WorldWideScience

Sample records for brain barrier permeability

  1. Permeability of the blood-brain barrier predicts conversion from optic neuritis to multiple sclerosis

    DEFF Research Database (Denmark)

    Cramer, Stig P; Modvig, Signe; Simonsen, Helle Juhl

    2015-01-01

    in the permeability of the blood-brain barrier in normal-appearing white matter of patients with multiple sclerosis and here, for the first time, we present a study on the capability of blood-brain barrier permeability in predicting conversion from optic neuritis to multiple sclerosis and a direct comparison...... with cerebrospinal fluid markers of inflammation, cellular trafficking and blood-brain barrier breakdown. To this end, we applied dynamic contrast-enhanced magnetic resonance imaging at 3 T to measure blood-brain barrier permeability in 39 patients with monosymptomatic optic neuritis, all referred for imaging...... fluid as well as levels of CXCL10 and MMP9 in the cerebrospinal fluid. These findings suggest that blood-brain barrier permeability, as measured by magnetic resonance imaging, may provide novel pathological information as a marker of neuroinflammation related to multiple sclerosis, to some extent...

  2. Lifelong consumption of sodium selenite: gender differences on blood-brain barrier permeability in convulsive, hypoglycemic rats.

    Science.gov (United States)

    Seker, F Burcu; Akgul, Sibel; Oztas, Baria

    2008-07-01

    The aim of this study was to compare the effects of hypoglycemia and induced convulsions on the blood-brain barrier permeability in rats with or without lifelong administration of sodium selenite. There is a significant decrease of the blood-brain barrier permeability in three brain regions of convulsive, hypoglycemic male rats treated with sodium selenite when compared to sex-matched untreated rats (p0.05). The blood-brain barrier permeability of the left and right hemispheres of untreated, moderately hypoglycemic convulsive rats of both genders was better than their untreated counterparts (peffect against blood-brain barrier permeability during convulsions and that the effects of sodium selenite are gender-dependent.

  3. Astrocyte–endothelial interactions and blood–brain barrier permeability*

    Science.gov (United States)

    Abbott, N Joan

    2002-01-01

    The blood–brain barrier (BBB) is formed by brain endothelial cells lining the cerebral microvasculature, and is an important mechanism for protecting the brain from fluctuations in plasma composition, and from circulating agents such as neurotransmitters and xenobiotics capable of disturbing neural function. The barrier also plays an important role in the homeostatic regulation of the brain microenvironment necessary for the stable and co-ordinated activity of neurones. The BBB phenotype develops under the influence of associated brain cells, especially astrocytic glia, and consists of more complex tight junctions than in other capillary endothelia, and a number of specific transport and enzyme systems which regulate molecular traffic across the endothelial cells. Transporters characteristic of the BBB phenotype include both uptake mechanisms (e.g. GLUT-1 glucose carrier, L1 amino acid transporter) and efflux transporters (e.g. P-glycoprotein). In addition to a role in long-term barrier induction and maintenance, astrocytes and other cells can release chemical factors that modulate endothelial permeability over a time-scale of seconds to minutes. Cell culture models, both primary and cell lines, have been used to investigate aspects of barrier induction and modulation. Conditioned medium taken from growing glial cells can reproduce some of the inductive effects, evidence for involvement of diffusible factors. However, for some features of endothelial differentiation and induction, the extracellular matrix plays an important role. Several candidate molecules have been identified, capable of mimicking aspects of glial-mediated barrier induction of brain endothelium; these include TGFβ, GDNF, bFGF, IL-6 and steroids. In addition, factors secreted by brain endothelial cells including leukaemia inhibitory factor (LIF) have been shown to induce astrocytic differentiation. Thus endothelium and astrocytes are involved in two-way induction. Short-term modulation of brain

  4. The rights and wrongs of blood-brain barrier permeability studies

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dreifuss, Jean-Jacques; Dziegielewska, Katarzyna M

    2014-01-01

    Careful examination of relevant literature shows that many of the most cherished concepts of the blood-brain barrier are incorrect. These include an almost mythological belief in its immaturity that is unfortunately often equated with absence or at least leakiness in the embryo and fetus....... The original concept of a blood-brain barrier is often attributed to Ehrlich; however, he did not accept that permeability of cerebral vessels was different from other organs. Goldmann is often credited with the first experiments showing dye (trypan blue) exclusion from the brain when injected systemically......, but not when injected directly into it. Rarely cited are earlier experiments of Bouffard and of Franke who showed methylene blue and trypan red stained all tissues except the brain. The term "blood-brain barrier" "Blut-Hirnschranke" is often attributed to Lewandowsky, but it does not appear in his papers...

  5. Effects of propranolol and clonidine on brain edema, blood-brain barrier permeability, and endothelial glycocalyx disruption after fluid percussion brain injury in the rat

    DEFF Research Database (Denmark)

    Genét, Gustav Folmer; Bentzer, Peter; Hansen, Morten Bagge

    2018-01-01

    clonidine would decrease brain edema, blood-brain barrier permeability, and glycocalyx disruption at 24 hours after trauma. METHODS: We subjected 53 adult male Sprague-Dawley rats to lateral fluid percussion brain injury and randomized infusion with propranolol (n = 16), propranolol + clonidine (n = 16......), vehicle (n = 16), or sham (n = 5) for 24 hours. Primary outcome was brain water content at 24 hours. Secondary outcomes were blood-brain barrier permeability and plasma levels of syndecan-1 (glycocalyx disruption), cell damage (histone-complexed DNA fragments), epinephrine, norepinephrine, and animal.......555). We found no effect of propranolol and propranolol/clonidine on blood-brain barrier permeability and animal motor scores. Unexpectedly, propranolol and propranolol/clonidine caused an increase in epinephrine and syndecan-1 levels. CONCLUSION: This study does not provide any support for unselective...

  6. Fluorescein isothiocyanate (FITC)-Dextran Extravasation as a Measure of Blood-Brain Barrier Permeability

    Science.gov (United States)

    Natarajan, Reka; Northrop, Nicole

    2017-01-01

    The blood-brain barrier (BBB) is formed in part by vascular endothelial cells that constitute the capillaries and microvessels of the brain. The function of this barrier is to maintain homeostasis within the brain microenvironment and buffer the brain from changes in the periphery. A dysfunction of the BBB would permit circulating molecules and pathogens typically restricted to the periphery to enter the brain and interfere with normal brain function. As increased permeability of the BBB is associated with several neuropathologies, it is important to have a reliable and sensitive method that determines BBB permeability and the degree of BBB disruption. A detailed protocol is presented for assessing the integrity of the BBB by transcardial perfusion of a 10,000 Da FITC labeled dextran molecule and its visualization to determine the degree of extravasation from brain microvessels. PMID:28398646

  7. The diffusion permeability to water of the rat blood-brain barrier

    DEFF Research Database (Denmark)

    Bolwig, T G; Lassen, N A

    1975-01-01

    The diffusion permeability to water of the rat blood-brain-barrier (BBB) was studied. Preliminary data obtained with the Oldendorf tissue uptake method (Oldendorf 1970) in seizure experiments suggested that the transfer from blood to brain of labelled water is diffusion-limited. More definite...... passage increased from 0.26 to 0.67 when the arterial carbon dioxide tension was changed from 15 to 85 mm Hg, a change increasing the cerebral blood flow about sixfold. This finding suggests that water does not pass the blood-brain barrier as freely as lipophilic gases....

  8. The Effect of Ovariectomy and Estrogen on Penetrating Brain Arterioles and Blood-Brain Barrier Permeability

    NARCIS (Netherlands)

    Cipolla, Marilyn J.; Godfrey, Julie A.; Wiegman, Marchien J.

    2009-01-01

    Objective: We investigated the effect of estrogen replacement on the structure and function of penetrating brain arterioles (PA) and blood-brain barrier (BBB) permeability. Materials and Methods: Female ovariectomized Sprague-Dawley rats were replaced with estradiol (E-2) and estriol (E-3) (OVX + E;

  9. Altered Blood-Brain Barrier Permeability in Patients With Systemic Lupus Erythematosus: A Novel Imaging Approach.

    Science.gov (United States)

    Gulati, Gaurav; Jones, Jordan T; Lee, Gregory; Altaye, Mekibib; Beebe, Dean W; Meyers-Eaton, Jamie; Wiley, Kasha; Brunner, Hermine I; DiFrancesco, Mark W

    2017-02-01

    To evaluate a safe, noninvasive magnetic resonance imaging (MRI) method to measure regional blood-brain barrier integrity and investigate its relationship with neurocognitive function and regional gray matter volume in juvenile-onset systemic lupus erythematosus (SLE). In this cross-sectional, case-control study, capillary permeability was measured as a marker of blood-brain barrier integrity in juvenile SLE patients and matched healthy controls, using a combination of arterial spin labeling and diffusion-weighted brain MRI. Regional gray matter volume was measured by voxel-based morphometry. Correlation analysis was done to investigate the relationship between regional capillary permeability and regional gray matter volume. Formal neurocognitive testing was completed (measuring attention, visuoconstructional ability, working memory, and psychomotor speed), and scores were regressed against regional blood-brain barrier integrity among juvenile SLE patients. Formal cognitive testing confirmed normal cognitive ability in all juvenile SLE subjects (n = 11) included in the analysis. Regional capillary permeability was negatively associated (P = 0.026) with neurocognitive performance concerning psychomotor speed in the juvenile SLE cohort. Compared with controls (n = 11), juvenile SLE patients had significantly greater capillary permeability involving Brodmann's areas 19, 28, 36, and 37 and caudate structures (P < 0.05 for all). There is imaging evidence of increased regional capillary permeability in juvenile SLE patients with normal cognitive performance using a novel noninvasive MRI technique. These blood-brain barrier outcomes appear consistent with functional neuronal network alterations and gray matter volume loss previously observed in juvenile SLE patients with overt neurocognitive deficits, supporting the notion that blood-brain barrier integrity loss precedes the loss of cognitive ability in juvenile SLE. Longitudinal studies are needed to

  10. Abnormal blood-brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI

    DEFF Research Database (Denmark)

    Cramer, Stig Præstekær; Simonsen, Helle Juhl; Frederiksen, Jette Lautrup Battistini

    2013-01-01

    To investigate whether blood-brain barrier (BBB) permeability is disrupted in normal appearing white matter in MS patients, when compared to healthy controls and whether it is correlated with MS clinical characteristics.......To investigate whether blood-brain barrier (BBB) permeability is disrupted in normal appearing white matter in MS patients, when compared to healthy controls and whether it is correlated with MS clinical characteristics....

  11. Blood brain barrier permeability and tPA-mediated neurotoxicity

    Science.gov (United States)

    Nassar, Taher; Yarovoi, Sergey; Rayan, Anwar; Lamensdorf, Itschak; Karakoveski, Michael; Vadim, Polianski; Fanne, Rami Abu; Jamal, Mahmud; Cines, Douglas B.; Higazi, Abd Al-Roof

    2015-01-01

    Tissue type plasminogen activator (tPA) induces neuronal apoptosis, disrupt the blood-brain-barrier (BBB), and promotes dilation of the cerebral vasculature. The timing, sequence and contributions of these and other deleterious effects of tPA and their contribution to post-ischemic brain damage after stroke, have not been fully elucidated. To dissociate the effects of tPA on BBB permeability, cerebral vasodilation and protease-dependent pathways, we developed several tPA mutants and PAI-1 derived peptides constructed by computerized homology modeling of tPA. Our data show that intravenous administration of human tPA to rats increases BBB permeability through a non-catalytic process, which is associated with reversible neurotoxicity, brain damage, edema, mortality and contributes significantly to its brief therapeutic window. Furthermore, our data show that inhibiting the effect of tPA on BBB function without affecting its catalytic activity, improves outcome and significantly extends its therapeutic window in mechanical as well as thromboembolic models of stroke. PMID:20060006

  12. Effects of GSM modulated radio-frequency electromagnetic radiation on permeability of blood-brain barrier in male & female rats.

    Science.gov (United States)

    Sırav, Bahriye; Seyhan, Nesrin

    2016-09-01

    With the increased use of mobile phones, their biological and health effects have become more important. Usage of mobile phones near the head increases the possibility of effects on brain tissue. This study was designed to investigate the possible effects of pulse modulated 900MHz and 1800MHz radio-frequency radiation on the permeability of blood-brain barrier of rats. Study was performed with 6 groups of young adult male and female wistar albino rats. The permeability of blood-brain barrier to intravenously injected evans blue dye was quantitatively examined for both control and radio-frequency radiarion exposed groups. For male groups; Evans blue content in the whole brain was found to be 0.08±0.01mg% in the control, 0.13±0.03mg% in 900MHz exposed and 0.26±0.05mg% in 1800MHz exposed animals. In both male radio-frequency radiation exposed groups, the permeability of blood-brain barrier found to be increased with respect to the controls (pradiation exposure was found more effective on the male animals (p0.01). However 900MHz pulse modulated radio-frequency exposure was found effective on the permeability of blood-brain barrier of female animals. Results have shown that 20min pulse modulated radio-frequency radiation exposure of 900MHz and 1800MHz induces an effect and increases the permeability of blood-brain barrier of male rats. For females, 900MHz was found effective and it could be concluded that this result may due to the physiological differences between female and male animals. The results of this study suggest that mobile phone radation could lead to increase the permeability of blood-brain barrier under non-thermal exposure levels. More studies are needed to demonstrate the mechanisms of that breakdown. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Blood-brain barrier permeability and brain uptake mechanism of kainic Acid and dihydrokainic Acid

    DEFF Research Database (Denmark)

    Gynther, Mikko; Petsalo, Aleksanteri; Hansen, Steen Honoré

    2015-01-01

    tools in various in vivo central nervous system disease models in rodents, as well as being templates in the design of novel ligands affecting the glutamatergic system. Both molecules are highly polar but yet capable of crossing the blood-brain barrier (BBB). We used an in situ rat brain perfusion...... technique to determine the brain uptake mechanism and permeability across the BBB. To determine KA and DHK concentrations in the rat brain, simple and rapid sample preparation and liquid chromatography mass spectrometer methods were developed. According to our results the BBB permeability of KA and DHK...... is low, 0.25 × 10(-6) and 0.28 × 10(-6) cm/s for KA and DHK, respectively. In addition, the brain uptake is mediated by passive diffusion, and not by active transport. Furthermore, the non-specific plasma and brain protein binding of KA and DHK was determined to be low, which means that the unbound drug...

  14. /GD-Tracker/ A software for blood-brain barrier permeability assessment\

    Czech Academy of Sciences Publication Activity Database

    Kala, David; Svoboda, Jan; Litvinec, Andrej; Pošusta, Antonín; Lisý, J.; Šulc, V.; Tomek, A.; Marusič, P.; Jiruška, Přemysl; Otáhal, Jakub

    2017-01-01

    Roč. 47, č. 2 (2017), s. 43-48 ISSN 0301-5491 R&D Projects: GA MZd(CZ) NV15-33115A; GA MŠk(CZ) LM2015062 Institutional support: RVO:67985823 Keywords : blood-brain barrier * MRI * Gd-DTPA * permeability * stroke * epileptogenesis * MATLAB * freeware * Gd-Tracker Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology

  15. Computational Prediction of Blood-Brain Barrier Permeability Using Decision Tree Induction

    Directory of Open Access Journals (Sweden)

    Jörg Huwyler

    2012-08-01

    Full Text Available Predicting blood-brain barrier (BBB permeability is essential to drug development, as a molecule cannot exhibit pharmacological activity within the brain parenchyma without first transiting this barrier. Understanding the process of permeation, however, is complicated by a combination of both limited passive diffusion and active transport. Our aim here was to establish predictive models for BBB drug permeation that include both active and passive transport. A database of 153 compounds was compiled using in vivo surface permeability product (logPS values in rats as a quantitative parameter for BBB permeability. The open source Chemical Development Kit (CDK was used to calculate physico-chemical properties and descriptors. Predictive computational models were implemented by machine learning paradigms (decision tree induction on both descriptor sets. Models with a corrected classification rate (CCR of 90% were established. Mechanistic insight into BBB transport was provided by an Ant Colony Optimization (ACO-based binary classifier analysis to identify the most predictive chemical substructures. Decision trees revealed descriptors of lipophilicity (aLogP and charge (polar surface area, which were also previously described in models of passive diffusion. However, measures of molecular geometry and connectivity were found to be related to an active drug transport component.

  16. The effects of hypoglycemic and alcoholic coma on the blood-brain barrier permeability

    Science.gov (United States)

    Yorulmaz, Hatice; Seker, Fatma Burcu; Oztas, Baria

    2011-01-01

    In this investigation, the effects of hypoglycemic coma and alcoholic coma on the blood-brain barrier (BBB) permeability have been compared. Female adult Wistar albino rats weighing 180-230 g were divided into three groups: Control group (n=8), Alcoholic Coma Group (n=18), and Hypoglycemic Coma group (n=12). The animals went into coma approximately 3-4 hours after insulin administration and 3-5 minutes after alcohol administration. Evans blue (4mL/kg) was injected intravenously as BBB tracer. It was observed that the alcoholic coma did not significantly increase the BBB permeability in any of the brain regions when compared to control group. Changes in BBB permeability were significantly increased by the hypoglycemic coma in comparison to the control group values (pcoma have different effects on the BBB permeability depending on the energy metabolism. PMID:21619558

  17. Aging and sex influence the permeability of the blood-brain barrier in the rat

    International Nuclear Information System (INIS)

    Saija, A.; Princi, P.; D'Amico, N.; De Pasquale, R.; Costa, G.

    1990-01-01

    The aim of the present study was to investigate the existence of aging- and sex-related alterations in the permeability of the blood-brain barrier (BBB) in the rat, by calculating a unidirectional blood-to-brain transfer constant (Ki) for the circulating tracer [ 14 C]-α-aminoisobutyric acid. The authors observed that: (a) the permeability of the BBB significantly increased within the frontal and temporo-parietal cortex, hypothalamus and cerebellum in 28-30 week old rats, in comparison with younger animals; (b) in several brain areas of female intact rats higher Ki values (even though not significantly different) were calculated at oestrus than at proestrus; (c) in 1-week ovariectomized rats there was a marked increase of Ki values at the level of the frontal, temporo-parietal and occipital cortex, cerebellum and brain-stem. One can speculate that aging and sex-related alterations in thee permeability of the BBB reflect respectively changes in brain neurochemical system activity and in plasma steroid hormone levels

  18. Dietary Virgin Olive Oil Reduces Blood Brain Barrier Permeability, Brain Edema, and Brain Injury in Rats Subjected to Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    Fatemeh Mohagheghi

    2010-01-01

    Full Text Available Recent studies suggest that dietary virgin olive oil (VOO reduces hypoxia-reoxygenation injury in rat brain slices. We sought to extend these observations in an in vivo study of rat cerebral ischemia-reperfusion injury. Four groups, each consisting of 18 Wistar rats, were studied. One group (control received saline, while three treatment groups received oral VOO (0.25, 0.5, and 0.75 mL/kg/day, respectively. After 30 days, blood lipid profiles were determined, before a 60-min period of middle cerebral artery occlusion (MCAO. After 24-h reperfusion, neurological deficit scores, infarct volume, brain edema, and blood brain barrier permeability were each assessed in subgroups of six animals drawn from each main group. VOO reduced the LDL/HDL ratio in doses of 0.25, 0.5, and 0.75 mL/kg/day in comparison to the control group (p < 0.05, and offered cerebroprotection from ischemia-reperfusion. For controls vs. doses of 0.25 vs. 0.5 vs. 0.75 mL/kg/day, attenuated corrected infarct volumes were 207.82 ± 34.29 vs. 206.41 ± 26.23 vs. 124.21 ± 14.73 vs. 108.46 ± 31.63 mm3; brain water content of the infarcted hemisphere was 82 ±± 0.25 vs. 81.5 ± 0.56 vs. 80.5 ± 0.22 vs. 80.5 ± 0.34%; and blood brain barrier permeability of the infarcted hemisphere was 11.31 ± 2.67 vs. 9.21 ± 2.28 vs. 5.83 ± 1.6 vs. 4.43 ± 0.93 µg/g tissue (p < 0.05 for measures in doses 0.5 and 0.75 mL/kg/day vs. controls. Oral administration of VOO reduces infarct volume, brain edema, blood brain barrier permeability, and improves neurologic deficit scores after transient MCAO in rats.

  19. Phasic changes of blood-brain-barrier permeability in mice after non-uniform γ-irradiation

    International Nuclear Information System (INIS)

    Ushakov, I.B.

    1986-01-01

    Early changes of blood-brain barrier (BBB) permeability in mice after irradiation of head or body were studied. The experiments were carried out on male-mice F 1 (C57xCBA) with medium mass of 25.1±0.8 g, irradiated in 2.58 C/kg dose to head or body. Correlation between BBB permeability decrease and radiation disease clinical manifestation frequency is determined. In early periods after irradiation, minimum two phases of BBB permeability change were observed: increase (0-2 h) and decrease (2-6 h) of permeability. BBB changes were expressed in later periods (24-120 h) as well. BBB permeability progressively increased after irradiation of head. According to the author's suggestion, this phenomenon gives evidence of generalization of vessel permeability disturbance (primarily of brain vessels) which leads to complete BBB dysfunction and to the loss of this morphofunctional formation's ability to perform its protective function. When considering BBB permeability connection with the frequency of neurologycal sign (tremor, ataxia) appearance, reversible correlation between these indicators is marked, beginning with the first period. The presence connection of fluid redistribution between blood and internal brain medium (edema growth) with the development of clinical manifestations of CNS affection is suggested

  20. Vascular endothelial growth factors enhance the permeability of the mouse blood-brain barrier.

    Directory of Open Access Journals (Sweden)

    Shize Jiang

    Full Text Available The blood-brain barrier (BBB impedes entry of many drugs into the brain, limiting clinical efficacy. A safe and efficient method for reversibly increasing BBB permeability would greatly facilitate central nervous system (CNS drug delivery and expand the range of possible therapeutics to include water soluble compounds, proteins, nucleotides, and other large molecules. We examined the effect of vascular endothelial growth factor (VEGF on BBB permeability in Kunming (KM mice. Human VEGF165 was administered to treatment groups at two concentrations (1.6 or 3.0 µg/mouse, while controls received equal-volume saline. Changes in BBB permeability were measured by parenchymal accumulation of the contrast agent Gd-DTPA as assessed by 7 T magnetic resonance imaging (MRI. Mice were then injected with Evans blue, sacrificed 0.5 h later, and perfused transcardially. Brains were removed, fixed, and sectioned for histological study. Both VEGF groups exhibited a significantly greater signal intensity from the cerebral cortex and basal ganglia than controls (P<0.001. Evans blue fluorescence intensity was higher in the parenchyma and lower in the cerebrovasculature of VEGF-treated animals compared to controls. No significant brain edema was observed by diffusion weighted MRI (DWI or histological staining. Exogenous application of VEGF can increase the permeability of the BBB without causing brain edema. Pretreatment with VEGF may be a feasible method to facilitate drug delivery into the CNS.

  1. AAnti-leakage mechanism and effect of sodium aescinate on the permeability of blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Ping GUO

    2012-02-01

    Full Text Available Objective  To study the anti-leakage mechanism and protective effect of sodium aescinate on the blood-brain barrier of rats acutely exposed to hypoxia. Methods  Seventy-five healthy SD rats were randomly divided into 3 groups (25 each: normoxic control (NC, simple hypoxic (SH and drug treated (DT group. Acute hypoxia brain edema rat model was established by a simulation of acute high-altitude hypoxia for 5 days. The cerebral water content was determined by dry-wet method. The permeability of the blood-brain barrier (BBB was evaluated by Evans blue (EB method. The pathological change of the brain was detected by HE staining. The state of BBB tight junction (TJ and ultrastructures of the brain tissues were observed by lanthanum nitrate tracer method under transmission electron microscope (TEM. Protein and mRNA expression of Occludin, Zo-1 and Claudin-5 were investigated by immunohistochemistry, Western-blotting and real-time PCR respectively. Results  After exposure to acute hypoxia for 5 days, compared with NC group, the water content of brain in SH group increased obviously (PPPPPConclusion  Acute hypoxia exposure may lead to a remarkable decline of the expressions of rat's brain Occludin protein and the Occludin, Zo-1 and Claudin-5 mRNA, and an obvious increase of BBB permeability. Sodium aescinate can up-regulate the expression level of these molecules and decrease BBB permeability, thus playing a profitable role of anti-leakage and BBB protection.

  2. Evaluation of blood--brain barrier permeability changes in rhesus monkeys and man using 82Rb and positron emission tomography

    International Nuclear Information System (INIS)

    Yen, C.K.; Budinger, T.F.

    1981-01-01

    Dynamic positron tomography of the brain with 82 Rb, obtained from a portable generator [ 82 Sr (25 days) -- 82 Rb (76 sec)], provides a means of studying blood-brain barrier (BBB) permeability in physiological and clinical investigations. The BBB in rhesus monkeys was opened unilaterally by intracarotid infusion of 3 M urea. This osmotic barrier opening allowed entry into the brain of intravenously administered rubidium chloride. The BBB opening was demonstrated noninvasively using 82 Rb and positron emission tomography and corroborated by the accumulation of 86 Rb in tissue samples. Positron emission tomography studies can be repeated every 5 min and indicate that dynamic tomography or static imaging can be used to study BBB permeability changes induced by a wide variety of noxious stimuli. Brain tumors in human subjects are readily detected because of the usual BBB permeability disruption in and around the tumors

  3. Bexarotene reduces blood-brain barrier permeability in cerebral ischemia-reperfusion injured rats.

    Directory of Open Access Journals (Sweden)

    Lu Xu

    Full Text Available Matrix metalloproteinase-9 (MMP-9 over-expression disrupts the blood-brain barrier (BBB in the ischemic brain. The retinoid X receptor agonist bexarotene suppresses MMP-9 expression in endothelial cells and displays neuroprotective effects. Therefore, we hypothesized that bexarotene may have a beneficial effect on I/R-induced BBB dysfunction.A total of 180 rats were randomized into three groups (n = 60 each: (i a sham-operation group, (ii a cerebral ischemia-reperfusion (I/R group, and (iii an I/R+bexarotene group. Brain water content was measured by the dry wet weight method. BBB permeability was analyzed by Evans Blue staining and the magnetic resonance imaging contrast agent Omniscan. MMP-9 mRNA expression, protein expression, and activity were assessed by reverse transcription polymerase chain reaction, Western blotting, and gelatin zymography, respectively. Apolipoprotein E (apoE, claudin-5, and occludin expression were analyzed by Western blotting.After 24 h, 48 h, and 72 h post-I/R, several effects were observed with bexarotene administration: (i brain water content and BBB permeability were significantly reduced; (ii MMP-9 mRNA and protein expression as well as activity were significantly decreased; (iii claudin-5 and occludin expression were significantly increased; and (iv apoE expression was significantly increased.Bexarotene decreases BBB permeability in rats with cerebral I/R injury. This effect may be due in part to bexarotene's upregulation of apoE expression, which has been previously shown to reduce BBB permeability through suppressing MMP-9-mediated degradation of the tight junction proteins claudin-5 and occludin. This work offers insight to aid future development of therapeutic agents for cerebral I/R injury in human patients.

  4. Accurate determination of blood–brain barrier permeability using dynamic contrast-enhanced T1-weighted MRI

    DEFF Research Database (Denmark)

    Cramer, Stig P; Larsson, Henrik B W

    2014-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly used to estimate permeability in situations with subtle blood-brain barrier (BBB) leakage. However, the method's ability to differentiate such low values from zero is unknown, and no consensus exists on optimal selection...

  5. Blood-brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis : a quantitative MRI study

    NARCIS (Netherlands)

    Floris, S.; Blezer, E.L.A.; Schreibelt, Gerty; Dopp, E.; Pol, van der S.M.A.; Schadee-Eestermans, I.L.; Nicolaij, K.; Dijkstra, C.D.; Vries, de H.E.

    2004-01-01

    Enhanced cerebrovascular permeability and cellular infiltration mark the onset of early multiple sclerosis lesions. So far, the precise sequence of these events and their role in lesion formation and disease progression remain unknown. Here we provide quantitative evidence that blood–brain barrier

  6. Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla

    DEFF Research Database (Denmark)

    Larsson, Henrik B W; Courivaud, Frédéric; Rostrup, Egill

    2009-01-01

    Assessment of vascular properties is essential to diagnosis and follow-up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood-brain permeability from dynamic T(1)-weighted...... on a pixel-by-pixel basis of cerebral perfusion, cerebral blood volume, and blood-brain barrier permeability.......Assessment of vascular properties is essential to diagnosis and follow-up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood-brain permeability from dynamic T(1)-weighted...... imaging of a bolus of a paramagnetic contrast agent passing through the brain. The methods are applied in patients with brain tumors and in healthy subjects. Perfusion was estimated by model-free deconvolution using Tikhonov's method (gray matter/white matter/tumor: 72 +/- 16/30 +/- 8/56 +/- 45 mL/100 g...

  7. In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs.

    Science.gov (United States)

    Eigenmann, Daniela Elisabeth; Dürig, Carmen; Jähne, Evelyn Andrea; Smieško, Martin; Culot, Maxime; Gosselet, Fabien; Cecchelli, Romeo; Helms, Hans Christian Cederberg; Brodin, Birger; Wimmer, Laurin; Mihovilovic, Marko D; Hamburger, Matthias; Oufir, Mouhssin

    2016-06-01

    The alkaloid piperine from black pepper (Piper nigrum L.) and several synthetic piperine analogs were recently identified as positive allosteric modulators of γ-aminobutyric acid type A (GABAA) receptors. In order to reach their target sites of action, these compounds need to enter the brain by crossing the blood-brain barrier (BBB). We here evaluated piperine and five selected analogs (SCT-66, SCT-64, SCT-29, LAU397, and LAU399) regarding their BBB permeability. Data were obtained in three in vitro BBB models, namely a recently established human model with immortalized hBMEC cells, a human brain-like endothelial cells (BLEC) model, and a primary animal (bovine endothelial/rat astrocytes co-culture) model. For each compound, quantitative UHPLC-MS/MS methods in the range of 5.00-500ng/mL in the corresponding matrix were developed, and permeability coefficients in the three BBB models were determined. In vitro predictions from the two human BBB models were in good agreement, while permeability data from the animal model differed to some extent, possibly due to protein binding of the screened compounds. In all three BBB models, piperine and SCT-64 displayed the highest BBB permeation potential. This was corroborated by data from in silico prediction. For the other piperine analogs (SCT-66, SCT-29, LAU397, and LAU399), BBB permeability was low to moderate in the two human BBB models, and moderate to high in the animal BBB model. Efflux ratios (ER) calculated from bidirectional permeability experiments indicated that the compounds were likely not substrates of active efflux transporters. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability

    International Nuclear Information System (INIS)

    Nhan, Tam; Burgess, Alison; Hynynen, Kullervo; Lilge, Lothar

    2014-01-01

    Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant K trans range of 0.01–0.03 min −1 . Finally, the model suggests that infusion over a short duration (20–60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration. (paper)

  9. Effect of Exercise Intensity on Neurotrophic Factors and Blood-Brain Barrier Permeability Induced by Oxidative-Nitrosative Stress in Male College Students.

    Science.gov (United States)

    Roh, Hee-Tae; Cho, Su-Youn; Yoon, Hyung-Gi; So, Wi-Young

    2017-06-01

    We investigated the effects of aerobic exercise intensity on oxidative-nitrosative stress, neurotrophic factor expression, and blood-brain barrier (BBB) permeability. Fifteen healthy men performed treadmill running under low-intensity (LI), moderate-intensity (MI), and high-intensity (HI) conditions. Blood samples were collected immediately before exercise (IBE), immediately after exercise (IAE), and 60 min after exercise (60MAE) to examine oxidative-nitrosative stress (reactive oxygen species [ROS]; nitric oxide [NO]), neurotrophic factors (brain-derived neurotrophic factor [BDNF]; nerve growth factor [NGF]), and blood-brain barrier (BBB) permeability (S-100β; neuron-specific enolase). ROS concentration significantly increased IAE and following HI (4.9 ± 1.7 mM) compared with that after LI (2.8 ± 1.4 mM) exercise (p exercise (p exercise (p exercise (p exercise (p .05). Moderate- and/or high-intensity exercise may induce higher oxidative-nitrosative stress than may low-intensity exercise, which can increase peripheral neurotrophic factor levels by increasing BBB permeability.

  10. Permeability of PEGylated immunoarsonoliposomes through in vitro blood brain barrier-medulloblastoma co-culture models for brain tumor therapy.

    Science.gov (United States)

    Al-Shehri, Abdulghani; Favretto, Marco E; Ioannou, Panayiotis V; Romero, Ignacio A; Couraud, Pierre-Olivier; Weksler, Babette Barbash; Parker, Terry L; Kallinteri, Paraskevi

    2015-03-01

    Owing to restricted access of pharmacological agents into the brain due to blood brain barrier (BBB) there is a need: 1. to develop a more representative 3-D-co-culture model of tumor-BBB interaction to investigate drug and nanoparticle transport into the brain for diagnostic and therapeutic evaluation. 2. to address the lack of new alternative methods to animal testing according to replacement-reduction-refinement principles. In this work, in vitro BBB-medulloblastoma 3-D-co-culture models were established using immortalized human primary brain endothelial cells (hCMEC/D3). hCMEC/D3 cells were cultured in presence and in absence of two human medulloblastoma cell lines on Transwell membranes. In vitro models were characterized for BBB formation, zonula occludens-1 expression and permeability to dextran. Transferrin receptors (Tfr) expressed on hCMEC/D3 were exploited to facilitate arsonoliposome (ARL) permeability through the BBB to the tumor by covalently attaching an antibody specific to human Tfr. The effect of anticancer ARLs on hCMEC/D3 was assessed. In vitro BBB and BBB-tumor co-culture models were established successfully. BBB permeability was affected by the presence of tumor aggregates as suggested by increased permeability of ARLs. There was a 6-fold and 8-fold increase in anti-Tfr-ARL uptake into VC312R and BBB-DAOY co-culture models, respectively, compared to plain ARLs. The three-dimensional models might be appropriate models to study the transport of various drugs and nanocarriers (liposomes and immunoarsonoliposomes) through the healthy and diseased BBB. The immunoarsonoliposomes can be potentially used as anticancer agents due to good tolerance of the in vitro BBB model to their toxic effect.

  11. [The blood-brain barrier in ageing persons].

    Science.gov (United States)

    Haaning, Nina; Damsgaard, Else Marie; Moos, Torben

    2018-03-26

    Brain capillary endothelial cells (BECs) form the ultra-tight blood-brain barrier (BBB). The permeability of the BBB increases with increasing age and neurovascular and neurodegenerative diseases. Major defects of the BBB can be initiated by increased permeability to plasma proteins in small arteriosclerotic arteries and release of proteins from degenerating neurons into the brain extracellular space. These proteins deposit in perivascular spaces, and subsequently negatively influence the BECs leading to decreased expression of barrier proteins. Detection of BBB defects by the use of non-invasive techniques is relevant for clinical use in settings with advanced age and severe brain disorders.

  12. [Chromogranin A derived peptide CGA47-66 inhibits hyper-permeability of blood brain barrier in mice with sepsis].

    Science.gov (United States)

    Zeng, Yan; Zhang, Dan; Jiang, Liping; Wei, Fu; Xu, Shan

    2016-02-01

    To explore the effect of chromofungin (CHR), a chromogranin A (CGA) derived peptide CGA47-66, on hyper-permeability of blood brain barrier in septic mice. 120 healthy male C57BL/6 mice were randomly divided into groups, with 12 mice in each group. Seventy-two mice were used for dynamic observation of the contents of water and Evan blue (EB) in brain tissue after being treated with lipopolysaccharide (LPS). Another 48 mice were divided into normal saline control group (NS group), LPS induced sepsis model group (LPS group), low-dose CHR pretreatment group (CL+LPS group), and high-dose CHR pretreatment group (CH+LPS group). The septic model was reproduced by intraperitoneal injection of 10 mg/kg LPS 0.1 mL, and the mice in NS group was given equal volume of normal saline. The mice in CL+LPS group and CH+LPS group were intraperitoneally injected with 15.5 μg/kg and 77.5 μg/kg CHR 10 minutes before LPS injection. Six hours after LPS injection, 4 mL/kg of 2% EB was injected via caudal vein, the contents of water and EB in brain tissue were determined, and EB immune fluorescence in brain tissue was determined to assess the changes in permeability of blood brain barrier. Brain pathology was observed with hematoxylin and eosin (HE) staining. With the extension of time after LPS injection, the contents of water and EB in brain tissue were gradually increased, and the time of difference with statistical significance appeared earlier when compared with that of control group in the contents of water than that in EB contents (3 hours and 6 hours, respectively). The contents of water and EB in brain tissue in LPS group were significantly increased as compared with NS group [water content: (79.77±0.62)% vs. (78.28±0.44)%, P water and EB contents in brain tissue induced by LPS, and the effect was more significant in CH+LPS group [water content: (78.15±0.73)% vs. (79.77±0.62)%, EB (μg/g): 7.09±2.59 vs. 13.87±4.50, both P leakage in LPS group was more marked than that of NS

  13. [Blood-brain barrier part III: therapeutic approaches to cross the blood-brain barrier and target the brain].

    Science.gov (United States)

    Weiss, N; Miller, F; Cazaubon, S; Couraud, P-O

    2010-03-01

    Over the last few years, the blood-brain barrier has come to be considered as the main limitation for the treatment of neurological diseases caused by inflammatory, tumor or neurodegenerative disorders. In the blood-brain barrier, the close intercellular contact between cerebral endothelial cells due to tight junctions prevents the passive diffusion of hydrophilic components from the bloodstream into the brain. Several specific transport systems (via transporters expressed on cerebral endothelial cells) are implicated in the delivery of nutriments, ions and vitamins to the brain; other transporters expressed on cerebral endothelial cells extrude endogenous substances or xenobiotics, which have crossed the cerebral endothelium, out of the brain and into the bloodstream. Recently, several strategies have been proposed to target the brain, (i) by by-passing the blood-brain barrier by central drug administration, (ii) by increasing permeability of the blood-brain barrier, (iii) by modulating the expression and/or the activity of efflux transporters, (iv) by using the physiological receptor-dependent blood-brain barrier transport, and (v) by creating new viral or chemical vectors to cross the blood-brain barrier. This review focuses on the illustration of these different approaches. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.

  14. Delayed astrocytic contact with cerebral blood vessels in FGF-2 deficient mice does not compromise permeability properties at the developing blood-brain barrier.

    Science.gov (United States)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Unsicker, Klaus; Ek, C Joakim

    2016-11-01

    The brain functions within a specialized environment tightly controlled by brain barrier mechanisms. Understanding the regulation of barrier formation is important for understanding brain development and may also lead to finding new ways to deliver pharmacotherapies to the brain; access of many potentially promising drugs is severely hindered by these barrier mechanisms. The cellular composition of the neurovascular unit of the blood-brain barrier proper and their effects on regulation of its function are beginning to be understood. One hallmark of the neurovascular unit in the adult is the astroglial foot processes that tightly surround cerebral blood vessels. However their role in barrier formation is still unclear. In this study we examined barrier function in newborn, juvenile and adult mice lacking fibroblast growth factor-2 (FGF-2), which has been shown to result in altered astroglial differentiation during development. We show that during development of FGF-2 deficient mice the astroglial contacts with cerebral blood vessels are delayed compared with wild-type animals. However, this delay did not result in changes to the permeability properties of the blood brain barrier as assessed by exclusion of either small or larger sized molecules at this interface. In addition cerebral vessels were positive for tight-junction proteins and we observed no difference in the ultrastructure of the tight-junctions. The results indicate that the direct contact of astroglia processes to cerebral blood vessels is not necessary for either the formation of the tight-junctions or for basic permeability properties and function of the blood-brain barrier. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1201-1212, 2016. © 2016 Wiley Periodicals, Inc.

  15. Developments in permeable and low permeability barriers

    International Nuclear Information System (INIS)

    Jefferis, S.A.; Norris, G.H.; Thomas, A.O.

    1997-01-01

    The concept of the reactive treatment zone whereby pollutants are attenuated as they move along a pathway in the ground has enabled a re-thinking of many of the concepts of containment. In particular it offers the potential for the control of the flux from a contaminated area by controlling the contaminant concentration in the pathway(s) as well as or instead of using a low permeability barrier. The paper outlines the basic concepts of the reactive treatment zone and the use of permeable and low permeability reactive systems. The paper then gives a case history of the installation of a permeable barrier using an in-situ reaction chamber

  16. Protection of the blood-brain barrier by hypercapnia during acute hypertension

    International Nuclear Information System (INIS)

    Baumbach, G.L.; Mayhan, W.G.; Heistad, D.D.

    1986-01-01

    The purpose of this study was to examine effects of hypercapnia on susceptibility of the blood-brain barrier to disruption during acute hypertension. Two methods were used to test the hypothesis that cerebral vasodilation during hypercapnia increases disruption of the blood-brain barrier. First, permeability of the blood-brain barrier was measured in anesthetized cats with 125 I-labeled serum albumin. Severe hypertension markedly increased permeability of the blood-brain barrier during normocapnia, but not during hypercapnia. The protective effect of hypercapnia was not dependent on sympathetic nerves. Second, in anesthetized rats, permeability of the barrier was quantitated by clearance of fluorescent dextran. Disruption of the blood-brain barrier during hypertension was decreased by hypercapnia. Because disruption of the blood-brain barrier occurred primarily in pial venules, the authors also measured pial venular diameter and pressure. Acute hypertension increased pial venular pressure and diameter in normocapnic rats. Hypercapnia alone increased pial venular pressure and pial venular diameter, and acute hypertension during hypercapnia further increased venular pressure. The magnitude of increase in pial venular pressure during acute hypertension was significantly less in hypercapnic than in normocapnic rats. They conclude that hypercapnia protects the blood-brain barrier. Possible mechanisms of this effect include attenuation of the incremental increase in pial venular pressure by hypercapnia or a direct effect on the blood-brain barrier not related to venous pressure

  17. Improved Prediction of Blood-Brain Barrier Permeability Through Machine Learning with Combined Use of Molecular Property-Based Descriptors and Fingerprints.

    Science.gov (United States)

    Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo

    2018-03-21

    Blood-brain barrier (BBB) permeability of a compound determines whether the compound can effectively enter the brain. It is an essential property which must be accounted for in drug discovery with a target in the brain. Several computational methods have been used to predict the BBB permeability. In particular, support vector machine (SVM), which is a kernel-based machine learning method, has been used popularly in this field. For SVM training and prediction, the compounds are characterized by molecular descriptors. Some SVM models were based on the use of molecular property-based descriptors (including 1D, 2D, and 3D descriptors) or fragment-based descriptors (known as the fingerprints of a molecule). The selection of descriptors is critical for the performance of a SVM model. In this study, we aimed to develop a generally applicable new SVM model by combining all of the features of the molecular property-based descriptors and fingerprints to improve the accuracy for the BBB permeability prediction. The results indicate that our SVM model has improved accuracy compared to the currently available models of the BBB permeability prediction.

  18. Mathematical modelling of blood-brain barrier failure and edema

    Science.gov (United States)

    Waters, Sarah; Lang, Georgina; Vella, Dominic; Goriely, Alain

    2015-11-01

    Injuries such as traumatic brain injury and stroke can result in increased blood-brain barrier permeability. This increase may lead to water accumulation in the brain tissue resulting in vasogenic edema. Although the initial injury may be localised, the resulting edema causes mechanical damage and compression of the vasculature beyond the original injury site. We employ a biphasic mixture model to investigate the consequences of blood-brain barrier permeability changes within a region of brain tissue and the onset of vasogenic edema. We find that such localised changes can indeed result in brain tissue swelling and that the type of damage that results (stress damage or strain damage) depends on the ability of the brain to clear edema fluid.

  19. Impact of drug permeability of blood-brain barrier after whole brain conventional fractionation irradiation

    International Nuclear Information System (INIS)

    Zhang Longzhen; Cao Yuandong; Chen Yong; Yu Changzhou; Zhuang Ming

    2006-01-01

    Objective: To explore the effect of drug permeability in rat blood-brain barrier(BBB) after different doses of whole brain conventional fractionation irradiation in rats and provide the experimental basis for the optimum time of clinical chemotherapy. Methods: According to different irradiation doses, 100 adult Sprague-Dowley rats were divided randomly into 5 groups: the normal control group(0 Gy); 10 Gy; 20 Gy; 30 Gy; and 40 Gy group. All rats were exposed to conventional fractionation(2 Gy/d, 5 d/w) with 60 Co γ-ray. MTX(25 mg/kg) was injected through the tail mainline 16 hours after whole brain irradiation. Cerebrospinal fluid(CSF) and blood were collected 2 hours later. Those samples were used to assay MTX concentration using RP-HPLC. Results: MTX mean concentrations in CSF was 0.07, 0.08, 0.12, 0.24, 0.23 mg/L in the control, 10 Gy, 20 Gy, 30 Gy, 40 Gy groups, respectively. All the data was analyzed with rank test of transform. MTX concentration of CSF was significantly different except the control and 10 Gy, 30 Gy and 40 Gy group. MTX concentration of blood was not significantly different in all groups (P>0.05). Conclusions: Irradiation can directly damage the function of BBB. BBB would be opened gradually following the increase of irradiation dose. It could be considered as the optimum time of chemotherapy when the whole brain irradiation ranges from 20 Gy to 30 Gy. (authors)

  20. Effects of hepatic ischemia-reperfusion injury on the blood-brain barrier permeability to [14C] and [13C]sucrose.

    Science.gov (United States)

    Miah, Mohammad K; Bickel, Ulrich; Mehvar, Reza

    2017-12-01

    Hepatic encephalopathy that is associated with severe liver failure may compromise the blood-brain barrier (BBB) integrity. However, the effects of less severe liver diseases, in the absence of overt encephalopathy, on the BBB are not well understood. The goal of the current study was to investigate the effects of hepatic ischemia-reperfusion (IR) injury on the BBB tight junction permeability to small, hydrophilic molecules using the widely used [ 14 C]sucrose and recently-proposed alternative [ 13 C]sucrose as markers. Rats were subjected to 20 min of hepatic ischemia or sham surgery, followed by 8 h of reperfusion before administration of a single bolus dose of [ 14 C] or [ 13 C]sucrose and collection of serial (0-30 min) blood and plasma and terminal brain samples. The concentrations of [ 14 C] and [ 13 C]sucrose in the samples were determined by measurement of total radioactivity (nonspecific) and LC-MS/MS (specific), respectively. IR injury significantly increased the blood, plasma, and brain concentrations of both [ 14 C] and [ 13 C]sucrose. However, when the brain concentrations were corrected for their respective area under the blood concentration-time curve, only [ 14 C]sucrose showed significantly higher (30%) BBB permeability values in the IR animals. Because [ 13 C]sucrose is a more specific BBB permeability marker, these data indicate that our animal model of hepatic IR injury does not affect the BBB tight junction permeability to small, hydrophilic molecules. Methodological differences among studies of the effects of liver diseases on the BBB permeability may confound the conclusions of such studies.

  1. Identification of two immortalized cell lines, ECV304 and bEnd3, for in vitro permeability studies of blood-brain barrier.

    Directory of Open Access Journals (Sweden)

    Shu Yang

    Full Text Available To identify suitable cell lines for a mimetic system of in vivo blood-brain barrier (BBB for drug permeability assessment, we characterized two immortalized cell lines, ECV304 and bEnd3 in the respect of the tightness, tight junction proteins, P-glycoprotein (P-gp function and discriminative brain penetration. The ECV304 monoculture achieved higher transendothelial electrical resistance (TEER and lower permeability to Lucifer yellow than bEnd3. However, co-culture with rat glioma C6 cells impaired the integrity of ECV304 and bEnd3 cell layers perhaps due to the heterogeneity among C6 cells in inducing BBB characteristics. The immunostaining of ZO-1 delivered distinct bands along cell borders on both cell lines while those of occludin and claudin-5 were diffused and weak. P-gp functionality was only proved in bEnd3 by Rhodamine 123 (R123 uptake assay. A permeability test of reference compounds displayed a similar rank order (digoxin < R123 < quinidine, verapamil < propranolol in ECV304 and bEnd3 cells. In comparison with bEnd3, ECV304 developed tighter barrier for the passage of reference compounds and higher discrimination between transcellular and paracellular transport. However, the monoculture models of ECV304 and bEnd3 fail to achieve the sufficient tightness of in vitro BBB permeability models with high TEER and evident immunostaining of tight junction proteins. Further strategies to enhance the paracellular tightness of both cell lines to mimic in vivo BBB tight barrier deserve to be conducted.

  2. Scintigraphic assessment of vascularity and blood-tissue barrier of human brain tumours

    International Nuclear Information System (INIS)

    Front, D.

    1978-01-01

    Assessment of vascularity and blood-tissue barrier was performed by sequential scintigraphy in 43 patients with brain tumours. The blood-tumour barrier was evaluated by use of sup(99m)Tc-pertechnetate, and vascularity using sup(99m)Tc-labelled red blood cells. Three groups of tumours were found: tumours with low vascularity and permeable barrier, tumours with high vascularity and permeable barrier, and tumours with low vascularity and relatively impermeable barrier. The first group indicates that when vessels are permeable, there may be a rapid penetration of large amounts of pertechnetate into the tumour even when vascularity is not increased. In the other two groups penetration of pertechnetate into the tumour is affected by vascularity, as it determines the total area where passage of the radiopharmaceutical takes place. It is suggested that the permeability of the blood-tumour barrier and the amount of vascularity may have an effect on the success of chemotherapy in brain tumours. (author)

  3. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening.

    Science.gov (United States)

    Sun, Tao; Samiotaki, Gesthimani; Wang, Shutao; Acosta, Camilo; Chen, Cherry C; Konofagou, Elisa E

    2015-12-07

    Cavitation events seeded by microbubbles have been previously reported to be associated with MR- or fluorescent-contrast enhancement after focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. However, it is still unknown whether bubble activity can be correlated with the reversibility (the duration of opening and the likelihood of safe reinstatement) and the permeability of opened BBB, which is critical for the clinical translation of using passive cavitation detection to monitor, predict and control the opening. In this study, the dependence of acoustic cavitation on the BBB opening duration, permeability coefficient and histological damage occurrence were thus investigated. Transcranial pulsed FUS at 1.5 MHz in the presence of systemically circulating microbubbles was applied in the mouse hippocampi (n  =  60). The stable and inertial cavitation activities were monitored during sonication. Contrast-enhanced MRI was performed immediately after sonication and every 24 h up to 6 d thereafter, to assess BBB opening, brain tissue permeability and potential edema. Histological evaluations were used to assess the occurrence of neurovascular damages. It was found that stable cavitation was well correlated with: (1) the duration of the BBB opening (r(2)  =  0.77); (2) the permeability of the opened BBB (r(2)  =  0.82); (3) the likelihood of safe opening (P  cavitation dose was correlated with the resulting BBB permeability (r(2)  =  0.72). Stable cavitation was found to be more reliable than inertial cavitation at assessing the BBB opening within the pressure range used in this study. This study demonstrates that the stable cavitation response during BBB opening holds promise for predicting and controlling the restoration and pharmacokinetics of FUS-opened BBB. The stable cavitation response therefore showed great promise in predicting the BBB opening duration, enabling thus control of opening according to the drug

  4. Permeability Barrier Generation in the Martian Lithosphere

    Science.gov (United States)

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability

  5. Prediction of Central Nervous System Side Effects Through Drug Permeability to Blood-Brain Barrier and Recommendation Algorithm.

    Science.gov (United States)

    Fan, Jun; Yang, Jing; Jiang, Zhenran

    2018-04-01

    Drug side effects are one of the public health concerns. Using powerful machine-learning methods to predict potential side effects before the drugs reach the clinical stages is of great importance to reduce time consumption and protect the security of patients. Recently, researchers have proved that the central nervous system (CNS) side effects of a drug are closely related to its permeability to the blood-brain barrier (BBB). Inspired by this, we proposed an extended neighborhood-based recommendation method to predict CNS side effects using drug permeability to the BBB and other known features of drug. To the best of our knowledge, this is the first attempt to predict CNS side effects considering drug permeability to the BBB. Computational experiments demonstrated that drug permeability to the BBB is an important factor in CNS side effects prediction. Moreover, we built an ensemble recommendation model and obtained higher AUC score (area under the receiver operating characteristic curve) and AUPR score (area under the precision-recall curve) on the data set of CNS side effects by integrating various features of drug.

  6. Herbal medicines that benefit epidermal permeability barrier function

    Directory of Open Access Journals (Sweden)

    Lizhi Hu

    2015-06-01

    Full Text Available Epidermal permeability barrier function plays a critical role in regulating cutaneous functions. Hence, researchers have been searching for effective and affordable regimens to enhance epidermal permeability barrier function. In addition to topical stratum corneum lipids, peroxisome proliferator-activated receptor, and liver X receptor ligands, herbal medicines have been proven to benefit epidermal permeability barrier function in both normal and diseased skin, including atopic dermatitis, glucocorticoid-induced skin damage, and UVB-damaged skin. The potential mechanisms by which herbal medicines improve the permeability barrier include stimulation of epidermal differentiation, lipid production, antimicrobial peptide expression, and antioxidation. Therefore, utilization of herbal medicines could be a valuable alternative approach to enhance epidermal permeability barrier function in order to prevent and/or treat skin disorders associated with permeability barrier abnormalities.

  7. Heterogeneity of brain blood flow and permeability during acute hypertension

    International Nuclear Information System (INIS)

    Baumbach, G.L.; Heistad, D.D.

    1985-01-01

    The purpose of this study was to examine regional autoregulation of blood flow in the brain during acute hypertension. In anesthetized cats severe hypertension increased blood flow more in cerebrum (159%) and cerebellum (106%) than brain stem (58%). In contrast to the heterogeneous autoregulatory response, hypocapnia produced uniform vasoconstriction in the brain. The authors also compared vasodilatation during severe hypertension with vasodilatation during hypercapnia. During hypercapnia, blood flow increased as much in brain stem, as in cerebrum and cerebellum. Thus, regional differences in autoregulation appear to be specific for autoregulatory stimulus and are not secondary to nonspecific differences in vasoconstrictor or vasodilator capacity. To determine whether the blood-brain barrier is more susceptible to hypertensive disruption in regions with less effective autoregulation, permeability of the barrier was quantitated with 125 I-albumin. Severe hypertension produced disruption of the barrier in cerebrum but not in brain stem. Thus, there are parallel differences in effectiveness of autoregulation and susceptibility to disruption of the blood-brain barrier in different regions of the brain

  8. The Blood-Brain Barrier: An Engineering Perspective

    Directory of Open Access Journals (Sweden)

    Andrew eWong

    2013-08-01

    Full Text Available It has been more than 100 years since Paul Ehrlich reported that various water-soluble dyes injected into the circulation did not enter the brain. Since Ehrlich’s first experiments, only a small number of molecules, such as alcohol and caffeine have been found to cross the blood-brain barrier, and it remains the major roadblock to treatment of many central nervous system diseases. At the same time, many central nervous system diseases are associated with disruption of the blood-brain barrier that can lead to changes in permeability, modulation of immune cell transport, and trafficking of pathogens into the brain. Therefore advances in our understanding of the structure and function of the blood-brain barrier are key to advances in treatment of a wide range of central nervous system diseases. Over the past 10 years it has become recognized that the blood-brain barrier is a complex dynamic system that involves biomechanical and biochemical signaling between the vascular system and the brain. Here we reconstruct the structure, function, and transport properties of the blood-brain barrier from an engineering perspective. New insight into the physics of the blood-brain barrier could ultimately lead to clinical advances in the treatment of central nervous system diseases.

  9. Therapeutic benefits of enhancing permeability barrier for atopic eczema

    Directory of Open Access Journals (Sweden)

    George Man

    2015-06-01

    Full Text Available The regulatory role of epidermal permeability barrier function in cutaneous inflammation has been well appreciated. While barrier disruption induces cutaneous inflammation, improvement of permeability barrier function alleviates inflammation. Studies have demonstrated that improvement of epidermal permeability barrier function not only prevents the development of atopic eczema, but also delays the relapse of these diseases. Moreover, enhancing the epidermal permeability barrier also alleviates atopic eczema. Furthermore, co-applications of barrier enhancing products with glucocorticoids can increase the therapeutic efficacy and reduce the adverse effects of glucocorticoids in the treatment of atopic eczema. Therefore, utilization of permeability barrier enhancing products alone or in combination with glucocorticoids could be a valuable approach in the treatment of atopic eczema. In this review, we discuss the benefits of improving the epidermal permeability barrier in the management of atopic eczema.

  10. Characterization of a novel brain barrier ex vivo insect-based P-glycoprotein screening model

    DEFF Research Database (Denmark)

    Andersson, O.; Badisco, L.; Hansen, A. H.

    2014-01-01

    In earlier studies insects were proposed as suitable models for vertebrate blood–brain barrier (BBB) permeability prediction and useful in early drug discovery. Here we provide transcriptome and functional data demonstrating the presence of a P-glycoprotein (Pgp) efflux transporter in the brain b...... has the potential to act as a robust and convenient model for assessing BBB permeability in early drug discovery.......In earlier studies insects were proposed as suitable models for vertebrate blood–brain barrier (BBB) permeability prediction and useful in early drug discovery. Here we provide transcriptome and functional data demonstrating the presence of a P-glycoprotein (Pgp) efflux transporter in the brain...

  11. Effects of insulin combined with idebenone on blood-brain barrier permeability in diabetic rats.

    Science.gov (United States)

    Sun, Yan-Na; Liu, Li-Bo; Xue, Yi-Xue; Wang, Ping

    2015-04-01

    This study investigates the effect of insulin combined with idebenone on blood-brain barrier (BBB) permeability in experimental streptozotocin-induced diabetic rats as well as the underlying mechanisms. With a diabetic rat model, we show that insulin and idebenone normalize body weight and water intake and restore BBB permeability and that their combination displays a synergistic effect. The results from transmission electron microscopy show that the combination of insulin and idebenone significantly closed the tight junction (TJ) in diabetic rats. The results from Western blotting in diabetic rats show that the upregulation of TJ-associated proteins occludin, and zonula occludens (ZO)-1 caused by the combination of insulin and idebenone is more remarkable than that with either agent alone. In addition, the activations of reactive oxygen species (ROS) and advanced glycation end products (AGEs) and the expression levels of receptors for advanced glycation end-products (RAGE) and nuclear factor-κB (NF-κB) were significantly decreased after treatment with insulin and idebenone in diabetic rats. These results suggest that the combination of insulin and idebenone could decrease the BBB permeability in diabetic rats by upregulating the expression of occludin, claudin-5, and ZO-1 and that the ROS/AGE/RAGE/NF-κB signal pathway might be involved in the process. © 2014 Wiley Periodicals, Inc.

  12. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening

    International Nuclear Information System (INIS)

    Sun, Tao; Samiotaki, Gesthimani; Wang, Shutao; Acosta, Camilo; Chen, Cherry C; Konofagou, Elisa E

    2015-01-01

    Cavitation events seeded by microbubbles have been previously reported to be associated with MR- or fluorescent-contrast enhancement after focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. However, it is still unknown whether bubble activity can be correlated with the reversibility (the duration of opening and the likelihood of safe reinstatement) and the permeability of opened BBB, which is critical for the clinical translation of using passive cavitation detection to monitor, predict and control the opening. In this study, the dependence of acoustic cavitation on the BBB opening duration, permeability coefficient and histological damage occurrence were thus investigated. Transcranial pulsed FUS at 1.5 MHz in the presence of systemically circulating microbubbles was applied in the mouse hippocampi (n  =  60). The stable and inertial cavitation activities were monitored during sonication. Contrast-enhanced MRI was performed immediately after sonication and every 24 h up to 6 d thereafter, to assess BBB opening, brain tissue permeability and potential edema. Histological evaluations were used to assess the occurrence of neurovascular damages. It was found that stable cavitation was well correlated with: (1) the duration of the BBB opening (r 2   =  0.77); (2) the permeability of the opened BBB (r 2   =  0.82); (3) the likelihood of safe opening (P  <  0.05, safe opening compared to cases of damage; P  <  0.0001, no opening compared to safe opening). The inertial cavitation dose was correlated with the resulting BBB permeability (r 2   =  0.72). Stable cavitation was found to be more reliable than inertial cavitation at assessing the BBB opening within the pressure range used in this study. This study demonstrates that the stable cavitation response during BBB opening holds promise for predicting and controlling the restoration and pharmacokinetics of FUS-opened BBB. The stable cavitation response

  13. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening

    Science.gov (United States)

    Sun, Tao; Samiotaki, Gesthimani; Wang, Shutao; Acosta, Camilo; Chen, Cherry C.; Konofagou, Elisa E.

    2015-12-01

    Cavitation events seeded by microbubbles have been previously reported to be associated with MR- or fluorescent-contrast enhancement after focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. However, it is still unknown whether bubble activity can be correlated with the reversibility (the duration of opening and the likelihood of safe reinstatement) and the permeability of opened BBB, which is critical for the clinical translation of using passive cavitation detection to monitor, predict and control the opening. In this study, the dependence of acoustic cavitation on the BBB opening duration, permeability coefficient and histological damage occurrence were thus investigated. Transcranial pulsed FUS at 1.5 MHz in the presence of systemically circulating microbubbles was applied in the mouse hippocampi (n  =  60). The stable and inertial cavitation activities were monitored during sonication. Contrast-enhanced MRI was performed immediately after sonication and every 24 h up to 6 d thereafter, to assess BBB opening, brain tissue permeability and potential edema. Histological evaluations were used to assess the occurrence of neurovascular damages. It was found that stable cavitation was well correlated with: (1) the duration of the BBB opening (r2  =  0.77) (2) the permeability of the opened BBB (r2  =  0.82) (3) the likelihood of safe opening (P  cases of damage; P  <  0.0001, no opening compared to safe opening). The inertial cavitation dose was correlated with the resulting BBB permeability (r2  =  0.72). Stable cavitation was found to be more reliable than inertial cavitation at assessing the BBB opening within the pressure range used in this study. This study demonstrates that the stable cavitation response during BBB opening holds promise for predicting and controlling the restoration and pharmacokinetics of FUS-opened BBB. The stable cavitation response therefore showed great promise in predicting the

  14. The effect of high energy electron irradiation on blood-brain barrier permeability to haloperidol and stobadin in rats

    Energy Technology Data Exchange (ETDEWEB)

    Trnovec, T; Kallay, Z [Komenskeho Univ., Bratislava (Czechoslovakia). Inst. of Preventive and Clinical Medicine; Volenec, K [Karlova Univ., Hradec Kralove (Czechoslovakia). Lekarska Fakulta; Bezek, S; Durisova, M; Scasnar, V; Kubu, M [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Ustav Experimentalnej Farmakologie; Svoboda, V [Medical Academy J.E. Purkyne, Hradec Kralove (Czechoslovakia)

    1991-10-01

    The heads of rats were irradiated by 4 MeV electrons in doses 90, 180, and 360 Gy. The observed times of deaths ranged 120-600, 60-420, and 150-370 min after 90, 180, and 360 Gy, respectively. A dose dependent decrease of the brain uptake index of haloperidol was observed 1 and 3 h post radiation. On the other hand an increased brain uptake index was found for stobadin after head irradiation with doses of 180 and 360 Gy. Regional cerebral blood flow, blood pressure, and heart rate were not significantly altered in the period following irradiation with 180 Gy. The observed changes in blood-brain barrier (BBB) permeability seem to be the result of the damaged function of morphological structures forming the BBB rather than altered regional blood flow. (orig.).

  15. Astrocytic TYMP and VEGFA drive blood-brain barrier opening in inflammatory central nervous system lesions.

    Science.gov (United States)

    Chapouly, Candice; Tadesse Argaw, Azeb; Horng, Sam; Castro, Kamilah; Zhang, Jingya; Asp, Linnea; Loo, Hannah; Laitman, Benjamin M; Mariani, John N; Straus Farber, Rebecca; Zaslavsky, Elena; Nudelman, German; Raine, Cedric S; John, Gareth R

    2015-06-01

    In inflammatory central nervous system conditions such as multiple sclerosis, breakdown of the blood-brain barrier is a key event in lesion pathogenesis, predisposing to oedema, excitotoxicity, and ingress of plasma proteins and inflammatory cells. Recently, we showed that reactive astrocytes drive blood-brain barrier opening, via production of vascular endothelial growth factor A (VEGFA). Here, we now identify thymidine phosphorylase (TYMP; previously known as endothelial cell growth factor 1, ECGF1) as a second key astrocyte-derived permeability factor, which interacts with VEGFA to induce blood-brain barrier disruption. The two are co-induced NFκB1-dependently in human astrocytes by the cytokine interleukin 1 beta (IL1B), and inactivation of Vegfa in vivo potentiates TYMP induction. In human central nervous system microvascular endothelial cells, VEGFA and the TYMP product 2-deoxy-d-ribose cooperatively repress tight junction proteins, driving permeability. Notably, this response represents part of a wider pattern of endothelial plasticity: 2-deoxy-d-ribose and VEGFA produce transcriptional programs encompassing angiogenic and permeability genes, and together regulate a third unique cohort. Functionally, each promotes proliferation and viability, and they cooperatively drive motility and angiogenesis. Importantly, introduction of either into mouse cortex promotes blood-brain barrier breakdown, and together they induce severe barrier disruption. In the multiple sclerosis model experimental autoimmune encephalitis, TYMP and VEGFA co-localize to reactive astrocytes, and correlate with blood-brain barrier permeability. Critically, blockade of either reduces neurologic deficit, blood-brain barrier disruption and pathology, and inhibiting both in combination enhances tissue preservation. Suggesting importance in human disease, TYMP and VEGFA both localize to reactive astrocytes in multiple sclerosis lesion samples. Collectively, these data identify TYMP as an

  16. Intact blood-brain barrier during spontaneous attacks of migraine without aura

    DEFF Research Database (Denmark)

    Amin, F M; Hougaard, A; Cramer, S P

    2017-01-01

    BACKGROUND AND PURPOSE: The integrity of the blood-brain barrier (BBB) has been questioned in migraine, but BBB permeability has never been investigated during spontaneous migraine attacks. In the present study, BBB permeability during spontaneous attacks of migraine without aura was investigated......, brain stem, posterior pons and whole brain. The paired samples t test was used to compare Ki (permeability) values between the attack and headache-free days. RESULTS: Nineteen patients completed the study. Median time from onset of migraine attack to scan was 6.5 h (range 4.0-15.5 h). No change...

  17. Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery studies.

    Science.gov (United States)

    Li, Guanglei; Simon, Melissa J; Cancel, Limary M; Shi, Zhong-Dong; Ji, Xinying; Tarbell, John M; Morrison, Barclay; Fu, Bingmei M

    2010-08-01

    The blood-brain barrier (BBB) is a major obstacle for drug delivery to the brain. To seek for in vitro BBB models that are more accessible than animals for investigating drug transport across the BBB, we compared four in vitro cultured cell models: endothelial monoculture (bEnd3 cell line), coculture of bEnd3 and primary rat astrocytes (coculture), coculture with collagen type I and IV mixture, and coculture with Matrigel. The expression of the BBB tight junction proteins in these in vitro models was assessed using RT-PCR and immunofluorescence. We also quantified the hydraulic conductivity (L (p)), transendothelial electrical resistance (TER) and diffusive solute permeability (P) of these models to three solutes: TAMRA, Dextran 10K and Dextran 70K. Our results show that L (p) and P of the endothelial monoculture and coculture models are not different from each other. Compared with in vivo permeability data from rat pial microvessels, P of the endothelial monoculture and coculture models are not significantly different from in vivo data for Dextran 70K, but they are 2-4 times higher for TAMRA and Dextran 10K. This suggests that the endothelial monoculture and all of the coculture models are fairly good models for studying the transport of relatively large solutes across the BBB.

  18. Unexpected effects of peripherally administered kynurenic acid on cortical spreading depression and related blood–brain barrier permeability

    Directory of Open Access Journals (Sweden)

    Oláh G

    2013-09-01

    Full Text Available Gáspár Oláh,1 Judit Herédi,1 Ákos Menyhárt,1 Zsolt Czinege,2 Dávid Nagy,1 János Fuzik,1 Kitti Kocsis,1 Levente Knapp,1 Erika Krucsó,1 Levente Gellért,1 Zsolt Kis,1 Tamás Farkas,1 Ferenc Fülöp,3 Árpád Párdutz,4 János Tajti,4 László Vécsei,4 József Toldi1 1Department of Physiology, Anatomy and Neuroscience, 2Department of Software Engineering, 3Institute of Pharmaceutical Chemistry and MTA-SZTE Research Group for Stereochemistry, 4Department of Neurology and MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary Abstract: Cortical spreading depression (CSD involves a slowly-propagating depolarization wave in the cortex, which can appear in numerous pathophysiological conditions, such as migraine with aura, stroke, and traumatic brain injury. Neurons and glial cells are also depolarized transiently during the phenomena. CSD is followed by a massive increase in glutamate release and by changes in the brain microcirculation. The aim of this study was to investigate the effects of two N-methyl-D-aspartate receptor antagonists, endogenous kynurenic acid (KYNA and dizocilpine, on CSD and the related blood–brain barrier (BBB permeability in rats. In intact animals, KYNA hardly crosses the BBB but has some positive features as compared with its precursor L-Kynurenine, which is frequently used in animal studies (KYNA cannot be metabolized to excitotoxic agents such as 3-hydroxy-L-kynurenine and quinolinic acid. We therefore investigated the possible effects of peripherally administered KYNA. Repetitive CSD waves were elicited by the application of 1 M KCl solution to the cortex. Direct current-electrocorticograms were measured for 1 hour. Four parameters of the waves were compared. Evans blue dye and fluorescent microscopy were used to study the possible changes in the permeability of the BBB. The results demonstrated that N-methyl-D-aspartate receptor antagonists can reduce the number of CSD waves and decrease

  19. An in vitro transport model for rapid screening and predicting the permeability of candidate compounds at blood-brain barrier.

    Science.gov (United States)

    Yang, Zhi-Hong; Sun, Xiao; Mei, Chao; Sun, Xiao-Bo; Liu, Xiao-Dong; Chang, Qi

    2011-12-01

    The aim of this study was to design and develop a simple in vitro blood-brain barrier (BBB) permeation model for elementarily and rapidly predicting the permeability of candidate compounds at BBB and further evaluating whether P-glycoprotein (P-gp) affects them across BBB. The model was mainly composed of cultured rat brain microvascular endothelial cells (rBMECs), glass contraption, and micropore membrane. First, we evaluated the model by morphological observation. Second, the restriction effects of paracellular transport were verified by measuring marker probes transport, and monitoring transendothelial electrical resistance (TEER) and leakage. Finally, protein expression and activity of P-gp were confirmed by carrying out Western blot analysis and polarized transport of rhodamine-123 (Rho123) in rBMECs. The rBMECs retained both endothelial cells and BBB features. The rBMECs model reproducibly attained approximately 130 Ω cm² on the steady-state TEER value, and displayed a barrier function to marker probes transport by decreasing the permeability. Protein band of 170 kDa manifested the existence of P-gp in the rBMECs, and the findings of cyclosporin A-sensitive decrease of Rho123 efflux confirmed the presence of P-gp activity. A simple, rapid, and convenient in vitro BBB permeation model was successfully established and applied to evaluate the BBB transport profiles of three natural flavonoids: quercetin, naringenin, and rutin.

  20. Lead poisoning and the blood-brain barrier

    International Nuclear Information System (INIS)

    Hertz, M.H.; Bolwig, T.G.; Grandjean, P.; Westergaard, E.

    1981-01-01

    Lead exposure may produce varying degrees of neuropsychiatric manifestations from discrete phenomena, quite often seen in children and as an occupational disease, to the rare fulminant lead encephalopathy. It was determined whether or not damage of the blood-brain barrier permeability in adult rats, as has been demonstr rated in neonatal animals exposed to lead, could also play a role. Massive lead exposure did not induce any change in the transfer (facilitated diffusion) of phenylalanine and tyrosine measured by means of the indicator dilution technique. Ultrastructural examination, after application of horseradish peroxidase, did not reveal any pahtological changes in the permeability to the tracer. It is concluded that in adult rats, in contrast to neonatal anmials, the observed pathological signs clearly seen in the chronically exposed animals must be ascribed to a noxious influence of lead on the extravascular side of the blood-brain barrier. (author)

  1. Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood-brain barrier and human placental trophoblast.

    Science.gov (United States)

    Lopalco, Antonio; Ali, Hazem; Denora, Nunzio; Rytting, Erik

    2015-01-01

    Encapsulation of antiepileptic drugs (AEDs) into nanoparticles may offer promise for treating pregnant women with epilepsy by improving brain delivery and limiting the transplacental permeability of AEDs to avoid fetal exposure and its consequent undesirable adverse effects. Oxcarbazepine-loaded nanoparticles were prepared by a modified solvent displacement method from biocompatible polymers (poly(lactic-co-glycolic acid) [PLGA] with or without surfactant and PEGylated PLGA [Resomer(®) RGPd5055]). The physical properties of the developed nanoparticles were determined with subsequent evaluation of their permeability across in vitro models of the blood-brain barrier (hCMEC/D3 cells) and human placental trophoblast cells (BeWo b30 cells). Oxcarbazepine-loaded nanoparticles with encapsulation efficiency above 69% were prepared with sizes ranging from 140-170 nm, polydispersity indices below 0.3, and zeta potential values below -34 mV. Differential scanning calorimetry and X-ray diffraction studies confirmed the amorphous state of the nanoencapsulated drug. The apparent permeability (Pe ) values of the free and nanoencapsulated oxcarbazepine were comparable across both cell types, likely due to rapid drug release kinetics. Transport studies using fluorescently-labeled nanoparticles (loaded with coumarin-6) demonstrated increased permeability of surfactant-coated nanoparticles. Future developments in enzyme-prodrug therapy and targeted delivery are expected to provide improved options for pregnant patients with epilepsy.

  2. Learning from our failures in blood-brain permeability: what can be done for new drug discovery?

    Science.gov (United States)

    Martel, Sylvain

    2015-03-01

    Many existing pharmaceuticals are rendered ineffective in the treatment of cerebral diseases due to a permeability barrier well known as the blood-brain barrier (BBB). Such barrier between the blood within brain capillaries and the extracellular fluid in brain tissue has motivated several approaches aimed at delivering therapeutics to the brain. These approaches rely on strategies that can be classified as molecular modifications, the use of BBB bypassing pathways, and BBB disruptions. Although several of these approaches that have been investigated so far show promising results, none has addressed the optimization of the ratio of the dose of the drug molecules that contributes to the therapeutic effects. As such, the extensive research efforts, such as prioritizing the enhancement of the BBB permeability alone is likely to fail to provide the best therapeutic effects for a given dose if prior systemic circulation is not avoided while enhancing the spatial targeting only to regions of the brain that need treatment. Hence, new therapeutics for the brain could be synthesized to take advantage of recent technologies for non-systemic delivery and spatially targeted brain uptake.

