analyses. CB1R availability was inversely associated with BMI in homeostatic brain regions such as the hypothalamus and brainstem areas in both patients with FID and healthy subjects. However, in FID patients, CB1R availability was also negatively correlated with BMI throughout the mesolimbic reward system (midbrain, striatum, insula, amygdala and orbitofrontal cortex), which constitutes the key circuit implicated in processing appetitive motivation and hedonic value of perceived food rewards. Our results indicate that the cerebral homeostatic CB1R system is inextricably linked to BMI, with additional involvement of reward areas under conditions of disordered body weight. PMID:27404285

  5. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey, E-mail: carey.pope@okstate.edu

    2011-11-15

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemical changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and

  6. Modulation of breast cancer cell viability by a cannabinoid receptor 2 agonist, JWH-015, is calcium dependent

    Science.gov (United States)

    Hanlon, Katherine E; Lozano-Ondoua, Alysia N; Umaretiya, Puja J; Symons-Liguori, Ashley M; Chandramouli, Anupama; Moy, Jamie K; Kwass, William K; Mantyh, Patrick W; Nelson, Mark A; Vanderah, Todd W

    2016-01-01

    Introduction Cannabinoid compounds, both nonspecific as well as agonists selective for either cannabinoid receptor 1 (CB1) or cannabinoid receptor 2 (CB2), have been shown to modulate the tumor microenvironment by inducing apoptosis in tumor cells in several model systems. The mechanism of this modulation remains only partially delineated, and activity induced via the CB1 and CB2 receptors may be distinct despite significant sequence homology and structural similarity of ligands. Methods The CB2-selective agonist JWH-015 was used to investigate mechanisms downstream of CB2 activation in mouse and human breast cancer cell lines in vitro and in a murine mammary tumor model. Results JWH-015 treatment significantly reduced primary tumor burden and metastasis of luciferase-tagged murine mammary carcinoma 4T1 cells in immunocompetent mice in vivo. Furthermore, JWH-015 reduced the viability of murine 4T1 and human MCF7 mammary carcinoma cells in vitro by inducing apoptosis. JWH-015-mediated reduction of breast cancer cell viability was not dependent on Gαi signaling in vitro or modified by classical pharmacological blockade of CB1, GPR55, TRPV1, or TRPA1 receptors. JWH-015 effects were calcium dependent and induced changes in MAPK/ERK signaling. Conclusion The results of this work characterize the actions of a CB2-selective agonist on breast cancer cells in a syngeneic murine model representing how a clinical presentation of cancer progression and metastasis may be significantly modulated by a G-protein-coupled receptor. PMID:27186076

  7. A hyperspectral time resolved DOT system to monitor physiological changes of the human brain activity

    Science.gov (United States)

    Lange, F.; Peyrin, F.; Montcel, B.

    2015-07-01

    Diffuse optical tomography (DOT) is a growing area of research in the field of biomedical optics and neurosciences. Over the past 20 years, technical development allowed a more and more accurate detection of the brain activation, both spatially and in the calculation of the variations of chromophores's concentrations such as Hemoglobin, cytochrome c oxidase, etc. In particular, time resolved systems are able to distinguish between superficial layers (skin, skull) and deep layers (brain) allowing the differentiation between the systemic response and the response of the brain. In order to increase the accuracy of the brain's activation detection, we have developed a Hyperspectral Time Resolved DOT system. It is composed of a compact supercontinuum laser within the picosecond range for the source part and of an ICCD camera coupled with an imaging spectrometer for the detection part. This allows a simultaneous detection of the spatial and spectral dimension, as well as the time of flight of photons. Through the information acquired by our system, we've been able to retrieve, to our knowledge, the first spectrum of the physiology of the human brain activity as function as depth. Here we present the instrument and show our first in-vivo results that are demonstrating its capabilities to distinguish between the skin's response and the brain's responses during a cognitive task. We are also focused on the detection of the Fast Optical Signal.

  8. The Structure–Function Relationships of Classical Cannabinoids: CB1/CB2 Modulation

    Science.gov (United States)

    Bow, Eric W.; Rimoldi, John M.

    2016-01-01

    The cannabinoids are members of a deceptively simple class of terpenophenolic secondary metabolites isolated from Cannabis sativa highlighted by (−)-Δ9-tetrahydrocannabinol (THC), eliciting distinct pharmacological effects mediated largely by cannabinoid receptor (CB1 or CB2) signaling. Since the initial discovery of THC and related cannabinoids, synthetic and semisynthetic classical cannabinoid analogs have been evaluated to help define receptor binding modes and structure–CB1/CB2 functional activity relationships. This perspective will examine the classical cannabinoids, with particular emphasis on the structure–activity relationship of five regions: C3 side chain, phenolic hydroxyl, aromatic A-ring, pyran B-ring, and cyclohexenyl C-ring. Cumulative structure–activity relationship studies to date have helped define the critical structural elements required for potency and selectivity toward CB1 and CB2 and, more importantly, ushered the discovery and development of contemporary nonclassical cannabinoid modulators with enhanced physicochemical and pharmacological profiles. PMID:27398024

  9. The Structure-Function Relationships of Classical Cannabinoids: CB1/CB2 Modulation.

    Science.gov (United States)

    Bow, Eric W; Rimoldi, John M

    2016-01-01

    The cannabinoids are members of a deceptively simple class of terpenophenolic secondary metabolites isolated from Cannabis sativa highlighted by (-)-Δ(9)-tetrahydrocannabinol (THC), eliciting distinct pharmacological effects mediated largely by cannabinoid receptor (CB1 or CB2) signaling. Since the initial discovery of THC and related cannabinoids, synthetic and semisynthetic classical cannabinoid analogs have been evaluated to help define receptor binding modes and structure-CB1/CB2 functional activity relationships. This perspective will examine the classical cannabinoids, with particular emphasis on the structure-activity relationship of five regions: C3 side chain, phenolic hydroxyl, aromatic A-ring, pyran B-ring, and cyclohexenyl C-ring. Cumulative structure-activity relationship studies to date have helped define the critical structural elements required for potency and selectivity toward CB1 and CB2 and, more importantly, ushered the discovery and development of contemporary nonclassical cannabinoid modulators with enhanced physicochemical and pharmacological profiles. PMID:27398024

  10. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found in...... cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18...... µM in brain slices. In vivo recordings showed a tendency towards increased adenosine levels in rats with hyperammonemia and systemic inflammation compared to a control group (3.7 ± 0.7 vs. 0.8 ± 0.2 µM, P = 0.06). This was associated with a significant increase in ICP and CBF. Intervention with the...

  11. Computer-Aided Diagnosis Systems for Brain Diseases in Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Yasuo Yamashita

    2009-07-01

    Full Text Available This paper reviews the basics and recent researches of computer-aided diagnosis (CAD systems for assisting neuroradiologists in detection of brain diseases, e.g., asymptomatic unruptured aneurysms, Alzheimer's disease, vascular dementia, and multiple sclerosis (MS, in magnetic resonance (MR images. The CAD systems consist of image feature extraction based on image processing techniques and machine learning classifiers such as linear discriminant analysis, artificial neural networks, and support vector machines. We introduce useful examples of the CAD systems in the neuroradiology, and conclude with possibilities in the future of the CAD systems for brain diseases in MR images.

  12. Brain Basics

    Medline Plus

    Full Text Available ... the brain cannot effectively coordinate the billions of cells in the body, the results can affect many ... unit of the brain and nervous system. These cells are highly specialized for the function of conducting ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... working unit of the brain and nervous system. These cells are highly specialized for the function of ... nerve cells (via axons) to form brain circuits. These circuits control specific body functions such as sleep ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... can be related to changes in the anatomy, physiology, and chemistry of the nervous system. When the ... healthy people, and how normal brain development and function can go awry, leading to mental illnesses. Brain ...

  15. An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine

    OpenAIRE

    Yudong Zhang; Shuihua Wang; Genlin Ji; Zhengchao Dong

    2013-01-01

    Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component analysis (PCA) to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM) with RBF kernel, usin...

  16. Dissimilar cannabinoid substitution patterns in mice trained to discriminate Δ9-tetrahydrocannabinol or methanandamide from vehicle

    OpenAIRE

    Wiley, Jenny L.; Walentiny, D. Matthew; Vann, Robert E.; Baskfield, Cassandra Y.

    2011-01-01

    Δ9-Tetrahydrocannabinol (THC) discrimination in rodents is a behavioral assay that has been used to probe differences among classes of cannabinoids in rats. The purpose of this study was to determine whether traditional and anandamide-like cannabinoids were distinguishable in cannabinoid discrimination procedures in mice. Male mice were trained to discriminate 30 mg/kg THC or 70 mg/kg methanandamide from vehicle in a two-lever milk-reinforced drug discrimination procedure. After acquisition, ...

  17. Repeated Cannabinoid Injections into the Rat Periaqueductal Gray Enhances Subsequent Morphine Antinociception

    OpenAIRE

    Wilson, Adrianne R.; Maher, Lauren; Morgan, Michael M

    2008-01-01

    Cannabinoids and opiates inhibit pain, in part, by activating the periaqueductal gray (PAG). Evidence suggests this activation occurs through distinct mechanisms. If the antinociceptive mechanisms are distinct, then cross-tolerance between opioids and cannabinoids should not develop. This hypothesis was tested by measuring the antinociceptive effect of microinjecting morphine into the ventrolateral PAG of rats pretreated with the cannabinoid HU-210 for two days. Male Spraque-Dawley rats were ...

  18. Cannabinoid receptor activation reverses kainate-induced synchronized population burst firing in rat hippocampus

    OpenAIRE

    Rob Mason; Cheer, Joseph F

    2009-01-01

    Cannabinoids have been shown to possess anticonvulsant properties in whole animal models of epilepsy. The present investigation sought to examine the effects of cannabinoid receptor activation on kainic acid (KA)-induced epileptiform neuronal excitability. Under urethane anesthesia, acute KA treatment (10 mg/kg, i.p.) entrained the spiking mode of simultaneously recorded neurons from random firing to synchronous bursting (% change in burst rate). Injection of the high-affinity cannabinoid a...

  19. Cannabinoids go nuclear: evidence for activation of peroxisome proliferator-activated receptors

    OpenAIRE

    O'Sullivan, S E

    2007-01-01

    Cannabinoids act at two classical cannabinoid receptors (CB1 and CB2), a 7TM orphan receptor and the transmitter-gated channel transient receptor potential vanilloid type-1 receptor. Recent evidence also points to cannabinoids acting at members of the nuclear receptor family, peroxisome proliferator-activated receptors (PPARs, with three subtypes α, β (δ) and γ), which regulate cell differentiation and lipid metabolism. Much evidence now suggests that endocannabinoids are natural activators o...

  20. Hämodynamische Auswirkungen synthetischer, pflanzlicher und endogener Cannabinoide im Modell der isolierten Kaninchenlunge

    OpenAIRE

    Wolf, Jürgen

    2005-01-01

    Cannabinoide zeigen komplexe kardiovaskuläre Effekte. Das endogene Cannabinoid Anandamid (Arachidonylethanolamid) induziert in verschiedenen Organsystemen eine hauptsächlich über periphere CB1-Rezeptoren vermittelte Vasodilatation. Der Einfluss von Cannabinoiden auf die pulmonale Strombahn ist jedoch unklar. Am Modell einer isolierten, perfundierten und ventilierten Kaninchenlunge konnte gezeigt werden, dass die endogenen Cannabinoide Anandamid und 2-Arachidonylglycerol (2-AG) dosisabhängig d...

  1. Cannabinoids as modulators of cancer cell viability, neuronal differentiation, and embryonal development

    OpenAIRE

    Gustafsson, Sofia

    2012-01-01

    Cannabinoids (CBs) are compounds that activate the CB1 and CB2 receptors. CB receptors mediate many different physiological functions, and cannabinoids have been reported to decrease tumor cell viability, proliferation, migration, as well as to modulate metastasis. In this thesis, the effects of cannabinoids on human colorectal carcinoma Caco-2 cells (Paper I) and mouse P19 embryonal carcinoma (EC) cells (Paper III) were studied.  In both cell lines, the compounds examined produced a concentr...

  2. Cannabinoid Receptor Activation Reverses Kainate-Induced Synchronized Population Burst Firing in Rat Hippocampus

    OpenAIRE

    Mason, Rob; Cheer, Joseph F

    2009-01-01

    Cannabinoids have been shown to possess anticonvulsant properties in whole animal models of epilepsy. The present investigation sought to examine the effects of cannabinoid receptor activation on kainic acid (KA)-induced epileptiform neuronal excitability. Under urethane anesthesia, acute KA treatment (10 mg kg−1, i.p.) entrained the spiking mode of simultaneously recorded neurons from random firing to synchronous bursting (% change in burst rate). Injection of the high-affinity cannabinoid a...

  3. CANNABINOID AND OPIOID MODULATION OF SOCIAL PLAY BEHAVIOR IN ADOLESCENT RATS: DIFFERENTIAL BEHAVIORAL MECHANISMS

    OpenAIRE

    Trezza, Viviana; Vanderschuren, Louk J. M. J.

    2008-01-01

    We have recently shown that the pharmacological mechanisms through which cannabinoid and opioid drugs influence social play behavior in adolescent rats can be partially dissociated. Here, we characterize the effects of the direct cannabinoid agonist WIN55,212-2, the indirect cannabinoid agonist URB597 and the opioid agonist morphine on social play at the behavioral level. By treating either one or both partners of the test dyad, we show that these drugs differentially affect play solicitation...

  4. Candidate PET radioligands for cannabinoid CB1 receptors: [18F]AM5144 and related pyrazole compounds

    International Nuclear Information System (INIS)

    Introduction: The mammalian brain contains abundant G protein-coupled cannabinoid CB1 receptors that respond to Δ9-tetrahydrocannabinol, the active ingredient of cannabis. The availability of a positron emission tomography (PET) radioligand would facilitate studies of the addictive and medicinal properties of compounds that bind to this receptor. Among the known classes of ligands for CB1 receptors, the pyrazoles are attractive targets for radiopharmaceutical development because they are antagonists and are generally less lipophilic than the other classes. Methods: A convenient high-yield synthesis of N-(4-[18F]fluorophenyl)-5-(4-bromophenyl)-1-(2,4-dichlorophenyl)- 1H-pyrazole-3-carboxamide (AM5144) was devised by coupling the appropriate pyrazole-3-carboxyl chloride compound with 4-[18F]fluoroaniline. The labeled precursor was synthesized from 1-[18F]fluoro-4-nitrobenzene in 60% radiochemical yield for 10 min using an improved procedure involving sodium borohydride reduction with cobalt chloride catalysis. The product was purified by HPLC to give a specific activity >400 mCi/μmol and a radiochemical purity >95%, and a PET study was conducted in a baboon. Results: Although the regional uptake of AM5144 in baboon brain was consistent with binding to cannabinoid CB1 receptors, absolute uptake at 1 receptor ligands is not surprising because of their high lipophilicity as compared with most brain PET radiotracers. However, for nine pyrazole compounds for which rodent data are available, brain uptake and calculated logP values are not correlated. Thus, high logP values should not preclude evaluation of radiotracers for targets such as the CB1 receptor that may require very lipophilic ligands

  5. Metabolism and toxicological analysis of synthetic cannabinoids in biological fluids and tissues.

    Science.gov (United States)

    Presley, B C; Gurney, S M R; Scott, K S; Kacinko, S L; Logan, B K

    2016-07-01

    Synthetic cannabinoids, which began proliferating in the United States in 2009, have gone through numerous iterations of modification to their chemical structures. More recent generations of compounds have been associated with significant adverse outcomes following use, including cognitive and psychomotor impairment, seizures, psychosis, tissue injury and death. These effects increase the urgency for forensic and public health laboratories to develop methods for the detection and identification of novel substances, and apply these to the determination of their metabolism and disposition in biological samples. This comprehensive review describes the history of the appearance of the drugs in the United States, discusses the naming conventions emerging to designate new structures, and describes the most prominent new compounds linked to the adverse effects now associated with their use. We review in depth the metabolic pathways that have been elucidated for the major members of each of the prevalent synthetic cannabinoid drug subclasses, the enzyme systems responsible for their metabolism, and the use of in silico approaches to assist in predicting and identifying the metabolites of novel compounds and drug subclasses that will continue to appear. Finally, we review and critique analytical methods applied to the detection of the drugs and their metabolites, including immunoassay screening, and liquid chromatography mass spectrometry confirmatory techniques applied to urine, serum, whole blood, oral fluid, hair, and tissues. PMID:27257717

  6. Cannabinoid, melanocortin and opioid receptor expression on DRD1 and DRD2 subpopulations in rat striatum

    Directory of Open Access Journals (Sweden)

    Ralph J Oude-Ophuis

    2014-03-01

    Full Text Available The striatum harbors two neuronal populations that enable action selection. One population represents the striatonigral pathway, expresses the dopamine receptor D1 (DRD1 and promotes the execution of motor programs, while the other population represents the striatopallidal pathway, expresses the dopamine receptor D2 (DRD2 and suppresses voluntary activity. The two populations integrate distinct sensorimotor, cognitive and emotional information streams and their combined activity enables the selection of adaptive behaviors. Characterization of these populations is critical to the understanding of their role in action selection, because it aids the identification of the molecular mechanisms that separate them. To that end, we used fluorescent in-situ hybridization to quantify the percentage of striatal cells that (coexpress dopaminergic receptors and receptors of the cannabinoid, melanocortin or opioid neurotransmitters systems. Our main findings are that the cannabinoid 1 receptor is equally expressed on both populations with a gradient from dorsal to ventral striatum, that the opioid receptors have a preference for expression with either the DRD1 or DRD2 and that the melanocortin 4 receptor (MC4R is predominantly expressed in ventral parts of the striatum. In addition, we find that the level of MC4R expression determines its localization to either the DRD1 or the DRD2 population. Thereby, we provide insight into the sensitivity of the two dopaminoceptive populations to these neurotransmitters and progress the understanding of the mechanisms that enable action selection.

  7. Combining stereotactic radiosurgery and systemic therapy for brain metastases: a potential role for temozolomide

    Directory of Open Access Journals (Sweden)

    Matthew E Hardee

    2012-08-01

    Full Text Available Brain metastases are unfortunately very common in the natural history of many solid tumors and remain a life-threatening condition, associated with a dismal prognosis, despite many clinical trials aimed at improving outcomes. Radiation therapy options for brain metastases include whole brain radiotherapy (WBRT and stereotactic radiosurgery (SRS. SRS avoids the potential toxicities of WBRT and is associated with excellent local control rates. However, distant intracranial failure following SRS remains a problem, suggesting that untreated intracranial micrometastatic disease is responsible for failure of treatment. The oral alkylating agent temozolomide (TMZ, which has demonstrated efficacy in primary malignant central nervous system tumors such as glioblastoma, has been used in early phase trials in the treatment of established brain metastases. Although results of these studies in established, macroscopic metastatic disease have been modest at best, there is clinical and preclinical data to suggest that TMZ is more efficacious at treating and controlling clinically undetectable intracranial micrometastatic disease. We review the available data for the primary management of brain metastases with SRS, as well as the use of TMZ in treating established brain metastases and undetectable micrometastatic disease, and suggest the role for a clinical trial with the aims of treating macroscopically visible brain metastases with SRS combined with TMZ to address microscopic, undetectable disease.

  8. In vivo electrical conductivity imaging of a canine brain using a 3 T MREIT system

    International Nuclear Information System (INIS)

    Magnetic resonance electrical impedance tomography (MREIT) aims at producing high-resolution cross-sectional conductivity images of an electrically conducting object such as the human body. Following numerous phantom imaging experiments, the most recent study demonstrated successful conductivity image reconstructions of postmortem canine brains using a 3 T MREIT system with 40 mA imaging currents. Here, we report the results of in vivo animal imaging experiments using 5 mA imaging currents. To investigate any change of electrical conductivity due to brain ischemia, canine brains having a regional ischemic model were scanned along with separate scans of canine brains having no disease model. Reconstructed multi-slice conductivity images of in vivo canine brains with a pixel size of 1.4 mm showed a clear contrast between white and gray matter and also between normal and ischemic regions. We found that the conductivity value of an ischemic region decreased by about 10–14%. In a postmortem brain, conductivity values of white and gray matter decreased by about 4–8% compared to those in a live brain. Accumulating more experience of in vivo animal imaging experiments, we plan to move to human experiments. One of the important goals of our future work is the reduction of the imaging current to a level that a human subject can tolerate. The ability to acquire high-resolution conductivity images will find numerous clinical applications not supported by other medical imaging modalities. Potential applications in biology, chemistry and material science are also expected

  9. Dissociable prefrontal brain systems for attention and emotion

    Science.gov (United States)

    Yamasaki, Hiroshi; Labar, Kevin S.; McCarthy, Gregory

    2002-08-01

    The prefrontal cortex has been implicated in a variety of attentional, executive, and mnemonic mental operations, yet its functional organization is still highly debated. The present study used functional MRI to determine whether attentional and emotional functions are segregated into dissociable prefrontal networks in the human brain. Subjects discriminated infrequent and irregularly presented attentional targets (circles) from frequent standards (squares) while novel distracting scenes, parametrically varied for emotional arousal, were intermittently presented. Targets differentially activated middle frontal gyrus, posterior parietal cortex, and posterior cingulate gyrus. Novel distracters activated inferior frontal gyrus, amygdala, and fusiform gyrus, with significantly stronger activation evoked by the emotional scenes. The anterior cingulate gyrus was the only brain region with equivalent responses to attentional and emotional stimuli. These results show that attentional and emotional functions are segregated into parallel dorsal and ventral streams that extend into prefrontal cortex and are integrated in the anterior cingulate. These findings may have implications for understanding the neural dynamics underlying emotional distractibility on attentional tasks in affective disorders. novelty | prefrontal cortex | amygdala | cingulate gyrus

  10. The histaminergic system in the brain: structural characteristics and changes in hibernation.

    Science.gov (United States)

    Panula, P; Karlstedt, K; Sallmen, T; Peitsaro, N; Kaslin, J; Michelsen, K A; Anichtchik, O; Kukko-Lukjanov, T; Lintunen, M

    2000-02-01

    Histaminergic neurons in adult vertebrate brain are confined to the posterior hypothalamic area, where they are comprised of scattered groups of neurons referred to as the tuberomammillary nucleus. Histamine regulates hormonal functions, sleep, food intake, thermoregulation and locomotor activity, for example. In the zebrafish, Danio rerio, histamine was detected only in the brain, where also the histamine synthesizing enzyme L-histidine decarboxylase (HDC) was expressed. It is possible that histamine has first evolved as a neurotransmitter in the central nervous system. We established sensitive quantitative in situ hybridization methods for histamine H(1) and H(2) receptors and HDC, to study the modulation of brain histaminergic system under pathophysiological conditions. A transient increase in H(1) receptor expression was seen in the dentate gyrus and striatum after a single injection of kainic acid, a glutamate analog. H(1) antagonists are known to increase duration of convulsions, and increased brain histamine is associated with reduced convulsions in animal models of epilepsy. No HDC mRNA was detected in brain vessels by in situ hybridization, which suggests lack of histamine synthesis by brain endothelial cells. This was verified by lack of HDC mRNA in a rat brain endothelial cell line, RBE4 cells. Both H(1) and H(2) receptor mRNA was found in this cell line, and the expression of both receptors was downregulated by dexamethasone. The findings are in agreement with the concept that histamine regulates blood-brain barrier permeability through H(1) and H(2) receptor mediated mechanisms. Hibernation is characterized by a drastic reduction of central functions. The activity of most transmitter systems is maintained at a very low level. Surprisingly, histamine levels and turnover were clearly elevated in hibernating ground squirrels, and the density of histamine-containing fibers was higher than in euthermic animals. It is possible that histamine actively

  11. Blind Source Separation Based of Brain Computer Interface System: A review

    OpenAIRE

    Ahmed Kareem Abdullah; Zhang Chao Zhu

    2014-01-01

    This study reviews the originality and development of the Brain Computer Interface (BCI) system and focus on the BCI system design based on Blind Source Separation (BSS) techniques. The study also provides the recent trends and discusses some of a new ideas for BSS techniques in BCI architecture, articles which discussing the BCI system development were analysed, types of the BCI systems and the recent BCI design were explored. Since 1970 when the research of BCI system began in the Californi...