  3. Examination of blood-brain barrier permeability in dementia of the Alzheimer type with [68Ga]EDTA and positron emission tomography

    International Nuclear Information System (INIS)

    Schlageter, N.L.; Carson, R.E.; Rapoport, S.I.

    1987-01-01

    Positron emission tomography with [ 68 Ga]ethylenediaminetetraacetic acid ([ 68 Ga]EDTA) was used to examine the integrity of the blood-brain barrier (BBB) in five patients with dementia of the Alzheimer type and in five healthy age-matched controls. Within a scanning time of 90 min, there was no evidence that measurable intravascular tracer entered the brain in either the dementia or the control group. An upper limit for the cerebrovascular permeability-surface area product of [68Ga]EDTA was estimated as 2 X 10(-6) s-1 in both groups. The results provide no evidence for breakdown of the BBB in patients with dementia of the Alzheimer type

  4. Examination of blood-brain barrier permeability in dementia of the Alzheimer type with [68Ga]EDTA and positron emission tomography.

    Science.gov (United States)

    Schlageter, N L; Carson, R E; Rapoport, S I

    1987-02-01

    Positron emission tomography with [68Ga]ethylenediaminetetraacetic acid ([68Ga]EDTA) was used to examine the integrity of the blood-brain barrier (BBB) in five patients with dementia of the Alzheimer type and in five healthy age-matched controls. Within a scanning time of 90 min, there was no evidence that measurable intravascular tracer entered the brain in either the dementia or the control group. An upper limit for the cerebrovascular permeability-surface area product of [68Ga]EDTA was estimated as 2 X 10(-6) s-1 in both groups. The results provide no evidence for breakdown of the BBB in patients with dementia of the Alzheimer type.

  5. Examination of blood-brain barrier permeability in dementia of the Alzheimer type with (68Ga)EDTA and positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schlageter, N.L.; Carson, R.E.; Rapoport, S.I.

    1987-02-01

    Positron emission tomography with (/sup 68/Ga)ethylenediaminetetraacetic acid ((/sup 68/Ga)EDTA) was used to examine the integrity of the blood-brain barrier (BBB) in five patients with dementia of the Alzheimer type and in five healthy age-matched controls. Within a scanning time of 90 min, there was no evidence that measurable intravascular tracer entered the brain in either the dementia or the control group. An upper limit for the cerebrovascular permeability-surface area product of (68Ga)EDTA was estimated as 2 X 10(-6) s-1 in both groups. The results provide no evidence for breakdown of the BBB in patients with dementia of the Alzheimer type.

  6. Examination of Blood-Brain Barrier (BBB) Integrity In A Mouse Brain Tumor Model

    Science.gov (United States)

    On, Ngoc; Mitchell, Ryan; Savant, Sanjot D.; Bachmeier, Corbin. J.; Hatch, Grant M.; Miller, Donald W.

    2013-01-01

    The present study evaluates, both functionally and biochemically, brain tumor-induced alterations in brain capillary endothelial cells. Brain tumors were induced in Balb/c mice via intracranial injection of Lewis Lung carcinoma (3LL) cells into the right hemisphere of the mouse brain using stereotaxic apparatus. Blood-brain barrier (BBB) permeability was assessed at various stages of tumor development, using both radiolabeled tracer permeability and magnetic resonance imaging (MRI) with gadolinium diethylene-triamine-pentaacetate contrast enhancement (Gad-DTPA). The expression of the drug efflux transporter, P-glycoprotein (P-gp), in the BBB at various stages of tumor development was also evaluated by Western blot and immunohistochemistry. Median mouse survival following tumor cell injection was 17 days. The permeability of the BBB to 3H-mannitol was similar in both brain hemispheres at 7 and 10 days post-injection. By day 15, there was a 2-fold increase in 3H-mannitol permeability in the tumor bearing hemispheres compared to the non-tumor hemispheres. Examination of BBB permeability with Gad-DTPA contrast enhanced MRI indicated cerebral vascular permeability changes were confined to the tumor area. The permeability increase observed at the later stages of tumor development correlated with an increase in cerebral vascular volume suggesting angiogenesis within the tumor bearing hemisphere. Furthermore, the Gad-DPTA enhancement observed within the tumor area was significantly less than Gad-DPTA enhancement within the circumventricular organs not protected by the BBB. Expression of P-gp in both the tumor bearing and non-tumor bearing portions of the brain appeared similar at all time points examined. These studies suggest that although BBB integrity is altered within the tumor site at later stages of development, the BBB is still functional and limiting in terms of solute and drug permeability in and around the tumor. PMID:23184143

  7. Evaluation of [14C] and [13C]Sucrose as Blood-Brain Barrier Permeability Markers.

    Science.gov (United States)

    Miah, Mohammad K; Chowdhury, Ekram A; Bickel, Ulrich; Mehvar, Reza

    2017-06-01

    Nonspecific quantitation of [ 14 C]sucrose in blood and brain has been routinely used as a quantitative measure of the in vivo blood-brain barrier (BBB) integrity. However, the reported apparent brain uptake clearance (K in ) of the marker varies widely (∼100-fold). We investigated the accuracy of the use of the marker in comparison with a stable isotope of sucrose ([ 13 C]sucrose) measured by a specific liquid chromatography-tandem mass spectrometry method. Rats received single doses of each marker, and the K in values were determined. Surprisingly, the K in value of [ 13 C]sucrose was 6- to 7-fold lower than that of [ 14 C]sucrose. Chromatographic fractionation after in vivo administration of [ 14 C]sucrose indicated that the majority of the brain content of radioactivity belonged to compounds other than the intact [ 14 C]sucrose. However, mechanistic studies failed to reveal any substantial metabolism of the marker. The octanol:water partition coefficient of [ 14 C]sucrose was >2-fold higher than that of [ 13 C]sucrose, indicating the presence of lipid-soluble impurities in the [ 14 C]sucrose solution. Our data indicate that [ 14 C]sucrose overestimates the true BBB permeability to sucrose. We suggest that specific quantitation of the stable isotope ( 13 C) of sucrose is a more accurate alternative to the current widespread use of the radioactive sucrose as a BBB marker. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Assessment of Blood-Brain Barrier Permeability by Dynamic Contrast-Enhanced MRI in Transient Middle Cerebral Artery Occlusion Model after Localized Brain Cooling in Rats

    International Nuclear Information System (INIS)

    Kim, Eun Soo; Lee, Seung-Koo; Kwon, Mi Jung; Lee, Phil Hye; Ju, Young-Su; Yoon, Dae Young; Kim, Hye Jeong; Lee, Kwan Seop

    2016-01-01

    The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20℃) infusion group, and localized warm-saline (37℃) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min -1 vs. 0.07 ± 0.02 min -1 , p = 0.661 for K trans ; 0.30 ± 0.05 min -1 vs. 0.37 ± 0.11 min -1 , p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Localized brain cooling (20℃) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37℃) infusion group

  9. Assessment of blood-brain barrier permeability by dynamic contrast-enhanced MRI in transient middle cerebral artery occlusion model after localized brain cooling in rats

    International Nuclear Information System (INIS)

    Kim, Eun Soo; Lee, Kwan Seop; Kwon, Mi Jung; Ju, Young Su; Lee, Seung Koo; Lee, Phil Hye; Yoon, Dae Young; Kim, Hye Jeong

    2016-01-01

    The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20 .deg. ) infusion group, and localized warm-saline (37 .deg. ) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min -1 vs. 0.07 ± 0.02 min -1 ,p = 0.661 for K trans ; 0.30 ± 0.05 min -1 vs. 0.37 ± 0.11 min -1 ,p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Localized brain cooling (20 .deg. ) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37 .deg. ) infusion group

  10. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier.

    Science.gov (United States)

    Watson, P Marc D; Paterson, Judy C; Thom, George; Ginman, Ulrika; Lundquist, Stefan; Webster, Carl I

    2013-06-18

    Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS

  11. Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood–brain barrier and human placental trophoblast

    Science.gov (United States)

    Lopalco, Antonio; Ali, Hazem; Denora, Nunzio; Rytting, Erik

    2015-01-01

    Encapsulation of antiepileptic drugs (AEDs) into nanoparticles may offer promise for treating pregnant women with epilepsy by improving brain delivery and limiting the transplacental permeability of AEDs to avoid fetal exposure and its consequent undesirable adverse effects. Oxcarbazepine-loaded nanoparticles were prepared by a modified solvent displacement method from biocompatible polymers (poly(lactic-co-glycolic acid) [PLGA] with or without surfactant and PEGylated PLGA [Resomer® RGPd5055]). The physical properties of the developed nanoparticles were determined with subsequent evaluation of their permeability across in vitro models of the blood–brain barrier (hCMEC/D3 cells) and human placental trophoblast cells (BeWo b30 cells). Oxcarbazepine-loaded nanoparticles with encapsulation efficiency above 69% were prepared with sizes ranging from 140–170 nm, polydispersity indices below 0.3, and zeta potential values below -34 mV. Differential scanning calorimetry and X-ray diffraction studies confirmed the amorphous state of the nanoencapsulated drug. The apparent permeability (Pe) values of the free and nanoencapsulated oxcarbazepine were comparable across both cell types, likely due to rapid drug release kinetics. Transport studies using fluorescently-labeled nanoparticles (loaded with coumarin-6) demonstrated increased permeability of surfactant-coated nanoparticles. Future developments in enzyme-prodrug therapy and targeted delivery are expected to provide improved options for pregnant patients with epilepsy. PMID:25792832

  12. Methamphetamine transiently increases the blood-brain barrier permeability in the hippocampus: role of tight junction proteins and matrix metalloproteinase-9.

    Science.gov (United States)

    Martins, Tânia; Baptista, Sofia; Gonçalves, Joana; Leal, Ermelindo; Milhazes, Nuno; Borges, Fernanda; Ribeiro, Carlos F; Quintela, Oscar; Lendoiro, Elena; López-Rivadulla, Manuel; Ambrósio, António F; Silva, Ana P

    2011-09-09

    Methamphetamine (METH) is a powerful stimulant drug of abuse that has steadily gained popularity worldwide. It is known that METH is highly neurotoxic and causes irreversible damage of brain cells leading to neurological and psychiatric abnormalities. Recent studies suggested that METH-induced neurotoxicity might also result from its ability to compromise blood-brain barrier (BBB) function. Due to the crucial role of BBB in the maintenance of brain homeostasis and protection against toxic molecules and pathogenic organisms, its dysfunction could have severe consequences. In this study, we investigated the effect of an acute high dose of METH (30mg/kg) on BBB permeability after different time points and in different brain regions. For that, young adult mice were sacrificed 1h, 24h or 72h post-METH administration. METH increased BBB permeability, but this effect was detected only at 24h after administration, being therefore a transitory effect. Interestingly, we also found that the hippocampus was the most susceptible brain region to METH, comparing to frontal cortex and striatum. Moreover, in an attempt to identify the key players in METH-induced BBB dysfunction we further investigated potential alterations in tight junction (TJ) proteins and matrix metalloproteinase-9 (MMP-9). METH was able to decrease the protein levels of zonula occludens (ZO)-1, claudin-5 and occludin in the hippocampus 24h post-injection, and increased the activity and immunoreactivity of MMP-9. The pre-treatment with BB-94 (30mg/kg), a matrix metalloproteinase inhibitor, prevented the METH-induced increase in MMP-9 immunoreactivity in the hippocampus. Overall, the present data demonstrate that METH transiently increases the BBB permeability in the hippocampus, which can be explained by alterations on TJ proteins and MMP-9. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Permeable reactive barriers for pollutant removal from groundwater

    International Nuclear Information System (INIS)

    Simon, F.G.; Meggyes, T.

    2001-01-01

    The removal of pollutants from the groundwater using permeable reactive barriers is a novel in-situ groundwater remediation technology. The most relevant decontamination processes used are chemical reduction, oxidation, precipitation and sorption, for which examples are given. Some common organic pollutants are halogenated hydrocarbons, aromatic and nitroaromatic compounds which can be treated in reactive barriers successfully. Lead, chromium and, in particular, uranium are dealt with in great detail among inorganic pollutants because of their occurrence in many European countries. Construction methods for cut-off walls and reactive barriers exhibit similar features. Apart from conventional methods, drilling, deep soil mixing, jet technology, arrays of wells, injected systems and biobarriers are applied to construct permeable reactive barriers. Permeable reactive barriers bear great potential for the future in remediation engineering. (orig.)

  14. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders

    Science.gov (United States)

    Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.

    2015-01-01

    The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128

  15. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal M; Christensen, Casper E

    2017-01-01

    symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering...... of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas......-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability...

  16. The protective influence of the locus ceruleus on the blood-brain barrier

    International Nuclear Information System (INIS)

    Harik, S.I.; McGunigal, T. Jr.

    1984-01-01

    The functions of the putative noradrenergic innervation of cerebral microvessels from the nucleus locus ceruleus remain ambiguous. Although most evidence indicates that such innervation does not have a major role in the control of cerebral blood flow, there are increasing indications that it modulates transport and permeability functions of the blood-brain barrier. In this study we investigated the effect of unilateral chemical lesioning of the locus ceruleus on the leakage of radioiodinated human serum albumin across the blood-brain barrier. Experiments were performed in awake and restrained rats under steady-state conditions and during drug-induced systemic arterial hypertension, and in anesthetized and paralyzed rats during bicuculline-induced seizures. Both hypertension and seizures are known to be associated with increased leakage of macromolecules across the blood-brain barrier. Albumin leakage into norepinephrine-depleted forebrain structures ipsilateral to the locus ceruleus lesion was compared with that of the contralateral side. There were no side-to-side differences in blood-brain barrier permeability to albumin under steady-state conditions, the stress of restraint, or angiotensin-induced hypertension, or after isoproterenol administration. Norepinephrine-induced hypertension and seizures, however, caused significant increases in albumin leakage into forebrain structures ipsilateral to the lesion. These results suggest that noradrenergic innervation of cerebral microvessels from the locus ceruleus helps preserve the integrity of the blood-brain barrier during pathophysiological states associated with hypertension and increased circulating catecholamines

  17. In vitro porcine blood-brain barrier model for permeability studies: pCEL-X software pKa(FLUX) method for aqueous boundary layer correction and detailed data analysis.

    Science.gov (United States)

    Yusof, Siti R; Avdeef, Alex; Abbott, N Joan

    2014-12-18

    In vitro blood-brain barrier (BBB) models from primary brain endothelial cells can closely resemble the in vivo BBB, offering valuable models to assay BBB functions and to screen potential central nervous system drugs. We have recently developed an in vitro BBB model using primary porcine brain endothelial cells. The model shows expression of tight junction proteins and high transendothelial electrical resistance, evidence for a restrictive paracellular pathway. Validation studies using small drug-like compounds demonstrated functional uptake and efflux transporters, showing the suitability of the model to assay drug permeability. However, one limitation of in vitro model permeability measurement is the presence of the aqueous boundary layer (ABL) resulting from inefficient stirring during the permeability assay. The ABL can be a rate-limiting step in permeation, particularly for lipophilic compounds, causing underestimation of the permeability. If the ABL effect is ignored, the permeability measured in vitro will not reflect the permeability in vivo. To address the issue, we explored the combination of in vitro permeability measurement using our porcine model with the pKa(FLUX) method in pCEL-X software to correct for the ABL effect and allow a detailed analysis of in vitro (transendothelial) permeability data, Papp. Published Papp using porcine models generated by our group and other groups are also analyzed. From the Papp, intrinsic transcellular permeability (P0) is derived by simultaneous refinement using a weighted nonlinear regression, taking into account permeability through the ABL, paracellular permeability and filter restrictions on permeation. The in vitro P0 derived for 22 compounds (35 measurements) showed good correlation with P0 derived from in situ brain perfusion data (r(2)=0.61). The analysis also gave evidence for carrier-mediated uptake of naloxone, propranolol and vinblastine. The combination of the in vitro porcine model and the software

  18. Effects of Pringle maneuver and partial hepatectomy on the pharmacokinetics and blood-brain barrier permeability of sodium fluorescein in rats.

    Science.gov (United States)

    Miah, Mohammad K; Shaik, Imam H; Bickel, Ulrich; Mehvar, Reza

    2015-08-27

    Liver diseases are known to affect the function of remote organs. The aim of the present study was to investigate the effects of Pringle maneuver, which results in hepatic ischemia-reperfusion (IR) injury, and partial hepatectomy (Hx) on the pharmacokinetics and brain distribution of sodium fluorescein (FL), which is a widely used marker of blood-brain barrier (BBB) permeability. Rats were subjected to Pringle maneuver (total hepatic ischemia) for 20 min with (HxIR) or without (IR) 70% hepatectomy. Sham-operated animals underwent laparotomy only. After 15 min or 8h of reperfusion, a single 25-mg/kg dose of FL was injected intravenously and serial (0-30 min) blood and bile and terminal brain samples were collected. Total and free (ultrafiltration) plasma, total brain homogenate, and bile concentrations of FL and/or its glucuronidated metabolite (FL-Glu) were determined by HPLC. Both IR and HxIR caused significant reductions in the biliary excretions of FL and FL-Glu, resulting in significant increases in the plasma AUC of the marker. Additionally, the free fraction of FL in plasma was significantly increased by HxIR. Although the brain concentrations of FL were increased by almost twofold in both IR and HxIR animals, the brain concentrations corrected by the free FL AUC (and not the total AUC) were similar in both groups at either time points. It is concluded that Pringle maneuver and/or partial hepatectomy substantially alters the hepatobiliary disposition, plasma AUC, plasma free fraction, and brain accumulation of FL without altering the BBB permeability to the marker. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effects of Electromagnetic Fields on the Blood Brain Barrier

    National Research Council Canada - National Science Library

    Persson, Rolf

    2000-01-01

    ...) in the 91 5-2450 MHz range on the permeability of the blood brain barrier (BBB) in rats. Male and female Fischer rats were exposed to continuous wave or pulse-modulated EMF, with different pulse powers and times up to 960 minutes...

  20. Dissociation of changes in the permeability of the blood-brain barrier from catecholamine-induced changes in blood pressure of normotensive and spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Sankar, R.; Domer, F.R.; Taylor, B.

    1982-01-01

    Researchers have studied the effects of the pressor catecholamine, dopamine, and the depressor catecholamine, isoproterenol, on the systemic blood pressure and the permeability of the blood-brain barrier (BBB) to albumin in normotensive (WKY) and spontaneously hypertensive (SHR) rats. The rats were anesthetized with pentobarbital. The permeability of the BBB to protein was measured by the extravasation of radioiodinated serum albumin (RISA). The permeability was decreased by both catecholamines despite the dose-dependent, yet opposite, changes in blood pressure in the WKY rats. The blood pressure response to both of the catecholamines was enhanced in the SHR rats. Isoproterenol caused a decrease in the permeability of the BBB in the SHR but dopamine did not. Results with both WKY and SHR rats are suggestive of an adrenergically-mediated decrease in movement across the BBB of compounds of large molecular weight, regardless of changes in blood pressure

  1. Assessment of Blood-Brain Barrier Permeability by Dynamic Contrast-Enhanced MRI in Transient Middle Cerebral Artery Occlusion Model after Localized Brain Cooling in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Soo [Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068 (Korea, Republic of); Lee, Seung-Koo [Department of Radiology, Yonsei University College of Medicine, Seoul 03722 (Korea, Republic of); Kwon, Mi Jung [Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068 (Korea, Republic of); Lee, Phil Hye [Department of Neurology, Yonsei University College of Medicine, Seoul 03722 (Korea, Republic of); Ju, Young-Su [Department of Industrial Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068 (Korea, Republic of); Yoon, Dae Young [Department of Radiology, Hallym University Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355 (Korea, Republic of); Kim, Hye Jeong [Department of Radiology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441 (Korea, Republic of); Lee, Kwan Seop [Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068 (Korea, Republic of)

    2016-11-01

    The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20℃) infusion group, and localized warm-saline (37℃) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min{sup -1} vs. 0.07 ± 0.02 min{sup -1}, p = 0.661 for K{sup trans}; 0.30 ± 0.05 min{sup -1} vs. 0.37 ± 0.11 min{sup -1}, p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Localized brain cooling (20℃) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37℃) infusion group.

  2. Assessment of blood-brain barrier permeability by dynamic contrast-enhanced MRI in transient middle cerebral artery occlusion model after localized brain cooling in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Soo; Lee, Kwan Seop; Kwon, Mi Jung; Ju, Young Su [Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang (Korea, Republic of); Lee, Seung Koo; Lee, Phil Hye [Yonsei University College of Medicine, Seoul (Korea, Republic of); Yoon, Dae Young [Dept. of Radiology, Hallym University Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of); Kim, Hye Jeong [Dept. of Radiology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of)

    2016-09-15

    The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20 .deg. ) infusion group, and localized warm-saline (37 .deg. ) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min{sup -1} vs. 0.07 ± 0.02 min{sup -1},p = 0.661 for K{sup trans}; 0.30 ± 0.05 min{sup -1} vs. 0.37 ± 0.11 min{sup -1},p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Localized brain cooling (20 .deg. ) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37 .deg. ) infusion group.

  3. The role of multidrug resistance protein (MRP-1) as an active efflux transporter on blood-brain barrier (BBB) permeability.

    Science.gov (United States)

    Lingineni, Karthik; Belekar, Vilas; Tangadpalliwar, Sujit R; Garg, Prabha

    2017-05-01

    Drugs acting on central nervous system (CNS) may take longer duration to reach the market as these compounds have a higher attrition rate in clinical trials due to the complexity of the brain, side effects, and poor blood-brain barrier (BBB) permeability compared to non-CNS-acting compounds. The roles of active efflux transporters with BBB are still unclear. The aim of the present work was to develop a predictive model for BBB permeability that includes the MRP-1 transporter, which is considered as an active efflux transporter. A support vector machine model was developed for the classification of MRP-1 substrates and non-substrates, which was validated with an external data set and Y-randomization method. An artificial neural network model has been developed to evaluate the role of MRP-1 on BBB permeation. A total of nine descriptors were selected, which included molecular weight, topological polar surface area, ClogP, number of hydrogen bond donors, number of hydrogen bond acceptors, number of rotatable bonds, P-gp, BCRP, and MRP-1 substrate probabilities for model development. We identified 5 molecules that fulfilled all criteria required for passive permeation of BBB, but they all have a low logBB value, which suggested that the molecules were effluxed by the MRP-1 transporter.

  4. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura.

    Science.gov (United States)

    Hougaard, Anders; Amin, Faisal M; Christensen, Casper E; Younis, Samaira; Wolfram, Frauke; Cramer, Stig P; Larsson, Henrik B W; Ashina, Messoud

    2017-06-01

    See Moskowitz (doi:10.1093/brain/awx099) for a scientific commentary on this article.The migraine aura is characterized by transient focal cortical disturbances causing dramatic neurological symptoms that are usually followed by migraine headache. It is currently not understood how the aura symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas of the anterior, middle and posterior circulation during spontaneous attacks of migraine with aura. Patients reported to our institution to undergo magnetic resonance imaging during the headache phase after presenting with typical visual aura. Nineteen patients were scanned during attacks and on an attack-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability in any of the investigated regions. There was no correlation between blood-brain barrier permeability, brain perfusion, and time from symptom onset to examination or pain intensity. Our findings demonstrate hyperperfusion in brainstem during the headache phase of migraine with aura, while the blood-brain barrier remains intact during attacks of migraine with aura. These data thus contradict the preclinical hypothesis of cortical spreading depression-induced blood-brain barrier

  5. [The blood-brain barrier and drug delivery in the central nervous system].

    Science.gov (United States)

    Loch-Neckel, Gecioni; Koepp, Janice

    2010-08-01

    To provide an updated view of the difficulties due to barriers and strategies used to allow the release of drugs in the central nervous system. The difficulty for the treatment of many diseases of the central nervous system, through the use of intra-venous drugs, is due to the presence of barriers that prevent the release of the same: the blood-brain barrier, blood-cerebro-spinal fluid barrier and the blood-arachnoid barrier. The blood-brain barrier is the main barrier for the transport of drugs in the brain that also acts as a immunologic and metabolic barrier. The endothelial cells of the blood-brain barrier are connected to a junction complex through the interaction of transmembrane proteins that protrude from de inside to the outside, forming a connection between the endothelial cells. The transport of substances to the brain depends on the mechanisms of transport present in the barrier and the diffusion of these compounds also depends on the physicochemical characteristics of the molecule. Some diseases alter the permeability of the blood-brain barrier and thus the passage of drugs. Strategies such as the use of methods for drug delivery in the brain have been investigated. Further details regarding the mechanisms of transport across the blood-brain barrier and the changes in neuropathology would provide important information about the etiology of diseases and lead to better therapeutic strategies.

  6. Microwave hyperthermia-induced blood-brain barrier alterations

    International Nuclear Information System (INIS)

    Lin, J.C.; Lin, M.F.

    1982-01-01

    We have studied the interaction of microwaves with the blood-brain barrier in Wistar rats. Indwelling catheters were placed in the femoral vein. Evans blue in isotonic saline was used as a visual indicator of barrier permeation. Irradiation with pulsed 2450-MHz microwaves for 20 min at average power densities of 0.5 to 2600 mW/cm 2 , which resulted in average specific absorption rages (SARs) of 0.04 to 200 mW/g in the brain, did not produce staining, except in regions that normally are highly permeable. When the incident power density was increased to 3000 mW/cm 2 (SAR of 240 mW/g), extravasation of Evans blue could be seen in the cortex, hippocampus, and midbrain. The rectal temperature, as monitored by a copper-constantan thermocouple, showed a maximum increase of less than 1.0/sup o/C. the brain temperature recorded in a similar group of animals using a non-field-perturbing thermistor exceeded 43/sup o/C. At the higher power density the extravasation depended on the irradition and euthanization times. In one series of experiments, rats were irradiated at 3000 mW/cm 2 for 5, 10, 15, and 20 min. Immediately after irradiation all except the 5-min animals exhibited increased permeability in some regions of the brain. Brains of rats euthanized 30 min after irradiation were free of Evans blue, while those euthanized 10 and 20 min postirradiation showed significant dye staining but with less intensity than those euthanized immediately after irradiation

  7. Immune responses at brain barriers and implications for brain development and neurological function in later life

    Directory of Open Access Journals (Sweden)

    Helen B. Stolp

    2013-08-01

    Full Text Available For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognised that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signalling, or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signalling at the brain barriers that may be an important part of the body’s response to damage or infection. This signalling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation–induced barrier dysfunction for brain development and subsequent neurological function are also discussed.

  8. Magnetic Nanoparticles Cross the Blood-Brain Barrier: When Physics Rises to a Challenge

    Directory of Open Access Journals (Sweden)

    Maria Antònia Busquets

    2015-12-01

    Full Text Available The blood-brain barrier is a physical and physiological barrier that protects the brain from toxic substances within the bloodstream and helps maintain brain homeostasis. It also represents the main obstacle in the treatment of many diseases of the central nervous system. Among the different approaches employed to overcome this barrier, the use of nanoparticles as a tool to enhance delivery of therapeutic molecules to the brain is particularly promising. There is special interest in the use of magnetic nanoparticles, as their physical characteristics endow them with additional potentially useful properties. Following systemic administration, a magnetic field applied externally can mediate the capacity of magnetic nanoparticles to permeate the blood-brain barrier. Meanwhile, thermal energy released by magnetic nanoparticles under the influence of radiofrequency radiation can modulate blood-brain barrier integrity, increasing its permeability. In this review, we present the strategies that use magnetic nanoparticles, specifically iron oxide nanoparticles, to enhance drug delivery to the brain.

  9. Groundwater protection from cadmium contamination by permeable reactive barriers

    Energy Technology Data Exchange (ETDEWEB)

    Di Natale, F. [Dipartimento di Ingegneria chimica, Universita di Federico II, P.le Tecchio, 80-80125 Naples (Italy)], E-mail: fdinatal@unina.it; Di Natale, M.; Greco, R. [Centro Interdipartimentale di Ricerca in Ingegneria Ambientale (CIRIAM), Dipartimento di Ingegneria Civile, Seconda Universita di Napoli, via Roma 29-81031 Aversa (Caserta) (Italy); Lancia, A. [Dipartimento di Ingegneria chimica, Universita di Federico II, P.le Tecchio, 80-80125 Naples (Italy); Laudante, C.; Musmarra, D. [Centro Interdipartimentale di Ricerca in Ingegneria Ambientale (CIRIAM), Dipartimento di Ingegneria Civile, Seconda Universita di Napoli, via Roma 29-81031 Aversa (Caserta) (Italy)

    2008-12-30

    This work studies the reliability of an activated carbon permeable reactive barrier in removing cadmium from a contaminated shallow aquifer. Laboratory tests have been performed to characterize the equilibrium and kinetic adsorption properties of the activated carbon in cadmium-containing aqueous solutions. A 2D numerical model has been used to describe pollutant transport within a groundwater and the pollutant adsorption on the permeable adsorbing barrier (PRB). In particular, it has been considered the case of a permeable adsorbing barrier (PAB) used to protect a river from a Cd(II) contaminated groundwater. Numerical results show that the PAB can achieve a long-term efficiency by preventing river pollution for several months.

  10. Lipopolysaccharide precipitates hepatic encephalopathy and increases blood-brain barrier permeability in mice with acute liver failure.

    Science.gov (United States)

    Chastre, Anne; Bélanger, Mireille; Nguyen, Bich N; Butterworth, Roger F

    2014-03-01

    Acute liver failure (ALF) is frequently complicated by infection leading to precipitation of central nervous system complications such as hepatic encephalopathy (HE) and increased mortality. There is evidence to suggest that when infection occurs in ALF patients, the resulting pro-inflammatory mechanisms may be amplified that could, in turn, have a major impact on blood-brain barrier (BBB) function. The aim of this study was to investigate the role of endotoxemia on the progression of encephalopathy in relation to BBB permeability during ALF. Adult male C57-BL6 mice with ALF resulting from azoxymethane-induced toxic liver injury were administered trace amounts of the endotoxin component lipopolysaccharide (LPS). Effects on the magnitude of the systemic inflammatory response, liver pathology and BBB integrity were measured as a function of progression of HE, defined as time to loss of corneal reflex (coma). Lipopolysaccharide caused additional two- to seven-fold (P liver pathology and associated increases of circulating transaminases as well as increased hyperammonaemia consistent with a further loss of viable hepatocytes. LPS treatment of ALF mice led to a rapid precipitation of hepatic coma and the BBB became permeable to the 25-kDa protein immunoglobulin G (IgG). This extravasation of IgG was accompanied by ignificant up-regulation of matrix metalloproteinase-9 (MMP-9), an endopeptidase known to modulate opening of the BBB in a wide range of neurological disorders. These findings represent the first direct evidence of inflammation-related BBB permeability changes in ALF. © 2013 John Wiley & Sons A/S. Publishing by John Wiley & Sons Ltd.

  11. Evaluating Changes to Blood-Brain Barrier Integrity in Brain Metastasis over Time and after Radiation Treatment

    Directory of Open Access Journals (Sweden)

    Donna H. Murrell

    2016-06-01

    Full Text Available INTRODUCTION: The incidence of brain metastasis due to breast cancer is increasing, and prognosis is poor. Treatment is challenging because the blood-brain barrier (BBB limits efficacy of systemic therapies. In this work, we develop a clinically relevant whole brain radiotherapy (WBRT plan to investigate the impact of radiation on brain metastasis development and BBB permeability in a murine model. We hypothesize that radiotherapy will decrease tumor burden and increase tumor permeability, which could offer a mechanism to increase drug uptake in brain metastases. METHODS: Contrast-enhanced magnetic resonance imaging (MRI and high-resolution anatomical MRI were used to evaluate BBB integrity associated with brain metastases due to breast cancer in the MDA-MB-231-BR-HER2 model during their natural development. Novel image-guided microirradiation technology was employed to develop WBRT treatment plans and to investigate if this altered brain metastatic growth or permeability. Histology and immunohistochemistry were performed on whole brain slices corresponding with MRI to validate and further investigate radiological findings. RESULTS: Herein, we show successful implementation of microirradiation technology that can deliver WBRT to small animals. We further report that WBRT following diagnosis of brain metastasis can mitigate, but not eliminate, tumor growth in the MDA-MB-231-BR-HER2 model. Moreover, radiotherapy did not impact BBB permeability associated with metastases. CONCLUSIONS: Clinically relevant WBRT is not curative when delivered after MRI-detectable tumors have developed in this model. A dose of 20 Gy in 2 fractions was not sufficient to increase tumor permeability such that it could be used as a method to increase systemic drug uptake in brain metastasis.

  12. Edaravone Protects against Methylglyoxal-Induced Barrier Damage in Human Brain Endothelial Cells

    Science.gov (United States)

    Tóth, Andrea E.; Walter, Fruzsina R.; Bocsik, Alexandra; Sántha, Petra; Veszelka, Szilvia; Nagy, Lajos; Puskás, László G.; Couraud, Pierre-Olivier; Takata, Fuyuko; Dohgu, Shinya; Kataoka, Yasufumi; Deli, Mária A.

    2014-01-01

    Background Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line) treated with methylglyoxal. Methodology Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging. Principal Findings Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM) provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound. Conclusion These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases. PMID:25033388

  13. Edaravone protects against methylglyoxal-induced barrier damage in human brain endothelial cells.

    Directory of Open Access Journals (Sweden)

    Andrea E Tóth

    Full Text Available Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line treated with methylglyoxal.Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging.Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound.These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases.

  14. Mesenchymal stem cells attenuate blood-brain barrier leakage after cerebral ischemia in mice.

    Science.gov (United States)

    Cheng, Zhuo; Wang, Liping; Qu, Meijie; Liang, Huaibin; Li, Wanlu; Li, Yongfang; Deng, Lidong; Zhang, Zhijun; Yang, Guo-Yuan

    2018-05-03

    Ischemic stroke induced matrixmetallo-proteinase-9 (MMP-9) upregulation, which increased blood-brain barrier permeability. Studies demonstrated that mesenchymal stem cell therapy protected blood-brain barrier disruption from several cerebrovascular diseases. However, the underlying mechanism was largely unknown. We therefore hypothesized that mesenchymal stem cells reduced blood-brain barrier destruction by inhibiting matrixmetallo-proteinase-9 and it was related to intercellular adhesion molecule-1 (ICAM-1). Adult ICR male mice (n = 118) underwent 90-min middle cerebral artery occlusion and received 2 × 10 5 mesenchymal stem cell transplantation. Neurobehavioral outcome, infarct volume, and blood-brain barrier permeability were measured after ischemia. The relationship between myeloperoxidase (MPO) activity and ICAM-1 release was further determined. We found that intracranial injection of mesenchymal stem cells reduced infarct volume and improved behavioral function in experimental stroke models (p mesenchymal stem cell-treated mice compared to the control group following ischemia (p cells and myeloperoxidase activity were decreased in mesenchymal stem cell-treated mice (p mesenchymal stem cell therapy attenuated blood-brain barrier disruption in mice after ischemia. Mesenchymal stem cells attenuated the upward trend of MMP-9 and potentially via downregulating ICAM-1 in endothelial cells. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway may influence MMP-9 expression of neutrophils and resident cells, and ICAM-1 acted as a key factor in the paracrine actions of mesenchymal stem cell.

  15. Sleep Restriction Impairs Blood–Brain Barrier Function

    Science.gov (United States)

    He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J.; Wang, Yuping

    2014-01-01

    The blood–brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. PMID:25355222

  16. Hydraulic performance of permeable barriers for in situ treatment of contaminated groundwater

    International Nuclear Information System (INIS)

    Smyth, D.J.A.; Shikaze, S.G.; Cherry, J.A.

    1997-01-01

    The passive interception and in situ treatment of dissolved contaminants in groundwater by permeable reactive barriers has recently gained favor at an increasing number of sites as an alternative to conventional approaches to groundwater remediation such as the pump-and-treat method. Permeable reactive barriers have two essential functions. The first is that the barriers must be installed in a position such that all of the plume passes through the reactive system. The second function is to achieve acceptable treatment of the contamination by physical, chemical or biological means within or downgradient of the barrier. In this paper, issues associated with the hydraulic performance of permeable reaction barriers are evaluated using a three-dimensional groundwater flow model. The efficiency of plume capture by permeable wall and funnel-and-gate systems is examined for some generic and for site-specific hydrogeologic systems. The results have important implications to decisions pertaining to the selection, design and installation of permeable reactive barrier systems

  17. Heavy Cigarette Smokers in a Chinese Population Display a Compromised Permeability Barrier

    Science.gov (United States)

    Xin, Shujun; Ye, Li; Lv, Chengzhi; Elias, Peter M.

    2016-01-01

    Cigarette smoking is associated with various cutaneous disorders with defective permeability. Yet, whether cigarette smoking influences epidermal permeability barrier function is largely unknown. Here, we measured skin biophysical properties, including permeability barrier homeostasis, stratum corneum (SC) integrity, SC hydration, skin surface pH, and skin melanin/erythema index, in cigarette smokers. A total of 99 male volunteers were enrolled in this study. Smokers were categorized as light-to-moderate (hydration and skin melanin/erythema index on the dorsal hand, forehead, and cheek. Basal transepidermal water loss (TEWL) and barrier recovery rates were assessed on the forearm. A Skin-pH-Meter pH900 was used to measure skin surface pH. Our results showed that heavy cigarette smokers exhibited delayed barrier recovery after acute abrogation (1.02% ± 13.06 versus 16.48% ± 6.07), and barrier recovery rates correlated negatively with the number of daily cigarettes consumption (p = 0.0087). Changes in biophysical parameters in cigarette smokers varied with body sites. In conclusion, heavy cigarette smokers display compromised permeability barrier homeostasis, which could contribute, in part, to the increased prevalence of certain cutaneous disorders characterized by defective permeability. Thus, improving epidermal permeability barrier should be considered for heavy cigarette smokers. PMID:27437403

  18. Transcranial direct current stimulation transiently increases the blood-brain barrier solute permeability in vivo

    Science.gov (United States)

    Shin, Da Wi; Khadka, Niranjan; Fan, Jie; Bikson, Marom; Fu, Bingmei M.

    2016-03-01

    Transcranial Direct Current Stimulation (tDCS) is a non-invasive electrical stimulation technique investigated for a broad range of medical and performance indications. Whereas prior studies have focused exclusively on direct neuron polarization, our hypothesis is that tDCS directly modulates endothelial cells leading to transient changes in blood-brain-barrier (BBB) permeability (P) that are highly meaningful for neuronal activity. For this, we developed state-of-the-art imaging and animal models to quantify P to various sized solutes after tDCS treatment. tDCS was administered using a constant current stimulator to deliver a 1mA current to the right frontal cortex of rat (approximately 2 mm posterior to bregma and 2 mm right to sagittal suture) to obtain similar physiological outcome as that in the human tDCS application studies. Sodium fluorescein (MW=376), or FITC-dextrans (20K and 70K), in 1% BSA mammalian Ringer was injected into the rat (SD, 250-300g) cerebral circulation via the ipsilateral carotid artery by a syringe pump at a constant rate of ~3 ml/min. To determine P, multiphoton microscopy with 800-850 nm wavelength laser was applied to take the images from the region of interest (ROI) with proper microvessels, which are 100-200 micron below the pia mater. It shows that the relative increase in P is about 8-fold for small solute, sodium fluorescein, ~35-fold for both intermediate sized (Dex-20k) and large (Dex-70k) solutes, 10 min after 20 min tDCS pretreatment. All of the increased permeability returns to the control after 20 min post treatment. The results confirmed our hypothesis.

  19. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes.

    Science.gov (United States)

    Thomsen, Louiza Bohn; Burkhart, Annette; Moos, Torben

    2015-01-01

    In vitro blood-brain barrier (BBB) models based on primary brain endothelial cells (BECs) cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER) and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs) in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP) and breast cancer related protein (BCRP), and the transferrin receptor).

  20. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes.

    Directory of Open Access Journals (Sweden)

    Louiza Bohn Thomsen

    Full Text Available In vitro blood-brain barrier (BBB models based on primary brain endothelial cells (BECs cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP and breast cancer related protein (BCRP, and the transferrin receptor.

  1. Review of potential subsurface permeable barrier emplacement and monitoring technologies

    International Nuclear Information System (INIS)

    Riggsbee, W.H.; Treat, R.L.; Stansfield, H.J.; Schwarz, R.M.; Cantrell, K.J.; Phillips, S.J.

    1994-02-01

    This report focuses on subsurface permeable barrier technologies potentially applicable to existing waste disposal sites. This report describes candidate subsurface permeable barriers, methods for emplacing these barriers, and methods used to monitor the barrier performance. Two types of subsurface barrier systems are described: those that apply to contamination.in the unsaturated zone, and those that apply to groundwater and to mobile contamination near the groundwater table. These barriers may be emplaced either horizontally or vertically depending on waste and site characteristics. Materials for creating permeable subsurface barriers are emplaced using one of three basic methods: injection, in situ mechanical mixing, or excavation-insertion. Injection is the emplacement of dissolved reagents or colloidal suspensions into the soil at elevated pressures. In situ mechanical mixing is the physical blending of the soil and the barrier material underground. Excavation-insertion is the removal of a soil volume and adding barrier materials to the space created. Major vertical barrier emplacement technologies include trenching-backfilling; slurry trenching; and vertical drilling and injection, including boring (earth augering), cable tool drilling, rotary drilling, sonic drilling, jetting methods, injection-mixing in drilled holes, and deep soil mixing. Major horizontal barrier emplacement technologies include horizontal drilling, microtunneling, compaction boring, horizontal emplacement, longwall mining, hydraulic fracturing, and jetting methods

  2. The observation of blood-brain barrier of organic mercury poisoned rat

    International Nuclear Information System (INIS)

    Kuwabara, Takeo; Yuasa, Tatsuhiko; Hidaka, Kazuyuki; Igarashi, Hironaka; Kaneko, Kiyotoshi; Miyatake, Tadashi

    1989-01-01

    Permeability of the blood-brain barrier (BBB) of methymercury chrolide (MMC) intoxicated rat brain was studied in vivo by gadlinium diethylenetriamine pentaacetic acid (Gd-DTPA) enhanced magnetic resonance imaging (MRI), measuring the longitudinal relaxation time (T 1 ) and the transverse relaxation time (T 2 ). MMC intoxicated rat brain showed the prolonged T 1 in the cerebral white matter and prolonged T 2 in the cerebellar cortex. After Gd-DTPA administration, T 1 of cerebral and cerebellar white matter shortened from 1.647 to 1.344 sec., and 1.290 to 1.223 sec. respectively. On the contrary, T 2 showed no change after Gd-DTPA injection. It was concluded that, although the shortening of T 1 after Gd-DTPA enhancement was rather little when compared with experimental brain ischemia, the shortening of the relaxation time of the MMC intoxicated rat brain was caused by the increased permeability of BBB. (author)

  3. Minoxidil sulfate induced the increase in blood-brain tumor barrier permeability through ROS/RhoA/PI3K/PKB signaling pathway.

    Science.gov (United States)

    Gu, Yan-ting; Xue, Yi-xue; Wang, Yan-feng; Wang, Jin-hui; Chen, Xia; ShangGuan, Qian-ru; Lian, Yan; Zhong, Lei; Meng, Ying-nan

    2013-12-01

    Adenosine 5'-triphosphate-sensitive potassium channel (KATP channel) activator, minoxidil sulfate (MS), can selectively increase the permeability of the blood-tumor barrier (BTB); however, the mechanism by which this occurs is still under investigation. Using a rat brain glioma (C6) model, we first examined the expression levels of occludin and claudin-5 at different time points after intracarotid infusion of MS (30 μg/kg/min) by western blotting. Compared to MS treatment for 0 min group, the protein expression levels of occludin and claudin-5 in brain tumor tissue of rats showed no changes within 1 h and began to decrease significantly after 2 h of MS infusion. Based on these findings, we then used an in vitro BTB model and selective inhibitors of diverse signaling pathways to investigate whether reactive oxygen species (ROS)/RhoA/PI3K/PKB pathway play a key role in the process of the increase of BTB permeability induced by MS. The inhibitor of ROS or RhoA or PI3K or PKB significantly attenuated the expression of tight junction (TJ) protein and the increase of the BTB permeability after 2 h of MS treatment. In addition, the significant increases in RhoA activity and PKB phosphorylation after MS administration were observed, which were partly inhibited by N-2-mercaptopropionyl glycine (MPG) or C3 exoenzyme or LY294002 pretreatment. The present study indicates that the activation of signaling cascades involving ROS/RhoA/PI3K/PKB in BTB was required for the increase of BTB permeability induced by MS. Taken together, all of these results suggested that MS might increase BTB permeability in a time-dependent manner by down-regulating TJ protein expression and this effect could be related to ROS/RhoA/PI3K/PKB signal pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Sleep restriction impairs blood-brain barrier function.

    Science.gov (United States)

    He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J; Wang, Yuping; Pan, Weihong

    2014-10-29

    The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. Copyright © 2014 the authors 0270-6474/14/3414697-10$15.00/0.

  5. Lack of IL-6 increases blood–brain barrier permeability in fungal

    Indian Academy of Sciences (India)

    Interleukin (IL-6) is a multifunctional cytokine, and numerous studies have shown that IL‐6 influences the integrity of the blood–brain barrier. In this study we investigated the role of IL-6 in Cryptococcus meningitis. First, wild-type or IL-6−/− mice were injected with Cryptococcus neoformans (C. neoformans) and the survival ...

  6. Hormones and the blood-brain barrier.

    Science.gov (United States)

    Hampl, Richard; Bičíková, Marie; Sosvorová, Lucie

    2015-03-01

    Hormones exert many actions in the brain, and brain cells are also hormonally active. To reach their targets in brain structures, hormones must overcome the blood-brain barrier (BBB). The BBB is a unique device selecting desired/undesired molecules to reach or leave the brain, and it is composed of endothelial cells forming the brain vasculature. These cells differ from other endothelial cells in their almost impermeable tight junctions and in possessing several membrane structures such as receptors, transporters, and metabolically active molecules, ensuring their selection function. The main ways how compounds pass through the BBB are briefly outlined in this review. The main part concerns the transport of major classes of hormones: steroids, including neurosteroids, thyroid hormones, insulin, and other peptide hormones regulating energy homeostasis, growth hormone, and also various cytokines. Peptide transporters mediating the saturable transport of individual classes of hormones are reviewed. The last paragraph provides examples of how hormones affect the permeability and function of the BBB either at the level of tight junctions or by various transporters.

  7. Influence of blood-brain barrier permeability on O-(2-{sup 18}F-fluoroethyl)-L-tyrosine uptake in rat gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Stegmayr, Carina; Bandelow, Ulrike; Oliveira, Dennis; Lohmann, Philipp; Willuweit, Antje; Galldiks, Norbert; Luebke, Joachim H.R. [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, Juelich (Germany); Filss, Christian; Ermert, Johannes; Langen, Karl-Josef [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, Juelich (Germany); RWTH/University Hospital Aachen, Department of Nuclear Medicine and Neurology, Aachen (Germany); Shah, N. Jon [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, Juelich (Germany); RWTH/University Hospital Aachen, Department of Nuclear Medicine and Neurology, Aachen (Germany); Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Aachen (Germany)

    2017-03-15

    O-(2-{sup 18}F-fluoroethyl)-L-tyrosine ({sup 18}F-FET) is an established tracer for the diagnosis of brain tumors with PET. This study investigates the influence of blood-brain barrier (BBB) permeability on {sup 18}F-FET uptake in two rat glioma models and one human xenograft model. F98 glioma, 9L gliosarcoma or human U87 glioblastoma cells were implanted into the striatum of 56 Fischer or RNU rats. Thereafter, animals were divided into a control group and a group receiving injections of the glucocorticoid dexamethasone (Dex). After 12-13 days of tumor growth animals received injection of Evans blue dye (EBD) to visualize BBB disturbance and underwent {sup 18}F-FET PET followed by autoradiography. Time activity curves, standardized uptake values (SUV) and Tumor-to-brain ratios (TBR) of {sup 18}F-FET uptake [18-61 min post injection (p.i.)] were evaluated using a volume-of-Interest (VOI) analysis. BBB disturbance was quantitatively evaluated by EBD fluorescence. The membrane gaps of blood vessel endothelial tight junctions were measured using electron microscopy to visualize ultrastructural BBB alterations in one untreated and one Dex treated F98 glioma. Data were analyzed by two-way ANOVAs. In Dex treated animals EBD extravasation was significantly reduced in 9L (P < 0.001) and U87 (P = 0.008) models and showed a trend in F98 models (P = 0.053). In contrast, no significant differences of {sup 18}F-FET uptake were observed between Dex treated animals and control group except a decrease of the TBR in the 9L tumor model in PET (P < 0.01). Ultrastructural evaluation of tumor blood vessel endothelia revealed significant reduction of the cleft diameter between endothelial cells after Dex treatment in F98 model (P = 0.010). Despite a considerable reduction of BBB permeability in rat gliomas after Dex treatment, no relevant changes of {sup 18}F-FET uptake were noted in this experimental study. Thus, {sup 18}F-FET uptake in gliomas appears to be widely independent of the

  8. Alterations in blood-brain barrier function following acute hypertension: comparison of the blood-to-brain transfer of horseradish peroxidase with that of alpha-aminisobutyric acid

    International Nuclear Information System (INIS)

    Ellison, M.D.B.

    1985-01-01

    The blood-brain barrier (BBB) selectively restricts the blood-to-brain passage of many solutes owing to unique properties of cerebrovascular endothelial cell membranes. To date, experimental study of the BBB has been accomplished primarily through the use of two different methodological approaches. Morphological studies have mostly employed large molecular weight (MW) tracers to detect morphological alterations underlying increased permeability. Physiological studies, employing smaller, more physiologic tracers have successfully described, quantitatively, certain functional aspects of blood-to-brain transfer. The current work attempts to merge these two approaches and to consider barrier function/dysfunction from both a morphological and a functional perspective. Specifically, the study compares in rats, following acute hypertension, the cerebrovascular passage of 14 C-alpha-aminoisobutyric acid (AIB) and that of horseradish peroxidase (HRP). The blood-to-brain passage of AIB and HRP were compared following acute hypertension, with regard to both the distributions of the tracer extravasation patterns and the magnitude of tracer extravasation. The results of this study suggest that traditional morphological barrier studies alone do not reveal all aspects of altered barrier status and that multiple mechanisms underlying increased BBB permeability may operate simultaneously during BBB dysfunction

  9. Validation of UHPLC-MS/MS methods for the determination of kaempferol and its metabolite 4-hydroxyphenyl acetic acid, and application to in vitro blood-brain barrier and intestinal drug permeability studies.

    Science.gov (United States)

    Moradi-Afrapoli, Fahimeh; Oufir, Mouhssin; Walter, Fruzsina R; Deli, Maria A; Smiesko, Martin; Zabela, Volha; Butterweck, Veronika; Hamburger, Matthias

    2016-09-05

    Sedative and anxiolytic-like properties of flavonoids such as kaempferol and quercetin, and of some of their intestinal metabolites, have been demonstrated in pharmacological studies. However, routes of administration were shown to be critical for observing in vivo activity. Therefore, the ability to cross intestinal and blood-brain barriers was assessed in cell-based models for kaempferol (KMF), and for the major intestinal metabolite of KMF, 4-hydroxyphenylacetic acid (4-HPAA). Intestinal transport studies were performed with Caco-2 cells, and blood-brain barrier transport studies with an immortalized monoculture human model and a primary triple-co-culture rat model. UHPLC-MS/MS methods for KMF and 4-HPAA in Ringer-HEPES buffer and in Hank's balanced salt solution were validated according to industry guidelines. For all methods, calibration curves were fitted by least-squares quadratic regression with 1/X(2) as weighing factor, and mean coefficients of determination (R(2)) were >0.99. Data obtained with all barrier models showed high intestinal and blood-brain barrier permeation of KMF, and no permeability of 4-HPAA, when compared to barrier integrity markers. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A framework for understanding semi-permeable barrier effects on migratory ungulates

    Science.gov (United States)

    Sawyer, Hall; Kauffman, Matthew J.; Middleton, Arthur D.; Morrison, Thomas A.; Nielson, Ryan M.; Wyckoff, Teal B.

    2013-01-01

    1. Impermeable barriers to migration can greatly constrain the set of possible routes and ranges used by migrating animals. For ungulates, however, many forms of development are semi-permeable, and making informed management decisions about their potential impacts to the persistence of migration routes is difficult because our knowledge of how semi-permeable barriers affect migratory behaviour and function is limited. 2. Here, we propose a general framework to advance the understanding of barrier effects on ungulate migration by emphasizing the need to (i) quantify potential barriers in terms that allow behavioural thresholds to be considered, (ii) identify and measure behavioural responses to semi-permeable barriers and (iii) consider the functional attributes of the migratory landscape (e.g. stopovers) and how the benefits of migration might be reduced by behavioural changes. 3. We used global position system (GPS) data collected from two subpopulations of mule deer Odocoileus hemionus to evaluate how different levels of gas development influenced migratory behaviour, including movement rates and stopover use at the individual level, and intensity of use and width of migration route at the population level. We then characterized the functional landscape of migration routes as either stopover habitat or movement corridors and examined how the observed behavioural changes affected the functionality of the migration route in terms of stopover use. 4. We found migratory behaviour to vary with development intensity. Our results suggest that mule deer can migrate through moderate levels of development without any noticeable effects on migratory behaviour. However, in areas with more intensive development, animals often detoured from established routes, increased their rate of movement and reduced stopover use, while the overall use and width of migration routes decreased. 5. Synthesis and applications. In contrast to impermeable barriers that impede animal movement

  11. Blood-brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis: a quantitative MRI study.

    Science.gov (United States)

    Floris, S; Blezer, E L A; Schreibelt, G; Döpp, E; van der Pol, S M A; Schadee-Eestermans, I L; Nicolay, K; Dijkstra, C D; de Vries, H E

    2004-03-01

    Enhanced cerebrovascular permeability and cellular infiltration mark the onset of early multiple sclerosis lesions. So far, the precise sequence of these events and their role in lesion formation and disease progression remain unknown. Here we provide quantitative evidence that blood-brain barrier leakage is an early event and precedes massive cellular infiltration in the development of acute experimental allergic encephalomyelitis (EAE), the animal correlate of multiple sclerosis. Cerebrovascular leakage and monocytes infiltrates were separately monitored by quantitative in vivo MRI during the course of the disease. Magnetic resonance enhancement of the contrast agent gadolinium diethylenetriaminepentaacetate (Gd-DTPA), reflecting vascular leakage, occurred concomitantly with the onset of neurological signs and was already at a maximal level at this stage of the disease. Immunohistochemical analysis also confirmed the presence of the serum-derived proteins such as fibrinogen around the brain vessels early in the disease, whereas no cellular infiltrates could be detected. MRI further demonstrated that Gd-DTPA leakage clearly preceded monocyte infiltration as imaged by the contrast agent based on ultra small particles of iron oxide (USPIO), which was maximal only during full-blown EAE. Ultrastructural and immunohistochemical investigation revealed that USPIOs were present in newly infiltrated macrophages within the inflammatory lesions. To validate the use of USPIOs as a non-invasive tool to evaluate therapeutic strategies, EAE animals were treated with the immunomodulator 3-hydroxy-3-methylglutaryl Coenzyme A reductase inhibitor, lovastatin, which ameliorated clinical scores. MRI showed that the USPIO load in the brain was significantly diminished in lovastatin-treated animals. Data indicate that cerebrovascular leakage and monocytic trafficking into the brain are two distinct processes in the development of inflammatory lesions during multiple sclerosis, which can

  12. Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood–brain barrier and human placental trophoblast

    Directory of Open Access Journals (Sweden)

    Lopalco A

    2015-03-01

    Full Text Available Antonio Lopalco,1–3,* Hazem Ali,1,* Nunzio Denora,3 Erik Rytting1,4,5 1Department of Obstretrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA; 2Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; 3Department of Pharmacy – Drug Sciences, University of Bari Aldo Moro, Bari, Italy; 4Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA; 5Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA *These authors contributed equally to this work Abstract: Encapsulation of antiepileptic drugs (AEDs into nanoparticles may offer promise for treating pregnant women with epilepsy by improving brain delivery and limiting the transplacental permeability of AEDs to avoid fetal exposure and its consequent undesirable adverse effects. Oxcarbazepine-loaded nanoparticles were prepared by a modified solvent displacement method from biocompatible polymers (poly(lactic-co-glycolic acid [PLGA] with or without surfactant and PEGylated PLGA [Resomer® RGPd5055]. The physical properties of the developed nanoparticles were determined with subsequent evaluation of their permeability across in vitro models of the blood–brain barrier (hCMEC/D3 cells and human placental trophoblast cells (BeWo b30 cells. Oxcarbazepine-loaded nanoparticles with encapsulation efficiency above 69% were prepared with sizes ranging from 140–170 nm, polydispersity indices below 0.3, and zeta potential values below −34 mV. Differential scanning calorimetry and X-ray diffraction studies confirmed the amorphous state of the nanoencapsulated drug. The apparent permeability (Pe values of the free and nanoencapsulated oxcarbazepine were comparable across both cell types, likely due to rapid drug release kinetics. Transport studies using fluorescently-labeled nanoparticles (loaded with coumarin-6 demonstrated increased permeability of surfactant-coated nanoparticles

  13. In vivo EPR pharmacokinetic evaluation of the redox status and the blood brain barrier permeability in the SOD1G93A ALS rat model.

    Science.gov (United States)

    Stamenković, Stefan; Pavićević, Aleksandra; Mojović, Miloš; Popović-Bijelić, Ana; Selaković, Vesna; Andjus, Pavle; Bačić, Goran

    2017-07-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting the motor pathways of the central nervous system. Although a number of pathophysiological mechanisms have been described in the disease, post mortem and animal model studies indicate blood-brain barrier (BBB) disruption and elevated production of reactive oxygen species as major contributors to disease pathology. In this study, the BBB permeability and the brain tissue redox status of the SOD1 G93A ALS rat model in the presymptomatic (preALS) and symptomatic (ALS) stages of the disease were investigated by in vivo EPR spectroscopy using three aminoxyl radicals with different cell membrane and BBB permeabilities, Tempol, 3-carbamoyl proxyl (3CP), and 3-carboxy proxyl (3CxP). Additionally, the redox status of the two brain regions previously implicated in disease pathology, brainstem and hippocampus, was investigated by spectrophotometric biochemical assays. The EPR results indicated that among the three spin probes, 3CP is the most suitable for reporting the intracellular redox status changes, as Tempol was reduced in vivo within minutes (t 1/2 =2.0±0.5min), thus preventing reliable kinetic modeling, whereas 3CxP reduction kinetics gave divergent conclusions, most probably due to its membrane impermeability. It was observed that the reduction kinetics of 3CP in vivo, in the head of preALS and ALS SOD1 G93A rats was altered compared to the controls. Pharmacokinetic modeling of 3CP reduction in vivo, revealed elevated tissue distribution and tissue reduction rate constants indicating an altered brain tissue redox status, and possibly BBB disruption in these animals. The preALS and ALS brain tissue homogenates also showed increased nitrilation, superoxide production, lipid peroxidation and manganese superoxide dismutase activity, and a decreased copper-zinc superoxide dismutase activity. The present study highlights in vivo EPR spectroscopy as a reliable tool for the investigation of

  14. The Blood-Brain Barrier Permeability of Six Indole Alkaloids from Uncariae Ramulus Cum Uncis in the MDCK-pHaMDR Cell Monolayer Model

    Directory of Open Access Journals (Sweden)

    Yi-Nan Zhang

    2017-11-01

    Full Text Available Uncariae Ramulus Cum Uncis (URCU is a widely used traditional Chinese medicine, and is reported to have various central nervous system effects. Alkaloids have been demonstrated to be the predominant pharmacological active components of URCU. In order to evaluate the blood-brain barrier (BBB permeability and transport mechanism of six typical indole alkaloids from URCU, the MDCK-pHaMDR cell monolayer model was used as an in vitro surrogate model for BBB. The samples were analyzed by high-performance liquid chromatography, and the apparent permeability coefficients (Papp were calculated. Among the six alkaloids, isorhynchophylline (2, isocorynoxeine (4, hirsutine (5 and hirsuteine (6 showed high permeability, with Papp values at 10−5 cm/s level in bidirectional transport. For rhynchophylline (1 and corynoxeine (3, they showed moderate permeability, with Papp values from the apical (AP side to the basolateral (BL side at 10−6 cm/s level and efflux ratio (Papp BL→AP/Papp AP→BL above 2. The time- and concentration-dependency experiments indicated that the main mechanism for 2, 4, 5 and 6 through BBB was passive diffusion. The efflux mechanism involved in the transports of compounds 1 and 3 could be reduced significantly by verapamil, and molecular docking screening also showed that 1 and 3 had strong bindings to P-glycoprotein. This study provides useful information for predicting the BBB permeability for 1–6, as well as better understanding of their central nervous system pharmacological activities.

  15. Blood-brain barrier transport and protein binding of flumazenil and iomazenil in the rat: implications for neuroreceptor studies

    DEFF Research Database (Denmark)

    Videbaek, C; Ott, P; Paulson, O B

    1999-01-01

    of blood-brain barrier permeability for two benzodiazepine antagonists were performed in 44 rats by the double-indicator technique. Cerebral blood flow was measured by intracarotid Xe-injection. The apparent permeability-surface product (PSapp) was measured while CBF or bolus composition was changed......The calculated fraction of receptor ligands available for blood-brain barrier passage in vivo (f(avail)) may differ from in vitro (f(eq)) measurements. This study evaluates the protein-ligand interaction for iomazenil and flumazenil in rats by comparing f(eq) and f(avail). Repeated measurements......(avail) and f(eq) as well as the effect of CBF on PSapp can be caused by capillary heterogeneity....

  16. Blood-brain barrier transport and protein binding of flumazenil and iomazenil in the rat: implications for neuroreceptor studies

    DEFF Research Database (Denmark)

    Videbaek, C; Ott, P; Paulson, O B

    1999-01-01

    The calculated fraction of receptor ligands available for blood-brain barrier passage in vivo (f(avail)) may differ from in vitro (f(eq)) measurements. This study evaluates the protein-ligand interaction for iomazenil and flumazenil in rats by comparing f(eq) and f(avail). Repeated measurements...... of blood-brain barrier permeability for two benzodiazepine antagonists were performed in 44 rats by the double-indicator technique. Cerebral blood flow was measured by intracarotid Xe-injection. The apparent permeability-surface product (PSapp) was measured while CBF or bolus composition was changed...... and flumazenil increased significantly by 89% and 161% after relative CBF increases of 259% and 201%, respectively. The results demonstrate that application of f(eq) in neuroreceptor studies underestimates the plasma input function to the brain. Model simulations render possible that the differences between f...

  17. Differential blood-brain barrier permeabilities to [14C]sucrose and [3H]inulin after osmotic opening in the rat

    International Nuclear Information System (INIS)

    Ziylan, Y.Z.; Robinson, P.J.; Rapoport, S.I.

    1983-01-01

    The blood-brain barrier (B-BB) in 3-month-old rats was opened unilaterally by infusing 1.8 m L(+)arabinose in water into the internal carotid artery through a catheter in the external carotid. Two poorly penetrating uncharged test radiotracers of differing molecular weight and size, [ 14 C]sucrose (340 daltons, radius 5 A) and [ 3 H]inulin (5500 daltons, radius 15 A), were simultaneously injected i.v. in untreated rats, or rats at 1, 30, or 50 min after infusion of hypertonic arabinose solution. Evans-blue solution was injected 5 min prior to osmotic treatment as a visual indicator of barrier integrity. In regions of uninfused control brains, the [ 14 C]sucrose permeability-surface area (PA) product approximated 10(-5) s-1, whereas PA was not measurable for [ 3 H]inulin. In arabinose-infused animals, PA products on the ipsilateral hemisphere for both [ 14 C]sucrose and [ 3 H]inulin were markedly elevated 6 min after infusion, but decreased by 35 and 55 min. In nearly all regions, statistically significant differences were not found between 6-min [ 14 C]sucrose- and [ 3 H]inulin-PA values (P greater than 0.05). However, at 35 and 55 min in most regions, the PA for [ 3 H]inulin was significantly lower (P less than 0.05) than PA for [ 14 C]sucrose. The results indicated that the B-BB closed more rapidly to larger than to smaller molecules after osmotic treatment and were consistent with a pore model for osmotic B-BB opening

  18. Blood-brain barrier disruption by continuous-wave radio frequency radiation.

    Science.gov (United States)

    Sirav, Bahriye; Seyhan, Nesrin

    2009-01-01

    The increasing use of cellular phones and the increasing number of associated base stations are becoming a widespread source of non ionizing electromagnetic radiation. Some biological effects are likely to occur even at low-level EM fields. This study was designed to investigate the effects of 900 and 1,800 MHz Continuous Wave Radio Frequency Radiation (CW RFR) on the permeability of Blood Brain Barrier (BBB) of rats. Results have shown that 20 min RFR exposure of 900 and 1,800 MHz induces an effect and increases the permeability of BBB of male rats. There was no change in female rats. The scientific evidence on RFR safety or harm remains inconclusive. More studies are needed to demonstrate the effects of RFR on the permeability of BBB and the mechanisms of that breakdown.

  19. The blood-brain barrier in vitro using primary culture

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart

    The brain is protected from the entry of unwanted substances by means of the blood-brain barrier (BBB) formed by the brain microvasculature. This BBB is composed of non-fenestrated brain capillary endothelial cells (BCECs) with their intermingling tight junctions. The presence of the BBB is a huge...... obstacle for the treatment of central nervous system (CNS) diseases, as many potentially CNS active drugs are unable to reach their site of action within the brain. In vitro BBB models are, therefore, being developed to investigate the BBB permeability of a drug early in its development. The first part...... of the thesis involves the establishment and characterization of an in vitro BBB models based on primary cells isolated from the rat brain. Co-culture and triple culture models with astrocytes and pericytes were found to be the superior to mono cultured BCECs with respect to many important BBB characteristics...

  20. Barrier mechanisms in the Drosophila blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Samantha Jane Hindle

    2014-12-01

    Full Text Available The invertebrate blood-brain barrier field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through GPCR signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate blood-brain barrier has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many blood-brain barrier mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the blood-brain barrier can govern whole animal physiologies. This includes novel functions of blood-brain barrier gap junctions in orchestrating synchronized neuroblast proliferation, and of blood-brain barrier secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate blood-brain barrier anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  1. SURFACE-ALTERED ZEOLITES AS PERMEABLE BARRIERS FOR IN SITU TREATMENT OF CONTAMINATED GROUNDWATER

    International Nuclear Information System (INIS)

    Bowman, Robert S.; Li, Zhaohui; Roy, Stephen J.; Burt, Todd; Johnson, Timothy L.; Johnson, Richard L.

    1999-01-01

    The overall objective of this effort is to develop and test a zeolite-based permeable barrier system for containing and remediating contaminated groundwater. The projected product is an engineered and tested permeable barrier system that can be adopted by the commercial sector

  2. SURFACE-ALTERED ZEOLITES AS PERMEABLE BARRIERS FOR IN SITU TREATMENT OF CONTAMINATED GROUNDWATER

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Bowman; Zhaohui Li; Stephen J. Roy; Todd Burt; Timothy L. Johnson; Richard L. Johnson

    1999-08-30

    The overall objective of this effort is to develop and test a zeolite-based permeable barrier system for containing and remediating contaminated groundwater. The projected product is an engineered and tested permeable barrier system that can be adopted by the commercial sector.

  3. Permeability of skin and oral mucosa to water and horseradish peroxidase as related to the thickness of the permeability barrier

    International Nuclear Information System (INIS)

    Squier, C.A.; Hall, B.K.

    1985-01-01

    The permeability of porcine skin and keratinized and nonkeratinized oral mucosa to tritium-labeled water and horseradish peroxidase (HRPO) was determined using perfusion chambers. Small blocks from each tissue were also incubated with HRPO and the extent of penetration visualized microscopically; this enabled measurements to be made of the thickness of the permeability barrier to this water-soluble tracer. Results obtained after inverting the oral mucosa in the chambers or adding metabolic inhibitors indicated that both compounds diffuse across the tissue. The permeability constants derived directly in the study showed that skin was less permeable than oral mucosa and that the floor of the mouth was significantly more permeable than all other regions. When these constants were normalized in terms of a standard permeability barrier thickness and the different tissues compared, the values obtained for skin were again less than those of the oral regions but, of these, the buccal mucosa was significantly higher. The difference in permeability between epidermis and keratinized oral epithelium may be due to differences in the volume density of membrane-coating granules known to exist between the tissues; differences between the oral mucosal regions may reflect differences in the nature of the intercellular barrier material

  4. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood-brain barrier permeability peptide-B6 peptide for potential use in Alzheimer's disease.

    Science.gov (United States)

    Yin, Tiantian; Yang, Licong; Liu, Yanan; Zhou, Xianbo; Sun, Jing; Liu, Jie

    2015-10-01

    The blood-brain barrier (BBB) is a formidable gatekeeper toward exogenous substances, playing an important role in brain homeostasis and maintaining a healthy microenvironment for complex neuronal activities. However, it also greatly hinders drug permeability into the brain and limits the management of brain diseases. The development of new drugs that show improved transport across the BBB represents a promising strategy for Alzheimer's disease (AD) intervention. Whereas, previous study of receptor-mediated endogenous BBB transport systems has focused on a strategy of using transferrin to facilitate brain drug delivery system, a system that still suffers from limitations including synthesis procedure, stability and immunological response. In the present study, we synthetised sialic acid (SA)-modified selenium (Se) nanoparticles conjugated with an alternative peptide-B6 peptide (B6-SA-SeNPs, a synthetic selenoprotein analogue), which shows high permeability across the BBB and has the potential to serve as a novel nanomedicine for disease modification in AD. Laser-scanning confocal microscopy, flow cytometry analysis and inductively coupled plasma-atomic emission spectroscopy ICP-AES revealed high cellular uptake of B6-SA-SeNPs by cerebral endothelial cells (bEnd.3). The transport efficiency of B6-SA-SeNPs was evaluated in a Transwell experiment based on in vitro BBB model. It provided direct evidence for B6-SA-SeNPs crossing the BBB and being absorbed by PC12 cells. Moreover, inhibitory effects of B6-SA-SeNPs on amyloid-β peptide (Aβ) fibrillation could be demonstrated in PC12 cells and bEnd3 cells. B6-SA-SeNPs could not only effectively inhibit Aβ aggregation but could disaggregate preformed Aβ fibrils into non-toxic amorphous oligomers. These results suggested that B6-SA-SeNPs may provide a promising platform, particularly for the application of nanoparticles in the treatment of brain diseases. Alzheimer's disease (AD) is the world's most common form of

  5. Experimental methods and transport models for drug delivery across the blood-brain barrier.

    Science.gov (United States)

    Fu, Bingmei M

    2012-06-01

    The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the micro-environment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-born neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This review summarized the unique structures of the BBB, described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB, e.g., the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents and drug carriers, and presented newly developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Finally, on the basis of the experimental observations and the quantitative models, several strategies for drug delivery through the BBB were proposed.

  6. Development in NMR spiral imaging and application to the assessment of the permeability of the blood-brain barrier on 2 models of brain tumors

    International Nuclear Information System (INIS)

    Beaumont, M.

    2007-12-01

    The results presented in this work were obtained as part of methodological developments in magnetic resonance imaging. First of all, the setting of the rapid imaging technique using a k-space sampling scheme along a variable density spiral is described. Numerical simulations were used to optimize the acquisitions parameters and to compare different reconstruction techniques. An original approach to calibrate the k-space trajectory was proposed. Then, spiral imaging was used to implement a method to measure the blood brain barrier permeability to Gd-DOTA. This protocol was combined to blood volume and vessel size index measurements using Sinerem. The results obtained highlighted differences between the microvascular parameters measured on C6 and RG2 tumor models. The presence of Sinerem induces a mean decrease of the transfer constant across the vascular wall (Ktrans), in the tumor, of 24 per cent. This study also showed extravasation of the Sinerem, during the first two hours after the product injection, only in the RG2 tumors. (author)

  7. Permeable bio-reactive barriers for hydrocarbon remediation in Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Mumford, K.A.; Stevens, G.W.; Gore, D.B. [Melbourne Univ., Victoria (Australia). Dept. of Chemical and Biomoleculuar Engineering, Particulate Fluids Processing Centre; Snape, I.; Rayner, J.L. [Australian Antarctic Div., Kingston, Tasmania (Australia); Gore, D.B. [Macquarie Univ., Sydney, NSW (Australia). Dept. of Environmental Science

    2010-07-01

    This study assessed the performance of a permeable bio-reactive barrier designed to treat contaminated water. The bio-reactive barrier was installed at a fuel spill site located in the Windmill Islands, Antarctica. A funnel and gate design was used to prevent contaminant migration beyond the barrier location as well as to ensure controlled nutrient delivery. The study also investigated the performance of the bio-reactive barrier in regions with freeze-thaw conditions. The 4-year project was also conducted to assess optimal conditions for enhancing the barrier's ability to degrade hydrocarbons.

  8. Selective effects of alpha-MSH and MIF-1 on the blood-brain barrier

    International Nuclear Information System (INIS)

    Sankar, R.; Domer, F.R.; Kastin, A.J.