  12. Next generation of non-mammalian blood-brain barrier models to study parasitic infections of the central nervous system

    OpenAIRE

    Siddiqui, Ruqaiyyah; Edwards-Smallbone, James; Flynn, Robin; Khan, Naveed Ahmed

    2012-01-01

    Transmigration of neuropathogens across the blood-brain barrier is a key step in the development of central nervous system infections, making it a prime target for drug development. The ability of neuropathogens to traverse the blood-brain barrier continues to inspire researchers to understand the specific strategies and molecular mechanisms that allow them to enter the brain. The availability of models of the blood-brain barrier that closely mimic the situation in vivo offers unprecedented o...

  13. Irradiation Alters MMP-2/TIMP-2 System and Collagen Type IV Degradation in Brain

    International Nuclear Information System (INIS)

    Purpose: Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. Methods and Materials: Animals received either whole-brain irradiation (a single dose of 10 Gy γ-rays or a fractionated dose of 40 Gy γ-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR). The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. Results: A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. Conclusions: The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.

  14. Irradiation Alters MMP-2/TIMP-2 System and Collagen Type IV Degradation in Brain

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Hee [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States); Warrington, Junie P.; Sonntag, William E. [Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Lee, Yong Woo, E-mail: ywlee@vt.edu [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States); Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States)

    2012-04-01

    Purpose: Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. Methods and Materials: Animals received either whole-brain irradiation (a single dose of 10 Gy {gamma}-rays or a fractionated dose of 40 Gy {gamma}-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR). The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. Results: A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. Conclusions: The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.

  15. Traumatic Brain Injury: Effects on the Endocrine System

    Science.gov (United States)

    ... aspect of your health. What is the endocrine system? Your endocrine system includes glands and organs that make and release ... to feel well. How can TBI affect the endocrine system? Two important parts of the endocrine system—the ...

  16. Systemic Chemotherapy for Progression of Brain Metastases in Extensive-Stage Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Nagla Abdel Karim

    2015-01-01

    Full Text Available Lung cancer is the most common cause of cancer related mortality in men and women. Approximately 15% of lung cancers are small cell type. Chemotherapy and radiation are the mainstay treatments. Currently, the standard chemotherapy regimen includes platinum/etoposide. For extensive small cell lung cancer, irinotecan and cisplatin have also been used. Patients with relapsed small cell lung cancer have a very poor prognosis, and the morbidity increases with brain metastases. Approximately 10%–14% of small cell lung cancer patients exhibit brain metastases at the time of diagnosis, which increases to 50%–80% as the disease progresses. Mean survival with brain metastases is reported to be less than six months, thus calling for improved regimens. Here we present a case series of patients treated with irinotecan for progressive brain metastases in small cell lung cancer, which serves as a reminder of the role of systemic chemotherapy in this setting.

  17. Uncoupling of the autonomic and cardiovascular systems in acute brain injury.

    Science.gov (United States)

    Goldstein, B; Toweill, D; Lai, S; Sonnenthal, K; Kimberly, B

    1998-10-01

    We hypothesized that acute brain injury results in decreased heart rate (HR) variability and baroreflex sensitivity indicative of uncoupling of the autonomic and cardiovascular systems and that the degree of uncoupling should be proportional to the degree of neurological injury. We used HR and blood pressure (BP) power spectral analysis to measure neuroautonomic regulation of HR and BP and the transfer function magnitude (TF) between BP and HR as a measure of baroreflex modulation of HR. In 24 brain-injured patients [anoxic/ischemic injury (n = 7), multiple trauma (n = 6), head trauma (n = 5), central nervous system infection (n = 4), and intracranial hemorrhage (n = 2)], neurological injury and survival was associated with low-frequency (0.01-0.15 Hz) HR and BP power and TF. Brain-dead patients showed decreased low-frequency HR power [0. 51 +/- 0.36 (SE) vs. 2.54 +/- 0.14 beats/min2, P = 0.03] and TF [0. 61 +/- 0.16 (SE) vs. 1.29 +/- 0.07 beats . min-1 . mmHg-1, P = 0.05] compared with non-brain-dead patients. We conclude that 1) severity of neurological injury and outcome are inversely associated with HR and BP variability and 2) there is direct evidence for cardiovascular and autonomic uncoupling in acute brain injury with complete uncoupling during brain death. PMID:9756562

  18. Cannabinoid receptor 2: potential role in immunomodulation and neuroinflammation.

    Science.gov (United States)

    Rom, Slava; Persidsky, Yuri

    2013-06-01

    An accumulating body of evidence suggests that endocannabinoids and cannabinoid receptors type 1 and 2 (CB(1), CB(2)) play a significant role in physiologic and pathologic processes, including cognitive and immune functions. While the addictive properties of marijuana, an extract from the Cannabis plant, are well recognized, there is growing appreciation of the therapeutic potential of cannabinoids in multiple pathologic conditions involving chronic inflammation (inflammatory bowel disease, arthritis, autoimmune disorders, multiple sclerosis, HIV-1 infection, stroke, Alzheimer's disease to name a few), mainly mediated by CB(2) activation. Development of CB(2) agonists as therapeutic agents has been hampered by the complexity of their intracellular signaling, relative paucity of highly selective compounds and insufficient data regarding end effects in the target cells and organs. This review attempts to summarize recent advances in studies of CB(2) activation in the setting of neuroinflammation, immunomodulation and HIV-1 infection. PMID:23471521

  19. Endogenous and Synthetic Cannabinoids as Therapeutics in Retinal Disease.

    Science.gov (United States)

    Kokona, Despina; Georgiou, Panagiota-Christina; Kounenidakis, Mihalis; Kiagiadaki, Foteini; Thermos, Kyriaki

    2016-01-01

    The functional significance of cannabinoids in ocular physiology and disease has been reported some decades ago. In the early 1970s, subjects who smoked Cannabis sativa developed lower intraocular pressure (IOP). This led to the isolation of phytocannabinoids from this plant and the study of their therapeutic effects in glaucoma. The main treatment of this disease to date involves the administration of drugs mediating either the decrease of aqueous humour synthesis or the increase of its outflow and thus reduces IOP. However, the reduction of IOP is not sufficient to prevent visual field loss. Retinal diseases, such as glaucoma and diabetic retinopathy, have been defined as neurodegenerative diseases and characterized by ischemia-induced excitotoxicity and loss of retinal neurons. Therefore, new therapeutic strategies must be applied in order to target retinal cell death, reduction of visual acuity, and blindness. The aim of the present review is to address the neuroprotective and therapeutic potential of cannabinoids in retinal disease. PMID:26881135

  20. Complex Dynamics in Physiological Systems: From Heart to Brain

    CERN Document Server

    Dana, Syamal K; Kurths, Jürgen

    2009-01-01

    Nonlinear dynamics has become an important field of research in recent years in many areas of the natural sciences. In particular, it has potential applications in biology and medicine; nonlinear data analysis has helped to detect the progress of cardiac disease, physiological disorders, for example episodes of epilepsy, and others. This book focuses on the current trends of research concerning the prediction of sudden cardiac death and the onset of epileptic seizures, using the nonlinear analysis based on ECG and EEG data. Topics covered include the analysis of cardiac models and neural models. The book is a collection of recent research papers by leading physicists, mathematicians, cardiologists and neurobiologists who are actively involved in using the concepts of nonlinear dynamics to explore the functional behaviours of heart and brain under normal and pathological conditions. This collection is intended for students in physics, mathematics and medical sciences, and researchers in interdisciplinary areas...

  1. Cannabinoid CB2 Receptor Mediates Nicotine-Induced Anti-Inflammation in N9 Microglial Cells Exposed to β Amyloid via Protein Kinase C

    Directory of Open Access Journals (Sweden)

    Ji Jia

    2016-01-01

    Full Text Available Background. Reducing β amyloid- (Aβ- induced microglial activation is considered to be effective in treating Alzheimer’s disease (AD. Nicotine attenuates Aβ-induced microglial activation; the mechanism, however, is still elusive. Microglia could be activated into classic activated state (M1 state or alternative activated state (M2 state; the former is cytotoxic and the latter is neurotrophic. In this investigation, we hypothesized that nicotine attenuates Aβ-induced microglial activation by shifting microglial M1 to M2 state, and cannabinoid CB2 receptor and protein kinase C mediate the process. Methods. We used Aβ1–42 to activate N9 microglial cells and observed nicotine-induced effects on microglial M1 and M2 biomarkers by using western blot, immunocytochemistry, and enzyme-linked immunosorbent assay (ELISA. Results. We found that nicotine reduced the levels of M1 state markers, including inducible nitric oxide synthase (iNOS expression and tumor necrosis factor α (TNF-α and interleukin- (IL- 6 releases; meanwhile, it increased the levels of M2 state markers, including arginase-1 (Arg-1 expression and brain-derived neurotrophic factor (BDNF release, in the Aβ-stimulated microglia. Coadministration of cannabinoid CB2 receptor antagonist or protein kinase C (PKC inhibitor partially abolished the nicotine-induced effects. Conclusion. These findings indicated that cannabinoid CB2 receptor mediates nicotine-induced anti-inflammation in microglia exposed to Aβ via PKC.

  2. Cannabinoid control of neuroinflammation related to multiple sclerosis

    OpenAIRE

    Baker, D.; Jackson, S. J.; Pryce, G.

    2007-01-01

    The cannabis plant (Cannabis sativa) has been known by many names but the question remains ‘Can we call it medicine?' There has been renewed interest in the value of cannabis for the control of neuroinflammatory conditions such as multiple sclerosis, where it has been shown to have some effect on spasticity and pain both experimentally and in clinical trials in humans. However, in addition to symptom control potential, the question remains whether cannabinoids can modify the neuroinflammatory...

  3. Cannabinoid-Rezeptor1 und Essstörungen

    OpenAIRE

    Reichard, Heidi

    2010-01-01

    Hintergrund und Ziele Das Endocannabinoidsystem ist ein zentrales Element in der Regulation von Appetit, Nahrungsaufnahme und Energiehomöostase. Bei Patientinnen mit Anorexia nervosa (AN) wurden erhöhte Raten des Endocannabinoids Anandamid gemessen. Auch eine Assoziation zwischen dem restriktiven Typus der Anorexie und einem funktionellen Polymorphismus des Cannabinoid-Rezeptors1 (CB1) konnte aufgedeckt werden. Ein Ziel unserer Studie war, mögliche Unterschiede der CB1-mRNA-Ausprägung bei Fra...

  4. Potencial terapéutico de los cannabinoides

    Directory of Open Access Journals (Sweden)

    L. M. Torres

    2013-06-01

    Full Text Available Los cannabinoides demuestran eficacia en modelos experimentales de dolor agudo y crónico. Parecen seguros en los ensayos desarrollados para algunas indicaciones de dolor y otras. Las nuevas tecnologías han abierto nuevas posibilidades de tratamiento al proporcionar nuevas vías de administración. Se precisan ensayos en pacientes para determinar el verdadero rol de estas sustancias en el tratamiento del dolor.

  5. Potencial terapéutico de los cannabinoides

    OpenAIRE

    L. M. Torres; J. M. Trinidad; E. Calderón

    2013-01-01

    Los cannabinoides demuestran eficacia en modelos experimentales de dolor agudo y crónico. Parecen seguros en los ensayos desarrollados para algunas indicaciones de dolor y otras. Las nuevas tecnologías han abierto nuevas posibilidades de tratamiento al proporcionar nuevas vías de administración. Se precisan ensayos en pacientes para determinar el verdadero rol de estas sustancias en el tratamiento del dolor.

  6. Finding cannabinoids in hair does not prove cannabis consumption

    OpenAIRE

    Bjoern Moosmann; Nadine Roth; Volker Auwärter

    2015-01-01

    Hair analysis for cannabinoids is extensively applied in workplace drug testing and in child protection cases, although valid data on incorporation of the main analytical targets, ∆9-tetrahydrocannabinol (THC) and 11-nor-9-carboxy-THC (THC-COOH), into human hair is widely missing. Furthermore, ∆9-tetrahydrocannabinolic acid A (THCA-A), the biogenetic precursor of THC, is found in the hair of persons who solely handled cannabis material. In the light of the serious consequences of positive tes...

  7. High Alert For Cannabinoid Hyperemesis Syndrome: A Case Report

    OpenAIRE

    Madhur Rathi

    2015-01-01

    Background: A 32-year-old Caucasian man presented with intractable nausea, psychogenic vomiting, abdominal pain and compulsive hot-water bathing behaviors following the habitual use of cannabis for years, consistent with the uncommon and frequently overlooked diagnosis of Cannabinoid Hyperemesis Syndrome. This was his third admission to the emergency department with the same complaints and symptoms which had persisted for over two years without a recognizable etiology. All imaging studies don...

  8. Medical education on cannabis and cannabinoids: Perspectives, challenges, and opportunities.

    Science.gov (United States)

    Ware, M A; Ziemianski, D

    2015-06-01

    The global regulatory landscape regarding the medical use of cannabis and cannabinoids is changing rapidly. This has considerable impact on health care professionals who currently receive little or no education on issues regarding medical cannabis. We propose a 'cannabis curriculum' that covers the spectrum of historical, botanical, physiological, clinical and legal issues to allow health care professionals to engage in meaningful discussions with their patients and colleagues around this stigmatized and controversial subject. PMID:25728558

  9. Cannabinoids act as necrosis-inducing factors in Cannabis sativa

    OpenAIRE

    Shoyama, Yoshinari; Sugawa, Chitomi; Tanaka, Hiroyuki; Morimoto, Satoshi

    2008-01-01

    Cannabis sativa is well known to produce unique secondary metabolites called cannabinoids. We recently discovered that Cannabis leaves induce cell death by secreting tetrahydrocannabinolic acid (THCA) into leaf tissues. Examinations using isolated Cannabis mitochondria demonstrated that THCA causes mitochondrial permeability transition (MPT) though opening of MPT pores, resulting in mitochondrial dysfunction (the important feature of necrosis). Although Ca2+ is known to cause opening of anima...

  10. Cannabinoid Control of Learning and Memory through HCN Channels.

    Science.gov (United States)

    Maroso, Mattia; Szabo, Gergely G; Kim, Hannah K; Alexander, Allyson; Bui, Anh D; Lee, Sang-Hun; Lutz, Beat; Soltesz, Ivan

    2016-03-01

    The mechanisms underlying the effects of cannabinoids on cognitive processes are not understood. Here we show that cannabinoid type-1 receptors (CB1Rs) control hippocampal synaptic plasticity and spatial memory through the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that underlie the h-current (Ih), a key regulator of dendritic excitability. The CB1R-HCN pathway, involving c-Jun-N-terminal kinases (JNKs), nitric oxide synthase, and intracellular cGMP, exerts a tonic enhancement of Ih selectively in pyramidal cells located in the superficial portion of the CA1 pyramidal cell layer, whereas it is absent from deep-layer cells. Activation of the CB1R-HCN pathway impairs dendritic integration of excitatory inputs, long-term potentiation (LTP), and spatial memory formation. Strikingly, pharmacological inhibition of Ih or genetic deletion of HCN1 abolishes CB1R-induced deficits in LTP and memory. These results demonstrate that the CB1R-Ih pathway in the hippocampus is obligatory for the action of cannabinoids on LTP and spatial memory formation. PMID:26898775

  11. Inhibition of leukocyte function and interleukin-2 gene expression by 2-methylarachidonyl-(2'-fluoroethyl)amide, a stable congener of the endogenous cannabinoid receptor ligand anandamide

    International Nuclear Information System (INIS)

    Arachidonylethanolamide (anandamide, AEA) has been identified as an endogenous ligand for cannabinoid receptors CB1 and CB2. Characterization of the direct cannabimimetic actions of anandamide has been hampered by its short duration of action and rapid degradation in in vivo and in vitro systems to arachidonic acid, a precursor in the biosynthesis of a broad range of biologically active molecules. In the present studies, we utilized 2-methylarachidonyl-(2'-fluoroethyl)amide (F-Me-AEA), an analog of anandamide resistant to enzymatic degradation, to determine whether F-Me-AEA modulated T cell function similar to that of plant-derived cannabinoids. Indeed, F-Me-AEA at low micromolar concentrations exhibited a marked inhibition of phorbol ester plus calcium ionophore (PMA/Io)-induced IL-2 protein secretion and steady state mRNA expression. Likewise, a modest suppression of the mixed lymphocyte response was observed in the presence of F-Me-AEA indicating an alteration in T cell responsiveness to allogeneic MHC class II antigens. F-Me-AEA was also found to modestly inhibit forskolin-stimulated adenylate cyclase activity in thymocytes and splenocytes, a hallmark of cannabinoid receptor agonists. Further characterization of the influence of F-Me-AEA on the cAMP signaling cascade revealed an inhibition of CREB-1/ATF-1 phosphorylation and subsequently, an inhibition of CRE DNA binding activity. Characterization of nuclear binding proteins further revealed that NF-AT and, to a lesser extent, NF-κB DNA binding activities were also suppressed. These studies demonstrate that F-Me-AEA modulates T cell function in a similar manner to plant-derived and endogenous cannabinoids and therefore can be utilized as an amidase- and hydrolysis-resistant endogenous cannabinoid

  12. CB1 receptor antagonism prevents long-term hyperexcitability after head injury by regulation of dynorphin-KOR system and mGluR5 in rat hippocampus.

    Science.gov (United States)

    Wang, Xiu; Wang, Yao; Zhang, Chao; Liu, Chang; Zhao, Baotian; Wei, Naili; Zhang, Jian-Guo; Zhang, Kai

    2016-09-01

    Both endocannabinoids and dynorphin are feedback messengers in nervous system that act at the presynaptic nerve terminal to inhibit transmitter release. Many studies showed the cannabinoid-opioid cross-modulation in antinociception, hypothermia, sedation and reward. The aim of this study was to assess the influence of early application of cannabinoid type 1 (CB1) receptor antagonism SR141716A after brain injury on dynorphin-κ opioid receptor (KOR) system and the expression of metabotropic glutamate receptors (mGluRs) in a rat model of fluid percussion injury (FPI). Firstly, seizure latency induced by pentylenetetrazole was significantly prolonged 6 weeks after brain injury in group of SR141716A treatment. Then, PCR and western blot showed that SR141716A inhibited the long-term up-regulation of CB1 receptors in hippocampus. However, SR141716A resulted in long-term potentiation of dynorphin release and did not influence the up-regulation of KOR in hippocampus after brain injury. Furthermore, SR141716A reverse the overexpression of mGluR5 in the late stage of brain injury. We propose that during the induction of epileptogenesis after brain injury, early application of CB1 receptor antagonism could prevent long-term hyperexcitability by up-regulation of dynorphin-KOR system and prevention of mGluR5 induced epileptogenesis in hippocampus. PMID:27262683

  13. Immune system modulation in the central nervous system: A possible role for endocannabinoids

    International Nuclear Information System (INIS)

    The immune system is designed to protect the body from infection and tumor formation. To perform this function, cells of the immune system can be dangerous for the survival and function of the neuronal network in the brain under the influence of infection or immune imbalance. An attack of immune cells inside the brain includes the potential for severe neuronal damage or cell death and therefore impairment of the CNS function. To avoid such undesirable action of the immune system, the CNS performs a cascade of cellular and molecular mechanisms enabling strict control of immune reactions immune privilege. Under inflammatory and patholological conditions, uncontrolled immune system results in the activation of neuronal damage that is frequently associated with neurological diseases. On the other hand, processes of neuroprotection and neurorepair after neuronal damage depend on a steady and tightly controlled immunesurvelliance. Many immunoprotectants play a role to imbalance the immune reactions in the CNS and other organs which presents an important therapeutic target. It has been reported recently that endocannabinoids are secreted in abundance in the CNS following neuronal insult, probably for its protection. There are at least two types of cannabinoid receptors, CB1 and CB2. Both are coupled to G proteins. CB1 receptors exist primarily on central and peripheral neurons. CB2 receptors are present mainly on immune cells. Endogenous agonists for cannabinoid receptors (endocannabinoids), have been discovered, the most important being arachidonoyl ethanolamide (anandamide), 2-arachidonoyl glycerol (2AG), and 2-archidonyl glyceryl ether. Following their release, endocannabinoids are removed from the extracellular space and then degraded by intracellular enzymic hydrolysis. Therapeutic uses of cannabinoid receptor agonists/antagonists include the management of many disease conditions. They are also involved in immune system suppression and in cell to cell communication

  14. Evaluation of the specificity of antibodies raised against cannabinoid receptor type 2 in the mouse retina.

    Science.gov (United States)

    Cécyre, Bruno; Thomas, Sébastien; Ptito, Maurice; Casanova, Christian; Bouchard, Jean-François

    2014-02-01

    Cannabinoid receptors (CB1R and CB2R) are among the most abundant G protein-coupled receptors in the central nervous system. The endocannabinoid system is an attractive therapeutic target for immune system modulation and peripheral pain management. While CB1R is distributed in the nervous system, CB2R has traditionally been associated to the immune system. This dogma is currently a subject of debate since the discovery of CB2R expression in neurons using antibody-based methods. The localization of CB2R in the central nervous system (CNS) could have a significant impact on drug development because it would mean that in addition to its effects on the peripheral pain pathway, CB2R could also mediate some central effects of cannabinoids. In an attempt to clarify the debate over CB2R expression in the CNS, we tested several commercially or academically produced CB2R antibodies using Western blot and immunohistochemistry on retinal tissue obtained from wild-type mice and mice lacking CB2R (cnr2 (-/-) ). One of the antibodies tested exhibited a valuable specificity as it marked a single band near the predicted molecular weight in Western blot and produced no staining in cnr2 (-/-) mice retina sections. The other antibodies tested detected multiple bands in Western blot and labeled unidentified proteins when used with their immunizing peptide or on cnr2 (-/-) retinal sections. We conclude that many commonly used antibodies raised against CB2R are not specific for use in immunohistochemistry, at least in the context of the mouse retina. Moreover, some of them tested presented significant lot-to-lot variability. Hence, caution should be used when interpreting prior and future studies using CB2R antibodies. PMID:24185999

  15. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Gopez, V.; Delis, F.; Michaelides, M.; Grand, D.K.; Wang, G.-J.; Kunos, G.; Volkow, N.D.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.