    1981-01-01

    The effects of intravenously-injected alpha-MSH and MIF-1 (Pro-Leu-Gly-NH2) on the permeability of the blood-brain barrier (BBB) to a large protein and a small anion were studied using radioiodinated serum albumin (RISA) and 99mTc-labeled sodium pertechnetate. The permeability of the BBB to RISA was unaltered by either peptide. Permeability to the inorganic pertechnetate anion, however, was significantly increased by alpha-MSH but not by MIF-1 at doses known to evoke EEG and behavioral responses. The peptides did not cause a change in the systemic blood pressure. It is possible, therefore, that at least some CNS effects of peripherally administered peptides are exerted by alteration of the permeability of the BBB to other substances

  9. A Novel Dynamic Neonatal Blood-Brain Barrier on a Chip.

    Directory of Open Access Journals (Sweden)

    Sudhir P Deosarkar

    Full Text Available Studies of neonatal neural pathologies and development of appropriate therapeutics are hampered by a lack of relevant in vitro models of neonatal blood-brain barrier (BBB. To establish such a model, we have developed a novel blood-brain barrier on a chip (B3C that comprises a tissue compartment and vascular channels placed side-by-side mimicking the three-dimensional morphology, size and flow characteristics of microvessels in vivo. Rat brain endothelial cells (RBEC isolated from neonatal rats were seeded in the vascular channels of B3C and maintained under shear flow conditions, while neonatal rat astrocytes were cultured under static conditions in the tissue compartment of the B3C. RBEC formed continuous endothelial lining with a central lumen along the length of the vascular channels of B3C and exhibited tight junction formation, as measured by the expression of zonula occludens-1 (ZO-1. ZO-1 expression significantly increased with shear flow in the vascular channels and with the presence of astrocyte conditioned medium (ACM or astrocytes cultured in the tissue compartment. Consistent with in vivo BBB, B3C allowed endfeet-like astrocyte-endothelial cell interactions through a porous interface that separates the tissue compartment containing cultured astrocytes from the cultured RBEC in the vascular channels. The permeability of fluorescent 40 kDa dextran from vascular channel to the tissue compartment significantly decreased when RBEC were cultured in the presence of astrocytes or ACM (from 41.0 ± 0.9 x 10-6 cm/s to 2.9 ± 1.0 x 10-6 cm/s or 1.1±0.4 x 10-6 cm/s, respectively. Measurement of electrical resistance in B3C further supports that the addition of ACM significantly improves the barrier function in neonatal RBEC. Moreover, B3C exhibits significantly improved barrier characteristics compared to the transwell model and B3C permeability was not significantly different from the in vivo BBB permeability in neonatal rats. In summary, we

  10. Evaluation of synthetic zeolite as engineering passive permeable reactive barrier

    International Nuclear Information System (INIS)

    Ibrahim, O.A.A.

    2011-01-01

    The presence of toxic pollutants in groundwater brings about significant changes in the properties of water resources and has to be avoided in order to preserve the environmental quality. Heavy metals are among the most dangerous inorganic water pollutants, that related to many anthropogenic sources and their compounds are extremely toxic. The treatment of contaminated groundwater is among the most difficult and expensive environmental problems. Over the past years, permeable reactive barriers have provided an increasingly important role in the passive insitu treatment of contaminated groundwater. There are a large number of materials that are able to immobilize contaminants by sorption, including granulated active carbon, zeolite, montmorillonite, peat, compost, sawdust, etc. Zeolite X is a synthetic counterpart of the naturally occurring mineral Faujasite. It has one of the largest cavities and cavity entrances of any known zeolites. The main aim of this work is to examine the possibility of using synthetic zeolite X as an engineering permeable reactive barrier to remove heavy metals from a contaminated groundwater. Within this context, the following investigations were carried out: 1. Review on the materials most commonly used as engineered permeable reactive barriers to identify the important features to be considered in the examination of the proposed permeable reactive barrier material (zeolite X). 2. Synthesis of zeolite X and characterization of the synthesized material using different techniques. 3. Batch tests were carried out to characterize the equilibrium and kinetic sorption properties of the synthesized zeolite X towards the concerned heavy metals; zinc and cadmium ions. 4. Column tests were also performed to determine the design factors for permeable reactive barrier against zinc and cadmium ions solutions.Breakthrough curves measured in such experiments used to determine the hydrodynamic dispersion coefficients for both metal ions. 5. Analytical

  11. Altered blood-brain barrier permeability in rats with prehepatic portal hypertension turns to normal when portal pressure is lowered

    Science.gov (United States)

    Eizayaga, Francisco; Scorticati, Camila; Prestifilippo, Juan P; Romay, Salvador; Fernandez, Maria A; Castro, José L; Lemberg, Abraham; Perazzo, Juan C

    2006-01-01

    AIM: To study the blood-brain barrier integrity in prehepatic portal hypertensive rats induced by partial portal vein ligation, at 14 and 40 d after ligation when portal pressure is spontaneously normalized. METHODS: Adult male Wistar rats were divided into four groups: Group I: Sham14d , sham operated; Group II: PH14d , portal vein stenosis; (both groups were used 14 days after surgery); Group III: Sham40d, Sham operated and Group IV: PH40d Portal vein stenosis (Groups II and IV used 40 d after surgery). Plasma ammonia, plasma and cerebrospinal fluid protein and liver enzymes concentrations were determined. Trypan and Evans blue dyes, systemically injected, were investigated in hippocampus to study blood-brain barrier integrity. Portal pressure was periodically recorded. RESULTS: Forty days after stricture, portal pressure was normalized, plasma ammonia was moderately high, and both dyes were absent in central nervous system parenchyma. All other parameters were reestablished. When portal pressure was normalized and ammonia level was lowered, but not normal, the altered integrity of blood-brain barrier becomes reestablished. CONCLUSION: The impairment of blood-brain barrier and subsequent normalization could be a mechanism involved in hepatic encephalopathy reversibility. Hemodynamic changes and ammonia could trigger blood-brain barrier alterations and its reestablishment. PMID:16552803

  12. Test device for measuring permeability of a barrier material

    Science.gov (United States)

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  13. Pharmacokinetics and In Vitro Blood-Brain Barrier Screening of the Plant-Derived Alkaloid Tryptanthrin.

    Science.gov (United States)

    Jähne, Evelyn A; Eigenmann, Daniela E; Sampath, Chethan; Butterweck, Veronika; Culot, Maxime; Cecchelli, Roméo; Gosselet, Fabien; Walter, Fruzsina R; Deli, Mária A; Smieško, Martin; Hamburger, Matthias; Oufir, Mouhssin

    2016-07-01

    The indolo[2,1-b]quinazoline alkaloid tryptanthrin was previously identified as a potent anti-inflammatory compound with a unique pharmacological profile. It is a potent inhibitor of cyclooxygenase-2, 5-lipooxygenase-catalyzed leukotriene synthesis, and nitric oxide production catalyzed by the inducible nitric oxide synthase. To characterize the pharmacokinetic properties of tryptanthrin, we performed a pilot in vivo study in male Sprague-Dawley rats (2 mg/kg bw i. v.). Moreover, the ability of tryptanthrin to cross the blood-brain barrier was evaluated in three in vitro human and animal blood-brain barrier models. Bioanalytical UPLC-MS/MS methods used were validated according to current international guidelines. A half-life of 40.63 ± 6.66 min and a clearance of 1.00 ± 0.36 L/h/kg were found in the in vivo pharmacokinetic study. In vitro data obtained with the two primary animal blood-brain barrier models showed a good correlation with an immortalized human monoculture blood-brain barrier model (hBMEC cell line), and were indicative of a high blood-brain barrier permeation potential of tryptanthrin. These findings were corroborated by the in silico prediction of blood-brain barrier penetration. P-glycoprotein interaction of tryptanthrin was assessed by calculation of the efflux ratio in bidirectional permeability assays. An efflux ratio below 2 indicated that tryptanthrin is not subjected to active efflux. Georg Thieme Verlag KG Stuttgart · New York.

  14. Blood-Brain Barrier Permeability of Normal Appearing White Matter in Relapsing-Remitting Multiple Sclerosis

    DEFF Research Database (Denmark)

    Lund, Henrik; Krakauer, Martin; Skimminge, Arnold

    2013-01-01

    Background: Multiple sclerosis (MS) affects the integrity of the blood-brain barrier (BBB). Contrast-enhanced T1 weighted magnetic resonance imaging (MRI) is widely used to characterize location and extent of BBB disruptions in focal MS lesions. We employed quantitative T1 measurements before...

  15. The biofiltration permeable reactive barrier: Practical experience from Synthesia

    Energy Technology Data Exchange (ETDEWEB)

    Vesela, L.; Nemecek, J.; Siglova, M.; Kubal, M. [DEKONTA, Prague (Czech Republic)

    2006-10-15

    The paper refers to utilization of biological elements within permeable reactive barriers. The concept of a biofiltration permeable barrier has been tested in the laboratory and in pilot-scale. Oxyhumolite (oxidized young lignite) was examined as an absorption material and a biofilm carrier. Laboratory tests performed before the pilot verification confirmed that oxyhumolite adsorbs organic pollutants at a minimum value, but that it can be used for biofilm attachment. An experimental barrier was built on premises of a chemical factory contaminated mainly by various organic pollutants (benzene, toluene, ethylbenzene, and xylenes (BTEX), chlorobenzenes, naphthalene, nitro-derivatives, phenols, trichloroethylene (TCE), and total petroleum hydrocarbon (TPH)). Before the barrier was installed, a preliminary survey of the unsaturated zone, hydrogeological investigation, and a microbiological survey had been performed. The barrier was designed as a trench-and-gate system with an in situ bioreactor. During the year 2004, measurements of groundwater flux and retention time under current hydrological conditions, together with chemical and microbiological monitoring, were carried out on the site. The results showed high effectiveness of organic contamination removal. Average elimination varied from 57.3% (naphthalene) to 99.9% (nitro-derivatives, BTEX); microbial density in the bioreactor was approx. 10{sup 5} CFU mL{sup -1}.

  16. A polymeric micelle magnetic resonance imaging (MRI) contrast agent reveals blood-brain barrier (BBB) permeability for macromolecules in cerebral ischemia-reperfusion injury.

    Science.gov (United States)

    Shiraishi, Kouichi; Wang, Zuojun; Kokuryo, Daisuke; Aoki, Ichio; Yokoyama, Masayuki

    2017-05-10

    Blood-brain barrier (BBB) opening is a key phenomenon for understanding ischemia-reperfusion injuries that are directly linked to hemorrhagic transformation. The recombinant human tissue-type plasminogen activator (rtPA) increases the risk of symptomatic intracranial hemorrhages. Recent imaging technologies have advanced our understanding of pathological BBB disorders; however, an ongoing challenge in the pre-"rtPA treatment" stage is the task of developing a rigorous method for hemorrhage-risk assessments. Therefore, we examined a novel method for assessment of rtPA-extravasation through a hyper-permeable BBB. To examine the image diagnosis of rtPA-extravasation for a rat transient occlusion-reperfusion model, in this study we used a polymeric micelle MRI contrast-agent (Gd-micelles). Specifically, we used two MRI contrast agents at 1h after reperfusion. Gd-micelles provided very clear contrast images in 15.5±10.3% of the ischemic hemisphere at 30min after i.v. injection, whereas a classic gadolinium chelate MRI contrast agent provided no satisfactorily clear images. The obtained images indicate both the hyper-permeable BBB area for macromolecules and the distribution area of macromolecules in the ischemic hemisphere. Owing to their large molecular weight, Gd-micelles remained in the ischemic hemisphere through the hyper-permeable BBB. Our results indicate the feasibility of a novel clinical diagnosis for evaluating rtPA-related hemorrhage risks. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Measurement of blood-brain barrier permeability with positron emission tomography in patients with multiple sclerosis

    International Nuclear Information System (INIS)

    Fieschi, C.; Pozzilli, C.; Bernardi, S.; Bozzao, L.; Lenzi, G.L.; Picozzi, P.; Iannotti, F.; Conforti, P.

    1988-01-01

    The purpose of the investigation was to elucidate the role of positron emission tomography using 68 Ga-EDTA in the study of blood-brain barrier abnormalities associated with multiple sclerosis. 14 refs.; 1 figure

  18. Scaffolding proteins in the development and maintenance of the epidermal permeability barrier.

    Science.gov (United States)

    Crawford, Melissa; Dagnino, Lina

    2017-10-02

    The skin of mammals and other terrestrial vertebrates protects the organism against the external environment, preventing heat, water and electrolyte loss, as well as entry of chemicals and pathogens. Impairments in the epidermal permeability barrier function are associated with the genesis and/or progression of a variety of pathological conditions, including genetic inflammatory diseases, microbial and viral infections, and photodamage induced by UV radiation. In mammals, the outside-in epidermal permeability barrier is provided by the joint action of the outermost cornified layer, together with assembled tight junctions in granular keratinocytes found in the layers underneath. Tight junctions serve as both outside-in and inside-out barriers, and impede paracellular movements of ions, water, macromolecules and microorganisms. At the molecular level, tight junctions consist of integral membrane proteins that form an extracellular seal between adjacent cells, and associate with cytoplasmic scaffold proteins that serve as links with the actin cytoskeleton. In this review, we address the roles that scaffold proteins play specifically in the establishment and maintenance of the epidermal permeability barrier, and how various pathologies alter or impair their functions.

  19. Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood-brain barrier and enter the rodent brain.

    Science.gov (United States)

    Zensi, Anja; Begley, David; Pontikis, Charles; Legros, Celine; Mihoreanu, Larisa; Büchel, Claudia; Kreuter, Jörg

    2010-12-01

    Nanoparticles made of human serum albumin (HSA) and modified with apolipoproteins have previously been shown to transport drugs, which normally do not enter the brain, across the blood-brain barrier (BBB). However the precise mechanism by which nanoparticles with different apolipoproteins on their surface can target to the brain, as yet, has not been totally elucidated. In the present study, HSA nanoparticles with covalently bound apolipoprotein A-I (Apo A-I) as a targetor for brain capillary endothelial cells were injected intravenously into SV 129 mice and Wistar rats. The rodents were sacrificed after 15 or 30 min, and their brains were examined by transmission electron microscopy. Apo A-I nanoparticles could be found inside the endothelial cells of brain capillaries as well as within parenchymal brain tissue of both, mice and rats, whereas control particles without Apo A-I on their surface did not cross the BBB during our experiments. The maintenance of tight junction integrity and barrier function during treatment with nanoparticles was demonstrated by perfusion with a fixative containing lanthanum nitrate as an electron dense marker for the permeability of tight junctions.

  20. Control of BTEX migration using a biologically enhanced permeable barrier

    International Nuclear Information System (INIS)

    Borden, R.C.; Goin, R.T.; Kao, C.M.

    1997-01-01

    A permeable barrier system, consisting of a line of closely spaced wells, was installed perpendicular to ground water flow to control the migration of a dissolved hydrocarbon plume. The wells were charged with concrete briquets that release oxygen and nitrate at a controlled rate, enhancing aerobic biodegradation in the downgradient aquifer. Laboratory batch reactor experiments were conducted to identify concrete mixtures that slowly released oxygen over an extended time period. A full-scale permeable barrier system using ORC was constructed at a gasoline-spill site. During the first 242 days of operation, total BTEX decreased from 17 to 3.4 mg/L and dissolved oxygen increased from 0.4 to 1.8 mg/L during transport through the barrier. Over time, BTEX treatment efficiencies declined, indicating the barrier system had become less effective in releasing oxygen and nutrients to the highly contaminated portion of the aquifer. Point dilution tests and sediment analyses performed at the conclusion of the project indicated that the aquifer in the vicinity of the remediation wells had been clogged by precipitation with iron minerals

  1. ECONOMICS ANALYSIS OF THE IMPLEMENTATION OF PERMEABLE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER

    Science.gov (United States)

    This report presents an analysis of the cost of using permeable reactive barriers to remediate contaminated ground water. When possible, these costs are compared with the cost of pump-and-treat technology for similar situations. Permeable reactive barriers are no longer perceiv...

  2. Sphingosine 1-phosphate receptor 5 mediates the immune quiescence of the human brain endothelial barrier

    Directory of Open Access Journals (Sweden)

    van Doorn Ruben

    2012-06-01

    Full Text Available Abstract Background The sphingosine 1-phosphate (S1P receptor modulator FTY720P (Gilenya® potently reduces relapse rate and lesion activity in the neuroinflammatory disorder multiple sclerosis. Although most of its efficacy has been shown to be related to immunosuppression through the induction of lymphopenia, it has been suggested that a number of its beneficial effects are related to altered endothelial and blood–brain barrier (BBB functionality. However, to date it remains unknown whether brain endothelial S1P receptors are involved in the maintenance of the function of the BBB thereby mediating immune quiescence of the brain. Here we demonstrate that the brain endothelial receptor S1P5 largely contributes to the maintenance of brain endothelial barrier function. Methods We analyzed the expression of S1P5 in human post-mortem tissues using immunohistochemistry. The function of S1P5 at the BBB was assessed in cultured human brain endothelial cells (ECs using agonists and lentivirus-mediated knockdown of S1P5. Subsequent analyses of different aspects of the brain EC barrier included the formation of a tight barrier, the expression of BBB proteins and markers of inflammation and monocyte transmigration. Results We show that activation of S1P5 on cultured human brain ECs by a selective agonist elicits enhanced barrier integrity and reduced transendothelial migration of monocytes in vitro. These results were corroborated by genetically silencing S1P5 in brain ECs. Interestingly, functional studies with these cells revealed that S1P5 strongly contributes to brain EC barrier function and underlies the expression of specific BBB endothelial characteristics such as tight junctions and permeability. In addition, S1P5 maintains the immunoquiescent state of brain ECs with low expression levels of leukocyte adhesion molecules and inflammatory chemokines and cytokines through lowering the activation of the transcription factor NFκB. Conclusion Our

  3. Cold injury, blood-brain barrier changes, and leukotriene synthesis: Inhibition by phenidone

    International Nuclear Information System (INIS)

    Robichaud, L.J.; Marcoux, F.W.

    1990-01-01

    Transcranial cold injury in rats and guinea pigs induced cerebral extravasation of albumin labeled with Evans blue dye or 125 I, respective indicators of the area and amount of blood-brain barrier (BBB) disruption. Radioimmunoassay of brain extracts showed that cold injury induced leukotriene (LT)C4 in rat and guinea pig brains 15 min after injury. In guinea pigs, the LT synthesis inhibitor phenidone (30 mg/kg, i.p.) completely blocked cold-induced LTC4 in brain. Phenidone (30 and 100 mg/kg) also inhibited cerebral tissue accumulation of 125 I-albumin and dye in rats and guinea pigs. Phenidone is reported to show antioxidant properties and selective lipoxygenase inhibition of arachidonic acid metabolism compared to cyclooxygenase inhibitors, meclofenamate sodium, and other nonsteroidal anti-inflammatory agents. Since several oxygen and hydroxyl radical scavengers and the cyclooxygenase inhibitor, meclofenamate sodium, did not inhibit protein extravasation, the findings support a role for LT as a mediator of cold-induced changes in BBB permeability in rats and guinea pigs and suggest that the inhibitory effects of phenidone on BBB permeability may be due to inhibition of LT production

  4. Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors

    DEFF Research Database (Denmark)

    Larsson, H B; Stubgaard, M; Frederiksen, J L

    1990-01-01

    In this study quantitation of the degree of deficiency of the blood-brain barrier (BBB) in patients with multiple sclerosis or brain tumors, by using MRI, is shown to be possible. As a measure of permeability of the BBB to Gadolinium-DTPA (Gd-DTPA) the flux per unit of distribution volume per unit...... of brain mass was used. This quantity was found by introducing the longitudinal relaxation rate (R1) as a measure of concentration of Gd-DTPA in the brain tissue in the mathematical model for the transcapillary transport over the BBB. High accordance between the observed data points and the model was found...

  5. Measurement of human blood brain barrier integrity using 11C-inulin and positron emission tomography

    International Nuclear Information System (INIS)

    Hara, Toshihiko; Iio, Masaaki; Tsukiyama, Takashi

    1988-01-01

    Positron emission tomography (PET) using 11 C-inulin was demonstrated to be applicable to the clinical measurement of blood brain barrier permeability and cerebral interstitial fluid volume. Kinetic data were analyzed by application of a two compartment model, in which blood plasma and interstitial fluid spaces constitute the compartments. The blood activity contribution was subtracted from the PET count with the aid of the 11 CO inhalation technique. The values we estimated in a human brain were in agreement with the reported values obtained for animal brains by the use of 14 C-inulin. (orig.)

  6. Transport of Poly(n-butylcyano-acrylate) nanoparticles across the blood-brain barrier in vitro and their influence on barrier integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, Ralf; Cramer, Sandra; Huewel, Sabine [Department of Biochemistry, University of Muenster, Wilhelm-Klemm-Strasse 2, D-48149 Muenster (Germany); Galla, Hans-Joachim, E-mail: gallah@uni-muenster.de [Department of Biochemistry, University of Muenster, Wilhelm-Klemm-Strasse 2, D-48149 Muenster (Germany)

    2011-03-04

    Research highlights: {yields} Poly(n-butylcyano-acrylate) (PBCA) nanoparticles may be promising drug carriers. {yields} Influence of PBCA nanoparticles on the integrity of the blood-brain barrier in vitro. {yields} PBCA nanoparticles lead to a reversible disruption of the BBB in vitro after 4 h. {yields} Potential application as time-dependent and specific opener of the BBB. -- Abstract: In previous studies it was shown that polysorbate 80(PS80)-coated poly(n-butylcyano-acrylate) nanoparticles (PBCA-NP) are able to cross the blood-brain barrier (BBB) in vitro and in vivo. In order to explore and extend the potential applications of PBCA-NP as drug carriers, it is important to ascertain their effect on the BBB. The objective of the present study was to determine the effect of PS80-coated PBCA-NP on the BBB integrity of a porcine in vitro model. This has been investigated by monitoring the development of the transendothelial electrical resistance (TEER) after the addition of PBCA-NP employing impedance spectroscopy. Additionally, the integrity of the BBB in vitro was verified by measuring the passage of the reference substances {sup 14}C-sucrose and FITC-BSA after addition of PBCA-NP. In this study we will show that the application of PS80-coated PBCA-NP leads to a reversible disruption of the barrier after 4 h. The observed disruption of the barrier could also be confirmed by {sup 14}C-sucrose and FITC-BSA permeability studies. Comparing the TEER and permeability studies the lowest resistances and maximal values for permeabilities were both observed after 4 h. These results indicate that PS80-coated PBCA-NP might be suitable for the use as drug carriers. The reversible disruption also offers the possibility to use these particles as specific opener of the BBB. Instead of incorporating the therapeutic agents into the NP, the drugs may cross the BBB after being applied simultaneously with the PBCA-NP.

  7. Permeability measurement of some barrier materials as a function of temperature and pressure

    International Nuclear Information System (INIS)

    Maqsood, M.; Faisal, S.; Ali, J.; Usman, A.; Alamgir, K.; Farooq, K.

    2011-01-01

    Barrier materials possess the ability to restrict the passage of gases, vapors, and organic liquids through their boundaries. These barrier materials have large number of applications in industry and scientific research. To measure the permeability of barrier materials, a specific gas flow system has been developed, pure helium gas is used to measure the back ground reading through SS-316. The permeability and break-through time has been measured through Inconel X-750, NBR and Viton below and above the atmospheric pressure and at different temperatures 20 deg. C, 40 deg. C and 70 deg. C. (author)

  8. Ang-(1-7) exerts protective role in blood-brain barrier damage by the balance of TIMP-1/MMP-9.

    Science.gov (United States)

    Wu, Jitao; Zhao, Duo; Wu, Shuang; Wang, Dan

    2015-02-05

    Cerebrovascular disease (CVD) ranks as the top three health risks, specially cerebral ischemia characterized with the damage of blood-brain barrier (BBB). The angiotensin Ang-(1-7) was proven to have a protective effect on cerebrovascular diseases. However, its role on blood-brain barrier and the underlying molecular mechanism remains unclear. In this study, Ang-(1-7) significantly relieved damage of ischemia reperfusion injury on blood-brain barrier in cerebral ischemia reperfusion injury (IRI) rats. Furthermore, its treatment attenuated BBB permeability and brain edema. Similarly, Ang-(1-7) also decreased the barrier permeability of brain endothelial cell line RBE4. Further analysis showed that Ang-(1-7) could effectively restore tight junction protein (claudin-5 and zonula occludens ZO-1) expression levels both in IRI-rats and hypoxia-induced RBE4 cells. Furthermore, Ang-(1-7) stimulation down-regulated hypoxia-induced matrix metalloproteinase-9 (MMP-9) levels, whose silencing with (matrix metalloproteinase-9 hemopexin domain) MMP9-PEX inhibitor significantly increased the expression of claudin-5 and ZO-1. Further mechanism analysis demonstrated that Ang-(1-7) might junction protein levels by tissue inhibitor of metalloproteinase 1 (TIMP1)-MMP9 pathway, because Ang-(1-7) enhanced TIMP1 expression, whose silencing obviously attenuated the inhibitor effect of Ang-(1-7) on MMP-9 levels and decreased Ang-(1-7)-triggered increase in claudin-5 and ZO-1. Together, this study demonstrated a protective role of Ang-(1-7) in IRI-induced blood-brain barrier damage by TIMP1-MMP9-regulated tight junction protein expression. Accordingly, Ang-(1-7) may become a promising therapeutic agent against IRI and its complications. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Blood-brain barrier permeability and neuroprotective effects of three main alkaloids from the fruits of Euodia rutaecarpa with MDCK-pHaMDR cell monolayer and PC12 cell line.

    Science.gov (United States)

    Zhang, Yi-Nan; Yang, Yan-Fang; Yang, Xiu-Wei

    2018-02-01

    The fruits of Euodia rutaecarpa (Euodiae Fructus, EF), the widely used traditional Chinese medicine, have various central nervous system effects. Alkaloids following as evodiamine (EDM), rutaecarpine (RCP) and dehydroevodiamine (DEDM) are the major substances in EF. The MDCK-pHaMDR cell monolayer model was utilized as a blood-brain barrier (BBB) surrogate model to study their BBB permeability. The transport samples were analyzed by high performance liquid chromatography and the apparent permeability coefficients (P app ) were calculated. EDM and RCP showed high permeability through BBB by passive diffusion, while DEDM showed moderate permeability with efflux mechanism related to P-glycoprotein (P-gp). EDM and RCP could also reduce the efflux of DEDM probably by inhibiting P-gp. The neuroprotective effects of the three alkaloids were then studied on the PC12 cell line injured by 1-methyl-4-phenylpyridinium ion (MPP + ) or hydrogen peroxide (H 2 O 2 ). EDM could significantly reduce MPP + or H 2 O 2 -induced cell injury dose-dependently. RCP could increase the cell viability in MPP + treated group while DEDM showed a protective effect against H 2 O 2 injury. This study predicted the permeability of EDM, RCP and DEDM through BBB and discovered the neuroprotective substance basis of EF as a potential encephalopathy drug. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Identification of Reversible Disruption of the Human Blood-Brain Barrier Following Acute Ischemia.

    Science.gov (United States)

    Simpkins, Alexis N; Dias, Christian; Leigh, Richard

    2016-09-01

    Animal models of acute cerebral ischemia have demonstrated that diffuse blood-brain barrier (BBB) disruption can be reversible after early reperfusion. However, irreversible, focal BBB disruption in humans is associated with hemorrhagic transformation in patients receiving intravenous thrombolytic therapy. The goal of this study was to use a magnetic resonance imaging biomarker of BBB permeability to differentiate these 2 forms of BBB disruption. Acute stroke patients imaged with magnetic resonance imaging before, 2 hours after, and 24 hours after treatment with intravenous tissue-type plasminogen activator were included. The average BBB permeability of the acute ischemic region before and 2 hours after treatment was calculated using a T2* perfusion-weighted source images. Change in average permeability was compared with percent reperfusion using linear regression. Focal regions of maximal BBB permeability from the pretreatment magnetic resonance imaging were compared with the occurrence of parenchymal hematoma (PH) formation on the 24-hour magnetic resonance imaging scan using logistic regression. Signals indicating reversible BBB permeability were detected in 18/36 patients. Change in average BBB permeability correlated inversely with percent reperfusion (P=0.006), indicating that early reperfusion is associated with decreased BBB permeability, whereas sustained ischemia is associated with increased BBB disruption. Focal regions of maximal BBB permeability were significantly associated with subsequent formation of PH (P=0.013). This study demonstrates that diffuse, mild BBB disruption in the acutely ischemic human brain is reversible with reperfusion. This study also confirms prior findings that focal severe BBB disruption confers an increased risk of hemorrhagic transformation in patients treated with intravenous tissue-type plasminogen activator. © 2016 American Heart Association, Inc.

  11. Blood-ocular and blood-brain barrier function in streptozocin-induced diabetes in rats

    International Nuclear Information System (INIS)

    Maeepea, O.; Karlsson, C.; Alm, A.

    1984-01-01

    Edetic acid labeled with chromium 51 was injected intravenously in normal rats and in rats with streptozocin-induced diabetes. One hour after the injection the animals were killed and the concentrations of edetic acid 51Cr in vitreous body, retina, and brain were determined. No significant difference was observed between the two groups for either tissue. In a second series, a mixture of tritiated 1-glucose and aminohippuric acid tagged with carbon 14 was injected instead of edetic acid. A substantial accumulation of aminohippuric acid 14C compared with tritiated 1-glucose was observed in the vitreous body and the brain of diabetic rats in comparison with the control group. It is concluded that untreated streptozocin-induced diabetes in rats for one to two weeks will not cause a generalized increase in the permeability of the blood-ocular or the blood-brain barriers, but organic acids may accumulate in the vitreous body as well as in the brain as a consequence of reduced outward transport through these barriers

  12. The Blood Brain Barrier and its Role in Alzheimer's Therapy: An Overview.

    Science.gov (United States)

    Jakki, Satya Lavanya; Senthil, V; Yasam, Venkata Ramesh; Chandrasekar, M J N; Vijayaraghavan, C

    2018-01-01

    Alzheimer's disease (AD) is the most frequent age related neurodegenerative disorder. It represents 70% of all dementia. Millions of people have been affected by AD worldwide. It is a complex illness characterized pathologically by accumulation of protein aggregates of amyloid and neurofibrillary tangles containing hyperphosphorylated neuronal tau protein. AD requires drugs that can circumvent the blood-brain barrier (BBB) which is not a simple physical barrier between blood and brain, but acts as an iron curtain, allowing only selective molecules to enter the brain. Unfortunately, this dynamic barrier restricts transport of drugs to the brain; due to which, currently very few drugs are available for AD treatment. The present review focuses mainly on strategies used for administration of drug to the CNS by-passing BBB for the treatment of AD. Many studies have proved to be effective in overcoming BBB and targeting drugs to CNS by using different strategies. Here we have discussed some of the most important drug permeability and drug targeting approaches. In conclusion, concentrating solely in development of drug discovery programs is not enough but it is important to maintain balance between the drug discovery and drug delivery systems that are more specific and effective in targeting CNS of AD patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Morphofunctional aspects of the blood-brain barrier.

    Science.gov (United States)

    Nico, Beatrice; Ribatti, Domenico

    2012-01-01

    The blood-brain barrier (BBB) selectively controls the homeostasis of the Central Nervous System (CNS) environment by the specific structural and biochemical features of the endothelial cells, pericytes and glial endfeet, which represent the cellular components of the mature BBB. Endothelial tight junctions (TJs) are the most important structural component of the BBB, and molecular alteration in the phosphorylation state of some TJs proteins, like ZO-1 or occludin, are crucial in determining alterations in the control of BBB vascular permeability. Astrocytes endfeet enveloping the vessels wall, are considered important in the induction and maintenance of the BBB, through secretion of soluble factors, which modulate the expression of enzymatic complexes and antigens by endothelial cells and TJs - associated proteins. Moreover, astrocytes control water flux at BBB site by expressing a specific water channel, namely aquaporin-4 (AQP4), involved in the molecular composition of the orthogonal particles arrays (OAPs) on the perivascular glial endfeet and tightly coupled with the maintenance of the BBB integrity. Disruption of the BBB is a consistent event occurring in the development of several CNS diseases, including demyelinating lesions in the course of relapsing multiple sclerosis, stroke, Duchenne muscular dystrophy (DMD), but also mechanical injures, neurological insults, septic encephalopathy, brain tumors, permanent ischemia or transient ischemia followed by reperfusion. In most cases, these pathological conditions are associated with an increase in microvascular permeability, vasogenic edema, swollen atrocyte endfeet, and BBB disruption.

  14. Treatment with the NK1 antagonist emend reduces blood brain barrier dysfunction and edema formation in an experimental model of brain tumors.

    Directory of Open Access Journals (Sweden)

    Elizabeth Harford-Wright

    Full Text Available The neuropeptide substance P (SP has been implicated in the disruption of the blood-brain barrier (BBB and development of cerebral edema in acute brain injury. Cerebral edema accumulates rapidly around brain tumors and has been linked to several tumor-associated deficits. Currently, the standard treatment for peritumoral edema is the corticosteroid dexamethasone, prolonged use of which is associated with a number of deleterious side effects. As SP is reported to increase in many cancer types, this study examined whether SP plays a role in the genesis of brain peritumoral edema. A-375 human melanoma cells were injected into the right striatum of male Balb/c nude mice to induce brain tumor growth, with culture medium injected in animals serving as controls. At 2, 3 or 4 weeks following tumor cell inoculation, non-treated animals were perfusion fixed for immunohistochemical detection of Albumin, SP and NK1 receptor. A further subgroup of animals was treated with a daily injection of the NK1 antagonist Emend (3 mg/kg, dexamethasone (8 mg/kg or saline vehicle at 3 weeks post-inoculation. Animals were sacrificed a week later to determine BBB permeability using Evan's Blue and brain water content. Non-treated animals demonstrated a significant increase in albumin, SP and NK1 receptor immunoreactivity in the peritumoral area as well as increased perivascular staining in the surrounding brain tissue. Brain water content and BBB permeability was significantly increased in tumor-inoculated animals when compared to controls (p<0.05. Treatment with Emend and dexamethasone reduced BBB permeability and brain water content when compared to vehicle-treated tumor-inoculated mice. The increase in peritumoral staining for both SP and the NK1 receptor, coupled with the reduction in brain water content and BBB permeability seen following treatment with the NK1 antagonist Emend, suggests that SP plays a role in the genesis of peritumoral edema, and thus warrants

  15. Validation of In Vitro Cell-Based Human Blood-Brain Barrier Model Using Clinical Positron Emission Tomography Radioligands To Predict In Vivo Human Brain Penetration

    International Nuclear Information System (INIS)

    Mabondzo, A.; Guyot, A.C.; Bottlaender, M.; Deverre, J.R.; Tsaouin, K.; Balimane, P.V.

    2010-01-01

    We have evaluated a novel in vitro cell-based human blood-brain barrier (BBB) model that could predict in vivo human brain penetration for compounds with different BBB permeabilities using the clinical positron emission tomography (PET) data. Comparison studies were also performed to demonstrate that the in vitro cell-based human BBB model resulted in better predictivity over the traditional permeability model in discovery organizations, Caco-2 cells. We evaluated the in vivo BBB permeability of [ 18 F] and [ 11 C]-compounds in humans by PET imaging. The in vivo plasma-brain exchange parameters used for comparison were determined in humans by PET using a kinetic analysis of the radiotracer binding. For each radiotracer, the parameters were determined by fitting the brain kinetics of the radiotracer using a two-tissue compartment model of the ligand-receptor interaction. Bidirectional transport studies with the same compounds as in in vivo studies were carried out using the in vitro cell-based human BBB model as well as Caco-2 cells. The in vitro cell-based human BBB model has important features of the BBB in vivo and is suitable for discriminating between CNS and non-CNS marketed drugs. A very good correlation (r 2 =0.90; P≤0.001) was demonstrated between in vitro BBB permeability and in vivo permeability coefficient. In contrast, a poor correlation (r 2 = 0.17) was obtained between Caco-2 data and in vivo human brain penetration. This study highlights the potential of this in vitro cell-based human BBB model in drug discovery and shows that it can be an extremely effective screening tool for CNS programs. (authors)

  16. The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144.

    Science.gov (United States)

    Cai, Heng; Xue, Yixue; Wang, Ping; Wang, Zhenhua; Li, Zhen; Hu, Yi; Li, Zhiqing; Shang, Xiuli; Liu, Yunhui

    2015-08-14

    Blood-tumor barrier (BTB) limits the delivery of chemotherapeutic agent to brain tumor tissues. Long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in various biologic processes of tumors. However, the role of lncRNAs in BTB permeability is unclear. LncRNA TUG1 (taurine upregulated gene 1) was highly expressed in glioma vascular endothelial cells from glioma tissues. It also upregulated in glioma co-cultured endothelial cells (GEC) from BTB model in vitro. Knockdown of TUG1 increased BTB permeability, and meanwhile down-regulated the expression of the tight junction proteins ZO-1, occludin, and claudin-5. Both bioinformatics and luciferase reporter assays demonstrated that TUG1 influenced BTB permeability via binding to miR-144. Furthermore, Knockdown of TUG1 also down-regulated Heat shock transcription factor 2 (HSF2), a transcription factor of the heat shock transcription factor family, which was defined as a direct and functional downstream target of miR-144. HSF2 up-regulated the promoter activities and interacted with the promoters of ZO-1, occludin, and claudin-5 in GECs. In conclusion, our results indicate that knockdown of TUG1 increased BTB permeability via binding to miR-144 and then reducing EC tight junction protein expression by targeting HSF2. Thus, TUG1 may represent a useful future therapeutic target for enhancing BTB permeability.

  17. Platelet activating factor induces transient blood-brain barrier opening to facilitate edaravone penetration into the brain.

    Science.gov (United States)

    Fang, Weirong; Zhang, Rui; Sha, Lan; Lv, Peng; Shang, Erxin; Han, Dan; Wei, Jie; Geng, Xiaohan; Yang, Qichuan; Li, Yunman

    2014-03-01

    The blood-brain barrier (BBB) greatly limits the efficacy of many neuroprotective drugs' delivery to the brain, so improving drug penetration through the BBB has been an important focus of research. Here we report that platelet activating factor (PAF) transiently opened BBB and facilitated neuroprotectant edaravone penetration into the brain. Intravenous infusion with PAF induced a transient BBB opening in rats, reflected by increased Evans blue leakage and mild edema formation, which ceased within 6 h. Furthermore, rat regional cerebral blood flow (rCBF) declined acutely during PAF infusion, but recovered slowly. More importantly, this transient BBB opening significantly increased the penetration of edaravone into the brain, evidenced by increased edaravone concentrations in tissue interstitial fluid collected by microdialysis and analyzed by Ultra-performance liquid chromatograph combined with a hybrid quadrupole time-of-flight mass spectrometer (UPLC-MS/MS). Similarly, incubation of rat brain microvessel endothelial cells monolayer with 1 μM PAF for 1 h significantly increased monolayer permeability to (125)I-albumin, which recovered 1 h after PAF elimination. However, PAF incubation with rat brain microvessel endothelial cells for 1 h did not cause detectable cytotoxicity, and did not regulate intercellular adhesion molecule-1, matrix-metalloproteinase-9 and P-glycoprotein expression. In conclusion, PAF could induce transient and reversible BBB opening through abrupt rCBF decline, which significantly improved edaravone penetration into the brain. Platelet activating factor (PAF) transiently induces BBB dysfunction and increases BBB permeability, which may be due to vessel contraction and a temporary decline of regional cerebral blood flow (rCBF) triggered by PAF. More importantly, the PAF induced transient BBB opening facilitates neuroprotectant edaravone penetration into brain. The results of this study may provide a new approach to improve drug delivery into

  18. Strength and Numerical Analysis in the Design of Permeable Reactive Barriers

    Science.gov (United States)

    Pawluk, Katarzyna; Wrzesiński, Grzegorz; Lendo-Siwicka, Marzena

    2017-10-01

    Permeable reactive barriers are one of the most important in situ technologies in groundwater remediation. Most of the installed PRBs have tended to use singular reactive media, but there is an increasing number of applications using combined or sequenced media to treat mixtures of contaminants within a groundwater plume. The concept of a multi-layered permeable reactive barrier (MPRB) to prevent and protect groundwater along traffic routes, especially in ecologically and naturally valuable areas, was developed following several field and laboratory investigations conducted in the Department of Geotechnical Engineering of the Warsaw University of Life Sciences. In accordance with the guidelines of the Interstate Technology & Regulatory Council for the selection of reactive materials, numerous laboratory and field investigations should be performed to determine the environmental conditions, type and concentrations of the contaminants, and the physical-chemical and permeability properties of the reactive materials. However, the deformation and strength properties of the reactive materials should be also considered in the design and evaluation of the safety conditions. In this paper, strength and deformation properties of silica spongolite, zeolite, and activated carbon were investigated using direct shear and oedometer tests. The laboratory test results were used in numerical calculations with the application of the finite element method. The aim of this study was to define the impact of the installation stages of a multi-layered permeable reactive barrier on the stability of a road embankment. Numerical analysis may prevent, reduce or eliminate the risk in the case of a breakdown during the construction or/and exploitation of a PRB.

  19. Pulsed focused ultrasound combined with micro-bubble contrast agent can open the blood-brain barrier of gliblastoma patients and improve the efficacy of Temozolomide treatment

    Directory of Open Access Journals (Sweden)

    Qian DONG

    2017-06-01

    Full Text Available Objective This research examined the effect of microbubble contrast agent plus ultrasound on the permeability of blood-brain barrier, and explored whether it affects the efficacy of chemotherapeutic drugs on cerebral glioblastoma. Methods Wistar rats were divided into three groups to find the optimal concentration of ultrasonic contrast agent. To identify the best ultrasound mode that affected the permeability of blood brain barrier, we employed transmission electron microscopy for study of brain ultrastructure. Western blotting was used to detect the tight junction protein claudin-5. Evans blue staining of brain tissues was utilized to identify the best ultrasonic contrast agent concentration and mode. Rat glioma cells (line 9L were injected into Wistar rats. After temozolomide chemotherapy, the tumor size was measured and the tumor marker GFAP in serum was detected by ELISA. Results The best contrast agent concentration which increases permeability of BBB in rats was found to be 1ml/kg and the best ultrasound mode was intermittently- triggered pulses lasting for 10min (with interval was set at 400ms. More Evans blue passed the blood-brain barrier in ultrasonic cavitation effect group than in control group (P<0.05. After temozolomide chemotherapy, more tumor marker GFAP was detected in ultrasonic cavitation effect group than in control group (P<0.05. Conclusion The permeability of BBB was increased and more temozolomide went through BBB when the rats were subjected to intermittently triggered ultrasonic pulses and were injected at contrast agent at 1ml/kg, which could help to achieve better therapeutic efficacy for glioblastoma. DOI: 10.11855/j.issn.0577-7402.2017.05.06

  20. Delivery of siRNA silencing P-gp in peptide-functionalized nanoparticles causes efflux modulation at the blood-brain barrier

    DEFF Research Database (Denmark)

    Gomes, Maria João; Kennedy, Patrick J; Martins, Susana

    2017-01-01

    AIM: Explore the use of transferrin-receptor peptide-functionalized nanoparticles (NPs) targeting blood-brain barrier (BBB) as siRNA carriers to silence P-glycoprotein (P-gp). MATERIALS & METHODS: Permeability experiments were assessed through a developed BBB cell-based model; P-gp mRNA expression...

  1. Mapping the Fluid Pathways and Permeability Barriers of a Large Gas Hydrate Reservoir

    Science.gov (United States)

    Campbell, A.; Zhang, Y. L.; Sun, L. F.; Saleh, R.; Pun, W.; Bellefleur, G.; Milkereit, B.

    2012-12-01

    An understanding of the relationship between the physical properties of gas hydrate saturated sedimentary basins aids in the detection, exploration and monitoring one of the world's upcoming energy resources. A large gas hydrate reservoir is located in the MacKenzie Delta of the Canadian Arctic and geophysical logs from the Mallik test site are available for the gas hydrate stability zone (GHSZ) between depths of approximately 850 m to 1100 m. The geophysical data sets from two neighboring boreholes at the Mallik test site are analyzed. Commonly used porosity logs, as well as nuclear magnetic resonance, compressional and Stoneley wave velocity dispersion logs are used to map zones of elevated and severely reduced porosity and permeability respectively. The lateral continuity of horizontal permeability barriers can be further understood with the aid of surface seismic modeling studies. In this integrated study, the behavior of compressional and Stoneley wave velocity dispersion and surface seismic modeling studies are used to identify the fluid pathways and permeability barriers of the gas hydrate reservoir. The results are compared with known nuclear magnetic resonance-derived permeability values. The aim of investigating this heterogeneous medium is to map the fluid pathways and the associated permeability barriers throughout the gas hydrate stability zone. This provides a framework for an understanding of the long-term dissociation of gas hydrates along vertical and horizontal pathways, and will improve the knowledge pertaining to the production of such a promising energy source.

  2. Mesenchymal Stem Cells Regulate Blood Brain Barrier Integrity in Traumatic Brain Injury Through Production of the Soluble Factor TIMP3

    Science.gov (United States)

    Menge, Tyler; Zhao, Yuhai; Zhao, Jing; Wataha, Kathryn; Geber, Michael; Zhang, Jianhu; Letourneau, Phillip; Redell, John; Shen, Li; Wang, Jing; Peng, Zhalong; Xue, Hasen; Kozar, Rosemary; Cox, Charles S.; Khakoo, Aarif Y.; Holcomb, John B.; Dash, Pramod K.; Pati, Shibani

    2013-01-01

    Mesenchymal stem cells (MCSs) have been shown to have therapeutic potential in multiple disease states associated with vascular instability including traumatic brain injury (TBI). In the present study, Tissue Inhibitor of Matrix Metalloproteinase-3 (TIMP3) is identified as the soluble factor produced by MSCs that can recapitulate the beneficial effects of MSCs on endothelial function and blood brain barrier (BBB) compromise in TBI. Attenuation of TIMP3 expression in MSCs completely abrogates the effect of MSCs on BBB permeability and stability, while intravenous administration of rTIMP3 alone can inhibit BBB permeability in TBI. Our results demonstrate that MSCs increase circulating levels of soluble TIMP3, which inhibits VEGF-A induced breakdown of endothelial AJs in vitro and in vivo. These findings elucidate a clear molecular mechanism for the effects of MSCs on the BBB in TBI, and directly demonstrate a role for TIMP3 in regulation of BBB integrity. PMID:23175708

  3. Down-regulation of selected Blood-brain Barrier Specific Genes from Capillaries to Bovine In Vitro Models

    DEFF Research Database (Denmark)

    Goldeman, Charlotte; Saaby, Lasse; Brodin, Birger

    Cultures of primary bovine brain endothelial cells (BECs) grown, often together with astrocytes, on permeable supports in two-compartment culture systems are commonly used as an in vitro model of the blood-brain barrier (BBB). While trans-endothelial electrical resistance, restriction...... the in vivo gene expression of brain capillary endothelial cells. Primary bovine endothelial cells and rat astrocytes were cultured in different culture configurations and the mRNA expression of selected genes (vWF, Glut-1, P-gp, claudin-1,-5, occludin, JAM-1, LAT-1, SLC16A1, MRP-1,-4, BCRP, ZO-1, AP, TPA...

  4. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model.

    Directory of Open Access Journals (Sweden)

    Kelsey Roe

    Full Text Available Characterizing the mechanisms by which West Nile virus (WNV causes blood-brain barrier (BBB disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE. Infection with WNV (NY99 strain significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1 did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101 strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.

  5. Markers for blood-brain barrier integrity

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Møllgård, Kjeld

    2015-01-01

    In recent years there has been a resurgence of interest in brain barriers and various roles their intrinsic mechanisms may play in neurological disorders. Such studies require suitable models and markers to demonstrate integrity and functional changes at the interfaces between blood, brain......, and cerebrospinal fluid. Studies of brain barrier mechanisms and measurements of plasma volume using dyes have a long-standing history, dating back to the late nineteenth-century. Their use in blood-brain barrier studies continues in spite of their known serious limitations in in vivo applications. These were well...... known when first introduced, but seem to have been forgotten since. Understanding these limitations is important because Evans blue is still the most commonly used marker of brain barrier integrity and those using it seem oblivious to problems arising from its in vivo application. The introduction...

  6. In silico modeling on ADME properties of natural products: Classification models for blood-brain barrier permeability, its application to traditional Chinese medicine and in vitro experimental validation.

    Science.gov (United States)

    Zhang, Xiuqing; Liu, Ting; Fan, Xiaohui; Ai, Ni

    2017-08-01

    In silico modeling of blood-brain barrier (BBB) permeability plays an important role in early discovery of central nervous system (CNS) drugs due to its high-throughput and cost-effectiveness. Natural products (NP) have demonstrated considerable therapeutic efficacy against several CNS diseases. However, BBB permeation property of NP is scarcely evaluated both experimentally and computationally. It is well accepted that significant difference in chemical spaces exists between NP and synthetic drugs, which calls into doubt on suitability of available synthetic chemical based BBB permeability models for the evaluation of NP. Herein poor discriminative performance on BBB permeability of NP are first confirmed using internal constructed and previously published drug-derived computational models, which warrants the need for NP-oriented modeling. Then a quantitative structure-property relationship (QSPR) study on a NP dataset was carried out using four different machine learning methods including support vector machine, random forest, Naïve Bayes and probabilistic neural network with 67 selected features. The final consensus model was obtained with approximate 90% overall accuracy for the cross-validation study, which is further taken to predict passive BBB permeability of a large dataset consisting of over 10,000 compounds from traditional Chinese medicine (TCM). For 32 selected TCM molecules, their predicted BBB permeability were evaluated by in vitro parallel artificial membrane permeability assay and overall accuracy for in vitro experimental validation is around 81%. Interestingly, our in silico model successfully predicted different BBB permeation potentials of parent molecules and their known in vivo metabolites. Finally, we found that the lipophilicity, the number of hydrogen bonds and molecular polarity were important molecular determinants for BBB permeability of NP. Our results suggest that the consensus model proposed in current work is a reliable tool for

  7. Protective effects of angiopoietin-like 4 on the blood-brain barrier in acute ischemic stroke treated with thrombolysis in mice.

    Science.gov (United States)

    Zhang, Bin; Xu, Xiaofeng; Chu, Xiuli; Yu, Xiaoyang; Zhao, Yuwu

    2017-04-03

    Given the risk of blood-brain barrier damage (BBB) caused by ischemic and tissue plasminogen activator thrombolysis, the preservation of vascular integrity is important. Angiopoietin-like 4 (ANGPTL4), a protein secreted in hypoxia, is involved in the regulation of vascular permeability. We hypothesized that Angptl4 might exert a protective effect in thrombolysis through stabilizing blood-brain barrier and inhibit hyper-permeability. We investigated the role of Angptl4 in stroke using a transient focal cerebral ischemia mouse model. The treated mice were administered Angptl4 1h after the ischemic event upon reperfusion. Our results showed that Angptl4 combined with thrombolysis greatly reduced the infarct volume and consequent neurological deficit. Western blot analyses and gelatin zymography revealed that Angptl4 protected the integrity of the endothelium damaged by thrombolysis. Angptl4 inhibited the up-regulation of vascular endothelial growth factor (VEGF) in the vascular endothelium after stroke, which was suppressed by counteracting VEGFR signaling and diminishing downstream Src signaling, and led to the increased stability of junctions and improved endothelial cell barrier integrity. These findings demonstrated that Angptl4 protects the permeability of the BBB damaged by ischemic and thrombolysis. Suggested that Angptl4 might be a promising target molecule in therapies for vasoprotection after thrombolysis treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Permeable barrier materials for strontium immobilization: Unsaturated flow apparatus determination of hydraulic conductivity -- Column sorption experiments

    International Nuclear Information System (INIS)

    Moody, T.E.; Conca, J.

    1996-09-01

    Selected materials were tested to emulate a permeable barrier and to examine the (1) capture efficiency of these materials relating to the immobilization of strontium-90 and hexavalent chromium (Cr 6+ ) in Hanford Site groundwater; and (2) hydraulic conductivity of the barrier material relative to the surrounding area. The emplacement method investigated was a permeable reactive barrier to treat contaminated groundwater as it passes through the barrier. The hydraulic conductivity function was measured for each material, and retardation column experiments were performed for each material. Measurements determining the hydraulic conductivity at unsaturated through saturated water content were executed using the Unsaturated Flow Apparatus

  9. Cerebral circulation, metabolism, and blood-brain barrier of rats in hypocapnic hypoxia

    International Nuclear Information System (INIS)

    Beck, T.; Krieglstein, J.

    1987-01-01

    The effects of hypoxic hypoxia on physiological variables, cerebral circulation, cerebral metabolism, and blood-brain barrier were investigated in conscious, spontaneously breathing rats by exposing them to an atmosphere containing 7% O 2 . Hypoxia affected a marked hypotension, hypocapnia and alkalosis. Cortical tissue high-energy phosphates and glucose content were not affected by hypoxia, glucose 6-phosphate lactate, and pyruvate levels were significantly increased. Blood-brain barrier permeability, regional brain glucose content and lumped constant were not changed by hypoxia. Local cerebral glucose utilization (LCGU) rose by 40-70% of control values in gray matter and by 80-90% in white matter. Under hypoxia, columns of increased and decreased LCGU and were detectable in cortical gray matter. Color-coded [ 14 C]2-deoxy-D-glucose autoradiograms of rat brain are shown. Local cerebral blood flow (LCBF) increased by 50-90% in gray matter and by up to 180% in white matter. Coupling between LCGU and LCBF in hypoxia remained unchanged. The data suggests a stimulation of glycolysis, increased glucose transport into the cell, and increased hexokinase activity. The physiological response of gray and white matter to hypoxia obviously differs. Uncoupling of the relation between LCGU and LCBF does not occur

  10. Myeloperoxidase-derived oxidants induce blood-brain barrier dysfunction in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Andreas Üllen

    Full Text Available Peripheral leukocytes can exacerbate brain damage by release of cytotoxic mediators that disrupt blood-brain barrier (BBB function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl formed via the myeloperoxidase (MPO-H2O2-Cl(- system. In the present study we examined the role of leukocyte activation, leukocyte-derived MPO and MPO-generated oxidants on BBB function in vitro and in vivo. In a mouse model of lipopolysaccharide (LPS-induced systemic inflammation, neutrophils that had become adherent released MPO into the cerebrovasculature. In vivo, LPS-induced BBB dysfunction was significantly lower in MPO-deficient mice as compared to wild-type littermates. Both, fMLP-activated leukocytes and the MPO-H2O2-Cl(- system inflicted barrier dysfunction of primary brain microvascular endothelial cells (BMVEC that was partially rescued with the MPO inhibitor 4-aminobenzoic acid hydrazide. BMVEC treatment with the MPO-H2O2-Cl(- system or activated neutrophils resulted in the formation of plasmalogen-derived chlorinated fatty aldehydes. 2-chlorohexadecanal (2-ClHDA severely compromised BMVEC barrier function and induced morphological alterations in tight and adherens junctions. In situ perfusion of rat brain with 2-ClHDA increased BBB permeability in vivo. 2-ClHDA potently activated the MAPK cascade at physiological concentrations. An ERK1/2 and JNK antagonist (PD098059 and SP600125, respectively protected against 2-ClHDA-induced barrier dysfunction in vitro. The current data provide evidence that interference with the MPO pathway could protect against BBB dysfunction under (neuroinflammatory conditions.

  11. Astrocytic modulation of Blood Brain Barrier: Perspectives on Parkinson´s Disease

    Directory of Open Access Journals (Sweden)

    Ricardo eCabezas

    2014-08-01

    Full Text Available TThe blood–brain barrier (BBB is a tightly regulated interface in the Central Nervous System that regulates the exchange of molecules in and out from the brain thus maintaining the CNS homeostasis. It is mainly composed of endothelial cells, pericytes and astrocytes that create a neurovascular unit with the adjacent neurons. Astrocytes are essential for the formation and maintenance of the BBB by providing secreted factors that lead to the adequate association between the cells of the BBB and the formation of strong tight junctions. Under neurological disorders, such as chronic cerebral ischemia, brain trauma, Epilepsy, Alzheimer and Parkinson´s Diseases, a disruption of the BBB takes place, involving a lost in the permeability of the barrier and phenotypical changes in both the endothelial cells and astrocytes. In this aspect, it has been established that the process of reactive gliosis is a common feature of astrocytes during BBB disruption, which has a detrimental effect on the barrier function and a subsequent damage in neuronal survival. In this review we discuss the implications of astrocyte functions in the protection of the BBB, and in the development of Parkinson´s disease and related disorders. Additionally, we highlight the current and future strategies in astrocyte protection aimed at the development of restorative therapies for the BBB in pathological conditions.

  12. Validation of an immortalized human (hBMEC) in vitro blood-brain barrier model.

    Science.gov (United States)

    Eigenmann, Daniela Elisabeth; Jähne, Evelyn Andrea; Smieško, Martin; Hamburger, Matthias; Oufir, Mouhssin

    2016-03-01

    We recently established and optimized an immortalized human in vitro blood-brain barrier (BBB) model based on the hBMEC cell line. In the present work, we validated this mono-culture 24-well model with a representative series of drug substances which are known to cross or not to cross the BBB. For each individual compound, a quantitative UHPLC-MS/MS method in Ringer HEPES buffer was developed and validated according to current regulatory guidelines, with respect to selectivity, precision, and reliability. Various biological and analytical challenges were met during method validation, highlighting the importance of careful method development. The positive controls antipyrine, caffeine, diazepam, and propranolol showed mean endothelial permeability coefficients (P e) in the range of 17-70 × 10(-6) cm/s, indicating moderate to high BBB permeability when compared to the barrier integrity marker sodium fluorescein (mean P e 3-5 × 10(-6) cm/s). The negative controls atenolol, cimetidine, and vinblastine showed mean P e values < 10 × 10(-6) cm/s, suggesting low permeability. In silico calculations were in agreement with in vitro data. With the exception of quinidine (P-glycoprotein inhibitor and substrate), BBB permeability of all control compounds was correctly predicted by this new, easy, and fast to set up human in vitro BBB model. Addition of retinoic acid and puromycin did not increase transendothelial electrical resistance (TEER) values of the BBB model.

  13. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability

    Directory of Open Access Journals (Sweden)

    Karin ede Punder

    2015-05-01

    Full Text Available Chronic non-communicable diseases (NCDs are the leading causes of work absence, disability and mortality worldwide. Most of these diseases are associated with low-grade inflammation. Here we hypothesize that stresses (defined as homeostatic disturbances can induce low-grade inflammation by increasing the availability of water, sodium and energy-rich substances to meet the increased metabolic demand induced by the stressor. One way of triggering low-grade inflammation is by increasing intestinal barrier permeability through activation of various components of the stress system. Although beneficial to meet the demands necessary during stress, increased intestinal barrier permeability also raises the possibility of the translocation of bacteria and their toxins across the intestinal lumen into the blood circulation. In combination with modern life-style factors, the increase in bacteria/bacterial toxin translocation arising from a more permeable intestinal wall causes a low-grade inflammatory state. We support this hypothesis with numerous studies finding associations with NCDs and markers of endotoxemia, suggesting that this process plays a pivotal and perhaps even a causal role in the development of low-grade inflammation and its related diseases.

  14. Opening of the blood-brain barrier before cerebral pathology in mild hyperhomocysteinemia.

    Directory of Open Access Journals (Sweden)

    Bryce C Rhodehouse

    Full Text Available Hyperhomocysteinemia (HHcy is a risk factor for cognitive impairment. The purpose of this study was to determine the temporal pattern of cerebral pathology in a mouse model of mild HHcy, because understanding this time course provides the basis for understanding the mechanisms involved. C57Bl/6 mice with heterozygous deletion cystathionine β-synthase (cbs (+/-; Het were used as a model of mild HHcy along with their wild-type littermates (cbs (+/+; WT. Mice were 'young' (5.3±0.2 months of age and 'old' (16.6±0.9 months of age. Blood-brain barrier (BBB permeability was quantified from Evans blue and sodium fluorescein extravasation. Microvascular architecture was assessed by z-stack confocal microscopy. Leukoaraiosis was measured from Luxol fast blue stained slides of paraffin brain sections. Inflammation was quantified using standard antibody-based immunohistochemical techniques. Cognitive function was assessed using the Morris water maze. BBB permeability was significantly greater in Het vs. WT mice at all ages (p<0.05. There were no differences in microvascular architecture among the groups. Compared with all other groups, old Het mice had significantly greater leukoaraiosis, inflammation in the fornix, and cognitive impairment (p<0.05. In mild HHcy, increased permeability of the BBB precedes the onset of cerebral pathology. This new paradigm may play a role in the progression of disease in HHcy.

  15. PERMEABLE REACTIVE BARRIERS FOR IN-SITU TREATMENT OF ARSENIC-CONTAMINATED GROUNDWATER

    Science.gov (United States)

    Laboratory and field research has shown that permeable reactive barriers (PRBs) containing a variety of materials can treat arsenic (As) contaminated groundwater. Sites where these PRBs are located include a mine tailings facility, fertilizer and chemical manufacturing sites, a...

  16. The proton permeability of self-assembled polymersomes and their neuroprotection by enhancing a neuroprotective peptide across the blood-brain barrier after modification with lactoferrin

    Science.gov (United States)

    Yu, Yuan; Jiang, Xinguo; Gong, Shuyu; Feng, Liang; Zhong, Yanqiang; Pang, Zhiqing

    2014-02-01

    Biotherapeutics such as peptides possess strong potential for the treatment of intractable neurological disorders. However, because of their low stability and the impermeability of the blood-brain barrier (BBB), biotherapeutics are difficult to transport into brain parenchyma via intravenous injection. Herein, we present a novel poly(ethylene glycol)-poly(d,l-lactic-co-glycolic acid) polymersome-based nanomedicine with self-assembled bilayers, which was functionalized with lactoferrin (Lf-POS) to facilitate the transport of a neuroprotective peptide into the brain. The apparent diffusion coefficient (D*) of H+ through the polymersome membrane was 5.659 × 10-26 cm2 s-1, while that of liposomes was 1.017 × 10-24 cm2 s-1. The stability of the polymersome membrane was much higher than that of liposomes. The uptake of polymersomes by mouse brain capillary endothelial cells proved that the optimal density of lactoferrin was 101 molecules per polymersome. Fluorescence imaging indicated that Lf101-POS was effectively transferred into the brain. In pharmacokinetics, compared with transferrin-modified polymersomes and cationic bovine serum albumin-modified polymersomes, Lf-POS obtained the greatest BBB permeability surface area and percentage of injected dose per gram (%ID per g). Furthermore, Lf-POS holding S14G-humanin protected against learning and memory impairment induced by amyloid-β25-35 in rats. Western blotting revealed that the nanomedicine provided neuroprotection against over-expression of apoptotic proteins exhibiting neurofibrillary tangle pathology in neurons. The results indicated that polymersomes can be exploited as a promising non-invasive nanomedicine capable of mediating peptide therapeutic delivery and controlling the release of drugs to the central nervous system.

  17. The permeability of puerarin loaded poly(butylcyanoacrylate) nanoparticles coated with polysorbate 80 on the blood-brain barrier and its protective effect against cerebral ischemia/reperfusion injury.

    Science.gov (United States)

    Zhao, Li-xia; Liu, An-chang; Yu, Shu-wen; Wang, Zeng-xin; Lin, Xiao-qian; Zhai, Guang-xi; Zhang, Qing-zhu

    2013-01-01

    Puerarin (PUE) is a good candidate for treating stroke, but its low concentration in brain after administration limits its curative efficacy. The aim of the present work was to design and characterize PUE loaded poly(butylcyanoacrylate) nanoparticles (PBCN) coated with polysorbate 80 (Ps 80), and to evaluate the effect of PBCN on the permeability of PUE across the blood-brain barrier (BBB) and the effect of PUE loaded PBCN on the cerebral ischemia/reperfusion injury. PUE loaded PBCN were successfully prepared by anionic polymerization method with the mean particle size of 201.2 nm and the zeta potential of -7.72 mV. The in vitro release behavior of PUE from the nanoparticles showed a biphasic profile manner with an initial burst release followed by a sustained release. The results of pharmacokinetic and biodistribution to brain performed in mice after intravenous administration showed that the drug concentrations in blood and brain for PUE loaded PBCN were both greater than these for the free drug. Moreover, compared with free drug, the vein injection of PUE loaded PBCN exerted the better neuroprotective effect in rats with focal cerebral ischemic injury via significantly decreasing neurological deficit scores, increasing body weight, lowing brain water content, and reducing the infarct volume. The results indicated that this preparation may reduce the total dose required for the stroke therapy with concurrent reduction in dose related toxicity. All these findings suggest that PBCN could enhance the transport of PUE to brain and have a potential as a neuroprotective agent in the focal cerebral ischemic injury.

  18. Comparison between PVHIS on the MRI and the permeability of brain blood vessels in elderly patients

    International Nuclear Information System (INIS)

    Yamaguchi, Katsuhiko; Tanaka, Yuriko; Kubo, Hideki; Takagi, Yasushi; Tachikawa, Shinzo; Katsunuma, Hideyo.

    1989-01-01

    The degree of PVHIS (periventricular high intensity signal) on the MRI was composed with the permeability of brain blood vessels using the cerebrospinal fluid (CSF)/serum ratio for albumin, and the CSF/serum ratio for IgG in elderly patients. The 47 elderly patients (mean age=79.9) were divided into three groups: (1) Mild group (20 cases, M:6, F:14, mean age=75.8), (2) Moderate group (18 cases, M:7, F:11, mean age=82.6), (3) Severe group (9 cases, M:2, F:7, mean age=82.9), in accordance with the degree of PVHIS on the MRI. The MRI was operated at a field strength of 0.22 tesla. The pulse sequence (used on all patients) had a repetition times (TR) of 2,000 msec and a time to echo (TE) of 40 msec. The levels of albumin and IgG in the serum and CSF were measured. The CSF/serum ratio for albumin was used of analyze the permeability of the brain blood vessels in each group. There was no significant difference in the level of the serum albumin, the CSF albumin, the serum IgG, the CSF IgG and the CSF/serum ratio for IgG among the three groups. The same was found to be true for the IgG index which indicates the synthesis of immunoglobulin in the central nervous system. However, there was a statistically significant difference (p<0.05) in the CSF/serum ratio for albumin between groups (1) and (3). The increased CSF/serum ratio for albumin in the severe group indicated there were confluent lesions involving the entire extent of the periventriular white matter on the MRI. This suggested an increased permeability of brain blood vessels which revealed the dysfunction of the blood brain barrier due to affected cerebral endothelial cells in capillaries. (author)

  19. Development of the blood-brain barrier: a historical point of view.

    Science.gov (United States)

    Ribatti, Domenico; Nico, Beatrice; Crivellato, Enrico; Artico, Marco

    2006-01-01

    Although there has been considerable controversy since the observation by Ehrlich more than 100 years ago that the brain did not take up dyes from the vascular system, the concept of an endothelial blood-brain barrier (BBB) was confirmed by the unequivocal demonstration that the passage of molecules from blood to brain and vice versa was prevented by endothelial tight junctions (TJs). There are three major functions implicated in the term "BBB": protection of the brain from the blood milieu, selective transport, and metabolism or modification of blood- or brain-borne substances. The BBB phenotype develops under the influence of associated brain cells, especially astrocytic glia, and consists of complex TJs and a number of specific transport and enzyme systems that regulate molecular traffic across the endothelial cells. The development of the BBB is a complex process that leads to endothelial cells with unique permeability characteristics due to high electrical resistance and the expression of specific transporters and metabolic pathways. This review article summarizes the historical background underlying our current knowledge of the cellular and molecular mechanisms involved in the development and maintenance of the BBB. (c) 2006 Wiley-Liss, Inc.

  20. Permeability of the blood-brain barrier to the neurotensin8-13 analog NT1.

    Science.gov (United States)

    Banks, W A; Wustrow, D J; Cody, W L; Davis, M D; Kastin, A J

    1995-10-09

    Neurotensin (NT) has been suggested to be a neuropeptide with therapeutic potential. We used multiple-time regression analysis to measure the unidirectional influx constant (Ki) of a tritiated analog of NT8-13, NT1, with improved metabolic stability. The Ki of [3H]NT1 across the blood-brain barrier (BBB) was 5.12(10(-4)) ml/g-min and was decreased 66% by unlabeled NT1 system. The amount of NT1 crossing the BBB, 0.087% of the injected dose per gram of brain, is consistent with its exerting central effects after peripheral administration. The stable [3H]NT1 crossed the BBB in intact form as assessed by HPLC and completely crossed the endothelial cells that comprise the BBB as assessed by the capillary depletion method. The presence of a transport system could be important for the development of NT analogs.

  1. Changes in permeability of the alveolar-capillary barrier in firefighters.

    Science.gov (United States)

    Minty, B D; Royston, D; Jones, J G; Smith, D J; Searing, C S; Beeley, M

    1985-09-01

    The effect on alveolar-capillary barrier permeability of chronic exposure to a smoke produced by the partial combusion of diesel oil, paraffin, and wood was examined. An index of permeability was determined from the rate of transfer from the lung into the blood of the hydrophilic, labelled chelate 99mTc diethylene triamine penta-acetate (MW 492 dalton). The results of this test were expressed as the half time clearance of the tracer from the lung into the blood (T1/2 LB). The study was carried out at the Royal Naval Firefighting School, HMS Excellent. Permeability index was measured on seven non-smoking naval firefighting instructors who had worked at the school for periods of longer than two and a half months. Tests of airway function and carbon monoxide transfer factor were performed on four of these seven instructors. The results of the permeability index showed a T1/2 LB of 26 min +/- 5 (SEM) which differed significantly from that of normal non-smokers. By contrast all other lung function tests had values within the predicted normal range.

  2. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    Energy Technology Data Exchange (ETDEWEB)

    Eum, Sung Yong, E-mail: seum@miami.edu; Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  3. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Murrin L Charles

    2011-03-01

    Full Text Available Abstract Background Methamphetamine (METH, an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB to date. Results In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM increased the expression of glucose transporter protein-1 (GLUT1 in primary human brain endothelial cell (hBEC, main component of BBB without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. Conclusion Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity.

  4. In Vitro Modeling of Blood-Brain Barrier with Human iPSC-Derived Endothelial Cells, Pericytes, Neurons, and Astrocytes via Notch Signaling

    Directory of Open Access Journals (Sweden)

    Kohei Yamamizu

    2017-03-01

    Full Text Available The blood-brain barrier (BBB is composed of four cell populations, brain endothelial cells (BECs, pericytes, neurons, and astrocytes. Its role is to precisely regulate the microenvironment of the brain through selective substance crossing. Here we generated an in vitro model of the BBB by differentiating human induced pluripotent stem cells (hiPSCs into all four populations. When the four hiPSC-derived populations were co-cultured, endothelial cells (ECs were endowed with features consistent with BECs, including a high expression of nutrient transporters (CAT3, MFSD2A and efflux transporters (ABCA1, BCRP, PGP, MRP5, and strong barrier function based on tight junctions. Neuron-derived Dll1, which activates Notch signaling in ECs, was essential for the BEC specification. We performed in vitro BBB permeability tests and assessed ten clinical drugs by nanoLC-MS/MS, finding a good correlation with the BBB permeability reported in previous cases. This technology should be useful for research on human BBB physiology, pathology, and drug development.

  5. Minimum Transendothelial Electrical Resistance Thresholds for the Study of Small and Large Molecule Drug Transport in a Human in Vitro Blood-Brain Barrier Model.

    Science.gov (United States)

    Mantle, Jennifer L; Min, Lie; Lee, Kelvin H

    2016-12-05

    A human cell-based in vitro model that can accurately predict drug penetration into the brain as well as metrics to assess these in vitro models are valuable for the development of new therapeutics. Here, human induced pluripotent stem cells (hPSCs) are differentiated into a polarized monolayer that express blood-brain barrier (BBB)-specific proteins and have transendothelial electrical resistance (TEER) values greater than 2500 Ω·cm 2 . By assessing the permeabilities of several known drugs, a benchmarking system to evaluate brain permeability of drugs was established. Furthermore, relationships between TEER and permeability to both small and large molecules were established, demonstrating that different minimum TEER thresholds must be achieved to study the brain transport of these two classes of drugs. This work demonstrates that this hPSC-derived BBB model exhibits an in vivo-like phenotype, and the benchmarks established here are useful for assessing functionality of other in vitro BBB models.

  6. Disruption in the Blood-Brain Barrier: The Missing Link between Brain and Body Inflammation in Bipolar Disorder?

    Directory of Open Access Journals (Sweden)

    Jay P. Patel

    2015-01-01

    Full Text Available The blood-brain barrier (BBB regulates the transport of micro- and macromolecules between the peripheral blood and the central nervous system (CNS in order to maintain optimal levels of essential nutrients and neurotransmitters in the brain. In addition, the BBB plays a critical role protecting the CNS against neurotoxins. There has been growing evidence that BBB disruption is associated with brain inflammatory conditions such as Alzheimer’s disease and multiple sclerosis. Considering the increasing role of inflammation and oxidative stress in the pathophysiology of bipolar disorder (BD, here we propose a novel model wherein transient or persistent disruption of BBB integrity is associated with decreased CNS protection and increased permeability of proinflammatory (e.g., cytokines, reactive oxygen species substances from the peripheral blood into the brain. These events would trigger the activation of microglial cells and promote localized damage to oligodendrocytes and the myelin sheath, ultimately compromising myelination and the integrity of neural circuits. The potential implications for research in this area and directions for future studies are discussed.

  7. Early intervention with human albumin to reduce the tissue plasminogen activator-mediated blood-brain barrier permeability damaged by delayed reperfusion: an experimental study in rats

    International Nuclear Information System (INIS)

    Lu Haitao; Zhao Jungong; Li Minghua; Li Yongdong; Zhang Peilei

    2011-01-01

    Objective: To clarify whether early use of high-dose human albumin can reduce the permeability of blood-brain barrier (BBB) damaged by delayed thrombolysis or not, and, in tun, reduce the vasogenic brain edema. Methods: A total of 138 male SD rats weighing 320-380 grams were randomly divided into 4 groups: sham operation group (n=3), control group (n=45), albumin group (n=45) and albumin+rt-PA group (n=45). According to the reperfusion time after the onset of middle cerebral artery occlusion (MCAO), each group, except sham operation group, was divided into three subgroups of 2 h, 3 h and 4 h with 15 rats in each subgroup. Rats in albumin group and albumin+rt-PA group received an intravenous infusion of 20% human albumin (2.5 g/kg) 2 hours after the onset of MCAO, and rats in albumin+rt-PA group received an intravenous infusion of rt-PA (10 mg/kg) at all points of reperfusion time via the rat's femoral vein immediately after the reperfusion. All rats were sacrificed 24 hours after MCAO, the infarct volume of the brain was determined with TTC dye method, the leakage extent of BBB was quantitatively estimated by using Evans blue method, and the matrix metalloproteinase-9 (MMP-9) expression was assessed with immunohistochemistry technique. Results: Early intervention with the use of high-dose human albumin could significantly improve the neurological score at 24 h. In MCAO 3 h albumin group, MCAO 4 h albumin group and MCAO 3 h albumin+rt-PA group, neurological score was significantly better than that in the control group (P 0.05). The volume of the infarct tissue was also significantly smaller in all the treated groups with high-dose human albumin groups (P<0.05) when compared with the control group. The infarct volume of the MCAO 4 h in albumin group and albumin+rt-PA group was reduced by 23% and by 17.3%, respectively. Cerebral hemorrhage transformation occurred in two rats of MCAO 4 h control group, in one rat of MCAO 4 h albumin group and in one rat of MCAO 4 h

  8. Ultrastructural studies on the blood-brain barrier. Mainly as to changes in the permeability of cerebral capillary walls induced by experimental x-ray irradiation and the effect of glucocorticoid on such changes

    Energy Technology Data Exchange (ETDEWEB)

    Ichitsubo, H [Tokyo Medical Coll. (Japan)

    1977-03-01

    In the present study, an ultrastructural examination was made of the role of capillary endothelial cells of the brain which is one of the constituent factors of the blood-brain barrier. In normal cerebral capillaries, both endothelial cells and the basement membrane were demonstrated to be not crossed by a tracer (horseradish peroxidase) even in 60 minutes after its intravenous administration, thus suggesting the blood-brain barrier effect. Author investigated changes in the permeability of cerebral capillary walls induced by experimental brain irradiation and the effect of glucocorticoid on such changes. On forty-eight hours following an appropriate irradiation a marked brain edema was developed; under such circumstances when the tracer was injected intravenously, on 60 minutes thereafter the tracer was demonstrated to be transferred into the neutral tissue, and this was interpreted as indicating that capillary hyperpermeability was induced. These findings were suggested that the mechanism of capillary hyperpermeability might not be based on the passage of a tight junction of the cells of capillary wall but rather on account of activated active transport via an increased number of pinocytotic vesicles. The mechanism of increase of pinocytotic vesicle appeared to be resulting from a breakdown of the controlling system of pinocytotic vesicle production. However, the existence of this controlling system is still speculative. Pre-and post-irradiation administration of glucocorticoid proved to be effective in the prevention of irradiation-induced hyperpermeability of cerebral capillaries, and to be indicating the possible usefulness of the drug for the maintenance or repair of the aforementioned system.