  16. Endocannabinoids modulate human blood–brain barrier permeability in vitro

    OpenAIRE

    Hind, William H.; Tufarelli, Cristina; Neophytou, Maria; Anderson, Susan I; England, Timothy J.; O'Sullivan, Saoirse E

    2015-01-01

    Background and Purpose Endocannabinoids alter permeability at various epithelial barriers, and cannabinoid receptors and endocannabinoid levels are elevated by stroke, with potential neuroprotective effects. We therefore explored the role of endocannabinoids in modulating blood–brain barrier (BBB) permeability in normal conditions and in an ischaemia/reperfusion model. Experimental Approach Human brain microvascular endothelial cell and astrocyte co-cultures modelled the BBB. Ischaemia was mo...

  17. Metabolomics and bioanalysis of terpenoid derived secondary metabolites : Analysis of Cannabis sativa L. metabolite production and prenylases for cannabinoid production

    NARCIS (Netherlands)

    Muntendam, Remco

    2015-01-01

    Cannabinoid research has gained a renenewed interest by both the public and scientist. Focus is mainly directed to the medicinal activities, as reported for various cannabinoid structures. This thesis focusses on prenyl-derived secondary metabolites with main focus on cannabinoids. Firstly the produ

  18. The Smartphone Brain Scanner: A Portable Real-Time Neuroimaging System

    OpenAIRE

    Stopczynski, Arkadiusz; Stahlhut, Carsten; Larsen, Jakob Eg; Petersen, Michael Kai; Hansen, Lars Kai

    2014-01-01

    Combining low-cost wireless EEG sensors with smartphones offers novel opportunities for mobile brain imaging in an everyday context. Here we present the technical details and validation of a framework for building multi-platform, portable EEG applications with real-time 3D source reconstruction. The system – Smartphone Brain Scanner – combines an off-the-shelf neuroheadset or EEG cap with a smartphone or tablet, and as such represents the first fully portable system for real-time 3D EEG imagi...

  19. A map of brain neuropils and fiber systems in the ant Cardiocondyla obscurior.

    Science.gov (United States)

    Bressan, Joris M A; Benz, Martin; Oettler, Jan; Heinze, Jürgen; Hartenstein, Volker; Sprecher, Simon G

    2014-01-01

    A wide spectrum of occupied ecological niches and spectacular morphological adaptations make social insects a prime object for comparative neuroanatomical studies. Eusocial insects have evolved complex societies based on caste polyphenism. A diverse behavioral repertoire of morphologically distinct castes of the same species requires a high degree of plasticity in the central nervous system. We have analyzed the central brain neuropils and fiber tract systems of the worker of the ant Cardiocondyla obscurior, a model for the study of social traits. Our analysis is based on whole mount preparations of adult brains labeled with an antibody against Drosophila-Synapsin, which cross-reacts strongly with synapses in Cardiocondyla. Neuropil compartments stand out as domains with a certain texture and intensity of the anti-Synapsin signal. By contrast, fiber tracts, which are composed of bundles of axons accompanied by glia and are devoid of synapses, appear as channels or sheaths with low anti-Synapsin signal. We have generated a digital 3D atlas of the Cardiocondyla brain neuropil. The atlas provides a reference for future studies of brain polymorphisms in distinct castes, brain development or localization of neurotransmitter systems. PMID:25698935

  20. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury

    Science.gov (United States)

    Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun

    2013-05-01

    Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.

  1. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules.

    Science.gov (United States)

    Aspelund, Aleksanteri; Antila, Salli; Proulx, Steven T; Karlsen, Tine Veronica; Karaman, Sinem; Detmar, Michael; Wiig, Helge; Alitalo, Kari

    2015-06-29

    The central nervous system (CNS) is considered an organ devoid of lymphatic vasculature. Yet, part of the cerebrospinal fluid (CSF) drains into the cervical lymph nodes (LNs). The mechanism of CSF entry into the LNs has been unclear. Here we report the surprising finding of a lymphatic vessel network in the dura mater of the mouse brain. We show that dural lymphatic vessels absorb CSF from the adjacent subarachnoid space and brain interstitial fluid (ISF) via the glymphatic system. Dural lymphatic vessels transport fluid into deep cervical LNs (dcLNs) via foramina at the base of the skull. In a transgenic mouse model expressing a VEGF-C/D trap and displaying complete aplasia of the dural lymphatic vessels, macromolecule clearance from the brain was attenuated and transport from the subarachnoid space into dcLNs was abrogated. Surprisingly, brain ISF pressure and water content were unaffected. Overall, these findings indicate that the mechanism of CSF flow into the dcLNs is directly via an adjacent dural lymphatic network, which may be important for the clearance of macromolecules from the brain. Importantly, these results call for a reexamination of the role of the lymphatic system in CNS physiology and disease. PMID:26077718

  2. Stemming the impact of health professional brain drain from Africa: a systemic review of policy options

    Directory of Open Access Journals (Sweden)

    Edward Zimbudzi

    2013-06-01

    Full Text Available Africa has been losing professionally trained health workers who are the core of the health system of this continent for many years. Faced with an increased burden of disease and coupled by a massive exodus of the health workforce, the health systems of many African nations are risking complete paralysis. Several studies have suggested policy options to reduce brain drain from Africa. The purpose of this paper is to review possible policies, which can stem the impact of health professional brain drain from Africa. A systemic literature review was conducted. Cinahl, Science Direct and PubMed databases were searched with the following terms: health professional brain drain from Africa and policies for reducing impact of brain drain from Africa. References were also browsed for relevant articles. A total of 425 articles were available for the study but only 23 articles met the inclusion criteria. The review identified nine policy options, which were being implemented in Africa, but the most common was task shifting which had success in several African countries. This review has demonstrated that there is considerable consensus on task shifting as the most appropriate and sustainable policy option for reducing the impact of health professional brain drain from Africa.

  3. Transport processes in biological systems: Tumoral cells and human brain

    Science.gov (United States)

    Lucia, Umberto

    2014-01-01

    The entropy generation approach has been developed for the analysis of complex systems, with particular regards to biological systems, in order to evaluate their stationary states. The entropy generation is related to the transport processes related to exergy flows. Moreover, cancer can be described as an open complex dynamic and self-organizing system. Consequently, it is used as an example useful to evaluate the different thermo-chemical quantities of the transport processes in normal and in tumoral cells systems.

  4. Cannabinoids: novel medicines for the treatment of Huntington's disease.

    Science.gov (United States)

    Sagredo, Onintza; Pazos, M Ruth; Valdeolivas, Sara; Fernandez-Ruiz, Javier

    2012-04-01

    Cannabinoid pharmacology has experienced a notable increase in the last 3 decades which is allowing the development of novel cannabinoid-based medicines for the treatment of different human pathologies, for example, Cesamet® (nabilone) or Marinol® (synthetic Δ9-tetrahydrocannabinol for oral administration) that were approved in 80s for the treatment of nausea and vomiting associated with chemotherapy treatment in cancer patients and in 90s for anorexiacachexia associated with AIDS therapy. Recently, the british company GW Pharmaceuticals plc has developed an oromucosal spray called Sativex®, which is constituted by an equimolecular combination of Δ9-tetrahydrocannabinol- and cannabidiol- enriched botanical extracts. Sativex® has been approved for the treatment of specific symptoms (i.e. spasticity and pain) of multiple sclerosis patients in various countries (i.e. Canada, UK, Spain, New Zealand). However, this cannabis- based medicine has been also proposed to be useful in other neurological disorders given the analgesic, antitumoral, anti-inflammatory, and neuroprotective properties of their components demonstrated in preclinical models. Numerous clinical trials are presently being conducted to confirm this potential in patients. We are particularly interested in the case of Huntington's disease (HD), an autosomal-dominant inherited disorder caused by an excess of CAG repeats in the genomic allele resulting in a polyQ expansion in the encoded protein called huntingtin, and that affects primarily striatal and cortical neurons thus producing motor abnormalities (i.e. chorea) and dementia. Cannabinoids have been studied for alleviation of hyperkinetic symptoms, given their inhibitory effects on movement, and, in particular, as disease-modifying agents due to their anti-inflammatory, neuroprotective and neuroregenerative properties. This potential has been corroborated in different experimental models of HD and using different types of cannabinoid agonists

  5. Efecto neuroprotector de los cannabinoides en las enfermedades neurodegenerativas

    Directory of Open Access Journals (Sweden)

    Carlos Suero-García

    2015-01-01

    Full Text Available Objetivos: Se analiza la situación actual de las investigaciones relacionadas con las sustancias cannabinoides, así como su interacción con el organismo, clasificación, efectos terapéuticos y su uso en las enfermedades neurodegenerativas. Métodos: Se realiza una exhaustiva revisión bibliográfica relacionada con las sustancias cannabinoides y sus derivados sintéticos, haciendo especial hincapié en la forma de interactuar con el organismo y los efectos que provocan dichas interacciones. Concretamente, se estudiarán sus efectos neuroantiinflamatorio y analgésico lo que conlleva al efecto neuroprotector en enfermedades neurodegenerativas tales como Alzheimer, Parkinson, Huntington, esclerosis múltiple y esclerosis lateral amiotrófica. Resultados: Desde hace miles de años la planta Cannabis Sativa ha sido utilizada por muchas culturas con distintos fines, de ocio, textiles, analgésicos, pero no es hasta finales del siglo XX cuando se empieza a incentivar los estudios científicos relacionados con ésta. La planta posee una mezcla de unos 400 componentes, de los cuales 60 pertenecen al grupo de los cannabinoides siendo los principales el cannabinol, cannabidiol y tetrahidrocannabinol. Con el descubrimiento de las sustancias cannabinoides, sus derivados, y los receptores que interactúan, se amplían las posibilidades terapéuticas teniendo un especial interés el efecto neuroprotector que estas sustancias contienen. Conclusiones. Se ha demostrado el gran potencial de los cannabinoides como sustancias terapéuticas más allá de su uso analgésico o antiemético, esto es, en enfermedades neurodegenerativas en las que pueden no solo disminuir los síntomas, sino frenar el proceso de la enfermedad. Otra posible aplicación puede ser en el campo oncológico, siendo particularmente intensa la actividad investigadora realizada en los últimos 15 años.

  6. A Gut Gone to Pot: A Case of Cannabinoid Hyperemesis Syndrome due to K2, a Synthetic Cannabinoid

    Directory of Open Access Journals (Sweden)

    Anene Ukaigwe

    2014-01-01

    Full Text Available Cannabinoid Hyperemesis Syndrome (CHS was first described in 2004. Due to its novelty, CHS is often unrecognized by clinicians leading to expensive workup of these patients with cyclical symptoms. It may take up to 9 years to diagnose CHS. CHS is characterized by cyclical nausea and vomiting, abdominal pain, and an unusual compulsion to take hot showers in the presence of chronic use of cannabinoids. Cannabicyclohexanol is a synthetic cannabinoid, popularly known as K2 spice. It is a popular marijuana alternative among teenagers and young adults since it is readily available as herbal incense. Unlike marijuana, many users know that K2 is not detected in conventional urine drug screens, allowing those users to conceal their intake from typical detection methods. Serum or urine gas chromatography mass spectrophotometry is diagnostic, though not widely available. Thus, it is imperative for clinicians to recognize CHS, even with negative UDS, to provide cost-effective care. We present a 38-year-old man with a 10-year history of cannabis, and 1-year history of K2 abuse admitted with 1-week history of episodes of nausea, vomiting of clear fluids, and epigastric discomfort. Symptoms are relieved only by hot showers. Extensive laboratory, radiologic, and endoscopic evaluation was unrevealing. CHS was diagnosed, based on proposed criteria by Simonetti et al.

  7. Synthetic cannabinoids: In silico prediction of the cannabinoid receptor 1 affinity by a quantitative structure-activity relationship model.

    Science.gov (United States)

    Paulke, Alexander; Proschak, Ewgenij; Sommer, Kai; Achenbach, Janosch; Wunder, Cora; Toennes, Stefan W

    2016-03-14

    The number of new synthetic psychoactive compounds increase steadily. Among the group of these psychoactive compounds, the synthetic cannabinoids (SCBs) are most popular and serve as a substitute of herbal cannabis. More than 600 of these substances already exist. For some SCBs the in vitro cannabinoid receptor 1 (CB1) affinity is known, but for the majority it is unknown. A quantitative structure-activity relationship (QSAR) model was developed, which allows the determination of the SCBs affinity to CB1 (expressed as binding constant (Ki)) without reference substances. The chemically advance template search descriptor was used for vector representation of the compound structures. The similarity between two molecules was calculated using the Feature-Pair Distribution Similarity. The Ki values were calculated using the Inverse Distance Weighting method. The prediction model was validated using a cross validation procedure. The predicted Ki values of some new SCBs were in a range between 20 (considerably higher affinity to CB1 than THC) to 468 (considerably lower affinity to CB1 than THC). The present QSAR model can serve as a simple, fast and cheap tool to get a first hint of the biological activity of new synthetic cannabinoids or of other new psychoactive compounds. PMID:26795018

  8. Cannabinoids As Potential Treatment for Chemotherapy-Induced Nausea and Vomiting.

    Science.gov (United States)

    Rock, Erin M; Parker, Linda A

    2016-01-01

    Despite the advent of classic anti-emetics, chemotherapy-induced nausea is still problematic, with vomiting being somewhat better managed in the clinic. If post-treatment nausea and vomiting are not properly controlled, anticipatory nausea-a conditioned response to the contextual cues associated with illness-inducing chemotherapy-can develop. Once it develops, anticipatory nausea is refractive to current anti-emetics, highlighting the need for alternative treatment options. One of the first documented medicinal uses of Δ(9)-tetrahydrocannabinol (Δ(9)-THC) was for the treatment of chemotherapy-induced nausea and vomiting (CINV), and recent evidence is accumulating to suggest a role for the endocannabinoid system in modulating CINV. Here, we review studies assessing the therapeutic potential of cannabinoids and manipulations of the endocannabinoid system in human patients and pre-clinical animal models of nausea and vomiting. PMID:27507945

  9. Neurophysiological evidence for the presence of cannabinoid CB1 receptors in the laterodorsal tegmental nucleus

    DEFF Research Database (Denmark)

    Soni, Neeraj; Satpathy, Shankha; Kohlmeier, Kristi Anne

    2014-01-01

    Marijuana, which acts within the endocannabinoid (eCB) system as an agonist of the cannabinoid type 1 receptor (CB1R), exhibits addictive properties and has powerful actions on the state of arousal of an organism. The laterodorsal tegmental nucleus (LDT), as a component of the reticular activating...... system, is involved in cortical activation and is important in the development of drug addiction-associated behaviours. Therefore, eCBs might exert behavioural effects by actions on the LDT; however, it is unknown whether eCBs have actions on neurons in this nucleus. Accordingly, whole-cell voltage- and...... changes the firing frequency and synaptic activity of neurons in this nucleus. Therefore, endogenous eCB transmission could play a role in processes involving the LDT, such as cortical activation and motivated behaviours and, further, behavioural actions of marijuana are probably mediated, in part, via...

  10. On indeterminism, chaos, and small number particle systems in the brain.

    Science.gov (United States)

    Lewis, Edwin R; MacGregor, Ronald J

    2006-06-01

    This paper presents rational, theoretical, and empirical grounds for doubting the principle of determinism in nature and in the brain, and discusses implications of this for free will and the chaos model of the brain. Small number particle systems are practically indeterministic and may be intrinsically indeterministic. Determinism in nature has often been taken to preclude free will. Strict determinism is a concept frequently applied to systems theory, establishing, e.g., the uniqueness of state-space trajectories. In order to consider determinism as a law of nature, however, one must be able to subject it to empirical tests. Presently, one is not able to and whether this can be shown to enable free will or not is not clear. It does remove, at least for the present, determinism itself as a rationale for precluding free will. The work partially supports the chaos model, but weakens the computational computer metaphor of brain function. PMID:16783870

  11. Evaluation of a radioimmunoassay (/sup 125/I) kit for cannabinoid metabolites in urine and whole blood

    Energy Technology Data Exchange (ETDEWEB)

    Childs, P.S.; McCurdy, H.H.

    The Abuscreen kit (Roche Diagnostics) for the analysis of 11-nor-..delta../sup 9/-tetrahydrocannabinol-9-carboxylic acid and other cannabinoids in urine was evaluated in terms of its accuracy, reproducibility, and sensitivity. A procedure is also presented for the analysis of total cannabinoids in whole blood using the RIA kit.

  12. Expresión de receptores cannabinoides en el desarrollo embrionario del pez cebra

    OpenAIRE

    Florido García, Virginia

    2009-01-01

    [ES]Este trabajo trata sobre la expresión de receptores cannabinoides en el desarrollo embrionario del pez cebra [EN]This paper deals with the expression of cannabinoid receptors in the embryonic development of zebrafish Trabajo de Fin de Máster del Máster en Neurociencias, curso 2008-2009.

  13. Involvement of cannabinoid-1 and cannabinoid-2 receptors in septic ileus.

    Science.gov (United States)

    Li, Y-Y; Li, Y-N; Ni, J-B; Chen, C-J; Lv, S; Chai, S-Y; Wu, R-H; Yüce, B; Storr, M

    2010-03-01

    BACKGROUND Cannabinoid (CB) receptors are involved in the regulation of gastrointestinal (GI) motility under physiological and pathophysiological conditions. We aimed to characterize the possible influence of CB(1) and CB(2) receptors on motility impairment in a model of septic ileus. METHODS Lipopolysaccharide (LPS) injections were used to mimic pathophysiological features of septic ileus. Spontaneous jejunal myoelectrical activity was measured in rats in vivo, and upper GI transit was measured in vivo by gavaging of a charcoal marker into the stomach of mice, in absence or presence of LPS, and CB(1) and CB(2) receptor agonists and antagonists. Tumour necrosis factor (TNF)-alpha and interleukin (IL)-6 levels were measured using enzyme-linked immunosorbent assay. Histology was performed with haematoxylin-eosin staining. KEY RESULTS Lipopolysaccharide treatment significantly reduced amplitude and frequency of myoelectric spiking activity and GI transit in vivo in a dose-dependent manner. TNF-alpha and IL-6 were increased in LPS-treated animals and histology showed oedema and cell infiltration. Both, the CB(1) agonist HU210 and the CB(2) agonist JWH133 reduced myoelectrical activity whereas the CB(1) antagonist AM251 caused an increase of myoelectrical activity. Pretreatment with AM251 or AM630 prevented against LPS-induced reduction of myoelectrical activity, and also against the delay of GI transit during septic ileus in vivo. CONCLUSIONS & INFERENCES The LPS model of septic ileus impairs jejunal myoelectrical activity and delays GI transit in vivo. Antagonists at the CB(1) receptor or the CB(2) receptor prevent the delay of GI transit and thus may be powerful tools in the future treatment of septic ileus. PMID:19840270

  14. One nose, one brain: contribution of the main and accessory olfactory system to chemosensation

    Directory of Open Access Journals (Sweden)

    Carla eMucignat

    2012-11-01

    Full Text Available The accessory olfactory system is present in most tetrapods. It is involved in the perception of chemical stimuli, being implicated also in the detection of pheromone. However, it is sensitive also to some common odorant molecules, which have no clear implication in intraspecific chemical communication. The accessory olfactory system may complement the main olfactory system, and may contribute different perceptual features to the construction of a unitary representation, which merges the different chemosensory qualities. Crosstalk between the main and accessory olfactory systems occurs at different levels of central processing, in brain areas where the inputs from the two systems converge. Interestingly, centrifugal projections from more caudal brain areas are deeply involved in modulating both main and accessory sensory processing. A high degree of interaction between the two systems may be conceived, and partial overlapping appears to occur in many functions. Therefore, the central chemosensory projections merge inputs from different organs to obtain a complex chemosensory picture.

  15. PLATO: data-oriented approach to collaborative large-scale brain system modeling.

    Science.gov (United States)

    Kannon, Takayuki; Inagaki, Keiichiro; Kamiji, Nilton L; Makimura, Kouji; Usui, Shiro

    2011-11-01

    The brain is a complex information processing system, which can be divided into sub-systems, such as the sensory organs, functional areas in the cortex, and motor control systems. In this sense, most of the mathematical models developed in the field of neuroscience have mainly targeted a specific sub-system. In order to understand the details of the brain as a whole, such sub-system models need to be integrated toward the development of a neurophysiologically plausible large-scale system model. In the present work, we propose a model integration library where models can be connected by means of a common data format. Here, the common data format should be portable so that models written in any programming language, computer architecture, and operating system can be connected. Moreover, the library should be simple so that models can be adapted to use the common data format without requiring any detailed knowledge on its use. Using this library, we have successfully connected existing models reproducing certain features of the visual system, toward the development of a large-scale visual system model. This library will enable users to reuse and integrate existing and newly developed models toward the development and simulation of a large-scale brain system model. The resulting model can also be executed on high performance computers using Message Passing Interface (MPI). PMID:21767932

  16. The smartphone brain scanner: a portable real-time neuroimaging system.

    Science.gov (United States)

    Stopczynski, Arkadiusz; Stahlhut, Carsten; Larsen, Jakob Eg; Petersen, Michael Kai; Hansen, Lars Kai

    2014-01-01

    Combining low-cost wireless EEG sensors with smartphones offers novel opportunities for mobile brain imaging in an everyday context. Here we present the technical details and validation of a framework for building multi-platform, portable EEG applications with real-time 3D source reconstruction. The system--Smartphone Brain Scanner--combines an off-the-shelf neuroheadset or EEG cap with a smartphone or tablet, and as such represents the first fully portable system for real-time 3D EEG imaging. We discuss the benefits and challenges, including technical limitations as well as details of real-time reconstruction of 3D images of brain activity. We present examples of brain activity captured in a simple experiment involving imagined finger tapping, which shows that the acquired signal in a relevant brain region is similar to that obtained with standard EEG lab equipment. Although the quality of the signal in a mobile solution using an off-the-shelf consumer neuroheadset is lower than the signal obtained using high-density standard EEG equipment, we propose mobile application development may offset the disadvantages and provide completely new opportunities for neuroimaging in natural settings. PMID:24505263

  17. The smartphone brain scanner: a portable real-time neuroimaging system.

    Directory of Open Access Journals (Sweden)

    Arkadiusz Stopczynski

    Full Text Available Combining low-cost wireless EEG sensors with smartphones offers novel opportunities for mobile brain imaging in an everyday context. Here we present the technical details and validation of a framework for building multi-platform, portable EEG applications with real-time 3D source reconstruction. The system--Smartphone Brain Scanner--combines an off-the-shelf neuroheadset or EEG cap with a smartphone or tablet, and as such represents the first fully portable system for real-time 3D EEG imaging. We discuss the benefits and challenges, including technical limitations as well as details of real-time reconstruction of 3D images of brain activity. We present examples of brain activity captured in a simple experiment involving imagined finger tapping, which shows that the acquired signal in a relevant brain region is similar to that obtained with standard EEG lab equipment. Although the quality of the signal in a mobile solution using an off-the-shelf consumer neuroheadset is lower than the signal obtained using high-density standard EEG equipment, we propose mobile application development may offset the disadvantages and provide completely new opportunities for neuroimaging in natural settings.