  9. Retinal pathology is associated with increased blood-retina barrier permeability in a diabetic and hypercholesterolaemic pig model: Beneficial effects of the LpPLA2 inhibitor Darapladib.

    Science.gov (United States)

    Acharya, Nimish K; Qi, Xin; Goldwaser, Eric L; Godsey, George A; Wu, Hao; Kosciuk, Mary C; Freeman, Theresa A; Macphee, Colin H; Wilensky, Robert L; Venkataraman, Venkat; Nagele, Robert G

    2017-05-01

    Using a porcine model of diabetes mellitus and hypercholesterolaemia, we previously showed that diabetes mellitus and hypercholesterolaemia is associated with a chronic increase in blood-brain barrier permeability in the cerebral cortex, leading to selective binding of immunoglobulin G and deposition of amyloid-beta 1-42 peptide in pyramidal neurons. Treatment with Darapladib (GlaxoSmithKline, SB480848), an inhibitor of lipoprotein-associated phospholipase-A2, alleviated these effects. Here, investigation of the effects of chronic diabetes mellitus and hypercholesterolaemia on the pig retina revealed a corresponding increased permeability of the blood-retina barrier coupled with a leak of plasma components into the retina, alterations in retinal architecture, selective IgG binding to neurons in the ganglion cell layer, thinning of retinal layers due to cell loss and increased glial fibrillary acidic protein expression in Müller cells, all of which were curtailed by treatment with Darapladib. These findings suggest that chronic diabetes mellitus and hypercholesterolaemia induces increased blood-retina barrier permeability that may be linked to altered expression of blood-retina barrier-associated tight junction proteins, claudin and occludin, leading to structural changes in the retina consistent with diabetic retinopathy. Additionally, results suggest that drugs with vascular anti-inflammatory properties, such as Darapladib, may have beneficial effects on eye diseases strongly linked to vascular abnormalities such as diabetic retinopathy and age-related macular degeneration.

  10. Modelling water vapour permeability through atomic layer deposition coated photovoltaic barrier defects

    Energy Technology Data Exchange (ETDEWEB)

    Elrawemi, Mohamed, E-mail: Mohamed.elrawemi@hud.ac.uk [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Blunt, Liam; Fleming, Leigh [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Bird, David, E-mail: David.Bird@uk-cpi.com [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Robbins, David [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Sweeney, Francis [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom)

    2014-11-03

    Transparent barrier films such as Al{sub 2}O{sub 3} used for prevention of oxygen and/or water vapour permeation are the subject of increasing research interest when used for the encapsulation of flexible photovoltaic modules. However, the existence of micro-scale defects in the barrier surface topography has been shown to have the potential to facilitate water vapour ingress, thereby reducing cell efficiency and causing internal electrical shorts. Previous work has shown that small defects (≤ 3 μm lateral dimension) were less significant in determining water vapour ingress. In contrast, larger defects (≥ 3 μm lateral dimension) seem to be more detrimental to the barrier functionality. Experimental results based on surface topography segmentation analysis and a model presented in this paper will be used to test the hypothesis that the major contributing defects to water vapour transmission rate are small numbers of large defects. The model highlighted in this study has the potential to be used for gaining a better understanding of photovoltaic module efficiency and performance. - Highlights: • A model of water vapour permeation through barrier defects is presented. • The effect of the defects on the water vapour permeability is investigated. • Defect density correlates with water vapour permeability. • Large defects may dominate the permeation properties of the barrier film.

  11. Blood-brain barrier hyperpermeability precedes demyelination in the cuprizone model.

    Science.gov (United States)

    Berghoff, Stefan A; Düking, Tim; Spieth, Lena; Winchenbach, Jan; Stumpf, Sina K; Gerndt, Nina; Kusch, Kathrin; Ruhwedel, Torben; Möbius, Wiebke; Saher, Gesine

    2017-12-01

    In neuroinflammatory disorders such as multiple sclerosis, the physiological function of the blood-brain barrier (BBB) is perturbed, particularly in demyelinating lesions and supposedly secondary to acute demyelinating pathology. Using the toxic non-inflammatory cuprizone model of demyelination, we demonstrate, however, that the onset of persistent BBB impairment precedes demyelination. In addition to a direct effect of cuprizone on endothelial cells, a plethora of inflammatory mediators, which are mainly of astroglial origin during the initial disease phase, likely contribute to the destabilization of endothelial barrier function in vivo. Our study reveals that, at different time points of pathology and in different CNS regions, the level of gliosis correlates with the extent of BBB hyperpermeability and edema. Furthermore, in mutant mice with abolished type 3 CXC chemokine receptor (CXCR3) signaling, inflammatory responses are dampened and BBB dysfunction ameliorated. Together, these data have implications for understanding the role of BBB permeability in the pathogenesis of demyelinating disease.

  12. Microfluidic organ-on-chip technology for blood-brain barrier research.

    Science.gov (United States)

    van der Helm, Marinke W; van der Meer, Andries D; Eijkel, Jan C T; van den Berg, Albert; Segerink, Loes I

    2016-01-01

    Organs-on-chips are a new class of microengineered laboratory models that combine several of the advantages of current in vivo and in vitro models. In this review, we summarize the advances that have been made in the development of organ-on-chip models of the blood-brain barrier (BBBs-on-chips) and the challenges that are still ahead. The BBB is formed by specialized endothelial cells and separates blood from brain tissue. It protects the brain from harmful compounds from the blood and provides homeostasis for optimal neuronal function [corrected]. Studying BBB function and dysfunction is important for drug development and biomedical research. Microfluidic BBBs-on-chips enable real-time study of (human) cells in an engineered physiological microenvironment, for example incorporating small geometries and fluid flow as well as sensors. Examples of BBBs-on-chips in literature already show the potential of more realistic microenvironments and the study of organ-level functions. A key challenge in the field of BBB-on-chip development is the current lack of standardized quantification of parameters such as barrier permeability and shear stress. This limits the potential for direct comparison of the performance of different BBB-on-chip models to each other and existing models. We give recommendations for further standardization in model characterization and conclude that the rapidly emerging field of BBB-on-chip models holds great promise for further studies in BBB biology and drug development.

  13. T-Lymphocytes Traffic into the Brain across the Blood-CSF Barrier: Evidence Using a Reconstituted Choroid Plexus Epithelium.

    Science.gov (United States)

    Strazielle, Nathalie; Creidy, Rita; Malcus, Christophe; Boucraut, José; Ghersi-Egea, Jean-François

    2016-01-01

    An emerging concept of normal brain immune surveillance proposes that recently and moderately activated central memory T lymphocytes enter the central nervous system (CNS) directly into the cerebrospinal fluid (CSF) via the choroid plexus. Within the CSF space, T cells inspect the CNS environment for cognate antigens. This gate of entry into the CNS could also prevail at the initial stage of neuroinflammatory processes. To actually demonstrate T cell migration across the choroidal epithelium forming the blood-CSF barrier, an in vitro model of the rat blood-CSF barrier was established in an "inverse" configuration that enables cell transmigration studies in the basolateral to apical, i.e. blood/stroma to CSF direction. Structural barrier features were evaluated by immunocytochemical analysis of tight junction proteins, functional barrier properties were assessed by measuring the monolayer permeability to sucrose and the active efflux transport of organic anions. The migratory behaviour of activated T cells across the choroidal epithelium was analysed in the presence and absence of chemokines. The migration pathway was examined by confocal microscopy. The inverse rat BCSFB model reproduces the continuous distribution of tight junction proteins at cell margins, the restricted paracellular permeability, and polarized active transport mechanisms, which all contribute to the barrier phenotype in vivo. Using this model, we present experimental evidence of T cell migration across the choroidal epithelium. Cell migration appears to occur via a paracellular route without disrupting the restrictive barrier properties of the epithelial interface. Apical chemokine addition strongly stimulates T cell migration across the choroidal epithelium. The present data provide evidence for the controlled migration of T cells across the blood-CSF barrier into brain. They further indicate that this recruitment route is sensitive to CSF-borne chemokines, extending the relevance of this

  14. Permeability of EVOH Barrier Material Used in Automotive Applications: Metrology Development for Model Fuel Mixtures

    Directory of Open Access Journals (Sweden)

    Zhao Jing

    2015-02-01

    Full Text Available EVOH (Ethylene-Vinyl Alcohol materials are widely used in automotive applications in multi-layer fuel lines and tanks owing to their excellent barrier properties to aromatic and aliphatic hydrocarbons. These barrier materials are essential to limit environmental fuel emissions and comply with the challenging requirements of fast changing international regulations. Nevertheless, the measurement of EVOH permeability to model fuel mixtures or to their individual components is particularly difficult due to the complexity of these systems and their very low permeability, which can vary by several orders of magnitude depending on the permeating species and their relative concentrations. This paper describes the development of a new automated permeameter capable of taking up the challenge of measuring minute quantities as low as 1 mg/(m2.day for partial fluxes for model fuel mixtures containing ethanol, i-octane and toluene at 50°C. The permeability results are discussed as a function of the model fuel composition and the importance of EVOH preconditioning is emphasized for accurate permeability measurements. The last part focuses on the influence of EVOH conditioning on its mechanical properties and its microstructure, and further illustrates the specific behavior of EVOH in presence of ethanol oxygenated fuels. The new metrology developed in this work offers a new insight in the permeability properties of a leading barrier material and will help prevent the consequences of (bioethanol addition in fuels on environmental emissions through fuel lines and tanks.

  15. Adrenergic-induced enhancement of brain barrier system permeability to small nonelectrolytes: choroid plexus versus cerebral capillaries

    International Nuclear Information System (INIS)

    Murphy, V.A.; Johanson, C.E.

    1985-01-01

    Acute hypertension induced by adrenergic agents opens up the blood-CSF barrier (choroid plexus) to nonelectrolyte and protein tracers. Sprague-Dawley adult rats anesthetized with ketamine were given an intravenous bolus of either epinephrine (10 micrograms/kg), phenylephrine (100 micrograms/kg), isoproterenol (10 micrograms/kg), or D,L-amphetamine (2 mg/kg). Tracers were injected simultaneously with test agents, and the animals killed 10 min later. Epinephrine raised MABP by 57 mm Hg, to a peak pressure of 160 mm Hg; and it increased the volume of distribution (Vd) of urea, mannitol, and 125 I-bovine serum albumin in CSF by 1.5-, 2.7-, and 30-fold, respectively. There was enhanced uptake by lateral and fourth ventricle choroid plexuses, cerebral cortex, cerebellum, medulla, and thalamus. Phenylephrine also elevated MABP to 160 mm Hg, but it increased permeation of tracers into CSF (and several brain regions) to a lesser extent than epinephrine, attributable to protective vasoconstriction associated with alpha-agonist activity. Ratio analysis of Vd data provides evidence that augmented permeation of nonelectrolyte tracers in acute hypertension occurs predominantly by diffusion rather than vesicular transport. It is postulated that elevated MABP distends the central cores of choroid plexus villi and cerebral capillaries, with resultant stretching and opening of tight junctions in both barrier systems; with less hindrance to diffusion, urea and mannitol are cleared at rates closer to free diffusion. Neither isoproterenol (decreased MABP by 40 mm Hg) nor amphetamine (did not alter MABP) significantly opened the choroid plexus or blood-brain barrier to tracers

  16. Surfactant-modified zeolites as permeable barriers to organic and inorganic groundwater contaminants

    International Nuclear Information System (INIS)

    Bowman, R.S.; Sullivan, E.J.

    1995-01-01

    We have shown in laboratory experiments that natural zeolites treated with hexadecyltrimethylammonium (HDTMA) are effective sorbents for nonpolar organics, inorganic cations, and inorganic anions. Due to their low cost (∼$0.75/kg) and granular nature, HDTMA-zeolites appear ideal candidates for reactive, permeable subsurface barriers. The HDTMA-zeolites are stable over a wide range of pH (3-13), ionic strength (1 M Cs + or Ca 2+ ), and in organic solvents. Surfactant-modified zeolites sorb nonpolar organics (benzene, toluene, xylene, chlorinated aliphatics) via a partitioning mechanism, inorganic cations (Pb 2+ ) via ion exchange and surface complexation, and inorganic anions (CrO 4 2- , SeO 4 2- , SO 4 2- ) via surface precipitation.The goal of this work is to demonstrate the use of surfactant-modified zeolite as a permeable barrier to ground water contaminants

  17. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies.

    Science.gov (United States)

    Eigenmann, Daniela E; Xue, Gongda; Kim, Kwang S; Moses, Ashlee V; Hamburger, Matthias; Oufir, Mouhssin

    2013-11-22

    Reliable human in vitro blood-brain barrier (BBB) models suitable for high-throughput screening are urgently needed in early drug discovery and development for assessing the ability of promising bioactive compounds to overcome the BBB. To establish an improved human in vitro BBB model, we compared four currently available and well characterized immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, with respect to barrier tightness and paracellular permeability. Co-culture systems using immortalized human astrocytes (SVG-A cell line) and immortalized human pericytes (HBPCT cell line) were designed with the aim of positively influencing barrier tightness. Tight junction (TJ) formation was assessed by transendothelial electrical resistance (TEER) measurements using a conventional epithelial voltohmmeter (EVOM) and an automated CellZscope system which records TEER and cell layer capacitance (CCL) in real-time.Paracellular permeability was assessed using two fluorescent marker compounds with low BBB penetration (sodium fluorescein (Na-F) and lucifer yellow (LY)). Conditions were optimized for each endothelial cell line by screening a series of 24-well tissue culture inserts from different providers. For hBMEC cells, further optimization was carried out by varying coating material, coating procedure, cell seeding density, and growth media composition. Biochemical characterization of cell type-specific transmembrane adherens junction protein VE-cadherin and of TJ proteins ZO-1 and claudin-5 were carried out for each endothelial cell line. In addition, immunostaining for ZO-1 in hBMEC cell line was performed. The four cell lines all expressed the endothelial cell type-specific adherens junction protein VE-cadherin. The TJ protein ZO-1 was expressed in hCMEC/D3 and in hBMEC cells. ZO-1 expression could be confirmed in hBMEC cells by immunocytochemical staining. Claudin-5 expression was detected in hCMEC/D3, TY10, and at a very low level

  18. The role of the blood–brain barrier in the development and treatment of migraine and other pain disorders

    Science.gov (United States)

    DosSantos, Marcos F.; Holanda-Afonso, Rosenilde C.; Lima, Rodrigo L.; DaSilva, Alexandre F.; Moura-Neto, Vivaldo

    2014-01-01

    The function of the blood–brain barrier (BBB) related to chronic pain has been explored for its classical role in regulating the transcellular and paracellular transport, thus controlling the flow of drugs that act at the central nervous system, such as opioid analgesics (e.g., morphine) and non-steroidal anti-inflammatory drugs. Nonetheless, recent studies have raised the possibility that changes in the BBB permeability might be associated with chronic pain. For instance, changes in the relative amounts of occludin isoforms, resulting in significant increases in the BBB permeability, have been demonstrated after inflammatory hyperalgesia. Furthermore, inflammatory pain produces structural changes in the P-glycoprotein, the major efflux transporter at the BBB. One possible explanation for these findings is the action of substances typically released at the site of peripheral injuries that could lead to changes in the brain endothelial permeability, including substance P, calcitonin gene-related peptide, and interleukin-1 beta. Interestingly, inflammatory pain also results in microglial activation, which potentiates the BBB damage. In fact, astrocytes and microglia play a critical role in maintaining the BBB integrity and the activation of those cells is considered a key mechanism underlying chronic pain. Despite the recent advances in the understanding of BBB function in pain development as well as its interference in the efficacy of analgesic drugs, there remain unknowns regarding the molecular mechanisms involved in this process. In this review, we explore the connection between the BBB as well as the blood–spinal cord barrier and blood–nerve barrier, and pain, focusing on cellular and molecular mechanisms of BBB permeabilization induced by inflammatory or neuropathic pain and migraine. PMID:25339863

  19. The role of the blood-brain barrier in the development and treatment of migraine and other pain disorders

    Directory of Open Access Journals (Sweden)

    Marcos Fabio DosSantos

    2014-10-01

    Full Text Available The function of the blood-brain barrier (BBB related to chronic pain has been explored by its classical role in regulating the transcellular and paracellular transport, thus controlling the flow of drugs that act at the central nervous system, such as the opioid analgesics (e.g., morphine and non-steroidal anti-inflammatory drugs (NSAIDs. Nonetheless, recent studies have raised the possibility that changes in the BBB permeability might be associated with chronic pain. For instance, changes in the relative amounts of occludin isoforms, resulting in significant increases in the BBB permeability, have been demonstrated after inflammatory hyperalgesia. Furthermore, inflammatory pain produces structural changes in the P-glycoprotein (P-gp, the major efflux transporter at the BBB. One possible explanation for these findings is the action of substances typically released at the site of peripheral injuries that could lead to changes in the brain endothelial permeability, including: substance P, calcitonin gene related peptide (CGRP and IL- 1β. Interestingly, inflammatory pain also results in microglial activation, which potentiates the BBB damage. In fact, astrocytes and microglia play a critical role in maintaining the BBB integrity and the activation of those cells is considered a key mechanism underlying chronic pain. Despite the recent advances in the understanding of BBB function in pain development as well as its interference in the efficacy of analgesic drugs, there remain unknowns regarding the molecular mechanisms involved in this process. In this review, we explore the connection between the BBB as well as the blood-spinal cord barrier (BSCB and blood-nerve barrier (BNB and pain, focusing on cellular and molecular mechanisms of BBB permeabilization induced by inflammatory or neuropathic pain and migraine.

  20. A hematopoietic contribution to microhemorrhage formation during antiviral CD8 T cell-initiated blood-brain barrier disruption

    Directory of Open Access Journals (Sweden)

    Johnson Holly L

    2012-03-01

    Full Text Available Abstract Background The extent to which susceptibility to brain hemorrhage is derived from blood-derived factors or stromal tissue remains largely unknown. We have developed an inducible model of CD8 T cell-initiated blood-brain barrier (BBB disruption using a variation of the Theiler's murine encephalomyelitis virus (TMEV model of multiple sclerosis. This peptide-induced fatal syndrome (PIFS model results in severe central nervous system (CNS vascular permeability and death in the C57BL/6 mouse strain, but not in the 129 SvIm mouse strain, despite the two strains' having indistinguishable CD8 T-cell responses. Therefore, we hypothesize that hematopoietic factors contribute to susceptibility to brain hemorrhage, CNS vascular permeability and death following induction of PIFS. Methods PIFS was induced by intravenous injection of VP2121-130 peptide at 7 days post-TMEV infection. We then investigated brain inflammation, astrocyte activation, vascular permeability, functional deficit and microhemorrhage formation using T2*-weighted magnetic resonance imaging (MRI in C57BL/6 and 129 SvIm mice. To investigate the contribution of hematopoietic cells in this model, hemorrhage-resistant 129 SvIm mice were reconstituted with C57BL/6 or autologous 129 SvIm bone marrow. Gadolinium-enhanced, T1-weighted MRI was used to visualize the extent of CNS vascular permeability after bone marrow transfer. Results C57BL/6 and 129 SvIm mice had similar inflammation in the CNS during acute infection. After administration of VP2121-130 peptide, however, C57BL/6 mice had increased astrocyte activation, CNS vascular permeability, microhemorrhage formation and functional deficits compared to 129 SvIm mice. The 129 SvIm mice reconstituted with C57BL/6 but not autologous bone marrow had increased microhemorrhage formation as measured by T2*-weighted MRI, exhibited a profound increase in CNS vascular permeability as measured by three-dimensional volumetric analysis of

  1. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells

    Directory of Open Access Journals (Sweden)

    Sharma Kamal

    2008-12-01

    Full Text Available Abstract Background Effective transvascular delivery of nanoparticle-based chemotherapeutics across the blood-brain tumor barrier of malignant gliomas remains a challenge. This is due to our limited understanding of nanoparticle properties in relation to the physiologic size of pores within the blood-brain tumor barrier. Polyamidoamine dendrimers are particularly small multigenerational nanoparticles with uniform sizes within each generation. Dendrimer sizes increase by only 1 to 2 nm with each successive generation. Using functionalized polyamidoamine dendrimer generations 1 through 8, we investigated how nanoparticle size influences particle accumulation within malignant glioma cells. Methods Magnetic resonance and fluorescence imaging probes were conjugated to the dendrimer terminal amines. Functionalized dendrimers were administered intravenously to rodents with orthotopically grown malignant gliomas. Transvascular transport and accumulation of the nanoparticles in brain tumor tissue was measured in vivo with dynamic contrast-enhanced magnetic resonance imaging. Localization of the nanoparticles within glioma cells was confirmed ex vivo with fluorescence imaging. Results We found that the intravenously administered functionalized dendrimers less than approximately 11.7 to 11.9 nm in diameter were able to traverse pores of the blood-brain tumor barrier of RG-2 malignant gliomas, while larger ones could not. Of the permeable functionalized dendrimer generations, those that possessed long blood half-lives could accumulate within glioma cells. Conclusion The therapeutically relevant upper limit of blood-brain tumor barrier pore size is approximately 11.7 to 11.9 nm. Therefore, effective transvascular drug delivery into malignant glioma cells can be accomplished by using nanoparticles that are smaller than 11.7 to 11.9 nm in diameter and possess long blood half-lives.

  2. Curcumin attenuates blood-brain barrier disruption after subarachnoid hemorrhage in mice.

    Science.gov (United States)

    Yuan, Jichao; Liu, Wei; Zhu, Haitao; Zhang, Xuan; Feng, Yang; Chen, Yaxing; Feng, Hua; Lin, Jiangkai

    2017-01-01

    Early brain injury, one of the most important mechanisms underlying subarachnoid hemorrhage (SAH), comprises edema formation and blood-brain barrier (BBB) disruption. Curcumin, an active extract from the rhizomes of Curcuma longa, alleviates neuroinflammation by as yet unknown neuroprotective mechanisms. In this study, we examined whether curcumin treatment ameliorates SAH-induced brain edema and BBB permeability changes, as well as the mechanisms underlying this phenomenon. We induced SAH in mice via endovascular perforation, administered curcumin 15 min after surgery and evaluated neurologic scores, brain water content, Evans blue extravasation, Western blot assay results, and immunohistochemical analysis results 24 h after surgery. Curcumin significantly improved neurologic scores and reduced brain water content in treated mice compared with SAH mice. Furthermore, curcumin decreased Evans blue extravasation, matrix metallopeptidase-9 expression, and the number of Iba-1-positive microglia in treated mice compared with SAH mice. At last, curcumin treatment increased the expression of the tight junction proteins zonula occludens-1 and occludin in treated mice compared with vehicle-treated and sample SAH mice. We demonstrated that curcumin inhibits microglial activation and matrix metallopeptidase-9 expression, thereby reducing brain edema and attenuating post-SAH BBB disruption in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Fatty acids are required for epidermal permeability barrier function.

    Science.gov (United States)

    Mao-Qiang, M; Elias, P M; Feingold, K R

    1993-08-01

    The permeability barrier is mediated by a mixture of ceramides, sterols, and free fatty acids arranged as extracellular lamellar bilayers in the stratum corneum. Whereas prior studies have shown that cholesterol and ceramides are required for normal barrier function, definitive evidence for the importance of nonessential fatty acids is not available. To determine whether epidermal fatty acid synthesis also is required for barrier homeostasis, we applied 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), an inhibitor of acetyl CoA carboxylase, after disruption of the barrier by acetone or tape stripping. TOFA inhibits epidermal fatty acid by approximately 50% and significantly delays barrier recovery. Moreover, coadministration of palmitate with TOFA normalizes barrier recovery, indicating that the delay is due to a deficiency in bulk fatty acids. Furthermore, TOFA treatment also delays the return of lipids to the stratum corneum and results in abnormalities in the structure of lamellar bodies, the organelle which delivers lipid to the stratum corneum. In addition, the organization of secreted lamellar body material into lamellar bilayers within the stratum corneum interstices is disrupted by TOFA treatment. Finally, these abnormalities in lamellar body and stratum corneum membrane structure are corrected by coapplication of palmitate with TOFA. These results demonstrate a requirement for bulk fatty acids in barrier homeostasis. Thus, inhibiting the epidermal synthesis of any of the three key lipids that form the extracellular, lipid-enriched membranes of the stratum corneum results in an impairment in barrier homeostasis.

  4. Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood-brain barrier.

    Science.gov (United States)

    Thomsen, Maj Schneider; Birkelund, Svend; Burkhart, Annette; Stensballe, Allan; Moos, Torben

    2017-03-01

    The brain vascular basement membrane is important for both blood-brain barrier (BBB) development, stability, and barrier integrity and the contribution hereto from brain capillary endothelial cells (BCECs), pericytes, and astrocytes of the BBB is probably significant. The aim of this study was to analyse four different in vitro models of the murine BBB for expression and possible secretion of major basement membrane proteins from murine BCECs (mBCECs). mBCECs, pericytes and glial cells (mainly astrocytes and microglia) were prepared from brains of C57BL/6 mice. The mBCECs were grown as monoculture, in co-culture with pericytes or mixed glial cells, or as a triple-culture with both pericytes and mixed glial cells. The integrity of the BBB models was validated by measures of transendothelial electrical resistance (TEER) and passive permeability to mannitol. The expression of basement membrane proteins was analysed using RT-qPCR, mass spectrometry and immunocytochemistry. Co-culturing mBCECs with pericytes, mixed glial cells, or both significantly increased the TEER compared to the monoculture, and a low passive permeability was correlated with high TEER. The mBCECs expressed all major basement membrane proteins such as laminin-411, laminin-511, collagen [α1(IV)] 2 α2(IV), agrin, perlecan, and nidogen 1 and 2 in vitro. Increased expression of the laminin α5 subunit correlated with the addition of BBB-inducing factors (hydrocortisone, Ro 20-1724, and pCPT-cAMP), whereas increased expression of collagen IV α1 primarily correlated with increased levels of cAMP. In conclusion, BCECs cultured in vitro coherently form a BBB and express basement membrane proteins as a feature of maturation. Cover Image for this issue: doi: 10.1111/jnc.13789. © 2016 International Society for Neurochemistry.

  5. Understanding Heterogeneity and Permeability of Brain Metastases in Murine Models of HER2-Positive Breast Cancer Through Magnetic Resonance Imaging: Implications for Detection and Therapy

    Directory of Open Access Journals (Sweden)

    Donna H. Murrell

    2015-06-01

    Full Text Available OBJECTIVES: Brain metastases due to breast cancer are increasing, and the prognosis is poor. Lack of effective therapy is attributed to heterogeneity of breast cancers and their resulting metastases, as well as impermeability of the blood–brain barrier (BBB, which hinders delivery of therapeutics to the brain. This work investigates three experimental models of HER2+ breast cancer brain metastasis to better understand the inherent heterogeneity of the disease. We use magnetic resonance imaging (MRI to quantify brain metastatic growth and explore its relationship with BBB permeability. DESIGN: Brain metastases due to breast cancer cells (SUM190-BR3, JIMT-1-BR3, or MDA-MB-231-BR-HER2 were imaged at 3 T using balanced steady-state free precession and contrast-enhanced T1-weighted spin echo sequences. The histology and immunohistochemistry corresponding to MRI were also analyzed. RESULTS: There were differences in metastatic tumor appearance by MRI, histology, and immunohistochemistry (Ki67, CD31, CD105 across the three models. The mean volume of an MDA-MB-231-BR-HER2 tumor was significantly larger compared to other models (F2,12 = 5.845, P < .05; interestingly, this model also had a significantly higher proportion of Gd-impermeable tumors (F2,12 = 22.18, P < .0001. Ki67 staining indicated that Gd-impermeable tumors had significantly more proliferative nuclei compared to Gd-permeable tumors (t[24] = 2.389, P < .05 in the MDA-MB-231-BR-HER2 model. CD31 and CD105 staining suggested no difference in new vasculature patterns between permeable and impermeable tumors in any model. CONCLUSION: Significant heterogeneity is present in these models of brain metastases from HER2+ breast cancer. Understanding this heterogeneity, especially as it relates to BBB permeability, is important for improvement in brain metastasis detection and treatment delivery.

  6. Middle cerebral artery thrombosis: acute blood-brain barrier consequences

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, W.D.; Prado, R.; Watson, B.D.; Nakayama, H.

    1988-07-01

    The effect of middle cerebral artery (MCA) thrombosis on the integrity of the blood-brain barrier (BBB) was studied in rats using horseradish peroxidase (HRP). Endothelial injury with subsequent platelet thrombosis was produced by means of a rose bengal-sensitized photochemical reaction, facilitated by irradiating the right proximal MCA segment with the focused beam of an argon laser. At 15 minutes following thrombosis formation, diffuse leakage of HRP was observed bilaterally within cortical and subcortical brain areas. Peroxidase extravasation was most dense within the territory of the occluded artery including neocortical areas and dorso-lateral striatum. Contralaterally, a similar distribution was observed but with less intense HRP leakage. Ultrastructural studies demonstrated an increase in permeability to HRP within arterioles, venules and capillaries. At these sites, the vascular endothelium contained HRP-filled pinocytotic vesicles and tubular profiles. Although less intense, bilateral HRP leakage was also observed following MCA stenosis or femoral artery occlusion. Endothelial-platelet interactions at the site of vascular injury may be responsible for releasing substances or neurohumoral factors which contribute to the acute opening of the BBB.

  7. Lysosomal storage diseases and the blood-brain barrier.

    Science.gov (United States)

    Begley, David J; Pontikis, Charles C; Scarpa, Maurizio

    2008-01-01

    The blood-brain barrier becomes a crucial issue in neuronopathic lysosomal storage diseases for three reasons. Firstly, the function of the blood-brain barrier may be compromised in many of the lysosomal storage diseases and this barrier dysfunction may contribute to the neuropathology seen in the diseases and accelerate cell death. Secondly, the substrate reduction therapies, which successfully reduce peripheral lysosomal storage, because of the blood-brain barrier may not have as free an access to brain cells as they do to peripheral cells. And thirdly, enzyme replacement therapy appears to have little access to the central nervous system as the mannose and mannose-6-phosphate receptors involved in their cellular uptake and transport to the lysosome do not appear to be expressed at the adult blood-brain barrier. This review will discuss in detail these issues and their context in the development of new therapeutic strategies.

  8. In Vitro Blood-Brain Barrier Models-An Overview of Established Models and New Microfluidic Approaches

    DEFF Research Database (Denmark)

    Wolff, Anette; Antfolk, Maria; Brodin, Birger

    2015-01-01

    The societal need for new central nervous system (CNS) medicines is substantial, because of the global increase in life expectancy and the accompanying increase in age-related CNS diseases. Low blood-brain barrier (BBB) permeability has been one of the major causes of failure for new CNS drug can...... that the field may benefit greatly from developing standardized methodologies and initiating collaborative efforts on optimizing culture protocols. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci....

  9. In vitro models of the blood-brain barrier

    DEFF Research Database (Denmark)

    Helms, Hans Christian Cederberg; Abbott, N Joan; Burek, Malgorzata

    2016-01-01

    The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic...... components of plasma and xenobiotics. This "blood-brain barrier" function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug...... transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood-brain barrier models with a focus on their validation regarding a set of well-established blood-brain barrier characteristics. As an ideal cell culture...

  10. Secoisolariciresinol diglucoside is a blood-brain barrier protective and anti-inflammatory agent: implications for neuroinflammation.

    Science.gov (United States)

    Rom, Slava; Zuluaga-Ramirez, Viviana; Reichenbach, Nancy L; Erickson, Michelle A; Winfield, Malika; Gajghate, Sachin; Christofidou-Solomidou, Melpo; Jordan-Sciutto, Kelly L; Persidsky, Yuri

    2018-01-27

    Secoisolariciresinol diglucoside (SDG), the main lignan in flaxseed, is known for its beneficial effects in inflammation, oxidative stress, heart disease, tumor progression, atherosclerosis, and diabetes. SDG might be an attractive natural compound that protects against neuroinflammation. Yet, there are no comprehensive studies to date investigating the effects of SDG on brain endothelium using relevant in vivo and in vitro models. We evaluated the effects of orally administered SDG on neuroinflammatory responses using in vivo imaging of the brain microvasculature during systemic inflammation and aseptic encephalitis. In parallel, the anti-inflammatory actions of SDG on brain endothelium and monocytes were evaluated in vitro blood-brain barrier (BBB) model. Multiple group comparisons were performed by one-way analysis of variance with Dunnet's post hoc tests. We found that SDG diminished leukocyte adhesion to and migration across the BBB in vivo in the setting of aseptic encephalitis (intracerebral TNFα injection) and prevented enhanced BBB permeability during systemic inflammatory response (LPS injection). In vitro SDG pretreatment of primary human brain microvascular endothelial cells (BMVEC) or human monocytes diminished adhesion and migration of monocytes across brain endothelial monolayers in conditions mimicking CNS inflammatory responses. Consistent with our in vivo observations, SDG decreased expression of the adhesion molecule, VCAM1, induced by TNFα, or IL-1β in BMVEC. SDG diminished expression of the active form of VLA-4 integrin (promoting leukocyte adhesion and migration) and prevented the cytoskeleton changes in primary human monocytes activated by relevant inflammatory stimuli. This study indicates that SDG directly inhibits BBB interactions with inflammatory cells and reduces the inflammatory state of leukocytes. Though more work is needed to determine the mechanism by which SDG mediates these effects, the ability of SDG to exert a multi

  11. Limitations of the hCMEC/D3 cell line as a model for Aβ clearance by the human blood-brain barrier.

    Science.gov (United States)

    Biemans, Elisanne A L M; Jäkel, Lieke; de Waal, Robert M W; Kuiperij, H Bea; Verbeek, Marcel M

    2017-07-01

    Alzheimer's disease and cerebral amyloid angiopathy are characterized by accumulation of amyloid-β (Aβ) at the cerebrovasculature due to decreased clearance at the blood-brain barrier (BBB). However, the exact mechanism of Aβ clearance across this barrier has not been fully elucidated. The hCMEC/D3 cell line has been characterized as a valid model for the BBB. In this study we evaluated the use of this model to study Aβ clearance across the BBB, with an emphasis on brain-to-blood directional permeability. Barrier integrity of hCMEC/D3 monolayers was confirmed for large molecules in both the apical to basolateral and the reverse direction. However, permeability for smaller molecules was substantially higher, especially in basolateral to apical direction, and barrier formation for Aβ was completely absent in this direction. In addition, hCMEC/D3 cells failed to develop a high TEER, possibly caused by incomplete formation of tight junctions. We conclude that the hCMEC/D3 model has several limitations to study the cerebral clearance of Aβ. Therefore, the model needs further characterization before this cell system can be generally applied as a model to study cerebral Aβ clearance. © 2016 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc. © 2016 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  12. Targeted liposomes for drug delivery across the blood-brain barrier

    NARCIS (Netherlands)

    van Rooy, I.

    2011-01-01

    Our brain is protected by the blood-brain barrier (BBB). This barrier is formed by specialized endothelial cells of the brain vasculature and prevents toxic substances from entering the brain. The downside of this barrier is that many drugs that have been developed to cure brain diseases cannot

  13. Development and validation of a sensitive UPLC-MS/MS method for the quantitation of [(13)C]sucrose in rat plasma, blood, and brain: Its application to the measurement of blood-brain barrier permeability.

    Science.gov (United States)

    Miah, Mohammad K; Bickel, Ulrich; Mehvar, Reza

    2016-03-15

    Accurate and reproducible measurement of blood-brain barrier (BBB) integrity is critical in the assessment of the pathophysiology of the central nervous system disorders and in monitoring therapeutic effects. The widely-used low molecular weight marker [(14)C]sucrose is non-specific in the absence of chromatographic separation. The purpose of this study was to develop and validate a sensitive and reproducible LC-MS/MS method for the analysis of stable isotope-modified [(13)C12]sucrose in brain, plasma, and blood to determine BBB permeability to sucrose. After addition of internal standard (IS, [(13)C6]sucrose), the marker and IS were recovered from diluted rat blood, plasma, and brain homogenate by protein precipitation using acetonitrile. The recovery of the marker and IS was almost quantitative (90-106%) for all three matrices. The recovered samples were directly injected into an isocratic UPLC system with a run time of 6 min. Mass spectrometry was conducted using multiple reaction monitoring in negative mode. The method was linear (r(2)≥0.99) in the concentration ranges tested for the diluted blood and plasma (10-1000 ng/mL) and brain homogenate (1-200 ng/mL). The lower limit of quantitation of the assay was 0.5 pg injected on column. The assay was validated (n=5) based on acceptable intra- and inter-run accuracy and precision values. The method was successfully used for the measurement of serial blood and plasma and terminal brain concentrations of [(13)C12]sucrose after a single intravenous dose (10 mg/kg) of the marker to rats. As expected, the apparent brain uptake clearance values of [(13)C12]sucrose were low in healthy rats. The method may be useful for determination of the BBB integrity in animal models. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Altered blood-brain barrier transport in neuro-inflammatory disorders.

    Science.gov (United States)

    Schenk, Geert J; de Vries, Helga E

    2016-06-01

    During neurodegenerative and neuroinflammatory disorders of the central nervous system (CNS), such as Alzheimer's disease (AD) and multiple sclerosis (MS), the protective function of the blood-brain barrier (BBB) may be severely impaired. The general neuro-inflammatory response, ranging from activation of glial cells to immune cell infiltration that is frequently associated with such brain diseases may underlie the loss of the integrity and function of the BBB. Consequentially, the delivery and disposition of drugs to the brain will be altered and may influence the treatment efficiency of such diseases. Altered BBB transport of drugs into the CNS during diseases may be the result of changes in both specific transport and non-specific transport pathways. Potential alterations in transport routes like adsorptive mediated endocytosis and receptor-mediated endocytosis may affect drug delivery to the brain. As such, drugs that normally are unable to traverse the BBB may reach their target in the diseased brain due to increased permeability. In contrast, the delivery of (targeted) drugs could be hampered during inflammatory conditions due to disturbed transport mechanisms. Therefore, the inventory of the neuro-inflammatory status of the neurovasculature (or recovery thereof) is of utmost importance in choosing and designing an adequate drug targeting strategy under disease conditions. Within this review we will briefly discuss how the function of the BBB can be affected during disease and how this may influence the delivery of drugs into the diseased CNS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Aluminum complexing enhances amyloid beta protein penetration of blood-brain barrier.

    Science.gov (United States)

    Banks, William A; Niehoff, Michael L; Drago, Denise; Zatta, Paolo

    2006-10-20

    A significant co-morbidity of Alzheimer's disease and cerebrovascular impairment suggests that cerebrovascular dysregulation is an important feature of dementia. Amyloid beta protein (Abeta), a relevant risk factor in Alzheimer's disease, has neurotoxic properties and is thought to play a critical role in the cognitive impairments. Previously, we demonstrated that the 42mer of Abeta (Abeta42) complexed with aluminum (Al-Abeta42) is much more cytotoxic than non-complexed Abeta42. The level of Abeta in the brain is a balance between synthesis, degradation, and fluxes across the blood-brain barrier (BBB). In the present paper, we determined whether complexing with aluminum affected the ability of radioactively iodinated Abeta to cross the in vivo BBB. We found that the rates of uptake of Al-Abeta42 and Abeta42 were similar, but that Al-Abeta42 was sequestered by brain endothelial cells much less than Abeta42 and so more readily entered the parenchymal space of the brain. Al-Abeta42 also had a longer half-life in blood and had increased permeation at the striatum and thalamus. Brain-to-blood transport was similar for Al-Abeta42 and Abeta42. In conclusion, complexing with aluminum affects some aspects of blood-to-brain permeability so that Al-Abeta42 would have more ready access to brain cells than Abeta42.

  16. Histamine Induces Alzheimer’s Disease-Like Blood Brain Barrier Breach and Local Cellular Responses in Mouse Brain Organotypic Cultures

    Directory of Open Access Journals (Sweden)

    Jonathan C. Sedeyn

    2015-01-01

    Full Text Available Among the top ten causes of death in the United States, Alzheimer’s disease (AD is the only one that cannot be cured, prevented, or even slowed down at present. Significant efforts have been exerted in generating model systems to delineate the mechanism as well as establishing platforms for drug screening. In this study, a promising candidate model utilizing primary mouse brain organotypic (MBO cultures is reported. For the first time, we have demonstrated that the MBO cultures exhibit increased blood brain barrier (BBB permeability as shown by IgG leakage into the brain parenchyma, astrocyte activation as evidenced by increased expression of glial fibrillary acidic protein (GFAP, and neuronal damage-response as suggested by increased vimentin-positive neurons occur upon histamine treatment. Identical responses—a breakdown of the BBB, astrocyte activation, and neuronal expression of vimentin—were then demonstrated in brains from AD patients compared to age-matched controls, consistent with other reports. Thus, the histamine-treated MBO culture system may provide a valuable tool in combating AD.

  17. Outer brain barriers in rat and human development

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Holst, Camilla Bjørnbak; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides...... diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post...

  18. Regional increase in P-glycoprotein function in the blood-brain barrier of patients with chronic schizophrenia : A PET study with [C-11]verapamil as a probe for P-glycoprotein function

    NARCIS (Netherlands)

    de Klerk, Onno L.; Willemsen, Antoon T. M.; Bosker, Fokko J.; Bartels, Anna L.; Hendrikse, N. Harry; den Boer, Johan A.; Dierckx, Rudy A.

    2010-01-01

    P-glycoprotein (P-gp), a major efflux pump in the blood-brain barrier (BBB) has a profound effect on entry of drugs, peptides and other substances into the central nervous system (CNS). The brain's permeability can be negatively influenced by modulation of the transport function of P-gp.

  19. Effects of topical application of aqueous solutions of hexoses on epidermal permeability barrier recovery rate after barrier disruption.

    Science.gov (United States)

    Denda, Mitsuhiro

    2011-11-01

    Previous studies have suggested that hexose molecules influence the stability of phospholipid bilayers. Therefore, the effects of topical application of all 12 stereoisomers of dextro-hexose on the epidermal barrier recovery rate after barrier disruption were evaluated. Immediately after tape stripping, 0.1 m aqueous solution of each hexose was applied on hairless mouse skin. Among the eight dextro-aldohexoses, topical application of altose, idose, mannose and talose accelerated the barrier recovery, while allose, galactose, glucose and gulose had no effect. Among the four dextro-ketohexoses, psicose, fructose, sorbose and tagatose all accelerated the barrier recovery. As the effects of hexoses on the barrier recovery rate appeared within 1 h, the mechanism is unlikely to be genomic. Instead, these hexoses may influence phase transition of the lipid bilayers of lamellar bodies and cell membrane, a crucial step in epidermal permeability barrier homeostasis. © 2011 John Wiley & Sons A/S.

  20. Acrolein Disrupts Tight Junction Proteins and Causes Endoplasmic Reticulum Stress-Mediated Epithelial Cell Death Leading to Intestinal Barrier Dysfunction and Permeability.

    Science.gov (United States)

    Chen, Wei-Yang; Wang, Min; Zhang, Jingwen; Barve, Shirish S; McClain, Craig J; Joshi-Barve, Swati

    2017-12-01

    Increasing evidence suggests that environmental and dietary factors can affect intestinal epithelial integrity leading to gut permeability and bacterial translocation. Intestinal barrier dysfunction is a pathogenic process associated with many chronic disorders. Acrolein is an environmental and dietary pollutant and a lipid-derived endogenous metabolite. The impact of acrolein on the intestine has not been investigated before and is evaluated in this study, both in vitro and in vivo. Our data demonstrate that oral acrolein exposure in mice caused damage to the intestinal epithelial barrier, resulting in increased permeability and subsequently translocation of bacterial endotoxin-lipopolysaccharide into the blood. Similar results were seen in vitro using established Caco-2 cell monolayers wherein acrolein decreased barrier function and increased permeability. Acrolein also caused the down-regulation and/or redistribution of three representative tight junction proteins (ie, zonula occludens-1, Occludin, Claudin-1) that critically regulate epithelial paracellular permeability. In addition, acrolein induced endoplasmic reticulum stress-mediated death of epithelial cells, which is an important mechanism contributing to intestinal barrier damage/dysfunction, and gut permeability. Overall, we demonstrate that exposure to acrolein affects the intestinal epithelium by decrease/redistribution of tight junction proteins and endoplasmic reticulum stress-mediated epithelial cell death, thereby resulting in loss of barrier integrity and function. Our findings highlight the adverse consequences of environmental and dietary pollutants on intestinal barrier integrity/function with relevance to gut permeability and the development of disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. EDTA-assisted phytoextraction of heavy metals by turfgrass from municipal solid waste compost using permeable barriers and associated potential leaching risk.

    Science.gov (United States)

    Zhao, Shulan; Lian, Fei; Duo, Lian

    2011-01-01

    A column experiment with horizontal permeable barriers was conducted to investigate phytoextraction of heavy metals by Lolium perenne L. from municipal solid waste compost following EDTA application, as well as to study the effects of L. perenne and permeable barriers on preventing metal from leaching. In columns with barriers, EDTA addition yielded maximum concentrations of Cu, Zn and Pb of 155, 541 and 33.5 mg kg(-1) in shoot, respectively. This led to 4.2, 2.1 and 7.4 times higher concentrations of Cu, Zn and Pb compared to treatment with no chelating agent, respectively. In treatments with 10 mmol kg(-1) EDTA, the barriers reduced leaching of Cu, Zn and Pb by approximately three times, respectively, resulting in leaching of total initial Cu, Zn and Pb by 27.3%, 25.2% and 28.8%, respectively, after four times' irrigation. These results indicate that L. perenne and permeable barriers are effective to reduce leaching of heavy metals and minimize the risk of contaminating groundwater in EDTA-enhanced phytoremediation. Thus these findings highlight that turfgrass and permeable barriers can effectively prevent metal leaching. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Blood-brain barrier transport of drugs for the treatment of brain diseases.

    Science.gov (United States)

    Gabathuler, Reinhard

    2009-06-01

    The central nervous system is a sanctuary protected by barriers that regulate brain homeostasis and control the transport of endogenous compounds into the brain. The blood-brain barrier, formed by endothelial cells of the brain capillaries, restricts access to brain cells allowing entry only to amino acids, glucose and hormones needed for normal brain cell function and metabolism. This very tight regulation of brain cell access is essential for the survival of neurons which do not have a significant capacity to regenerate, but also prevents therapeutic compounds, small and large, from reaching the brain. As a result, various strategies are being developed to enhance access of drugs to the brain parenchyma at therapeutically meaningful concentrations to effectively manage disease.

  3. The Mechanisms and Quantification of the Selective Permeability in Transport Across Biological Barriers : the Example of Kyotorphin

    NARCIS (Netherlands)

    Serrano, Isa D.; Freire, Joao M.; Carvalho, Miguel V.; Neves, Mafalda; Melo, Manuel N.; Castanho, Miguel A. R. B.

    2014-01-01

    This paper addresses the mechanisms behind selective endothelial permeability and their regulations. The singular properties of each of the seven blood-tissues barriers. Then, it further revisits the physical, quantitative meaning of permeability, and the way it should be measured based on sound

  4. Permeability Barrier and Microstructure of Skin Lipid Membrane Models of Impaired Glucosylceramide Processing

    OpenAIRE

    Sochorov?, Michaela; Sta?kov?, Kl?ra; Pullmannov?, Petra; Kov??ik, Andrej; Zbytovsk?, Jarmila; V?vrov?, Kate?ina

    2017-01-01

    Ceramide (Cer) release from glucosylceramides (GlcCer) is critical for the formation of the skin permeability barrier. Changes in ?-glucocerebrosidase (GlcCer?ase) activity lead to diminished Cer, GlcCer accumulation and structural defects in SC lipid lamellae; however, the molecular basis for this impairment is not clear. We investigated impaired GlcCer-to-Cer processing in human Cer membranes to determine the physicochemical properties responsible for the barrier defects. Minor impairment (...

  5. Matrix metalloproteinases in the brain and blood–brain barrier: Versatile breakers and makers

    Science.gov (United States)

    Rempe, Ralf G; Hartz, Anika MS

    2016-01-01

    Matrix metalloproteinases are versatile endopeptidases with many different functions in the body in health and disease. In the brain, matrix metalloproteinases are critical for tissue formation, neuronal network remodeling, and blood–brain barrier integrity. Many reviews have been published on matrix metalloproteinases before, most of which focus on the two best studied matrix metalloproteinases, the gelatinases MMP-2 and MMP-9, and their role in one or two diseases. In this review, we provide a broad overview of the role various matrix metalloproteinases play in brain disorders. We summarize and review current knowledge and understanding of matrix metalloproteinases in the brain and at the blood–brain barrier in neuroinflammation, multiple sclerosis, cerebral aneurysms, stroke, epilepsy, Alzheimer’s disease, Parkinson’s disease, and brain cancer. We discuss the detrimental effects matrix metalloproteinases can have in these conditions, contributing to blood–brain barrier leakage, neuroinflammation, neurotoxicity, demyelination, tumor angiogenesis, and cancer metastasis. We also discuss the beneficial role matrix metalloproteinases can play in neuroprotection and anti-inflammation. Finally, we address matrix metalloproteinases as potential therapeutic targets. Together, in this comprehensive review, we summarize current understanding and knowledge of matrix metalloproteinases in the brain and at the blood–brain barrier in brain disorders. PMID:27323783

  6. Permeable Barrier Materials for Strontium Immobilization: - UFA Determination of Hydraulic Conductivity. - Column Sorption Experiments

    National Research Council Canada - National Science Library

    Moody, T

    1996-01-01

    Selected materials were tested to emulate a permeable barrier and to examine the: (1) capture efficiency of these materials relating to the immobilization of strontium-90 and hexavalent chromium in Hanford groundwater...

  7. Alterations of the Blood-Brain Barrier and Regional Perfusion in Tumor Development: MRI Insights from a Rat C6 Glioma Model.

    Science.gov (United States)

    Huhndorf, Monika; Moussavi, Amir; Kramann, Nadine; Will, Olga; Hattermann, Kirsten; Stadelmann, Christine; Jansen, Olav; Boretius, Susann

    2016-01-01

    Angiogenesis and anti-angiogenetic medications play an important role in progression and therapy of glioblastoma. In this context, in vivo characterization of the blood-brain-barrier and tumor vascularization may be important for individual prognosis and therapy optimization. We analyzed perfusion and capillary permeability of C6-gliomas in rats at different stages of tumor-growth by contrast enhanced MRI and dynamic susceptibility contrast (DSC) MRI at 7 Tesla. The analyses included maps of relative cerebral blood volume (CBV) and signal recovery derived from DSC data over a time period of up to 35 days after tumor cell injections. In all rats tumor progression was accompanied by temporal and spatial changes in CBV and capillary permeability. A leakage of the blood-brain barrier (slow contrast enhancement) was observed as soon as the tumor became detectable on T2-weighted images. Interestingly, areas of strong capillary permeability (fast signal enhancement) were predominantly localized in the center of the tumor. In contrast, the tumor rim was dominated by an increased CBV and showed the highest vessel density compared to the tumor center and the contralateral hemisphere as confirmed by histology. Substantial regional differences in the tumor highlight the importance of parameter maps in contrast or in addition to region-of-interest analyses. The data vividly illustrate how MRI including contrast-enhanced and DSC-MRI may contribute to a better understanding of tumor development.

  8. Glutamate Transporters in the Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Helms, Hans Christian Cederberg; Nielsen, Carsten Uhd; Waagepetersen, Helle S

    2017-01-01

    concentration of L-glutamate causes excitotoxicity. A tight control of the brain interstitial fluid L-glutamate levels is therefore imperative, in order to maintain optimal neurotransmission and to avoid such excitotoxicity. The blood-brain barrier, i.e., the endothelial lining of the brain capillaries...... cells. The mechanisms underlying transendothelial L-glutamate transport are however still not well understood. The present chapter summarizes the current knowledge on blood-brain barrier L-glutamate transporters and the suggested pathways for the brain-to-blood L-glutamate efflux......., regulates the exchange of nutrients, gases, and metabolic waste products between plasma and brain interstitial fluid. It has been suggested that brain capillary endothelial cells could play an important role in L-glutamate homeostasis by mediating brain-to-blood L-glutamate efflux. Both in vitro and in vivo...

  9. Effects of intracarotid ioxaglate on the normal blood-brain barrier

    International Nuclear Information System (INIS)

    Wilcox, J.; Sage, M.R.

    1985-01-01

    Using two different models, the effect on the blood-brain barrier of intracarotid injections of sodium/meglumine ioxaglate at similar iodine concentrations (280 mgI/ml) was investigated. In both models the degree of blood-brain barrier damage was assessed visually using Evans' Blue stain. Quantitative assessment of blood-brain barrier disruption was made by contrast enhancement as measured by CT of the dog brain, and by 99m Tc-pertechnetate uptake by the brain in the rabbit model. No Evans' Blue staining was observed in any study using the canine/CT model. Slight staining was observed in two studies with ioxaglate using the rabbit/pertechnetate model. Statistical analysis of results from the canine/CT model did not detect any damage to the blood-brain barrier with either ioxaglate or saline control studies (P>0.1). However, in the rabbit/pertechnetate model a slight increase in disruption of the blood-brain barrier was observed with ioxaglate compared with control studies, but this was only significant at the 0.1 level. The results suggest that the rabbit/pertechnetate model is a more sensitive measure of blood-brain barrier disruption than the canine/CT model. This study also demonstrates that blood-brain barrier disruption following intracarotid injection of ioxaglate is minimal. (orig.)

  10. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression

    International Nuclear Information System (INIS)

    Pinton, Philippe; Nougayrede, Jean-Philippe; Del Rio, Juan-Carlos; Moreno, Carolina; Marin, Daniela E.; Ferrier, Laurent; Bracarense, Ana-Paula; Kolf-Clauw, Martine; Oswald, Isabelle P.

    2009-01-01

    'The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electrical resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health.

  11. Transfection of brain capillary endothelial cells in primary culture with defined blood-brain barrier properties.

    Science.gov (United States)

    Burkhart, Annette; Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Lichota, Jacek; Fazakas, Csilla; Krizbai, István; Moos, Torben

    2015-08-07

    Primary brain capillary endothelial cells (BCECs) are a promising tool to study the blood-brain barrier (BBB) in vitro, as they maintain many important characteristics of the BBB in vivo, especially when co-cultured with pericytes and/or astrocytes. A novel strategy for drug delivery to the brain is to transform BCECs into protein factories by genetic modifications leading to secretion of otherwise BBB impermeable proteins into the central nervous system. However, a huge challenge underlying this strategy is to enable transfection of non-mitotic BCECs, taking a non-viral approach. We therefore aimed to study transfection in primary, non-mitotic BCECs cultured with defined BBB properties without disrupting the cells' integrity. Primary cultures of BCECs, pericytes and astrocytes were generated from rat brains and used in three different in vitro BBB experimental arrangements, which were characterised based on a their expression of tight junction proteins and other BBB specific proteins, high trans-endothelial electrical resistance (TEER), and low passive permeability to radiolabeled mannitol. Recombinant gene expression and protein synthesis were examined in primary BCECs. The BCECs were transfected using a commercially available transfection agent Turbofect™ to express the red fluorescent protein HcRed1-C1. The BCECs were transfected at different time points to monitor transfection in relation to mitotic or non-mitotic cells, as indicated by fluorescence-activated cell sorting analysis after 5-and 6-carboxylfluorescein diacetate succinidyl ester incorporation. The cell cultures exhibited important BBB characteristics judged from their expression of BBB specific proteins, high TEER values, and low passive permeability. Among the three in vitro BBB models, co-culturing with BCECs and astrocytes was well suited for the transfection studies. Transfection was independent of cell division and with equal efficacy between the mitotic and non-mitotic BCECs. Importantly

  12. A porcine astrocyte/endothelial cell co-culture model of the blood-brain barrier.

    Science.gov (United States)

    Jeliazkova-Mecheva, Valentina V; Bobilya, Dennis J

    2003-10-01

    A method for the isolation of porcine atrocytes as a simple extension of a previously described procedure for isolation of brain capillary endothelial cells from adolescent pigs [Methods Cell Sci. 17 (1995) 2] is described. The obtained astroglial culture purified through two passages and by the method of the selective detachment was validated by a phase contrast microscopy and through an immunofluorescent assay for the glial fibrillary acidic protein (GFAP). Porcine astrocytes were co-cultivated with porcine brain capillary endothelial cells (PBCEC) for the development of an in vitro blood-brain barrier (BBB) model. The model was visualized by an electron microscopy and showed elevated transendothellial electrical resistance and reduced inulin permeability. To our knowledge, this is the first report for the establishment of a porcine astrocyte/endothelial cell co-culture BBB model, which avoids interspecies and age differences between the two cell types, usually encountered in the other reported co-culture BBB models. Considering the availability of the porcine brain tissue and the close physiological and anatomical relation between the human and pig brain, the porcine astrocyte/endothelial cell co-culture system can serve as a reliable and easily reproducible model for different in vitro BBB studies.

  13. Evaluation of drug penetration into the brain: a double study by in vivo imaging with positron emission tomography and using an in vitro model of the human blood-brain barrier

    International Nuclear Information System (INIS)

    Josserand, V.; Jego, B.; Duconge, F.; Tavitian, B.; Pelerin, H.; Ezan, E.; Mabondzo, A.; Bruin, B. de; Kuhnast, B.; Dolle, F.

    2004-01-01

    The blood brain barrier (BBB) passage of a set of radiopharmaceuticals candidates was measured both in vitro using a newly developed co-culture based model of human BBB and in vivo by positron emission tomography (PET). MATERIAL and METHODS: As an in vitro BBB model, a co-culture of primary human brain endothelial cells and primary human astrocytes was used. Dynamic PET studies were performed simultaneously on 4 anesthetized rats with the EXACT HR+ camera. Volumes of interest (VOI) were manually defined on the tomographic images in order to determine the pharmacokinetics of the compounds in various organs, including brain. The in vivo input function was measured by radioactivity counting of arterial blood samples. A two-compartment model analysis was used to compute the exchanging rate constants between blood and brain and to calculate the in vivo permeability coefficient. RESULTS: There was an excellent correlation between the in vitro and in vivo permeability coefficients (r = 0.99; p < 0.001) as well as between the in vivo distribution volume and the in vitro efflux /influx permeability coefficients ratio (r = 0.76). CONCLUSION: This double study evidenced a close relationship between the in vitro and the in vivo approaches for the assessment of the BBB passage. Hence, small animal PET imaging appeared suitable to screen drugs or radiopharmaceuticals candidates aimed at cerebral targets directly in the real-life situation in vivo. (author)

  14. Extraction of water labeled with oxygen 15 during single-capillary transit. Influence of blood pressure, osmolarity, and blood-brain barrier damage

    International Nuclear Information System (INIS)

    Go, K.G.; Lammertsma, A.A.; Paans, A.M.; Vaalburg, W.; Woldring, M.G.

    1981-01-01

    By external detection, the influence of arterial blood pressure (BP), osmolarity, and cold-induced blood-brain barrier damage was assessed on the extraction of water labeled with oxygen 15 during single-capillary transit in the rat. There was an inverse relation between arterial BP and extraction that was attributable to the influence of arterial BP on cerebral blood flow (CBF) and the relation between CBF and extraction. Neither arterial BP nor osmolarity of the injected bolus had any direct effect on extraction of water 15O, signifying that the diffusional exchange component (determined by blood flow) of extraction greatly surpasses the convection flow contribution by hydrostatic or osmotic forces. Damage to the blood-brain barrier did not change its permeability to water

  15. Ablation of CD11c(hi) dendritic cells exacerbates Japanese encephalitis by regulating blood-brain barrier permeability and altering tight junction/adhesion molecules.

    Science.gov (United States)

    Kim, Jin Hyoung; Hossain, Ferdaus Mohd Altaf; Patil, Ajit Mahadev; Choi, Jin Young; Kim, Seong Bum; Uyangaa, Erdenebelig; Park, Sang-Youel; Lee, John-Hwa; Kim, Bumseok; Kim, Koanhoi; Eo, Seong Kug

    2016-10-01

    Japanese encephalitis (JE), characterized by extensive neuroinflammation following infection with neurotropic JE virus (JEV), is becoming a leading cause of viral encephalitis due to rapid changes in climate and demography. The blood-brain barrier (BBB) plays an important role in restricting neuroinvasion of peripheral leukocytes and virus, thereby regulating the progression of viral encephalitis. In this study, we explored the role of CD11c(hi) dendritic cells (DCs) in regulating BBB integrity and JE progression using a conditional depletion model of CD11c(hi) DCs. Transient ablation of CD11c(hi) DCs resulted in markedly increased susceptibility to JE progression along with highly increased neuro-invasion of JEV. In addition, exacerbated JE progression in CD11c(hi) DC-ablated hosts was closely associated with increased expression of proinflammatory cytokines (IFN-β, IL-6, and TNF-α) and CC chemokines (CCL2, CCL3, CXCL2) in the brain. Moreover, our results revealed that the exacerbation of JE progression in CD11c(hi) DC-ablated hosts was correlated with enhanced BBB permeability and reduced expression of tight junction and adhesion molecules (claudin-5, ZO-1, occluding, JAMs). Ultimately, our data conclude that the ablation of CD11c(hi) DCs provided a subsidiary impact on BBB integrity and the expression of tight junction/adhesion molecules, thereby leading to exacerbated JE progression. These findings provide insight into the secondary role of CD11c(hi) DCs in JE progression through regulation of BBB integrity and the expression of tight junction/adhesion molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer.

    Science.gov (United States)

    Xu, Xiang; Chan, Kannie W Y; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T; van Zijl, Peter C M

    2015-12-01

    Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared with contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (P blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. © 2015 Wiley Periodicals, Inc.

  17. Dynamic Glucose Enhanced (DGE) MRI for Combined Imaging of Blood Brain Barrier Break Down and Increased Blood Volume in Brain Cancer

    Science.gov (United States)

    Xu, Xiang; Chan, Kannie WY; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T.; van Zijl, Peter C.M.

    2015-01-01

    Purpose Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Methods Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. Results DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared to contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (pblood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. PMID:26404120

  18. Volatile anesthetics influence blood-brain barrier integrity by modulation of tight junction protein expression in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Serge C Thal

    Full Text Available Disruption of the blood-brain barrier (BBB results in cerebral edema formation, which is a major cause for high mortality after traumatic brain injury (TBI. As anesthetic care is mandatory in patients suffering from severe TBI it may be important to elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ such as zonula occludens-1 (ZO-1 and claudin-5 (cl5 play a central role for BBB stability. First, the influence of the volatile anesthetics sevoflurane and isoflurane on in-vitro BBB integrity was investigated by quantification of the electrical resistance (TEER in murine brain endothelial monolayers and neurovascular co-cultures of the BBB. Secondly brain edema and TJ expression of ZO-1 and cl5 were measured in-vivo after exposure towards volatile anesthetics in native mice and after controlled cortical impact (CCI. In in-vitro endothelial monocultures, both anesthetics significantly reduced TEER within 24 hours after exposure. In BBB co-cultures mimicking the neurovascular unit (NVU volatile anesthetics had no impact on TEER. In healthy mice, anesthesia did not influence brain water content and TJ expression, while 24 hours after CCI brain water content increased significantly stronger with isoflurane compared to sevoflurane. In line with the brain edema data, ZO-1 expression was significantly higher in sevoflurane compared to isoflurane exposed CCI animals. Immunohistochemical analyses revealed disruption of ZO-1 at the cerebrovascular level, while cl5 was less affected in the pericontusional area. The study demonstrates that anesthetics influence brain edema formation after experimental TBI. This effect may be attributed to modulation of BBB permeability by differential TJ protein expression. Therefore, selection of anesthetics may influence the barrier function and introduce a strong bias in experimental research on pathophysiology of BBB dysfunction. Future research is required to investigate

  19. Blood Brain Barrier: A Challenge for Effectual Therapy of Brain Tumors

    Directory of Open Access Journals (Sweden)

    Arijit Bhowmik

    2015-01-01

    Full Text Available Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB. BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and novel therapeutic strategies are needed to overcome this obstacle for treatment of brain tumors. In this review, we have elucidated some critical insights into the composition and function of BBB and along with it we have discussed the effective methods for delivery of drugs to the brain and therapeutic strategies overcoming the barrier.

  20. Strategies to improve drug delivery across the blood-brain barrier.

    Science.gov (United States)

    de Boer, Albertus G; Gaillard, Pieter J

    2007-01-01

    The blood-brain barrier (BBB), together with the blood-cerebrospinal-fluid barrier, protects and regulates the homeostasis of the brain. However, these barriers also limit the transport of small-molecule and, particularly, biopharmaceutical drugs such as proteins, genes and interference RNA to the brain, thereby limiting the treatment of many brain diseases. As a result, various drug delivery and targeting strategies are currently being developed to enhance the transport and distribution of drugs into the brain. In this review, we discuss briefly the biology and physiology of the BBB as the most important barrier for drug transport to the brain and, in more detail, the possibilities for delivering large-molecule drugs, particularly genes, by receptor-mediated nonviral drug delivery to the (human) brain. In addition, the systemic and intracellular pharmacokinetics of nonviral gene delivery, together with targeted brain imaging, are reviewed briefly.

  1. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  2. Hydrophilic solute transport across the rat blood-brain barrier

    International Nuclear Information System (INIS)

    Lucchesi, K.J.

    1987-01-01

    Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB) was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of 3 H-inulin and 14 C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients

  3. Magnetic resonance imaging indicators of blood-brain barrier and brain water changes in young rats with kaolin-induced hydrocephalus.

    Science.gov (United States)

    Del Bigio, Marc R; Slobodian, Ili; Schellenberg, Angela E; Buist, Richard J; Kemp-Buors, Tanya L

    2011-08-11

    Hydrocephalus is associated with enlargement of cerebral ventricles. We hypothesized that magnetic resonance (MR) imaging parameters known to be influenced by tissue water content would change in parallel with ventricle size in young rats and that changes in blood-brain barrier (BBB) permeability would be detected. Hydrocephalus was induced by injection of kaolin into the cisterna magna of 4-week-old rats, which were studied 1 or 3 weeks later. MR was used to measure longitudinal and transverse relaxation times (T1 and T2) and apparent diffusion coefficients in several regions. Brain tissue water content was measured by the wet-dry weight method, and tissue density was measured in Percoll gradient columns. BBB permeability was measured by quantitative imaging of changes on T1-weighted images following injection of gadolinium diethylenetriamine penta-acetate (Gd-DTPA) tracer and microscopically by detection of fluorescent dextran conjugates. In nonhydrocephalic rats, water content decreased progressively from age 3 to 7 weeks. T1 and T2 and apparent diffusion coefficients did not exhibit parallel changes and there was no evidence of BBB permeability to tracers. The cerebral ventricles enlarged progressively in the weeks following kaolin injection. In hydrocephalic rats, the dorsal cortex was more dense and the white matter less so, indicating that the increased water content was largely confined to white matter. Hydrocephalus was associated with transient elevation of T1 in gray and white matter and persistent elevation of T2 in white matter. Changes in the apparent diffusion coefficients were significant only in white matter. Ventricle size correlated significantly with dorsal water content, T1, T2, and apparent diffusion coefficients. MR imaging showed evidence of Gd-DTPA leakage in periventricular tissue foci but not diffusely. These correlated with microscopic leak of larger dextran tracers. MR characteristics cannot be used as direct surrogates for water

  4. Magnetic resonance imaging indicators of blood-brain barrier and brain water changes in young rats with kaolin-induced hydrocephalus

    Directory of Open Access Journals (Sweden)

    Del Bigio Marc R

    2011-08-01

    Full Text Available Abstract Background Hydrocephalus is associated with enlargement of cerebral ventricles. We hypothesized that magnetic resonance (MR imaging parameters known to be influenced by tissue water content would change in parallel with ventricle size in young rats and that changes in blood-brain barrier (BBB permeability would be detected. Methods Hydrocephalus was induced by injection of kaolin into the cisterna magna of 4-week-old rats, which were studied 1 or 3 weeks later. MR was used to measure longitudinal and transverse relaxation times (T1 and T2 and apparent diffusion coefficients in several regions. Brain tissue water content was measured by the wet-dry weight method, and tissue density was measured in Percoll gradient columns. BBB permeability was measured by quantitative imaging of changes on T1-weighted images following injection of gadolinium diethylenetriamine penta-acetate (Gd-DTPA tracer and microscopically by detection of fluorescent dextran conjugates. Results In nonhydrocephalic rats, water content decreased progressively from age 3 to 7 weeks. T1 and T2 and apparent diffusion coefficients did not exhibit parallel changes and there was no evidence of BBB permeability to tracers. The cerebral ventricles enlarged progressively in the weeks following kaolin injection. In hydrocephalic rats, the dorsal cortex was more dense and the white matter less so, indicating that the increased water content was largely confined to white matter. Hydrocephalus was associated with transient elevation of T1 in gray and white matter and persistent elevation of T2 in white matter. Changes in the apparent diffusion coefficients were significant only in white matter. Ventricle size correlated significantly with dorsal water content, T1, T2, and apparent diffusion coefficients. MR imaging showed evidence of Gd-DTPA leakage in periventricular tissue foci but not diffusely. These correlated with microscopic leak of larger dextran tracers. Conclusions MR

  5. A Tracer Test to Characterize Treatment of TCE in a Permeable Reactive Barrier

    Science.gov (United States)

    A tracer test was conducted to characterize the flow of ground water surrounding a permeable reactive barrier constructed with plant mulch (a biowall) at the OU-1 site on Altus Air Force Base, Oklahoma. This biowall is intended to intercept and treat ground water contaminated by ...

  6. Gliovascular and cytokine interactions modulate brain endothelial barrier in vitro.

    Science.gov (United States)

    Chaitanya, Ganta V; Cromer, Walter E; Wells, Shannon R; Jennings, Merilyn H; Couraud, P Olivier; Romero, Ignacio A; Weksler, Babette; Erdreich-Epstein, Anat; Mathis, J Michael; Minagar, Alireza; Alexander, J Steven

    2011-11-23

    The glio-vascular unit (G-unit) plays a prominent role in maintaining homeostasis of the blood-brain barrier (BBB) and disturbances in cells forming this unit may seriously dysregulate BBB. The direct and indirect effects of cytokines on cellular components of the BBB are not yet unclear. The present study compares the effects of cytokines and cytokine-treated astrocytes on brain endothelial barrier. 3-dimensional transwell co-cultures of brain endothelium and related-barrier forming cells with astrocytes were used to investigate gliovascular barrier responses to cytokines during pathological stresses. Gliovascular barrier was measured using trans-endothelial electrical resistance (TEER), a sensitive index of in vitro barrier integrity. We found that neither TNF-α, IL-1β or IFN-γ directly reduced barrier in human or mouse brain endothelial cells or ECV-304 barrier (independent of cell viability/metabolism), but found that astrocyte exposure to cytokines in co-culture significantly reduced endothelial (and ECV-304) barrier. These results indicate that the barrier established by human and mouse brain endothelial cells (and other cells) may respond positively to cytokines alone, but that during pathological conditions, cytokines dysregulate the barrier forming cells indirectly through astrocyte activation involving reorganization of junctions, matrix, focal adhesion or release of barrier modulating factors (e.g. oxidants, MMPs). © 2011 Chaitanya et al; licensee BioMed Central Ltd.

  7. Use of jet grouting to create a low permeability horizontal barrier below an incinerator ash landfill

    International Nuclear Information System (INIS)

    Furth, A.J.; Burke, G.K.; Deutsch, W.L. Jr.

    1997-01-01

    The City of Philadelphia's Division of Aviation (DOA) has begun construction of a new commuter runway, designated as Runway 8-26, at the Philadelphia International Airport. A portion of this runway will be constructed over a former Superfund site known as the Enterprise Avenue Landfill, which for many years was used to dispose of solid waste incinerator ash and other hazardous materials. The site was clay capped in the 1980's, but in order for the DOA to use the site, additional remediation was needed to meet US EPA final closure requirements. One component of the closure plan included installation of a low permeability horizontal barrier above a very thin (approximately 0.61 to 0.91 meters) natural clay stratum which underlies an approximately 1020 m 2 area of the landfill footprint so as to insure that a minimum 1.52 meter thick low permeability barrier exists beneath the entire 150,000 m 2 landfill. The new barrier was constructed using jet grouting techniques to achieve remote excavation and replacement of the bottom 0.91 meters of the waste mass with a low permeability grout. The grout was formulated to meet the low permeability, low elastic modulus and compressive strength requirements of the project design. This paper will discuss the advantages of using jet grouting for the work and details the development of the grout mixture, modeling of the grout zone under load, field construction techniques, performance monitoring and verification testing

  8. Morphine induces expression of platelet-derived growth factor in human brain microvascular endothelial cells: implication for vascular permeability.

    Directory of Open Access Journals (Sweden)

    Hongxiu Wen

    Full Text Available Despite the advent of antiretroviral therapy, complications of HIV-1 infection with concurrent drug abuse are an emerging problem. Morphine, often abused by HIV-infected patients, is known to accelerate neuroinflammation associated with HIV-1 infection. Detailed molecular mechanisms of morphine action however, remain poorly understood. Platelet-derived growth factor (PDGF has been implicated in a number of pathological conditions, primarily due to its potent mitogenic and permeability effects. Whether morphine exposure results in enhanced vascular permeability in brain endothelial cells, likely via induction of PDGF, remains to be established. In the present study, we demonstrated morphine-mediated induction of PDGF-BB in human brain microvascular endothelial cells, an effect that was abrogated by the opioid receptor antagonist-naltrexone. Pharmacological blockade (cell signaling and loss-of-function (Egr-1 approaches demonstrated the role of mitogen-activated protein kinases (MAPKs, PI3K/Akt and the downstream transcription factor Egr-1 respectively, in morphine-mediated induction of PDGF-BB. Functional significance of increased PDGF-BB manifested as increased breach of the endothelial barrier as evidenced by decreased expression of the tight junction protein ZO-1 in an in vitro model system. Understanding the regulation of PDGF expression may provide insights into the development of potential therapeutic targets for intervention of morphine-mediated neuroinflammation.

  9. Radiation-Induced Astrogliosis and Blood-Brain Barrier Damage Can Be Abrogated Using Anti-TNF Treatment

    International Nuclear Information System (INIS)

    Wilson, Christy M.; Gaber, M. Waleed; Sabek, Omaima M.; Zawaski, Janice A.; Merchant, Thomas E.

    2009-01-01

    Purpose: In this article, we investigate the role of tumor necrosis factor-alpha (TNF) in the initiation of acute damage to the blood-brain barrier (BBB) and brain tissue following radiotherapy (RT) for CNS tumors. Methods and Materials: Intravital microscopy and a closed cranial window technique were used to measure quantitatively BBB permeability to FITC-dextran 4.4-kDa molecules, leukocyte adhesion (Rhodamine-6G) and vessel diameters before and after 20-Gy cranial radiation with and without treatment with anti-TNF. Immunohistochemistry was used to quantify astrogliosis post-RT and immunofluorescence was used to visualize protein expression of TNF and ICAM-1 post-RT. Recombinant TNF (rTNF) was used to elucidate the role of TNF in leukocyte adhesion and vessel diameter. Results: Mice treated with anti-TNF showed significantly lower permeability and leukocyte adhesion at 24 and 48 h post-RT vs. RT-only animals. We observed a significant decrease in arteriole diameters at 48 h post-RT that was inhibited in TNF-treated animals. We also saw a significant increase in activated astrocytes following RT that was significantly lower in the anti-TNF-treated group. In addition, immunofluorescence showed protein expression of TNF and ICAM-1 in the cerebral cortex that was inhibited with anti-TNF treatment. Finally, administration of rTNF induced a decrease in arteriole diameter and a significant increase in leukocyte adhesion in venules and arterioles. Conclusions: TNF plays a significant role in acute changes in BBB permeability, leukocyte adhesion, arteriole diameter, and astrocyte activation following cranial radiation. Treatment with anti-TNF protects the brain's microvascular network from the acute damage following RT.

  10. Uptake and metabolism of sulphated steroids by the blood-brain barrier in the adult male rat.

    Science.gov (United States)

    Qaiser, M Zeeshan; Dolman, Diana E M; Begley, David J; Abbott, N Joan; Cazacu-Davidescu, Mihaela; Corol, Delia I; Fry, Jonathan P

    2017-09-01

    Little is known about the origin of the neuroactive steroids dehydroepiandrosterone sulphate (DHEAS) and pregnenolone sulphate (PregS) in the brain or of their subsequent metabolism. Using rat brain perfusion in situ, we have found 3 H-PregS to enter more rapidly than 3 H-DHEAS and both to undergo extensive (> 50%) desulphation within 0.5 min of uptake. Enzyme activity for the steroid sulphatase catalysing this deconjugation was enriched in the capillary fraction of the blood-brain barrier and its mRNA expressed in cultures of rat brain endothelial cells and astrocytes. Although permeability measurements suggested a net efflux, addition of the efflux inhibitors GF120918 and/or MK571 to the perfusate reduced rather than enhanced the uptake of 3 H-DHEAS and 3 H-PregS; a further reduction was seen upon the addition of unlabelled steroid sulphate, suggesting a saturable uptake transporter. Analysis of brain fractions after 0.5 min perfusion with the 3 H-steroid sulphates showed no further metabolism of PregS beyond the liberation of free steroid pregnenolone. By contrast, DHEAS underwent 17-hydroxylation to form androstenediol in both the steroid sulphate and the free steroid fractions, with some additional formation of androstenedione in the latter. Our results indicate a gain of free steroid from circulating steroid sulphates as hormone precursors at the blood-brain barrier, with implications for ageing, neurogenesis, neuronal survival, learning and memory. © 2017 International Society for Neurochemistry.

  11. Reduced permeation of 14C-sucrose, 3H-mannitol and 3H-inulin across blood-brain barrier in nephrectomized rats

    International Nuclear Information System (INIS)

    Preston, E.; Haas, N.; Allen, M.

    1984-01-01

    Experiments were carried out to determine if changes in the concentration-time profile of a blood-borne radiotracer such as 14 C-sucrose would spuriously alter measurements of its permeation across the blood-brain barrier (permeability-area product, PA) based on a 2-compartment (plasma/brain) simple diffusion model. Anesthetized rats which were bilaterally nephrectomized and given a standard intravenous bolus injection of 14 C-sucrose, 3 H-mannitol or 3 H-inulin exhibited an elevated plasma tracer concentration compared to control animals. However, tracer concentration measured in brain parenchyma after 30 min was not proportionally elevated, and PA calculated from the ratio, parenchymal tracer concentration: plasma concentration-time integral, was significantly reduced below control values. In control rats, distortion and elevation of the plasma 14 C-sucrose profile by continuous intravenous infusion did not result in lowered PA values. This suggested that the lowering of PA by nephrectomy reflected reduced cerebrovascular permeability or area or other cerebral influence rather than a deficiency in the 2-compartment model for PA measurement

  12. Neocortical Transplants in the Mammalian Brain Lack a Blood-Brain Barrier to Macromolecules

    Science.gov (United States)

    Rosenstein, Jeffrey M.

    1987-02-01

    In order to determine whether the blood-brain barrier was present in transplants of central nervous tissue, fetal neocortex, which already possesses blood-brain and blood-cerebrospinal fluid barriers to protein, was grafted into the undamaged fourth ventricle or directly into the neocortex of recipient rats. Horseradish peroxidase or a conjugated human immunoglobulin G-peroxidase molecule was systemically administered into the host. These proteins were detected within the cortical transplants within 2 minutes regardless of the age of the donor or postoperative time. At later times these compounds, which normally do not cross the blood-brain barrier, inundated the grafts and adjacent host brain and also entered the cerebrospinal fluid. Endogenous serum albumin detected immunocytochemically in untreated hosts had a comparable although less extensive distribution. Thus, transplants of fetal central nervous tissue have permanent barrier dysfunction, probably due to microvascular changes, and are not integrated physiologically within the host. Blood-borne compounds, either systemically administered or naturally occurring, which should never contact normal brain tissue, have direct access to these transplants and might affect neuronal function.

  13. Anesthesia and Surgery Impair Blood–Brain Barrier and Cognitive Function in Mice

    Science.gov (United States)

    Yang, Siming; Gu, Changping; Mandeville, Emiri T.; Dong, Yuanlin; Esposito, Elga; Zhang, Yiying; Yang, Guang; Shen, Yuan; Fu, Xiaobing; Lo, Eng H.; Xie, Zhongcong

    2017-01-01

    Blood–brain barrier (BBB) dysfunction, e.g., increase in BBB permeability, has been reported to contribute to cognitive impairment. However, the effects of anesthesia and surgery on BBB permeability, the underlying mechanisms, and associated cognitive function remain largely to be determined. Here, we assessed the effects of surgery (laparotomy) under 1.4% isoflurane anesthesia (anesthesia/surgery) for 2 h on BBB permeability, levels of junction proteins and cognitive function in both 9- and 18-month-old wild-type mice and 9-month-old interleukin (IL)-6 knockout mice. BBB permeability was determined by dextran tracer (immunohistochemistry imaging and spectrophotometric quantification), and protein levels were measured by Western blot and cognitive function was assessed by using both Morris water maze and Barnes maze. We found that the anesthesia/surgery increased mouse BBB permeability to 10-kDa dextran, but not to 70-kDa dextran, in an IL-6-dependent and age-associated manner. In addition, the anesthesia/surgery induced an age-associated increase in blood IL-6 level. Cognitive impairment was detected in 18-month-old, but not 9-month-old, mice after the anesthesia/surgery. Finally, the anesthesia/surgery decreased the levels of β-catenin and tight junction protein claudin, occludin and ZO-1, but not adherent junction protein VE-cadherin, E-cadherin, and p120-catenin. These data demonstrate that we have established a system to study the effects of perioperative factors, including anesthesia and surgery, on BBB and cognitive function. The results suggest that the anesthesia/surgery might induce an age-associated BBB dysfunction and cognitive impairment in mice. These findings would promote mechanistic studies of postoperative cognitive impairment, including postoperative delirium. PMID:28848542

  14. Anesthesia and Surgery Impair Blood–Brain Barrier and Cognitive Function in Mice

    Directory of Open Access Journals (Sweden)

    Siming Yang

    2017-08-01

    Full Text Available Blood–brain barrier (BBB dysfunction, e.g., increase in BBB permeability, has been reported to contribute to cognitive impairment. However, the effects of anesthesia and surgery on BBB permeability, the underlying mechanisms, and associated cognitive function remain largely to be determined. Here, we assessed the effects of surgery (laparotomy under 1.4% isoflurane anesthesia (anesthesia/surgery for 2 h on BBB permeability, levels of junction proteins and cognitive function in both 9- and 18-month-old wild-type mice and 9-month-old interleukin (IL-6 knockout mice. BBB permeability was determined by dextran tracer (immunohistochemistry imaging and spectrophotometric quantification, and protein levels were measured by Western blot and cognitive function was assessed by using both Morris water maze and Barnes maze. We found that the anesthesia/surgery increased mouse BBB permeability to 10-kDa dextran, but not to 70-kDa dextran, in an IL-6-dependent and age-associated manner. In addition, the anesthesia/surgery induced an age-associated increase in blood IL-6 level. Cognitive impairment was detected in 18-month-old, but not 9-month-old, mice after the anesthesia/surgery. Finally, the anesthesia/surgery decreased the levels of β-catenin and tight junction protein claudin, occludin and ZO-1, but not adherent junction protein VE-cadherin, E-cadherin, and p120-catenin. These data demonstrate that we have established a system to study the effects of perioperative factors, including anesthesia and surgery, on BBB and cognitive function. The results suggest that the anesthesia/surgery might induce an age-associated BBB dysfunction and cognitive impairment in mice. These findings would promote mechanistic studies of postoperative cognitive impairment, including postoperative delirium.

  15. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport

    DEFF Research Database (Denmark)

    Syvanen, S.; Lindhe, O.; Palner, M.

    2009-01-01

    preclinical data to humans. Compounds found to be P-gp substrates in rodents are likely to also be substrates in higher species, but sufficient blood-brain barrier permeability may be retained in humans to allow the compound to act at intracerebral targets Udgivelsesdato: 2009/3......Species differences occur in the brain concentrations of drugs, but the reasons for these differences are not yet apparent. This study was designed to compare brain uptake of three radiolabeled P-glycoprotein (P-gp) substrates across species using positron emission tomography. Brain concentrations...... and brain-to-plasma ratios were compared; [(11)C]verapamil in rats, guinea pigs, and monkeys; [(11)C](S)-(2-methoxy-5-(5-trifluoromethyltetrazol-1-yl)-phenylmethylamino )-2(S)-phenylpiperidine (GR205171) in rats, guinea pigs, monkeys, and humans; and [(18)F]altanserin in rats, minipigs, and humans...

  16. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis.

    Science.gov (United States)

    Bar-Klein, Guy; Lublinsky, Svetlana; Kamintsky, Lyn; Noyman, Iris; Veksler, Ronel; Dalipaj, Hotjensa; Senatorov, Vladimir V; Swissa, Evyatar; Rosenbach, Dror; Elazary, Netta; Milikovsky, Dan Z; Milk, Nadav; Kassirer, Michael; Rosman, Yossi; Serlin, Yonatan; Eisenkraft, Arik; Chassidim, Yoash; Parmet, Yisrael; Kaufer, Daniela; Friedman, Alon

    2017-06-01

    A biomarker that will enable the identification of patients at high-risk for developing post-injury epilepsy is critically required. Microvascular pathology and related blood-brain barrier dysfunction and neuroinflammation were shown to be associated with epileptogenesis after injury. Here we used prospective, longitudinal magnetic resonance imaging to quantitatively follow blood-brain barrier pathology in rats following status epilepticus, late electrocorticography to identify epileptic animals and post-mortem immunohistochemistry to confirm blood-brain barrier dysfunction and neuroinflammation. Finally, to test the pharmacodynamic relevance of the proposed biomarker, two anti-epileptogenic interventions were used; isoflurane anaesthesia and losartan. Our results show that early blood-brain barrier pathology in the piriform network is a sensitive and specific predictor (area under the curve of 0.96, P brain barrier pathology as a clinically relevant predictive, diagnostic and pharmaco!dynamics biomarker for acquired epilepsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Prediction of Placental Barrier Permeability: A Model Based on Partial Least Squares Variable Selection Procedure

    Directory of Open Access Journals (Sweden)

    Yong-Hong Zhang

    2015-05-01

    Full Text Available Assessing the human placental barrier permeability of drugs is very important to guarantee drug safety during pregnancy. Quantitative structure–activity relationship (QSAR method was used as an effective assessing tool for the placental transfer study of drugs, while in vitro human placental perfusion is the most widely used method. In this study, the partial least squares (PLS variable selection and modeling procedure was used to pick out optimal descriptors from a pool of 620 descriptors of 65 compounds and to simultaneously develop a QSAR model between the descriptors and the placental barrier permeability expressed by the clearance indices (CI. The model was subjected to internal validation by cross-validation and y-randomization and to external validation by predicting CI values of 19 compounds. It was shown that the model developed is robust and has a good predictive potential (r2 = 0.9064, RMSE = 0.09, q2 = 0.7323, rp2 = 0.7656, RMSP = 0.14. The mechanistic interpretation of the final model was given by the high variable importance in projection values of descriptors. Using PLS procedure, we can rapidly and effectively select optimal descriptors and thus construct a model with good stability and predictability. This analysis can provide an effective tool for the high-throughput screening of the placental barrier permeability of drugs.

  18. Deficiency of vasodilator-stimulated phosphoprotein (VASP increases blood-brain-barrier damage and edema formation after ischemic stroke in mice.

    Directory of Open Access Journals (Sweden)

    Peter Kraft

    2010-12-01

    Full Text Available Stroke-induced brain edema formation is a frequent cause of secondary infarct growth and deterioration of neurological function. The molecular mechanisms underlying edema formation after stroke are largely unknown. Vasodilator-stimulated phosphoprotein (VASP is an important regulator of actin dynamics and stabilizes endothelial barriers through interaction with cell-cell contacts and focal adhesion sites. Hypoxia has been shown to foster vascular leakage by downregulation of VASP in vitro but the significance of VASP for regulating vascular permeability in the hypoxic brain in vivo awaits clarification.Focal cerebral ischemia was induced in Vasp(-/- mice and wild-type (WT littermates by transient middle cerebral artery occlusion (tMCAO. Evan's Blue tracer was applied to visualize the extent of blood-brain-barrier (BBB damage. Brain edema formation and infarct volumes were calculated from 2,3,5-triphenyltetrazolium chloride (TTC-stained brain slices. Both mouse groups were carefully controlled for anatomical and physiological parameters relevant for edema formation and stroke outcome. BBB damage (p0.05 towards worse neurological outcomes.Our study identifies VASP as critical regulator of BBB maintenance during acute ischemic stroke. Therapeutic modulation of VASP or VASP-dependent signalling pathways could become a novel strategy to combat excessive edema formation in ischemic brain damage.

  19. Transport of Glial Cell Line-Derived Neurotrophic Factor into Liposomes across the Blood-Brain Barrier: In Vitro and in Vivo Studies

    Directory of Open Access Journals (Sweden)

    Shaoling Wu

    2014-02-01

    Full Text Available Glial cell line-derived neurotrophic factor (GDNF was encapsulated into liposomes in order to protect it from enzyme degradation in vivo and promote its permeability across the blood-brain barrier (BBB. In this study, GDNF conventional liposomes (GDNF-L and GDNF target sterically stabilized liposomes (GDNF-SSL-T were prepared. The average size of liposomes was below 90 nm. A primary model of BBB was established and evaluated by transendothelial electrical resistance (TEER and permeability. This BBB model was employed to study the permeability of GDNF liposomes in vitro. The results indicated that the liposomes could enhance transport of GDNF across the BBB and GDNF-SSL-T had achieved the best transport efficacy. The distribution of GDNF liposomes was studied in vivo. Free GDNF and GDNF-L were eliminated rapidly in the circulation. GDNF-SSL-T has a prolonged circulation time in the blood and favorable brain delivery. The values of the area under the curve (AUC(0–1 h in the brain of GDNF-SSL-T was 8.1 times and 6.8 times more than that of free GDNF and GDNF-L, respectively. These results showed that GDNF-SSL-T realized the aim of targeted delivery of therapeutic proteins to central nervous system.

  20. Induction of selective blood-tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model.

    Science.gov (United States)

    Côté, Jérôme; Bovenzi, Veronica; Savard, Martin; Dubuc, Céléna; Fortier, Audrey; Neugebauer, Witold; Tremblay, Luc; Müller-Esterl, Werner; Tsanaclis, Ana-Maria; Lepage, Martin; Fortin, David; Gobeil, Fernand

    2012-01-01

    Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg(9)BK (LDBK) and SarLys[dPhe(8)]desArg(9)BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T(1)-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites.

  1. Long-term Performance of Permeable Reactive Barriers Using Zero-valent Iron: An Evaluation at Two Sites

    National Research Council Canada - National Science Library

    Wilkin, Richard T; Puls, Robert W; Sewell, Guy W

    2002-01-01

    Research described in this research brief explores the geochemical and microbiological processes occurring within zero-valent iron treatment zones in permeable reactive barriers that may contribute...

  2. N-alkylamides: from plant to brain

    Directory of Open Access Journals (Sweden)

    Lieselotte Veryser

    2014-06-01

    Full Text Available Background: Plant N-alkylamides (NAAs are bio-active compounds with a broad functional spectrum. In order to reach their pharmacodynamic targets, they have to overcome several barriers of the body in the absorption phase. The permeability kinetics of spilanthol (a diene NAA and pellitorine (a triene NAA across these barriers (i.e. skin, oral/gut mucosa, bloodbrain barrier were investigated. Methods: The skin and oral mucosa permeability were investigated using human skin and pig mucosa in an ex vivo in vitro Franz diffusion cell set-up. The gut absorption characteristics were examined using the in vitro Caco-2 cell monolayer test system. The initial blood-brain barrier transport kinetics were investigated in an in vivo mice model using multiple time regression and efflux experiments. Quantification of both NAAs was conducted using HPLC-UV and bioanalytical UPLC-MS methods. Results: We demonstrated that spilanthol and pellitorine are able to penetrate the skin after topical administration. It is likely that spilanthol and pellitorine can pass the endothelial gut as they easily pass the Caco-2 cells in the monolayer model. It has been shown that spilanthol also crosses the oral mucosa as well as the blood-brain barrier. Conclusion: It was demonstrated that NAAs pass various physiological barriers i.e. the skin, oral and gut mucosa, and after having reached the systemic circulation, also the blood-brain barrier. As such, NAAs are cosmenutriceuticals which can be active in the brain

  3. Transport rankings of non-steroidal antiinflammatory drugs across blood-brain barrier in vitro models.

    Directory of Open Access Journals (Sweden)

    Iveta Novakova

    Full Text Available The aim of this work was to conduct a comprehensive study about the transport properties of NSAIDs across the blood-brain barrier (BBB in vitro. Transport studies with celecoxib, diclofenac, ibuprofen, meloxicam, piroxicam and tenoxicam were accomplished across Transwell models based on cell line PBMEC/C1-2, ECV304 or primary rat brain endothelial cells. Single as well as group substance studies were carried out. In group studies substance group compositions, transport medium and serum content were varied, transport inhibitors verapamil and probenecid were added. Resulted permeability coefficients were compared and normalized to internal standards diazepam and carboxyfluorescein. Transport rankings of NSAIDs across each model were obtained. Single substance studies showed similar rankings as corresponding group studies across PBMEC/C1-2 or ECV304 cell layers. Serum content, glioma conditioned medium and inhibitors probenecid and verapamil influenced resulted permeability significantly. Basic differences of transport properties of the investigated NSAIDs were similar comparing all three in vitro BBB models. Different substance combinations in the group studies and addition of probenecid and verapamil suggested that transporter proteins are involved in the transport of every tested NSAID. Results especially underlined the importance of same experimental conditions (transport medium, serum content, species origin, cell line for proper data comparison.

  4. Atomistic modeling of the structural components of the blood-brain barrier

    Science.gov (United States)

    Glukhova, O. E.; Grishina, O. A.; Slepchenkov, M. M.

    2015-03-01

    Blood-brain barrier, which is a barrage system between the brain and blood vessels, plays a key role in the "isolation" of the brain of unnecessary information, and reduce the "noise" in the interneuron communication. It is known that the barrier function of the BBB strictly depends on the initial state of the organism and changes significantly with age and, especially in developing the "vascular accidents". Disclosure mechanisms of regulation of the barrier function will develop new ways to deliver neurotrophic drugs to the brain in the newborn. The aim of this work is the construction of atomistic models of structural components of the blood-brain barrier to reveal the mechanisms of regulation of the barrier function.

  5. Nano carriers for drug transport across the blood-brain barrier.

    Science.gov (United States)

    Li, Xinming; Tsibouklis, John; Weng, Tingting; Zhang, Buning; Yin, Guoqiang; Feng, Guangzhu; Cui, Yingde; Savina, Irina N; Mikhalovska, Lyuba I; Sandeman, Susan R; Howel, Carol A; Mikhalovsky, Sergey V

    2017-01-01

    Effective therapy lies in achieving a therapeutic amount of drug to the proper site in the body and then maintaining the desired drug concentration for a sufficient time interval to be clinically effective for treatment. The blood-brain barrier (BBB) hinders most drugs from entering the central nervous system (CNS) from the blood stream, leading to the difficulty of delivering drugs to the brain via the circulatory system for the treatment, diagnosis and prevention of brain diseases. Several brain drug delivery approaches have been developed, such as intracerebral and intracerebroventricular administration, intranasal delivery and blood-to-brain delivery, as a result of transient BBB disruption induced by biological, chemical or physical stimuli such as zonula occludens toxin, mannitol, magnetic heating and ultrasound, but these approaches showed disadvantages of being dangerous, high cost and unsuitability for most brain diseases and drugs. The strategy of vector-mediated blood-to-brain delivery, which involves improving BBB permeability of the drug-carrier conjugate, can minimize side effects, such as being submicrometre objects that behave as a whole unit in terms of their transport and properties, nanomaterials, are promising carrier vehicles for direct drug transport across the intact BBB as a result of their potential to enter the brain capillary endothelial cells by means of normal endocytosis and transcytosis due to their small size, as well as their possibility of being functionalized with multiple copies of the drug molecule of interest. This review provids a concise discussion of nano carriers for drug transport across the intact BBB, various forms of nanomaterials including inorganic/solid lipid/polymeric nanoparticles, nanoemulsions, quantum dots, nanogels, liposomes, micelles, dendrimers, polymersomes and exosomes are critically evaluated, their mechanisms for drug transport across the BBB are reviewed, and the future directions of this area are fully

  6. Dynamic /sup 99m/Tc-DTPA radioaerosol lung scanning for the evaluation of alveolar-capillary barrier permeability

    Energy Technology Data Exchange (ETDEWEB)

    Maini, C L; Marchetti, L; Bonetti, M G; Giordano, A; Pistelli, R; Antonelli Incalzi, R

    1987-01-01

    Pulmonary clearance of small droplet /sup 99m/Tc-DTPA radioaerosol was studied in 100 patients (12 normal subjects, N; 10 asymptomatic healthy smoker, FA; 31 patients with interstitial lung diseases, IP; 47 patients with chronic obstructive lung disease, BPCO). The first seven minutes of clearance were described with the function At=Ao*exp(-K*t) and the time constant K was considered representative of the /sup 99m/Tc-DTPA clearance rate and hence of the alveolar-capillary barrier permeability. Groups FA, IP and BPCO showed a significant (p<0.05) or a highly significant (p<0.01) increase in permeability when compared to group N. No correlation was found between permeability and bronchial obstraction tests. The following conclusions were drawn: 1) /sup 99m/Tc-DTPA dynamic lung scanning is an easy, non-invasive method to assess derangements of alveolar-capillary barrier permeability secondary to epithelial damage; 2) permeability increase is a very early effect of cigarette smoke damafe to the epithelium; 3) other mechanisms of epithelial injury are present in diffuse lung disease; 4) while the clinical role of this new pathophysiological test is not yet clear, it is likely that it may become a very early marker of pulmonary epithelial damage in diffuse lung disease. 35 refs.

  7. Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability.

    Science.gov (United States)

    Payne, Allison H; Hawryluk, Gregory W; Anzai, Yoshimi; Odéen, Henrik; Ostlie, Megan A; Reichert, Ethan C; Stump, Amanda J; Minoshima, Satoshi; Cross, Donna J

    2017-12-01

    Spinal cord injury (SCI) affects thousands of people every year in the USA, and most patients are left with some permanent paralysis. Therapeutic options are limited and only modestly affect outcome. To address this issue, we used magnetic resonance imaging-guided focused ultrasound (MRgFUS) as a non-invasive approach to increase permeability in the blood-spinal cord barrier (BSCB). We hypothesize that localized, controlled sonoporation of the BSCB by MRgFUS will aid delivery of therapeutics to the injury. Here, we report our preliminary findings for the ability of MRgFUS to increase BSCB permeability in the thoracic spinal cord of a normal rat model. First, an excised portion of normal rat spinal column was used to characterize the acoustic field and to estimate the insertion losses that could be expected in an MRgFUS blood spinal cord barrier opening. Then, in normal rats, MRgFUS was applied in combination with intravenously administered microbubbles to the spinal cord region. Permeability of the BSCB was indicated as signal enhancement by contrast administered prior to T1-weighted magnetic resonance imaging and verified by Evans blue dye. Neurological testing using the Basso, Beattie, and Breshnahan scale and the ladder walk was normal in 8 of 10 rats tested. Two rats showed minor impairment indicating need for further refinement of parameters. No gross tissue damage was evident by histology. In this study, we have opened successfully the blood spinal cord barrier in the thoracic region of the normal rat spine using magnetic resonance-guided focused ultrasound combined with microbubbles.

  8. The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity.

    Science.gov (United States)

    Miner, Jonathan J; Daniels, Brian P; Shrestha, Bimmi; Proenca-Modena, Jose L; Lew, Erin D; Lazear, Helen M; Gorman, Matthew J; Lemke, Greg; Klein, Robyn S; Diamond, Michael S

    2015-12-01

    The TAM receptors Tyro3, Axl and Mertk are receptor tyrosine kinases that dampen host innate immune responses following engagement with their ligands Gas6 and Protein S, which recognize phosphatidylserine on apoptotic cells. In a form of apoptotic mimicry, many enveloped viruses display phosphatidylserine on the outer leaflet of their membranes, enabling TAM receptor activation and downregulation of antiviral responses. Accordingly, we hypothesized that a deficiency of TAM receptors would enhance antiviral responses and protect against viral infection. Unexpectedly, mice lacking Mertk and/or Axl, but not Tyro3, exhibited greater vulnerability to infection with neuroinvasive West Nile and La Crosse encephalitis viruses. This phenotype was associated with increased blood-brain barrier permeability, which enhanced virus entry into and infection of the brain. Activation of Mertk synergized with interferon-β to tighten cell junctions and prevent virus transit across brain microvascular endothelial cells. Because TAM receptors restrict pathogenesis of neuroinvasive viruses, these findings have implications for TAM antagonists that are currently in clinical development.

  9. [Neurological disorders and the blood-brain barrier. Strategies and limitations for drug delivery to the brain].

    Science.gov (United States)

    Domínguez, Alazne; Álvarez, Antonia; Suárez-Merino, Blanca; Goñi-de-Cerio, Felipe

    2014-03-01

    The incidence in the central nervous system diseases has increased with a growing elderly population. Unfortunately, conventional treatments used to treat the mentioned diseases are frequently ineffective due to the presence of the blood brain barrier. To illustrate the blood-brain barrier properties that limit drug transport into the brain and the main strategies employed to treat neurologic disorders. The blood-brain barrier is mainly composed of a specialized microvascular endothelium and of glial cells. It constitutes a valuable tool to separate the central nervous system from the rest of the body. Nevertheless, it also represents an obstacle to the delivery of therapeutic drugs to the brain. To be effective, drugs must reach their target in the brain. On one hand, therapeutic agents could be designed to be able to cross the blood brain barrier. On the other hand, drug delivery systems could be employed to facilitate the therapeutic agents' entry into the central nervous system. In vivo models of neurological diseases, in addition to in vitro models of the blood brain barrier, have been widely employed for the evaluation of drugs utilized to treat central nervous system diseases.

  10. Beneficial Effect of HHI-Ⅰ(活血化瘀注射液Ⅰ号)on Cerebral Microcirculation,Blood-Brain Barrier in Rats and Anti-hypoxic Activity in Mice

    Institute of Scientific and Technical Information of China (English)

    赵连根; 吴咸中; 伍孝先

    2009-01-01

    Objective:To investigate the effect of HHI-Ⅰ(活血化瘀注射液Ⅰ号) on the cerebral microcirculation,the blood-brain barrier permeability in rats and anti-hypoxic activity in mice.Methods:(1) The blood microcirculation of the brain in rats was investigated by laser Doppler flowmetry with the probes laid on the cerebral pia mater or inserted into the brain parenchyma.(2) The protective action of HHI-Ⅰagainst the brain microcirculation disturbance induced by intravenous injection of high-molecular dextran(10%,9 mL/kg)...

  11. Discontinuous permeable adsorptive barrier design and cost analysis: a methodological approach to optimisation.

    Science.gov (United States)

    Santonastaso, Giovanni Francesco; Bortone, Immacolata; Chianese, Simeone; Di Nardo, Armando; Di Natale, Michele; Erto, Alessandro; Karatza, Despina; Musmarra, Dino

    2017-09-19

    The following paper presents a method to optimise a discontinuous permeable adsorptive barrier (PAB-D). This method is based on the comparison of different PAB-D configurations obtained by changing some of the main PAB-D design parameters. In particular, the well diameters, the distance between two consecutive passive wells and the distance between two consecutive well lines were varied, and a cost analysis for each configuration was carried out in order to define the best performing and most cost-effective PAB-D configuration. As a case study, a benzene-contaminated aquifer located in an urban area in the north of Naples (Italy) was considered. The PAB-D configuration with a well diameter of 0.8 m resulted the best optimised layout in terms of performance and cost-effectiveness. Moreover, in order to identify the best configuration for the remediation of the aquifer studied, a comparison with a continuous permeable adsorptive barrier (PAB-C) was added. In particular, this showed a 40% reduction of the total remediation costs by using the optimised PAB-D.

  12. Viral Infection of the Central Nervous System and Neuroinflammation Precede Blood-Brain Barrier Disruption during Japanese Encephalitis Virus Infection.

    Science.gov (United States)

    Li, Fang; Wang, Yueyun; Yu, Lan; Cao, Shengbo; Wang, Ke; Yuan, Jiaolong; Wang, Chong; Wang, Kunlun; Cui, Min; Fu, Zhen F

    2015-05-01

    Japanese encephalitis is an acute zoonotic, mosquito-borne disease caused by Japanese encephalitis virus (JEV). Japanese encephalitis is characterized by extensive inflammation in the central nervous system (CNS) and disruption of the blood-brain barrier (BBB). However, the pathogenic mechanisms contributing to the BBB disruption are not known. Here, using a mouse model of intravenous JEV infection, we show that virus titers increased exponentially in the brain from 2 to 5 days postinfection. This was accompanied by an early, dramatic increase in the level of inflammatory cytokines and chemokines in the brain. Enhancement of BBB permeability, however, was not observed until day 4, suggesting that viral entry and the onset of inflammation in the CNS occurred prior to BBB damage. In vitro studies revealed that direct infection with JEV could not induce changes in the permeability of brain microvascular endothelial cell monolayers. However, brain extracts derived from symptomatic JEV-infected mice, but not from mock-infected mice, induced significant permeability of the endothelial monolayer. Consistent with a role for inflammatory mediators in BBB disruption, the administration of gamma interferon-neutralizing antibody ameliorated the enhancement of BBB permeability in JEV-infected mice. Taken together, our data suggest that JEV enters the CNS, propagates in neurons, and induces the production of inflammatory cytokines and chemokines, which result in the disruption of the BBB. Japanese encephalitis (JE) is the leading cause of viral encephalitis in Asia, resulting in 70,000 cases each year, in which approximately 20 to 30% of cases are fatal, and a high proportion of patients survive with serious neurological and psychiatric sequelae. Pathologically, JEV infection causes an acute encephalopathy accompanied by BBB dysfunction; however, the mechanism is not clear. Thus, understanding the mechanisms of BBB disruption in JEV infection is important. Our data demonstrate

  13. Automated Impedance Tomography for Monitoring Permeable Reactive Barrier Health

    Energy Technology Data Exchange (ETDEWEB)

    LaBrecque, D J; Adkins, P L

    2009-07-02

    The objective of this research was the development of an autonomous, automated electrical geophysical monitoring system which allows for near real-time assessment of Permeable Reactive Barrier (PRB) health and aging and which provides this assessment through a web-based interface to site operators, owners and regulatory agencies. Field studies were performed at four existing PRB sites; (1) a uranium tailing site near Monticello, Utah, (2) the DOE complex at Kansas City, Missouri, (3) the Denver Federal Center in Denver, Colorado and (4) the Asarco Smelter site in East Helena, Montana. Preliminary surface data over the PRB sites were collected (in December, 2005). After the initial round of data collection, the plan was modified to include studies inside the barriers in order to better understand barrier aging processes. In September 2006 an autonomous data collection system was designed and installed at the EPA PRB and the electrode setups in the barrier were revised and three new vertical electrode arrays were placed in dedicated boreholes which were in direct contact with the PRB material. Final data were collected at the Kansas City, Denver and Monticello, Utah PRB sites in the fall of 2007. At the Asarco Smelter site in East Helena, Montana, nearly continuous data was collected by the autonomous monitoring system from June 2006 to November 2007. This data provided us with a picture of the evolution of the barrier, enabling us to examine barrier changes more precisely and determine whether these changes are due to installation issues or are normal barrier aging. Two rounds of laboratory experiments were carried out during the project. We conducted column experiments to investigate the effect of mineralogy on the electrical signatures resulting from iron corrosion and mineral precipitation in zero valent iron (ZVI) columns. In the second round of laboratory experiments we observed the electrical response from simulation of actual field PRBs at two sites: the

  14. Development in NMR spiral imaging and application to the assessment of the permeability of the blood-brain barrier on 2 models of brain tumors; Developpements en imagerie RMN spirale et application a la caracterisation de la permeabilite de la barriere hemato-encephalique sur deux modeles de tumeurs intracerebrales

    Energy Technology Data Exchange (ETDEWEB)

    Beaumont, M

    2007-12-15

    The results presented in this work were obtained as part of methodological developments in magnetic resonance imaging. First of all, the setting of the rapid imaging technique using a k-space sampling scheme along a variable density spiral is described. Numerical simulations were used to optimize the acquisitions parameters and to compare different reconstruction techniques. An original approach to calibrate the k-space trajectory was proposed. Then, spiral imaging was used to implement a method to measure the blood brain barrier permeability to Gd-DOTA. This protocol was combined to blood volume and vessel size index measurements using Sinerem. The results obtained highlighted differences between the microvascular parameters measured on C6 and RG2 tumor models. The presence of Sinerem induces a mean decrease of the transfer constant across the vascular wall (Ktrans), in the tumor, of 24 per cent. This study also showed extravasation of the Sinerem, during the first two hours after the product injection, only in the RG2 tumors. (author)

  15. Role of lipids in the formation and maintenance of the cutaneous permeability barrier.

    Science.gov (United States)

    Feingold, Kenneth R; Elias, Peter M

    2014-03-01

    The major function of the skin is to form a barrier between the internal milieu and the hostile external environment. A permeability barrier that prevents the loss of water and electrolytes is essential for life on land. The permeability barrier is mediated primarily by lipid enriched lamellar membranes that are localized to the extracellular spaces of the stratum corneum. These lipid enriched membranes have a unique structure and contain approximately 50% ceramides, 25% cholesterol, and 15% free fatty acids with very little phospholipid. Lamellar bodies, which are formed during the differentiation of keratinocytes, play a key role in delivering the lipids from the stratum granulosum cells into the extracellular spaces of the stratum corneum. Lamellar bodies contain predominantly glucosylceramides, phospholipids, and cholesterol and following the exocytosis of lamellar lipids into the extracellular space of the stratum corneum these precursor lipids are converted by beta glucocerebrosidase and phospholipases into the ceramides and fatty acids, which comprise the lamellar membranes. The lipids required for lamellar body formation are derived from de novo synthesis by keratinocytes and from extra-cutaneous sources. The lipid synthetic pathways and the regulation of these pathways are described in this review. In addition, the pathways for the uptake of extra-cutaneous lipids into keratinocytes are discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias. Published by Elsevier B.V.

  16. Dynamic 99mTc-DTPA radioaerosol lung scanning for the evaluation of alveolar-capillary barrier permeability

    International Nuclear Information System (INIS)

    Maini, C.L.; Marchetti, L.; Bonetti, M.G.; Giordano, A.; Pistelli, R.; Antonelli Incalzi, R.

    1987-01-01

    Pulmonary clearance of small droplet 99m Tc-DTPA radioaerosol was studied in 100 patients (12 normal subjects, N; 10 asymptomatic healthy smoker, FA; 31 patients with interstitial lung diseases, IP; 47 patients with chronic obstructive lung disease, BPCO). The first seven minutes of clearance were described with the function At=Ao*exp(-K*t) and the time constant K was considered representative of the 99m Tc-DTPA clearance rate and hence of the alveolar-capillary barrier permeability. Groups FA, IP and BPCO showed a significant (p 99m Tc-DTPA dynamic lung scanning is an easy, non-invasive method to assess derangements of alveolar-capillary barrier permeability secondary to epithelial damage; 2) permeability increase is a very early effect of cigarette smoke damafe to the epithelium; 3) other mechanisms of epithelial injury are present in diffuse lung disease; 4) while the clinical role of this new pathophysiological test is not yet clear, it is likely that it may become a very early marker of pulmonary epithelial damage in diffuse lung disease

  17. Bifidobacterium animalis ssp. lactis CNCM-I2494 Restores Gut Barrier Permeability in Chronically Low-Grade Inflamed Mice.

    Science.gov (United States)

    Martín, Rebeca; Laval, Laure; Chain, Florian; Miquel, Sylvie; Natividad, Jane; Cherbuy, Claire; Sokol, Harry; Verdu, Elena F; van Hylckama Vlieg, Johan; Bermudez-Humaran, Luis G; Smokvina, Tamara; Langella, Philippe

    2016-01-01

    Growing evidence supports the efficacy of many probiotic strains in the management of gastrointestinal disorders associated with deregulated intestinal barrier function and/or structure. In particular, bifidobacteria have been studied for their efficacy to both prevent and treat a broad spectrum of animal and/or human gut disorders. The aim of the current work was thus to evaluate effects on intestinal barrier function of Bifidobacterium animalis ssp. lactis CNCM-I2494, a strain used in fermented dairy products. A chronic dinitrobenzene sulfonic acid (DNBS)-induced low-grade inflammation model causing gut dysfunction in mice was used in order to study markers of inflammation, intestinal permeability, and immune function in the presence of the bacterial strain. In this chronic low-grade inflammation mice model several parameters pointed out the absence of an over active inflammation process. However, gut permeability, lymphocyte populations, and colonic cytokines were found to be altered. B. animalis ssp. lactis CNCM-I2494 was able to protect barrier functions by restoring intestinal permeability, colonic goblet cell populations, and cytokine levels. Furthermore, tight junction (TJ) proteins levels were also measured by qRT-PCR showing the ability of this strain to specifically normalize the level of several TJ proteins, in particular for claudin-4. Finally, B. lactis strain counterbalanced CD4(+) lymphocyte alterations in both spleen and mesenteric lymphoid nodes. It restores the Th1/Th2 ratio altered by the DNBS challenge (which locally augments CD4(+) Th1 cells) by increasing the Th2 response as measured by the increase in the production of major representative Th2 cytokines (IL-4, IL-5, and IL-10). Altogether, these data suggest that B. animalis ssp. lactis CNCM-I2494 may efficiently prevent disorders associated with increased barrier permeability.

  18. Role of the Blood-Brain Barrier in the Formation of Brain Metastases

    Directory of Open Access Journals (Sweden)

    István A. Krizbai

    2013-01-01

    Full Text Available The majority of brain metastases originate from lung cancer, breast cancer and malignant melanoma. In order to reach the brain, parenchyma metastatic cells have to transmigrate through the endothelial cell layer of brain capillaries, which forms the morphological basis of the blood-brain barrier (BBB. The BBB has a dual role in brain metastasis formation: it forms a tight barrier protecting the central nervous system from entering cancer cells, but it is also actively involved in protecting metastatic cells during extravasation and proliferation in the brain. The mechanisms of interaction of cancer cells and cerebral endothelial cells are largely uncharacterized. Here, we provide a comprehensive review on our current knowledge about the role of junctional and adhesion molecules, soluble factors, proteolytic enzymes and signaling pathways mediating the attachment of tumor cells to brain endothelial cells and the transendothelial migration of metastatic cells. Since brain metastases represent a great therapeutic challenge, it is indispensable to understand the mechanisms of the interaction of tumor cells with the BBB in order to find targets of prevention of brain metastasis formation.

  19. Induction of selective blood-tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model.

    Directory of Open Access Journals (Sweden)

    Jérôme Côté

    Full Text Available Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB. B1 receptors (B1R, inducible prototypical G-protein coupled receptors (GPCR can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg(9BK (LDBK and SarLys[dPhe(8]desArg(9BK (NG29, in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer at tumoral sites (T(1-weighted imaging. These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry. We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peritumoral sites.

  20. Endothelial Activation and Blood-Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells.

    Science.gov (United States)

    Gust, Juliane; Hay, Kevin A; Hanafi, Laïla-Aïcha; Li, Daniel; Myerson, David; Gonzalez-Cuyar, Luis F; Yeung, Cecilia; Liles, W Conrad; Wurfel, Mark; Lopez, Jose A; Chen, Junmei; Chung, Dominic; Harju-Baker, Susanna; Özpolat, Tahsin; Fink, Kathleen R; Riddell, Stanley R; Maloney, David G; Turtle, Cameron J

    2017-12-01

    Lymphodepletion chemotherapy followed by infusion of CD19-targeted chimeric antigen receptor-modified T (CAR-T) cells can be complicated by neurologic adverse events (AE) in patients with refractory B-cell malignancies. In 133 adults treated with CD19 CAR-T cells, we found that acute lymphoblastic leukemia, high CD19 + cells in bone marrow, high CAR-T cell dose, cytokine release syndrome, and preexisting neurologic comorbidities were associated with increased risk of neurologic AEs. Patients with severe neurotoxicity demonstrated evidence of endothelial activation, including disseminated intravascular coagulation, capillary leak, and increased blood-brain barrier (BBB) permeability. The permeable BBB failed to protect the cerebrospinal fluid from high concentrations of systemic cytokines, including IFNγ, which induced brain vascular pericyte stress and their secretion of endothelium-activating cytokines. Endothelial activation and multifocal vascular disruption were found in the brain of a patient with fatal neurotoxicity. Biomarkers of endothelial activation were higher before treatment in patients who subsequently developed grade ≥4 neurotoxicity. Significance: We provide a detailed clinical, radiologic, and pathologic characterization of neurotoxicity after CD19 CAR-T cells, and identify risk factors for neurotoxicity. We show endothelial dysfunction and increased BBB permeability in neurotoxicity and find that patients with evidence of endothelial activation before lymphodepletion may be at increased risk of neurotoxicity. Cancer Discov; 7(12); 1404-19. ©2017 AACR. See related commentary by Mackall and Miklos, p. 1371 This article is highlighted in the In This Issue feature, p. 1355 . ©2017 American Association for Cancer Research.

  1. Blood-brain barrier permeation in the rat during exposure to low-power 1.7-GHz microwave radiation

    International Nuclear Information System (INIS)

    Ward, T.R.; Ali, J.S.

    1985-01-01

    The permeability of the blood-brain barrier to high-and low-molecular-weight compounds has been measured as a function of continuous-wave (CW) and pulsed-microwave radiation. Adult rats, anesthetized with pentobarbital and injected intravenously with a mixture of [ 14 C] sucrose and [ 3 H] inulin, were exposed for 30 min at a specific absorption rate of 0.1 W/kg to 1.7-GHz CW and pulsed (0.5-microseconds pulse width, 1,000 pps) microwaves. After exposure, the brain was perfused and sectioned into nine regions, and the radioactivity in each region was counted. During identical exposure conditions, temperatures of rats were measured in eight of the brain regions by a thermistor probe that did not perturb the field. No change in uptake of either tracer was found in any of the eight regions as compared with those of sham-exposed animals

  2. The biological significance of brain barrier mechanisms

    DEFF Research Database (Denmark)

    Saunders, Norman R; Habgood, Mark D; Møllgård, Kjeld

    2016-01-01

    , but more work is required to evaluate the method before it can be tried in patients. Overall, our view is that much more fundamental knowledge of barrier mechanisms and development of new experimental methods will be required before drug targeting to the brain is likely to be a successful endeavor......Barrier mechanisms in the brain are important for its normal functioning and development. Stability of the brain's internal environment, particularly with respect to its ionic composition, is a prerequisite for the fundamental basis of its function, namely transmission of nerve impulses....... In addition, the appropriate and controlled supply of a wide range of nutrients such as glucose, amino acids, monocarboxylates, and vitamins is also essential for normal development and function. These are all cellular functions across the interfaces that separate the brain from the rest of the internal...

  3. LONG-TERM GEOCHEMICAL BEHAVIOR OF A ZEROVALENT IRON PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM IN GROUNDWATER

    Science.gov (United States)

    Passive, in-situ reactive barriers have proven to be viable, cost-effective systems for the remediation of Cr-contaminated groundwater at some sites. Permeable reactive barriers (PRBs) are installed in the flow-path of groundwater, most typically as vertical treatment walls. Re...

  4. Cerebrospinal fluid aquaporin-4-immunoglobulin G disrupts blood brain barrier

    DEFF Research Database (Denmark)

    Asgari, Nasrin; Berg, Carsten Tue; Mørch, Marlene Thorsen

    2015-01-01

    associated with blood-borne horseradish peroxidase leakage indicating blood-brain barrier breakdown. The cerebrospinal fluid aquaporin-4-immunoglobulin G therefore distributes widely in brain to initiate astrocytopathy and blood-brain barrier breakdown....... was evaluated. A distinct distribution pattern of aquaporin-4-immunoglobulin G deposition was observed in the subarachnoid and subpial spaces where vessels penetrate the brain parenchyma, via a paravascular route with intraparenchymal perivascular deposition. Perivascular astrocyte-destructive lesions were...

  5. Obstructive sleep apnea and cognitive impairment: Addressing the blood–brain barrier

    Science.gov (United States)

    Lim, Diane C.; Pack, Allan I.

    2013-01-01

    SUMMARY Increasing data support a connection between obstructive sleep apnea (OSA) and cognitive impairment but a causal link has yet to be established. Although neuronal loss has been linked to cognitive impairment, emerging theories propose that changes in synaptic plasticity can cause cognitive impairment. Studies demonstrate that disruption to the blood–brain barrier (BBB), which is uniquely structured to tightly maintain homeostasis inside the brain, leads to changes in the brain’s microenvironment and affects synaptic plasticity. Cyclical intermittent hypoxia is a stressor that could disrupt the BBB via molecular responses already known to occur in either OSA patients or animal models of intermittent hypoxia. However, we do not yet know if or how intermittent hypoxia can cause cognitive impairment by mechanisms operating at the BBB. Therefore, we propose that initially, adaptive homeostatic responses at the BBB occur in response to increased oxygen and nutrient demand, specifically through regulation of influx and efflux BBB transporters that alter microvessel permeability. We further hypothesize that although these responses are initially adaptive, these changes in BBB transporters can have long-term consequences that disrupt the brain’s microenvironment and alter synaptic plasticity leading to cognitive impairment. PMID:23541562

  6. Brain uptake of C14-cycloleucine after damage to blood-brain barrier by mercuric ions

    Energy Technology Data Exchange (ETDEWEB)

    Steinwall, O; Synder, S H

    1969-01-01

    Comparisons were made as to extra vasalation of fluorescence Na and uptake of C14-cycloleucine between barrier damaged and undamaged rabbit brain hemispheres. The results show that mercury ions damage the blood-brain barrier and thus the uptake of C14-cycloleucine.

  7. Cocaine impairs serial-feature negative learning and blood-brain barrier integrity.

    Science.gov (United States)

    Davidson, Terry L; Hargrave, Sara L; Kearns, David N; Clasen, Matthew M; Jones, Sabrina; Wakeford, Alison G P; Sample, Camille H; Riley, Anthony L

    2018-05-10

    Previous research has shown that diets high in fat and sugar [a.k.a., Western diets (WD)] can impair performance of rats on hippocampal-dependent learning and memory problems, an effect that is accompanied by selective increases in hippocampal blood brain barrier (BBB) permeability. Based on these types of findings, it has been proposed that overeating of a WD (and its resulting obesity) may be, in part, a consequence of impairments in these anatomical substrates and cognitive processes. Given that drug use (and addiction) represents another behavioral excess, the present experiments assessed if similar outcomes might occur with drug exposure by evaluating the effects of cocaine administration on hippocampal-dependent memory and on the integrity of the BBB. Experiment 1 of the present series of studies found that systemic cocaine administration in rats also appears to have disruptive effects on the same hippocampal-dependent learning and memory mechanism that has been proposed to underlie the inhibition of food intake. Experiment 2 demonstrated that the same regimen of cocaine exposure that produced disruptions in learning and memory in Experiment 1 also produced increased BBB permeability in the hippocampus, but not in the striatum. Although the predominant focus of previous research investigating the etiologies of substance use and abuse has been on the brain circuits that underlie the motivational properties of drugs, the current investigation implicates the possible involvement of hippocampal memory systems in such behaviors. It is important to note that these positions are not mutually exclusive and that neuroadaptations in these two circuits might occur in parallel that generate dysregulated drug use in a manner similar to that of excessive eating. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Osmotic blood-brain barrier modification: clinical documentation by enhanced CT scanning and/or radionuclide brain scanning

    International Nuclear Information System (INIS)

    Neuwelt, E.A.; Specht, H.D.; Howieson, J.; Haines, J.E.; Bennett, M.J.; Hill, S.A.; Frenkel, E.P.

    1983-01-01

    Results of initial clinical trials of brain tumor chemotherapy after osmotic blood-brain barrier disruption are promising. In general, the procedure is well tolerated. The major complication has been seizures. In this report, data are presented which indicate that the etiology of these seizures is related to the use of contrast agent (meglumine iothalamate) to monitor barrier modification. A series of 19 patients underwent a total of 85 barrier modification procedures. Documentation of barrier disruption was monitored by contrast-enhanced computed tomographic (CT) scanning, radionuclide brain scanning, or a combination of both techniques. In 56 procedures (19 patients) monitored by enhanced CT, seizures occurred a total of 10 times in eight patients. Twenty-three barrier modification procedures (in nine of these 19 patients) documented by nuclear brain scans alone, however, resulted in only one focal motor seizure in each of two patients. In eight of the 19 patients who had seizures after barrier disruption and enhanced CT scan, four subsequently had repeat procedures monitored by radionuclide scan alone. In only one of these patients was further seizure activity noted; a single focal motor seizure was observed. Clearly, the radionuclide brain scan does not have the sensitivity and spatial resolution of enhanced CT, but at present it appears safer to monitor barrier modification by this method and to follow tumor growth between barrier modifications by enhanced CT. Four illustrative cases showing methods, problems, and promising results are presented

  9. Gas permeability of bentonite barriers: development, construction and testing of a measurement system

    Directory of Open Access Journals (Sweden)

    Heraldo Nunes Pitanga

    Full Text Available Abstract This article proposes a testing device to quickly and reliably estimate the gas permeability of bentonite-based clay barriers used in landfill cover systems. The testing methodology is based on a transient gas flow regime that passes through the barrier, therefore not requiring the use of sophisticated equipment that aim to maintain constant differential pressure and measure the gas flow, common requirements for testing methods under a permanent flow regime. To confirm the feasibility of the proposed technique, tests were performed on a pure hydrated bentonite layer, which subsequently encompassed samples of geosynthetic clay liner (GCL at different moisture contents. Geosynthetic clay liners are often selected as a part of the barrier layer for cover systems in solid waste landfills to prevent infiltration of rainfall and migration of biogas into the atmosphere. The results confirmed the equipment reliability and differentiate the different responses of the gas flow barriers studied, considering their different compositions and different moistures.

  10. The Blood-Brain Barrier: Connecting the Gut and the Brain

    OpenAIRE

    Banks, William A.

    2008-01-01

    The BBB prevents the unrestricted exchange of substances between the central nervous system (CNS) and the blood. The blood-brain barrier (BBB) also conveys information between the CNS and the gastrointestinal (GI) tract through several mechanisms. Here, we review three of those mechanisms. First, the BBB selectively transports some peptides and regulatory proteins in the blood-to-brain or the brain-to-blood direction. The ability of GI hormones to affect functions of the BBB, as illustrated b...

  11. Fingolimod (FTY720-P Does Not Stabilize the Blood–Brain Barrier under Inflammatory Conditions in an in Vitro Model

    Directory of Open Access Journals (Sweden)

    Michael K. Schuhmann

    2015-12-01

    Full Text Available Breakdown of the blood-brain barrier (BBB is an early hallmark of multiple sclerosis (MS, a progressive inflammatory disease of the central nervous system. Cell adhesion in the BBB is modulated by sphingosine-1-phosphate (S1P, a signaling protein, via S1P receptors (S1P1. Fingolimod phosphate (FTY720-P a functional S1P1 antagonist has been shown to improve the relapse rate in relapsing-remitting MS by preventing the egress of lymphocytes from lymph nodes. However, its role in modulating BBB permeability—in particular, on the tight junction proteins occludin, claudin 5 and ZO-1—has not been well elucidated to date. In the present study, FTY720-P did not change the transendothelial electrical resistance in a rat brain microvascular endothelial cell (RBMEC culture exposed to inflammatory conditions and thus did not decrease endothelial barrier permeability. In contrast, occludin was reduced in RBMEC culture after adding FTY720-P. Additionally, FTY720-P did not alter the amount of endothelial matrix metalloproteinase (MMP-9 and MMP-2 in RBMEC cultures. Taken together, our observations support the assumption that S1P1 plays a dual role in vascular permeability, depending on its ligand. Thus, S1P1 provides a mechanistic basis for FTY720-P-associated disruption of endothelial barriers—such as the blood-retinal barrier—which might result in macular edema.

  12. Heavy metal uptake and leaching from polluted soil using permeable barrier in DTPA-assisted phytoextraction.

    Science.gov (United States)

    Zhao, Shulan; Shen, Zhiping; Duo, Lian

    2015-04-01

    Application of sewage sludge (SS) in agriculture is an alternative technique of disposing this waste. But unreasonable application of SS leads to excessive accumulation of heavy metals in soils. A column experiment was conducted to test the availability of heavy metals to Lolium perenne grown in SS-treated soils following diethylene triamine penta acetic acid (DTPA) application at rates of 0, 10 and 20 mmol kg(-1) soil. In order to prevent metal leaching in DTPA-assisted phytoextraction process, a horizontal permeable barrier was placed below the treated soil, and its effectiveness was also assessed. Results showed that DTPA addition significantly increased metal uptake by L. perenne shoots and metal leaching. Permeable barriers increased metal concentrations in plant shoots and effectively decreased metal leaching from the treated soil. Heavy metals in SS-treated soils could be gradually removed by harvesting L. perenne many times in 1 year and adding low dosage of DTPA days before each harvest.

  13. Contribution of thrombin-reactive brain pericytes to blood-brain barrier dysfunction in an in vivo mouse model of obesity-associated diabetes and an in vitro rat model.

    Directory of Open Access Journals (Sweden)

    Takashi Machida

    Full Text Available Diabetic complications are characterized by the dysfunction of pericytes located around microvascular endothelial cells. The blood-brain barrier (BBB exhibits hyperpermeability with progression of diabetes. Therefore, brain pericytes at the BBB may be involved in diabetic complications of the central nervous system (CNS. We hypothesized that brain pericytes respond to increased brain thrombin levels in diabetes, leading to BBB dysfunction and diabetic CNS complications. Mice were fed a high-fat diet (HFD for 2 or 8 weeks to induce obesity. Transport of i.v.-administered sodium fluorescein and 125I-thrombin across the BBB were measured. We evaluated brain endothelial permeability and expression of tight junction proteins in the presence of thrombin-treated brain pericytes using a BBB model of co-cultured rat brain endothelial cells and pericytes. Mice fed a HFD for 8 weeks showed both increased weight gain and impaired glucose tolerance. In parallel, the brain influx rate of sodium fluorescein was significantly greater than that in mice fed a normal diet. HFD feeding inhibited the decline in brain thrombin levels occurring during 6 weeks of feeding. In the HFD fed mice, plasma thrombin levels were significantly increased, by up to 22%. 125I-thrombin was transported across the BBB in normal mice after i.v. injection, with uptake further enhanced by co-injection of unlabeled thrombin. Thrombin-treated brain pericytes increased brain endothelial permeability and caused decreased expression of zona occludens-1 (ZO-1 and occludin and morphological disorganization of ZO-1. Thrombin also increased mRNA expression of interleukin-1β and 6 and tumor necrosis factor-α in brain pericytes. Thrombin can be transported from circulating blood through the BBB, maintaining constant levels in the brain, where it can stimulate pericytes to induce BBB dysfunction. Thus, the brain pericyte-thrombin interaction may play a key role in causing BBB dysfunction in

  14. Fifteen-year Assessment of a Permeable Reactive Barrier for Treatment of Chromate and Trichloroethylene in Groundwater

    Science.gov (United States)

    The fifteen-year performance of a granular iron, permeable reactive barrier (PRB; Elizabeth City, North Carolina) is reviewed with respect to contaminant treatment (hexavalent chromium and trichloroethylene) and hydraulic performance. Due to in-situ treatment of the chromium sou...

  15. Removal of chromate in a permeable reactive barrier using zero-valent iron

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Locht, T

    2002-01-01

    Chromate is a commonly found groundwater contaminant. Permeable reactive barriers containing zero-valent iron as iron filings are able to remove the chromate by a combined reduction/precipitation reaction. However, due to the passivation of the reduction capability of the iron surfaces by the pre......). Mixing in sand had no significant enhancing effect on the removal capacity, in contrast to a pH adjustment of the groundwater to pH 4, which significantly increased the removal capacity....

  16. Targeting Potassium Channels for Increasing Delivery of Imaging Agents and Therapeutics to Brain Tumors

    Directory of Open Access Journals (Sweden)

    Nagendra Sanyasihally Ningaraj

    2013-05-01

    Full Text Available Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/ capillaries that form the blood–brain barrier (BBB not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiological barrier posed by blood-brain tumor barrier (BTB. Studies in our laboratory have identified significant differences in the expression levels of certain genes and proteins between normal and brain tumor capillary endothelial cells. In this study, we validated the non-invasive and clinically relevant Dynamic Contrast Enhancing-Magnetic Resonance Imaging (DCE-MRI method with invasive, clinically irrelevant but highly accurate Quantitative Autoradiography (QAR method using rat glioma model. We also showed that DCE-MRI metric of tissue vessel perfusion-permeability is sensitive to changes in blood vessel permeability following administration of calcium-activated potassium (BKCa channel activator NS-1619. Our results show that human gliomas and brain tumor endothelial cells that overexpress BKCa channels can be targeted for increased BTB permeability for MRI enhancing agents to brain tumors. We conclude that monitoring the outcome of increased MRI enhancing agents’ delivery to microsatellites and leading tumor edges in glioma patients would lead to beneficial clinical outcome.

  17. The Drosophila blood-brain barrier: Development and function of a glial endothelium

    Directory of Open Access Journals (Sweden)

    Stefanie eLimmer

    2014-11-01

    Full Text Available The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

  18. The Drosophila blood-brain barrier: development and function of a glial endothelium.

    Science.gov (United States)

    Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian

    2014-01-01

    The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

  19. Blood Brain Barrier: A Challenge for Effectual Therapy of Brain Tumors

    OpenAIRE

    Bhowmik, Arijit; Khan, Rajni; Ghosh, Mrinal Kanti

    2015-01-01

    Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB). BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and n...

  20. Simultaneous estimations of blood brain barrier (BBB) permeability and local cerebral blood volume (CBV) in human brain tumors with positron tomography and Ga-68 EDTA

    International Nuclear Information System (INIS)

    Hawkins, R.A.; Phelps, M.E.; Huang, S.C.; Wapenski, J.A.; Grimm, P.D.; Greenberg, P.; Parker, R.G.; Juillard, G.; Kuhl, D.E.

    1984-01-01

    Using Ga-68 EDTA and a two compartment model for diffusion across the BBB that includes a weighted subtraction term for determination of the relative CBV (compared to a normal region of brain with an intact BBB) or the absolute value of CBV (using measurements of Ga-68 concentrations in the blood: the input function), the authors determined values for the forward and reverse rate constants (k1 and k2) for diffusion across the BBB as well as values of CBV in 12 subjects with primary or metastatic brain tumors. Patients were studied on a NeuroECAT tomograph; imaging times were 1 to 10 minutes per scan for a total of about 2 hours. Measurements of Ga-68 concentrations were made on plasma arterial samples. Four direct measurements (in 3 subjects) of CBV using C(15-0) were also obtained. Values of k1 (the transfer constant which numerically approximates the capillary permeability surface area (PS) product) averaged 0.0030 (+- 0.0017) ml/min/gm while k2 averaged 0.0308 (+- 0.0157)/min. Linear regression analysis of the relative CBV in 7 tumor deposits in 4 paired Ga-68 EDTA/C(15-0) studies compared to normal brain tissues resulted in a correlation coefficient of 0.97 for the two methods. The estimates of k1 and k2 were insensitive to changes in the location of the control regions (although CBV estimates changed appropriately) as well as to substituting the input function for a normal brain region when determining the absolute CBV of the lesions

  1. Fine-tuning the physicochemical properties of peptide-based blood-brain barrier shuttles.

    Science.gov (United States)

    Ghasemy, Somaye; García-Pindado, Júlia; Aboutalebi, Fatemeh; Dormiani, Kianoush; Teixidó, Meritxell; Malakoutikhah, Morteza

    2018-05-01

    N-methylation is a powerful method to modify the physicochemical properties of peptides. We previously found that a fully N-methylated tetrapeptide, Ac-(N-MePhe) 4 -CONH 2 , was more lipophilic than its non-methylated analog Ac-(Phe) 4 -CONH 2 . In addition, the former crossed artificial and cell membranes while the latter did not. Here we sought to optimize the physicochemical properties of peptides and address how the number and position of N-methylated amino acids affect these properties. To this end, 15 analogs of Ac-(Phe) 4 -CONH 2 were designed and synthesized in solid-phase. The solubility of the peptides in water and their lipophilicity, as measured by ultra performance liquid chromatography (UPLC) retention times, were determined. To study the permeability of the peptides, the Parallel Artificial Membrane Permeability Assay (PAMPA) was used as an in vitro model of the blood-brain barrier (BBB). Contrary to the parent peptide, the 15 analogs crossed the artificial membrane, thereby showing that N-methylation improved permeability. We also found that N-methylation enhanced lipophilicity but decreased the water solubility of peptides. Our results showed that both the number and position of N-methylated residues are important factors governing the physicochemical properties of peptides. There was no correlation between the number of N-methylated amide bonds and any of the properties measured. However, for the peptides consecutively N-methylated from the N-terminus to the C-terminus (p1, p5, p11, p12 and p16), lipophilicity correlated well with the number of N-methylated amide bonds and the permeability of the peptides. Moreover, the peptides were non-toxic to HEK293T cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption

    Science.gov (United States)

    Papa, Michelle P.; Meuren, Lana M.; Coelho, Sharton V. A.; Lucas, Carolina G. de Oliveira; Mustafá, Yasmin M.; Lemos Matassoli, Flavio; Silveira, Paola P.; Frost, Paula S.; Pezzuto, Paula; Ribeiro, Milene R.; Tanuri, Amilcar; Nogueira, Mauricio L.; Campanati, Loraine; Bozza, Marcelo T.; Paula Neto, Heitor A.; Pimentel-Coelho, Pedro M.; Figueiredo, Claudia P.; de Aguiar, Renato S.; de Arruda, Luciana B.

    2017-01-01

    Zika virus (ZIKV) has been associated to central nervous system (CNS) harm, and virus was detected in the brain and cerebrospinal fluids of microcephaly and meningoencephalitis cases. However, the mechanism by which the virus reaches the CNS is unclear. Here, we addressed the effects of ZIKV replication in human brain microvascular endothelial cells (HBMECs), as an in vitro model of blood brain barrier (BBB), and evaluated virus extravasation and BBB integrity in an in vivo mouse experimental model. HBMECs were productively infected by African and Brazilian ZIKV strains (ZIKVMR766 and ZIKVPE243), which induce increased production of type I and type III IFN, inflammatory cytokines and chemokines. Infection with ZIKVMR766 promoted earlier cellular death, in comparison to ZIKVPE243, but infection with either strain did not result in enhanced endothelial permeability. Despite the maintenance of endothelial integrity, infectious virus particles crossed the monolayer by endocytosis/exocytosis-dependent replication pathway or by transcytosis. Remarkably, both viruses' strains infected IFNAR deficient mice, with high viral load being detected in the brains, without BBB disruption, which was only detected at later time points after infection. These data suggest that ZIKV infects and activates endothelial cells, and might reach the CNS through basolateral release, transcytosis or transinfection processes. These findings further improve the current knowledge regarding ZIKV dissemination pathways. PMID:29312238

  3. Relation between histamine release and dye permeability of pulmonary blood-air barrier in x-irradiated rat

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, H [Kobe Univ. (Japan). School of Medicine

    1976-04-01

    The histamine-release kinetics and the influence of released histamine on the permeability of the pulmonary blood-air(BA) barrier during the early period after either whole-body or thoracic x irradiation of the rat were studied. Histamine contents of skin and lung of the irradiated rat decreased rapidly, reaching a minimum at 5 h, and this histamine depletion continued for at least 7 days. Conversely, in circulating blood histamine increased during the early period of 5 h and then decreased gradually. This early increase was linear up to 500R and then became saturated between 500 and 1,000R. Administration of polymixine B (5mg/100g body weight) to rats liberated histamine similarly. Rat sera containg histamine released soon after irradiation enhanced the capillary permeability of Evans blue(EB) in the guinea pig skin reaction, which was effectively countered by pretreatment of the guinea pig with anti-histaminic pyribenzamine (29..mu..g/100g body weight), but not by anti-serotonic chlorpromazine (0.3mg/100g body weight). Similarly, perhaps only the EB-bound serum albumin (EB-albumin), that was seen in alveolar perfusate, penetrated more through the pulmonary BA-barrier with increasing x-ray dose, in parallel with the increase in blood histamine. Pyribenzamine inhibited this effect effectively, but cysteamine (a radical scavenger) did so only partially. Thus, it seems possible that at soon after x irradiation the enhanced permeability of EB-albumin through the BA barrier of rat lung is due preferentially to the pharmacologic action of released histamine and subsidiarily to radiation damage to pulmonary cells.

  4. Developmental changes of l-arginine transport at the blood-brain barrier in rats.

    Science.gov (United States)

    Tachikawa, Masanori; Hirose, Shirou; Akanuma, Shin-Ichi; Matsuyama, Ryo; Hosoya, Ken-Ichi

    2018-05-01

    l-Arginine is required for regulating synapse formation/patterning and angiogenesis in the developing brain. We hypothesized that this requirement would be met by increased transporter-mediated supply across the blood-brain barrier (BBB). Thus, the purpose of this work was to test the idea that elevation of blood-to-brain l-arginine transport across the BBB in the postnatal period coincides with up-regulation of cationic acid transporter 1 (CAT1) expression in developing brain capillaries. We found that the apparent brain-to-plasma concentration ratio (Kp, app) of l-arginine after intravenous administration during the first and second postnatal weeks was 2-fold greater than that at the adult stage. Kp, app of l-serine was also increased at the first postnatal week. In contrast, Kp, app of d-mannitol, a passively BBB-permeable molecule, did not change, indicating that increased transport of l-arginine and l-serine is not due to BBB immaturity. Double immunohistochemical staining of CAT1 and a marker protein, glucose transporter 1, revealed that CAT1 was localized on both luminal and abluminal membranes of brain capillary endothelial cells during the developmental and adult stages. A dramatic increase in CAT1 expression in the brain was seen at postnatal day 7 (P7) and day 14 (P14) and the expression subsequently decreased as the brain matured. In accordance with this, intense immunostaining of CAT1 was observed in brain capillaries at P7 and P14. These findings strongly support our hypothesis and suggest that the supply of blood-born l-arginine to the brain via CAT1 at the BBB plays a key role in meeting the elevated demand for l-arginine in postnatal brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Routes for drug translocation across the blood-brain barrier

    DEFF Research Database (Denmark)

    Kristensen, Mie; Brodin, Birger

    2017-01-01

    A number of potent drugs for the treatment of brain diseases are available. However, in order for them to reach their target site of action, they must pass the blood-brain barrier (BBB). The capillary endothelium comprises the major barrier of the BBB and allows only passive permeation of some...... small lipophilic molecules. Brain delivery of the larger biopharmaceuticals, which today includes an increasing number of novel drug entities, is therefore restricted; both due to their molecular size and their hydrophilic nature. Thus, the development of novel drug entities intended for the treatment...... of brain diseases such as neurodegenerative diseases or brain cancers, require a delivery strategy for overcoming the BBB before reaching its final target within the brain. Peptide-based delivery vectors is an emerging tool as shuttles for drug delivery across the BBB and one may explore receptor...

  6. Blood brain barrier and brain tissue injury by Gd-DTPA in uremia-induced rabbits

    International Nuclear Information System (INIS)

    Choi, Sun Seob; Huh, Ki Yeong; Han, Jin Yeong; Lee, Yong Chul; Eun, Choong Gi; Yang, Yeong Il

    1996-01-01

    An experimental study was carried out to evaluate the morphological changes in the blood brain barrier and neighbouring brain tissue caused by Gd-DTPA in uremia-induced rabbits. Bilateral renal arteries and veins of ten rabbits were ligated. Gd-DTPA(0.2mmol/kg) was intravenously injected into seven rabbits immediately after ligation. After MRI, they were sacrificed 2 or 3 days after ligation in order to observe light and electron microscopic changes in the blood brain barrier and brain tissue. MRI findings were normal, except for enhancement of the superior and inferior sagittal sinuses on T1 weighted images in uremia-induced rabbits injected with Gd-DTPA. On light microscopic examination, these rabbits showed perivascular edema and glial fibrillary acidic protein expression: electron microscopic examination showed separation of tight junctions of endothelial cells, duplication/rarefaction of basal lamina, increased lysosomes of neurons with neuronal death, demyelination of myelin, and extravasation of red blood cells. Uremia-induced rabbits injected with Gd-DTPA showed more severe changes than those without Gd-DTPA injection. Injuries to the blood brain barrier and neighbouring brain tissue were aggravated by Gd-DTPA administration in uremia-induced rabbits. These findings appear to be associated with the neurotoxicity of Gd-DTPA

  7. Blood-brain barrier (BBB) toxicity and permeability assessment after L-(4-¹⁰Boronophenyl)alanine, a conventional B-containing drug for boron neutron capture therapy, using an in vitro BBB model.

    Science.gov (United States)

    Roda, E; Nion, S; Bernocchi, G; Coccini, T

    2014-10-02

    Since brain tumours are the primary candidates for treatment by Boron Neutron Capture Therapy, one major challenge in the selective drug delivery to CNS is the crossing of the blood-brain barrier (BBB). The present pilot study investigated (i) the transport of a conventional B-containing product (i.e., L-(4-(10)Boronophenyl)alanine, L-(10)BPA), already used in medicine but still not fully characterized regarding its CNS interactions, as well as (ii) the effects of the L-(10)BPA on the BBB integrity using an in vitro model, consisting of brain capillary endothelial cells co-cultured with glial cells, closely mimicking the in vivo conditions. The multi-step experimental strategy (i.e. Integrity test, Filter study, Transport assay) checked L-(10)BPA toxicity at 80 µg Boron equivalent/ml, and its ability to cross the BBB, additionally by characterizing the cytoskeletal and TJ's proteins by immunocytochemistry and immunoblotting. In conclusion, a lack of toxic effects of L-(10)BPA was demonstrated, nevertheless accompanied by cellular stress phenomena (e.g. vimentin expression modification), paralleled by a low permeability coefficient (0.39 ± 0.01 × 10(-3)cm min(-1)), corroborating the scarce probability that L-(10)BPA would reach therapeutically effective cerebral concentration. These findings emphasized the need for novel strategies aimed at optimizing boron delivery to brain tumours, trying to ameliorate the compound uptake or developing new targeted products suitable to safely and effectively treat head cancer. Thus, the use of in vitro BBB model for screening studies may provide a useful early safety assessment for new effective compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Towards the rational design of novel drugs based on solubility, partitioning/distribution, biomimetic permeability and biological activity exemplified by 1,2,4-thiadiazole derivatives

    DEFF Research Database (Denmark)

    Volkova, T. V.; Terekhova, I. V.; Silyukov, O. I.

    2017-01-01

    -octanol/buffer (pH 7.4) and 1-hexane/buffer (pH 7.4) immiscible phases as model systems imitating the gastrointestinal tract epithelium and the blood-brain barrier were determined. Permeation experiments the new Permeapad™ barrier using Franz diffusion cells were conducted and the apparent permeability...