  18. The brain as a distributed intelligent processing system: an EEG study.

    Directory of Open Access Journals (Sweden)

    Armando Freitas da Rocha

    Full Text Available BACKGROUND: Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS, first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. METHODOLOGY AND PRINCIPAL FINDINGS: In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Wechsler Adult Intelligence Scale and WISC (Wechsler Intelligence Scale for Children, and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. CONCLUSION: The present results support these claims and the neural efficiency hypothesis.

  19. Representation and control in closed-loop brain-machine interface systems

    OpenAIRE

    Moorman, Helene

    2015-01-01

    Brain-machine interface (BMI) systems attempt to restore motor function lost due to injury or neurodegenerative disease by bypassing natural motor pathways and allowing direct neural control of a movement actuator. Such systems also hold promise for investigating questions about learning and motor control in a highly controlled and observable system. Here we utilize a BMI paradigm in which single unit neural spiking activity recorded from motor cortical areas in non-human primates is used to ...

  20. Regulation of MAP Kinase–Directed Mitogenic and Protein Kinase B–Mediated Signaling by Cannabinoid Receptor Type 1 in Skeletal Muscle Cells

    OpenAIRE

    Lipina, Christopher; Stretton, Clare; Hastings, Simon; Hundal, Jonathan S.; Mackie, Ken; Irving, Andrew J.; Harinder S Hundal

    2009-01-01

    OBJECTIVE The endogenous cannabinoid (or endocannabinoid) system (ECS) is part of a central neuromodulatory system thought to play a key role in the regulation of feeding behavior and energy balance. However, increasing evidence suggests that modulation of the ECS may also act to regulate peripheral mechanisms involved in these processes, including lipogenesis in adipose tissue and liver, insulin release from pancreatic β-cells, and glucose uptake into skeletal muscle. It was recently shown t...

  1. Further evidence for association between genetic variants in the cannabinoid receptor 1 (CNR1) gene and cocaine dependence: Confirmation in an independent sample and meta-analysis

    OpenAIRE

    Clarke, Toni-Kim; Bloch, Paul J.; Ambrose-Lanci, Lisa M; Doyle, Glenn A.; Ferraro, Thomas N.; BERRETTINI, WADE H.; Kampman, Kyle M.; Dackis, Charles A.; Pettinati, Helen M.; O’Brien, Charles P.; Oslin, David W.; Lohoff, Falk W.

    2011-01-01

    Genetic research on cocaine dependence may help clarify our understanding of the disorder as well as provide insights for effective treatment. Since endocannabinoid signaling and dopamine neurotransmission have been shown to be involved with drug reward, genes related to these systems are plausible candidates for susceptibility to cocaine dependence. The cannabinoid receptor 1 (CB1) protein regulates both the endocannabinoid and dopaminergic neurobiological systems, and polymorphisms in the c...

  2. Cannabinoid Receptor Type 2 Agonist Attenuates Apoptosis by Activation of Phosphorylated CREB-Bcl-2 Pathway After Subarachnoid Hemorrhage in Rats

    OpenAIRE

    Fujii, Mutsumi; Sherchan, Prativa; Soejima, Yoshiteru; Hasegawa, Yu; Flores, Jerry; Doycheva, Desislava; Zhang, John H.

    2014-01-01

    Early brain injury (EBI) which comprises of vasogenic edema and apoptotic cell death is an important component of subarachnoid hemorrhage (SAH) pathophysiology. This study evaluated whether Cannabinoid receptor type 2 (CB2R) agonist, JWH133, attenuates EBI after SAH and whether CB2R stimulation reduces pro-apoptotic caspase-3 via up-regulation of cAMP response element-binding protein (CREB)-Bcl-2 signaling pathway. Male Sprague Dawley rats (n=123) were subjected to SAH by endovascular perfora...

  3. Therapeutic potential of cannabinoids in counteracting chemotherapy-induced adverse effects: an exploratory review.

    Science.gov (United States)

    Ostadhadi, Sattar; Rahmatollahi, Mahdieh; Dehpour, Ahmad-Reza; Rahimian, Reza

    2015-03-01

    Cannabinoids (the active constituents of Cannabis sativa) and their derivatives have got intense attention during recent years because of their extensive pharmacological properties. Cannabinoids first developed as successful agents for alleviating chemotherapy associated nausea and vomiting. Recent investigations revealed that cannabinoids have a wide range of therapeutic effects such as appetite stimulation, inhibition of nausea and emesis, suppression of chemotherapy or radiotherapy-associated bone loss, chemotherapy-induced nephrotoxicity and cardiotoxicity, pain relief, mood amelioration, and last but not the least relief from insomnia. In this exploratory review, we scrutinize the potential of cannabinoids to counteract chemotherapy-induced side effects. Moreover, some novel and yet important pharmacological aspects of cannabinoids such as antitumoral effects will be discussed. PMID:25504799

  4. Reciprocal relationships between the oscillatory systems of the brain.

    Science.gov (United States)

    Knyazev, G G; Slobodskoi-Plyusnin, Ya Yu; Savost'yanov, A N; Levin, E A; Bocharov, A V

    2010-01-01

    Resting EEG recordings were made from cohorts of 146 children aged 7-17 years and 132 adults aged 18-32 years and the levels of personality features and psychopathology were assessed using the Eysenck, Spilberger, Gray-Wilson, and Goodman questionnaires. Factor analysis was used to discriminate covariance of measures of the spectral power of EEG rhythms into positive and negative components. The latter were interpreted as a measure of inhibitory interactions between oscillatory systems. In children, positive covariance of rhythms was stronger than in adults, while reciprocal relationships between oscillatory systems were weaker. In adults, trait anxiety correlated positively with the strength of the reciprocal relationship between the alpha and delta oscillatory systems. In children, an analogous relationship was seen between anxiety and the strength of the reciprocal relationship between the theta and delta systems. The data are discussed in the light of the evolutionary interpretation of EEG rhythms. PMID:20012491

  5. Gene expression profiling following maternal deprivation: Involvement of the brain renin-angiotensin system

    Directory of Open Access Journals (Sweden)

    Wolfgang Wurst

    2009-05-01

    Full Text Available The postnatal development of the mouse is characterized by a stress hyporesponsive period (SHRP, where basal corticosterone levels are low and responsiveness to mild stressors is reduced. Maternal separation is able to disrupt the SHRP and is widely used to model early trauma. In this study we aimed at identifying of brain systems involved in acute and possible long-term effects of maternal separation. We conducted a microarray-based gene expression analysis in the hypothalamic paraventricular nucleus after maternal separation, which revealed 52 differentially regulated genes compared to undisturbed controls, among them are 37 up-regulated and 15 down-regulated genes. One of the prominently up-regulated genes, angiotensinogen, was validated using in-situ hybridization. Angiotensinogen is the precursor of angiotensin II, the main effector of the brain renin-angiotensin system (RAS, which is known to be involved in stress system modulation in adult animals. Using the selective angiotensin type I receptor (AT(1 antagonist candesartan we found strong effects on CRH and GR mRNA expression in the brain a nd ACTH release following maternal separation. AT(1 receptor blockade appears to enhance central effects of maternal separation in the neonate, suggesting a suppressing function of brain RAS during the SHRP. Taken together, our results illustrate the molecular adaptations that occur in the paraventricular nucleus following maternal separation and contribute to identifying signaling cascades that control stress system activity in the neonate.

  6. Experience-Dependent Brain Development as a Key to Understanding the Language System.

    Science.gov (United States)

    Westermann, Gert

    2016-04-01

    An influential view of the nature of the language system is that of an evolved biological system in which a set of rules is combined with a lexicon that contains the words of the language together with a representation of their context. Alternative views, usually based on connectionist modeling, attempt to explain the structure of language on the basis of complex associative processes. Here, I put forward a third view that stresses experience-dependent structural development of the brain circuits supporting language as a core principle of the organization of the language system. In this view, embodied in a recent neuroconstructivist neural network of past tense development and processing, initial domain-general predispositions enable the development of functionally specialized brain structures through interactions between experience-dependent brain development and statistical learning in a structured environment. Together, these processes shape a biological adult language system that appears to separate into distinct mechanism for processing rules and exceptions, whereas in reality those subsystems co-develop and interact closely. This view puts experience-dependent brain development in response to a specific language environment at the heart of understanding not only language development but adult language processing as well. PMID:26936770

  7. Disseminated lesions of the central nervous system in course of pediatric brain tumors

    International Nuclear Information System (INIS)

    Neoplasms of the central nervous system (CNS) are, apart from leukemia, the most frequent malignant disorders in the childhood. Among the brain tumors, those of poorly differentiated cells - give metastatic lesions to the CNS. The aim of the paper was to evaluate the features of CT and MR images detecting dissemination of the primary brain tumors. From 1993 to 2005 in the Department of Radiology of the Polish Mother's Memorial Hospital - Research Institute, the disseminations to CNS were observed in 35 children who were previously operated for primary brain tumors. CT and MR examinations of the brain were performed in all patients (22 males and 13 females; age: 5 mo - 18 y) and MR imaging of the spinal cord was done in 18 children. Multiple metastases to the cerebral structures were detected more often (in 23 patients - 66%) as compared to single lesions. The most frequent disseminations were observed in patients with diagnosis of medulloblastoma - 13 children, PNET - 4 and pineoblastoma - 3 patients. Twelve children had single metastatic tumors (out of the primary neoplasm location): in the course of medulloblastoma - 6, and PNET - 2 patients. Eighteen MR examinations of the spinal canal showed disseminations of the brain tumors in 9 children; concomitant metastatic nodules in the brain were detected in 4 patients. CT and MR imaging of the CNS enables evaluating the dissemination of primary brain tumors in children. Any asymptomatic progression of the primary neoplastic disease may be detected by means of control diagnostic imaging, which reveals the tumor spread. Especially in patients with medulloblastoma and pineoblastoma, the spine MR imaging with gadolinium is mandatory. (author)

  8. Sexual differentiation of the brain: a model for drug-induced alterations of the reproductive system

    International Nuclear Information System (INIS)

    The process of the sexual differentiation of the brain represents a valuable model system for the study of the chemical modification of the mammalian brain. Although there are numerous functional and structural sex differences in the adult brain, these are imposed on an essentially feminine or bipotential brain by testicular hormones during a critical phase of perinatal development in the rat. It is suggested that a relatively marked structural sex difference in the rat brain, the sexually dimorphic nucleus of the preoptic area (SDN-POA), is a morphological signature of the permanent or organizational action of estradiol derived from the aromatization of testicular testosterone. The SDN-POA of the male rat is severalfold larger in volume and is composed of more neurons than that of the female. The observation that the mitotic formation of the neurons of the SDN-POA is specifically prolonged has enabled us to identify the time course and pathway of neuronal migration into the nucleus. Study of the development of the SDN-POA suggests that estradiol in the male increases the number of neurons which survive a phase of neuronal death by exerting a neurite growth promoting action and/or a direct neuronotrophic action. Finally, although it is clear that gonadal hormones have dramatic permanent effects on the brain during perinatal development, even after puberty and in adulthood gonadal steroids can alter neuronal structure and, perhaps as a corollary to this, have permanent effects on reproductive function. Although the brain may be most sensitive to gonadal hormones or exogenous chemical factors during perinatal development, such as sensitivity does not appear limited to this period

  9. Effects of heavy ion radiation on the brain vascular system and embryonic development

    Science.gov (United States)

    Yang, T. C.; Tobias, C. A.