  9. Interrelations between blood-brain barrier permeability and matrix metalloproteinases are differently affected by tissue plasminogen activator and hyperoxia in a rat model of embolic stroke

    Directory of Open Access Journals (Sweden)

    Michalski Dominik

    2012-01-01

    Full Text Available Abstract Background In ischemic stroke, blood-brain barrier (BBB regulations, typically involving matrix metalloproteinases (MMPs and inhibitors (TIMPs as mediators, became interesting since tissue plasminogen activator (tPA-related BBB breakdown with risk of secondary hemorrhage was considered to involve these mediators too. Despite high clinical relevance, detailed interactions are purely understood. After a pilot study addressing hyperoxia as potential neuroprotective co-treatment to tPA, we analyzed interrelations between BBB permeability (BBB-P, MMPs and TIMPs. Findings Rats underwent embolic middle cerebral artery occlusion (eMCAO and treatment with normobaric (NBO or hyperbaric oxygen (HBO, tPA, tPA+HBO, or no treatment. BBB-P was assessed by intravenously applied FITC-albumin at 4 or 24 hours. MMP-2/-9 and TIMP-1/-2 serum levels were determined at 5 or 25 hours. Time point-corrected partial correlations were used to explore interrelations of BBB-P in ischemic regions (extra-/intravasal FITC-albumin ratio and related serum markers. BBB-P correlated positively with MMP-2 and MMP-9 in controls, whereas hyperoxia led to an inverse association, most pronounced for HBO/MMP-9 (r = -0.606; P Conclusions HBO was found to reverse the positively directed interrelation of BBB-P and MMPs after eMCAO, but this effect failed to sustain in the expected amount when HBO and tPA were given simultaneously.

  10. Transformation of Reactive Iron Minerals in a Permeable Reactive Barrier (Biowall) Used to Treat TCE in Groundwater

    Science.gov (United States)

    Abstract: Iron and sulfur reducing conditions are generally created in permeable reactive barrier (PRB) systems constructed for groundwater treatment, which usually leads to formation of iron sulfide phases. Iron sulfides have been shown to play an important role in degrading ch...

  11. 基于压水试验的深部煤层底板岩层阻渗性能研究∗%Study on permeability barrier performance of deep coal seam floor based on packer permeability test

    Institute of Scientific and Technical Information of China (English)

    孙晓倩; 张冬; 张新武; 王言剑

    2014-01-01

    In situ field packer permeability test,being a reliable method to obtain the param-eters of permeability barrier performance of strata,was used to explore this performance of deep coal seam floor. A large amount of measured data were obtained after the test on two layers of floor strata. The test results showed that these two layers of floor strata could not seep in initial state due to stronger barrier performance until the fracture and connection led to seepage. Co MPared with the first and repeated packer permeability tests on these two layers of floor strata, the variation of water pressure in measured pore was associated with that in water injection hole, but the seepage pressure in the first time was higher than that in second time,showing that the permeability barrier performance of strata turned weaker after first packer permeability test and was easy to form seepage. Using permeability coefficient and permeability barrier strength as in-dexes,the permeability barrier performance of floor strata has been quantitatively evaluated,and the results showed that the tested strata was characterized with high barrier performance and weak permeability.%原位现场压水试验是获取岩层阻渗性能参数的可靠方法,为探究某煤矿深部煤层底板阻渗能力,采用现场压水试验方法对底板两段岩层进行了测试并获取了大量的实测数据。结果分析表明:该底板两测试段岩层在原始状态均不导渗,阻渗性较强,直至压裂导通才形成导渗条件;对两段岩层均进行了初次和重复两个压水过程,对比两次试验可知,测渗孔水压力与注水孔水压力的关联变化趋势大致相同,但初次压水的起始导渗水压明显高于重复压水,表明在初次压水后岩层的阻渗能力降低,更易形成导渗;采用渗透系数和阻渗强度作为指标,对底板岩层的阻渗性能进行了量化评价,结果表明测试岩层表现出明显的高阻弱渗的特点。

  12. The effect of micro-particles of linoleic acid emulsion on the blood-brain barrier in cats

    International Nuclear Information System (INIS)

    Kim, Hak Jin; Lee, Chang Hun; Lee, Tae Hong; Pyun, Yong Seon

    2004-01-01

    The purpose of this study was to investigate the permeability change of the blood-brain barrier and the reversibility of the embolized lesions induced with a fat-emulsion technique by using magnetic resonance imaging (MRI), and we also wished to evaluate the resultant histologic findings in cat brains. MR imaging was scheduled serially at 1 hour, day 1, day 4 and day 7 after infusion of linoleic acid-emulsion (0.05 ml linoleic acid + 20 ml saline) to the internal carotid artery in 12 cats. Abnormal signal intensity or contrast enhancement was evaluated on diffusion-weighted images (DWIs), the apparent diffusion coefficient (ADC) maps, and gadolinium-enhanced T1-weighted images (Gd-T1WIs) at the stated times. MR imaging was stopped if the lesion shows isointensity and no contrast enhancement was observed at the acquisition time, and then brain tissue was harvested and examined. Light microscopic (LM) and electron microscopic (EM) examinations were performed. The embolized lesions appeared as isointensities (n = 7) or mild hyperintensities (n = 5) on DWIs, as isointensities (n = 12) on the ADC maps, and as contrast enhancements (n = 12) on Gd-T1WIs at 1 hour. The lesions showed isointensity on DWIs and the ADC maps, and as no contrast enhancement for all cats at day 1. The LM findings revealed small (< 1 cm) focal necrosis and demyelination in three cats. EM examinations showed minimal findings of small (< 3 μm) fat globules within the endothelial wall (n = 10) and mild swelling of the neuropils (< 5 μm). Widening of the interstitium or morphologic disruption of the endothelial wall was not seen. Cerebral fat embolism induced by linoleic acid emulsion revealed vasogenic edema and reversible changes as depicted on the MR images. These results might help us to understand the mechanisms of fat on the blood-brain barrier, and this technique could be used as a basic model for research of the effects of drugs on the disrupted blood-brain barrier, and also as a research

  13. The joint power of sex and stress to modulate brain-gut-microbiota axis and intestinal barrier homeostasis: implications for irritable bowel syndrome.

    Science.gov (United States)

    Pigrau, M; Rodiño-Janeiro, B K; Casado-Bedmar, M; Lobo, B; Vicario, M; Santos, J; Alonso-Cotoner, C

    2016-04-01

    Intestinal homeostasis is a dynamic process that takes place at the interface between the lumen and the mucosa of the gastrointestinal tract, where a constant scrutiny for antigens and toxins derived from food and microorganisms is carried out by the vast gut-associated immune system. Intestinal homeostasis is preserved by the ability of the mucus layer and the mucosal barrier to keep the passage of small-sized and antigenic molecules across the epithelium highly selective. When combined and preserved, immune surveillance and barrier's selective permeability, the host capacity of preventing the development of intestinal inflammation is optimized, and viceversa. In addition, the brain-gut-microbiome axis, a multidirectional communication system that integrates distant and local regulatory networks through neural, immunological, metabolic, and hormonal signaling pathways, also regulates intestinal function. Dysfunction of the brain-gut-microbiome axis may induce the loss of gut mucosal homeostasis, leading to uncontrolled permeation of toxins and immunogenic particles, increasing the risk of appearance of intestinal inflammation, mucosal damage, and gut disorders. Irritable bowel syndrome is prevalent stress-sensitive gastrointestinal disorder that shows a female predominance. Interestingly, the role of stress, sex and gonadal hormones in the regulation of intestinal mucosal and the brain-gut-microbiome axis functioning is being increasingly recognized. We aim to critically review the evidence linking sex, and stress to intestinal barrier and brain-gut-microbiome axis dysfunction and the implications for irritable bowel syndrome. © 2015 John Wiley & Sons Ltd.

  14. Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions.

    Directory of Open Access Journals (Sweden)

    Keith D Rochfort

    Full Text Available Blood-brain barrier (BBB dysfunction is an integral feature of neurological disorders and involves the action of multiple proinflammatory cytokines on the microvascular endothelial cells lining cerebral capillaries. There is still however, considerable ambiguity throughout the scientific literature regarding the mechanistic role(s of cytokines in this context, thereby warranting a comprehensive in vitro investigation into how different cytokines may cause dysregulation of adherens and tight junctions leading to BBB permeabilization.The present study employs human brain microvascular endothelial cells (HBMvECs to compare/contrast the effects of TNF-α and IL-6 on BBB characteristics ranging from the expression of interendothelial junction proteins (VE-cadherin, occludin and claudin-5 to endothelial monolayer permeability. The contribution of cytokine-induced NADPH oxidase activation to altered barrier phenotype was also investigated.In response to treatment with either TNF-α or IL-6 (0-100 ng/ml, 0-24 hrs, our studies consistently demonstrated significant dose- and time-dependent decreases in the expression of all interendothelial junction proteins examined, in parallel with dose- and time-dependent increases in ROS generation and HBMvEC permeability. Increased expression and co-association of gp91 and p47, pivotal NADPH oxidase subunits, was also observed in response to either cytokine. Finally, cytokine-dependent effects on junctional protein expression, ROS generation and endothelial permeability could all be attenuated to a comparable extent using a range of antioxidant strategies, which included ROS depleting agents (superoxide dismutase, catalase, N-acetylcysteine, apocynin and targeted NADPH oxidase blockade (gp91 and p47 siRNA, NSC23766.A timely and wide-ranging investigation comparing the permeabilizing actions of TNF-α and IL-6 in HBMvECs is presented, in which we demonstrate how either cytokine can similarly downregulate the

  15. Implementation of a permeable reactive barrier for treatment of groundwater impacted by strontium-90

    International Nuclear Information System (INIS)

    Przepiora, A.; Bodine, D.; Dollar, P.; Smith, P.

    2014-01-01

    A funnel and gate permeable reactive barrier (PRB) system was constructed to treat strontium-90 (Sr- 90) in groundwater migrating from a legacy waste disposal area into an adjacent wetland. The PRB system was designed to contain and direct the Sr-90 impacted groundwater into treatment 'gates' containing zeolite using a low permeability 'funnel' sections constructed with soil-bentonite slurry. The constructed PRB met all dimension and permeability specifications. Initial performance monitoring results indicate that the PRB captured the Sr-90 impacted groundwater plume and the beta radiation values in groundwater emerging from the treatment gates ranged from 35 to 86 Becquerel's per litre (Bq/L), equivalent to a reduction by 88% to 99% from the influent values. Those initial performance results were influenced by residual impacts present in the aquifer material prior to PRB installation. It is anticipated that the clean-up target of 5 Bq/L will be achieved with time as treated groundwater emerging from the PRB flushes through the downgradient aquifer zone. (author)

  16. Blood-brain barrier permeation and efflux exclusion of anticholinergics used in the treatment of overactive bladder.

    Science.gov (United States)

    Chancellor, Michael B; Staskin, David R; Kay, Gary G; Sandage, Bobby W; Oefelein, Michael G; Tsao, Jack W

    2012-04-01

    Overactive bladder (OAB) is a common condition, particularly in the elderly. Anticholinergic agents are the mainstay of pharmacological treatment of OAB; however, many anticholinergics can cross the blood-brain barrier (BBB) and may cause central nervous system (CNS) effects, including cognitive deficits, which can be especially detrimental in older patients. Many anticholinergics have the potential to cause adverse CNS effects due to muscarinic (M(1)) receptor binding in the brain. Of note, permeability of the BBB increases with age and can also be affected by trauma, stress, and some diseases and medications. Passive crossing of a molecule across the BBB into the brain is dependent upon its physicochemical properties. Molecular characteristics that hinder passive BBB penetration include a large molecular size, positive or negative ionic charge at physiological pH, and a hydrophilic structure. Active transport across the BBB is dependent upon protein-mediated transporter systems, such as that of permeability-glycoprotein (P-gp), which occurs only for P-gp substrates, such as trospium chloride, darifenacin and fesoterodine. Reliance on active transport can be problematic since genetic polymorphisms of P-gp exist, and many commonly used drugs and even some foods are P-gp inhibitors or are substrates themselves and, due to competition, can reduce the amount of the drug that is actively transported out of the CNS. Therefore, for drugs that are preferred not to cross into the CNS, such as potent anticholinergics intended for the bladder, it is optimal to have minimal passive crossing of the BBB, although it may also be beneficial for the drug to be a substrate for an active efflux transport system. Anticholinergics demonstrate different propensities to cross the BBB. Darifenacin, fesoterodine and trospium chloride are substrates for P-gp and, therefore, are actively transported away from the brain. In addition, trospium chloride has not been detected in cerebrospinal

  17. An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes.

    Science.gov (United States)

    Abbott, N Joan; Dolman, Diana E M; Drndarski, Svetlana; Fredriksson, Sarah M

    2012-01-01

    In vitro blood-brain barrier (BBB) models using primary cultured brain endothelial cells are important for establishing cellular and molecular mechanisms of BBB function. Co-culturing with BBB-associated cells especially astrocytes to mimic more closely the in vivo condition leads to upregulation of the BBB phenotype in the brain endothelial cells. Rat brain endothelial cells (RBECs) are a valuable tool allowing ready comparison with in vivo studies in rodents; however, it has been difficult to obtain pure brain endothelial cells, and few models achieve a transendothelial electrical resistance (TEER, measure of tight junction efficacy) of >200 Ω cm(2), i.e. the models are still relatively leaky. Here, we describe methods for preparing high purity RBECs and neonatal rat astrocytes, and a co-culture method that generates a robust, stable BBB model that can achieve TEER >600 Ω cm(2). The method is based on >20 years experience with RBEC culture, together with recent improvements to kill contaminating cells and encourage BBB differentiation.Astrocytes are isolated by mechanical dissection and cell straining and are frozen for later co-culture. RBECs are isolated from 3-month-old rat cortices. The brains are cleaned of meninges and white matter and enzymatically and mechanically dissociated. Thereafter, the tissue homogenate is centrifuged in bovine serum albumin to separate vessel fragments from other cells that stick to the myelin plug. The vessel fragments undergo a second enzyme digestion to separate pericytes from vessels and break down vessels into shorter segments, after which a Percoll gradient is used to separate capillaries from venules, arterioles, and single cells. To kill remaining contaminating cells such as pericytes, the capillary fragments are plated in puromycin-containing medium and RBECs grown to 50-60% confluence. They are then passaged onto filters for co-culture with astrocytes grown in the bottom of the wells. The whole procedure takes ∼2

  18. Cultured cells of the blood-brain barrier from apolipoprotein B-100 transgenic mice: effects of oxidized low-density lipoprotein treatment.

    Science.gov (United States)

    Lénárt, Nikolett; Walter, Fruzsina R; Bocsik, Alexandra; Sántha, Petra; Tóth, Melinda E; Harazin, András; Tóth, Andrea E; Vizler, Csaba; Török, Zsolt; Pilbat, Ana-Maria; Vígh, László; Puskás, László G; Sántha, Miklós; Deli, Mária A

    2015-07-17

    The apolipoprotein B-100 (ApoB-100) transgenic mouse line is a model of human atherosclerosis. Latest findings suggest the importance of ApoB-100 in the development of neurodegenerative diseases and microvascular/perivascular localization of ApoB-100 protein was demonstrated in the cerebral cortex of ApoB-100 transgenic mice. The aim of the study was to characterize cultured brain endothelial cells, pericytes and glial cells from wild-type and ApoB-100 transgenic mice and to study the effect of oxidized low-density lipoprotein (oxLDL) on these cells. Morphology of cells isolated from brains of wild type and ApoB-100 transgenic mice was characterized by immunohistochemistry and the intensity of immunolabeling was quantified by image analysis. Toxicity of oxLDL treatment was monitored by real-time impedance measurement and lactate dehydrogenase release. Reactive oxygen species and nitric oxide production, barrier permeability in triple co-culture blood-brain barrier model and membrane fluidity were also determined after low-density lipoprotein (LDL) or oxLDL treatment. The presence of ApoB-100 was confirmed in brain endothelial cells, while no morphological change was observed between wild type and transgenic cells. Oxidized but not native LDL exerted dose-dependent toxicity in all three cell types, induced barrier dysfunction and increased reactive oxygen species (ROS) production in both genotypes. A partial protection from oxLDL toxicity was seen in brain endothelial and glial cells from ApoB-100 transgenic mice. Increased membrane rigidity was measured in brain endothelial cells from ApoB-100 transgenic mice and in LDL or oxLDL treated wild type cells. The morphological and functional properties of cultured brain endothelial cells, pericytes and glial cells from ApoB-100 transgenic mice were characterized and compared to wild type cells for the first time. The membrane fluidity changes in ApoB-100 transgenic cells related to brain microvasculature indicate

  19. Blood-brain transfer of Pittsburgh compound B in humans

    DEFF Research Database (Denmark)

    Gjedde, Albert; Aanerud, Joel; Braendgaard, Hans

    2013-01-01

    -brain barrier is held to be high but the permeability-surface area product and extraction fractions in patients or healthy volunteers are not known. We used PET to determine the clearance associated with the unidrectional blood-brain transfer of [(11)C]PiB and the corresponding cerebral blood flow rates...... with the observation that numerically, but insignificantly, unidirectional blood-brain clearances are lower and extraction fractions higher in the patients. The evidence of unchanged permeability-surface area products in the patients implies that blood flow changes can be deduced from the unidirectional blood......In the labeled form, the Pittsburgh compound B (2-(4'-{N-methyl-[(11)C]}methyl-aminophenyl)-6-hydroxy-benzothiazole, [(11)C]PiB), is used as a biomarker for positron emission tomography (PET) of brain β-amyloid deposition in Alzheimer's disease (AD). The permeability of [(11)C]PiB in the blood...

  20. Long-Term Groundwater Monitoring Optimization, Clare Water Supply Superfund Site, Permeable Reactive Barrier and Soil Remedy Areas, Clare, Michigan

    Science.gov (United States)

    This report contains a review of the long-term groundwater monitoring network for the Permeable Reactive Barrier (PRB) and Soil Remedy Areas at the Clare Water Supply Superfund Site in Clare, Michigan.

  1. Hypoxic Stress and Inflammatory Pain Disrupt Blood-Brain Barrier Tight Junctions: Implications for Drug Delivery to the Central Nervous System.

    Science.gov (United States)

    Lochhead, Jeffrey J; Ronaldson, Patrick T; Davis, Thomas P

    2017-07-01

    A functional blood-brain barrier (BBB) is necessary to maintain central nervous system (CNS) homeostasis. Many diseases affecting the CNS, however, alter the functional integrity of the BBB. It has been shown that various diseases and physiological stressors can impact the BBB's ability to selectively restrict passage of substances from the blood to the brain. Modifications of the BBB's permeability properties can potentially contribute to the pathophysiology of CNS diseases and result in altered brain delivery of therapeutic agents. Hypoxia and/or inflammation are central components of a number of diseases affecting the CNS. A number of studies indicate hypoxia or inflammatory pain increase BBB paracellular permeability, induce changes in the expression and/or localization of tight junction proteins, and affect CNS drug uptake. In this review, we look at what is currently known with regard to BBB disruption following a hypoxic or inflammatory insult in vivo. Potential mechanisms involved in altering tight junction components at the BBB are also discussed. A more detailed understanding of the mediators involved in changing BBB functional integrity in response to hypoxia or inflammatory pain could potentially lead to new treatments for CNS diseases with hypoxic or inflammatory components. Additionally, greater insight into the mechanisms involved in TJ rearrangement at the BBB may lead to novel strategies to pharmacologically increase delivery of drugs to the CNS.

  2. Sestrin2 induced by hypoxia inducible factor1 alpha protects the blood-brain barrier via inhibiting VEGF after severe hypoxic-ischemic injury in neonatal rats.

    Science.gov (United States)

    Shi, Xudan; Doycheva, Desislava Met; Xu, Liang; Tang, Jiping; Yan, Min; Zhang, John H

    2016-11-01

    Hypoxic ischemic (HI) encephalopathy remains the leading cause of perinatal brain injury resulting in long term disabilities. Stabilization of blood brain barrier (BBB) after HI is an important target, therefore, in this study we aim to determine the role of sestrin2, a stress inducible protein which is elevated after various insults, on BBB stabilization after moderate and severe HI injuries. Rat pups underwent common carotid artery ligation followed by either 150min (severe model) or 100min (moderate model) of hypoxia. 1h post HI, rats were intranasally administered with recombinant human sestrin2 (rh-sestrin2) and sacrificed for infarct area, brain water content, righting reflex and geotaxis reflex. Sestrin2 was silenced using siRNA and an activator/inhibitor of hypoxia inducible factor1α (HIF1α) was used to examine their roles on BBB permeability. Rats subjected to severe HI exhibited larger infarct area and higher sestrin2 expression compared to rats in the moderate HI group. rh-sestrin2 attenuated brain infarct and edema, while silencing sestrin2 reversed these protective effects after severe HI. HIF1α induced sestrin2 activation in severe HI but not in moderate HI groups. A HIF1a agonist was shown to increase permeability of the BBB via vascular endothelial growth factor (VEGF) after moderate HI. However, after severe HI, HIF1α activated both VEGF and sestrin2. But HIF1α dependent sestrin2 activation was the predominant pathway after severe HI which inhibited VEGF and attenuated BBB permeability. rh-sestrin2 attenuated BBB permeability via upregulation of endogenous sestrin2 which was induced by HIF1α after severe HI. However, HIF1α's effects as a prodeath or prosurvival signal were influenced by the severity of HI injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Food-Derived Hemorphins Cross Intestinal and Blood–Brain Barriers In Vitro

    Directory of Open Access Journals (Sweden)

    Dorothée Domenger

    2018-04-01

    Full Text Available A qualitative study is presented, where the main question was whether food-derived hemorphins, i.e., originating from digested alimentary hemoglobin, could pass the intestinal barrier and/or the blood–brain barrier (BBB. Once absorbed, hemorphins are opioid receptor (OR ligands that may interact with peripheral and central OR and have effects on food intake and energy balance regulation. LLVV-YPWT (LLVV-H4, LVV-H4, VV-H4, VV-YPWTQRF (VV-H7, and VV-H7 hemorphins that were previously identified in the 120 min digest resulting from the simulated gastrointestinal digestion of hemoglobin have been synthesized to be tested in in vitro models of passage of IB and BBB. LC-MS/MS analyses yielded that all hemorphins, except the LLVV-H4 sequence, were able to cross intact the human intestinal epithelium model with Caco-2 cells within 5–60 min when applied at 5 mM. Moreover, all hemorphins crossed intact the human BBB model with brain-like endothelial cells (BLEC within 30 min when applied at 100 µM. Fragments of these hemorphins were also detected, especially the YPWT common tetrapeptide that retains OR-binding capacity. A cAMP assay performed in Caco-2 cells indicates that tested hemorphins behave as OR agonists in these cells by reducing cAMP production. We further provide preliminary results regarding the effects of hemorphins on tight junction proteins, specifically here the claudin-4 that is involved in paracellular permeability. All hemorphins at 100 µM, except the LLVV-H4 peptide, significantly decreased claudin-4 mRNA levels in the Caco-2 intestinal model. This in vitro study is a first step toward demonstrating food-derived hemorphins bioavailability which is in line with the growing body of evidence supporting physiological functions for food-derived peptides.

  4. Solid lipid nanoparticles carrying chemotherapeutic drug across the blood-brain barrier through insulin receptor-mediated pathway.

    Science.gov (United States)

    Kuo, Yung-Chih; Shih-Huang, Chun-Yuan

    2013-09-01

    Carmustine (BCNU)-loaded solid lipid nanoparticles (SLNs) were grafted with 83-14 monoclonal antibody (MAb) (83-14 MAb/BCNU-SLNs) and applied to the brain-targeting delivery. Human brain-microvascular endothelial cells (HBMECs) incubated with 83-14 MAb/BCNU-SLNs were stained to demonstrate the interaction between the nanocarriers and expressed insulin receptors (IRs). The results revealed that the particle size of 83-14 MAb/BCNU-SLNs decreased with an increasing weight percentage of Dynasan 114 (DYN). Storage at 4 °C for 6 weeks slightly deformed the colloidal morphology. In addition, poloxamer 407 on 83-14 MAb/BCNU-SLNs induced cytotoxicity to RAW264.7 cells and inhibited phagocytosis by RAW264.7 cells. An increase in the weight percentage of DYN from 0% to 67% slightly reduced the viability of RAW264.7 cells and promoted phagocytosis. Moreover, the transport ability of 83-14 MAb/BCNU-SLNs across the blood-brain barrier (BBB) in vitro enhanced with an increasing weight percentage of Tween 80. 83-14 MAb on MAb/BCNU-SLNs stimulated endocytosis by HBMECs via IRs and enhanced the permeability of BCNU across the BBB. 83-14 MAb/BCNU-SLNs can be a promising antitumor drug delivery system for transporting BCNU to the brain.

  5. Methamphetamine Effects on Blood-Brain Barrier Structure and Function

    Directory of Open Access Journals (Sweden)

    Nicole Alia Northrop

    2015-03-01

    Full Text Available Methamphetamine (Meth is a widely abuse psychostimulant. Traditionally, studies have focused on the neurotoxic effects of Meth on monoaminergic neurotransmitter terminals. Recently, both in vitro and in vivo studies have investigated the effects of Meth on the BBB and found that Meth produces a decrease in BBB structural proteins and an increase in BBB permeability to various molecules. Moreover, preclinical studies are validated by clinical studies in which human Meth users have increased concentrations of toxins in the brain. Therefore, this review will focus on the structural and functional disruption of the BBB caused by Meth and the mechanisms that contribute to Meth-induced BBB disruption. The review will reveal that the mechanisms by which Meth damages dopamine and serotonin terminals are similar to the mechanisms by which the blood-brain barrier (BBB is damaged. Furthermore, this review will cover the factors that are known to potentiate the effects of Meth on the BBB, such as stress and HIV, both of which are co-morbid conditions associated with Meth abuse. Overall, the goal of this review is to demonstrate that the scope of damage produced by Meth goes beyond damage to monoaminergic neurotransmitter systems to include BBB disruption as well as provide a rationale for investigating therapeutics to treat Meth-induced BBB disruption. Since a breach of the BBB can have a multitude of consequences, therapies directed towards the treatment of BBB disruption may help to ameliorate the long-term neurodegeneration and cognitive deficits produced by Meth and possibly even Meth addiction.

  6. Current approaches to enhance CNS delivery of drugs across the brain barriers

    Directory of Open Access Journals (Sweden)

    Lu CT

    2014-05-01

    Full Text Available Cui-Tao Lu,1 Ying-Zheng Zhao,2,3 Ho Lun Wong,4 Jun Cai,5 Lei Peng,2 Xin-Qiao Tian1 1The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China; 2Hainan Medical College, Haikou City, Hainan Province, People’s Republic of China; 3College of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, People’s Republic of China; 4School of Pharmacy, Temple University, Philadelphia, PA, USA; 5Departments of Pediatrics and Anatomical Sciences and Neurobiology, University of Louisville School of Medicine Louisville, KY, USA Abstract: Although many agents have therapeutic potentials for central nervous system (CNS diseases, few of these agents have been clinically used because of the brain barriers. As the protective barrier of the CNS, the blood–brain barrier and the blood–cerebrospinal fluid barrier maintain the brain microenvironment, neuronal activity, and proper functioning of the CNS. Different strategies for efficient CNS delivery have been studied. This article reviews the current approaches to open or facilitate penetration across these barriers for enhanced drug delivery to the CNS. These approaches are summarized into three broad categories: noninvasive, invasive, and miscellaneous techniques. The progresses made using these approaches are reviewed, and the associated mechanisms and problems are discussed. Keywords: drug delivery system, blood–brain barrier (BBB, central nervous system, brain-targeted therapy, cerebrospinal fluid (CSF

  7. Contrasted study on the opening degree of blood-brain barriier after radiation therapy with SPECT and MRI

    International Nuclear Information System (INIS)

    Zhang Qing; Sun Aihua; Hu Yun; Zhang Li; Ye Hengguang

    2004-01-01

    The blood-brain barrier(BBB) is the largest barrier responsible for preventing direct contact between chemotherapeutic drugs in blood and tumors in brain, the permeability of BBB incease at different degree after brain irradiation in clinical brain tumors radiotherapy. Methods: In our study, 26 patients with metastatic brain tumors(21 cases in pr/mary lung carcinoma, 5 cases in breast carcinoma) were accepted the full brain irradiation. The detructive effects of radiation on the BBB were determined by the 99mTc-DTPA SPECT and the concentration ratio of methotrexate(MTX) in cerebrospinal fluid(CSF) and blood, the brain MRI before and after radiotherapy were retrospective contrasted study with SPECT. Results: the degree of destructive effect on the BBB was directly proportional to radiation doses. After a dose of 20Gy radiation to brain, the permeability of BBB inceased markedly(P<0.01). But in cases the dexamethasone(DXM) was administrated to decease the brain edema during radiotherapy, the permeability inceased less than that in patients without DXM(P<0.05). Conclutions: After 20Gy irradiation, the BBB would gradually open. At this time, chemotherapy is the best choice to improving the therapeutic effect. Dexamethasone was found to cause the decease in BBB permeability but no significant remission of brain edema. So, if the combination of radiotherapy and chemotherapy in treatment of metastatic brain tumors will be plan, the dexamethasone may be not used in expecting to deceasing the side effect and that no affecting the therapeutic effect. (authors)

  8. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs.

    Science.gov (United States)

    Zhang, Hai-Tao; Zhang, Ping; Gao, Yi; Li, Chen-Long; Wang, Hong-Jun; Chen, Ling-Chao; Feng, Yan; Li, Rui-Yan; Li, Yong-Li; Jiang, Chuan-Lu

    2017-01-01

    Vascular endothelial growth factor (VEGF) inhibition has been demonstrated to be an effective strategy in preserving the integrity of the blood-brain barrier (BBB) in patients with acute ischemic stroke. Loss of the BBB is the key event associated with morbidity and mortality in these patients. However, the underlying mechanisms remain poorly understood. In the present study, the effects of VEGF inhibition and the possible mechanism that underlies acute cerebral ischemia in rats was investigated. Following the induction of transient middle cerebral artery occlusion for a 90‑min period, either an anti‑VEGF neutralizing antibody (RB‑222; 5 or 10 µg), or IgG (control), was administered by intracerebroventricular injection at 1 h following reperfusion. Functional outcomes, BBB leakage, brain edema, microvessel numbers and the relative protein levels of VEGF, matrix metalloproteinase (MMP)-2, MMP-9, occludin and collagen-IV were then determined using neurological assessments, Evans Blue staining, brain water content, CD31 staining and western blotting. Treatment with RB‑222 at a dose of 5 and 10 µg significantly improved neurological functional outcomes and diminished infarct size, BBB leakage and brain edema compared with the MCAO and IgG groups at 24 h following reperfusion; 10 µg RB‑222 was more effective than a 5 µg dose of the antibody. In addition, RB‑222 reduced the number of immature microvessels, which subsequently attenuated BBB permeability. RB‑222 significantly repressed VEGF expression as well as decreased MMP‑2 and MMP‑9 expression. However, it enhanced occludin and collagen‑IV levels in the ischemic rat brain compared with the MCAO and IgG groups. Taken together, the results indicate that early inhibition of VEGF may have significant potential against cerebral ischemia, partly by regulating the expression of MMPs.

  9. Comparison of Linear and Cyclic His-Ala-Val Peptides in Modulating the Blood-Brain Barrier Permeability: Impact on Delivery of Molecules to the Brain.

    Science.gov (United States)

    Alaofi, Ahmed; On, Ngoc; Kiptoo, Paul; Williams, Todd D; Miller, Donald W; Siahaan, Teruna J

    2016-02-01

    The aim of this study is to evaluate the effect of peptide cyclization on the blood-brain barrier (BBB) modulatory activity and plasma stability of His-Ala-Val peptides, which are derived from the extracellular 1 domain of human E-cadherin. The activities to modulate the intercellular junctions by linear HAV4 (Ac-SHAVAS-NH2), cyclic cHAVc1 (Cyclo(1,8)Ac-CSHAVASC-NH2), and cyclic cHAVc3 (Cyclo(1,6)Ac-CSHAVC-NH2) were compared in in vitro and in vivo BBB models. Linear HAV4 and cyclic cHAVc1 have the same junction modulatory activities as assessed by in vitro MDCK monolayer model and in situ rat brain perfusion model. In contrast, cyclic cHAVc3 was more effective than linear HAV4 in modulating MDCK cell monolayers and in improving in vivo brain delivery of Gd-DTPA on i.v. administration in Balb/c mice. Cyclic cHAVc3 (t1/2 = 12.95 h) has better plasma stability compared with linear HAV4 (t1/2 = 2.4 h). The duration of the BBB modulation was longer using cHAVc3 (2-4 h) compared with HAV4 (brain delivery of IRdye800cw-PEG (25 kDa) as detected by near IR imaging. The result showed that cyclic cHAVc3 peptide had better activity and plasma stability than linear HAV4 peptide. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Alpha-Tocopherol Reduces Brain Edema and Protects Blood-Brain Barrier Integrity following Focal Cerebral Ischemia in Rats.

    Science.gov (United States)

    Haghnejad Azar, Adel; Oryan, Shahrbanoo; Bohlooli, Shahab; Panahpour, Hamdollah

    2017-01-01

    This study was conducted to examine the neuroprotective effects of α-tocopherol against edema formation and disruption of the blood-brain barrier (BBB) following transient focal cerebral ischemia in rats. Ninety-six male Sprague-Dawley rats were divided into 3 major groups (n = 32 in each), namely the sham, and control and α-tocopherol-treated (30 mg/kg) ischemic groups. Transient focal cerebral ischemia (90 min) was induced by occlusion of the left middle cerebral artery. At the end of the 24-hour reperfusion period, the animals were randomly selected and used for 4 investigations (n = 8) in each of the 3 main groups: (a) assessment of neurological score and measurement of infarct size, (b) detection of brain edema formation by the wet/dry method, (c) evaluation of BBB permeability using the Evans blue (EB) extravasation technique, and (d) assessment of the malondialdehyde (MDA) and reduced glutathione (GSH) concentrations using high-performance liquid chromatography methods. Induction of cerebral ischemia in the control group produced extensive brain edema (brain water content 83.8 ± 0.11%) and EB leakage into brain parenchyma (14.58 ± 1.29 µg/g) in conjunction with reduced GSH and elevated MDA levels (5.86 ± 0.31 mmol/mg and 63.57 ± 5.42 nmol/mg, respectively). Treatment with α-tocopherol significantly lowered brain edema formation and reduced EB leakage compared with the control group (p < 0.001, 80.1 ± 0.32% and 6.66 ± 0.87 µg/g, respectively). Meanwhile, treatment with α-tocopherol retained tissue GSH levels and led to a lower MDA level (p < 0.01, 10.17 ± 0.83 mmol/mg, and p < 0.001, 26.84 ± 4.79 nmol/mg, respectively). Treatment with α-tocopherol reduced ischemic edema formation and produced protective effects on BBB function following ischemic stroke occurrence. This effect could be through increasing antioxidant activity. © 2016 S. Karger AG, Basel.

  11. Barrier mechanisms in the Drosophila blood-brain barrier.

    Science.gov (United States)

    Hindle, Samantha J; Bainton, Roland J

    2014-01-01

    The invertebrate blood-brain barrier (BBB) field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through G-protein coupled receptor signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate BBB has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many BBB mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the BBB can govern whole animal physiologies. This includes novel functions of BBB gap junctions in orchestrating synchronized neuroblast proliferation, and of BBB secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate BBB anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  12. Endothelial Proliferation and Increased Blood - Brain Barrier Permeability in the Basal Ganglia in a Rat Model of 3,4-Dihydrozyphenyl-L-Alanine-Induced Dyskinesia

    DEFF Research Database (Denmark)

    Westin, Jenny E.; Lindgren, Hanna S.; Gardi, Jonathan Eyal

    2006-01-01

    3,4-Dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesia is associated with molecular and synaptic plasticity in the basal ganglia, but the occurrence of structural remodeling through cell genesis has not been explored. In this study, rats with 6-hydroxydopamine lesions received injections of th...... of angiogenesis and blood-brain barrier dysfunction in an experimental model of L-DOPA-induced dyskinesia. These microvascular changes are likely to affect the kinetics of L-DOPA entry into the brain, favoring the occurrence of motor complications....... dyskinesia. The vast majority (60-80%) of the newborn cells stained positively for endothelial markers. This endothelial proliferation was associated with an upregulation of immature endothelial markers (nestin) and a downregulation of endothelial barrier antigen on blood vessel walls. In addition......, dyskinetic rats exhibited a significant increase in total blood vessel length and a visible extravasation of serum albumin in the two structures in which endothelial proliferation was most pronounced (substantia nigra pars reticulata and entopeduncular nucleus). The present study provides the first evidence...

  13. Permeabilization of the blood-brain barrier via mucosal engrafting: implications for drug delivery to the brain.

    Science.gov (United States)

    Bleier, Benjamin S; Kohman, Richie E; Feldman, Rachel E; Ramanlal, Shreshtha; Han, Xue

    2013-01-01

    Utilization of neuropharmaceuticals for central nervous system(CNS) disease is highly limited due to the blood-brain barrier(BBB) which restricts molecules larger than 500Da from reaching the CNS. The development of a reliable method to bypass the BBB would represent an enormous advance in neuropharmacology enabling the use of many potential disease modifying therapies. Previous attempts such as transcranial catheter implantation have proven to be temporary and associated with multiple complications. Here we describe a novel method of creating a semipermeable window in the BBB using purely autologous tissues to allow for high molecular weight(HMW) drug delivery to the CNS. This approach is inspired by recent advances in human endoscopic transnasal skull base surgical techniques and involves engrafting semipermeable nasal mucosa within a surgical defect in the BBB. The mucosal graft thereby creates a permanent transmucosal conduit for drugs to access the CNS. The main objective of this study was to develop a murine model of this technique and use it to evaluate transmucosal permeability for the purpose of direct drug delivery to the brain. Using this model we demonstrate that mucosal grafts allow for the transport of molecules up to 500 kDa directly to the brain in both a time and molecular weight dependent fashion. Markers up to 40 kDa were found within the striatum suggesting a potential role for this technique in the treatment of Parkinson's disease. This proof of principle study demonstrates that mucosal engrafting represents the first permanent and stable method of bypassing the BBB thereby providing a pathway for HMW therapeutics directly into the CNS.

  14. Enhancement in blood-tumor barrier permeability and delivery of liposomal doxorubicin using focused ultrasound and microbubbles: evaluation during tumor progression in a rat glioma model

    Science.gov (United States)

    Aryal, Muna; Park, Juyoung; Vykhodtseva, Natalia; Zhang, Yong-Zhi; McDannold, Nathan

    2015-03-01

    Effective drug delivery to brain tumors is often challenging because of the heterogeneous permeability of the ‘blood tumor barrier’ (BTB) along with other factors such as increased interstitial pressure and drug efflux pumps. Focused ultrasound (FUS) combined with microbubbles can enhance the permeability of the BTB in brain tumors, as well as the blood-brain barrier in the surrounding tissue. In this study, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to characterize the FUS-induced permeability changes of the BTB in a rat glioma model at different times after implantation. 9L gliosarcoma cells were implanted in both hemispheres in male rats. At day 9, 14, or 17 days after implantation, FUS-induced BTB disruption using 690 kHz ultrasound and definity microbubbles was performed in one tumor in each animal. Before FUS, liposomal doxorubicin was administered at a dose of 5.67 mg kg-1. This chemotherapy agent was previously shown to improve survival in animal glioma models. The transfer coefficient Ktrans describing extravasation of the MRI contrast agent Gd-DTPA was measured via DCE-MRI before and after sonication. We found that tumor doxorubicin concentrations increased monotonically (823  ±  600, 1817  ±  732 and 2432  ±  448 ng g-1) in the control tumors at 9, 14 and 17 d. With FUS-induced BTB disruption, the doxorubicin concentrations were enhanced significantly (P benefit from FUS-induced drug enhancement. Corresponding enhancements in Ktrans were found to be variable in large/late-stage tumors and not significantly different than controls, perhaps reflecting the size mismatch between the liposomal drug (~100 nm) and Gd-DTPA (molecular weight: 938 Da; hydrodynamic diameter: ≃2 nm). It may be necessary to use a larger MRI contrast agent to effectively evaluate the sonication-induced enhanced permeabilization in large/late-stage tumors when a large drug carrier such as a liposome is used.

  15. Studying the blood-brain barrier on a microfluidic chip

    NARCIS (Netherlands)

    McKim, J.M.; van der Helm, Marieke Willemijn; Broersen, Kerensa; van der Meer, Andries Dirk; Eijkel, Jan C.T.; van den Berg, Albert; Segerink, Loes Irene

    2015-01-01

    A realistic model of the blood-brain barrier (BBB) is valuable to perform drug screening experiments and to improve the understanding of the barrier's physiology at normal and pathological conditions. Although the conventional in vitro systems (e.g. Transwell systems) have been used for this, they

  16. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood-Brain Barrier.

    Science.gov (United States)

    Georgieva, Julia V; Hoekstra, Dick; Zuhorn, Inge S

    2014-11-17

    The blood-brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood-brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier-drug system ("Trojan horse complex") is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain.

  17. Effects of electromagnetic pulse exposure on gelatinase of blood-brain barrier in vitro.

    Science.gov (United States)

    Zhou, Yan; Qiu, Lian-Bo; An, Guang-Zhou; Zhou, Jia-Xing; Du, Le; Ma, Ya-Hong; Guo, Guo-Zhen; Ding, Gui-Rong

    2017-01-01

    The biological effects of electromagnetic pulse (EMP) on the brain have been focused on for years. It was reported that gelatinase played an important role in maintaining brain function through regulating permeability in the blood-brain barrier (BBB). To investigate the effects of EMP on gelatinase of BBB, an in vitro BBB model was established using primary cultured rat brain microvascular endothelial cells (BMVEC), astrocytes and half-contact culture of these cells in a transwell chamber. Cultured supernatant and cells were collected at different time points after exposure to EMP (peak intensity 400 kV/m, rise time 10 ns, pulse width 350 ns, 0.5 pps and 200 pulses). Protein levels of cellular gelatinase MMP-2 and MMP-9, and endogenous inhibitor TIMP-1 and TIMP-2 were detected by Western blot. The activity of gelatinase in culture supernatant was detected by gelatin zymography. It was found that compared with the sham-exposed group, the protein level of MMP-2 was significantly increased at 6 h (p < 0.05), and the protein level of its endogenous inhibitor TIMP-2 did not change after EMP exposure. In addition, the protein levels of MMP-9 and its endogenous inhibitor TIMP-1 did not change after EMP exposure. Gelatin zymography results showed that the activity of MMP-2 in the inner pool and the outer pool of the transwell chamber was significantly increased at 6 h after EMP exposure compared with that of the sham group. These results suggested that EMP exposure could affect the expression and activity of MMP-2 in the BBB model.

  18. Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction

    Science.gov (United States)

    Katzenberger, Rebeccah J; Chtarbanova, Stanislava; Rimkus, Stacey A; Fischer, Julie A; Kaur, Gulpreet; Seppala, Jocelyn M; Swanson, Laura C; Zajac, Jocelyn E; Ganetzky, Barry; Wassarman, David A

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Unfavorable TBI outcomes result from primary mechanical injuries to the brain and ensuing secondary non-mechanical injuries that are not limited to the brain. Our genome-wide association study of Drosophila melanogaster revealed that the probability of death following TBI is associated with single nucleotide polymorphisms in genes involved in tissue barrier function and glucose homeostasis. We found that TBI causes intestinal and blood–brain barrier dysfunction and that intestinal barrier dysfunction is highly correlated with the probability of death. Furthermore, we found that ingestion of glucose after a primary injury increases the probability of death through a secondary injury mechanism that exacerbates intestinal barrier dysfunction. Our results indicate that natural variation in the probability of death following TBI is due in part to genetic differences that affect intestinal barrier dysfunction. DOI: http://dx.doi.org/10.7554/eLife.04790.001 PMID:25742603

  19. Aflatoxin B1-contaminated diet disrupts the blood-brain barrier and affects fish behavior: Involvement of neurotransmitters in brain synaptosomes.

    Science.gov (United States)

    Baldissera, Matheus D; Souza, Carine F; Zeppenfeld, Carla Cristina; Descovi, Sharine N; Moreira, Karen Luise S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; da Silva, Aleksandro S; Baldisserotto, Bernardo

    2018-04-04

    It is known that the cytotoxic effects of aflatoxin B 1 (AFB 1 ) in endothelial cells of the blood-brain barrier (BBB) are associated with behavioral dysfunction. However, the effects of a diet contaminated with AFB 1 on the behavior of silver catfish remain unknown. Thus, the aim of this study was to evaluate whether an AFB 1 -contaminated diet (1177 ppb kg feed -1 ) impaired silver catfish behavior, as well as whether disruption of the BBB and alteration of neurotransmitters in brain synaptosomes are involved. Fish fed a diet contaminated with AFB 1 presented a behavioral impairment linked with hyperlocomotion on days 14 and 21 compared with the control group (basal diet). Neurotransmitter levels were also affected on days 14 and 21. The permeability of the BBB to Evans blue dye increased in the intoxicated animals compared with the control group, which suggests that the BBB was disrupted. Moreover, acetylcholinesterase (AChE) activity in brain synaptosomes was increased in fish fed a diet contaminated with AFB 1 , while activity of the sodium-potassium pump (Na + , K + -ATPase) was decreased. Based on this evidence, the present study shows that silver catfish fed a diet containing AFB 1 exhibit behavioral impairments related to hyperlocomotion. This diet caused a disruption of the BBB and brain lesions, which may contribute to the behavioral changes. Also, the alterations in the activities of AChE and Na + , K + -ATPase in brain synaptosomes may directly contribute to this behavior, since they may promote synapse dysfunction. In addition, the hyperlocomotion may be considered an important macroscopic marker indicating possible AFB 1 intoxication. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies

    OpenAIRE

    Eigenmann, Daniela E; Xue, Gongda; Kim, Kwang S; Moses, Ashlee V; Hamburger, Matthias; Oufir, Mouhssin

    2013-01-01

    Background: Reliable human in vitro blood brain barrier (BBB) models suitable for high throughput screening are urgently needed in early drug discovery and development for assessing the ability of promising bioactive compounds to overcome the BBB. To establish an improved human in vitro BBB model we compared four currently available and well characterized immortalized human brain capillary endothelial cell lines hCMEC/D3 hBMEC TY10 and BB19 with respect to barrier tightness and paracellular p...

  1. Albumin extravasation in bicuculline-induced blood-brain barrier dysfunction

    International Nuclear Information System (INIS)

    Persson, L.I.; Rosengren, L.E.; Johansson, B.B.

    1980-01-01

    The extravasation of endogeneous rat albumin and exogeneous 125 I-labeled human serum albumin was compared in rats subjected to bicuculline-induced blood-brain barrier dysfunction. The correlation between rocket immunoelectrophoretic assays of endogeneous rat albumin and 125 I-labeled human serum albumin, assayed by gamma scintillation counting, was good irrespective of whether 125 I-labeled albumin was studied in whole brain tissue or in brain homogenates. The ratio of brain to serum albumin was similar with the two assay methods. (author)

  2. TNAP and EHD1 are over-expressed in bovine brain capillary endothelial cells after the re-induction of blood-brain barrier properties.

    Directory of Open Access Journals (Sweden)

    Barbara Deracinois

    Full Text Available Although the physiological properties of the blood-brain barrier (BBB are relatively well known, the phenotype of the component brain capillary endothelial cells (BCECs has yet to be described in detail. Likewise, the molecular mechanisms that govern the establishment and maintenance of the BBB are largely unknown. Proteomics can be used to assess quantitative changes in protein levels and identify proteins involved in the molecular pathways responsible for cellular differentiation. Using the well-established in vitro BBB model developed in our laboratory, we performed a differential nano-LC MALDI-TOF/TOF-MS study of Triton X-100-soluble protein species from bovine BCECs displaying either limited BBB functions or BBB functions re-induced by glial cells. Due to the heterogeneity of the crude extract, we increased identification yields by applying a repeatable, reproducible fractionation process based on the proteins' relative hydrophobicity. We present proteomic and biochemical evidence to show that tissue non-specific alkaline phosphatase (TNAP and Eps15 homology domain-containing protein 1(EDH1 are over-expressed by bovine BCECs after the re-induction of BBB properties. We discuss the impact of these findings on current knowledge of endothelial and BBB permeability.

  3. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood–Brain Barrier

    Directory of Open Access Journals (Sweden)

    Julia V. Georgieva

    2014-11-01

    Full Text Available The blood–brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood–brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier–drug system (“Trojan horse complex” is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain.

  4. Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery.

    Science.gov (United States)

    Patching, Simon G

    2017-03-01

    Glucose transporters (GLUTs) at the blood-brain barrier maintain the continuous high glucose and energy demands of the brain. They also act as therapeutic targets and provide routes of entry for drug delivery to the brain and central nervous system for treatment of neurological and neurovascular conditions and brain tumours. This article first describes the distribution, function and regulation of glucose transporters at the blood-brain barrier, the major ones being the sodium-independent facilitative transporters GLUT1 and GLUT3. Other GLUTs and sodium-dependent transporters (SGLTs) have also been identified at lower levels and under various physiological conditions. It then considers the effects on glucose transporter expression and distribution of hypoglycemia and hyperglycemia associated with diabetes and oxygen/glucose deprivation associated with cerebral ischemia. A reduction in glucose transporters at the blood-brain barrier that occurs before the onset of the main pathophysiological changes and symptoms of Alzheimer's disease is a potential causative effect in the vascular hypothesis of the disease. Mutations in glucose transporters, notably those identified in GLUT1 deficiency syndrome, and some recreational drug compounds also alter the expression and/or activity of glucose transporters at the blood-brain barrier. Approaches for drug delivery across the blood-brain barrier include the pro-drug strategy whereby drug molecules are conjugated to glucose transporter substrates or encapsulated in nano-enabled delivery systems (e.g. liposomes, micelles, nanoparticles) that are functionalised to target glucose transporters. Finally, the continuous development of blood-brain barrier in vitro models is important for studying glucose transporter function, effects of disease conditions and interactions with drugs and xenobiotics.

  5. Confirmation tests of construction method and initial performance quality for low permeable engineered barrier in side part of radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Yamada, Atsuo; Chijimatsu, Masakazu; Akiyama, Yoshihiro; Komine, Hideo; Iizuka, Atsushi

    2016-01-01

    As for the low permeable layer, important functions are expected as an engineered barrier of radioactive waste disposal for low-level waste with comparatively high radiation levels. On examining the construction methods of this low permeable layer, it is important to confirm the possibility of the construction in the conditions similar to the actual constructed conditions with a true scale size. Therefore, the construction examination for the side part of the low permeable layer by bentonite and the performance check test of the low permeable layer were carried out. The result of the construction examination showed that the possibility of the construction were confirmed, and the result of performance check test showed that it was possible to ensure the required performance of the low permeable layer, such as hydraulic conductivity. (author)

  6. The in vitro blood-brain barrier model under OGD condition

    DEFF Research Database (Denmark)

    Tornabene, Erica; Helms, Hans Christian Cederberg; Berndt, Philipp

    Introduction - The blood-brain barrier (BBB) is a physical, transport and metabolic barrier which plays a key role in preventing uncontrolled exchanges between blood and brain, ensuring an optimal environment for neurons activity. This extent interface is created by the endothelial cells forming...... the wall of brain capillaries. The restrictive nature of the BBB is due to the presence of tight junctions, which seal the paracellular space, a low number of endocytotic vesicles and the presence of efflux transporters, resulting in a very tight layer. Ischemic insult and the subsequent reperfusion...... of therapies to treat this devastating disease. Materials and Methods - Primary cultures of endothelial cells from bovine brain microvessels were cocultured with rat astrocytes in transwell inserts. At day 11, cells were treated with 4h of OGD by changing the culture medium with glucose-free medium...

  7. Radiofrequency and extremely low-frequency electromagnetic field effects on the blood-brain barrier.

    Science.gov (United States)

    Nittby, Henrietta; Grafström, Gustav; Eberhardt, Jacob L; Malmgren, Lars; Brun, Arne; Persson, Bertil R R; Salford, Leif G

    2008-01-01

    During the last century, mankind has introduced electricity and during the very last decades, the microwaves of the modern communication society have spread a totally new entity--the radiofrequency fields--around the world. How does this affect biology on Earth? The mammalian brain is protected by the blood-brain barrier, which prevents harmful substances from reaching the brain tissue. There is evidence that exposure to electromagnetic fields at non thermal levels disrupts this barrier. In this review, the scientific findings in this field are presented. The result is a complex picture, where some studies show effects on the blood-brain barrier, whereas others do not. Possible mechanisms for the interactions between electromagnetic fields and the living organisms are discussed. Demonstrated effects on the blood-brain barrier, as well as a series of other effects upon biology, have caused societal anxiety. Continued research is needed to come to an understanding of how these possible effects can be neutralized, or at least reduced. Furthermore, it should be kept in mind that proven effects on biology also should have positive potentials, e.g., for medical use.

  8. Constitutive androstane receptor upregulates Abcb1 and Abcg2 at the blood-brain barrier after CITCO activation.

    Science.gov (United States)

    Lemmen, Julia; Tozakidis, Iasson E P; Bele, Prachee; Galla, Hans-Joachim

    2013-03-21

    ATP-driven efflux transporters are considered to be the major hurdle in the treatment of central nervous system (CNS) diseases. Abcb1 (P-glycoprotein) and Abcg2 (breast cancer resistance protein/brain multidrug resistance protein) belong to the best known ABC-transporters. These ABC-transporters limit the permeability of the blood-brain barrier and protect the brain against toxic compounds in the blood but on the other hand they also reduce the efficacy of CNS pharmacotherapy. Even after 40 years of extensive research, the regulatory mechanisms of these efflux transporters are still not completely understood. To unravel the efflux transporter regulation, we analyzed the effect of the nuclear receptor CAR (constitutive androstane receptor) on the expression of Abcb1 and Abcg2 in primary cultures of porcine brain capillary endothelial cells (PBCEC). CAR is a xenobiotic-activated transcription factor, which is, like the other important nuclear receptor pregnane X receptor (PXR), highly expressed in barrier tissue and known to be a positive regulator of ABC-transporters. We demonstrate that activation of porcine CAR by the human CAR (hCAR) ligand CITCO (6-(4-chlorophenyl)-imidazo[2,1-b]thiazole-5-carbaldehyde) leads to an up-regulation of both transporters, whereas the mouse-specific CAR ligand TCPOBOP (1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene) had no effect on transporter expression. The stimulation of PBCEC with CITCO caused a significant up-regulation of both efflux-transporters on RNA-level, protein level and transport level. Furthermore the additional application of a CAR inhibitor significantly decreased the transporter expression to control niveau. In conclusion our data prove CAR activation only by the human ligand CITCO leading to an increased ABC-transporter expression and transport activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Increase in seizure susceptibility in sepsis like condition explained by spiking cytokines and altered adhesion molecules level with impaired blood brain barrier integrity in experimental model of rats treated with lipopolysaccharides.

    Science.gov (United States)

    Sewal, Rakesh K; Modi, Manish; Saikia, Uma Nahar; Chakrabarti, Amitava; Medhi, Bikash

    2017-09-01

    Epilepsy is a neurological disorder characterized by recurrent unprovoked seizures. Sepsis is a condition which initiates a cascade of a surge of inflammatory mediators. Interplay between seizures and inflammation other than of brain origin is yet to be explored. The present study was designed to evaluate the seizure susceptibility in experimental models of lipopolysaccharide (LPS) induced sepsis. Experimental sepsis was induced using lipopolysaccharides in Wistar rats. Valproic acid, dexametasone were given to two different groups of animals along with LPS. Two groups of animals were subjected to administration of vehicle and LPS respectively with no other treatment. 24h later, animals were subjected to seizures by using either maximal electro shock or pentylenetetrazole. Seizures related parameters, oxidative stress and TNF-α, IL-6, IL-1β, ICAM-1, ICAM-2, VCAM-1, MMP-9 level in serum and brain samples were evaluated. Histopathological and blood brain barrier permeability studies were conducted. Seizures were decreased in valproic acid treated animals. Reduced oxidative stress was seen in dexamethasone plus valproic acid treated groups as compared to LPS alone treated group. TNF-α, IL-6, IL-1β, ICAM-1, VCAM-1, MMP-9 levels were found increased in LPS treated animals whereas a reverse observation was noted for ICAM-2 level in brain and serum. Histopathological findings confirmed the successful establishment of sepsis like state in animals. Blood brain barrier permeability was found increased in LPS treated groups of animals. Seizure susceptibility may escalate during the sepsis like inflammatory conditions and curbing the inflammatory state might reverse the phenomenon. Copyright © 2017. Published by Elsevier B.V.

  10. Nanoparticle transport across the blood brain barrier.

    Science.gov (United States)

    Grabrucker, Andreas M; Ruozi, Barbara; Belletti, Daniela; Pederzoli, Francesca; Forni, Flavio; Vandelli, Maria Angela; Tosi, Giovanni

    2016-01-01

    While the role of the blood-brain barrier (BBB) is increasingly recognized in the (development of treatments targeting neurodegenerative disorders, to date, few strategies exist that enable drug delivery of non-BBB crossing molecules directly to their site of action, the brain. However, the recent advent of Nanomedicines may provide a potent tool to implement CNS targeted delivery of active compounds. Approaches for BBB crossing are deeply investigated in relation to the pathology: among the main important diseases of the CNS, this review focuses on the application of nanomedicines to neurodegenerative disorders (Alzheimer, Parkinson and Huntington's Disease) and to other brain pathologies as epilepsy, infectious diseases, multiple sclerosis, lysosomal storage disorders, strokes.

  11. Alteration of blood-brain barrier integrity by retroviral infection.

    Directory of Open Access Journals (Sweden)

    Philippe V Afonso

    2008-11-01

    Full Text Available The blood-brain barrier (BBB, which forms the interface between the blood and the cerebral parenchyma, has been shown to be disrupted during retroviral-associated neuromyelopathies. Human T Lymphotropic Virus (HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP is a slowly progressive neurodegenerative disease associated with BBB breakdown. The BBB is composed of three cell types: endothelial cells, pericytes and astrocytes. Although astrocytes have been shown to be infected by HTLV-1, until now, little was known about the susceptibility of BBB endothelial cells to HTLV-1 infection and the impact of such an infection on BBB function. We first demonstrated that human cerebral endothelial cells express the receptors for HTLV-1 (GLUT-1, Neuropilin-1 and heparan sulfate proteoglycans, both in vitro, in a human cerebral endothelial cell line, and ex vivo, on spinal cord autopsy sections from HAM/TSP and non-infected control cases. In situ hybridization revealed HTLV-1 transcripts associated with the vasculature in HAM/TSP. We were able to confirm that the endothelial cells could be productively infected in vitro by HTLV-1 and that blocking of either HSPGs, Neuropilin 1 or Glut1 inhibits this process. The expression of the tight-junction proteins within the HTLV-1 infected endothelial cells was altered. These cells were no longer able to form a functional barrier, since BBB permeability and lymphocyte passage through the monolayer of endothelial cells were increased. This work constitutes the first report of susceptibility of human cerebral endothelial cells to HTLV-1 infection, with implications for HTLV-1 passage through the BBB and subsequent deregulation of the central nervous system homeostasis. We propose that the susceptibility of cerebral endothelial cells to retroviral infection and subsequent BBB dysfunction is an important aspect of HAM/TSP pathogenesis and should be considered in the design of future therapeutics strategies.

  12. In vitro models of the blood–brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use

    Science.gov (United States)

    Helms, Hans C; Abbott, N Joan; Burek, Malgorzata; Cecchelli, Romeo; Couraud, Pierre-Olivier; Deli, Maria A; Förster, Carola; Galla, Hans J; Romero, Ignacio A; Shusta, Eric V; Stebbins, Matthew J; Vandenhaute, Elodie; Weksler, Babette

    2016-01-01

    The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This “blood-brain barrier” function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood–brain barrier models with a focus on their validation regarding a set of well-established blood–brain barrier characteristics. As an ideal cell culture model of the blood–brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described. PMID:26868179

  13. Optimization of the Ultrasound-Induced Blood-Brain Barrier Opening

    OpenAIRE

    Konofagou, Elisa E.

    2012-01-01

    Current treatments of neurological and neurodegenerative diseases are limited due to the lack of a truly non-invasive, transient, and regionally selective brain drug delivery method. The brain is particularly difficult to deliver drugs to because of the blood-brain barrier (BBB). The impermeability of the BBB is due to the tight junctions connecting adjacent endothelial cells and highly regulatory transport systems of the endothelial cell membranes. The main function of the BBB is ion and vol...

  14. Analyzing the blood-brain barrier: the benefits of medical imaging in research and clinical practice.

    Science.gov (United States)

    Chassidim, Yoash; Vazana, Udi; Prager, Ofer; Veksler, Ronel; Bar-Klein, Guy; Schoknecht, Karl; Fassler, Michael; Lublinsky, Svetlana; Shelef, Ilan

    2015-02-01

    A dysfunctional BBB is a common feature in a variety of brain disorders, a fact stressing the need for diagnostic tools designed to assess brain vessels' permeability in space and time. Biological research has benefited over the years various means to analyze BBB integrity. The use of biomarkers for improper BBB functionality is abundant. Systemic administration of BBB impermeable tracers can both visualize brain regions characterized by BBB impairment, as well as lead to its quantification. Additionally, locating molecular, physiological content in regions from which it is restricted under normal BBB functionality undoubtedly indicates brain pathology-related BBB disruption. However, in-depth research into the BBB's phenotype demands higher analytical complexity than functional vs. pathological BBB; criteria which biomarker based BBB permeability analyses do not meet. The involvement of accurate and engineering sciences in recent brain research, has led to improvements in the field, in the form of more accurate, sensitive imaging-based methods. Improvements in the spatiotemporal resolution of many imaging modalities and in image processing techniques, make up for the inadequacies of biomarker based analyses. In pre-clinical research, imaging approaches involving invasive procedures, enable microscopic evaluation of BBB integrity, and benefit high levels of sensitivity and accuracy. However, invasive techniques may alter normal physiological function, thus generating a modality-based impact on vessel's permeability, which needs to be corrected for. Non-invasive approaches do not affect proper functionality of the inspected system, but lack in spatiotemporal resolution. Nevertheless, the benefit of medical imaging, even in pre-clinical phases, outweighs its disadvantages. The innovations in pre-clinical imaging and the development of novel processing techniques, have led to their implementation in clinical use as well. Specialized analyses of vessels' permeability

  15. Systems pharmacology and blood-brain barrier functionality in Parkinson's disease

    NARCIS (Netherlands)

    Ravenstijn, Paulien Gerarda Maria

    2009-01-01

    Parkinson’s disease is a progressive neurodegenerative disease, which is composed of many components, each caused by interplay of a number of genetic and nongenetic causes. As the blood-brain barrier (BBB) is a key player in the relationship between plasma and brain pharmacokinetics, the influences

  16. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier

    International Nuclear Information System (INIS)

    Friden, P.M.; Walus, L.R.; Musso, G.F.; Taylor, M.A.; Malfroy, B.; Starzyk, R.M.

    1991-01-01

    Delivery of nonlipophilic drugs to the brain is hindered by the tightly apposed capillary endothelial cells that make up the blood-brain barrier. The authors have examined the ability of a monoclonal antibody (OX-26), which recognizes the rat transferrin receptor, to function as a carrier for the delivery of drugs across the blood-brain barrier. This antibody, which was previously shown to bind preferentially to capillary endothelial cells in the brain after intravenous administration, labels the entire cerebrovascular bed in a dose-dependent manner. The initially uniform labeling of brain capillaries becomes extremely punctate ∼ 4 hr after injection, suggesting a time-dependent sequestering of the antibody. Capillary-depletion experiments, in which the brain is separated into capillary and parenchymal fractions, show a time-dependent migration of radiolabeled antibody from the capillaries into the brain parenchyma, which is consistent with the transcytosis of compounds across the blood-brain barrier. Antibody-methotrexate conjugates were tested in vivo to assess the carrier ability of this antibody. Immunohistochemical staining for either component of an OX-26-methotrexate conjugate revealed patterns of cerebrovascular labeling identical to those observed with the unaltered antibody. Accumulation of radiolabeled methotrexate in the brain parenchyma is greatly enhanced when the drug is conjugated to OX-26

  17. Electroconvulsive therapy, hypertensive surge, blood-brain barrier breach, and amnesia

    DEFF Research Database (Denmark)

    Andrade, Chittaranjan; Bolwig, Tom G

    2014-01-01

    Preclinical and clinical evidence show that electroconvulsive therapy (ECT)-induced intraictal surge in blood pressure may result in a small, transient breach in the blood-brain barrier, leading to mild cerebral edema and a possible leach of noxious substances from blood into brain tissues...... convincing evidence of benefits. It is concluded that there is insufficient support, at present, for the hypothesis that the hypertensive surge during ECT and the resultant blood-brain barrier breach contribute meaningfully to ECT-induced cognitive deficits. Future research should address the subset....... These changes may impair neuronal functioning and contribute to the mechanisms underlying ECT-induced cognitive deficits. Some but not all clinical data on the subject suggest that blood pressure changes during ECT correlate with indices of cognitive impairment. In animal models, pharmacological manipulations...

  18. Blood-brain barrier and cerebral blood flow: Age differences in hemorrhagic stroke

    Directory of Open Access Journals (Sweden)

    Semyachkina-Glushkovskaya Oxana

    2015-11-01

    Full Text Available Neonatal stroke is similar to the stroke that occurs in adults and produces a significant morbidity and long-term neurologic and cognitive deficits. There are important differences in the factors, clinical events and outcomes associated with the stroke in infants and adults. However, mechanisms underlying age differences in the stroke development remain largely unknown. Therefore, treatment guidelines for neonatal stroke must extrapolate from the adult data that is often not suitable for children. The new information about differences between neonatal and adult stroke is essential for identification of significant areas for future treatment and effective prevention of neonatal stroke. Here, we studied the development of stress-induced hemorrhagic stroke and possible mechanisms underlying these processes in newborn and adult rats. Using histological methods and magnetic resonance imaging, we found age differences in the type of intracranial hemorrhages. Newborn rats demonstrated small superficial bleedings in the cortex while adult rats had more severe deep bleedings in the cerebellum. Using Doppler optical coherent tomography, we found higher stress-reactivity of the sagittal sinus to deleterious effects of stress in newborn vs. adult rats suggesting that the cerebral veins are more vulnerable to negative stress factors in neonatal vs. adult brain in rats. However, adult but not newborn rats demonstrated the stroke-induced breakdown of blood brain barrier (BBB permeability. The one of possible mechanisms underlying the higher resistance to stress-related stroke injures of cerebral vessels in newborn rats compared with adult animals is the greater expression of two main tight junction proteins of BBB (occludin and claudin-5 in neonatal vs. mature brain in rats.

  19. Experimental Methods and Transport Models for Drug Delivery across the Blood-Brain Barrier

    OpenAIRE

    Fu, Bingmei M

    2012-01-01

    The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the micro-environment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-born neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This review summarized the unique structures of the BBB, described a variety of in vivo and i...

  20. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model.

    Science.gov (United States)

    Wagner, Sylvia; Zensi, Anja; Wien, Sascha L; Tschickardt, Sabrina E; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U; Kreuter, Jörg; von Briesen, Hagen

    2012-01-01

    The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.

  1. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model.

    Directory of Open Access Journals (Sweden)

    Sylvia Wagner

    Full Text Available BACKGROUND: The blood-brain barrier (BBB represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. CONCLUSIONS/SIGNIFICANCE: This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.

  2. Radiofrequency field emitted by mobile phones and alteration of the blood-brain barrier: how strong is the experimental evidence?

    International Nuclear Information System (INIS)

    Lagroye, I.; Haro, E.; Billaudel, B.; Ruffie, G.; Poulletier de Gannes, F.; Taxile, M.; Laclau, M.; Veyret, B.; Leveque, P.

    2006-01-01

    Full text of publication follows: It is known that high power, thermal radiofrequency radiation (RFR) can alter the blood-brain barrier (BBB) permeability with a brain averaged specific absorption rate (BASAR) threshold evaluated at around 100 W/kg (1). Mobile communication technologies are using RFR with exposure guidelines for public local exposure at 2 W/kg, far lower than the threshold previously mentioned. However, in a paper recently published (2) the occurrence of BBB leakage and brain damage (presence of dark neurons) has been reported 50 days after a single 2-hour exposure of rats to a GSM-900 signal. In that investigation however, bias could have occurred as, for instance, exposed animals were mixed in terms of age (12- to 26-week old) and gender, while those differences were not taken into account in the analysis. Moreover, other groups have published contradictory results (3). Our group undertook a confirmation study of the Salford experiments within an international collaborative programme including technical improvements. Our study includes the detection of dark neurons, alteration of the permeability of the BBB and apoptosis 14 or 50 days after GSM-900 exposure. The exposure setup was the loop antenna that allows for head-only exposure. Five groups of 16 Fisher 344 rats (14 -week old) were exposed to GSM-900 during 2 hours at various SAR levels (0, 0.14 and 2.0 W/kg), or were used as cage control or positive controls. Positive controls were treated with kainic acid (10 mg/kg) or by cold injury (dry ice during 5 minutes). After exposure, rats were kept alive during 14 or 50 days to study brain damages. Then, they were anesthetized with urethane (i.p. 1.5 mg/kg), perfused with PBS and fixed with paraformaldehyde 4% (PAF 4%). Brains were extracted and put in cold PAF 4% during the following night, then placed in cold sucrose 20% during 2-3 days, frozen with isopentane and placed at -80 deg. C. Coding was done on brains. Frozen brains were cut in 3

  3. Radiofrequency field emitted by mobile phones and alteration of the blood-brain barrier: how strong is the experimental evidence?

    Energy Technology Data Exchange (ETDEWEB)

    Lagroye, I.; Haro, E.; Billaudel, B.; Ruffie, G.; Poulletier de Gannes, F.; Taxile, M.; Laclau, M.; Veyret, B. [PIOM/UMR 5501 and Bioelectromagnetics laboratory/EPHE, ENSCPB, 33607 Pessac, (France); Leveque, P. [IRCOM, CNRS UMR 6615, Limoges (France)

    2006-07-01

    Full text of publication follows: It is known that high power, thermal radiofrequency radiation (RFR) can alter the blood-brain barrier (BBB) permeability with a brain averaged specific absorption rate (BASAR) threshold evaluated at around 100 W/kg (1). Mobile communication technologies are using RFR with exposure guidelines for public local exposure at 2 W/kg, far lower than the threshold previously mentioned. However, in a paper recently published (2) the occurrence of BBB leakage and brain damage (presence of dark neurons) has been reported 50 days after a single 2-hour exposure of rats to a GSM-900 signal. In that investigation however, bias could have occurred as, for instance, exposed animals were mixed in terms of age (12- to 26-week old) and gender, while those differences were not taken into account in the analysis. Moreover, other groups have published contradictory results (3). Our group undertook a confirmation study of the Salford experiments within an international collaborative programme including technical improvements. Our study includes the detection of dark neurons, alteration of the permeability of the BBB and apoptosis 14 or 50 days after GSM-900 exposure. The exposure setup was the loop antenna that allows for head-only exposure. Five groups of 16 Fisher 344 rats (14 -week old) were exposed to GSM-900 during 2 hours at various SAR levels (0, 0.14 and 2.0 W/kg), or were used as cage control or positive controls. Positive controls were treated with kainic acid (10 mg/kg) or by cold injury (dry ice during 5 minutes). After exposure, rats were kept alive during 14 or 50 days to study brain damages. Then, they were anesthetized with urethane (i.p. 1.5 mg/kg), perfused with PBS and fixed with paraformaldehyde 4% (PAF 4%). Brains were extracted and put in cold PAF 4% during the following night, then placed in cold sucrose 20% during 2-3 days, frozen with isopentane and placed at -80 deg. C. Coding was done on brains. Frozen brains were cut in 3

  4. Endothelial progenitor cells physiology and metabolic plasticity in brain angiogenesis and blood-brain barrier modeling

    Directory of Open Access Journals (Sweden)

    Natalia Malinovskaya

    2016-12-01

    Full Text Available Currently, there is a considerable interest to the assessment of blood-brain barrier (BBB development as a part of cerebral angiogenesis developmental program. Embryonic and adult angiogenesis in the brain is governed by the coordinated activity of endothelial progenitor cells, brain microvascular endothelial cells, and non-endothelial cells contributing to the establishment of the BBB (pericytes, astrocytes, neurons. Metabolic and functional plasticity of endothelial progenitor cells controls their timely recruitment, precise homing to the brain microvessels, and efficient support of brain angiogenesis. Deciphering endothelial progenitor cells physiology would provide novel engineering approaches to establish adequate microfluidically-supported BBB models and brain microphysiological systems for translational studies.

  5. Prediction of Groundwater Quality Improvement Down-Gradient of In Situ Permeable Treatment Barriers and Fully-Remediated Source Zones. ESTCP Cost and Performance Report

    National Research Council Canada - National Science Library

    Johnson, Paul C; Carlson, Pamela M; Dahlen, Paul

    2008-01-01

    In situ permeable treatment barriers (PTB) are designed so that contaminated groundwater flows through an engineered treatment zone within which contaminants are eliminated or the concentrations are significantly reduced...

  6. Uptake Mechanism of ApoE-Modified Nanoparticles on Brain Capillary Endothelial Cells as a Blood-Brain Barrier Model

    OpenAIRE

    Wagner, Sylvia; Zensi, Anja; Wien, Sascha L.; Tschickardt, Sabrina E.; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U.; Kreuter, Jörg; von Briesen, Hagen

    2012-01-01

    Background: The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. Methodology/Principal Fi...

  7. Permeable Reactive Barriers: a multidisciplinary approach of a new emerging sustainable groundwater treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Diels, L.; Bastiaens, L. [Vito, Mol (BL); O' Hannessin, S. [EnviroMetal Technologies Inc., Ontario (Canada); Cortina, J.L. [Univ. Politecnica de Catalunya, Barcelona (Spain). Dept. d' Enginyeria Quimica; Alvarez, P.J. [Univ. of Iowa, Iowa-City (United States). Center for Biocatalysis and Bioprocessing; Ebert, M. [Christian-Albrechts Univ. Kiel (Germany). Inst. fuer Geowissenschaften; Schad, H. [I.M.E.S. GmbH, Amtzell (Germany)

    2003-07-01

    Permeable reactive barriers or zones are becoming an interesting sustainable and cost-effective technology for in situ treatment of contaminated groundwater. The technology is based on chemical processes as the dehalogenating activity of zerovalent iron, biological processes in bioscreens or reactive zones and on sorption technology (e.g. heavy metal adsorption or adsorption on granular activated carbon). Three technical sessions will be devoted to this nowadays becoming mature technology. This special session intends to pay attention to the discussion about some questions related to PRBs. These include the sustainability (e.g. life time and clogging) especially for zerovalent iron barriers, the need and quality of feasibility tests, drawbacks and restrictions of PRBs. Combined with long term performance monitoring os these systems will be discussed. Further attention will be paid to cost evaluation and the relationship between zerovalent barriers and bacterial growth. Also attention will be paid to new reactive materials (e.g. activated carbon for organics and inorganic materials for heavy metals) and consequences (e.g. environmental impact). Finally the session will combine al these approaches in a discussion about combined barriers or multibarriers for treatment of mixed pollution (e.g. landfill leachates contaminated groundwater). Specialists involved in these subjects will introduce these topics and allow for a large and intensive discussion to improve future applications of this technology. (orig.)

  8. Iron supplement prevents lead-induced disruption of the blood-brain barrier during rat development

    International Nuclear Information System (INIS)

    Wang Qiang; Luo Wenjing; Zheng Wei; Liu Yiping; Xu Hui; Zheng Gang; Dai Zhongming; Zhang Wenbin; Chen Yaoming; Chen Jingyuan

    2007-01-01

    Children are known to be venerable to lead (Pb) toxicity. The blood-brain barrier (BBB) in immature brain is particularly vulnerable to Pb insults. This study was designed to test the hypothesis that Pb exposure damaged the integrity of the BBB in young animals and iron (Fe) supplement may prevent against Pb-induced BBB disruption. Male weanling Sprague-Dawley rats were divided into four groups. Three groups of rats were exposed to Pb in drinking water containing 342 μg Pb/mL as Pb acetate, among which two groups were concurrently administered by oral gavage once every other day with 7 mg Fe/kg and 14 mg Fe/kg as FeSO 4 solution as the low and high Fe treatment group, respectively, for 6 weeks. The control group received sodium acetate in drinking water. Pb exposure significantly increased Pb concentrations in blood by 6.6-folds (p < 0.05) and brain tissues by 1.5-2.0-folds (p < 0.05) as compared to controls. Under the electron microscope, Pb exposure in young animals caused an extensive extravascular staining of lanthanum nitrate in brain parenchyma, suggesting a leakage of cerebral vasculature. Western blot showed that Pb treatment led to 29-68% reduction (p < 0.05) in the expression of occludin as compared to the controls. Fe supplement among Pb-exposed rats maintained the normal ultra-structure of the BBB and restored the expression of occludin to normal levels. Moreover, the low dose Fe supplement significantly reduced Pb levels in blood and brain tissues. These data suggest that Pb exposure disrupts the structure of the BBB in young animals. The increased BBB permeability may facilitate the accumulation of Pb. Fe supplement appears to protect the integrity of the BBB against Pb insults, a beneficial effect that may have significant clinical implications

  9. Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency

    International Nuclear Information System (INIS)

    Monnot, Andrew D.; Behl, Mamta; Ho, Sanna; Zheng, Wei

    2011-01-01

    Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+ 55%) and decrease (− 56%) in CSF Cu levels (p < 0.05), respectively; however, neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+ 92%) and significantly slower (− 53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p < 0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.

  10. Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Monnot, Andrew D.; Behl, Mamta; Ho, Sanna; Zheng, Wei, E-mail: wzheng@purdue.edu

    2011-11-15

    Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+ 55%) and decrease (- 56%) in CSF Cu levels (p < 0.05), respectively; however, neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+ 92%) and significantly slower (- 53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p < 0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.

  11. Computing the blood brain barrier (BBB) diffusion coefficient: A molecular dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Shamloo, Amir, E-mail: shamloo@sharif.edu; Pedram, Maysam Z.; Heidari, Hossein; Alasty, Aria, E-mail: aalasti@sharif.edu

    2016-07-15

    Various physical and biological aspects of the Blood Brain Barrier (BBB) structure still remain unfolded. Therefore, among the several mechanisms of drug delivery, only a few have succeeded in breaching this barrier, one of which is the use of Magnetic Nanoparticles (MNPs). However, a quantitative characterization of the BBB permeability is desirable to find an optimal magnetic force-field. In the present study, a molecular model of the BBB is introduced that precisely represents the interactions between MNPs and the membranes of Endothelial Cells (ECs) that form the BBB. Steered Molecular Dynamics (SMD) simulations of the BBB crossing phenomenon have been carried out. Mathematical modeling of the BBB as an input-output system has been considered from a system dynamics modeling viewpoint, enabling us to analyze the BBB behavior based on a robust model. From this model, the force profile required to overcome the barrier has been extracted for a single NP from the SMD simulations at a range of velocities. Using this data a transfer function model has been obtained and the diffusion coefficient is evaluated. This study is a novel approach to bridge the gap between nanoscale models and microscale models of the BBB. The characteristic diffusion coefficient has the nano-scale molecular effects inherent, furthermore reducing the computational costs of a nano-scale simulation model and enabling much more complex studies to be conducted. - Highlights: • Molecular dynamics simulation of crossing nano-particles through the BBB membrane at different velocities. • Recording the position of nano-particle and the membrane-NP interaction force profile. • Identification of a frequency domain model for the membrane. • Calculating the diffusion coefficient based on MD simulation and identified model. • Obtaining a relation between continuum medium and discrete medium.

  12. The fibrinolytic system facilitates tumor cell migration across the blood-brain barrier in experimental melanoma brain metastasis

    International Nuclear Information System (INIS)

    Perides, George; Zhuge, Yuzheng; Lin, Tina; Stins, Monique F; Bronson, Roderick T; Wu, Julian K

    2006-01-01

    Patients with metastatic tumors to the brain have a very poor prognosis. Increased metastatic potential has been associated with the fibrinolytic system. We investigated the role of the fibrinolytic enzyme plasmin in tumor cell migration across brain endothelial cells and growth of brain metastases in an experimental metastatic melanoma model. Metastatic tumors to the brain were established by direct injection into the striatum or by intracarotid injection of B16F10 mouse melanoma cells in C57Bl mice. The role of plasminogen in the ability of human melanoma cells to cross a human blood-brain barrier model was studied on a transwell system. Wild type mice treated with the plasmin inhibitor epsilon-aminocaproic acid (EACA) and plg -/- mice developed smaller tumors and survived longer than untreated wild type mice. Tumors metastasized to the brain of wild type mice treated with EACA and plg -/- less efficiently than in untreated wild type mice. No difference was observed in the tumor growth in any of the three groups of mice. Human melanoma cells were able to cross the human blood-brain barrier model in a plasmin dependent manner. Plasmin facilitates the development of tumor metastasis to the brain. Inhibition of the fibrinolytic system could be considered as means to prevent tumor metastasis to the brain

  13. Defense at the border : the blood-brain barrier versus bacterial foreigners

    NARCIS (Netherlands)

    van Sorge, Nina M.; Doran, Kelly S.

    Bacterial meningitis is among the top ten causes of infectious disease-related deaths worldwide, with up to half of the survivors left with permanent neurological sequelae. The blood-brain barrier (BBB), composed mainly of specialized brain microvascular endothelial cells, maintains biochemical

  14. Stroke and Drug Delivery--In Vitro Models of the Ischemic Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Tornabene, Erica; Brodin, Birger

    2016-01-01

    of permeation pathways across the barrier in ischemic and postischemic brain endothelium is important for development of new medical treatments. The blood-brain barrier, that is, the endothelial monolayer lining the brain capillaries, changes properties during an ischemic event. In vitro models of the blood-brain......Stroke is a major cause of death and disability worldwide. Both cerebral hypoperfusion and focal cerebral infarcts are caused by a reduction of blood flow to the brain, leading to stroke and subsequent brain damage. At present, only few medical treatments of stroke are available, with the Food...... and Drug Administration-approved tissue plasminogen activator for treatment of acute ischemic stroke being the most prominent example. A large number of potential drug candidates for treatment of ischemic brain tissue have been developed and subsequently failed in clinical trials. A deeper understanding...

  15. Blood-retinal barrier glycerol permeability in diabetic macular edema and healthy eyes: estimations from macular volume changes after peroral glycerol

    DEFF Research Database (Denmark)

    Thornit, Dorte Nellemann; Vinten, Carl Martin; Sander, Birgit

    2010-01-01

    PURPOSE: To compare the changes in macular volume (MV) between healthy subjects and patients with diabetic macular edema (DME) after an osmotic load and to determine the glycerol permeability (P(gly)) of the blood-retinal barrier (BRB). METHODS: In this unmasked study, 13 patients with DME and 5...

  16. Reperfusion facilitates reversible disruption of the human blood-brain barrier following acute ischaemic stroke

    International Nuclear Information System (INIS)

    Liu, Chang; Zhang, Sheng; Yan, Shenqiang; Zhang, Ruiting; Shi, Feina; Lou, Min; Ding, Xinfa; Parsons, Mark

    2018-01-01

    We aimed to detect early changes of the blood-brain barrier permeability (BBBP) in acute ischaemic stroke (AIS), with or without reperfusion, and find out whether BBBP can predict clinical outcomes. Consecutive AIS patients imaged with computed tomographic perfusion (CTP) before and 24 h after treatment were included. The relative permeability-surface area product (rPS) was calculated within the hypoperfused region (rPS hypo-i ), non-hypoperfused region of ischaemic hemisphere (rPS nonhypo-i ) and their contralateral mirror regions (rPS hypo-c and rPS nonhypo-c ). The changes of rPS were analysed using analysis of variance (ANOVA) with repeated measures. Logistic regression was used to identify independent predictors of unfavourable outcome. Fifty-six patients were included in the analysis, median age was 76 (IQR 62-81) years and 28 (50%) were female. From baseline to 24 h after treatment, rPS hypo-i , rPS nonhypo-i and rPS hypo-c all decreased significantly. The decreases in rPS hypo-i and rPS hypo-c were larger in the reperfusion group than non-reperfusion group. The rPS hypo-i at follow-up was a predictor for unfavourable outcome (OR 1.131; 95% CI 1.018-1.256; P = 0.022). Early disruption of BBB in AIS is reversible, particularly when greater reperfusion is achieved. Elevated BBBP at 24 h after treatment, not the pretreatment BBBP, predicts unfavourable outcome. (orig.)

  17. Reperfusion facilitates reversible disruption of the human blood-brain barrier following acute ischaemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Zhang, Sheng; Yan, Shenqiang; Zhang, Ruiting; Shi, Feina; Lou, Min [The Second Affiliated Hospital of Zhejiang University, School of Medicine, Department of Neurology, Hangzhou (China); Ding, Xinfa [The Second Affiliated Hospital of Zhejiang University, School of Medicine, Department of Radiology, Hangzhou (China); Parsons, Mark [John Hunter Hospital, University of Newcastle, Department of Neurology, Newcastle (Australia)

    2018-02-15

    We aimed to detect early changes of the blood-brain barrier permeability (BBBP) in acute ischaemic stroke (AIS), with or without reperfusion, and find out whether BBBP can predict clinical outcomes. Consecutive AIS patients imaged with computed tomographic perfusion (CTP) before and 24 h after treatment were included. The relative permeability-surface area product (rPS) was calculated within the hypoperfused region (rPS{sub hypo-i}), non-hypoperfused region of ischaemic hemisphere (rPS{sub nonhypo-i}) and their contralateral mirror regions (rPS{sub hypo-c} and rPS{sub nonhypo-c}). The changes of rPS were analysed using analysis of variance (ANOVA) with repeated measures. Logistic regression was used to identify independent predictors of unfavourable outcome. Fifty-six patients were included in the analysis, median age was 76 (IQR 62-81) years and 28 (50%) were female. From baseline to 24 h after treatment, rPS{sub hypo-i}, rPS{sub nonhypo-i} and rPS{sub hypo-c} all decreased significantly. The decreases in rPS{sub hypo-i} and rPS{sub hypo-c} were larger in the reperfusion group than non-reperfusion group. The rPS{sub hypo-i} at follow-up was a predictor for unfavourable outcome (OR 1.131; 95% CI 1.018-1.256; P = 0.022). Early disruption of BBB in AIS is reversible, particularly when greater reperfusion is achieved. Elevated BBBP at 24 h after treatment, not the pretreatment BBBP, predicts unfavourable outcome. (orig.)

  18. Sorting Tubules Regulate Blood-Brain Barrier Transcytosis

    Directory of Open Access Journals (Sweden)

    Roberto Villaseñor

    2017-12-01

    Full Text Available Transcytosis across the blood-brain barrier (BBB regulates key processes of the brain, but the intracellular sorting mechanisms that determine successful receptor-mediated transcytosis in brain endothelial cells (BECs remain unidentified. Here, we used Transferrin receptor-based Brain Shuttle constructs to investigate intracellular transport in BECs, and we uncovered a pathway for the regulation of receptor-mediated transcytosis. By combining live-cell imaging and mathematical modeling in vitro with super-resolution microscopy of the BBB, we show that intracellular tubules promote transcytosis across the BBB. A monovalent construct (sFab sorted for transcytosis was localized to intracellular tubules, whereas a bivalent construct (dFab sorted for degradation formed clusters with impaired transport along tubules. Manipulating tubule biogenesis by overexpressing the small GTPase Rab17 increased dFab transport into tubules and induced its transcytosis in BECs. We propose that sorting tubules regulate transcytosis in BECs and may be a general mechanism for receptor-mediated transport across the BBB.

  19. An in vitro and in vivo study of peptide-functionalized nanoparticles for brain targeting : The importance of selective blood–brain barrier uptake

    NARCIS (Netherlands)

    Bode, Gerard H.; Coué, G.M.J.P.C.; Freese, Christian; Pickl, Karin E.; Sanchez-Purrà, Maria; Albaiges, Berta; Borrós, Salvador; van Winden, Ewoud C.; Tziveleka, Leto Aikaterini; Sideratou, Zili; Engbersen, Johan F.J.; Singh, Smriti; Albrecht, Krystyna; Groll, Jürgen; Möller, Martin; Pötgens, Andy J.G.; Schmitz, Christoph; Fröhlich, Eleonore; Grandfils, Christian; Sinner, Frank M.; Kirkpatrick, C. James; Steinbusch, Harry W.M.; Frank, Hans Georg; Unger, Ronald E.; Martinez-Martinez, Pilar

    2017-01-01

    Targeted delivery of drugs across endothelial barriers remains a formidable challenge, especially in the case of the brain, where the blood–brain barrier severely limits entry of drugs into the central nervous system. Nanoparticle-mediated transport of peptide/protein-based drugs across endothelial

  20. Characterization of the L-glutamate clearance pathways across the blood-brain barrier and the effect of astrocytes in an in vitro blood-brain barrier model

    DEFF Research Database (Denmark)

    Helms, Hans CC; Aldana, Blanca I; Groth, Simon

    2017-01-01

    The aim was to characterize the clearance pathways for L-glutamate from the brain interstitial fluid across the blood-brain barrier using a primary in vitro bovine endothelial/rat astrocyte co-culture. Transporter profiling was performed using uptake studies of radiolabeled L-glutamate with co...... brain to blood via the concerted action of abluminal and luminal transport proteins, but the total brain clearance is highly dependent on metabolism in astrocytes and endothelial cells followed by transport of metabolites....

  1. In vitro evidence for the brain glutamate efflux hypothesis

    DEFF Research Database (Denmark)

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby

    2012-01-01

    resistance values of 1014 ± 70 O cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids......The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L......-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial...

  2. Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport

    Directory of Open Access Journals (Sweden)

    Szilvia Veszelka

    2018-05-01

    Full Text Available Cell culture-based blood-brain barrier (BBB models are useful tools for screening of CNS drug candidates. Cell sources for BBB models include primary brain endothelial cells or immortalized brain endothelial cell lines. Despite their well-known differences, epithelial cell lines are also used as surrogate models for testing neuropharmaceuticals. The aim of the present study was to compare the expression of selected BBB related genes including tight junction proteins, solute carriers (SLC, ABC transporters, metabolic enzymes and to describe the paracellular properties of nine different culture models. To establish a primary BBB model rat brain capillary endothelial cells were co-cultured with rat pericytes and astrocytes (EPA. As other BBB and surrogate models four brain endothelial cells lines, rat GP8 and RBE4 cells, and human hCMEC/D3 cells with or without lithium treatment (D3 and D3L, and four epithelial cell lines, native human intestinal Caco-2 and high P-glycoprotein expressing vinblastine-selected VB-Caco-2 cells, native MDCK and MDR1 transfected MDCK canine kidney cells were used. To test transporter functionality, the permeability of 12 molecules, glucopyranose, valproate, baclofen, gabapentin, probenecid, salicylate, rosuvastatin, pravastatin, atorvastatin, tacrine, donepezil, was also measured in the EPA and epithelial models. Among the junctional protein genes, the expression level of occludin was high in all models except the GP8 and RBE4 cells, and each model expressed a unique claudin pattern. Major BBB efflux (P-glycoprotein or ABCB1 and influx transporters (GLUT-1, LAT-1 were present in all models at mRNA levels. The transcript of BCRP (ABCG2 was not expressed in MDCK, GP8 and RBE4 cells. The absence of gene expression of important BBB efflux and influx transporters BCRP, MRP6, -9, MCT6, -8, PHT2, OATPs in one or both types of epithelial models suggests that Caco-2 or MDCK models are not suitable to test drug candidates which

  3. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Yang Ji, E-mail: yangji@ecust.edu.cn [School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); Cao Limei; Guo Rui; Jia Jinping [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-12-15

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m{sup 2} g{sup -1}, the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly.

  4. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water

    International Nuclear Information System (INIS)

    Yang Ji; Cao Limei; Guo Rui; Jia Jinping

    2010-01-01

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m 2 g -1 , the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly.

  5. Oxidation of volatile organic compound vapours by potassium permanganate in a horizontal permeable reactive barrier under unsaturated conditions: experiments and modeling

    NARCIS (Netherlands)

    Ghareh Mahmoodlu, Mojtaba|info:eu-repo/dai/nl/357287746

    2014-01-01

    In this research we evaluated the potential of using solid potassium permanganate to create a horizontal permeable reactive barrier (HPRB) for oxidizing VOC vapours in the unsaturated zone. We have performed batch experiments, short column, and long column experiments, and have fully analyzed the

  6. Gliomas and the vascular fragility of the blood brain barrier

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo eDubois

    2014-12-01

    Full Text Available Astrocytes, members of the glial family, interact through the exchange of soluble factors or by directly contacting neurons and other brain cells, such as microglia and endothelial cells. Astrocytic projections interact with vessels and act as additional elements of the Blood Brain Barrier (BBB. By mechanisms not fully understood, astrocytes can undergo oncogenic transformation and give rise to gliomas. The tumors take advantage of the BBB to ensure survival and continuous growth. A glioma can develop into a very aggressive tumor, the glioblastoma (GBM, characterized by a highly heterogeneous cell population (including tumor stem cells, extensive proliferation and migration. Nevertheless, gliomas can also give rise to slow growing tumors and in both cases, the afflux of blood, via BBB is crucial. Glioma cells migrate to different regions of the brain guided by the extension of blood vessels, colonizing the healthy adjacent tissue. In the clinical context, GBM can lead to tumor-derived seizures, which represent a challenge to patients and clinicians, since drugs used for its treatment must be able to cross the BBB. Uncontrolled and fast growth also leads to the disruption of the chimeric and fragile vessels in the tumor mass resulting in peritumoral edema. Although hormonal therapy is currently used to control the edema, it is not always efficient. In this review we comment the points cited above, considering the importance of the blood brain barrier and the concerns that arise when this barrier is affected.

  7. Modeling Group B Streptococcus and Blood-Brain Barrier Interaction by Using Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells

    OpenAIRE

    Kim, Brandon J.; Bee, Olivia B.; McDonagh, Maura A.; Stebbins, Matthew J.; Palecek, Sean P.; Doran, Kelly S.; Shusta, Eric V.

    2017-01-01

    ABSTRACT Bacterial meningitis is a serious infection of the central nervous system (CNS) that occurs after bacteria interact with and penetrate the blood-brain barrier (BBB). The BBB is comprised of highly specialized brain microvascular endothelial cells (BMECs) that function to separate the circulation from the CNS and act as a formidable barrier for toxins and pathogens. Certain bacteria, such as Streptococcus agalactiae (group B Streptococcus [GBS]), possess the ability to interact with a...

  8. Promising approaches to circumvent the blood-brain barrier: progress, pitfalls and clinical prospects in brain cancer

    OpenAIRE

    Papademetriou, Iason T; Porter, Tyrone

    2015-01-01

    Brain drug delivery is a major challenge for therapy of central nervous system (CNS) diseases. Biochemical modifications of drugs or drug nanocarriers, methods of local delivery, and blood–brain barrier (BBB) disruption with focused ultrasound and microbubbles are promising approaches which enhance transport or bypass the BBB. These approaches are discussed in the context of brain cancer as an example in CNS drug development. Targeting to receptors enabling transport across the BBB offers non...

  9. Iron uptake and transport at the blood-brain barrier

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Thomsen, Louiza Bohn; Moos, Torben

    The mechanism by which iron is transported across the blood-brain barrier (BBB) remains controversial, and in this study we aimed to further clarify mechanisms by which iron is transported into the brain. We analyzed and compared the mRNA and protein expression of a variety of proteins involved...... in the transport of iron (transferrin receptor, divalent metal transporter I (DMT1), steap 2, steap 3, ceruloplasmin, hephaestin and ferroportin) in both primary rat brain capillary endothelial cells (BCEC) and immortalized rat brain capillary endothelial cell line (RBE4) grown in co-culture with defined polarity....... The mRNA expression of the iron-related molecules was also investigated in isolated brain capillaries from iron deficiency, iron reversible and normal rats. We also performed iron transport studies to analyze the routes by which iron is transported through the brain capillary endothelial cells: i) We...

  10. Blood Brain Barrier and Neuroinflammation Are Critical Targets of IGF-1-Mediated Neuroprotection in Stroke for Middle-Aged Female Rats

    Science.gov (United States)

    Bake, Shameena; Selvamani, Amutha; Cherry, Jessica; Sohrabji, Farida

    2014-01-01

    Ischemia-induced cerebral infarction is more severe in older animals as compared to younger animals, and is associated with reduced availability of insulin-like growth factor (IGF)-1. This study determined the effect of post-stroke IGF-1 treatment, and used microRNA profiling to identify mechanisms underlying IGF-1’s neuroprotective actions. Post-stroke ICV administration of IGF-1 to middle-aged female rats reduced infarct volume by 39% when measured 24h later. MicroRNA analyses of ischemic tissue collected at the early post-stroke phase (4h) indicated that 8 out of 168 disease-related miRNA were significantly downregulated by IGF-1. KEGG pathway analysis implicated these miRNA in PI3K-Akt signaling, cell adhesion/ECM receptor pathways and T-and B-cell signaling. Specific components of these pathways were subsequently analyzed in vehicle and IGF-1 treated middle-aged females. Phospho-Akt was reduced by ischemia at 4h, but elevated by IGF-1 treatment at 24h. IGF-1 induced Akt activation was preceded by a reduction of blood brain barrier permeability at 4h post-stroke and global suppression of cytokines including IL-6, IL-10 and TNF-α. A subset of these cytokines including IL-6 was also suppressed by IGF-1 at 24h post-stroke. These data are the first to show that the temporal and mechanistic components of post-stroke IGF-1 treatment in older animals, and that cellular components of the blood brain barrier may serve as critical targets of IGF-1 in the aging brain. PMID:24618563

  11. Inhibitory effects of furanocoumarin derivatives in Kampo extract medicines on P-glycoprotein at the blood-brain barrier.

    Science.gov (United States)

    Iwanaga, Kazunori; Yoneda, Shinji; Hamahata, Yukimi; Miyazaki, Makoto; Shibano, Makio; Taniguchi, Masahiko; Baba, Kimiye; Kakemi, Masawo

    2011-01-01

    Furanocoumarin derivatives, known as components of grapefruit juice, showing inhibitory effects against P-glycoprotein (P-gp) in the intestine are also contained in the plants of rutaceae and umbelliferae families, which are used as components of Kampo extract medicines. In this study, we investigated the inhibitory effects of byakangelicol and rivulobirin A, known as furanocoumarins showing P-gp inhibitory effect using Caco-2 monolayer, against P-gp at the blood-brain barrier (BBB) under both in vitro and in vivo conditions. First we studied the membrane permeability of furanocoumarins to clarify whether they can be absorbed from the intestine. Both furanocoumarins showed high permeability through the Caco-2 monolayer, suggesting that they can easily reach the systemic circulation after oral administration. Then, we evaluated the effect of these furanocoumarins on the uptake of calcein acetoxymethyl ester (calcein-AM), a P-gp substrate, into bovine brain microvascular endothelial cells (BBMEC). Both furanocoumarins significantly increased the uptake amount of calcein-AM into BBMEC by the inhibition of P-gp at the BBB in vitro. Next we also investigated the P-gp inhibitory effect of these furanocoumarins at the rat BBB in vivo using verapamil as a P-gp substrate. Both furanocoumarins increased the B/P ratio of verapamil compared to the control, even under in vivo conditions; however, the extent of the inhibitory effect was much lower than in vitro condition. In conclusion, byakangelicol and rivulobirin A may inhibit P-gp expressed at the BBB even under in vivo conditions. Further studies using Kampo extract medicines under in vivo condition are necessary for safe drug therapy.

  12. Evolutionary conservation of vertebrate blood-brain barrier chemoprotective mechanisms in Drosophila

    OpenAIRE

    Mayer, Fahima; Mayer, Nasima; Chinn, Leslie; Pinsonneault, Robert L.; Kroetz, Deanna; Bainton, Roland J.

    2009-01-01

    Pharmacologic remedy of many brain diseases is difficult because of the powerful drug exclusion properties of the blood-brain barrier (BBB). Chemical isolation of the vertebrate brain is achieved through the highly integrated, anatomically compact and functionally overlapping chemical isolation processes of the BBB. These include functions that need to be coordinated between tight diffusion junctions and unidirectionally-acting xenobiotic transporters. Understanding of many of these processes...

  13. Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets.

    Science.gov (United States)

    Chen, Cherry C; Sheeran, Paul S; Wu, Shih-Ying; Olumolade, Oluyemi O; Dayton, Paul A; Konofagou, Elisa E

    2013-12-28

    Focused ultrasound (FUS) in the presence of systemically administered microbubbles has been shown to locally, transiently and reversibly increase the permeability of the blood-brain barrier (BBB), thus allowing targeted delivery of therapeutic agents in the brain for the treatment of central nervous system diseases. Currently, microbubbles are the only agents that have been used to facilitate the FUS-induced BBB opening. However, they are constrained within the intravascular space due to their micron-size diameters, limiting the delivery effect at or near the microvessels. In the present study, acoustically-activated nanodroplets were used as a new class of contrast agents to mediate FUS-induced BBB opening in order to study the feasibility of utilizing these nanoscale phase-shift particles for targeted drug delivery in the brain. Significant dextran delivery was achieved in the mouse hippocampus using nanodroplets at clinically relevant pressures. Passive cavitation detection was used in the attempt to establish a correlation between the amount of dextran delivered in the brain and the acoustic emission recorded during sonication. Conventional microbubbles with the same lipid shell composition and perfluorobutane core as the nanodroplets were also used to compare the efficiency of an FUS-induced dextran delivery. It was found that nanodroplets had a higher BBB opening pressure threshold but a lower stable cavitation threshold than microbubbles, suggesting that contrast agent-dependent acoustic emission monitoring was needed. A more homogeneous dextran delivery within the targeted hippocampus was achieved using nanodroplets without inducing inertial cavitation or compromising safety. Our results offered a new means of developing the FUS-induced BBB opening technology for potential extravascular targeted drug delivery in the brain, extending the potential drug delivery region beyond the cerebral vasculature. © 2013.

  14. The effect of aging on brain barriers and the consequences for Alzheimer's disease development.

    Science.gov (United States)

    Gorlé, Nina; Van Cauwenberghe, Caroline; Libert, Claude; Vandenbroucke, Roosmarijn E

    2016-08-01

    Life expectancy has increased in most developed countries, which has led to an increase in the proportion of elderly people in the world's population. However, this increase in life expectancy is not accompanied by a lengthening of the health span since aging is characterized with progressive deterioration in cellular and organ functions. The brain is particularly vulnerable to disease, and this is reflected in the onset of age-related neurodegenerative diseases such as Alzheimer's disease. Research shows that dysfunction of two barriers in the central nervous system (CNS), the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB), plays an important role in the progression of these neurodegenerative diseases. The BBB is formed by the endothelial cells of the blood capillaries, whereas the BCSFB is formed by the epithelial cells of the choroid plexus (CP), both of which are affected during aging. Here, we give an overview of how these barriers undergo changes during aging and in Alzheimer's disease, thereby disturbing brain homeostasis. Studying these changes is needed in order to gain a better understanding of the mechanisms of aging at the brain barriers, which might lead to the development of new therapies to lengthen the health span (including mental health) and reduce the chances of developing Alzheimer's disease.

  15. The vasopressin receptor of the blood-brain barrier in the rat hippocampus is linked to calcium signalling

    DEFF Research Database (Denmark)

    Hess, J.; Jensen, Claus V.; Diemer, Nils Henrik

    1991-01-01

    Neuropathology, vasopressin receptor, VI subtype, blood-brain barrier, cerebral endothelium, hippocampus, Fura-2......Neuropathology, vasopressin receptor, VI subtype, blood-brain barrier, cerebral endothelium, hippocampus, Fura-2...

  16. Combining Nitrilotriacetic Acid and Permeable Barriers for Enhanced Phytoextraction of Heavy Metals from Municipal Solid Waste Compost by and Reduced Metal Leaching.

    Science.gov (United States)

    Zhao, Shulan; Jia, Lina; Duo, Lian

    2016-05-01

    Phytoextraction has the potential to remove heavy metals from contaminated soil, and chelants can be used to improve the capabilities of phytoextraction. However, environmentally persistent chelants can cause metal leaching and groundwater pollution. A column experiment was conducted to evaluate the viability of biodegradable nitrilotriacetic acid (NTA) to increase the uptake of heavy metals (Cd, Cr, Ni, Pb, Cu, and Zn) by L. in municipal solid waste (MSW) compost and to evaluate the effect of two permeable barrier materials, bone meal and crab shell, on metal leaching. The application of NTA significantly increased the concentrations and uptake of heavy metals in . The enhancement was more pronounced at higher dosages of NTA. In the 15 mmol kg NTA treatment using a crab shell barrier, the Cr and Ni concentrations in the plant shoots increased by approximately 8- and 10-fold, respectively, relative to the control. However, the addition of NTA also caused significant heavy metal leaching from the MSW compost. Bone meal and crab shell barriers positioned between the compost and the subsoil were effective in preventing metal leaching down through the soil profile by the retention of metals in the barrier. The application of a biodegradable chelant and the use of permeable barriers is a viable form of enhanced phytoextraction to increase the removal of metals and to reduce possible leaching. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. THE ROLE OF MULTIDRUG RESISTANCE ASSOCIATED PROTEIN (MRP) IN THE BLOOD-BRAIN BARRIER AND OPIOID ANALGESIA

    Science.gov (United States)

    Su, Wendy; Pasternak, Gavril W.

    2013-01-01

    The blood brain barrier protects the brain from circulating compounds and drugs. The ATP-binding cassette (ABC) transporter P-glycoprotein (Pgp) is involved with the barrier, both preventing the influx of agent from the blood into the brain and facilitating the efflux of compounds from the brain into the blood, raising the possibility of a similar role for other transporters. Multidrug resistance associated protein (MRP), a 190 kDa protein similar to Pgp is also ABC transport that has been implicated in the blood brain barrier. The current study explores its role in opioid action. Immunohistochemically, it is localized in the choroid plexus in ratsand can be selectively downregulated by antisense treatment at both the level of mRNA, as shown by RT-PCR, and protein, as demonstrated immunohistochemically. Behaviorally, downregulation of MRP significantly enhances the analgesic potency of systemic morphine in MRP knockout mice and in antisense-treated rats by lowering the blood brain barrier. Following intracerebroventricular administration, a number of compounds, including some opioids, are rapidly secreted from the brain into the blood where they contribute to the overall analgesic effects by activating peripheral systems. MRP plays a role in this efflux. Downregulating MRP expression leads to a corresponding decrease in the transport and a diminished analgesic response from opioids administered intracerebroventricularly. Thus, the transporter protein MRP plays a role in maintaining the blood-brain barrier and modulates the activity of opioids. PMID:23508590

  18. Transfection of rat brain endothelium in a primary culture model of the blood-brain barrier at different states of barrier maturity

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Thomsen, Louiza Bohn; Lichota, Jacek

    Central nervous system diseases are becoming more prevalent. Unfortunately, the treatment of CNS diseases is often rendered complicated by the inability of many drugs of therapeutic relevance to cross the blood-brain barrier (BBB). In order to enhance drug delivery to the brain, different...... approaches have been developed. Gene therapy could be a promising and novel approach to overcome the restricting properties of the BBB to polypeptides and proteins. Gene therapy is based on the delivery of genetic material into brain capillary endothelial cells (BCECs), which, theoretically, will result...... in expression and secretion of the recombinant protein from the BCECs and into the brain, thus turning BCECs into small recombinant protein factories. In this study, the possibility of using BCECs as small factories for recombinant protein production was investigated. To mimic the in-vivo situation as closely...

  19. Remodeling the blood–brain barrier microenvironment by natural products for brain tumor therapy

    Institute of Scientific and Technical Information of China (English)

    Xiao Zhao; Rujing Chen; Mei Liu; Jianfang Feng; Jun Chen; Kaili Hu

    2017-01-01

    Brain tumor incidence shows an upward trend in recent years; brain tumors account for 5% of adult tumors, while in children, this figure has increased to 70%. Moreover, 20%–30% of malignant tumors will eventually metastasize into the brain. Both benign and malignant tumors can cause an increase in intracranial pressure and brain tissue compression, leading to central nervous system(CNS) damage which endangers the patients’ lives. Despite the many approaches to treating brain tumors and the progress that has been made, only modest gains in survival time of brain tumor patients have been achieved. At present, chemotherapy is the treatment of choice for many cancers, but the special structure of the blood–brain barrier(BBB) limits most chemotherapeutic agents from passing through the BBB and penetrating into tumors in the brain. The BBB microenvironment contains numerous cell types, including endothelial cells, astrocytes, peripheral cells and microglia, and extracellular matrix(ECM). Many chemical components of natural products are reported to regulate the BBB microenvironment near brain tumors and assist in their treatment. This review focuses on the composition and function of the BBB microenvironment under both physiological and pathological conditions, and the current research progress in regulating the BBB microenvironment by natural products to promote the treatment of brain tumors.

  20. Theoretical Compartment Modeling of DCE-MRI Data Based on the Transport across Physiological Barriers in the Brain

    Directory of Open Access Journals (Sweden)

    Laura Fanea

    2012-01-01

    Full Text Available Neurological disorders represent major causes of lost years of healthy life and mortality worldwide. Development of their quantitative interdisciplinary in vivo evaluation is required. Compartment modeling (CM of brain data acquired in vivo using magnetic resonance imaging techniques with clinically available contrast agents can be performed to quantitatively assess brain perfusion. Transport of 1H spins in water molecules across physiological compartmental brain barriers in three different pools was mathematically modeled and theoretically evaluated in this paper and the corresponding theoretical compartment modeling of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI data was analyzed. The pools considered were blood, tissue, and cerebrospinal fluid (CSF. The blood and CSF data were mathematically modeled assuming continuous flow of the 1H spins in these pools. Tissue data was modeled using three CMs. Results in this paper show that transport across physiological brain barriers such as the blood to brain barrier, the extracellular space to the intracellular space barrier, or the blood to CSF barrier can be evaluated quantitatively. Statistical evaluations of this quantitative information may be performed to assess tissue perfusion, barriers' integrity, and CSF flow in vivo in the normal or disease-affected brain or to assess response to therapy.

  1. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water.

    Science.gov (United States)

    Yang, Ji; Cao, Limei; Guo, Rui; Jia, Jinping

    2010-12-15

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m(2)g(-1), the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater

    DEFF Research Database (Denmark)

    Turner, B.D.; Binning, Philip John; Sloan, S.W.

    2008-01-01

    The use of calcite (CaCO3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process...... leachate indicate that the complex chemical matrix of the SPL leachate can impact fluoride removal significantly. For SPL contaminant mixtures, fluoride removal is initially less than expected from idealized, pure, solutions. However, with time, the effect of other contaminants on fluoride removal...... diminishes. Column tests also show that pH control is important for optimizing fluoride removal with the mass removed increasing with decreasing pH. Barrier pH can be regulated by CO2 addition with the point of injection being critical for optimising the remediation performance. Experimental and model...

  3. Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors

    Directory of Open Access Journals (Sweden)

    Griffiths Gary L

    2009-06-01

    Full Text Available Abstract Background The existence of large pores in the blood-tumor barrier (BTB of malignant solid tumor microvasculature makes the blood-tumor barrier more permeable to macromolecules than the endothelial barrier of most normal tissue microvasculature. The BTB of malignant solid tumors growing outside the brain, in peripheral tissues, is more permeable than that of similar tumors growing inside the brain. This has been previously attributed to the larger anatomic sizes of the pores within the BTB of peripheral tumors. Since in the physiological state in vivo a fibrous glycocalyx layer coats the pores of the BTB, it is possible that the effective physiologic pore size in the BTB of brain tumors and peripheral tumors is similar. If this were the case, then the higher permeability of the BTB of peripheral tumor would be attributable to the presence of a greater number of pores in the BTB of peripheral tumors. In this study, we probed in vivo the upper limit of pore size in the BTB of rodent malignant gliomas grown inside the brain, the orthotopic site, as well as outside the brain in temporalis skeletal muscle, the ectopic site. Methods Generation 5 (G5 through generation 8 (G8 polyamidoamine dendrimers were labeled with gadolinium (Gd-diethyltriaminepentaacetic acid, an anionic MRI contrast agent. The respective Gd-dendrimer generations were visualized in vitro by scanning transmission electron microscopy. Following intravenous infusion of the respective Gd-dendrimer generations (Gd-G5, N = 6; Gd-G6, N = 6; Gd-G7, N = 5; Gd-G8, N = 5 the blood and tumor tissue pharmacokinetics of the Gd-dendrimer generations were visualized in vivo over 600 to 700 minutes by dynamic contrast-enhanced MRI. One additional animal was imaged in each Gd-dendrimer generation group for 175 minutes under continuous anesthesia for the creation of voxel-by-voxel Gd concentration maps. Results The estimated diameters of Gd-G7 dendrimers were 11 ± 1 nm and those of Gd-G8

  4. Next generation of non-mammalian blood-brain barrier models to study parasitic infections of the central nervous system

    OpenAIRE

    Siddiqui, Ruqaiyyah; Edwards-Smallbone, James; Flynn, Robin; Khan, Naveed Ahmed

    2012-01-01

    Transmigration of neuropathogens across the blood-brain barrier is a key step in the development of central nervous system infections, making it a prime target for drug development. The ability of neuropathogens to traverse the blood-brain barrier continues to inspire researchers to understand the specific strategies and molecular mechanisms that allow them to enter the brain. The availability of models of the blood-brain barrier that closely mimic the situation in vivo offers unprecedented o...

  5. Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen.

    Science.gov (United States)

    Santiago-Tirado, Felipe H; Onken, Michael D; Cooper, John A; Klein, Robyn S; Doering, Tamara L

    2017-01-31

    The blood-brain barrier (BBB) protects the central nervous system (CNS) by restricting the passage of molecules and microorganisms. Despite this barrier, however, the fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that is estimated to kill over 600,000 people annually. Cryptococcal infection begins in the lung, and experimental evidence suggests that host phagocytes play a role in subsequent dissemination, although this role remains ill defined. Additionally, the disparate experimental approaches that have been used to probe various potential routes of BBB transit make it impossible to assess their relative contributions, confounding any integrated understanding of cryptococcal brain entry. Here we used an in vitro model BBB to show that a "Trojan horse" mechanism contributes significantly to fungal barrier crossing and that host factors regulate this process independently of free fungal transit. We also, for the first time, directly imaged C. neoformans-containing phagocytes crossing the BBB, showing that they do so via transendothelial pores. Finally, we found that Trojan horse crossing enables CNS entry of fungal mutants that cannot otherwise traverse the BBB, and we demonstrate additional intercellular interactions that may contribute to brain entry. Our work elucidates the mechanism of cryptococcal brain invasion and offers approaches to study other neuropathogens. The fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that kills hundreds of thousands of people each year. One route that has been proposed for this brain entry is a Trojan horse mechanism, whereby the fungus crosses the blood-brain barrier (BBB) as a passenger inside host phagocytes. Although indirect experimental evidence supports this intriguing mechanism, it has never been directly visualized. Here we directly image Trojan horse transit and show that it is regulated independently of free fungal entry, contributes

  6. Electrospun gelatin biopapers as substrate for in vitro bilayer models of blood-brain barrier tissue.

    Science.gov (United States)

    Bischel, Lauren L; Coneski, Peter N; Lundin, Jeffrey G; Wu, Peter K; Giller, Carl B; Wynne, James; Ringeisen, Brad R; Pirlo, Russell K

    2016-04-01

    Gaining a greater understanding of the blood-brain barrier (BBB) is critical for improvement in drug delivery, understanding pathologies that compromise the BBB, and developing therapies to protect the BBB. In vitro human tissue models are valuable tools for studying these issues. The standard in vitro BBB models use commercially available cell culture inserts to generate bilayer co-cultures of astrocytes and endothelial cells (EC). Electrospinning can be used to produce customized cell culture substrates with optimized material composition and mechanical properties with advantages over off-the-shelf materials. Electrospun gelatin is an ideal cell culture substrate because it is a natural polymer that can aid cell attachment and be modified and degraded by cells. Here, we have developed a method to produce cell culture inserts with electrospun gelatin "biopaper" membranes. The electrospun fiber diameter and cross-linking method were optimized for the growth of primary human endothelial cell and primary human astrocyte bilayer co-cultures to model human BBB tissue. BBB co-cultures on biopaper were characterized via cell morphology, trans-endothelial electrical resistance (TEER), and permeability to FITC-labeled dextran and compared to BBB co-cultures on standard cell culture inserts. Over longer culture periods (up to 21 days), cultures on the optimized electrospun gelatin biopapers were found to have improved TEER, decreased permeability, and permitted a smaller separation between co-cultured cells when compared to standard PET inserts. © 2016 Wiley Periodicals, Inc.

  7. Protective effects of hydroxysaffor yellow A on brain injury in mice irradiated by 300 MeV/n 12C6+ ions

    International Nuclear Information System (INIS)

    Gan Lu; Wang Zhenhua; Zhang Hong; Ma Chengjun; Li Guang

    2012-01-01

    Radiation encephalopathy is the main complication of cranial radiotherapy. It can cause necrosis of brain tissue and cognitive dysfunction, to which no ideal prevention method is available until now. Hydroxysaffor yellow A (HSYA) is the main active ingredient of the traditional Chinese medicine safflower, with protective effects against cerebral ischemic injury. In this work, we investigated the protective effects of HSYA on brain injury in mice irradiated by 300 MeV/u 12 C 6+ ion beam. The whole head of male Kunming mouse was irradiated to 4.0 Gy after receiving daily intra-peritoneal injection HSYA for 3 d. One month later, the Morris water maze test was used to detect the spatial memory in mice. The Evans blue was used as the tracer to evaluate the permeability of blood-brain barrier. The SOD activity and MDA content in brain tissue were assayed by test kits. The results showed that the 12 C 6+ irradiation significantly impaired the spatial learning and memory in mice, increased the permeability of blood-brain barrier and the MDA content in brain tissue, whereas decreased the SOD activity in brain tissue. The pretreatment with HSYA could improve the spatial memory deficits and inhibit the changes of the blood-brain barrier, the SOD activity and the MDA content in brain tissue in mice. All these demonstrate that HSYA possesses the protective effect against brain injury induced by 12 C 6+ particle therapy. (authors)

  8. The Eye/Brain Radioactivity Ratio for Assessment of Graves Ophthalmopathy

    International Nuclear Information System (INIS)

    Lee, B. W.; Sung, S. K.; Suh, K. S.; Park, W.; Choi, D. J.; Kim, J. S.

    1988-01-01

    In Graves' disease, changes in orbital tissue and structure are caused by inflammatory infiltration, which induces increase of capillary permeability and breakdown of blood-tissue barriers. Using the uptake of 99m Tc-DTPA in inflammatory lesion, Eye/Brain radioactivity ratios in brain scintigraphy were evaluated in 15 normal controls and 40 Graves' patients. The results were as follows; 1) Eye/Brain radioactivity ratio was significantly higher in Graves' ophthalmopathy group than in control group (p 99m Tc-DTPA brain scintigraphy may be useful to determine the activity of Graves' ophthalmopathy and whether treatment of Graves' ophthalmopathy is necessary or not.

  9. The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes.

    Directory of Open Access Journals (Sweden)

    Michael K DeSalvo

    2014-11-01

    Full Text Available AbstractCentral nervous system (CNS function is dependent on the stringent regulation of metabolites, drugs, cells, and pathogens exposed to the CNS space. Cellular blood-brain barrier (BBB structures are highly specific checkpoints governing entry and exit of all small molecules to and from the brain interstitial space, but the precise mechanisms that regulate the BBB are not well understood. In addition, the BBB has long been a challenging obstacle to the pharmacologic treatment of CNS diseases; thus model systems that can parse the functions of the BBB are highly desirable. In this study, we sought to define the transcriptome of the adult Drosophila melanogaster BBB by isolating the BBB surface glia with FACS and profiling their gene expression with microarrays. By comparing the transcriptome of these surface glia to that of all brain glia, brain neurons, and whole brains, we present a catalog of transcripts that are selectively enriched at the Drosophila BBB. We found that the fly surface glia show high expression of many ABC and SLC transporters, cell adhesion molecules, metabolic enzymes, signaling molecules, and components of xenobiotic metabolism pathways. Using gene sequence-based alignments, we compare the Drosophila and Murine BBB transcriptomes and discover many shared chemoprotective and small molecule control pathways, thus affirming the relevance of invertebrate models for studying evolutionary conserved BBB properties. The Drosophila BBB transcriptome is valuable to vertebrate and insect biologists alike as a resource for studying proteins underlying diffusion barrier development and maintenance, glial biology, and regulation of drug transport at tissue barriers.

  10. The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes.

    Science.gov (United States)

    DeSalvo, Michael K; Hindle, Samantha J; Rusan, Zeid M; Orng, Souvinh; Eddison, Mark; Halliwill, Kyle; Bainton, Roland J

    2014-01-01

    Central nervous system (CNS) function is dependent on the stringent regulation of metabolites, drugs, cells, and pathogens exposed to the CNS space. Cellular blood-brain barrier (BBB) structures are highly specific checkpoints governing entry and exit of all small molecules to and from the brain interstitial space, but the precise mechanisms that regulate the BBB are not well understood. In addition, the BBB has long been a challenging obstacle to the pharmacologic treatment of CNS diseases; thus model systems that can parse the functions of the BBB are highly desirable. In this study, we sought to define the transcriptome of the adult Drosophila melanogaster BBB by isolating the BBB surface glia with fluorescence activated cell sorting (FACS) and profiling their gene expression with microarrays. By comparing the transcriptome of these surface glia to that of all brain glia, brain neurons, and whole brains, we present a catalog of transcripts that are selectively enriched at the Drosophila BBB. We found that the fly surface glia show high expression of many ATP-binding cassette (ABC) and solute carrier (SLC) transporters, cell adhesion molecules, metabolic enzymes, signaling molecules, and components of xenobiotic metabolism pathways. Using gene sequence-based alignments, we compare the Drosophila and Murine BBB transcriptomes and discover many shared chemoprotective and small molecule control pathways, thus affirming the relevance of invertebrate models for studying evolutionary conserved BBB properties. The Drosophila BBB transcriptome is valuable to vertebrate and insect biologists alike as a resource for studying proteins underlying diffusion barrier development and maintenance, glial biology, and regulation of drug transport at tissue barriers.

  11. Amphiphilic HPMA-LMA copolymers increase the transport of Rhodamine 123 across a BBB model without harming its barrier integrity.

    Science.gov (United States)

    Hemmelmann, Mirjam; Metz, Verena V; Koynov, Kaloian; Blank, Kerstin; Postina, Rolf; Zentel, Rudolf

    2012-10-28

    The successful non-invasive treatment of diseases associated with the central nervous system (CNS) is generally limited by poor brain permeability of various developed drugs. The blood-brain barrier (BBB) prevents the passage of therapeutics to their site of action. Polymeric drug delivery systems are promising solutions to effectively transport drugs into the brain. We recently showed that amphiphilic random copolymers based on the hydrophilic p(N-(2-hydroxypropyl)-methacrylamide), pHPMA, possessing randomly distributed hydrophobic p(laurylmethacrylate), pLMA, are able to mediate delivery of domperidone into the brain of mice in vivo. To gain further insight into structure-property relations, a library of carefully designed polymers based on p(HPMA) and p(LMA) was synthesized and tested applying an in vitro BBB model which consisted of human brain microvascular endothelial cells (HBMEC). Our model drug Rhodamine 123 (Rh123) exhibits, like domperidone, a low brain permeability since both substances are recognized by efflux transporters at the BBB. Transport studies investigating the impact of the polymer architecture in relation to the content of hydrophobic LMA revealed that random p(HPMA)-co-p(LMA) having 10mol% LMA is the most auspicious system. The copolymer significantly increased the permeability of Rh123 across the HBMEC monolayer whereas transcytosis of the polymer was very low. Further investigations on the mechanism of transport showed that integrity and barrier function of the BBB model were not harmed by the polymer. According to our results, p(HPMA)-co-p(LMA) copolymers are a promising delivery system for neurological therapeutics and their application might open alternative treatment strategies. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Transport of drugs across the blood-brain barrier by nanoparticles.

    Science.gov (United States)

    Wohlfart, Stefanie; Gelperina, Svetlana; Kreuter, Jörg

    2012-07-20

    The central nervous system is well protected by the blood-brain barrier (BBB) which maintains its homeostasis. Due to this barrier many potential drugs for the treatment of diseases of the central nervous system (CNS) cannot reach the brain in sufficient concentrations. One possibility to deliver drugs to the CNS is the employment of polymeric nanoparticles. The ability of these carriers to overcome the BBB and to produce biologic effects on the CNS was shown in a number of studies. Over the past few years, progress in understanding of the mechanism of the nanoparticle uptake into the brain was made. This mechanism appears to be receptor-mediated endocytosis in brain capillary endothelial cells. Modification of the nanoparticle surface with covalently attached targeting ligands or by coating with certain surfactants enabling the adsorption of specific plasma proteins are necessary for this receptor-mediated uptake. The delivery of drugs, which usually are not able to cross the BBB, into the brain was confirmed by the biodistribution studies and pharmacological assays in rodents. Furthermore, the presence of nanoparticles in the brain parenchyma was visualized by electron microscopy. The intravenously administered biodegradable polymeric nanoparticles loaded with doxorubicin were successfully used for the treatment of experimental glioblastoma. These data, together with the possibility to employ nanoparticles for delivery of proteins and other macromolecules across the BBB, suggest that this technology holds great promise for non-invasive therapy of the CNS diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Three-dimensional culture conditions differentially affect astrocyte modulation of brain endothelial barrier function in response to transforming growth factor β1.

    Science.gov (United States)

    Hawkins, Brian T; Grego, Sonia; Sellgren, Katelyn L

    2015-05-22

    Blood-brain barrier (BBB) function is regulated by dynamic interactions among cell types within the neurovascular unit, including astrocytes and endothelial cells. Co-culture models of the BBB typically involve astrocytes seeded on two-dimensional (2D) surfaces, which recent studies indicate cause astrocytes to express a phenotype similar to that of reactive astrocytes in situ. We hypothesized that the culture conditions of astrocytes would differentially affect their ability to modulate BBB function in vitro. Brain endothelial cells were grown alone or in co-culture with astrocytes. Astrocytes were grown either as conventional (2D) monolayers, or in a collagen-based gel which allows them to grow in a three-dimensional (3D) construct. Astrocytes were viable in 3D conditions, and displayed a marked reduction in their expression of glial fibrillary acidic protein (GFAP), suggesting reduced activation. Stimulation of astrocytes with transforming growth factor (TGF)β1 decreased transendothelial electrical resistance (TEER) and reduced expression of claudin-5 in co-cultures, whereas treatment of endothelial cells in the absence of astrocytes was without effect. The effect of TGFβ1 on TEER was significantly more pronounced in endothelial cells cultured with 3D astrocytes compared to 2D astrocytes. These results demonstrate that astrocyte culture conditions differentially affect their ability to modulate brain endothelial barrier function, and suggest a direct relationship between reactive gliosis and BBB permeability. Moreover, these studies demonstrate the potential importance of physiologically relevant culture conditions to in vitro modeling of disease processes that affect the neurovascular unit. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Ultrasound effects on brain-targeting mannosylated liposomes: in vitro and blood-brain barrier transport investigations.

    Science.gov (United States)

    Zidan, Ahmed S; Aldawsari, Hibah

    2015-01-01

    Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood-brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood-brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes.

  15. Mechanisms that determine the internal environment of the developing brain

    DEFF Research Database (Denmark)

    Liddelow, Shane A; Dziegielewska, Katarzyna M; Ek, C Joakim

    2013-01-01

    We provide comprehensive identification of embryonic (E15) and adult rat lateral ventricular choroid plexus transcriptome, with focus on junction-associated proteins, ionic influx transporters and channels. Additionally, these data are related to new structural and previously published permeability...... studies. Results reveal that most genes associated with intercellular junctions are expressed at similar levels at both ages. In total, 32 molecules known to be associated with brain barrier interfaces were identified. Nine claudins showed unaltered expression, while two claudins (6 and 8) were expressed......, a large number of previously unidentified ion channel and transporter genes were identified for the first time in plexus epithelium. These results, in addition to data obtained from electron microscopical and physiological permeability experiments in immature brains, indicate that exchange between blood...

  16. Glucose transporter of the human brain and blood-brain barrier

    International Nuclear Information System (INIS)

    Kalaria, R.N.; Gravina, S.A.; Schmidley, J.W.; Perry, G.; Harik, S.I.

    1988-01-01

    We identified and characterized the glucose transporter in the human cerebral cortex, cerebral microvessels, and choroid plexus by specific D-glucose-displaceable [3H]cytochalasin B binding. The binding was saturable, with a dissociation constant less than 1 microM. Maximal binding capacity was approximately 7 pmol/mg protein in the cerebral cortex, approximately 42 pmol/mg protein in brain microvessels, and approximately 27 pmol/mg protein in the choroid plexus. Several hexoses displaced specific [3H]cytochalasin B binding to microvessels in a rank-order that correlated well with their known ability to cross the blood-brain barrier; the only exception was 2-deoxy-D-glucose, which had much higher affinity for the glucose transporter than the natural substrate, D-glucose. Irreversible photoaffinity labeling of the glucose transporter of microvessels with [3H]cytochalasin B, followed by solubilization and polyacrylamide gel electrophoresis, labeled a protein band with an average molecular weight of approximately 55,000. Monoclonal and polyclonal antibodies specific to the human erythrocyte glucose transporter immunocytochemically stained brain blood vessels and the few trapped erythrocytes in situ, with minimal staining of the neuropil. In the choroid plexus, blood vessels did not stain, but the epithelium reacted positively. We conclude that human brain microvessels are richly endowed with a glucose transport moiety similar in molecular weight and antigenic characteristics to that of human erythrocytes and brain microvessels of other mammalian species

  17. Blood-brain barrier-on-a-chip: Microphysiological systems that capture the complexity of the blood-central nervous system interface.

    Science.gov (United States)

    Phan, Duc Tt; Bender, R Hugh F; Andrejecsk, Jillian W; Sobrino, Agua; Hachey, Stephanie J; George, Steven C; Hughes, Christopher Cw

    2017-11-01

    The blood-brain barrier is a dynamic and highly organized structure that strictly regulates the molecules allowed to cross the brain vasculature into the central nervous system. The blood-brain barrier pathology has been associated with a number of central nervous system diseases, including vascular malformations, stroke/vascular dementia, Alzheimer's disease, multiple sclerosis, and various neurological tumors including glioblastoma multiforme. There is a compelling need for representative models of this critical interface. Current research relies heavily on animal models (mostly mice) or on two-dimensional (2D) in vitro models, neither of which fully capture the complexities of the human blood-brain barrier. Physiological differences between humans and mice make translation to the clinic problematic, while monolayer cultures cannot capture the inherently three-dimensional (3D) nature of the blood-brain barrier, which includes close association of the abluminal side of the endothelium with astrocyte foot-processes and pericytes. Here we discuss the central nervous system diseases associated with blood-brain barrier pathology, recent advances in the development of novel 3D blood-brain barrier -on-a-chip systems that better mimic the physiological complexity and structure of human blood-brain barrier, and provide an outlook on how these blood-brain barrier-on-a-chip systems can be used for central nervous system disease modeling. Impact statement The field of microphysiological systems is rapidly evolving as new technologies are introduced and our understanding of organ physiology develops. In this review, we focus on Blood-Brain Barrier (BBB) models, with a particular emphasis on how they relate to neurological disorders such as Alzheimer's disease, multiple sclerosis, stroke, cancer, and vascular malformations. We emphasize the importance of capturing the three-dimensional nature of the brain and the unique architecture of the BBB - something that until recently

  18. Next generation of non-mammalian blood-brain barrier models to study parasitic infections of the central nervous system

    Science.gov (United States)

    Siddiqui, Ruqaiyyah; Edwards-Smallbone, James; Flynn, Robin; Khan, Naveed Ahmed

    2012-01-01

    Transmigration of neuropathogens across the blood-brain barrier is a key step in the development of central nervous system infections, making it a prime target for drug development. The ability of neuropathogens to traverse the blood-brain barrier continues to inspire researchers to understand the specific strategies and molecular mechanisms that allow them to enter the brain. The availability of models of the blood-brain barrier that closely mimic the situation in vivo offers unprecedented opportunities for the development of novel therapeutics. PMID:21921682

  19. Drug and xenobiotic biotransformation in the blood-brain barrier: A neglected issue.

    Directory of Open Access Journals (Sweden)

    José A.G. Agúndez

    2014-10-01

    Full Text Available Drug biotransformation is a crucial mechanism for facilitating the elimination of chemicals from the organism and for decreasing their pharmacological activity. Published evidence suggests that brain drug metabolism may play a role in the development of adverse drug reactions and in the clinical response to drugs and xenobiotics. The blood-brain barrier (BBB has been regarded mainly as a physical barrier for drugs and xenobiotics, and little attention has been paid to BBB as a drug-metabolizing barrier. The presence of drug metabolizing enzymes in the BBB is likely to have functional implications because local metabolism may inactivate drugs or may modify the drug's ability to cross the BBB, thus modifying the drug response and the risk of developing adverse drug reactions. In this perspective paper, we discuss the expression of relevant xenobiotic metabolizing enzymes in the brain and in the BBB, and we cover current advances and future directions on the potential role of these BBB drug-metabolizing enzymes as modifiers of drug response.

  20. Smuggling Drugs into the Brain : An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood-Brain Barrier

    NARCIS (Netherlands)

    Zuhorn, Inge; Georgieva, Julia V.; Hoekstra, Dick

    2015-01-01

    The blood-brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics

  1. Modeling the ischemic blood-brain barrier; the effects of oxygen-glucose deprivation (OGD) on endothelial cells in culture

    DEFF Research Database (Denmark)

    Tornabene, Erica; Helms, Hans Christian Cederberg; Berndt, Philipp

    Introduction - The blood-brain barrier (BBB) is a physical, transport and metabolic barrier which plays a key role in preventing uncontrolled exchanges between blood and brain, ensuring an optimal environment for neurons activity. This extent interface is created by the endothelial cells forming...... pathways across the barrier in ischemic and postischemic brain endothelium is important for developing new medical therapies capable to exploit the barrier changes occurring during/after ischemia to permeate in the brain and treat this devastating disease. Materials and Methods - Primary cultures...... the wall of brain capillaries. The restrictive nature of the BBB is due to the tight junctions (TJs), which seal the intercellular clefts, limiting the paracellular diffusion, efflux transporters, which extrude xenobiotics, and metabolizing enzymes, which may break down or convert molecules during...

  2. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs)

    DEFF Research Database (Denmark)

    Muchitsch, Nanna; Nooten, Thomas Van; Bastiaens, Leen

    2011-01-01

    An important issue of concern for permeable reactive iron barriers is the long-term efficiency of the barriers due to the long operational periods required. Mineral precipitation resulting from the anaerobic corrosion of the iron filings and bacteria present in the barrier may play an important...... performed equally well as virgin granular iron of the same type based on determined degradation rates despite that parts of the cored iron material were covered by mineral precipitates (especially iron sulfides, carbonate green rust and aragonite). The PCR analysis performed on the iron core samples...

  3. Correlation of Ultrastructural Changes of Endothelial Cells and Astrocytes Occurring during Blood Brain Barrier Damage after Traumatic Brain Injury with Biochemical Markers of Blood Brain Barrier Leakage and Inflammatory Response

    Czech Academy of Sciences Publication Activity Database

    Vajtr, D.; Benada, Oldřich; Kukačka, J.; Průša, R.; Houšťava, L.; Toupalík, P.; Kizek, R.

    2009-01-01

    Roč. 58, č. 2 (2009), s. 263-268 ISSN 0862-8408 Institutional research plan: CEZ:AV0Z50200510 Keywords : Blood brain barrier * Expansive contusion * Metalloproteinases Subject RIV: EE - Microbiology, Virology Impact factor: 1.430, year: 2009

  4. Restraint stress-induced morphological changes at the blood-brain barrier in adult rats

    Directory of Open Access Journals (Sweden)

    Petra eSántha

    2016-01-01

    Full Text Available Stress is well known to contribute to the development of both neurological and psychiatric diseases. While the role of the blood-brain barrier is increasingly recognised in the development of neurodegenerative disorders, such as Alzheimer’s disease, dysfunction of the blood-brain barrier has been linked to stress-related psychiatric diseases only recently. In the present study the effects of restraint stress with different duration (1, 3 and 21 days were investigated on the morphology of the blood-brain barrier in male adult Wistar rats. Frontal cortex and hippocampus sections were immunostained for markers of brain endothelial cells (claudin-5, occludin and glucose transporter-1 and astroglia (GFAP. Staining pattern and intensity were visualized by confocal microscopy and evaluated by several types of image analysis. The ultrastructure of brain capillaries was investigated by electron microscopy. Morphological changes and intensity alterations in brain endothelial tight junction proteins claudin-5 and occludin were induced by stress. Following restraint stress significant increases in the fluorescence intensity of glucose transporter-1 were detected in brain endothelial cells in the frontal cortex and hippocampus. Significant reductions in GFAP fluorescence intensity were observed in the frontal cortex in all stress groups. As observed by electron microscopy, one-day acute stress induced morphological changes indicating damage in capillary endothelial cells in both brain regions. After 21 days of stress thicker and irregular capillary basal membranes in the hippocampus and edema in astrocytes in both regions were seen. These findings indicate that stress exerts time-dependent changes in the staining pattern of tight junction proteins occludin, claudin-5 and glucose transporter-1 at the level of brain capillaries and in the ultrastructure of brain endothelial cells and astroglial endfeet, which may contribute to neurodegenerative processes

  5. Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development

    DEFF Research Database (Denmark)

    Møllgård, Kjeld; Dziegielewska, Katarzyna M.; Holst, Camilla B.

    2017-01-01

    Adult brain is protected from entry of drugs and toxins by specific mechanisms such as ABC (ATP-binding Cassette) efflux transporters. Little is known when these appear in human brain during development. Cellular distribution of three main ABC transporters (ABCC1, ABCG2, ABCB1) was determined...... at blood-brain barriers and interfaces in human embryos and fetuses in first half of gestation. Antibodies against claudin-5 and-11 and antibodies to α-fetoprotein were used to describe morphological and functional aspects of brain barriers. First exchange interfaces to be established, probably at 4...... three transporters. Results provide evidence for sequential establishment of brain exchange interfaces and spatial and temporal timetable for three main ABC transporters in early human brain....

  6. Remediation of groundwater contaminated with the lead-phenol binary system by granular dead anaerobic sludge-permeable reactive barrier.

    Science.gov (United States)

    Faisal, Ayad A H; Abd Ali, Ziad T

    2017-10-01

    Computer solutions (COMSOL) Multiphysics 3.5a software was used for simulating the one-dimensional equilibrium transport of the lead-phenol binary system including the sorption process through saturated sandy soil as the aquifer and granular dead anaerobic sludge (GDAS) as the permeable reactive barrier. Fourier-transform infrared spectroscopy analysis proved that the carboxylic and alcohol groups are responsible for the bio-sorption of lead onto GDAS, while phosphines, aromatic and alkane are the functional groups responsible for the bio-sorption of phenol. Batch tests have been performed to characterize the equilibrium sorption properties of the GDAS and sandy soil in lead and/or phenol containing aqueous solutions. Numerical and experimental results proved that the barrier plays a potential role in the restriction of the contaminant plume migration and there is a linear relationship between longevity and thickness of the barrier. A good agreement between these results was recognized with root mean squared error not exceeding 0.04.

  7. Preparation of Silica Nanoparticles Loaded with Nootropics and Their In Vivo Permeation through Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    Josef Jampilek

    2015-01-01

    Full Text Available The blood-brain barrier prevents the passage of many drugs that target the central nervous system. This paper presents the preparation and characterization of silica-based nanocarriers loaded with piracetam, pentoxifylline, and pyridoxine (drugs from the class of nootropics, which are designed to enhance the permeation of the drugs from the circulatory system through the blood-brain barrier. Their permeation was compared with non-nanoparticle drug substances (bulk materials by means of an in vivo model of rat brain perfusion. The size and morphology of the nanoparticles were characterized by transmission electron microscopy. The content of the drug substances in silica-based nanocarriers was analysed by elemental analysis and UV spectrometry. Microscopic analysis of visualized silica nanocarriers in the perfused brain tissue was performed. The concentration of the drug substances in the tissue was determined by means of UHPLC-DAD/HRMS LTQ Orbitrap XL. It was found that the drug substances in silica-based nanocarriers permeated through the blood brain barrier to the brain tissue, whereas bulk materials were not detected in the brain.

  8. Preparation of silica nanoparticles loaded with nootropics and their in vivo permeation through blood-brain barrier.

    Science.gov (United States)

    Jampilek, Josef; Zaruba, Kamil; Oravec, Michal; Kunes, Martin; Babula, Petr; Ulbrich, Pavel; Brezaniova, Ingrid; Opatrilova, Radka; Triska, Jan; Suchy, Pavel

    2015-01-01

    The blood-brain barrier prevents the passage of many drugs that target the central nervous system. This paper presents the preparation and characterization of silica-based nanocarriers loaded with piracetam, pentoxifylline, and pyridoxine (drugs from the class of nootropics), which are designed to enhance the permeation of the drugs from the circulatory system through the blood-brain barrier. Their permeation was compared with non-nanoparticle drug substances (bulk materials) by means of an in vivo model of rat brain perfusion. The size and morphology of the nanoparticles were characterized by transmission electron microscopy. The content of the drug substances in silica-based nanocarriers was analysed by elemental analysis and UV spectrometry. Microscopic analysis of visualized silica nanocarriers in the perfused brain tissue was performed. The concentration of the drug substances in the tissue was determined by means of UHPLC-DAD/HRMS LTQ Orbitrap XL. It was found that the drug substances in silica-based nanocarriers permeated through the blood brain barrier to the brain tissue, whereas bulk materials were not detected in the brain.

  9. In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs

    DEFF Research Database (Denmark)

    Eigenmann, Daniela Elisabeth; Dürig, Carmen; Jähne, Evelyn Andrea

    2016-01-01

    The alkaloid piperine from black pepper (Piper nigrum L.) and several synthetic piperine analogs were recently identified as positive allosteric modulators of γ-aminobutyric acid type A (GABAA) receptors. In order to reach their target sites of action, these compounds need to enter the brain by c...

  10. Status epilepticus, blood-brain barrier disruption, inflammation, and epileptogenesis

    NARCIS (Netherlands)

    Gorter, Jan A.; van Vliet, Erwin A.; Aronica, Eleonora

    2015-01-01

    Over the last 15 years, attention has been focused on dysfunction of the cerebral vasculature and inflammation as important players in epileptogenic processes, with a specific emphasis on failure of the blood-brain barrier (BBB; Fig. 1) (Seiffert et al., 2004; Marchi et al., 2007; Oby and Janigro,

  11. The blood-brain barrier and oncology : new insights into function and modulation

    NARCIS (Netherlands)

    Bart, J; Groen, HJM; Hendrikse, NH; van der Graaf, WTA; Vaalburg, W; de Vries, EGE

    2000-01-01

    The efficacy of chemotherapy for malignant primary or metastatic brain tumours is still poor. This is at least partly due to the presence of the blood-brain barrier (BBB). The functionality of the BBB can be explained by physicochemical features and efflux pump mechanisms. An overview of the

  12. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice.

    Science.gov (United States)

    Ma, Elise L; Smith, Allen D; Desai, Neemesh; Cheung, Lumei; Hanscom, Marie; Stoica, Bogdan A; Loane, David J; Shea-Donohue, Terez; Faden, Alan I

    2017-11-01

    Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric pathogen Citrobacter rodentium (Cr) on both gut and brain after injury. Moderate-level TBI was induced in C57BL/6mice by controlled cortical impact (CCI). Mucosal barrier function was assessed by transepithelial resistance, fluorescent-labelled dextran flux, and quantification of tight junction proteins. Enteric glial cell number and activation were measured by Sox10 expression and GFAP reactivity, respectively. Separate groups of mice were challenged with Cr infection during the chronic phase of TBI, and host immune response, barrier integrity, enteric glial cell reactivity, and progression of brain injury and inflammation were assessed. Chronic CCI induced changes in colon morphology, including increased mucosal depth and smooth muscle thickening. At day 28 post-CCI, increased paracellular permeability and decreased claudin-1 mRNA and protein expression were observed in the absence of inflammation in the colon. Colonic glial cell GFAP and Sox10 expression were significantly increased 28days after brain injury. Clearance of Cr and upregulation of Th1/Th17 cytokines in the colon were unaffected by CCI; however, colonic paracellular flux and enteric glial cell GFAP expression were significantly increased. Importantly, Cr infection in chronically-injured mice worsened the brain lesion injury and increased astrocyte- and microglial-mediated inflammation. These experimental studies demonstrate chronic and bidirectional brain-gut interactions after TBI, which may negatively impact late outcomes after brain injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. [Acid-base equilibrium and the brain].

    Science.gov (United States)

    Rabary, O; Boussofara, M; Grimaud, D

    1994-01-01

    In physiological conditions, the regulation of acid-base balance in brain maintains a noteworthy stability of cerebral pH. During systemic metabolic acid-base imbalances cerebral pH is well controlled as the blood/brain barrier is slowly and poorly permeable to electrolytes (HCO3- and H+). Cerebral pH is regulated by a modulation of the respiratory drive, triggered by the early alterations of interstitial fluid pH, close to medullary chemoreceptors. As blood/brain barrier is highly permeable to Co2, CSF pH is corrected in a few hours, even in case of severe metabolic acidosis and alkalosis. Conversely, during ventilatory acidosis and alkalosis the cerebral pH varies in the same direction and in the same range than blood pH. Therefore, the brain is better protected against metabolic than ventilatory acid-base imbalances. Ventilatory acidosis and alkalosis are able to impair cerebral blood flow and brain activity through interstitial pH alterations. During respiratory acidosis, [HCO3-] increases in extracellular fluids to control cerebral pH by two main ways: a carbonic anhydrase activation at the blood/brain and blood/CSF barriers level and an increase in chloride shift in glial cells (HCO3- exchanged for Cl-). During respiratory alkalosis, [HCO3-] decreases in extracellular fluids by the opposite changes in HCO3- transport and by an increase in lactic acid synthesis by cerebral cells. The treatment of metabolic acidosis with bicarbonates may induce a cerebral acidosis and worsen a cerebral oedema during ketoacidosis. Moderate hypocapnia carried out to treat intracranial hypertension is mainly effective when cerebral blood flow is high and vascular CO2 reactivity maintained. Hypocapnia may restore an altered cerebral blood flow autoregulation. Instrumental hypocapnia requires a control of cerebral perfusion pressure and cerebral arteriovenous difference for oxygen, to select patients for whom this kind of treatment may be of benefit, to choose the optimal level of

  14. Interaction between blood-brain barrier and glymphatic system in solute clearance.

    Science.gov (United States)

    Verheggen, I C M; Van Boxtel, M P J; Verhey, F R J; Jansen, J F A; Backes, W H

    2018-03-30

    Neurovascular pathology concurs with protein accumulation, as the brain vasculature is important for waste clearance. Interstitial solutes, such as amyloid-β, were previously thought to be primarily cleared from the brain by blood-brain barrier transport. Recently, the glymphatic system was discovered, in which cerebrospinal fluid is exchanged with interstitial fluid, facilitated by the aquaporin-4 water channels on the astroglial endfeet. Glymphatic flow can clear solutes from the interstitial space. Blood-brain barrier transport and glymphatic clearance likely serve complementary roles with partially overlapping mechanisms providing a well-conditioned neuronal environment. Disruption of these mechanisms can lead to protein accumulation and may initiate neurodegenerative disorders, for instance amyloid-β accumulation and Alzheimer's disease. Although both mechanisms seem to have a similar purpose, their interaction has not been clearly discussed previously. This review focusses on this interaction in healthy and pathological conditions. Future health initiatives improving waste clearance might delay or even prevent onset of neurodegenerative disorders. Defining glymphatic flow kinetics using imaging may become an alternative way to identify those at risk of Alzheimer's disease. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication

    Directory of Open Access Journals (Sweden)

    Mohamed eOuzzine

    2014-10-01

    Full Text Available UDP-glucuronosyltransferases (UGTs form a multigenic family of membrane-bound enzymes expressed in various tissues, including brain. They catalyze the formation of β-Dglucuronides from structurally unrelated substances (drugs, other xenobiotics, as well as endogenous compounds by the linkage of glucuronic acid from the high energy donor, UDP-αD-glucuronic acid. In brain, UGTs actively participate to the overall protection of the tissue against the intrusion of potentially harmful lipophilic substances that are metabolized as hydrophilic glucuronides. These metabolites are generally inactive, except for important pharmacologically glucuronides such as morphine-6-glucuronide. UGTs are mainly expressed in endothelial cells and astrocytes of the blood brain barrier. They are also associated to brain interfaces devoid of blood-brain barrier, such as circumventricular organ, pineal gland, pituitary gland and neuro-olfactory tissues. Beside their key-role as a detoxication barrier, UGTs play a role in the steady-state of endogenous compounds, like steroids or dopamine that participate to the function of the brain. UGT isoforms of family 1A, 2A, 2B and 3A are expressed in brain tissues to various levels and are known to present distinct but overlapping substrate specificity. The importance of these enzyme species with regard to the formation of toxic, pharmacologically or physiologically relevant glucuronides in the brain will be discussed.