    1984-01-01

    The present investigation is concerned with the effects of heavy-ion radiation on the vascular system and the embryonic development, taking into account the results of experiments with neonatal rats and mouse embryos. It is found that heavy ions can be highly effective in producing brain hemorrhages and in causing body deformities. Attention is given to aspects of methodology, the induction of brain hemorrhages by X-rays and heavy ions, and the effect of iron particles on embryonic development. Reported results suggest that high linear energy transfer (LET) heavy ions can be very effective in producing developmental abnormalities.

  10. Development of the robot system to assist CT-guided brain surgery

    International Nuclear Information System (INIS)

    The robot technology was introduced into the stereotactic neurosurgery for application to biopsy, blind surgery, and functional neurosurgery. The authors have developed a newly designed the robot system to assist CT-guided brain surgery, designed to allow a biopsy needle to reach the targget such as a cerebral tumor within a brain automatically on the basis of the X,Y, and Z coordinates obtained by CT scanner. In this paper we describe construction of the robot, the control of the robot by CT image, robot simulation, and investigated a phantom experiment using CT image. (author)

  11. Explorative investigation of biomarkers of brain damage and coagulation system activation in clinical stroke differentiation

    DEFF Research Database (Denmark)

    Undén, Johan; Strandberg, Karin; Malm, Jan;

    2009-01-01

    INTRODUCTION: A simple and accurate method of differentiating ischemic stroke and intracerebral hemorrhage (ICH) is potentially useful to facilitate acute therapeutic management. Blood measurements of biomarkers of brain damage and activation of the coagulation system may potentially serve as novel...... diagnostic tools for stroke subtypes. METHODS: Ninety-seven stroke patients were prospectively investigated in a multicenter design with blood levels of brain biomarkers S100B, neuron specific enolase (NSE), glial fibrillary acidic protein (GFAP) as well as a coagulation biomarker, activated protein C...... exploratory study indicated that blood levels of biomarkers GFAP and APC-PCI, prior to neuroimaging, may rule out ICH in a mixed stroke population....

  12. Selective value of computed tomography of the brain in Cerebritis due to systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Gaylis, N.B.; Altman, R.D.; Ostrov, S.; Quencer, R. (Miami Univ., FL (USA). School of Medicine)

    Systemic lupus erythematosus (SLE) and steroid effects on the brain were measured by computed tomography (CT). Of 14 patients with SLE cerebritis, 10 (71%) had marked cortical atrophy and 4 (29%) minimal atrophy. None were normal by CT. Controls included 22 patients with SLE without cerebritis receiving cortiocosteroids; this group had normal CT scans in 16 (73%) and minimal cortical atrophy in the remaining 6 (27%). Follow-up CT on 5 patients with cerebritis was unchanged. CT of the brain is a minimally invasive technique for documenting SLE cerebritis. CT may also help differentiate cerebritis from the neuropsychiatric side effects of corticosteroids.

  13. The selective value of computed tomography of the brain in Cerebritis due to systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Systemic lupus erythematosus (SLE) and steroid effects on the brain were measured by computed tomography (CT). Of 14 patients with SLE cerebritis, 10 (71%) had marked cortical atrophy and 4 (29%) minimal atrophy. None were normal by CT. Controls included 22 patients with SLE without cerebritis receiving cortiocosteroids; this group had normal CT scans in 16 (73%) and minimal cortical atrophy in the remaining 6 (27%). Follow-up CT on 5 patients with cerebritis was unchanged. CT of the brain is a minimally invasive technique for documenting SLE cerebritis. CT may also help differentiate cerebritis from the neuropsychiatric side effects of corticosteroids

  14. Memory and reward systems coproduce 'nostalgic' experiences in the brain.

    Science.gov (United States)

    Oba, Kentaro; Noriuchi, Madoka; Atomi, Tomoaki; Moriguchi, Yoshiya; Kikuchi, Yoshiaki

    2016-07-01

    People sometimes experience an emotional state known as 'nostalgia', which involves experiencing predominantly positive emotions while remembering autobiographical events. Nostalgia is thought to play an important role in psychological resilience. Previous neuroimaging studies have shown involvement of memory and reward systems in such experiences. However, it remains unclear how these two systems are collaboratively involved with nostalgia experiences. Here, we conducted a functional magnetic resonance imaging study of healthy females to investigate the relationship between memory-reward co-activation and nostalgia, using childhood-related visual stimuli. Moreover, we examined the factors constituting nostalgia and their neural correlates. We confirmed the presence of nostalgia-related activity in both memory and reward systems, including the hippocampus (HPC), substantia nigra/ventral tegmental area (SN/VTA), and ventral striatum (VS). We also found significant HPC-VS co-activation, with its strength correlating with individual 'nostalgia tendencies'. Factor analyses showed that two dimensions underlie nostalgia: emotional and personal significance and chronological remoteness, with the former correlating with caudal SN/VTA and left anterior HPC activity, and the latter correlating with rostral SN/VTA activity. These findings demonstrate the cooperative activity of memory and reward systems, where each system has a specific role in the construction of the factors that underlie the experience of nostalgia. PMID:26060325

  15. A breakthrough in neuroscience needs a "Nebulous Cartesian System" Oscillations, quantum dynamics and chaos in the brain and vegetative system.

    Science.gov (United States)

    Başar, Erol; Güntekin, Bahar

    2007-04-01

    The Cartesian System is a fundamental conceptual and analytical framework related and interwoven with the concept and applications of Newtonian Dynamics. In order to analyze quantum processes physicist moved to a Probabilistic Cartesian System in which the causality principle became a probabilistic one. This means the trajectories of particles (obeying quantum rules) can be described only with the concept of cloudy wave packets. The approach to the brain-body-mind problem requires more than the prerequisite of modern physics and quantum dynamics. In the analysis of the brain-body-mind construct we have to include uncertain causalities and consequently multiple uncertain causalities. These multiple causalities originate from (1) nonlinear properties of the vegetative system (e.g. irregularities in biochemical transmitters, cardiac output, turbulences in the vascular system, respiratory apnea, nonlinear oscillatory interactions in peristalsis); (2) nonlinear behavior of the neuronal electricity (e.g. chaotic behavior measured by EEG), (3) genetic modulations, and (4) additional to these physiological entities nonlinear properties of physical processes in the body. The brain shows deterministic chaos with a correlation dimension of approx. D(2)=6, the smooth muscles approx. D(2)=3. According to these facts we propose a hyper-probabilistic approach or a hyper-probabilistic Cartesian System to describe and analyze the processes in the brain-body-mind system. If we add aspects as our sentiments, emotions and creativity to this construct, better said to this already hyper-probabilistic construct, this "New Cartesian System" is more than hyper-probabilistic, it is a nebulous system, we can predict the future only in a nebulous way; however, despite this chain of reasoning we can still provide predictions on brain-body-mind incorporations. We tentatively assume that the processes or mechanisms of the brain-body-mind system can be analyzed and predicted similar to the

  16. The brain as a system of nested but partially overlapping networks. Heuristic relevance of the model for brain physiology and pathology.

    Science.gov (United States)

    Agnati, L F; Guidolin, D; Fuxe, K

    2007-01-01

    A new model of the brain organization is proposed. The model is based on the assumption that a global molecular network enmeshes the entire central nervous system. Thus, brain extra-cellular and intra-cellular molecular networks are proposed to communicate at the level of special plasma membrane regions (e.g., the lipid rafts) where horizontal molecular networks can represent input/output regions allowing the cell to have informational exchanges with the extracellular environment. Furthermore, some "pervasive signals" such as field potentials, pressure waves and thermal gradients that affect large parts of the brain cellular and molecular networks are discussed. Finally, at least two learning paradigms are analyzed taking into account the possible role of Volume Transmission: the so-called model of "temporal difference learning" and the "Turing B-unorganised machine". The relevance of this new view of brain organization for a deeper understanding of some neurophysiological and neuropathological aspects of its function is briefly discussed. PMID:16906353

  17. New semi-automatic ROI setting system for brain PET images based on elastic model

    Energy Technology Data Exchange (ETDEWEB)

    Tanizaki, Naoaki; Okamura, Tetsuya (Sumitomo Heavy Industries Ltd., Kanagawa (Japan). Research and Development Center); Senda, Michio; Toyama, Hinako; Ishii, Kenji

    1994-10-01

    We have developed a semi-automatic ROI setting system for brain PET images. It is based on the elastic network model that fits the standard ROI atlas into individual brain image. The standard ROI atlas is a set of segments that represent each anatomical region. For transformation, the operator needs to set only three kinds of district anatomical features: manually determined midsagittal line, brain contour line determined with SNAKES algorithm semi-automatically, a few manually determined specific ROIs to be used for exact transformation. Improvement of the operation time and the inter-operator variance were demonstrated in the experiment by comparing with the conventional manual ROI setting. The operation time was reduced to 50% in almost all cases. And the inter-operator variance was reduced to one seventh in the maximum case. (author).

  18. Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier

    OpenAIRE

    Ravi Kant Upadhyay

    2014-01-01

    Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations insi...

  19. General Dissection of Female Ant Reproductive System and Brain

    Science.gov (United States)

    Dissection of the reproductive system of ant workers and queens can be useful for answering many questions. Observations of ovarian status in both female castes can be used to identify relationships between other factors and the ovaries, determine whether an individual has laid eggs, and, with more ...

  20. Combined autoradiographic-immunocytochemical analysis of opioid receptors and opioid peptide neuronal systems in brain

    International Nuclear Information System (INIS)

    Using adjacent section autoradiography-immunocytochemistry, the distribution of [3H]naloxone binding sites was studied in relation to neuronal systems containing [Leu]enkephalin, dynorphin A, or beta-endorphin immunoreactivity in rat brain. Brain sections from formaldehyde-perfused rats show robust specific binding of [3H]naloxone, the pharmacological (mu-like) properties of which appear unaltered. In contrast, specific binding of the delta ligand [3H]D-Ala2,D-Leu5-enkephalin was virtually totally eliminated as a result of formaldehyde perfusion. Using adjacent section analysis, the authors have noted associations between [3H]naloxone binding sites and one, two, or all three opioid systems in different brain regions; however, in some areas, no apparent relationship could be observed. Within regions, the relationship was complex. The complexity of the association between [3H]naloxone binding sites and the multiple opioid systems, and previous reports of co-localization of mu and kappa receptors in rat brain, are inconsistent with a simple-one-to-one relationship between a given opioid precursor and opioid receptor subtype. Instead, since differential processing of the three precursors gives rise to peptides of varying receptor subtype potencies and selectivities, the multiple peptide-receptor relationships may point to a key role of post-translational processing in determining the physiological consequences of opioid neurotransmission