  16. Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice.

    Science.gov (United States)

    Li, Qian; Wan, Jieru; Lan, Xi; Han, Xiaoning; Wang, Zhongyu; Wang, Jian

    2017-09-01

    Iron overload plays a key role in the secondary brain damage that develops after intracerebral hemorrhage (ICH). The significant increase in iron deposition is associated with the generation of reactive oxygen species (ROS), which leads to oxidative brain damage. In this study, we examined the protective effects of VK-28, a brain-permeable iron chelator, against hemoglobin toxicity in an ex vivo organotypic hippocampal slice culture (OHSC) model and in middle-aged mice subjected to an in vivo, collagenase-induced ICH model. We found that the effects of VK-28 were similar to those of deferoxamine (DFX), a well-studied iron chelator. Both decreased cell death and ROS production in OHSCs and in vivo, decreased iron-deposition and microglial activation around hematoma in vivo, and improved neurologic function. Moreover, compared with DFX, VK-28 polarized microglia to an M2-like phenotype, reduced brain water content, deceased white matter injury, improved neurobehavioral performance, and reduced overall death rate after ICH. The protection of VK-28 was confirmed in a blood-injection ICH model and in aged-male and young female mice. Our findings indicate that VK-28 is protective against iron toxicity after ICH and that, at the dosage tested, it has better efficacy and less toxicity than DFX does.

  17. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences

    Directory of Open Access Journals (Sweden)

    Redzic Zoran

    2011-01-01

    Full Text Available Abstract Efficient processing of information by the central nervous system (CNS represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB, which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF barrier (BCSFB, which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC transport proteins at those two barriers and underlines

  18. Evolutionarily Conserved Roles for Blood-Brain Barrier Xenobiotic Transporters in Endogenous Steroid Partitioning and Behavior

    Directory of Open Access Journals (Sweden)

    Samantha J. Hindle

    2017-10-01

    Full Text Available Summary: Central nervous system (CNS chemical protection depends upon discrete control of small-molecule access by the blood-brain barrier (BBB. Curiously, some drugs cause CNS side-effects despite negligible transit past the BBB. To investigate this phenomenon, we asked whether the highly BBB-enriched drug efflux transporter MDR1 has dual functions in controlling drug and endogenous molecule CNS homeostasis. If this is true, then brain-impermeable drugs could induce behavioral changes by affecting brain levels of endogenous molecules. Using computational, genetic, and pharmacologic approaches across diverse organisms, we demonstrate that BBB-localized efflux transporters are critical for regulating brain levels of endogenous steroids and steroid-regulated behaviors (sleep in Drosophila and anxiety in mice. Furthermore, we show that MDR1-interacting drugs are associated with anxiety-related behaviors in humans. We propose a general mechanism for common behavioral side effects of prescription drugs: pharmacologically challenging BBB efflux transporters disrupts brain levels of endogenous substrates and implicates the BBB in behavioral regulation. : Hindle et al. shed light on the curious finding that some drugs cause behavioral side-effects despite negligible access into the brain. These authors propose a unifying hypothesis that links blood-brain barrier drug transporter function and brain access of circulating steroids to common CNS adverse drug responses. Keywords: drug side effect mechanisms, central nervous system, blood brain barrier, behavior, toxicology, drug transporters, endobiotics, steroid hormones

  19. Effects of agmatine on blood-brain barrier stabilization assessed by permeability MRI in a rat model of transient cerebral ischemia.

    Science.gov (United States)

    Ahn, S S; Kim, S H; Lee, J E; Ahn, K J; Kim, D J; Choi, H S; Kim, J; Shin, N-Y; Lee, S-K

    2015-02-01

    BBB disruption after acute ischemic stroke and subsequent permeability increase may be enhanced by reperfusion. Agmatine has been reported to attenuate BBB disruption. Our aim was to evaluate the effects of agmatine on BBB stabilization in a rat model of transient cerebral ischemia by using permeability dynamic contrast-enhanced MR imaging at early stages and subsequently to demonstrate the feasibility of dynamic contrast-enhanced MR imaging for the investigation of new therapies. Thirty-four male Sprague-Dawley rats were subjected to transient MCA occlusion for 90 minutes. Immediately after reperfusion, agmatine (100 mg/kg) or normal saline was injected intraperitoneally into the agmatine-treated group (n = 17) or the control group, respectively. MR imaging was performed after reperfusion. For quantitative analysis, regions of interest were defined within the infarct area, and values for volume transfer constant, rate transfer coefficient, volume fraction of extravascular extracellular space, and volume fraction of blood plasma were obtained. Infarct volume, infarct growth, quantitative imaging parameters, and numbers of factor VIII-positive cells after immunohistochemical staining were compared between control and agmatine-treated groups. Among the permeability parameters, volume transfer constant and volume fraction of extravascular extracellular space were significantly lower in the agmatine-treated group compared with the control group (0.05 ± 0.02 minutes(-1) versus 0.08 ± 0.03 minute(-1), P = .012, for volume transfer constant and 0.12 ± 0.06 versus 0.22 ± 0.15, P = .02 for volume fraction of extravascular extracellular space). Other permeability parameters were not significantly different between the groups. The number of factor VIII-positive cells was less in the agmatine-treated group than in the control group (3-fold versus 4-fold, P = .037). In ischemic stroke, agmatine protects the BBB, which can be monitored in vivo by quantification of

  20. Analytical model for the design of in situ horizontal permeable reactive barriers (HPRBs) for the mitigation of chlorinated solvent vapors in the unsaturated zone

    NARCIS (Netherlands)

    Verginelli, Iason; Capobianco, Oriana; Hartog, Niels; Baciocchi, Renato

    In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a

  1. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

    Science.gov (United States)

    Huppert, Jula; Closhen, Dorothea; Croxford, Andrew; White, Robin; Kulig, Paulina; Pietrowski, Eweline; Bechmann, Ingo; Becher, Burkhard; Luhmann, Heiko J; Waisman, Ari; Kuhlmann, Christoph R W

    2010-04-01

    Recently T-helper 17 (Th17) cells were demonstrated to disrupt the blood-brain barrier (BBB) by the action of IL-17A. The aim of the present study was to examine the mechanisms that underlie IL-17A-induced BBB breakdown. Barrier integrity was analyzed in the murine brain endothelial cell line bEnd.3 by measuring the electrical resistance values using electrical call impedance sensing technology. Furthermore, in-cell Western blots, fluorescence imaging, and monocyte adhesion and transendothelial migration assays were performed. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. IL-17A induced NADPH oxidase- or xanthine oxidase-dependent reactive oxygen species (ROS) production. The resulting oxidative stress activated the endothelial contractile machinery, which was accompanied by a down-regulation of the tight junction molecule occludin. Blocking either ROS formation or myosin light chain phosphorylation or applying IL-17A-neutralizing antibodies prevented IL-17A-induced BBB disruption. Treatment of mice with EAE using ML-7, an inhibitor of the myosin light chain kinase, resulted in less BBB disruption at the spinal cord and less infiltration of lymphocytes via the BBB and subsequently reduced the clinical characteristics of EAE. These observations indicate that IL-17A accounts for a crucial step in the development of EAE by impairing the integrity of the BBB, involving augmented production of ROS.-Huppert, J., Closhen, D., Croxford, A., White, R., Kulig, P., Pietrowski, E., Bechmann, I., Becher, B., Luhmann, H. J., Waisman, A., Kuhlmann, C. R. W. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

  2. In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate.

    Science.gov (United States)

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby; Nielsen, Carsten Uhd; Brodin, Birger

    2012-05-01

    The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial resistance values of 1014 ± 70 Ω cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids accumulated in the cocultures when applied from the abluminal side. The transcellular transport kinetics were characterized with a K(m) of 69 ± 15 μM and a J(max) of 44 ± 3.1 pmol min(-1) cm(-2) for L-aspartate and a K(m) of 138 ± 49 μM and J(max) of 28 ± 3.1 pmol min(-1) cm(-2) for L-glutamate. The EAAT inhibitor, DL-threo-ß-Benzyloxyaspartate, inhibited transendothelial brain-to-blood fluxes of L-glutamate and L-aspartate. Expression of EAAT-1 (Slc1a3), -2 (Slc1a2), and -3 (Slc1a1) mRNA in the endothelial cells was confirmed by conventional PCR and localization of EAAT-1 and -3 in endothelial cells was shown with immunofluorescence. Overall, the findings suggest that the blood-brain barrier itself may participate in regulating brain L-glutamate concentrations. Copyright © 2012 Wiley Periodicals, Inc.

  3. The two-pore domain K+ channel TASK-1 is closely associated with brain barriers and meninges.

    Science.gov (United States)

    Kanjhan, Refik; Pow, David V; Noakes, Peter G; Bellingham, Mark C

    2010-12-01

    Impairment of the blood-brain barrier (BBB), the blood-cerebrospinal fluid (CSF) barrier and brain-CSF barrier has been implicated in neuropathology of several brain disorders, such as amyotrophic lateral sclerosis, cerebral edema, multiple sclerosis, neural inflammation, ischemia and stroke. Two-pore domain weakly inward rectifying K+ channel (TWIK)-related acid-sensitive potassium (TASK)-1 channels (K2p3.1; KCNK3) are among the targets that contribute to the development of these pathologies. For example TASK-1 activity is inhibited by acidification, ischemia, hypoxia and several signaling molecules released under pathologic conditions. We have used immuno-histochemistry to examine the distribution of the TASK-1 protein in structures associated with the BBB, blood-CSF barrier, brain-CSF barrier, and in the meninges of adult rat. Dense TASK-1 immuno-reactivity (TASK-1-IR) was observed in ependymal cells lining the fourth ventricle at the brain-CSF interface, in glial cells that ensheath the walls of blood vessels at the glio-vascular interface, and in the meninges. In these structures, TASK-1-IR often co-localized with glial fibrillary associated protein (GFAP) or vimentin. This study provides anatomical evidence for localization of TASK-1 K+ channels in cells that segregate distinct fluid compartments within and surrounding the brain. We suggest that TASK-1 channels, in coordination with other ion channels (e.g., aquaporins and chloride channels) and transporters (e.g., Na+-K+-ATPase and Na+-K+-2Cl⁻ and by virtue of its heterogeneous distribution, may differentially contribute to the varying levels of K+ vital for cellular function in these compartments. Our findings are likely to be relevant to recently reported roles of TASK-1 in cerebral ischemia, stroke and inflammatory brain disorders.

  4. Zero-Valent Iron Permeable Reactive Barriers: A Review of Performance

    International Nuclear Information System (INIS)

    Korte, NE

    2001-01-01

    This report briefly reviews issues regarding the implementation of the zero-valent iron permeable reactive barrier (PRB) technology at sites managed by the U.S. Department of Energy (DOE). Initially, the PRB technology, using zero-valent iron for the reactive media, was received with great enthusiasm, and DOE invested millions of dollars testing and implementing PRBs. Recently, a negative perception of the technology has been building. This perception is based on the failure of some deployments to satisfy goals for treatment and operating expenses. The purpose of this report, therefore, is to suggest reasons for the problems that have been encountered and to recommend whether DOE should invest in additional research and deployments. The principal conclusion of this review is that the most significant problems have been the result of insufficient characterization, which resulted in poor engineering implementation. Although there are legitimate concerns regarding the longevity of the reactive media, the ability of zero-valent iron to reduce certain chlorinated hydrocarbons and to immobilize certain metals and radionuclides is well documented. The primary problem encountered at some DOE full-scale deployments has been an inadequate assessment of site hydrology, which resulted in misapplication of the technology. The result is PRBs with higher than expected flow velocities and/or incomplete plume capture

  5. New microbleed after blood-brain barrier leakage in intracerebral haemorrhage

    NARCIS (Netherlands)

    Nieuwenhuizen, K.M. van; Hendrikse, J.; Klijn, C.J.M.

    2017-01-01

    Cerebral microbleeds are increasingly recognised as biomarkers of small vessel disease. Several preclinical and clinical studies have suggested that chronic disruption of the blood-brain barrier is one of the mechanisms for the development of cerebral microbleeds.A 51-year-old man experienced two

  6. New microbleed after blood-brain barrier leakage in intracerebral haemorrhage

    NARCIS (Netherlands)

    van Nieuwenhuizen, Koen M; Hendrikse, Jeroen; Klijn, Catharina J M

    Cerebral microbleeds are increasingly recognised as biomarkers of small vessel disease. Several preclinical and clinical studies have suggested that chronic disruption of the blood-brain barrier is one of the mechanisms for the development of cerebral microbleeds.A 51-year-old man experienced two

  7. Identification of blood-brain barrier function following subarachnoid hemorrhage in rats at different stages

    Institute of Scientific and Technical Information of China (English)

    Zongyi Xie; Weiwei Shen; Ying Ma; Yuan Cheng

    2008-01-01

    BACKGROUND: Recent studies have indicated that blood-brain barrier (BBB) disruption following subarachnoid hemorrhage (SAH) significantly correlates with the development of brain injury and poor prognosis of patients subjected to SAH. OBJECTIVE: To investigate both functional and structural changes related to BBB in various phases after SAH in rats through quantitative and qualitative methods.DESIGN, TIME AND SETTING: This experiment, a completely randomized design and controlled experiment, was performed at the Department of Neurosurgery, the Second Affiliated Hospital of Chongqing University of Medical Sciences from June 2006 to March 2007.MATERIALS: A total of 128 female, healthy, Sprague-Dawley rats were selected for this study. Main reagents and instruments: Evans Blue dye (Sigma Company, USA), fluorescence spectrophotometer (Shimadzu Company, Japan), and transmission electron microscope (Olympus Company, Japan). MAIN OUTCOME MEASURES: Brain tissue water content was determined by the wet-dry method. BBB permeability in the cerebral cortex was determined by Evans Blue dye and fluorescent spectrophotometer. The ultrastructural changes in BBB were observed with transmission electron microscope.RESULTS: Compared with the sham-operated group, SAH induced a significant increase in brain water content between 24 and 60 hours (F = 888.32, P 0.05). Electron microscopy demonstrated only a mild perivascular edema at 24 hours after SAH. By 36 hours, a notable perivascular edema was associated with a collapse of the capillary. Astrocytic endfeet surrounding the capillary were prominently swollen in the edematous areas. The above-mentioned abnormal ultrastructural changes in the BBB were reversed by 72 hours after SAH. No obvious morphological changes in the BBB were detected in the sham-operated rats.CONCLUSION: These results directly suggest that SAH could induce rapid changes in BBB function and structure during the acute phases of BBB breakdown. Moreover, these dynamic

  8. On trans-parenchymal transport after blood brain barrier opening: pump-diffuse-pump hypothesis

    Science.gov (United States)

    Postnov, D. E.; Postnikov, E. B.; Karavaev, A. S.; Glushkovskaya-Semyachkina, O. V.

    2018-04-01

    Transparenchymal transport attracted the attention of many research groups after the discovery of glymphatic mechanism for the brain drainage in 2012. While the main facts of rapid transport of substances across the parenchyma are well established experimentally, specific mechanisms that drive this drainage are just hypothezised but not proved yed. Moreover, the number of modeling studies show that the pulse wave powered mechanism is unlikely able to perform pumping as suggested. Thus, the problem is still open. In addition, new data obtained under the conditions of intensionally opened blood brain barrier shows the presence of equally fast transport in opposite durection. In our study we investigate the possible physical mechanisms for rapid transport of substances after the opening of blood-brain barrier under the conditions of zero net flow.

  9. Transcytosis in the blood–cerebrospinal fluid barrier of the mouse brain with an engineered receptor/ligand system

    Directory of Open Access Journals (Sweden)

    Héctor R Méndez-Gómez

    Full Text Available Crossing the blood–brain and the blood–cerebrospinal fluid barriers (BCSFB is one of the fundamental challenges in the development of new therapeutic molecules for brain disorders because these barriers prevent entry of most drugs from the blood into the brain. However, some large molecules, like the protein transferrin, cross these barriers using a specific receptor that transports them into the brain. Based on this mechanism, we engineered a receptor/ligand system to overcome the brain barriers by combining the human transferrin receptor with the cohesin domain from Clostridium thermocellum, and we tested the hybrid receptor in the choroid plexus of the mouse brain with a dockerin ligand. By expressing our receptor in choroidal ependymocytes, which are part of the BCSFB, we found that our systemically administrated ligand was able to bind to the receptor and accumulate in ependymocytes, where some of the ligand was transported from the blood side to the brain side.

  10. High-resolution whole-brain DCE-MRI using constrained reconstruction: Prospective clinical evaluation in brain tumor patients

    International Nuclear Information System (INIS)

    Guo, Yi; Zhu, Yinghua; Lingala, Sajan Goud; Nayak, Krishna; Lebel, R. Marc; Shiroishi, Mark S.; Law, Meng

    2016-01-01

    Purpose: To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. Methods: Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm 3 , FOV 22 × 22 × 4.2 cm 3 , and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm 3 , and broader coverage 22 × 22 × 19 cm 3 . Temporal resolution was 5 s for both protocols. Time-resolved images and blood–brain barrier permeability maps were qualitatively evaluated by two radiologists. Results: The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. Conclusions: The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.

  11. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to flaxseed oil and vitamin E and maintenance of the skin permeability barrier function pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    related to a combination of flaxseed oil and vitamin E and maintenance of the skin permeability barrier function. The food constituent that is the subject of the health claim is a combination of flaxseed oil and vitamin E. The Panel considers that the combination of flaxseed oil and vitamin E...... be drawn from these studies for the scientific substantiation of the claim. The Panel concludes that a cause and effect relationship has not been established between the consumption of a combination of flaxseed oil and vitamin E and maintenance of the skin permeability barrier function...... is sufficiently characterised. The claimed effect is “contributes to maintain skin permeability barrier function”. The target population proposed by the applicant is healthy adults with dry and sensitive skin. Maintenance of the permeability barrier function of the skin is a beneficial physiological effect...

  12. [Removal of nitrate from groundwater using permeable reactive barrier].

    Science.gov (United States)

    Li, Xiu-Li; Yang, Jun-Jun; Lu, Xiao-Xia; Zhang, Shu; Hou, Zhen

    2013-03-01

    To provide a cost-effective method for the remediation of nitrate-polluted groundwater, column experiments were performed to study the removal of nitrate by permeable reactive barrier filled with fermented mulch and sand (biowall), and the mechanisms and influence factors were explored. The experimental results showed that the environmental condition in the simulated biowall became highly reduced after three days of operation (oxidation-reduction potential was below - 100 mV), which was favorable for the reduction of nitrate. During the 15 days of operation, the removal rate of nitrate nitrogen (NO3(-) -N) by the simulated biowall was 80%-90% (NO3(-)-N was reduced from 20 mg x L(-1) in the inlet water to 1.6 mg x L(-1) in the outlet water); the concentration of nitrite nitrogen (NO2(-) -N) in the outlet water was below 2.5 mg x L(-1); the concentration of ammonium nitrogen (NH4(+) -N) was low in the first two days but increased to about 12 mg x L(-1) since day three. The major mechanisms involved in the removal of nitrate nitrogen were adsorption and biodegradation. When increasing the water flow velocity in the simulated biowall, the removal rate of NO3(-) -N was reduced and the concentration of NH4(+) -N in the outlet water was significantly reduced. A simulated zeolite wall was set up following the simulated biowall and 98% of the NH4(+) -N could be removed from the water.

  13. Targeting brain metastases in ALK-rearranged non-small-cell lung cancer.

    Science.gov (United States)

    Zhang, Isabella; Zaorsky, Nicholas G; Palmer, Joshua D; Mehra, Ranee; Lu, Bo

    2015-10-01

    The incidence of brain metastases has increased as a result of improved systemic control and advances in imaging. However, development of novel therapeutics with CNS activity has not advanced at the same rate. Research on molecular markers has revealed many potential targets for antineoplastic agents, and a particularly important aberration is translocation in the ALK gene, identified in non-small-cell lung cancer (NSCLC). ALK inhibitors have shown systemic efficacy against ALK-rearranged NSCLC in many clinical trials, but the effectiveness of crizotinib in CNS disease is limited by poor blood-brain barrier penetration and acquired drug resistance. In this Review, we discuss potential pathways to target ALK-rearranged brain metastases, including next generation ALK inhibitors with greater CNS penetration and mechanisms to overcome resistance. Other important mechanisms to control CNS disease include targeting pathways downstream of ALK phosphorylation, increasing the permeability of the blood-brain barrier, modifying the tumour microenvironment, and adding concurrent radiotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Current progress in the permeability and its enhancement approches for TCM active ingredients across blood-eye barrier

    Directory of Open Access Journals (Sweden)

    Yu-Yang Bai

    2014-10-01

    Full Text Available Blood-eye barrier(BEBis one of the most important structures of organism to maintain homeostasis of the eye. However, it is the major constraint for the medication of intraocular diseases. Traditional Chinese medicines have distinctive advantages for the treatment of intraocular diseases, which can be used to regulate the physiological function of human body with low toxicity. In this article, we have briefly summarized the feature of BEB, with the domestic and foreign literatures combined, and mainly reviewed current progress in the field of study on the permeability of traditional Chinese medicines and effective components in BEB and promoting methods.

  15. The Blood-Brain Barrier and the EphR/Ephrin System: Perspectives on a Link Between Neurovascular and Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Victoria A. Malik

    2018-04-01

    Full Text Available Interactions among endothelial cells (EC forming blood vessels and their surrounding cell types are essential to establish the blood-brain barrier (BBB, an integral part of the neurovascular unit (NVU. Research on the NVU has recently seen a renaissance to especially understand the neurobiology of vascular and brain pathologies and their frequently occurring comorbidities. Diverse signaling molecules activated in the near proximity of blood vessels trigger paracellular pathways which regulate the formation and stabilization of tight junctions (TJ between EC and thereby influence BBB permeability. Among regulatory molecules, the erythropoietin-producing-hepatocellular carcinoma receptors (EphR and their Eph receptor-interacting signals (ephrins play a pivotal role in EC differentiation, angiogenesis and BBB integrity. Multiple EphR-ligand interactions between EC and other cell types influence different aspects of angiogenesis and BBB formation. Such interactions additionally control BBB sealing properties and thus the penetration of substances into the brain parenchyma. Thus, they play critical roles in the healthy brain and during the pathogenesis of brain disorders. In this mini-review article, we aim at integrating the constantly growing literature about the functional roles of the EphR/ephrin system for the development of the vascular system and the BBB and in the pathogenesis of neurovascular and neuropsychiatric disorders. We suggest the hypothesis that a disrupted EphR/ephrin signaling at the BBB might represent an underappreciated molecular hub of disease comorbidity. Finally, we propose the possibility that the EphR/ephrin system bears the potential of becoming a novel target for the development of alternative therapeutic treatments, focusing on such comorbidities.

  16. A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development

    Directory of Open Access Journals (Sweden)

    Sugimoto Masahiko

    2010-07-01

    Full Text Available Abstract Background Development and maintenance of the blood-brain and blood-retinal barrier is critical for the homeostasis of brain and retinal tissue. Despite decades of research our knowledge of the formation and maintenance of the blood-brain (BBB and blood-retinal (BRB barrier is very limited. We have established an in vivo model to study the development and maintenance of these barriers by generating a transgenic zebrafish line that expresses a vitamin D-binding protein fused with enhanced green fluorescent protein (DBP-EGFP in blood plasma, as an endogenous tracer. Results The temporal establishment of the BBB and BRB was examined using this transgenic line and the results were compared with that obtained by injection of fluorescent dyes into the sinus venosus of embryos at various stages of development. We also examined the expression of claudin-5, a component of tight junctions during the first 4 days of development. We observed that the BBB of zebrafish starts to develop by 3 dpf, with expression of claudin-5 in the central arteries preceding it at 2 dpf. The hyaloid vasculature in the zebrafish retina develops a barrier function at 3 dpf, which endows the zebrafish with unique advantages for studying the BRB. Conclusion Zebrafish embryos develop BBB and BRB function simultaneously by 3 dpf, which is regulated by tight junction proteins. The Tg(l-fabp:DBP-EGFP zebrafish will have great advantages in studying development and maintenance of the blood-neural barrier, which is a new application for the widely used vertebrate model.

  17. Brain carbonic acid acidosis after acetazolamide

    DEFF Research Database (Denmark)

    Heuser, D; Astrup, J; Lassen, N A

    1975-01-01

    acidosis by I.V. injection of HCO3-minus. Acetazolamide (25 mg/kg) i.v. was followed by a marked brain acidosis which after 10 min had progressed to a drop in pH of 0.203 plus or minus 0.046 (x bar plus or minus S.D., n equals 8). The slowness ofthe development of acidosis points to a direct effect......In cats in barbiturate anesthesia extracellular pH and potassium were continously recorded from brian cortex by implanted microelectrodes. Implantation of the electrodes preserved the low permeability of the blood-brain-barrier to HCO3-minus and H+ions as indicated by the development of brain...... of the carbonic anhydrase inhibition on the brain tissue. As a further support for this conclusion was considered the finding of a prolonged response time of brain pH to HCO3-minus i.v. to CO2-minus inhalation, and to hyperventilation after the acetazolamide inhibtion. No changes in brain extracelllular potassium...

  18. Evaluation and Computational Characterization of the Faciliated Transport of Glc Carbon C-1 Oxime Reactivators Across a Blood Brain Barrier Model

    Science.gov (United States)

    2013-01-01

    blood brain barrier (BBB) to reactivate inhibited brain acetylcholinesterase (AChE). We selected glucose (Glc) transporters (GLUT) for this purpose as...Eur. J. Pharm. 332 (1997) 43–52. [4] N.J. Abbott , L. Ronnback, E. Hansson, Astrocyte-endothelial interactions at the blood –brain barrier, Nat. Rev...5a. CONTRACT NUMBER oxime reactivators across a blood brain barrier model 5b. GRANT NUMBER 1.E005.08.WR 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  19. An ex Vivo Model for Evaluating Blood-Brain Barrier Permeability, Efflux, and Drug Metabolism

    DEFF Research Database (Denmark)

    Hellman, Karin; Aadal Nielsen, Peter; Ek, Fredrik

    2016-01-01

    , risperidone, citalopram, fluoxetine, and haloperidol were studied, and one preselected metabolite for each drug was analyzed, identified, and quantified. Metabolite identification studies of clozapine and midazolam showed that the locust brain was highly metabolically active, and 18 and 14 metabolites...

  20. Transport characteristics of guanidino compounds at the blood-brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders

    Directory of Open Access Journals (Sweden)

    Tachikawa Masanori

    2011-02-01

    Full Text Available Abstract Guanidino compounds (GCs, such as creatine, phosphocreatine, guanidinoacetic acid, creatinine, methylguanidine, guanidinosuccinic acid, γ-guanidinobutyric acid, β-guanidinopropionic acid, guanidinoethane sulfonic acid and α-guanidinoglutaric acid, are present in the mammalian brain. Although creatine and phosphocreatine play important roles in energy homeostasis in the brain, accumulation of GCs may induce epileptic discharges and convulsions. This review focuses on how physiologically important and/or neurotoxic GCs are distributed in the brain under physiological and pathological conditions. Transporters for GCs at the blood-brain barrier (BBB and the blood-cerebrospinal fluid (CSF barrier (BCSFB have emerged as substantial contributors to GCs distribution in the brain. Creatine transporter (CRT/solute carrier (SLC 6A8 expressed at the BBB regulates creatine concentration in the brain, and represents a major pathway for supply of creatine from the circulating blood to the brain. CRT may be a key factor facilitating blood-to-brain guanidinoacetate transport in patients deficient in S-adenosylmethionine:guanidinoacetate N-methyltransferase, the creatine biosynthetic enzyme, resulting in cerebral accumulation of guanidinoacetate. CRT, taurine transporter (TauT/SLC6A6 and organic cation transporter (OCT3/SLC22A3 expressed at the BCSFB are involved in guanidinoacetic acid or creatinine efflux transport from CSF. Interestingly, BBB efflux transport of GCs, including guanidinoacetate and creatinine, is negligible, though the BBB has a variety of efflux transport systems for synthetic precursors of GCs, such as amino acids and neurotransmitters. Instead, the BCSFB functions as a major cerebral clearance system for GCs. In conclusion, transport of GCs at the BBB and BCSFB appears to be the key determinant of the cerebral levels of GCs, and changes in the transport characteristics may cause the abnormal distribution of GCs in the brain seen

  1. Blood-brain barrier in vitro models as tools in drug discovery: assessment of the transport ranking of antihistaminic drugs.

    Science.gov (United States)

    Neuhaus, W; Mandikova, J; Pawlowitsch, R; Linz, B; Bennani-Baiti, B; Lauer, R; Lachmann, B; Noe, C R

    2012-05-01

    In the course of our validation program testing blood-brain barrier (BBB) in vitro models for their usability as tools in drug discovery it was evaluated whether an established Transwell model based on porcine cell line PBMEC/C1-2 was able to differentiate between the transport properties of first and second generation antihistaminic drugs. First generation antihistamines can permeate the BBB and act in the central nervous system (CNS), whereas entry to the CNS of second generation antihistamines is restricted by efflux pumps such as P-glycoprotein (P-gP) located in brain endothelial cells. P-gP functionality of PBMEC/C1-2 cells grown on Transwell filter inserts was proven by transport studies with P-gP substrate rhodamine 123 and P-gP blocker verapamil. Subsequent drug transport studies with the first generation antihistamines promethazine, diphenhydramine and pheniramine and the second generation antihistamines astemizole, ceterizine, fexofenadine and loratadine were accomplished in single substance as well as in group studies. Results were normalised to diazepam, an internal standard for the transcellular transport route. Moreover, effects after addition of P-gP inhibitor verapamil were investigated. First generation antihistamine pheniramine permeated as fastest followed by diphenhydramine, diazepam, promethazine and second generation antihistaminic drugs ceterizine, fexofenadine, astemizole and loratadine reflecting the BBB in vivo permeability ranking well. Verapamil increased the transport rates of all second generation antihistamines, which suggested involvement of P-gP during their permeation across the BBB model. The ranking after addition of verapamil was significantly changed, only fexofenadine and ceterizine penetrated slower than internal standard diazepam in the presence of verapamil. In summary, permeability data showed that the BBB model based on porcine cell line PBMEC/C1-2 was able to reflect the BBB in vivo situation for the transport of

  2. Effects of casein glycomacropeptide supplementation on growth performance, intestinal morphology, intestinal barrier permeability and inflammatory responses in Escherichia coli K88 challenged piglets

    Directory of Open Access Journals (Sweden)

    Yili Rong

    2015-06-01

    Full Text Available Casein glycomacropeptide (CGMP is a bioactive peptide derived from milk with multiple functions. This study was aimed at evaluating the effects of CGMP as a potential feed additive on growth performance, intestinal morphology, intestinal barrier permeability and inflammatory responses of Escherichia coli K88 (E. coli K88 challenged piglets. Eighteen weaning piglets were randomly assigned to three groups. Control group and K88 challenged group received a basal diet, and CGMP treated group received the basal diet supplemented with 1% of CGMP powder. The trail lasted for 12 days, K88 was orally administered to the piglets of K88 challenged group and CGMP treated group on days 8–10. The results showed that the diet containing 1% CGMP significantly alleviated the decrease in average daily gain (P  0.05 and barrier permeability damage (P < 0.05, and acute inflammatory response (P < 0.05 induced by E. coli K88 infection. In conclusion, CGMP supplementation in the diet protected the weaning piglets against E. coli K88 infection.

  3. Inhibition of Myeloperoxidase at the Peak of Experimental Autoimmune Encephalomyelitis Restores Blood-Brain-Barrier Integrity and Ameliorates Disease Severity.

    Science.gov (United States)

    Zhang, Hao; Ray, Avijit; Miller, Nichole M; Hartwig, Danielle; Pritchard, Kirkwood A; Dittel, Bonnie N

    2015-11-12

    Oxidative stress is thought to contribute to disease pathogenesis in the central nervous system (CNS) disease multiple sclerosis (MS). Myeloperoxidase (MPO), a potent peroxidase that generates toxic radicals and oxidants, is increased in the CNS during MS. However, the exact mechanism whereby MPO drives MS pathology is not known. We addressed this question by inhibiting MPO in mice with experimental autoimmune encephalomyelitis (EAE) using our non-toxic MPO inhibitor KYC. We found that therapeutic administration of KYC for five days starting at the peak of disease significantly attenuated EAE disease severity, reduced myeloid cell numbers and permeability of the blood-brain-barrier (BBB). These data indicate that inhibition of MPO by KYC restores BBB integrity thereby limiting migration of myeloid cells into the CNS that drive EAE pathogenesis. In addition, these observations indicate that KYC may be an effective therapeutic agent for the treatment of MS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes

    OpenAIRE

    DeSalvo, Michael K.; Hindle, Samantha J.; Rusan, Zeid M.; Orng, Souvinh; Eddison, Mark; Halliwill, Kyle; Bainton, Roland J.

    2014-01-01

    Central nervous system (CNS) function is dependent on the stringent regulation of metabolites, drugs, cells, and pathogens exposed to the CNS space. Cellular blood-brain barrier (BBB) structures are highly specific checkpoints governing entry and exit of all small molecules to and from the brain interstitial space, but the precise mechanisms that regulate the BBB are not well understood. In addition, the BBB has long been a challenging obstacle to the pharmacologic treatment of CNS diseases; ...

  5. Protective effects of monomethyl fumarate at the inflamed blood-brain barrier

    NARCIS (Netherlands)

    Lim, J.L.; van der Pol, S.M.A.; Di Dio, F.; van het Hof, B.; Kooij, G.; de Vries, H.E.; van Horssen, J.

    2015-01-01

    Background: Reactive oxygen species play a key role in the pathogenesis of multiple sclerosis as they induce blood-brain barrier disruption and enhance transendothelial leukocyte migration. Thus, therapeutic compounds with antioxidant and anti-inflammatory potential could have clinical value in

  6. Design and validation of a microfluidic device for blood-brain barrier monitoring and transport studies

    Science.gov (United States)

    Ugolini, Giovanni Stefano; Occhetta, Paola; Saccani, Alessandra; Re, Francesca; Krol, Silke; Rasponi, Marco; Redaelli, Alberto

    2018-04-01

    In vitro blood-brain barrier models are highly relevant for drug screening and drug development studies, due to the challenging task of understanding the transport mechanism of drug molecules through the blood-brain barrier towards the brain tissue. In this respect, microfluidics holds potential for providing microsystems that require low amounts of cells and reagent and can be potentially multiplexed for increasing the ease and throughput of the drug screening process. We here describe the design, development and validation of a microfluidic device for endothelial blood-brain barrier cell transport studies. The device comprises of two microstructured layers (top culture chamber and bottom collection chamber) sandwiching a porous membrane for the cell culture. Microstructured layers include two pairs of physical electrodes, embedded into the device layers by geometrically defined guiding channels with computationally optimized positions. These electrodes allow the use of commercial electrical measurement systems for monitoring trans-endothelial electrical resistance (TEER). We employed the designed device for performing preliminary assessment of endothelial barrier formation with murine brain endothelial cells (Br-bEnd5). Results demonstrate that cellular junctional complexes effectively form in the cultures (expression of VE-Cadherin and ZO-1) and that the TEER monitoring systems effectively detects an increase of resistance of the cultured cell layers indicative of tight junction formation. Finally, we validate the use of the described microsystem for drug transport studies demonstrating that Br-bEnd5 cells significantly hinder the transport of molecules (40 kDa and 4 kDa dextran) from the top culture chamber to the bottom collection chamber.

  7. Blood-brain barrier leakage after status epilepticus in rapamycin-treated rats I: Magnetic resonance imaging.

    Science.gov (United States)

    van Vliet, Erwin A; Otte, Willem M; Wadman, Wytse J; Aronica, Eleonora; Kooij, Gijs; de Vries, Helga E; Dijkhuizen, Rick M; Gorter, Jan A

    2016-01-01

    The mammalian target of rapamycin (mTOR) pathway has received increasing attention as a potential antiepileptogenic target. Treatment with the mTOR inhibitor rapamycin after status epilepticus reduces the development of epilepsy in a rat model. To study whether rapamycin mediates this effect via restoration of blood-brain barrier (BBB) dysfunction, contrast-enhanced magnetic resonance imaging (CE-MRI) was used to determine BBB permeability throughout epileptogenesis. Imaging was repeatedly performed until 6 weeks after kainic acid-induced status epilepticus in rapamycin (6 mg/kg for 6 weeks starting 4 h after SE) and vehicle-treated rats, using gadobutrol as contrast agent. Seizures were detected using video monitoring in the week following the last imaging session. Gadobutrol leakage was widespread and extensive in both rapamycin and vehicle-treated epileptic rats during the acute phase, with the piriform cortex and amygdala as the most affected regions. Gadobutrol leakage was higher in rapamycin-treated rats 4 and 8 days after status epilepticus compared to vehicle-treated rats. However, during the chronic epileptic phase, gadobutrol leakage was lower in rapamycin-treated epileptic rats along with a decreased seizure frequency. This was confirmed by local fluorescein staining in the brains of the same rats. Total brain volume was reduced by this rapamycin treatment regimen. The initial slow recovery of BBB function in rapamycin-treated epileptic rats indicates that rapamycin does not reduce seizure activity by a gradual recovery of BBB integrity. The reduced BBB leakage during the chronic phase, however, could contribute to the decreased seizure frequency in post-status epilepticus rats treated with rapamycin. Furthermore, the data show that CE-MRI (using step-down infusion with gadobutrol) can be used as biomarker for monitoring the effect of drug therapy in rats. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  8. Oral delivery of bioencapsulated proteins across blood-brain and blood-retinal barriers.

    Science.gov (United States)

    Kohli, Neha; Westerveld, Donevan R; Ayache, Alexandra C; Verma, Amrisha; Shil, Pollob; Prasad, Tuhina; Zhu, Ping; Chan, Sic L; Li, Qiuhong; Daniell, Henry

    2014-03-01

    Delivering neurotherapeutics to target brain-associated diseases is a major challenge. Therefore, we investigated oral delivery of green fluorescence protein (GFP) or myelin basic protein (MBP) fused with the transmucosal carrier cholera toxin B subunit (CTB), expressed in chloroplasts (bioencapsulated within plant cells) to the brain and retinae of triple transgenic Alzheimer's disease (3×TgAD) mice, across the blood-brain barriers (BBB) and blood-retinal barriers (BRB). Human neuroblastoma cells internalized GFP when incubated with CTB-GFP but not with GFP alone. Oral delivery of CTB-MBP in healthy and 3×TgAD mice shows increased MBP levels in different regions of the brain, crossing intact BBB. Thioflavin S-stained amyloid plaque intensity was reduced up to 60% by CTB-MBP incubation with human AD and 3×TgAD mice brain sections ex vivo. Amyloid loads were reduced in vivo by 70% in hippocampus and cortex brain regions of 3×TgAD mice fed with bioencapsulated CTB-MBP, along with reduction in the ratio of insoluble amyloid β 42 (Aβ42) to soluble fractions. CTB-MBP oral delivery reduced Aβ42 accumulation in retinae and prevented loss of retinal ganglion cells in 3×TgAD mice. Lyophilization of leaves increased CTB-MBP concentration by 17-fold and stabilized it during long-term storage in capsules, facilitating low-cost oral delivery of therapeutic proteins across the BBB and BRB.

  9. Regulatory mechanisms for iron transport across the blood-brain barrier.

    Science.gov (United States)

    Duck, Kari A; Simpson, Ian A; Connor, James R

    2017-12-09

    Many critical metabolic functions in the brain require adequate and timely delivery of iron. However, most studies when considering brain iron uptake have ignored the iron requirements of the endothelial cells that form the blood-brain barrier (BBB). Moreover, current models of BBB iron transport do not address regional regulation of brain iron uptake or how neurons, when adapting to metabolic demands, can acquire more iron. In this study, we demonstrate that both iron-poor transferrin (apo-Tf) and the iron chelator, deferoxamine, stimulate release of iron from iron-loaded endothelial cells in an in vitro BBB model. The role of the endosomal divalent metal transporter 1 (DMT1) in BBB iron acquisition and transport has been questioned. Here, we show that inhibition of DMT1 alters the transport of iron and Tf across the endothelial cells. These data support an endosome-mediated model of Tf-bound iron uptake into the brain and identifies mechanisms for local regional regulation of brain iron uptake. Moreover, our data provide an explanation for the disparity in the ratio of Tf to iron transport into the brain that has confounded the field. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Microfluidic organ-on-chip technology for blood-brain barrier research

    NARCIS (Netherlands)

    van der Helm, Marieke Willemijn; van der Meer, Andries Dirk; Eijkel, Jan C.T.; van den Berg, Albert; Segerink, Loes Irene

    2016-01-01

    Organs-on-chips are a new class of microengineered laboratory models that combine several of the advantages of current in vivo and in vitro models. In this review, we summarize the advances that have been made in the development of organ-on-chip models of the blood-brain barrier (BBBs-on-chips) and

  11. Moderate hypoxia followed by reoxygenation results in blood-brain barrier breakdown via oxidative stress-dependent tight-junction protein disruption.

    Directory of Open Access Journals (Sweden)

    Christoph M Zehendner

    Full Text Available Re-canalization of cerebral vessels in ischemic stroke is pivotal to rescue dysfunctional brain areas that are exposed to moderate hypoxia within the penumbra from irreversible cell death. Goal of the present study was to evaluate the effect of moderate hypoxia followed by reoxygenation (MHR on the evolution of reactive oxygen species (ROS and blood-brain barrier (BBB integrity in brain endothelial cells (BEC. BBB integrity was assessed in BEC in vitro and in microvessels of the guinea pig whole brain in situ preparation. Probes were exposed to MHR (2 hours 67-70 mmHg O2, 3 hours reoxygenation, BEC or towards occlusion of the arteria cerebri media (MCAO with or without subsequent reperfusion in the whole brain preparation. In vitro BBB integrity was evaluated using trans-endothelial electrical resistance (TEER and transwell permeability assays. ROS in BEC were evaluated using 2',7'-dichlorodihydrofluorescein diacetate (DCF, MitoSox and immunostaining for nitrotyrosine. Tight-junction protein (TJ integrity in BEC, stainings for nitrotyrosine and FITC-albumin extravasation in the guinea pig brain preparation were assessed by confocal microscopy. Diphenyleneiodonium (DPI was used to investigate NADPH oxidase dependent ROS evolution and its effect on BBB parameters in BEC. MHR impaired TJ proteins zonula occludens 1 (ZO-1 and claudin 5 (Cl5, decreased TEER, and significantly increased cytosolic ROS in BEC. These events were blocked by the NADPH oxidase inhibitor DPI. MCAO with or without subsequent reoxygenation resulted in extravasation of FITC-albumin and ROS generation in the penumbra region of the guinea pig brain preparation and confirmed BBB damage. BEC integrity may be impaired through ROS in MHR on the level of TJ and the BBB is also functionally impaired in moderate hypoxic conditions followed by reperfusion in a complex guinea pig brain preparation. These findings suggest that the BBB is susceptible towards MHR and that ROS play a key role

  12. Study of uranium transfer across the blood-brain barrier

    Energy Technology Data Exchange (ETDEWEB)

    Lemercier, V.; Millot, X.; Ansoborlo, E.; Menetrier, F.; Fluery-Herard, A.; Rousselle, Ch.; Scherrmann, J.M

    2003-07-01

    Uranium is a heavy metal which, following accidental exposure, may potentially be deposited in human tissues and target organs, the kidneys and bones. A few published studies have described the distribution of this element after chronic exposure and one of them has demonstrated an accumulation in the brain. In the present study, using inductively coupled plasma mass spectrometry (ICP-MS) for the quantification of uranium, uranium transfer across the blood-brain barrier (BBB) has been assessed using the in situ brain perfusion technique in the rat. For this purpose, a physiological buffered bicarbonate saline at pH 7.4 containing natural uranium at a given concentration was perfused. After checking the integrity of the BBB during the perfusion, the background measurement of uranium in control rats without uranium in the perfusate was determined. The quantity of uranium in the exposed rat hemisphere, which appeared to be significantly higher than that in the control rats, was measured. Finally, the possible transfer of the perfused uranium not only in the vascular space but also in the brain parenchyma is discussed. (author)

  13. St. John's Wort constituents modulate P-glycoprotein transport activity at the blood-brain barrier.

    NARCIS (Netherlands)

    Ott, M.; Huls, M.; Cornelius, M.G.; Fricker, G.

    2010-01-01

    PURPOSE: The purpose of this study was to investigate the short-term signaling effects of St. John's Wort (SJW) extract and selected SJW constituents on the blood-brain barrier transporter P-glycoprotein and to describe the role of PKC in the signaling. METHODS: Cultured porcine brain capillary

  14. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    Science.gov (United States)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre

  15. Pathophysiological aspects of malignant brain tumors studied with positron emission tomography

    International Nuclear Information System (INIS)

    Jarden, J.O.

    1994-01-01

    To further understand the control of brain tumor fluid balance and pH, the following studies were undertaken. The transport of a water soluble molecule across the brain and tumor capillary endothelium was studied during glucocorticoid and radiation treatment. The brain and brain-tumor acidity (pH) was evaluated as a single measurement in patients receiving a low maintenance dose of glucocorticoid. Transport changes and pH were measured in 61 patients with cerebral tumors using 82 Rubidium ( 82 Rb) and 11 C-Dimethyloxa-zolidindione ( 11 C-DMO), respectively, and Positron Emission Tomography (PET). Supplementary studies of tumor and contralateral brain blood flow and blood volume using the C 15 O 2 /PET and C 15 O/PET technique, respectively, were included to validate the 82 Rb/PET model and obtain further information. A total of 125 PET scans were performed. Supplementary studies were undertaken to estimate delay of blood registration and form distribution of arterial blood isotope activity curves. Blood-to-tumor barrier transport was outlined at baseline and at 6 and 24 hours after the start of glucocorticoid treatment, finding a significant decrease in the transpfort. Radiation treatment (2-6 gray) did not alter the blood-to-tumor barrier transport when restudied within one hour in patients receiving glucocorticoid. The pH in brain tumors was as high as 6.88-7.26, suggesting that tumors are more alkalotic than the normal brain. The permeability surface area product and the permeability coefficient were determined form the 82 Rb/PET transport and C 15 O 2 /PET flow studies. Baseline permeability values were comparable to the literature values both for 82 Rb and potassium. No difference in tissue blood volume was seen between 82 Rb/PET and C 15 O/PET models and was of the same magnitude in the tumor and the contralateral tissue. Aspects of tumor alkalosis, tumor edema production, glucocorticoid edema clearance, and relationship between the anti-edema effect of

  16. Preparation of Silica Nanoparticles Loaded with Nootropics and Their In Vivo Permeation through Blood-Brain Barrier

    OpenAIRE

    Jampilek, Josef; Zaruba, Kamil; Oravec, Michal; Kunes, Martin; Babula, Petr; Ulbrich, Pavel; Brezaniova, Ingrid; Opatrilova, Radka; Triska, Jan; Suchy, Pavel

    2015-01-01

    The blood-brain barrier prevents the passage of many drugs that target the central nervous system. This paper presents the preparation and characterization of silica-based nanocarriers loaded with piracetam, pentoxifylline, and pyridoxine (drugs from the class of nootropics), which are designed to enhance the permeation of the drugs from the circulatory system through the blood-brain barrier. Their permeation was compared with non-nanoparticle drug substances (bulk materials) by means of an i...

  17. Delivery of Biologics Across the Blood-Brain Barrier Through Nanoencapsulation

    DEFF Research Database (Denmark)

    Bruun, Jonas

    is a polymeric micelle made from an anionic triblock copolymer and was intended for delivery of drugs to the central nervous system (CNS), which is protected by the largely impermeable blood-brain barrier (BBB). In order to target the nanocarrier to the brain endothelial cells and obtain receptor...... of the reporter protein. One of the great challenges for drug delivery by nanocarriers is the dilemma of designing a particle that is highly stable whit no cellular interaction while in the blood stream but has a high uptake and efficient drug release in the diseased cells. As a solution to this dilemma...

  18. Blood-brain barrier opening by isotonic saline infusion in normotensive and hypertensive animals

    Energy Technology Data Exchange (ETDEWEB)

    Rapoport, S I [Baltimore City Hospitals, MD (USA)

    1978-01-01

    The blood-brain barrier to intravascular Evans blue-albumin was opened in monkeys and rabbits by infusing isotonic saline for 15 s into the common carotid artery, when the external carotid was clamped temporarily and the lingual was catheterized for measuring pressure. Barrier opening correlated better with infusion pressure than with infusion rate, and occurred at carotid artery pressures above 170 mmHg. Systematic hypertension induced by Aramine increased barrier vulnerability by causing a higher net carotid artery pressure to be attained at a given infusion rate.

  19. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    OpenAIRE

    Najmeh Kabiri; Mahbubeh Setorki

    2016-01-01

    The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99). Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly hi...

  20. Study on the application of permeable reactive barriers for remediation of uranium mine pit water

    International Nuclear Information System (INIS)

    Li Na'na; Zhu Yucheng

    2012-01-01

    Permeable reactive barrier (PRB) is economical and convenient on in suit remediation of polluted groundwater. In this paper, according to characteristics of uranium mine pit water, laboratory-scale PRB reactors were designed with the mixture of valent iron, active carbon, hydrated lime and quartz sands as reaction media. The feasibility and effectiveness of treating uranium mine pit water by PRB were tested under 3 different proportions of contaminants through dynamic simulation tests, which came out the optimal proportion of contaminants. The result indicated that the remediation effect of reactor B was the best, whose average removal rate to U was up to 99%. The quality of effluent attained the relevant standards, which indicated that the PRB technology is a feasible method for the treatment of uranium mine pit water. (authors)

  1. Brain perfusion in acute and chronic hyperglycemia in rats

    International Nuclear Information System (INIS)

    Kikano, G.E.; LaManna, J.C.; Harik, S.I.

    1989-01-01

    Recent studies show that acute and chronic hyperglycemia cause a diffuse decrease in regional cerebral blood flow and that chronic hyperglycemia decreases the brain L-glucose space. Since these changes can be caused by a decreased density of perfused brain capillaries, we used 30 adult male Wistar rats to study the effect of acute and chronic hyperglycemia on (1) the brain intravascular space using radioiodinated albumin, (2) the anatomic density of brain capillaries using alkaline phosphatase histochemistry, and (3) the fraction of brain capillaries that are perfused using the fluorescein isothiocyanate-dextran method. Our results indicate that acute and chronic hyperglycemia do not affect the brain intravascular space nor the anatomic density of brain capillaries. Also, there were no differences in capillary recruitment among normoglycemic, acutely hyperglycemic, and chronically hyperglycemic rats. These results suggest that the shrinkage of the brain L-glucose space in chronic hyperglycemia is more likely due to changes in the blood-brain barrier permeability to L-glucose

  2. Crossing the Blood-Brain Barrier: Recent Advances in Drug Delivery to the Brain.

    Science.gov (United States)

    Patel, Mayur M; Patel, Bhoomika M

    2017-02-01

    CNS disorders are on the rise despite advancements in our understanding of their pathophysiological mechanisms. A major hurdle to the treatment of these disorders is the blood-brain barrier (BBB), which serves as an arduous janitor to protect the brain. Many drugs are being discovered for CNS disorders, which, however fail to enter the market because of their inability to cross the BBB. This is a pronounced challenge for the pharmaceutical fraternity. Hence, in addition to the discovery of novel entities and drug candidates, scientists are also developing new formulations of existing drugs for brain targeting. Several approaches have been investigated to allow therapeutics to cross the BBB. As the molecular structure of the BBB is better elucidated, several key approaches for brain targeting include physiological transport mechanisms such as adsorptive-mediated transcytosis, inhibition of active efflux pumps, receptor-mediated transport, cell-mediated endocytosis, and the use of peptide vectors. Drug-delivery approaches comprise delivery from microspheres, biodegradable wafers, and colloidal drug-carrier systems (e.g., liposomes, nanoparticles, nanogels, dendrimers, micelles, nanoemulsions, polymersomes, exosomes, and quantum dots). The current review discusses the latest advancements in these approaches, with a major focus on articles published in 2015 and 2016. In addition, we also cover the alternative delivery routes, such as intranasal and convection-enhanced diffusion methods, and disruption of the BBB for brain targeting.

  3. Perlecan and the Blood-Brain Barrier: Beneficial Proteolysis?

    Directory of Open Access Journals (Sweden)

    Jill eRoberts

    2012-08-01

    Full Text Available The cerebral microvasculature is important for maintaining brain homeostasis. This is achieved via the blood-brain barrier (BBB, composed of endothelial cells with specialized tight junctions, astrocytes and a basement membrane. Prominent components of the basement membrane extracellular matrix (ECM include fibronectin, laminin, collagen IV and perlecan, all of which regulate cellular processes via signal transduction through various cell membrane bound ECM receptors. Expression and proteolysis of these ECM components can be rapidly altered during pathological states of the central nervous system. In particular, proteolysis of perlecan, a heparan sulfate proteoglycan, occurs within hours following ischemia induced by experimental stroke. Proteolysis of ECM components following stroke results in the degradation of the basement membrane and further disruption of the BBB. While it is clear that such proteolysis has negative consequences for the BBB, we propose that it also may lead to generation of ECM protein fragments, including the C-terminal domain V (DV of perlecan, that potentially have a positive influence on other aspects of CNS health. Indeed, perlecan DV has been shown to be persistently generated after stroke and beneficial as a neuroprotective molecule and promoter of post-stroke brain repair. This mini-review will discuss beneficial roles of perlecan protein fragment generation within the brain during stroke.

  4. Safety, efficacy, and molecular mechanism of claudin-1-specific peptides to enhance blood-nerve-barrier permeability.

    Science.gov (United States)

    Sauer, Reine-Solange; Krug, Susanne M; Hackel, Dagmar; Staat, Christian; Konasin, Natalia; Yang, Shaobing; Niedermirtl, Benedikt; Bosten, Judith; Günther, Ramona; Dabrowski, Sebastian; Doppler, Kathrin; Sommer, Claudia; Blasig, Ingolf E; Brack, Alexander; Rittner, Heike L

    2014-07-10

    The blood-nerve barrier consists of the perineurium and endoneurial vessels. The perineurial barrier is composed of a basal membrane and a layer of perineurial cells sealed by tight junction proteins preventing e.g. application of analgesics for selective regional pain control. One of the barrier-sealing proteins in the blood-nerve barrier is claudin-1. Therefore, the claudin-1-peptidomimetics (C1C2), derived from the first extracellular loop (ECL1) on claudin-1 was developed. In this study, we further evaluated the expression of tight junction proteins in the perineurium in Wistar rats and characterized the specificity, in vivo applicability, mechanism of action as well as the biocompatibility of C1C2. In the perineurium, claudin-19, tricellulin and ZO-1, but no claudin-2, 3, 8 and -11 were expressed. C1C2 specifically bound to the ECL1 of claudin-1 and fluorescent 5,6-carboxytetramethylrhodamine-C1C2 was rapidly internalized. Opening the perineurium with C1C2 reduced the mRNA and protein expression of claudin-1 and increased small and macromolecule permeability into the peripheral nerve. Application of C1C2 facilitated regional analgesia using μ-opioid receptor agonists like DAMGO or morphine without motor impairment in naïve rats as well as rats with hind paw inflammation. In contrast the control peptide C2C2 derived from ECL1 on claudin-2 did neither open the barrier nor facilitated opioid-mediated regional analgesia. C1C2 delivery was well tolerated and caused no morphological and functional nerve damage. C1C2 effects could be reversed by interference with the wnt-signal-transduction pathway, specifically the homeobox transcription factor cdx2, using a glycogen-synthase-kinase-3 inhibitor. In summary, we describe the composition of and a pathway to open the perineurial barrier employing a peptide to deliver hydrophilic substances to the peripheral nerve. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Ultrasound effects on brain-targeting mannosylated liposomes: in vitro and blood–brain barrier transport investigations

    Directory of Open Access Journals (Sweden)

    Zidan AS

    2015-07-01

    Full Text Available Ahmed S Zidan,1,2 Hibah Aldawsari1 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt Abstract: Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood–brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood–brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (<200 nm of narrow size distribution. Optimized ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes. Keywords: CNS delivery, sizing, lipid based formulations, quality by design, sertraline hydrochloride

  6. Use of a permeable biological reaction barrier for groundwater remediation at a uranium mill tailings remedial action (UMTRA) site

    International Nuclear Information System (INIS)

    Thombre, M.S.; Thomson, B.M.; Barton, L.L.

    1997-01-01

    Previous work at the University of New Mexico and elsewhere has shown that sulfate reducing bacteria are capable of reducing uranium from the soluble +6 oxidation state to the insoluble +4 oxidation state. This chemistry forms the basis of a proposed groundwater remediation strategy in which microbial reduction would be used to immobilize soluble uranium. One such system would consist of a subsurface permeable barrier which would stimulate microbial growth resulting in the reduction of sulfate and nitrate and immobilization of metals while permitting the unhindered flow of ground water through it. This research investigated some of the engineering considerations associated with a microbial reducing barrier such as identifying an appropriate biological substrate, estimating the rate of substrate utilization, and identifying the final fate of the contaminants concentrated in the barrier matrix. The performance of batch reactors and column systems that treated simulated plume water was evaluated using cellulose, wheat straw, alfalfa hay, sawdust, and soluble starch as substrates. The concentrations of sulfate, nitrate, and U(VI) were monitored over time. Precipitates from each system were collected and the precipitated U(IV) was determined to be crystalline UO 2 (s) by X-ray Diffraction. The results of this study support the proposed use of cellulosic substrates as candidate barrier materials

  7. Promising approaches to circumvent the blood-brain barrier: progress, pitfalls and clinical prospects in brain cancer.

    Science.gov (United States)

    Papademetriou, Iason T; Porter, Tyrone

    2015-01-01

    Brain drug delivery is a major challenge for therapy of central nervous system (CNS) diseases. Biochemical modifications of drugs or drug nanocarriers, methods of local delivery, and blood-brain barrier (BBB) disruption with focused ultrasound and microbubbles are promising approaches which enhance transport or bypass the BBB. These approaches are discussed in the context of brain cancer as an example in CNS drug development. Targeting to receptors enabling transport across the BBB offers noninvasive delivery of small molecule and biological cancer therapeutics. Local delivery methods enable high dose delivery while avoiding systemic exposure. BBB disruption with focused ultrasound and microbubbles offers local and noninvasive treatment. Clinical trials show the prospects of these technologies and point to challenges for the future.

  8. Immediate CT findings following embolization of cerebral aneurysms: suggestion of blood-brain barrier or vascular permeability change

    International Nuclear Information System (INIS)

    Baik, Seung Kug; Kim, Yong Sun; Lee, Hui Jung; Kim, Gab Chul; Park, Jaechan

    2008-01-01

    Although endovascular techniques are widely used for the treatment of cerebral aneurysms, the immediate postprocedural brain CT findings have not been reported. Therefore, in the present study we assessed the immediate postprocedural brain CT findings following the uneventful coil embolization of cerebral aneurysms. Included in the study were 59 patients with 61 cerebral aneurysms after uncomplicated coil embolization. Acute subarachnoid hemorrhage was present with 32 of the 61 aneurysms. All patients underwent a brain CT scan just before and within 2 h after the endovascular treatment. If the postprocedural CT scan revealed any new findings, a follow-up CT scan and/or MRI were performed within 24 h. The variables related to the abnormal CT findings were also evaluated. Among the 61 immediate brain CT scans, 26 (43%) showed abnormal findings, including cortical contrast enhancement (n=21, 34%), subarachnoid contrast enhancement (n=8, 13%), intraventricular contrast enhancement (n=5, 8%), and striatal contrast enhancement (n=2, 3%). Single or mixed CT findings were also seen. None of the 61 aneurysms was associated with new neurological symptoms after endovascular treatment, and all patients made an uneventful recovery. Abnormal findings were more likely to be found with lower body weight and with increased corrected amounts of contrast material and heparin (P<0.05). After uneventful endovascular treatment of cerebral aneurysms, the immediate brain CT findings can reveal various patterns of abnormal contrast enhancement. Recognizing the immediate brain CT findings is important, as they can mimic various diseases. (orig.)

  9. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit.

    Science.gov (United States)

    Banks, William A; Gray, Alicia M; Erickson, Michelle A; Salameh, Therese S; Damodarasamy, Mamatha; Sheibani, Nader; Meabon, James S; Wing, Emily E; Morofuji, Yoichi; Cook, David G; Reed, May J

    2015-11-25

    Disruption of the blood-brain barrier (BBB) occurs in many diseases and is often mediated by inflammatory and neuroimmune mechanisms. Inflammation is well established as a cause of BBB disruption, but many mechanistic questions remain. We used lipopolysaccharide (LPS) to induce inflammation and BBB disruption in mice. BBB disruption was measured using (14)C-sucrose and radioactively labeled albumin. Brain cytokine responses were measured using multiplex technology and dependence on cyclooxygenase (COX) and oxidative stress determined by treatments with indomethacin and N-acetylcysteine. Astrocyte and microglia/macrophage responses were measured using brain immunohistochemistry. In vitro studies used Transwell cultures of primary brain endothelial cells co- or tri-cultured with astrocytes and pericytes to measure effects of LPS on transendothelial electrical resistance (TEER), cellular distribution of tight junction proteins, and permeability to (14)C-sucrose and radioactive albumin. In comparison to LPS-induced weight loss, the BBB was relatively resistant to LPS-induced disruption. Disruption occurred only with the highest dose of LPS and was most evident in the frontal cortex, thalamus, pons-medulla, and cerebellum with no disruption in the hypothalamus. The in vitro and in vivo patterns of LPS-induced disruption as measured with (14)C-sucrose, radioactive albumin, and TEER suggested involvement of both paracellular and transcytotic pathways. Disruption as measured with albumin and (14)C-sucrose, but not TEER, was blocked by indomethacin. N-acetylcysteine did not affect disruption. In vivo, the measures of neuroinflammation induced by LPS were mainly not reversed by indomethacin. In vitro, the effects on LPS and indomethacin were not altered when brain endothelial cells (BECs) were cultured with astrocytes or pericytes. The BBB is relatively resistant to LPS-induced disruption with some brain regions more vulnerable than others. LPS-induced disruption appears is

  10. Does sumatriptan cross the blood-brain barrier in animals and man?

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer

    2010-01-01

    Sumatriptan, a relatively hydrophilic triptan, based on several animal studies has been regarded to be unable to cross the blood-brain barrier (BBB). In more recent animal studies there are strong indications that sumatriptan to some extent can cross the BBB. The CNS adverse events of sumatriptan...

  11. Evaluation of performance of barrier materials in geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sasakura, Takeshi; Kobayashi, Ichizo

    2004-01-01

    It is important to evaluate the hydraulic and mechanical performance of barrier materials for geological disposal of radioactive waste. Many experiments on the hydraulic and mechanical performance of barrier materials have been implemented. However, both the ordinary water head-controlled permeability test for evaluating hydraulic performance and the oedometer test for obtaining the mechanical properties are usually needed. In this study, the flow pump permeability test was applied to various barrier materials with the purpose of quickly evaluating their hydraulic performance. The flow pump permeability test was shown to be applicable to every barrier material employed in this study, of which the coefficient of permeability ranged from 10-7 to 10-14 m/sec. The time needed to obtain the coefficient of permeability was about 1/8 that of ordinary head-controlled permeability tests. The resulting coefficient of permeability was more accurate than that from the standard water head-controlled permeability test. Moreover, the bentonite-engineered barrier materials were subjected to a constant strain rate consolidation test, which is a method to quickly evaluate the mechanical performance. The results of the consolidation tests were consistent with the results of the oedometer tests and the necessary time for the test was reduced to only four days even in case of Na-ben-tonite, for which a couple of months was necessary with the standard oedometer test. (author)

  12. Blood-brain barrier disruption in CCL2 transgenic mice during pertussis toxin-induced brain inflammation

    DEFF Research Database (Denmark)

    Schellenberg, Angela E; Buist, Richard; Del Bigio, Marc R

    2012-01-01

    infiltrate into the brain parenchyma following the administration of pertussis toxin (PTx). METHODS: This study uses contrast-enhanced magnetic resonance imaging (MRI) to quantify the extent of blood-brain barrier (BBB) disruption in this model pre- and post-PTx administration compared to wild type mice....... Contrast-enhanced MR images were obtained before and 1, 3, and 5 days after PTx injection in each animal. After the final imaging session fluorescent dextran tracers were administered intravenously to each mouse and brains were examined histologically for cellular infiltrates, BBB leakage and tight...... junction protein. RESULTS: BBB breakdown, defined as a disruption of both the endothelium and glia limitans, was found only in CCL2 transgenic mice following PTx administration seen on MR images as focal areas of contrast enhancement and histologically as dextrans leaking from blood vessels. No evidence...

  13. Blood-brain barrier opening by isotonic saline infusion in normotensive and hypertensive animals

    International Nuclear Information System (INIS)

    Rapoport, S.I.

    1978-01-01

    The blood-brain barrier to intravascular Evans blue-albumin was opened in monkeys and rabbits by infusing isotonic saline for 15 s into the common carotid artery, when the external carotid was clamped temporarily and the lingual was catheterized for measuring pressure. Barrier opening correlated better with infusion pressure than with infusion rate, and occurred at carotid artery pressures above 170 mmHg. Systematic hypertension induced by Aramine increased barrier vulnerability by causing a higher net carotid artery pressure to be attained at a given infusion rate. (Auth.)

  14. How hormones influence composition and physiological function of the brain-blood barrier.

    Science.gov (United States)

    Hampl, R; Bičíková, M; Sosvorová, L

    2015-01-01

    Hormones exert many actions in the brain. Their access and effects in the brain are regulated by the blood-brain barrier (BBB). Hormones as other substances may enter the brain and vice versa either by paracellular way requiring breaching tight junctions stitching the endothelial cells composing the BBB, or by passage through the cells (transcellular way). Hormones influence both ways through their receptors, both membrane and intracellular, present on/in the BBB. In the review the main examples are outlined how hormones influence the expression and function of proteins forming the tight junctions, as well as how they regulate expression and function of major protein transporters mediating transport of various substances including hormone themselves.

  15. Amphiphilic Copolymers Shuttle Drugs Across the Blood-Brain Barrier.

    Science.gov (United States)

    Clemens-Hemmelmann, Mirjam; Kuffner, Christiane; Metz, Verena; Kircher, Linda; Schmitt, Ulrich; Hiemke, Christoph; Postina, Rolf; Zentel, Rudolf

    2016-05-01

    Medical treatment of diseases of the central nervous system requires transport of drugs across the blood-brain barrier (BBB). Here, it is extended previously in vitro experiments with a model compound to show that the non-water-soluble and brain-impermeable drug domperidone (DOM) itself can be enriched in the brain by use of an amphiphilic copolymer as a carrier. This carrier consists of poly(N-(2-hydroxypropyl)-methacrylamide), statistically copolymerized with 10 mol% hydrophobic lauryl methacrylate, into whose micellar aggregates DOM is noncovalently absorbed. As tested in a BBB model efficient transport of DOM across, the BBB is achievable over a wide range of formulations, containing 0.8 to 35.5 wt% domperidone per copolymer. In neither case, the polymer itself is translocated across the BBB model. In vivo experiments in mice show that already 10 min after intraperitoneal injection of the polymer/domperidone (PolyDOM) formulation, domperidone can be detected in blood and in the brain. Highest serum and brain levels of domperidone are detected 40 min after injection. At that time point serum domperidone is increased 48-fold. Most importantly, domperidone is exclusively detectable in high amounts in the brain of PolyDOM injected mice and not in mice injected with bare domperidone. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Barriers and post-closure monitoring (AL121125)

    International Nuclear Information System (INIS)

    Bostick, K.V.; Janecky, D.

    1995-01-01

    This project focuses on the rapid implementation of near-surface barriers, biotreatment, and post-closure monitoring technology. It uses water-permeable and biologic barriers that chemically capture and/or degrade contaminants without significantly altering the natural water flow regime. Barrier approaches are being tested for two different applications. The first is the use of barriers for confinement of chemical contaminants for in-trench treatments with leach systems or an in-place bioreactor. The second is an enhancement of the current practice of emplacing grout or clay slurry walls into direct horizontal surface and subsurface water flows around a contaminated area by integrating permeable reactive barriers and petroleum reservoir gel/foam/polymer technology

  17. Strategies for transporting nanoparticles across the blood-brain barrier.

    Science.gov (United States)

    Zhang, Tian-Tian; Li, Wen; Meng, Guanmin; Wang, Pei; Liao, Wenzhen

    2016-02-01

    The existence of blood-brain barrier (BBB) hampers the effective treatment of central nervous system (CNS) diseases. Almost all macromolecular drugs and more than 98% of small molecule drugs cannot pass the BBB. Therefore, the BBB remains a big challenge for delivery of therapeutics to the central nervous system. With the structural and mechanistic elucidation of the BBB under both physiological and pathological conditions, it is now possible to design delivery systems that could cross the BBB effectively. Because of their advantageous properties, nanoparticles have been widely deployed for brain-targeted delivery. This review paper presents the current understanding of the BBB under physiological and pathological conditions, and summarizes strategies and systems for BBB crossing with a focus on nanoparticle-based drug delivery systems. In summary, with wider applications and broader prospection the treatment of brain targeted therapy, nano-medicines have proved to be more potent, more specific and less toxic than traditional drug therapy.

  18. Sex-specific signaling in the blood-brain barrier is required for male courtship in Drosophila.

    Directory of Open Access Journals (Sweden)

    Valbona Hoxha

    Full Text Available Soluble circulating proteins play an important role in the regulation of mating behavior in Drosophila melanogaster. However, how these factors signal through the blood-brain barrier (bbb to interact with the sex-specific brain circuits that control courtship is unknown. Here we show that male identity of the blood-brain barrier is necessary and that male-specific factors in the bbb are physiologically required for normal male courtship behavior. Feminization of the bbb of adult males significantly reduces male courtship. We show that the bbb-specific G-protein coupled receptor moody and bbb-specific Go signaling in adult males are necessary for normal courtship. These data identify sex-specific factors and signaling processes in the bbb as important regulators of male mating behavior.

  19. A novel blood-brain barrier co-culture system for drug targeting of Alzheimer's disease: establishment by using acitretin as a model drug.

    Science.gov (United States)

    Freese, Christian; Reinhardt, Sven; Hefner, Gudrun; Unger, Ronald E; Kirkpatrick, C James; Endres, Kristina

    2014-01-01

    In the pathogenesis of Alzheimer's disease (AD) the homeostasis of amyloid precursor protein (APP) processing in the brain is impaired. The expression of the competing proteases ADAM10 (a disintegrin and metalloproteinase 10) and BACE-1 (beta site APP cleaving enzyme 1) is shifted in favor of the A-beta generating enzyme BACE-1. Acitretin--a synthetic retinoid-e.g., has been shown to increase ADAM10 gene expression, resulting in a decreased level of A-beta peptides within the brain of AD model mice and thus is of possible value for AD therapy. A striking challenge in evaluating novel therapeutically applicable drugs is the analysis of their potential to overcome the blood-brain barrier (BBB) for central nervous system targeting. In this study, we established a novel cell-based bio-assay model to test ADAM10-inducing drugs for their ability to cross the BBB. We therefore used primary porcine brain endothelial cells (PBECs) and human neuroblastoma cells (SH-SY5Y) transfected with an ADAM10-promoter luciferase reporter vector in an indirect co-culture system. Acitretin served as a model substance that crosses the BBB and induces ADAM10 expression. We ensured that ADAM10-dependent constitutive APP metabolism in the neuronal cells was unaffected under co-cultivation conditions. Barrier properties established by PBECs were augmented by co-cultivation with SH-SY5Y cells and they remained stable during the treatment with acitretin as demonstrated by electrical resistance measurement and permeability-coefficient determination. As a consequence of transcellular acitretin transport measured by HPLC, the activity of the ADAM10-promoter reporter gene was significantly increased in co-cultured neuronal cells as compared to vehicle-treated controls. In the present study, we provide a new bio-assay system relevant for the study of drug targeting of AD. This bio-assay can easily be adapted to analyze other Alzheimer- or CNS disease-relevant targets in neuronal cells, as their

  20. Influence of age on the passage of paraquat through the blood-brain barrier in rats: a distribution and pathological examination

    International Nuclear Information System (INIS)

    Widdowson, P.S.; Farnworth, M.J.; Simpson, M.G.; Lock, E.A.

    1996-01-01

    Experiments were performed to determine the extent of paraquat entry into the brain of neonatal and elderly rats, as compared with adult rats, which may be dependent on the efficacy of the blood-brain barrier. A single, median lethal dose (20 mg/kg s.c.) of paraquat containing [14C]paraquat was administered to neonatal (10 day old), adult (3 month old) and elderly (18 month old) rats. In contrast to the adult and elderly rats where paraquat levels fell over the 24 h post-dosing period to negligible levels, paraquat concentrations in neonatal brains did not decrease with time between 0.5 and 24 h following dosing. The distribution of [14C]paraquat was measured in selective brain regions using quantitative autoradiography in all three age groups of rats, 30 min and 24 h following dosing. Autoradiography demonstrated that brain paraquat distributions were similar in the rat age groups. Most of the paraquat was confined to regions outside the blood-brain barrier and to brain regions that lack a complete blood-brain barrier e.g. dorsal hypothalamus, area postrema and the anterior olfactory bulb. Between 0.5 h and 24 h following dosing, paraquat concentrations in deeper brain structures, some distance away from the sites of entry, began to slowly increase in all the rat age groups. By 24 h following dosing, a majority of brain regions examined using quantitative autoradiography revealed significantly higher paraquat concentrations in neonatal brains as compared to brain regions of adult and elderly rats. Despite increased paraquat entry into neonatal brain, we could find no evidence for paraquat-induced neuronal cell damage following a detailed histopathological examination of perfused-fixed brains. In conclusion, impaired blood-brain barrier integrity in neonatal brain thus permitting more paraquat to enter than in adult brain, did not result in neuronal damage